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Abstract

Seeding a frequency-shifted feedback (FSF) laser with a phase-modulated single-frequency

laser leads to the generation of an narrow-linewidth chirped frequency comb, which allows

to achieve high signal-to-noise ratios of the detected distance-dependent RF beat signal,

such that even RF beat signals from diffuse targets can be detected. The seed laser system

of this thesis consists of a single frequency DFB laser, an EOM for the phase modulation,

and a periodically-poled lithium niobate crystal for second harmonic generation. The

FSF laser is a titanium sapphire ring laser with a free spectral range of 77.409MHz. The

achieved distance measurement resolution of this system is 6.5µm. An ultranarrow RF

beat of <20Hz was observed which allows further improvement of the length resolution

towards the limit of 129nm, set by the <20Hz beat signal.
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1 Introduction

Real-time three-dimensional (3D) video is becoming more and more important. The

possibility to control computers or gaming consoles without using a keyboard, mouse, or

controller inspires developers to create new kinds of technology. Especially, the gaming

industry put a lot of development in distance measurement research to get real-time 3D

video devices. But low cost systems, as developed by the gaming industry, are not the only

devices of interest. There is also a need for high-accuracy 3D video devices for example

in scientific areas. This thesis investigates a concept, with which high-accuracy real-time

3D video could be realized. It will not focus on applying this principle on multiple pixels

but on optimizing the measurement process for one single pixel.

There are three fundamental techniques to do distance measurement, namely triangula-

tion, time-of-flight measurements, and interferometry. For the triangulation method [1],

there has to be an angle between the light source and the detector. The light source, the

detector, and the target are three points of a triangle whose side lengths can be determined

with this measurement to recover the unknown distance to the target. Time-of-flight mea-

surement systems have usually a better distance resolution than triangulation system. In

time-of-flight systems [2, 3, 4], a light signal is sent from the source to the target and the

reflection of this signal is then detected. The time that it takes the light to reach the

target and back is measured. By multiplying the time of flight with the speed of light,

one can calculate the optical path length travelled by the light signal and, as a result,

determine the distance to the target. In comparison with the time-of-flight techniques, a

higher distance resolution can be obtained with interferometry, which offers the highest

resolution among currently existing methods. In an interferometer, monochromatic light

is split at a beam splitter. One part of the light travels a known distance in a reference

arm. The rest of the light reaches the target at an unknown distance in the measurement

arm and its reflection is brought to interference with the light from the reference arm.

From the created heterodyne RF beat signal, one can determine the distance to the target.

One requirement for this scheme is that the coherence length of the used light is longer

than the length difference of the two arms.

Although there are also other interferometric techniques [5, 6], this thesis focuses only on

optical frequency domain ranging (OFDR) with frequency-shifted feedback (FSF) lasers.

The theory for FSF lasers had existed for some time, but only in the 1990s they were

first built [7, 8, 9] and different operating regimes were found [10, 11, 12]. Nakamura et

al. demonstrated distance measurements with the OFDR technique employing FSF lasers

[13, 14], and they introduced the Moving Comb Model [15], that was also discussed in my

previous master’s thesis [16].
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To increase the poor signal-to-noise ratio (SNR) of the principle of Nakamura et al.,

Yatsenko et al. proposed a technique, in which the FSF laser is seeded by a narrow-

linewidth seed laser which is phase-modulated [17, 18, 19, 20]. The mathematical model

for this type of laser is called Discrete Frequency Model and was also introduced by

Yatsenko et al. [21] as well as a mathematical description of the properties of an FSF

laser [22]. These systems show much better SNR. To obtain an even better SNR and to

pre-set the distance resolution, one can phase-modulate the seed laser with a frequency

range instead of a single frequency, as we have shown in [23].

This thesis is organized as follows: Chapter 2 describes the theoretical background of the

measurement process. It covers in detail the Discrete Frequency Model to explain why

one can detect a distance-dependent beat signal at the detector. Since the Moving Comb

Model was elaborated on already in my previous master’s thesis [16], this thesis only

recapitulates the main essence and results of this model, as far as they are a necessary

for the understanding of the work presented in this thesis. In the end, the results of

both models are compared and, with some restrictions, they match each other perfectly.

Also explained in Chapter 2 is the process of optical frequency doubling in a quasi-

phasematching crystal which was employed in the seeding scheme.

Chapter 3 presents the laser system for the distance measurement. The main part of

the laser system is the titanium-sapphire FSF ring laser. A FSF laser is a laser that

contains an acousto-optical modulator (AOM) in the cavity and the cavity is closed via

the first-order diffraction of the AOM. This main laser is seeded by a seed laser system,

which contains a single-frequency fiber laser, an electro-optical modulator (EOM), and

a periodically poled lithium niobate (PPLN) waveguide for second harmonic generation

(SHG). The output of the FSF laser enters a Michelson interferometer. One of the arms of

the interferometer has a known length and acts as the reference arm. The distance of the

other arm is unknown. A photodiode (PD) is placed at the output of the interferometer,

where a heterodyne beat signal forms depending on the length difference of the two arms.

In Chapter 4, the distance measurement results are shown. At first, the distance measure-

ment was carried out with a flat mirror as a target. Thereby, the precision was increased

from 226µm without seeding to 6.5µm with seeding. Subsequently, the mirror target was

replaced by a diffuse target. In that case, distance measurement without seeding was no

longer possible, but it remaind robust with seeding. Since the distance resolution of this

measurement method is so high, the distance resolution for diffuse targets depends mainly

on how deeply light penetrates the target before it is reflected or rescattered. At the end of

this chapter, the measurement principle with pre-set distance resolution is demonstrated

[23]. This might be useful in the development towards a real-time 3D video system based

on this OFDR measurement principle.

In the Appendix, the detailed calculations of the beat frequencies obtained from the

Discrete Frequency Model are presented.
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2 Theoretical background

2.1 Optical frequency-domain ranging with an unseeded FSF

laser

This section briefly summarizes the results of the Moving Comb Model, described in [15,

16].

Figure 2.1.: Unseeded ring cavity. From [16], p. 6

An unseeded frequency-shifted feedback laser, as shown as a ring cavity in Figure 2.1,

creates a chirped frequency comb. In a first approximation, this comb can be described as

having a continuous linear chirp. Figure 2.2 shows a setup where such a chirped frequency

comb is sent into a Michelson interferometer. The different time delay in the two arms

results in a radio-frequency (RF) beat signal fbeat, which can be seen in this figure, too.

L M
ir

ro
r

Mirror

Chirped

light source

Detector

Beam

splitter

Reference

arm

Arm for

measurement

Reference

arm
Arm for
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Time   t
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Figure 2.2.: Michelson interferometer and the resulting RF beat frequency fbeat created using

the chirped laser light. From [16], p. 3, 4
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Figure 2.3.: Frequencies of the chirped frequency combs after the Michelson interferometer [16]

p. 11

In the next step, we will consider many modes. On one side of the spectrum, these modes

are amplified from the optical noise and on the other side of the spectrum, they fade out.

These modes are separated by a factor of 1/fAOM in the time domain and by the cavity

free spectral range (FSR) fFSR = 1/TR in the frequency domain, where fAOM is the AOM

frequency and TR is the round-trip time of the cavity. Figure 2.3 exhibits these frequencies

after the Michelson interferometer versus time, and the resulting RF beat frequencies can

be seen in Figure 2.4.
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Figure 2.4.: Zoom of the frequencies and resulting RF beat frequencies at the PD [16] p. 12

The Moving Comb Model of chirped frequencies is a mathematical model for FSF lasers

proposed by Nakamura et al. [12, 14, 15]. Its results correspond nicely with the measured

frequencies, although its ansatz is just a rough approximation. The calculations with this

model show some constant beat frequencies that are independent of the distance. These



2.1. Optical frequency-domain ranging with an unseeded FSF laser 5

can be interpreted as autocorrelations of the light in each arm. Their values

fbeat,1(q, p) =
p

TR
fbeat,3(q, p) =

p

TR
(2.1)

were calculated in Eq. (2.10) and Eq. (2.19) of [16]. In these equations, the integers q

and p denote the mode index of the cavity and the beat index, respectively. The terms

that exhibit a length dependence are correlations of the light in both arms. The length

dependence can be calculated with the following formulas

fbeat,2a(q, p) =
1

TR

(

p+
L

L′

)

fbeat,2b(q, p) =
1

TR

(

p−
L

L′

)

(2.2)

with

L′ =
c0

2 fAOM

(2.3)

as derived in Eq. (2.13) and Eq. (2.15) of [16], where L is the distance to measure. Since

p can be any arbitrary integer, there is a distance ambiguity with an unambiguity range of

L′. Since one cannot distinguish whether fbeat,2a or fbeat,2b is measured, the unambiguity

range is actually L′/2. This ambiguity can easily be seen in Figure 2.5.
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0

1

2
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Fr
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ue
nc
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f /

 1
/T

R
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Figure 2.5.: Resulting beat frequencies versus distance L. From [16], p. 13

One can see why this method is called optical frequency-domain ranging (OFDR) and that

there is a frequency ambiguity, too. The unambiguity range in the frequency is 1/(2TR).

In order to get rid of the ambiguities, the AOM frequency can be changed. Hence, the

factor L′ will change and one will get another resulting distance and its ambiguities,

as can be seen in Figure 2.6. The resulting distances and their ambiguities of both

AOM frequencies can then be compared. Only one distance will be an ambiguity in both

measurements and that is the actual distance.
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Figure 2.6.: Getting rid of the ambiguity by changing the AOM frequency [16] p. 14

2.2 Seeded FSF Laser

OFDR with a free-running FSF laser exhibits a low SNR. The SNR is so weak that if

one uses a sheet of white paper instead of a mirror in one the arm of the Michelson

interferometer, there will not be a distance-dependent signal - there will only be noise.

This problem can be overcome with a phase-modulated seed laser, as proposed by Yatsenko

et al. [21, 17]. The beam of a narrow-linewidth seed laser is directed into the cavity of

the FSF laser in a way that the frequency-shifting of the seed starts and the FSF laser

is seeded. In order to do that one can use the direction in which one of the two output

beams of the unseeded FSF laser exits the cavity through the AOM, as can be seen in

Figure 2.7.

Figure 2.7.: Seeded ring cavity

Some of the light of the seed laser is diffracted by the acousto-optic frequency shifter

(AOFS) and is directly coupled to the output. Comment: This diffracted light is shifted

in frequency in the opposite direction as the light in the FSF laser. This means, e.g., if

the light in the FSF laser is aligned for frequency up-shift, the diffracted light of the seed

will be frequency down-shifted, and vice versa.
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The undiffracted light from the seed laser will enter the cavity. The cavity has to be

aligned in a way that the FSF output is spectrally close to the narrow line of the seed

laser. If the FSF laser is aligned for frequency up-shift, the FSF laser without seed should

operate at wavelengths slightly lower (frequencies slightly higher) than that of the seed

laser. For frequency down-shift, longer wavelengths (lower frequencies) are required.

If these requirements are fulfilled, the seed will introduce a spectral line that is shifted in

frequency after each roundtrip. Hence, a frequency comb forms in the cavity, as can be

seen in Figure 2.8.
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Figure 2.8.: Build up of the field of the seeded cavity

If there is no noise present, the only possible RF beat frequencies of this spectrum are

fAOM and its harmonics. Since the frequency shift happens once per round-trip, thus

every TR, beat frequencies of FSR fFSR = 1/TR and its harmonics will be present, too.

