
On Solving Constrained Tree
Problems and an Adaptive Layers

Framework
DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor der technischen Wissenschaften

by

Dipl.-Ing. Mario Ruthmair
Registration Number 9826157

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: a.o.Univ.-Prof. Dipl.-Ing. Dr.techn. Günther R. Raidl

The dissertation has been reviewed by:

(a.o.Univ.-Prof. Dipl.-Ing.
Dr.techn. Günther R. Raidl)

(a.o.Univ.-Prof. Dipl.-Ing.
Dr.techn. Ulrich Pferschy)

Wien, 27.05.2012
(Dipl.-Ing. Mario Ruthmair)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

Erklärung zur Verfassung der Arbeit

Dipl.-Ing. Mario Ruthmair
Herbeckstraße 80/1, 1180 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit –
einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quellen als Ent-
lehnungen kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i

Acknowledgements

First of all I want to greatly thank my supervisor Günther Raidl for the excellent working envi-
ronment within the Algorithms and Data Structures Group and for giving me enough freedom
to evolve while guiding me to meaningful directions. The last years have been one of the most
exciting and valuable years of my life and the personal advancement in terms of knowledge and
self-confidence within these times is incomparable.

Furthermore, thanks to my second supervisor Ulrich Pferschy for providing valuable com-
ments on this thesis which helped to improve its quality. Thanks to my former colleagues Andy
Chwatal, Martin Gruber, Sandro Pirkwieser, and Matthias Prandtstetter, for introducing me to
the group’s research fields and supporting me in my early teaching experiences. Especially Mar-
tin Gruber always had an open ear for technical, bureaucratic, and research problems of any
kind. Thanks to Bin Hu for caring about many parts of our teaching responsibilities and for
taking everything so easy without ever being in a bad mood. Thanks to Markus Leitner for
numerous fruitful discussions about integer programming and a very efficient and enjoyable col-
laboration. Also my new colleagues Emir Causevic, programming guru Johannes Inführ, Marian
Rainer-Harbach, and Christian Schauer deserve gratitude for heavily supporting and enriching
our group. Without Johannes’ tools to efficiently evaluate experimental results this thesis would
have taken much longer. Not to forget about the people behind the scenes who care about or-
ganizational and technical stuff and thus keep everything going, namely Doris Dicklberger and
Andi Müller (formerly Aksel Filipovic and Angela Schabel).

Special thanks go to my parents for supporting me in all decisions I ever made and always
trusting in my self-reliance. If I needed any help I got it without discussion. And I can be sure
that it will remain this way the rest of my life.

Last but not least I want to thank Daniela for her endless patience, support, understanding,
and especially her power of endurance in the last years (I promise you that I will not append a
second PhD!). Thanks for taking care of my social and culinary well-being, for extending my
view on non-algorithmic (also relevant!) topics, and finally for bringing Lea and Archie into my
life who numerously removed the stress by just being present.

iii

Abstract

In this thesis we consider selected combinatorial optimization problems arising in the field of
network design. In many of these problems there is a central server sending out information to a
set of recipients. A common objective is then to choose connections in the network minimizing
the total costs. Besides this, current applications, e.g. in multimedia, usually force additional
quality-of-service constraints, e.g. limiting the communication delay between the central server
and the clients. In general, these problems can be modeled on a graph and in many cases an
optimal solution corresponds to a rooted tree with minimum costs satisfying all the given con-
straints. The most relevant of these optimization problems are NP-hard making it necessary –
provided that P 6= NP – to develop sophisticated algorithmic approaches to obtain high quality
or even optimal solutions.

Due to the complexity of these optimization problems it is usually not possible to obtain
proven optimal solutions for medium- to large-sized problem instances in reasonable time.
Therefore, heuristic approaches yielding high quality but in general sub-optimal solutions are
of high practical interest. Metaheuristics and hybrid variants combining heuristic and exact so-
lution techniques recently increased in popularity due to their successful application on many
important optimization problems.

We present new state-of-the-art solution approaches for several of these optimization prob-
lems. Given a problem instance we first apply reduction rules identifying and removing nodes
and edges in the graph which can only be part of infeasible or sub-optimal solutions. The more
the input graph can be reduced in this way a priori the easier it is in general for an algorithm to
find a feasible or optimal solution.

We designed several heuristic approaches for the rooted delay-constrained minimum span-
ning tree (RDCMST) problem in which all nodes in a graph have to be connected to a fixed root
node while the total delay on the paths from the root to any other node has to be within a given
delay-bound. For constructing a feasible solution we suggest a heuristic based on Kruskal’s
minimum spanning tree algorithm and another one utilizing the multilevel refinement paradigm.
Improvements to these obtained solutions are achieved by applying a greedy randomized adap-
tive search procedure, local search in two different neighborhood structures, and embedding this
local search in a general variable neighborhood search, an ant colony optimization approach,
and a genetic algorithm. The appearance of duplicate solutions within the genetic algorithm is
discussed and appropriate methods dealing with them are presented. Extensive computational re-
sults indicate the superiority of the evolutionary approach and the variable neighborhood search.

Additionally, we tackled small- to medium-sized problem instances with exact algorithms,
mostly concentrating on mathematical programming methods since these turned out to perform

v

well on numerous related network design problems in the literature. Especially modeling these
problems on so-called layered graphs has been shown to yield good results. We compared
different modeling approaches for the rooted delay-constrained Steiner tree (RDCST) problem
which is a generalization of the RDCMST problem where only a subset of the nodes is required
to be connected to the root node. Computational results indicate that three methods dominate the
comparison: a branch-and-price approach stabilized by using alternative dual-optimal solutions,
a model on a corresponding layered graph, and a formulation based on an exponential number
of subtour elimination and infeasible path inequalities.

In some situations, e.g. in Voice-over-IP applications, it is not only important that all recip-
ients receive the information within a given delay-bound but also nearly at the same time. This
additional constraint is modeled in the rooted delay- and delay-variation-constrained Steiner
tree (RDDVCST) problem. For this problem we compare mixed integer programming formula-
tions based on multi-commodity flows and again a transformation to a layered graph. The latter
approach extended by some valid inequalities turned out to be clearly superior to the flow-based
model.

Since the performance of layered graph approaches strongly depends on the sizes of the set of
achievable path delay values and on given delay-bounds their practical applicability is limited.
Thus, we extend these methods to a generally-applicable iterative adaptive layers framework
(ALF) mitigating their disadvantages and emphasizing their benefits. Basically, ALF approxi-
mates the linear programming relaxation and the optimal integer solution of a complete layered
graph formulation by solving a sequence of usually much smaller models and thus partly over-
comes possible problems with huge layered graphs. The additional overhead of repeated model
solving pays off in many cases, as experimental results indicate, especially on large sparse graphs
ALF outperforms all other approaches for the RDCST problem. Additionally, we provide two
case studies on applying ALF to further problems: For an extended variant of the RDCST prob-
lem with consideration of node prizes and a quota constraint ALF is clearly superior to other
methods, in many cases even by orders of magnitudes. The second case study considers the
vehicle routing problem with time windows: Here, we discuss a modeling approach on two sep-
arated layered graphs and another one on a three-dimensional layered graph. Preliminary results
indicate that futher work in this direction is promising.

Kurzfassung

Die vorliegende Arbeit behandelt ausgewählte kombinatorische Optimierungsprobleme im Be-
reich des Netzwerkdesigns. In vielen dieser Probleme kommuniziert ein zentraler Server mit ei-
ner Gruppe von Clients, wobei es üblicherweise das Ziel ist, kostenminimale Wege im Netzwerk
zu finden. Neben diesem Optimierungsziel erfordern aktuelle Anwendungen, z.B. im Multime-
dia-Bereich, die Einhaltung weiterer sogenannter Quality-of-Service Bedingungen, die unter an-
derem in der Beschränkung der Übertragungszeit zwischen Server und Clients bestehen. Diese
Art von Problemen kann oft auf einem Graph modelliert werden, wobei eine optimale Lösung
meistens einem Baum entspricht, der den Server und alle Clients beinhält und alle geforderten
Nebenbedingungen erfüllt. Die wichtigsten dieser Probleme sind jedoch NP-schwer, was dazu
führt – vorausgesetzt P 6= NP –, dass aufwendige und raffinierte Verfahren gefunden werden
müssen, um gute bzw. optimale Lösungen zu erhalten.

Aufgrund der Komplexität dieser Optimierungsprobleme ist es üblicherweise nicht möglich
beweisbar optimale Lösungen für größere Probleminstanzen in angemessener Zeit zu finden.
Deshalb verwendet man in der Praxis oft heuristische Ansätze, die zwar im Allgemeinen nur
zu suboptimalen aber dennoch zu sehr guten Lösungen führen. Metaheuristiken und hybride
Varianten, die heuristische und exakte Verfahren kombinieren, gewannen in den letzten Jahren
immer mehr an Beliebtheit, da sie für eine Vielzahl von wichtigen Optimierungsproblemen be-
reits überaus erfolgreiche Resultate erzielt haben.

Wir präsentieren neue State-of-the-Art Ansätze um einige dieser Probleme zu lösen, wobei
wir zu allererst versuchen die gegebene Probleminstanz zu reduzieren, in dem wir Knoten und
Kanten identifizieren, die entweder in keiner oder nur in einer suboptimalen Lösung enthalten
sein können, und entfernen diese dann aus dem Graph. Je mehr der Graph in dieser Phase re-
duziert werden kann, desto einfacher ist es üblicherweise eine gültige oder optimale Lösung zu
finden.

Für das sogenannte Rooted Delay-Constrained Minimum Spanning Tree (RDCMST) Pro-
blem, in dem alle Knoten in einem Graph mit dem vorgegebenen Wurzelknoten verbunden
werden müssen und das Gesamtdelay jedes Pfads vom Server zu einem Client eine maximale
Schranke nicht überschreiten darf, haben wir verschiedene heuristische Ansätze entwickelt. Um
eine gültige Lösung zu konstruieren, wenden wir Heuristiken an, die auf Kruskal’s Algorithmus
zum Finden eines minimalen Spannbaums oder dem Multilevel-Refinement-Paradigma basie-
ren. Weitere Verbesserungen dieser Lösungen werden durch folgende Verfahren erzielt: einer
Greedy-Randomized-Adaptive-Search-Procedure, einer lokalen Suche in verschiedenen Nach-
barschaftsstrukturen und der Einbettung dieser in einer variablen Nachbarschaftssuche, eines
Ant-Colony-Optimization Ansatzes und eines genetischen Algorithmus. Das Vorkommen von

vii

Duplikaten im genetischen Algorithmus wird diskutiert und entsprechende Verfahren werden
vorgestellt, um mit diesen geeignet umzugehen. Experimentelle Ergebnisse haben schließlich
die Überlegenheit des evolutionären Ansatzes und der variablen Nachbarschaftssuche gegen-
über den restlichen Methoden gezeigt.

Zusätzlich zu diesen (meta-)heuristischen Ansätzen versuchen wir kleinere bis mittelgroße
Probleminstanzen exakt zu lösen, wobei wir uns hier hauptsächlich auf Methoden der mathema-
tischen Programmierung konzentrieren, die sich in einer Vielzahl von existierenden Arbeiten zu
Netzwerkdesignproblemen als überaus erfolgreich gezeigt haben. Speziell die Modellierung die-
ser Probleme auf einem sogenannten Layered-Graph haben besonders gute Ergebnisse erzielt.
Anhand des Rooted Delay-Constrained Steiner Tree (RDCST) Problems, das eine Generalisie-
rung des RDCMST Problems darstellt, in der nur eine Untermenge der vorhandenen Knoten an
den Wurzelknoten angeschlossen werden muss, vergleichen wir verschiedene Modellierungsan-
sätze. Die experimentellen Resultate zeigen, dass drei Methoden die restlichen übertreffen: ein
Branch-and-Price Ansatz, der durch die Verwendung von alternativen dual-optimalen Lösungen
beschleunigt wird, ein Modell auf einem entsprechenden Layered-Graph und eine Formulierung,
die eine exponentielle Anzahl von Subtour-Eliminations- und verbesserten Pfadungleichungen
enthält.

In manchen Situation, z.B. in Voice-over-IP-Anwendungen, ist es nicht nur wichtig, dass
alle Empfänger die Informationen innerhalb einer gewissen Zeitspanne erhalten, sondern auch
ungefähr zur gleichen Zeit. Diese zusätzliche Bedingung wird im sogenannten Rooted Delay-
and Delay-Variation-Constrained Steiner Tree (RDDVCST) Problem modelliert, wobei wir hier
Integer-Programming-Formulierungen basierend auf Informationsflüssen bzw. einem Layered-
Graph vergleichen. Der letztere der beiden Ansätze, erweitert durch stärkende Ungleichungen,
erwies sich gegenüber dem Flussmodell als weit überlegen.

Die praktische Anwendbarkeit der Layered-Graph-Ansätze ist teilweise eingeschränkt, da
deren Effizienz stark von der Menge der realisierbaren Pfaddelays und der gegebenen Zeit-
schranken abhängt. Deshalb haben wir diese Methoden zu einem generellen iterativen Adaptive
Layers Framework (ALF) erweitert, das die Nachteile dieser Ansätze teilweise abschwächt und
dennoch von deren Stärken profitiert. Im Grunde approximiert ALF eine optimale Lösung des
ganzzahligen Modells und dessen fraktionaler Relaxierung auf dem kompletten Layered-Graph
durch das Lösen einer Serie von üblicherweise viel kleineren Modellen, und kann dadurch teil-
weise die Probleme mit sehr großen Layered-Graphen vermeiden. Wie die Ergebnisse zeigen,
lohnt sich der zusätzliche Aufwand für das wiederholte Lösen von Modellen in vielen Fällen,
wobei speziell auf großen dünnen Graphen ALF alle anderen Ansätze für das RDCST Problem
klar aussticht. Zusätzlich führen wir noch zwei Fallstudien auf anderen Problemen an: Für eine
erweiterte Variante des RDCST Problems mit Berücksichtigung von Profiten auf Knoten und ei-
ner Quotenbedingung zeigte sich ALF in vielen Fällen sogar um Größenordnungen besser. In der
zweiten Fallstudie betrachten wir das Vehicle Routing Problem with Time Windows und diskutie-
ren ein Modell auf zwei getrennten Layered-Graphen und ein weiteres auf einem dreidimensio-
nalen Layered-Graph. Erste Ergebnisse belegen, dass diese Ansätze durchaus vielversprechend
erscheinen.

