
Teaching Multi-Core
Programming

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Magister

im Rahmen des Studiums

Informatikmanagement

eingereicht von

DI Matthias Wenzl
Matrikelnummer 0425388

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Ass.Prof. Dr. Monika DiAngelo

Wien, 12.11.2012
(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Teaching Multi-Core
Programming

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Magister

in

Computer Science Management

by

DI Matthias Wenzl
Registration Number 0425388

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Ass.Prof. Dr. Monika DiAngelo

Vienna, 12.11.2012
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

DI Matthias Wenzl
Elisabethallee 39/8, 1130 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die ver-
wendeten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen
der Arbeit - einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken
oder dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall un-
ter Angabe der Quelle als Entlehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i

Acknowledgements

First, I would like to thank Ass.Prof. Dr. Monika Di Angelo for her valuable feedback
and remarks. Moreover, I would like to thank my wife for her cherished support and
understanding.

This thesis has been partly
supported by the City
of Vienna, MA23 under
the project grant number
MA23-Projekt 10-09.

ii

Abstract

During the last decades processor manufactures mainly increased performance by shrink-
ing their production size and increasing the processor’s clock speed. However, due to
physical limitations this approach is not efficient any more. As a consequence, the com-
puter industry increased the number of processor cores on a single die, thus creating
multi-core processors. Up to today multi-core processors are used in all kinds of com-
puter systems ranging from super computers to mobile phones. However, programming
multi-core systems is a challenging task, which requires software engineers to restruc-
ture the way they think about computer programs.

Therefore, this thesis presents a best practice based approach, introducing two course
concepts on parallel programming. The first course is a more guided one, where all stu-
dents are obliged to focus on the same assessment types within the course. Moreover,
this course has a strong practical focus, thus being aimed at a university of applied
science context. The second course offers more theory and a greater freedom to the
students as they are free to choose a certain topic within the field of multi-core systems.
This course is aimed at a university context.

The best-practice course concepts are obtained through a thorough analysis of nu-
merous research articles with the following focus:

• The identification and proposition of solutions on the issues and pitfalls when
teaching multi-core programming.

• The recommendation of suitable assessment methods when dealing with this chal-
lenging field.

• A set of related courses already teaching parallel programming in various aspects.

As a consequence two best-practice based course concepts tailored to the needs of a
university and a university of applied sciences are derived. Based on these best-practice
examples, two actual courses are designed. This includes a detailed course schedule,
learning outcome, assessment concepts, and a set of recommended research articles on
the theory of concurrent systems.

iii

Kurzfassung

Eine Kombination von Erhöhung der Taktrate und Verringerung der Strukturbreiten war
in den letzten Jahrzehnten ein gängiges Mittel zur Geschwindigkeitssteigerung von Mi-
kroporzessoren. Aufgrund physikalischer Beschränkungen ist derzeit mit diesem An-
satz jedoch kein nennenswerter Geschwindigkeitszuwachs mehr zu erzielen. Eine na-
heliegende Lösung war die Entwicklung sogenannter Mehrkernprozessorsysteme, wel-
che mehrere Prozessorkerne auf einem Chip zur Verfügung stellen und somit wieder
zu einer Rechenleistungssteigerung führten. Heute sind Mehrkernprozessorsysteme be-
reits allgegenwärtig und in diversen Computersystemen, vom Supercomputer bis zum
Mobiltelefon, im Einsatz. Allerdings ist die Programmierung von Mehrkernprozessor-
systemen eine herausfordernde Aufgabe, welche von angehenden Ingenieuren verlangt,
ihre Betrachtungs- und Herangehensweise im Bereich der Softwareentwicklung grund-
legend zu erweitern. Aus diesem Grund stellt diese Diplomarbeit zwei Lehrveranstal-
tungsdesigns basierend auf einer ”Best-Practice”- Evaluierung vor. Der erste Kurs wird
hierbei an die Anforderungen eines Universitätskurses angepasst, während der zweite
Kurs für die Anforderungen an einer Fachhochschule optimiert ist. Die Vorgehensweise
zur Erreichung dieser Ziele ist hierbei wie folgt:

• Die Identifikation von Herausforderungen und deren Lösungen im Unterrichten
von parallelen Programmiertechniken und deren zugrunde liegender Theorie.

• Eine Analyse geeigneter Methoden zur Leistungsprüfung im Hinblick auf die un-
terschiedlichen Kursausprägungen.

• Eine Gegenüberstellung diverser Kurse im Bereich parallelen Rechnens auf Basis
ihrer Lehrziele.

Aufbauend auf diesen Erkenntnisse und den daraus resultierenden ”Best-Practcie”- Emp-
fehlungen werden die tatsächlichen Lehrveranstaltungen für ein universitäres, sowie
für ein Fachhochschulumfeld abgeleitet. Die praktischen Kursbeschreibungen beinhal-
ten einen detaillierten Zeitplan, die entsprechend ihrem Unterrichtsumfeld angepass-
ten Lehrziele, Konzepte zur Leistungsüberprüfung sowie eine Auswahl an empfohlenen
wissenschaftlichen Artikeln zu den behandelten Themen.

iv

Contents

List of Figures vi

List of Tables vii

List of Abbreviations viii

1 Introduction 1

2 Basics of Multi-Core Systems 4
2.1 Categorizing Multi-Processor Systems 4
2.2 Hardware Parallelism . 7
2.3 Software Parallelism . 26
2.4 Conclusion . 37

3 Challenges in Teaching Concurrent Programming 39
3.1 Qualification Profiles and Learning Outcomes 40
3.2 Issues and Pitfalls in Parallel Programming 42
3.3 Parallel programming courses . 44
3.4 Assessment Concepts . 51
3.5 Evaluation Results . 53
3.6 Best Practices . 55
3.7 Summary . 58

4 Two Approaches for Teaching Multi-Core Programming 61
4.1 Multi-Core Programming in a University Context 61
4.2 Multi-Core Programming in a University of Applied Sciences Context . 79
4.3 Summary . 87

5 Conclusion 89

v

Bibliography 92

List of Figures

2.1 Flynn’s Taxonomy [97] . 6
2.2 Filling and Emptying of a Three Stage Pipeline 8
2.3 Processor Architecture Overview . 9
2.4 Chip Multi-Processor Architecture . 12
2.5 Chip Multi-Threading Architecture . 14
2.6 Memory Hierarchy [40] . 15
2.7 Memory Hierarchies of Multi Processor Systems 16
2.8 A 2-Way Set Associative Cache [3] . 24
2.9 Categorizing Hardware Parallelism [104] 25
2.10 Amdahl’s Law: Speedup using a program with a parallel portion P [104] . . 27
2.11 Special Issues in parallel programs . 32
2.12 False Sharing and its avoidance . 35
2.13 Hour Glass of Concurrent Computing [104]. 37

4.1 Multi-Core programming in a university context - detailed course timeline . 71
4.2 Multi-Core prgramming in a university of applied sciences context - detailed

course timeline . 81

vi

List of Tables

3.1 Results of Mult-Core Programming Course Examintaion 59
3.2 Abstract Course Overview . 60

4.1 University Course Key Facts . 62
4.2 University Course Time Table from a student’s point of view 69
4.3 University Course Time Table from a lecturer’s point of view 70
4.3 University Course Time Table from a lecturer’s point of view 71
4.4 Weighted grade components . 72
4.5 University of Applied Science Course Key Facts 81
4.6 University of Applied Science Detailed Course Description 84
4.7 Weighting of grade components . 85

vii

List of Abbreviations

ALU Arithmetic Logic Unit

AMP Asymmetric Multi-Processor

CMP Chip Multi-Processor

CMT Chip Multi-Threading

CPU Central Processing Unit

EDA Electronic Design Automation

EU European Union

FPGA Field Programmable Gate Array

FPU Floating Point Unit

GPU Graphic Processing Unit

GUI Graphical User Interface

HT Hyper Threading

ILP Instruction Level Parallelism

IO Input/Output

IPC Inter Process Communication

ISA Instruction Set Architecture

LRU Least Recently Used

MESI Modified Exclusive Shared Invalid

MISD Multiple Instruction Single Data

viii

MIMD Multiple Instruction Multiple Data

MPI Message Passing Interface

NUMA Non Uniform Memory Access

OpenMP Open Multi Programming

PC Personal Computer

SIMD Single Instruction Multiple Data

SISD Single Instruction Single Data

SMP Symmetric Multi-Processor

SMT Simultaneous Multithreading

TLP Thread Level Parallelism

UMA Uniform Memory Access

UNESCO United Nations Educational, Scientific and Cultural Organization

ix

CHAPTER 1
Introduction

During the last decades processor manufactures mainly increased performance by shrink-
ing their production size and increasing the processor’s clock speed. However, due to
physical limitations this approach is not efficient any more. As a consequence, the com-
puter industry increased the number of processor cores on a single die, thus creating
multi-core processors [104]. Up to today multi-core processors are used in all kinds
of computer systems ranging from super computers to mobile phones. However, pro-
gramming multi-core systems is a challenging task, which requires software engineers
to restructure the way they think about computer programs [33, 59, 64].

Therefore, this thesis presents a best practice based approach, introducing two course
concepts on parallel programming. The first course is a more guided one, where all stu-
dents are obliged to focus on the same assessment types within the course. Moreover,
this course has a strong practical focus, thus being aimed at a university of applied sci-
ence context. The second course offers greater freedom to the students as they are free
to choose a certain topic within the field of multi-core systems. As a consequence, this
course is aimed at a university context. Nevertheless, the presented course concepts base
on a thorough analysis of existing multi-core programming courses in order to derive
best practices considering assessment, assignments, and general course structures with
respect to desired learning outcomes. Eventually, both course designs will be applied
in the summer term 2013 at the Vienna University of Applied Sciences and the Vienna
University of Technology.

1

The remainder of this thesis is structured as follows: Chapter 2 provides a hardware
and software oriented introduction on multi-core programming in general. The Chapter
consists of a short overview on the history of parallel computing and a categorization of
parallel computing systems according to Flynn [29]. Afterwards, hardware parallelism
is examined, investigating processor architectures, memory consistency, and processor
synchronization. Subsequently, Chapter 2 addresses software parallelism, introducing
Amdahl’s Law [6] and focusing on topics like categorizing software parallelism. More-
over, this Chapter investigates synchronization and communication issues and discusses
software libraries aiding in developing parallel software.

The subsequent Chapter 3, is divided into 4 consecutive parts:

1. First, it is shown that the comparison of single courses within degree programs
cannot be done on basis of the alumni qualification profile, but must be done with
respect to the so called learning outcome.

2. Subsequently, numerous contributions identifying issues and challenges in teach-
ing parallel programming in a more specific manner are reviewed.

3. Moreover, a set of dedicated parallel programming courses is evaluated with re-
spect to their learning outcome definitions as well as their actual teaching content.

4. The result of this evaluation serves as a basis to derive two best practice courses.
One is aimed at a university environment, the other one is designed to fit in a
university of applied science context. These best practice course concepts will be
used to design two courses in Chapter 4.

As a consequence, Chapter 4 presents the actual instances of the best practice course
templates developed in the previous Chapter. The first course presented is composed
for a university context. It is designed as a conference simulation which requires par-
ticipants to write a seminar paper, perform a peer review, and do a final presentation
with a subsequent discussion. The freedom of choice is implemented by letting stu-
dents choose their general topic out of a topic pool. The second course is dedicated to
a university of applied sciences context, thus offering more industry focused content.
This includes covering dedicated programming libraries for all participants. Although
students are required to read and understand certain research papers on the theory of

2

parallel computing as well, the main focus of the course is the communication of the
application of parallel programming techniques.

Finally, Chapter 5 concludes the thesis. Moreover, this Chapter presents the results
of an evaluation on the university of applied science course that has been held in a
somewhat related version in the summer term of 2013.

3

CHAPTER 2
Basics of Multi-Core Systems

The first computer featuring real hardware parallelism was built in 1968. At that time,
Barnes et. al. [8] proposed the ILLIAC IV computer. It consists of 256 parallel com-
puting elements, a unified address, and Input/Output (IO) space. The main purpose
of this architecture was to aid in matrix calculations and the handling of large multi-
dimensional data structures. Aside of this early attempt to increase computing power
by adding extra hardware, it was not before November 2000, that chip multi-processors
(CMP) were available to the public with the introduction of Intel’s Pentium 4 Hyper
Threading (HT) processor family [104]. By today, multi processor systems have also
spread into the embedded market and are available to many people of the industrialized
parts of the world. However, since 1968 numerous technologies and methods regarding
parallel computing have been introduced. Therefore this chapter provides an overview
of the used taxonomy in parallel computing.

2.1 Categorizing Multi-Processor Systems

The first and still most common categorization of parallel processors has been proposed
by Flynn in 1972 [29]. Flynn developed a hierarchical model to represent an architec-
ture’s structure from a macroscopic point of view. To allow an abstract categorization
of computer systems, Flynn used the stream concept, which denotes a sequence of data

4

or instructions [30]. His approach is known as Flynn’s taxonomy today. It reveals the
following processor architecture classes:

Single Instruction Single Data (SISD) This kind of processor architecture consists of
a single processing unit that operates with a single instruction stream on a sin-
gle data stream. It does not provide any hardware parallelism at all, regarding
truly parallel execution. This class refers to classic single processor architectures
systems like older Personal Computers (PCs), or old main frames.

Single Instruction Multiple Data (SIMD) Systems utilizing these architecture use a
single instruction stream to operate on multiple data streams. This very common
type of parallelism can be found in Graphic Processing Units (GPUs), or array
processors, for example. The idea behind this concept is, that it is possible to op-
erate on one large data structure consisting of several independent sub-structures
concurrently. Thus being able to finish the task faster [48].

Multiple Instruction Single Data (MISD) The third classification type by Flynn de-
scribes an architecture where multiple instruction streams, thus multiple process-
ing units operate on a single data stream. An example for this kind of architec-
ture is an application specific processor for pattern matching developed by Olaf
René [11]. However, no commercially available processor using this kind of ar-
chitecture has been built until today [40, 97].

Multiple Instruction Multiple Data (MIMD) Modern general purpose multi proces-
sor systems implement this kind of architecture where multiple instruction streams
operate on multiple data streams. Examples for such systems implementing the
MIMD architecture in the field of embedded systems are: [31, 32, 75, 80, 88, 96,
100–102]. Moreover, all modern server and desktop processors from Intel1 and
AMD2 belong to this category. Furthermore, this category features clusters and
super computers as well.

In order to be more specific it is also possible to break down the MIMD architecture
into two sub categories [97], loosely and tightly coupled systems.

1www.intel.com
2www.amd.com

5

• The first sub category describes so-called ”loosely coupled” MIMD systems.
Such architectures describe systems, where the sum of available processing units
does not share a common memory. They are also called distributed memory sys-
tems and are applied in super-computers as well as in embedded systems.

• The second disposition of systems implementing the MIMD architecture are so-
called ”tightly coupled” systems. In this case all processing units in a processor
share a common accessible memory in general. Moreover, master/slave systems
do also belong to this category. In a master/slave system a single master pro-
cessor performs the required task scheduling, like starting and stopping jobs on
a set of slave processors. Such architectures are mainly found in the field of
embedded systems today. An example is the TI AM1710 platform from Texas
Instruments [100].

Figure 2.1: Flynn’s Taxonomy [97]

6

Furthermore, there exist another two ways to categorize parallel computing systems. On
the one hand, it is possible to distinguish between Asymmetric Multi-Processor (AMP)
and Symmetric Multi-Processor (SMP) systems. An SMP system implements a MIMD
architecture, where all of the available processor cores utilize the same Instruction Set
Architecture (ISA) [90]. A system consisting of several processors from at least two
different ISAs are called AMP.

On the other hand, there exists a classification into homogeneous and heterogeneous

systems. From a hardware point of view, these two terms can be used synonymously
with the definition of SMP and AMP [90]. However, from a software perspective, the
term heterogeneous describes a system executing at least two different operating sys-
tems on a given hardware platform, which may implement an AMP or a SMP. Con-
sidering homogeneous systems, only one operating system may be used on an AMP or
SMP system from the software point of view [41, 90, 104]. In this thesis, the terms ho-

mogeneous and heterogeneous are used from a software point of view, if not stated oth-
erwise. Figure 2.1 depicts the categorization introduced in order to provide an overview
on the parallel computing taxonomy. Considering Figure 2.1, SMP and AMP are not
bound to tightly, respectively loosely-coupled memory architectures, but these are their
most common implementations [90]. Moreover, the sub-tree discussed in this thesis
shown in Figure 2.1, as enclosed gray area. Furthermore, there exist different tech-
niques implementing parallelism in computer systems. Therefore, the subsequent Sec-
tions 2.2 and 2.3 provide an introduction of hardware and software related techniques
to realize parallel systems.

2.2 Hardware Parallelism

This section discusses techniques to implement parallelism at a hardware level, thus
supplying computing systems with the components necessary to work on at least two
tasks simultaneously. The term task refers to a wide variety of granularity, reaching
from parallel execution of instructions to parallel computation of whole programs.

7

Figure 2.2: Filling and Emptying of a Three Stage Pipeline

Instruction Level Parallelism

The first method described to implement parallelism in a computer system is called
Instruction Level Parallelism (ILP) [82]. In fact the processors pipeline realizes the
parallel processing of data or instructions by interleaving. In Figure 2.2 a three stage
pipeline3 executing three independent instructions in parallel using ILP is shown. As
it can be seen it takes three cycles (C3) - (C5) until the pipeline is full ((C5)). Subse-
quently, it takes another three cycles (C6) - (C8) until it is emptied again. However, in
cycle (C5) the pipeline is executing three instructions (I1) - (I3) concurrently. In order
to exploit ILP the following conditions must be fulfilled:

(1) No data dependencies: A data dependency exists if the result of instruction i de-
pends on a parameter of instruction j. Moreover, an instruction j is data de-
pendent on instruction k, whereas instruction k is data dependent on instruction
i [82].

(2) No name dependencies: Name dependencies refer to a case when at least two in-
structions use the same register or memory location to operate on.

3It consists of the three basic steps: InstructionFetch, Instruction Decode, and Instruction Execute

8

(a) Superscalar Architecture (b) Symmetric Multi-Threading Architecture

Figure 2.3: Processor Architecture Overview

(3) No data hazards: Data hazards denote two instructions that would alter the results
of their operands when being executed in parallel. The distance between two
instructions that are allowed to depend on each other is bound by the pipeline
length [40].

(4) No control dependencies: A control dependency occures when ordering of instruc-
tions are determined by a branch. Therefore, this condition states that the order
of instructions determined by branches must not be changed [40].

Finally, ILP is used in all processors including a pipelined architecture. This is true for
every processor since about the second half of the 1950’s [93].

A generalization of the ILP approach is the so called Superscalar processor archi-
tecture [93]. Here, a processor is capable of processing two or more instructions in
parallel. This is possible since the most important resources in the pipeline are acces-

9

sible separately, or are available multiple times (e.g. separate store/load units, separate
but multiple available integer execution units). Nevertheless, a processor implementing
this architecture can only execute instructions associated with a single thread/process in
parallel. But, due to the fact that a series of instructions may be independent from each
other, they can be executed concurrently because it is possible to utilize several of the
available execution units at once. Examples of processors implementing a Superscalar

architecture are the MIPS R10000, and the first Pentium 4 processors [77]. Figure 2.3a
gives an overview on this kind of architecture.

Therefore, to further exploit the parallel potential of certain software components,
the next logical step was to increase the number of software threads being executed
without the necessity of task switches by the operating system. This has been realized
by the implementation of truly Multi-Threaded processor architectures.