In reality, there will always be additional noise. Whether the SNR increases or decreases

with respect to the unseeded case depends only on the product of the electric fields in

both arms. For the case of the unseeded FSF laser, one can calculate the product as the

unseeded spectral amplitude times itself. For the seeded case, the spectral amplitude of

the seed line has to be multiplied with the weak remaining noise. Since the SNR depends

on the weak remaining noise, it is not clear if that product leads to an increase or decrease

of the SNR.

In order to make sure to increase the SNR, one can perform a phase modulation (PM) of

the seed laser with an EOM. The frequencies in the cavity with a PM seed can be seen

in Figure 2.9.

If the PM frequency matches one of the two beat frequencies of the distance-dependent

beat frequencies, Eq. (2.2), this frequency will have much better SNR. The reason is that

the product of the electric field in both arms is now the spectral amplitude of the seed

line times the spectral amplitude of the PM side band, which is much larger than the

weak noise amplitude. A problem with this measurement scheme arises, because one has

to know the beat frequency corresponding to the distance before one does the distance
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measurement. This can be solved by sweeping the PM frequency. From the frequency

with the best SNR, one can calculate the distance from Eq. (2.2).
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Figure 2.9.: Frequencies in the cavity with a phase-modulated seed

A problem for real-time distance measurement is that the individual measurements for

the different frequencies have to be done sequently. Hence, one has to wait for each fre-

quency to build up in the cavity before the electrical signal at the detector can be used

for measurement. This consumes time which reduces the frame rate of the real time sys-

tem. Thus, for higher frame rates, it is advisable to use as few frequency comparisons

as possible. A higher AOM frequency will decrease the resolvable unambiguity range L′

according to Eq.(2.3). Hence, one needs fewer comparisons to reach the same distance res-

olution. Unfortunately, AOMs with higher modulation frequencies have lower diffraction

efficiencies.
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Figure 2.10.: Principle scheme of the measurement setup with a seed laser

Figure 2.10 shows a principle scheme of the measurement setup including the seed laser.
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The frequencies of the seed laser and the FSF laser have to match each other as described

before. The processing unit provides the AOM frequencies (fAOM), which can be detuned

to get rid of the ambiguity. It also generates the scanning frequencies (fEOM). In order to

know the exact frequency range for the scanning frequencies, the processing unit receives

the FSR of the FSF laser from a photodetector. The autocorrelation of FSF laser light

contains the FSR in the RF spectrum. Hence, if a fraction of the output of FSF laser is

directed to a photodetector, the measured RF spectrum of the detector signal will show

the FSR. The RF spectrum of the output of the Michelson interferometer contains the RF

beat fbeat with the distance information. The processing unit tests fbeat for the frequency

fEOM . The highest correlation signal of these two frequencies is then the distance to

measure, which can be calculated if the frequencies fAOM , fFSR, and fEOM are known.

2.3 Mathematical description of the system

Yatsenko et al. introduced the discrete frequency model in [21]. This section presents the

calculation of the beat signal frequencies using this model. The details of the calculation

can be found in the Appendix A.1.

2.3.1 Definitions

The electric field of the FSF laser is defined as

E(t) =
N
∑

q=0

Eq(t) e
i 2π (fseed + q fAOM ) t =

N
∑

q=0

εnorm aq e
i 2π ((fseed + q fAOM ) t+ϕseed(t− q TR)+ θq)

(2.4)

with the complex amplitude

Eq(t) = εnorm aq e
i 2π (ϕseed(t− q TR)+ θq) (2.5)

where fseed is the (optical) frequency of the seed laser, fAOM is the AOM frequency, ϕseed

is a variable part of the phase, θq is the fixed part of the phase, and N is the number of

modes in the cavity. εnorm stands for a normalization factor and aq for the amplitude of

the mode q. This together forms a frequency comb starting at the frequency fseed. The

comb lines are separated by fAOM and there are N + 1 lines.

As an ansatz for the constant phase of each mode, we use

θq = TR q

(

fseed + (q + 1)
fAOM

2

)

+ θ0 (2.6)

where θ0 is a constant phase shift and the other terms correspond to the phase shift caused

by the propagation in the FSF laser.

The intensity is defined as

I (t) =
nc0ǫ0
2
|E (t)|2 . (2.7)
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2.3.2 Michelson interferometer

The intensity after the Michelson interferometer can be obtained as follows

I (t) ∝

∣

∣

∣

∣

δ E (t) + η E

(

t−
2L

c0

)

ei 2π∆φ

∣

∣

∣

∣

2

= δ2 |E (t)|2 + η2
∣

∣

∣

∣

E

(

t−
2L

c0

)∣

∣

∣

∣

2

+ δη

∣

∣

∣

∣

E ∗ (t) E

(

t−
2L

c0

)

ei 2π∆φ + E (t) E ∗

(

t−
2L

c0

)

e−i 2π∆φ

∣

∣

∣

∣

(2.8)

I(t) ∝ I1(t) + I2(t) + I3(t) (2.9)

I1(t) = δ2 |E (t)|2 (2.10)

I2(t) = η2
∣

∣

∣

∣

E

(

t−
2L

c0

)∣

∣

∣

∣

2

(2.11)

I3(t) = δη

∣

∣

∣

∣

E ∗ (t) E

(

t−
2L

c0

)

ei 2π∆φ + E (t) E ∗

(

t−
2L

c0

)

e−i 2π∆φ

∣

∣

∣

∣

(2.12)

δ and η represent the dampings in the two arms, and ∆φ represents the difference in

the phase shift at the two targets due to different target materials. The intensity can be

split in three terms. I1(t) and I2(t) correspond to autocorrelations of the light from the

individual arms. I3(t) is a correlation term of the two arms and it will yield the distance

dependence.

As discussed earlier, we want to perform phase modulation of the seed laser with an EOM.

Hence,

ϕseed(t) = ϕ0 + AEOM sin (2π fEOM t) (2.13)

where ϕ0 is a constant phase offset due to the EOM crystal. The second term represents

a phase modulation with a sine of frequency fEOM and amplitude AEOM .

In order to obtain the final results, we define the beat index p and use the Bessel functions

Jn. p indicates with which neighbor the interference term has to be calculated, e.g., p = 0

means that the mode q only interferes with light of mode q (of the same or the other arm).

n is the index for the Bessel functions. The final results are shown in the following

I1(t) = δ2
N
∑

p=0

N−p
∑

q=0

∞
∑

n=−∞

(−1)n |εnorm|
2 aq aq+p (J2n (M1) cos (2π (feven t+ ϕ1,even))

+ J2n−1 (M1) sin (2π (fodd t+ ϕ1,odd))) (2.14)

I2(t) = η2
N
∑

p=0

N−p
∑

q=0

∞
∑

n=−∞

(−1)n |εnorm|
2 aq aq+p (J2n (M1) cos (2π (feven t+ ϕ2,even))

+ J2n−1 (M1) sin (2π (fodd t+ ϕ2,odd))) (2.15)

I3(t) = δη
N
∑

p=0

N−p
∑

q=0

∞
∑

n=−∞

(−1)n |εnorm|
2 aq aq+p (J2n (M3a) cos (2π (feven t+ ϕ3a,even))

+ J2n−1 (M3a) sin (2π (fodd t+ ϕ3a,odd)) + J2n (M3b) cos (2π (feven t+ ϕ3b,even))

+ J2n−1 (M3b) sin (2π (fodd t+ ϕ3b,odd))) (2.16)
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where

M1 = 4π AEOM sin (π p fEOMTR) (2.17)

M3a = 4π AEOM sin

(

2π fEOM

(

L

c0
+
p

2
TR

))

(2.18)

M3b = 4π AEOM sin

(

2π fEOM

(

−
L

c0
+
p

2
TR

))

(2.19)

fodd = p fAOM + (2n− 1) fEOM (2.20)

feven = p fAOM + 2nfEOM (2.21)

and the phase terms

ϕ1,odd = TR

(

p fseed +
(

p2 + p+ 2qp
) fAOM

2
− (2n− 1)

(

q +
p

2

)

fEOM

)

(2.22)

ϕ1,even = TR

(

p fseed +
(

p2 + p+ 2qp
) fAOM

2
− n (2q + p) fEOM

)

(2.23)

ϕ2,odd = TR

(

p fseed +
(

p2 + p+ 2qp
) fAOM

2
− (2n− 1)

(

q +
p

2

)

fEOM

)

− (p fAOM + (2n− 1) fEOM)
2L

c0
(2.24)

ϕ2,even = TR

(

p fseed +
(

p2 + p+ 2qp
) fAOM

2
− n (2q + p) fEOM

)

− (p fAOM + 2nfEOM)
2L

c0
(2.25)

ϕ3a,odd = TR

(

p fseed +
(

p2 + p+ 2qp
) fAOM

2
− (2n− 1)

(

q +
p

2

)

fEOM

)

−

(

fseed + (q + p) fAOM +
2n− 1

2
fEOM

)

2L

c0
+∆φ (2.26)

ϕ3a,even = TR

(

p fseed +
(

p2 + p+ 2qp
) fAOM

2
− n (2q + p) fEOM

)

−

(

fseed + (q + p) fAOM +
2n− 1

2
fEOM

)

2L

c0
+∆φ (2.27)

ϕ3b,odd = TR

(

p fseed +
(

p2 + p+ 2qp
) fAOM

2
− (2n− 1)

(

q +
p

2

)

fEOM

)

+

(

fseed + (q + p) fAOM +
2n− 1

2
fEOM

)

2L

c0
−∆φ (2.28)

ϕ3b,even = TR

(

p fseed +
(

p2 + p+ 2qp
) fAOM

2
− n (2q + p) fEOM

)

+ (fseed + (q + p) fAOM + n fEOM)
2L

c0
−∆φ (2.29)
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2.3.3 Analysis of the phase terms

In this section, we want to examine the phase terms. We are interested in having the

fEOM matched to the distance L. And, we will restrict ourselves to only the odd terms

with p = 0 and n = 1 and we will neglect the other terms. p = 0 and n = 1 means that

we only consider beat signals from the first side peaks, the first sidebands of the phase

modulation, with the main peak. Hence,

fodd = fEOM (2.30)

ϕ1,odd = −q TR fEOM (2.31)

ϕ2,odd = −q TR fEOM − fEOM

2L

c0
(2.32)

ϕ3a,odd = −q TR fEOM −

(

fseed + q fAOM +
1

2
fEOM

)

2L

c0
+∆φ (2.33)

ϕ3b,odd = −q TR fEOM +

(

fseed + q fAOM +
1

2
fEOM

)

2L

c0
−∆φ (2.34)

In order to get a good SNR, the modes have to be in phase. Hence, ϕ (q)− ϕ (q + 1) has

to be an integer value.

