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Abstract

Today’s manufacturing processes need to be fast adaptable to new customer de-
mands, fast market changes and strong business competition. To cope with these
requirements and further fulfil high quality requirements and small lot sizes, the
appliance of flexible robotic systems gains increasing popularity. High flexibility of
such systems can only be achieved if they are fast configurable and reconfigurable.

The intention of this work is to develop a model-based engineering method, which
enables simplified programming of a control application for a flexible and modular
robotic system. This method is based on Workflow Modelling that has emerged as
promising technique to describe and optimize processes in different fields of activities.
Additionally, Automatic Code Generation methodologies are applied to produce an
executable control application out of the modelled process. Finally, the integration
of 3D-Simulation technology into the engineering process allows early validation of
the resulting control application, thus enabling iterative development.

A system architecture is presented that includes existing development frameworks
and tools, which are extended with required functionalities. In this context, a graph-
ical Workflow Modelling Language is introduced that facilitates the intuitive descrip-
tion of the process, which should be performed by the components of the considered
robotic system. Moreover, a Code Generator is presented which generates the re-
sulting control application that is conform with the industrial standard IEC 61499.
The control application coordinates the components of the robotic system in order
to realize the desired process behaviour.

First appliances of the developed engineering method to example applications, show
reasonable results and encourage further development, especially towards more com-
plex applications.
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Kurzzusammenfassung

Rasch veränderliche Marktsituationen, individuelle Kundenbedürfnisse und wach-
sende Konkurrenz erfordern häufig eine schnelle Anpassung von Fertigungsprozessen
an die neuen Gegebenheiten. Um diesen Anforderungen unter Einhaltung strenger
Qualitätsbestimmungen und kleinen Losgrößen gerecht werden zu können, werden
zunehmend flexible Robotersysteme eingesetzt. Die hohe Flexibilität solcher Syste-
me kann nur bei schneller Konfigurierbarkeit und Rekonfigurierbarkeit gewährleistet
werden.

Ziel dieser Arbeit ist die Entwicklung einer modellbasierten Engineering-Methode,
welche die vereinfachte Programmierung einer Steuerungsapplikation für ein fle-
xibles, modulares Robotersystem ermöglicht. Der vorgestellte Ansatz basiert auf den
Methoden der Workflow Modellierung, welche sich zur Beschreibung von Prozessen
in unterschiedlichen Tätigkeitsbereichen zunehmend etablieren. Für die Generie-
rung einer Steuerungsapplikation, basierend auf dem modellierten Prozess, werden
Ansätze zur Automatischen Codegenerierung angewendet. Durch Einbindung der
3D-Simulationstechnologie in den Engineering-Prozess wird die Validierung und ite-
rative Entwicklung der resultierenden Steuerungsapplikation ermöglicht.

Die im Rahmen dieser Arbeit vorgestellte Systemarchitektur, umfasst eine Anzahl
bereits existierender Entwicklungswerkzeuge und Frameworks. Diese werden um
die für die Eingineering-Methode notwendigen Funtionalitäten erweitert. In diesem
Zusammenhang wird eine grafische Workflow Modellierungssprache eingeführt, wel-
che die intuitive Modellierung des Prozesses erlaubt, der durch die Komponenten
des betrachteten Robotersystems durchgeführt werden soll. Im Weiteren wird ein
Codegenerator vorgestellt, welcher eine IEC 61499-konforme Steuerunsapplikation
generiert. Aufgabe der Steuerungsapplikation ist es die Komponenten des Roboter-
systems so zu koordinieren, dass das geforderte Prozessverhalten realisiert wird.

Die ersten Anwendungsbeispiele, bei denen die entwickelte Engineering-Methode
eingesetzt wurde, zeigten vernünftige Ergebnisse, welche eine weitere Entwicklung
der Methode, für komplexere Anwendungsbeispiele, motivieren.

II



Acknowledgements

I would like to give my sincere thanks to my supervisors Univ.-Prof. Dr. Georg
Schitter and Dr. Alois Zoitl of Vienna University of Technology for supporting
my master’s thesis. I want to express my gratitude to Alois Zoitl who always had
time for discussions and questions, during my short visits to Vienna and several
telephone calls. His advices, ideas and constructive comments on my work have
been invaluable for me.

I am especially grateful to Gerhard Ebenhofer, for productive discussions regarding
the development of ideas and solutions, and the great support he gave me during
all of my work. Special thanks to Martijn Rooker and Harald Bauer for many
insightful discussions, which often animated me to think out of the box. I would
like to extend my thanks to Gerhard Ebenhofer and Martijn Rooker for proof-reading
and commenting a major part of the text. Furthermore, I would like to express my
gratitude to Profactor for giving me the opportunity to work on interesting research
topics and to write this master’s thesis.

I am much obliged to my fellow students and friends. The numerous hours we spent
together for test preparations and the experiences we had in our spare time are great
memories I will never forget.

My family receives my deepest gratitude and love for supporting me on my way,
especially in difficult times. I am very grateful to my parents Manuela and Helmut
who made my studies possible.

Steyr, April 6, 2012

III



Contents

1 Introduction 1
1.1 Aim of the Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Objectives of this Work . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Guideline Through the Work . . . . . . . . . . . . . . . . . . . . . . . 4

2 State of the Art 5
2.1 Introduction into Workflow Management . . . . . . . . . . . . . . . . 5

2.1.1 Workflow and Workflow Specification . . . . . . . . . . . . . . 6
2.1.2 Workflow Management System . . . . . . . . . . . . . . . . . 8
2.1.3 Activity Life Cycle . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.4 Workflow Validation and Verification . . . . . . . . . . . . . . 10
2.1.5 Workflow Optimization . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Workflow Modelling Languages . . . . . . . . . . . . . . . . . . . . . 12
2.2.1 Workflow Modelling Aspects . . . . . . . . . . . . . . . . . . . 12
2.2.2 Workflow Patterns . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.3 Petri-Net Based Languages . . . . . . . . . . . . . . . . . . . . 15
2.2.4 BPEL - Business Process Execution Language . . . . . . . . . 16
2.2.5 UML Activity Diagrams . . . . . . . . . . . . . . . . . . . . . 17
2.2.6 JECA Rules for Workflow Modelling . . . . . . . . . . . . . . 18
2.2.7 Temporal Logic for Workflow Modelling . . . . . . . . . . . . 18

2.3 The IEC 61499 Standard . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.1 The Function Block Concept . . . . . . . . . . . . . . . . . . . 20
2.3.2 Descriptive Models for Distributed Control Systems . . . . . . 24
2.3.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 3D-Simulation Environments . . . . . . . . . . . . . . . . . . . . . . . 27
2.4.1 Simulation Fundamentals . . . . . . . . . . . . . . . . . . . . . 27
2.4.2 3D Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5 Automatic Code Generation . . . . . . . . . . . . . . . . . . . . . . . 28
2.5.1 Definition and General Characteristics . . . . . . . . . . . . . 29
2.5.2 Approaches to Code Generation . . . . . . . . . . . . . . . . . 29
2.5.3 Generic Modelling Environment . . . . . . . . . . . . . . . . . 30
2.5.4 Eclipse Modelling Framework . . . . . . . . . . . . . . . . . . 30

2.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

IV



Contents V

3 Overall System Design 32
3.1 Engineering Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.1 Prerequisites for the Engineering Process . . . . . . . . . . . . 32
3.1.2 3D-Model Design of the Robotic System . . . . . . . . . . . . 33
3.1.3 Design of the Workflow Specification . . . . . . . . . . . . . . 33
3.1.4 Automatic Generation of the Control Application . . . . . . . 35
3.1.5 Simulation and Execution of the Control Application . . . . . 35

3.2 Resulting System Architecture . . . . . . . . . . . . . . . . . . . . . . 35
3.3 Modelling Component-Behaviour . . . . . . . . . . . . . . . . . . . . 36
3.4 Requirements for the Workflow Editor . . . . . . . . . . . . . . . . . 37

3.4.1 Available Workflow Activities . . . . . . . . . . . . . . . . . . 38
3.4.2 Management of Data Objects . . . . . . . . . . . . . . . . . . 38
3.4.3 Reactive Workflow Execution . . . . . . . . . . . . . . . . . . 40
3.4.4 Basic Exception Handling . . . . . . . . . . . . . . . . . . . . 42
3.4.5 Defined Start- and End-Points . . . . . . . . . . . . . . . . . . 43
3.4.6 Syntactical Check of the Workflow Specification . . . . . . . . 43

3.5 Requirements for the Code Generator . . . . . . . . . . . . . . . . . . 44
3.5.1 Generation of Needed FB-Types . . . . . . . . . . . . . . . . . 44
3.5.2 Generation of the FB Control Application . . . . . . . . . . . 45

3.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 A Graphical Workflow Modelling Language 47
4.1 Language Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1.1 Service Activities . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.1.2 Control-Flow Activities . . . . . . . . . . . . . . . . . . . . . . 51
4.1.3 Combination of Control- and Data-Flow . . . . . . . . . . . . 58

4.2 Extended Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2.1 A Workflow Specification Example . . . . . . . . . . . . . . . 61
4.2.2 Realization of an Exception Handling Strategy . . . . . . . . . 64
4.2.3 Hierarchical Workflow Specifications . . . . . . . . . . . . . . 66

4.3 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5 Generation of a Control Application 68
5.1 Code Generation Process . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2 Generation of FB-Types . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2.1 General Design Rules . . . . . . . . . . . . . . . . . . . . . . . 70
5.2.2 Generation of FB-Interfaces . . . . . . . . . . . . . . . . . . . 70
5.2.3 Generation of a Basic FB-Type . . . . . . . . . . . . . . . . . 72
5.2.4 Generation of a Composite Function Block Network . . . . . . 73

5.3 Control-Flow Activity FB-Types . . . . . . . . . . . . . . . . . . . . . 74
5.3.1 REND FB-Type . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.3.2 IF FB-Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76



Contents VI

5.3.3 SIGNAL FB-Type . . . . . . . . . . . . . . . . . . . . . . . . 76
5.3.4 Remaining Control-Flow Activity Types . . . . . . . . . . . . 78

5.4 Service-Component FB-Types . . . . . . . . . . . . . . . . . . . . . . 78
5.4.1 Interaction of Service-Component and Control Application . . 78
5.4.2 Generation of the Function Block Interface . . . . . . . . . . . 80
5.4.3 Elements of the Composite Network . . . . . . . . . . . . . . . 82
5.4.4 Generation of the Composite Function Block Network . . . . . 85

5.5 Resulting Control Application . . . . . . . . . . . . . . . . . . . . . . 86
5.5.1 Creating FB-Type Instances . . . . . . . . . . . . . . . . . . . 86
5.5.2 Event Connections and Data Connections . . . . . . . . . . . 86
5.5.3 Initialization of the Function Block Network . . . . . . . . . . 87
5.5.4 Execution of the Control Application . . . . . . . . . . . . . . 88

5.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6 Implementation 91
6.1 Base Frameworks and Tools . . . . . . . . . . . . . . . . . . . . . . . 91
6.2 Workflow Modelling Editor . . . . . . . . . . . . . . . . . . . . . . . . 93

6.2.1 EMF Ecore Model . . . . . . . . . . . . . . . . . . . . . . . . 93
6.2.2 Plug-In Structure of the Workflow Modelling Editor . . . . . . 95
6.2.3 Implementation Description . . . . . . . . . . . . . . . . . . . 95

6.3 Code Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.3.1 EMF Ecore Model . . . . . . . . . . . . . . . . . . . . . . . . 98
6.3.2 Plug-In Structure of the Code Generator . . . . . . . . . . . . 99
6.3.3 Implementation Description . . . . . . . . . . . . . . . . . . . 99

6.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7 Verification and Test 101
7.1 Human/Robot-Interaction Example . . . . . . . . . . . . . . . . . . . 101

7.1.1 Important Service-Functions . . . . . . . . . . . . . . . . . . . 102
7.1.2 Design of the Workflow Specification . . . . . . . . . . . . . . 103
7.1.3 Resulting Control FB-Network . . . . . . . . . . . . . . . . . . 104

7.2 Results and Comments . . . . . . . . . . . . . . . . . . . . . . . . . . 104

8 Conclusion and Future Work 108



List of Figures

2.1 Structure of a Workflow Specification [59] . . . . . . . . . . . . . . . 8
2.2 Components of Workflow Management Systems and reactive execu-

tion of Workflow Specifications . . . . . . . . . . . . . . . . . . . . . 9
2.3 Definition scheme and execution steps for a generic Function Block

according to IEC 61499 [28] . . . . . . . . . . . . . . . . . . . . . . . 21
2.4 Description of an Execution Control Chart according to [1] . . . . . . 22
2.5 Schemes of Composite and Service-Interface Function Blocks . . . . . 22
2.6 Time-Sequence Diagram describing Requester-Responder interaction . 23
2.7 Descriptive Models defined in the Standard IEC 61499 . . . . . . . . 25

3.1 Modelling the robotic system consisting of Service-Components . . . 34
3.2 Schematic view of a Workflow Editor . . . . . . . . . . . . . . . . . . 34
3.3 Overview of the Engineering Workflow . . . . . . . . . . . . . . . . . 36
3.4 Service-Components and Service-Functions of a modelled robotic sys-

tem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.5 Possible data visibility scopes in Workflow Instances . . . . . . . . . . 39
3.6 Approaches to exchange data between activities [58] . . . . . . . . . . 40
3.7 Communication methods for the interaction with Service-Components 41

4.1 Scheme of a Service Activity with parameter inputs and outputs . . . 48
4.2 Relations between Service-Components, Service-Functions, and their

parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3 Scheme of the Control-Flow Activity type REND and an example of

merging data channels . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.4 Scheme of the Control-Flow Activity type MERGE in two different

notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.5 Connection Fan-Out in order to split the control-flow . . . . . . . . . 54
4.6 Scheme of the Control-Flow Activity type IF . . . . . . . . . . . . . . 55
4.7 Scheme of the Control-Flow Activity type WAIT . . . . . . . . . . . 56
4.8 Scheme of the Control-Flow Activity type CALCULATE . . . . . . . 56
4.9 Scheme of the Control-Flow Activity type START . . . . . . . . . . . 57
4.10 Scheme of the Control-Flow Activity type SIGNAL . . . . . . . . . . 58
4.11 Connected Service Activities with corresponding Activity Parameters 59
4.12 Mapping of source Activity Parameters to target Activity Parameters 60

VII



List of Figures VIII

4.13 Workflow Specification section for the Bin Picking process, including
exception handling branches . . . . . . . . . . . . . . . . . . . . . . . 63

5.1 Mapping of Activity Interfaces and Activity Parameters to events and
associated data variables . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2 Generated Function-Block type for the Control-Flow Activity REND 75
5.3 Generated Function Block type for the Control-Flow Activity IF . . . 76
5.4 Generated Function Block type for the Control-Flow Activity SIGNAL 77
5.5 Schematic overview of a Service-Component Function Block type and

its interaction with the associated Service-Component . . . . . . . . . 80
5.6 Generated interface of a Service-Component Function Block type,

based on a modelled Workflow Specification . . . . . . . . . . . . . . 81
5.7 Interaction between internal Function Blocks of the Service-Component

Function Block type . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.8 Initialization of Service-Component Function Block types using the

SC_INIT FB-Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.1 Relations between the used frameworks and tools . . . . . . . . . . . 92
6.2 Ecore Data Model for the Workflow Modelling Editor . . . . . . . . . 94
6.3 Simplified Class Diagram of the Workflow Modelling Editor . . . . . . 96
6.4 Ecore Data Model for the code generator . . . . . . . . . . . . . . . . 98

7.1 CAD model of the Robotic Arm with axis coordinate frames, shown
in 3D Create [64] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.2 Workflow Editor window showing the Workflow Specification for the
Robot-Interaction Example . . . . . . . . . . . . . . . . . . . . . . . . 105

7.3 Generated control application for the Robot-Interaction Example. Service-
Component FB-Types are highlighted with green coloured stars. The
SC_INIT FB is marked with a grey coloured star. . . . . . . . . . . . 106



List of Tables

4.1 Possible error codes returned by Service-Components . . . . . . . . . 49
4.2 Input Activity Parameters of the Service Activities . . . . . . . . . . 64
4.3 Output Activity Parameters of the Service Activities . . . . . . . . . 64

7.1 Comparison of the engineering effort required by the model-based
engineering approach and by direct implementation. . . . . . . . . . . 107

IX



1 Introduction

Enterprises that are especially positioned in the production industry, permanently
face the difficulties of fast changing market trends, increasing market competition,
and rising costs. At the same time, customers demand product variations, small lot
sizes, and high quality in a short production time.

To overcome these requirements, the utilization of flexible andmobile robotic systems
needs to be forced. Systems of this kind are equipped with mechanical components
such as a mobile platform, which is used to navigate the robotic system within
the work cell, or components for manipulating work pieces (e.g., manipulators and
grippers). Additionally, these robotic systems make use of a set of sensors, such as
cameras, laser sensors as well as sensors to measure physical quantities. The sensors
are needed to capture information regarding the surrounding environment, where
the robotic system is operating in.

Since mobile robotic systems are designed to carry out predefined working tasks, a
means of supervisory control is needed, that coordinates the functional components,
the robotic system is composed of. However, customary engineering approaches
usually require much programming effort which is not necessarily restricted to the
initial operation, thinking of changes in the working process which need to be done,
during the operation life time of the robotic system. Additional difficulties arise if
the system’s components are provided by different vendors and should interoperate,
in order to perform the desired process.

The rising need for fast configuration of flexible robotic systems as well as re-
configuration, raises the demand for preferably user-friendly engineering tools, which
enable simplified programming, configuration and maintenance of such robotic sys-
tems. Factory workers, who are not software or automation engineering experts but
familiar with the production processes, should be able to program these systems.

Some of the requirements and needs that are mentioned above, are underpinned by
the increasing popularity of Distributed Automation Systems, used to solve control
application problems in the industrial field. These requirements include functional
units composed out of several intelligent devices, interoperability between devices of
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1 Introduction 1.1 Aim of the Work 2

different vendors, and reconfiguration. The main idea of distributed system archi-
tectures is to integrate control intelligence into hardware devices, such as actuators
or sensors. By linking those functional autonomous units together in a communica-
tion network, they can interoperate and provide highest flexibility for the realization
of a concrete control behaviour. This architecture describes a trend, leading away
from clumsy, centralized control units which are difficult to maintain, to distributed
intelligence, enabling reusability and effective verification of these modules.

For process descriptions in different fields of work, including business, production
or health care, Workflow Modelling has emerged as promising technique in order to
visualize, clarify, structure and optimize the steps of processes. The basic idea is to
describe a process as a combination of intuitive processing steps which are linked
together, forming a defined execution sequence. Based on process simulation results,
the process description can be modified and adapted to fulfil new requirements. An
engineering approach that combines intuitive modelling of processes with the flexi-
bility of distributed system architectures, might meet the requirements for flexible
robotic systems that can be programmed and (re)-configured with a high grade of
usability.

The intention of this work is to show that Workflow Modelling is suitable for the
simplified programming of supervisory control application, that is needed to coor-
dinate system components which perform the execution of a predefined process. In
contrast to common programming methods, the modelled control behaviour is de-
signed as simple as possible and independent from a specific platform. The modelled
control behaviour shall be transformed into a control application by using code gen-
eration concepts. The resulting control application can be executed by a distributed
automation system.

1.1 Aim of the Work

The aim of this work is to develop a method which enables simplified programming
of the behaviour of a distributed system architecture, especially of flexible robotic
systems. This means that the control functionality of a supervisory control appli-
cation, which coordinates the robotic system’s autonomous components, shall be
determined by means of a process description that is expressed using a Workflow
Modelling Language. In order to close the gap between the modelled supervisory con-
trol behaviour and an executable program, methodologies for code generation need
to be applied to create a Function Block application, according to the standard IEC
61499. To enable an iterative programming process, the generated Function Block
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application can be run not only on the hardware target system, but also in combi-
nation with a Simulation Environment. The simulation results can then be used to
improve the modelled supervisory control behaviour, henceforth minimizing design
errors, before running the application on the real hardware target system.

Relevant research questions, which are taken in account are “Can graphical Work-
flow Modelling Languages be effectively used to enable simplified programming of
control applications?” or “Is it possible to generate a supervisory control applica-
tion, according to IEC 61499, by having available shallow information regarding the
behaviour of the robotic system’s components as well as a process description?” and
“Which prerequisites need to be fulfilled by the resulting system architecture of such
a model-based engineering approach?”.

1.2 Objectives of this Work

Facing the main objective of keeping the engineering process as intuitive as possible,
the following objectives can be derived.

• Based on a thoroughly literature survey regarding Workflow Management
Technology, a graphical Workflow Modelling Language which allows intuitive
modelling of control functionality, has to be developed.

• The behaviour of the components, of which a flexible robotic system is com-
posed of, needs to be described independently on how the functionality is
implemented by a specific component vendor.

• A code generation tool needs to be developed which generates and parametrizes
an IEC 61499 compliant Function Block Network, that represents the mod-
elled system behaviour. This supervisory control application is generated by
using the component behaviour information as well as the designed Workflow
Specification which describes the control functionality.

• Finally, test cases need to be implemented to show the applicability of the
model-based engineering approach, that is proposed in the scope of this work.
Furthermore, this test examples should reveal the potential of the implemented
prototype which is promising for future development work.
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1.3 Guideline Through the Work

In Chapter 2 the fundamentals, as well as the current state of the art are presented
which form the theoretical basis of this work. The first part of this chapter deals with
the fundamentals of theWorkflow Management Technology. Secondly, different char-
acteristics of Workflow Modelling Languages are discussed and the most important
language implementations, which have influenced this work, are presented. Thirdly,
the fundamentals of the standard IEC 61499, for modelling distributed control sys-
tems, are discussed, including a short description of standard compliant development
tool implementations. The fourth part deals with a brief overview of 3D Simulation
and lists available implementations of 3D Simulation Toolkits. Chapter 2 concludes
with an overview of code generation technologies.

Based on the introduced concepts, an overall system architecture, which under-
pins the developed modelling approach, is derived in Chapter 3. Facing a desired,
intuitive model-based engineering process, the requirements for such a system are
identified for the development of a Workflow Modelling Language that satisfies the
application domain specific needs as well as for the conception of the code generation
method.

Chapter 4 deals with the proposal of a graphical Workflow Modelling Language,
which has been developed to overcome the requirements that are stated in the previ-
ous chapter. Besides the general language elements, encompassing workflow activity
types, data interaction and execution order, some extended concepts including ex-
ception handling and possibilities for hierarchical workflow structuring and workflow
verification are discussed.

Based on the proposed Workflow Modelling Language, Chapter 5 focuses on the
description of the code generation method which is needed to generate a Function
Block application, out of the modelled Workflow Specification. The generation of
Function Block types, representing the workflow activities, is shown based a specific
example. Furthermore, the resulting structure of the generated Function Block
application is explained.

Chapter 6 deals with the implementation of the presented approach and includes a
description of the frameworks and technologies that have been applied in order to
produce the program code. The resulting plug-in structure as well as the essential
functionality, provided by the implement classes, is explained. In Chapter 7, test
cases are introduced which are used to show the results of the implemented approach,
that are analysed and discussed. Finally, Chapter 8 summarizes the results of this
work and provides development steps, that are considered for further research.



2 State of the Art

This chapter gives an overview of the theoretical background, which is essential for
this thesis. The first two sections introduce basic concepts of Workflow Management
including important definitions, and characteristics of Workflow Management Sys-
tems. Moreover, a set of implemented and available Workflow Modelling Languages
is introduced.

The second part provides an overview of the basic concepts of the international
standard IEC 61499. Hereby, emphasis is put on the Function Block concept and
the reference models which describe the distributed system architecture. Control
applications, based on the IEC 61499 standard, can be seen as the preferred outcome
of the engineering method which is proposed in the scope of this thesis.

In the third part, a brief overview of 3D-Simulation Environments is given, which
discusses general characteristics of simulation tools and lists some example imple-
mentations of 3D-Simulation toolkits. The application of simulation techniques
enables the iterative improvement of the modelled control behaviour through con-
tinuous validation by simulation. Finally, an overview of code generation techniques
is given, which are intended and suitable for reducing the programming effort, needed
for the implementation of the method described in the subsequent chapters.

