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Abstract

Current state-of-the-art methods for object tracking perform adaptive tracking-by-detection,
meaning that a detector predicts the position of an object and adapts its parameters to the ob-
ject’s appearance at the same time. While suitable for cases when the object does not disappear
from the scene, these methods tend to fail on occlusions. In this work, we build on a novel
approach called Tracking-Learning-Detection (TLD) that overcomes this problem. In methods
based on TLD, a detector is trained with examples found on the trajectory of a tracker that itself
does not depend on the object detector. By decoupling object tracking and object detection we
achieve high robustness and outperform existing adaptive tracking-by-detection methods. We
show that by using simple features for object detection and by employing a cascaded approach
a considerable reduction of computing time is achieved. We evaluate our approach both on ex-
isting standard single-camera datasets as well as on newly recorded sequences in multi-camera
scenarios.
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Kurzfassung

Aktuelle Objektverfolgungsmethoden am Stand der Technik verwenden adaptives Tracking-By-
Detection, was bedeutet, dass ein Detektor die Position eines Objekts ermittelt und gleichzeitig
seine Parameter an die Erscheinung des Objekts anpasst. Während solche Methoden in Fällen
funktionieren, in denen das Objekt nicht vom Schauplatz verschwindet, neigen sie dazu, bei Ver-
deckungen fehlzuschlagen. In dieser Arbeit bauen wir auf einem neuen Ansatz auf, der Tracking-
Learning-Detection (TLD) genannt wird und der dieses Problem bewältigt. In TLD-Methoden
wird der Detektor mit Beispielen trainiert, die auf der Trajektorie eines Trackers liegen, der unab-
hängig vom Detektor ist. Durch die Entkopplung von Objektverfolgung und Objektdetektion er-
reichen wir eine große Robustheit und übertreffen existierende adaptive Tracking-By-Detection-
Methoden. Wir zeigen, dass durch den Einsatz von einfachen Features zur Objekterkennung und
mit der Verwendung eines kaskadierten Ansatzes eine beträchtliche Reduktion der Rechenzeit
erzielt wird. Wir evaluieren unseren Ansatz sowohl auf existierenden Standarddatensätzen in
einer Kamera als auch auf neu aufgenommenen Sequenzen in mehreren Kameras.
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CHAPTER 1
Introduction

The visual cortex of the human brain locates and identifies objects by analysing the information
arriving as action potentials that are triggered in the retina [20]. While perceptual psychologists
study how the human visual system interprets environmental stimuli, researchers in computer
vision develop mathematical techniques in order to extract information about physical objects
based on camera images [44]. Computer vision methods are applied to optical character recog-
nition, quality inspection, robot guidance, scene reconstruction and object categorisation [47].
One domain of research in computer vision is object tracking, in which methods are studied
that estimate the location of targets in consecutive video frames [34]. The proliferation of high-
powered computers, the availability of high quality and inexpensive video cameras, and the need
for automated video analysis have drawn interest to applying object tracking algorithms in au-
tomated surveillance, automatic annotation of video data, human-computer interaction, traffic
monitoring and vehicle navigation [50].

1.1 Problem Definition

In this work we focus on semi-automated single-target tracking. The problem of single-target
tracking is defined as follows [34]. Given a sequence of images I1 . . . In, estimate the state xk of
the target for each frame Ik. Object tracking methods encode the state xk as centroids, bounding
boxes, bounding ellipses, chains of points or shape [34]. For example, in Fig. 1.1, a bounding
box is shown around an object of interest. In this case, the parameters of xk consist of the
upper left corner of the rectangle (x,y) and its width and height. Maggio and Cavallaro [34]
group approaches based on the amount of user interaction that is required to identify the objects
of interest. Manual tracking requires the interaction with the user in every frame. Automated
tracking methods use a priori information in order to initialise the tracking process automatically.
In semi-automated tracking, user input is required in order to initialise the tracking process.

According to Maggio and Cavallaro [34], the main challenge in object tracking is clutter.
Clutter is the phenomenon when features expected from the object of interest are difficult to
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Figure 1.1: The state of an object encoded in a bounding box. The enlarged patch constrained
by the bounding box is displayed on the right. The image is part of the PETS 20091dataset.

discriminate against features extracted from other objects in the scene. In Fig. 1.2 an example
for clutter is shown. In this image, several objects are present that are similar in shape to the
object of interest. Another challenge is introduced by appearance variations of the target it-
self. Intrinsic appearance variability includes pose variation and shape deformation, whereas
extrinsic appearance variability includes illumination change, camera motion and different cam-
era viewpoints [41]. Approaches that maintain a template of the object of interest typically face
the template update problem that relates to the question of how to update an existing tem-
plate so that it remains a representative model [35]. If the original template is never changed,
it will eventually no longer be an accurate representation of the model. When the template is
adapted to every change in appearance, errors will accumulate and the template will steadily
drift away from the object. This problem is closely related to the stability-plasticity dilemma,
which relates to the trade-off between the stability required to retain information and the plas-
ticity required for new learning [22]. This dilemma is faced by all learning systems [1]. Objects
undergo occlusions when covered by other object or when they leave the field of view of the
camera. In order to handle such cases, a mechanism is necessary that re-detects the object in-
dependently of its last position in the image [50]. Requirements on the execution time pose
another difficulty. [50].

1.2 Related Work

Lepetit et al. [30] identify two paradigms in object tracking. Recursive tracking methods es-
timate the current state xt of an object by applying a transformation on the previous state xt−1
based on measurements z1 . . .zt taken in the respective images. The recursive estimation of a
state depends on the state of the object in the previous frame and is susceptible to error accumu-
lation [30]. For instance, Lucas and Kanade [33] propose a method for estimating sparse optic

1Performance Evaluation for Tracking and Surveillance: http://www.cvg.rdg.ac.uk/PETS2009/
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Figure 1.2: The main challenge in object tracking is to the distinguish the object of interest
(green) from clutter in the background (red). Image is from [10].

flow within a window around a pixel. The optic flow is fit into a transformation model that is
used to predict the new position of the object. In our work, we use the method of Lucas and
Kanade for tracking the object of interest in consecutive frames. Comaniciu et al. [15] propose
a tracker based on mean shift. The transformation of the object state is obtained by finding
the maximum of a similarity function based on color histograms. In contrast, Tracking-by-
detection methods estimate the object state solely by measurements taken in the current image.
This principle remedies the effect of error accumulation. However, the object detectors have
to be trained beforehand. Özuysal et al. [38] generate synthetic views of an object by applying
affine warping techniques to a single template and train an object detector on the warped images.
The object detector is based on pairwise pixel comparison and is implemented efficiently. Object
detection is then performed in every frame in order to track the object. We use an online variant
of this method as a part of an object detection cascade.

In-between these paradigms, adaptive tracking-by-detection methods have been developed
that update an object detector online. Avidan [4] integrates a support vector machine classifier
into an optic-flow-based tracker. Instead of minimizing an intensity difference function between
successive frames, he maximises the classifier score. The support vector machine is trained
beforehand and unable to adapt. Collins et al. [14] were the first to treat tracking as a binary
classification problem, the two classes being the object of interest and background. They employ
automatic feature selection in order to switch to the most discriminative color space from a set
of different color spaces. They employ self-learning in order to acquire new training examples.
In self-learning, a supervised method is retrained using its own predictions as additional labeled
points. This setting is prone to drift [12]. Javed et al. [25] employ co-training in order to
label incoming data and use it to improve a detector trained in an offline manner. It has been
argued that in object tracking the underlying assumption of co-training that two conditionally
independent views of the same data are available is violated, since in object tracking training
examples are sampled from the same modality [27]. Ross et al. [41] incrementally learn a low-
dimensional subspace representation and adapt this representation to changes in the appearance
of the target. Adam et al. [2] propose an approach called FragTrack that uses a static part-based
appearance model based on integral histograms. Avidan [5] uses self-learning for boosting in

3



order to update an ensemble classifier. Grabner et al. [21] employ a semi-supervised approach
and enforces a prior on the first patch, while treating the incoming images as unlabeled data.
However, if the prior is too strong, then the object is likely not to be found again. If it is too weak,
then it does not discriminate against clutter. Babenko et al. [6] apply Multiple Instance Learning
(MIL) to object tracking. In multiple instance learning, overlapping examples of the target are
put into a labeled bag and passed on to the learner, which is therefore allowed more flexibility
in finding a decision boundary. Stalder et al. [46] split the tasks of detection, recognition and
tracking into three separate classifiers and achieve robustness to occlusions. Santner et al. [42]
propose PROST, a cascade of a non-adaptive template model, an optical-flow-based tracker and
an online random forest. The random forest is updated only if its ouput overlaps with the output
of one of the two other trackers. Hare et al. [23] generalize from the binary classification problem
to structured output prediction. In their method called Struck they directly estimate the expected
state transformations instead of predicting class labels.

Kalal et al. [27] propose a method called TLD (Tracking-Learning-Detection) that uses
patches found on the trajectory of an optic-flow-based tracker in order to train an object detector.
Updates are performed only if the discovered patch is similar to the initial patch. What separates
this method from the adaptive tracking-by-detection methods is that the output of the object
detector itself is used only to reinitialize the optic-flow-based tracker in case of failure but is
never used in order to update the classifier itself. Kalal et al. achieve superior results as well as
higher frame rates compared to adaptive tracking-by-detection methods.

1.3 Scope of Work

We use the approach of Kalal et al. [28] for recursive tracking. This approach is based on
estimating optical flow using the method of Lucas and Kanade [33]. For object detection, we
follow [26] and maintain templates that are normalised in brightness and size. We keep separate
templates for positive examples of the object and for negative examples found in the background.
These templates form the basis of an object detector that is run independently of the tracker.
New templates are acquired using P/N-learning as proposed in [27]. If the detector finds a
location in an image exhibiting a high similarity to the templates, the tracker is re-initialised
on this location. Since the comparison of templates is computationally expensive, we employ
a cascaded approach to object detection. In [27] a random fern classifier [38] based on 2-bit-
binary patterns and a fixed single template is used. Our object detection cascade consists of a
foreground detector, a variance filter, a random fern classifier based on features proposed in [31]
and the template matching method. In contrast to Kalal et al., we do not employ image warping
for learning. Fig. 1.3 depicts the workflow of our approach. The initialisation leads to a learning
step. Next, the recursive tracker and the detector are run in parallel and their results are fused
into a single final result. If this result passes a validation stage, learning is performed. Then the
process repeats.

4



Tracking Detection

Fusion

Validation

LearningInitialisation

Figure 1.3: The tracking process is initialised by manually selecting the object of interest. No
further user interaction is required.