ϕ1,odd (q)− ϕ1,odd (q + 1) = TR fEOM = λ1 (2.35)

ϕ2,odd (q)− ϕ3,odd (q + 1) = TR fEOM = λ1 (2.36)

ϕ3a,odd (q)− ϕ2a,odd (q + 1) = TR fEOM − fAOM

2L

c0
= λ2 (2.37)

ϕ3b,odd (q)− ϕ2b,odd (q + 1) = TR fEOM + fAOM

2L

c0
= λ3 (2.38)

where λ1, λ2, and λ3 are integer values. To get a good SNR from the autocorrelation

terms I1, and I3, we have to use a multiple of the FSR as the EOM frequency. These

terms show no distance dependence, and they match the results from the moving comb

model, Eq. (2.1).

fEOM,auto =
λ1
TR

(2.39)

The distance-dependent terms match the ones obtained from the moving comb model

nicely, Eq. (2.2).

fEOM,dist1 =
1

TR

(

λ2 +
2fAOM

c0
L

)

=
1

TR

(

λ2 +
L

L′

)

(2.40)

fEOM,dist2 =
1

TR

(

λ3 −
2fAOM

c0
L

)

=
1

TR

(

λ3 −
L

L′

)

(2.41)

where L′ = c0
2fAOM

, as defined in Eq. (2.3). Since noise is always present, the frequencies

fEOM,auto, fEOM,dist1, and fEOM,dist2, as well as fEOM , will always appear in the RF spec-

trum, even if fEOM does not match one of the other frequencies. But if fEOM matches

one of the other frequencies, the SNR of this frequency will increase significantly.
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2.4 Quasi-phase matching (QPM)

In Chapter 3, the laser system will be discussed and it contains a PPLN crystal for

SHG. The problem with SHG in any nonlinear crystal is that the relative phase between

the interacting waves has to stay constant during propagation to obtain high conversion

efficiencies. However, due to dispersion, the relative phase will in general not remain

constant. The most common phase-matching technique is using birefringence crystal to

match the phase velocities of the two waves with the extraordinary and the ordinary rays

in the crystal. Another technique to achieve efficient SHG employs quasi-phase matching

(QPM) [24, 25]. Here, the phase velocities of the two waves are not matched. But a

periodic modulation of the properties of the nonlinear medium corrects the relative phase

at regular intervals. PPLN crystals are based on the concept of QPM. Lithium-niobate is a

ferroelectric material. The direction of the ferroelectricity is reversed at regular intervals

along the direction of propagation, as shown in Figure 2.11, resulting in the so-called

periodic poling. This section will briefly lay out the concept of QPM along the lines of

[24, 25].

The incoming (fundamental) wave has an amplitude of E1 with a frequency ω1. With that

and the corresponding refractive index n1, the wave vector k1 = n1ω1

c0
can be calculated.

Similarly, the amplitude E2, the frequency ω2, and the refractive index n2 of the created

(second-harmonic) wave can be defined, and its wave vector k2 = n2ω2

c0
can be derived.

This wave is created in a material with quadratic nonlinear susceptibility d. Thus, the

created wave is proportional to dE2
1 and has a frequency ω2 = 2ω1 and a wave vector 2k1.

The conversion of the SHG is defined via the intensity. Therefore, it is proportional to

E2
2 . The coherence length is defined as the length, where the relative phase between the

fundamental and second-harmonic (SH) changes by a factor of π, i.e,

lcoh =
π

k2 − 2k1
=

λ

4 (n2 − n1)
(2.42)

where λ is the vacuum wavelength of the fundamental.

Let us now consider the simple case, where the fundamental wave is a constant plane wave

propagating in the z-direction. The evolution of the second harmonic field is thus

dE2

dz
= i

ω1E
2
1

n2c0
d(z) e−i(k2−2k1)z = Γ d(z) e−i∆k′ z (2.43)

with Γ = i
ω1E

2
1

n2c0
(2.44)

and ∆k′ = k2 − 2k1 =
π

lcoh
. (2.45)

d(z) represents the spatially varying nonlinear SHG coefficient, and ∆k′ the wave vector

mismatch. One can easily obtain E2 by integrating, hence

E2(L) = Γ

∫ L

0

d(z) e−i∆k′ z dz (2.46)
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where L is the length of the crystal or any length within the crystal. One can see that the

generated electric field is proportional to the Fourier transform of the SHG coefficient.

For perfect conventional phase matching (in birefringent crystals), the SHG coefficient is

a constant (d(z) = deff ) and the wave vector mismatch vanishes (∆k′ = 0). Hence,

E2(L) = Γ deff L . (2.47)

For QPM, one can analyze the Fourier transform of d(z). At first, the SHG coefficient is

normalized, like

g(z) =
d(z)

deff
(2.48)

and its Fourier transform follows as

G (∆k′) =
1

L

∫ L

0

g(z) e−i∆k′ z dz (2.49)

Eq. (2.46) can now be written as

E2(L) = Γ deff L G (∆k′) . (2.50)

This equation is remarkably similar to Eq. (2.47). Due to the normalization, the absolute

value of Eq. (2.49) is smaller than 1. G (∆k′) represents the term that states how well

QPM matches perfect conventional phase matching. Therefore, one can refer to G (∆k′) as

the mismatch function, which transforms the normalized SHG coefficient to the mismatch

domain.

The normalized SHG coefficient g(z) is a periodic function for QPM, and is defined as

g(z) =
∞
∑

m=−∞

Gm e
iKm z (2.51)

with the wave vectors

Km =
2 πm

Λ
. (2.52)

When inserting these equations in Eq. (2.49), ∆k′ andKm add up to the total wave-vector

mismatch ∆k = ∆k′ −Km. For phase matching, Km is roughly ∆k′. Therefore, G (∆k′)

and E2 are dominated by the m-th term.

E2 = Γ deff LGm e
−i ∆k L

2 sinc

(

∆k L

2

)

(2.53)

For perfect phase matching, the total wave-vector mismatch vanishes, and

E2 = Γ deff LGm (2.54)

which is the same as Eq. (2.47) except for the mismatch term Gm.
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In PPLN crystals, the ferroelectric domains are periodically reversed. Thus, the normal-

ized SHG coefficient g(z) can be defined as a rectangular function with the values ±1 and

the period Λ. The duty cycle is D = l/Λ, where l is the length of the first ferroelectric

domain during one period, and the corresponding Fourier coefficient is

Gm =
2

πm
sin (πmD) . (2.55)

The optimum duty cycle is 0.5 for odd numbers and 0.25 for even numbers. The highest

efficiency can be found for m = 1. Thus,

E2 = Γ deff L
2

π
. (2.56)

Thus, the absolute value of the conversion is reduced by a factor of
(

2
π

)2
compared to

perfect phase matching in birefringent crystals.

If one wants to be more accurate and include the next higher Fourier coefficient, them = 3

term has to be considered as well. Then,

E2 = Γ deff L
2

π

(

1 +
1

3
ei

2π
Λ

L sinc

(

2 π

Λ
L

))

. (2.57)

The conversion efficiency along the propagation axis can be seen in the following figure.
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Figure 2.11.: SHG in a nonlinear crystal for various phase-matching techniques. For QPM,

the arrows indicate the poling directions of the ferroelectric domains (white/grey

regions).

Phase matching in birefringent crystals allows harmonic generation with high conversion

efficiencies. QPM offers a possibility to influence the phase matching of the wave vectors

through an engineerable parameter, the periodical reversal of the ferroelectricity. In crys-

tals with QPM, the polarization of the light does not necessarily have to change for the

higher harmonic. For some materials like lithium-niobate, the nonlinear coefficient deff

is much higher for polarization maintaining interactions than for polarization changing
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interactions. This allows higher conversion efficiencies with QPM than with conventional

phase matching despite the efficiency being a factor of
(

2
π

)2
lower than in the case of ideal

phase matching. Hence, QPM is widely used with lower light intensities, as for frequency-

doubling continuous-wave light in this thesis. Another advantage of QPM is that one can

avoid spatial walk-off which limits the conversion efficiency in long, birefringent crystals.

In QPM, one can use a crystal axis as the propagation direction and thereby avoid the

spatial walk-off.
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3 Experimental setup

As part of my master’s thesis work in electrical engineering [16], I built an unseeded

FSF titanium sapphire (TiSa) ring laser. In the present diploma thesis work in technical

physics, this laser system was extended by adding phase-modulated ultranarrow-linewidth

single-frequency seeding of this FSF laser. This chapter will focus on the upgraded setup

of this seeded FSF laser system.

Figure 3.1.: Experimental setup of the FSF laser system: the seed generation consists of a

single-frequency laser (SFL), which is phase modulated using an EOM and after-

wards frequency-doubled in a PPLN waveguide. The seed light passes through

a Faraday isolator (FI) and enters the ring cavity of the FSF laser through the

zeroth-order input of the AOM. The zeroth-order output of the FSF laser is sent

to a Michelson interferometer. The photodiode (PD) at the output of the inter-

ferometer detects the distance-dependent RF beat signal.

The laser system can be seen in Figure 3.1. The system can be divided into three major

parts. The first part is the seed laser, which contains the orange and light brown com-

ponents depicted in Figure 3.1. The second part is the FSF laser itself, which is drawn

in red. And the third part consists of the Michelson interferometer and the photodetec-

tor plotted in purple. The following sections will focus on each part individually. The

following figure shows a photo of the whole laser setup in the lab.
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Figure 3.2.: Picture of the experimental setup. The free-space-optics of the seed laser setup

can be seen in the back of the optical table, the FSF laser in the front on the left

side, and the Michelson interferometer in the front on the right side.

3.1 Seed scheme

Figure 3.3.: Shows the single-frequency laser, a Koheras Adjustik E15.

As seen in Figure 3.1, the seed generation consists of a single-frequency laser (SFL), an

EOM, and a PPLN waveguide for SHG. One could, of course, just use a SFL directly at the

desired wavelength and buy a matching EOM. This would save the money for the PPLN.

The idea behind the chosen scheme was that after a first proof-of-principle experiment,

the FSF laser will later be rebuilt as an Erbium-doped fiber laser at approximately twice

the wavelength. In this case, one would have to buy a new expensive seed laser and a

new EOM for the new wavelength. And since the detection has to be done with silicon
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photodiodes, one would have to buy a PPLN, too, to work with, and especially detect,

wavelengths shorter than 1µm.

The decision was made to purchase a SFL at 1555nm to save money by only buying one

SFL and one EOM. Another reason for choosing the SFL and the EOM for 1555nm was

that this wavelength is in telecommunication C-band. There, all kinds of components

are available at moderate prices, including the SFL, the EOM, and PPLN waveguides for

SHG. All these components are pigtailed, which is particularly important for the EOM.

Waveguides have very small dimensions perpendicular to the direction of propagation,

and the electro-optic effect in an EOM is proportional to the electric field. Hence, one

can achieve the same electric field with smaller dimensions at lower voltages than with

bigger dimensions. The voltage that creates a relative phase shift of π, Uπ, is in the order

of several volts for waveguides compared to several hundred volts for big crystals. That

makes the modulation easier to establish and the modulation faster, because one does not

have to work with hundreds of volts.

Figure 3.4.: Exhibits the EOM and the PPLN with its temperature controller.

The main components that were used for the seed generation are

• Koheras Adjustik E15 from NKT Photonics : this is the SFL with a linewidth

smaller than 1kHz on a time scale of 120µs. It is a distributed feedback (DFB) fiber

laser with a maximum output of 125mW. It has a polarization-maintaining output

with an FC/APC connector.

• LN53-10PAASTL from Thorlabs Quantum Electronics (Covega): it is a lithium

niobate EOM with a maximum modulation frequency of 10GHz and a typical Uπ of

3.5V.

• Periodically poled MgO-doped lithium niobate waveguide from HC Pho-

tonics : this is the PPLN for frequency-doubling from 1555nm to 777.5nm. The

temperature range extends from 30◦ to 60◦C and the conversion efficiency was spec-

ified to be greater than 60% per Watt and per cm2.
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Figure 3.5.: The free-space-optics part of the seeding setup. With the telescope, the beam

diameter of seed light is matched to the beam diameter in the FSF laser. The

Faraday isolator prevents light from the FSF laser to reach the PPLN.