Hardware Multi-Threading

Multi-Threading describes the concurrent execution of software components (threads,
processes) on a given processor [94]. The first attempts of multi-threading were per-
formed in software, where an operating systems scheduler has to issue context switches4

to execute threads/processes in a pseudo parallel way. The term pseudo parallel refers
to the fact that SISD architectures could only execute threads/processes by interleav-
ing. This is also true for processor architectures implementing ILP, or the Superscalar

architecture.

To further push the performance increase of Superscalar processor architectures a
hardware support for task switching has been proposed by the introduction of Simulta-
neous Multithreading (SMT), which is also called HT by Intel [40]. The intended per-
formance gained on multithreaded software is achieved by at least doubling the number
of available processor registers, stack pointers, and program counters. Moreover, the
processor provides resources for thread context sensitive pipeline flushes, subroutine
return predictions and trapping [83]. The multiple availability of these resources causes
the operating system to perform task switches in a faster way, since all that has to be
done is to switch to the next thread context by changing to the next available regis-

4Context switches oblige a lot of costly operations like saving processor registers, stack pointer, and
the program status word to the stack.

10

ter bank. Nevertheless, threads and processes are still executed in a pseudo parallel
scheme [40,94]. Figure 2.3b shows the operation principle of a processor implementing
the SMT architecture.

However, the further increase of parallel execution units and mirrored registers sets
does not scale linearly with the estimated performance [77]. This is merely caused by
the fact that the administrative overhead considering queuing and multi-port register
files results in a limit on the performance return of an SMT architecture [77]. For exam-
ple, when upgrading a four issue5 machine, to an eight issue machine, the performance
increase will only be about 20% [77]. Therefore, the next step in the development of
processors being able to execute threads and processes in a truly parallel way was the
proposal of Chip Multi-Processor architectures.

Chip Multi-Processor (CMP)

According to Olukotun et al. [77], the consequences of the limitations of Superscalar

processors led to decentralized microprocessor designs in order to achieve anticipated
performance gains. Moreover, the idea of implementing several comparatively small
processor cores on a die, instead of one complex multi-issue design supports the pro-
cessor’s flexibility and scalability considering software execution [53]. This has been
observed by Wall [107]. In his study, the author identified two general classes of pro-
grams executed on a processor.

• The first class describes programs with low to moderate inherent parallelism.
These programs usually implement a large number of integer operations. How-
ever, they are not able to be fully exploited by a given multi-issue Superscalar ar-
chitecture, due to their lack of larger amounts of independently executable code.
Due to the fact that CMP processors implement independently operating proces-
sor cores on one chip, this class of programs can be executed in a more efficient
way. This argument is also supported by [77], who showed that programs falling
into this class scale worse on a four issue Superscalar processor than on a two

5The term issue denotes the number of parallel execution units in a Superscalar or Symmetric Multi-
threading processor.

11

Figure 2.4: Chip Multi-Processor Architecture

issue Superscalar processor, both operating at the same clock frequency and im-
plementing the same instruction set base.

• The second class represent programs containing a high amount of parallelism,
while implementing floating point operations mostly. Although these kinds of
programs would perform well on a Superscalar processor, they would not perform
worse on a CMP, since several available processor cores could be used to exploit
the available parallelism capability.

Therefore, CMP systems implement execution models being able to cope with both,
low to moderate, and high parallelism capabilities [77]. Figure 2.4 shows a CMP sys-
tem implementing two processor cores. Nevertheless, there exist three general types of
application areas inducing architecture variants of CMP systems according to Kumar et
al. [53].

12

Server & High Performance Computing This group is generally used in business or
scientific computing. Thus machines in this field have to process a high amount of
independent data using commercially available software (e.g. database servers).
In the field of high performance computing, highly specialized software compo-
nents are used to exploit a processor’s architecture in an effective way. Therefore,
CMP systems housing a large number of simple, but yet powerful processor cores
can be used for these scenarios. Due to cost effectiveness reasons computers fea-
turing these processor architectures have to operate on a high workload most of
the time.

Desktop Computing In contrast to high performance computing systems, the average
user has to master only a small number of tasks in parallel. However, in order to
use software developed for SISD processors in a convenient way, it is highly desir-
able to have a smaller, but more powerful number of cores in a system belonging
to this requirement group.

Embedded Computing Embedded systems do not have unified performance require-
ments. Their concern is rather application specific. An example for opposing
system requirements in the field of embedded systems is the modern cell phone.
On the one hand, the phone is obliged to have a long operational and standby
availability, thus consuming as few power as possible. On the other hand, a mod-
ern phone must service its user with a lot of additional features like a music player
or 3D graphics support. These media features need a lot of processor power in
contrast to a phone’s main tasks. Therefore, a heterogeneous CMP solution can
often be found in these cases.

Chip Multi-Threading (CMT)

Due to the ever decreasing feature size and the resulting increase of transistors on a chip
it is possible to implement hardware SMT features in a CMP system, as it is shown in
Figure 2.5 [94]. This so called Chip-Multi-Threading is implemented by the high end
models of Intel’s Core I7 and Core I5 processors, for example. The motivation for im-
plementing such systems is located in the field of highly parallel software, such as data
base applications. Usually, such kind of software serves several hundred of users, where

13

Figure 2.5: Chip Multi-Threading Architecture

each user is associated with a process, consisting of several threads in order to hide disk
access latencies [94]. Therefore, a processor design implementing truly parallel execu-
tion of processes in combination with fast task switching capabilities is very well suited
for an environment realizing a high rate of Thread Level Parallelism (TLP). However,
the design of CMT capable processors is not done by simply instantiating whole proces-
sor cores multiple times on one chip. Instead there exist a lot of shared resources which
are only available in a fraction of the physically available cores, such as Floating Point
Units (FPUs), for example. Therefore, there exist special requirements when exploiting
the capabilities of CMP and CMT systems, regarding interconnect technologies [94].

Special Issues regarding truly Parallel Executing Processors

Besides the fact that CMP and CMT processors provide solutions to the problems on
how to deal with parallel programs in an efficient way, there still exist various challenges

14

Figure 2.6: Memory Hierarchy [40]

in exploiting these capabilities which are discussed in the following Subsections.

Memory Hierarchies

The design of memory hierarchies has to cope with two contradictory conditions. On the
one hand, programmers want to have access to an infinite space of fast memory. On the
other hand, the faster the memory, the more expensive it is. In order to find a balanced
tradeoff between the costs and the performance constraints, a computer’s memory is
organized in a set of layers, as it can be seen in Figure 2.6. In the first layer, a set
of registers expose a small amount of storage to the Central Processing Unit (CPU).
This kind of memory is implemented inside the processor core and can be accessed
within a few clock cycles. The next layer represents the so called cache memory. The
cache can be seen as a memory, exploiting the principle of locality in an aggressive
way. The adjacent layer is called main memory in general and is located off chip, thus
it is necessary to let the processor communicate with a dedicated memory controller6 to
access the main memory, thus decreasing the access speed. The last layer includes mass
storage devices, like a hard disk or a flash memory [40].

Furthermore, considering CMP and CMT systems it is possible to distinguish be-
tween shared memory7 and distributed memory8 architectures, as explained in Sec-

6Sometimes, these memory controllers reside on-chip as well.
7This architecture is also known as Uniform Memory Access (UMA)
8This architecture is also known as Non Uniform Memory Access (NUMA)

15

(a) Shared Memory Hierarchy (b) Distributed Memory Hierarchy

Figure 2.7: Memory Hierarchies of Multi Processor Systems

tion 2.1. As shown in Figure 2.7, both memory hierarchy models consist of memories
only local to a specific processor. Therefore, the necessity for memory synchronization
and consistency arises [40].

Nevertheless, synchronization of concurrent processes was important in uni pro-
cessor systems9 as well, but could be realized without the need of additional hardware
support apart from the common Test & Set instructions necessary for implementing syn-
chronization primitives, such as semaphores or spin locks [22]. This was possible since
concurrent processes in a uni processor systems were actually executed in a pseudo par-
allel way [94]. However, when dealing with multi processor systems there has to be
additional hardware support for synchronizing the access to shared memory regions, as
well as keeping them in a consistent state.

Synchronization

To gain synchronized access to a central resource, the mutual exclusion problem has
to be solved [20]. Basically, the problem states, that when multiple processes compete
over a single resource it must be assured that one process has exclusive access to that
resource. Furthermore, it must be guaranteed that a process has only access to the
resource for a finite amount of time. Moreover, it must be asserted that also other

9Including Superscalar and SMT architectures

16

processes can enter the shared resource once the process possessing it has left.

Since synchronization is a common problem in both, uni processor and multi proces-
sor systems, there exist dedicated instructions to perform these tasks. They are usually
subsumed under the term Test & Set instructions [22]. However, there exist major dif-
ferences in the implementation of Test & Set instructions between uni processor and
CMP systems. In order to illustrate these difference, the synchronization instructions of
the ARMv5 and ARMv6 ISAs are compared [1]. Here, the ARMv5 ISA represents a
uni processor instruction set, whereas the ARMv6 symbolizes a multi processor capable
ISA.

Listing 2.1: ARMv5 compatible Spinlock Implementation [61]

1 s t a t i c i n l i n e vo id _ _ s p i n _ l o c k _ n d s (n d s _ s p i n l o c k _ t ∗ l o c k)
2 {
3 u n s i g n e d long tmp ;
4
5 __asm__ _ _ v o l a t i l e _ _ (
6 " sp in : l d r %[tmp] , [%[l o c k]] \ n "
7 " cmp %[tmp] , 0 \ n "
8 " bne sp in \ n "
9 " l d r %[tmp] , 1 \ n "

10 " swp %[tmp] , %[tmp] , [%[l o c k]] \ n " /∗ a t om ic ∗ /
11 " cmp %[tmp] , 0 \ n "
12 " bne sp in \ n "
13 :
14 : [l o c k] " r " (& lock−>l o c k) , [tmp] " r " (tmp)
15) ;
16 }

Synchronizing pseudo parallel executing processes using an ARMv5 ISA can be
done with the help of a single instruction, called swp. This instruction performs a com-
bined load and store operation, making it possible to exchange the value of a variable in
an atomic way. This is necessary, since an occurring interrupt request would intercept
a non atomic load and store operation, thus resulting in the possibility that two pro-
cesses will access the shared resource, due to a context switch. The read back value of
the atomic swp instruction is used to determine the actual state of a lock, guarding the
entrance to a shared resource region, for example. A possible implementation of such

17

a guarding routine can be seen in Listing 2.1. This procedure works as follows: The
variable lock represents a guarding variable and is accessed by all processes that want
to utilize the shared resource. In order to do so, the variable lock must be set to zero. As
long as lock ist not set to zero, it is assumed that another process has access to the shared
resource, thus a process wishing to use it as well has to wait. This is done in lines 6 to
8 of Listing 2.1, where the instruction bne denotes that the program flow shall branch
to the label spin, if the preceding compare operation did not return true. Line 9 loads a
value indicating an occupied resource in the variable tmp. Subsequently the instruction
swp is executed performing the Test & Set operation. If the read back value is equal to
zero, the shared resource has not been used by another process. Therefore the process
attempting to occupy it succeeds (line 11). Otherwise, the CPU will branch back to the
label spin in line 6).

Although the mentioned swp instructions are available in the ARMv6 ISA as well,
they are not suited for synchronization in multi processor environments, since swp in-
structions do not perform write buffer10 flushes [1,3]. Therefore, the instructions ldrex,
and strex are available in processors implementing the ARMv6, and above architec-
tures. These two instructions implement system wide exclusive load and store opera-
tions. This is done by marking an address accessed by using ldrex exclusively for a
specific processor. Subsequently, strex can be used to store a date exclusively on the
memory location marked by ldrex, thus making it possible to implement synchroniza-
tion primitives in multi processor environments. In order to get a better overview on
how synchronized access on a shared resource can be done in a multi processor envi-
ronment, Listing 2.2 presents an example implementation of a Spinlock for an ARMv6
processor.

Listing 2.2: ARMv6 compatible Spinlock Implementation [61]

1 s t a t i c i n l i n e vo id _ _ s p i n _ l o c k _ n d s (n d s _ s p i n l o c k _ t ∗ l o c k)
2 {
3 u n s i g n e d long tmp ;
4
5 __asm__ _ _ v o l a t i l e _ _ (
6 " sp in : l d r e x %0, [%1] \ n "
7 " t eq %0, # 0 \ n "

10Using write buffers is a common technique to bypass memory latencies [3].

18

8 " s t r e x e q %0, %2, [%1] \ n "
9 " teqeq %0, # 0 \ n "

10 " bne sp in "
11 : "=& r " (tmp)
12 : " r " (& lock−>l o c k) , " r " (1)
13 : " cc ") ;
14
15 smp_mb () ;
16 }

In line 6 an exclusive load operation is performed, to retrieve the current state of the
variable lock. Subsequently, the value is compared against zero (line 7). If the com-
parison teq returns true, the instruction strex is issued (line 8). The eq post-fix denotes
that the instruction ldrex must only be executed if a preceding comparison evaluated
to true. Otherwise, a no-operation instruction is executed. Eventually, the lock is oc-
cupied once strex was executed successfully11. Eventually, a system synchronization
instruction encapsulated in the function smp_mb() is called in line 15.

Memory Consistency

From a uni processor system’s point of view memory consistency is not a big problem,
since read and write operations affect memory in the order they were issued. This is
also true for processors being able to perform memory operations in an out of order12

manner if the following rules are obeyed.

(1a) It must be assured that two instructions do not reference the same data.

(2a) It must be guaranteed that one instruction does not control the execution of the
other (e.g. an IF clause).

Once these two conditions are fulfilled it is possible to perform memory operations out
of order. In essence these two conditions enable compiler optimizations like register
allocation, code motion, loop transformations and several hardware optimizations such

11This is indicated by writing a zero into the return register (First parameter of the instruction).
12Out of order means that a certain processor can execute instruction k before instruction i, although

i is located before k in the program flow, if both instructions are independent from each other. [40]

19

as ILP, for example [3]. Therefore, the topic of memory consistency describes models
that allows the programmer to have a consistent view on all memory operations, such
that they behave in the same way as the program execution order depicts it. Thus, one
expects a read operation to return the value of the last recent write operation to the very
same memory location.

However, when it comes to multi processor systems it is not sufficient to fulfill con-
ditions (1a) and (2a) only in order to maintain memory consistency. In order to have a
consistent memory view in a shared memory multi processor environment Lamport [54]
proposed the Sequential Consistency model in 1979. The author identifies two major
aspects in keeping memory operations sequentially consistent:

(1b) Maintaining program order among operations from individual processors and

(2b) maintaining a single sequential order among operations from all processors.

The second aspect results in a presentation of memory operations that appear to be
atomic regarding memory operations from another processors point of view. Beside
Lamport’s conditions to retain sequential consistent memory operations in multi pro-
cessor environments, Adve and Gharachorloo [3] examined numerous multi processor
systems with focus on their memory hierarchies, and read/write operation implemen-
tations. Eventually, the authors derived the following constraints on sequential consis-
tency:

• A processor must ensure that its previous memory operation completes before it
issues a new one in program order. This requirement is called Program Order.
Moreover, a write operation must generate invalidate or update messages for all
cached copies.

• If a system utilizes caches it must assure that writes to the same location are
serialized. Thus, the value of a write must not be returned by a read until all other
processors have updated their caches. This requirement is called Write Atomicity.

Finally, due to the fact that the sequential consistent memory model introduces several
bottle necks because of its firm requirements, several models relaxing the sequential
consistency model have been proposed [3, 40]. To categorize the relaxed memory order

20

models we use the formal definition of [40], which corresponds to the two requirements
Program Order and Write Atomicity as proposed in [3]. A rule has the following syntax:
X → Y . Its semantic is, that operation X must complete before operation Y . The
sequentially consistent memory model can be described with the following rules: R →
W , R → R, W → R, W → W . The following relaxing memory models are named
after the rules they relax in the sequentially consistent model.

• A model known as total store ordering or processor consistency relaxes the W →
R requirement. This model retains ordering during write operations. It is com-
monly used by programs operating under the sequential consistency model, with-
out the need for additional synchronization.

• Relaxing requirement W → W results in a model called partial order store,
which is implemented in certain SPARC processors, for example.

• The third memory model relaxation omits the requirements R→ W and R→ R

and realizes a variety of models known as weak ordering. This kind of model is
used in the PowerPC consistency model, for example.

After introducing the theoretical background of memory consistency models in multi
processors environments, the subsequent Subsection will present an overview on tech-
niques realizing these models.

Enforcing Consistency

The two major methods to coerce memory consistency in shared memory multi proces-
sor systems are represented by cache coherency protocols and memory barriers [66].
As described in the Subsection ”Memory Hierarchies” in Section 2.2, caches can be
described as some kind of short term memory to a processor. Moreover, the presence
of a cache results in a performance increase since the processors pipeline would have
to be stalled each time the memory would have to be accessed without having a cache.
Furthermore, when a multi processor system is deployed as shared memory architecture
each processor might have its own private cache, as it has been presented in Figure 2.7a.
Thus to compel a consistent view on memory, it is necessary to let the caches share their
information by utilizing cache coherence protocols.

21

Nevertheless, in order to understand the operation of cache coherence protocols, the
basic functionality of a cache is explained in these paragraphs. First, we will explain
the terms of definitions used when dealing with caches. Subsequently, the functionality
of the example cache shown in Figure 2.8 is explained.

The smallest accessible amount of memory that a cache can exchange with main
memory is called cache line. These lines are typically between 16 and 256 bytes wide.
In Figure 2.8, a cache line is represented by a cell in the table (E.g. The cell which
states 0x12345000). In our case, the cache line is 256 bytes wide. Thus each cache line
represents a 256 byte wide consecutive memory block. This makes our cache rather
large. Caches of this size are usually organized as hash tables with fixed sized buckets,
which are named sets from a hardware developer’s point of view. A set of lines is
called way. Because the location of the line in the cache is determined by a simple hash
function looking at four address bits at the start address of the line, the cache can be
referred to as associative. Therefore, the cache depicted in Figure 2.8 implements a two

way set associative cache.

The cache operates in the following way. Once a CPU is reset, and the cache has
been activated by software, all memory transfers using cache able memory regions must
pass through the cache. Due to the fact that caches are initially empty, the first access to
the cache results in a so called miss. Assume that this request aimed at a word stored at
memory address 0x12345308. Since the requested word is located in the address range
between 0x12345300 and 0x123453FF , the whole memory block starting at address
0x12345300 with a length of 256 bytes is transferred into the cache, and indexed at
way 0, line 0x1234530013. The memory block index is returned by the cache’s hash
function. Therefore, it is also possible that two words from distinct address ranges
evaluate to the same index position in the cache (See address index 0xE in Figure 2.8).
Here, a memory block from the base address 0x42310E00 has been stored at way 1,
because way 0 has already been occupied by another memory block belonging to the
base address 0x12345E00. However, since caches have no infinite capacity, there exist
replacement strategies, like Least Recently Used (LRU)14 in order to exchange data

13This makes sense because of the principle of locality, which states, that it is very likely that once
data is accessed at a specific location, there will be more accesses to addresses nearby [40].

14The cache replacement strategy LRU, drops the least common accessed memory block after a certain
amount of cache hits. [40].

22

stored in the cache with data located in main memory when necessary [40, 66].

When it comes to SMP systems, the following question arises with the use of private
processor caches. How does CPU 0 know about a change of a variable located in CPU
1’s private cache?

The answer to this question are so called coherence protocols. Their key feature is
to track the state of any shared data block, as well as keeping data up to date [40]. In
general there exist two different classes of cache coherence protocols.

Directory based This kind of protocols provides a central book keeping mechanism to
track the state of shared data. Although directory based protocols have a higher
implementation overhead they are better suited for large scale multi processor
systems [40].