2.1 Introduction into Workflow Management

Workflow Management (WfM) technology has been successfully used for describing
business processes using Workflow Specifications (see e.g., [25], [20], [54], [52] or [40]).
Moreover, WfM provides methodologies for optimization, re-design and standard-
ization of the specified processes. The hereby caused rationalization of workflows
and automation of work delivery result in a number of promising benefits:

• In general, modelling leads to more detailed insights into the processes which
should be described.

5
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• Process optimization can result in better quality and can simultaneously re-
duce the cost, as result of the shortened process time.

• If the use of a Workflow Specification helps to improve the process trans-
parency, the current state of a process and the decisions, which have been
taken during its progress, can be tracked more easily.

• Correctly defined Workflow Specifications ensure that tasks are executed only
when the prerequisites, for their correct processing, are fulfilled.

Taking the advantages of this developing technology, business enterprises are more
likely able to deal with global competition, reduced time-to-market and to meet
the requirements of fast changing product and service variants under high pricing
pressure [18].

During the development of WfM technology, an apparently endless list of WfM
products have been introduced by different vendors and the amount of available
tools is growing continuously (e.g., [46] [36] [69] and more1). Despite the fact of
large product variety, several analyses of WfM products come to the result that
all implementations share the same common characteristics [20]. The Workflow
Management Coalition (WfMC) [65] aims to develop a widespread standard for
the implementation of workflow modelling products. As a result of this attempt, a
description of the components and characteristics of Workflow Management Systems
(WfMS) has been proposed [20]. The following sub-sections give brief explanations
of the terms related to the WfM technology mentioned above. Further terms and
definitions are provided in the glossaries of [66], [25] and [18].

2.1.1 Workflow and Workflow Specification

Before the term Workflow Management System can be explained, the definitions of
the terms Workflow and Workflow Specification are given at first.

Definition: The WfMC-glossary [66] defines Workflow as:

“The automation of a business process, in whole or part, during which
documents, information or tasks are passed from one participant to an-
other for action, according to a set of procedural rules.”

Jablonski et al. [25] suggest another definition which says that a Workflow has got a
defined ’starting point’, an organized operation sequence and a defined ’end point’.

1An extended list of workflow modelling tools is presented in [56].
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Workflows can be partly automated and consist of a collection of work items - so-
called activities - which are designed to carry out a defined business process or an
organizational procedure. Moreover, workflows contain activities which can be com-
posed into Sub-Workflows2. Activities are associated with work items which require
resources (more generic: Workflow Participant) in order to get executed successfully.
These resource types can range from human workers to machine resources. At this
point it is worth mentioning that the term Workflow traditionally is associated with
business processes (e.g., “issue an invoice”), but the same concepts can be applied
for complex manufacturing procedures [20].

Definition: A definition of Workflow Specification is suggested in [18]:

“A Workflow Specification is created based on a Workflow Modelling Lan-
guage, which can be represented either in textual or graphical form, using
predefined workflow activities and language specific control structures.
The Workflow Specification serves as an abstract representation of the
real process. Its execution is supported by the Workflow Management
System.”

The term Workflow Modelling describes the procedure of creating a Workflow Spec-
ification with the help of a Workflow Modelling Language. In order to prevent
confusion it is mentioned that the notion Workflow Model is mainly used instead
of Workflow Specification in the relevant literature (see e.g., [58], [25] or [47]). Fig-
ure 2.1 shows the schematic structure of a Workflow Specification, consisting of a
set of activities (equivalently named tasks in the figure) and the execution order,
illustrated by solid arrows. Workflow Management Systems might support the inde-
pendent execution of a number of workflow instances (workflow case) simultaneously.
A Sub-Workflow (block task) is processed by directing the execution control to its
first incorporated task. After completion of all incorporated tasks, the block-task
regains execution control and has finished its execution. A Multiple-instance task
constitutes the concurrent execution of a number of instances of the same task type.
Multiple-instance tasks are considered to be completed when a predefined number
of task instances have been processed successfully [59].

If a Workflow Specification is being created or changed, its design has to comply with
a set of rules at any time3. These rules can be derived from a so called Modelling
Paradigm which is primarily represented by the Workflow Meta-Model. A Workflow
Meta-Model provides a formal description of the workflow modelling environment

2A Sub-Workflows is defined as an aggregation of activities and enables hierarchically struc-
turing of a Workflow Specification to reduce complexity.

3Usually including data type checks, constraints for connections between activities or rules
regarding the structure of a Workflow Specification.
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Figure 2.1: Structure of a Workflow Specification [59]

[25]. The Modelling Paradigm defines the syntax and semantics of the Workflow
Modelling Language.

2.1.2 Workflow Management System

A Workflow Management System (WfMS) consists of a set of components which
support specification, the managed execution and the monitoring of workflows. The
functional components of a WfMS are shown in Figure 2.2(a) and can be described
as follows [20]:

• Build-time functions for the definition of the workflow, based on a business
process analysis, and for the derivation of the Workflow Specification (i.e., the
Process Definition).

• The Workflow Enactment Service, can be treated as the core control software
of a WfMS, providing run-time functions including the interpretation and ex-
ecution of the Workflow Specification.

• Predefined interfaces enable the Workflow Enactment Service to interact with
the available Workflow Participants (resources) for work item distribution and
to fetch the processed working results. Alternatively, the work items can also
get processed by available applications and IT tools. The utilization of IT
tools by human workers, for work item procession, and the corresponding
data interchange is represented by two anti-parallel arrows.
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(a) Components of a Workflow Management System [20]

initiate 
execution

execution 
confirmation

Activity A Activity B

Resource Environment 
(Resources)

Workflow Specification

(b) Reactive Workflow Execution

Figure 2.2: Components of Workflow Management Systems and reactive execution
of Workflow Specifications

• In some cases it is necessary to dynamically change the Process Definition
during the execution of the workflow instance, as indicated by the dashed
feedback arrow.

A WfMS interacts with its environment, enclosing resources and external services,
and therefore can be denoted as an open, reactive system [14]. In this context
reactivity means that the WfMS can respond to events, received from components
of the environment. According to Eshuis et al. [14], reactive WfMSs do never
process any work items itself, but distribute them among the available resources
and trigger their execution. Figure 2.2(b) depicts an example for reactive execution
of a Workflow Specification. The WfMS assigns the activity A to the resource and
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triggers its execution. After the WfMS has received an execution confirmation from
the resource, the execution of activity B is initiated.

Contrary to reactive systems, active systems control themselves and cannot react to
query events emitted by its environment. Active systems are always called closed
[14]. Reactivity is an essential characteristic which enables the WfMS to coordinate
effectively the available resources. In order to achieve the goals of this thesis, de-
scribed in Section 1.1, it is necessary to model the required control behaviour by
means of a Workflow Modelling Language which supports the reactive execution of
the specified workflow 4.

2.1.3 Activity Life Cycle

The Activity Life Cycle [59] denotes a scheme to describe the sequence of states an
activity runs through, beginning with its initial creation. In the second state, the
activity is offered to one or a group of resources. Afterwards, the assignment to
a concrete resource is initiated either by a resource or by the WfMS. Finally, the
execution is commenced and completed or suspended. Generally, transitions from
one activity state to another can be initiated either by the WfMS or by the resources
to which an activity is assigned to.

Aalst et al. [59] propose an explanation of the life cycle by means of a state chart.
The relations described in the Activity Life Cycle state chart are useful for the
derivation of activity distribution strategies, as well as workflow exception handling
strategies (see e.g., [59] [60] [52]).

2.1.4 Workflow Validation and Verification

Validation and Verification analyses are of great importance for organizations us-
ing WfM technology in order to ensure correctness of Workflow Specifications. The
term Validation can be explained as an inspection of the functional behaviour of the
Workflow Specification. This check is usually based on the simulation of predefined
fictitious workflow cases and the evaluation of the processing results. A Workflow
Specification can be checked for structural correctness by using Verification analy-

4Note: Reactive execution of a Workflow Specification does not only depend on the capabilities
of the WfMS but also on the formal description of the Workflow Modelling Language (i.e., its
semantics and syntactical elements).
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ses which encompass syntax and semantic checks as well as data type constraints
checks.

A WfMS should periodically perform thorough checks of the Worfklow Specifications
to reduce the risks of production loss, decreasing throughput rates, or product recalls
[55]. Various Verification methodologies have been developed mainly for Petri-Net
based Workflow Modelling Languages, ranging from algebraic techniques to methods
of the graph theory (see e.g., [55], [47], [7], [10] or [31]). Further verification methods
are introduced along with the presentation of currently available Workflow Modelling
Languages, according to the state of the art research.

2.1.5 Workflow Optimization

Especially in complex and large Workflow Specifications, the application of Work-
flow Optimization strategies is indispensable in order to reduce workflow processing
durations. Although there has not been put much effort into the development of
optimization methodologies (see e.g., [55] and [7]), two basic optimization patterns
can be applied to Workflow Specifications in general, which are described in the
following [7].

Two activities A1 and A2 can be executed in parallel (concurrently) if the processing
of A2 is independent from the results of A1 and no critical resources are needed
by both activities at the same time. Instead of using sequences of activities of the
same type (e.g., A1 → A1 et cetera), loop-structures should be introduced. With
regards to the perspective of a Workflow Management System, the utilization of
loop-structures results in the advantage that activities within the loop might only
need to get instantiated once. Moreover, activities of the same type can be re-
scheduled in a way that they get executed by the same resource5.

Gruber [18] presents Workflow Transformations which do not change the semantic
of a Workflow Specification but change the specification in a way that certain pairs
of activities can be executed in parallel thus leading to improvements.

5In this case a resource does not need to reload the context of the activity every time but only
restart its execution, for instance with updated input parameters, which reduces the execution
time [59].
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2.2 Workflow Modelling Languages

Workflow Specifications are developed with the support of Workflow Modelling Lan-
guages which provide the necessary semantics and syntax for the workflow expression
in a formally correct way. Workflow Modelling Languages are either represented in
textual6 or graphical7 form.

One of the main targets of this work is to develop a graphical Workflow Modelling
Language which enables a simplified expression of control behaviour for a flexible
robotic system. By keeping these requirements in mind, a thorough literature search,
enclosing different Workflow Modelling Language implementations, has been per-
formed. The Workflow Modelling Languages and their characteristics, which have
influenced this work most, are presented shortly in this section. Moreover, a set
of modelling aspects and design patterns, which are of great importance for the de-
sign of a Workflow Modelling Language and the supporting Workflow Management
System, are introduced and explained.

2.2.1 Workflow Modelling Aspects

A collection of aspects which should be considered for the design of a Workflow
Modelling Language, has been identified by several researchers (see e.g., [25], [55] and
[47]). These viewpoints cover design questions for Workflow Modelling Languages
as well as for the functionalities of a Workflow Management System.

• Behavioural aspect: The behavioural aspect (or Control-Flow aspect) de-
termines the execution sequence of the activities included in the Workflow
Specification and therefore describes dependencies of subsequent tasks (see
[66] [61]).

• Informational aspect: Workflow data and data dependencies between suc-
cessive activities are considered in the data perspective8. There are several
possibilities how to transport data within a workflow case and how it is passed
from one activity to the next [58].

• Organizational aspect: The organizational aspect deals with the allocation
of work items to available resources, the satisfaction of allocation constraints
and the handling of allocation conflicts. Work item allocation can happen

6Examples: BPEL (see Section 2.2.4), Temporal Logic (see Section 2.2.7).
7Examples: Petri-Nets (see Section 2.2.3), UML Behaviour Diagrams (see Section 2.2.5).
8In general we can distinguish between Control Data, needed by the WfMS in order to operate,

and Production Data which exists independently from the WfMS [58].
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statically, which means that activities of a certain class are allocated to a
determined resource by default or dynamically. If allocated dynamically, work
items are allocated according to defined allocation strategies [59].

• Functional aspect: The functional perspective deals with the definition of
each task in the Workflow Specification. An overall task description includes
input parameters, output parameters, the processing steps and configuration
parameters9. Tasks may update control data as well as production data vari-
ables [18].

• Operational aspect: The operational perspective describes the interactions
of the WfMS with its environment. Elementary activities can require access
to external applications or resources to update Control and Production Data
[47].

• Exception Handling aspect: Unexpected events occurring during workflow
execution might lead to deviations in the execution sequences of the Workflow
Specification. Exception Handling strategies are then applied to further ensure
correct workflow execution [60].

In the next step the question may appear, how these viewpoints can be applied
correspondingly to the implementation of a Workflow Modelling Language. To ease
the development process, Aalst et al. [56] propose a collection of design patterns.

2.2.2 Workflow Patterns

Workflow Patterns describe reoccurring design structures found in implemented
Workflow Modelling Languages and cover the functionalities corresponding to the
modelling aspects introduced above [56]. Indications for using Workflow Patterns
include the evaluation and comparison of Workflow Modelling Languages in terms
of their expressiveness, as well as a guideline for the development of Workflow Mod-
elling Languages andWorkflow Management Systems [56]. The following paragraphs
give a brief overview of the four groups of Workflow Patterns, identified by Aalst et
al. [56]. Detailed information regarding Workflow Patterns are provided in [56].

Control-Flow Patterns
Control-Flow Patterns are concerned with the execution sequence of the activities
within the Workflow Specification. The basic pattern types describe control-flow
routing structures, for instance activity sequences, synchronizing patterns including

9These may include constants such as execution deadlines and task priority numbers.
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AND-Join, XOR-Join10 and the basic branching patterns parallel split and XOR-
Split which can be compared to a if-then-else decision routing pattern [61], [66].
More specific control-flow patterns are described in [61].

Data Patterns
Data Patterns aim to express the possibilities how data object can be represented,
transported, and modified within workflow instances [58]. Data Visibility patterns
express to which workflow constructs (e.g., task, block-task, or workflow case level)
data objects are bound to and the scope of the Workflow Specification, where they
are visible. Data Interaction patterns describe approaches how data transport can
be arranged between workflow constructs [58]. These include combined data and
control-flow channels, distinct data and control-flow channels, and data exchange
through data passing, using shared variables [58].

Resource Patterns
Resource Patterns refer to the Organizational Aspect and describe how resources are
represented and dealt within a WfMS [59]. Additionally, the distribution of activities
among resources is covered by Resource Patterns. Creation Patterns determine
at design time to which resources activities should be assigned to11. Based on
this information, Push and Pull Patterns describe the current distribution of the
activities to the resources, where “push” denotes that the distribution is initiated
by the WfMS and “pull” describes the allocation of an activity is initiated by the
resource. Detour Patterns refer to situations where the distribution of an activity
needs to be undone (e.g., suspension of an activity or resource overload). Detailed
information about Resource Patterns is provided in [59].

Exception Handling Patterns
Workflow Exception Handling is indispensable in a WfMS in order to deal with
unexpected events that may arise during workflow execution in order to keep the
executed workflow instance (case) in a defined state. Common exception types occur
related to work item failures including execution deadline expiry, resource unavail-
ability or triggered exceptions. Triggered exceptions are events which require special

10The XOR-Join pattern joins different execution branches to one single sequence branch.
Control-Flows arriving simultaneously are excluded.

11Examples are: direct allocation of certain activity types to one designated resource, or role-
based allocation, where activities are offered to a group of resources, sharing similar characteristics
[59].
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treatment. A WfMS should be capable of detecting exceptions and provide appropri-
ate handling strategies [60], [31]. There are two general approaches, how exception
handling functionalities can be integrated into a WfMS, namely embedded into the
Workflow Specification as alternative branches or autonomous (i.e., independent of
the Workflow Specification), which requires the knowledge of the occurring con-
text of an exception [52]. By using an embedded solution, the simple definition of
handling strategies is enabled and the exception origin is clearly defined within the
Workflow Specification. Autonomous solutions provide high expressiveness, which
enables the description of the exception occurring context by using more complex
conditions [52].

The basic activity handling strategies12 can be derived from the Activity Life Cy-
cle and include for instance the restart of activity execution, re-offering of activity
to other applicable resources, and forcing the activity to be failed or completed.
Execution of Workflow Instances can be continued as intended or removed, which
means that all activity instances are cancelled and removed [60]. Recovery Actions
denote the finalizing part of an exception handling strategy and are needed in order
to compensate the effects, brought by an exception. A common approach is Forward
Recovery where an alternative path through the Workflow Specification is executed,
to compensate the exception effects [31]. Knowledge-Based Handling builds on sim-
ilar, previously happened exception cases, which are used to derive a new recovery
action through adaptation of old handling strategies [52] [31].

After gaining some insights into workflow modelling aspects and the resulting design
patterns, a selection of Workflow Modelling Languages including their characteris-
tics, which have influenced the development work of an application specific language,
are presented in the following sub-sections.

2.2.3 Petri-Net Based Languages

Workflow Modelling Languages based on Petri-Nets (PNs) have been thoroughly
investigated, since the establishment and development of Workflow Technology (see
[55], [7], [10], [54] or [15]). PNs consist of a set of places and transitions which are
connected to each other via directed arcs, whereat two transitions or two places may
not be subsequently connected. The current state of a PN is determined by tokens
that are assigned to places (i.e., the marking of places). A state change is induced

12Besides the affected work item (activity), also the underlying workflow instance needs to be
handled since activity failures also have impact on the workflow instance and the other contained
activities [60], [52].
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by firing a transition, once the firing rule is satisfied, causing the number of tokens
belonging to the preceding places being reduced and passed to the successive places.
A formal definition of a Petri-Net is given in [7] or [55].

To improve expressiveness, PNs can be extended to High-Level PNs by using coloured
tokens (i.e., tokens extended with data attributes) to enable the use of firing con-
ditions for transitions13. Timed PNs allow temporal constraints to be applied by
assigning time delay values to transitions, places or arcs. Dahms [10] uses coloured
and timed PNs for the description and control of event-discretely modelled produc-
tion systems.

With reference to Workflow Modelling, activities can be represented by transitions
or places like described in [7] and [15]. Events received from external resources can
be represented by transitions, labelled by the considered event, or through tokens
appearing in certain places [55], [14]. According to Eshuis [14], PNs do not provide
appropriate constructs to represent data objects reasonably.

The main advantage of PNs are their formal semantics and their mathematical
definition, enabling effective evaluation and verification methods (see e.g., [30], [10],
[7] and [55]). The main problems of Petri-Nets underlie the fact that PNs model
active, closed systems whereas WfMSs need to be reactive and open [14]. Reactive
Petri-Nets, introduced by Eshuis and Dehnert [15], as well as Yet Another Workflow
Language (YAWL), proposed by Hofstede et al. [57], [55] are intended to overcome
the disadvantages of classic PNs.

2.2.4 BPEL - Business Process Execution Language

The Business Process Execution Language (BPEL) (or WSBPEL - Web Services
BPEL) was developed to provide a standard for the description of business pro-
cesses based on the orchestration of Web Services. Activities in BPEL correspond
to Web Services which are already implemented. By means of orchestration, Web
Services providing basic functionalities can be combined in order to create higher
levelled services. BPEL allows to specify how to coordinate the execution of Web
Services according to a process definition [68]. Workflow Specifications are described
textually, based on the BPEL XML-Scheme, and can be interpreted and executed
by the BPEL orchestration engine which corresponds to the Workflow Enactment
Service of the BPEL WfMS.

13A firing condition uses an attribute value in a boolean expression. If the expression evaluates
to true, the transition is activated and fired if the firing rule is satisfied [10].
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As a main benefit of BPEL, the clear separation of internal business processes (e.g.,
belonging to a certain enterprise) from processes in the external environment (e.g.,
business partners, service providers) is possible without affecting the communica-
tion channels upon internal process changes [68]. BPEL is platform independent
and portable to other Workflow Modelling Languages, due to its XML based lan-
guage constructs. The combination of existing service implementations to “new”
services improves reusability and interoperability [5], [40]. The language extensions
BPEL4People [41], [42] and BPEL-SPE [22] enable BPEL to support human interac-
tion patterns and the definition of sub-processes (compareable to sub-workflows). A
number of commercial and open-source BPEL engines have been released during the
development of BPEL, such as ORACLE BPEL Process Manager, IBM BPWS4J,
Twister (Apache), Microsoft Workflow Foundation and Active BPEL [67].

2.2.5 UML Activity Diagrams

The UML Activity Diagrams (UML - Unified Modelling Language) can be effectively
used for workflow modelling. A variety of tools are available for the design of UML
Activity Diagrams such as Eclipse UML2Tools, StarUML, astah*, Papyrus and many
more [50].

Activity Diagrams are used to describe different application flows, which describe the
functionalities of a system, using activities14. They consist of activity nodes, each
representing a work item, as well as outgoing transitions [43]. A transition firing
means that the execution of the source activity is finished. Every Activity Diagram
may contain exactly one start node but can contain at least one end node. To reduce
complexity in Activity Diagrams, the sub-activity construct enables the designer to
nest functional connected diagram parts into a user defined activity [43], [50]. Ac-
tivity Diagrams support basic Control-Flow Patterns described in Section 2.2.2. In
order to receive and emit signals (events) asynchronously, the UML standard pro-
vides receive and send signal nodes [50]. Workflow Specifications based on Activity
Diagrams are suitable to be executed by a reactive WfMS [14].

Dumas and Hofstede [12] benchmarked Activity Diagrams with promising results.
The notation of sub-activities combined with signal senders and receivers allows
effective workflow modelling. Regarding the control-flow and data perspectives (see
Section 2.2.1), Hofstede et al. [62] conclude that most of the patterns proposed in

14By assuming that the application flows can be automated, they can directly be compared to
workflows.
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[61] and [58] are supported directly. However, Activity Diagrams lack in providing
support for resource patterns.

2.2.6 JECA Rules for Workflow Modelling

The functional behaviour of reactive systems can be described by using JECA rules
(justification-event-condition-action) which determine how to react (perform an ac-
tion) on defined events and, at the same time, a specified boolean condition is
fulfilled. An action A is performed if and only if the event E occurs and the con-
dition C evaluates to true [14], [31]. The justification J corresponds to a condition
which can be used to disqualify15 a JECA rule if its evaluation is not relevant in the
execution context.

Workflow Specifications based on JECA rules consist of states which are connected
among each other through transitions, and have a defined start and an end state.
JECA rules label transitions which fire if the corresponding rules are enabled and
evaluated thus forming an execution sequence. If the initial rule enables the final
rule through a path of workflow states and rules, for all permitted branches of the
Workflow Specification, the workflow is called correct. Otherwise execution can
result in a deadlock [31].

Eshuis [14] suggests the combination of JECA rules and Activity Diagrams. A JECA
rule then labels a transition which activates the subsequent activity node. Therefore,
every node emits a termination event, after the associated activity has been executed
successfully, which triggers the next JECA rule. Eshuis [14] suggests to only permit
the emission of events within an action, since they are executed by the WfMS itself.
This restriction is crucial to ensure reactive behaviour. Verification methodologies
for Workflow Specifications based on JECA rules are discussed in [31].

2.2.7 Temporal Logic for Workflow Modelling

Temporal Logic extends the classical propositional logic with operators to describe
time constraints and temporal dependencies. The temporal operators refer to dif-
ferent periods of time or moments for instance X ↔ next time, F ↔ in future or G
↔ generally at any time which are described thoroughly in [8].

15A JECA rule is disqualified if the justification evaluates to true.
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Attie et al. [3] describe how to model control-flow dependencies with Temporal
Logic constructs as global constraints for a Workflow Specification, using a database
environment. An activity scheduler, which belongs to the WfMS, initiates the distri-
bution of work items among external resources, if all global constraints are fulfilled.
In case of a constraint violation, the activity cannot get executed and the execution
request is handled at a later time [47]. Temporal Logic based constraints, in com-
bination with a so-called Model Checking tool, can be applied for the verification of
Workflow Specifications [14].

The main advantages of using Temporal Logic for workflow modelling are high and
generalized expressiveness of the language constructs. However, Workflow Modelling
based on Temporal Logic usually requires much time effort. The computational work
that has to be performed by the WfMS is usually high [47].