1.4 Contribution

In this work, we follow the Tracking-Learning-Detection approach of Kalal et al. [27]. We
extend their object detection cascade and use different features in order to reduce execution time.
This document encompasses all the details that are necessary to fully implement our approach.
We implement our approach2 in C++ and evaluate it both on existing and newly recorded test
data. We give a performance comparison to existing methods and analyse whether our approach
is suitable for multi-camera scenarios.

1.5 Organisation

This work is organised as follows. In Chapter 2, the tracking method based on the estimation of
optical flow is described. In Chapter 3, the cascaded approach to object detection is explained.
Chapter 4 deals with the question of how to fuse the results of the tracker and describes what
happens during the learning step. Chapter 5 shows experimental results on test data as well as a
comparison to other tracking methods. Chapter 6 gives a conclusion and final remarks.

2The code is available at http://gnebehay.github.com/OpenTLD
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1.6 Summary

In this chapter we introduced the field of object tracking and gave a problem definition. We then
explained that tracking is made a non-trivial task by clutter, appearance variations of the target
and the template update problem. We then gave a description of related work and explained that
existing approaches use elements of recursive tracking and tracking-by-detection. We explained
that we base our work on a novel approach that integrates a tracker and a detector.
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CHAPTER 2
Tracking

In this chapter we describe a recursive method for object tracking. In this method, no a priori in-
formation is required about the object except for its location in the previous frame, which means
that an external initialisation is required. In our approach, the initialisation is accomplished by
manual intervention in the first frame and by the results of an object detection mechanism in
consecutive frames.

We follow the approach of Kalal et al. [28] for recursive tracking. We explain this method
according to Fig. 2.1. First, an equally spaced set of points is constructed in the bounding box
in frame t, which is shown in the left image. Next, the optical flow is estimated for each of
these points by employing the method of Lucas and Kanade [33]. This method works most
reliably if the point is located on corners [45] and is unable to track points on homogenous
regions. We use information from the Lucas-Kanade method as well as two different error
measures based on normalised cross correlation and forward-backward error in order to filter
out tracked points that are likely to be erroneous. In the right image the remaining points are
shown. If the median of all forward-backward error measures is above a certain threshold, we
stop recursive tracking entirely, since we interpret this event as an indication for drift. Finally,
the remaining points are used in order to estimate the position of the new bounding box in the
second frame by employing a transformation model based on changes in translation and scale.
In the right image, the bounding box from the previous frame was transformed according to the
displacement vectors from the remaining points.

This chapter is organised as follows. Sec. 2.1 describes the Lucas-Kanade for estimating
optical flow. In Sec. 2.2 the error measures are introduced. In Sec. 2.3 the transformation
model that we use is described and an algorithm is given. Sec. 2.4 concludes this chapter with a
summary.
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Figure 2.1: The principle of the recursive tracking method consists of tracking points using an
estimation of the optical flow, retaining only correctly tracked points and estimating the trans-
formation of the bounding box. Images are from [28].

2.1 Estimation of Optical Flow

Lucas and Kanade base their approach on three assumptions. The first assumption is referred to
as brightness constancy [8] and is expressed as

I(X) = J(X +d). (2.1)

Eq. 2.1 states that a pixel at the two-dimensional location (X) in an image I might change its
location in the second image J but retains its brightness value. In the following, the vector d will
be referred to as the displacement vector. The second assumption is referred to [8] as temporal
persistence. It states that the displacement vector is small. Small in this case means that J(X)
can be approximated by

J(X)≈ I(X)+ I′(X)d. (2.2)

In Eq. 2.2 I′(X) is the gradient of I at location X . An estimate for d is then

d ≈ J(X)− I(X)

I′(X)
. (2.3)

For any given pixel, Eq. 2.3 is underdetermined and the solution space is a line instead of a point.
The third assumption, known as spatial coherence, alleviates this problem. It states that all the
pixels within a window around a pixel move coherently. By incorporating this assumption, d is
found by minimizing the term

∑
(x,y)∈W

(J(X)− I(X)− I′(X)d)2, (2.4)

which is the least-squares minimisation of the stacked equations. The size of W defines the
considered area around each pixel. In [48] it is shown that the closed-form solution for Eq. 2.4
is

Gd = e, (2.5)

where

G = ∑
X∈W

I′(X)I′(X)> = ∑
X∈W

(
I2
x (X) Ixy(X)

Ixy(X) I2
y (X)

)
(2.6)

8



and
e = ∑

(x,y)∈W
(I(X)− J(X))I′(X). (2.7)

Additional implementational details are in [8].

2.2 Error Measures

In order to increase the robustness of the recursive tracker, we use three criteria in order to filter
points that were tracked unreliably. The first criterion is established directly from Eq. 2.5. It
can be seen from this equation that d can be calculated only if G is invertible. G is reliably
invertible if it has two large eigenvalues (λ1,λ2), which is the case when there are gradients in
two directions [8]. We use the formula

min(λ1,λ2)> λ (2.8)

of Shi and Tomasi [45] as a first criterion for reliable tracking of points.
Kalal et al. [28] propose the forward-backward error measure. This error measure is

illustrated conceptually in Fig. 2.2. In the left image, the point 1 is tracked correctly to its
corresponding position in the right image. The point 2, however, ends up at a wrong location as
an occlusion occurs. The proposed error measure is based on the idea that the tracking of points
must be reversible. Point 1 is tracked back to its original location. In contrast, point 2 is tracked
back to a different location. The proposed error measure is defined as the Euclidean distance

ε = |p− p′′|. (2.9)

In Eq. 2.9 p′′ is
p′′ = LK(LK(p)), (2.10)

meaning that the Lucas-Kanade method is applied twice on p.
In [28] the forward-backward error measure is used in conjunction with another measure

based on the similarity of the patch surrounding p and the patch surrounding the tracking result
p′. The similarity of these two patches P1 and P2 is compared using the Normalised Correlation
Coefficient (NCC) of two image patches P1 and P2 that is defined as

NCC(P1,P2) =
1

n−1

n

∑
x=1

(P1(x)−µ1)(P2(x)−µ2)

σ1σ2
. (2.11)

In Eq. 2.11 where µ1,µ2,σ1 and σ2 are the means and standard deviations of P1 and P2. The
normalised correlation coefficient is invariant against uniform brightness variations [32].

2.3 Transformation Model

Following the approach of Kalal et al. [28], we calculate the median of all forward-backward
errors medFB and the median medNCC of all similarity measures and keep only those points ex-
hibiting a forward-backward error less than medFB and a similarity measure larger than medNCC.

9



Figure 2.2: The idea of the forward-backward error measure lies in the observation that certain
points cannot be re-tracked to their original location. Images are from [28].

Furthermore, if medFB is larger than a predefined threshold θFB, we do not give any results as
we interpret this case as an unreliable tracking result. The remaining points are used to calculate
the transformation of the bounding box. For this, the pairwise distances between all points are
calculated before and after tracking and the relative increase is interpreted as the change in scale.
The translation in x-direction is computed using the median of the horizontal translations of all
points. The translation in y-direction is calculated analogously. An algorithmic version of the
proposed tracker is given in Alg. 1. We use a grid of size 10×10, a window size W = 10 and a
threshold θFB = 10 for all of our experiments.

Algorithm 1 Recursive Tracking
Input: BI, I,J

p1 . . . pn← generatePoints(BI)
for all pi do

p′i← LK(pi)
p′′i ← LK(p′i)
εi← |pi− p′′i |
ηi← NCC(W (pi),W (p′i))

end for
medNCC←median(η1 . . .ηn)
medFB←median(ε1 . . .εn)
if medFB > θFB then

BJ = /0
else

C←{(pi, p′i) | p′i 6= /0,εi ≤ medFB,ηi ≥ medncc}
BJ ← transform(BI,C)

end if

2.4 Summary

In this chapter we described the method that we employ for recursive estimation of an object of
interest. No a priori information about the object is required except its position in the previous

10



Figure 2.3: Recursive tracking is possible as long as the selected object is visible in the image.
In the third frame an occlusion occurs. Images are from the SPEVI1dataset.

frame. We explained that the transformation of the bounding box of the previous frame is esti-
mated by calculating a sparse approximation to the optic-flow field and explained in detail the
method of Lucas-Kanade that we use for this estimation. We introduced two error measures in
order to improve results and to act as a stopping criterion. In Fig. 2.3 an example result of this
tracking method is shown. In the left-most image, the initial bounding box is depicted in blue.
In the second image, it is shown that the selected object was tracked correctly. By employing the
stopping criterion, the method is able to identify when an occlusion takes place, as it is shown
in the third image. However, in the fourth image the method is unable to re-initialise itself as it
lacks a mechanism for object detection.

1Surveillance Performance EValuation Initiative: http://www.eecs.qmul.ac.uk/~andrea/spevi.html
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CHAPTER 3
Detection

In this chapter we discuss the method that we employ for object detection. Object detection
enables us to re-initialise the recursive tracker that itself does not maintain an object model and
is therefore unable to recover from failure. While the recursive tracker depends on the location
of the object in the previous frame, the object detection mechanism presented here employs
an exhaustive search in order to find the object. Since several thousands of subwindows are
evaluated for each input image, most of the time of our overall approach is spent for object
detection.

Our object detector is based on a sliding-window approach [49, 16], which is illustrated
in Fig. 3.1. The image at the top is presented to the object detector, which then evaluates a
classification function at certain predefined subwindows within each input image. Depending on
the size of the initial object, we typically employ 50,000 to 200,000 subwindows for an image
of VGA (640× 480) resolution. Each subwindow is tested independently whether it contains
the object of interest. Only if a subwindow is accepted by one stage in the cascade, the next
stage is evaluated. Cascaded object detectors aim at rejecting as many non-relevant subwindows
with a minimal amount of computation [43]. The four stages that we use for image classification
are shown below the input image. First, we use a background subtraction method in order to
restrict the search space to foreground regions only. This stage requires a background model and
is skipped if it is not available. In the second stage all subwindows are rejected that exhibit a
variance lower than a certain threshold. The third stage comprises an ensemble classifier based
on random ferns [38]. The fourth stage consists of a template matching method that is based on
the normalised correlation coefficient as a similarity measure. We handle overlapping accepted
subwindows by employing a non-maximal suppression strategy.

