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Zusammenfassung

Die Diffusions-Tensor-Bildgebung ist ein Magnetresonanztomographie-Verfahren zur Abschätzung

des Anisotropiegrades von Wasserdiffusion. Je nach Gewebe ist die Diffusion nahezu isotrop (zum

Beispiel in Flüssigkeiten oder in der grauen Substanz des Gehirns) oder gerichtet (zum Beispiel

in der weißen Substanz des Gehirns). Diese Unterschiede in der Diffusion werden mittels eines

Tensors für jedes gemessene Volumenelement (Voxel) abgeschätzt. Somit kann für jedes Voxel die

Richtung der Diffusion, die Stärke und die Gerichtetheit approximiert werden. Bringt man die

Eigenwerte dieses Diffusionstensors in Relation, kann die sogenannte fraktionale Anisotropie (FA)

berechnet werden, die der Kohärenz und Gerichtetheit von Nervenfasern entspricht.

Die ersten diffusionsgewichteten Bilder wurden in den 1980er Jahren aufgenommen und er-

wiesen sich vor allem bei Schlaganfällen und Tumoren als hilfreiches diagnostisches Mittel. Die

Diffusions-Tensor-Bildgebung findet aber auch Anwendung bei Erkrankungen wie Schizophrenie

oder Multipler Sklerose. Diese Erkrankungen gehen mit morpholigischen Veränderungen der

Gehirnsubstanz einher, welche mit Hilfe von Diffusions-Tensor-Bildgebung nicht-invasiv und in-

vivo untersucht werden können.

Weiters können auf der Basis von Diffusions-Tensor-Bildgebung Nervenbahnen innerhalb der

weißen Substanz mittels Faser-Traktographie rekonstruiert werden. Diese Methode wird häufig

verwendet, um Trakte zu identifizieren und die Integrität dieser zu untersuchen. Diese Rekon-

struktion kann mittels sogenannter Streamlining Algorithmen durchgeführt werden. Dabei folgt

man der dominanten Diffusionsrichtung bis ein Abbruchkriterium erfüllt ist. Eine weitere Meth-

ode zur Rekonstruktion ist die sogenannte probabilistische Faser-Traktographie. Mittels dieser

Methode werden in einem ersten Schritt die Diffusionsrichtungen lokal abgeschätzt. Anschließend

werden alle möglichen Faserverbindungen zwischen zwei beliebigen Punkten des Gehirns berech-

net. Je öfter eine Faserverbindung durch ein bestimmtes Voxel berechnet wird, umso höher ist die

Wahrscheinlichkeit, dass sich in diesem Voxel tatsächlich ein Nerventrakt befindet. Somit wird die

globale Konnektivität mittels einer Wahrscheinlichkeitsverteilung abgeschätzt.

In dieser Masterarbeit wurde die Diffusions-Tensor-Bildgebung angewandt um Unterschiede in

den Diffusionsparametern der weißen Substanz zwischen Patienten mit Sozialphobie und gesun-

den Kontrollprobanden zu untersuchen. Dazu wurde die Analyse auf den Fasciculus Uncinatus
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beschränkt, der Teile des präfrontalen Kortex, wie den Orbitofrontalkortex, mit Teilen des Tem-

porallappen, wie zum Beispiel der Amygdala und dem Hippocampus, verbindet. Dieser Hirntrakt

wurde mittels probabilistischer Faser-Traktographie berechnet. Die Ergebnisse zeigten eine bilat-

eral verminderte fraktionale Anisotropie in Patienten in anterioren Teilen des Fasciculus Uncina-

tus nahe des Orbitofrontalenkortex. Dies deutet auf eine verminderte Konnektivität der Nerven-

fasern in diesem Teil des Gehirns hin. Weiters zeigten Patienten eine bilateral erhöhte fraktionale

Anisotropie in posterioren Teilen des Fasciculus Uncinatus. Eine Interpretation dieser erhöhten

Konnektivität zeigte sich allerdings als schwierig, sodass weitere Untersuchungen erforderlich sind.
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Abstract

Diffusion tensor imaging is a magnetic resonance imaging technique which allows for approximating

the grade of anisotropy of water diffusion in organized matter, such as the human brain or muscles.

Depending on the tissue, diffusion is either isotropic (e.g. grey matter) or directed (e.g. white

matter). These differences can be approximated for every voxel by using a tensor. With this

diffusion tensor the diffusion strength, direction and directionality can be estimated. By relating

the eigenvalues of the diffusion tensor, the fractional anisotropy (FA) can be calculated, which

represents the directionality and coherence of fibers.

The first diffusion-weighted images were acquired in the 1980s. These measurements proofed

beneficial for the diagnosis of stroke and tumors. Today, diffusion tensor imaging is used for

diseases like schizophrenia and multiple sclerosis, but also other neurological diseases that go along

with morphological changes of brain tissue. These changes can be analyzed non-invasively in-vivo

using diffusion tensor imaging.

On the basis of diffusion tensor imaging nerve bundles and fiber tracts can be reconstructed

using fiber tractography. This method can be used for the identification of fiber tracts and to

analyze tract integrity. For the reconstruction of a fiber tract so-called streamlining algorithms

can be used. With this method the dominant diffusion direction is followed until a termination

criterion is fulfilled. Another method is the so-called probabilistic fiber tracking. This routine

locally estimates the diffusion direction first. Then all possible fiber connections between voxels

are calculated. The more connections are calculated through a certain voxel, the higher is the

probability that there really exists a connection within this voxel. Therefore the global connectivity

is approximated by a probability distribution.

Here this magnetic resonance imaging technique was applied to investigate white matter dif-

ferences between social phobia patients and healthy controls. For this purpose the analysis was

limited to the uncinate fasciculus, which connects frontal regions such as orbitofrontal cortex with

posterior regions such as hippocampus and amygdala. This fiber tract was calculated using proba-

bilistic fiber tractography. The results showed decreased FA in patients bilaterally in anterior parts

of the uncinate fasciculus next to orbitofrontal cortex. This indicates a reduced fiber connectivity

in these brain areas. In addition areas with increased FA in patients were found bilaterally in
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posterior parts of the uncinate fasciculus. The interpretation of this increased connectivity was

difficult so that further studies are required.
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Chapter 1

Physics of MRI

1.1 magnetic moment of the Orbital Motion

In general the magnetic moment of a current density distributions j(r) is given by

μ =
1

2

∫
V

r × j(r)dV (1.1)

In classical physics the electron orbits the atomic nucleus. This orbital motion can also be seen

as an electrical current.

j(r)dV = Idr (1.2)

The magnetic dipole momentum of such a loop then is

μ =
I

2
·
∫

r × dr = I ·A I...electrical current

A...areavector perpendicular to loop plane
(1.3)

When we now put this loop into a magnetic field B the following torque τ acts on it:

τ = μ×B (1.4)

To compare and transfer this equation to an atom we assume that the electron orbits the atomic

nucleus with a time period of T , which corresponds to 2π
ω (ω being the angular frequency of the

orbital motion). The current generated by the orbital motion can then be described as:

I =
q

T
= −e · ω

2π
with

q...electrical charge

e = 1.602176565 · 10−19 C...elementary charge
(1.5)

Using this expression and inserting into (1.3) we get
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Figure 1.1: Classical picture of the angular momentum l and magnetic moment μ due to the orbital motion of

the electron with the velocity v and the radius r.

μ = I ·A = −1

2
eωr2e⊥ (1.6)

with A = r2πe⊥ and e⊥ the unit vector in the direction of A. Now we can introduce the

orbital angular momentum |l| = me |v| r = meωr
2 (me...rest mass of the electron, |v|...velocity of

the electron, r...radius of the orbital motion). We find the following relationship:

μ = − e

2me
l = −γel γ...gyromagnetic ratio of the electron (1.7)

We see that in case of the electron μ and l point in the opposite direction (see figure 1.1).

The gyromagnetic ratio γ = q
2m (q...electrical charge, m...mass of particle) is the ratio between

magnetic dipole moment and angular momentum and is generally dependent on the considered

material. Considering electrons the gyromagnetic ration is γe =
|−e|
2me

. Further we can make use of

the Bohr model. We know that the electron in the first orbit has an orbital angular momentum of

l = h̄. Inserting this in (1.7) yields the Bohr magneton μB :

μB =
e

2me
h̄ = 9.274078 · 10−24Am2 (1.8)

We can now define the magnetic moment of the electron μl in units of μB :

μl = −μB l

h̄
(1.9)
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 l = 2
|l|=√2(2+1) ħ

ml = 2 ħ

1 ħ

0 ħ

-1 ħ

-2 ħ

Figure 1.2: Quantized angular momentum with l = 2.

When we now apply a magnetic field B, a torque acts on μl aiming for parallel alignment of

the magnetic moment and B. The magnetic moment μl will precess around B. The precession

frequency can be calculated as follows:

∂l

∂t
= τ = μ×B,

∂l

∂t
= −γe · l×B

∂l

∂t
= ωL × l

(1.10)

Comparing the equations in (1.10) yields the precession frequency

ωL = γeB =
gleh̄

2m0
B (1.11)

This angular frequency is the so-called Larmor frequency ωL. The z-component of l is not

random but quantized. This cannot be explained by classical physics. Therefore we introduce

the quantum mechanical angular momentum l which has one quantized axis, in our case lz. The

possible values are:

lz = mlh̄ with ml = 0,±, ...,±l (1.12)

Here we also introduce ml, the magnetic quantum number. Accordingly μl,z is:

μl.z = − e

2me
lz = −mlμB (1.13)

Since ml can only have certain values (ml = 0,±, ...,±l) the maximum value of μl,z is μl,z =

l · μB .
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The absolute value of l is:

|l| =
√
l(l + 1) · h̄ (1.14)

Figure 1.2 shows a quantized angular momentum with l = 2. In this section we have seen that

the motion of electrical charges leads to an angular momentum l, which is quantized as soon as

one axis is specified (e.g. by applying a magnetic field). We also introduced the magnetic moment

ml. Besides this semi-classical consideration, a second mechanism results into a magnetic moment,

which cannot be explained by classical physics. This mechanism is due to the intrinsic angular

momentum of elementary particles called spin.

1.2 The Spin of Electrons

In the late 19th and in the early 20th century several experiments indicated that elementary particles

such as electrons have an additional property besides charge −e and rest mass me. One of these

experiments was arranged by Otto Stern (1888-1969) and Walter Gerlach (1889-1979). In their

experiment in 1921 - the so-called Stern-Gerlach experiment (see figure 1.3) - they investigated the

deflection of silver atoms in an inhomogeneous magnetic field. The silver atoms were evaporated

in an oven. The evaporated atoms could escape through an opening and were collimated using an

aperture. The atoms were passing an orthogonal inhomogeneous magnetic fieldB. The experiment

was repeated without a magnetic field B. Without any magnetic field no force is acting on the

atoms and they do not get deflected. When we now apply the inhomogeneous magnetic field

B the deflection showed two clear maxima, which can be seen in figure 1.3. An inhomogeneous

magnetic field exerts an additional force on a magnetic moment. This force depends on the relative

orientation of the magnetic field and the magnetic moment. From the potential energy of the

magnetic field we can calculate the force acting on the magnetic moment:

Epot = −μlB (1.15)

F = −∇Epot = μl∇B (1.16)

The ground state of an silver atom is an s-state (l = 0) which means that the atom does not

have an orbital magnetic dipole moment (μl = 0). Therefore they suggested that the electron

has an additional intrinsic angular momentum which leads to the seen deflection. Also an earlier

experimental result indicated such a property: the anomalous Zeeman effect. The normal Zeeman

effect is very easy to explain, it is the splitting of spectral lines in several components due to a

magnetic field. We already know the potential energy of the magnetic field (Epot = −μlB). And

we also know the relationship between μl and the Bohr magneton μB (1.9). Applying a magnetic

field in the z-direction we can use (1.13) and get the potential energy:
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Figure 1.3: Stern-Gerlach Experiment. The particle beam of neutral silver atoms passes through an inhomo-

geneous magnetic field in z-direction. In the figure you see the set-up of the magnetic poles, which produce the

magnetic field. The particle beam is detected at a photographic plate. Without a magnetic field no deflection is

measured (straight line at photographic plate). When the magnetic field is turned on the classical expectation was

a homogenous distribution, as it was believed that the orientation of the magnetic moment should be random. But

the results showed two clear maxima. This is due to the quantization of sz . Only two orientations are possible (spin

up and spin down) yielding the two maxima.

Epot = −mlμBBz with − l ≤ ml ≤ l (1.17)

Due to this quantization the degenerate energy levels are split and can be seen in the atomic

spectrum. If the atom is in an s-state (with l = 0), Epot is zero, hence we should not see splitting.

However, the spectral lines split in the atomic spectrum. This is the so-called anomalous Zeeman

effect. The splitting of the degenerate energy levels in s-state atoms (anomalous Zeeman effect)

can only be explained by introducing a new quantum number representing the intrinsic angular

momentum of the electron.

In 1924 Wolfgang Pauli proposed this new quantum number with two possible values. One year

later in 1925 Samual A. Goudsmit (1902-1978) and George E. Uhlenbeck (1900-1988) called this

new quantum number spin s. The absolute value of the spin is analogous to the orbital angular

momentum

|s| =
√
s(s+ 1) · h̄ (1.18)

Considering the Stern-Gerlach experiment we have seen that two maxima were measured when

the inhomogeneous magnetic field was applied. Due to the electron configuration in silver atoms

only one electron spin (only one valence electron) can contribute to the magnetic moment, all other

13



sz

 s = 1/2
|s|=√3/4 ħ

ms = 1/2 ħ

ms = -1/2 ħ

Figure 1.4: Two possible orientations (spin up and spin down) of the electron spin.

compensate each other. Therefore only two possible orientations (see figure 1.4) of the spin are

possible (with ms being the magnetic quantum number of the spin):

sz = ms · h̄ with ms = ±1

2
. (1.19)

The absolute value of the electronic spin is then (see (1.18))

|s| =
√
3

2
· h̄ (1.20)

Analogous to the magnetic moment, we can define the intrinsic magnetic moment of the electron

and its z-component:

μs = −gs e
2me

s (1.21)

μs,z = −gsmsμB with ms = ±1

2
(1.22)

gs is the g-factor of the electron spin, which relates the intrinsic magnetic moment with the

intrinsic angular momentum of the electron. Now we can also define the gyromagnetic ration γs

of the electron spin

γs = gsμBh̄ (1.23)
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1.3 The Spin of Nuclei

Also protons and neutrons (the components of nuclei) have an intrinsic angular momentum. We

can now introduce the nuclear spin I:

|I| =
√
I(I + 1)h̄ (1.24)

I is the nuclear spin quantum number. According to the magnetic quantum number of the

electron spin ms (1.19) we also adopt the nuclear magnetic quantum number mI . For the z-

component of the nuclear spin we get:

Iz = mI h̄ with − I ≤ mI ≤ I (1.25)

For the magnetic nuclear momentum we get:

μI =
gIμN
h̄

I = γII (1.26)

γI = egI
2mp

is the gyromagnetic ratio, conventionally the proton massmp is used for the definition

of γI . Here we also introduce the nuclear g-factor gI which relates the nuclear magnetic moment

μI with the nuclear angular momentum I. For electrons we had the Bohr magneton μB , here

we have the nuclear magneton μN = e
2mp
h̄ = μB/1836 = 5.0508244 · 10−27Am2, which contains

the proton mass mp instead of the electron mass me. Most atomic nuclei possess spin. As nuclei

consist of protons and neutrons, the nuclear spin depends on the proton and neutron number.