2.3 The IEC 61499 Standard

The development of the Industrial Standard IEC 61499 16 has been initiated in order
to provide a new architecture for the implementation of complex, distributed indus-
trial process, measurement and control systems (IPMCSs) [28]. As basic construct
of the IEC 61499, the Function Block (FB) is treated as a reusable (small) software
component that represents “a piece of hardware” [28], [16]. FBs allow the encap-
sulation of functionality by means of algorithms and the corresponding input and
output data. One of the main aims is to provide an open architecture to support
the development of Distributed Control Systems, whereat “open” means that the
architecture complies with the system demands listed below [9].

• Portability: Software tools from different vendors can interpret and use li-
brary elements and configuration data correctly, which are originally produced
by other software tools.

• Configurability: Devices including their software components can be config-
ured by different available development tools.

• Interoperability: Intelligent hardware devices originating from different ven-
dors work together and can be exchanged easily (e.g., by replacing a broken
device).

Due to its generic architecture, which is described by a set of descriptive models, the
standard is applicable to PLC-Systems (Programmable Logic Controller), intelligent

16Development started in the early 1990, initiated by the Technical Committee 65 (TC65) as a
group of the International Electrotechnical Commission (IEC).
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hardware devices17 or Fieldbus protocols.

Firstly, the FB concept and its characteristics will be explained. Secondly, a de-
scription of the models which are defined in the IEC 61499 Standard is given. The
last sub-section presents current research topics.

2.3.1 The Function Block Concept

Part 1 of the IEC 61499 Standard focuses on the FB architecture as well as on gen-
eral concepts for system modelling based on FBs [1]. A FB encapsulates algorithms
and internal data which are hidden from the environment. Moreover, the execution
of these algorithms can be triggered by events, which are routed to the FBs event
inputs. These features characterize an event-controlled system architecture. Lewis
[28] compares FBs with objects in object-oriented programming languages and con-
cludes that FBs and objects share similar characteristics. Figure 2.3(a) shows the
scheme of common FB as defined in [1], which is representative for every FB-Type18

in IEC 61499. Every FB that is used in an IEC 61499 Control Application is of a
certain FB-Type and has a unique Instance Name. Event inputs and event outputs
are used to receive and send events, respectively. To enable data exchange between
FBs, data inputs and data outputs are used, which are associated with correspond-
ing events19. In the FBs bottom part Algorithms and Internal variables are stored
and hidden within the block. The Execution Control is located in the top part and
controls the execution of the predefined algorithms, if an appropriate input event
is received [28]. To execute the defined algorithms, the FB has to be mapped to a
resource which provides an execution runtime environment.

Figure 2.3(b) shows how the execution of a FB algorithm is managed by the scheduler
of the responsible resource. Firstly, data inputs need to have valid and steady values
1 . Secondly, if the corresponding input event is active 2 , the scheduler is ordered
by the FB’s Execution Control 3 to invoke the algorithm 4 . During execution,
internal variables may be used to store intermediate results. The resulting data
is written to the data outputs (stable values) 5 . Afterwards, the scheduler is
ordered 6 to finish execution by requesting the Execution Control 7 to send the
corresponding output event 8 . Note that theses phases must be performed in the

17Hardware devices like sensors or actors which contain autonomous control intelligence (e.g.,
controllers, advanced communication interfaces) are often referred to Smart Devices

18IEC 61499 defines three different “forms” of FB-Types, which will be explained later in this
section

19This association is denoted as the WITH construct and visualized by the vertical lines, con-
necting event inputs/outputs with data inputs/outputs [28].



2 State of the Art 2.3 The IEC 61499 Standard 21

Instance Name

Type Name

Event-Based

Execution Control

Algorithms

Internal Variables

Event 
Inputs

Data 
Inputs

Event 
Outputs

Data 
Outputs

(a) A generic FB

Instance Name

Type Name

Event-Based

Execution Control

Algorithms

Internal
Variables

Resource 
Scheduler

1

2

3 4 6 7

5

8

(b) Algorithm execution steps

Figure 2.3: Definition scheme and execution steps for a generic Function Block ac-
cording to IEC 61499 [28]

described order to ensure the correct execution and consistent data values [16]. The
following paragraphs deal with the different Function Block types defined in the IEC
61499 Standard.

Basic Function Block
The Execution Control part of a Basic Function Block is determined by a state
machine which is notated as Execution Control Chart (ECC) [1] [28]. An example
of an Execution Control Chart is depicted in Figure 2.4. The initial state (i.e.,
START) corresponds to the entry point of the ECC. Besides, the ECC contains
other EC-States and EC-Transitions which denote possible state transitions. An
EC-Action is bound to an EC-State and refers to an algorithm or an output event
or both, which should be called or fired, respectively, if the state is reached20. Every
EC-Transition is labelled with a condition that can be an event input or any valid
logical condition21. A transition originating from the currently active state is fired
immediately if its condition is evaluated to true.

20Multiple EC-Actions can be bound to an EC-State which are executed consecutively, as shown
for the state “OPERATION”.

21A logical condition may include internal variables, input data values and event inputs [1].
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Figure 2.4: Description of an Execution Control Chart according to [1]

Composite Function Block
The behaviour of a Composite Function Block is determined by a number of FB
instances which are interconnected by data and event connections, in a so-called
Composite FB-Network. These “internal” FBs can be instances of every existing
FB-Type (i.e., Basic, Composite or Service-Interface) [1], [16]. A graphical represen-
tation of a Composite FB is given in Figure 2.5(a). Based on the interface definition
of the Composite FB, event/data inputs and outputs can be connected to inputs and
outputs of Component FBs within the Composite FB-Network [1]. Because of their
hierarchical structure, Composite FBs are useful to reduce the complexity in large
FB-Networks and to force reusability of implemented functionalities [16]. A similar
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Figure 2.5: Schemes of Composite and Service-Interface Function Blocks



2 State of the Art 2.3 The IEC 61499 Standard 23

construct is defined by so-called Sub-Applications which allow the encapsulation of
a FB-Network analogously, with the difference that the internal FB-Network may
be executed on distributed resources in contrast to a Composite FB [28].

Service-Interface Function Block
Data or event communication between distributed resources or hardware devices
can be achieved by using Service-Interface Function Blocks (SIFBs)22 [1], [16], [28].
Regarding the source, that initiates data/event transfer, the IEC 61499 Standard
distinguishes between two situations [1]. Firstly, a transfer request can be trig-
gered by a FB-Network (part) which is executed on a resource, thus naming the
corresponding SIFB a REQUESTER. The second possibility refers to a resource-
initiated action (e.g., data received or time-out triggered [16]), naming the SIFB a
RESPONDER.

Figure 2.5(b) depicts a generic Requester SIFB, which allows to configure the com-
munication interface PARAMS data input at initialization23. Data can be sent and
received via the data inputs/outputs SD_i and RD_i, respectively. In Figure 2.6 the
whole communication process for an application-initiated request is displayed, using
a Time-Sequence Diagram [28], including the view from both involved resources.
A Time-Sequence Diagram describes the sequence of events during the interaction
process, where the time is increased from the top to the bottom. The tags “+”,
“-” in brackets, denote for event inputs that QI is set to true or false, respectively
and for event outputs that an action has been successful/unsuccessful. A service is

INIT(+)

Requester Resource A

INITO(+)

Service 
Initialization

REQ(+)

CNF(+)

Data 
Transfer

INIT(-)

INITO(-)

Service
Termination

Resource B Responder

INIT(+)

INITO(+)
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RSP(+)

INIT(-)

INITO(-)

Figure 2.6: Time-Sequence Diagram describing Requester-Responder interaction

22SIFBs for instance represent interfaces to a communication network, or to hardware devices
such as sensors and actuators.

23To initialize a SIFB by setting the INIT event, the boolean qualifier QI must be set to true.
Service termination is achieved by setting QI to false.
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requested using REQ and the response is indicated by CNF. In the next step, the
Responder receives an indication event IND, processes the request, and answers to
the Requester by emitting RSP.

Adapter Function Block
In order to increase reusability of defined FB-Types with similar behaviour, the
concept of Adapter Interfaces has been introduced, which enables the sharing of
common interfaces among those FBs [28]. This is realized by attaching an Adapter
Function Block to an FB which should provide a reusable interface and is denoted
as the Adapter Provider.

2.3.2 Descriptive Models for Distributed Control Systems

In order to meet the requirements of a modular and distributed architecture to
support the development of Distributed Control Systems, the IEC 61499 Standard
defines three generic models which are described in the following [1], [16]. Apart
from these models, the Management Model describes management functions which
are applied to FB-Networks that are executed by resources.

System Model
The System Model describes the top view of a distributed control system which
consists of a number of devices, sharing a common communication network [1]. In
contrast to centralised, monolithic system architectures the System Model describes
the approach of distributing the overall control intelligence over several Smart De-
vices, such as sensors and actuators24 [16].

Figure 2.7(a) shows the explained relationships. An Application can be considered
as an aggregation of FBs of different types, together with the event and data con-
nections that form a FB-Network. To make an Application distributed, single or
groups of FBs can be assigned (or mapped) to different devices. The incorporated
resources of a device are responsible for the FB execution.

Device Model
Devices (see Figure 2.7(b)) enclose several resources, which are capable of executing

24This means that applications can run either distributed over several devices or on single
devices.
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Figure 2.7: Descriptive Models defined in the Standard IEC 61499

FB-Networks (or fragments) independently of each other. Moreover, communica-
tion interfaces such as the Process Interface and the Communication Interface are
provided. Where the Process Interface enables the resources to exchange data with
the physical process inputs and outputs, the Communication Interface provides the
means for data exchange within the communication network [28].

Resource Model
Resources are responsible for the execution of FB-Networks or network fragments
and provide necessary services. These services include the routing of data and events
through FB-Network fragments, as well as the scheduling function which controls the
execution of FB functionality [16]). Moreover, SIFBs are used in order to map data
and events between the FB-Network and the provided interfaces (Process and Com-
munication Interface)[28]. Another important feature of resources is their support
for independent operation of the other resources belonging to a device. Therefore,
a resource can be configured, halted, resumed or deleted without influencing other
resources [28]. Figure 2.7(c) gives an overview of a resource’s characteristics.
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2.3.3 Related Work

Recent research activities has focused on automation solutions using high level com-
ponents which are built in a hierarchical structure out of lower levelled components
which perform basic functionalities [34], [70], [24].

The European funded research project MEDEIA [34] faces the problem of interop-
erability in complex automated production plants, that arises due to different de-
sign and implementation methodologies for various automation solutions. A model-
driven approach is used to represent a production plant hierarchically, consisting
of so-called Automation Components (ACs)25. These can be considered as a com-
bination of hard and software, and supervise lower levelled ACs. Machine vendors
can still use their familiar design methods because the AC definition is transformed
into a generic AC model. This generalized model allows the transformation to other
known design models and further enables automatic code generation to support spe-
cific platforms [34].

In [70], methodologies are presented to structure automation components in a way,
that higher levelled functionalities (i.e., supervising functions) coordinate
sub-components across predefined interfaces. This approach to component based
modelling makes use of Adapter Interfaces to reduce network complexity. The Sub-
Application construct allows flexible26, hierarchical grouping of functionalities [70].

A combination of IEC 61499 control applications and the features of the ISA S88
Standard27 is proposed in [24], introducing design guidelines for “reconfigurable dis-
tributed batch control based on reusable software components”. Based on the process
description, a library of component FBs is generated. To achieve high flexibility,
three special FBs that are called Scheduler, Selector and Synchronizer are used to
trigger and synchronize execution of the desired functionalities according to the de-
sired procedure. If reconfiguration of the process is necessary, only the procedure
sent to the scheduler needs to be changed [24].

25An AC contains a formal description of its functionality and interface definitions for its inter-
action with other ACs.

26Sub-Applications support changes during several design stages on application level. Changes
in Composite FBs would always result in a new FB-Type.

27The ISA S88 Standard is used to model batch processes hierarchically and draws a clear
distinction between the process knowledge (i.e., procedures according to a recipe) and the hardware
equipment that is used in the plant [6].
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2.4 3D-Simulation Environments

This section provides a brief overview of simulation environments, especially 3D-
Simulation Environments. Firstly, the term simulation is explained and related
characteristics are discussed. Secondly, some application fields for 3D-Simulation
are briefly presented and an overview of available commercial 3D-Simulation tools
is given. In the model-based engineering approach, that is proposed in this thesis, a
3D-Simulation tool is used in order to model the components, the distributed system
(e.g., a robotic system) which shall be controlled, is composed of.

2.4.1 Simulation Fundamentals

Simulation in general is a method to analyse the behaviour of dynamic systems.
Basis of every simulation is the derivation of a model which describes the system
and its processes as close to reality as necessary [38], [4].

Computer Simulation is defined as the simulation of a system, with the support of
a computer program, where the computer simulation environment is fed with the
model data of the system [4]. To perform a concrete empirical experiment trough
several simulation cycles, it is necessary to parametrize and vary the parameters of
the model. The resulting outputs of the performed simulation cycles should provide
new insights into the behaviour of the real system [38]. Common problems during
simulation usually arise through limited calculation capacity and uncertainties in
the simulation model28.

2.4.2 3D Simulation

3D Simulation provides a very realistic graphical view of modelling objects29, which
are presented in the four-dimensional space time [38]. Since 3D Simulation en-
vironments are capable of displaying also movements of model components (e.g.,
robot joints, conveyor belts), they are suitable for simulating logistics and factory
production processes.

28This limitation originates in the fact that models are only abstract representations of the real
world. Their accuracy can be improved trough permanent model adjustments, according to the
simulation needs [38].

29Since 3D Simulation tools often are tightly linked to CAD software, most model objects (e.g.,
work cells or robot systems) are provided as CAD models [2].
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According to Bangsow [4], simulation analysis are performed in several implementa-
tion phases of a plant, for instance during its planning phase to estimate capacity,
utilization and bottlenecks. Furthermore, during the realization phase for perfor-
mance tests and in the operating phase for quality management and malfunction
management. The use of 3D-Simulation environments has emerged to an indis-
pensable practice in the production industry for factory planning, in order to cope
with product varieties, small lot sizes, increasing quality requirements and market
competition [4].

3D-Simulation Toolkits
Below, three commercial 3D-Simulation Toolkits shall be introduced briefly, which
are currently available on the market. The CATIA toolchain of Dassault Systèmes
3DS [11] encompasses CAD modelling tools as well as engines for the calculation of
model kinematics and NC programming. Siemens produces the product life cycle
management software series Tecnomatix Plant Simulation [51]. The toolkit allows
simulation, analysis, 3D visualization and optimization of full production or logistics
processes. 3DCreate of VisualComponents [64] enables the full 3D simulation of
factory and work cell layouts, whereas the involved components can be imported
from existing CAD data. In order to make the imported models moving, behaviour
and configuration parameters (e.g., kinematics and programming scripts) can be
added.

2.5 Automatic Code Generation

This section provides a basic introduction into the methods of Automatic Code
Generation. After giving a definition of Automatic Code Generation, some general
characteristics will be described which apply for several forms of Code Generation.
In the second step, code generation approaches are generally treated which are
based on Model Driven Software Development. Lastly, a selection of available code
generation toolkits and frameworks are presented. Within the scope of this thesis,
code generation frameworks to generate classes for the implementation of a graphical
Workflow Modelling Editor are used. The Workflow Modelling Language is based
on a modelling paradigm, that is determined by a data model.
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2.5.1 Definition and General Characteristics

Computer programming where program code is generated through a mechanism,
which does not require the interaction of a human programmer, is termed as Auto-
matic Programming. A related methodology to Automatic Programming is denoted
as Generative Programming, which improves the software engineering productivity
through “automated source code creation” based on templates, generic models and
classes, and code generation engines [33]. Herrington [19] and [63] identify some main
benefits and characteristics of Generative Programming that are listed below.

• Generative Programming reduces development time, where at the same time
code consistency, quality and productivity are improved.

• Furthermore, reusability of standard source code models is increased and the
adaptation of existing code can be performed automatically.

• Code generation rules can be defined platform-independently, enabling the
development of portable code generation functionalities.

According to [19], code generation can be done passively, where source code is gen-
erated once and the programmer is free to perform changes on it afterwards. Active
code generation, describes a method where the generator can be run multiple times
with changed configuration parameters in order to update the code.

2.5.2 Approaches to Code Generation

In general, Generative Programming Tools, especially code generators, can have large
variations in their architecture [19]. The tools introduced in this section are based
on Model Driven Software Development (MDSD) approaches which build on formal
model definitions. These are used by a Generator Software to create executable
source code, that is expressed in different programming languages [53]. A formal
model is based on a formal language, which is used to describe its syntax and
semantics [53]. Based on a given formal model, the generation of an expressive
representation of the model for a specific platform is accomplished through a Model
Transformation. For instance Model-To-Code transformations generate text (e.g.,
source code) out of a formal model, for a specific platform [33], [53].

An example approach using MDSD is Model Driven Architecture (MDA) which is
standardized by the Object Management Group (OMG) [44]. The MDA approach
uses the description of the functional details and specifications of an application, in
form of a Platform Independent Model (PIM), to develop the desired software appli-
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cation. In this context a full MDA Specification consists of a single PIM (defining
the needs), several Platform Specific Models (PSM) and interface definitions which
together define how the PIM is implemented on concrete platforms [44]. Summa-
rizing, the basic idea of MDA is to strictly separate the functional description of
a system from the implementation, how a system uses an associated platform, and
to force reusability, portability and interoperability [44], [33]. In the following sub-
sections a short overview of Generative Programming Toolkits and projects which
are based on MDSD is provided.

2.5.3 Generic Modelling Environment

“The Generic Modelling Environment (GME) is a configurable toolkit for creating
domain-specific modelling and program synthesis environments” [23]. In order to
configure the tool properly, the definition of a domain-specific Modelling Language,
which is based on a modelling paradigm, is needed. As stated in Section 2.5.2
and in [25], the modelling paradigm defines syntax and semantics of the formal
language30. The domain-specific environment can be generated automatically, out
of the definition of the modelling paradigm.

2.5.4 Eclipse Modelling Framework

The Eclipse Modelling Framework (EMF) project aims to provide simplified method-
ologies for the definition of structured data models [37]. Hereby, the developer should
focus on the model description, whereas the EMF tools provide means for generating
source code, for the classes represented by the model.

EMF consists of three main components, as described in [13]. Firstly, the EMF
Ecore framework describes the Meta-Model which is used to express a data model
with the aid of design tools. Additionally, serialization support for model objects and
a functionality to emit signals upon model object changes31 are provided. Secondly,
EMF-Edit provides generic classes to generate editors, based on graphical property
sheets, that can be used to create data objects of a model [13]. Lastly, the EMF-
Codegen framework part allows the automatic generation of source code [13] and
supports re-generation of existing code parts.

30Moreover, it defines how models may be created and how the model elements are related to
each other [23].

31These events are called notifications, which are fired upon model changes [37].
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2.6 Concluding remarks

This chapter dealt with an introduction into the current state of the art and covers
the theoretical background, the outcome of this thesis bases on.

Section 2.1 to Section 2.2 discuss the basic concepts of Workflow Management Sys-
tems (WfMSs) and Workflow Modelling Languages. It can be concluded that reac-
tivity is an important characteristic a WfMS should have, and a Workflow Modelling
Language should support trough an appropriate definition of its language constructs.
In Section 2.3 the Function Block Concept as well as descriptive models of the IEC
61499 Standard have been discussed. The IEC 61499 Standard supports modelling
of distributed control applications and enables interoperability, configurability and
portability. 3D-Simulation Environments have been treated in Section 2.4.2, suit-
able for factory simulation, and consequently for the simulation of distributed system
components. Automatic Code Generation (see Section 2.5) allows effective software
development by focusing on the development of a model description (which repre-
sents the application structure) and generating large source code blocks automati-
cally.

The following chapters deal with the development of a model driven engineering
approach, as described in Section 1.1. Based on the concepts of Workflow Manage-
ment and code generation methodologies, a graphical Workflow Modelling Language,
which supports reactive workflow execution, as well as a code generator is proposed.
A 3D-Simulation Environment will be utilized to model the components of the dis-
tributed system and the service functionalities, provided by these components. Fi-
nally, a code generation method is presented which generates a FB application,
according to IEC 61499, based on a Workflow Specification. The overall system
architecture and the requirements for this engineering approach are presented in the
next chapter.



3 Overall System Design

In Section 1.1 the major aim of this work, namely the development of a method
to enable simplified programming of a control application for a robotic system, has
been motivated. This programming method builds on the design of a process descrip-
tion (i.e., a Workflow Specification), that is expressed using a Workflow Modelling
Language. The second step is to generate an IEC 61499 compliant Function Block
Control Application, based on the determined Workflow Specification.

A system architecture is proposed which meets the requirements for the implemen-
tation of the engineering approach described in Section 1.1. Firstly, the components
of this architecture are identified by considering the steps of the desired engineer-
ing process. Hereby, the engineering toolchain, which is intended to support the
user, is explained. Secondly, the engineering steps are explored in detail and the
requirements for the components of the system architecture are identified.

3.1 Engineering Process

In this section, an engineering process to enable simplified programming of a control
behaviour and henceforth the generation of an IEC 61499 compliant control appli-
cation is presented. Based on this engineering process, the main components of the
underlying system architecture are identified and explained. Afterwards, the subse-
quent sections deal with the identification of the requirements for the components
of the system architecture.

3.1.1 Prerequisites for the Engineering Process

As described in Section 1.1, it is assumed that the system (e.g., a robotic system),
for which a supervisory control application has to be programmed, is composed of
a number of functional components. These components need to be identified by

32
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the engineer in advance, including the services they provide to the system. The
description of a component’s services shall be henceforth called the behaviour of
the component, which is expressed by declaring Service-Functions (SFs) and their
corresponding function parameters. The behaviour information of a functional com-
ponent can be already provided by the component vendor, and therefore does not
always need to be identified by the engineer. Besides the component identification,
the process, which should be performed by the functional components, has to be
split up into distinct process steps. This is because the process needs to be mod-
elled by means of a Workflow Specification, for programming a supervisory control
application.

3.1.2 3D-Model Design of the Robotic System

In the initial phase, the robotic system has to be modelled in a 3D-Simulation
environment. This requires that the system engineer already has a concrete concept
how the system should look like and of which functional separable components it is
composed of. Hereby, it is assumed that the appearance of the functional components
is represented by either existing CAD data1 or unavailable parts which need to be
constructed.

After the system components have been modelled in the 3D-Simulation Environ-
ment, they are extended with the available behaviour information, expressed by the
SFs. The modelled components combined with the behaviour information are hence-
forth denoted as Service-Components (SCs). Figure 3.1 gives an example of how a
Bin Picking Work Cell can be modelled, using a 6-DOF robot2 combined with a
laser scanner object recognition system. The modelled SCs are stored in the Com-
ponent Library of the 3D-Simulation environment. An integrated Behaviour Editor
is used to edit the behaviour information of the SCs.

3.1.3 Design of the Workflow Specification

The behaviour of the supervisory control application which coordinates the SCs in
order to perform the given process is determined by a Workflow Specification. To
enable simplified programming of control behaviour, a graphical Workflow Editor
is needed that builds on a Workflow Modelling Language. Moreover, the Workflow

1Thinking of components for those CAD data has been constructed previously, and can be
imported into the 3D-Simulation environment. CAD... Computer Aided Design.

2DOF - Degrees Of Freedom.
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Figure 3.1: Modelling the robotic system consisting of Service-Components

Editor connects to the 3D-Simulation Environment, loads the behaviour attributes
of all SCs and fills a palette of Service Activities which are utilized to construct a
Workflow Specification. In order to manage error cases, basic exception handling
strategies can be applied.

Figure 3.2 shows a possible layout of a graphical Workflow Editor. The left part
of the image shows the activity palette that contains a list of available activities,
corresponding to the modelled SCs. Moreover, the image depicts a Workflow Speci-
fication example with activities and connections, that define the execution sequence.
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Figure 3.2: Schematic view of a Workflow Editor
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3.1.4 Automatic Generation of the Control Application

With the Workflow Specification as the input, a code generator is used to generate
an IEC 61499 control application that is represented by a Function Block-Network
(FB-Network). The goal is to automatically create a FB-Network which directly
represents the control behaviour that is defined by the modelled Workflow Specifi-
cation.