Contents

1 Introduction 1
1.1 Combinatorial Optimization Problems . 2
1.2 Considered Problems . 3
1.3 Structure of the Thesis . 4

2 Methodology 7
2.1 Exact Methods . 7

2.1.1 Linear Programming . 8
2.1.2 Integer Linear Programming . 13
2.1.3 LP-based Branch-and-Bound . 14
2.1.4 Cutting Planes and Branch-and-Cut 16
2.1.5 Column Generation and Branch-and-Price 17

2.2 Heuristic Methods . 18
2.2.1 Construction Heuristics . 18
2.2.2 Approximation Algorithms . 19
2.2.3 Local Search . 19
2.2.4 Metaheuristics . 20

2.3 Hybrid Methods . 26

3 Rooted Delay-Constrained Minimum Spanning Tree Problem 29
3.1 Problem Definition . 29
3.2 Related Work . 30
3.3 Preprocessing . 32

3.3.1 Infeasible Edges . 32
3.3.2 Suboptimal Edges . 33

3.4 Kruskal-Based Construction Heuristic . 37
3.4.1 Stage 1: Merging components . 37
3.4.2 Stage 2: Extension to a feasible solution 39
3.4.3 Example . 39
3.4.4 Modifications . 41

3.5 Multilevel Construction Heuristic . 42
3.5.1 Ranking Score . 42
3.5.2 Ranking-Based Multilevel Heuristic 43

ix

3.5.3 Example . 46
3.6 Greedy Randomized Adaptive Search Procedure 47
3.7 Neighborhood Structures . 48

3.7.1 Edge-Replace Neighborhood . 48
3.7.2 Component-Renew Neighborhood . 49

3.8 Variable Neighborhood Descent . 49
3.9 General Variable Neighborhood Search . 50

3.9.1 Shaking . 50
3.10 Ant Colony Optimization . 50

3.10.1 Pheromone Values . 51
3.10.2 Solution Construction . 51
3.10.3 Local Improvement . 51
3.10.4 Depositing Pheromones . 51

3.11 Memetic Algorithm . 52
3.11.1 Solution Representation . 52
3.11.2 Components and Operators . 53
3.11.3 Improvement . 53

3.12 Tackling Duplicates . 54
3.13 Computational Results . 55

3.13.1 Test Instances and Environment . 55
3.13.2 Preprocessing . 56
3.13.3 Prim-Based vs. Kruskal-Based Heuristic 58
3.13.4 Ranking-Based Multilevel vs. Kruskal-Based Heuristic 59
3.13.5 GRASP vs. GVNS vs. MMAS . 60
3.13.6 Memetic Algorithm . 63

3.14 Future Work . 64

4 Rooted Delay-Constrained Steiner Tree Problem 67
4.1 Problem Definition . 67
4.2 Related Work . 69
4.3 Preprocessing . 71
4.4 Miller-Tucker-Zemlin Formulation . 71
4.5 Path Formulation . 72
4.6 Multi-Commodity Flow Formulation . 73
4.7 Path-Cut Formulation . 74

4.7.1 Valid Inequalities . 75
4.7.2 Separation Methods . 76

4.8 Transformation to Layered Graph . 78
4.9 Layered Graph Formulation . 81

4.9.1 Valid Inequalities . 82
4.9.2 Separation Methods . 82

4.10 Polyhedral Comparison . 83
4.11 Computational Results . 87

x

4.11.1 Test Instances and Environment . 88
4.11.2 LP Bounds . 89
4.11.3 Branch-and-Cut Results . 92

4.12 Future Work . 97

5 Rooted Delay- and Delay-Variation-Constrained Steiner Tree Problem 99
5.1 Problem Definition . 99
5.2 Related Work . 100
5.3 Preprocessing . 101
5.4 Multi-Commodity Flow Formulation . 102
5.5 Transformation to Layered Graph . 103
5.6 Layered Graph Formulation . 105

5.6.1 Valid Inequalities . 106
5.6.2 Separation Methods . 107

5.7 Polyhedral Comparison . 109
5.8 Computational Results . 111

5.8.1 Test Instances and Environment . 111
5.8.2 LP Bounds . 112
5.8.3 Branch-and-Cut Results . 114

5.9 Future Work . 117

6 Adaptive Layers Framework 119
6.1 Motivation . 119
6.2 Related Work . 120
6.3 Basics . 121
6.4 Framework . 123
6.5 Computational Results . 128

6.5.1 Test Instances and Environment . 129
6.5.2 Framework Results . 129

6.6 Case Study: Quota-Constrained Rooted Delay-Constrained Steiner Tree Problem 135
6.6.1 Layered Graph Model . 137
6.6.2 Computational Results . 138

6.7 Case Study: Vehicle Routing Problem with Time Windows 141
6.7.1 Transformation to Layered Capacity and Time Graphs 142
6.7.2 MIP Model on Two Layered Graphs 143
6.7.3 Transformation to Layered Capacity-Time Graph 146
6.7.4 MIP Model on the Combined Layered Graph 147
6.7.5 ALF for the VRPTW . 147
6.7.6 Preliminary Results . 148

6.8 Future Work . 148

7 Conclusions 151

Bibliography 153

xi

A Curriculum Vitae 169
A.1 Personal Information . 169
A.2 Education . 169
A.3 Professional Activities . 170
A.4 International Organizational and Reviewing Activities 170
A.5 Teaching Activities . 170
A.6 List of Publications . 171

A.6.1 Refereed Conference and Workshop Papers 171
A.6.2 Research Reports . 172
A.6.3 Thesis . 172
A.6.4 Co-Supervised Thesis . 172

A.7 Posters and Presentations . 173

xii

CHAPTER 1
Introduction

According to a recent analysis in 2011 by Cisco Systems [29] – a big player in networking
business – nowadays streaming of video and audio over networks, e.g. in multimedia and Voice-
over-IP (VoIP) applications, gets more and more popular and in several forecasts this trend is
believed to hold on in future. Even with our current quickly increasing amount of available
bandwidth we have to find more efficient ways of transmitting this information to all recipients.
Repeated re-sending of the same data packets to each client within a network may not be possi-
ble anymore if the demand for video streaming further increases and television broadcast over
internet overtakes common transmission by satellite or dedicated cable.

In this thesis we consider combinatorial optimization problems (COPs) arising in the field
of network design which represent a highly important and practically relevant class of COPs.
In many of these problems there is a central server sending out information to a set of recipi-
ents, possibly via optional intermediate nodes, respecting diverse resource and quality-of-service
(QoS) constraints. One commonly desired QoS constraint is a limitation of the communication
delay between the server and the clients. Additionally, in VoIP and video conferencing multicast
scenarios it is not only important that all participants receive the information from the central
server within a given time limit but also nearly at the same time. Otherwise upcoming race condi-
tions possibly result in misunderstandings between the clients. In database replication scenarios
it is necessary to guarantee the consistency of all mirroring databases. Thus, if updates have to
be deployed the time interval between the first and the last client database applying the changes
should be within a known limit. Buffering information at the server or intermediate nodes in the
network shall be avoided as in general it would increase the total delay and requires the repeated
sending of the same data, annihilating the advantage of distributing information over a multicast
tree. Finally, buffering at the clients is not always a choice since in some online applications,
e.g. gaming and stocktrading, competing users may benefit from receiving information earlier
than others and thus may circumvent the local data retention.

If considering a problem variant in which all terminals need to be connected obligatorily one
usually aims to identify a solution yielding overall minimal costs. These usually non-negative
costs often depend on the effort to establish a particular network node or link, on used technolo-

1

gies, and the utilization of the corresponding resources. On the contrary, in many real world
applications the primary goal is to maximize the net profit, which is the profit earned by con-
necting customers reduced by the investment to build the network. Such scenarios are frequently
called prize collecting network design problems.

In a completely different application we may consider a package shipment organization with
a central depot and a distribution network possibly consisting of several intermediate storage
facilities. This company might guarantee its customers a delivery of certain commodities within
a specified time horizon, e.g. because of perishable products. Naturally, the organization wants
to minimize the transportation costs but at the same time wants to hold its promise of being
in time. Also this type of problems can be seen as a network design problem and modeled by
similar COPs as the previous applications.

1.1 Combinatorial Optimization Problems

In general, a COP is defined as follows [190]:

Definition 1.1.1. Let S be a set of base elements, c : S → R be a cost function assigning each
element a cost value, and X ⊆ 2S be the set of feasible subsets of S. The problem of finding a
minimum cost feasible subset is a combinatorial optimization problem (COP)

min
x∈X

∑
s∈x

cs. (1.1)

A similar definition can be provided for maximization problems in an obvious way.
Usually, network design problems can be modeled on a graphG = (V,E) with several prop-

erties and resources assigned to nodes V and edges E. In case of positive cost values assigned
to edges e ∈ E a subgraph with minimum costs connecting all required nodes corresponds to
a tree [124]. In the simplest case when all nodes need to be connected, such a problem can be
modeled as a spanning tree problem efficiently solvable by Kruskal’s [107] or Prim’s [145] algo-
rithms, but additional options like possibly includable intermediate nodes, delay, length and/or
more general resource constraints, and different objectives make these kind of problems most
of the time NP-hard. Thus, provided that P 6= NP in general there is no algorithm which
obtains a proven optimal solution in polynomial time, and therefore moderate to large instances
of a given COP are frequently difficult to solve to optimality in practice. As long as aspects like
redundant connections to terminals in order to achieve higher connectivity and robustness to fail-
ure are excluded, solutions have tree structure, and such problems can be modeled as extensions
of the Steiner tree problem on a graph [44].

Exact approaches forNP-hard COPs often incorporate (mixed) integer programming (MIP)
techniques [134] since they proved to be quite successful for numerous problems in literature.
Here we also focus on applying these concepts to the considered network design problems on
small- to moderately-sized instances. Additionally, due to the complexity of these optimization
problems heuristic approaches yielding high quality but in general sub-optimal solutions are of
strong practical interest especially for large-scale problem instances. Metaheuristics [53] and hy-
brid variants [125, 154] combining heuristic and exact solution techniques recently increased in

2

popularity due to their successful application on many important optimization problems. There-
fore, we consider these kinds of approaches for problem instances where our exact methods are
not able to provide any useful results within reasonable time and memory limits.

1.2 Considered Problems

We consider the following three network design problems modeling the previously mentioned
application scenarios, ordered from most specialized to most general:

1. Rooted Delay-Constrained Minimum Spanning Tree (RDCMST) Problem: This problem
models the situations when a central server s ∈ V needs to broadcast information to
all other nodes V \ {s} in the network while minimizing the total costs of establishing
the network and satisfying a pre-defined global upper delay-bound on the paths from the
server to any other client.

2. Rooted Delay-Constrained Steiner Tree (RDCST) Problem: This problem is a generaliza-
tion of the RDCMST problem since it requires only a subset of the nodes in the network
denoted as terminal nodes R ⊆ V \ {s} to be connected to the server. The remaining
potential Steiner nodes V \ (R ∪ {s}) which e.g. represent routers can be optionally used
as intermediate relay nodes to further decrease connection costs or delays.

3. Rooted Delay- and Delay-Variation-Constrained Steiner Tree (RDDVCST) Problem: This
problem is a generalization of the RDCST problem since it additionally considers a so-
called delay-variation constraint: Here, the overall delays of the paths from the server
to the required clients are not allowed to differ too much which as already mentioned
is important for VoIP, database replication, and other applications where all participants
should receive information nearly simultaneously.

In all three problems cost and delay values are in general uncorrelated properties assigned
to the edges. Typically, considered problem graphs are undirected allowing only symmetric
links between nodes. However, the problems can easily be extended to directed networks al-
lowing asymmetric connections with different costs and/or delays for opposite arcs. For some
applications directed graphs may be more realistic e.g. “because of the asymmetric nature of
communication networks” [55].

Clearly, different constraints may have significant impact on the structure and especially the
overall cost of a solution which can be easily observed in Fig. 1.1 where optimal solutions to
different problems on the same network are shown.

Costs and delays may not only incur on links but also on intermediate or terminal nodes.
However, in case of directed networks all node costs and delays can be added to incoming
and outgoing arcs, respectively, without modifying the set of feasible and optimal solutions: If
particular costs and delays incur as soon as the node is visited we add them to the costs and delays
of all incoming arcs, respectively. If costs or delays are only raised when the corresponding node
is utilized as relay node then we add the values to all outgoing arcs. Therefore, when considering
client-server-networks after appropriate transformation an arc delay may include the delays e.g.

3

(1,2)

(3,2)

(4,1)

(1,2)

(1,2)

(3,1)

(1,1)

(8,1)

(2,3)

4 5

1

2 3

s

(a)

(1,2)

(3,2)

(4,1)

(1,2)

(1,2)

(3,1)

(1,1)

(8,1)

(2,3)

4 5

1

2 3

s

(b)

3

(1,2)

(3,2)

(4,1)

(1,2)

(1,2)

(3,1)

(1,1)

(8,1)

(2,3)

54

2

1s

(c)

2 3

(1,2)

(3,2)

(4,1)

(1,2)

(1,2)

(3,1)

(1,1)

(8,1)

(2,3)

4 5

1s

(d)

Figure 1.1: Edge labels denote (cost , delay). (a) Optimal solution to the minimum spanning
tree problem with total costs 7. (b) Optimal solution to the RDCMST problem with delay-bound
4 on the paths from server s to each client, and with total costs 10. (c) Optimal solution to the
RDCST problem with delay-bound 4 and total costs 9 (squared nodes denote terminal nodes and
circles represent optional relay nodes). (d) Optimal solution to the RDDVCST problem with
delay-bound 4 and variation-bound 1 (the path delays from server s to the required clients are
not allowed to differ by more than 1), and with total costs 17.

for switching, queuing, transmission, and propagation. In undirected graphs not all kinds of
node costs and delays can be moved to the edges. In these situations usually edges are replaced
by two oppositely directed arcs.

1.3 Structure of the Thesis

The remainder of this thesis is structured in the following way: Chapter 2 briefly discusses the
methodology used as base for the solution approaches in the next parts. Exact methods for
COPs mainly focusing on integer programming, several (meta-)heuristics, and finally hybrid
approaches combining different concepts are described.