The optical setup of the fiber part (SFL, EOM, and PPLN) of the seed setup was very

simple, because one only had to connect the FC/APC connectors and switch on the

Adjustik and the temperature controller of the PPLN. The light exiting the fiber after the

PPLN was collimated using a fiber collimator. Unfortunately, the beam diameter of the

seed light did not match the beam diameter of the FSF laser, which is a requirement for

good seeding. Hence, the beam diameter of the seed was increased using a telescope, as

can be seen in Figure 3.5. After the telescope the light passed through a Faraday isolator

which protects the PPLN from possible high light intensities coming from the FSF laser.

The maximum seed light power was 2.7mW after the fiber collimator, which was sufficient

for seeding.
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3.2 FSF laser

In the previous chapter, seed laser system was discussed. And in this chapter, the FSF

laser which is the laser that needs to be seeded will be shown. Figure 2.1 exhibits a

principle setup of an FSF laser. As already mentioned, the laser used during this thesis

was a TiSa ring laser. Inside the cavity, there is an AOM and the cavity is closed via the

first order diffraction. Thereby, the light in the cavity undergoes a frequency-shift of the

AOM frequency each round-trip.

In the laser setup of my previous thesis, there was a Faraday isolator in the cavity, too,

to make the laser lase only in one direction of the ring cavity. But due to asymmetries,

one direction will very likely be favored over the other. Hence, the Faraday isolator can

be removed from the cavity, causing less loss. And by tilting the AOM, the direction of

the lasing can be chosen. It can happen that while optimizing the laser, the direction of

lasing changes. Therefore, the Faraday isolator was put between the seed laser system

and the FSF laser to only let light pass from the seed to the FSF laser and not the other

way round. The optical path length of this FSF laser was 3.873m.

The seed laser has to match the mode size, and the seed light in the FSF cavity has to

point in the exact same direction as the FSF laser light. The mode matching is done by

a periscope which adjusts the beam diameter in a way that it has about the same size

as the light in the FSF cavity. The position and the direction of the seed laser can be

adjusted with two mirrors to point the seed light in the exact same direction as the FSF

light.

The main part of the seed light (67%, the AOM efficiency) is frequency-down-shifted in

the AOM and directed to the FSF output. Only the remaining 33% are not frequency-

shifted and seed the FSF laser. This light is amplified by passing through the gain crystal

and is frequency-up-shifted in the AOM. The light that is not frequency-shifted in the

AOM will exit the FSF laser towards the Michelson interferometer. In order to reduce

the optical bandwidth, a narrow bandwidth optical filter was inserted into the cavity for

some measurements. This setup results in a system mathematically described in Chapter

2.

The main items in the FSF laser were

• Verdi-V5 from Coherent : pump laser for the TiSa

• TiSa crystal: 2.9mm long

• MT300-B20A0.5-800 from AA Opto-Electronic: the AOM with a carrier fre-

quency of 300MHz ±10MHz. Its maximum RF power is 1.5W, and its diffraction

efficiency was measured as 67%.

• LL01-780-12.5 from Semrock, Inc.: the narrow bandwidth optical filter with a

transmission at 780nm. The wavelength of the transmission maximum can be
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slightly changed by tilting the filter.

Figure 3.6.: FSF laser near the TiSa crystal.

Figure 3.7.: FSF laser near the AOM, where one can see the in-coupling of the seed light and

the out-coupling of the FSF output.

As already mention, I had already built an FSF laser in my previous thesis and the optical

setup only had to be altered. For a more detailed description on the FSF laser part, I

would like to refer the reader to this thesis [16].
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3.3 Michelson interferometer

The Michelson interferometer with a high-reflector target can be seen in Figure 3.1. A

beam splitter (BS) splits the incoming light into two beams which are both reflected

back. The BS combines these two reflected beams again. This combined beam is detected

using a photodiode (PD), and the RF spectrum is measured. One of the mirrors is on a

translation stage so that the distance in one arm, the measurement arm, can be varied.

Unfortunately, this simple setup cannot be used when working with a diffusely scattering

target. The heterodyne beat measurement is very sensitive to angular mismatch [26].

Hence, the beams of both arms have to be combined collinearly to observe the beat signal

in the RF spectrum. The light at diffuse target scatters the light in a solid angle of 2π.

Only very little of that scattered light will be collinear to the light from the other arm,

the reference arm. Therefore, a heterodyne beat signal cannot be observed. A setup that

allows a diffusely scattering target in the measurement arm can be seen in Figure 3.8.

FSF output

PD

Reference

arm

Measurement

arm

Diffusely

scattering

target

Figure 3.8.: Michelson interferometer setup suitable for a diffusely scattering target

In this setup, the reference stays a regular high-reflector mirror. In the measurement arm,

there is a concave lens to broaden the beam. Behind the concave lens, there is a convex

lens at the point at a position where the beam nearly fills up the whole convex lens. And

roughly in the focal point of this beam behind the convex lens, the diffusely scattering

target has to be. The light at the target is scattered into a solid angle of 2π. But all the

light passing the convex lens again is focused towards the concave lens which converts this

light to a beam that is collinear to the other beam at the PD. That means the efficiency

of this setup only depends on how much solid angle the convex lens covers seen from the

diffusely scattering target.

The following figure shows the actual setup in the lab of the Michelson interferometer for

the high-reflector target and the diffusely scattering target.
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Figure 3.9.: Setup of the Michelson interferometer for a high-reflector target a) and for a

diffusely scattering target b).
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4 Experimental results

The chapter focuses on the optical properties of the FSF laser system, and mainly on the

distance measurement done with this laser system. The pieces of equipment used in these

experiments were

• Fieldmaster LM-10 HTD from Coherent : the optical power meter for higher

optical intensities,

• Orion PD300-UB from Ophir Photonics Group: the optical power meter for lower

optical intensities,

• AQ-6315A from Yokogawa: the optical spectrum analyzer,

• FSP Spectrum Analyzer 9kHz .. 3GHz from Rohde & Schwarz : the RF

spectrum analyzer,

• E4424B 250kHz-9GHz ESG - AP Series Signal Generator from Agilent

Technologies : frequency generator used for the RF signal driving the AOM,

• 81150A 120MHz Pulse Function Arbitrary Generator from Agilent Tech-

nologies : arbitrary function generator used to generate the EOM modulation fre-

quency,

• SMU 200A Vector Signal Generator from Rohde & Schwarz : the vector signal

generator (VSG) used to generate the EOM modulation signals needed in chapter

4.4 (this device was on loan from the ”Institute of Telecommunications” of the UT

Vienna for these measurements).

4.1 Optical properties of the FSF laser system

In Figure 4.1, one can see the optical power output characteristics of the laser system. It

has a threshold pump power of 3.25W and a maximum output power of about 240mW.

The optical spectrum for the unseeded case shown in Figure 4.2 is similar to the one

reported in [16]. With no filter, the full width half maximum (FWHM) optical bandwidth

was measured to be approximately 5nm. The Semrock filter reduced the optical bandwidth

to about 0.2nm.

The AOM in the cavity was aligned so that a frequency-up-shift was obtained. That

means that the wavelength was reduced after each round trip. Hence, the seed must

have a longer wavelength than the unseeded FSF laser for optimal seeding. If that is
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Figure 4.1.: Optical output power in dependence of the pump power
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Figure 4.2.: Optical spectra of all used configurations of the laser system

guaranteed, a spectrum similar to the ones seen in Figure 4.2 will be obtained. In the

seeded case, the optical intensity starts abruptly at the spectral position, where the FSF

laser is seeded, unlike to the unseeded case, where the intensity increases gradually. The

FWHM bandwidths are approximately the same with or without seeded. But in the

seeded case, a frequency comb forms. Unfortunately, the resolution of the optical spectrum

analyzer is not sufficient to actually resolve the individual comb lines.

4.1.1 RF spectrum of the seed light

It is mandatory to know the spectrum of the seed light because one has to make sure

that the seed light has the desired optical properties. Due to the setup of the seed laser

system, it is known that the PPLN produces light of 777.5nm wavelength. But one would

need a high resolution optical spectrum analyzer to resolve the optical spectrum with

RF resolution at this wavelength. Such an optical spectrum analyzer was not available.
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Fortunately, the exact, absolute position of the seed laser frequency is not important for

this measurement. It is only necessary to have a narrow central peak (at 1555nm) which

is phase modulated and exhibits side bands. One can use this knowledge to do a simple

measurement with a photodiode directly in the output beam of the PPLN to verify this

spectrum. For the measurement, the EOM was modulated with a frequency of 20MHz

and a peak-to-peak amplitude of 2V. The resulting RF spectrum on the photodiode can

be seen in the following figure.
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Figure 4.3.: Measurement of the RF spectrum of the seed light with a modulation frequency

of 20MHz and an amplitude of 2Vpp

Unfortunately, the RF spectrum analyzer did not support DC voltages. Hence, a DC

block had to be used. It had a cut-off frequency of ∼10MHz. That explains the rising

signal towards 0Hz.

The measured signal is an autocorrelation of the electric field of the seed laser output. In

the optical spectrum, we expect a line from the SFL and other lines on each side of the

SFL line separated by the modulation frequency and its harmonics. In the RF spectrum,

one should see the beat signals created by these lines. And this is what we observe in

Figure 4.3. Due to the DC block, the peak at 0Hz cannot be uniquely associated with the

autocorrelations of the spectral peaks with themselves. But we can see a spike at 20MHz,

the modulation frequency. This is where spectrally neighboring peaks create a beat signal

in the PD. We even observe the second harmonic, where a peak forms a beat with its

second neighbors. The second harmonic has an amplitude reduced by 20dB compared to

the peak at the modulation frequency. That means that the higher harmonics are in the

beat spectrum, and one has to make sure that they do not create signals which interfere

with the distance measurement.
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4.2 High-reflecting mirror as a target

4.2.1 Distance measurement

The theory in Chapter 2 predicts that the measured peaks of the autocorrelation would

be at the multiples of the free-spectral range fFSR of the FSF laser. And there should

be two distance-dependent RF beat signals between two autocorrelation peaks. This is

exactly what is observed in the following figure.
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Figure 4.4.: The panels (a)-(d) show different frequency ranges of the RF spectrum for various

seeding conditions. (a) represents the RF spectra from 0-80MHz, where one can

see the two distance-dependent peaks and the peak of the FSR. (b) and (c) exhibit

the distance-dependent peak with a span of 1MHz and 50kHz. (d) shows the peaks

of the FSR with a span of 1MHz and high-resolution zoom to picture the cavity

FSR more accurately.

Panel (a) shows the RF spectrum from 0 to 80MHz. The rising signal towards 0Hz is

again caused by the DC blocker. The first distance-dependent peak can be seen between

30 and 31MHz. This peak can be seen in the spectra of all seeding types (unseeded,

seeded but unmodulated, seeded with 47.092MHz). The next distance-dependent peak is

at 47.092MHz and can be seen in detail in panels (b) and (c). The autocorrelation peak

is at 77.409MHz, panel (d).

If one takes a closer look at the signals for the seeded unmodulated case, one can see that
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these signals never show the best SNR of the three seeding types. Hence, the properties

of the seeded unmodulated signals will not be investigated any further.