Snoop based A distributed approach on keeping memory in a consistent state is fol-
lowed by snoop based cache coherence protocols. Here, each cache controller
listens on a shared bus in order to gain knowledge on which memory blocks
must be synchronized in order to keep a system in a consistent state. This tech-
nique is widely used in today’s desktop and server processors with few processing
cores [40].

Basically, both protocol types consist of several states indicating the current condition of
each cache line. Each of these states may send messages to each other if an appropriate
action, like a write operation to a cached memory location that is also present in another
processors cache, is induced by one of the CPUs participating in the SMP15.

Since modern processors are able to execute instructions out of order, or issue read
operations before an earlier write due to the anticipation of write buffers, so called
memory barriers were introduced to guarantee an in order access to memory and IO
devices. Memory barriers are interventions that instruct the compiler to retain the order
of instruction execution as implemented by the developer, thus avoiding to apply some
kind of optimization techniques in order to execute the given code faster [66]. There
exist several types of memory barriers:

15Therefore, it is sometimes mentioned that shared memory systems base upon message passing sys-
tem [66]

23

Figure 2.8: A 2-Way Set Associative Cache [3]

General Barriers This kind of barrier enforces that both, memory read and memory
write operations are finished, before any of the memory read, memory write op-
erations after the barrier are executed.

Read Barriers If this barrier is used it is guaranteed, that all read operations are located
before the barrier are finished before any of the read operations after the barrier
are executed. This does not apply for memory write operations.

Write Barriers If this barrier is used it is guaranteed, that all write operations before
the barrier are finished before any of the write operations, after the barrier are
executed. This does not apply for memory read operations.

Data Dependency Barriers This kind of barrier implements a weaker version of the
read barrier. Its usage is restricted to data dependencies only, thus it could be
applied if a second read operation directly depends upon a first read operation.
This could be the case if the first read operation loads an address, which is used
to load data within the second read operation.

24

Figure 2.9: Categorizing Hardware Parallelism [104]

Eventually, memory barriers in conjunction with cache coherency protocols realize a
consistent and ordered view on memory transaction in multi-processor systems.

Section 2.2 gave an introduction on parallelism from a hardware point of view. First,
several methods of hardware parallelism from instruction level parallelism to chip multi-
threading were discussed. Second, special issues regarding parallel executing hardware
were introduced. This includes the discussion of memory hierarchies, memory consis-
tency in general, as well as techniques to enforce a consistent view on memory transac-
tion during the execution of truly parallel symmetric multi processor systems. Finally,
Figure 2.9 presents a hierarchically structured overview on the introduced techniques to
implement parallel computing systems. The figure is structured in the following way.
The mangled data and instruction streams as described in Section 2.1 are depicted on
the outer left side of Figure 2.9. The Logical Processor blocks represent a single issue
pipeline, capable of implementing Instruction Level Parallelism (ILP). Since it is pos-
sible to have several components of such a pipeline available multiple times, the next

25

hierarchical step represents Simultaneous Multithreading (SMT) architectures subsum-
ing Superscalar systems as well. Systems implementing several processor cores of the
just mentioned feature are usually called Chip Multi-Processor (CMP) systems. How-
ever, CMP architectures implement Superscalar processor cores only. Therefore the
term Chip Multi-Threading (CMT) takes SMT capable Central Processing Units (CPUs)
into account. From a hardware point of view, the use of the same Instruction Set
Architectures (ISAs) on one chip, or on several chips realizing a parallel computing
systems can be described as a Symmetric Multi-Processor (SMP) system. Despite, the
use of several distinct ISAs would be called an Asymmetric Multi-Processor (AMP)
system. This fact is shown in the third layer of Figure 2.9. Finally, a system consist-
ing of several microcomputers is called a multicomputer. This kind of architectures
represent distributed memory systems. However, also CMT systems can be realized as
distributed memory architectures for example. The subsequent section will introduce
software based approaches to exploit hardware provided parallelism.

2.3 Software Parallelism

The previous Section presented numerous methods to potentially accelerate the execu-
tion of parallel software by increasing the number of hardware components computing
on parallel tasks. Unfortunately, a linear increase of processors on a program with a
given percentage of parallel executable code does not result in a linear performance
gain. This circumstance is known as Amdahl’s law [6], and can be calculated as seen
in Equation 2.1, where S(N) is the achieved speedup by using N processors on a pro-
gram consisting of a parallel portion of P . As shown in Figure 2.10, there exist speedup
limits, even when using highly parallel code (P=95%) and more than 1000 processors
trying to exploit the available parallelism. However, there exists a relaxation of Am-
dahl’s law which has been proposed by Gustafson [38], stating that it is always possible
to achieve speedup by choosing bigger problems. This essentially means that due to
increasing computing power (using more and faster processors), it is possible to solve
bigger problems in the same time as smaller ones, therefore leading to an overall com-
putational speedup. Nevertheless, Amdahls and Gustafsons law are still applying to
today’s multi-core system according to Hill et al. [42].

26

Figure 2.10: Amdahl’s Law: Speedup using a program with a parallel portion P [104]

S(N) =
1

(1− P) + P
N

(2.1)

The remainder of this Section is structured as follows: First, a categorization of
available approaches in supporting the development of parallel software is given. This
categorization is twofold, and presents a tool and a model based taxonomy. Afterwards,
the topics synchronization and communication are reviewed from a software point of
view. Finally, this Section addresses special issues regarding the truly parallel execution
of software. Finally, a short summary concludes Section 2.3.

Categorizing Software Parallelization

Before addressing special issues in truly parallel executing programs, it is necessary to
introduce two techniques in parallel software categorization made by Tröger [104] and
Skillicorn [92]. The first method presented by Tröger, will describe ways to develop

27

parallel software at different supportive levels regarding libraries, languages, or tools.
The second categorization approach made by Skillicorn focuses on a model centric view
of parallel programming languages. According to Tröger [104] and Popovici [95], there
exist various techniques to support programmers in developing parallel software.

Compiler Optimization In this approach, it is the compiler’s responsibility to make
use of the available processors in the appropriate way. However, it has been shown
by Blume et al. [12] that this is very hard to achieve, since the compiler would
have to take all possible side effects into account as well. Therefore, this kind
of parallelism support is merely limited to loop parallelism, which describes an
approach of mapping certain loop constructs to parallel threads, thus reducing the
amount of required serial loop iterations.

Operating System The basic concepts of exploiting parallel hardware are provided by
operating systems and are known as processes and threads. Hereby, a process can
be viewed as a program which is executed in a protected memory area within an
operating system environment. Since operating systems are capable of executing
several processes in parallel, there arises the need for inter-process communica-
tion. However, inter-process communication, as well as processes communicating
with operating system components, such as hardware drivers for example, require
a certain amount of waiting time, causing these processes to be suspended and
woke up by the operating system on demand [97]. Nevertheless, suspending and
rescheduling processes results in a throughput decrease of parallel software due
to the rather expensive administrative actions16 that must be performed by an op-
erating system to reschedule a task, for example [92]. Therefore, the concept of
threads has been introduced in operating systems [92]. A thread does not have
its own operating system protected memory region. Thus context switches within
threads associated with a process are faster, and the number one choice for parallel
software implementation on operating systems [97]. This argument is supported
by the fact that a large number of parallel programming libraries, virtualization
environments, and languages, actually use threads in order to glue their concepts
of parallelism to the operating system. Tröger [104] calls this the hour-glass of
parallel software since a lot of parallel software solutions encompass threads to

16Saving context of currently running process and restoring context of to be run process [97].

28

utilize a larger number of hardware components providing parallelization support
(See Section 2.2).

Application Level The application level is formed by immanent parallel programming
languages, extension to sequential languages, as well as domain specific lan-
guages encompassing parallelism in high-level language constructs [104]. How-
ever, since most of today’s programs are written in C,C++ or Java, the most
common parallel programs are actually implemented using language extension
such as Open Multi Programming (OpenMP) [89], Message Passing Interface
(MPI) [35], Cilk17, or rely directly on one of the available threading libraries such
as PThread18, for example. Despite the large success of parallel extensions for
sequential languages, languages implementing a parallel programming model by
design are not very widespread. Instead, only few of the many parallel languages,
which have been proposed remained. Amongst them are substitutes like High Per-
formance Fotran [62], and OCCAM [71]. In contrast to general purpose languages
like C or Java, domain specific languages focus on specific problem domains, like
formal verification (Promela19) or database queries (SQL). Due to their high grade
of abstraction for their specific problem field, some domain specific languages are
not Turing complete [99].

Regardless of the used parallelism approach, software engineers have to decide on the
degree of control they want to have when writing parallel software [104]. In order to
be able to choose the right granularity of control for each task, Skillicorn et al. [92]
identified five key concepts a programming model might hide before its developer, in
order to aid her producing productive code. These concepts are:

• Concurrency or parallelism of the software,

• Decomposition of the software into parallel threads,

• Mapping of threads to processors,
17http://supertech.csail.mit.edu/cilk/ - Last visit: 04/12/2012
18http://www.gnu.org/software/pth/ - Last visit: 04/12/2012
19http://www.dai-arc.polito.it/dai-arc/manual/tools/jcat/main/

node168.html - Last visit: 04/13/2012

29

http://supertech.csail.mit.edu/cilk/
http://www.gnu.org/software/pth/
http://www.dai-arc.polito.it/dai-arc/manual/tools/jcat/main/node168.html
http://www.dai-arc.polito.it/dai-arc/manual/tools/jcat/main/node168.html

• Communication among threads,

• Synchronization among threads.

Constituitively, Skillicorn defined six abstraction levels on base of his five key concepts.
These levels of abstraction are presented in reverse order of abstraction. Thus the last
mentioned abstraction level provides the greatest degree of freedom, but leaves almost
all parallel programming challenges to the programmer.

1. The most abstract parallel programs are formed by languages implementing mod-
els that abstract parallelism completely. Therefore, the programmer has only to
consider the meaning of the program, rather than how their program will execute
in parallel. An example for languages implementing this model is Crystal [18].

2. The second kind of programming models is implemented by languages in which
parallelism is made explicit, but decompositions of programs into threads, com-
munication and synchronization is not. Therefore, programmers must only be
aware of the fact, that their algorithm will be executed in parallel, but not how
this is done. Such models oblige programs to express the maximal amount of par-
allelism, however the amount of used parallelism depends on the architecture the
programs eventually operates on. An example for languages implementing this
model is OpenMP [89].

3. The third abstraction level describes models where it is necessary to cope with
parallelism and decomposition explicitly. However, thread mapping, synchro-
nization and communication are done by the language implementing the model.
An example for languages implementing this model is the specification language
SDL [15], which is used by the ITU-T to model telecommunication protocols.

4. This model demands that software developers have to consider parallelism, de-
composition, and mapping explicitly. However, the tasks synchronization and
communication is done by the language realizing the model. When using such
languages, the developer is required to have knowledge on the underlying ar-
chitecture, since his mapping decisions will inevitably influence the software’s
performance on this architecture. Therefore, it is a challenge to design software

30

using this model in a portable way. An example for languages implementing this
model is CORBA [36].

5. The fifth level of abstraction demands that the programmer is able to deal with
the tasks parallelism, decomposition, mapping, and communication explicitely.
Synchronization is done implicit by the language. An example for languages
implementing this model is the Kahn Process Language [50].

6. This model offers the greatest degree of freedom to the programmer, as he has
to consider all five concepts explicitly. However, according to [92, 95] it is ”ex-

tremely difficult to build software using such models, because both correctness

and performance can only be achieved by attention to vast numbers of details”.
An example for languages implementing this model is the specification language
OpenMPI [35].

Beside the taxonomies of parallel software, there exist special issues that have to be
taken into account when executing parallel programs on parallel hardware.

Special Issues regarding Software executed on truly Parallel
Executing Processors

Subsection ”Special Issues regarding truly Parallel Executing Processors” on page 14
mentioned two issues regarding parallel hardware, namely, consistency, and synchro-
nization. This Subsection will investigate these two points from a software point of
view.

Synchronization & Communication

In Subsection ”Special Issues regarding truly Parallel Executing Processors” on page 14
synchronization upon a central resource has been contemplated from a processor’s in-
struction sets point of view. Usually, when developing parallel software on behalf of an
operating system, none of these issues are of concern, except the issues arising when
using the different types of synchronization primitives. The terms and techniques intro-
duced in this thesis, apply for uni-core and multi-core systems. This is true since on uni-
core systems it is also possible to execute processes in a parallel manner. Nevertheless,

31

(a) Deadlock (b) Starvation

(c) Livelock

(d) Race Condition

Figure 2.11: Special Issues in parallel programs

one has to synchronize processes and threads when trying to access a mutual exclusive
resource. Since this is a very common problem in software engineering so called Inter
Process Communication (IPC) methods have been defined [97]. These methods are usu-
ally provided, and exported to the programmer by the operating system. Amongst them
are Locks, Semaphores, Sockets, Signals and Message. However, these synchronization
tools may lead to the following issues in a program when not used properly [97]:

Race Condition This term describes a particular error occurring in parallel programs.
It happens when the result of a concurrent program depends on the order the par-
ticipating processes are scheduled. This kind of errors are usually hard to detect,
since it is not easy to reproduce them in a deterministic way. However, race con-

32

ditions result from synchronization errors. An example race condition is shown
in Figure 2.11d. Here, two processes P0 and P operate on a shared variable a.
However, P0 and P1 do not synchronize upon the access on a. Therefore, the
outcome of the parallel executed equations at time t3 and t5 is arbitrary since the
read and write order is not deterministic.

Deadlock If the advance of at least two processes depend on each other in a circular
way resulting in a state where none of the processes can make an advance, this
is called a deadlock. The situation might occur when process 0 has occupied
resource A, and needs to occupy resource B as well, thus waiting for B to be
freed. However, process 1 has already occupied resource B and needs to occupy
resource A as well, thus waiting for resource A. Therefore both processes wait
for the release of their missing resource without releasing their already occupied
one. Thus leads to the state where process 0 and process 1 will wait forever,
thus forming a deadlock. This example can also be viewed from a state transition
perspective, as it is done in Figure 2.11a. Here, the progress of a program is
reflected by a state change from sx to sx+1, thus an ongoing state change from sx

to sx would reflect a deadlock, since it would show now progress in the program
execution. As a consequence, process Pn in Figure 2.11a shows a deadlock since
from time t1 to time tn the process stays in state s2.

Livelock Basically a livelock is the same as a deadlock, except for the fact that proces-
sors can still advance in circles inside a livelock, but cannot leave the circle, thus
spinning there forever. This instant is reflected by Figure 2.11c, where a process
Pn enters a loop from time t3 to time tn.

Starvation When a set of processes want to access a mutual exclusive resource like,
a network interface card for example, but at least on of these processes is never
allowed to interact with the resource (e.g. because its priority is too low), then
this process suffers from starvation. This parallel programming issue is depicted
by Figure 2.11b. Here, the processes P0 and P1 compete for a mutual exclusive
resource. However, although both processes demand that resource, only process
P1 gets access granted to it, thus leading to a starvation of process P0.

33

Convoying Assume a set of truly parallel executing processes operating on several mu-
tual exclusive resource protected by a synchronization primitives like locks. If
the order of access to these shared resource is of matter, it is possible that all pro-
cesses competing for the resource end up accessing the mutual exclusive resource
in a serial way. This is called convoying, like a convoy of trucks driving serially
on a high-way [69].

Priority Inversion This phenomenon can occur when a high priority process cannot
access a shared resource, because a process with a lower priority has occupied the
lock and is currently preempted. Therefore, the lower priority process causes the
high priority one to wait, thus inverting the access priority. [69]

Finally, it is the programmer’s responsibility to be aware of these side effects regarding
parallel programming. The following subsection discusses memory consistency from a
software point of view.

Consistency

From a software developer’s point of view, memory consistency is guaranteed when
she obeys the rules of synchronization and avoids race conditions. However, when
developing parallel software on shared memory systems there exists certain potential
to introduce performance bottle necks by ignoring the processor’s cache architecture.
Consider the code example depicted on Listing 2.3 with respect to a cache with a line
size of 64 bytes. The used processor is a two core 32-bit CPU, with an integer size
of 4 byte. In this example, an array sh_array is used to house 128 elements of type
struct container, whereas each element requires 32 bytes of storage. The two func-
tions thread_operate_on_even and thread_operate_on_odd will be executed concur-
rently, where each thread is going to be placed on a dedicated core of the processor.
As it can be seen there is no thread synchronization required since thread 1 will only
operate on even array indices, and thread 2 will manipulate odd array elements only.
Therefore, it may be assumed that this kind of task partitioning will result in a speedup
of 100%. However, this assumption is shown to be incorrect due to false sharing [14].

Listing 2.3: Example code to evocate False Sharing

1 s t r u c t c o n t a i n e r {

34

(a) False Sharing (b) Avoiding False Sharing

Figure 2.12: False Sharing and its avoidance

2 unsigned i n t i d ;
3 unsigned char d a t a [2 8] ;
4 } ;
5
6 s t r u c t c o n t a i n e r s h _ a r r a y [1 2 8] ; /∗ w i l l be sh are d ∗ /
7
8 /∗ t h r e a d 1 ∗ /
9 void ∗ t h r e a d _ o p e r a t e _ o n _ e v e n (void ∗ a r g) {

10 f o r (i = 0 ; i <128; i = i +2)
11 s h _ a r r a y [i] = c a l c _ o n _ e v e n (s h _ a r r a y [i]) ;
12 }
13
14 /∗ t h r e a d 2 ∗ /
15 void ∗ t h r e a d _ o p e r a t e _ o n _ o d d (void ∗ a r g) {
16 f o r (i = 1 ; i <128; i = i +2)
17 s h _ a r r a y [i] = ca l c_on_odd (s h _ a r r a y [i]) ;
18 }

False sharing happens when the software developer does not consider the line size
of its processors cache. In our case, a cache line is 64 bytes large. However, an item
of the container array occupies 32 bytes only, therefore, two consecutive array elements

35

are stored within a 64 byte long memory block. Since thread20 1, running on processor
core 0, operates on even, and thread 2, running on processor core 1, manipulates odd
array elements each processor core invalidates the whole cache line, once it writes to its
memory location. As a consequence the cache coherence protocol is triggered to update
the cache line in memory, thus leading to a response time increase due to memory
latency implied by a forced cache miss. This results in crippling the performance of
the two threads operating on mutual memory regions within a shared cache line. This
instance is also reflected in Figure 2.12a.

A straight forward solution to avoid false sharing is the introduction of padding bytes
as it can be seen in Listing 2.4, line 5. Here the array called padding has no productive
purpose, it is just available to occupy another 32 bytes of memory to achieve cache line
alignment. However, it is not guaranteed that the array will start at a 64 byte address
boundary. Therefore it is necessary to align the beginning of the structure to the desired
address boundary manually. This is done in line 6. The compiler attribute is dedicated to
be used with the GNU C compiler21 only. Nevertheless, on systems operating Microsoft
Windows, one can use __declspec(align(x))22 as prefix before the variable declaration
to achieve an alignment on an address boundary of x bytes. As a result, the cache
coherence protocol will not invalidate the cache line when parallel executed processes
on mutual processors access two adjacent, but independent array elements.