The next three chapters discuss methods solving the previously introduced problems: Chap-
ter 3 is devoted to the RDCMST problem and presents two construction heuristics and sev-
eral metaheuristics: a greedy randomized adaptive search procedure, a variable neighborhood
descent, a general variable neighborhood search, an ant colony optimization approach, and a
genetic algorithm. Most parts of this chapter have been published in

Mario Ruthmair and Günther R. Raidl. A Kruskal-Based Heuristic for the Rooted
Delay-Constrained Minimum Spanning Tree Problem. In R. Moreno-Díaz, F. Pich-
ler, and A. Quesada-Arencibia, editors, Proceedings of the 12th International Con-

4

ference on Computer Aided Systems Theory, volume 5717 of LNCS, pages 713-
720. Springer, 2009.

Martin Berlakovich, Mario Ruthmair, and Günther R. Raidl. A Multilevel Heuris-
tic for the Rooted Delay-Constrained Minimum Spanning Tree Problem. In R.
Moreno-Díaz, F. Pichler, and A. Quesada-Arencibia, editors, Proceedings of the
13th International Conference on Computer Aided Systems Theory: Part I, volume
6927 of LNCS, pages 256-263. Springer, 2012.

Mario Ruthmair and Günther R. Raidl. Variable Neighborhood Search and Ant
Colony Optimization for the Rooted Delay-Constrained Minimum Spanning Tree
Problem. In R. Schaefer et al., editors, Proceedings of the 11th International Con-
ference on Parallel Problem Solving from Nature: Part II, volume 6239 of LNCS,
pages 391-400. Springer, 2010.

Mario Ruthmair and Günther R. Raidl. A Memetic Algorithm and a Solution
Archive for the Rooted Delay-Constrained Minimum Spanning Tree Problem. In
R. Moreno-Díaz, F. Pichler, and A. Quesada-Arencibia, editors, Proceedings of the
13th International Conference on Computer Aided Systems Theory: Part I, volume
6927 of LNCS, pages 351-358. Springer, 2012.

Chapter 4 discusses exact methods based on integer programming for the RDCST problem.
Several modeling approaches are compared to previously proposed ones: a branch-and-price
stabilized by using alternative dual-optimal solutions, a path-cut formulation with directed con-
nection cut and infeasible path inequalities, and a model based on a transformation to a layered
graph strengthened by additional valid inequalities. Some parts of this chapter are published in

Mario Ruthmair and Günther R. Raidl. A Layered Graph Model and an Adaptive
Layers Framework to Solve Delay-Constrained Minimum Tree Problems. In O.
Günlük and G.J. Woeginger, editors, Proceedings of the 15th Conference on Integer
Programming and Combinatorial Optimization (IPCO XV), volume 6655 of LNCS,
pages 376-388. Springer, 2011.

Markus Leitner, Mario Ruthmair, and Günther R. Raidl. Stabilized Column Gen-
eration for the Rooted Delay-Constrained Steiner Tree Problem. In Proceedings of
the VII ALIO/EURO - Workshop on Applied Combinatorial Optimization, pages
250-253, Porto, Portugal, 2011.

Markus Leitner, Mario Ruthmair, and Günther R. Raidl. Stabilized Branch-and-
Price for the Rooted Delay-Constrained Steiner Tree Problem. In J. Pahl, T. Reiners,
and S. Voß, editors, Network Optimization: 5th International Conference, INOC
2011, volume 6701 of LNCS, pages 124-138, Hamburg, Germany, 2011. Springer.

Markus Leitner, Mario Ruthmair, and Günther R. Raidl. On Stabilized Branch-and-
Price for Constrained Tree Problems. Technical Report TR 186-1-11-01, Vienna

5

University of Technology, Vienna, Austria, 2011. accepted with revisions to Net-
works (INOC 2011 special issue).

Chapter 5 proposes two MIP approaches for solving the RDDVCST problem: a multi-
commodity flow model and a layered graph formulation similarly to the one for the RDCST
problem but additionally considering the delay-variation-constraint and extended by a new set
of valid inequalities. Most parts of this chapter are published in

Mario Ruthmair and Günther R. Raidl. On Solving the Rooted Delay- and Delay-
Variation-Constrained Steiner Tree Problem. In Proceedings of the 2nd Interna-
tional Symposium on Combinatorial Optimization, LNCS. Springer, 2012 (to ap-
pear).

Chapter 6 introduces the so-called Adaptive Layers Framework (ALF) which tries to partly
overcome major computational issues of layered graph approaches. We describe basics of the
generally-applicable ALF by illustration on the RDCST problem and then present two more spe-
cific case studies on different problems: the quota-constrained rooted delay-constrained Steiner
tree problem which is a generalization of the RDCST problem and the vehicle routing problem
with time windows. The basic parts of this chapter have been published in

Mario Ruthmair and Günther R. Raidl. A Layered Graph Model and an Adaptive
Layers Framework to Solve Delay-Constrained Minimum Tree Problems. In O.
Günlük and G.J. Woeginger, editors, Proceedings of the 15th Conference on Integer
Programming and Combinatorial Optimization (IPCO XV), volume 6655 of LNCS,
pages 376-388. Springer, 2011.

Furthermore, a talk on an extension of ALF and some further preliminary results has been
given at the INFORMS Telecommunications Conference:

Mario Ruthmair. An Adaptive Layers Framework for Resource-Constrained Net-
work Design Problems. 11th INFORMS Telecommunications Conference, Boca
Raton, Florida, USA, 2012.

Finally, Chapter 7 concludes the thesis by summarizing the major results.

6

CHAPTER 2
Methodology

This chapter discusses basic methods and general principles used to solve combinatorial opti-
mization problems (COPs). Usually, solution methods are classified into two domains: exact
approaches (Section 2.1) aim at providing solutions with a certificate of optimality whereas
heuristic ones (Section 2.2) only try to find solutions as good as possible in many cases without
knowledge of the “distance” to optimality. Since both approaches have their benefits and disad-
vantages it seems to be quite natural to combine successful elements from both domains to form
so-called hybrid methods briefly discussed in Section 2.3.

Furthermore, we will only concentrate on COPs with a single objective and deterministic
input data. However, multi-objective [38], stochastic [84] and robust [16–18] optimization are
highly relevant and upcoming fields of research since in practical applications we often have to
deal with multiple objectives and uncertain data.

Our objective is not to give a complete overview of existing methods in literature but to only
discuss those in more detail which are relevant for our approaches in the following Chapters 3–6.
The structure of this chapter follows in some parts the corresponding presentation in the PhD
thesis of Markus Leitner [112].

2.1 Exact Methods

If one is faced with an optimization problem the natural approach is to search for a best possible,
i.e. an optimal, solution to this problem. In most cases in practice it is also sufficient to find
one optimal solution even when there are multiple optima with the same objective value. If
considering an NP-hard problem – as it is the case for many relevant applications – there is no
polynomial time algorithm to solve it to proven optimality, unless P = NP [52, 138]. Thus,
an exact algorithm for such problems in general requires exponential time to find an optimal
solution which makes it hard or even impossible to solve large instances of a given COP in
reasonable time.

One of the most promising solution approaches for a wide range of COPs is to model the
problem as (mixed) integer linear program (MIP) and solve it by appropriate mathematical pro-

7

gramming methods. Following successful MIP approaches in literature we adopted and applied
these techniques to our problems, see Chapters 4–6. Therefore, in the remainder of this section
we will present the basics of these prominent methods based on the contents of well-known
books on this topic [19, 20, 34, 134, 168, 190].

2.1.1 Linear Programming

Linear programs (LPs) commonly appear as subproblems within MIP approaches and the the-
oretical concepts and results related to LPs build the foundation of integer programming and
further extensions. Thus, we briefly discuss how LPs are defined and how we can find feasible
and optimal solutions to them. In general, an LP defines a set of feasible solutions by a set of lin-
ear (in-)equalities and evaluates these solutions by using a linear objective function. A solution
with minimal (or maximal) objective value is then called optimal solution.

More formally, we are given a matrix A ∈ Rm×n and vectors c ∈ Rn and b ∈ Rm with
real-valued elements. Vector c′ denotes the transposed vector c. A general formulation of an LP
is defined as follows:

zLP = min c′x (2.1)

subject to Ax ≥ b (2.2)

x ∈ Rn+ (2.3)

Note that LPs are not restricted to inequalities as side constraints since equalities obviously
can be represented by two corresponding inequalities with opposite signs. Moreover, any LP
can be transformed to an equivalent formulation only using equalities with additional slack and
surplus variables. Furthermore, maximization problems can be easily converted to minimization
problems by inverting the sign of the objective function.

Alternatively, a linear program P can be written in the following way:

zLP = min{c′x | Ax ≥ b, x ∈ Rn+}. (2.4)

Duality

Duality is a fundamental and important concept in LP theory and utilized in many solution
methods for LPs and MIPs. We can formulate a corresponding dual linear program D for each
primal LP (2.1)–(2.3) in the following way:

wLP = max u′b (2.5)

subject to u′A ≤ c′ (2.6)

u ∈ Rm+ , (2.7)

or alternatively:
wLP = max{u′b | u′A ≤ c′, u ∈ Rm+}. (2.8)

It can be easily seen that by transforming the dual LP to its dual using the same conversion rules
we again obtain the primal LP.

8

A vector x̂ ∈ Rn+ is primal feasible if all constraints in the primal LP are satisfied, i.e. if
Ax̂ ≥ b holds. Similarly, û ∈ Rm+ is dual feasible if û′A ≤ c′. The weak duality theorem is
stated as follows.

Theorem 2.1.1 (Weak Duality). Given are a primal linear program P and its corresponding
dual linear program D. Then, c′x̂ ≥ zLP ≥ wLP ≥ û′b holds if x̂ is primal feasible and û is
dual feasible.

Weak duality can be extended to the even more important and fundamental concept of strong
duality:

Theorem 2.1.2 (Strong Duality). Given are a primal linear program P and its corresponding
dual linear program D. If either zLP or wLP is finite, then both the primal and dual LPs have
finite optimal solution values, and zLP = wLP.

The previous two duality theorems imply exactly four possible results for a pair of primal
and dual LPs P and D, respectively:

1. Optimal solutions x∗ and u∗ for both P and D exist and have finite and equal objective
values, i.e. c′x∗ = zLP = wLP = (u∗)′b.

2. P is unbounded, i.e. zLP = −∞, and thus D is infeasible

3. D is unbounded, i.e. wLP =∞, and thus P is infeasible

4. both P and D are infeasible

Furthermore, the complementary slackness conditions are a consequence of strong duality:

Proposition 2.1.3. Let x∗ and u∗ be optimal solutions to P and D, respectively, then

x∗j ((u
∗)′A− c′)j = 0 ∀j ∈ {1, ..., n}, (2.9)

u∗i (b−Ax∗)i = 0 ∀i ∈ {1, ...,m}. (2.10)

Note that the maximum flow minimum cut theorem [5], which states that the maximum flow
from a source node s to a target node t in a directed graph with given arc capacities is equivalent
to an s-t-cut with minimum capacity, can be shown by application of LP duality and comple-
mentary slackness.

Polyhedral Theory

The possibility to interpret a linear program in a geometric way opened the doors to further
developments, e.g. the well-known simplex algorithm which currently is the in average best-
performing method to solve LPs. The structure of this section mainly follows Nemhauser and
Wolsey [134].

Definition 2.1.4. A polyhedron P ⊆ Rn is a set of points that satisfy a finite number of linear
inequalities, i.e. P = {x ∈ Rn : Ax ≥ b} where A is an m× n matrix and b is vector in Rm.

9

The relation to LPs can be easily seen: The set of feasible solutions of an LP defined by its
linear constraints corresponds to a polyhedron.

Definition 2.1.5. A polyhedron P ⊆ Rn is bounded if there exists a scalar ω ∈ R+ such that
P ⊆ {x ∈ Rn : −ω ≤ xj ≤ ω, ∀j ∈ {1, ..., n}}. A bounded polyhedron is called polytope.

The fact that a polyhedron is a convex set plays an important role, especially for the simplex
algorithm described later.

Definition 2.1.6. A set S ⊆ Rn is a convex set if x,y ∈ S implies that λx + (1 − λ)y ∈
S, ∀λ ∈ [0, 1].

Without loss of generality, we are given an LP

min{c′x | Ax = b, x ∈ Rn+}. (2.11)

Note that as already mentioned before any set of constraints can be represented by an equivalent
set of equalities by introducing further variables. We further assume that the LP does not contain
redundant equations, i.e. rank(A) = m ≤ n, by eliminating all linearly dependent rows in
matrix A. Let aj , j ∈ {1, ..., n}, be the j-th column vector of matrix A. Then, A contains a
non-singular (invertible) sub-matrix AB = (aB1 , ...,aBm) ∈ Rm×m. Let B = (B1, ..., Bm)
and N = {1, ..., n} \ B. By appropriately permuting columns in matrix A we obtain A =
(AB,AN) such that ABxB +ANxN = b with x = (xB,xN). A solution to LP (2.11) is then
given by xB = A−1

B b and xN = 0.

Definition 2.1.7. A non-singular matrix AB ∈ Rm×m is called basis. Then, x = (xB,xN)
with xB = A−1

B b, xN = 0, is a basic solution of Ax = b, where xB is the vector of basic
variables and xN the vector of non-basic variables. If A−1

B b ≥ 0, (xB,xN) is called a basic
primal feasible solution and AB is called a primal feasible basis.

To understand the simplex algorithm we discuss the concepts of adjacent basic solutions and
degeneracy:

Definition 2.1.8. Two bases AB , AB′ are adjacent if only one column is different. If AB and
AB′ are adjacent the corresponding two basic solutions are also denoted adjacent.

Definition 2.1.9. A primal basic feasible solution x = (xB,xN), xN = 0, is degenerate if ∃i
with (xB)i = 0.

Further definitions are necessary to prove that the set of basic feasible solutions of an LP
corresponds to the set of vertices of its associated polyhedron.

Definition 2.1.10. A polyhedron P has dimension k if the number of affinely independent points
in P is k + 1, i.e. dim(P) = k.

Definition 2.1.11. The inequality a′x ≥ bj is called a valid inequality for a set P if it is satisfied
by all points in x ∈ P .

10

Definition 2.1.12. If a′x ≥ bj is a valid inequality for P and F = {x ∈ P | a′x = bj}, F is
called a face of P .

Definition 2.1.13. A face F of P is a facet of P if dim(F) = dim(P)− 1.