In panels (b) and (c), the seeded modulated signals show a big increase of more than

50dB in the beat signal amplitude compared to the unseeded case. That is exactly what

the aim of the seeding was, increasing the SNR.

The peak corresponding to the cavity FSR in panel (d) has a smaller SNR for the seeded

case than for the unseeded case. That is not surprising because the seeded signal was

designed to have the best SNR for the distance-dependent peak. In the inset in (d), one

can see a detailed zoom of the FSR peak for the unseeded case. With that, fFSR can be

determined to be 77.409MHz, which corresponds to an optical path length of 3.873m.

Comment: The small peaks near the main peaks are caused by weak reflections. For

example, even if one uses a BS with anti-reflection (AR) coating, a small fraction of the

light will still be reflected at the AR-coated surface. This will correspond to a different

path length in the Michelson interferometer which can be seen in the RF spectrum.
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Figure 4.5.: Scanning of the modulation frequency for distance measurements. The frequency

with the highest beat signal corresponds to the distance to measure.

The distance of the measurement arm was 37cm and that of the reference arm 67cm,

both measured with a ruler. Hence, the distance difference was approximately 30cm. The

exact value can be calculated with the frequencies observed in Figure 4.4 by rearranging

Eq. (2.40) and λ2 = 0. Hence,

L =
fmod

fFSR

L′ =
47.092MHz

77.409MHz

299792458m/s

2 · 300MHz
= 0.303966m = 30.3966cm (4.1)

where the modulation frequency fmod corresponds to the EOM frequency fEOM .

To perform distance measurements, one has to scan the modulation frequency. The fre-

quency with the highest distance-dependent peak amplitude corresponds to the distance
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to measure, as discussed in Chapter 2. Figure 4.5 shows the RF spectra for various mod-

ulation frequencies fmod around the distance-dependent beat frequency. One can see that

the modulation frequency always appears in the RF spectrum. If the modulation fre-

quency and the spectrum for the unseeded case do not match, the peak of the modulation

frequency will still be 45dB above the noise floor. But if they match, the peak will be

90dB above the noise floor and the SNR compared to the unseeded case will increase by

a factor of 45dB. Even if the modulation frequency is off by just 20kHz compared to the

value of the highest peak, the SNR will drop by 25dB. This sensitivity and the high SNRs

make high-precision distance measurements possible.

To demonstrate distance measurements, the distance of the measurement arm was changed,

as shown in Figure 4.6. Distance 1 corresponds to the previous 30.3966cm according to

Eq. (4.1). For Distance 2, the distance was increased by 1cm with the micrometer of

the translation stage. fmod of 48.640MHz complies with a distance of 31.3958cm. For

Distance 3, the distance of Distance 1 was decreased by 100µm. In that case, fmod of

47.076MHz complies with a distance of 30.3863cm.
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Figure 4.6.: RF spectra for three distances for the seeded and the unseeded case. (a) represents

the RF spectra from 0-80MHz, and (b) represents the zooms of the distance-

dependent peaks each with a span of 50kHz. Distance 2 corresponds to a distance

increase of ≈1cm compared to Distance 1. And for Distance 3, Distance 1 was

decreased by ≈100µm.

Comment: In this chapter, all frequencies are stated with an accuracy of 1kHz because

due to the spectral width of the unseeded case (Figure 4.4 (c)), it was possible to determine

the center frequency with an accuracy of 1kHz. That corresponds to a distance resolution
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of 6.5µm. Hence, all these distance measurements were done with this resolution.

4.2.2 Dependence on modulation amplitude

In the beat intensities, Eq. (2.14 - 2.16), one can see a dependence of the created beat

signal from the modulation amplitudes through the Bessel functions and their arguments,

Eq. (2.17 - 2.19). This dependence is experimentally proven in this chapter.
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Figure 4.7.: distance-dependent RF beat signal for various modulation voltages (resolution

BW 10Hz).

In Section 2.3.3, the restriction on the number of sidebands n = 1 was made for these

measurements, meaning the only remaining Bessel functions in Eq. (2.14 - 2.16) are J1

and J2. In Figure 4.7, one can see an increase in the beat signal amplitude with rising

modulation amplitudes. That means, the first maximum of the Bessel functions was not

yet reached, otherwise the amplitude would decrease for higher modulation amplitudes.

That implies that one can use high modulation amplitudes to increase the SNR of the

signal. There is one disadvantage of high modulation amplitudes, though. Higher modu-

lation amplitudes will cause higher Bessel functions, too, and the restriction n = 1 may

no longer be valid. That would mean that for higher modulation amplitudes, there will

be peaks at 2fmod and even higher harmonics, similar to what was already mentioned in

Section 4.1.1. Hence, if 2fmod matches the distance-dependent peak, there will be a peak

with good SNR at 2fmod.

Fortunately, this effect is suppressed due to using the SHG-PPLN. The harmonic of a

sideband after the phase modulation corresponds to the order of the Bessel function. The

amplitudes of the sidebands next to the central peak are proportional to J1, their neigh-

bors to J2 and so on. Since SHG is sensitive to light intensities, the weaker sideband

amplitudes will decrease in relation to the amplitude of the central peak.
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4.2.3 Influence of the optical bandwidth

For many applications, the distance measurement should be done in the fastest way possi-

ble. When the modulation frequency is mixed into the seed light, one has to wait until the

whole spectrum of the FSF laser is filled with light of that specific modulation frequency

before the beat signal measurement can start. Hence, measurements with smaller optical

bandwidths can be done with less waiting time, thus faster, compared to larger optical

bandwidths. In this Section, a Semrock laser line filter was inserted into the cavity to

intentionally reduce the optical bandwidth of the FSF laser. The different optical spectra

are the ones from Figure 4.2. The measurements with and without the filter are compared

in the following Figure 4.8.
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Figure 4.8.: RF spectra for two different optical spectra of a seeded and an unseeded laser. (a)

shows the RF spectra with the pairs of distance-dependent peaks and the FSR

peaks. (b) shows the zoom of the distance-dependent peaks.

Naturally, there is change on the position of the peaks in the RF spectrum for different

optical spectra. But narrower optical bandwidths correspond to broader RF beat signals,

as theoretically shown by Yatsenko et al. [17], compare Eq. (37). The width of the beat

signal is inversely proportional to the number of comb modes, thus inversely proportional

to the optical bandwidth of the FSF laser. The unseeded RF beat signal without the filter

had a total width above the noise floor of 35kHz (FWHM of ≈7kHz). The one with the

filter had a total width of ≈2MHz (FWHM of ≈25kHz). One can see that seeding with

and without filter increases the SNR drastically. But for the case with the filter, some

energy remains in the broad pedestal and therefore the peak is not as high as the one

without the filter and the narrow pedestal.

In Figure 4.9, the modulation frequency was detuned for the case with the Semrock filter.

The results are similar to the ones shown in Figure 4.5. But the beat signal is much

broader now. This makes it difficult to determine the modulation frequency with the

highest SNR accurately. And it decreases the achievable distance resolution. This is
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Figure 4.9.: Scan of the modulation frequency. The achievable distance resolution is reduced

due to the reduced optical bandwidth.

not surprising because if one wants to measure distance more accurately using the same

measurement principle, the measurement duration will increase. For the real-time distance

measurement system, one has to find a trade-off between desired distance resolution and

desired frame rate (measurement duration).

4.3 Diffuse target

As mentioned in Section 3.3, a different setup including a lens system in the Michelson

interferometer has to be used to obtain a beat signal with a diffuse target.

4.3.1 Comparison of beat SNR with and without seed

A diffuse target reduces the SNR drastically, because not all of the light is reflected and

not all of the reflected light ends up collinearly to the beam from the reference arm in the

PD. Figure 4.10 shows the RF spectra for the unseeded, the seeded unmodulated, and

the seeded modulated case. The seeded unmodulated case exhibits again the worst SNR

because no distance-dependent signal can be detected. In the unseeded case, the SNR

is just 5dB and has a total width of ≈25kHz (FWHM of 300Hz). This SNR is too low

for reliable distance measurement. Hence, the signals of the seeded unmodulated and the

unseeded cases will be neglected for the rest of this section.

The SNR of the seeded modulated case is 55dB and has a width smaller than 1kHz

(resolution BW 100Hz).

Reliable distance measurements with this SNR are possible and will be shown later in this

chapter.
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Figure 4.10.: Beat signals for unseeded and seeded cases for a white paper target. Only when

the FSF laser is seeded and modulated with the correct modulation frequency,

the beat signal can be used for distance measurement, because it has a SNR of

55dB.

4.3.2 Finding the optimal seed modulation frequency
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Figure 4.11.: RF spectra for white paper target for various modulation frequencies.

Optical radiation can penetrate the white paper target. Hence, many layers of the paper

will reflect light. Figure 4.11 shows the RF spectra for various modulation frequencies.

Since the white paper was put in front of a high-reflector, the light that passed through the

paper was reflected back and again scattered by the paper. The highest beat frequency

was found at 46.715MHz, and in a range of about 200kHz the beat signal is enhanced.

With these results, distance measurement will be possible. One can even see the shape of

the reflecting layers of the paper in the beat spectra, too.
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4.3.3 Different distances
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Figure 4.12.: RF beat signals for various modulation frequencies for a white paper target at

four different distances.

The white paper target was placed at four distances with the micrometer from the trans-

lation stage. The RF spectra for various modulation frequencies at the four distances can

be seen in Figure 4.12. The shape of the reflecting layers of the paper in the beat spectra

changes slightly for the different distances, because if the focused light hits another spot

on the white paper, the reflection and transmission will be different.

Since these distinct spectra correspond to different path lengths, they allow us to recover

the distance information and thereby distinguish between different distances.
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4.3.4 Different targets

Target SNR / dB fmod at the peak / MHz

White paper 60 46.701

Yellow paper 57 46.706

Black paper 40 46.706

Mirror (with imaging setup) 76 46.659

Black cardboard 38 46.798

Black plastic 30 48.310

Table 4.1.: SNR and the corresponding modulation frequencies of the beat signal for various

targets.

To demonstrate distance measurements with more than one type of diffuse targets, various

targets were put into the measurement arm. Table 4.1 shows the SNR of the beat signal

these targets caused at a given modulation frequency. The worst SNR was found for the

black plastic. But a SNR of 30dB is still enough for reliable distance measurements.

4.4 Measurement with pre-set distance resolution

In [23], we performed measurements where we could pre-set the distance resolution of

our measurement process. In the measurements discussed in the preceding Sections, a

narrow seed was phase-modulated with a modulation frequency that was tuned in regular

steps. But if one uses too big steps (for high distance resolution), then it can happen that

there will be no overlap between the seed laser peak and the distance-dependent peak.

Hence, no frequency will be enhanced and a wrong frequency might be detected as the

distance-dependent frequency.

One solution to solve this is to use a seed laser with a linewidth broader than the biggest

desired frequency step. But that has the disadvantage, that a lot of the light does not

contribute to the beat frequency. Only the narrow part, where the seed laser modulation

frequency and the distance-dependent peak frequency overlap, contributes. This reduces

the SNR of the detected signal.