3.1.5 Simulation and Execution of the Control Application

Once the control application has been generated, an Engineering Tool for FB-
Applications can be used to map and download the supervisory control application
to distributed resources. An IEC 61499 compliant runtime environment is run on
the device, needed to execute the FB-Network. In order to test the overall behaviour
and further improve the Workflow Specification and the SC models, the FB runtime
environment can be coupled with the 3D-Simulation Environment. In that way it
is possible to treat the modelled SCs as the real hardware components by simu-
lating their behaviour. Using the simulation tool allows the engineer to iteratively
improve and check the interaction between SCs before running the application on
real hardware.

3.2 Resulting System Architecture

The steps of the Engineering Process described above are summarized in Figure 3.3.
With reference to the described Engineering Process, it is determined that the sys-
tem architecture of the engineering approach is composed of the components listed
below:

• An available 3D-Simulation Environment is used in order to model the Service
Components of the distributed system, which needs to be controlled.

• A graphical Workflow Editor needs to be implemented to enable the design of
Workflow Specifications.

• To generate an executable control application according to IEC 61499, a code
generator needs to be developed.

• The execution of the control application is performed by an IEC 61499 compli-
ant Runtime Environment which is supported by the chosen target platform.
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Figure 3.3: Overview of the Engineering Workflow

• An Engineering Environment for the development of Function-Block Control
Applications is used to initiate the execution of the generated FB-Network by
the Runtime Environment.

The next sections of this chapter, provide a more detailed overview of the require-
ments that need to be met by the components of the system architecture.

3.3 Modelling Component-Behaviour

As mentioned above, the modelled robotic system is composed by a set of modelled
Service-Components (SCs). A SC encompasses the geometrical representation (e.g.,
CAD data) as well as the component’s functional behaviour3 expressed by Service-
Functions (SFs). Analogous to the notion of functions in high-level programming
languages, a SF may require function parameters to be passed when the service is
invoked. Moreover, the SF may return a set of return values.

By using only SF declarations, which can be considered as an interface to the SC,
it is ensured that the behaviour of the SC itself can be implemented platform-
independently. A possible composition of SCs to a robotic system and a schematic
example of how SFs can be declared is shown in Figure 3.4. These Service-Components
are intended to interact with each other. For example, the SCMobile Platform (MP),
which is responsible for moving the whole robot construction, needs to interact with

3This behaviour description should not be mixed up with behaviour that corresponds to a
simulation model object, for instance calculated robot kinematics, that define how robot axes can
move.
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Figure 3.4: Service-Components and Service-Functions of a modelled robotic system

the SC Object Recognition (OR). In the following the case of an obstacle being de-
tected by the Object Recognition system, while the robot is moving, is considered.
The Mobile Platform is notified to stop and a new motion path needs to be calcu-
lated to avoid the obstacle. An OR Service-Component could be realized as a 3D
image processing system that evaluates pictures taken by a stereo camera system.

Figure 3.4 depicts a scheme how Service-Functions can be declared for a SC. For ex-
ample, the Mobile Platform could offer the SFs moveTo, which initiates a movement
of the robotic system to the specified position, stop which causes the cancellation of
a movement, setSpeed to set the velocity and getStatus which returns a value indicat-
ing the current operating status of the SC. At this point it is worth mentioning that
the means of communication between SCs and the supervisory control application
have to be well defined. This problem is treated in detail within the next section.

3.4 Requirements for the Workflow Editor

In this section, the basic requirements for the Workflow Editor and the Workflow
Modelling Language are discussed. As stated in Section 2.1.1, the development of a
Workflow Specification builds on the syntax and semantics of a Workflow Modelling
Language which expresses the workflow. Generally, the work that has been done
in the scope of this thesis regarding Workflow Management focused on designing a
graphical Workflow Modelling Language. This is because in the author’s opinion,
a Graphical User Interface (GUI) provides more intuitive ways of designing for the
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end user, instead of textual languages.

3.4.1 Available Workflow Activities

A Workflow consists of a set of activities which are linked to each other, building a
defined execution sequence. To enable Workflow Modelling based on the available
SCs, the first requirement on the Workflow Editor is to provide a functionality which
allows to load the SF declarations (of all SCs) from the 3D-Simulation environment.
Then the SF can be considered to be equivalent to an activity of a Workflow Specifi-
cation. As a possible realization, the loaded SFs can be used to fill an activity palette
of the graphical Workflow Editor. This activity palette contains a list of the defined
activity types, which can be used within the Workflow Modelling Editor in order to
create a Workflow Specification. Henceforth, this type of activities are denoted as
Service Activities (SA).

Apart from SAs, a set of Control-Flow Activities (CFA) is required to provide se-
mantic means for branching of the control-flow, based on logical decisions, as well
as merging different control-flow branches according to [61].

3.4.2 Management of Data Objects

According to Workflow Data Patterns, explained in [58], the definition of rules, which
describe how data objects are represented in Workflow Modelling Languages and
how they are transferred between activities, is of great importance. Furthermore, the
visibility scope for data objects within a Workflow Specification has to be determined
once the object is being created [58].

Regarding the visibility scope and taking into account that finally an IEC 61499
Control Application shall be generated based on a Workflow Specification, three
possible visibility scopes have been identified which are listed as follows and shown
in Figure 3.5. Note that in Figure 3.5 constants are identified with a “c” prefix and
variables, which allow read and write access, are written with the “v” prefix.

• Workflow Instance
Visibility scopes encompassing a whole Workflow Instance4 are suitable espe-
cially for constants that are generally accessible. Additionally, shared data

4Also referred as Workflow Case in [58] and [59].
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Figure 3.5: Possible data visibility scopes in Workflow Instances

variables can be used for write access within the Workflow Instance. How-
ever, this case requires functionalities in order to handle concurrent access to
a variable, especially if two in parallel executing branches affect the same data
objects (see Figure 3.5(a)).

• Local - within the scope of subsequently connected activities
This visibility scope applies for activities which are connected directly to each
other. Note that these data objects are commonly intended to be passed
directly to the next activity inputs (see Figure 3.5(b)).

• Local - as constants defined uniquely for a certain activity
Constants can be defined for certain activity data inputs and consequently
they are only visible in the scope of one workflow activity (see Figure 3.5(c)).

Data objects have a determined data type, that needs to conform with the data types
which are supported by the WfMS, especially by the Workflow Enactment Service
which is responsible for the execution of Workflow Instances.

After establishing rules for the visibility of data objects, there is interest in how
data is exchanged between activities in a Workflow Instance. A set of Data Inter-
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action patterns, explaining three approaches to exchange data, is described in [58].
The first method uses combined data and control-flow channels between activities,
whereas the second possibility is based on distinctive data and control-flow channels.
A completely different approach is to use a shared data storage instead of passing
data. Aalst et al. [58] localize the main disadvantage of the first method by the
fact, that the whole set of data objects, needed in the executing branch, has to be
passed through all activities, independent from whether all activities access all data
objects or not. Figure 3.6 shows a schematic representation of the approaches for
data interaction5. Nevertheless, combined data and control-flow channels will keep
the Workflow Specification simple to read and understand. Modelling data channels
additionally in the Workflow Specification would result in an overloaded graphical
representation. In that case it would be easier to create the supervisory control
application directly, using an IEC 61499 compliant engineering development envi-
ronment. Data exchange based on shared memory additionally requires mechanisms
to manage concurrent data access.

3.4.3 Reactive Workflow Execution

According to [14], a reactive WfMS should never process a work item but should
allocate it to an external resource and only trigger its execution. By introducing
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4, 5 and 6). This approach to data sharing is based on tasks having shared
a priori knowledge of the naming and location of common data elements. It
also assumes that the implementation is able to deal with potential concurrency
issues that may arise where several task instances seek to access the same data
element.

The majority of offerings examined adopt the third strategy. Staffware, FLOWer,
COSA and XPDL all facilitate the passing of data through case-level data reposito-
ries accessible by all tasks. BPEL4WS utilises a combination of the first and third
approaches. Variables can be bound to scopes within a process definition which may
encompass a number of tasks, but there is also the ability for messages to be passed
between tasks when control passes from one task to another. MQSeries Workflow
adopts the second mechanism with data elements being passed between tasks in the
form of data containers via distinct data channels.

Issues Where there is no data passing between tasks and a common data store
is utilised by several tasks for communicating data elements, there is the potential
for concurrency problems to arise, particularly if the case involves parallel execution
paths. This may lead to inconsistent results depending on the task execution sequence
that is taken.

Solutions Concurrency control is handled in a variety of different ways by the offer-
ings examined in Section 5. FLOWer avoids the problem by only allowing one active
user or process that can update data elements in a case at any time (although other
processes and users can access data elements for reading). BPEL4WS supports seri-
alisable scopes which allow compensation handlers to be defined for groups of tasks
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a priori knowledge of the naming and location of common data elements. It
also assumes that the implementation is able to deal with potential concurrency
issues that may arise where several task instances seek to access the same data
element.

The majority of offerings examined adopt the third strategy. Staffware, FLOWer,
COSA and XPDL all facilitate the passing of data through case-level data reposito-
ries accessible by all tasks. BPEL4WS utilises a combination of the first and third
approaches. Variables can be bound to scopes within a process definition which may
encompass a number of tasks, but there is also the ability for messages to be passed
between tasks when control passes from one task to another. MQSeries Workflow
adopts the second mechanism with data elements being passed between tasks in the
form of data containers via distinct data channels.

Issues Where there is no data passing between tasks and a common data store
is utilised by several tasks for communicating data elements, there is the potential
for concurrency problems to arise, particularly if the case involves parallel execution
paths. This may lead to inconsistent results depending on the task execution sequence
that is taken.

Solutions Concurrency control is handled in a variety of different ways by the offer-
ings examined in Section 5. FLOWer avoids the problem by only allowing one active
user or process that can update data elements in a case at any time (although other
processes and users can access data elements for reading). BPEL4WS supports seri-
alisable scopes which allow compensation handlers to be defined for groups of tasks
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Figure 3.6: Approaches to exchange data between activities [58]
5To avoid confusion: Note that activities are denoted as tasks in Figure 3.6.
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Service-Components this central requirement is already satisfied, because the WfMS,
which executes a Workflow Instance, only invokes the desired Service-Functions.
Furthermore, the WfMS waits for the SC to respond and the execution is continued
afterwards by calling subsequent services.

What still needs to be defined is how the communication between the executing
supervisory control application and the SCs, that provide SFs for the workflow exe-
cution, is arranged. It can be distinguished between a synchronous communication
solution and an asynchronous communication solution. In case of synchronous com-
munication, the execution of a control-flow branch is paused after the invocation of
a SF, until a response of the SC is received. The asynchronous method allows a SF
provided by a different SC to be called, while the previously called SF is still being
processed. Figure 3.7 depicts the Time-Sequence Diagrams for synchronous and
asynchronous communication. To handle the case of a SC which does not respond
to the control application, a configurable time-out error needs to be introduced.
After a service request has been submitted and if no response is detected within a
given time span, the emission of a fault event is triggered, as shown in Figure 3.7(a).
The supervisory control application can again react on the reception of this event
by means of an exception handling strategy. In Figure 3.7(b) a SF, which belongs
to a different SC, is called while the previous request (i.e., SF 2A) is in progress.
Note that in case of a call dependency of the subsequent SF (i.e., SF 1B) the use of
the asynchronous communication method does not result in a shortened execution
time. If the execution of a subsequent SF depends on the processing result of the
preceding SF, concurrent execution is impossible.
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Figure 3.7: Communication methods for the interaction with Service-Components
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Another possible solution can be described almost analogously to synchronous com-
munication with the difference that the SC is not responsible for sending an answer.
Instead, the current status of the SC and the produced output of the service invo-
cation needs to be polled6 by the control application itself. With reference to the
characteristics of a reactive WfMS, the synchronous communication method fulfils
the requirements described in [14].

3.4.4 Basic Exception Handling

In case of a Service Activity (SA) that is processed erroneously, at least basic excep-
tion handling concepts need to be implemented in order to make the WfMS capable
of reacting to such execution failures. A set of different, applicable exception han-
dling strategies is introduced in [60], [31] and [52].

As stated in Section 2.2.2, exception handling functionalities can be integrated into
the WfMS either embedded or autonomously. Since the occurring context of the
exception is clearly defined when using an embedded solution, handling strategies
are realized by executing an alternative execution branch of the Workflow Specifi-
cation. In that case, no special language constructs are required for the Worfklow
Modelling Language because common activities can be used to determine a han-
dling strategy. Contrary to an embedded solution, autonomous exception handling
strategies require to be determined independently of the Workflow Specficiation and
the occurring context needs to be known exactly. Autonomous handling strategies
can be defined in separated handling editors using a set of predefined exception
handling primitives. These primitives do not necessarily represent activities but af-
fect the Workflow Enactment Service directly. Approaches to autonomous exception
handling are explained in [57] and [52].

Besides exceptional events which are in general thrown as a result of a failure and
therefore require to be handled, it is demanded from the system to react on events
sent from a defined source, which can be emitted at any time during the execution
of the workflow. To comply with this requirement, special event reception activities
need to be introduced, which start a new control-flow, if an event from a registered
source is received. These events can be used to trigger the execution of a certain
workflow branch.

6Polling denotes a query functionality for data values.
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3.4.5 Defined Start- and End-Points

According to the definition of a workflow given by Jablonski et al. [25], a uniquely
defined start-node and one end-node are required in a Workflow Specification. The
start-node determines the origin of the control-flow and can be represented for in-
stance by an activity, which triggers the execution of the workflow.

With reference to start-nodes in UML Activity Diagrams [50], State-Machine Di-
agrams [50] or Extended Workflow Nets [57], a start-node does not include the
execution of an activity that is associated with it. It just serves as a marker for the
beginning of the workflow. In hierarchical Workflow Specifications, sub-workflows
also contain a start- and an end-node. The end-node marks the end-point of a Work-
flow Specification where the control-flow terminates. If the end-node is reached in
a sub-workflow, the control-flow is passed back to the Workflow Instance in which
the sub-workflow has been called. Generally, if the control-flow is split in the speci-
fication, all control-flows have to join in the end-node. However, the UML Activity
Diagrams and State-Machine Diagrams [43] accept more than one end-node, and the
execution of a Workflow Instance is finished if one of the end-nodes is reached.

However, in some cases the end-node of a Workflow Specification can be considered
to be the last activity, which is executed within the worfklow instance. Note, that
this rule cannot be applied to sub-workflows in general, since the control-flow needs
to be passed back to the calling sub-workflow level after a defined end-point of the
executed sub-workflow has been reached.

3.4.6 Syntactical Check of the Workflow Specification

To enable the correct generation of a supervisory control application, syntactical
correctness of the Workflow Specification is crucial. Therefore, the Workflow Spec-
ification needs to be checked periodically, based on a set of integrity rules. This
test checks the basic structural elements a Workflow Specification needs, including
the start- and optional end-points, valid connections between activities, no loosely
activities and a few more checks that will be explained later in this thesis. The data
type integrity should be checked by the graphical Workflow Editor itself, every time
when a new connection between activities is established.
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3.5 Requirements for the Code Generator

Based on the design of a Workflow Specification and the SCs’ behaviour descriptions,
the next step of the presented approach is to generate an IEC 61499 control applica-
tion. The control application coordinates the Service-Components of the modelled
robotic system, to perform the predefined process. A code generator which produces
a FB-Network on request, which is ready to be executed by an IEC 61499 compliant
runtime environment, needs to be implemented. The requirements needed for such
a code generator are presented in this section.

3.5.1 Generation of Needed FB-Types

The generation of an IEC 61499 control application out of the Workflow Specification
requires the generation of FB-Types, representing the modelled workflow activities,
in advance. Based on this application specific type library, a FB-Network can be
generated by creating FB instances and connections between them.

Service-Components have been introduced to enable reactive workflow execution,
by invoking their provided Service-Functions once the corresponding activities are
reached by the control-flow. As already stated, to allow communication between the
control application and an external Service-Component, a communication method
has to be determined. The communication is then controlled by interfaces which
need to be realized by generated FB-Types that connect to the affected Service-
Components. Consequently, these interfaces have to manage several Service-Function
calls, which are invoked through the workflow execution.

Apart from the interface FB-Types, that are used to interact with SCs, a Workflow
Specification contains instances of different types of Control-Flow Activities (CFA).
Since different CFA instances generally are differently parametrized, one represen-
tative FB-Type has to be generated for every CFA instance. The generation of
representative FB-Types for workflow activities is treated in detail in the next chap-
ter. After generating the necessary FB-Types, the supervisory control application
can be generated in the next generation step.
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3.5.2 Generation of the FB Control Application

A generator functionality to traverse the Workflow Specification is required in or-
der to generate the FB control application. For all modelled workflow activities,
instances of the generated, representative FB-Types need to be created. As a main
requirement, an effective method to directly transform so-called activity connec-
tions (i.e., connections between workflow activities) into corresponding event and
data connections, according to the IEC 61499 Standard, needs to be developed.
Basically, this means that activity inputs and outputs have to be associated with
events and Activity Parameters are associated with data inputs and outputs.

After generating the supervisory control application, by creating FB instances and
event and data connections according to the Workflow Specification, an additional
FB-Network fragment needs to be generated to enable the initialization of the FB-
Network. Especially, FBs representing interfaces to Service-Components need to get
initialized to operate properly. Moreover, the initialization procedure needs to be
triggered, either upon the hardware resource has been started or through an external
signal (e.g., trough a closed switch).

The generated FB-Network has to be executable by an IEC 61499 compliant runtime
environment, which runs on a hardware resource. To enable the iterative improve-
ment of a Workflow Specification, the supervisory control application should be able
to operate in combination with the 3D-Simulation environment. The test results of
the simulation can then be used for further development of the modelled robotic
system and the Workflow Specification.

3.6 Concluding Remarks

In this chapter, an engineering process has been proposed which enables simplified
programming of a supervisory control application. This approach is based on the
modelling of the desired robotic system and its components, and the specification
of the workflow which describes how the considered system should behave.

With reference to the described engineering process, a system architecture has been
proposed. A graphical Workflow Editor as well as a code generator need to be
developed and implemented. The remaining supporting tools are already available
and can be applied directly (i.e., 3D-Simulation Environment and the Engineering
Environment for distributed FB-Applications).
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In the first step, a method to express behaviour information of the components,
which belong to the robotic system, is introduced. The subsequent sections deal with
the requirements for the development of a suitable Workflow Modelling Language
and the code generator for the generation of a control application.

One of the main requirements for the Workflow Modelling Language is to enable
reactive Workflow Modelling. This feature is realized by the introduction of Service-
Components and their associated Service-Functions. Moreover, treating data objects
in Workflow Specifications needs to be clearly defined, including data representation,
transport, and visibility scopes. The Workflow Editor allows to design a Workflow
Specification which is expressed by the developed Workflow Modelling Language.
Hereby, the declared Service-Functions need to be used and therefore, the Workflow
Editor has to provide a functionality to load the determined component behaviour
to make them available as activities in the activity palette.

For the generation of the supervisory control application, a code generator needs
to be implemented which satisfies the following main requirements. The automatic
generation of the control application, according to IEC 61499, needs to be done in
two steps. At first, FB-Types which represent the modelled activities of the Work-
flow Specification need to be generated. Based on the generated FB-Type group,
the supervisory control application has to be generated, by traversing the Workflow
Specification, and by creating the necessary FB instances and the corresponding
data and event connections.

In the next chapter, a graphical Workflow Modelling Language is proposed to meet
the requirements, for simplified programming of a supervisory control behaviour
based on Workflow Modelling.



4 A Graphical Workflow Modelling
Language

This chapter focuses on the design and implementation of a graphical Workflow
Modelling Language, according to the identified requirements. A major requirement
for the modelling paradigm, which consequently defines syntax and semantic of the
Workflow Modelling Language, is to support the reactive execution of Workflow
Instances.

The development process of the Workflow Language Concepts and the Language
Elements that are explained in the following sections, was influenced by a thor-
ough survey of the characteristics, advantages and disadvantages of the Modelling
Languages which are introduced in Section 2.2. The first section deals with an expla-
nation of the activity types including their characteristics and behaviour. Moreover,
a description format for Service Component behaviour is introduced, which is nec-
essary to load this component information into the Workflow Specification Editor.
Afterwards, in the second section, extended concepts of the Workflow Modelling
Language are discussed. A Workflow Specification example is treated and the pos-
sibilities of Exception Handling are shown. Furthermore, structuring methods for
Workflow Specifications are discussed.

4.1 Language Elements

In this section, an overview of the language elements is presented. Firstly, Workflow
Activities are introduced and the distinct types of Service Activities and Control-
Flow Activities are discussed. The graphical notation which is used for the activity
scheme images is similar to the representation used in the example chapter of [37].
Section 4.1.3 deals with the execution sequence and furthermore describes how data
objects are treated in the Workflow Specification. Additionally, a solution to express
the combination of control-flow and data channels by means of a single connection
between activities is explained. Along with the description of the activity types, a
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set of construction rules is defined, which is of great importance in order to design
correct Workflow Specifications. The generation of a supervisory control applica-
tion can only be performed successfully if the Workflow Specification is modelled
correctly.

4.1.1 Service Activities

As described in Section 3.4.1, Service Activities (SA) directly represent Service Func-
tions (SF) within a Workflow Specification. Figure 4.1 depicts the scheme of a SA,
having input and output Activity Interfaces and lists of Activity Parameters (AP),
that are written in squared brackets and associated with the corresponding Activity
Interfaces. APs can be of different data types, which are supported by the WfMS.
Service Activities in general do not need to have any input APs but require to have
one output AP at least which serves as a status value that can be used to return
error codes.

Once the control-flow reaches the Activity Interface “Input”, the corresponding
Service-Function is invoked by the WfMS. Moreover, the corresponding APs are
considered valid at this moment and passed to the SC. According to the current
implementation of this Workflow Modelling Language, the communication between
the service requester and the SC is managed synchronously. This means that the
control-flow of the executing workflow branch is suspended until a response is re-
ceived or a time-out error occurs.

If the service request could be processed correctly, the control-flow and the resulting
output APs are forwarded to the Activity Interface “Output”. In case of errors,
occurring during the service execution including Connection Failures and normal
SF errors, the control-flow is passed to the Activity Interface “Fault”. By following
the rule of using the first output AP as status value, the workflow designer can
check this AP and use it to choose an appropriate exception handling branch. The
current implementation of this Workflow Modelling Language uses the “Fault” Ac-
tivity Interface to enable embedded exception handling. Note that the values of the

Output
Service Activity

Fault

Input
[IN_1, IN_2,…, IN_n]

[OUT_1, OUT_2,…, OUT_n]

Figure 4.1: Scheme of a Service Activity with parameter inputs and outputs
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output APs, in case of a processing error, need to be defined within the Service
Component. In case of connection failures, the status value is changed accordingly.
Table 4.1 shows reserved error numbers. User defined error codes can be utilized to
express certain reasons for the failed execution of a SF.

As stated in Section 3.4.1, the behaviour of Service-Components which is determined
by SF declarations is loaded into the graphical Workflow Specification Editor from
the 3D-Simulation Environment. Service-Components are defined by its geometry
and behaviour description but we have not yet specified the format that determines
how behaviour information is expressed.

Behaviour Description for Service-Components
Behaviour of a SC is expressed by Service Functions and their function parameters.
This behaviour information has to be added as an attribute to the corresponding
3D-model component in the 3D-Simulation Environment. In this approach the be-
haviour information is packed into an XML format. The XML-Schema 1 behind the
behaviour description can be derived from the relations between Service-Component,
Service-Functions, and parameters, which are displayed in Figure 4.2.

SCs are identified by a unique name and can have additional attributes, for instance
a dynamic parameter to set the component’s IP address which is utilized to establish
a TCP (Transmission Control Protocol) connection, and need to provide at least one
SF. A SF is labelled with a unique name in the behaviour description of the SC.
This SF name has to be equal with the function name that is defined in the specific
implementation of the SC, and requires at least one output parameter. Note that
by requiring at least one parameter the recommendation, stated in Section 4.1.1,
to reserve one output parameter for the status of the SC, is fulfilled. Parameters
are named uniquely and are of a certain data type. The boolean flag inputParam
denotes whether the parameter is defined as input parameter (true) or as output
parameter (false).