Hydrogen 1
1H consists of only one proton; therefore the nuclear spin quantum number is I = 1

2 .

When we now consider the hydrogen isotope 2
1H (deuterium) consisting of one proton and one

neutron, the overall nuclear-spin depends on whether the spins of the proton and the neutron are

in a parallel configuration (I = 1) or in an anti-parallel configuration (I = 0). The nuclear spin

has either an integer or half integer nuclear spin quantum number I. Each configuration has an

energy level. In case of deuterium the energy of the configuration with I = 1 is lower than for

I = 0. Therefore the ground state of deuterium is an I = 1 state. This is possible due to proton

and neutron coupling. Considering only two protons or two neutrons, this configuration would not

be possible due to the Pauli exclusion principle. Table 1.1 shows a selection of nuclei, their spin in

ground state, their natural abundance relative to isotopes from the same element and their Larmor

frequency.
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Isotope Ground-state relative natural abundance Larmor Frequency

spin of isotopes (%) at 1 T ω/2π/(MHz)

1
1H 1/2 99.9885 42.589

2
1H 1 0.0115 6.538

3
1H 1/2 0 45.428

13
6 C 1/2 1.1 10.709

14
7 N 1 99.6 3.078

15
7 N 1/2 0.37 4.317

23
11Na 3/2 ∼ 100 11.266

31
15P 1/2 ∼ 100 17.258

Table 1.1: In this table a small selection of nuclear isotopes including spin, natural abundance and Larmor

frequency at 11.4 Tesla are displayed. More Isotopes can be found on www.webelements.com

1.4 Quantum Mechanical Consideration of the Spin in a

Magnetic Field

Applying a static magnetic field we have seen that the angular momentum of electron orbital

motion precesses around the magnetic field lines. We have introduced the spin of electrons and the

nuclear spin of atomic nuclei using semi-classical physics. In this section we consider the nuclear

spin using quantum mechanics. We will see that the nuclear spin will also precess in the presence

of a static magnetic field.

I limit the considerations to a hydrogen 1
1H nucleus in the ground state I = 1/2 (which is

equivalent to the consideration of a single proton with spin s=1/2). The magnetic moment of 1
1H

can be formulated in vector form:

μI =
gIμN
h̄

I = γII (1.27)

The potential energy of the spin in a static homogeneous magnetic field is

Epot = −μIB. (1.28)

For a quantum mechanical consideration we need the Schrödinger equation. The Hamiltonian

in this case is Ĥ = −μIB = −γIBÎ yielding the time independent Schrödinger equation:

−γIBÎφ = Eφ
φ...nuclear spin function

B = (Bx, By, Bz)
(1.29)
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1
1H, which is the most frequently used nucleus for magnetic resonance, has a nuclear spin of

I = 1
2 , therefore only two values are possible for mI (+ 1

2 for spin up and − 1
2 for spin down). Here

we introduce the nuclear spin operator Î

Î =

⎛
⎜⎜⎜⎝
Îx

Îy

Îz

⎞
⎟⎟⎟⎠ (1.30)

with the following components:

Îx =
h̄

2

⎛
⎝ 0 1

1 0

⎞
⎠ Îy =

h̄

2

⎛
⎝ 0 −i
i 0

⎞
⎠ Îz =

h̄

2

⎛
⎝ 1 0

0 −1

⎞
⎠ (1.31)

Calculation of Î
2
= Î2x + Î2y + Î2z yields

Î2 = h̄2
3

4

⎛
⎝ 1 0

0 1

⎞
⎠ . (1.32)

We can now define eigenfunctions of the Îz operator. We choose eigenfunctions representing

spin up (|↑)〉 and spin down (|↓〉):

|↑〉 =
⎛
⎝ 1

0

⎞
⎠ |↓〉 =

⎛
⎝ 0

1

⎞
⎠ (1.33)

When we now apply the operator on its eigenfunctions we get the eigenvalues:

Îz |↑〉 = h̄
2

⎛
⎝ 1 0

0 −1

⎞
⎠

⎛
⎝ 1

0

⎞
⎠ = +

h̄

2

⎛
⎝ 1

0

⎞
⎠ = +

h̄

2
|↑〉 (1.34)

Îz |↓〉 = h̄
2

⎛
⎝ 1 0

0 −1

⎞
⎠

⎛
⎝ 0

1

⎞
⎠ = − h̄

2

⎛
⎝ 0

1

⎞
⎠ = − h̄

2
|↓〉 (1.35)

Îz | I,mI〉 = h̄mI | I,mI〉 with
mI = + 1

2 for |↑〉
mI = − 1

2 for |↓〉
(1.36)

Using (1.31) we can rewrite our Hamiltonian Ĥ:

Ĥ = − eh̄
2mp

⎛
⎝ Bz Bx − iBy

Bx + iBy −Bz

⎞
⎠ (1.37)

When we apply a magnetic field in z-direction (B = (0, 0, Bz)) we get the following Schrödinger

equation

− eh̄
2mp

Bz

⎛
⎝ 1 0

0 −1

⎞
⎠φ = Eφ. (1.38)
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This equation is equivalent to the eigenvalue problem in (1.34) and (1.35) except for the factor

eBz

mp
, so we already know the result of this equation:

E↓↑ = ±eh̄Bz

2mp
= −μNBz = −γIBzh̄mI (1.39)

Additionally, we now consider the time-dependent Schrödinger equation. This consideration is

especially important when the magnetic field is varying in time. At first we restrict our calculations

to a static magnetic field in the z-direction.

−μNBz

⎛
⎝ 1 0

0 −1

⎞
⎠φ = ih̄

∂φ

∂t
. (1.40)

The general solution of this equation can be obtained by a superposition of |↑〉 and |↓〉 with

corresponding time functions:

| φ(t)〉 = A · exp(−i e
2mp

Bzt) |↑〉+B · exp(+ih̄ e
2mp

Bzt) |↓〉 = α |↑〉+ β |↓〉. (1.41)

A and B are amplitudes of the functions (A,B ∈ ). In quantum mechanics | φ(t)〉 must be

normalized, this can be achieved with 〈φ(t) | φ(t)〉 = |A|2 + |B|2 = 1. The expected value of the

nuclear spin component can be calculated with Îz with 〈φ(t) | Îz | φ(t)〉〉. With equation (1.33)

follows

| φ(t)〉 =
⎛
⎝ α

β

⎞
⎠ . (1.42)

The expected value of Îz then is

〈Îz〉 = 〈φ(t) | Îz | φ(t)〉 =
(
α∗ β∗

)
· h̄
2

⎛
⎝ 1 0

0 −1

⎞
⎠ ·

⎛
⎝ α

β

⎞
⎠ =

h̄

2
(|α|2 − |β|2). (1.43)

The same can be repeated for 〈Îx〉 and for 〈Îy〉:

〈Îx〉 = 〈φ(t) | Îx | φ(t)〉 =
(
α∗ β∗

)
· h̄
2

⎛
⎝ 0 1

1 0

⎞
⎠ ·

⎛
⎝ α

β

⎞
⎠ =

h̄

2
(α∗β + αβ∗) (1.44)

〈Îy〉 = 〈φ(t) | Îy | φ(t)〉 =
(
α∗ β∗

)
· h̄
2

⎛
⎝ 0 −i
i 0

⎞
⎠ ·

⎛
⎝ α

β

⎞
⎠ =

ih̄

2
(αβ∗ − α∗β) (1.45)

Using

α = A · exp(−i e
2mp

Bzt) (1.46)
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β = B · exp(+i e
2mp

Bzt) (1.47)

we see that 〈Îz〉 is constant over time. But 〈Îx〉 is proportional to cos( eBz

2mp
t) = cos(ωLt) and

〈Îy〉 is proportional to sin( eBz

2mp
t) = sin(ωLt). The components in the x-y-plane precess with the

Larmor frequency ωL while the z-component is constant.

1.5 Principles of Nuclear Magnetic Resonance

Elementary particles such as electrons, protons and neutrons have a spin of s = 1/2. Also atomic

nuclei have a spin I; the value depends on the number of protons and neutrons.

Let us again consider an ensemble of hydrogen 1
1H nuclei with a nuclear spin of I = 1/2. When

a static magnetic field is applied the spins start to precess around the magnetic field lines, following

the quantum mechanic rules of quantization. They can only align in discrete angles (2I+1 possible

values for mI). The Larmor frequency of the nuclear spins is:

ωL =
gIμN
h̄
B =

gIeB

2mp
= γIB (1.48)

We have also seen that the energy of the nuclear spin is quantized in a magnetic field. The

potential energy of the nuclear magnetic moment is, using μI = gIμN

h̄ I:

Epot = −μIB = −gIμNB = −γIBh̄mI with − I ≤ mI ≤ I (1.49)

The energy difference between two possible orientations (mI ± 1/2 → δmI = ±1) is then:

|ΔE| = γI h̄B (1.50)

This splitting of energy levels due to a magnetic field is called nuclear Zeeman effect. A

transition between both levels is possible when a photon with the energy ΔE = h̄ωL = gIμNB =

γIB is absorbed or radiated, respectively. This is the principle of nuclear magnetic resonance.

By absorption of a photon with the energy ΔE the nuclear spin gets excited which means that it

transits from a state of lower energy to a state of higher energy. An excited spin can also emit

a photon with the energy ΔE, doing this the spin de-excites which means that the spin transits

from a state of higher energy to a state of lower energy.

In thermal equilibrium the magnetic energy (see equation (1.50)) is much smaller than the

thermal energy kBT , therefore both energy states have nearly the same probability, with T being

the temperature and kB the Boltzmann constant (kB = 1.3807 ·10−23J/K). At room temperature

and a magnetic field of 1 Tesla, the excess of the number of spins in the energetic efficient states

would be only 10−5. This distribution can be calculated with the Boltzmann statistics:
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N+1/2

N−1/2
= exp

ΔE

kB · T with
N+1/2...number of ↑ −spins
N−1/2...number of ↓ −spins

(1.51)

Therefore, the transition will hardly be observed, because the number of emitted photons

would be too small, unless there is a large number of nuclei. However, at room temperature the

population differs only by 10−5, the difference in population still leads to a net magnetization. For

the population difference we find (N ...number of spins):

Δn = Ntanh
γI h̄B

2kBT
≈ NγI h̄B

2kBT
with γI h̄B � kBT (1.52)

With this difference we can calculate the total magnetization of an ensemble of 1
1H nuclei:

M = ΔnμI ≈ NγI h̄
2kB

· B
T

· μI with B...magnetic field strength (1.53)

Now we want to know how the magnetization changes in time. For this consideration we start

with static magnetic field in z-direction:

B =

⎛
⎜⎜⎜⎝

0

0

Bz

⎞
⎟⎟⎟⎠ (1.54)

The nuclear magnetic moment aligns to the magnetic field lines due to the following torque

τ = μI ×B (1.55)

The change of the nuclear spin I in time is exactly the torque:

τ =
dI

dt
(1.56)

Using (1.55), (1.56) and (1.26) results into the equation of motion for the nuclear magnetic

moment:

dmI

dt
= γI ·mI ×B (1.57)

We have already seen that the total magnetization is proportional to the magnetic moment

(see (1.53)) yielding

dM

dt
= γI ·M ×B (1.58)

We can now split the magnetization vector into three equations, since the magnetic field is

applied in z-direction, we get:
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dMx

dt
= γIMyBz

dMx

dt
= γIMxBz

dMx

dt
= 0

(1.59)

We can solve these equations with the initial condition M(0) = (Mx,0,My,0,Mz,0) at t=0:

Mx(t) =Mx,0 cosωLt−My,0 sinωLt

My(t) =Mx,0 sinωLt+My,0 cosωLt

Mz(t) =Mz,0

(1.60)

These results are similar to the results we already obtained using quantum mechanics (see

section 1.4), where we considered a single nuclear magnetic moment in a magnetic field). Here

we investigated the magnetization vector. We see that the magnetization vector behaves similarly

to the nuclear magnetic moment. It precesses in the x-y plane (perpendicular to the magnetic

field) along the magnetic field with a constant z-component. The precession frequency is again

the Larmor frequency. When we apply a radio-frequency field with the Larmor frequency ωL with

the magnetic field strength BRF perpendicular to the static magnetic field B the time-dependent

magnetic field B(t) is:

B(t) =

⎛
⎜⎜⎜⎝
BRF · cos(ωLt)
BRF · sin(ωLt)

Bz

⎞
⎟⎟⎟⎠ (1.61)

Now we have to solve the following equation of motion:

dM

dt
= γI ·M ×B(t) (1.62)

We can again split the vector yielding three coupled differential equations:

dMx

dt
= γI · (MyBz +MzBRF sin(ωLt))

dMy

dt
= γI · (−MxBz +MzBRF cos(ωLt))

dMz

dt
= γI · (MxBRF cos(ωLt) +MyBRF sin(ωLt))

(1.63)

The above equations are the Bloch equations (resting frame). The general solution of (1.63) is

(with M0...magnitude of the magnetization):
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B0

M

BRF

Figure 1.5: Excitation of magnetization vector while the radio-frequency field is applied. Plotted with gnuplot

(www.gnuplot.info).