In order to pre-set the distance resolution, as proposed in [23], we used a narrow seed

and did the phase modulation not with a single frequency but with a frequency range of

a well-defined center frequency fcenter and well-defined width. This width is created by

adding white noise around the center frequency and is therefore called noise bandwidth

(NBW ). It corresponds to the desired distance resolution through the formula

∆L (NBW ) =
NBW

fFSR

L′ =
NBW

fFSR

c0
2 fAOM

. (4.2)

To cover the whole RF spectrum, the center frequency has to be detuned in steps of

NBW . This makes sure that the whole RF spectrum is covered during one measurement
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cycle of scanning fcenter and that as much light as possible contributes to the beat signal.

Hence, the best SNR for a given distance resolution is reached.

With this technique, one can decrease the time of one measurement cycle, too. At first,

one sets the NBW to obtain the desired distance resolution and then measures the RF

spectrum. In order to resolve the ambiguities, one will normally have to detune the AOM

frequency and measure all modulation frequencies again. With this technique, one can

resolve the ambiguity with much longer distance resolution (bigger frequency steps). Thus,

one measurement cycle will contain fewer measurements to obtain the same information1.

If one only has one pixel, or one knows that the distances for all pixels will be close to

each other, then one can take this even one step further. One could use successive approx-

imation to get to the right distance measurement result. For successive approximation,

one chooses the NBW to be half of the full frequency range to determine, in which half

the target is. Then one splits the half frequency range, in which the target is, in two parts

and repeats the measurements with a NBW half as big as before. This splitting and

measuring is repeated until the desired distance resolution is reached. This reduces the

number of frequency steps n per cycle to lb n. Unfortunately, this cannot be generalized

for multipixel systems because the targets for the individual pixels can be in completely

different positions. One would need a frequency source for each pixel to make use of

successive approximation with multiple pixels.

If not otherwise stated, the setup in the Michelson interferometer is the one without the

additional lenses. And since some of the measurements were already reported in [23],

some figures may look similar the ones in the Optics Letters publication.

4.4.1 RF spectra of the EOM modulation frequency

Normal frequency generators cannot generate the frequency spectrum described in Section

4.4. But the SMU 200A Vector Signal Generator (VSG) can be programmed to

create such an output. The VSG was programmed to add white noise of a certain width

around a center frequency and to minimize the crest factor. The generated spectra can

be seen in the following Figure 4.13.

1This is only valid, if not all frequency steps with the short distance resolution (small frequency steps)

are needed to resolve all ambiguities. But this is usually the case because the distance measurement

is restricted to a certain maximum distance in which signals with good SNR are detected. And this

maximum distance is normally much smaller than the distance resolvable with all frequency steps.
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Figure 4.13.: EOM modulation driver signals generated with the VSG. Around a center fre-

quency, white noise with a certain bandwidth is added. These spectra are used

to modulate the light with the EOM. The center frequency in all figures is

46.705MHz. The NBW is (a) 1kHz, (b) 10kHz, (c) 40kHz, and (d) 100kHz.

In Figure 4.13, one can see that the programmed width was generated very accurately.

The signal drops 40dB at the edges of the modulation before its amplitudes decreases

further for frequencies more distant to the center frequency.

4.4.2 Different noise bandwidth

In Figure 4.14 (a), one can see the beat signals where NBW is smaller than the spectral

width of the unseeded beat signal. In that case, the RF beat signals look similar to the

unseeded case but contain the seed signals as peaks in the center.

Figure 4.14 (b) shows the case in which the NBW is larger than the spectral width of

the unseeded beat signal. There, the signals look similar to the seed signals but contain

peaks of the width of the unseeded case in the center.
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Figure 4.14.: In both panels, the modulation frequency was set to the maximum signal intensity

at 47.092kHz. Panel (a) exhibits the RF beat signals where the NBW was

smaller than the spectral width of the unseeded case. (b) contains the RF beat

signals where the NBW was larger than the spectral width of the unseeded case.

In Figure 4.15, the beat signals for two distances separated by 1cm were measured for

various NBW s. The RF beat signals look similar to the one in Figure 4.14 (a) only shifted

when the distance was changed, as has to be expected.
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Figure 4.15.: RF beat signals for various NBW s and for two different distances. For Distance

1, the center frequency was 47.092MHz, and for Distance 2 48.640MHz.
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4.4.3 Detuning the center frequencies
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Figure 4.16.: In all panels, the modulation frequency was detuned from the maximum signal

intensity at 47.092kHz. In panel (a) the NBW was 10kHz, in (b) 40kHz, and in

(c) 100kHz.
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As proposed in Section 4.4, one can detune the center frequency in steps of the NBW and

thereby cover the whole RF spectrum. This can be seen in Figure 4.16 for three different

NBW s. If the center frequencies are too far detuned from the peak of the unseeded case,

the beat signals will not be enhanced. Only if the seed signal and the unseeded case signal

overlap, the SNR will increase and the correct distance to measure can be determined.

In [23], we reported that for single-line modulation the FWHM of the beat signals is

smaller than 20Hz (limited by the measurement precision). That means that the seed

laser has a line width narrower than 20Hz on our time scales2. - This could be determined

from Figure 4.7, too, where a beat spectrum of single line modulation is depicted with

a small resolution bandwidth. - Eq. (4.2) predicts a distance resolution of 129nm for

the 20Hz beat linewidth. Of course, this value is only a theoretical value because one

encounters similar problems as in Chapter 4.2.3. Interferometric distance measurement

principles can only resolve the distance to a certain fraction of the wavelength of the light

used for the measurement, as described in [17] for OFDR with FSF lasers. The optical

bandwidth of the FSF laser used in the work of this thesis is too small, and thus the

spontaneous-emission pedestal is too broad, to determine the height difference between

two peaks, where the modulation frequencies are only separated by 20Hz. To achieve a

better distance resolution, the optical bandwidth of the FSF laser should be increased. To

build such a laser, one should use an AOM with higher diffraction efficiency (the efficiency

of the AOM used in this thesis is only 67%) and use a linear cavity instead of a ring cavity,

because linear cavities are less sensitive than ring cavities to different diffraction angles of

the AOM due to different wavelengths. Hence, more optical bandwidth can be achieved

with linear cavities.

4.4.4 With Semrock filter

One can perform distance measurements with this technique and a smaller optical band-

width, too, by placing the Semrock filter in the cavity of the FSF laser. But one encounters

the same problems as described in Chapter 4.2.3. The reduced optical bandwidth reduces

the distance resolution. Judging by Figure 4.17, the NBW would have to be between

10kHz and 100kHz to definitely determine the correct center frequency. A NBW between

10kHz and 100kHz would then correspond to a distance resolution between 65µm and

646µm.

2The distance difference in our setup was always approximately 30cm. This corresponds to a time

difference of approximately 1ns. That means the seed laser drifts less than 20Hz within this 1ns.
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Figure 4.17.: A smaller optical bandwidth results in a broader RF beat signal in the unseeded

case. The different NBWs shown in this figure are all smaller than the spectral

width of the unseeded case.

4.4.5 Diffuse target

For the measurements in this Section, the setup of the Michelson interferometer had to

contain the lenses again. The target was again a white paper which was put in front of

the high reflector.

Figure 4.18 (a) shows the RF beat signals with a modulation frequency smaller than

the spectral width. With paper as a target, the light is reflected at different layers of

the paper, as described in Section 4.3. This effect coupled with the spectra width due

to phase modulation with a specific NBW makes the best choice for the correct center

frequency difficult. Hence, a high-accuracy distance measurement is difficult with targets

that do not reflect the light at the surface.

The target was placed in front of a mirror, and one can see a section, where the signal is

very weak in the middle of the peak in Figure 4.18 (b). It is assumed that this due to the

distance between the paper and the mirror. This would mean that one can see the paper

target twice in the RF beat spectrum.
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Figure 4.18.: RF beat signals for various NBW s. When modulating with a larger NBW, one

can see how well the different layers of the paper reflect the light.
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5 Summary

Optical frequency-domain ranging (OFDR) with FSF lasers is an interesting way of doing

interferometric distance measurement. If one can resolve all ambiguities, has enough light

for detection, and the distance to the target is less than half the coherence length of the

light, then it will not matter whether the target is as close as 1m or as far as 1km away

from the detector. The distance will be measured with the same accuracy. To calculate

the distance from the measured frequencies the Discrete Frequency Model [17] proved to

be very useful.

In this thesis, seeding the FSF laser with a phase-modulated ultranarrow-linewidth single-

frequency laser resulted in an improvement of the SNR of approximately 50dB. With this

high SNR, it was possible to demonstrate distance measurement of diffuse targets which

was impossible without seeding. But this thesis did not focus on an optical system which

allows distance measurement of diffuse targets with multiple pixels simultaneously. This

remains a challenge for future research.

The demonstrated precision of the measurement process was 6.5µm in this thesis. The

optical bandwidth was larger than the one required for real-time 3D video, though. Ac-

cording to the calculations in my previous thesis [16], the optical bandwidth would have

to be in the order of a 1
10

of the bandwidth used here. This would result in a precision

lower than 100µm which is still a resolution that one cannot achieve with triangulation

or time-of-flight measurement principles at the current state of technology.

The measurements with the pre-set distance resolution, shown in this thesis and [23],

gives a new insight in the physics underlying this measurement principle. The resulting

beat spectrum is always a mixture of the seed laser spectrum and a pedestal created from

the beat of the spontaneous emission light in the FSF laser. Unfortunately, there is the

mathematical description of this behavior is yet to be developed. The measurement res-

olution in this thesis ranges from 6.5µm up to 646µm, and in some cases even 6.455mm.

This measurement principle offers the choice of an optimum NBW with the highest SNR

for a given resolution because none of the seed light is used for a beat signal of a neigh-

boring frequency step. And the principle allows using fewer frequency steps to resolve

the ambiguity, too. Both features are very desirable for real-time 3D video. If one has

one pixel, one can drastically decrease the measurement duration by adjusting the NBW

each measurement and thereby use a successive approximation approach.

To achieve an even better distance resolution, the optical bandwidth has to be increased.

One way of doing that is to use a linear cavity instead of a ring cavity because the

frequency-dependent diffraction of the AOM limits the bandwidth of the FSF laser and

linear cavities are less sensitive to this frequency-dependence. But then one will also need
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an AOM with higher diffraction efficiency because the light has to pass the AOM twice.

A combination of these measures might push the limits of the distance resolution towards

a fraction of the used wavelength [17] and the limit of 129nm imposed by the <20Hz beat

linewidth, proposed in [23].
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A Appendix

A.1 Calculation of the beat frequencies

This appendix presents detailed calculations of the beat frequencies using the discrete

frequency model introduced by Yatsenko et al. in [21]. Here, fAOM is the AOM frequency

and TR is the cavity round-trip time.

The electric field is defined as

E(t) =
N
∑

q=0

Eq(t) e
i 2π (fseed + q fAOM ) t =

N
∑

q=0

εnorm aq e
i 2π ((fseed + q fAOM ) t+ϕseed(t− q TR)+ θq)

(A.1)

with the complex amplitude

Eq(t) = εnorm aq e
i 2π (ϕseed(t− q TR)+ θq) (A.2)

where fseed is the (optical) frequency of the seed laser, fAOM is the AOM frequency, ϕseed

is a variable part of the phase, θq is the fixed part of the phase, and N is the number of

modes in the cavity. εnorm stands for a normalization factor and aq for the amplitude of

the mode q. This together forms a frequency comb starting at the frequency fseed. The

comb lines are separated by fAOM and there are N + 1 lines.