Value Explanation
0 No error - Successful execution
1 Connection error - Broken Client/Server connection
2 Time-Out error - No response from the SC
≥ 3 User defined errors

Table 4.1: Possible error codes returned by Service-Components

1An XML-Schema determines how an XML document has to be structured.
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ServiceComponent

-name : string
-componentIP : string

-name : string

ServiceFunction

-name : string
-type : string
-inputParam : bool

Parameter

1

-parameters

1..*

1

-serviceFunctions1..*

Figure 4.2: Relations between Service-Components, Service-Functions, and their
parameters

For example, the XML behaviour description for amobile platform Service-Component
is expressed as shown below. The data type ARRAY_OF_POINT_3F is a complex
data type.

<?xml version="1.0" encoding="UTF-8"?>
<Servicefunction:ServiceComponent componentIPAddress="192.186.0.1"
name="MobilePlatform">

<servicefunction name="moveTo">
<parameter name="pointX" type="REAL"/>
<parameter name="pointY" type="REAL"/>
<parameter name="pointZ" type="REAL"/>
<parameter name="STATUS" type="INT" inputParameter="false"/>

</servicefunction>
<servicefunction name="setSpeed">

<parameter name="velocity" type="REAL"/>
<parameter name="STATUS" type="INT" inputParameter="false"/>

</servicefunction>
<servicefunction name="stop">

<parameter name="STATUS" type="INT" inputParameter="false"/>
</servicefunction>
<servicefunction name="getStatus">

<parameter name="STATUS" type="INT" inputParameter="false"/>
<parameter name="Position" type="ARRAY_OF_POINT_3F"
inputParameter="false"/>

</servicefunction>
</Servicefunction:ServiceComponent>
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The sample behaviour description contains four SF definitions, namely moveTo,
setSpeed, stop and getStatus according to the schematic SC model in Figure 3.4.
Component behaviour representations like this are added as an attribute to each
Service-Component that needs to be modelled.

4.1.2 Control-Flow Activities

Control-Flow Activities (CFAs) enable the workflow designer to change the execution
sequence of Service Activities by branching or merging control-flows. In contrast to
Service Activities, CFAs are never bound to a certain component of the modelled
robotic system but are defined as fixed language constructs of the Workflow Mod-
elling Language. Consequently, Control-Flow Activities are commonly executed by
the WfMS itself.

Section 2.2.2 introduces a set of Control-Flow Patterns which are commonly imple-
mented among several Workflow Modelling Languages (see e.g., [57], [68], [43], [36],
[18], or [14]). An extensive survey of implemented control-flow routing constructs in
various Workflow Modelling Languages has been performed. Based on this litera-
ture research, a collection of eight essential control-flow constructs are selected and
implemented as Control-Flow Activities.

REND (AND-Join)
The REND Control-Flow Activity (i.e., Rendezvous) synchronizes2 two incoming
control-flow branches into a single branch. This means that the control-flow is
passed to the outgoing branch, once both incoming branches have been enabled.
Figure 4.3(a) shows the scheme of the CFA type in two different notations, with the
incoming branches IN 1 and IN 2 and the outgoing branch OUT. In the case, the
synchronization has to be cancelled, the Reset input R can be triggered. Initially,
if an instance of a REND activity is created, the Activity Interfaces IN 1 , IN 2 ,
and OUT are untyped. The data types of the input interfaces are determined by
establishing connections from preceding activities to the Activity Interfaces. Once a
connection is established, the corresponding data types are acquired from the source
Activity Interface.

Apart from synchronizing the control-flow, also the incoming data channels need to
bemerged as displayed in Figure 4.3(b). It is considered that every Activity Interface

2Due to its synchronization functionality, the activity type is also called AND-Join (see [18]
or [56]).
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(a) Scheme of the Control-Flow Activity type REND in two
different notations
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(b) Merging of incoming data channels

Figure 4.3: Scheme of the Control-Flow Activity type REND and an example of
merging data channels

has a list of Activity Parameters (AP) and henceforth data types are associated
with it. The REND activity concatenates the contents of both AP lists of the input
interfaces and creates a copy of the combined list which is finally assigned to the
OUT interface.

While designing the Workflow Specification in the Workflow Modelling Editor, the
following rules are applied to REND activities. Firstly, a REND CFA is only cor-
rectly used within a Workflow Specification if at least the Activity Interfaces IN 1,
IN 2 and OUT are connected. Secondly, the OUT interface cannot be connected to
a subsequent activity if one of the input interfaces IN 1 or IN 2 are not connected.
This is because otherwise the data types for the output interface would not be cor-
rectly defined. Finally, deleting connections having the target IN 1 or IN 2 leads to
the deletion of any outgoing connections from the OUT interface. The Reset input
does not need to be connected if it is not in use.

A typical situation which indicates the appliance of a REND CFA is given by a
subsequent Service Activity depending on data values, which are produced in sep-
arated control-flow branches. The REND activity is then used to synchronize both
control-flows and merge the produced data objects into one control-flow. Using the
new combined data and control-flow, which provides the necessary data objects, the
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activity can be invoked correctly (compare with Figure 4.3(b)).

MERGE (OR-Join)
The MERGE Control-Flow Activity merges two incoming branches into one but
in contrast to the REND activity without synchronizing them. This means that
an incoming control-flow at an arbitrary input Activity Interface is immediately
forwarded to the output Activity Interface. In Figure 4.4, the MERGE activity is
depicted schematically with its input and output Activity Interfaces. The MERGE
activity requires both combined control-flow and data channels, which arrive on the
input interfaces IN 1 and IN 2 having the same data types. This restriction is
necessary since a subsequent activity of the MERGE activity requires to be called
with the same parameter types during the whole lifetime of a created Workflow
Instance.

Similarly to the REND CFA, after creation of a new MERGE activity instance in the
Workflow Modelling Editor, the data types of all interfaces are not defined. Once
one of the input interfaces is connected to a preceding activity, the data types are
defined for both, the second input interface as well as the output interface.

Using MERGE activities in a Workflow Specification requires the following design
rules to be obeyed. MERGE CFAs are only applied correctly if all Activity Interfaces
are connected. The OUT interface cannot be connected to a subsequent activity,
if none of the input Activity Interfaces is connected to preceding activities. This
results in the fact that the output data types would not be defined. Deleting both
connections, having the targets IN 1 and IN 2, leads to the deletion of all outgoing
connections from the OUT Activity Interface.

MERGE Control-Flow Activities are generally used to unify two execution branches,
which especially have been split previously in the Workflow Specification (e.g., using
an IF CFA) and it is not defined which of these branches is taken before workflow
execution. Additionally, we can use this type of CFA to model an execution loop
within the Workflow Specification.
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Figure 4.4: Scheme of the Control-Flow Activity type MERGE in two different
notations
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SPLIT (Fork)
Apart from merging and synchronizing, control-flows can be split into two or more
concurrently executing branches, according to Figure 4.5. In this Workflow Mod-
elling Language implementation, the SPLIT 3 CFA is realized implicitly by defining
activities to have output interfaces, that support the Fan-Out of outgoing connec-
tions to subsequent activities. As a consequence of multiple output connections,
besides the control-flow, also the data objects are available to the first activity in
every parallel branch.

IF-Decision (XOR-Split)
By introducing the IF Control-Flow Activity, a means of splitting the Control-
Flow, depending on the evaluation of a boolean condition, is provided. A schematic
overview of the IF activity type is presented in Figure 4.6. The Activity Interfaces IN
1 and IN 2 are used to specify the data values which are used within the expressed
condition, that is specified as a constant string-type value at interface COND. It has
to be noted that the interface COND does not accept any incoming connections4

since the expression of the boolean condition may not change during execution. The
input parameter IN 2 can also be set as a Constant Parameter. Constant Parameters
are introduced in Section 4.1.3.

Condition expressions must result in boolean values and have to contain the names
of the input Activity Interfaces (e.g., “IN_1” or “IN_2”). Moreover, conditions
need to be expressed in Structured Text (ST)5 syntax. For example, it is assumed to
compare two integer data values, where IN 1 receives an integer parameter from the
preceding activity and IN 2 has a Constant Parameter. To check for equal integer
values, the condition expression needs to be set as “IN_1 = IN_2”.

Service B
Input Output

Fault

Service C
Input Output

Fault

Fan-OutService A
Input Output

Fault

Figure 4.5: Connection Fan-Out in order to split the control-flow

3Alternatively named as Fork pattern according to [56].
4Activity Interfaces which do not allow any connections are denoted with missing arrows.
5For detailed information regarding the programming language Structured Text see [16] or [48].
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Figure 4.6: Scheme of the Control-Flow Activity type IF

Once the combined control- and data-flow arrives at the IF activity’s interface IN
1, the condition COND is evaluated. A control-flow arriving at interface IN 2
does not trigger the evaluation of the condition. In case of a positively evaluating
condition, the control-flow is passed to the output interface THEN, otherwise ELSE
is activated. Both of the output Activity Interfaces are untyped.

An IF activity is used correctly within the Workflow Specification if the IN 1 inter-
face is connected to a preceding activity and the combined data- and control-flow
carries at least one data object, that can be included in the condition expression.
The input Activity Interface IN 2 may remain unconnected, requiring a constant
parameter value to be specified. In the current implementation of the Workflow
Modelling Language, the condition expression is not verified in terms of syntax cor-
rectness. Errors occurring due to incorrect condition expressions are reported during
the generation of the supervisory control application.

WAIT Control-Flow Activity
TheWAIT Control-Flow Activity enables the workflow designer to delay the control-
flow for a specified time-span. To the best of the authors knowledge, there are only a
few possibilities to model time-delay functionalities in Workflow Specifications. For
instance in Petri-Net based languages, delayed transitions, which fire upon a defined
time-span is exceeded after their enabling, are introduced in [10]. Analogously, it can
be considered that Petri-Net tokens have to reside in a place for a given minimum
time duration [10], [29]. These methods are also applicable to UML Activity and
State-Machine diagrams [43].

WAIT Control-Flow Activities provide a similar functionality such as time-spans
that are defined for Petri-Net places or State-Machine states. In this case, the
control-flow is bound to the WAIT activity for the specified time duration, before
it is passed to the subsequent activities.

Figure 4.7 depicts the schematics of the WAIT activity, having two input Activity
Interfaces Start and Stop as well as one output interface OUT. To set the time-span,
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Figure 4.7: Scheme of the Control-Flow Activity type WAIT

the interface Start has one Activity Parameter of the data type TIME associated
with it. For a fixed time-span a Constant Parameter can be set. After the combined
control- and data-flow has been passed to the Start interface, the activity is executed
by starting a timer. Finally, the control-flow is passed to the output interface OUT
and the WfMS continues the execution of the branch. By passing the control-flow
to the interface Stop, the running timer is cancelled, causing the interruption of the
control-flow.

There are no special rules which have to be obeyed to ensure the correct behaviour
of the executing Workflow Instance. The Activity Interface Stop does not require an
incoming connection if the possibility of cancelling the control-flow delay shall not
be given. WAIT Control-Flow Activities can be used in order to model for instance
processing time of real-life workflows.

CALCULATE Control-Flow Activity
The CALCULATE CFA enables the workflow designer to include simple calcula-
tions into a Workflow Specification. Hereby, the calculation involves at least one
numerical input Activity Parameter (AP) of the Activity Interface IN. A similar ac-
tivity construct is provided in the specification of the Visual Programming Language
(VPL) [36]. Figure 4.8 shows the scheme of the CALCULATE CFA. The input AP
CONFIG requires two Constant Parameters of type STRING to be specified. One
parameter holds the expression which shall be evaluated and may involve several
input APs, received by the interface IN. Similar to the condition expression of the
IF CFA, the calculation expression has to be determined in Structured Text nota-
tion. As value for the second input AP, the resulting output data type (i.e., the
data type of the output AP of interface OUT ) has to be defined. This AP allows
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Figure 4.8: Scheme of the Control-Flow Activity type CALCULATE
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only numerical data types to be set (see data types according to [28]). Specifying
the output data type manually results in the advantage that the input parameter
type can be converted to a different numerical data type. However, it is the user’s
responsibility to choose the output data type appropriately in order to avoid data
loss6.

START Control-Flow Activity
In Section 3.4.5, the importance of defined start- and end- points has been pointed
out. The START CFA is unique in the Workflow Specification which implies that
only one instance of a START activity can be created7. Marking the origin of the
control-flow is the main purpose of this activity type.

Moreover, the START activity never can represent a work item that has to be
performed. This feature is expressed by defining this CFA as the only activity
type which does not have any input Activity Interfaces but one output interface, as
displayed in Figure 4.9. Once a new Workflow Instance is created and execution is
commenced by the WfMS, the START activity produces the initial control-flow and
passes it to the output Activity Interface OUT.

As stated in Section 3.4.5 in contrast to START activities, there is no necessity
to introduce END activities within the Workflow Definition, that is located on the
highest hierarchy level. An END CFA is used in sub-workflows to mark the ending
of such a workflow element, denoting that the control-flow can be passed back to
the calling workflow level.

SIGNAL (External Trigger)
Similar to the START activity, the SIGNAL CFA is capable of initiating a new
control-flow on a triggering request that can originate from the external environment
(i.e., from a resource). In combination with a subsequent branch of activities that is
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Figure 4.9: Scheme of the Control-Flow Activity type START

6For example, the conversion from INT to REAL is possible without data loss, whereas the
reverse conversion results in data loss.

7Uniqueness of the START activity is related to the scope of (sub-)workflows, meaning that
one START CFA is also required in every sub-workflow.
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connected to the SIGNAL activity this structure corresponds directly to the External
Trigger pattern which is described in [61].

External Triggers can be modelled in several Workflow Modelling Languages. For
example, the UML Activity Diagrams provide Event Acceptor nodes which initiate
a new control-flow if the defined event is received [43], [50]. Further examples are
given for Petri-Net based languages, where special places are filled with a token in
case a defined event is received by the WfMS (see [14]), and JECA rules which can
be triggered trough external events (see e.g., [31] and Section 2.2.6).

Figure 4.10 shows how the SIGNAL activity is defined in this modelling approach.
The missing arrows on the input Activity Interfaces denote that incoming connec-
tions are not supported. Instead, Constant Parameters need to be set for every input
interface. Parameter SourceID is of type STRING and holds the connection end-
point ID of the connection, that is used to receive signals from. In this context, the
boolean Constant Parameter UDP_TCP determines whether the signal is received
using UDP Multicast (false) or a TCP (true) connection8. By using the Constant
Parameter RCVData, a set of data objects can be defined which are received along
with the signal. For example, the value BOOL, INT enables the SIGNAL Activity
to receive two data objects, of the given data type. If the connection endpoint re-
ceives an event, a new control-flow combined with data objects is started and passed
to the output interface OUT.

4.1.3 Combination of Control- and Data-Flow

As stated in Section 3.4.2, this Workflow Modelling Language builds on the combina-
tion of Control- and Data-Flow with the major aim to keep Workflow Specifications
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Figure 4.10: Scheme of the Control-Flow Activity type SIGNAL

8In case of UDP (User Datagram Protocol) the SIGNAL activity corresponds to an end-
point of a UDP Multicast communication. TCP (Transmission Control Protocol) determines a
Client/Server connection.
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as simple as possible. The control-flow defines the execution order of the activities
within a Workflow Specification (see Section 2.2.1). In graphical Workflow Modelling
Languages it can be considered the control-flow is bound to predefined paths within
a Workflow Specification, which consist of several Activity Connections (ACs).

For the following discussion, a section of a Workflow Specification containing two
Service Activities Service A and Service B with their corresponding Activity output
and input parameters as shown in Figure 4.11 is considered. The solid, black arrow
denotes the Activity Connection, having Service A as source activity and Service B
as its target activity. Furthermore, lists of Activity Parameters are defined for the
connected Activity Interfaces.

With reference to the data visibility scopes that are introduced in Section 3.4.2, it
can be derived that the output Activity Parameters of Service A are also visible for
the input interface of Service B, according to Figure 3.5(b). Consequently, the data
values, which are stored within the Activity Parameters of Service A, are denoted
to be combined with the control-flow leading from Service A to Service B.

In order to pass data values from one activity to the next, output Activity Param-
eters need to be assigned to input Activity Parameters of the subsequent activity.
This functionality shall be named Parameter Mapping. Note, that the Parameter
Mapping defines which data values, originating from the preceding activity’s out-
put parameters, are passed to which input Activity Parameters at the moment the
corresponding SA is invoked.

Service A
Input Output

Fault

Activity Parameters

· STATUS :: INT
· OUT_1 :: INT
· OUT_2 :: BOOL
· OUT_3 :: REAL

Service B
Input Output

Fault

Activity Parameters

· IN_1 :: BOOL
· IN_2 :: INT

Service A
Input Output

Fault

Activity Parameters

· STATUS :: INT
· OUT_1 :: INT
· OUT_2 :: BOOL
· OUT_3 :: REAL

Service B
Input Output

Fault

Parameter Mapping

· IN_1 :: BOOL ß OUT_2  
· IN_2 :: INT ß OUT_1

Figure 4.11: Connected Service Activities with corresponding Activity Parameters
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Mapping of Activity Parameters
To enable data transport between two connected activity instances, Parameter Map-
pings need to be established. This is accomplished by providing a so-called Param-
eter Mapper for every input Activity Interface9. A Parameter Mapper is realized
as an indexed table that associates output APs of the source Activity Interface to
input APs of the destination Activity Interface.

Figure 4.12 shows the relations described above. In this example, the source param-
eters OUT_1 and OUT_2 are mapped to the target parameters IN_2 and IN_1,
respectively. Observe, that the data types of the source parameters must conform
to the target parameter data types at any time during workflow design. Since type
correctness is crucial for the correct execution of a Workflow Instance, the data type
check is performed everytime the mapping table has changed.

The following rules should be kept in mind when establishing Parameter Mappings
in Workflow Specifications. Firstly, any information stored in mapping tables is
deleted, once an Activity Connection which leads to the corresponding Activity
Interface is removed. This means that previously defined mappings have to be re-
established if the Activity Connection is reconnected.

Secondly, if the preceding activity does not offer appropriate parameter data types,
a Constant Parameter of the required data type can be defined instead. Lastly, the
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Activity Parameters

· STATUS :: INT
· OUT_1 :: INT
· OUT_2 :: BOOL
· OUT_3 :: REAL

Service B
Input Output

Fault

Activity Parameters

· IN_1 :: BOOL
· IN_2 :: INT
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Input Output

Fault

Activity Parameters

· STATUS :: INT
· OUT_1 :: INT
· OUT_2 :: BOOL
· OUT_3 :: REAL

Service B
Input Output

Fault

Parameter Mapping

· IN_1 :: BOOL ß OUT_2  
· IN_2 :: INT ß OUT_1

Figure 4.12: Mapping of source Activity Parameters to target Activity Parameters

9Note that Parameter Mappers are also provided for Activity Interfaces which do not allow
the presence of incoming Activity Connections. For example, referring to the SIGNAL CFA in
Section 4.1.2, which requires a ConstantParamter to be set, instead.
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generation of an IEC-61499 FB control application out of the Workflow Specification
can only be performed if all input Activity Parameters are mapped to source Activity
Parameters or Constant Parameters.

Constant Parameters
With reference to Section 3.4.2, Constant Parameters, which hold constant data
values of a specific type, can be defined either visible within the scope of the whole
Workflow Instance as shared parameters (see Figure 3.5(a)) or locally, defined within
the scope of an input Activity Interface (see Figure 3.5(b)).

Constant Parameters can be mapped to input Activity Parameters, independent
from parameters which are provided by the source activity of an established Ac-
tivity Connection. For some activity types, which do not allow incoming Activity
Connections to be established to corresponding input Activity Interfaces, Constant
Parameters provide the only possibility to set a constant input data value.

4.2 Extended Concepts

This section focuses on further concepts of the proposed Workflow Modelling Lan-
guage. Some of them are not yet implemented. However, in this case solution
strategies are suggested and explained. The first part provides a concrete example
of a Workflow Specification. Secondly, the example is used to demonstrate how em-
bedded Exception Handling strategies can be realized. In the third part, a method
for structuring Workflow Specifications into hierarchical levels using sub-workflows
is explained. Although, this feature does not exist yet, possible application fields
for hierarchical structures in workflows will be introduced. Finally, possibilities for
verifying Workflow Specifications are discussed.

4.2.1 A Workflow Specification Example

In the following, a section of a Workflow Specification is considered that describes a
Bin Picking Process. Objects which are stored in a box should be grasped by a robot
manipulator and put out of the storage box (see e.g., Figure 3.1). The Workflow
Specification contains Service Activities of an Object Recognition (OR) system, a
Path Planning (PP) unit and a Manipulator Controller (MC) of a robotic system.
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In order to react upon crucial execution errors properly, the Workflow Specification
includes exception handling branches.

Firstly, an object recognition system (e.g., a laser sensor) has to scan the storage box
in order to obtain a point cloud of the objects. Furthermore, the scanning results
are analysed and the output of the OR process is assumed to be an array of 4x4-
matrices, containing floating point values (data type MATRIX4F[]). Every matrix
describes a transformation from the defined world coordinate system to the centre
point of a correctly detected object. Secondly, the OR results are passed to the
Path Planner which chooses one object and generates a RobotProgram (data type
PATH ), that can be submitted to the Manipulation Controller. The complex data
types MATRIX4F[] and PATH are application-specific. Finally, the MC initiates
the grasping of the detected object.

Service Activities
Figure 4.13 shows the section of the Workflow Specification as described above. It
is important to know that this functionality could be realized within a sub-workflow
in order to simplify the overall workflow structure10. In the following, a brief de-
scription of the Service Functions and their required input Activity Parameters and
produced output data values is given.

The Service Activity (SA) doOR performs the object recognition procedure. The
produced array of transformation matrices is accessible for the System Components
(SC) OR and PP. Similarly, it is assumed that the RobotProgram is accessible for
both the PP and the MC. An overview of the input and output parameters of the
SAs is given in Table 4.2 and Table 4.3. Every Service Function (SF) provides at
least the output Activity Parameter “STATUS”.

Hereby, the Activity Parameter ObjectID denotes which of the detected object po-
sitions should be used for the calculation of the grasping path (i.e., RobotProgram).
The parameter ModelFileName refers to a file that contains shape information of
the object which should be detected (e.g., a CAD model file).

10Modelled within a sub-workflow this specification section would require start- and end- activ-
ities in order to mark defined start points and end points.
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Figure 4.13: Workflow Specification section for the Bin Picking process, including
exception handling branches
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Service Inputs
doOR [ModelFileName::STRING]

planPath [ORResult::MATRIX4F[], ObjectID::INT]
gripObject [RobotProg::PATH]
selectResult [ORResult::MATRIX4F[], currentObjectID::INT]
sendError []

Table 4.2: Input Activity Parameters of the Service Activities
Service Outputs
doOR [STATUS::INT, ORResult::MATRIX4F[], ObjectID::INT]

planPath [STATUS::INT, RobotProg::PATH]
gripObject [STATUS::INT]
selectResult [STATUS::INT, ORResult::MATRIX4F[], ObjectID::INT]
sendError [STATUS::INT]

Table 4.3: Output Activity Parameters of the Service Activities

If the service planPath cannot calculate a grasping path for a given matrix transfor-
mation that corresponds to a certain detected object, the SA throws an exception
and the control-flow is forwarded to the Fault output. This might be the case, for
instance, if there are only path options calculated that would lead to the collision
of manipulator axes with an obstacle in the work cell. A possible solution to this
problem is to try grasping another object that has been detected.

The SA selectResult is used to select an alternative matrix transformation and re-
turns a new ObjectID. Additionally, the transformation that is referred by the input
value currentObjectID is removed from the matrix array. If no alternative objects
are available, an exception is thrown and the control-flow is passed to the Fault
output. Finally, the SA sendError is used to propagate an error signal, for instance
to the highest Workflow Specification level, which can be received using a SIGNAL
CFA (see Section 4.1.2).