Mx(t) =M0 · sin(γIBRF t) · sin(ωLt)

My(t) =M0 · sin(γIBRF t) · cos(ωLt)

Mz(t) =M0 · cos(γIBRF t)

(1.64)

We now assume parallel magnetization to the static magnetic field (z-direction) at the time

t = 0 (M(t = 0) = (0, 0,Mz)). Applying the radio-frequency field for the time 0 ≤ t ≤ π
2ωRF

with

ωRF = γIBRF we see using the general solution of the Bloch equations that after the time t = π
2ωRF

the z-component of the magnetization has been flipped to the x-y plane and performs precession

in this plane (flip angle 90◦). If the radio-frequency pulse was applied for the time t = π
ωRF

the resulting magnetization vector would point in the negative z-direction (flip angle 180◦). An

example excitation can be found in figure 1.5. We see that the duration of the radio-frequency

(RF) pulse therefore defines the value of the so-called flip angle θ:

θ(t) = ωRF t = γIBRF t (1.65)
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1.6 Relaxation

When the radio-frequency field is switched off, the magnetization decays to its initial state (state

of thermal equilibrium). The return from the equilibrium state to equilibrium is called relaxation.

The decay of the transversal magnetization Mx,y can be described as follows

dMx

dt
= − 1

T2
Mx

dMy

dt
= − 1

T2
My

(1.66)

This relaxation process is the so-called transversal relaxation or T2 relaxation (see figure 1.6).

The solution of equation (1.66) is

Mx,y(t) =Mx,y(0) · exp(−t/T2) with Mx,y(0)...initial magnetization (1.67)

Equation (1.66) describes how fast the transversal magnetization Mx,y decreases. Due to in-

teraction between the single spins, the spins get out of phase and the magnetization is decreasing,

because spins point in arbitrary directions in the x-y-plane. This dephasing process is characterized

by the time constant T2.

To measure the transversal relaxation time we need a coil perpendicular to the static magnetic

field. The magnetization rotating in the x-y-plane induces voltage V (t) (see section 2.1) in the coil

proportional to the magnetization Mx,y. This signal is the so-called free induction decay (FID)

(see figure 1.6). Measuring the actual decay of the signal due to the transversal relaxation, we see

that the signal decay is faster than expected in equation (1.67). This is due to inhomogeneities

in the magnetic field, which further reduces the coherence of the magnetization. When we now

combine the effects of the spin-spin relaxation and inhomogeneities in the magnetic field we get

the time constant T ∗
2 . The transversal magnetization then decreases with

Mx,y(t) =Mx,y(t = 0) · exp(−t/T2∗). (1.68)

A comparison between T2 and T2
∗ can be seen in figure 1.6. T2

∗ is smaller than T2, the relation

between both is

1

T2
∗ =

1

T2
+

1

T ′
2

(1.69)

with T ′
2 considering the relaxation due to static field inhomogeneities.

Another relaxation mechanism is the longitudinal relaxation. It describes the recovery of the

longitudinal magnetization (Mz). The spins can interact with the surroundings (so-called lattice)

transferring energy. When the spin moves away from thermal equilibrium (e.g. due to an RF pulse),
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switched on the magnetization flips to the x-y-plane. When the spins get out of phase the transversal magnetization
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Figure 1.7: T1 relaxation after 90◦ RF- Pulse. When the radio-frequency (RF) field is switched on the mag-

netization flips to the x-y-plane. After the pulse the longitudinal magnetization recovers due to the longitudinal

relaxation.
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the spin will eventually recover yielding an increase in the longitudinal magnetization. With the

recovery of the longitudinal magnetization the transversal magnetization decreases simultaneously.

The relaxation takes place in a characteristic time, the so-called T1 relaxation time, which is longer

than T2. This process is called ”spin-lattice relaxation”. For the z-component of the magnetization

vector we get

dMz

dt
=
M0 −Mz

T1
(1.70)

with M0, the magnitude of Mz in thermal equilibrium. The solution of this equation is

Mz(t) =M0 · (1− 2 · exp(−t/T1)) (1.71)

The Bloch equations from (1.63) do not consider relaxation processes. Now we can modify the

Bloch equations to additionally consider these relaxation processes:

dMx

dt
= γI · (MyBz +MzBRF sin(ωLt))− 1

T2
Mx

dMy

dt
= γI · (−MxBz +MzBRF cos(ωLt))− 1

T2
My

dMz

dt
= γI · (MxBRF cos(ωLt) +MyBRF sin(ωLt)) +

M0 −Mz

T1

(1.72)

The relaxation times depend on the tissue. In table 1.2 you find typical relaxation times for

different tissues in the human body at 1.5 T .

Tissue T1 (ms) T2 (ms)

Adipose tissues 240-250 60-80

Whole blood (deoxygenated) 1350 50

Whole blood (oxygenated) 1350 200

Cerebrospinal fluid (similar to pure water) 4200 - 4500 2100-2300

Gray matter of cerebrum 920 100

White matter of cerebrum 780 90

Liver 490 40

Kidneys 650 60-75

Muscles 860-900 50

Table 1.2: Relaxation times for tissues in the human body at 1.5 Tesla [44].
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Chapter 2

Magnetic Resonance Imaging

2.1 Signal Detection and Fourier Transform

Applying RF pulses in connection with a static magnetic yield a macroscopic magnetization and

signals induced in a coil perpendicular to the magnetic field. The signal detection is based on the

Faraday law. A time-dependent magnetic flux Φ(t) through a conducting loop induces voltage

V (t) in it. The Faraday law is:

V (t) =
∂Φ(t)

∂t
(2.1)

The magnetic flux is given by

Φ(t) =

∫
V

BL(r) ·M(r, t)dr (2.2)

with BL(r) being the magnetic field which is produced by the electrical current in the loop

and with M(r, t) being the magnetization. Inserting (2.2) into (2.1) yields

V (t) = − ∂
∂t

∫
BL(r) ·M(r, t)dr (2.3)

In MRI, the Fourier transform is crucial. The Fourier transform of a spatially-dependent

function ρ(x) is

S(k) = F {ρ(x)} =

∫ ∞

−∞
ρ(x)e−i2πkxdx (2.4)

To recover ρ(x) the inverse Fourier transform must be applied on S(k):

ρ(x) = F−1 {S(k)} =

∫ ∞

−∞
S(k)e−i2πkxdk (2.5)

Some examples of Fourier transforms can be found in figure 2.1.
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Time Domain Frequency Domain

(A)

(B)

Boxcar Function Sinc Function

Delta Function Constant

Figure 2.1: Examples of Fourier transforms. (A) Boxcar function vs. sinc function and (B) delta function vs.

constant function.

2.2 Data Acquisition

The signal induced in the coil is generated by all parts of the object. This would be sufficient

for a homogenous object. However in MRI this is seldom the case. For heterogeneous objects we

need to differ spatial positions in the object. Therefore spatial localization is necessary. Spatial

localization can be achieved by: (1) selective excitation and (2) spatial encoding.

2.2.1 Slice Selection

Slice-Selective RF Pulses

For slice-selection selective excitation is needed. To encode the spatial information it is necessary

that the Larmor frequency of spins is position-dependent. The easiest way to accomplish this is to

apply a linear gradient field besides the static magnetic field B0:

B = G+B0 (2.6)

with G being the gradient. To excite the spins selectively in this gradient field we need a slice-

selective pulse. To create a slice-selective pulse design we use a Fourier transform. To illustrate

this we chose a linear gradient Gz in z-direction. The function we have to deal with is a boxcar

function (see figure 2.1 (A)). We assume the following slice in z-direction with the slice thickness

Δz which is centered at z = z0

p(z) =

⎧⎪⎨
⎪⎩
1 |z − z0| < Δz/2

0 otherwise

= Π

(
z − z0
Δz

)
. (2.7)

With this slice-selection the position-dependent Larmor frequency of the spins is:
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2�/�Gzt0

Figure 2.2: Truncation of RF pulse. Since a perfect sinc-pulse with an infinite duration is not realizable in an

MR experiment, the pulse is truncated yielding a different slice-selection profile an example seen in this figure (from

http://www.currentprotocols.com).

ω(z) = ω(z0) + γGzz or f(z) = f(z0) + 2πγGzz (2.8)

Using (2.7) and (2.8) we get:

p(f) = Π

(
2πf

γGz

)
= Π

(
f − f(z0)

Δf

)
(2.9)

with Δf = 2πGzΔz. The necessary frequency of the RF pulse is ωRF = 2πf(z0) = ω0+γGzz0.

Calculation of the Fourier transform of (2.9) yields

F (t) ∝ Δf · sinc(πΔft) · e−i2πf(z0)t. (2.10)

We see that the pulse envelopeBe(t) of the slice-selective RF pulse is proportional to sinc(πΔft).

However, such a sinc pulse is not physically realizable as RF pulses can only last for finite time

periods. Assuming a symmetric pulse period with the duration τp

Be(t) ∝ sinc
[
πΔf(t− τp

2
)
]
, 0 ≤ t ≤ τp (2.11)

the slice-selection profile then is

p(f) = Π

(
f − f(z0)

Δf

)
ei2π(f−f(z0))τp/2 (2.12)

or

p(z) = Π

(
z − z0
Δz

)
eiγGz(z−z0)τp/2 (2.13)

An example of the so-called truncated pulses can be seen in figure 2.2. One example of possible

slice-selections can be seen in figure 2.3. The gradients are applied in x-, y- and z-direction or

sagittal, coronal and axial direction, respectively.
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Figure 2.3: (a) sagittal slice (x-axis), (b) coronal slice (y-axis) and (c) axial slice (z-axis) [41].

Rephasing Gradient

As a consequence of the gradient field Gz, an additional phase shift eiγGz(z−z0)τp/2 can be found

in the slice. This phase shift results into a signal loss. To avoid this signal loss an additional

refocusing gradient is applied in z-direction. This gradient compensates the phase shift. This

method is called post-excitation rephasing. To calculate the rephasing gradient Gr,z needed, we

require the phase angle during the rephasing period

φ(z, t) = γGz(z − z0)τp + γGr,z(z − z0)(t− τp) (2.14)

Assuming the duration of Gr,z to be τr, the phase shift within the slice should vanish after the

time τp + τr:

φ(z, t = τp + τr) = 0 → Gr,zτr = −1

2
Gzτp (2.15)

This condition can be fulfilled with the following relations:

τr =
τp
2
and Gr,z = −Gz (2.16)

We see that the rephasing gradient needs the opposite polarity of the initial gradient and to be

applied for the duration
τp
2 .

2.2.2 Spatial Endocing

During acquisition we apply an additional gradient field Gx in x-direction. The precession is now

dependent on the position in x-direction, yielding a frequency-encoded FID signal. To illustrate

this we assume one slice with a certain spin distribution ρ(x). The local FID signal then looks like

dS(x, t) ∝ ρ(x)dxe−iγ(B0+Gxx)tdx (2.17)

The signal from the whole object then is

S(t) =

∫
Object

dS(x, t) ∝
∫ ∞

−∞
ρ(x)e−iγ(B0+Gxx)tdx = e−iω0t ·

∫ ∞

−∞
ρ(x)e−iγGxxtdx. (2.18)
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with γB0 = ω0. Equation (2.18) can be generalized to:

S(t) ∝
∫
V

ρ(r)e−iγB(r)rtdr with
B(r) = B0 +G

G = (Gx, Gy, Gz)
(2.19)

This gradient is the so-called frequency-encoding or readout gradient. Using this method we can

encode spatial information only in one dimension (along the field gradient). For multidimensional

spatial localization of signals further information is needed. Hence we apply an additional gradient

Gy in y-direction for the time TPE before data acquisition. The influence of the gradient on the

local signal then is

dS(x, t) ∝

⎧⎪⎨
⎪⎩
ρ(x)e−iγ(B0+Gy)t 0 ≤ t ≤ TPE

ρ(x)e−iγGyTPEe−iγB0t TPE ≤ t
(2.20)

During the time TPE the spins receive different phase angles φ. After the time TPE the phase

angle is:

φ(x) = −γGyyTPE (2.21)

Hence this gradient is the so-called phase-encoding gradient. The time period in which the

gradient is applied is called the phase-encoding interval.

Summarizing, spatial encoding is performed applying a phase-encoding gradient before data

acquisition yielding a phase shift at different spatial positions followed by a frequency-encoding

(readout) gradient during acquisition. Figure 2.4 shows the effects of the readout and phase-

encoding gradient on the Larmor frequencies of spatially different located spins.
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Figure 2.4: The upper figure shows the effect of the readout gradient on the Larmor frequencies. This gradient is

applied during data acquisition yielding different precession frequencies at different spatial positions. The bottom

figure shows the effect of the phase-encoding gradient. This gradient is applied for the time TPE before data

acquisition yielding a phase shift for different spatial positions.
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2.2.3 k-space

The net magnetization flipped into the x-y-plane in an object induces a signal. The received signal

in presence of a gradient field G was introduced in equation (2.19) assuming a spin distribution

ρ(r). Transferring this spin distribution to the magnetization M(r) in the object, (2.19) becomes

S(t) ∝
∫
V

M(r) · e−iγ(B0+Gr)tdr (2.22)

Here we are only interested in signals that have relevance for spatial encoding. Since e−iγB0t

is spatially independent, we only consider e−iγGrt. We define k as follows:

k = γ

∫
Gdt (2.23)

Using equation (2.22) and (2.23) we get

S(k) ∝
∫
V

M(r) · e−ikrdr. (2.24)

This equation is a Fourier transform. In section 2.1 we have already seen that to recover the

signal as function of position we need to perform the inverse Fourier transform:

M(r) ∝
∫
k

S(k) · eikrdk (2.25)

De facto an inverse 2 or 3 dimensional Fourier transformation is needed. The acquired signal

considering phase and frequency-encoding (Gp and Gf , respectively) can then be described as

follows [32]:

S(kf , kp) =

∫ ∫
S(x, y)ei(kfx+kpy)dxdy (2.26)

with

kf (t) = γ

∫ t

0

Gf (t
′)dt′ (2.27)

kp(t) = γ

∫ t

0

Gp(t
′)dt′ (2.28)

This inverse Fourier transform then is calculated as follows:

S(x, y) =

∫ ∫
S(kf , kp) · ei(kfx+kpy)dkfdkp (2.29)

The coordinate system in which the MR signal is detected is the so-called k-space, with kp

as vertical axis and kf as horizontal axis. When an MR image is acquired the k-space is filled

with data. During the application of gradients the detected signal follows a trajectory in k-space.