Definition 2.1.14. Let P be a polyhedron. A vector x ∈ P is an extreme point of P if @y, z ∈
P, x 6= y, x 6= z, with a scalar λ ∈ [0, 1], such that x = λy + (1− λ)z.

Note that an extreme point of P can be seen as a face F with dim(F) = 0.

Corollary 2.1.15. Each polyhedron has only a finite number of extreme points.

Definition 2.1.16. Let P be a polyhedron. A vector x ∈ P is a vertex of P if ∃c ∈ Rn such that
c′x ≤ c′y, ∀y ∈ P, y 6= x.

Theorem 2.1.17. Let P be a non-empty polyhedron and let x ∈ P . Then, the following state-
ments are equivalent:

• Vector x is a vertex.

• Vector x is an extreme point.

• Vector x is a basic feasible solution.

Corollary 2.1.15 and Theorem 2.1.17 imply that the number of basic feasible solutions of
any LP is finite and due to the following theorem at least one of them is an optimal solution.

Theorem 2.1.18. We consider an LP minimizing c′x over a set of feasible solutions defined by
polyhedron P . Furthermore, we assume that P contains at least one extreme point and there
exists an optimal solution. Then, there exists an optimal solution which is an extreme point of P .

Theorem 2.1.19. A non-empty and bounded polyhedron is the convex hull of its extreme points.

The Simplex Algorithm

The ellipsoid method by Khachiyan [99] or interior point methods introduced by Karmakar [97]
are able to solve LPs in polynomial time. In contrast, the simplex algorithm presented by
Dantzig [33] decades earlier has exponential runtime in the worst case [19]. However, in prac-
tice the simplex method is widely favored due to its far higher performance on average. Thus,
we will focus on this LP algorithm, here, presenting the main ingredients and argumentation.
Further details of the simplex method can be found in [19].

In principle, the simplex algorithm starts from an arbitrary vertex of the polyhedron associ-
ated to an LP and iteratively moves to adjacent vertices with lower objective function values (in
case of minimization problems). If there is no adjacent vertex with better objective value then
the current vertex represents an optimal solution. This stopping criterion only works because of
the convexity of the polyhedron since then a local optimum equals a global optimum.

To return to the context of solution vectors, the move from one basic feasible solution to an
adjacent one is called pivoting step: Beginning with solution x = (xB,xN) exactly one basic

11

variable xi ∈ xB leaves the basis and non-basic variable xj ∈ xN enters it, cf. Definition 2.1.8.
The decision which variable is replaced by which one bases on the reduced costs c̄j of variables
xj ∈ x:

Definition 2.1.20. Let x be a basic feasible solution, AB its associated basis matrix, and cB
the cost vector of basic variables. The reduced cost c̄j of variable xj , j ∈ {1, ..., n}, is defined
as c̄j = cj − c′BA

−1
B aj .

The reduced costs vector c̄B of basic variables is obviously the zero vector since c̄′B =
c′B − c′BA

−1
B AB = 0. The following theorem defines optimality conditions for a basic feasible

solution:

Theorem 2.1.21. Let c̄ be the reduced costs vector of a basic feasible solution x and its associ-
ated basis matrix AB .

• If c̄j ≥ 0, ∀j ∈ {1, ..., n}, then x is optimal.

• If x is optimal and non-degenerate, then c̄j ≥ 0, ∀j ∈ {1, ..., n}.

Provided the current basic feasible solution x is non-degenerate, after the next pivoting step
bringing in a non-basic variable with negative reduced costs we obtain a new solution with lower
objective value. Thus, in case of non-degeneracy and according to Corollary 2.1.15 the simplex
algorithm terminates after a finite number of iterations.

According to Theorem 2.1.21 in an optimal but degenerated solution some variables may
have negative reduced costs. Thus, in case of degeneracy as per Definition 2.1.9 situations can
arise in which a pivoting step does not change the solution and the simplex possibly runs into
a cycle. To guarantee termination cycling can be prevented by using special pivoting rules, e.g.
the lexicographic ordering or the smallest subscript rule (Bland’s rule).

To summarize, given an initial basic feasible solution the simplex method obtains an optimal
solution within a finite number of iterations. However, sometimes an initial feasible solution may
not be trivial to find. In these cases the so-called two-phase simplex algorithm is applied: By
solving an additional linear program introducing appropriate artificial variables at first we are
able to find a basic feasible solution if one exists. Equipped with this solution we can proceed
with the usual simplex on the original LP to search for an optimal solution.

Finally, we want to mention the so-called dual simplex which is executed in the same way
but on the dual LP instead of the primal LP. Because of strong duality we know that the optimal
solutions of P and D are equivalent. However, in some cases it might be beneficial to work on the
dual LP: Consider an LP and a corresponding optimal solution. By adding further constraints –
as it is the case for branch-and-bound (Section 2.1.3) and cutting plane methods (Section 2.1.4)
– the previously primal feasible solution may become infeasible. Thus, the primal simplex
algorithm again has to find a basic feasible solution to start from. In contrast, adding a row in
the primal LP corresponds to adding a column (or variable) in the dual LP. Since the rest of the
dual LP does not change, the previous solution stays dual feasible by simply setting the newly
added variable to zero. The dual simplex can now “hot-start” and it may be expected to need
less pivoting steps to obtain a new optimal solution than the primal simplex which has to start
from scratch.

12

2.1.2 Integer Linear Programming

According to the general definition 1.1.1 of COPs one has to choose a feasible subset of a
given set of elements which yields the best objective value. The decision whether an element
is selected or not usually is modeled by a binary variable instead of a continuous one since
intermediate states do not make sense. More generally, if the base set contains several equivalent
elements we may be interested to decide how many elements of a particular type should be
chosen. Thus, we could use non-negative integer variables to model these problems. More
formally, an integer linear program (IP) is defined as

z = min c′x (2.12)

subject to Ax ≥ b (2.13)

x ∈ Zn+. (2.14)

Matrix A and vectors c and b are defined exactly the same as for the LP (2.1)–(2.3). From a
polyhedral point of view, the set of feasible solutions X = P ∩ Zn+ is the intersection of poly-
hedron P = {x ∈ Rn | Ax ≥ b} with the integer space Zn+. Usually, the set of variables within
an IP is not restricted to integer ones: In practical applications we often have both continuous
and integer variables to model a problem resulting in a so-called mixed integer linear program
(MIP).

Definition 2.1.22 (LP relaxation). Given is an IP (2.12)–(2.14). If we replace the integrality
constraints (2.14) by (2.3) we obtain the linear programming relaxation of IP.

Since constraints (2.3) are weaker restrictions on the set of feasible solutions than (2.14) all
feasible solutions of IP are also feasible for the corresponding LP relaxation, and the optimal
solution of the LP relaxation provides a lower bound to the optimal integer solution of IP, i.e.
zLP ≤ z.

Theorem 2.1.23. Let P = {x ∈ Rn+ | Ax ≥ b}, where A ∈ Rm×n is a rational matrix and
b ∈ Rm a rational vector, and X = P ∩ Zn+. Then the convex hull of the set of integral vectors
X denoted as conv(X) is a rational polyhedron.

This theorem shows us a way to solve IP: We determine the convex hull of set X of feasible
solutions of IP and solve the LP min{c′x | x ∈ conv(X)}. The obtained solution corresponds
to a vertex on the convex hull of X and thus represents a feasible and also optimal solution to
IP. However, the convex hull in general may consist of an exponential number of constraints
and thus it usually is not possible to describe it in polynomial time. In contrast to LPs, solving
IPs is in general NP-hard. Usually we are able to perform “intelligent” enumeration using
sophisticated rules to prune subsets of feasible solutions but in worst case we have to examine
all of them.

Comparing Formulations

In principle, an unlimited number of feasible IP formulations exist for a set of integral solutions
X which all describe a polyhedron whose intersection with space Zn+ results in set X . However,

13

some of them may provide a “tighter” description of the convex hull of X than others, i.e. the
optimal solution value to the corresponding LP relaxation is “nearer” to the optimal integer
value.

Sometimes, different IPs for the same problem may involve different sets of variables. Thus,
comparing these formulations in terms of their corresponding polyhedra seems to be not obvious.
In fact, we need to first project the different polyhedra on a common subspace usually defined
by the variables which directly correspond to the set of elements in the problem description.

Definition 2.1.24. Let P = {(x,y) |Dx+By ≥ d} be a polyhedron. The projection of P on
the set of variables x is defined as projx(P) = {x | ∃y, (x,y) ∈ P}.

Now we are able to compare the polyhedra associated to different IP formulations:

Definition 2.1.25. Given are two integer programming formulations P and P ′ with associated
polyhedra P and P ′, respectively. Assume that variables x are used in both P and P ′. Then P
dominates P ′ if projx(P) ⊆ projx(P ′) and strictly dominates P ′ if projx(P) ⊂ projx(P ′).

Also in cases where two formulations P and P ′ do not have a common set of variables
the concept of dominance is applicable: If each feasible solution of P can be transformed to a
feasible solution of P ′ then P dominates P ′. On the other hand, if there is no solution mapping
from P ′ to P , then P strictly dominates P ′.

2.1.3 LP-based Branch-and-Bound

This section discusses the most common approach for solving IPs and the presentation mainly
follows Wolsey [190]. In principle, branch-and-bound is a divide and conquer approach which
first breaks the problem into smaller and easier problems, then solves these smaller problems,
and finally puts obtained information together to determine a solution to the original problem.

Proposition 2.1.26. We are given a problem z = min{c′x : x ∈ X}. Let X = X1 ∪ ... ∪XK

be a decomposition of X into smaller not necessarily disjoint sets, and let zk = min{c′x : x ∈
Xk}, ∀k ∈ {1, ...,K}. Then z = mink z

k.

In LP-based branch-and-bound approaches a problem is usually split into two subproblems
which is called binary branching but also a decomposition into more than two subproblems is
possible (multi-way branching).

Such a divide and conquer method can be represented by an enumeration tree also called
branch-and-bound tree. For example, we could enumerate all possible values for one particular
integer variable of an IP model on one level of the tree and for each subtree fix this variable to
the corresponding value. However, complete enumeration is usually computationally impossible
for more than 20 variables for many problems. So, how can we benefit from the information
obtained in one node to possibly prune complete subtrees without explicitly enumerating them?

Proposition 2.1.27. Let X = X1 ∪ ... ∪ XK be a decomposition of X into smaller sets and
zk = min{c′x : x ∈ Xk}, ∀k ∈ {1, ...,K}. Let zk be an upper bound and zk be a lower
bound on zk. Then z = mink z

k is an upper bound and z = mink z
k a lower bound on z.

14

Lower bounds for minimization problems can be obtained by solving relaxations of a prob-
lem, e.g. the LP relaxation from Section 2.1.2, Lagrangian relaxation [50], or problem-specific
combinatorial relaxations, whereas upper bounds are usually provided by heuristics yielding
feasible solutions.

In general, subtrees are pruned in three ways:

1. If a subproblem zk = min{c′x : x ∈ Xk} can be solved to optimality then we do not
need to further split up Xk and thus can prune the current subtree.

2. If a lower bound of a subproblem is at least as high as the best-known upper bound, i.e.
zk ≥ z, then clearly there cannot be a better solution in the current subtree and thus it can
be pruned.

3. If the set of feasible solutions of a subproblem is empty, i.e. Xk = ∅, this branch can also
be pruned.

If none of these rules can be applied to a node of the branch-and-bound tree then the subproblem
has to be further split up.

The LP-based branch-and-bound is frequently used in practice to solve IPs since it is gen-
erally applicable without need for problem-specific adaptations. As its name suggests it uses
the LP relaxation to compute lower bounds (for minimization problems) and performs binary
branching in the following way: Let xLP be the optimal solution to the LP relaxation on set X .
If all integer variables have integral values then the obtained lower bound is also an upper bound
and thus the current subproblem is solved. On the other hand, if xLP contains some fractional
values for integer variables, i.e. xLP

j /∈ Z for some j, then set X is split into

X1 = X ∩ {x | xj ≤ bxLP
j c} and X2 = X ∩ {x | xj ≥ dxLP

j e}. (2.15)

By applying this branching we can be sure that X1 ∪ X2 = X, X1 ∩ X2 = ∅, xLP /∈
LP (X1), xLP /∈ LP (X2). Thus, the combined lower bound min{z1, z2} ≥ z monotonically
increases. After adding the constraints created by branching to the models of the corresponding
subproblems we select one of them and resolve the corresponding LP by using the dual simplex
algorithm, see Section 2.1.1. The complete LP-based branch-and-bound algorithm is shown in
Alg. 2.1.

If there are more than one integer variables with fractional values in an LP solution there
has to be chosen one of them to branch on: We could pick a random one, the “most fractional”
one, apply strong branching or special branching for generalized upper bounds, etc. Several
branching strategies are discussed e.g. in [3].

Finally, we also have to make a decision which subproblem from the list of open problems
to examine next: Again we may select a random one or apply more sophisticated strategies,
e.g. depth-first-search or best-node-first. Since strong primal bounds are important for pruning
subtrees, in the depth-first-search strategy we prioritize to go down the branch-and-bound tree to
quickly find primal bounds, which is especially meaningful if we have no or weak heuristics. On
the contrary, best-node-first chooses the subproblem with the smallest lower bound zi = mink z

k

to minimize the total number of examined problems since here we can be sure to never split up

15

Algorithm 2.1: LP-based Branch-and-Bound
Input: IP min{c′x : x ∈ X}
Output: Optimal solution x∗

1 problem list L : min{c′x : x ∈ X}
2 z =∞, incumbent x∗ = 0
3 while L 6= ∅ do
4 choose set Xi and remove it from L
5 solve zi = LP (Xi)
6 xiLP ... optimal LP solution
7 if Xi = ∅ then prune Xi by infeasibility
8 else if zi ≥ z then prune Xi by bound
9 else if xiLP ∈ X then

10 if zi ≤ z then
11 update primal bound z = zi

12 update incumbent x∗ = xiLP

13 prune Xi by optimality

14 else L = L ∪ {Xi,1, Xi,2}
15 return x∗

a subproblem with zk > z which would be pruned later. In practice a combination of several
strategies is typically used, see [20, 134] for a more detailed discussion.