Listing 2.4: Example code to avoid False Sharing

1 s t r u c t c o n t a i n e r {
2 unsigned i n t i d ;
3 unsigned char d a t a [2 8] ;
4 /∗ padding b y t e s ∗ /
5 unsigned char padd ing [3 2] ;
6 } _ _ a t t r i b u t e _ _ ((a l i g n e d (6 4))) ; /∗ gcc −4 .4 .5 ∗ / ;

Section 2.3 gave an introduction on parallelism from a software point of view, start-
ing with Amdahl’s and Gustafson’s law, showing that it is not possible to achieve in-
finite performance gain by simply adding more parallel hardware. Afterwards, a cate-

20This does also apply to processes.
21http://gcc.gnu.org/onlinedocs/ - last access 5/9/2012
22http://msdn.microsoft.com/en-us/library/83ythb65.aspx - last access

5/9/2012

36

http://gcc.gnu.org/onlinedocs/
http://msdn.microsoft.com/en-us/library/83ythb65.aspx

Figure 2.13: Hour Glass of Concurrent Computing [104].

gorization of several types of abstraction regarding programmer support in developing
concurrent software. The presented models reached from languages providing a thor-
ough abstraction of parallelism, to libraries exporting the full complexity of parallel
programming to a developer. Subsequently, the topics synchronization & communica-
tion between parallel processes as well as memory consistency from Section 2.2 were
re-examined from a software point of view.

2.4 Conclusion

Chapter 2 provided an introduction on parallel computing systems from a hardware
and a software point of view. After a short historical abstract, the most important tax-
onomies regarding parallel hardware and parallel software have been introduced. It has
been shown that there exist a vast number of methods to make hardware faster by using
techniques like instruction level parallelism, multi issue pipelines, simultaneous multi-
threading, and chip multi processors, amongst others. From software perspective, there
exist numerous methods of abstraction to aid programmers in writing software, exploit-

37

ing the parallel computing power provided by hardware. However, almost all of these
techniques end up by mapping the proposed technologies to a thread or a process. This
kind of containing leads to the so called hour glass of parallelism [104], as it can be seen
in Figure 2.13. This concludes the introduction on Multi-Core basics. The subsequent
chapter presents a survey of challenges identified by researches regarding the teaching
of concurrent programming.

38

CHAPTER 3
Challenges in Teaching Concurrent

Programming

The previous Chapter 2 provided an introduction on the technical background of paral-
lel computing with a focus on Multiple Instruction Multiple Data (MIMD) systems on
a single computer. Furthermore, numerous singularities considering parallel computing
were pointed out. These peculiarities have also been recognized by people teaching
computer science courses. As a consequence this Chapter features a two-fold exami-
nation of a set of university and university of applied science courses in the context of
parallel programming.

Since this thesis is written with a focus on course design in the field of multi-core
programming a comprehensive overview on the field of university didactics is given in
this paragraph. University didactics is part of the field empirical education research,
which focus lies on topics regarding student learning behavior, their motivation, as well
as their social environment and its impact on them [13]. Generally, it is possible to
distinguish between the following sub fields of university didactics:

• One sub-field focuses on academic education in order to optimize a student’s
learning progress while taking classes [7].

• Another sub-field focuses on the qualification level of university lecturers them-
selves and deals with the question ”What makes a teacher a good teacher?”, thus

39

trying to find new didactical concepts and ideas to transfer knowledge from lec-
turer to student [86].

• A rather new sub-field in university didactic concentrates on universities as insti-
tutions of education, focusing on possibilities to optimize education as a processe
in universities [87], [70], [68].

The examination of the university of applied science context multi core program-
ming course and the university context multi-core programming course designs is di-
vided into several sections. First, it is shown that the comparison of single courses
within degree programs cannot be done on basis of the alumni qualification profile,
but must be done on behalf the so called learning outcome. Subsequently, numerous
contributions identifying issues and challenges in teaching parallel programming in a
more specific manner are reviewed. Moreover, a set of dedicated parallel programming
courses is evaluated with respect to their learning outcome definitions, as well as their
actual teaching content. Finally, the evaluation results are presented in Table 3.1. They
serve as a basis to derive best practice concepts leading to two generalized course de-
scriptions presented in Section 3.2. These best practice course designs will be used as
templates to propose a course in a university context and a course in a university of
applied sciences context in the subsequent Chapter.

3.1 Qualification Profiles and Learning Outcomes

Due to the ever increasing diversity of higher education facilities and programs, the
United Nations Educational, Scientific and Cultural Organization (UNESCO) approved
an international standard classification of education (ISCED) [106], at their 29th general
conference in November 1997. The general idea of this standard is to create a

framework for the statistical description of national education systems, as well as a set
of variables which are of high interest for policy makers in international education
comparisons. Moreover it is the aim of this program to establish a

methodology that converts national education programs into a representation which
makes them internationally comparable with respect to their levels of education

40

and their fields of education.

Therefore, one of the UNESCO recommendations’ aims is to improve student and
alumni exchangeability [16]. As a consequence, the European Union (EU) and Aus-
tralia, amongst others, have established comparable qualification level programs [4,23],
which intend to implement the UNESCOs recommendations. However, in order to com-
pare specific courses the concept of qualification profiles cannot be used. This fact is
due to the the following:

• Qualification profiles are used to organize national education systems in a way to
compare them internationally, as stated above [85].

• The so called qualification descriptor is used to establish a set of minimum re-
quirements in order to reach a certain level within a qualification profile [46].
These levels are mapped to the respective degrees awarded after accomplishing a
certain education. This includes traineeships as well as university degrees.

• The term pointing to to the smallest available organizational item within the
UNESCO’s framework is the learning outcome [45]. It describes the quantity
and quality obliged to be communicated within a single course.

The idea of the learning outcome is to perform a paradigm shift from what the staff
members teach to what the students should be able to accomplish after finishing this
course. The process of designing a course with respect to the learning outcome can be
viewed as an infinity loop and looks like the following:

1. The first step is to identify the aim of the course.

2. Second, the actual learning outcome is formalized.

3. The next step involves the creation of assessments and choosing the right assess-
ment method. It is important to note, that the assessment method must be chosen
after the learning outcome has been defined.

4. Afterwards, the threshold assessment criteria, should be defined.

5. Subsequently, the teaching concept and learning strategy is to be developed and
checked against the learning outcome and assessment criteria.

41

6. The last step executes the course and triggers its re-evaluation after each run,
starting at step 1.

Therefore, after an identification of common parallel programming pitfalls in Section 3.2,
the relevant courses will be compared on the basis of their defined learning outcome in
Section 3.3.

3.2 Issues and Pitfalls in Parallel Programming

Parallel programming is a challenging task [33, 64]. Therefore, this Section reviews a
set of contributions identifying and presenting solutions on several issues and pitfalls
regarding concurrent thinking, and parallel programming. The insights used in this
Section will be used in Section 3.6 in conjunction with Section 3.3, and Section 3.4 to
derive two abstract course designs.

In [9], Ben-Ari et al. presented an overview on four parallel modeling frameworks
in order to foster their student’s understanding of certain concurrency concepts. The
described tools are implemented in Java and feature distinct aims within teaching con-
current programming, mostly. JBACI, the first tool, is primarily aimed at teaching con-
current programming within a framework accepting PASCAL and C like dialects. The
advantage of using a tool like JBACI lies in abstraction, as it does not overwhelm the
parallel programming novice with operating system specific details. The second tool
analyzed by the author is called DAJ. It covers basic understanding of distributed al-
gorithms by visualizing private and global data structures. Additionally, Ben-Air et al.
present a novice friendly model-checker called CPV, which allows students to get an
introduction into formal verification of concurrent and distributed algorithms. Consec-
utively, the authors mention JSPIN as a Graphical User Interface (GUI) for the model
checker SPIN, which can be used for the verification of distributed message passing
systems. The latter three software packages are aimed at more abstract course designs
dealing with distributed systems. However, the authors argue that these tools might
help in lowering the entrance hurdle on parallel and distributed programming, due to
their focus on the essential issues in parallel programming.

Identifying best practices and avoiding pitfalls while teaching parallel programming

42

is the main aim of the article written by Joiner et al. [49]. In essence, the authors
presented their experiences and insights in teaching parallel programming at various
curricula at the courses offered by their faculty. Although most courses focused on high
performance computing the authors derived a set of tips useful for every kind of courses
dealing with concurrent computing. Since one argument for parallel programming is
the ability to exploit computational power of parallel processors it is absolutely vital
to show student a significant speedup when using parallel programs instead of serially
implemented ones, so Joiner et al. . Nevertheless, in order to show speedup in a notable
way, appropriate problem sizes must be addressed, as the usual small getting started

problems would not suffice. Moreover, the authors argue that it is also important how
speedup is represented. This may be especially important when it comes to novices in
parallel programming. Here the authors suggest to use a visual representation rather
than a textual one. Furthermore, the authors evaluated that using real world examples
in teaching concurrent programming is far more motivating for students, than using
purely academic examples like an efficient calculation of π. In conclusion, Joiner and
his colleagues argued that the approaches presented in this paper could be verified by
adapting numerous courses in the parallel programming context.

Robbins [84] presents an indirect approach to teach concurrent programming. He
focuses on the visual representation of parallel behavior by offering a logging tool to his
students. The logger is capable of tracing the timely occurrence of messages, events, and
synchronizing tasks within a POSIX thread based framework. The tool is also capable
of logging the communication in distributed environments. Robbins argues, that on
the one hand, the logger should be used as a visualization tool for students, and an
assignment checking tool for teachers. But on the other hand, the logger program shall
be examined and partly changed by the students to foster their knowledge on parallel
programming. Thus it serves as a teaching example. It is Robbins’ intention to let the
students learn and understand concurrency with the very same software they are using
to test their solutions in order to understand possible interdependencies in a better way.

Considering the overall method of teaching concurrency Lamport [59] pointed out
that most available lectures tend to confront students with programming languages,
thereby distracting participants from the actual problem of understanding concurrency.
Lamport argues that it is not necessary to actually implement a parallel program in an

43

executable language in order to understand the properties and implications of concur-
rency, rather it is obligatory for students to really understand concurrency. According to
the author this can be done best by teaching ongoing computer scientists and engineers
to understand ”the most important concept in concurrency”: invariance1. Therefore,
Lamport suggests that a course on parallel programming is highly recommended to in-
clude a lecture devoted to the mathematical basics of computation.

3.3 Parallel programming courses

This Section provides a two-fold overview on a set of concurrent programming courses
at universities and universities of applied sciences. Each course evaluation is struc-
tured in three paragraphs. The first paragraph introduces the general idea and topic of
the course. Subsequently, the focus of the course is presented. The third paragraph
describes the learning outcome of the currently observed course, where available. In-
formation related to the course’ learning outcome is denoted by black bullets(•).

Course 1: The first course examined is held as a long-term joint teaching exper-
iment at the University of Illinois and the University of Maryland [51]. One the one
hand, the course features an introduction of the shared memory programming library
OpenMP and the message passing library MPI. On the other hand, the parallel pro-
gramming framework XMT is presented to the students. XMT is primarily used to
develop software for massive parallel multi threading processors and therefore provides
several supporting tools to design and test parallel software. During the course the stu-
dents were obliged to develop parallel algorithms in OpenMP, MPI, or XMT. Finally,
the authors concluded that XMT was the best suited toolset for their purpose, because
all students were able to achieve performance gains on a specific algorithm they imple-
mented with XMT. On the opposite none of the students were able to improve the very
same algorithm’s performance when using OpenMP.

According to the course website2, this course is held at an undergraduate level, there-
fore has a stronger focus on practical programming skills, than on conveying theoretical

1An invariant is a predicate to an argument that is true before its computations and is also true after
its computation [59].

2http://www.umiacs.umd.edu/users/vishkin/TEACHING/enee459p-f10.html

44

http://www.umiacs.umd.edu/users/vishkin/TEACHING/enee459p-f10.html

information. The topics of the course are merely formed around the parallelism of
searching and sorting algorithms.

The course’s prerequisite list states the students have to have

1. basic knowledge about operating systems,

2. as well as data structures and programming.

The main aim of this course, and therefore its learning outcome is to

• raise the students’ awareness of the parallel programming potential,

• as well as to teach them basic knowledge in certain programming environments
(MPI, OpenMP, XMT).

Course 2: In their contribution in the field of teaching multi-core programming,
Hansson et al. [39] present an embedded systems design course were students are obliged
to perform a hardware/software codesign of a JPEG decoder within one semester. At
the beginning of the course, participants receive a sequential implementation of the
JPEG decoder algorithm. Moreover, they receive an introduction on a hardware/soft-
ware codesign tool called HIVE. This tool provides aid in design space exploration,
simulation and system composition. HIVE does also provide a backend for certain
Electronic Design Automation (EDA) design tools like Xilinx3 ISE. It is the students’
responsibility to perform the hardware/software codesign and present their solution to
class at the end of the semester. The used target architecture is a larger Xilinx Virtex4
Field Programmable Gate Array (FPGA) capable of serving two processors.

The aim of this course is to

• foster the participants’ skills in embedded systems design, where the basic knowl-
edge about hardware, software, and system development has been taught in pre-
ceding courses.

Moreover, the students are confronted

• with a larger engineering task, closely related to real-life engineering challenges.
3http://www.xilinx.com

45

http://www.xilinx.com

Thereby, they

• simulate a real embedded systems project.

Besides the challenge of facing a larger project, the participants are obliged to reflect
upon their design decisions when it comes to partitioning the algorithm on several pro-
cessors and hardware accelerators.

Hannson et al. state that their course is the last disposition in a series of four related
to hardware, software and embedded systems design. It is located in a later semester in
the master curriculum of embedded systems engineering at the University of Eindhoven.
Since this master program is a joint study of computer science and electrical engineer-
ing, the authors state that a course obliging the students to combine their knowledge of
both fields seems to be the right challenge to test the knowledge taught in this master
program.

Course 3: A more general approach is presented by Wolffe, Greg, and Treftz [108].
Here, the authors present a teaching framework for undergraduate computer science
students who have never encountered parallel programming in their curriculum before.
First an overview on several parallel programming paradigms is given, as well as a cate-
gorization of who might profit from a course featuring the respective content. Moreover,
Wolffe et al. present several types of assignments as well as a set of hints for pitfalls
novice parallel programmer might encounter when facing concurrent programming the
first time.

The presented course framework shows that teaching parallel programming can be
taught in many ways. Starting from using Graphic Processing Units (GPUs) as co-
processors over developing parallel algorithms for scientific applications for the use in
super computers, to exploiting the features of distributed databases by designing opti-
mized queries.

Since Wolffe et al. provide a course framework, rather than a description for a
dedicated course in a specific curriculum, the learning outcome is omitted.

Course 4: A completely different approach has been chosen by Ozturk [78]. The
author describes a course using the commercially available virtual platform environment
Simsic4 to teach embedded multi-core programming. However, Ozturk’s course focuses

4www.windriver.com

46

www.windriver.com

on hardware design considering cache hierarchies of symmetric multi-core systems,
rather than on the software oriented challenges of embedded multi-core programming.

Nevertheless, Ozturk argued that a

• foster understanding of hardware related details in the field of multi-core pro-
gramming offers students a

• different perspective on certain problems they might encounter when program-
ming multi-core processors.

The course is offered to undergraduate and graduate students optionally. Neverthe-
less, participans have to have certificates in courses teaching hardware design and basic
algorithm and data structures, as well as a theoretical background on parallel systems.

Course 5: In [79], Qingsong et al. present a remote laboratory for their multi-
core programming curriculum. The authors provide two high-performance comput-
ers to their students which can be programmed using Intel’s5 multi-core programming
tools. The computers can be accessed over the internet, where a dedicated computer
is assigned to the student by a reservation system. The provided computers feature a
dual and a quad core processor in order to let student experience behavioral differences,
caused by the distinct architectures, in their parallel applications.

The aim of the distance multi-core laboratory is to provide students a possibility

• to foster their insights on parallel programming gained during class.

However, the course offers vendor specific tools and insights only.

Considering the course attendees learning outcome, no statement is made by the
authors. However, regarding the used tools and vague descriptions in this paper it may
be assumed that the students are at an undergraduate level, since it is mentioned that the
course is located shortly after introduction courses dealing with programming and data
structures.

5http://www.intel.com

47

http://www.intel.com

Course 6: In their paper ”Some resources for teaching” [34], the authors present
a course focusing on dynamic formal verification6 of concurrent programs and their
properties. Moreover, a thorough introduction on posix threads and MPI software de-
velopment is given.

The general idea of this course is to confront ongoing engineers with a thorough
verification method for parallel systems, as conventional software debugging methods
can hardly be applied for massive parallel software applications. By using dynamic
formal verification, attending students learn techniques applicable in real world software
engineering. Moreover, the students’ reservation regarding formal verification shall be
reduced by utilizing easy to use tools actually capable of verifying POSIX thread and
MPI based C applications.

Considering the learning outcome, the authors intend to introduce their students into

• the basics of dynamic formal verification

• in conjunction with MPI and POSIX thread programming.

Since, this course is held at a graduate level, participants are obliged to understand the
theoretical concepts and apply them to the concurrent programing libraries mentioned
above.

Course 7: In 1992, McDonald presented a course about teaching parallel program-
ming to undergraduate students without using truly parallel computing systems [65]. At
that time parallel hardware was expensive and rare. Moreover, according to the author,
compiler being able to construct inherently parallel code were costly goods. Never-
theless, the paper presents experiences in teaching parallel programming using the lan-
guages Linda and Joyce. However, Linda and Joyce do not require parallel hardware
to be executed, rather they are simulating concurrency by using their own time base.
In order to visualize concurrent behavior a graphical component showing the parallel
execution of tasks is available.

6”Dynamic verification checks invariants at runtime and can thus detect runtime physical errors.
It differs from static verification, which checks that an implementation satisfies its design specification.
Static verification can detect design bugs but, by definition, cannot detect runtime physical errors. The
two approaches are complementary” [67].

48

In 1992 parallel computation was mostly a scientific or large company application.
Therefore, the learning outcome of this course was designed

• to provide a basic understanding of the properties and implications upon parallel
programming decisions.

The course was placed in an undergraduate curriculum in the first semester.

Course 8: Rague depicts in [81], that many undergraduate courses teaching paral-
lel programming focus on synchronization and communication concepts, but disregard
the necessity of procuring parallel thinking. Therefore, the author adapts a computer
science course in a first semester undergraduate curriculum to place the concept of
concurrent thinking as early as possible in his students’ minds. Due to the fact, that
fully featured parallel programming libraries, or dynamic formal verification tools, may
overburden programming novices, Rague introduces the graphical parallel analysis tool
(PAT). PAT does not require any specific lexical programming skills, but uses a petri net
based representation of a program flow. According to the author, this way of visualizing
program flows showed to be effective when teaching novice computer science students.

Rague describes his approach as a way to offer students a course of parallel thinking
at a very early age in their computer science education. The course’s learning outcome
is defined to teach

• basic programming concepts, as it is an introduction course in computer science,

• as well as to provide participants with a basic understanding of parallel thinking.

Course 9: In [52], Kessler argued that most textbooks regarding algorithms and data
structures for second year computer science students focus on sequential algorithms,
but lack the discussion of parallel ones. Nevertheless, there exist textbooks dealing with
both topics, but due to the complexity of sequential and parallel systems in general,
there existed no single textbook covering both topics sufficiently in 2009. Therefore, the
author presents an approach using a ”simple parallel programming model”. Kessler’s
approach describes a course using the bulk synchronous parallel model (BSP), which
is a message passing based model, to teach parallel thinking and programming within
a special framework called NestStep. However, the author omits the very common

49

shared memory model due to its simplicity. Nevertheless Kessler mentions that he uses
the shared memory model PRAM for teaching concurrent programming in a graduate
course.

Kessler presents a course aimed at second year computer science students with se-
quential programming experience. The learning outcome of the course is to teach

• students the fundamentals of concurrent concepts

• as well as their implications using a framework specially designed for parallel
program investigations within message passing systems.

Course 10: Introducing interested high-school students to parallel and distributed
programming is Ben-Ari’s [10] aim. The course is split up into mandatory and op-
tional sections. The mandatory parts cover basic programming, algorithms, and data
structures. Afterwards, the students may decide between sections dealing with topics
assembly programming, logic programming, and concurrent programming. In order to
introduce concurrency issues like synchronization and model building, Ben-Ari lets the
students dramatize a synchronization task of two robots obliged to sweeten a glass of
juice. This is done in several steps. First, he lets the students find out whether the given
algorithm works correctly or not. Later the author asks the students to find a solution to
this problem and test their findings by dramatizing them in class.