The kf coordinate is proportional to Gf (see equation (2.27)). When Gf is applied the trajectory

moves horizontally. The coordinate kp is proportional to Gp (see equation (2.28)). When Gp is
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applied the trajectory moves along kp. The velocity of the trajectory is proportional to the gradient

strength. Prephasing frequency and phase-encoding gradients can be applied to define the starting

point of the first trajectory in k-space. Two example trajectories can be found in figure 2.5.

Points in close proximity of the origin of the k-space provide low-resolution information and

determine the signal-to-noise ratio of the final image. Points in outer k-space regions contain

information on small features, which can be seen in figure 2.6.

kf
frequency 
encoding

kp
phase encoding

TR

5-8ms

kf
frequency 
encoding

kp
phase encoding

300-650μs

Figure 2.5: k-space trajectories. In the left image a line is measured for every TR. After the line is acquired

the signal is reformed and a new phase-encoding gradient is applied, yielding a new line. In the right image we see

a typical EPI sequence. After every readout line a new phase-encoding gradient is applied. In this sequence the

data acquisition of the readout line must be fast enough that all lines can be measured while the MR signal is still

present, therefore the acquisition time for each line is smaller, this needs strong gradient fields.

k-space Image

(A)

(B)

(C)

(B)

Figure 2.6: This figure shows the effects of missing k-space data. This case is simulated by setting distinct points

zero as shown in the left column indicated with a black box. (A) contains the whole k-space. (B) The center is

set zero, the image only contains small structures. (C) The periphery is set zero yielding a low-resolution image

containing contrast information. Figure modified from [31].
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2.3 MRI Sequence

An MRI sequence is a combination of pre-selected RF and gradient pulses. In the following two

basic sequences will be introduced.

2.3.1 Spin Echo Sequence

A simple sequence is the so-called spin echo sequence. With this sequence it is possible to estimate

the T2 parameters. A spin echo is created by a 90◦ pulse at t=0 with a subsequent 180◦ pulse at

t=τ . After the first excitation pulse the longitudinal magnetization is rotated to the x-y-plane. The

transversal magnetization decays due to dephasing of the spins caused by spin-spin interactions

and static magnetic field inhomogeneities. The second excitation pulse flips the spins along one

axis in the x-y plane. Since the inhomogeneities are static, the effect of the field inhomogeneities

which led to a dephasing before, rephase the spins and a spin echo can be measured at t = 2τ .

The signal, however, is attenuated. The dephasing due to spin-spin relaxation is not revoked and

therefore the signal strengths decreases with the time-constant T2 and not T ∗
2 (Signal attenuation

is e−2τ/T2), see also figure 2.7. The full signal can be regained by applying another 90◦ pulse. The

time between two 90◦ pulses is the so-called repetition time TR. The time 2τ is the so-called echo

time TE

Physically we can say that the spins rotate with different frequencies (ωs...slow rotating and

ωf ...fast rotating spins). The spins dephase due to static inhomogeneities and spin-spin interaction

and after the time τ they have the following phase difference φ = (ωf − ωs) · τ . When the 180◦

pulse is applied the spins flip in the x-y-plane along one axis. Since the spins still rotate with the

same frequency the fast spins catch up with the slow spins. At t = 2τ the spins are rephased and

a spin echo can be measured (see figure 2.7).

t=0 t=τ t=2τ

90° Pulse 180° Pulse

Fr
ee

 In
d

u
ct
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n

 D
ec

ay

Spin Echo

exp(-t/T2)

Figure 2.7: Spin echo sequence. A 90◦ pulse is applied and the magnetization is flipped to the x-y-plane. Due to

dephasing of the spins, the magnetization is decaying. After TE/2 a 180◦ pulse is applied. The spins rephase and

a spin echo can be measured at the time 2τ . The signal is attenuated due to spin-spin interaction (e−2τ/T2 ).
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2.3.2 Echo-Planar Imaging

Echo-planar imaging (EPI) is an ultra fast imaging technique introduced by Mansfield in 1977. All

points in k-space are acquired from one FID signal, therefore this sequence can provide high tem-

poral resolution which are important e.g. for functional MRI experiments. The spatial resolution,

however, is limited.

One common EPI sequence applies a 90◦ slice-selective RF pulse. Prephasing readout and

phase-encoding gradients are applied which define the starting point of the k-space trajectory. For

data acquisition the readout gradient is applied with alternating polarity. This causes the spins to

rotate with ±ω. The spins are dephased and subsequently rephased resulting in a signal increase

(see figure 2.8). The changing polarity of the readout gradient leads to positive and negative

velocities in k-space which can be seen in figure 2.5. Phase encoding gradients are applied for

a very short time between two readout gradients with different polarity, these pulses are called

”blips”. These ”blips” move the k-space trajectory from line to line. The data acquisition time for

the whole k-space is between 50 to 100ms. Therefore, strong gradient fields are needed, since the

velocity of the trajectory in k-space is dependent on the gradient strength.

Readout
Gradient

“Blips“

90° Pulse

Signal

prephasing

prephasing

Figure 2.8: EPI sequence. After excitation prephasing gradients are applied. Subsequently readout gradient are

applied with changing polarity. Gradient ”blips” are applied for a very short time between readout gradients.
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2.4 Artifacts

The following section will give a brief overview on problems encountering during MR imaging

namely image distortions and artifacts. This overview is limited to the most common image

artifacts such as aliasing, chemical shift and motion artifacts.

2.4.1 Chemical Shift Artifact

Water

Fat

Figure 2.9: Misregistration due to chemical shift. The fat signal is shifted to lower frequencies [20].

This artifact originates from different chemical environments. The Larmor frequency of protons in

fat tissue is shifted to lower frequencies compared to protons in water. This shift in the frequency

yields a misregistration of fat and water protons. The signal of the spins with the shifted Larmor

frequency are registered in the wrong position (see figure 2.9). The frequency shift is

Δωc = γδB0 (2.30)

with δ the shielding constant which considers the ”effective” magnetic field and B0 the static

homogenous magnetic field. The frequency bandwidth of a voxel is

Δωx = γGxΔx (2.31)

using the Larmor frequency ω = γB and the linear gradient field Gx. The chemical shift in

x-direction then is

δc =
Δωc
Δωx

=
δB0

GxΔx
(2.32)

The spatial shift then is:

Δxc = δxΔx =
δB0

Gx
(2.33)
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Figure 2.10: Typical frequency-encoding period. Dashed line shows effects of motion in the frequency-encoding

direction yielding a different phase shift than compared to no motion (black line) [20].

To reduce this artifact strong readout gradients can be used, since the spatial displacement is

proportional to 1
G . Another way to improve image quality is to use fat suppression techniques,

where a fat saturation pulse excites fat protons prior to the data acquisition, so that the signal

from fat protons is already saturated before excitation of all other protons.

2.4.2 Flow Artifacts

During an ideal MR measurement the object measured should be stationary. As soon as living

organisms (blood flow, heart beat, breathing, coughing, etc. ) are involved this is no longer

possible resulting in flow artifacts such as blurring and spatial distortions. In the following a brief

introduction to flow induced artifacts is given.

Flow Effects along Frequency Encoding Gradient

Object motion during frequency-encoding might lead to phase shifts. Assuming a frequency-

encoding gradient Gx in x-direction for the time t and a displacement x(t) in the same direction,

the phase shift of the spins is

φF = γ
∫ t

0
Gx(t

′)x(t′)dt′ = γ
∫ t

0
Gx(t

′)(x0 + vxt′)dt′ =

= γx0
∫ t

0
Gx(t

′)dt′ + γ
∫ t

0
Gx(t

′)vxt′dt′
(2.34)

The first term represents the desired spatial encoding. In addition we get the latter term, which

includes the additional phase shift due to the motion

φF (t) = γ

∫ t

0

Gx(t
′)vxt′dt′ = −1

2
γGxvxt

2 (2.35)
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During the period τ ≤ t ≤ 3τ (see figure 2.10) data acquisition is performed resulting into

φF = Δφ(τ) + γ

∫ t

τ

Gx(t
′)vxt′dt′ =

1

2
γGxvx(t

2 − τ2) (2.36)

The echoes peak is at t = TE = 2τ yielding

φF = γGxvxτ
2 (2.37)

Due to this shift, the spins are not completely rephased. Figure 2.10 shows the above calculated

phase shift. Imaging effects resulting from this are for instance spatial shift and blurring.

Flow Effects along the Phase Encoding Direction

For motion effects along the phase-encoding direction we again use equation (2.34). We apply the

phase-encoding gradient GP at the time TP in y-direction with the duration τ yielding

φP = γ

∫ tP+τ

tP

GP (x0 + vxtdx = γxτ + γGP vXτ(tP + τ/2) (2.38)

Compared to equation (2.37) we get a different phase shift:

φP = γGP vxτ(tP + τ/2) (2.39)

Consequences of this motion are e.g. spatial misregistration.
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2.4.3 Aliasing Artifacts

Aliasing artifacts arise when the k-space is not fully measured (undersampled). In information

theory the Nyquist theorem states the following [10]: function x(t) is completely determined if x(t)

contains frequencies in the range [fmin, fmax] and the sampling rate is fs ≥ 2(fmax − fmin). fs is

the so-called Nyquist frequency. Figure 2.11 shows a measured signal with two different sampling

frequencies, one meeting this Nyquist criterion, the other violating it. In MRI an undersampling

of the k-space leads to a wrapping-around of the object (see figure 2.12). Aliasing artifacts should

be prevented because a post-measurement solving of this problem is in general very difficult. It

can be prevented for instance by choosing adequate sampling rates.

40



adequately sampled signal

aliased signal due to undersampling

Figure 2.11: Aliasing due to undersampling. In the upper figure you see a signal measured with an adequate

sampling frequency (fs > fNiquist). In the bottom figure you see the same signal with a sampling frequency not

meeting the Nyquist criterion, therefore the reconstructed signal does not represent the original signal.

Figure 2.12: Aliased MR image due to undersampling.
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Chapter 3

Diffusion Tensor Imaging

3.1 Diffusion

From a theoretical point of view Adolf Fick in 1855 was the first to describe diffusion [17]. One of

Fick’s laws illustrates that the cause of diffusion processes is due to a difference in the concentration:

J = −D∇C (3.1)

J is the net particle flux, D the diffusion coefficient (an intrinsic property) and C is the particle

concentration. This means that particles move from areas with high concentration to areas with

low concentration. We can also see that when the concentration difference vanishes, diffusion stops.

But this is only on a macroscopic scale. From a microscopic point of view diffusion persist, as on

molecular scale the movement is solely due to collisions between particles.

The seminal studies of Robert Brown showed that pollen grains under a microscope particles

moved randomly without seeing an obvious cause (1828) [17]. He first believed that this was a sign

of life, but later he proved himself wrong presenting the same result when observing dust particles.

Finally in the beginnings of the 20th century Albert Einstein stated, without knowing Brown’s

work, that particles (microscopically visibly) in a liquid will perform movements that can be ob-

served in a microscope. His intention behind this was to prove the existence of atoms [17]. Describ-

ing the motion of particles undergoing diffusion with a probabilistic framework he finally combined

Brown’s and Fick’s pictures. Further, Einstein described the displacement using a distribution of

a group of particles. The mean square displacement of particles is stated as follows [17]:

〈R2〉 = σ2 = 2Dt (3.2)

Free diffusion follows a Gauss distribution [23]:

P =
1

σ
√
2π
e−x2/2σ2

(3.3)
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With this Gauss function we can calculate the water population at a certain time point t and

position x [23]:

P (x, t) =
1

σ
√
4πDt

e−x2/4Dt (3.4)

We see that the distribution width will increase with longer t. For a fixed t, the distribution width

will increase with higher diffusion constants D.

A technique that can be used to quantify this diffusion process is diffusion tensor imaging

(DTI) [19, 22, 23]. With DTI, diffusion can be observed non-invasively in-vivo. The diffusion

processes we are interested in MRI are on molecular scale and they are far beyond the usual

resolution of MRI. Typical acquisition times are around 50 ms and the average distance a molecule

travels in that time is around 10 μm. In the brain or in muscles the molecules interact with tissue

components such as fibers, macromolecules and cell membranes. In this case diffusion is not

isotropic anymore and this anisotropy can now be observed. Considering myelin-sheathed neuron

fibers, the diffusion is restricted perpendicular to the myelin sheaths that surround the axons and

we can observe diffusion inside these sheaths. An average voxel of DTI images has a volume of some

mm3, therefore only the overall effect of the diffusion of all fibers in this voxel can be observed,

not the diffusion within a single fiber.

3.2 Basics of Diffusion Tensor Imaging

At the beginning of the diffusion-weighted sequence we have a 90◦ RF excitation pulse that flips

the spins in the x-y-plane. A gradient field with a certain strength is applied between t1 and t2,

along this gradient direction the spins do not precess with the same Larmor frequency and the

transversal magnetization is thus attenuated. At t3 the same gradient field is again applied but this

time with opposite polarity. Because of this opposite polarity the spins rephase and a signal can be

measured. The gradient is turned off at t4. Therefore, the first gradient pulse is called ”dephasing”

and the second ”rephasing” gradient. The rephasing pulse has not the same effect on the spins that

moved and they are not fully rephased. Therefore they do not contribute to the spin echo signal

anymore; the signal is attenuated. However, T2 relaxation effects also attenuate the signal. To

estimate only the effects of diffusion, T2 effects must be quantified (measurement without gradient

field). Figure 3.1 and figure 3.2 show the principle of diffusion weighted sequences.

A great advantage is that diffusion is intrinsic, i.e. it is independent of magnetic fields or MR

effects. To calculate the effects of diffusion on the MR signal we need (1) the travelled average

distance (σ), (2) the distribution of water molecules at a certain time point and position (see

equation (3.4)) and (3) the phase shift due to diffusion. We already know σ (see equation (3.2))

and the population P (x, t). For the phase shift we consider a water sample and apply a static
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Time axis

Dephasing

Rephasing
Gradient

t1 t2 t3 t4

Signals in phase Signals in phase

Sum of

all signals

Signal out of phase

B0   strength

90° Pulse

Spatial
Position

Figure 3.1: Basics of diffusion measurement. A strong static magnetic field B0 is applied in z-direction. A 90◦

pulse flips the spins to the x-y-plane. All spins have the same precision frequency. After the time t1 a dephasing

pulse is applied (switch off at t2). In this figure we can see how the dephasing pulse yields different precision

frequencies of the spins, the spins get out of phase and the signal vanishes. At t3 a rephasing pulse is applied. When

the spins did not change their position, the rephasing pulse brings the spins back in phase and the full signal can

be measured. Figure taken from [23]

Figure 3.2: Basics of diffusion measurement. The upper row shows the case of no diffusion. In this case the

rephasing pulse focuses all spins. In the lower row diffusion is allowed. In this case the dephasing and rephasing

gradient are in z-direction (the color implies different Larmor frequencies due to the gradient). If spins change their

position vertically this would not affect the signal, but when they change their position horizontally the rephasing

gradient does not have the same effect on the spins due to their different phase shift resulting from the first dephasing

pulse. Figure modified from [25].
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Figure 3.3: (A) τ � Δ. Diffusion during gradient pulse can be neglected (B) Realistic diffusion gradients.