4.2.2 Realization of an Exception Handling Strategy

As stated in Section 4.1.1, in case of erroneous execution of a Service Activity,
the Fault output interface can be used to route the control-flow to an exception
handling branch. This form of exception handling, realized within the Workflow
Specification is called embedded Exception Handling [52]. In Section 2.2.2, basic
exception handling strategies are presented for embedded as well as autonomous
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exception handling methodologies. The example that will be presented below is
based on a so-called Forward Recovery handling strategy. This means that the
effects, that are caused by the exceptional event, are compensated through the
execution of an alternative workflow path.

For this example, it is assumed for simplification reasons of the considered case,
that the SAs doOR, gripObject and sendError execute correctly and henceforth,
no handling strategies need to be constructed for these activities. An exception
handling strategy to manage a Path Planner error is shown in Figure 4.13. The
exception handling branch encompasses the workflow activities REND, selectResult
and sendError. According to the figure, the service planPath receives the data values
ORResult and ObjectID from the SC OR11.

It is considered that the PP cannot calculate an appropriate path (i.e., RobotPro-
gram) for the given ObjectID. Therefore, the control-flow is forwarded from the Fault
output to the input of the REND CFA. To compensate the exception effect, the SA
selectResult is used to choose an alternative ObjectID. However, selectResult requires
inputs according to Table 4.2 which are not available within the combined control-
and data-flow originating from the SA planPath. Because of this, it is necessary to
synchronize the branches, shown in Figure 4.13, using the REND CFA to make the
desired data objects available.

Considering the case, the SA selectResult can select an alternative ObjectID, the
OR result is updated and the “new” ObjectID is forwarded, with the ORResult and
STATUS values, to the MERGE CFA and consequently passed to the SA planPath
again. If the SA selectResult cannot find an alternative, which means that there are
no other detected objects left, the whole process part is considered to be failed and
an error signal is sent by sendError.

At this point it is worth mentioning that the status value is always valid, even in
the case of erroneous behaviour of a SA. If the control-flow is routed to the Fault
output interface and exception handlers are installed, the status value can be used
to distinguish between different exception types. For instance, an IF CFA can then
be used in order to select the correct exception handling branch.

Summarizing, the issue, stated in Section 2.2.2, can be confirmed that embedded
exception handling solutions tend to increase the complexity of Workflow Specifi-
cations, especially if a variety of exceptions should be managed. As a main advan-
tage, embedded exception handlers clearly define the exception origin within the
Workflow Specifications. Furthermore, the constructed handling strategies can be

11The control-flow, including the data values, is forwarded trough the MERGE CFA.



4 A Graphical Workflow Modelling Language 4.2 Extended Concepts 66

retraced easily, requiring the workflow designer to be familiar with the rules of the
Workflow Modelling Language.

4.2.3 Hierarchical Workflow Specifications

The application of hierarchical structuring methodologies in the field of component
based modelling enjoys increasing popularity in research (see Section 2.3.3). Sev-
eral benefits of hierarchical structures can be directly applied correspondingly to
Workflow Modelling Languages which support the sub-workflow construct. Utiliz-
ing sub-workflows in Workflow Specification results in the following advantages (see
[34], [70], and [6]):

• The combination of functional connected Service Activities into a sub-workflow
leads to a simplified representation of a complex Workflow Specification.

• Once a sub-workflow has been defined, it can be reused in order to compose
a more complex functionality. In this way higher level functional components
can be created of existing lower level service compositions.

• The root workflow can then be considered to have a coordination functionality,
supervising the execution of lower level hierarchically composed sub-workflows.

In the following, a possible application for sub-workflows with the goal to simplify
Workflow Specifications, which are intended to describe the behaviour of a super-
visory control application (as needed in this work), is presented. A robotic system,
which consists of a set of SCs, including for instance a Mobile Platform (MP), a Ma-
nipulator, an Object Recognition (OR) system and a Human/Machine Interaction
(HMI)12 system, is assumed.

The SCs are required to interact among each other in order to make the system
reactive on signals which are propagated from SCs, in case of special events. For
example, in case of the HMI detecting a gesture which means “Stop”, the MP should
stop moving immediately. In this case, the HMI would send an event that can be
received by either the SC Mobile Platform (MP) directly or by the supervisory
control application which then has to forward a corresponding request to the MP.
Additionally, unresolvable exceptions originating from Service Components can be
propagated to the control application (i.e., the root level workflow) which then can
initiate compensation strategies.

12A Human/Machine Interaction SC interacts with the OR system and is capable of interpreting
for instance human gestures or voice commands.
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Independently of how this event propagation is handled, in the author’s opinion, it
is practicable to pack functionally coherent services into sub-wokflows, including the
necessary embedded exception handling strategies and services which send events to
a given address. To mention an example, the combination of OR services and the
Manipulator in order to grasp a part in a storage box (see example in Figure 4.13)
is suitable to be packed into a sub-workflow.

Applying this methodology to functional connected Service Activity compositions,
reduces the complexity of Workflow Specifications very likely. The requirement for
a Workflow Management System (WfMS), which executes hierarchical Workflow
Specifications, to support reactive execution is still fulfilled.

4.3 Concluding Remarks

In this chapter a Workflow Modelling Language, which complies with the require-
ments for the modelling approach, presented in Section 3.4, has been proposed.
The first part focused on the description of the language elements and concepts,
including Service Activities and Control-Flow Activity types as well as the com-
bination of Control- and Data-Flow. Additionally to the characteristics of Service
Activities, the description format for Service-Components and their corresponding
Service-Functions has been introduced. Based on a thorough research on control-
flow patterns, implemented in different Workflow Modelling Languages, a set of
common Control-Flow Activities is presented. As an important concept for the data
passing between activities, the Parameter Mapping method has been explained.

Extended Concepts of the Workflow Modelling Language, including a Workflow Ex-
ample with exception handling strategies, considerations on hierarchical Workflow
Specifications, and Workflow Specification verification are discussed in the second
part. An example Workflow Specification has been discussed to show the possibili-
ties of embedded exception handling strategies and to reveal their advantages and
limitations.



5 Generation of a Control
Application

In this chapter, the automatic generation of an IEC 61499 control application which
is intended to coordinate the Service-Components of a modelled robotic system is
discussed. This generation is based on a Workflow Specification that is expressed
with the aid of the introduced Workflow Modelling Language.

With reference to Section 3.5, a set of requirements for the code generator has
been identified. The main objective is to generate a FB-Network which provides
the desired supervisory control functionality, and is ready for execution through an
IEC 61499 compliant runtime environment. As a main requirement, the control
application should be able to be executed either on real hardware platforms, or by
coupling the runtime environment with the 3D-Simulation Environment to control
the modelled Service-Components.

The first section provides a brief overview of the code generation by describing its
processing steps. The second part presents a general approach for generating FB-
Types, where especially Basic FB-Types and Composite FB-Types are considered.
Thirdly, a selection of examples for the generation of representing FB-Types for
Control-Flow Activities is presented. The fourth section deals with the generation
of FB-Types representing interfaces to Service-Components. Lastly, the generation
of the supervisory control application is explained.

5.1 Code Generation Process

This section focuses on a description of the code generation procedure, which is based
on the requirements and explanations provided in Section 3.5. The main goal of the
code generator is to automatically create a FB control application which represents
the control behaviour, described by the corresponding Workflow Specification.

68
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After structural and syntactical checks of the Workflow Specification have been per-
formed correctly, the generation process starts by generating representative Function
Block Types for the modelled workflow activities. According to the language ele-
ments of the developed Workflow Modelling Language, both Control-Flow Activities
as well as Service Activities require representative FB-Types to be generated. Based
on the generated FB library group, a FB control application is generated by cre-
ating FB instances of the generated FB-Types. The modelled activity connections
are represented by event and data connections. Additionally, to make sure that
the created FB instances are initialized correctly, a special section of a FB-Network
is generated. This network section performs a supervised initialization, before the
execution of the control application is commenced.

Finally, the resulting FB control application can be executed by an IEC 61499 com-
pliant runtime environment. The runtime environment is executed on a hardware
target platform, or coupled with the 3D-Simulation environment, thus enabling it-
erative programming cycles.

5.2 Generation of FB-Types

This section deals with generation of FB-Types that are needed in order to express
the defined Workflow Specification by a FB-Network, providing supervisory control
functionality.

The language elements of the developed Workflow Modelling Language encompass
a set of eight Control-Flow Activities (CFAs). These constructs enable the workflow
designer to influence the execution sequence during runtime, for instance by branch-
ing the control-flow based on a given condition. For every modelled CFA instance, a
representing FB-Type has to be created based on generation rules which are deter-
mined for the every CFA type. These generated FB-Types are henceforth denoted
as Control-Flow Activity FB-Types (CFA FB-Types). The certainty of having dif-
ferent types of data values being bound to the control-flow, implies the generation
of a new FB-Type for almost every CFA, although the FBs internal logic would be
the same (e.g., consider two REND activities with different input data types).

According to Section 3.5.1, the invocation of Service-Functions (SFs) is accomplished
by using FB-Types which act as interfaces to the corresponding, external Service-
Components (SCs). To enable communication between a component and the super-
visory control application, a connection needs to be established. In this approach a
synchronous communication solution based on a TCP connection service is used be-
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cause synchronous communication supports reactive workflow execution [14]. Since
one FB-Type is generated to connect to a certain SC, the FB has to provide a
FB-Interface which serves several SF calls that affect the same SC. An approach to
generate these so-called Service-Component FB-Types (SC FB-Types) is presented
later in this chapter.

In IEC 61499 compliant Engineering Environments, FB-Types are defined in two
steps (see e.g., [17] or [21]). Firstly, the interface, which encompasses inputs and
outputs such as events and data variables of the FB-Type, needs to be constructed.
Secondly, the FB’s behaviour has to be defined, whereat different concepts are used
for the behaviour definition, depending on the FB’s general type (i.e., Basic, Com-
posite, or Service-Interface). The following sub-sections, describe how the generation
of FB-Types is accomplished.

5.2.1 General Design Rules

Before the generation of FB-Types is explained in detail, a set of design rules is
introduced below, which should be kept in mind during the whole FB code generation
process.

Both, FB-Types and FB instances need to have unique names, by which they are
identified within the type library and the FB-Network, respectively. The same
rule applies to interface elements, this means input/output events, as well as in-
put/output data variables. Ambiguous event and data variable names are not per-
mitted according to the IEC 61499 standard definitions [28], [1].

Regarding the generation of FB-Interfaces, naming conventions for inputs and out-
puts (data and event) have been made in order to allow an easy classification within
the interface. For example, the name prefixes “IN” and “OUT” are used in order to
mark data inputs and data outputs. In general, the definition and use of consistent
naming schemes prevents program development mistakes to happen. At the same
time the program code readability is improved.

5.2.2 Generation of FB-Interfaces

This section deals with the generation of FB-Interfaces, based on the information
that is provided by Activity Interfaces and their associated Activity Parameters
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(AP). The method to generate FB-Interfaces which is presented in the following,
can be applied to several FB-Types (i.e., Composite FBs or Basic FBs).

Apart from event/data inputs and outputs, FB-Interfaces are characterized through
compositions of single events (input or output) with sets of data variables. These
event to data variable associations are called WITH constructs [28], [9]. They de-
scribe the data values that are passed to a FB-Algorithm, whose execution is trig-
gered through the corresponding event.

According to Section 4.1, activities are modelled having a set of Activity Interfaces
which act as source and endpoints of Activity Connections. Furthermore, it is de-
fined that every Activity Interface possesses a list of APs, each of them having a
defined data type. Compared to the WITH construct, the definition of Activity
Interfaces and corresponding APs can obviously considered to be analogous. Fig-
ure 5.1 depicts a scheme how Activity Interfaces and their corresponding APs are
mapped to events and data variables. The upper part of the image displays a gen-
eral activity instance, with its Activity Interfaces IN and OUT, and the associated
APs.

For the generation of the FB-Interface, the Activity Interface combined with the APs
is directly represented as one WITH construct. This mapping rule is highlighted by
the solid arrows, leading from the Activity Interface to the event and data variables
which together correspond to WITH constructs. The data types of the generated
data variables are matching with those of the defined APs. For activities having
multiple Activity Interfaces on both, the input and the output sides, the mapping
rule can be applied similarly to generate the related FB-Interface.

Activity
IN OUT

Activity Parameters

· OUT_1 :: STRING
· OUT_2 :: REAL

Activity Parameters

· IN_1 :: BOOL
· IN_2 :: INT

ActivityFB_1

ActivityFB

EVENTOUTINEVENT

STRINGOUT_1

REALOUT_2IN_1_2INT

IN_1_1BOOL

Figure 5.1: Mapping of Activity Interfaces and Activity Parameters to events and
associated data variables
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In case of several events being generated on one interface side, it has to be assured
that every event and data variable is named uniquely. Considering CFA FB-Types,
input and output events are named equally to the corresponding Activity Interface.
For SC FB-Types, the event names correspond to the instance names of the Ser-
vice Activities with additional pre- and postfixes. This is necessary to distinguish
between different Service-Function calls that need to be served by the FB-Type.
Detailed explanations are given later in this chapter. Data variables are named
according to the scheme IN_x_y, with y denoting the number of the data variable
that is associated with the event number x, counting from the top of the interface
side. The same naming conventions are used for output events and data variables.

This naming scheme cannot be applied in case of input Activity Interfaces, which do
not allow any input or output Activity Connections but require Constant Parameters
to be defined. For example, Activity Interfaces are considered which are intended to
only hold constant configuration parameters. Such configuration values are needed
either during the Workflow Modelling phase or for the code generator1. Mapping an
Activity Interface definition of this type to a FB-Interface would result in an event
input which remains unused.

After describing an approach to generate FB-Interfaces, the generation of a FB’s
behaviour is considered next.

5.2.3 Generation of a Basic FB-Type

The behaviour of a Basic Function Block is described by an Execution Control
Chart (ECC). Basic FBs turned out to be very suitable in order to describe logical
operations (see [28] or [1]), like most of the CFA types are based on, especially the
introduced activity types REND, MERGE, and IF. The generation of an Execution
Control Chart can be summarized into four generation steps, described below.

• Declaration of Internal Variables to store intermediate processing results.
• Generation of EC-States for every input event.
• Generation of EC-Actions and encompassed FB algorithms.
• Generation of EC-Transitions to enable state changes.

1For example, the Activity Interface CONFIG of the CFA CALCULATE (see Section 4.1.2)
is used to determine the activities’ output data type. Therefore the Constant Parameter which is
mapped to this interface is only used during the workflow modelling phase.
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Internal variables are used to store intermediate processing results of the FB’s algo-
rithms. Moreover, results of complex boolean conditions are stored in internal vari-
ables. Instead of associating a complex condition expression to an EC-Transition a
single internal variable is assigned. This improves the readability of the ECC.

An EC-State is generated in general for every input event of the FB, because an input
event requires an action to be performed. The defined EC-Action produces output
data and triggers an output event or initiates the transition to another EC-State.
In this context it is worth mentioning that in many cases, additional intermediate
EC-States are required, which need to be reached before the result output data can
be processed. For example, consider a FB that has an initialization algorithm (e.g.,
to set internal variables of the FB), which must be executed correctly in advance,
before any other action can be invoked. To accomplish such a behaviour, a Ready
EC-State is introduced which denotes that the FB has been initialized correctly
when it is reached. Only if the ECC resides in the Ready state, further actions can
be executed. Otherwise, incoming events are dropped.

Algorithms define the main behaviour of the FB [28]. They are intended to process
the input data values, to evaluate condition expressions, and to write intermediate
results or end results into the designated data variables. The output events which
need to be triggered are combined with the defined algorithms, thus expressing
EC-Actions in the ECC. An EC-Transition enhanced with a condition can be used
to test a data variable (e.g., internal variable or input data variable) for a certain
value, as well as for testing the presence of a certain input event. Based on the
condition result, a state change is initiated which consequently leads to the execution
of another EC-Action.

5.2.4 Generation of a Composite Function Block Network

Apart from Basic FB-Types, Composite FB-Types are applied whose behaviour is
described by an internal Composite Function Block Network. Composite FB-Types
are mainly needed to realize the Service-Component FB-Types that represent inter-
faces to Service-Components. The generation of Composite FB-Types is performed
in four steps, which are described in the following.

• Generation of the FB-Interface.
• Creation of the required internal FB instances.
• Generation of internal event and data connections.
• Association of the internal FB-Network with the Composite FB-Type.
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Firstly, the FBs Interface needs to be generated as already described. The interface
elements (i.e., event connectors and data connectors) are used to route data and
events into the Composite FB-Network. Secondly, the required FB instances which
should be contained within the Composite FB-Network are created and added. This
requires, that the corresponding FB-Types are available in a FB-Library.

In the third step, the event and data connections, which define the behaviour of
the Composite FB-Network, are established. The set of connections encompasses
connections between the internal FBs, as well as connections between internal FBs
and the left and right FB-Interface sides of the Composite FB-Type. Lastly, the
Composite FB-Network instance is associated with the Composite FB-Type and the
generated FB-Type is stored in a FB-Type library-group.

5.3 Control-Flow Activity FB-Types

This section presents generation rules for Control-Flow Activity FB-Types that are
mainly generated as Basic FB-Types. They represent instances of the eight different
CFA types of the introduced Workflow Modelling Language, within a generated FB
control application. Observe that the generation of the Basic FB-Type’s ECC is
predefined for every CFA type (i.e., parts of the behaviour “generation” are hard-
coded). However, the generation steps explained in Section 5.2 are applied in the
same sequence for the majority of CFA types.

5.3.1 REND FB-Type

The REND Control-Flow Activity synchronizes two incoming control-flow branches
into a single branch [28]. This means, that the control-flow is passed to the outgoing
branch, once both incoming branches have been enabled. Due to the synchronization
functionality, also the incoming parameters of both incoming branches need to be
merged into on combined control- and data-flow. Figure 5.2(a) shows the REND
CFA, with examples of defined Activity Parameters. By applying the mapping rules
of Section 5.2.2 to every input and output Activity Interface, the FB’s interface
can be generated. For the generation of the FB’s behaviour as an ECC, the internal
variables IN_1_T and IN_2_T are created at first. These are used as flags, to mark
the occurrence of the input events IN_1 and IN_2. Consequently, these variables
are set to true if the corresponding intermediate EC-State (i.e., either IN_1_ST or
IN_2_ST ) is reached upon the event occurrence.
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REND_1_0

REND_1

IN_1EVENT

IN_2EVENT

REVENT

IN_1_1BOOL

IN_2_1INT

IN_2_2STRING

EVENTOUT

BOOLOUT_1

INTOUT_2

STRINGOUT_3

&

IN_1

IN_2

R

OUT

B_1 :: BOOL

I_1 :: INT
S_3 :: STRING

B_1 :: BOOL
I_1 :: INT
S_3 :: STRING

(a) Generated Function Block Interface

Internal Variables Conditions

IN_1_ALG
IN_2_ALG

RESET_ALG

· IN_1_T :: BOOL
· IN_2_T :: BOOL

· C_A := IN_1_T AND IN_2_T;
· C_B := NOT (IN_1_T AND IN_2_T);

IN_1_T := TRUE;
OUT_1 := IN_1_1;

IN_2_T := TRUE;
OUT_2 := IN_2_1;
OUT_3 := IN_2_2;

IN_1_T := FALSE;
IN_2_T := FALSE;

START_ST

IN_1_ST IN_1_ALG

IN_2_ST IN_2_ALG

OUT_ST OUT

RESET_ST RESET_ALG

1

R

IN_1
C_B

C_B

C_A C_A
1

IN_2

(b) Generated Execution Control Chart
with algorithms and conditions

Figure 5.2: Generated Function-Block type for the Control-Flow Activity REND

Additionally to the flags, the values of the corresponding input data variables are
assigned to the output data variables. However, these values cannot considered to be
valid, before the output event OUT is triggered2. If both of the input events were
active, the transition condition C_A evaluates to true and the EC-State OUT_-
ST is reached. Finally, the output event OUT is emitted and the data outputs
are valid. The condition C_B evaluates to true, if only one of the input events has
occurred. After the OUT_ST EC-State has been reached and finished its associated
EC-Action, the RESET_ST is reached, via the outgoing EC-Transition, and the
internal variables are set to false. Finally, the Start EC-State is reached again and
the FB resides in its initial state. The resulting ECC and the generated algorithms
are depicted in Figure 5.2(b).

With reference to the structure of the ECC, the conclusion can be drawn that, al-
though internal variables are needed and corresponding algorithms in order to set
those variables, the overall structure is kept simple. Therefore, the extension of
the REND activity to more than two inputs, does not require additional generation
effort. Extensions are realized by adding one state and one internal variable, corre-
sponding to one event input including the necessary transitions. Furthermore, the
algorithms as well as the conditions C_A and C_B need to be enhanced with the
additional internal variables.

2According to Figure 2.3(b), the emission of the output event finalizes the execution of the
invoked algorithm and states that the resulting data outputs are valid.
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5.3.2 IF FB-Type

To enable the evaluation of a condition including data values, the notion of an IF
CFA has been introduced. The values of the incoming data objects, provided by
the incoming control-flows into the Activity Interfaces IN_1 and IN_2, are used to
express the if-condition. Activity input COND is used to specify the if-condition in
Structured Text language notation. Figure 5.3 shows the generated FB-Interface as
well as the ECC and corresponding algorithms.

With reference to the ECC drawing and the provided expressions, the condition
is directly applied as label for the transitions, leading from the initial EC-State
to the corresponding output states. The transition to the ELSE_ST requires the
boolean inverted condition as a label. According to Section 4.1.2, the evaluation of
the conditions C_A and C_B is only triggered on reception of the event IN_1E.
In case the condition is satisfied upon request, the output event THEN is triggered,
otherwise the ELSE output event.

5.3.3 SIGNAL FB-Type

Contrary to the other Control-Flow Activity FB-Types that have been presented in
this section, the SIGNAL FB-Type is generated as a Composite FB-Type. According
to Section 4.1.2, the SIGNAL CFA enables the reception of a signal (i.e., event) and

Conditions 
e.g. for COND = IN_1 > IN_2

· C_A := IN_1E & (IN_1 > IN_2);
· C_B := IN_1E & NOT (IN_1 > IN_2);

START_ST
C_B

1

C_A

1

THEN_ST THEN

ELSE_ST ELSE

IF
IN_1E

IN_2E

THEN

COND

ELSE

IN_1 :: INT

IN_2 :: INT

IF_1_1

IF_1

EVENTELSE

EVENTTHENIN_1EEVENT

IN_2EEVENT

IN_1INT

IN_2INT

Figure 5.3: Generated Function Block type for the Control-Flow Activity IF
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optionally a set of data values. The data types of the data values are specified using
the RCV_DATA Activity Interface. Figure 5.4 depicts the generated FB-Interface
for the concrete parametrization example, located in the uppermost part of the
image. In this case, two data objects of the types BOOL and INT are received and
passed to the corresponding data output variables OUT_1 and OUT_2.

The internals of the generated Composite FB-Network depend on the value of the
boolean Constant Parameter UDP_TCP. In case of the value false, the generated
Composite FB-Network encompasses a SUBSCRIBE communication FB, which is
the endpoint in a UDP Multicast communication service. Otherwise, events and
data objects are received using a CLIENT communication FB, as endpoint in a
TCP Client/Server connection. Additionally, some logic FBs are required to report
the communication status. Using an UDP Multicast service results in the advantage
that an event can be received by several subscribers. This can be useful if listeners
to a single signal are needed in different sub-workflows.

For its service initialization, the corresponding FB-Type requires the source connec-
tion endpoint ID (sourceID) in order to register itself as communication endpoint,
listening for messages sent from the defined source. Once a message is received, the
output event OUT is activated and the data outputs are valid. In the case of a
communication error the event FAULT is emitted.