The aim of Ben-Ari’s course is not to teach parallel programming to high-school
students, but to make them aware on parallel problems. Moreover, the learning outcome
of the course formulates that students should be able to

• identify systems with parallel properties, as well as

• discuss solutions to this problems in teams.

Course 11: In [17], Bynum and Camp present a concurrent programming course
using Ben-Ari’s concurrent interpreter (BACI). BACI descends from PASCAL-S, a di-
alect of the programming language PASCAL, supporting parallel constructs. Basically,
the course offers a standard introduction into parallel programming using several ver-
sions of semaphores and a monitor to solve synchronizations tasks. Nevertheless, BACI

50

is said to have an easy to learn syntax and offers a lot of synchronization techniques to
be taught.

The leaning outcome of this course has been identified to provide students with a

• fairly complete overview and introduction on synchronization methods for paral-
lel programming.

Moreover, the didactic concept of the course states that at the beginning students receive
a lot of help by documents and hints to solve their assignments. Consequently, this aid
is reduced during the course, where students shall be able to solve a parallel problem
on their own in the end. Therefore, stating that another learning outcome of Bynum’s
lecture is provide participants with

• the knowledge to solve synchronization tasks upon their own.

3.4 Assessment Concepts

As assessments are a part of each reasonable course, this Section presents a set of as-
sessment methods obliging the student to perform constantly, rather than using their
short term memory while learning for a final exam. Basically, the presented assess-
ment techniques implement automated assessment, student peer review, a project and a
conference like approach.

Since teaching large groups of students imply that a large number of assignments
have to be assessed the need for automated assessment methods in the field of computer
science arose [21]. Despite of the positive economic perspective when using automated
assessment methods teachers face the fact that today’s students are creative in using
today’s technology to cooperate in their home assignments, although this might not
be intended by the lecturer. Therefore, automated assessment might not be the only
technique one may want to use when assessing programming homeworks. Thus, it is
recommended to pick random students which should explain their solution thoroughly
to a lecturer.

In order to provide students with new insights when participating in a programming
course, Sitthiworachart et al. present an approach where students are able to assign

51

marks to their colleagues [91]. This works as follows: Each programming assignment
is awarded with a number of points. Fifty percent of the overall achievable points are
assigned by an automated assessment tool, essentially testing whether the actual out-
put matches the desired one. The remaining fifty percent of the grade are awarded
by a randomly chosen fellow student. To execute this approach, there exists a firm
grading scheme the students have to follow. Moreover, the students grading is done
anonymously. In essence th idea behind this assessment method is to foster the students
understanding of the programming task by reading their colleagues code.

In [63] the authors present an approach for using active assessment methods in a
course dedicated to algorithms and data structures. Although, the course is focused on
a different topic, the principle assessment strategies may also be of value in another
context. Malmik et al. suggest to use a combined assessment method consisting of the
following components to determine a participants final grade.

Peer Review This assessment technique is used to let the students review their col-
leagues solutions. The correctness of the review is not accounted for the final
grade. However, the review’s quality in terms of thoroughness is evaluated by a
teaching assistant. The author’s intention to introduce peer-reviewing was to give
students insights into the approaches their colleagues have made in order to foster
their understanding of the taught material. Peer Review is carried out as a single
job.

Revision The method revision is used to check whether a student has engaged herself
with the home assignment. Here at the beginning of class a number of students are
obliged to defend their solutions against the arguments of a lecturer. This assess-
ment method is included in the final grade. Revision is carried out as a single job.
Nevertheless, only a subset of the participating students will be assessed within a
revision.

Final Examination The final examination is obligatory by every student and covers
the topics covered in class in a written exam.

In order to assess, whether their student were able to achieve the learning outcome
of their course, Normak et al. [73] introduce an examination concept called Mini Project

52

Programming Examination. Basically, the concept bases upon two phases, from a stu-
dents perspective. First, small sized programming examples which take about 48 hours
to implement for each member of a small student groups assigned. In this phase the
course participants are obliged to solve a real world problem of reasonable size on their
own as a group. In the second phase the students have to participate in a review held by a
lecturer. Here the group must present their solution on the one hand. On the other hand,
each member of the group has to answer questions dedicated to herself. According to
the authors, the idea of examination through projects has the following advantages:

• Students work on motivating real world example covering the topics taught in the
course.

• Participants are obliged to do team-work, which is a highly recommended skill in
general.

• Although participants will present their project as a team, each member is re-
quired to know the whole program in detail, therefore, it is possible to check if all
students have reached the learning outcome of a course using this approach.

3.5 Evaluation Results

This Section provides the results of the evaluation of a number of parallel programming
courses with respect to their learning outcome, as described in Section 3.3. The overall
evaluation results can be found in Table 3.1. The table consists of the following fields
with their respective meanings:

Ref. # This column references the respective course described in Section 3.3. Thus
Course 4 in Section 3.3 points to Ref.# 4 in Table 3.1.

Level This field describes whether a course is held at a graduate level (G), or an under-
graduate level (U). Nevertheless, there exists the optional modifier (?), denoting
that it is assumed that the course it taught at that level, although the cited paper
did not state it explicitly.

53

Context The context field shows the course’s focus. Generally, a course can have two
context descriptors and an optional modifier. The context descriptor PS shows that
this course has a focus on programming skills, where TC denotes that the course
tries to communicate the theoretical background of concurrency in a stronger way.
In case a course teaches a theoretical and a practical focus, the modifier + may
indicate an emphasis on this particular focus. The modifier - may indicate that
this focus is disregarded, respectively.

Used Tools This column lists the libraries, special programming languages, compiler
extensions, simulation tools, etc. that are used throughout the respective courses.
See the actual course in Section 3.3 for a short description of each tool.

Topics Here, the topics covered by the respective courses are listed. App denotes that
parallel software development is taught with a focus in general application pro-
gramming for CMP, or parallel systems in general. The acronym HPC means
high performance computing, referring to programs and algorithms used in a sci-
entific environment (e.g. climate model simulations on super computers). Finally,
the shortcut E covers embedded applications of parallel systems including hard-
ware related topics (e.g. multi-core mobile phone platforms)

Learning Outcome This column provides a short overview of the learning outcome
defined in the course’ description with respect to their context, used tools, and
taught topics. A more detailed explanation may be found in the respective course
overview in Section 3.3.

As it can be seen in Table 3.1, 8 out of 11 reviewed courses are aimed at under-
graduate curricula solely. One course is taught to graduate and undergraduate students,
where each participating student had to attend in fundamental courses about concurrent
systems. Although 8 of 11 courses had a focus on the theoretical concepts of parallel
systems, only 3 courses placed their spotlight at parallel systems after the general topic
introduction. The most common tools throughout the examined courses were MPI,
PThreads, and custom tools made for teaching parallel systems theory and program-
ming. Nevertheless, 5 of 11 tools were custom ones. Finally, 9 parallel application
courses cover the field of high performance computing. Only 4 courses tend to cover

54

embedded applications. However, only 1 course actually teaches embedded system in
the parallel programming context.

Nevertheless, it is interesting to see that more than 70% of the examined courses
where held at an undergraduate curriculum. A supportive argument for teaching con-
current programming to lower level undergraduate students has been made by Feld-
man [24]. Here, the authors provide an empirical study on the feasibility of teaching
multi-core programming to lower-level undergraduate students, which is also supported
by Ben-Ari [10] teaching concurrency at a high-school level. In conclusion, both author
groups argue that confronting students with parallel thinking early and often in their
curriculum results in a better understanding of the general concepts of parallel systems.

3.6 Best Practices

The preceding Sections, Section 3.2 to Section 3.5 provided an overview on the chal-
lenges and solution concepts arising when teaching parallel programming. It is the pur-
pose of this Section to provide two generalized course descriptions on the basis of best
practices examined in former parts of this Chapter. The descriptions will be structured
as follows. First, an abstract structure of the methods used to construct an introduction
and motivation lecture is given in (1). Next, the used teaching framework is presented
in (2). Finally, the applied assessment method is described in (3). Finally, a generalized
learning outcome for both of the courses is given. Each outcome is marked with a black
bullet (•).

In order to identify both general course descriptions within this Section, the first
course is denoted (A), where the second one is identified with (B). Both courses will
anticipate concepts that oblige the students to primarily work on their own, however,
Course (B) will offer a greater degree of freedom to its participants. Since both courses
incorporate an introduction, the first paragraph is valid for courses (A) and (B). A com-
pact summary on the structure, concepts and assessment methods propagated to form
the two course concepts in this Section is given in Table 3.2

(A1/B1): Since Ben-Ari [10], Hansson [39], and Robbins [84] argue that an in-
troduction tailored to the expectations and already gathered experiences with certain
subjects lead to a greater acceptance of the taught material from a students perspec-

55

tive, the introduction can be considered as one of the most important parts of a lecture.
Therefore, it is recommended to provide an introduction that uses striking examples in
combination with information students may already know from their daily life, in order
to make a course appear more interesting to them in the first place. In the case of parallel
programming a pure speedup factor of a parallel algorithms’ run time compared to a se-
quential implementation may be to cumbersome from a students point of view. Instead
a more figurative example like a video stream being decoded slowly in a sequential im-
plementation, but being shown fluently in a concurrent one, may be a good example.
Moreover, it is advised to use real world examples, students are familiar with when in-
troducing a new topic. In the case of concurrent systems, a recent mobile phone may
be used as an application for parallel hardware for example. Parallel software could be
exemplified with a recent graphics engine, or an acceleration method for video codecs.
Nevertheless, according to Lamport [59], it is absolutely vital to introduce students to
the theoretical concepts behind concurrency. Therefore, it is recommended to show
students the basics of these concepts [20], as well as the abstraction of computation in
states [43].

(A2): Considering the actual course content, [34, 79, 108], and [51] endorse the
usage of industrially relevant parallel programming libraries in order to let students work
with languages they are familiar with. This is especially important in course designs
having a strong focus on theory lectures and practical home assignments. Nevertheless,
Joiner [49] supports the use of real world programming examples as home assignments,
or projects, rather than academic ones, where the students cannot directly benefit from
the actual problem they solved. Furthermore, it is obliged that side effects like false
sharing, must be repeatable within the laboratory by the students. Otherwise, possible
real pitfalls might be labeled as unimportant by course attendees [79].

(B2): Targeting course designs with a large student contribution, for example courses
with a seminar like character, Joiner [49], and Qingsong [79] recommend a thorough set
of getting started documents and tool documentation. Moreover, the authors advise to
use distinct lectures to propagate the projects students may pick to work on through-
out the course. Additionally, it is recommended to offer a heterogenous set of topics.
This should be done to let the students get a wider insight into the field of concurrent
systems [78, 108].

56

(A3): When teaching firmly organized courses with dedicated home assignments,
Normak [73] recommends examination through mini-projects. This approach is also
applied by Ozturk [78], and Wolffe [108]. Thereby, mini-project examination works
like the following. The students are divided into groups, where programming tasks are
assigned to each of the groups as a home assignment. Usually, such a home assignment
is of smaller size. The examination takes place in such a way that the students have to
explain and defend their solution on behalf of a lecturer. Every student is obliged to
know the whole program, thus it is possible to ask every student a random detail of the
program. Therefore, every group member has to contribute in the solution, or at least be
able to explain it.

(B3): When teaching courses in a seminar like setting one could hand out the topics
to the students and wait until they return their seminar papers at the end of semester.
However, this approach is not encouraged by Malmik et al. [63]. Instead the authors
propose to simulate the execution of a conference within the seminar. This would in-
clude the composition of a seminar paper to a specific topic with the course’s field. In
the next step participants must hand in their papers in an anonymized form, thus omit-
ting authorship. Now lecturers assign these papers back to other students to perform
a review by means of a structured review form, similar to those used in conferences.
Afterward, the reviews are checked for thoroughness by the lecturers. In the following,
the feedback given by students must be considered by the paper’s authors. Eventually,
each seminar paper is presented and discussed in class.

As mentioned in Section 3.1 it is very much recommended to provide a learning
outcome for each course description in order to conserve comparability. In the case of
the general course concept based on best practices presented in this Section, the learning
outcome for Course (A) may look like the following: Students are able to

• understand and describe the theoretical concept of concurrent systems.

• name and describe the most common parallel hardware architectures, as well as
being familiar with a set of software libraries exploiting their capabilities best.

• port a small sized sequential program to a parallel one where applicable.

57

Considering course (B), the learning outcome can be defined as follows: Students
are able to

• understand and describe the theoretical concepts of concurrent systems.

• explain a formal verification concept of parallel systems.

• name and describe the most common parallel hardware architectures, as well as
show that they are being familiar with a set of software libraries exploiting their
capabilities best.

• In addition, participants have engaged themselves thoroughly with a specific topic
in the field of the course, and are able to explain and understand the key concepts
of their course contribution.

3.7 Summary

Chapter 3 served as the foundation for providing the necessary theoretical and practical
background to derive two generalized course concepts in the field of concurrent com-
puting systems. First, it has been shown that course programs must be compared at the
learning outcome level, rather than the qualification profile, which denotes the learning

outcome of the whole curriculum so to speak. This has been done in Section 3.1. Af-
terwards, a set of contributions identifying issues and pitfalls when teaching concurrent
programming is presented in Section 3.2. Subsequently, 11 courses dealing concurrent
programming in various ways have been examined and compared with respect to their
learning outcome in Section 3.3. A summary of this evaluation can be seen in Table 3.1.
As a consequence numerous assessment concepts have been presented in Section 3.4.
As a conclusion regarding the previous Sections, two generalized course designs, based
on identified best practices are proposed in Section 3.6.

58

Table 3.1: Results of Mult-Core Programming Course Examintaion

Ref.# Level Context Used Tools Topics Learning Outcome
1 U PS OpenMP,

MPI, XMT
App,
HPC

Basic programming skills in used li-
braries; Raise awareness of parallel sys-
tems and their capabilities.

2 G PS Hive, From
Scratch

E Being able to partition and design a re-
alworld application; Use and combine
knowledge of predecessing courses about
parallel computing theory and practice.

3 U TC-,PS GPU, MPI,
OpenMP,
PThreads

E,
HPC,
App

Provides a course framework; Learning
outcome differs. In general the courses
provide a focus on practical skills (e.g.
CPU/GPU programming) and theoretical
concepts (e.g. understanding and evalua-
tion of distributed database algorithms).

4 U,G TC-,PS Hardware E Understand and use different cache archi-
tectures in distinct multi-core designs for
different problem descriptions.

5 U? PS Intel TBB HPC,
App

Use the Intel TBB library to develop par-
allel programs.

6 G TC+,PS- PThreads,
MPI

App,
HPC

Understand and use dynamic formal ver-
ification to verify message passing and
threaded applications. Develop MPI and
PThread based software.

7 U TC Linda HPC Understand the basic principles of paral-
lel hardware and software, as well as their
implications.

8 U TC PAT App,
HPC

Understand the basic concepts of parallel
thinking.

9 U TC+,PS- NestStep App,
HPC

Understand the concepts of concurrency,
as well as their implications when used in
a computer program.

10 U TC,PS- Discussion,
Dramatiz-
ing

HPC,
App,
E

Raise awareness for concurrency and con-
current processes in general. Detect and
describe situations where synchronization
upon a critical section is obligatory.

11 U TC+,PS BACI App,
HPC

Understand, describe, and use synchro-
nization methods common in concurrent
programs. Use the most appropriate syn-
chronization method for a given problem.

59

Table 3.2: Abstract Course Overview

Course A Course B
Learning
Outcome

Students understand and can
describe the theoretical con-
cepts of concurrent systems.
The participants are able to de-
scribe the most common paral-
lel hardware architectures and
are able to utilize one con-
current programming library to
adapt a small sequential pro-
gram to a parallel one, where
applicable.

Students understand and can
describe the theoretical con-
cepts of concurrent systems.
They should know the key prin-
ciples of a formal verification
technique in the filed of con-
current systems. The partic-
ipants are able to formulate
the key concepts and principles
of their seminar paper coping
with a thorough altercation of
their topic within the field of
parallel systems.

Introduction &
Motivation

Tailored to the knowledge base and expectations in the first
place. Use striking examples in conjunction with knowl-
edge students are already familiar with (Smartphones, multi
threade gaming engines,...).

General Setup Small real world problems are
likely to be faced with more
interest than possibly exciting
academic problems. There-
fore, mini projects on rewrit-
ing small, but useful sequential
programs, into parallel ones
seems promising.

In this concept the execution
of a conference shall be simu-
lated, where each student picks
his topic of interest within the
course field to write a seminar
paper. After a reviewing pro-
cess (done by course partici-
pants), the papers are presented
and discussed in class.

Assessment Each project group is examined
by a lecturer. Each member
of the group should know the
whole program in detail, thus
being able to answer question
about specific code constructs
from an architectural and pro-
gramming technique point of
view.

The assessment consists of two
parts. First, the quality of the
peer reviews is taken in to ac-
count. Moreover, the thorough-
ness of the review is addressed.
Second, the students presenta-
tion and their seminar papers
are taken into account.

60

CHAPTER 4
Two Approaches for Teaching

Multi-Core Programming

Based on the results of Chapter 3, Chapter 4 will present the actual implementation of
the abstract course descriptions (A) and (B), which were presented in Section 3.6. The
first course described in Section 4.1 will be held in a university context, whereas the
second approach is described in Section 4.2. Although both courses intend to provide
an overview on programming modern multi-core systems, they differ significantly in the
way this should be achieved. The first approach discusses an approach in a university
context.

4.1 Multi-Core Programming in a University Context

This Section provides a detailed description of course (B) from Section 4.1. The course
will be held as a seminar, thus having only a small number of lessons where participants
are obliged to attend. In essence there will be three sessions with the following content:

1. The first session will consist of the following three corner stones. First, partici-
pating students shall be made aware of the timeliness of the topic. This will be
done by a talk on the current use cases of parallel computing systems and discus-
sion in class, where each student is invited to present his personal experiences and

61

views on concurrent systems. Afterwards, the organization of the lecture, includ-
ing assessment and conference like format will be presented. Finally, a theoretical
overview on parallel systems from a hardware, software and formal point of view
will be given.

2. The second lecture will present a set of sub-topics to the students. The topics will
range from practical programming tasks to theoretical elaboration. At the end of
the lesson students will be assigned a given topic (in groups of two, depending
on the actual number of participants). In case there are too many participants the
group size will be increased. As a consequence the thoroughness of the task to be
solved will be raised as well.

3. The last session will give each group the opportunity to present the results of their
findings. Every group member has to present something. This may include live
demonstrations of programs. The presentation and the subsequent discussion will
be taken into account for the final grade.

Each of the described lectures will have a length of 90 minutes, except for the last one
which shall be scheduled for at least 180 due to the presentations. A participant’s final
grade consists of a review of his seminar paper, the presentation of his seminar paper
and the quality of his peer review of a fellow student’s seminar paper. Moreover, the
peer review her received (see Section 4.1) is taken into account. The course’s key facts
can be seen in Table 4.1.

Table 4.1: University Course Key Facts

Structure # of Sessions Attendance Length of Session Assessment

seminar 3 compulsory 90 (180) minutes seminar paper,
presentation,
review quality &
received reviews

Although the course has only 3 sessions of attendance there exist 3 additional dead-
lines. A deadline miss results in a grade reduction of one level.

62

• The first deadline refers to the hand in of a student group’s seminar paper for
peer review. This hand in should be done anonymously. The seminar papers are
immediately redistributed to fellow students, where each student shall review 2

seminar papers when possible (depending on the number of participants).