Diffusion during gradient pulse cannot be neglected. Modified from [23].

magnetic field (magnitude B0) and a linear field gradient in x-direction (magnitude Gx = dBz

dx ),

the position-dependent precession frequency of the proton spins then is:

ω = γ(B0 +Gxx) (3.5)

Assuming that one water molecule diffuses in x-direction we get the time-dependent position

η(t) = η0 + δ(t) with η0 being the mean position of the proton and δ(t) the displacement. For

the time period t1 ≤ t ≤ t2 we apply the gradient Gx (dephasing gradient) and the proton spin

receives the following phase angle:

φ =

∫ t2

t1

ω = γ

∫ t2

t1

Gxη(t)dt = γ

∫ t2

t1

Gx(η0 + δ(t))dt (3.6)

After the time period Δ (t2 ≤ Δ ≤ t3, the gradient is applied for the time t3 ≤ t ≤ t4 with the

opposite polarity (rephasing gradient), the phase angle then is:

φ = γGx

[∫ t2

t1

δ(t)dt−
∫ t4

t3

δ(t)dt

]
(3.7)

If the duration of the gradient τ (t1 ≤ τ ≤ t2) is much smaller than Δ, we can neglect diffusion

of the molecules during the gradient pulse. If the proton did not move during Δ the resulting

phase would be zero. However protons diffuse yielding a finite phase angle φ. Without proof the

phase shift is φ(x) = eiγGτx [23], with x the position in x-direction, G being the gradient strength

and τ its duration. Taking all together the total signal is
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∑
x

P (x, t)φ(x) → 1

σ
√
4πDΔ

∫
x

e−x2/4DΔeiγGτxdx (3.8)

If no gradient is applied equation (3.8) is equal 1. However, equation (3.8) can be calculated

as:

S =
1

σ
√
4πDΔ

[∫ ∞

−∞
e−x2/4DΔ cos(γGτx)dx− i

∫ ∞

−∞
e−x2/4Dt sin(γGτx)dx

]
(3.9)

Due to symmetry the latter integral is zero. The result of the first integral is

S(t) = S(0)e−γ2G2τ2Dt (3.10)

To derive equation (3.10) we assumed τ � Δ, but this assumption is not valid for practical

situations (see figure 3.3), where the gradient duration is typically between 5-30 ms. Therefore,

diffusion effects during the application of the gradient cannot be neglected. The phase shift then

is φ(x, t) = eiγG(t)tx yielding

∫
x

P (x, t)φ(x, t)dx =
1

σ
√
4πDt

∫
x

e−x2/4DteiγG(t)tx. (3.11)

In addition we need to integrate over time to yield the signal intensity:

S(t) = S(0)e−γ2D
∫ t4
t1
(
∫ t
0
G(t′)dt′)

2
dt (3.12)

or

ln

(
S(t)

S(0)

)
= −γ2D

∫ t4

t1

(∫ t

0

G(t′)dt′
)2

dt (3.13)

A typical time course of G(t) can be seen in figure 3.4. With this time course we can integrate

equation (3.12)

∫ t2

t1

G2t2dt+

∫ t3

t2

G2τ2dt+

∫ t4

t3

(Gτ +G(t− t3))2 dt (3.14)

Setting t1 = 0, t2 = τ , t3 = Δ and t4 = τ +Δ yields:

∫ τ

0

G2t2dt =
G2τ3

3
(3.15)

∫ Δ

τ

G2τ2dt = G2τ2(Δ− τ) = G2τ2Δ−G2τ3 (3.16)

∫ Δ+τ

Δ

(Gτ +G(t−Δ))2dt =
G2τ3

3
(3.17)

The total signal then is

ln

(
S(t)

S(0)

)
= −γ2G2τ2

(
Δ− τ

3

)
D = −bD (3.18)
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Figure 3.4: Time course of diffusion gradients. The bottom figure shows the acquired phase angle as function of

time. Modified from [23].

S(t) = S(0) · e−bD (3.19)

with b being the b-factor. This factor characterizes the gradient pulse. Higher b-values indicate

stronger diffusion weighting. The higher the b-value is the higher is the diffusion weighting. In

general, diffusion does not only occur in one direction. To be able to approximate the diffusion in

3 dimensions, we can use a tensor formalism:

D̄ =

⎛
⎜⎜⎜⎝
Dxx Dyx Dzx

Dxy Dyy Dzy

Dxz Dyz Dzz

⎞
⎟⎟⎟⎠ (3.20)

D̄ is assumed to be symmetric (Dij = Dji). Therefore at least 6 directions must be measured

to estimate the diffusion tensor D. The diffusion tensor describes the diffusion pattern at each

voxel in the brain representing an ellipsoid, the eigenvectors being the radii. The eigenvectors also

represent the mean diffusion directions. A sphere then represents totally isotropic diffusion. To

extract information from the DTI data, parameters are derived from the diffusion tensor already

estimated by measuring in different direction. The trace is equal to the sum of the eigenvalues.

Tr(D̄) = Dxx +Dyy +Dzz or λ1 + λ2 + λ3 (3.21)

Dividing the trace by three results in the mean diffusivity.
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MD =
Dxx +Dyy +Dzz

3
or MD =

λ1 + λ2 + λ3
3

(3.22)

The fractional anisotropy is a scalar between 0 and 1 that describes the degree of anisotropy, 0

representing isotropy and 1 total anisotropy.

FA =

√
3((λ1 − λ)2 + (λ2 − λ)2 + (λ3 − λ)2)√

2(λ21 + λ
2
2 + λ

2
3)

(3.23)

with λ = (λ1 + λ2 + λ3)/3. The volume ratio (VR) is the ratio of the volume of the ellipsoid

to the volume of a sphere with λ

V R =
λ1λ2λ3
λ3

(3.24)

And finally the relative anisotropy (RA), stating the ratio between anisotropic part of diffusivity

to the isotropic part, it varies between 0 and
√
2:

RA =

√
(λ1 − λ)2 + (λ2 − λ)2 + (λ3 − λ)2√

3λ
(3.25)
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3.3 Fractional Anisotropy

FA is a value between 0 and 1. 0 means total isotropy and 1 diffusion only in one direction (total

anisotropy). When we look at the human brain FA is close to 0 in cerebrospinal fluid (CSF), grey

matter has an FA value of approximately 0.2 and in white matter FA reaches its maximum (around

0.8) [23]. A mean FA image of 15 healthy subjects can be seen in figure 3.5. When we calculate

FA we use the eigenvalues of the diffusion tensor. This diffusion tensor can be represented by an

ellipsoid, a perfect sphere representing isotropic diffusion like in CSF, a slightly flatted ellipsoid

for grey matter and a very elongated ellipsoid representing white matter. Now we know the grade

of anisotropy but not the direction of the diffusion. A very useful representation of the diffusion

direction is a color-encoded representation. Therefore we only take the main diffusion direction

and give three directions colors (left-right in red, anterior-posterior in green, superior-inferior in

blue). All other directions yield a superposition of the three main colors. Mori and colleagues [25]

have summarized this information in the following figure 3.7.

An example of such a color encoding can be seen in figure 3.6, this figure shows an axial slice

of a healthy single subject. From the same subject we can also show the main diffusion directions

directly in form of vectors (see fig. 3.6).This information can be used for fiber tractography.

(A) (B) (C)

(D) (E) (F)

Figure 3.7: (A) shows the approximation of the diffusion tensor, several measured directions are indicated (B)

shows the estimated diffusion tensor represented by the diffusion ellipsoid, the three main diffusion axis are drawn

in with the corresponding eigenvalues λ1, λ2 and λ3. (C) shows the main diffusion axis with the largest eigenvalue.

(D) shows an FA image with typical ellipsoids for grey matter (nearly spherical ellipsoid) and white matter images

(elongated ellipsoid). (E) show the color encoding for the same FA image which converted the information given by

the diffusion tensor to colors (left-right in red, anterior-posterior in green, superior-inferior in blue). (F) focuses on

the conversion of color and orientation. Figure modified from [25].
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0.5

0

Figure 3.5: Data was acquired at a 3 Tesla MRI scanner. FA images of 15 healthy subjects were averaged.

(A)

(B)

Figure 3.6: (A) Axial slice with color encoding (left-right in red, anterior-posterior in green, superior-inferior in

blue). (B) Axial slice with color encoding (left-right in red, anterior-posterior in green, superior-inferior in blue)

and additional vectors matching the main diffusion directions.
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3.4 Fiber Tractography

Water diffusion in organized tissue such as brain white matter or muscles is anisotropic. DTI

provides us with information on the grade of diffusion anisotropy and its orientation. In this section

two fiber tracking approaches will be introduced: (1) ”line propagation” and (2) ”probabilistic”

tracking.

3.4.1 Line Propagation Model

Line (tract) propagation or streamlining models are deterministic and yield only one solution. For

this approach three important steps are necessary [23]:

• Estimation of the local fiber orientation

• Line Propagation

• Termination criterion

The diffusion tensor or only the longest eigenvector information can be used for the estimation

of the local fiber direction. The most intuitive way to reconstruct fiber tracts is to draw a straight

line [24], following the longest eigenvector of the diffusion tensor of a voxel. When we reach the

next voxel, the direction changes. But it is clear that this simple procedure cannot represent the

real tract. The following method was introduced by Basser et. al. [4]. The fiber tract is represented

by r(s) which is parameterized by the arc length s of the trajectory. The equation of motion is:

r(s)

ds
= t(s) with t(s)...unit tangent vector to r(s) (3.26)

It is assumed that the normalized eigenvector ε1 of the largest eigenvalue points in the main

diffusion direction which is associated with the local fiber direction (this is principally true [15,33]).

t(s) = ε1(r(s)) (3.27)

Combining this yields:

r(s)

ds
= ε1(r(s)) (3.28)

This equation then must be solved in three dimensions, for an initial condition r(0) = r0. To

understand the solution process it is easiest to use Euler’s method as follows. Choosing a point

r(s1) we can calculate the following Taylor series:

r(s1) = r(s0) + r′(s0)(s1 − s0) + ... (3.29)
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Figure 3.8: Calculated fiber trajectory of a 3D space curve r(s) using Euler’s method. r(s1) is parallel to

ε1(r(s1)), which belongs to the largest eigenvalue. Figure taken from [4]

We assumed that t(s) is parallel to ε1, therefore we can substitute the last term in equation

(3.29) yielding:

r(s1) ∼ r(s0) + αε1(r(s0)) (3.30)

r(s1) can be calculated using r(s0) and ε1(r(s0)). This procedure can be repeated for r(s1),

r(s2),... predicting the fiber trajectory. One calculation step can be found in figure 3.8.

Euler’s Method is not used in practice since it is a 1st order algorithm yielding unacceptable

inaccuracies. In practice the solution can be computationally obtained e.g. using Runge-Kutta

method of 2nd order or higher with adaptive step size to avoid calculation errors. The most intuitive

termination call is when low anisotropy regions (such as grey matter) are reached. Typically grey

matter regions have an FA value of 0.05 - 0.15 [23]. Hence a typical stop criterion is FA< 0.15−0.3.

Another important stop criterion is the change of the angle between two voxels. It is assumed that

the diffusion is Gaussian, when the angle is too large the assumption of Gaussian diffusion is no

longer valid and therefore the basis of the routine tensor calculation is destroyed. Therefore it

is preferable to set a threshold of curvature - by setting a maximum angle - to avoid this. With

prohibiting sharp bends, propagation jumps to unrelated tracts are prevented.

To give an example of tract propagation methods, determinisitc fiber tracking was applied

on one healthy single subject for the whole brain (see figure 3.9) and the uncinate fasciculus

(see figure 3.10) using TrackV is. The diffusion tensor model was estimated using the TrackV is

toolbox Diffusion Toolkit (http://trackvis.org). For tracking an angle threshold of 30◦ was set.

The propagation algorithm was 2nd order Runge Kutta. Data was acquired as part of an fMRI

study investigating differences between social phobia patients and healthy controls.
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Figure 3.9: Deterministic fiber tracking of a healthy single subject using the software package TrackV is. No seed

mask was used. Fiber tracking was performed for the whole brain.

Figure 3.10: Deterministic fiber tractography of the UF of a healthy single subject using two seed masks bilaterally

in posterior parts of the uncinate fasciculus.
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Figure 3.11: Probability map of a single subject. The seed masks were placed bilaterally in parts of the uncinate

fasciculus. A probability threshold of 50% was set. Yellow indicates high probability.

3.4.2 Probabilistic Fiber Tracking

Noise and MR artifacts but also the modeling of the diffusion signal (origin of the signal is more

complex than the model) add additional uncertainty to the model parameters. In probabilistic

fiber tracking these uncertainties in the parameters are represented by probability density functions

(pdfs). The algorithm for this probabilistic framework was first presented by Behrens et. al. in

2003 [7]. With this framework local density functions are estimated. For this estimation different

diffusion models can be assumed. Two simple diffusion models are for instance: (1) diffusion

tensor model and (2) partial volume model. The former was already introduced in section 3.2.

The partial volume model assumes that the diffusion is dominant along a single direction; in all

other directions the diffusion is isotropic. We are looking for the set of parameters ω, which fit the

data best. To calculate the local pdf Bayes notation is used (Y ...data, and M ...model):

P(ω | Y,M) =
P(Y | ω,M)P(ω |M)

P(Y |M)
(3.31)

The calculation of the pdf is seldom straightforward. Therefore we have to re-write equation (3.31):

P(Y,M) =

∫
Ω

P(Y | ω,M)P(ω |M)dω (3.32)

which is often not analytically solvable. Practical ways to solve these integrals are Markov Chain

Monte Carlo (MCMC) algorithms.