2.1.4 Cutting Planes and Branch-and-Cut

Sometimes a feasible IP model for a problem contains an exponential number of constraints.
Clearly, explicitly formulating all of them for a given instance and then solving the complete
model usually makes no sense with respect to computability. Additionally, possibly not all
of these constraints are needed to describe the polyhedron associated to the corresponding LP
relaxation. Thus, we need a method to identify a reasonable subset of these constraints and only
add this set to the model while ensuring feasibility of the finally obtained solution.

In other situations we may have a compact formulation for a problem, i.e. with a polynomial
number of variables and constraints, which however provides a rather weak LP relaxation bound.
Thus, the corresponding branch-and-bound tree might become quite large during the LP-based
branch-and-bound process. The concept of valid inequalities described in Definition 2.1.11
provides a way to strengthen our LP bounds by adding further constraints which are valid for
the convex hull of integer solutions but cut off parts of the LP relaxation polyhedron.

The so-called cutting plane methods first solve the LP relaxation of a usually small or incom-
plete model, then try to find at least one valid inequality which is violated by the current solution
with respect to the set of feasible solutions to the given problem, add the new constraint(s) to
the model, and resolve it. These steps are repeated until we obtain a feasible and thus optimal
solution for our problem.

16

Definition 2.1.28. Given an IP min{c′x : x ∈ X} and a solution x̂ ∈ Rn+ with x̂ /∈ conv(X),
the separation problem is to find a valid inequality a′x ≥ bj which is violated by x̂.

Generally speaking, cutting plane methods try to obtain the description of the convex hull
of the set X of feasible solutions. However, since conv(X) itself may consist of an exponential
number of inequalities, it may be a good idea to terminate the cutting plane method at some
point. Also if we only separate some particular sets of valid inequalities we may not be able to
identify a violated valid inequality in some iteration and thus end up with a fractional solution.

Therefore, cutting plane methods are usually embedded in a branch-and-bound system re-
sulting in a so-called branch-and-cut algorithm: After adding several cutting planes in a branch-
and-bound node in case of a still fractional solution the usual branching takes place resulting
in further subproblems to be examined. This quite general approach proved to be extremely
successful for numerous problems in literature since it often dramatically reduces the size of the
branch-and-bound tree.

2.1.5 Column Generation and Branch-and-Price

In contrast to cutting plane approaches column generation and branch-and-price provide an effi-
cient way to solve formulations with exponential numbers of variables by adding them dynami-
cally similarly to valid inequalities before. Such models arise e.g. when applying a reformulation
technique called Dantzig-Wolfe decomposition [35] to improve the dual bound obtained by the
LP relaxation.

In these situations delayed column generation is applied initially including only a small
subset of all variables and iteratively adding further variables identified by the so-called pricing
subproblem. This idea has been introduced by Gilmore et al. [57, 58] in 1961 and was used to
solve numerous problems during the following decades, see e.g. [39] for a detailed description
and survey.

We denote the following LP the (linear) master problem (MP):

min
∑
j∈J

cjxj (2.16)

subject to
∑
j∈J

Ajxj ≥ b (2.17)

xj ≥ 0 ∀j ∈ J. (2.18)

Sometimes, the set J of variables and thus the corresponding MP may be extremely large,
e.g. exponentially-sized, which usually makes it intractable to solve directly. The approach is
now to define a restricted master problem (RMP)

min
∑
j∈J̃

cjxj (2.19)

subject to
∑
j∈J̃

Ajxj ≥ b (2.20)

xj ≥ 0 ∀j ∈ J̃ , (2.21)

17

where J̃ ⊂ J is a small subset of the original set of variables.
Let u ≥ 0 be the vector of corresponding dual variable values. Theorem 2.1.21 tells us that

a variable xj , j ∈ J \ J̃ , with negative reduced costs

c̄j = cj − u′Aj < 0, (2.22)

is able to decrease the objective value. In the pricing subproblem we need to either identify a
not yet included variable with negative reduced costs and add it to the model or prove that no
one exists. If at least one new variable has been added, we resolve the LP relaxation and then
the pricing subproblem. This procedure is repeated until there is no variable xj , j ∈ J \ J̃ , with
negative reduced costs left.

However, computational problems within column generation may arise in practice: Vander-
beck [178] describes several issues leading to possibly poor performance, e.g. adding irrelevant
variables in the beginning (heading-in effect), primal simplex degeneracy (plateau effect), and
slow convergence (tailing-off effect). So-called stabilization approaches try to partly avoid these
issues [122].

Similarly to branch-and-cut in the previous section, column generation can be embedded in a
branch-and-bound system to solve the LP relaxation in each branch-and-bound node in order to
finally obtain a proven optimal solution. In this case it is usually beneficial to explicitly consider
special branching rules: It can be easily seen that branching on one of the dynamically added
variables possibly leads to extremely asymmetric subtrees often resulting in a huge number of
examined branch-and-bound nodes.

2.2 Heuristic Methods

Whenever exact algorithms are not applicable to a COP because of too strict time and/or memory
requirements heuristic approaches come into play. This is often the case forNP-hard problems
on large-scale instances. Here, usually a problem-specific algorithm tries to find a solution for
a given problem with “good” objective value. In most cases no proof of optimality and no
information about the quality of a solution with respect to the optimal objective value can be
provided. Thus, even if a heuristic actually finds an optimal solution for an instance it usually
does not know about it and may continue its search for improvements. However, the fundamen-
tal advantage of heuristics is the in general much higher performance in terms of runtime and
memory consumption making it possible to frequently obtain excellent results for large-sized
instances of a COP. We structure the remainder of this part in the following way: Section 2.2.1
discusses heuristics which just aim at constructing one feasible solution, Section 2.2.2 is devoted
to approximation algorithms which are able to provide a worst-case bound on the quality of a
solution with respect to the optimal value, Section 2.2.3 briefly describes local search methods,
and Section 2.2.4 discusses the large class of metaheuristics.

2.2.1 Construction Heuristics

The aim of construction heuristics is to find a solution to a COP by iteratively adding elements
to a partial solution until a complete, feasible solution is obtained. In most cases already made

18

decisions in earlier iterations are not allowed to be withdrawn in later steps. The criteria on
which the selection of elements is based are often greedy-like which means that always the one
of the remaining candidates is chosen which does not violate feasibility and is the best choice
from the current point of view with respect to some cost function. However, the simplicity and
the “one-way-property” of these greedy heuristics may produce solutions which can be far from
being optimal [23].

2.2.2 Approximation Algorithms

Most of the heuristic methods including metaheuristics in general have no tools to evaluate the
quality of a solution with respect to the optimal objective value. However, one kind of heuristics
– so-called approximation algorithms [92] – provide worst-case guarantees in the sense that a
computed solution is not farther away from an optimal solution than a given absolute or relative
bound. The reader is referred to the books by Kellerer et al. [98] and Vazirani [179] for extensive
discussions on this topic.

We are given some instance I of a minimization problem. Let c∗(I) and cA(I) be the objec-
tive values of an optimal solution and a solution obtained by some polynomial-time algorithm
A, respectively.

Definition 2.2.1. An algorithm A is an approximation algorithm with absolute performance
guarantee k > 0, if cA(I)− c∗(I) ≤ k for all instances I of a given minimization problem.

Definition 2.2.2. An algorithmA is an approximation algorithm with relative performance guar-
antee k > 1, if c

A(I)
c∗(I) ≤ k for all instances I of a given minimization problem.

Definition 2.2.3. APX is the class of polynomial-time approximation algorithms with constant
performance guarantee.

If the relative performance guarantee of an algorithm is not fixed to a value k but can
be chosen arbitrarily close to the optimal value at the cost of runtime, then A is called an ε-
approximation scheme.

Definition 2.2.4. An algorithm A is an ε-approximation scheme if for every input ε ∈ (0, 1),
cA(I)
c∗(I) ≤ 1 + ε holds for all instances I of a given minimization problem.

ε-approximation schemes are further differentiated by their runtime with respect to the in-
stance size and ε: If the runtime of A is polynomial in the instance size it is called a polynomial-
time approximation scheme (PTAS). Even more restrictive (and useful in practice) are the so-
called fully polynomial time approximation schemes (FPTAS) which require the runtime to be
also polynomial in 1

ε .

2.2.3 Local Search

A so-called local search [1, 22, 138] requires a feasible starting solution x ∈ X and then tries to
find a solution x′ in a pre-defined neighborhood of x which is at least as good as x. If such a
solution x′ can be found x is replaced by this new one and the neighborhood search restarts.

19

Algorithm 2.2: Local Search
Input: Feasible solution x ∈ X for a minimization problem
Output: Possibly improved feasible solution x

1 while stopping criteria not met do
2 choose x′ ∈ N(x)
3 if c(x′) ≤ c(x) then
4 x = x′

5 return x

Definition 2.2.5. A neighborhood structure is a function N : X → 2X which assigns a set of
neighbors N(x) ⊆ X to each feasible solution x ∈ X .

Usually, neighborhoods are defined by feasible moves modifying small parts of a solution,
e.g. replacing one edge in a solution to a graph problem.

Definition 2.2.6. We are given an instance of a minimization problem, a corresponding feasible
solution x ∈ X with objective value c(x), and a neighborhood structure N . Then, x is called a
local optimum with respect to N iff c(x) ≤ c(x′), ∀x′ ∈ N(x).

Definition 2.2.7. A global optimum to an optimization problem is a local optimum with respect
to all possible neighborhood structures.

The neighboring solution x′ ∈ N(x) commonly is selected in one of the following ways:

• Random selection: We simply pick a random element of N(x) without considering ob-
jective values.

• Next improvement: We enumerate the solutions in N(x) and select the first one which is
better than x.

• Best improvement: We go through all elements of N(x) and choose the best one.

If we perform next or best improvement a natural stopping criterion is when no improved solu-
tion could be obtained anymore, i.e. a local optimum has been reached. However, also different
stopping criteria, e.g. time or iteration limits, are frequently used in practice. Algorithm 2.2
shows this basic local search while more successful extensions of this simple approach are dis-
cussed in the next section.

2.2.4 Metaheuristics

A more general concept are the so-called metaheuristics [53,59,182] which describe a problem-
independent iterative guiding process controlling a set of subordinate mostly problem-specific
heuristics. Applying metaheuristics to optimization problems has become quite popular in re-
cent times especially in the last ten years. One of the reasons for this trend is that in many cases
metaheuristics are able to obtain high-quality solutions while the implementation can often be

20

done with moderate effort: The main task is to provide the problem-specific subordinate op-
erators and heuristics which are often quite simple-structured algorithms. The famous holistic
saying can also be applied to metaheuristics: The combination of these simple components is
more than the sum of its parts.

The secret of a metaheuristic’s success usually lies in finding a balance between diversifi-
cation, i.e. exploring unknown areas in solution space, and intensification, i.e. focusing on the
close surrounding of promising solutions. It is also important to find the right time to switch
between these two modes depending on the current progress: If the search stagnates it may be
beneficial to move to new regions of the solution space. On the other hand, if new best solutions
are found in recent iterations then it may be better to further concentrate on their neighborhoods.

The development of new metaheuristics has recently become an upcoming trend, possibly
caused by the result of Wolpert et al. [189] who have shown with their no free lunch theorems that
there is no (meta-)heuristic which performs better than another one with respect to all problem
classes.

An extensive overview of the most widespread metaheuristics can be found in the books [53,
59]. Here, we only discuss the variants used in our approaches in the following chapters.

Multilevel Refinement

In [184] Walshaw brings the nature of this metaheuristic to the point:

“The multilevel paradigm as applied to combinatorial optimisation problems is a
simple one, which at its most basic involves recursive coarsening to create a hierar-
chy of approximations to the original problem. An initial solution is found, usually
at the coarsest level, and then iteratively refined at each level, coarsest to finest,
typically by using some kind of heuristic optimisation algorithm (either a problem-
specific local search scheme or a metaheuristic). Solution extension (or projection)
operators can transfer the solution from one level to another.”

Algorithm 2.3 shows the general structure of a multilevel refinement heuristic. Additional infor-
mation and exemplary applications to COPs can be found in [183].

The detailed procedures for coarsening, obtaining the solution at the coarsest level, and
refinement are in most cases problem-specific and can hardly be generalized. If considering for
example problems which can be represented on graphs possible coarsening steps could be to
merge adjacent nodes or edges by applying some greedy criterion. An important decision to
be made when designing a reasonable coarsening scheme is how much information should be
preserved on the transition from one level to the next. If discarding too many details of a problem
instance the solution obtained on the coarsest level may be highly infeasible for the original
instance and thus has to be repaired in the refinement phase with possibly high computational
overhead. On the other hand, if too much information is preserved the multilevel principle might
not be able to unfold its power by allowing a more abstract view on the problem catching the
essential elements of an instance.

In contrast to this solution construction an iterated multilevel refinement approach starts with
a given feasible solution and tries to exploit the solution structure within the coarsening phase.
Thus, different starting solutions result in different coarsening steps.

21

Algorithm 2.3: Multilevel Refinement Heuristic
Input: Instance I0 of an optimization problem
Output: Feasible solution x0

1 l = 0
2 while stopping criteria not met do
3 Il+1 = coarsen(Il)
4 l = l + 1

5 xl = solve(Il)
6 while l > 0 do
7 l = l − 1
8 xl = extend(xl+1, Il)
9 xl = refine(xl, Il)

10 return x0

Algorithm 2.4: Greedy Randomized Adaptive Search Procedure
Input: Instance of a minimization problem with element set S
Output: Feasible solution x

1 x = ∅
2 while stopping criteria not met do
3 candidate list CL = S
4 x′ = ∅
5 while x′ is not a complete solution do
6 build restricted candidate list RCL from CL
7 randomly select an element xi from RCL
8 x′ = x′ ∪ {xi}
9 CL = CL \ {xi}

10 (locally) improve x′

11 if x == ∅ ∨ c(x′) < c(x) then
12 x = x′

13 return x

Greedy Randomized Adaptive Search Procedure

The greedy randomized adaptive search procedure (GRASP) has been introduced by Feo et
al. [47, 48] and provides a way to extend the simple greedy construction principle by use of
randomness and local search. While iteratively constructing a solution a greedy approach would
always choose the best element with respect to the used criterion. Here, we usually restrict the
remaining set of elements to a smaller subset containing the best candidates and then randomly
choose one of them. The size of this restricted candidate list usually is controlled by some
parameter.