This chapter is organised as follow. In Sec. 3.1 the sliding-window approach is described in
detail. Sec. 3.2 shows how a background model restricts the search space to foreground regions.
In Sec. 3.3 the variance filter is described. Sec. 3.4 comprises a description of the ensemble
classifier that is able rapidly identify positive subwindows. The template matching method is
described in Sec. 3.5. In Sec. 3.6 it is shown how overlapping detections are combined into a
single result. In Sec 3.7 a summary of this chapter is given.
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Figure 3.1: In sliding-window-based approaches for object detection, subwindows are tested
independently. We employ a cascaded approach in order to reduce computing time. The input
image is from the SPEVI dataset.
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3.1 Sliding-Window Approach

In sliding-window-based approaches for object detection, subimages of an input image are tested
whether they contain the object of interest [29]. Potentially, every possible subwindow in an
input image might contain the object of interest. However, in a VGA image there are already
23,507,020,800 possible subwindows and the number of possible subwindows grows as n4 for
images of size n×n (see App. A.1 for a proof). We restrict the search space to a subspaceR by
employing the following constraints. First, we assume that the object of interest retains its aspect
ratio. Furthermore, we introduce margins dx and dy between two adjacent subwindows and set
dx and dy to be 1

10 of the values of the original bounding box. In order to employ the search on
multiple scales, we use a scaling factor s = 1.2a,a ∈ {−10 . . .10} for the original bounding box
of the object of interest. We also consider subwindows with a minimum area of 25 pixels only.
The size of the set of all subwindowsR constrained in this manner is then

|R|= ∑
s∈1.2{−10...10}

⌊
n− s(w+dx)

sdx

⌋⌊
m− s(h+dx)

sdy

⌋
. (3.1)

In Eq. 3.1 w and h denote the size of the initial bounding box and n and m the width and height
of the image. A derivation for this formula is given in App. A.1. For an initial bounding box
of size w = 80 and h = 60 the number of subwindows in a VGA image is 146,190. Since each
subwindow is tested independently, we employ as many threads as cores are available on the
system in order to test the subwindows.

3.2 Foreground Detection

One approach in order to identify moving objects in a video stream is background subtraction,
where each video frame is compared against a background model [13]. In this section, we
describe how a background model speeds up the detection process. The problem of establishing
a background model itself is non-trivial and out of scope for this work, for a survey see [39]. We
perform background subtraction in four steps, as it is depicted in Fig. 3.2. In this figure, the right
upper image is the background image Ibg and the top left image is the image I in which object
detection is to be performed. We start by calculating the absolute difference of Ibg and I

IabsDi f f = |Ibg− I|. (3.2)

The result of Eq. 3.2 is shown in the first image of the second row. We now apply a thresholding
of 16 pixels to IabsDi f f in order to create a binary image Ibinary, which is shown in the second
image of the second row.

Ibinary(x,y) =

{
1 if IabsDi f f (x,y)> 16
0 otherwise

(3.3)

In the following, we will refer to connected white pixels as components. In order to calculate
the area and the smallest bounding box the blob fits into, we now apply the labeling algorithm
proposed in [11]. This algorithm calculates labels in a single pass over the image. The idea of
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Figure 3.2: The process of background subtraction. From top left to bottom right: The input
image, the background image, the result of the subtraction, the image after thresholding, after
the removal of small components, the minimal bounding box around the foreground.
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Figure 3.3: Labeling algorithm. Image is from [11].

this algorithm is shown in Fig. 3.3. Starting from the top row, each line is scanned from left to
right. As soon as a white pixel A is encountered that is not yet labeled, a unique label is assigned
to A and all the points lying on the contour of the component are assigned the same label as A.
This contour is considered an external contour. This case is shown in the first image. If a pixel
A′ on an external contour is encountered that is already labeled, all white pixels to the right are
assigned the same label until another contour is encountered. If this is an external contour it is
already labeled and the labeling algorithm proceeds. In the second image, this corresponds to
to all the lines above point B. If it is not yet labeled, as it is the case for the contour on which
B lies, then it considered an internal contour and all of its pixels are assigned the same label as
B. This case is shown in the third image. If a labeled internal contour point B′ is encountered,
all subsequent white pixels are assigned the same label as A. This case is shown in the fourth
image. The smallest bounding box the component fits into is determined by the coordinates of
the outermost pixels of the component. The area of the component is the sum of all white pixels
in a component.

Going back to Fig. 3.2, we now remove all components from the binary image with an area
less than the size of the originally selected bounding box. The result of this operation is shown
in the first image in the third row. All subwindows are rejected that are not fully contained
inside one of the smallest bounding boxes around the remaining components. We call this set of
bounding boxes C. If no background image is available, then all subwindows are accepted.

3.3 Variance Filter

The variance of an image patch is a measure for uniformity. In Fig. 3.4 two sample subwindows
are shown, marked in red, that are evaluated in uniform background regions. Both of these
subwindows contain patches that exhibit a variance lower than the patch of the object selected for
tracking, which is contained in the right green rectangle. In this section we describe a mechanism
that calculates the variance of a patch in a subwindow using integral images and that rejects
patches exhibiting a variance lower than a threshold σ2

min. Such a variance filter is able to rapidly
reject uniform background regions but unable to distinguish between different well-structured
objects. For instance, the left green bounding box in Fig. 3.4 will be accepted as well.

We use an efficient mechanism in order to compute the variance that is shown in [49]. In
order to simplify the following explanation, image patches defined by the bounding box B are
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Low Variance

High Variance

Figure 3.4: Uniform background regions are identified by setting a variance threshold.

considered as a one-dimensional vector of pixels and its elements are addressed using the nota-
tion xi for the ith pixel. For images, the variance σ2 is defined as

σ
2 =

1
n

n

∑
i=1

(xi−µ)2, (3.4)

where n is the number of pixels in the image and µ is

µ =
1
n

n

∑
i=1

xi. (3.5)

An alternative representation of this formula is

σ
2 =

1
n

n

∑
i=1

x2
i −µ

2. (3.6)
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the derivation for this formula is given in App. A.2.
In order to calculate σ2 using Eq. 3.6 for an image patch of size n, n memory lookups are

needed. By taking advantage of the fact that two overlapping image patches partially share the
same pixel values, we will now show a way to calculate σ2 for an image patch that uses only
8 memory lookups after transforming the input image I into two integral images. An integral
image I′ is of the same size as I and contains at location (x,y) the sum of all pixel values between
the points (1,1) and (x,y). This can be formulated as

I′(x,y) = ∑
x′≤x,y′≤y

I(x′,y′). (3.7)

An integral image is computable in a single pass over the image by using the fact that I′(x,y)
can be decomposed into

I′(x,y) = I(x,y)+ I′(x−1,y)+ I′(x,y−1)− I′(x−1,y−1). (3.8)

In Eq. 3.8 I′(x,y) = 0 for x = 0 or y = 0. By using the integral image representation, the com-
putation of the sum of pixels up to a specific point no longer depends on the number of pixels
in the patch. In Fig. 3.5, the sum of the pixel values within the rectangle ABCD is obtained the
following way. First, the sum of all pixels between (0,0) and the point D is computed. Next, the
pixels in the area between (0,0) and B are subtracted as well as the pixels in the area between
and (0,0) and C. The area between (0,0) and A must be added again, since it is subtracted
twice. Using this observation, a formula for computing the sum of pixels within a bounding box
B consisting of the parameters (x,y,w,h) is given by

n

∑
i=1

xi = I′(x−1,y−1)− I′(x+w,y−1)− I′(x−1,y+h)+ I′(x+h,y+w). (3.9)

and use the notation
n

∑
i=1

xi = I′(B). (3.10)

as a shorthand for Eq. 3.9. We use Eq. 3.10 in order to calculate µ in Eq. 3.6. In order to
calculate also the first term of the right-hand side of this equation using integral images, we
modify Eq. 3.7 to use the squared value of I(x,y). We get

I′′(x,y) = ∑
x′≤x,y′≤y

I(x′,y′)2. (3.11)

In analogy to Eq. 3.10 we write
n

∑
i=1

x2
i = I′′(B). (3.12)

By combining Eq. 3.5, Eq. 3.6, Eq. 3.10 and Eq. 3.12, we get

σ
2 =

1
n

I′′(B)−
[

1
n

I′(B)
]2

. (3.13)

This formula allows for a calculation of σ2 by using eight memory lookups. In A.3 the maximum
resolution for integral images and typical data types are given. For σ2

min, we use half of the
variance value found in the initial patch.
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A B

C D

Figure 3.5: The sum of the pixel values within the rectangle ABCD is calculable by summing up
the pixels up to D, subtracting the pixels up to both B and C and adding the pixels up to A. The
computation is achieved using four look-ups when done on integral images.

3.4 Ensemble Classifier

In the third stage of the detection cascade we employ an ensemble classification method pre-
sented in [38] that is known as random fern classification. This classifier bases its decision on
the comparison of the intensity values of several pixels. For each tested subwindow, a probability
Ppos is calculated. If this probability is smaller than 0.5 the subwindow is rejected. This method
of classification is slower than the variance filter, but still is very fast compared to classification
methods using SIFT features, as it was experimentally evaluated in [38].

We use features that are proposed in [31]. Fig. 3.6 depicts the process of feature calculation.
In this figure, a sample image to be classified is shown. In each of the four boxes below this
image, a black and a white dot are shown. Each of these dots refers to a pixel in the original
image. The positions of these dots are drawn out of a uniform distribution once at startup and
remain constant. For each of these boxes it is now tested whether in the original image the
pixel at the position of the white dot is brighter than the pixel at the position of the black dot.
Mathematically, we express this as

fi =

{
0 if I(di,1)< I(di,2)

1 otherwise.
(3.14)

In Eq. 3.14 di,1 and di,2 are the two random locations. Note that this comparison is invariant
against constant brightness variations. The result of each of these comparisons is now interpreted
as a binary digit and all of these values are concatenated into a binary number. In Fig. 3.6 the
resulting binary number is 1101. When written in decimal form, this translates to 13, as it is
shown in the box below the binary digit. The ith feature determines the value of the ith bit of
a number. In Alg. 2, an algorithmic variant of this calculation is shown, in which I is the input
image, F is the calculated feature value and S is the number of features to be used. The value
of S influences the maximum feature value, which is 2S−1. A feature group of size S, such as
the one shown in Fig. 3.6 is referred to as a fern in [38]. The feature value obtained is used to
retrieve the probability P(y = 1 | F), where y = 1 refers to the event that the subwindow has a
positive class label. These probabilities will be discussed in Chap. 4.
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1 1 0 1

F = 13 Training Data

P(y = 1 | F) = 0.9

Figure 3.6: Feature Calculation for a single fern. The intensity values of the ith pixel pair
determine the ith bit of the feature value. This feature value is then used to retrieve the posterior
probability P(y = 1 | Fk).

Algorithm 2 Efficient Fern Feature Calculation
Input: I
Output: F

F ← 0
for i = 1 . . .S do

F ← 2×F
if I(di,1)< I(di,2) then

F ← F +1
end if

end for
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P(y = 1 | F1) = 0.9 P(y = 1 | F2) = 0.5 P(y = 1 | F3) = 1.0

Ppos = 0.8

Figure 3.7: Ensemble classification using three random ferns. The posteriors P(y = 1 | Fk) of
each individual fern are averaged to produce a final confidence value Ppos.