Using the local parameters, the global connectivity can be estimated. To understand transition

from local to global connectivity estimation it is easiest to assume no uncertainty in the parameters

55



we just estimated for the local pdf . Assuming no uncertainty and diffusion only in one direction,

the global connectivity can only have two values

P(∃ A→ B | Y ) =

⎧⎪⎨
⎪⎩
1, ∃ connecting path
0, otherwise

(3.33)

were P(∃ A→ B) is the probability for a connection between two points A and B. To calculate

this probability we follow the local fiber direction starting from A until a stop criterion is met. If

B is met during the calculation, a connection exists. This simple procedure recalls the algorithm

of the line propagation model (see section 3.4.1). This model, however, is not taking account of

uncertainty. Hence P(∃ A→ B | Y ) needs to consider all possible fiber orientations. Assuming all

possible directions (θ, φ)xi equation (3.33) becomes using data Y

P(∃ A→ B | Y ) =
∫ 2π

0

∫ π

0

· · ·
∫ 2π

0

∫ π

0

P(∃A→ B | (θ, phi)x)

P((θ, φ)x1 | Y )...P((θ, φ)xn | Y )dθx1dφx1 ...dθxndφxn

(3.34)

with n being the number of all possible directions and P((θ, phi)xi | Y ) the local pdf in the

position i. In the case of only one direction, P((θ, phi)xi | Y ) are delta functions and equation

(3.34) reduces to the maximum likelihood solution (streamlining) seen in equation (3.33). When

the local fiber direction however is uncertain the connectivity pattern will spread from A. We see

that the main difference between tract propagation and probabilistic tracking is that uncertainty

is allowed. The results of the probabilistic algorithm consider all possible fiber directions of all

voxels.

Since the local fiber direction is calculated with a MCMC algorithm equation (3.34) is not

analytically solvable. One approach to calculate the global connectivity pattern is to build a

spatial pdf of P(∃ A → B | Y ). To do so we start with a so-called probabilistic streamline z at

A, select a direction (θ, φ) from P((θ, φ) | Y ) and move a distance s along (θ, φ), afterwards we

continue this procedure from the new position. This is repeated until one stopping criterion is

met (stopping criteria can be found in section 3.4.1). This streamline is calculated several times.

Counting all fibers passing trough a voxel B and dividing it by the total number of probabilistic

streamlines yields a discrete distribution. This discrete distribution is a ”connectivity distribution”

giving a probability distribution of a pathway using dominant fiber directions for its calculation [7].

The above explained sampling technique depends on continuous samples. This is not possible

for MR acquisition therefore interpolation is need. Standard interpolation such as sinc or trilinear

interpolation would be possible but not feasible since the computational time would be too costly.

An alternative is to take the diffusion direction of random nearby voxel since the fiber direction

does not change very much in the center of the main fiber tracts. This saves computational time

and yields comparable results. In figure 3.11 an example of the above explained algorithm can be
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found. This algorithm is included in the software package FSL (http://www.fmrib.ox.ac.uk/fsl/,

Oxford University, UK).

3.4.3 Pitfalls and Limitations of Fiber Tractography

Performing fiber tractography we must be aware of limitations and pitfalls.

• Noise

In every MR image the accuracy of the data is limited by noise. In case of fiber tracking this

could yield deviations from the real fiber direction.

• Partial volume effect

If we have a voxel between two unrelated fibers the algorithm is not necessarily able to

consider both fibers as independent, but rather averages both fibers yielding a wrong angle.

• Branching

Axons often have branches. If axons exit or merge from certain bundles this might not be

adequately reflected in DTI derived tracts.

• Crossing fibers

Fiber tracking algorithms that use the diffusion tensor model are not able to differentiate

between ”crossing” and ”kissing” fibers, therefore the algorithm stops or follows a random

direction yielding false negatives or false positives, respectively.

• Disk-shape diffusion ellipsoid

In areas where the diffusion anisotropy is disk-shaped the longest axis of the diffusion ellipsoid

is random. If the propagation is not terminated in such voxels, large errors are resulting.
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Chapter 4

Data Preprocessing in DTI

In the following a typical and often used preprocessing pipeline for DTI data will be presented.

Further, two additional normalization approaches will be introduced: (1) DARTEL and (2) TBSS.

The idea behind DARTEL is to register images using a ”flow field”. Forward and backward

deformations for normalization are calculated using this flow field. TBSS is a nonlinear registration

method, which aims to improve registration of images via calculation of a ”mean FA skeleton” which

is then used for further analysis.

4.1 Standard Preprocessing

Eddy Current Correction

Applying different gradient directions we encounter image distortion in diffusion-weighted images.

These distortions (stretching and shearing of data) originate from induced eddy currents in the

gradient coils and are dependent on the gradient direction. The software package FSL includes an

eddy current correction tool to compensate these distortions, by registering the stretched diffusion-

weighted images to the b0 volume.

Fit of the Diffusion Tensor Model

The diffusion tensor is estimated for every voxel. In this step the mean diffusivity, eigenvectors,

eigenvalues and FA are calculated for every voxel (see chapter 3). The fit of this model can be

performed e.g. with the software package FSL (Centre of functional MRI of the Brain, University

of Oxford, United Kingdom).
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Co-Registration

Co-registrations makes use of 6 parameters, 3 for translation (x-, y- and z-direction) and 3 for

rotation (angles α, β and γ) to rotate and translate the T1 image to match the b0-volume of the

diffusion data (volume acquired without diffusion gradient). The T1 image is then normalized

yielding transformation matrices.

Segmentation - Normalization

Diffusion data needs to be normalized to a common anatomical space to enable a comparison across

groups. One common space is the so-called MNI space (Montreal Neurological Institute space).

This space is the defined by the average image of 152 subjects. Another option is the Talairach

space [38]. The classical normalization approach for EPI data is to use an EPI template (e.g.

standard EPI template from SPM8). The measured data is then registered to this template.

In general, spatial normalization is achieved by minimizing the sum of squared difference be-

tween a linear combination of one or more templates and the images that need to be normalized.

To do, so the first step is to match the position and size of the template by using an affine registra-

tion [11]. An affine registration has 12 degrees of freedom: 3 translations, 3 rotations, 3 zooms and

3 shears. The affine transformation aims to minimize the mean squared difference between source

and target image by using these 12 parameters. In the next step a global non-linear warping is

applied to match the over-all shape of the brain. This deformation is calculated using linear com-

binations of smooth basis images (lowest frequencies basis function of discrete cosine transform,

see figure 4.1).

basis functions

Figure 4.1: (A) Basis functions with lowest frequencies of a 2 dimensional discrete cosine transform. Deformation

fields are linear combinations of these smooth functions. Light areas indicate a shift left/up and dark areas a shift

right/down. Image retrieved from [11].
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Another approach for normalization is matching a tissue class with the normalized tissue class

template. Therefore segmentation is necessary. To classify different tissues in the human brain

a modified Gaussian mixture model is used [2]. To apply this model we assume that every voxel

of the brain belongs to a distinct tissue type (cluster) and that every cluster follows a Gaussian

distribution (see figure 4.2). Using the intensity information of the histogram of an anatomical

image results into some misclassifications, e.g. grey matter is similar to the scalp (see figure 4.2)

and therefore, additional prior information is used. Prior probability maps contain the information

for each tissue class and are generated using a large number of subjects.

The probability for every voxel to belong to a certain tissue class is calculated combining

prior information (probability derived from tissue classification templates) and the likelihood of

the voxel to belong to that class (from initial segmentation) using Bayesian rule. In statistics,

Bayesian rules relate conditional probabilities. Given the prior probability P (A) of an event A and

the prior probability P (B) of an event B the posterior probability for both events A and B is [21]

P (A | B) = P (B | A) · P (A)
P (B)

(4.1)

with P (B | A) being the probability for the event B upon condition that A occurred. Thus

combining prior templates with posterior probability maps we can improve the segmentation (see

figure 4.3).

Segmentation can be performed using SPM’s Segment orNew Segment routine. New Segment

is an extension of Segment. Both use principally the same algorithm, slight differences are in

the details of the mixing proportions, the registration model and an extended set of probability

maps [1]. A comparison of both routines for one healthy single subject can be found in figure 4.4

for grey matter and in figure 4.5 for white matter.
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Figure 4.2: Histogram. Differentiation of different distributions yields tissue classed and background (left image).

Using no prior information the initial segmentation results into some misclassification. In the right image segmented

grey matter is shown (right image). Since the scalp intensity is similar to grey matter intensity, also the scalp is

shown. Image retrieved from [27].

Figure 4.3: Using Bayesian rules initial segmented images are combined with prior probability maps improving

the assignment to a certain tissue class. The red circles indicate the probability of this voxel to belong to grey

matter. In the initial segmentation (upper middle image) contains the scalp (probability of 95 %). The bottom

image shows the prior probability map not containing the scalp. Combining both images a joint probability map is

calculated improving segmentation of the original image. Image retrieved from [27].
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Figure 4.4: Segmented grey matter of healthy single subject in native space. Left image processed with New

Segment, right image with Segment. Differences are indicated with a red circle.

Figure 4.5: Segmented white matter of healthy single subject in native space. Left image processed with

New Segment, right image with Segment. Differences are indicated with a red circle.
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Spatial Smoothing

In general, a Gaussian kernel is used for smoothing. The full width half maximum (FHWM) is

dependent on the voxel size and on the structures of the tissue which will be analyzed (typically

between 2 mm and 9 mm). It improves the signal to noise ratio but also decreased spatial resolution.

Smoothing is especially important for group analysis, as it improves inter-subject registration.

Figure 4.6 shows the smoothing of an axial slice for one data set.

Figure 4.6: Smoothing of one data set with an isotropic Gaussian kernel of 3 mm.

4.2 DARTEL - A fast diffeomorphic image registration al-

gorithm

Co-registration and normalization ”stretches”, ”squeezes” and ”rotates” images to approximately

match the structure of a reference image. But we neither have an absolute measure of alignment

quality nor if certain tracts of several subjects really contain the same white matter tract.

One way to improve the alignment of MR images was developed and implemented by John

Ashburner in the toolbox ”DARTEL” in SPM. DARTEL is an abbreviation of Diffeomorphic

Anatomical Registration using Exponentiated Lie algebra. As its name implies, DARTEL is an

algorithm for diffeomorphic image registration [3]. The motivation behind this algorithm is a bet-

ter inter-subject alignment, which should yield enhanced fMRI analyses, computational anatomy

(volumes and parameterization of brain shapes) and tissue segmentation. Diffeomorphism is a

concept of mathematics. The definition of diffeomorphism is [46]:

• Ω is a continuous bijection φ : Ω → Ω so that the inverse φ−1 is continuous.

• A diffeomorphism of Ω is, if φ : Ω → Ω is continuously differentiable so that φ−1 is continu-

ously differentiable.
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Forward Transformation Backward Transformation

φ=x+u(x) φ-1=x-u(x) φ·φ-1 φ-1·φ

Figure 4.7: Non-diffeomorphic transformations. φ× φ−1 is unequal φ−1 × φ. Figure modified from [3]

For MRI analysis this means the following: Having a diffeomorphism applying the forward and

inverse transformation on an image should yield the same image. Hence a composition of forward

and inverse transformation should yield an identity transform- when we have a perfect diffeomor-

phism. In figure 4.9 you can see the results of a diffeomorphic composition of forward and inverse

transformation and vice versa. In figure 4.7 a non-diffeomorphic composition of forward and inverse

transformation and vice versa can be found yielding different results. In other words when we use

registration routines the topology of the human brain is conserved. Many registration routines are

done by adding a displacement field u (so-called small deformation model):

Φ(x) = x+ u(x) (4.2)

The inverse can be calculated by subtracting the displacement field. This leads to the problem

that the topology might not be conserved as can be seen in figure 4.7. The huge advantage of

DARTEL is that it does not use such a small-deformation model.

Using DARTEL as in [3] a flow field is introduced.

dΦ

dt
= u(Φ(T )) (4.3)

Using Euler integration and starting with an identity (Φ(0) = Identity,Φ(1) =
∫ 1

t=0
u(Φ(t))dt,...)

we can compute several time steps. The inverse is calculated by backward integration. The Euler

integration can be performed as follows

Φ(t+h) = (x+ hu) · Φ(t) (4.4)

with h being the step size. An example of 8 time steps would be [3]

Φ(1/8) = x+ u/8

Φ(2/8) = Φ(1/8) ·Φ(1/8)

Φ(3/8) = Φ(1/8) ·Φ(2/8)

...
...

Φ(8/8) = Φ(1/8) ·Φ(7/8)

(4.5)
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Another approach is [3]

Φ(1/8) = x+ u/8

Φ(1/4) = Φ(1/8) ·Φ(1/8)

Φ(1/2) = Φ(1/4) ·Φ(1/4)

Φ(1) = Φ(1/2) ·Φ(1/2)

(4.6)

De facto more than 8 time steps are needed to calculate accurate solutions. The flow field u

can be regarded as a member of the Lie algebra. u is exponentiated yielding a deformation, which

itself is a member of a Lie group. Lie algebra was first introduced by Hermann Weyl and is named

after Sophus Lie. Lie algebra is a vector space L of linear transformations over a field F . A Lie

algebra satisfies the following criteria [16]:

• For every pair (x, y) in L the following bilinearity conditions must be satisfied:

(x1 + x2)y = x1y + x2y, x(y1 + y2) = xy1 + xy2 and α(xy) = (αx)y = x(αy)

• [x, x] = 0 must be fulfilled for all x in L

• Jacobi identity: [x, [y, z]] + [y, [z, x]] [z, [x, y]] = 0

A simple example of a Lie group would be the rotation group of a sphere. All points at

the surface can be determined by a certain angel φ and θ. Through infinitesimal rotations all

elements can be reached continuously. Considering the DARTEL algorithm this allows that forward

transformation and backward transformation can be calculated from the same flow field u, since

all elements of the Lie group - in this case the spatial deformations - can be obtained continuously.

This also ensures diffeomorphic transformations, since forward and backward transformation can

be obtained continuously in both directions. The spatial backward transformation is calculated

via backward integration as follows

Φ(−1/8) = x− u/8

Φ(−1/4) = Φ(−1/8) ·Φ(−1/8)

Φ(−1/2) = Φ(−1/4) ·Φ(−1/4)

Φ(−1) = Φ(−1/2) ·Φ(−1/2)

(4.7)

These integration steps for forward and backward integration can be seen in figure 4.8.