22

Algorithm 2.5: Variable Neighborhood Descent
Input: Feasible solution x to a minimization problem
Output: Feasible solution x

1 l = 1
2 while l ≤ lmax do
3 find a neighbor x′ ∈ Nl(x) by next- or best-improvement
4 if c(x′) < c(x) then
5 x = x′

6 l = 1

7 else
8 l = l + 1

9 return x

After finishing the solution construction Feo et al. suggest a subsequent improvement phase,
e.g. a local search as described in Section 2.2.3. These steps, i.e. the construction and improve-
ment, are repeated as long as some stopping criteria are not met and the overall best solution
is finally returned. Algorithm 2.4 sketches the GRASP approach. A major disadvantage of this
basic variant of GRASP is the fact that it cannot learn from past iterations. It always starts from
scratch without utilizing already collected information about the problem instance. Ribeiro et
al. [157] extend the basic GRASP in a way that the solution construction profits from past itera-
tions by choosing elements which have been part of good solutions with higher probabilities.

Variable Neighborhood Search

The concept of variable neighborhood search (VNS) [78–80] is based on the fact that a local
optimum with respect to one particular neighborhood structure is not necessarily a local optimum
with respect to another neighborhood structure.

A VNS variant called variable neighborhood descent (VND) utilizes this property and sys-
tematically switches between several neighborhood structures to finally obtain a solution which
is locally optimal with respect to all considered neighborhoods. Algorithm 2.5 shows the VND.

Choosing appropriate neighborhoods and defining the order of examination is still a difficult
problem-specific task. However, at least for finding successful neighborhood orderings different
quite general concepts have been presented recently: Puchinger et al. [148] suggest a dynamic
approach by using neighborhood relaxations to a priori evaluate the success rate of applying a
particular neighborhood and then obtain an appropriate ordering. Hu et al. [88] propose a so-
called self-adaptive VND which determines a promising ordering depending on the successes
and runtimes of neighborhoods in past iterations.

Since VND only provides mechanisms for intensification, the general VNS (GVNS) ad-
ditionally incorporates a set of usually larger neighborhoods for diversification and randomly
“shakes” solutions within these neighborhoods to escape from local optima. After shaking a
VND is applied to intensify the solution again. The GVNS is based on the principle that differ-

23

Algorithm 2.6: General Variable Neighborhood Search
Input: Feasible solution x to a minimization problem
Output: Feasible solution x

1 while stopping criteria not met do
2 k = 1
3 while k ≤ kmax do
4 randomly select x′ ∈ Nk(x) // diversification
5 x′ = VND(x′) // intensification
6 if c(x′) < c(x) then
7 x = x′

8 k = 1

9 else
10 k = k + 1

11 return x

ent starting solutions for a VND result in different local optima which clearly is only the case
for multi-modal solution spaces. The general structure of a GVNS can be seen in Algorithm 2.6.

Genetic Algorithms

Holland [85] introduced the term genetic algorithms (GA) for an in the meanwhile broad class
of heuristic frameworks inspired by nature and especially by the concept of evolution described
by Darwin [36] and Mendel [127]. Basically, a GA works on a set of solutions represented by
strings of some alphabet and denoted as population of chromosomes, and iteratively applies the
common evolutionary processes of selection, recombination, and mutation on it.

The representation (genotype) of a solution (phenotype) within a GA heavily influences the
performance: A direct representation where each element of the instance’s base set corresponds
to a decision bit within a vector may not be the best choice if either the base set is quite large
resulting in long strings or the set of feasible solutions is rather small in relation to the set of
possible bit strings. Thus, usually a more sophisticated (favorably bijective) mapping function
converts a feasible solution to a chromosome and the other way round. In the best case each
possible chromosome corresponds to a feasible solution. In the simplest forms of GAs this
mapping function is the only problem-specific part in an implementation.

Different operators for selection (e.g. randomized, fitness proportional, or tournament selec-
tion), recombination (e.g. one-point or uniform crossover), and mutation are imaginable which
can either be general or in rare cases problem-specific. Algorithm 2.7 shows a quite general GA
template [155]. Further information about GAs can be found in numerous articles and books,
e.g. [128, 155, 188].

A promising extension also for many other metaheuristics is the embedding of local search
methods to improve individual solutions by exploiting the particular problem structure. In case
of GAs this concept is called memetic algorithm [130, 131] where usually both the initial so-

24

Algorithm 2.7: Genetic Algorithm
Input: Instance of a COP
Output: Feasible solution x

1 P ... initial set of chromosomes
2 while stopping criteria not met do
3 O ... empty set of offsprings
4 while offsprings O not sufficient do
5 if crossover condition satisfied then
6 select parent chromosomes P ′ from P
7 select crossover parameter
8 o = crossover(P ′)

9 if mutation condition satisfied then
10 select mutation parameters
11 o = mutate(o)

12 evaluate fitness of offspring o
13 O = O ∪ {o}
14 P = select(P,O)

15 return best solution x ∈ P

lutions and new offsprings are locally improved before continuing the GA. In contrast to basic
GAs, these more complex memetic algorithms frequently belong to the leading state-of-the-art
algorithms for many COPs.

Ant Colony Optimization

Similar to genetic algorithms ant colony optimization is inspired by nature [43]:

“Ant Colony Optimization (ACO) is a metaheuristic that is inspired by the phero-
mone trail laying and following behavior of some ant species. Artificial ants in ACO
are stochastic solution construction procedures that build candidate solutions for the
problem instance under concern by exploiting (artificial) pheromone information
that is adapted based on the ants’ search experience and possibly available heuristic
information.”

Algorithm 2.8 describes ant colony optimization in a rather generic way: In every iteration
each “ant” step by step constructs a solution with respect to probabilities defined by the currently
available pheromones and usually other heuristic information e.g. greedy criteria. After that, a
solution optionally is improved by some local search methods or other metaheuristics. Among
the final solutions the best ones are chosen to “deposit” pheromones according to the solutions’
properties. In the end of an iteration a small amount of each pheromone value “evaporates”. The
pheromones can be seen as memory incorporating the information of all solutions obtained in
past iterations.

25

Algorithm 2.8: Ant Colony Optimization
Input: Instance of a minimization problem
Output: Feasible solution x

1 initialize pheromones
2 while stopping criteria not met do
3 forall the ants do
4 construct solution x′ based on pheromone and heuristic information
5 optionally improve solution x′

6 if c(x′) < c(x) then
7 x = x′

8 deposit pheromones of best ants
9 evaporate pheromones

10 return x

One of the most successful extensions to the original ant system from Dorigo et al. [42] is
theMAX −MIN ant system (MMAS) by Stützle et al. [176] which includes the following
features: The pheromone values are limited by predefined lower and upper bounds preventing
a stagnation of the search if some values nearly reach one and others converge to zero. Addi-
tionally, the pheromones are initially set to the upper bounds focusing on diversification at the
beginning of the search. Furthermore, MMAS follows an elitist strategy which only allows the
best ant of an iteration or even the globally best ant to deposit pheromones.

2.3 Hybrid Methods

As already mentioned, both exact and heuristic methods have their advantages and disadvan-
tages. Exact methods provide proven optimal solutions but only if they have the time and mem-
ory to reach the state of optimality. Especially for large-scale problem instances sometimes no
useful information in terms of bounds or feasible solutions may be obtained within reasonable
time. On the other hand, heuristic approaches are frequently good at quickly providing feasible
solutions but usually without information about the corresponding quality w.r.t. an optimal solu-
tion. Thus, it seems to be obvious to combine the benefits of both approaches to hybrid methods,
see [21, 125, 154] for detailed overviews.

There are two main criteria for classifying different hybrids: By the type of used methods
and by the way they are combined. Collaborative combinations denote hybrids where the par-
ticipating methods stay quite independent but communicate with each other to share obtained
information. This can be done by executing the methods sequentially, in parallel, or in an inter-
twined way, see [151,153] for further details. On the contrary, integrative combinations describe
hybridizations where one method calls another e.g. to solve some subproblem.

Considering the type of used methods, we can distinguish between combining different
metaheuristics and heuristic and exact approaches. We already mentioned some heuristic com-
binations in previous section, e.g. embedding local search methods in other metaheuristics,

26

see [21, 154] for a comprehensive survey on this topic.
In the second case we can once again differentiate between metaheuristic hybrids which

use exact algorithms to solve some subproblems to improve the solution quality, and exact ap-
proaches which utilize (meta-)heuristics to accelerate the solution process by providing stronger
primal bounds. For the promising hybridizations of metaheuristics and mathematical program-
ming techniques even a special term – matheuristics – came up, see [125, 149] for an overview
and applications.

For example when searching large-scale possibly exponentially-sized neighborhood struc-
tures [4] a simple enumeration of all neighboring solutions is not reasonable anymore. Thus, it
makes sense to search for the best neighbor by sophisticated exact methods being able to prune
parts of the search space, e.g. [30, 87, 144]. On the other hand, the heuristic solution of NP-
hard separation problems within cutting plane algorithms [74] and difficult pricing subproblems
in column generation [141, 147] proved to be a successful approaches in literature.

27

CHAPTER 3
Rooted Delay-Constrained Minimum

Spanning Tree Problem

This chapter discusses several heuristic approaches for solving the rooted delay-constrained
minimum spanning tree (RDCMST) problem. Section 3.1 defines the considered problem and
Section 3.2 mentions previous related work. After describing preprocessing techniques to reduce
the size of input graphs in Section 3.3, we present two construction heuristics based on Kruskal’s
minimum spanning tree algorithm in Section 3.4 and the multilevel refinement paradigm in Sec-
tion 3.5, respectively. The first heuristic is embedded in a GRASP in Section 3.6 combined
with a variable neighborhood descent described in Section 3.8 based on two efficient neighbor-
hood structures from Section 3.7. These neighborhoods are further utilized in a general variable
neighborhood search in Section 3.9, an ant colony optimization approach in Section 3.10, and
a memetic algorithm in Section 3.11. How duplicates in our genetic algorithm can be tackled
is discussed in Section 3.12. Experimental results in Section 3.13 show the potential of our
reduction techniques and compare the proposed heuristic methods. Finally, Section 3.14 men-
tions open problems and possible future research directions. The content mainly bases on the
published articles [15, 161, 162, 164].

3.1 Problem Definition

First, we formally define the RDCMST problem. We are given an undirected graph G = (V,E)
with node set V , edge set E, a cost function c : E → Z+

0 , and a delay function d : E → Z+

assigning cost and delay values to all edges, respectively. Furthermore, a fixed root node s ∈ V
and a delay-bound B ∈ Z+ is given. A feasible solution to the RDCMST problem is a spanning
tree T = (V,E′), E′ ⊆ E, satisfying the delay-constraints

dTv =
∑

e∈PT (s,v)

de ≤ B, ∀v ∈ V \ {s}. (3.1)

29

PT (s, v) denotes the unique path from the specified root node s to node v ∈ V \ {s} in the
spanning tree T and dTv the corresponding total delay on this path. Further, we define the cost
function

cT =
∑
e∈E′

ce, (3.2)

summing up the cost values of all edges in a solution T . An optimal solution T ∗ to the RDCMST
problem is a feasible solution with minimal total edge costs, i.e. cT ∗ ≤ cT , ∀T .

The limitation to integer cost and delay values does not restrict the set of input graphs in
practice since rational values can be transformed to integers by scaling and irrational values do
not occur in most real world applications and usually cannot be handled efficiently in computer
programs. Furthermore, cost and delay values do not have to be Euclidian, not even in practice.
In some situations it may be cheaper to make a detour since the direct way may contain some
obstacles which are expensive to overcome. If considering transportation networks the delay on
the direct way may also take longer than alternative paths because of different carriers.

Additionally, we define a directed variant of this problem on graph G′ = (V,A) with arc set
A = {(s, v) : {s, v} ∈ E} ∪ {(u, v), (v, u) : {u, v} ∈ E, u, v 6= s} consisting of two opposite
arcs for each edge in graph G except for edges incident to root node s, for which we include
only the corresponding arc going out from s. A feasible solution to the directed variant is an
arborescence Ts = (V,A′), A′ ⊂ A, directed out of root node s. It can be easily seen that each
feasible spanning tree T bijectively corresponds to a feasible arborescence Ts.

The RDCMST problem isNP-hard because a special case called hop-constrained minimum
spanning tree (HCMST) problem, where de = 1, ∀e ∈ E, is shown to be NP-hard in [32], so
all more general variants of this problem are NP-hard, too.

A trivial lower bound to the optimal cost value is provided by a minimum spanning tree T l

with respect to the edge costs and without considering the delay values at all. If such a tree T l

is feasible for the RDCMST problem, i.e. it satisfies the delay-constraints, then T l is an optimal
solution. Further, we are able to construct a trivial feasible spanning tree T u defined by the
shortest-delay-paths from root s to all nodes v ∈ V without considering edge costs. T u can
be computed e.g. by Dijkstra’s polynomial time algorithm for the single-source shortest path
problem [41]. Finally, T u helps to decide if a feasible solution to the RDCMST problem exists
or not because if even the shortest-delay-path exceeds the specified delay-bound for some node
then there is no feasible tree.

Furthermore, instead of using c{u,v} and d{u,v} to denote cost and delay values assigned to
edge {u, v} ∈ E, we use the more readable notation cuv and duv, respectively. The same holds
for arcs (u, v) ∈ A in directed graph G′. Variable dv, v ∈ V , refers to the node delay with
respect to one specific tree T . In case of multiple solutions the considered tree is explicitely
included in the notation, i.e. dTv , v ∈ V .

3.2 Related Work

Salama et al. [166, 167] introduced the RDCMST problem and proved its NP-hardness by
reduction from the exact cover by 3-sets problem [52]. Furthermore, they presented the first
heuristic approach, a construction method based on Prim’s algorithm to find a minimum span-

30

ning tree [145]. This Prim-based heuristic starts from the root node and iteratively connects a
node which can be reached in the cheapest way without violating the delay-constraint. If at some
point no node can be connected anymore, the delays in the existing tree are reduced by replacing
edges. These steps are repeated until a feasible RDCMST is obtained. A second phase improves
the solution by local search using the edge-exchange neighborhood structure.

Manyem et al. [126] showed that the problem is not in APX, the class ofNP-hard problems
for which there exist polynomial-time algorithms with constant approximation factor.