With only one fern, it is necessary to use a large number of features to achieve satisfactory
results [38]. However, the amount of training data needed to estimate the P(y = 1 | Fk) increases
with each additional feature. This problem is known as curse of dimensionality [36]. Amit
and Geman [3] encounter the same problem when using randomised decision trees for character
recognition and alleviate it by not using one large tree, but several smaller trees. They then
average their output. This finding was adopted in [38] and leads to the classifier depicted in
Fig. 3.7. Below the image to be classified, there are three ferns, each consisting of a different set
of feature positions and each yielding a different value for P(y = 1 | Fk). In the bottom rectangle,
the average of these values Ppos is shown. Ppos is expressed as

Ppos =
1
M

M

∑
k=1

P(y = 1 | Fk). (3.15)

In Eq. 3.15, M refers to the number of ferns used. M and S are evaluated empirically in Sec. 5.3.
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3.5 Template Matching

In the fourth stage of the detector cascade we employ a template matching method. This stage is
even more restrictive than the ensemble classification method described in the previous section,
since the comparison is performed on a pixel-by-pixel level. We resize all patches to 15× 15
pixels. For comparing two patches P1 and P2, we employ the Normalised Correlation Coefficient
(NCC)

ncc(P1,P2) =
1

n−1

n

∑
x=1

(P1(x)−µ1)(P2(x)−µ2)

σ1σ2
, (3.16)

In Eq. 3.16 µ1,µ2,σ1 and σ2 are the means and standard deviations of P1 and P2. This dis-
tance measure is also known as the Pearson coefficient [40]. When interpreted geometrically, it
denotes the cosine of the angle between the two normalised vectors [10]. NCC yields values be-
tween −1 and 1, with values closer to 1 when the two patches are similar. We use the following
formula in order to define a distance between two patches that yields values between 0 and 1.

d(P1,P2) = 1− 1
2
(ncc(P1,P2)+1). (3.17)

We maintain templates for both the positive and negative class. We refer to the positive class as
P+ and to the negative class as P−. The templates are learned online, as it will be described in
Sec. 4.2. In Fig. 3.8 positive and negative examples are shown that were learned on the sequence
Multi Face Turning (see Sec. 5.4 for a description). Given an image patch P that is of unknown
class label, we calculate both the distances to the positive class

d+ = min
Pi∈P+

d(P0,Pi) (3.18)

and the distance to the negative class

d− = min
Pj∈P−

d(P0,Pj). (3.19)

In Fig. 3.9, the green dots correspond to positive instances and red dots correspond to negative
instances. The black dot labeled with a question mark corresponds to a patch with unknown
class label. The distance to the nearest positive instance according to Eq. 3.18 is d+ = 0.1 and
the distance to the nearest negative instance according to Eq 3.19 is d− = 0.4. We fuse these
distances into a single value using the formula

p+ =
d−

d−+d+
. (3.20)

Eq. 3.20 expresses the confidence whether the patch belongs to the positive class. A subwin-
dow is accepted if p+ is greater than a threshold θ+. A confidence value above this threshold
indicates that the patch belongs to the positive class. We use a value of θ+ = 0.65 for all of our
experiments. In Fig. 3.10, p+ is shown for all possible values. As it can be seen from this figure,
p+ is 1 if d+ is 0. This corresponds to the event that an exact positive match has been found. If
d− is 0, then p+ is 0. In the example depicted in Fig. 3.10, p+ is 0.8.
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(a) Positive Examples (b) Negative Examples

Figure 3.8: Positive and negative patches acquired for the template matching method during a
run on a sequence from the SPEVI dataset.

d+ = 0.1

d− = 0.4
?

Figure 3.9: An unknown patch, labeled with a question mark, and the distance d+ to the positive
class and the distance d− to the negative class. The distance is based on the normalised corre-
lation coefficient. The actual space in which the distance measurement takes place has 15×15
dimensions.
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Figure 3.10: The confidence for a patch being positive depends on the distance to the closest
positive d+ and on the distance to the closest negative patch d−.

3.6 Non-maximal Suppression

So far, the components of the detector cascade were introduced. Each subwindow is assigned a
value p+ that expresses the degree of belief whether it contains the object of interest. According
to Blaschko [7], an object detection mechanism ideally identifies positive subwindows with a
confidence value of 1 and negative subwindows with a confidence of 0, but in practice the output
consists of hills and valleys characterizing intermediate belief in the fitness of a given location.
In Fig. 3.11 this situation is illustrated. In this figure, several detections with high confidence
occur around the true detection marked in green. Blaschko also states that considering only
the subwindow yielding the highest confidence is problematic because this leads to other local
maxima being ignored. Instead it is desirable to employ non-maximal suppression strategies
that identify relevant local maxima.

For non-maximal suppression, we use the method described in [49] that clusters detections
based on their spatial overlap. For each cluster, all bounding boxes are then averaged and com-
pressed into a single detection. The confidence value p+ of this single bounding box is then the
maximum value confidence value in the corresponding cluster. In Fig. 3.12, B1 is the area of the
first bounding box, B2 the area of the second bounding box and I is the area of the intersection
of the two bounding boxes. For measuring the overlap between two bounding boxes, we use the
formula from the PASCAL challenge [18]

overlap =
B1∩B2

B1∪B2
=

I
(B1 +B2− I)

. (3.21)

This measure is bounded between 0 and 1. We now use the hierarchical clustering algorithm
described in [37] that works as follows. First we calculate the pairwise overlap between all
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Figure 3.11: Overlapping subwindows with high confidence (yellow) are averaged and form a
single result (green). The underlying image is from [41].

B1

B2

I

Figure 3.12: We define an overlap measure between two bounding boxes B1 and B2 to be the
area of their conjunction I divided by the area of their disjunction B1 +B2− I.

confident bounding boxes. We then start at one bounding box and look for the nearest bounding
box. If this distance is lower than a certain cutoff threshold, we put them into the same cluster
and furthermore, if one of the bounding already was in a cluster, we merge these clusters. If the
overlap is larger than the cutoff threshold, we put them into different clusters. We then proceed
to the next bounding box. We use a cutoff of 0.5 for all of our experiments.

3.7 Summary

In this chapter, we described how we run a cascade object detector on a subset of all possible
subwindows in an input image. The components of the detection cascade were described and
it was shown how overlapping positive bounding boxes are grouped into a single detection by
employing non-maximal suppression. We explained that the foreground detector and the vari-
ance filter are able to rapidly reject subwindows, but require a preprocessing step. The ensemble
classifier is computationally more expensive but provides a more granular decision mechanism.
The final decision is obtained by comparing each subwindow to normalised templates. In Ta-
ble 3.1 it is shown for each component how many memory lookups are necessary in order to test
a subwindow.
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Method Memory Lookups

Foreground Detection |C|
Variance Filter 8

Ensemble Classifier 2 ·M ·S
Template Matching 255 · |P+| · |P−|

Table 3.1: Comparison of necessary memory lookups for testing a subwindow. The variance
filter and the ensemble Classifier operate at constant time (M and S are constant values). The
foreground detection depends on the number of detected foreground regions |C|. The template
matching method depends on the learned number of templates.

In Alg. 3 an algorithm for implementing the detection cascade is given. In Line 1 the set Dt

that contains confident detection is initialised. In Lines 2-4 the required preprocessing for the
foreground detection and the variance filter is shown. Lines 5-16 contain the actual cascade. In
Line 11 the subwindow is added to the set of confident detections if it has passed all stages of
the cascade. In Line 17 the non-maximal suppression method is applied.

Algorithm 3 Detection Cascade
1: Dt ← /0
2: F ← foreground(I);
3: I′← integralImage(I);
4: I′′← integralImage(I2);
5: for all B ∈R do
6: if isInside(B,F); then
7: if calcVariance(I′(B), I′′(B))> σ2

min then
8: if classifyPatch(I(B))> 0.5 then
9: P← resize(I(B),15,15)

10: if matchTemplate(I(B))> θ+ then
11: Dt ← Dt

⋃
B

12: end if
13: end if
14: end if
15: end if
16: end for
17: Dt ← cluster(Dt)
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CHAPTER 4
Learning

When processing an image, both the recursive tracker and the object detector are run in parallel.
In this chapter we deal with the question of how to combine the output of both methods into a
single final result. We then show what happens during the learning step and when it is performed.

The background model and the threshold for the variance filter are not adapted during pro-
cessing, while the ensemble classifier and the template matching method are trained online. We
address the template update problem by defining certain criteria that have to be met in order
to consider a final result suitable for performing a learning step. In learning, we enforce two
P/N-learning constraints [27]. The first constraint requires that all patches in the vicinity of the
final result must be classified positively by the object detector. The second constraint requires
that all other patches must be classified negatively by the object detector.

The remainder of this chapter is organised as follows. In Sec. 4.1 it is shown how the results
of the recursive tracker and the object detector are combined. Furthermore, the criteria for
validity are given. In Sec. 4.2 it is explained how the constraints are implemented. In Sec. 4.3
the main loop of our approach is given. Sec. 4.4 concludes this chapter with a summary.

4.1 Fusion and Validity

In Alg. 4 our algorithm for fusing the result of the recursive tracker Rt and the confident detec-
tions Dt into a final result Bt is given. The decision is based on the number of detections, on their
confidence values p+Dt

and on the confidence of the tracking result p+Rt
. The latter is obtained by

running the template matching method on the tracking result. If the detector yields exactly one
result with a confidence higher than the result from the recursive tracker, then the response of
the detector is assigned to the final result (Line 5 and 15). This corresponds to a re-initialisation
of the recursive tracker. If the recursive tracker produced a result and is not re-initialised by the
detector, either because there is more than one detection or there is exactly one detection that is
less confident than the tracker, the result of the recursive tracker is assigned to the final result
(Line 7). In all other cases the final result remains empty (Line 1), which suggests that the object
is not visible in the current frame.
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We use the predicate valid(Bt) to express a high degree of confidence that the final result
Bt is correct. Only if the final result is valid the learning step described in the next section is
performed. As it is stated in Alg. 4 the final result is valid under the following two circumstances,
both of which assume that the tracker was not re-initialised by the detector. The final result is
valid if the recursive tracker produced a result with a confidence value being larger than θ+

(Line 9). The final result is also valid if the previous result was valid and the recursive tracker
produced a result with a confidence larger than θ−. (Line 11). In all other cases, the final result
is not valid. The first bounding box is always valid. As it was noted already in Sec. 3.5, the
threshold θ+ indicates that a result belongs to the positive class. The threshold θ− indicates that
a result belongs to the negative class and is fixed at θ− = 0.5 for all of our experiments.