• The next deadline refers to return the seminar paper reviews to the lecturers. Sub-
sequently, the reviews are redistributed to the respective paper authors.

• The last deadline requires the course attendees to hand in the final camera ready
versions of their seminar papers. This final version will be used for grading.

As students might not be familiar with the concept of peer reviewing, as well as the
general structure of such a review, an example peer review form is supplied by the
lecturer. The form can be seen in subsection ”Peer Review Form” on page 65. It is
based on a form for a student conference at the Umeå University [105] in Sweden. As it
can be seen, the review form consists of a header requiring the reviewing student to fill
in the title of the paper he is investigating, as well as his name and student ID. The latter
information are collected since the review form is part of the final grade. Right after the
personal information table, there exists a paragraph explaining the organization of the
review form, as well as the meaning of the points that have to be assigned to each of the
subsequent rating parts. These rating parts are subsidized into three categories:

PART I - Formal criteria This part covers a review with respect to writing style, paper
organization and transitions between sections, subsections and paragraphs. The
purpose of this part is to show students that the organization of an article is just as
important as its content.

PART II - Qualitative criteria In this part, the reviewer is obliged to examine the pa-
per from a qualitative point of view. Here, facts like thoroughness, proper ci-
tations, and critical evaluation of found facts and results have to be taken into
account. The intention of this part is to animate reviewing students to examine
and evaluate their colleagues work carefully, thus having a general idea of their
fellow students work during the final presentation phase in the last sesssion.

PART III - Suggestions for improvements Here, participants should provide a short
summary of the paper’s content with their own words. Moreover, they should give

63

hints for improvements based on their review results of parts I and II. Moreover,
there exists a box dedicated to special comments that are only assigned to the
lecturers and are not forwarded to the paper’s author. This box can be used to
point out suspicions about plagiarism for example.

64

Peer Review Form

Title of reviewed paper:
Name of reviewer:
Student ID:

The purpose of this review form is to aid and guide during the peer-review pro-
cess. It consists of three parts. The first part is used to check whether the reviewed
paper has considered the formal criteria, like proper paper organization, writing style
and transitions. The second part takes qualitative aspects into account. This includes
thoroughness of the analysis and the line of argumentation for example. Here you have
to assign between 1 to 5 points to each of the listed criteria:

• 1 denotes bad coverage.

• 3 refers to moderate coverage.

• Finally, 5 points are rewarded if the coverage is excellent.

You may reward 2, or 4 points if you feel the coverage is in between. The third part will
hold your personal comments and suggestions for improvements. Moreover, a short
summary on the reviewed paper is obliged in order to see whether you have read and
understood the article in principle.

PART I - Formal criteria

Writing Style (The paper has only few spelling mistakes, no
blown up phrasing, no slang. Furthermore, all terms and
acronyms are explained properly)

Paper organization (The article is well structured into sections
and subsections. Moreover, it uses tables and figures where ap-
propriate)

Transitions (The author made smooth transitions between para-
graphs and sections.)

65

PART II - Qualitative criteria

Contribution (The idea is to teach people something new, thus
summarizing only a single paper is insufficient.)

Citation (There exists a reasonable number of different, trustwor-
thy and correct citations. (NO WIKIPEDIA))

Thoroughness (The text is not simple minded. Instead it ap-
proaches the problem from different points of view.)

Critical evaluation (The author does not simply accept existing
work. He identifies and discusses possible weakness.)

Correctness (The presented work is correct, own ideas and third
party ideas are clearly separated an well cited.)

PART III - Suggestions for improvements

Summary: (A short summary of the paper, written in your own words.)

Suggestions for improvements: (Give hints on how the author could improve his pa-
per.)

66

Additional comments (not forwarded to the author): (This field may contain special
remarks on the paper that are not suited for the author. (e.g. suspect to plagiarism))

67

By now, the overall structure of the multi-core programming course in a university
context has been explained in general. The following Subsections will provide a detailed
overview of the course, starting with an overview time table (see Table 4.2). This table
reflects a possible implementation of the course within one term from a student’s point
of view. In the first column the name of the respective lecture, or deadline is shown.
Column two provides a summary of the lecture’s content. The last column reveals a
timely offset from the previous event. Thus, if the column says 7 Days it means that this
lecture/deadline is intended to be scheduled seven days after the prior one. In addition
to Table 4.2, Table 4.3 presents the course’ schedule from a lecturer’s point of view.
In general the columns in Table 4.3 have the same meaning as in Table 4.2, except for
column one which also represents administrative tasks a lecturer has to perform during
the course. In order to get a better overview on the timely organization of the course see
Figure 4.1. The length of brackets indicating passed time are not to scale.

68

Table 4.2: University Course Time Table from a student’s point of view

Lecture/Deadline
name

Content Offset

Lecture 1 Motivating examples on the importance of par-
allel computing; Theoretical introduction based
on ex-cathedra; Explanation of organizational
structure; Handout of fundamental papers aid-
ing in choosing a topic of interest

Lecture 2 Talk about the available topics; Students have to
get together in groups of two or more (depend-
ing on the participants to topic ratio) and pick a
topic

7 Days

Deadline 1 Students have to hand in their anonymized sem-
inar paper on their chosen topic;

5 weeks be-
fore end of
the course

Deadline 2 Participants have to hand in the filled in review
forms.

7 Days

Deadline 3 Students have to hand in the camera ready ver-
sion of their paper reflecting the suggestions for
improvements imposed by their colleague’s re-
views.

14 Days

Lecture 3 Participants present their papers in last lecture;
They are encouraged to discuss their findings
with their colleagues and lecturers after each
presentation.

14 Days

69

Table 4.3: University Course Time Table from a lecturer’s point of view

Lecture/ Dead-
line/ Task name

Content Offset

Lecture 1 Motivating examples on the importance of par-
allel computing; Theoretical introduction based
on ex-cathedra; Explanation of organizational
structure; Handout of fundamental papers aid-
ing in choosing a topic of interest

0 Days

Lecture 2 Talk about the available topics; Students have to
get together in groups of two or more (depend-
ing on the participants to topic ratio) and pick a
topic

7 Days

Deadline 1 Students have to hand in their anonymized sem-
inar paper on their chosen topic;

5 weeks be-
fore end of
the lecture

Distribute semi-
nar papers

Assign assign at least two seminar papers to
each student to start the reviewing process.
Send the properly anonymized paper and and
the review form.

24 hours

Deadline 2 Participants have to hand in the filled in review
forms.

7 Days

Redestribute Re-
views

Short review of student reviews. Redistribute
reviews.

1 Day

Review reviews Review the received reviews and cross check
with handed in papers. Grade reviews.

13 Days

Deadline 3 Students have to hand in the camera ready ver-
sion of their paper including the suggestions for
improvements imposed by their colleague’s re-
views.

14 Days

Continued on next page

70

Table 4.3: University Course Time Table from a lecturer’s point of view

Lecture/ Dead-
line/ Task name

Content Offset

Review camera
ready version

Check whether the handed in camera ready ver-
sion has considered the reviewer’s suggestions
for improvement, if they were useful. Grade the
seminar paper.

14 Days

Lecture 3 Participants present their papers in last lecture;
They are encouraged to discuss their findings
with their colleagues and lecturers after each
presentation. Grade the presentation

14 Days

Final grading Take all accomplishments into account (seminar
paper, review, presentation) and compute the fi-
nal grade A detailed weighting of each grade
component can be found in Table 4.4.

1 Day

Figure 4.1: Multi-Core programming in a university context - detailed course timeline

71

Table 4.4: Weighted grade components

Component Weighting in %

Seminar paper 40

Review quality 30

Final presentation 30

The course’s learning outcome is based on the learning outcome description of
Course (B) in Section 3.6 and is precised in the following way:

• Students understand and can describe the theoretical concepts of concurrent sys-
tems.

• Participants gain further insights on a topic of their choice within the field of
multi-core programming.

• Furthermore, participants are able to name and describe the most common parallel
hardware architectures, as well as phenomenons like false-sharing for example.

This concludes the structural and organizational overview of the university context
multi-core programming course. Nevertheless, in order to have a complete course de-
scription the subsequent Section 4.1 will present a number of fundamental papers deal-
ing with concurrency and parallel systems. These articles are recommended to provide
students with a straight forward introduction on the topic in general. Based on these
papers, Section 4.1 introduces a set of possible assignments, that might be offered to
students participating in this course.

A selection of recommended papers on parallel systems

This Section presents a set of articles that might be offered to students in order to prepare
themselves for their actual assignments. Some of these papers are recommended to be
read compulsory, others can be interesting if a group of students chose a specific topic
for their seminar paper. Each paper is described upon the categories Author, Title and

72

Summary. At first we will present those papers which are of interest for every course
attendant:

P(1): Dijkstra, Solution of a problem in concurrent programming control [20] This
paper can be considered as the beginning of research on parallel system in general.
The author thoroughly identified every necessary property to guarantee a mutual
exclusive synchronization of an arbitrary number of processes/processors on a
shared memory region. Moreover, Dijkstra provided an algorithm satisfying his
identified properties, as well as proper correctness proofs. The article has been
written in 1965.

P(2): Amdahl, Validity of the single processor approach to achieving large scale
computing capabilities [6] Gene M. Amdahl showed in 1967 that a linear in-
crease of the number of used processors does not result in the expected linear
speedup. However, the motivation for his paper was the notion that single proces-
sor machines would soon be to slow to cope with their intended workload, thus
multi processor computers were to be the future of fast computation.

P(3): Flynn, Some Computer Organizations and Their Effectiveness [29] In 1975

Michael J. Flynn presented a categorization of processor architectures in order
to organize the various proposed and existing processor architecture types at that
time. His organization takes only instruction and data streams into account, thus
being generic enough to be used throughout time. Today it is known as Flynn’s
Taxanonmy.

P(4): Skillicorn, Models and languages for parallel computation [92] This paper
introduces a model to categorize parallel programming languages, libraries an
optimizing compilers. This categorization may aid in choosing the right tool for
the right task.

P(5): Adve et al., Memory models: a case for rethinking parallel languages and
hardware [2] This article presents an overview of the memory models of indus-
trially relevant programming languages and their feasibility for parallel program-
ming with respect to hardware memory models. Moreover, the languages are also

73

examined with respect to their synchronization capabilities. Amongst the covered
languages are Java, C and C++.

P(6): Bolosky et al., False sharing and its effect on shared memory performance [14]
Since false sharing is the cause for a common performance bottle neck when pro-
gramming shared memory multi-core systems this article shows the reasons for
this phenomenon and provides practical solutions to it.

P(7): Adve et el., Shared memory consistency models: a tutorial [3] Due to to fact
that a reasonable part of today’s processor performance relies upon cache memory
hierarchies, this article provides a tutorial on cache memory architectures from a
software engineer’s point of view.

P(8): Lee, The problem with threads [60] Threads are a well known technique to
implement parallelism in software engineering. However, the largest issue with
using threads is non-determinism. In this paper the author argues why threads
should be replaced by other design pattern implementing parallel software and
programming languages.

Based on these introductory articles in the field of parallel systems, the following con-
tributions are categorized by the possible field of interest a course participant might
have. The first group of articles belongs to theoretically interested students who want
to learn more about the design, specification and reasoning of concurrent systems in a
state based computation model.

P(9): Lamport, Verification and specification of concurrent programs [57] This pa-
per provides a historical overview on state based concurrent program verification,
as well as an overview on the methodology in general. It may serve as an entry
point to the topic.

P(10): Lamport, The mutual exclusion problem: part I - a theory of inter process
communication [55] This article describes the formal problem of mutual exclu-
sion, as well as a model providing a formalism to reason about these problems. It
is the first part in a series of two.

74

P(11): Lamport, The mutual exclusion problem: partII - statement and solu-
tions [56] This is the second part of Lamport’s series on the mutual exclusion
problem. It deals presents a rigorous problem statement as well as a set of so-
lutions for solving the mutual exclusion problem in a distributed memory model
multi-core system.

Students who are more interested in practical topics may address the following papers
providing an overview of libraries, languages, and hardware support to master the par-
allel computing power of today’s multi-core processors.

P(12): Sato, OpenMP: parallel programming API for shared memory multiproces-
sors and on-chip multiprocessors [89] This article gives an overview on the par-
allel programming library OpenMP. OpenMP has been designed to aid in adding
loop parallelism to sequential programs. This is done by source code annotations.
The compile does the mapping to threads in the end.

P(13): Graham et al. Open MPI: A Flexible High Performance MPI [35] MPI
is an abbreviation for Message Passing interface, thus it provides a library for
synchronization and communication in distributed memory architectures. This
paper provides an introduction to this library.

P(14): Croix et al., Introduction to GPU programming for EDA [19] Since graphic
adapters are actually massive parallel multi-core computer systems they do a lot
more than just performing graphic computations. This paper provides an overview
on the computation capabilities of GPUs.

P(15): Nickolls et al., Scalable Parallel Programming with CUDA [72] CUDA can
be used to tell graphic adapter from NVIDIA that they should calculate other
things than pictures. This article shows how this can be done in principle.

P(16): Nottingham et al., GPU packet classification using OpenCL: a consideration
of viable classification methods [74] OpenCL is similar to CUDA. It serves as
an interface to use a GPU as a coprocessor, thus having a heterogeneous comput-
ing system. Nevertheless, OpenCL is an open standard. This article shows how
to design and implement a network packet filter by utilizing a GPU.

75

Participants who are interested in the application of multi-core systems in hardware
oriented scenarios may be interested to the following articles in the field of embedded
systems.

P(17): Grant, Overview of the MPSoC design challenge [64] This paper provides an
overview of the multi-core design challenge when building embedded systems on
chip (A whole computer system including CPUs, GPU, network controllers, etc.
on one die.).

P(18): Gschwind et al., Synergistic Processing in Cell’s Multicore Architecture [37]
The Cell processor is an industrially used example for a heterogeneous multi-core
processor. It is used in the Sony Playstation 3. This article shows that it can be
used for more than gaming.

P(19): Aguiar et al., Embedded systems’ virtualization: The next challenge? [5]
Virtualization is a common technique to consolidate server hardware or operate
several operating system in parallel. However, when it comes to heterogeneous
architectures in embedded system virtualization might help in providing a unified
interface for different kinds of hardware. This paper provides an overview of this
topic.

P(20): Stoif et al., Hardware synchronization for embedded multi-core proces-
sors [98] Synchronizing upon a shared memory region may be a time consuming
task in the field of embedded system. Therefore this paper presents an approach
to implement synchronization techniques in hardware. The approach is evaluated
using an FPGA housing two PowerPC processors.

P(21): Holt et al., Software Standards for the Multicore Era [44] Libraries like
OpenMP and MPI are well suited for personal computers and server machines.
However, embedded system do not always provide a lot of computing power or
main memory. Therefore, this paper presents a lightweight multi-core commu-
nication API especially designed for embedded system. This library makes no
assumptions on the used memory architecture.

76

The description of numerous papers in the field of embedded systems concludes this
Subsection. The following Subsection will present a set of possible topics students may
choose to compose their seminar papers on.

A selection of possible topics for student contributions

This Section provides an overview of five possible assignments given to students partic-
ipating in the university oriented multi-core programming course.

(1) Investigate TLA+ a language to specify concurrent systems

Students who are especially interested in the formal specification and proofing of paral-
lel systems may choose this topic. Here an investigation of Lamports TLA+ language
and toolset including a demonstration is the desired outcome of the seminar paper, there-
fore having a small tutorial on the most crucial features of the toolbox. The software can
be obtained from http://www.tlaplus.net/. Moreover, there exists a book [58]
and a set of publications introducing this topic. The desired structure of the seminar pa-
per should consist of a section dedicated to background information, a section on the
toolbox itself and finally a demonstration and showcase of a real application, that is also
implemented in real hardware/software.

(2) Parallel programming languages - an overview and capability demonstration

Students choosing this assignment should investigate and compare parallel program-
ming languages on behalf of the following criteria:

• Purpose of the given language (Academic, Industrial)

• Features and capabilities of the language

• Programming model of the language (How is parallelism enforced)

• Tool support and availability of the language

• Working program demonstration when possible

77

http://www.tlaplus.net/

This seminar paper has a theoretical focus, however there is also room to play with the
investigated languages. A team of 2 should at least investigate 4-6 different languages.
The investigation shall begin with a descriptive part, where each of the investigated
languages is presented. Subsequently, the languages shall be compared against each
other on behalf of the named criteria. The last Section is used for example code and
experiment results.

(3) Parallel programming in Java

Java is one of the most industrially relevant programming languages [103]. Thus it
would be nice to know how Java can be used to develop parallel software. This seminar
paper shall investigate and demonstrate the parallel programming capabilities of Java.
Moreover, students choosing this topic should investigate the language on possible is-
sues when developing concurrent software. As Java is a commonly known program-
ming language, a lengthy Java introduction is not required. Rather, students are obliged
to focus in the mechanisms Java provides to enforce its parallel capabilities.

(4) GZIP parallelization

The widely used compression/decompression program GZIP bases upon a sequential
algorithm developed by Ziv and Lempel [109]. An improvement of their initial work
has been done in [110] by the same authors. It is the purpose of this seminar topic to
change this the program GZIP in a way that it utilizes the computing power of more
than just one processor core on a modern computer. The seminar paper shall consist of
the design decisions, their impact on the software, as well as a section on pitfalls and
problems. The source code package will be distributed by the lecturer.

(5) Finger print verification parallelization

Utilizing finger prints in jurisdiction and access control is a common task [76]. The aim
of this seminar topic is to change a given open-source finger-print verification software
in such a way that it utilizes the available computing power of a modern multi-core
processor. The source code package will be distributed by the lecturer. Moreover a
large set of over 50 sample finger prints will be distributed with the software package

78

in order to test the thoroughness of the solution. The seminar paper shall consist of
the design decisions, their impact on the software, as well as a section on pitfalls and
problems.

Course Description Summary

This Section provided a detailed description of a multi-core programming course in
a university context. The course is designed as a seminar, simulating a conference
including a seminar paper presentation at the end. Thus each seminar paper has to
undergo a peer review process. This peer reviewing is done by students. Therefore, the
overall grade consists of the three components review quality, seminar paper quality and
seminar paper presentation quality. The topics for the seminar papers can be chosen
from a pool. Each paper is to be handled by a group of students of at least two. Because
the course has a seminar like structure, only three lectures with compulsory attendance
are held, two of them at the beginning. The third one is used to let the students present
their work. This course has been developed on basis of the best practices identified in
Section 3.6. The subsequent Section 4.2 will give a detailed introduction on a multi-core
programming course in the context of a university of applied science.

4.2 Multi-Core Programming in a University of
Applied Sciences Context

In contrast to universities, were most compulsory courses last for a whole term and are
held in full-time curricula, universities of applied science tend to offer a more hetero-
geneous curriculum portfolio. In general there exist full time and extra-occupational
curricula in parallel. Considering the extra-occupational curricula they are often or-
ganized in such a way, that only two or at most three days of the week are covered
with lectures [25–28]. However, this leads to the issue that not all courses can be held
throughout a whole term, thus introducing compact lectures only lasting half a term.
Therefore, the course described in the following is structured to fit in the most strict
curriculum framework, thus being an extra-occupational course lasting only a half term.

79

Nevertheless, it bases on course (A) in Section 3.6. The course is designed to fulfill the
following organizational constraints:

• The course must be held within a half term. This includes a written exam at the
end.

• Since, the curriculum is extra-occupational all lectures must be held in the evening
and have to consist of two units, 45 minutes each.

• The course consists of 8 lectures which are held weekly.