When we now take these two transformations and make a composition of both we get in the

best case an identity transform (see figure 4.9). Now we can calculate the derivatives (Jacobian

Matrices) of the deformations:

JΦ(x) = (∇ΦT ) =

⎛
⎜⎜⎜⎝

∂φ1(x)
∂x1

∂φ1(x)
∂x2

∂φ1(x)
∂x3

∂φ2(x)
∂x1

∂φ2(x)
∂x2

∂φ2(x)
∂x3

∂φ3(x)
∂x1

∂φ3(x)
∂x2

∂φ3(x)
∂x3

⎞
⎟⎟⎟⎠ (4.8)
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Figure 4.8: Computing of the deformation (left) and the inverse deformation (right). Figure taken from [3].

φ(1) φ(-1)

φ(1)φ(-1) φ(-1)φ(1)

Forward Transformation Backward Transformation

Figure 4.9: Composition of forward and inverse transformation yielding a nearly perfect identity transform.

Figure taken from [3].
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these matrices contain the information of local stretching, sharing and rotating of the deformation

field. The model now contains parameters that describe the image deformation. The aim of the

algorithm now is to find the ”best” set of parameters.

DARTEL Normalization Example

For normalization with DARTEL the following steps are necessary:

• DARTEL Preprocessing: Segmentation of T1 images using New Segment as implemented in

the SPM8. In this step grey matter and white matter are segmented in native space and are

subsequently prepared for the following DARTEL algorithm, yielding normalized segmenta-

tions. CSF is only segmented in native space. The segmentation of CSF is not necessary,

but it has been shown that including it in the calculation improves the segmentation [1].

Normalized grey and white matter images can be seen in figure 4.10.

a) b)

Figure 4.10: Segmentation results of a healthy single subject in normalized space (MNI). a) Grey Matter and b)

White Matter.
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• A DARTEL template is created by using the previously normalized grey and white matter

images. With this DARTEL white and grey matter templates are calculated and deformation

(or flow field) fields are estimated. The DARTEL template can be found in figure 4.11. The

deformation field for grey matter for one healthy subject can be found in figure 4.12. This

deformation field contains the information for spatial transformation. Light areas in the

deformation field indicate a shift to the left, dark areas to the right.

a) b)

Figure 4.11: a) DARTEL grey matter template b) DARTEL white matter template. Both templates are not in

MNI space.

Figure 4.12: Grey matter flow field of a healthy single subject calculated using DARTEL.
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• The DARTEL template along with the flow field are used for normalization. The template

itself is not normalized. In this step the DARTEL template is normalized to MNI space using

an affine registration. The flow field along with the parameters of the affine registration are

then used for normalization of the original data.

(A) (B)

Figure 4.13: (A) Normalized FA image of a healthy single subject using DARTEL. (B) Normalized FA image

using standard pipeline including co-registration, segmentation and normalization

We can now compare the results of the DARTEL algorithm with the results of the standard

preprocessing pipeline. The registration of the brain shape for both normalization routines are

comparable (see figure 4.13). However, the DARTEL algorithm reslices the original data to match

the template and reduces the spatial resolution in this step. This is not the case for the standard

normalization routine, there the original data is also resliced, but the spatial resolution is not

reduced.
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4.3 Tract Based Spatial Statistics - TBSS

Another normalization approach is tract-based spatial statistics (TBSS). Commonly used normal-

ization routines for FA images apply the following preprocessing pipeline:

• aligning volumes with b-value of 0 (b0 volumes), e.g. data without diffusion weighting, along

with the FA images with the anatomical images (for example with SPM8 using the function

coregister(estimate))

• Segmentation and Normalization of the T1 images yielding transformation matrixes

• Applying these transformation matrices to the FA images

• Further smoothing of the FA images

This preprocessing now raises some questions. How good is the alignment of the FA images with

the anatomical images. Do the same white matter voxel of different subjects represent the same

fiber tract and are therefore comparable voxel-vise? Another question refers to the smoothing.

Commonly used smoothing routines use a Gauss kernel with FWHM from 2 mm to 9 mm. This

questions was investigated by Jones and colleagues [18], who analyzed schizophrenia data using

different smoothing kernels (FWHM from 0 mm to 16 mm). The results were depending on

FWHM, hence the choice of the FWHM changes the resulting effects. This short introduction

on some problems that come along with the preprocessing pipeline above should make it clear

why many researches are trying to improve the normalization pipeline for FA data. Smith and

colleagues [34] proposed and implemented TBSS in the software package FSL. The intention of

TBSS is to improve the alignment of all subjects by projection of FA to a mean FA skeleton that

represents the main fiber tracts in white matter. Further it does not use smoothing.

According to [34] TBSS includes:

• Alignment: All subjects should be aligned to each other. For this all subject images are

searched for the most common subject in the group, defined by the minimal displacement

that is needed to align all subjects to the most common subject. When the most common

subject is identified, all other subjects get aligned to it. At this point the alignment does not

need to be perfect.

• Mean image: The next step is to create the mean image of all aligned subjects.

• FA skeleton: The mean image is then ”thinned”. For the thinning the first derivative of the

FA image is calculated. Considering voxel close to the tract center, FA will be higher in one

direction, this direction points to the tract center. Looking at the first derivative this means

that we are searching for the centre-of-gravity. This local centre-of-gravity represents the

tract centre. This gravity centre is calculated over the whole brain examining a 3 × 3 × 3

voxel neighborhood.
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Figure 4.14: Calculated mean FA image resulting from 30 data sets. Image was calculated in FSL.

Figure 4.15: FA skeleton after ”thinning” of the mean FA image.

• Projection: The algorithm now needs to ”project” the FA values of the aligned subject

images onto the created skeleton. The intention behind this step is to take account of

possible misalignments. The single subject is examined perpendicular to the tract direction

searching for the voxel that is maximal, which is then assigned to the FA skeleton. In this

step projection maps are calculated.

• Statistical Analysis: Group analysis of the projected data using FSL.

All steps were performed on 30 data sets. For the FA skeleton a minimum FA threshold of 0.2

was set. Mean FA image can be seen in figure 4.14. Figure 4.15 shows the resulting FA skeleton.
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Chapter 5

Application of Diffusion Tensor

Imaging

In this master thesis, MRI and image processing are used to examine white matter differences

between social anxiety disorder (SAD) patients and healthy controls (HC). White matter (WM)

is one component of the central nervous system mostly containing myelinated axons. In WM fiber

tracts connect grey matter regions, similar to a network system that connects several processor

units.

Functional magnetic resonance imaging (fMRI) studies have revealed that SAD patients show

higher activation in frontal regions and amygdala when presented to emotional faces [8, 9, 28, 36,

37, 45]. This led to the hypothesis that the reason for this may lie in white matter alterations.

Diffusion tensor imaging (DTI), a recently developed MRI technique, allows to examine anatomical

structure and connectivity by measuring water diffusion (see chapter 3). Therefore recent studies

approach the topic additionally using DTI, confirming white matter alterations, especially in the

uncinate fasciculus (UF) connecting amygdalae and orbtiofrontal cortex [5, 29].

Aiming to quantify white matter alterations in the UF confirming recent findings, DTI and

probabilistic fiber was used to examine 30 subjects (15 healthy controls, 15 SAD patients). FA

was calculated to study white matter regions connecting amygdalae and frontal regions, especially

the orbitofrontal cortex. Further probabilistic fiber tracking was performed to calculate a study

specific mask of the UF. The results of this application have been published and presented at the

following conferences:

• J Tröstl, R Sladky, A Hummer, C Kraus, E Moser, S Kasper, R Lanzenberger, C Windis-

chberger. 2011. Reduced Connectivity in the Uncinate Fiber Tract Between the Frontal

Cortex and Limbic Subcortical Areas in Social Phobia. European Congress of Psychiatry

2011. Poster and Talk
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• J Tröstl, R Sladky, A Hummer, C Kraus, E Moser, S Kasper, R Lanzenberger, C Windis-

chberger. White Matter Alterations in Social Anxiety Disorder: a DTI study. Human Brain

Mapping Conference 2011. Poster.

• J Tröstl, R Sladky, A Hummer, C Kraus, E Moser, S Kasper, R Lanzenberger, C Windis-

chberger. Veränderungen im Fasciculus Uncinatus in Sozialphobie - eine DTI Studie. 3

Ländertagung medizinische Physik. Talk.

• J Tröstl, R Sladky, A Hummer, C Kraus, E Moser, S Kasper, R Lanzenberger, C Windis-

chberger. DTI of white matter alterations in the uncinate fasciculus of social phobia patients.

European Society for Magnetic Resonance in Medicine and Biology Meeting 2011. Talk.

5.1 Social Anxiety Disorder

Social phobia, also known as social anxiety disorder (SAD), is one the most common anxiety

disorders. SAD is characterized by an intense and irrational fear of being scrutinized by others.

According to DSM-IV, this fear originates from the apprehension of saying or doing something that

will embarrass or humiliate them. Therefore individuals with SAD try to avoid social situations

whenever possible or if unavoidable, they experience intense distress during such situations. When

interacting with others they appear very shy, silent and reserved [35].

Functional MRI studies have demonstrated that SAD patients show higher activation in the

amygdala compared to healthy controls when presented with emotional faces [8, 9, 28, 36, 37, 45].

Phillips et. al. proposed a model on cortico-limbic interaction for emotion regulation, which in-

cludes prefrontal cortex, hippocampus and parahippocampus participating in automatic regulatory

subprocesses [30]. Philips et. al. then used the model for emotion regulation for the investigation

of bipolar disorder (BD). BD is characterized by major emotion dysregulation. It was further sug-

gested structural changes in dorsal and ventral prefrontal cortices [30]. Combining these studies it

seems clear that the symptoms observed in SAD patients arise from dysfunctions in the emotion

regulation network.

However, DTI-based evidence for dysfunctions in the cortico-limbic circuitry is limited. Not

many studies focused on white matter alterations in social phobia and reported significant differ-

ences in anatomical connectivity between SAD patients and healthy controls. In 2009 Phan et. al.

presented preliminary evidence of white matter alterations in generalized SAD [29]. The study per-

formed a whole brain analysis reporting lower FA in SAD patients in the right uncinate fasciculus

(UF) next to orbitofrontal cortex (OFC). UF connects prefrontal and anterotemporal regions via

amygdalae with frontal regions terminating in the OFC [13]. This pathway is believed to play an

important role in emotion regulation [12]. Hence Phan et. al. suggested that these white matter

abnormities affect the social interaction. A very recent study on SAD partially confirmed these
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findings [5]. A region of interest analysis of the UF revealed low FA in the left UF next to OFC

and in the left temporal lobe next to superior longitudinal fasciculus. It is unclear, whether this

unilaterality was caused by true functional differences or possible methodological shortcomings.

Here we aimed at extending previous results by (1) using high-resolution DTI data acquired at

high field, (2) applying both FA-based and probabilistic DTI analysis techniques to better assess

anatomical connectivity changes in SAD patients, and (3) measuring in 30 directions to improve

the approximation of the diffusion tensor.

5.2 Methods

5.2.1 Subjects

SAD diagnosis was established based on psychiatric screening assessments including structural

clinical interview (SCID), Hamilton anxiety scale (HAMA), Spielberger state and trait anxiety

inventory (STAI) and the Liebowitz social anxiety scale (LSAS), for details refer to table 1. Clin-

ically assessment was performed by a trained psychiatrist at the Department of Psychiatry of the

General Hospital Vienna. Patients had to fulfill criteria for SAD according to DSM-IV criteria

assessed by the SCID.

Inclusion criteria for all subjects were age of 18 to 50 years, physical health and signed writ-

ten informed approval. Exclusion criteria were physical and neurological abnormities, pregnancy,

additional neurological disorders including depressive disorders independent from social phobia.

Any known history of substance abuse led to exclusion. Recent drug abuse was ruled out using a

ToxiQUICK PAN-10 test panels (ACON Laboratories, San Diego, USA).

SAD Patients HC p-value

Age 26.8±8.7 25.4±3.4 > 0.6

LSAS 75.6±22.7 5.3±7.3 < 0.001

STAI( state) 42.1±12.8 25.6±3.3 < 0.001

STAI (trait) 52.26±11.2 27±4.8 < 0.001

HAMA 16.9±5.0 0.5±0.6 < 0.001

Table 5.1: Characteristics of control and patients group. Hamilton anxiety scale (HAMA), Spielberger state and

trait anxiety inventory (STAI trait and state) and the Liebowitz social anxiety scale (LSAS) scores were assessed

during a structural clinical interview. Table shows average score± standard deviation.

19 SAD patients and 17 age-matched healthy control (HC) subjects were recruited. 4 SAD

patients were excluded (1 exclusion due to positive drug test, 1 exclusion due to a dental implant

which yielded intolerable image distortions in the orbitofrontal cortex, 1 exclusion due to technical

difficulties during data acquisition, and 1 exclusion in consequence of violation of our study pro-
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tocol). 2 HC were excluded (due to violation of our study protocol). As a result, 15 SAD patients

and 15 healthy controls were finally included (patient group: 26.6 (±8.6) years, 8 females, all right

handed; control group: mean age = 25.4 (±3.4) years, 7 females, all right handed). For group

characteristics see table 5.1.

5.2.2 Acquisition

Subjects were examined on a 3 Tesla Tim Trio MR scanner (Siemens Medical, Erlangen, Germany).

DTI acquisition was performed with 1.6 mm isotropic resolution in 30 directions in 70 slices and a

maximum b-value of 800 s/mm2. DTI Data was assessed using Echo-Planar-Imaging (EPI) with

parallel imaging (Grappa=2) with the following parameters TR = 8621 ms and TE = 83 ms. For

normalization purposes, T1-weighted anatomical images were also acquired using an MPRAGE

sequence (resolution 1× 1× 1.1 mm3, 240× 256× 160 pixel, TE = 4.21 ms, TR = 2300 ms).

5.3 Analysis

Image processing was performed using FSL (Centre of functional MRI of the Brain, University of

Oxford, United Kingdom) and SPM8 (Wellcome Trust Centre for Neuroimaging, University College

London, United Kingdom). After eddy current correction, binary brain masks were calculated by

applying the brain extraction tool (FSL BET) on the unweighted (b = 0 s/mm2) EPI volumes.

These masks were then applied on the diffusion data and the diffusion tensor model was fitted at

each voxel yielding FA, mean diffusivity (MD) and eigenvalue (λ1, λ2, λ3) maps.

High-resolution T1-weighted images were first co-registered to the unweighted EPI images and

then normalized using SPMs Segmentation function. The resulting transformation matrices were

then applied to FA, MD and λ images to obtain maps in MNI space. The normalized images were

smoothed with isotropic Gaussian kernels with a full width half maximum (FWHM) of 6mm.