Algorithm 4 Hypothesis Fusion and Validity.
Input: Rt ,Dt

Output: Bt

1: Bt ← /0
2: valid(Bt)← false
3: if Rt 6= /0 then
4: if |Dt |= 1∧ p+Dt

> p+Rt
then

5: Bt ← Dt

6: else
7: Bt ← Rt

8: if p+Rt
> θ+ then

9: valid(Bt)← true
10: else if valid(Bt−1)∧ p+Rt

> θ− then
11: valid(Bt)← true
12: end if
13: end if
14: else if |Dt |= 1 then
15: Bt ← Dt

16: end if

4.2 P/N-Learning

According to Chapelle [12], there are two fundamentally different types of tasks in machine
learning. In supervised learning a training set is created and divided into classes manually,
essentially being a set of pairs 〈xi,yi〉. The xi correspond to training examples and the yi to the
corresponding class label. The training set is used to infer a function f : X → Y that is then
applied to unseen data. Supervised learning methods in object detection have been successfully
applied most notably to face-detection [49] and pedestrian detection [16]. However, the learning
phase prevents applications where the object to be detected is unknown beforehand. In the same
way, the learned classifier is also unable to adapt to changes in the distribution of the data.
The second task in machine learning is unsupervised learning. In this setting, no class labels
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Figure 4.1: P/N Constraints. Image is from [27].

are available and the task is finding a partitioning of this data, which is achieved by density
estimation, clustering, outlier detection and dimensionality reduction [12].

Between these two paradigms there is semi-supervised learning. In semi-supervised learn-
ing, there are labeled examples as well as unlabeled data. One type of semi-supervised learning
methods uses the information present in the training data as supervisory information [12] in or-
der to find a class distribution in the unlabeled data and to update the classifier using this class
separation as a training set. In our tracking setting there is exactly one labeled example. In [27],
a semi-supervised learning method called P/N-learning is introduced. This method shows how
so-called structural constraints can extract training data from unlabeled data for binary classifica-
tion. In P/N-learning, there are two types of constraints: A P-constraint identifies false negative
outputs and adds them as positive training examples. An N-constraint does the opposite. As it
is depicted in Fig. 4.1, Xu refers to the unlabeled data available. This data is first classified by
an existing classifier that assigns labels Yu to Xu. Then, the structural constraints, according to
some criterion, identify misclassified examples Xc with new labels Yc. These examples are then
added to the training set and training is performed, which results in an update of the classification
function.

We use the following constraints for object detection that are proposed in [27]. The P-
Constraint requires that all patches that are highly overlapping with the final result must be
classified as positive examples. The N-Constraint requires that all patches that are not overlap-
ping with the valid final result must be classified as negative examples. We consider a bounding
box B highly overlapping with Bt if it exhibits an overlap of at least 60%. B is considered not
to be overlapping with Bt if the overlap is smaller than 20%. For measuring overlap, we employ
the metric already described in Sec. 3.6.

A complete algorithmic description of the constraints is given in Alg. 5. We will now de-
scribe the measures that we take in order to adapt the ensemble classifier and the template match-
ing method in order to classifiy these examples correctly. For the ensemble classifier, we have
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not yet explained how the posterior values are calculated for each fern. Recall that P(y = 1 | Fk)
is the probability whether a patch is positive given the features Fk. We define the posterior to be

P(y = 1 | Fk) =

{ pFk
pFk+nFk

, if pFk +nFk > 0

0, if pFk +nFk = 0.
(4.1)

In Eq. 4.1 pFk is the number of times the P-constraint was applied to this combination of features
and nFk is the number of times the N-constraints was applied. In Line 2 we test whether a
bounding box overlapping with the final result is misclassified by the ensemble classifier. We
increment pFk in Line 5 for each fern if the overlap is smaller than 0.6 and the ensemble classifier
yielded a confidence lower than 0.5. In Line 10 nFk is incremented for misclassified negative
patches. When updating the ensemble classifier, the computational overhead does not increase.
This is different for the template matching method, as every additional patch in the set of positive
or negative templates increases the number of comparisons that must be made in order to classify
a new patch. In order to change the label of a misclassified positive patch for the template
matching method, we add it to the set of positive templates. This patch then has a distance of
d+ = 0, which means that its confidence is 1. However, as it is shown in Line 18, we do this
only for the patch contained in the final result Bt . Note that the learning step is performed only if
the final result is valid, which already implies that p+Bt

is larger than θ−. As for the N-constraint
for the template matching method, we add negative patches to the template matching method
if they were misclassified by the ensemble classifier and also are misclassified by the template
matching methods.

In Fig. 4.2 it is illustrated when positive templates are added. At point A, tracking starts with
a high confidence and a valid result. Learning is performed, but no positive examples are added,
because the confidence is above θ+. The confidence then drops below θ+ (Point B) but remains
above θ−. According to Alg. 4 this means that the final result is still valid. Exactly in this case
positive patches are added, which leads to an increased confidence. At Point C, the confidence
drops below θ−, which leads to the final result not being valid anymore. In Point D, confidence
is at the same level as in Point B, but no learning is performed since the final result is not valid.

4.3 Main Loop

We now have described all components that are used in our approach. In Alg. 6 the main loop
of our implementation is given. When the initial patch is selected, a learning step is performed
(Line 1). For each image in the sequence, the tracker and the detector are run (Line 3 and 4),
their result is fused (Line 5) and if the final result is considered valid then the learning step is
performed (Line 7). The final result is then printed (Line 9) and the next image is processed.

4.4 Summary

In this chapter, we described that we obtain a final result based on the results of the recursive
tracker and the object detector by basing our decision on the confidence of the template matching
method run on both results. We further defined criteria for validity based on the confidence value
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Algorithm 5 Applying P/N-constraints
Input: I,Bt

1: for all B ∈R do
2: if overlap(B,Bt)> 0.6 and classifyPatch(I(B))< 0.5 then
3: for k = 1 . . .M do
4: F ← calcFernFeatures(I(B),k)
5: pFk [F ]← pFk [F ]+1
6: end for
7: else if overlap(B,Bt)< 0.2 and classifyPatch(I(B))> 0.5 then
8: for k = 1 . . .M do
9: F ← calcFernFeatures(I(B),k)

10: nFk [F ]← nFk [F ]+1
11: end for
12: if p+Bt

> θ− then
13: P−←P−∪ I(B)
14: end if
15: end if
16: end for
17: if p+Bt

< θ+ then
18: P+←P+∪ I(Bt)
19: end if
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Figure 4.2: Positive examples are added only when the confidence value drops from a high value
(Frame A) to a value between θ+ and θ− (Frame B). In Frame D no learning is performed, since
the confidence rises from a low value in Frame C. This measure ensures that the number of
templates is kept small.
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Algorithm 6 Main loop
Input: I1 . . . In,B1

1: learn(I1,B1)
2: for t = 2 . . .n do
3: Rt ← track(It−1, It ,Bt−1)
4: Dt ← detect(It)
5: Bt ← fuse(Rt ,Dt)
6: if valid(Bt) then
7: learn(It ,Bt)
8: end if
9: print(Bt)

10: end for

and of the validity of the previous bounding box. We perform learning only if the final result
is valid. The learning step consists of identifying falsely labeled examples and updating the
ensemble classifier and the template matching method in order to correctly classify them.
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CHAPTER 5
Results

In this chapter, our approach is evaluated empirically both on sequences that have been used in
the literature as well as on newly recorded sequences. We employ the standard metrics recall
and precision for assessing performance. For this evaluation, a C++ implementation was created,
where the calculation of the optical flow (Sec. 2.1), the calculation of the normalised correlation
coefficient (Seq. 3.5), all the operations for the foreground detection (Sec. 3.2) as well as low-
level image operations are implemented as function calls to the OpenCV1 library. The multi-
threaded optimisation described in Sec. 3.1 was implemented using an OpenMP2 pragma. All
experiments were conducted on an Intel Xeon dual-core processor running at 2.4 Ghz.

This chapter is organised as follows. Sec. 5.1 explains the evaluation protocol. In Sec. 5.2,
the video sequences that are used in our experiments are described. In Sec. 5.3, the parameters
for the ensemble classifier are evaluated empirically. In Sec. 5.4, qualitative results are shown
on two video sequences. The requirement set on the overlap when comparing to ground truth
is discussed in Sec. 5.5. In Sec. 5.6 quantitative results for performance and execution time
are obtained for our approach and two state-of-the-art methods. In Sec. 5.7 our algorithm is
evaluated in a multi-camera scenario. Each experiment is concluded with a discussion.

5.1 Evaluation Protocol

In order to compare the output of an algorithm to ground truth values we use the overlap mea-
sure from Eq. 3.21. In [24] it is shown that this measure equally penalizes translations in both
directions and scale changes. Based on the overlap between algorithmic output and ground truth
values, each frame of a sequence is categorised as one of the five possible cases shown in Fig. 5.1.
A result is considered true positive if the overlap is larger than a threshold ω (Case a). A result
is counted as false negative when the algorithm yields no result for a frame even though there
is an entry in the ground truth database (Case b). The opposite case is a false positive (Case c).

1Open Computer Vision: http://opencv.willowgarage.com
2Open Multi-Processing: http://openmp.org
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If the overlap is lower than the threshold ω , then this is counted both a false negative and a false
positive (Case d). If for a frame neither an algorithmic output nor an entry in the ground truth
database exists then this case is considered a true negative (Case e).

GT

ALG

(a) True Positive

GT

(b) False Negative

ALG

(c) False Positive

GT ALG

(d) False Negative and False Positive

(e) True Negative

Figure 5.1: Five possible cases when comparing algorithmic results to ground truth values. The
case (e) is not considered in metrics that we use.

After processing a video sequence, all occurrences of True Positives (TP), False Positives
(FP), True Negatives (TN) and False Negatives (FN) are counted. Based on these values we
calculate two performance metrics. Recall is defined as

recall =
TP

TP+FN
. (5.1)
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Eq. 5.1 measures the fraction of positive examples that are correctly labeled [17]. Precision is
defined as

precision =
TP

TP+FP
. (5.2)

Eq. 5.2 measures the fraction of examples classified as positive that are truly positive [17].
Depending on the application, high recall or high precision (or both) may be demanded. Since
our approach uses random elements, we repeat every experiment five times and average the
values for precision and recall.