However, these constraints will not restrict the applicability of the intended learning
outcome as described in Section 3.6. The general structure of the course may look as
follows:

1. The first two lessons will be used to provide students with a theoretic introduction
on the topic. This covers an overview on the history of parallel computing and a
comprehensive introduction of the theoretical fundamentals of this field.

2. The ascending two lessons are used to introduce students to the general usage of
parallel programming design templates and libraries exploiting the parallel capa-
bilities of modern multi-core processors. These two lessons conclude the theoret-
ical part of the lecture.

3. Afterwards, the participants will get together in groups of two to four, where
each group will receive a distinct programming task that has to be solved until
the next three lessons. The chosen tasks have to be solved at home, since the
ascending two lectures will be used for discussion, questions, and intermediate
result presentations. However, since it might be the case that students tend work
on their tasks just before the deadline, intermediate milestones which have to be
presented in class will be issued to the participants. These milestones consist of a
small presentation with discussion in each of the two mentioned lectures.

4. The seventh lecture will be used for a final presentation, where all students are
obliged to present their home assignment solution. In the eighth lecture the final
written exam will take place.

80

Moreover, since there is only a half term available to teach participating students the
basic principles of multi-core programming, the lessons two to five start with a small
test checking whether the articles to be read handed out in the prior class have been
read and understood. The course’ key facts are presented in Table 4.6 concluding this
overview. Furthermore, Figure 4.2 shows the course’s timeline from a student’s point of
view.

Figure 4.2: Multi-Core prgramming in a university of applied sciences context - detailed
course timeline

Table 4.5: University of Applied Science Course Key Facts

Structure # of Lessons Attendance Length of Lesson Assessment

lecture & exercise 8 compulsory 90 minutes net small tests on
read articles, as-
signment, written
exam

The course’s learning outcome is based on the learning outcome description of
Course (A) in Section 3.6 and is precised in the following way:

• Students are able to understand and describe the theoretical concept of concurrent
systems. This includes phenomenons like false-sharing and implications on cache
sizes.

81

• Moreover, they are able to name and describe the most common parallel hardware
architectures, as well as being familiar with a set of software libraries exploiting
their capabilities best, including OpenMP and Pthread.

• Additionally participants are able to port a small sized sequential program to a
parallel one where applicable.

Applied methods of assessment

This Subsection presents the assessment methods used for this course. As it has been
mentioned in Section 3.6 Course (A), the main assessment methods are recommended
to be hands on oriented, thus a oral examination on the details of the designed and im-
plemented program may be used. However, since this course is only held in a half term,
thus leading to less complex programming examples, additional assessment methods are
recommended. At first a final examination will be introduced at the end of the course.
This written test will cover the following topics:

• Basic understanding of the theoretic fundamentals of parallel computing.

• Application of the theoretic fundamentals on small examples.

• Explanation of several features, strengths and weaknesses of the covered parallel
programming libraries.

• Understanding of the key concept covers by the articles read for class.

Additionally, in order to motivate students consecutively learn the topics discussed in
class two additional assessment methods are applied.

Concurrent Tests Since the lecture is short on time when lasting only half a term,
some topics have to be outsourced to the attending students. Therefore, partici-
pants must write a small test on the papers they were told to read until the next
time. Each test will not last longer than 10 − 15 minutes and will cover the key
statements of the read articles.

Graded Milestone Discussion Since the second part of the course will cover a practi-
cal assignment, these graded milestone discussions will be used to check whether

82

the students have worked on their assignments or not. Thereby the assignment
will be divided into several sub-tasks, where each completed sub-task will be
covered by a milestone. Each milestone is presented to a lecturer and is discussed
in class. A milestone-discussion will be graded according to the thoroughness of
the student’s defense of his point of view.

A detailed course description

This Subsection provides a detailed course description including a chronological overview
and a presentation and justification of the research papers to be read. Furthermore, a set
of possible assignments is described. The detailed structure of the course can be seen in
Table 4.6. The table consists of the following columns with their respective meanings:

Lecture Reflects the number of the lecture within this term.

Paper Reference to a set of papers that students have to read until this lecture. The
reference points to the articles listed in Section 4.1.

Content Topics covered in class.

83

Table 4.6: University of Applied Science Detailed Course Description

Lecture Paper Content

1 - Ressourcing & Introduction and motivating examples
on the importance of parallel computing; Organiza-
tional introduction; Short presentation of the history
of concurrent computing; Introduction into parallel
hardware and software concepts.

2 P(1), P(4), P(17) Test 1; Theoretic background introduction based on
ex-cathedra. Covered topics are: Fundamental con-
cepts; Introduction into models and languages of par-
allel computation; Definition of the parallel comput-
ing design challenge.

3 P(5), P(6), P(7) Test 2; Discussion of memory models and cache is-
sues when dealing with parallel software.

4 P(19), P(20),
P(21)

Test 3; Highlighting of embedded and future concepts
in the field of multi-core systems. Set up of groups;
Distribution of assignments.

5 P(12), P(13) Test 4; Discussion of Milestone 1; Moreover, the
technical report Getting Started POSIX Threads by
Schuster, 2011, providing an introduction to PThreads
should be read.

6 - Discussion of Milestone 2

7 - Each group presents their results to their colleagues
and the lecturer.

8 - Final written exam (90 minutes).

Since the multi-core programming course in the university of applied science context
features three independently graded sub tasks, a student’s final grade is calculated as it
is shown in Table 4.7.

84

Table 4.7: Weighting of grade components

Component Weighting in %

Tests on articles 30

Programming assignment 40

Final test 30

Considering parallel programming assignments, the following presented tasks (1)
and (2) in the ascending list are reused from Section 4.1 on page 77 in a modified form:

(1) Finger print verification As mentioned in Section 4.1 on page 77, assignment 5
finger print verification is a common task within various fields. Therefore, it is
considered to be an interesting assignment to work on by the author. Students
choosing this task have analyze the source code of the program, detect the most
time consuming computations and parallelize the source code of the program us-
ing OpenMP. This assignment is considered to be suitable for two to four students.

(2) Data compression Since data compression is an omnipresent task in the field of
computer science much effort has been made to design an implement efficient
compression algorithms. In this assignment two to four students are required to
analyze a serial implementation of the zip compression/decompression algorithm,
find its performance bottle necks and parallelize the application using OpenMP.

(3) Image processing: Sobel filter [47] This assignment can be taken by up to two stu-
dents. I consists of an analysis and parallelization task of the Sobel edge detec-
tion algorithm used in image processing. Student picking this assignment must
use PThread for their implementation. A serial implementation is provided to the
participants.

(4) Image processing: Erode filter [47] The erode filter is used in the field of image
processing to widen and enhance the brighter areas of an image. This task can be
chosen by up to two students which have to use the PThread library to implement
a parallel version of this algorithm. A serial implementation is provided to the
participants.

85

(5) Image processing: Dilate filter [47] Dilate describes an mathematical operation in
the file of image processing where wider and darker areas of an image are ex-
panded. This assignment is suitable for up to two students which have to use
the PThread library in order to transform a given serial implementation of the
algorithm into a parallel one.

(6) Image processing: Laplace filter [47] The application of the Laplace filter is used
for edge detection in images. This task can be solved by one to two students using
the PThread library to implement a parallel version of this algorithm on base of a
supplied serial implementation.

Course Description Summary

Section 4.2 presented an approach for a parallel programming course in a university of
applied sciences context. The course is designed to fit in a strong constrained curricu-
lum considering the amount of available time. In the case mentioned this would mean
that the course’s lectures have to take place within a half term, where each lecture has
to last 90 minutes. These constraints may apply in an extra-occupational curriculum.
Therefore, in order to be able to fulfill a university of applied science aims in provid-
ing a practical oriented education the course is provided with a concurrent assessment
technique consisting of three parts:

1. Since the whole course has to be held in a half term, a set of research articles
covering the topics of the subsequent lecture have to be read by the course par-
ticipants. In order to verify that the main arguments in the articles have been
understood, a small test of about 10 to 15 minutes has to be solve by every student
at the beginning of a lecture.

2. To provide students a practical experience in multi-core programming a software
engineering assignment has to be solved by each student. Since these assignments
differ in size and complexity, the participants have to solve these tasks in groups
of two to four, depending on their appointed task size.

3. Finally a written exam consisting of theoretical and practical tasks has to be solved
by the participants.

86

The programming examples solved by the students are complete, or parts of, real-world
applications which intend to show students the necessity and importance of the taught
topics, as well as to increase their motivation in solving the assigned tasks thoroughly.

4.3 Summary

Chapter 4 discussed two possible approaches when teaching multi-core programming.
Generally spoken, both course concepts try to impose the theoretical background on
multi-core programming to participating students in combination with practical soft-
ware engineering tasks. Moreover, both course concepts base upon the insights made in
Chapter 3, where numerous parallel programming courses have been analyzed and best
practices for the development of the courses described in Section 4.1 and Section 4.2
have been derived. A compact summary of both course concepts results in the follow-
ing:

University course This course is designed to simulate a conference to participating
students. It consists of three lectures with compulsory attendance. The first two
lectures are held at the beginning of the course providing the necessary theoretical
background, as well as an introduction on the possible assignments to the students.
These assignments provide a framework to the students, they do not animate them
to focus on a specific detail. The last lecture is used to let the participants present
their findings. Since the course is designed like a conference students have to
compose a seminar paper. This paper is then peer reviewed by the colleagues.
Finally, the participants are obliged to create a camera-ready version on base of
their colleague’s reviews. The final grade is calculated on basis of the seminar
paper, the quality of the peer review, and the final presentation. The main learning
outcome of this course is that the participants have a general knowledge about
multi-core computing systems and that they have deepened their insights on a
predefined part of this field.

University of applied sciences course Since universities of applied sciences offer a
very practical education to their students this course is a lot more guided than the
university context course. The course consists of an introduction block of about

87

four lectures at the beginning. Here the basic concepts in the field of multi-core
programming are explained. Nevertheless, since the course is forced to be held in
half a term, which is a realistic constraint in a university of applied sciences due to
extra-occupational curricula, it is necessary that participants read and understand
research articles on their own at home. Moreover, the participants need to solve
homeworks in groups of two to four, depending on the complexity of their chosen
task. The home assignments have to be presented in two milestone discussions,
where each group has to present their intermediate solutions. Finally, the last
lecture will be used for a written exam covering all topics discussed in class and
read in the research articles. The final grade is composed on the small tests on
the read papers, the milestone discussions, and the final examination. The main
learning outcome of this course is to provide students with a solid understanding
of the principles in multi-core programming and the applicability of the parallel
programming libraries OpenMP and Pthread.

88

CHAPTER 5
Conclusion

Due to the wide availability of multi-core computer systems in all kinds of applications
ranging from personal computer to mobile-phones, it is vital that ongoing engineers
receive an education on how to cope with the challenges arising when mastering such
systems. As a consequence this thesis presents two course concepts on teaching multi-
core programming:

University context This course is designed to simulate a conference to participating
students. Its intention is to offer students a greater degree of freedom in order
to deepen their knowledge on a specific field in the domain of multi-core pro-
gramming. Therefore it is necessary that participants are not complete novices
in the field of software engineering. The course bases on the recommendations
and best practices derived in Chapter 3. It consists of three lectures with com-
pulsory attendance. The first two lectures are held at the beginning of the course
providing the necessary theoretical background, as well as an introduction on the
possible assignments to the students. The assignments are designed to provide a
framework to students where they can explore the actual direction they want to
be going. Thus realizing a greater amount of freedom and therefore possibly fos-
tering the autonomy of the participant’s work. The last lecture is used to let the
participants present their findings. Since the course is designed like a conference
students have to compose a seminar paper. This paper is then peer reviewed by the
colleagues. Finally, the participants are obliged to create a camera-ready version

89

on base of their colleague’s reviews. The final grade is calculated based on the
seminar paper, the quality of the peer review, and the final presentation. The main
learning outcome of this course is that the participants have a general knowledge
about multi-core computing systems and that they have deepened their insights
on a predefined part of this field.

University of applied science context Since universities of applied sciences offer a
very practical education to their students this course is a lot more guided than the
university context course. As a consequence the learning outcome is defined more
clearly, as well as the home assignments the students have to work on. The course
consists of an introduction block of about four lectures at the beginning. Here
the basic concepts in the field of multi-core programming are explained. Never-
theless, since the course is forced to be held in half a term, which is a realistic
constraint in a university of applied sciences due to extra-occupational curricula,
it is necessary that participants read and understand research articles on their own
at home. Moreover, the participants need to solve home assignments in groups
of two to four, depending on the complexity of the chosen task. The solved as-
signments have to be presented in two milestone discussions, where each group
has to present their intermediate solutions. Finally, the last lecture will be used
for a written exam covering all topics discussed in class and read in the research
articles. The final grade is composed on the small tests on the read papers, the
milestone discussions, and the final examination. The main learning outcome
of this course is to provide students with a solid understanding of the principles
in multi-core programming and the applicability of the parallel programming li-
braries OpenMP and Pthread.

Although none of the described courses has been taught in the described version, an in-
direct relative version of the university of applied science context course has been held
in the summer term of 2012 at the Vienna university of applied sciences. Compared to
the version described in this thesis the held course differed in the following way (con-
sidering the organizational constraints there were differences between both courses):

• The students were not obliged to read and understand research articles in the field
of multi-core programming in advance to the lectures L2 to L5 as it can be seen

90

in Figure 4.2.

• The given home assignments were of academic nature mostly, thus requiring the
student to parallelize prime number calculation algorithms for example.

• There was only one written test covering the theoretical and practical parts of the
lecture at the end of the half term.

At the end of the lecture the student’s prosa feedback on the course was evaluated. The
total number of students participating on the lecture was 22. Although more than two
third (15) of the participants noted that the lecture’s content was interesting in general,
almost all students (19) commented that the home assignments were not very aspiring.
Moreover, about half of the participants (9) let us know that although they understood
the lecture’s content they could not easily tell what they can do with the gained insights
in their future live. This feedback in combination with the definitive need on a thorough
multi-core programming education led to the course designs presented in this thesis.
These course designs will be applied in the summer term 2013 at the Vienna University
of Applied Sciences and the Vienna University of Technology.

91

Bibliography

[1] Advanced RISC Machines Ltd. 2012. Arm architecure reference manual. http:
//www.arm.com.

[2] Sarita V. Adve and Hans-J. Boehm. Memory models: a case for rethinking par-
allel languages and hardware. Commun. ACM, 53(8):90–101, August 2010.

[3] S.V. Adve and K. Gharachorloo. Shared memory consistency models: a tutorial.
Computer, 29(12):66 –76, dec 1996.

[4] AEI-NOOSR. Country Education Profiles Australia. www.
aei.gov.au/Services-And-Resources/Services/
Country-Education-Profiles/About-CEP/Documents/
Australia.pdf, 2011.

[5] A. Aguiar and F. Hessel. Embedded systems’ virtualization: The next challenge?
In Rapid System Prototyping (RSP), 2010 21st IEEE International Symposium
on, pages 1 –7, june 2010.

[6] Gene M. Amdahl. Validity of the single processor approach to achieving large
scale computing capabilities. In Proceedings of the April 18-20, 1967, spring
joint computer conference, AFIPS ’67 (Spring), pages 483–485, New York, NY,
USA, 1967. ACM.

[7] Braun E. & Hannover B. Zum zusammenhang zwischen lehr-orientierung und
lehr-gestaltung von hochschullehrenden und subjektivem kompetenzzuwachs bei
studierenden. Perspektiven der Didaktik (Zeit-chrift für Erziehungswissenschaft,
9:277–291.

[8] G.H. Barnes, R.M. Brown, M. Kato, D.J. Kuck, D.L. Slotnick, and R.A. Stokes.
The illiac ipv computer. Computers, IEEE Transactions on, C-17(8):746 – 757,
aug. 1968.

[9] Mordechai Ben-Ari. A suite of tools for teaching concurrency. SIGCSE Bull.,
36:251–251, June 2004.

92

http://www.arm.com
http://www.arm.com
www.aei.gov.au/Services-And-Resources/Services/Country-Education-Profiles/About-CEP/Documents/Australia.pdf
www.aei.gov.au/Services-And-Resources/Services/Country-Education-Profiles/About-CEP/Documents/Australia.pdf
www.aei.gov.au/Services-And-Resources/Services/Country-Education-Profiles/About-CEP/Documents/Australia.pdf
www.aei.gov.au/Services-And-Resources/Services/Country-Education-Profiles/About-CEP/Documents/Australia.pdf

[10] Mordechai Ben-Ari and Yifat Ben-David Kolikant. Thinking parallel: the process
of learning concurrency. SIGCSE Bull., 31:13–16, June 1999.

[11] Olaf René Birkeland. Searching large data volumes with MISD processing - PHD
Thesis. September 2008.

[12] Bill Blume, Rudolf Eigenmann, Keith Faigin, John Grout, Jay Hoeflinger, David
Padua, Paul Petersen, Bill Pottenger, Lawrence Rauchwerger, Peng Tu, and
Stephen Weatherford. Polaris: The next generation in parallelizing compilers.
In PROCEEDINGS OF THE WORKSHOP ON LANGUAGES AND COMPIL-
ERS FOR PARALLEL COMPUTING, pages 10–1. Springer-Verlag, Berlin/Hei-
delberg, 1994.

[13] BMBF - Bundesministerium für Bildung und Forschung. Rah-
menprogramm zur Förderung der empirischen Bildungsforschung.
http://www.bmbf.de/pubRD/foerderung_der_empirischen_
bildungsforschung.pdf, 2007.

[14] William J. Bolosky and Michael L. Scott. False sharing and its effect on shared
memory performance. In USENIX Systems on USENIX Experiences with Dis-
tributed and Multiprocessor Systems - Volume 4, Sedms’93, pages 3–3, Berkeley,
CA, USA, 1993. USENIX Association.

[15] Manfred Broy. Towards a formal foundation of the specification and description
language sdl. Formal Aspects of Computing, 3:21–57, 1991.

[16] Markus Brunner. Didaktische Entwürfe für den Kompetenzbereich Industrielle
Informationstechnik. March 2012. Master Thesis.

[17] Bill Bynum and Tracy Camp. After you, alfonse: a mutual exclusion toolkit.
In Proceedings of the twenty-seventh SIGCSE technical symposium on Computer
science education, SIGCSE ’96, pages 170–174, New York, NY, USA, 1996.
ACM.

[18] Marina C. Chen. A parallel language and its compilation to multiprocessor ma-
chines or vlsi. In Proceedings of the 13th ACM SIGACT-SIGPLAN symposium
on Principles of programming languages, POPL ’86, pages 131–139, New York,
NY, USA, 1986. ACM.

[19] John F. Croix and Sunil P. Khatri. Introduction to gpu programming for eda. In
Proceedings of the 2009 International Conference on Computer-Aided Design,
ICCAD ’09, pages 276–280, New York, NY, USA, 2009. ACM.

[20] E. W. Dijkstra. Solution of a problem in concurrent programming control. Com-
mun. ACM, 8(9):569–, September 1965.

93

http://www.bmbf.de/pubRD/foerderung_der_empirischen_bildungsforschung.pdf
http://www.bmbf.de/pubRD/foerderung_der_empirischen_bildungsforschung.pdf

[21] Christopher Douce, David Livingstone, and James Orwell. Automatic test-based
assessment of programming: A review. J. Educ. Resour. Comput., 5(3), Septem-
ber 2005.

[22] M. Dubois, C. Scheurich, and F.A. Briggs. Synchronization, coherence, and event
ordering in multiprocessors. Computer, 21(2):9 –21, feb. 1988.

[23] European Comission - Education and Training. European Qualification Frame-
work for Lifelong Learning (EQF). http://ec.europa.eu/education/
lifelong-learning-policy/eqf_en.htm, 2008.

[24] Michael B. Feldman and Bruce D. Bachus. Concurrent programming can be
introduced into the lower-level undergraduate curriculum. SIGCSE Bull., 29:77–
79, June 1997.