SIGNAL_1

SIGNAL

SOURCE_IDWSTRING

QIBOOL

INITEVENT EVENTINITO

EVENTOUT

EVENTFAULT

BOOLQO

WSTRINGSTATUS

BOOLOUT_1

INTOUT_2

SIGNAL
SourceID

RCVData

OUT

UDP_TCP

Fault
``BOOL, INT‘‘ 
:: STRING

Figure 5.4: Generated Function Block type for the Control-Flow Activity SIGNAL
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5.3.4 Remaining Control-Flow Activity Types

The generation of FB-Types for the remaining Control-Flow Activity types MERGE
and CALCULATE is not presented explicitly in this section. This is because the
generation procedure can be described analogous. The CFA type WAIT does not
require a FB-Type to be generated. In [28] the FB-Type E_DELAY is presented
as common type, usually available in the FB-Libraries of IEC 64199 compliant En-
gineering Environments (see e.g., [39], [17], or [21]). Assuming that this FB-Type
is available, an instance can be created and added to the FB control application.
The CFA type START represents the start-point of a Workflow Specification. With
regard to the generation of the supervisory control application, a representing FB-
Type has to be generated, which performs a supervised initialization of the FBs
within the generated control application.

5.4 Service-Component FB-Types

As mentioned before, the main objective is the generation of a supervisory control
application which coordinates the acting SCs. To make this possible, interfaces are
needed for the control application, which enable the communication with the SCs.
The communication is necessary to invoke Service-Functions (SFs), and to receive
status information and processing results.

The first section deals with a general description of how interaction between SCs and
the supervisory control application is arranged. Secondly, details on how the gen-
eration of Service-Component FB-Types is performed are provided. The generation
and functionality of essential internal FB-Types in the SC FB’s Composite Network
are explained. Finally, the generation of the Composite Network is described.

5.4.1 Interaction of Service-Component and Control Application

For the following considerations it is assumed that a SC, including its implemented
functionality as well as the behaviour information (i.e., declaration of SFs), is pro-
vided by the component vendor (see Section 3.1.1). The generated supervisory
control application interacts with the SCs using an interface which has to provide
the following functionalities:

• Connection establishment to the SC.
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• Permission and creation of SF invocation commands which need to be sent to
the SC.

• Reception of processed return data of the SC and status information.
• Evaluation of status information.

Regarding the required communication between SC and the control application,
the assumption is made that the SC provides a connection service that is started
once the SC has been initialized. This connection service listens to an incoming
connection request from the supervisory control application. Once the connection
has been established, a SF can only be invoked if the SC is ready to receive the next
command. If a SC is currently executing a SF which had been invoked previously,
it cannot accept an incoming command. Consequently, a SF invocation request can
only be accepted and sent if the SC is not busy at the moment. In case of a SF
invocation request has been granted, the associated command is constructed and
submitted to the SC via the established connection. After the SC has processed the
requested SF, status information and eventually processed return data is received
by the interface. By evaluating the status information, the interface can report
processing errors as well as received data to the control application.

The interface to a SC has been realized by generating a Composite FB-Type which
is called the Service-Component FB-Type (SC FB-Type). Figure 5.5 depicts a
schematic overview of the FB’s Composite Network and illustrates the connection
to the SC.

The required functionalities of the SC FB-Type are mainly realized by three internal
FB-Types of the Composite Network. Firstly, the FB-Type located on the left
constructs invocation commands and checks if the SC is ready. Service-Function
invocation requests are represented by the event inputs 1 and their associated
parameters (i.e., input data) 2 . Every event input 1 represents one SF call,
that is modelled in the Workflow Specification and associated to the SC. If the
invocation request has been accepted, the SF parameter values as well as the SF’s
name are passed to the communication FB 3 and submitted to the SC. While the
SC processes the received invocation command by calling the corresponding SF 4 , it
cannot accept further commands until the execution is finished. The processed data
and SC status information is returned to the requesting SC FB 5 and forwarded
to the next FB-Type which performs the status evaluation. Based on the returned
status information which is defined according to Table 4.1, the FB-Type, located on
the right, reports the successful or erroneous SF execution back to the supervisory
control application. The corresponding events and parameter outputs 6 , 7 are
forwarded to the SC FB-Type’s output interface. After the return data has been
passed to the output, the execution of the invoked SF is considered to be done and
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Figure 5.5: Schematic overview of a Service-Component Function Block type and its
interaction with the associated Service-Component

the SC is ready to receive the next command. Apart from the internal FB-Types
introduced above, additional logic FBs are contained in the Composite Network to
enable a time-out error, in case of a SC which does not respond within a defined
time-span.

The following sections deals with the generation of the SC-FB’s interface as well as
functional description of the internal FB-Types which are depicted schematically in
Figure 5.5 in the left and right image parts.

5.4.2 Generation of the Function Block Interface

As mentioned earlier, a Service-Component has to handle any Service-Function call
that is associated with it and which are modelled as Service Activities within a
Workflow Specification. Consequently, the generated SC FB-Type needs to represent
an interface to the Service-Component, to enable the invocation of the SFs. To
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comply with these requirements, the interface of the SC FB-Type is generated in a
way that every Service Activity instance which represents a SF call, is represented
as an event input. This associated event is equally named as the corresponding
Service Activity instance. Furthermore, since every SF call requires specific input
parameters, data input variables are generated for every parameter and associated
with the event input. This allows SFs of equal type to be called with different input
parameter values.

Figure 5.6 depicts how the FB-Interface of a SC FB-Type is generated, based on the
schematic Workflow Specification displayed in the left image half. In the following,
the Service Activities serviceA and serviceD are considered to represent SF calls of
a certain SC. The SF invocation events are equally named as the Service Activities,
and their input parameters are generated by directly transforming the Activity In-
terface definition into a WITH-construct. Apart from the SF invocation events, the
INIT event enables the initialization of the SC FB. The configuration parameter
ID specifies the connection endpoint identification for the internal communication
FB. Moreover, the data input MAX_RESPONSE specifies a timespan for the SC,
to respond to an invocation request. A connection failure is reported to the control
application via CONN_F, if the maximum response time is exceeded.

For the SC FB’s output interface, two execution confirmation events with the asso-
ciated output data variables are generated for every service invocation event. De-
pending on the result of the status evaluation that is performed by the FB-Type,
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Figure 5.6: Generated interface of a Service-Component Function Block type, based
on a modelled Workflow Specification
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depicted in the right of Figure 5.5, the output event with either postfix _OK or
_F is triggered. These postfixes can be directly compared to the “normal” output
interface Output and to the Fault output of an Activity, respectively. Both confirma-
tion outputs are associated with the same output parameters. However, in case of
erroneous execution (i.e., the fault _F event has been triggered), the data outputs
are not guaranteed to hold valid return data. The data output CONN_STATUS
reports the connection status of the internal communication FB-Type.

With reference to the generated input data variables for the service invocation re-
quests, the case of a number of activities referring to the same SF invocation shall be
considered. In this case, input data variables, carrying the Service-Function input
data values, need to be generated for every call of this Service-Function. As a reason
for this, the FB input data variables do not support the fan-in or multiplexing of
several incoming data connections. In contrast to the data inputs, only the minimum
number of output data variable types, that is necessary to serve all Service-Function
outputs, needs to be generated. This is because the IEC 61499 Standard supports
the fan-out of data and events [1], [28]. This means that a data output, having a
specific data type, can be used for several different execution confirmation events,
sharing the same data type within their WITH-constructs.

Summarizing, three main design rules can be identified for the generation of SC
FB-Interfaces. Firstly, every Service Activity instance results exactly in one input
event that needs to be generated and represents the Service-Function invocation.
Secondly, separate input data variables are needed for every SF call. Lastly, output
data variables can be used for several SFs as data output and they are associated
with both, the normal output event _OK and the error output event _F.

5.4.3 Elements of the Composite Network

This sub-section provides a detailed overview of the generated Composite Network
which has been introduced earlier in this chapter. In the following, the internal FB-
Types and their functionality is treated. Emphasis is put on the creation of service
invocation commands, the passing of commands and parameters to the communica-
tion FB, and the interpretation of return data.

Creation of Service-Function invocation commands
Once a service invocation request is performed, the event and its associated input
data is routed to the first FB-Type within the SC FB’s Composite Network, which
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is called CreateCommand. The FB’s behaviour is generated as an ECC, whose
functionality can be summarized into four steps.

• Check if the SC is ready to receive the next command.
• If the command may be sent, forward the command name and the data input

values to the communication FB, and trigger the command transfer to the SC.
• If the command cannot be sent, the invocation request is dropped and an error

is reported to the control application.
• After the execution of the SF has been triggered, wait for the SC to enter its

idle state (ready) again.

Referring to the first step, an intermediate state within the ECC is used which
can only be reached if a corresponding READY event is received, at a fixed event
input of the CreateCommand FB. If the command may be sent, the data values are
forwarded to the output interface of the CreateCommand FB-Type. To enable the
correct identification of the command through the SC, the command’s name needs
to be sent, additionally to the input parameter values. The relations explained above
are depicted in Figure 5.7.

Data passing between the internal Function Blocks
In the next step we discuss how SF invocation commands (i.e., invocation event and
associated parameters) and return values are passed between the affected FBs. At
first, the interface sides of the communication FB as well as the right interface side
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Figure 5.7: Interaction between internal Function Blocks of the Service-Component
Function Block type
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of CreateCommand FB and the left interface side of the StatusEvaluation FB, are
considered.

According to Figure 5.7, the listed interface sides do not vary with a changing
number of SF calls that are modelled in the Workflow Specification. This means
that the generation of these interface sides does only depend on the defined Service-
Component behaviour information. Therefore, these interface sides are generated
such that several defined SF invocations can be handled. Consequently the minimum
number of data variables, needed to carry the associated parameter values of the
defined SFs, have to be generated. The major advantage of this approach results
in the fact that the interface of the communication FB is fixed already at design
time. Moreover, the communication service of the implemented SC can be realized
platform independently, but needs to be able to receive the passed data values
with the predefined data types. The currently implemented modelling approach
builds on a TCP connection service between SCs and the generated SC FB-Types.
The SC FB’s Composite-Network contains a CLIENT FB-Type which establishes a
connection to the SC’s internal TCP server.

Evaluation of the returned status value
After the SC has processed the invoked SF, the produced return data and status
information is passed to the StatusEvaluation FB. The StatusEvaluation FB requires
the command name as additional data input, in order to trigger the correct execution
confirmation events (see Figure 5.6). This information is directly received from the
CreateCommand FB.

The SC’s status information, having the data type integer, is returned for every
called SF, and is determined as the first return parameter of the SF. Depending on
the returned status value, the StatusEvaluation FB either triggers the positive execu-
tion confirmation event with name postfix _OK, or the error execution confirmation
event _F. A special case is given for connection errors, which are additionally re-
ported by triggering the output event CONN_F. We distinguish between two types
of connection errors. Firstly, the communication FB can report a connection fault
by setting its event output qualifier QO to false. Secondly, in case of the response
time of the SC exceeds the determined MAX_RESPONSE time span, a connection
time out error is assumed. If no connection error has been detected a predefined
output event is looped back to the CreateCommand FB, to signal that the SC is
ready to receive the next service invocation request.

Besides the status evaluation, the received processing data is written to appropriate
data outputs. With reference to the generation of the SC FB’s interface, it has
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been stated that only the minimum number of data output variables is generated.
These can be used for all modelled SF invocations of the Workflow Specification
associated with the considered SC. When writing the return data to the outputs, the
first appropriate data output is used for each output parameter type. For example,
consider that two data outputs of type BOOL are available at the StatusEvaluation
FB’s output interface. In case of a SF which only returns one boolean value, the first
data output which matches the required data type is used. The output interface of
the StatusEvaluation FB basically corresponds to the output interface of the SC FB-
Type. This means that the output events as well as the data outputs are forwarded
to the output interface of the SC FB (see Figure 5.7).

Based on the generated FB-Types CreateCommand and StatusEvaluation, the SC
FB’s Composite FB-Network can be generated by creating the FB instances, as well
as data and event connections between them.

5.4.4 Generation of the Composite Function Block Network

By using the generated FBs CreateCommand and StatusEvaluation, in combination
with an appropriate communication FB-Type (here: CLIENT FB-Type), the Com-
posite FB-Network of the SC FB can be generated. Apart from these FB-Types,
which represent the major behaviour of the SC FB, some logic FBs are required for
instance to implement the time-out functionality. The generation of the Composite
FB-Network is summarized in the processing steps, described below.

In the first step, instances of the generated FB-Types as well as a CLIENT FB, an
E_DELAY FB and an E_REND FB are created3. Afterwards, the event and data
connections between the FB instances CreateCommand, CLIENT and StatusEval-
uation, as well as the connections between the interface sides of the Composite FB
and the FBs CreateCommand and StatusEvaluation, are established.

Especially, for the connections between the left and right hand interface sides of the
Composite FB and the neighboured, generated FBs, we can make use of the equally
named input and output events and their associated WITH constructs. Making use
of this advantage, the connections between these FB instances and the Composite
FBs interface are created straightforward. The connections for the time-out logic,
the initialization event chain, and remaining connections between the internal FBs
are predefined and equally to connect for every SC FB-Type. Finally, the generated

3The FB E_DELAY is used to delay the propagation of an event for a specified time-span.
E_REND FBs allow the synchronization of two incoming events [28].
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Composite FB-Network is bound to the SC FB-Type and the FB-Type is stored
within a group of the FB library, of the IEC 61499 Engineering Environment.

5.5 Resulting Control Application

This section deals with the generation of a supervisory Control Application according
to IEC 61499 that coordinates (external) Service-Components in order to perform
the desired process. Once the FB-Network has been generated, it can be downloaded
to a hardware resource and run afterwards. To enable the iterative improvement of
a Workflow Specification, the supervisory control application can be tested against
the 3D-Simulation environment.

5.5.1 Creating FB-Type Instances

The generation procedure is started by generating the required FB-Type library-
group like discussed in Section 5.2. In the next step, the needed FB instances are
created. The FB instance names correspond to the SC’s name, in case of SC FBs,
whereas FB instances that represent CFAs are named after the CFA instance in the
Workflow Specification. Regarding the START CFA, an initialization FB-Network
needs to be generated and connected to the first SF invocation event. This section
of the resulting control application is executed after the target resource has been
started. The initialization network enables a supervised initialization of SC FBs and
other FB instances which require to get initialized. A description of the initialization
concept is provided later in this section.

5.5.2 Event Connections and Data Connections

The control functionality of the FB-Network is generated by creating the necessary
event and data connections between the created FB instances. Hereby, the informa-
tion that is provided through the modelled Activity Connections of the Workflow
Specification is used and extracted.

By considering an Activity Connection, the source and target activities are always
accessible. Due to the naming conventions mentioned above, the generated source
and target FB instances can be accessed via the activities’ instance names, in the
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first step. Secondly, the source Activity Parameters (APs), the destination APs and
the Parameter Mapping information of the destination activity, are used in order to
find the corresponding connection endpoints of the representing FB instances. This
means that the corresponding source/destination events and data variables of the
affected FB instances, that shall be connected, need to be found. Again the naming
conventions that were introduced for the generation of FB-Types are used. In case
of a Service Activity, the input events as well as the output events are named after
the activity.

Based on the determined source and destination events, the corresponding data
outputs and data inputs are obtained by utilizing the event↔data associations that
are given by the WITH constructs. If all the event and data inputs and outputs
could be found, the event and data connections can be created by connecting the
paired events and data ports, respectively. The remaining connections, that need
to be established, are necessary to couple the initialization Network section to the
FB-Network representing the designed workflow.

5.5.3 Initialization of the Function Block Network

Service-Component FBs as well as the SIGNAL FB-Types require to be initialized,
because these FBs need to set up communication interfaces. An initialization mech-
anism is needed which supervises the initialization procedure. The execution of
the control FB-Network can only be commenced, if all FBs have been initialized
successfully.

In the following the generation of a SC_INIT FB-Type (Service-Component Ini-
tialization) is explained, which is realized as a Basic FB-Type. Concerning the FB-
Interface definition, one output event is generated for every generated SC FB-Type.
Moreover, these events are associated with a boolean output qualifier QO_x, which
is connected to the corresponding input qualifier QI of the SC FB “x”. The output
qualifier QO_x is set to true if the corresponding SC FB shall be initialized. The
left interface side of the SC_INIT type contains one boolean input qualifier QI_x
for every SC FB-Type. These are used to receive an initialization feedback from
the concerned SC FB-Types. All of those input data variables are associated with
a single response input event RSP. This event is triggered for every initialization
response which is emitted by the SC FB-Types.

The initialization procedure is triggered using the input event INIT. An initialization
event is emitted for every SC FB-Type with the associated qualifier QO_x set to
true. If a positive input qualifier QI_x could be received for every SC FB-Type,
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the FBs are considered to be initialized correctly and the output event INIT_OK is
emitted. Figure 5.8 depicts a schematic overview of the initialization FB-Network,
where two SC FB instances are initialized. Apart from the SC_INIT FB, instances
of the FBs E_RESTART and E_REND are created. The E_RESTART FB emits
an event once the corresponding resource, to which the FB is mapped, is started
(i.e., Cold or Warm start event output) [28]. The E_REND FB synchronizes the
start event from E_RESTART and the INIT_OK event. Moreover, the resulting
output event is forwarded to the first service invocation event, of the first SC FB that
is affected, according to the Workflow Specification. An example for a generated
supervisory control application is provided in Chapter 7.

5.5.4 Execution of the Control Application

Once the control application has been generated, an IEC 61499 compliant Engineer-
ing Environment for FB-Applications is used to map and deploy the supervisory
control application to distributed resources. These resources support the runtime
environment needed to execute the FB network. In order to test the overall be-
haviour and further improve the Workflow Specification, the FB runtime environ-
ment can also be run coupled with the 3D-Simulation Environment. This requires
the corresponding Service-Component implementation to include functionality to
send signals and data values to the 3D-Simulation Environment. Moreover, the
modelled component in the 3D-Simulation Environment, requires behaviour infor-
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mation that is directly associated with it. This kind of behaviour description shall
not be mixed up with the description of Service-Functions. Examples include defined
robot kinematics or defined, moving parts like a conveyor belt. Upon an appropriate
signal is received by the 3D-Simulation Environment, the simulation object performs
the associated action.

In the current implementation of the code generation approach, the self-implemented
Service-Components need to be extended manually in order to support the con-
nection to the 3D-Simulation Environment. The improved integration of the 3D-
Simulation Environment into the workflow modelling process as well as the code
generation process is planned in the further development of this engineering ap-
proach.

5.6 Concluding Remarks

A methodology for the automatic generation of an IEC 61499 compliant, supervisory
control application, based on a Workflow Specification, has been presented. As ex-
plained, the generation of the resulting FB-Network, requires a set of FB-Types that
need to be generated in advance and stored within a FB library-group. Section 5.2
describes how representative Function Blocks are generated for Service Activities
and Control-Flow Activities.

The conclusion can be drawn that the majority of generated FBs are Basic FB-
Types, whose Execution Control behaviour is determined by an Execution Control
Chart (ECC). The generation steps for the automatic creation of an ECC, are very
generic and can be applied to several Control-Flow Activity FB-Types. They are
also applied for the generation of the internal FBs in the Composite FB-Network of
a Service-Component FB.

Service-Component FBs are generated as Composite FB-Types and act as inter-
faces for the supervisory control application to a Service-Component. The Service-
Function invocation commands are sent to the Service-Component via a CLIENT/
SERVER connection. Although the method of using one FB to represent all Ser-
vice Function invocations, corresponding to a certain SC, seems to be intuitive, the
input interface sides of the SC FBs tend to grow very large with a rising number
of Service-Function calls. A possible solution to this problem could be achieved by
using Adapter Function Blocks, by shifting the complexity of the input interface into
the Composite-FB.
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Useful naming schemes for event and data inputs and outputs, simplifies the gen-
eration of event and data connections during the creation of FB-Networks. In that
way, events of the FBs can be directly referenced from the modelled Activity Connec-
tions and their source and destination endpoints. Data inputs and outputs are then
referenced using the WITH constructs, that associate events with data variables.

The generated FB-Network needs to be initialized in advance, before its execution
can be commenced. For this purpose, a special Basic FB-Type is generated which
performs the initialization of the Service Component FBs.



6 Implementation

This chapter deals with an overview of how the described engineering approach is
implemented in the Eclipse-based 4DIAC Integrated Development Environment [17].
The implementation and integration of a graphical Workflow Modelling Editor as
well as the described code generation approach, is treated.

The first section gives an overview description of the used frameworks and tools.
In the second part, the implementation of the graphical Workflow Modelling Editor
based on the Graphical Editing Framework (GEF) is treated. In the third section,
the basic structures of the code generator are explained.

6.1 Base Frameworks and Tools

In this section, a brief overview of the frameworks that are used for the implemen-
tation is given.

4DIAC Integrated Development Environment
The open-source initiative 4DIAC (Framework for Distributed Industrial Automa-
tion and Control) aims to develop a toolchain for the design and execution of IEC
61499 compliant control applications, which consists of the two software projects
4DIAC-IDE and FORTE [17].

The 4DIAC-IDE (4DIAC Integrated Development Environment) is an engineering
environment for distributed control applications according to the IEC 61499 Stan-
dard. Based on the plug-in structure of the Eclipse Framework, the application is
extensible through newly implemented plug-in features. For the implementation of
custom FB-Types, the 4DIAC-IDE includes a FB-Type Editor, a FB Tester as well
as a FB-Network Editor. A System Configuration Editor enables the configuration
of the distributed hardware devices. Once a FB-Application has been modelled, and
the FBs have been distributed to the devices, the application can be downloaded to
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the resources and executed. The second project of the 4DIAC initiative, the FORTE
(4DIAC Runtime Environment), allows the execution of FBs on the target devices
on which the FORTE is run. Implemented in the programming language C++,
the FORTE supports different platforms including Linux, Windows and embedded
systems [17]. The 4DIAC toolchain forms the basis for the developed Workflow
Modelling Editor and the code generator described in this thesis.

The Eclipse Modelling Framework (EMF), described in Section 2.5.4, has been used
to generate the base plug-in structures for the Workflow Modelling Editor as well
as for the code generator, based on EMF Ecore models.

Graphical Editing Framework
The Graphical Editing Framework (GEF) is built on the visualization framework
Draw2D and enables the graphical representation of model objects within an editor,
that are defined in a data model [37], [27]. GEF makes no restrictions on the type
of the used data model. However, the only requirement for the model is to provide
mechanisms which enable the notification of the GEF framework, in case of model
object changes. For the implementation of the graphical Workflow Modelling Editor,
the concepts of GEF, combined with the given EMF Ecore model, have been applied
in order to transport user requested changes to the underlying model.

Connectivity between the used Frameworks and Tools
In the following, the interconnection between the base frameworks, tools as well
as the implemented Workflow Modelling Editor and code generator plug-ins is ex-
plained. Figure 6.1 shows the relations between these components. The Workflow
Modelling Editor builds on the defined EMF Ecore model which basically represents
the language elements of the Workflow Modelling Language. A graphical represen-
tation of the workflow model is realized by using the methodologies of the GEF
framework. The GEF functionalities are used to transfer change requests from the
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editor’s user interface (i.e., the graphical representation through view objects), to
the underlying data model. By accessing the Service-Component behaviour de-
scription, that is modelled in 3DCreate, the Workflow Modelling Editor creates a
palette of the available Service Activities. After defining the workflow model, the
code generator accesses the workflow instance and generates the supervisory control
application, which is added as new project to the 4DIAC-IDE workspace. The code
generator’s plug-in structure builds on an Ecore model. For the execution of the
generated control application, the 4DIAC-IDE is used to map the FB-Network to
the desired target resource. By using the deployment functionality, the application
is downloaded to the target system. The control application is executed through
the FORTE, which is running on the device.

6.2 Workflow Modelling Editor

The Workflow Modelling Editor is implemented as a composition of three plug-ins
which have some dependencies on the plug-in structure of the 4DIAC-IDE plug-
ins. In the first part of this section, the structure of the EMF Ecore data model
is presented. After that, the plug-ins, containing the source code for the Workflow
Modelling Editor, which were partly generated by the EMF code generation tools,
are explained. Finally, an overview description of the implemented code, including
important functions and classes, is given.

6.2.1 EMF Ecore Model

An EMF Ecore model has been constructed that is used to automatically gener-
ate the model-representing Java classes. To make the data model suitable for the
combination with GEF special View objects are used, which represent the current
model state. The View objects are associated with an appropriate EditPart, which
acts as a bridge element between the model object and its graphical representation,
given by a figure object of type IFigure. Figure 6.2 shows the constructed Ecore
data model which is the basis of the Workflow Modelling Editor plug-ins.