Our algorithm provides a confidence measure for each positive output it produces. By ap-
plying thresholding, results exhibiting a confidence lower than a certain value θ are suppressed.
This suppression affects the performance metrics as follows. True positives with a confidence
less than θ become false negatives, meaning that both recall and precision get worse. Also, false
positives with a confidence less than θ become true negatives, meaning that precision improves.
Thresholding is most effective if false positive results are produced with low confidence values
and true positive results with high confidence values. A precision-recall curve visualise how
different values for θ impact precision and recall. A sample curve is given in Fig. 5.2, where
the right bottom end of the curve refers to the precision and recall values when the threshold
is 0, meaning that no true positives and no false positives were removed. The rest of the curve
represents recall and precision values as θ is increased, ending in a point where θ = 1. We chose
not to use precision-recall curves because it turned out during experiments that no relevant im-
provement for precision was achievable. We attribute this to the mechanism for automatic failure
detection described in Sec. 2.3 that prevents false positives.
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Figure 5.2: Sample precision-recall curve.

5.2 Sequences

In this section we describe the sequences that we use for evaluation, all of which are accompa-
nied by manually annotated ground truth data. Multi Face Turning from the SPEVI3 dataset

3Surveillance Performance EValuation Initiative: http://www.eecs.qmul.ac.uk/~andrea/spevi.html
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consists of four people moving in front of a static camera, undergoing various occlusions and
turning their faces right and left. The difficulty in this sequence lies in the fact that four instances
of the same category are present and that all persons undergo various occlusions. The sequence
consists of 1006 individual frames. The sequence PETS view 001 is taken from the PETS 20094

dataset. It shows pedestrians walking across a T junction and consists of 794 frames. The pedes-
trians exhibit a similar appearance due to low spatial resolution. The following six sequences
that are shown in Fig. 5.3 were used in [51, 27] for evaluating object tracking methods. The
sequence David Indoor5 consists of 761 frames and shows a person walking from an initially
dark setting into a bright room. No occlusions occur in this sequence. Jumping consists of 313
frames and shows a person jumping rope, which causes motion blur. Pedestrian 1 (140 frames),
Pedestrian 2 (338 frames) and Pedestrian 3 (184 frames) show pedestrians being filmed by
an unstable camera. The sequence Car consists of 945 frames showing a moving car. This
sequence is challenging because the images exhibit low contrast and various occlusions occur.

(a) David Indoor (b) Jumping (c) Pedestrian 1

(d) Pedestrian 2 (e) Pedestrian 3 (f) Car

Figure 5.3: The data set used for analysing the importance of the overlap measure and for
comparing to existing approaches.

We recorded two datasets, Multi Cam Narrow and Multi Cam Wide, each consisting of
three sequences, for the evaluation in multi-camera scenarios. The camera positions and orien-
tations for both datasets are shown in Fig. 5.4. In Multi Cam Narrow the cameras were placed
next to each other, each camera looking in the same direction. For Multi Cam Wide each camera
was placed in a corner of the room, facing to its center. In Fig. 5.5 a frame from each camera

4Performance Evaluation of Tracking and Surveillance: http://www.cvg.rdg.ac.uk/PETS2009/a.html
5http://www.cs.toronto.edu/~dross/ivt/
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3 1 2

(a) Multi Cam Narrow

3

12

(b) Multi Cam Wide

Figure 5.4: Camera setup for Multi Cam Narrow.

Figure 5.5: Sample frames from Multi Cam Narrow.

in Multi Cam Wide is shown recorded at the same instant of time. In Fig. 5.6 a frame from each
sequence in Multi Cam Wide is shown as well as enlarged views of the selected object.

5.3 Parameter Selection for Ensemble Classifier

In this experiment we analyse the effects of varying the parameters for the ensemble classifier on
the sequence Multi Face Turning. The two parameters in question are the number of features in
a group (S) and the total number of groups (M). In [38] it was concluded that setting S = 10 and
M = 10 gives good recognition rates. Since we do not employ random ferns as a final classifica-
tion step but as part of a detector cascade and furthermore use on online learning approach, we
re-evaluate these parameters. Breiman [9] shows that randomized decision trees do not overfit
as the number of trees is increased but produce a limiting value of the generalization error. This
means that increasing M does not decrease recall.

Since S is the number of features that are assumed to be correlated, for large values of S the
curse of dimensionality arises, meaning that the amount of training data increases with S. On the
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Figure 5.6: Sample frames of Multi Cam Wide and an enlarged view of the selected object.

other hand, low values of S ignore correlation in the data [38]. Another aspect for choosing S is
the amount of memory required. For S = 24, at least 16,777,216 entries for the posterior values
have to be stored for every fern. For this experiment, we set M = 50 and let S vary from 1 to 24.
In Fig. 5.7, S is plotted against the achieved recall. The recall first increases linearly with S and
reaches its maximum at S = 13. For higher values of S, less recall is achieved.
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Multi Face Turning

Figure 5.7: Varying the size S of the feature groups when M = 50.
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Since the time spent on testing each sliding window depends linearly on M, this means that
M should be small when low execution time is desired. Fig. 5.8 shows how the recall is affected
by M. For this experiment, we set S = 13. The results show that recall increases up to M = 30
and does not change afterwards.
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Multi Face Turning

Figure 5.8: Varying the number of ferns M when S = 13.

Discussion

This experiment shows that the parameters of the ensemble classifier influence recall. We get
best results for S = 13 and M > 30. The observations here are in line with the finding in [9] that
randomised decision trees do not overfit as more trees are added. For the rest of the experiments
in this chapter, we set S = 13 and M = 10, as a compromise between recall, speed and memory
consumption.

5.4 Qualitative Results

In this section, qualitative results for the sequences Multi Face Turning and PETS view 001 are
given. In all of the presented images, a blue bounding box denotes a result with its confidence
being larger than 0.5, all other bounding boxes are drawn in yellow. We show results for Multi
Face Turning in Fig. 5.9. In the top left image, the face initially selected for tracking is shown.
The person then moves to the right and gets occluded by another person. The recursive tracker
correctly stops tracking and the face is detected as it appears to the right of the occluding person.
This is shown in the top right image. The selected face then turns left and right several times and
undergoes another occlusion, which is again handled correctly, as it is depicted in the first image
in the second row. The selected person then leaves the camera view on the right and enters on
the same side in the back of the room. At first, the head of the person is rotated but as soon as a
position frontal to the camera is assumed a detection occurs, as it is shown in the second image
in the second row. In the first image in the third row the recursive tracker does not stop tracking
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even though an occlusion occurred, however no learning is performed since the distance to the
model remains below 0.5, as indicated by the yellow bounding box. The detector then yields
a detection with a higher confidence than the recursive tracker, as it is depicted in the second
image in the third row. The person then leaves the field of view on the left-hand side and enters
at a position close to the camera (see first image in the fourth row), appearing twice as large
as in the first frame. The face is detected and tracked correctly until the last appearance of the
selected face, depicted in the second image in the fourth row.

Results for PETS view 001 are shown in Fig. 5.10. The person shown in the top-left image is
selected for tracking. The person walks to the left and gets almost fully occluded several times
by the pole in the middle of the image. Additional occlusions occur when walking behind two
other people. The tracker stops and the detector correctly re-initialises the target as soon as it
reappears, which is shown in the second image in the first row. The person then returns to the
right-hand side of the image and leaves the field of view while being tracked correctly, as it is
depicted in the first image of the second row. In the second image of the second row a false
detection occurs. The original target then appears on the right-hand side of the field of view and
causes another detection, as it is shown in the first image of the third row. The person then walks
to the left and gets occluded by another person, as depicted in the second image in the third
row. Both persons walk in opposite directions, which causes the recursive tracker to erroneously
remain at the current position for the following 297 frames with a confidence lower than 0.5.
The target person in the meantime walks around the scene without being re-detected. Finally, a
correct detection occurs in the last image presented and the person is tracked correctly until the
end of the sequence.

Discussion

The experiments discussed in this section demonstrate that our method is able to learn the ap-
pearance of objects online and to re-detect the objects of interest after occlusions, even at dif-
ferent scales. On Multi Face Turning, the face is re-detected after every but one occlusion. In
both the first and the second experiment there are frames where the object of interest is not de-
tected even though it is visible. In Multi Face Turning this is due to the face appearing in a pose
that never appeared before, which is a situation that our method cannot handle. In the second
experiment, the object of interest is not detected even it appears in poses similar to the ones en-
countered in learning steps. The problem here is that during learning, the other persons walking
around the scenes are (correctly) recognised as negative examples. However, since the appear-
ance of these persons is similar to the appearance of the object of interest, a close positive match
is needed in order to achieve a detection. In Multi Face Turning the faces exhibit sufficiently
dissimilarity.

5.5 Requirement on Overlap

As it was pointed out in Sec. 5.1, the categorisation of algorithmic output depends on the param-
eter ω that defines the required overlap between an algorithmic result and ground truth values.
When ω is increased, both recall and precision decrease. Depending on the intended application,
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Figure 5.9: Qualitative results for the sequence Multi Face Turning.
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Figure 5.10: Qualitative results for the sequence PETS view 001.
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different requirements on accurate results are desired. In this section we analyse empirically to
what extent precision and recall change when varying ω . For this experiment, we use three dif-
ferent values for ω (0.25, 0.5 and 0.75) and evaluate precision and recall on the sequences David
Indoor, Jumping, Pedestrian 1-3 and Car. The resulting values for precision and recall that are
obtained when running our implementation with the three different values for ω are shown in
Table 5.1.

omega = 0.75 omega = 0.5 omega = 0.25

David Indoor 0.08/0.08 0.65/0.65 0.66/0.66
Jumping 0.13/0.14 0.63/0.63 1.00 1.00

Pedestrian 1 0.00/0.00 0.04/0.04 1.00 1.00
Pedestrian 2 0.06/0.11 0.55/1.00 0.56/1.00
Pedestrian 3 0.22/0.35 0.32/0.51 0.32/0.51

Car 0.08/0.09 0.95/0.94 0.95/0.94

Table 5.1: Performance metrics improve when the requirement on the overlap ω is relaxed. The
first value in a cell denotes recall, the second value is precision.

Discussion

In the conducted experiment, for all sequences there is a drastic increase in both recall and pre-
cision when the requirement of an exact match is relaxed. This is most visible for the sequence
Pedestrian 1, where the recall increases from 0 (ω = 0.75) over 0.04 (ω = 0.5) to 1 (ω = 0.25).
We attribute this to two causes. First, the process of manually annotating video data is ambigu-
ous [6]. The algorithmic output therefore might not completely overlap with the ground truth
data. Another source for inaccuracies is the recursive tracker, since small errors accumulate and
let the tracker drift away from the original target until it is re-initialised. The effect on perfor-
mance is reduced by setting a low requirement on overlap. An overlap requirement of ω = 0.25
is sufficient for our intended applications and we perform the rest of the experiments with this
setting.