As an ansatz for the constant phase of each mode, we use

θq = TR q

(

fseed + (q + 1)
fAOM

2

)

+ θ0 (A.3)

where θ0 is a constant. Due to the optical frequency fseed, there is a phase shift after

each round trip TR fseed. Additionally, there is a phase shift due to the AOM frequency

which increases the frequency after each round trip. After one round trip, the phase shift

is TR fAOM , after two it is TR fAOM + 2TR fAOM , after three it is TR fAOM + 2TR fAOM +

3TR fAOM , and so on. A general formula for this is q(q+1)
2

TR fAOM .

A useful equation will be

θq+p − θq = TR

(

p fseed +
(

p2 + p+ 2qp
) fAOM

2

)

. (A.4)

The intensity is defined as

I (t) =
nc0ǫ0
2
|E (t)|2 . (A.5)
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A.1.1 Michelson interferometer

The intensity after the Michelson interferometer can be obtained as follows

I (t) ∝

∣

∣

∣

∣

δ E (t) + η E

(

t−
2L

c0

)

ei 2π∆φ

∣

∣

∣

∣

2

= δ2 |E (t)|2 + η2
∣

∣

∣

∣

E

(

t−
2L

c0

)∣

∣

∣

∣

2

+ δη

∣

∣

∣

∣

E ∗ (t) E

(

t−
2L

c0

)

ei 2π∆φ + E (t) E ∗

(

t−
2L

c0

)

e−i 2π∆φ

∣

∣

∣

∣

(A.6)

I(t) ∝ I1(t) + I2(t) + I3(t) (A.7)

I1(t) = δ2 |E (t)|2 (A.8)

I2(t) = η2
∣

∣

∣

∣

E

(

t−
2L

c0

)∣

∣

∣

∣

2

(A.9)

I3(t) = δη

∣

∣

∣

∣

E ∗ (t) E

(

t−
2L

c0

)

ei 2π∆φ + E (t) E ∗

(

t−
2L

c0

)

e−i 2π∆φ

∣

∣

∣

∣

(A.10)

δ and η represent the dampings in the two arms, and ∆φ represents the phase shift

difference between the two targets due to different target materials. The intensity can be

split in three terms. I1(t) and I2(t) correspond to autocorrelations of the light from the

individual arms. I3(t) is a correlation term of the two arms and it will yield the distance

dependence.

In the following calculation, we will always encounter products of sums. I solved a similar

problem in my first diploma thesis [16] and we will use the same pattern here.

Since there are only discrete frequencies present, the result will only contain discrete beat

frequencies. We can define a beat index p. It states which terms, peaks of the frequency

comb, have to be multiplied with which other terms. If p = 0, only terms with the

same index (of the same frequency peak) will be multiplied. If p = 1, only terms with

a difference of one in their index will be multiplied (that means a multiplication with

neighboring peaks), and so on. This scheme can be seen in Table A.1.

...
...

E3 ← p = 0 → E3

E2 ← p = 0 → E2

E1 ← p = 0 → E1

...
...

ր

E3 ← p = 1 E3

ր

E2 ← p = 1 E2

ր

E1 ← p = 1 E1

...
...

ր

E3 p = 2 E3

ւ ր

E2 p = 2 E2

ւ

E1 E1

Table A.1.: Pattern for calculating the product of a sum with a sum

with

Eq = Eq(t) e
i 2π (fseed + q fAOM ) t . (A.11)
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A.1.1.1 Autocorrelation terms

If we apply this pattern to the autocorrelation terms, we obtain

I1(t) = δ2 |E (t)|2 = δ2

(

N
∑

q=1

Eq (t) e
i 2π (fseed + q fAOM ) t

)(

N
∑

q=1

E ∗

q (t) e−i 2π (fseed + q fAOM ) t

)

= δ2
N
∑

p=0

1

2

(

E0 (t) E
∗

p (t) e−i 2π p fAOM t + · · ·+ EN−p (t) E
∗

N (t) e−i 2π p fAOM t

+ Ep (t) E
∗

0 (t) ei 2π p fAOM t + · · ·+ EN (t) E ∗

N−p (t) e
i 2π p fAOM t

)

= δ2
N
∑

p=0

N−p
∑

q=0

|εnorm|
2 aq aq+p

2

(

e−i 2π (q fAOM t+ϕseed(t−(q+p)TR)−ϕseed(t− q TR)+ θq+p − θq)

+ ei 2π (q fAOM t+ϕseed(t−(q+p)TR)−ϕseed(t− q TR)+ θq+p − θq)
)

= δ2
N
∑

p=0

N−p
∑

q=0

|εnorm|
2 aq aq+p cos (2π (p fAOM t+ ϕseed (t− (q + p)TR)

− ϕseed (t− q TR) + TR

(

p fseed +
(

p2 + p+ 2qp
) fAOM

2

)))

(A.12)

I2(t) = η2
∣

∣

∣

∣

E
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∣

∣

∣

2

= η2
N
∑

p=0

N−p
∑

q=0

|εnorm|
2 aq aq+p cos

(

2π

(

p fAOM t+ ϕseed

(

t−
2L

c0
− (q + p)TR

)

− ϕseed

(

t−
2L

c0
− q TR

)

− p fAOM

2L

c0
+ TR

(

p fseed +
(

p2 + p+ 2qp
) fAOM

2

)))

(A.13)

A.1.1.2 Terms with a distance dependence

The terms with a distance dependence can be calculated with the same pattern. Therefore,

I3(t) = δη

∣
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E ∗ (t) E
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c0

)

ei 2π∆φ + E (t) E ∗

(

t−
2L

c0

)

e−i 2π∆φ

∣

∣

∣

∣

= δη

N
∑

p=0

N−p
∑

q=0

|εnorm|
2 aq aq+p

2
e−i 2π ((fseed + q fAOM ) t+ϕseed(t− q TR)+ θq)

· e
i 2π

(

(fseed +(q+p) fAOM )
(

t− 2L
c0

)

+ϕseed

((

t− 2L
c0

)

− (q+p)TR

)

+ θq+p

)

+ c.c.

+ ei 2π ((fseed +(q+p) fAOM ) t+ϕseed(t− (q+p)TR)+ θq+p)

· e
−i 2π

(

(fseed + q fAOM )
(

t− 2L
c0

)

+ϕseed

((

t− 2L
c0

)

− q TR

)

+ θq

)

+ c.c.



A.1. Calculation of the beat frequencies 49

I3(t) = δη
N
∑

p=0

N−p
∑

q=0

|εnorm|
2 aq aq+p

2

(

e
i 2π

(

p fAOM t− (fseed+(q+p)fAOM ) 2L
c0

+ϕseed

(

t− 2L
c0

−(q+p)TR

))

· ei 2π (−ϕseed(t− q TR)+ θq+p − θq +∆φ) + c.c.+ e
i 2π

(

p fAOM t+(fseed+(q+p)fAOM ) 2L
c0

)

· e
i 2π

(

ϕseed(t−(q+p)TR)−ϕseed

(

t− 2L
c0

− q TR

)

+ θq+p − θq −∆φ
)

+ c.c.

)

= δη
N
∑

p=0

N−p
∑

q=0

|εnorm|
2 aq aq+p

·

(

cos

(

2π

(

p fAOM t+ ϕseed

(

t−
2L

c0
− (q + p)TR

)

− ϕseed (t− qTR)

− (fseed + (q + p) fAOM)
2L

c0
+ TR

(

p fseed +
(

p2 + p+ 2qp
) fAOM

2

)

+ ∆φ

))

+ cos

(

2π

(

p fAOM t+ ϕseed (t− (q + p)TR)− ϕseed

(

t−
2L

c0
− qTR

)

+ (fseed + (q + p) fAOM)
2L

c0
+ TR

(

p fseed +
(

p2 + p+ 2qp
) fAOM

2

)

− ∆φ

)))

(A.14)

A.1.1.3 Substitutions

In order to make the equations easier to write, we define the following substitutions:

ϕseed,q = ϕseed (t− qTR) (A.15)

ϕseed,qp = ϕseed (t− (q + p)TR) (A.16)

ϕseed,qL = ϕseed

(

t−
2L

c0
− qTR

)

(A.17)

ϕseed,qpL = ϕseed

(

t−
2L

c0
− (q + p)TR

)

(A.18)

ξ1 = θq+p − θq = TR

(

p fseed +
(

p2 + p+ 2qp
) fAOM

2

)

(A.19)

ξ2 = −p fAOM

2L

c0
(A.20)

ξ3 = (fseed + (q + p) fAOM)
2L

c0
− ∆φ (A.21)
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Hence,

I1(t) = δ2
N
∑

p=0

N−p
∑

q=0

|εnorm|
2 aq aq+p cos (2π (p fAOM t+ ϕseed,qp − ϕseed,q + ξ1)) (A.22)

I2(t) = η2
N
∑

p=0

N−p
∑

q=0

|εnorm|
2 aq aq+p cos (2π (p fAOM t+ ϕseed,qpL − ϕseed,qL + ξ1 + ξ2))

(A.23)

I3(t) = δη
N
∑

p=0

N−p
∑

q=0

|εnorm|
2 aq aq+p (cos (2π (p fAOM t+ ϕseed,qpL − ϕseed,q + ξ1 − ξ3))

+ cos (2π (p fAOM t+ ϕseed,qp − ϕseed,qL + ξ1 + ξ3))) (A.24)

A.1.2 Sinusoidal phase modulation

We want to perform phase modulation of the seed laser with an EOM. Hence,

ϕseed(t) = ϕ0 + AEOM sin (2π fEOM t) (A.25)

where ϕ0 is a constant phase offset due to the EOM crystal. The second term represents

a phase modulation with a sine of frequency fEOM and amplitude AEOM .

With the trigonometric identity sin (α) − sin (β) = 2 sin
(

α−β

2

)

cos
(

α+β

2

)

, we obtain for

the ϕseed terms:

ϕseed,qp − ϕseed,q =

= −2AEOM sin
(

2π fEOM

p

2
TR

)

cos
(

2π fEOM

(

t−
(

q +
p

2

)

TR

))

(A.26)

ϕseed,qpL − ϕseed,qL =

= −2AEOM sin
(

2π fEOM

p

2
TR

)

cos

(

2π fEOM

(

t−
2L

c0
−
(

q +
p

2

)

TR

))

(A.27)

ϕseed,qpL − ϕseed,q =

= −2AEOM sin

(

2π fEOM

(

L

c0
+
p

2
TR

))

cos

(

2π fEOM

(

t−
L

c0
−
(

q +
p

2

)

TR

))

(A.28)

ϕseed,qp − ϕseed,qL =

= −2AEOM sin

(

2π fEOM

(

−
L

c0
+
p

2
TR

))

cos

(

2π fEOM

(

t+
L

c0
−
(

q +
p

2

)

TR

))

(A.29)
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With the substitutions

A = −2AEOM (A.30)

ψp = 2π fEOM

p

2
TR (A.31)

ψp,L = 2π fEOM

(

L

c0
+
p

2
TR

)

(A.32)

ψp,−L = 2π fEOM

(

−
L

c0
+
p

2
TR

)

(A.33)

ρ0 = 2π fEOM

(

t−
(

q +
p

2

)

TR

)

(A.34)

ρ−L = 2π fEOM

(

t−
L

c0
−
(

q +
p

2

)

TR

)

(A.35)

ρL = 2π fEOM

(

t+
L

c0
−
(

q +
p

2

)

TR

)

(A.36)

ρ−2L = 2π fEOM

(

t−
2L

c0
−
(

q +
p

2

)