Based on our hypothesis of changes in cortico-limbic connections we limited our analysis to the

uncinate fasciculus (UF). In order to obtain subject-specific masks of the UF we used probabilistic

fiber tracking as implemented in FSL’s FDT toolbox. This probabilistic fiber tracking routine

allows estimation of multiple fiber orientations per voxel by calculating local probability density

functions and using these to approximate the global connectivity. The result is a probability

distribution of the white matter connectivity (see www.fmri.ac.uk/fsl/fdt/fdt bedpostx.html or

[6, 7]).

On the basis of theses calculations fiber tracking can be performed using the PROBTRACKX

routine. Two cubic seed masks (length 5 voxels) were placed in posterior parts of the UF (according

to John Hopkins University White-Matter-Tractography atlas - included in the software package

FSL) next to the amygdalae as demonstrated previously ( [42]). The mask was defined in MNI

space. For fiber tracking the masks need to be in native space. Therefore the MNI seed mask was
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Figure 5.1: Fiber tracking is performed in the native space of a subject, therefore the masks need to be transformed

to native space by applying the inverse matrix of the normalization matrix. These transformed masks can be seen

in the left image. The next step is the fiber tracking (middle image). The last step was averaging and thresholding

all tracking results of all subjects. Irrelevant parts were cut off by comparing tracking results to JHU tracking atlas.

Results can be seen in the right image.
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FIBER TRACKING

Figure 5.2: Outline of the normalization routine for DTI data and seed masks. All steps of the normalization

were performed in SPM8.
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transformed by using the inverse transformation matrix of the normalization routine above. Fiber

tracking was then performed in FSL using PROBTRACKX routine for all subjects. Number of

samples was 5000, and calculation of every sample was terminated after 2000 steps with a step

length of 0.5mm. The curvature threshold was set to 0.2 (approximately ±80◦). An outline of

several steps can be found in figure 5.2.

Resulting probabilistic data was normalized, averaged over the whole group and thresholded to

calculate the specific mask of the UF. This mask was used for all group-level tests. The calculation

steps can be seen in figure 5.1.

Statistical testing was performed in SPM8 using a two-sample t-test. For all statistical tests,

significance threshold were set at a voxel-wise p < 0.05 uncorrected with a minimum cluster size

of 100 voxel. The main analysis focused on group differences in FA. In addition we compared MD,

λ1, λ2 and λ3 between groups within statistically significant clusters regarding FA.

5.4 Results

The analysis was limited to the UF that was calculated using probabilistic fiber tractography. For

all analyses p was smaller than 0.05 uncorrected. Voxel threshold was set to 100 voxel.

Group analysis for differences in FA between SAD patients and controls revealed lower FA

in SAD patients bilaterally in anterior parts of the UF (see table 5.2 for details). In addition,

increased FA values in SAD patients relative to HC were found in posterior parts of the UF (see

table 5.2).

Fig. 5.4 shows a multislice image with significant alterations in FA values highlighted in blue

(SAD < HC) and red (SAD > HC). A 3-dimensional figure of the same results can be seen in 5.3.

In this figure decreased FA values in SAD patients are again highlighted in blue and increased FA

values in red. In addition you can see the region of interest that has been calculated by probabilistic

fiber tractography (cyan envelope). Detailed results can be found in table 5.2.

To investigate this FA decrease in anterior parts of the UF in patients (see blue highlighted

voxel in fig. 5.4 and fig. 5.3) we additionally analyzed MD, λ1, λ2 and λ3. For this we examined

the peak voxel of significant clusters regarding FA across groups. The mean diffusivity in patients

was significantly increased in anterior parts of UF. Comparing this with the λ1, λ2 and λ3, we

find that this increased mean diffusivity yields from a significant increase of λ2 and λ3 in patients.

λ1 did not show significant alterations. Remembering section 3 we see that the diffusion in SAD

patients is more isotropic in anterior parts of the UF relative to healthy control subjects. When

we think of the diffusion ellipsoid increased λ2 and λ3 yield a more spherical shape which reduces

FA. The results of the MD, λ1, λ2 and λ3 analysis can be see in figure 5.5 and figure 5.6. Figure

5.5 shows the values of MD, λ1, λ2 and λ3 with error bars in the voxel (-29,34,-6) near left OFC.

Figure 5.6 shows changes near right OFC in the voxel (41,33-9). Significant values are indicated

78



Contrast MNI Comment

T p x y z

SAD<HC 3.67 0.001 41 33 -9 Near left OFC

2.75 0.005 -29 34 -6 Near right OFC

SAD>HC 3.29 0.001 30 7 -12 Near left amygdala

2.90 0.004 -29 7 -10 Near right amygdala

2.39 0.012 -41 5 -24 Near right amygdala

Table 5.2: Peak voxel of significant clusters (p<0.05 uncorrected, voxel threshold of 100 voxel) that can be seen

in figure 5.4 and figure 5.3.

with *.
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Figure 5.3: The envelope represents the results from probabilistic fiber tracking averaged over all subjects. Inside

this area voxel with high FA of patients relative to healthy controls are highlighted red, whereby voxel with lower

FA of patients are highlighted blue.
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Figure 5.4: Factional Anisotropy. Voxel with increased FA relative to healthy controls are highlighted red. Voxel

with decreased FA are highlighted blue. Chosen slices are even slices between slice 50 and 80 in z-direction.
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MNI coordinates (-29,34,-6) - left anterior OFC

SAD patients
HC

MD λ1 λ2 λ3

Figure 5.5: Changes in MD, λ1, λ2 and λ3 (peak voxel coordinates: -29, 34, -6 - near left OFC) with error bars.

Significant deviations are indicated with *. SAD Patients (red) show increased values of MD and radial eigenvalues

(λ2 and λ3) compared to healthy controls (cyan). This leads to a more isotropic diffusion yielding lower FA.

MNI coordinates (41,33,-9) - right anterior OFC

SAD patients
HC

MD λ1 λ2 λ3

Figure 5.6: Changes in MD, λ1, λ2 and λ3 (peak voxel coordinates: -41,33,-9 - near right OFC) with error bars.

significant deviations are indicated with *. SAD Patients (red) show increased values of MD and radial eigenvalues

(λ2 and λ3) compared to healthy controls (cyan). This leads to a more isotropic diffusion yielding lower FA.
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5.5 Discussion

In this study we have examined differences in white matter properties between SAD patients and

matched healthy controls. Based on the main symptoms of SAD, i.e. intense and irrational fear in

a social context, we restricted our analysis to the uncinate fasciculus, which connects amygdalae

as the central structures in the human emotion processing circuitry, to orbitofrontal brain regions.

Given the OFC’s role in regulating limbic activity in general and amygdalar activity in particular,

we hypothesized reduced connectivity in the uncinate fasciculus of SAD patients. Such reductions

in connectivity should be reflected in reduced FA values as assessed with DTI methodology.

Our results show indeed a reduction in FA values in the anterior parts of the uncinate fasciculus

of SAD patients. This is in agreement with a previous study by Phan who reported reduced FA

in the right hemisphere. A very recent study by Baur shows two regions with reduced FA in the

left hemisphere of SAD patients (left UF next to OFC and left temporal lobe next to superior

longitudinal fasciculus). Here we were able to confirm the findings next to OFC. Our results not

only corroborate these two previous studies in showing a left and right hemispheric reduction of FA

near UF in SAD patients but also extend these findings to both hemispheres. The reason for this

unilaterality and hemisphere differences in [29] and [5] are not clear. Baur et. al. argued that their

findings corroborate with previous findings suggesting that the left OFC plays a role in changes of

the functional connectivity pattern in SAD. However concerning the hemisphere differences Baur

et. al. requested further DTI studies.

Compared to both studies we acquired data with higher spatial resolution. We used an isotropic

resolution of 1.6 mm. Phan and colleagues had a slice thickness of 3 mm and Baur and colleagues

of 3.2mm, both had matrix size of 256×256 pixel and field-of-view of 240×240 mm3. We acquired

70 slices compared to 36 (Phan) and 39 (Baur), respectively.

It has been shown that FA significantly depends on the number (N) of diffusion-weighted direc-

tions. A recent study showed that a high number of gradient directions (N > 20) is recommended

allowing for a better visualization of white matter tracts in FA maps and increasing the contrast-

to-signal variance ratio [14]. In addition it has been found a significant dependences of λ1, λ2 and

λ3 to the number of gradient directions. For a region-of-interest analysis more than 21 diffusion

weighted directions are recommended for a better estimation of λ1, λ2 and λ3 [26]. Hence we

measured in 30 diffusion-weighted directions (Phan-study: 12; Baur-study: 21), which allows for

a better approximation of water diffusion.

It has been shown that different smoothing kernels can lead to different results [18]. Here

smoothing was performed with a Gaussian kernel of 6 mm. Baur et. al. also used the same

smoothing kernel. Phan et. al. used Gaussian kernels of 5 mm and 9 mm yielding similar results.

This could possibly yield to small differences in the results. Since Phan et. al. found similar effects

with 5 mm and 9 mm, the differences to a Gaussian kernel of 6 mm should not be crucial.
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Concerning the characteristics of the study population, score differences of the psychiatric

assessments between SAD patients and HC were on average larger compared to Phan and Baur.

Patients showed on average higher scores than compare to the study population of Phan and

Baur and HC showed on average lower scores. Summarized we had better underlying conditions to

exam white matter alterations, which could be the reason why Phan and Baur only found unilateral

abnormities.

None of the previous studies found increased FA in SAD patients, however we found significantly

increased FA in the UF near amygdalae bilaterally. The interpretation of these results is difficult.

The anatomical structure of the close vicinity in the UF near amygdala is utterly different compared

to the just addressed areas. Therefore we cannot exclude partial volume effects. Further studies

are required to clarify this issue.

In summary we have found strong evidence of structural alterations in social phobia which

confirms and expands previous findings [5, 29] to both hemispheres. In addition we found areas

with significantly increased FA in social phobia patients.
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Chapter 6

Conclusion and Outlook

DTI is one of the most promising tools to examine organized tissue in the human body, such as

the human brain or muscles. In this master thesis DTI has been successfully applied for analyzing

white matter alterations. Using the data of 30 subjects (15 social phobia patients, 15 healthy

control), fractional anisotropy, mean diffusivity and diffusion eigenvalues have been calculated.

Statistical analysis was performed to find group differences in FA, MD and eigenvalues. The results

confirmed and expanded previous studies [5, 29]. For image preprocessing different normalization

techniques (standard normalization, DARTEL normalization, TBSS) have been applied and tested.

Probabilistic fiber tracking was performed for all 30 subjects to create a study specific mask. In

addition deterministic fiber tracking algorithms have been tested. The preprocessing pipelines for

DTI presented in this master thesis will be applicable on several recent studies in progress at the

MR Centre of Excellence (Medical University of Vienna):

• DTI of glaucoma

Glaucoma is an eye disorder resulting a damage of the optic nerve. Since this damage yields

alterations in the diffusion due to demyelination of the fibers DTI can be used for quantization

of the damage.

• Steroid hormones

Application of steroid hormones such as oestrogen or testosterone in transgender patients

might lead to structural changes in the human brain which can be analyzed using DTI.

For further DTI studies different acquisition parameters, such as number of gradient directions,

acquisition time and variation of b-values, can be used to investigate benefits for image quality.

Besides the typical diffusion parameters the axonal parameter can be estimated using diffusion

MRI. The axon diameter gives additional information on the tissue. Existing models for axon

diameter approximation assume a single fiber direction per voxel and the same diameter for all

axons. These assumptions often lead to an overestimation of the diameter. A very recent approach

85



is the so-called axon diameter mapping. This technique considers an axon diameter distribution

and allows orientation dispersion yielding improvements in the estimation of the axon diameter [47].

In general diffusion is far more complicated to be approximated by a symmetric diffusion tensor.

Hence there exist several more sophisticated non-tensor approximations of water diffusion. DTI

cannot identify structures such as fiber bendings, crossings and twistings within a voxel. However

these intravoxel structures can be approximated using Q-ball imaging. The Q-ball algorithm can

estimate multiple fiber directions without assumption of Gaussian diffusion. Data acquisition for

Q-ball imaging, however, is very time-consuming and needs large pulsed diffusion gradients [40].

Such an acquisition protocol measures in more directions and uses higher b-values. Sequences that

only use one b-values are called HARDI (high-angular-resolution diffusion imaging) sequences.

A technique that retrieves fiber directions from HARDI data is the so-called spherical decon-

volution. This method considers the signal from a single voxel as the sum of all contributing fiber

bundles and hence determines the real distribution of fiber orientations [39].

Another method that allows for approximating multiple fiber directions within a single voxel

is diffusion spectrum imaging (DSI) [43]. DSI needs typically 300-500 measurements in many

directions with high b-values (up to b ∼ 17000 s/mm2) [23].

All these non-tensor methods aim for a better approximation of the true nature of diffusion.

These methods, however, require longer measurement times because of the time consuming data

sampling and large diffusion gradients. Nevertheless, such approaches may be successfully applied

in future studies given the possibilities for accelerated acquisition at ultra-high magnetic field

strengths.

86



Bibliography

[1] J Ashburner. Spm8 manual. Imaging, 2009.

[2] J Ashburner and K J Friston. Voxel-based morphometry - the methods. NeuroImage,

11(6):805–821, 2000.

[3] John Ashburner. A fast diffeomorphic image registration algorithm. NeuroImage, 38(1):95–

113, 2007.

[4] P J Basser, S Pajevic, C Pierpaoli, J Duda, and A Aldroubi. In vivo fiber tractography using

dt-mri data. Magnetic Resonance in Medicine, 44(4):625–632, 2000.

[5] V Baur, J Hänggi, M Rufer, A Delsignore, L Jäncke, L Herwig, and A B Bruühl. White
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3.1 Basics of diffusion measurement. A strong static magnetic field B0 is applied in
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a rephasing pulse is applied. When the spins did not change their position, the
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Figure modified from [25]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 (A) τ � Δ. Diffusion during gradient pulse can be neglected (B) Realistic diffusion

gradients. Diffusion during gradient pulse cannot be neglected. Modified from [23]. 46
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the main diffusion directions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.8 Calculated fiber trajectory of a 3D space curve r(s) using Euler’s method. r(s1) is

parallel to ε1(r(s1)), which belongs to the largest eigenvalue. Figure taken from [4] 53
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