5.6 Comparison to State-of-the-Art Methods

In this section our approach is evaluated quantitatively with respect to precision, recall and
execution time. We compare our approach to two other tracking approaches. TLD is proposed
in [27] and Struck is proposed in [23]. Both approaches are briefly described in Sec. 1.2. An
implementation for Struck was obtained from the respective project website6. The results for
TLD were taken directly from [27]. The parameters of Struck were left at their default values.
For this evaluation the dataset from the previous section is used, which also used in [51] for a
comparison of tracking systems. In Table 5.2, the values for recall and precision are shown. The

6http://www.samhare.net/research/struck
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first value in each table cell is the recall, the second value is precision. The maximum recall
values for a sequence are emphasised.

Ours TLD [27] Struck [23]

David Indoor 0.66/0.66 0.94/0.94 0.23/0.23
Jumping 1.00/1.00 0.86/0.77 1.00/1.00

Pedestrian 1 1.00/1.00 0.22/0.16 0.84/0.84
Pedestrian 2 0.56/1.00 1.00/0.95 0.26/0.21
Pedestrian 3 0.32/0.51 1.00/0.94 0.67/0.57

Car 0.95/0.94 0.93/0.83 0.88/0.80

Table 5.2: Comparative performance metrics. The first value in a cell denotes recall, the second
is precision. Best recall values for a sequence are emphasised.

We also present a comparison of the time needed for execution for the selected algorithms.
For this evaluation, each algorithm was run 5 times on the sequence Jumping and the average
was calculated. The results are presented in Table 5.3. In the second column the average time in
seconds needed to process the sequence as a whole is given. In the third column, the number of
frames in the sequence divided by the processing time is given.

Method Time (s) Frames / s

Ours (multi-threaded) 14.12 22.04
Ours (single-threaded) 18.39 17.02

TLD 38.17 8.20
Struck 809.57 0.38

Table 5.3: Speed comparison on Jumping.

Discussion

Our algorithm achieves the highest recall on three out of six sequences and ties on one sequence
with Struck. The highest recall for the three other sequences is achieved by TLD. We explain
the different results for the original implementation of TLD and our implementation with the
different features that are used for the ensemble classifier. Struck yields good results as well but
performs worse on sequences with occlusions. Our multi-threaded implementation takes least
computing time. It is almost three times as fast as the original TLD. This is caused by the use of
random ferns over 2-bit-binary patterns, the addition of a variance filter in the detection cascade
and the implementation in C++. Compared to Struck, our implementation is 57 times faster.
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5.7 Evaluation on Multiple Cameras

For evaluating the applicability in multi-camera scenarios we use the sequences Multi Cam Nar-
row and Multi Cam Wide. First, we select an initial bounding box in the first frame the object
appears in the sequence. For Multi Cam Narrow, we select the left-most face on all sequences.
For Multi Cam Wide we select the face of the person initially to the right. We then let our algo-
rithm run without intervention for the rest of the sequence. When processing is done, we export
all the data that was learned, which are the variance of the initial patch, the posterior values of
the ensemble classifier P(y= 1 |Fk) and the positive and negative patches of the nearest neighbor
classifier P+ and P−. We call this combination of data the model of the object. We now apply
the extracted model without any manual initialisation to all sequences in the data set, including
the one it was generated with. The obtained recall values for Multi Cam Narrow are in Table 5.4.
The diagonal values show results where a model was applied in a camera where it was learned
initially. The minimum recall value for all results is 0.45, which was achieved when the model
from camera 3 was applied in camera 2. In all sequences, false detections occur, but are recov-
ered from. The model recorded in camera 2 scores best in all sequences. The results for Multi
Cam Wide are in Table 5.5. Ignoring the diagonal values, 2 out of 6 model-camera combinations
achieved a recall larger than 0. The best recall value 0.54 was obtained when running the model
from camera 3 in camera 1. In all cases where recall is 0, the object is not detected over the
course of the image sequence.

Model learned in

Cam 1 Cam 2 Cam 3

Model applied to
Cam 1 0.60 0.79 0.69
Cam 2 0.78 0.80 0.45
Cam 3 0.85 0.87 0.84

Table 5.4: Recall for Multi Cam Narrow.

Model learned in

Cam 1 Cam 2 Cam 3

Model applied to
Cam 1 0.78 0.00 0.54
Cam 2 0.16 0.66 0.00
Cam 3 0.00 0.00 0.44

Table 5.5: Recall for Multi Cam Wide.

Discussion

The experiments described in this section give insight about the applicability in scenarios with
multiple cameras. It can be seen from the results for dataset Multi Cam Narrow that in principle
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it is possible to learn an object in one camera and apply it in a second camera. However, as the
baseline between the cameras increases, results get worse. The second image column of Fig. 5.6
depicts the difficulties present in Multi Cam Wide. In this column, the selected face is shown as
it appears in the three different cameras. Due to varying lighting conditions the appearance of
an object in one camera is distorted significantly compared to the two other cameras. One could
alleviate this problem by employing dedicated lighting equipment in order to create homogenous
lighting settings in all three cameras, but there are application scenarios where this is not feasible,
for instance when images are taken from a surveillance camera.
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CHAPTER 6
Conclusion

In this work we presented an implementation of a novel approach to robust object tracking
based on the Tracking-Learning-Detection paradigm. We made the following contributions: We
reproduced the results of Kalal et al. and showed that the use of features based on pairwise pixel
comparison and two additional stages in the detection cascade lead to a reduced computing time
and do not degrade results. In our implementation, we reduce computing time by a factor of
three. For a GPU implementation, we expect a further reduction of computing time by a factor
of 4. We demonstrated empirically that applying our approach to multi-camera scenarios is
feasible as long as the lighting conditions and the orientations of the cameras remain similar.

In sequences containing occlusions, approaches based on Tracking-Learning-Detection out-
perform adaptive tracking-by-detection methods. We attribute this to the following reasons.
Adaptive tracking-by-detection methods typically perform a form of self-learning, meaning that
the output of a classifier is used for labeling unlabeled data. In Tracking-Learning-Detection,
unlabeled data is explored by a tracking mechanism that is not dependent on the detector but
bases its decision on a different measure, which in our case is the optical flow. The performance
of approaches based on Tracking-Learning-Detection is further improved by the automatic de-
tection of tracking failures and by introducing criteria for validity that have to be met when
learning is performed.

Clearly, our approach heavily depends on the quality of the results delivered by the recursive
tracker. Principally, the quality of the results can be improved in two ways. First, the timespan
during which the tracker is following the object of interest correctly could be increased. This
would present the object detector with more true positive examples. Second, The automatic
detection of tracking failures could be improved, which would further prevent the object detector
from drifting.

One problem that was encountered during the experiments is that the object detector is un-
able to discriminate against objects that exhibit a similar appearance. This problem is partially
caused by the fact that the comparison of templates is performed on images of reduced size. One
solution to this problem might be to increase the resolution of the template images, but this will

47



introduce the curse of dimensionality. As a compromise, one could employ image pyramids for
the templates and perform the comparison using a coarse-to-fine strategy.

The use of bounding boxes, while convenient for implementation, also has its shortcomings.
Since bounding boxes always cover a rectangular region around the object, they partially may
contain background. We assign class labels on a bounding-box level which causes the appear-
ance of the background to be considered part of the object of interest. This leads to the problem
that the object of interest is not recognised when it appears on a different background. In order
to separate the object of interest from the background in a bounding box for learning, one could
use segmentation techniques, such as the one presented in [19].

Currently, our approach gives information about the location of the object of interest only,
but not about its orientation. Information about the orientation of objects could be retrieved by
employing an affine transformation model for the Lucas-Kanade tracker.

A severe unsolved problem consists of the fact that the detector is unable to recognise ap-
pearance changes that occur while the tracker is not active. In [38], image warping is applied
to training examples in order to achieve invariance to affine transformations. However, affine
transformations do not cover changes in local illumination or perspective. These changes occur
frequently in multi-camera scenarios and are caused by different lighting conditions and camera
viewpoints. A solution for this problem yet has to be found.
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APPENDIX A
Appendix

A.1 Number of Subwindows in an Image

Generally, in an image of size n×m, the exhaustive setRexh of all possible subwindows is

Rexh = {〈x,y,w,h〉 | 1≤ x < n,1≤ y < m,1≤ w≤ n− x,1≤ h≤ m− y} . (A.1)

The size of this set defined by Eq. A.1 is

|Rexh|=
n

∑
x=1

(n− x)
m

∑
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(m− y) (A.2)

=
n

∑
x=1

(n− x)

(
m2−

m

∑
y=1

y

)
(A.3)

=
n

∑
x=1

(n− x)
(

m2− m(m+1)
2

)
(A.4)

=
n

∑
x=1

(n− x)
m(m−1)

2
(A.5)

=
n(n−1)

2
m(m−1)

2
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For an image of size n×n, Eq. A.6 amounts to

|Rexh|=
n(n−1)

2
n(n−1)

2
(A.7)

=
n4−2n3 +n2

4
. (A.8)

If the constraints from Sec. 3.1 are used, the number of possible subwindows decreases as
follows. Let w,h be the width and height of the initial window and let dx,dy be the pixels that
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each subwindow is to be shifted. The number of subwindows in one row then is

nx =

⌊
n−w+dx

dx

⌋
(A.9)

and the number of subwindows in one column is

ny =

⌊
m−h+dy

dy

⌋
. (A.10)

The total number of sliding windows then is

|R|= nxny. (A.11)

A.2 Alternative Formulation of Variance

The alternative formulation of the variance is obtained by the following derivation1.

σ
2 =

1
n

n

∑
i=1

(xi−µ)2 (A.12)

=
1
n

n

∑
i=1

x2
i −2xiµ +µ

2 (A.13)

=
1
n

n

∑
i=1

x2
i −

1
n

n

∑
i=1

2xiµ +
1
n

n

∑
i=1

µ
2 (A.14)

=
1
n

n

∑
i=1

x2
i −2µ

1
n

n

∑
i=1

xi +µ
2 (A.15)

=
1
n

n

∑
i=1

x2
i −2µ

2 +µ
2 (A.16)

=
1
n

n

∑
i=1

x2
i −µ

2. (A.17)

A.3 Maximum Resolution for Integral Images

When pixel values in an image I of size n×m are stored in unsigned integers of a bits, the
maximal value at the integral image I′(n,m) is I′max = 2amn. This means that da+ log2(mn)e is
the number of bits needed to hold I′max. For instance, if the resolution of I is 640×480 and pixel
information is stored using an 8-bit integer, then for the values in I′ 8+ log2(640 · 480) = 27
bits have to be used. The maximal number of pixels for 32-bit integers therefore is 232−a,
which corresponds to a resolution of 4730× 3547. For a value in squared integral images I′′

d2a+ log2(nm)e bits are necessary.