Exact approaches to the RDCMST problem have been examined by Gouveia et al. in [68]
based on the concept of constrained shortest paths utilized in a MIP formulation. The LP relax-
ation of this formulation is solved by unstabilized delayed column generation and Lagrangian
relaxation methods. To tackle the subproblem of finding constrained shortest paths the authors
use an efficient dynamic programming approach extending the basic method by Dumitrescu et
al. [46]. The column generation method suffers from degeneracy issues, cf. [178], and therefore
is in most cases outperformed by the Lagrangian relaxation approach dualizing the constraints
linking path and edge variables combined with an efficient primal heuristic. Similarly to [66], a
third approach reformulates the constrained shortest path subproblem for each node on a layered
graph and solves them using a multi commodity flow (MCF) formulation. Each layer in this
extended graph corresponds to a specific path delay from the root node. Original nodes are then
duplicated on each layer modeling the visit of a node exactly at the corresponding path delay.
Each edge in G is copied in a similar way skipping a number of layers that corresponds to the
edge’s delay. Thus, delays are implicitly encoded in the layered structure and therefore do not
have to be considered explicitly anymore in a solution approach. In Section 4.8 this transforma-
tion is described in detail. Obviously, the size of the layered graph and therefore the efficiency
of the according model heavily depend on the number of achievable delay values. Hence, this
approach can in practice only be used for instances with a reasonably small set of delay values
and rather low bounds. Additionally, MCF models usually suffer from the huge amount of flow
variables used in the MIP formulation altogether leading to a slow and memory-intensive solv-
ing process. Nevertheless solving these layered graph models turned out to be very effective on
certain classes of instances, see Section 4.9, not only for RDCMST problems, but e.g. for the
hop-constrained connected facility location problem as well, see [118].

To the best of the author’s knowledge there are so far no other publications dedicated to
the RDCMST problem specifically. However, many recent publications exist for the rooted
delay-constrained Steiner tree (RDCST) problem, see Chapter 4, which is a generalization of the
RDCMST problem. In this variant only a subset of the nodes has to be reached within the given
delay-bound, the other nodes can optionally be used as intermediate (Steiner) nodes. In principle
most methods for the RDCST problem can also be applied to the RDCMST problem but often
are rather inefficient since they usually provide special considerations of the optional nodes in
the input graph which do not exist here. Salama et al. [166] compared their Prim-based heuristic
to two successful heuristics for the RDCST problem [104, 196], see Section 4.2, and showed
that their approach outperforms the other methods on most of the rather small instance graphs
with 20 to 200 nodes. Therefore, it makes sense to tackle the RDCMST problem explicitly using
methods exploiting the spanning tree structure of this problem.

The bounded-diameter minimum spanning tree (BDMST) problem is another related problem

31

variant generalizing the HCMST problem. Here, we aim for a spanning tree with minimum cost
in which the number of edges between any pair of nodes is limited by a given diameter. Much
work has been done for this problem: Gruber et al. [75] propose several neighborhood structures
embedded in a variable neighborhood search, an ant colony optimization approach, and a genetic
algorithm. Furthermore, the same authors present in [73] a sophisticated construction heuristic
based on hierarchical clustering, and in [74] a hybrid approach using (meta-)heuristics to solve
a separation problem arising in an integer programming formulation based on so-called jump
cuts. All these methods are also described in more detail in [72]. Finally, Gouveia et al. [70]
present an efficient branch-and-cut method working on a layered graph.

3.3 Preprocessing

Applying preprocessing techniques to reduce the input graph is highly important for most of the
solution approaches since these techniques are able to dramatically reduce the search space and
therefore the runtime of a solution method. First, we clearly can remove edges that cannot be
part of a feasible solution. Second, edges can be discarded that may not be part of all optimal
solutions. Additional to the graph reductions presented in the rest of this section, we could
apply preprocessing rules based on reduced costs, e.g. as Leggieri et al. proposed in [111] for
the RDCST problem. However, for successfully adopting these methods we need strong lower
and upper bounds to the optimal costs which in turn have to be obtained by some dedicated
approaches. Therefore, these kind of techniques are more commonly used in exact approaches
where both bounds are available and tightened throughout the solution process.

3.3.1 Infeasible Edges

In the following cases an edge {u, v} ∈ E cannot be part of a feasible solution so discarding it
safely reduces the search space.

• Obviously if delay duv is larger than the bound B edge {u, v} can be discarded immedi-
ately.

• Edges {u, v} ∈ E that would exceed the bound in all possible trees can also be removed
from the graph [111] if satisfying these conditions:

dmin
u + duv > B ∧ dmin

v + duv > B, (3.3)

whereas minimum delays dmin
v := minP (s,v)

∑
e∈P de, ∀v ∈ V , are calculated a priori by

Dijkstra’s shortest path algorithm [41] applied on the delays and starting from root s. If
we consider an arc (u, v) in the corresponding directed graph G′ only the first condition
has to hold to discard this arc.

Both preprocessing tests can be done on all edges E in O(|E|+ |V | log |V |) time including the
calculation of dmin values if using an efficient implementation of Dijkstra’s algorithm based on
Fibonacci heaps [51].

32

u

v

w

(a)

3

1

2

4

(1, 1)

(1, 1) (5, 5)

(1, 1)

(3, 3)

(b)

Figure 3.1: (a) Subgraph of input graph G = (V,E) forming a triangle. (b) Example for the
importance of edge examination order. Edge labels (ce, de) denote corresponding cost and delay
values.

3.3.2 Suboptimal Edges

Suboptimal edges can be part of a feasible solution but may not appear in an optimal solution, so
discarding them safely prunes the solution space. Since we just aim to find one optimal solution
and not the complete set of optimal solutions we additionally are allowed to remove an edge
which is part of an optimal solution as long as there is another optimal solution which does not
include this edge.

Comparison to root edges

Applying the arc elimination test presented in [65] for the HCMST problem to the RDCMST
problem results in the removal of edge {u, v} ∈ E if edges {s, i} and {s, j} exist and the
following conditions hold:

csv ≤ cuv ∧ dsv ≤ dmin
u + duv ∧ csu ≤ cuv ∧ dsu ≤ dmin

v + duv (3.4)

This preprocessing rule can be helpful for rather dense or complete graphs but in sparse
graphs only few edges are typically discarded, mainly because of the small out-degree of the
root node. Searching those edges takes O(|E|) time if values dmin

v , v ∈ V , are already known.
Similar to infeasible arcs, if we consider an arc (u, v) in the corresponding directed graph G′

only the first two conditions have to hold to discard this arc.

Extension to arbitrary triangles

The following two preprocessing methods are related to the special distance test for the classical
Steiner tree problem in graphs, cf. [100].

Theorem 3.3.1. We consider a triangle consisting of edges {u, v}, {u,w}, {v, w} in graphG =
(V,E), see Fig. 3.1. If

cuv ≥ cuw + cvw ∧ duv ≥ duw + dvw, (3.5)

then edge {u, v} may appear in an optimal solution T ∗ = (V,E∗) but there is at least one other
optimal solution with {u, v} /∈ E∗. Therefore, we can remove edge {u, v} from graph G.

33

Proof. We prove this theorem by contradiction and assume that edge {u, v} satisfying the con-
ditions above is part of any optimal solution T ∗. Without loss of generality, node u is nearer
to the root s in tree T ∗, i.e. du < dv. According to the definition of a feasible solution to the
RDCMST problem, dv = du + duv ≤ B. All three edges of the triangle clearly cannot be
part of a solution since a cycle would violate the tree property. Next, we distinguish three cases
and show that in any of these cases we are able to replace edge {u, v} by another edge without
increasing the tree costs.

1. {u, v}, {u,w} ∈ E∗, {v, w} /∈ E∗: Again, we consider two different cases:

a) dw < du ⇒ dv = dw + dwu + duv

b) dw > du ⇒ dv = du + duv

If we define a tree T ′ by replacing edge {u, v} by {v, w}, du, dw stay the same and dv
may change. By applying the delay condition duv ≥ duw + dvw we obtain:

a) d′v = dw + dwv ≤ dv
b) d′v = du + duw + dwv ≤ dv

So all node delays dv, v ∈ V , either remain unchanged or are decreased, maintaining
solution feasibility. Applying the cost condition cuv ≥ cuw + cvw we obtain new tree
costs cT ′ = cT ∗ − cuv + cvw ≤ cT ∗ . This contradicts the assumption that there is no
optimal tree without edge {u, v}. �

2. {u, v}, {v, w} ∈ E∗, {u,w} /∈ E∗:

a) dw < dv: Since du < dv the solution does not form a feasible tree because of two
different paths from root s to node v. �

b) dw > dv: dw = du + duv + dvw. Replacing {u, v} by {u,w} leaves du unchanged
and leads to:

• d′v = du + duw + dwv ≤ dv
• d′w = du + duw ≤ dw
⇒ cT ′ = cT ∗ − cuv + cuw ≤ cT ∗ . �

3. {u, v} ∈ E∗, {u,w}, {v, w} /∈ E∗: node w is not directly connected to u or v, so we
discuss the following two cases:

a) dw ≤ dv − dvw: replacing {u, v} by {v, w} leaves du, dw unchanged and d′v =
dw + dwv ≤ dv ⇒ cT ′ = cT ∗ − cuv + cvw ≤ cT ∗ . �

b) dw > dv − dvw: let {p, w} ∈ E∗ be the unique edge with dp < dw. We replace
{u, v}, {p, w} by {u,w}, {v, w}, leading to an unchanged du and:

• d′v = du + duw + dwv ≤ dv
• d′w = du + duw = dv − duv + duw ≤ dv − dvw < dw

⇒ cT ′ = cT ∗ − cuv − cpw + cuw + cwv ≤ cT ∗ . �

34

All cases lead to a contradiction of the assumption that edge {u, v} has to be in any optimal
solution. Therefore, we can safely discard this edge and be sure that there is still at least one
optimal solution left.

Considering all triangles including one specific edge {u, v} takes O(|V |) time so the whole
preprocessing test can be done inO(|E| · |V |) time. When iterating over all edges it is important
not to immediately discard found suboptimal edges since this would reduce the set of triangles
for incident edges examined later and therefore would possibly prevent a removal, see Fig. 3.1b
for an example: Examining edge {2, 3} first would result in a removal because of edges {1, 2}
and {1, 3}. However, then no more triangles exist in this graph. Otherwise, if we first examine
edge {3, 4} then finally this one and {2, 3} can be discarded. Therefore, if edges are first sorted
by decreasing costs then we are not faced with this problem and can safely remove an edge at the
time of discovery. In this case we examine the most expensive edge of each triangle before the
two other ones, and this is the only one which potentially can be discarded within this triangle.

To further analyze the possible practical impact of this preprocessing rule we consider a
complete graph G = (V,E) with n = |V | nodes and random real-valued edge costs and delays
uniformly distributed in [0, 1]. The density function of the sum of two uniformly distributed
random variables in [0, 1] [180] is given by

f(x) =

{
x : 0 ≤ x ≤ 1

−x+ 2 : 1 < x ≤ 2
. (3.6)

Then, the probability that the cost condition in Theorem 3.3.1 holds for edge {u, v} with cost
cuv ∈ [0, 1] and delay duv ∈ [0, 1] with respect to one triangle is

Pr(Cuw + Cwv ≤ cuv) =

∫ cuv

0
f(x) dx =

∫ cuv

0
x dx =

cuv
2

2
, (3.7)

so the probability of discarding edge {u, v} with respect to one triangle is

Pr(Cuw + Cwv ≤ cuv ∧Duw +Dwv ≤ duv) =
cuv

2

2
· duv

2

2
=

(cuvduv)
2

4
. (3.8)

The expected value for the removal of edge {u, v} over all possible cost and delay values in one
triangle is further given by

E =

1x

0

(xy)2

4
dx dy =

1

36
. (3.9)

In a complete graph there are exactly n − 2 triangles including edge {u, v}, so the overall
probability of discarding this edge in a complete graph is

Pr({u, v} discarded) = 1− Pr({u, v} not discarded) = 1− (1− (cuvduv)
2

4
)n−2. (3.10)

Again, the expected value for the removal of edge {u, v} over all possible cost and delay values
and triangles can be determined by

E =

1x

0

1− (1− (xy)2

4
)n−2 dx dy, (3.11)

35

(a) (b)

Figure 3.2: Prim-based heuristic (a) compared to Kruskal-based heuristic (b).

which cannot be simplified to an explicit function of n in a trivial way. However, the percentage
of expected edge removals for specific values of n can be numerically approximated, e.g. E ≈
0.54 for n = 100, E ≈ 0.73 for n = 500, E ≈ 0.79 for n = 1000, and E ≈ 0.89 for n = 5000,
resulting in a significant reduction of the edge set in complete graphs with random cost and delay
values. We can easily see: The more nodes in a complete graph, the more triangles exist, and
the higher the probability of an edge to be discarded.

Extension to arbitrary paths

The previous preprocessing rule can be generalized in the following way: Edge {u, v} may
appear in an optimal solution but there is at least one optimal solution without this edge if there
exists a path P (u, v) ⊆ E \ {{u, v}} satisfying the following conditions:

cuv ≥
∑

e′∈P (u,v)

ce′ ∧ duv ≥
∑

e′∈P (u,v)

de′ (3.12)

Since the proof of Theorem 3.3.1 can be extended in a rather trivial way to show the feasibility
of this preprocessing rule, we skip it here.

Applying this preprocessing test reduces to solving the resource-constrained shortest path
problem. This problem isNP-hard in the weak sense, cf. [52], and approximable by an FPTAS
which implies the existence of an exact pseudo-polynomial algorithm. Recently, algorithms
based on dynamic programming have been described for solving practical instances of this prob-
lem quite efficiently, see e.g. [46] for a general approach and [68] for a variant customized to
the RDCMST problem by Gouveia et al. Nevertheless, finding a delay-constrained shortest path
runs in time O(|E| ·B) which extends to O(|E|2 ·B) for the complete preprocessing test.

Especially the last two preprocessing steps must be used with caution. When having a limited
runtime (as in some of our tests in Section 3.13) the preprocessing phase could dominate or even
use up the whole time for large instances. So preprocessing can also be counterproductive in
practice.