A Workflow consists of at least one Activity that can be of ControlFlowActivity
type or of TaskActivity type1. Activities refer to exactly one ServiceFunction,
which itself is referenced by a ServiceComponent. ActivityConnections are used

1The TaskActivity type corresponds to the Service Activity type which is introduced in
Section 3.4.1.
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to connect Activities together, using their input and output ActivityInterface
Elements. For the generation of the control application, it is important that the
Workflow refers to the ActivityConnections, to make them easier accessible. In
order to allow the mapping of ActivityParameters of a source activity to input
ActivityParameters of a target activity, an ActivityParameterMapper is used.

With regards to the notations used in Figure 6.2, the entities with light grey back-
ground denote model objects which are associated with a specific EditPart. Opened
arrows describe references in the given direction. Generalized model objects, as well
as Interfaces are denoted with closed arrows. A filled diamond denotes, that this
model objects provides a containment for the model object on the opposite end of
the arc. Providing containments in general allows the serialization of the model
objects [13]. Entities having dependencies on existing 4DIAC plug-ins are separated
with “::” from the parent plug-in package.

Using the code generation framework part of the EMF, Java class and interface
definitions can be created automatically by configuring a so-called genmodel. The
generated code includes factory classes which provide members to create instances
of the modelled entities.
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6.2.2 Plug-In Structure of the Workflow Modelling Editor

This section deals with a brief overview of the plug-in structure for the realization
of the Workflow Modelling Editor. The basic contents, as well as the functionalities,
that are provided by the plug-ins, are explained.

The plug-in workflow.model includes Java classes and interfaces representing the
model objects of the Ecore model, as well as the WorkflowmodelFactory class that
is used to create object instances.

The major functionality of the Workflow Modelling Editor is implemented within
the classes of the workflow.editor plug-in. The root package workflow.editor,
contains classes to enable start up and configuration of the WorkflowEditor. An
ActivityFactory creates the activity instances which should be dropped into the
editor diagram window. Command implementations, to create or delete activity
instances or activity connections, are covered by the workflow.editor.commands
package. The plug-in package workflow.editor.editparts contains implementa-
tions of the various EditParts. Model object representatives are Draw2D based
figures of type IFigure and implemented as classes within the package workflow.
editor.figures. Finally, the package workflow.editor.policies contains the
implementation of Edit Policies, which are installed on Edit Parts and utilized to
create Command instances upon a model change request.

6.2.3 Implementation Description

The Workflow Modelling Editor is implemented as a plug-in project, that is included
into the 4DIAC-IDE. In this section, the implementation of important classes is
described briefly.

Class Diagram of the Workflow Modelling Editor
A general overview of the involved classes and their relations together, is given in
Figure 6.3, which shows a simplified class diagram of the editor.

As the Workflow Modelling Editor consists of one graphical editor, the Workflow
Editor can be considered as the main editor. It is initialized based on its model
source, the UIWorkflow. According to Figure 6.2, the UIWorkflow extends the
Diagram class and refers to several child View objects that represent ActivityCon-
nections and Activities. The WorkflowEditor specializes the DiagramEditor which
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WorkflowEditor

DiagramEditor

UIWorkflow

WorkflowElementEditPartFactory

ScalableFreeformRootEditPart

GraphicalViewerWithFlyoutPalette
«interface»

EditPartFactory

-editPartFactory

1

-model

1

«interface»
RootEditPart

-rootEditPart1

WorkflowEditPart
-childEditPart

1

WorkflowXYLayoutEditPolicy
«interface»
EditPolicy

-editPolicies0..*

-modelObject

1

PaletteRoot
-paletteRoot

1

Figure 6.3: Simplified Class Diagram of the Workflow Modelling Editor

further extends the GraphicalViewerWithFlyoutPalette. This is an editor type,
that provides a palette window containing PaletteDrawer entries. Every entry rep-
resents an activity type that can be used for modelling a workflow. The whole palette
has got a root element, the PaletteRoot that is required for the initialization of the
editor.

Every GraphicalViewer has got one RootEditPart which corresponds to the high-
est levelled EditPart in the hierarchy of EditParts. For example the Scaleable
FreeformRootEditPart, implementing the RootEditPart interface, allows zoom
operations to be performed on the editor window. The WorkflowElementEditPart
Factory creates EditPart instances for the model objects UIWorkflow, Activity
View, ActivityInterfaceElement and ConnectionView. An EditPolicy is re-
quired by an EditPart in order to create commands which are executed to change
the model objects. Considering the case of the WorkflowEditPart, the WorkflowXY
LayoutEditPolicy is installed which creates command instances of the types Create
ActivityCommand and SetPositionCommand. The CreateActivityCommand creates
an activity instance at the position specified in the editor window. Existing activ-
ities can be moved within the editor window by executing a SetPositionCommand
which only affects the View object of the activity.

The class diagram in Figure 6.3 depicts the most important relations and depen-
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dencies of the WorkflowEditor class and does not show the entire class structure.
For instance, the additionally required EditPart classes are not shown.

Description of Essential Functionalities
As mentioned in Section 3.4.1, the Workflow Modelling Editor has to import the
defined behaviour information of the Service-Components, from the 3D-Simulation
Environment. For this workflow modelling approach, the 3D-Simulation Toolkit
3DCreate [64] has been used in combination with the Workflow Modelling Editor
plug-ins. 3DCreate offers an Application Programming Interface (API) that is based
on the Microsoft Component Object Model (COM)2 [35] and is accessed using the
com4j libraries [45]. These libraries contain Java-based wrapper classes, for the
interaction of Java applications with COM objects.

The function create3DCreateElementsDrawer, uses the COM access plug-ins in
order to connect to the 3DCreate application. Within the 3DCreate COM API, the
Service-Components are referred by COM objects and consequently, their behaviour
information can be read by an XML parser.

In order to enable parameter mapping for the Workflow Modelling Editor, a prop-
erty view has been realized within the InterfaceElementEditPart class, by im-
plementing the IPropertySource interface. The property view is opened when a
ActivityInterfaceElement is selected in the graphical editor. Further classes and
functions of the plug-in workflow.editor are implemented in compliance with the
GEF concepts (see [37] and [27]).

6.3 Code Generator

The generation of an IEC 61499 compliant control application is performed by a
code generator that has been implemented as Eclipse plug-in. This section deals
with a description of this plug-in, which depends on the workflow.editor plug-in
structure as well as the 4DIAC-IDE plug-ins. In the first part, the Ecore model
of the code generator is explained. The second part covers the implementation of
relevant classes, including important member functions.

2Microsoft COM allows the development of software components which can interact, by using
COM objects. The data of COM objects can be accessed by using predefined function members,
that belong to COM interfaces, across process borders and even computer device borders [35].
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6.3.1 EMF Ecore Model

Similar to the implementation of the Workflow Modelling Editor, an Ecore data
model has been used to generate the basic plug-in structure, including class and
interface definitions, for the code generator. The generated source code has been
modified and further classes were added manually. Figure 6.4 depicts the base Ecore
data model of the generator plug-in, which does not include manually added classes.
However, it contains enough information, necessary to explain the functionality of
the code generator.

The model object AutomationSystemGenerator can considered to be the central
element of the Ecore model. It refers to an existing lib::AutomationSystem object
and to the previously defined Workflow Specification workflow.model::Workflow.
An AutomationSystem is defined within the 4DIAC plug-in structure and may en-
compass several independent FB-Applications, a FB-Type library, as well as a Sys-
tem Configuration file which stores the configuration of the distributed hardware
devices. The ControlFBNetworkGenerator refers to the same objects of the Au-
tomationSystem and the Workflow, as the AutomationSystemGenerator does. Ac-
tivities need to be “transformed” trough the generation of representing FB-Types.
This is performed by WorkflowActivityTransformers which can either be of the

AutomationSystemGenerator

WorkflowActivityTransformer

ControlFlowActivityTransformer

TaskActivityTransformer

ControlFBNetworkGeneratorlib::AutomationSystem

workflow.model::Workflow
-workflow

1

-automationSystem 1 -controlFBNetworkGenerator 1

-automationSystem

1

-workflow1

-workflowActivityTransformers1..*

lib::FBType workflow.model::Activity

-transformedFBTypes1..*
-activitiesToTransform1..*

Figure 6.4: Ecore Data Model for the code generator
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types TaskActivityTransformer or ControlFlowActivityTransformer3. The ac-
tivity transformer types refer to a list of workflow.model::Activities and pro-
duce a list of generated lib::FBTypes, during the execution of the member function
transform().

6.3.2 Plug-In Structure of the Code Generator

The code generator is implemented as a single plug-in project, that is included
into the 4DIAC-IDE plug-in structure. In the following, an overview of the plug-in
packages and their contents is given.

The package workflow.generatormodel.* encompasses the class and interface def-
initions resulting from the Ecore model. Furthermore, similar to the Workflow Mod-
elling Editor plug-ins, the GeneratorModelFactory enables the creation of instances
of the generated classes. For the concrete implementation of the generator function-
alities, some of the generated classes are modified accordingly. In order to establish
data or event connections, the package workflow.generator.commands contains the
classes FBDataConnectionCreateCommand and FBEventConnectionCreateCommand.
To create a connection, an instance of the desired command needs to be cre-
ated and, for its execution, the method execute() has to be invoked. Package
workflow.generator.eccgen contains a set of ECC generators, each enabling the
generation of a Basic FB-Type. The generated Basic FB-Types mainly represent
Control-Flow Activity instances, which have been modelled in the Workflow Speci-
fication.

6.3.3 Implementation Description

The class RunAutomationSystemGenerator, providing the equally named action,
starts the generation process by calling the function run() once the action is ac-
tivated via the workbench window. A new AutomationSystem object is instanced
as well as an AutomationSystemGenerator object. This method requires an ac-
tive WorkflowEditor diagram to be currently opened, because the workflow in-
stance Workflow needs to be referenced by this method. The method run() of the
class AutomationSystemGenerator performs the code generation process, which has
been described before in this thesis. For every SC which is used in the Workflow

3The WorkflowActivityTransformer is generated as abstract class, thus forcing the derivation
of sub-classes.
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Specification, as well as for every Control-Flow Activity instance, an appropriate
WorkflowActivityTransformer instance is created in this context.

Assuming that a FB library-group has been generated correctly, a ControlFBNet
workGenerator instance can be created. Once the method run() is called, the FB-
Application is generated according to the described approach. For the generation of
the event and data connections of the control application, the ActivityConnections
are referenced via the Workflow object according to Figure 6.4 and passed to the
function establishEventAndDataConnections. The generated control FB-Network
is stored as Application of the AutomationSystem object and is available in the
System Manager perspective of the 4DIAC-IDE.

6.4 Concluding Remarks

This chapter dealt with the implementation of the Workflow Modelling Editor and
the code generator. The resulting plug-in structures have been integrated into the
4DIAC Integrated Engineering Environment.

In the first section, tools and frameworks have been presented which form the basis
for the implementation of the Workflow Modelling Editor as well as the code gener-
ator. Moreover, the connectivity between the base frameworks and tools, as well as
the implemented plug-ins, has been explained. The Eclipse Modelling Framework
has been used in order to create the source code of the basic model objects, based on
the designed Ecore data models. Combined with the Graphical Editing Framework,
a graphical representation of certain data model objects has been implemented,
which resulted in the development of a Workflow Modelling Editor plug-in.

The second part treated the implementation of the Workflow Modelling Editor, in-
cluding a description of the underlying EMF Ecore model and the description of the
plug-in structure. In the third part, the implementation of the code generator was
presented. The essential classes and function of both plug-ins have been described
briefly.



7 Verification and Test

This chapter summarizes the results of the developed approach which has been
described in this thesis. An example application is presented, to show how the
Workflow Modelling Editor can be used to program control behaviour. Moreover,
the generated supervisory control application is described. Finally, the presented
results are summarized and commented.

7.1 Human/Robot-Interaction Example

In the following, a Human-Robot-Interaction example is presented in order to show
the appliance of the developed approach to a more complex process. Four Service-
Components (SC) are involved in this workflow example, listed below.

• 5DOF AL5D Robotic Arm Combo Kit from LynxMotion [32], controlled via
RS-232 serial connection.

• Ultrasonic sensor from the LEGO Mindstorms construction kit [26].
• Touch sensor from the LEGO Mindstorms construction kit [26].
• LynxMotionHMI, a self-defined software SC which calculates an appropriate

movement speed value for the robotic arm.

In order to access the LEGO Mindstorms sensors, an existing communication layer
for devices running the Robot Operating System (ROS) [49] is included in the run-
time environment FORTE. The example process, that has been modelled with a
Workflow Specification, can be described as follows. It is assumed that the ultra-
sonic sensor is mounted close to the border of the robot’s working range and used
to detect an approaching person. The robotic arm is moving a predefined path con-
tinuously at a given maximum speed. Once a person is located within the range
of the ultrasonic sensor, the velocity of the robot’s arm is reduced, depending on
the measured distance. Furthermore, if the touch sensor is pushed, the robotic arm
stops and the execution of the current movement is suspended until the touch sensor
is released.

101
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7.1.1 Important Service-Functions

This sub-section gives an overview of the services, which are provided by the Service-
Components and used in this example application. The SC “UltrasonicSensor”
provides the Service-Functions, listed below.

• SF connect: Needed to initialize the ultrasonic sensor, and requires the correct
ROS topic ID1, corresponding to the ultrasonic sensor, to be passed. Moreover,
a multicast IP address and a port needs to be specified. This connection
endpoint ID is required to initialize a publisher communication service that is
used to send the sensor value.

• SF getSample: Used to subscribe sensor values periodically with the given
interval time. The measured distance is returned as LREAL2 value and can be
received using a SIGNAL Control-Flow Activity instance.

• SF stopSample: Stops the periodic reception of sensor values, initiated by
getSample.

The “TouchSensor” SC provides the same SFs as the ultrasonic sensor SC, but it
returns a boolean value instead, denoting if the sensor is pushed (i.e., true) or not.

To control the robotic arm, the SC “LynxMotionRobot” provides two Service-
Functions (SF) that are described below.

• SF connect: Initializes the serial RS-232 connection to the robot controller,
and initializes3 the robot controller afterwards.

• SF movePath: Moves to the next position that is defined in a REAL type array
of positions. Hereby, one position is provided as an aggregation of six REAL
values. Every value corresponds to an absolute position value (e.g., angle)
of one of the five robot axes and the gripper. A model of the robotic arm
is shown in Figure 7.1. Parameter minTime (type UINT) is used to set the
minimum time for the positioning command to last, in units of milliseconds.
This value can be directly related to the velocity of the movement.

• SF getStatus: Returns the current status (e.g., “moving” or “stopped”) of
the robot as well as the current position values.

1Messages in ROS are routed based on a publish/subscribe methodology. A ROS topic ID
identifies a certain message type which can be used by a subscriber to read the message contents
[49].

2LREAL is a 64-Bit wide floating point value type, defined in the IEC 1131-3 Standard (see [28]
and [1]).

3According to [32], the initialization of the internal absolute encoders of the robot’s servo
motors, is done by performing an initial movement of all axes as well as the gripper.
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o0

o1

o2
o3

o4

Figure 7.1: CAD model of the Robotic Arm with axis coordinate frames, shown in
3D Create [64]

• SF stopAxes: Cancels the current movement.

Finally, the SC “LynxMotionHMI” provides the SF suggestedSpeed which calcu-
lates an appropriate minTime value for the SF movePath. The calculation is based
on the received distance value from the ultrasonic sensor device.

7.1.2 Design of the Workflow Specification

Based on the modelled SCs, the Workflow Specification is designed by firstly ini-
tializing the SCs “UltrasonicSensor”, “TouchSensor” and “LynxMotionRobot”. By
applying the activity getSample for both sensor types, the periodic emission of
sensor values is triggered. These values are received using two instances of the
SIGNAL Control-Flow Activities. The received distance value is forwarded to the
activity suggestedSpeed to calculate the speed value for the next movement. If
the received boolean value of the touch sensor equals true, the current movement is
stopped.

A movement is initiated using the activity movePath. In the next step a loop struc-
ture is needed to periodically check if the robot is still moving, using the activity
getStatus. If the robot has stopped moving, the next position movement of the pro-
vided path is started. In case of the activity movePath reporting an error, the robotic
arm has to be stopped. Moreover, to prevent additional invocations of movePath,
the service stopSample is called for both sensor types. This procedure can be de-
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scribed as an exception handling branch of the Workflow Specification. Besides the
mentioned activity instances a number of Control-Flow Activities is needed to syn-
chronize or branch control-flows. The resulting Workflow Specification is depicted
in Figure 7.2.

7.1.3 Resulting Control FB-Network

The generated supervisory control application, which coordinates the SCs in order
to realize the desired process behaviour, is shown in Figure 7.3. With reference to
the introduced code generation approach, the major complexity is hidden within the
Service-Component FB-Types that are highlighted with green coloured stars. Sev-
eral SC FB-Types are initialized by the SC_INIT FB, which is tagged with a grey
coloured star. The initialization is triggered once the executing resource is started
(see E_RESTART FB-Type). In order to execute the FB control application, the
FB instances need to be mapped to a configured resource at first. Before the exe-
cution is initiated, the involved SCs have to be started in advance. Otherwise the
SC FB-Types cannot establish a connection to their corresponding SCs.

7.2 Results and Comments

The presented example shows, that the designed Workflow Specification is less dif-
ficult to read than the generated FB-Application, which has a fairly complex struc-
ture. As pointed out, the main complexity is hidden within the generated FB-Types.
Especially the SC FB-Types are of Composite type, having an internal FB-Network
which contains generated Basic FB-Types. The complexity of the control applica-
tion itself is given due to the high amount of data and event connections.

This simplified programming approach has been used in a real industry-oriented
application, to program a control application in order to run an object recognition
Service-Component. In the next development step, a bin-picking system composed
of an object recognition system with a conventional industrial robot and a path-
planning component shall be programmed. The first implemented examples show
a significant difference between the engineering effort, required for the developed
programming method and the effort that needs to be made when implementing an
IEC 61499 control application directly.
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Figure 7.2: Workflow Editor window showing the Workflow Specification for the
Robot-Interaction Example
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Figure 7.3: Generated control application for the Robot-Interaction Example.
Service-Component FB-Types are highlighted with green coloured stars.
The SC_INIT FB is marked with a grey coloured star.

Table 7.1 provides a direct comparison of the engineering effort needed for both
programming methods, considering the relevant steps of the engineering process.

The functional components need to be implemented in advance, if the component
implementations are not provided by component vendors. Service-Components need
to be modelled to enable the model-based programming approach, and if the exe-
cution of a directly implemented control application shall be coupled with the 3D-
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Engineering step Model-based approach Direct implementation
Implementation of

components
required if not available required if not available

Modelling SCs required required for simulation
Implementation of SC

interfaces
automatic generation implementation required

Control-Flow function
elements

automatic generation implementation required
or use standard FBs

Programming the
control application

activity instances; activity
connections; parameter

mappings

FB-Instances; event/data
connections; constant data

inputs

Table 7.1: Comparison of the engineering effort required by the model-based engi-
neering approach and by direct implementation.

Simulation Environment. The direct implementation of interfaces to SCs as well
as control-flow function elements, which represent functionalities of Control-Flow
Activities, has turned out to be very time consuming. In this context the major en-
gineering effort needs to be put into the implementation of representing FB-Types
including their behaviour. The generated SC interfaces and control-flow function el-
ements also include error handling mechanisms which do not need to be implemented
separately.

Referring to the last step in Table 7.1, the engineering effort is similar for both meth-
ods. Event and data connections need to be established in a FB control application.
Similarly, a Workflow Specification needs parameter mapping information between
two activities. However, the graphical representation of a Workflow Specification is
easier to read, compared to a complex FB-Application.

The complexity of the generated control application can be further reduced, by
extending SCs with high-level Service-Functions. These extended service imple-
mentations can replace the same functionality that is expressed by aggregations of
low-level SFs, by a reduced number of high-level SFs. To enable the execution of
the control application combined with the 3D-Simulation Environment 3DCreate
[64], currently modified Service-Component implementations need to be used. The
modifications encompass functionalities to send signals to 3DCreate, using the pro-
vided Application Programming Interface, which can be detected by the modelled
components. A modelled component can react upon the reception of a signal by
execution the defined simulation behaviour (e.g., using defined kinematics to move
a robotic arm in the simulation).



8 Conclusion and Future Work

The application of modular and flexible robotic systems in production industry to
cope with the challenges of fast changing market trends, competition, and rising
costs, gains increasing popularity. In order to allow fast configuration and reconfig-
uration of such complex systems, efficient engineering tools are required. The aim of
this thesis was to develop a model-based engineering method that enables simplified
programming of a flexible robotic system.

The main idea is to use workflow modelling for the definition of the process that
should be performed by the modular robotic system. A graphical Workflow Mod-
elling Language was developed, where so-called activities are used to model invoca-
tions of services that are provided by the system components. Activity Connections
are used to link activities together, thus forming an execution sequence. An Ac-
tivity Connection represents a combined control- and data-flow that enables data
exchange between activities. The notion of a combined control- and data-flow was
chosen in order to keep the Workflow Specification easy to read.

As a main requirement, the Workflow Modelling Language supports reactive work-
flow execution. This characteristic is necessary to ensure that the executing workflow
can react upon exceptional events. Reaction on erroneous situations is crucial for re-
liable operation of the robotic system. Therefore, the developed Workflow Modelling
Language supports exception handling mechanisms. Custom handling strategies to
resolve an execution error can be defined within the graphical Workflow Specifica-
tion.

In the second step an executable, supervisory control application according to IEC
61499 is generated, based on the designed Workflow Specification. A code generator
has been developed, which transforms worklow activities to representative Function
Blocks according to defined transformation rules. The purpose of the control ap-
plication is to coordinate the functional components of the robotic system, in order
to achieve the desired process behaviour. As a special characteristic, the generated
control application realizes reactive workflow execution. This means that the control
application does not execute a modelled service invocation itself, but delegates it to
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the responsible system component. An IEC 61499 compliant runtime environment
is used to execute the generated control application.

The graphical workflow editor as well as the code generator were integrated as sep-
arate plug-ins into the existing 4DIAC Framework. In order to reduce the initial
programming effort, the Eclipse Modelling Framework EMF was used to automati-
cally generate the base class structure from defined EMF data models.

Application examples proved that the model-based engineering method simplifies
programming of control applications for modular robotic systems. Especially due
to the automatic generation of interfaces to the system components, including sta-
tus evaluation functionalities, the engineering effort is reduced significantly. More-
over, processes which are modelled as a graphical Workflow Specifications are easier
to retrace compared to a large FB-Network containing complex FB-Types. Fast
reconfiguration of a control application is performed by modifying the Workflow
Specification and re-running the code generator.

The developed model-based engineering approach as well as the prototype imple-
mentations of the workflow editor and the code generator provide a useful basis for
future development steps, as listed below.

• Hierarchical workflow modelling: To enable hierarchical workflow structures,
a sub-workflow language element needs to be introduced and implemented.
Sub-workflows are useful to reduce the complexity of a Workflow Specification
by grouping functional connected activities.

• Extended exception handling concepts: Currently the Workflow Modelling Lan-
guage supports embedded exception handling. However, if many exception
cases need to be handled, the complexity of the workflow model increases. An
autonomous exception handling approach could solve this issue, since excep-
tion handling strategies can be defined separated from the Workflow Specifi-
cation.

• Improved integration of the 3D-Simulation Environment: In order to simplify
the execution of the control application combined with the 3D-Simulation
Environment, an improved integration of the simulation tool into the imple-
mented plug-ins is required. The ability of the control application to commu-
nicate with the 3D-Simulation Environment needs to be independent of the
implementation of the Service-Components.

• Control-Flow Activity type editor : To gain more flexibility in defining func-
tionalities that are not bound to a certain Service-Component, it is planned to
implement a Control-Flow Activity editor. In that way the group of predefined
Control-Flow Activities can be easily extended.
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Summarizing, the results that have been obtained from the first test applications
are promising. The realization of the suggested functionalities could take the appli-
cability of the model-based engineering method to a higher level, making it ready
to be used for more complex applications.
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