[25] FH Johanneum. Berufsbegleitendes studienangebot. http://www.
fh-joanneum.at/aw/home/studieninfo/Bachelor/Finde_
dein_Studium/~cial/sti_bachelor/?lan=de, last viewed:
3.9.2012.

[26] FH Kaernten. Berufsbegleitendes studienangebot. http://www.
fh-kaernten.at/studienangebot.html, last viewed: 3.9.2012.

[27] FH Oberoesterreich. Berufsbegleitendes studienangebot. http:
//www.fh-ooe.at/campus-hagenberg/studienangebot/, last
viewed: 3.9.2012.

[28] FH Technikum-Wien. Berufsbegleitendes studienangebot. http://www.
technikum-wien.at/studium/berufsbegleitend/, last viewed:
3.9.2012.

[29] Michael J. Flynn. Some computer organizations and their effectiveness. Com-
puters, IEEE Transactions on, C-21(9):948 –960, sept. 1972.

[30] M.J. Flynn. Very high-speed computing systems. Proceedings of the IEEE,
54(12):1901 – 1909, dec. 1966.

[31] Freescale Inc. 2012. QORIQ Advanced Multi-Processor System.
http://www.freescale.com/webapp/sps/site/overview.
jsp?code=QORIQ_AMP.

[32] Freescale Inc. 212. PSC9131 Single Core Single DSP System. http:
//www.freescale.com/webapp/sps/site/prod_summary.jsp?
code=PSC9131.

94

http://ec.europa.eu/education/lifelong-learning-policy/eqf_en.htm
http://ec.europa.eu/education/lifelong-learning-policy/eqf_en.htm
http://www.fh-joanneum.at/aw/home/studieninfo/Bachelor/Finde_dein_Studium/~cial/sti_bachelor/?lan=de
http://www.fh-joanneum.at/aw/home/studieninfo/Bachelor/Finde_dein_Studium/~cial/sti_bachelor/?lan=de
http://www.fh-joanneum.at/aw/home/studieninfo/Bachelor/Finde_dein_Studium/~cial/sti_bachelor/?lan=de
http://www.fh-kaernten.at/studienangebot.html
http://www.fh-kaernten.at/studienangebot.html
http://www.fh-ooe.at/campus-hagenberg/studienangebot/
http://www.fh-ooe.at/campus-hagenberg/studienangebot/
http://www.technikum-wien.at/studium/berufsbegleitend/
http://www.technikum-wien.at/studium/berufsbegleitend/
http://www.freescale.com/webapp/sps/site/overview.jsp?code=QORIQ_AMP
http://www.freescale.com/webapp/sps/site/overview.jsp?code=QORIQ_AMP
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=PSC9131
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=PSC9131
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=PSC9131

[33] Ronald Goodman and Scott Black. Design Challenges for Realization of the
Advantages of Embedded Multi-Core Processors. Autotestcon, (September):8–
11, 2008.

[34] Ganesh Gopalakrishnan, Yu Yang, Sarvani Vakkalanka, Anh Vo, Sriram Aanan-
thakrishnan, Grzegorz Szubzda, Geof Sawaya, Jason Williams, Subodh Sharma,
Michael DeLisi, and Simone Atzeni. Some resources for teaching concurrency.
In Proceedings of the 7th Workshop on Parallel and Distributed Systems: Testing,
Analysis, and Debugging, PADTAD ’09, pages 2:1–2:6, New York, NY, USA,
2009. ACM.

[35] Richard Graham, Timothy Woodall, and Jeffrey Squyres. Open mpi: A flexible
high performance mpi. In Roman Wyrzykowski, Jack Dongarra, Norbert Meyer,
and Jerzy Wasniewski, editors, Parallel Processing and Applied Mathematics,
volume 3911 of Lecture Notes in Computer Science, pages 228–239. Springer
Berlin / Heidelberg, 2006.

[36] Object Management Group. The Common Object Request Broker: Architecture
and Specification, 2.3 ed. Object Management Group, 1999.

[37] M. Gschwind, H.P. Hofstee, B. Flachs, M. Hopkin, Y. Watanabe, and T. Ya-
mazaki. Synergistic processing in cell’s multicore architecture. Micro, IEEE,
26(2):10 –24, march-april 2006.

[38] John L. Gustafson. Reevaluating amdahl’s law. Commun. ACM, 31(5):532–533,
May 1988.

[39] Andreas Hansson, Benny Akesson, and Jef van Meerbergen. Multi-processor
programming in the embedded system curriculum. SIGBED Rev., 6:9:1–9:9, Jan-
uary 2009.

[40] John Hennessy and David Patterson. Computer Architecture - A Quantitative
Approach - 4th Edition. Morgan Kaufmann, 2006.

[41] Thomas Henzinger and Joseph Sifakis. The embedded systems design challenge.
In Jayadev Misra, Tobias Nipkow, and Emil Sekerinski, editors, FM 2006: For-
mal Methods, volume 4085 of Lecture Notes in Computer Science, pages 1–15.
Springer Berlin / Heidelberg, 2006.

[42] M.D. Hill and M.R. Marty. Amdahl’s law in the multicore era. Computer,
41(7):33 –38, july 2008.

[43] C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM,
12(10):576–580, October 1969.

95

[44] J. Holt, A. Agarwal, S. Brehmer, M. Domeika, P. Griffin, and F. Schirrmeister.
Software standards for the multicore era. Micro, IEEE, 29(3):40 –51, may-june
2009.

[45] Gosling D. & Moon J. How to Use Learning Outcomes & Assessment Criteria.
London SEEC, 2001.

[46] Moon J. How to Use Level Descriptors. London SEEC, 2002.

[47] Bernd Jaehne. Digitale Bildverarbeitung. 6. überarbeitete und erweiterte Au-
flage. Springer-Verlag, 2005.

[48] Maheshkumar P Jagtap. Era of Multi-Core Processors. Science, (March):87–94,
2009.

[49] David A Joiner, Paul Gray, Thomas Murphy, and Charles Peck. Teaching Parallel
Computing to Science Faculty : Best Practices and Common Pitfalls. PPoP06,
pages 239–246, 2006.

[50] G. Kahn. The Semantics of a Simple Language for Parallel Programming. In
J. L. Rosenfeld, editor, Information Processing ’74: Proceedings of the IFIP
Congress, pages 471–475. North-Holland, New York, NY, 1974.

[51] F. Keceli, A. Tzannes, G.C. Caragea, R. Barua, and U. Vishkin. Toolchain for
programming, simulating and studying the xmt many-core architecture. In Par-
allel and Distributed Processing Workshops and Phd Forum (IPDPSW), 2011
IEEE International Symposium on, pages 1282 –1291, may 2011.

[52] Christoph Kessler. Teaching parallel programming early. In Workshop on Devel-
oping Computer Science Education - How Can It Be Done?, 2006.

[53] R. Kumar, D.M. Tullsen, N.P. Jouppi, and P. Ranganathan. Heterogeneous chip
multiprocessors. Computer, 38(11):32 – 38, nov. 2005.

[54] L. Lamport. How to make a multiprocessor computer that correctly executes
multiprocess programs. Computers, IEEE Transactions on, C-28(9):690 –691,
sept. 1979.

[55] Leslie Lamport. The mutual exclusion problem: part i -a theory of interprocess
communication. J. ACM, 33(2):313–326, April 1986.

[56] Leslie Lamport. The mutual exclusion problem: partii -statement and solutions.
J. ACM, 33(2):327–348, April 1986.

96

[57] Leslie Lamport. Verification and specification of concurrent programs. In
J. de Bakker, W. de Roever, and G. Rozenberg, editors, A Decade of Concur-
rency Reflections and Perspectives, volume 803 of Lecture Notes in Computer
Science, pages 347–374. Springer Berlin / Heidelberg, 1994.

[58] Leslie Lamport. Specifying Systems, The TLA+ Language and Tools for Hard-
ware and Software Engineers. Addison-Wesley, 2002.

[59] Leslie Lamport. Teaching Concurrency. ACM SIGACT News, 40(1):58–62, 2009.

[60] E.A. Lee. The problem with threads. Computer, 39(5):33 – 42, may 2006.

[61] Linux Kernel 2.6. Linux 2.6 arm machine support. http://www.kernel.
org.

[62] D.B. Loveman. High performance fortran. Parallel Distributed Technology: Sys-
tems Applications, IEEE, 1(1):25 –42, feb. 1993.

[63] Lauri Malmi and Ari Korhonen. Active learning and examination methods in a
data structures and algorithms course. In Reflections on the Teaching of Program-
ming, pages 210–227. 2008.

[64] G. Martin. Overview of the MPSoC design challenge. 2006 43rd ACM/IEEE
Design Automation Conference, pages 274–279, 2006.

[65] Chris McDonald. Teaching concurrency with joyce and linda. SIGCSE Bull.,
24:46–52, March 1992.

[66] Paul E. McKenney. Memory ordering in modern microprocessors, part i. Linux
Journal, 136, June 2005.

[67] A. Meixner and D.J. Sorin. Dynamic verification of memory consistency in
cache-coherent multithreaded computer architectures. Dependable and Secure
Computing, IEEE Transactions on, 6(1):18 –31, jan.-march 2009.

[68] K. Metz-Göckel S. S. Auferkorte-Michaelis N. & Zimmermann. Schneeflocken
oder eigener Forschungstyp. Bielefeld Universitätsverlag Webler, 2005.

[69] Maged M. Michael and Michael L. Scott. Nonblocking algorithms and
preemption-safe locking on multiprogrammed shared memory multiprocessors.
J. Parallel Distrib. Comput., 51(1):1–26, May 1998.

[70] Auferkorte-Michaelis N. Hochschule im Blick: Innerinstitutionelle Forschung zu
Lehre und Studium an einer Universität. Münster Lit-Verlag., 2005.

97

http://www.kernel.org
http://www.kernel.org

[71] J.R. Newport. An introduction to occam and the development of parallel soft-
ware. Software Engineering Journal, 1(4):165 –169, july 1986.

[72] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable parallel
programming with cuda. Queue, 6:40–53, March 2008.

[73] Kurt Nørmark, Lone Leth Thomsen, and Kristian Torp. Mini project program-
ming exams. In Reflections on the Teaching of Programming, pages 228–242.
2008.

[74] Alastair Nottingham and Barry Irwin. Gpu packet classification using opencl: a
consideration of viable classification methods. In Proceedings of the 2009 Annual
Research Conference of the South African Institute of Computer Scientists and
Information Technologists, SAICSIT ’09, pages 160–169, New York, NY, USA,
2009. ACM.

[75] Nvidia Inc. 2012. Nvidia APX. http://www.nvidia.com/object/
product_tegra_apx_us.html.

[76] Lawrence O’Gorman. Fingerprint verification.

[77] Kunle Olukotun, Basem A. Nayfeh, Lance Hammond, Ken Wilson, and Kunyung
Chang. The case for a single-chip multiprocessor. SIGOPS Oper. Syst. Rev.,
30:2–11, September 1996.

[78] Ozcan Ozturk. Multicore Education Through Simulation. IEEE Transactions on
Education, 54(2):203–209, May 2011.

[79] Shi Qingsong, Chen Tianzhou, Hu Wei, Jolly Wang, and N. Bao. Online pro-
gramming experience platform for multicore curriculum. In Computer Science
and Software Engineering, 2008 International Conference on, volume 5, pages
785 –788, dec. 2008.

[80] Qualcomm Inc. 2012. Qualcom Snapdragon 4.
http://www.qualcomm.com/media/documents/
snapdragon-s4-processors-system-chip-solutions-new-mobile-age.

[81] Brian Rague. Teaching parallel thinking to the next generation of programmers.
Journal of Education, Informatics and Cybernetics, 1:43–48, 2009.

[82] B. Ramakrishna Rau and Joseph A Fisher. Instruction-level parallel process-
ing: History, overview, and perspective. In B. R. Rau and J. A. Fisher, editors,
Instruction-Level Parallelism, volume 235 of The Kluwer International Series in
Engineering and Computer Science, pages 9–50. Springer US, 1993.

98

http://www.nvidia.com/object/product_tegra_apx_us.html
http://www.nvidia.com/object/product_tegra_apx_us.html
http://www.qualcomm.com/media/documents/snapdragon-s4-processors-system-chip-solutions-new-mobile-age
http://www.qualcomm.com/media/documents/snapdragon-s4-processors-system-chip-solutions-new-mobile-age

[83] Joshua A. Redstone, Susan J. Eggers, and Henry M. Levy. An analysis of oper-
ating system behavior on a simultaneous multithreaded architecture. SIGPLAN
Not., 35:245–256, November 2000.

[84] Steven Robbins. Using remote logging for teaching concurrency. SIGCSE Bull.,
35:177–181, January 2003.

[85] Bloom Benjamin S. Taxonomy of Educational Objectives Book 1: Cognitive
Domain. Addison Wesley Publishing Company, 2nd edition edition, October
1956.

[86] Dany S. Start in die Lehre. Qualifizierung von Lehrenden für den Hochschulall-
tag. Münster LIT-Verlag, 2007.

[87] Metz-Göckel S. Hochschulforschung als Ko-Produktion von Erkenntnissen. Be-
merkungen zum produktiven Verhältnis von Wissenschaft und Verwaltung. Mün-
ster Lit-Verlag., 2008.

[88] Samsung Inc. 2012. Samsung Exynos. http://www.samsung.com/
global/business/semiconductor/productInfo.do?fmly_id=
844&partnum=Exynos%204210.

[89] M. Sato. Openmp: parallel programming api for shared memory multiproces-
sors and on-chip multiprocessors. In System Synthesis, 2002. 15th International
Symposium on, pages 109 –111, oct. 2002.

[90] Benaoumeur Senouci, Abdellah.M Kouadri.M, Fr Rousseau, and Fr Petrot.
Multi-CPU/FPGA Platform Based Heterogeneous Multiprocessor Prototyping:
New Challenges for Embedded Software Designers. 2008 The 19th IEEE/IFIP
International Symposium on Rapid System Prototyping, pages 41–47, June 2008.

[91] Jirarat Sitthiworachart and Mike Joy. Effective peer assessment for learning com-
puter programming. SIGCSE Bull., 36(3):122–126, June 2004.

[92] David B. Skillicorn and Domenico Talia. Models and languages for parallel com-
putation. ACM Comput. Surv., 30(2):123–169, June 1998.

[93] J.E. Smith and G.S. Sohi. The microarchitecture of superscalar processors. Pro-
ceedings of the IEEE, 83(12):1609 –1624, dec 1995.

[94] L. Spracklen and S.G. Abraham. Chip multithreading: Opportunities and chal-
lenges. In High-Performance Computer Architecture, 2005. HPCA-11. 11th In-
ternational Symposium on, pages 248 – 252, feb. 2005.

99

http://www.samsung.com/global/business/semiconductor/productInfo.do?fmly_id=844&partnum=Exynos%204210
http://www.samsung.com/global/business/semiconductor/productInfo.do?fmly_id=844&partnum=Exynos%204210
http://www.samsung.com/global/business/semiconductor/productInfo.do?fmly_id=844&partnum=Exynos%204210

[95] Popovici Katalin Rousseau Frédéric Jerraya Ahmed A. Wolf Marilyn Springer.
Embedded Software Design and Programming of Multiprocessor System-on-
Chip. Springer, 2010.

[96] ST Ericsson inc. 2012. ST Ericsson NovaThor. http://www.stericsson.
com/products/u9500-novathor.jsp.

[97] William Stallings. Operating Systems: Internals and Design Principles, 5/E.
Prentice Hall, July 2004.

[98] C. Stoif, M. Schoeberl, B. Liccardi, and J. Haase. Hardware synchronization for
embedded multi-core processors. In Circuits and Systems (ISCAS), 2011 IEEE
International Symposium on, pages 2557 –2560, may 2011.

[99] Mark Strembeck and Uwe Zdun. An approach for the systematic development
of domain-specific languages. Software: Practice and Experience, 39(15):1253–
1292, 2009.

[100] Texas Instruments Inc. 2012. TI OMAP 1710. http://www.ti.com/
general/docs/wtbu/wtbuproductcontent.tsp?templateId=
6123&navigationId=11991&contentId=4670.

[101] Texas Instruments inc. 2012. TI OMAP 5. http://www.ti.com/
general/docs/wtbu/wtbuproductcontent.tsp?templateId=
6123&navigationId=12863&contentId=103102.

[102] Texas Instruments Inc. 2012. OMAP 4 Mobile appplications platform. http:
//www.ti.com, 2011.

[103] TIOBE Programming Community Index. Tiobe programming community index
for july 2012. http://www.tiobe.com/content/paperinfo/tpci/
index.html.

[104] Peter Tröger. The multi-core era - trends and challenges. CoRR, abs/0810.5439,
2008.

[105] Umea University, Sweden. Student conference paper review form. http://
www8.cs.umu.se/kurser/TDBD18/ReviewForm06.pdf.

[106] UNESCO. International Standard Classification of Education I S C
E D. http://www.unesco.org/education/information/
nfsunesco/doc/isced_1997.htm, Nov. 1997.

[107] David W. Wall. Limits of instruction-level parallelism. SIGPLAN Not., 26:176–
188, April 1991.

100

http://www.stericsson.com/products/u9500-novathor.jsp
http://www.stericsson.com/products/u9500-novathor.jsp
http://www.ti.com/general/docs/wtbu/wtbuproductcontent.tsp?templateId=6123&navigationId=11991&contentId=4670
http://www.ti.com/general/docs/wtbu/wtbuproductcontent.tsp?templateId=6123&navigationId=11991&contentId=4670
http://www.ti.com/general/docs/wtbu/wtbuproductcontent.tsp?templateId=6123&navigationId=11991&contentId=4670
http://www.ti.com/general/docs/wtbu/wtbuproductcontent.tsp?templateId=6123&navigationId=12863&contentId=103102
http://www.ti.com/general/docs/wtbu/wtbuproductcontent.tsp?templateId=6123&navigationId=12863&contentId=103102
http://www.ti.com/general/docs/wtbu/wtbuproductcontent.tsp?templateId=6123&navigationId=12863&contentId=103102
http://www.ti.com
http://www.ti.com
http://www.tiobe.com/content/paperinfo/tpci/index.html
http://www.tiobe.com/content/paperinfo/tpci/index.html
http://www8.cs.umu.se/kurser/TDBD18/ReviewForm06.pdf
http://www8.cs.umu.se/kurser/TDBD18/ReviewForm06.pdf
http://www.unesco.org/education/information/nfsunesco/doc/isced_1997.htm
http://www.unesco.org/education/information/nfsunesco/doc/isced_1997.htm

[108] Greg Wolffe and Christian Trefftz. Teaching parallel computing: new possibili-
ties. J. Comput. Small Coll., 25:21–28, October 2009.

[109] J. Ziv and A. Lempel. A universal algorithm for sequential data compression.
Information Theory, IEEE Transactions on, 23(3):337 – 343, may 1977.

[110] J. Ziv and A. Lempel. Compression of individual sequences via variable-rate
coding. Information Theory, IEEE Transactions on, 24(5):530 – 536, sep 1978.

101

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Basics of Multi-Core Systems
	Categorizing Multi-Processor Systems
	Hardware Parallelism
	Software Parallelism
	Conclusion

	Challenges in Teaching Concurrent Programming
	Qualification Profiles and Learning Outcomes
	Issues and Pitfalls in Parallel Programming
	Parallel programming courses
	Assessment Concepts
	Evaluation Results
	Best Practices
	Summary

	Two Approaches for Teaching Multi-Core Programming
	Multi-Core Programming in a University Context
	Multi-Core Programming in a University of Applied Sciences Context
	Summary

	Conclusion
	Bibliography