1Note that in [49] the alternative formulation of the variance is incorrectly stated as σ2 = µ2− 1
n ∑

n
i=1 x2

i .

50



Bibliography

[1] W. C. Abraham and A. Robins. Memory retention–the synaptic stability versus plasticity
dilemma. Trends in neurosciences, 28(2):73–78, Feb. 2005. 2

[2] A. Adam, E. Rivlin, and I. Shimshoni. Robust fragments-based tracking using the integral
histogram. In 2006 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition - Volume 1 (CVPR’06), volume 1, pages 798–805. IEEE, July 2006. 3

[3] Y. Amit and D. Geman. Shape quantization and recognition with randomized trees. Neural
Computation, 9(7):1545–1588, Oct. 1997. 21

[4] S. Avidan. Support vector tracking. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 26(8):1064–1072, 2004. 3

[5] S. Avidan. Ensemble tracking. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 29(2):261–271, Feb. 2007. 3

[6] B. Babenko, Ming-Hsuan Yang, and S. Belongie. Visual tracking with online multiple
instance learning. In 2009 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition Workshops (CVPR Workshops), pages 983–990. IEEE, June 2009. 4,
43

[7] M. B. Blaschko. Branch and Bound Strategies for Non-maximal Suppression in Object
Detection, volume 6819 of Lecture Notes in Computer Science, chapter 28, pages 385–
398. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011. 24

[8] G. Bradski and A. Kaehler. Learning OpenCV: Computer Vision with the OpenCV Library.
O’Reilly Media, 1st edition, Oct. 2008. 8, 9

[9] L. Breiman. Random forests. Machine Learning, 45(1):5–32, Oct. 2001. 37, 39

[10] R. Brunelli. Template Matching Techniques in Computer Vision: Theory and Practice.
Wiley Publishing, 2009. 3, 22

[11] F. Chang. A linear-time component-labeling algorithm using contour tracing technique.
Computer Vision and Image Understanding, 93(2):206–220, Feb. 2004. 14, 16

[12] O. Chapelle, B. Schölkopf, and A. Zien, editors. Semi-Supervised Learning. The MIT
Press, Sept. 2006. 3, 28, 29

51



[13] S.-C. S. Cheung and C. Kamath. Robust techniques for background subtraction in urban
traffic video. In Visual Communications and Image Processing 2004 (Proceedings Vol-
ume), volume 5308, pages 881–892. SPIE, 2004. 14

[14] R. T. Collins, Y. Liu, and M. Leordeanu. Online selection of discriminative tracking fea-
tures. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(10):1631–
1643, 2005. 3

[15] D. Comaniciu, V. Ramesh, and P. Meer. Real-time tracking of non-rigid objects using mean
shift. In IEEE Conference on Computer Vision and Pattern Recognition, volume 2, pages
142–149 vol.2. IEEE, 2000. 3

[16] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, pages 886–
893. IEEE, June 2005. 12, 28

[17] J. Davis and M. Goadrich. The relationship between Precision-Recall and ROC curves. In
Proceedings of the 23rd international conference on Machine learning, ICML ’06, pages
233–240, New York, NY, USA, 2006. ACM. 35

[18] M. Everingham, L. Van Gool, C. Williams, J. Winn, and A. Zisserman. The pascal visual
object classes (VOC) challenge. International Journal of Computer Vision, 88(2):303–338,
June 2010. 24

[19] M. Godec, P. M. Roth, and H. Bischof. Hough-based tracking of non-rigid objects. In
IEEE International Conference on Computer Vision, pages 81–88. IEEE, Nov. 2011. 48

[20] E. B. Goldstein. Sensation and Perception. Wadsworth Publishing, 8 edition, Feb. 2009. 1

[21] H. Grabner, C. Leistner, and H. Bischof. Semi-supervised On-Line boosting for robust
tracking. In D. Forsyth, P. Torr, and A. Zisserman, editors, Proceedings of the 10th Euro-
pean Conference on Computer Vision, volume 5302, pages 234–247, Berlin, Heidelberg,
2008. Springer Berlin Heidelberg. 4

[22] S. Grossberg. Competitive learning: From interactive activation to adaptive resonance.
Cognitive Science, 11(1):23–63, Jan. 1987. 2

[23] S. Hare, A. Saffari, and P. H. S. Torr. Struck: Structured output tracking with kernels. In
IEEE International Conference on Computer Vision, pages 263–270. IEEE, Nov. 2011. 4,
43, 44

[24] B. Hemery, H. Laurent, and C. Rosenberger. Comparative study of metrics for evalua-
tion of object localisation by bounding boxes. In International Conference on Image and
Graphics, pages 459–464. IEEE, Aug. 2007. 33

[25] O. Javed, S. Ali, and Mubarak Shah. Online detection and classification of moving objects
using progressively improving detectors. In 2005 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR’05), volume 1, pages 696–701. IEEE,
2005. 3

52



[26] Z. Kalal, J. Matas, and K. Mikolajczyk. Online learning of robust object detectors dur-
ing unstable tracking. In Proceedings of the IEEE On-line Learning for Computer Vision
Workshop, pages 1417–1424, 2009. 4

[27] Z. Kalal, J. Matas, and K. Mikolajczyk. P-N learning: Bootstrapping binary classifiers by
structural constraints. In 2010 IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 49–56. IEEE, June 2010. 3, 4, 5, 27, 29, 36, 43, 44

[28] Z. Kalal, K. Mikolajczyk, and J. Matas. Forward-Backward Error: Automatic Detection
of Tracking Failures. In International Conference on Pattern Recognition, pages 23–26,
2010. 4, 7, 8, 9, 10

[29] C. H. Lampert, M. B. Blaschko, and T. Hofmann. Beyond sliding windows: Object lo-
calization by efficient subwindow search. In IEEE Conference on Computer Vision and
Pattern Recognition, pages 1–8, 2008. 14

[30] V. Lepetit and P. Fua. Monocular model-based 3D tracking of rigid objects. Found. Trends.
Comput. Graph. Vis., 1(1):1–89, 2005. 2

[31] V. Lepetit, P. Lagger, and P. Fua. Randomized trees for Real-Time keypoint recognition.
In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol-
ume 2, pages 775–781, Los Alamitos, CA, USA, 2005. IEEE Computer Society. 4, 19

[32] J. P. Lewis. Fast normalized cross-correlation. In Vision Interface, pages 120–123. Cana-
dian Image Processing and Pattern Recognition Society, 1995. 9

[33] B. D. Lucas and T. Kanade. An iterative image registration technique with an applica-
tion to stereo vision. In Proceedings of the International Joint Conference on Artificial
Intelligence, pages 674–679, 1981. 2, 4, 7

[34] E. Maggio and A. Cavallaro. Video Tracking: Theory and Practice. Wiley, 2011. 1

[35] L. Matthews, T. Ishikawa, and S. Baker. The template update problem. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 26(6):810–815, 2004. 2

[36] T. M. Mitchell. Machine Learning. McGraw-Hill Science/Engineering/Math, 1 edition,
Mar. 1997. 21

[37] F. Murtagh. A survey of recent advances in hierarchical clustering algorithms. The Com-
puter Journal, 26(4):354–359, Nov. 1983. 24

[38] M. Ozuysal, P. Fua, and V. Lepetit. Fast keypoint recognition in ten lines of code. In IEEE
Conference on Computer Vision and Pattern Recognition, Los Alamitos, CA, USA, June
2007. IEEE. 3, 4, 12, 19, 21, 37, 38, 48

[39] R. J. Radke, S. Andra, O. Al-Kofahi, and B. Roysam. Image change detection algorithms:
a systematic survey. IEEE Transactions on Image Processing, 14(3):294–307, Mar. 2005.
14

53



[40] J. L. Rodgers and W. A. Nicewander. Thirteen ways to look at the correlation coefficient.
The American Statistician, 42(1):59–66, 1988. 22

[41] D. Ross, J. Lim, R.-S. Lin, and M.-H. Yang. Incremental learning for robust visual tracking.
International Journal of Computer Vision, 77(1):125–141, May 2008. 2, 3, 25

[42] J. Santner, C. Leistner, A. Saffari, T. Pock, and H. Bischof. PROST: Parallel robust online
simple tracking. In IEEE Conference on Computer Vision and Pattern Recognition, pages
723–730. IEEE, June 2010. 4

[43] H. Schneiderman. Feature-centric evaluation for efficient cascaded object detection. In
IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol-
ume 2. IEEE, June 2004. 12

[44] L. G. Shapiro and G. C. Stockman. Computer Vision. Prentice Hall, Jan. 2001. 1

[45] J. Shi and C. Tomasi. Good features to track. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR’94), Seattle, June 1994. 7, 9

[46] S. Stalder, H. Grabner, and L. van Gool. Beyond semi-supervised tracking: Tracking
should be as simple as detection, but not simpler than recognition. In IEEE International
Conference on Computer Vision Workshops, pages 1409–1416. IEEE, 2009. 4

[47] R. Szeliski. Computer Vision: Algorithms and Applications. Springer, 2010. 1

[48] C. Tomasi and T. Kanade. Detection and tracking of point features. Technical Report
CMU-CS-91-132, Carnegie Mellon University, Apr. 1991. 8

[49] P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple features.
In 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.
CVPR 2001, volume 1, pages I–511–I–518, Los Alamitos, CA, USA, Apr. 2001. IEEE
Comput. Soc. 12, 16, 24, 28, 50

[50] A. Yilmaz, O. Javed, and M. Shah. Object tracking: A survey. ACM Computing Surveys,
38(4), Dec. 2006. 1, 2

[51] Q. Yu, T. B. Dinh, and G. Medioni. Online tracking and reacquisition using co-trained gen-
erative and discriminative trackers. In European Conference on Computer Vision, volume
5303 of Lecture Notes in Computer Science, pages 678–691, Berlin, Heidelberg, 2008.
Springer Berlin Heidelberg. 36, 43

54


	Introduction
	Problem Definition
	Related Work
	Scope of Work
	Contribution
	Organisation
	Summary

	Tracking
	Estimation of Optical Flow
	Error Measures
	Transformation Model
	Summary

	Detection
	Sliding-Window Approach
	Foreground Detection
	Variance Filter
	Ensemble Classifier
	Template Matching
	Non-maximal Suppression
	Summary

	Learning
	Fusion and Validity
	P/N-Learning
	Main Loop
	Summary

	Results
	Evaluation Protocol
	Sequences
	Parameter Selection for Ensemble Classifier
	Qualitative Results
	Requirement on Overlap
	Comparison to State-of-the-Art Methods
	Evaluation on Multiple Cameras

	Conclusion
	Appendix
	Number of Subwindows in an Image
	Alternative Formulation of Variance
	Maximum Resolution for Integral Images

	Bibliography