TR

)

, (A.37)

we get

ϕseed,qp − ϕseed,q = A sin (ψp) cos (ρ0) (A.38)

ϕseed,qpL − ϕseed,q = A sin (ψp,L) cos (ρ−L) (A.39)

ϕseed,qp − ϕseed,qL = A sin (ψp,−L) cos (ρL) (A.40)

ϕseed,qpL − ϕseed,qL = A sin (ψp) cos (ρ−2L) . (A.41)

In order to get simpler results, we need the Bessel functions Jn with the identity

eiB cosχ =
∞
∑

n=−∞

inJn (B) einχ . (A.42)

In the Eqs. (A.22 - A.24, A.38 - A.41), we can see that there are always terms of the form

cos (φ+B cosχ). Hence,

cos (φ+ B cosχ) =
ei(φ+B cosχ) + e−i(φ+B cos(−χ))

2

=
1

2

(

eiφ
∞
∑

n=−∞

inJn(B)einχ + e−iφ

∞
∑

n=−∞

inJn(B)e−inχ

)

=
1

2

∞
∑

n=−∞

in
(

Jn(B)ei(φ+nχ) + Jn(−B)e−i(φ+nχ)
)

=
∞
∑

n=−∞

i2n
(

J2n(B)ei(φ+2nχ) + J2n(B)e−i(φ+2nχ)

2

+
J2n−1(B)ei(φ+(2n−1)χ) − J2n−1(B)e−i(φ+(2n−1)χ)

2i

)

=
∞
∑

n=−∞

(−1)n (J2n(B) cos (φ+ 2nχ) + J2n−1(B) sin (φ+ (2n− 1)χ))

(A.43)
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Now, we can use this result to calculate the first intensity term.

I1(t) = δ2
N
∑

p=0

N−p
∑

q=0

|εnorm|
2 aq aq+p cos (2π (p fAOM t+ ϕseed,qp − ϕseed,q + ξ1))

= δ2
N
∑

p=0

N−p
∑

q=0

|εnorm|
2 aq aq+p cos (2π (p fAOM t+ ξ1)− 4π AEOM sin (ψp) cos (ρ0))

= δ2
N
∑

p=0

N−p
∑

q=0

∞
∑

n=−∞

(−1)n |εnorm|
2 aq aq+p

· (J2n (4π AEOM sin (ψp)) cos (2π (p fAOM t+ ξ1) + 2nρ0)

+ J2n−1 (4π AEOM sin (ψp)) sin (2π (p fAOM t+ ξ1) + (2n− 1) ρ0)) (A.44)

= δ2
N
∑

p=0

N−p
∑

q=0

∞
∑

n=−∞

(−1)n |εnorm|
2 aq aq+p

· (J2n (4π AEOM sin (π p fEOMTR)) cos (2π ((pfAOM + 2nfEOM) t

+ TR

(

p fseed +
(

p2 + p+ 2qp
) fAOM

2
− n (2q + p) fEOM

)))

+ J2n−1 (4π AEOM sin (π p fEOMTR)) sin (2π ((pfAOM + (2n− 1) fEOM) t

+ TR

(

p fseed +
(

p2 + p+ 2qp
) fAOM

2
− (2n− 1)

(

q +
p

2

)

fEOM

))))

(A.45)

= δ2
N
∑

p=0

N−p
∑

q=0

∞
∑

n=−∞

(−1)n |εnorm|
2 aq aq+p (J2n (M1) cos (2π (feven t+ ϕ1,even))

+ J2n−1 (M1) sin (2π (fodd t+ ϕ1,odd))) (A.46)

where

M1 = 4π AEOM sin (π p fEOMTR) (A.47)

fodd = p fAOM + (2n− 1) fEOM (A.48)

feven = p fAOM + 2nfEOM (A.49)

ϕ1,odd = TR

(

p fseed +
(

p2 + p+ 2qp
) fAOM

2
− (2n− 1)

(

q +
p

2

)

fEOM

)

(A.50)

ϕ1,even = TR

(

p fseed +
(

p2 + p+ 2qp
) fAOM

2
− n (2q + p) fEOM

)

(A.51)
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The second term can be evaluated with the same scheme.

I2(t) = η2
N
∑

p=0

N−p
∑

q=0

|εnorm|
2 aq aq+p cos (2π (p fAOM t+ ϕseed,qpL − ϕseed,qL + ξ1 + ξ2))

= η2
N
∑

p=0

N−p
∑

q=0

∞
∑

n=−∞

(−1)n |εnorm|
2 aq aq+p

· (J2n (4π AEOM sin (ψp)) cos (2π (p fAOM t+ ξ1 + ξ2) + 2n ρ−2L)

+ J2n−1 (4π AEOM sin (ψp)) sin (2π (p fAOM t+ ξ1 + ξ2) + (2n− 1) ρ−2L))

= η2
N
∑

p=0

N−p
∑

q=0

∞
∑

n=−∞

(−1)n |εnorm|
2 aq aq+p (J2n (4π AEOM sin (π p fEOMTR))

· cos

(

2π

(

(pfAOM + 2nfEOM) t+ TR

(

p fseed +
(

p2 + p+ 2qp
) fAOM

2

− n (2q + p) fEOM)− (p fAOM + 2nfEOM)
2L

c0

))

+ J2n−1 (4π AEOM sin (π p fEOMTR)) sin (2π ((pfAOM + (2n− 1) fEOM) t

+ TR

(

p fseed +
(

p2 + p+ 2qp
) fAOM

2
− (2n− 1)

(

q +
p

2

)

fEOM

)

− (p fAOM + (2n− 1) fEOM)
2L

c0

)))

(A.52)

= η2
N
∑

p=0

N−p
∑

q=0

∞
∑

n=−∞

(−1)n |εnorm|
2 aq aq+p (J2n (M1) cos (2π (feven t+ ϕ2,even))

+ J2n−1 (M1) sin (2π (fodd t+ ϕ2,odd))) (A.53)

where

ϕ2,odd = TR

(

p fseed +
(

p2 + p+ 2qp
) fAOM

2
− (2n− 1)

(

q +
p

2

)

fEOM

)

− (p fAOM + (2n− 1) fEOM)
2L

c0
(A.54)

ϕ2,even = TR

(

p fseed +
(

p2 + p+ 2qp
) fAOM

2
− n (2q + p) fEOM

)

− (p fAOM + 2nfEOM)
2L

c0
(A.55)
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The mixed term can be calculated as

I3(t) = δη
N
∑

p=0

N−p
∑

q=0

|εnorm|
2 aq aq+p (cos (2π (p fAOM t+ ϕseed,qpL − ϕseed,q + ξ1 − ξ3))

+ cos (2π (p fAOM t+ ϕseed,qp − ϕseed,qL + ξ1 + ξ3)))

= δη

N
∑

p=0

N−p
∑

q=0

∞
∑

n=−∞

(−1)n |εnorm|
2 aq aq+p

· (J2n (4π AEOM sin (ψp,L)) cos (2π (p fAOM t+ ξ1 − ξ3) + 2n ρ−L)

+ J2n−1 (4π AEOM sin (ψp,L)) sin (2π (p fAOM t+ ξ1 − ξ3) + (2n− 1) ρ−L)

+ J2n (4π AEOM sin (ψp,−L)) cos (2π (p fAOM t+ ξ1 + ξ3) + 2n ρL)

+ J2n−1 (4π AEOM sin (ψp,−L)) sin (2π (p fAOM t+ ξ1 + ξ3) + (2n− 1) ρL))

(A.56)

= δη
N
∑

p=0

N−p
∑

q=0

∞
∑

n=−∞

(−1)n |εnorm|
2 aq aq+p

·

(

J2n

(

4π AEOM sin

(

2π fEOM

(

L

c0
+
p

2
TR

)))

· cos

(

2π

(

(pfAOM + 2nfEOM) t− (fseed + (q + p) fAOM − n fEOM)
2L

c0

+ TR

(

p fseed +
(

p2 + p+ 2qp
) fAOM

2
− n (2q + p) fEOM

)

+ ∆φ

))

+ J2n−1

(

4π AEOM sin

(

2π fEOM

(

L

c0
+
p

2
TR

)))

· sin

(

2π

(

(pfAOM + (2n− 1) fEOM) t−

(

fseed + (q + p) fAOM −
2n− 1

2
fEOM

)

2L

c0

+ TR

(

p fseed +
(

p2 + p+ 2qp
) fAOM

2
− (2n− 1)

(

q +
p

2

)

fEOM

)

+ ∆φ

))

+ J2n

(

4π AEOM sin

(

2π fEOM

(

−
L

c0
+
p

2
TR

)))

· cos

(

2π

(

(pfAOM + 2nfEOM) t+ (fseed + (q + p) fAOM + n fEOM)
2L

c0

+ TR

(

p fseed +
(

p2 + p+ 2qp
) fAOM

2
− n (2q + p) fEOM

)

− ∆φ

))

+ J2n−1

(

4π AEOM sin

(

2π fEOM

(

−
L

c0
+
p

2
TR

)))

· sin

(

2π

(

(pfAOM + (2n− 1) fEOM) t+

(

fseed + (q + p) fAOM +
2n− 1

2
fEOM

)

2L

c0

+ TR

(

p fseed +
(

p2 + p+ 2qp
) fAOM

2
− (2n− 1)

(

q +
p

2

)

fEOM

)

− ∆φ

)))

(A.57)
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I3(t) = δη

N
∑

p=0

N−p
∑

q=0

∞
∑

n=−∞

(−1)n |εnorm|
2 aq aq+p (J2n (M3a) cos (2π (feven t+ ϕ3a,even))

+ J2n−1 (M3a) sin (2π (fodd t+ ϕ3a,odd)) + J2n (M3b) cos (2π (feven t+ ϕ3b,even))

+ J2n−1 (M3b) sin (2π (fodd t+ ϕ3b,odd))) (A.58)

where

M3a = 4π AEOM sin

(

2π fEOM

(

L

c0
+
p

2
TR

))

(A.59)

M3b = 4π AEOM sin

(

2π fEOM

(

−
L

c0
+
p

2
TR

))

(A.60)

ϕ3a,odd = TR

(

p fseed +
(

p2 + p+ 2qp
) fAOM

2
− (2n− 1)

(

q +
p

2

)

fEOM

)

−

(

fseed + (q + p) fAOM +
2n− 1

2
fEOM

)

2L

c0
+∆φ (A.61)

ϕ3a,even = TR

(

p fseed +
(

p2 + p+ 2qp
) fAOM

2
− n (2q + p) fEOM

)

−

(

fseed + (q + p) fAOM +
2n− 1

2
fEOM

)

2L

c0
+∆φ (A.62)

ϕ3b,odd = TR

(

p fseed +
(

p2 + p+ 2qp
) fAOM

2
− (2n− 1)

(

q +
p

2

)

fEOM

)

+

(

fseed + (q + p) fAOM +
2n− 1

2
fEOM

)

2L

c0
−∆φ (A.63)

ϕ3b,even = TR

(

p fseed +
(

p2 + p+ 2qp
) fAOM

2
− n (2q + p) fEOM

)

+ (fseed + (q + p) fAOM + n fEOM)
2L

c0
−∆φ (A.64)

We can see that the beat frequencies are the same in each term. They are a multiple of

fAOM plus or minus a multiple of fEOM . The phase terms are different for the three terms

I1, I2, and I3.
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