36

Algorithm 3.1: Kruskal-Based Heuristic
Input: graph G = (V,E)
Output: feasible solution T = (V,E′) to the RDCMST problem
// Stage 1: merge components

1 LE ... list of edges E sorted by ascending costs
2 C = {C1, ..., C|V |} ... set of components initally consisting of single nodes
3 δv = dmin

v , pv = v, δmax
v = 0, vCv = v, ∀v ∈ V

4 while |C| > 1 ∧ LE 6= ∅ do
5 remove first edge e = {u, v} from LE
6 if Cu 6= Cv then
7 ∆u = B − (δu + duv + δmax

v)
8 ∆v = B − (δv + dvu + δmax

u)
9 if ∆u ≥ 0 ∨∆v ≥ 0 then

10 E′ = E′ ∪ {e}
11 Cu+v = Cu ∪ Cv
12 if ∆u ≥ ∆v then vCu+v = vCu

13 else vCu+v = vCv

14 update δw, pw, δmax
w , ∀w ∈ Cu+v

// Stage 2: repair by adding shortest-delay-paths
15 if |C| > 1 then
16 forall the Ci ∈ C \ {Cs} do
17 P (s, vCi) ... shortest-delay-path from s to vCi

18 u ∈ V ... latest node on P (s, vCi) with δu = dmin
u

19 forall the {v, w} ∈ P (u, vCi) do // assume: dmin
v < dmin

w

20 if pw 6= w, v then E′ = E′ \ {{pw, w}} ∪ {{v, w}}

21 return T

3.4 Kruskal-Based Construction Heuristic

A general problem of the Prim-based heuristic by Salama et al. [166], summarized in Section 3.2,
especially on Euclidian instances is the fact that the nodes in the close surrounding of the root
node are typically connected rather cheaply, but at the same time delay is “wasted”, and many
distant nodes can later only be linked by rather expensive edges, see Fig. 3.2. The stricter the
delay-bound the more this drawback will affect the costs negatively. This fact led us to a more
de-centralized approach by applying the basic concept of Kruskal’s minimum spanning tree
algorithm [107] to the RDCMST problem, see Algorithm 3.1.

3.4.1 Stage 1: Merging components

In the beginning of stage one of the construction heuristic all edges are sorted by ascending
costs and then iteratively added to the solution preventing cycles until a feasible spanning tree is

37

formed. In other words, components initially consisting of single nodes are merged by adding
edges to result in one connected tree. The challenge is to maintain the feasibility of the partial
solutions, i.e. to satisfy the delay-constraint to the root node throughout the whole merging
process. In the Prim-based approach in [166] checking the feasibility of adding an edge to the
existing tree naturally runs in constant time whereas our de-centralized algorithm needs more
effort to achieve this. We have to store and update additional information for each node v ∈ V :

• the delay δv on the path from s to v

• the maximum delay δmax
v to any other node in the same component

• the predecessor pv on the path P (s, v), initialized with node v

To initialize δv Dijkstra’s algorithm [41] calculates the path P (s, v), ∀ v ∈ V , with the shortest
path delay. The paths themselves are not added to the solution, we just keep them stored as a
backup to always have a possible feasible connection to the root node available. These fallback
paths will become essential for stage two of the heuristic.

Initially we have a set of components C = {C1, ..., Ck}, k = |V |. Every time we add an
edge to the solution two components are merged and thereby k is decreased by 1 until set C only
contains one component. For each component Ci, i = 1, ..., k, we specify one node vCi which
is assumed to be nearest to the root node – it can be seen as the local root node of the subtree
Ci. As mentioned above the path P (s, vCi), vCi 6= s, is not part of the tree, we just use it for
testing the feasibility of a partial solution.

Now we start iterating over the sorted edge-list. Let e = {u, v} ∈ E be the next edge on the
list and Cu 3 u, Cv 3 v be the components incident to e, respectively. Clearly, if Cu = Cv,
edge e would create a cycle and thus can be skipped. If Cu 6= Cv, the decision of adding e to the
tree and thereby merging the two components Cu and Cv is based upon fulfilling at least one of
the following two conditions:

δu + duv + δmax
v ≤ B (3.13)

δv + dvu + δmax
u ≤ B (3.14)

So if it is allowed to add edge e to the solution in this sense, the node information of all nodes in
the newly created component Cu+v = Cu∪Cv has to be updated. First of all we have to specify
the new vCu+v . There are many possibilities of choosing this node with the only constraint that
δvCu+v

plus the delay of path P (vCu+v , w) has to satisfy the delay-bound for all w ∈ Cu+v. A
very simple and fast method turned out to be the most successful one: if only condition (3.13) is
met then vCu+v = vCu , when only condition (3.14) holds, we choose vCv , and if both conditions
are satisfied we prefer the vCi where the corresponding inequality has a larger gap to the delay-
bound.

Beginning from this chosen local root node for component Cu+v we perform a depth-first
search to update pw and δw, ∀ w ∈ Cu+v, using δvCu+v

as the starting delay. The maximal
extents δmax

w can be determined in linear time profiting from the tree structure of the component:
Basically we perform a depth-first-search from an arbitrary node in the subtree to obtain the
delay-heights of all nodes. In a second depth-first-search we use these heights to finally calculate
the maximal extents.

38

The iterations stop if the solution only consists of one component, which at the same time
means that it is feasible, or there are more than one components but no more edges left in the
list. The latter case is handled in stage two.

To conclude, stage one consists of sorting all edges of the graph in O(|E| log |E|) time,
testing each one for feasibility in constant time and updating the node information in O(|V |)
time if an edge is added which can happen at most |V | − 1 times due to the properties of a tree.
So the total runtime is in O(|E| log |E|+ |V |2).

3.4.2 Stage 2: Extension to a feasible solution

At the end of stage one the graph is not necessarily connected, so in stage two the remaining
subtrees are attached to the component which contains the root node by adding the shortest-
delay-path P (s, vCi), ∀ Ci ∈ C, Ci 6= Cs. At least one of the edges of a path P (s, vCi) creates
a cycle when adding it to the solution, otherwise all edges of P (s, vCi) would have been included
in stage one. Consequently, the main task in this stage is to dissolve resulting cycles to form a
tree without violating the delay-constraint.

Paths are added by backtracking the shortest-delay-path starting from node vCi until a node
u with minimal delay δu is reached. We can be sure that path P (s, u) is already the shortest-
delay-path and do not have to go further – in the worst case, however, we end up at the root
node. Now we add the missing edges along path P (u, vCi) until we are back at vCi . Cycles can
occur if edge e = {v, w} is added and pw 6= w, v, indicating that two different paths P (s, w)
exist. Removing edge {pw, w} dissolves this cycle and at the same time maintains feasibility
because the delay δ of any node in component Cw can only get smaller or stay equal since δw
now is the smallest possible delay and all other nodes depend on that. In Cpw no delays are
affected by the removal of edge {pw, w} since all nodes are connected to the root node through
path P (s, vCpw

).
Since the dissolving of cycles can be done in constant time and each node is examined at

most once, stage two runs in O(|V |).

3.4.3 Example

Figure 3.3 shows a detailed example of applying the Kruskal-based heuristic, see Algorithm 3.1,
on instance graph G from Fig. 3.3a. Edges included in the solution and the components’
representatives vCi , ∀Ci ∈ C, are colored blue. The shortest delays to nodes v ∈ V are:
dmin
s = 0, dmin

1 = 2, dmin
2 = 2, dmin

3 = 1, dmin
4 = 4, dmin

5 = 2. Only relevant changes in
variable values will be mentioned in this example description. After sorting the edge set firstly
by ascending costs, secondly by ascending delays, and thirdly by ascending node indices, stage
one examines the edges in the following order:

1. {2, 3} (Fig. 3.3b): ∆2 = 1, ∆3 = 2 ⇒ E′ = {{2, 3}}, vC2+3 = 3, δ2 = 2, δ3 =
1, p2 = p3 = 3, δmax

2 = δmax
3 = 1.

2. {3, 5} (Fig. 3.3c): ∆3 = 2, ∆5 = 0 ⇒ E′ = {{2, 3}, {3, 5}}, vC3+5 = 3, δ2 = δ5 =
2, δ3 = 1, p2 = p3 = p5 = 3, δmax

2 = δmax
5 = 2, δmax

3 = 1.

39

(4,2)

(3,2)

(1,2)

(1,1)

(5,2)

(3,3)

(1,1)

(8,1)

(2,3)

1s

2 3

4 5

(a)

(4,2)

(3,2)

(1,2)

(1,1)

(5,2)

(3,3)

(1,1)

(8,1)

(2,3)

1s

2 3

4 5

(b)

(4,2)

(3,2)

(1,2)

(1,1)

(5,2)

(3,3)

(1,1)

(8,1)

(2,3)

1s

2 3

4 5

(c)

(4,2)

(3,2)

(1,2)

(1,1)

(5,2)

(3,3)

(1,1)

(8,1)

(2,3)

1s

2 3

4 5

(d)

(4,2)

(3,2)

(1,2)

(1,1)

(5,2)

(3,3)

(1,1)

(8,1)

(2,3)

1s

2 3

4 5

(e)

(4,2)

(3,2)

(1,2)

(1,1)

(5,2)

(3,3)

(1,1)

(8,1)

(2,3)

1s

2 3

4 5

(f)

(4,2)

(3,2)

(1,2)

(1,1)

(5,2)

(3,3)

(1,1)

(8,1)

(2,3)

1s

2 3

4 5

(g)

Figure 3.3: Application of Kruskal-based heuristic on input graph in (a) with B = 4: Stage one
in (b)–(e) and stage 2 in (f)–(g).

40

3. {s, 2} (Fig. 3.3d): ∆s = 0, ∆2 = 0 ⇒ E′ = {{2, 3}, {3, 5}, {s, 2}}, vCs+2 = s, δs =
0, δ2 = 2, δ3 = 3, δ5 = 4, ps = s, p2 = s, p3 = 2, p5 = 3, δmax

s = 4, δmax
2 =

2, δmax
3 = 3, δmax

5 = 4.

4. {2, 5}: creates a cycle⇒ skip.

5. {1, 3}: ∆1 = −3, ∆3 = −1⇒ skip.

6. {2, 4}: ∆2 = −1, ∆4 = −5⇒ skip.

7. {s, 1}: (Fig. 3.3e): ∆s = 2, ∆1 = −4 ⇒ E′ = {{2, 3}, {3, 5}, {s, 2}, {s, 1}}, vCs+1 =
s, δs = 0, δ1 = δ2 = 2, δ3 = 3, δ5 = 4, ps = p1 = p2 = s, p3 = 2, p5 = 3, δmax

s =
δmax

2 = 4, δmax
1 = δmax

5 = 6, δmax
3 = 5.

8. {4, 5}: ∆4 = −8, ∆5 = −2⇒ skip.

9. {s, 3}: creates a cycle⇒ skip.

We can clearly see in Fig. 3.3e that after stage one there are still two components left, so
we need to apply stage 2 to repair our partial solution. The shortest-delay-path to node 4 is
defined by P (s, 4) = {{s, 3}, {3, 5}, {5, 4}}. Adding edge {s, 3} creates a cycle which is
dissolved by removing edge {p3, 3} = {2, 3}. The next edge {3, 5} can be skipped since it is
already contained in our solution. Due to the decrease of the delays of nodes 3 and 5 to values
δ3 = 1, δ5 = 2, it is now feasible to add edge {5, 3} finally resulting in a feasible tree T
with costs cT = 19. For comparison, an optimal solution T ∗ has costs cT ∗ = 18 and edge set
E′ = {{s, 2}, {s, 3}, {1, 3}, {3, 5}, {4, 5}}.

3.4.4 Modifications

Two modifications in stage one usually lead to better results when applying a subsequent im-
provement method, such as those described in Section 3.8:

1. A delay-factor Fd ≥ 1 is introduced and multiplied with the left side of inequalities (3.13)
and (3.14) when checking the feasibility of adding an edge. In other words, the delay-
bound is lowered by the factor 1

Fd
.

2. If stage one has added a predefined number of edges less than |V | − 1 it is aborted and
stage two uses shortest-delay-paths to attach the left components.

Both modifications provide a solution where the gap between the node-delays dv and the delay-
bound is usually larger than in the spanning tree of the standard implementation. This higher
“residual delay” leads to more possibilities in a following improvement phase and therefore
often results in final solutions with less total cost.

41

(7, 2)

s

2 3

4

(5, 3)

(1, 1)

(1, 3) (2, 1)

(a)

(7, 2)

s

2 3

4

(5, 3)

(1, 1)

(1, 3) (2, 1)

(b)

(7, 2)

s

2 3

4

(5, 3)

(1, 1)

(1, 3) (2, 1)

(c)

(7, 2)

s

2 3

4

(5, 3)

(1, 1)

(1, 3) (2, 1)

(d)

Figure 3.4: A small example graph (a) with delay-bound B = 5. The edge description is read
(ce, de). Adding the cheapest edges to the solution in (b) forces the use of an expensive edge
in (c). By also considering the delay a better solution (d) can be created.

3.5 Multilevel Construction Heuristic

In the previously discussed construction heuristics, see Sections 3.2 and 3.4, the inclusion of an
edge with low costs is not necessarily cheap w.r.t. the overall solution. If an edge with low costs
but high delay is used it can affect the further construction of the solution negatively. The high
delay can force a heuristic to use very expensive edges with low delay in order to not violate
the delay-constraint. Such decisions sometimes create weak solutions corresponding to poor
local optima which even good improvement procedures are not able to overcome. An example
is given in Fig. 3.4.

3.5.1 Ranking Score

In an attempt to estimate how promising an edge is, the ranking score is introduced. It is more
likely that an edge with comparatively low costs and low delay is part of an optimal solution
than an edge with very low costs but high delay. The ranking score

σe =

(
1− rce − 1

|E|

)
·
(

1− rde − 1

|E|

)
(3.15)

describes the relative cost in relation to the delay of an edge e ∈ E in comparison to other edges;
rce ∈ {1, . . . , |E|} and rde ∈ {1, . . . , |E|} represent the cost and delay ranks of edge e obtained
by sorting the edges according to costs and delays, respectively. After normalizing the ranking
and subtracting from 1 in order to ensure that lower ranks result in higher scores the partial cost
and delay scores are multiplied. The resulting ranking score σe ∈ [0, 1] is an indicator for the
quality of an edge e ∈ E.

The ranking score is further extended to vertices. To calculate the ranking score σv of a node
v ∈ V we sum up the ranking scores of all incident edges. That way the ranking score of a node
is high if high quality or a high number of edges are connected to that node. For example the

42

ranking score of an outlying node with few, possibly bad, connections is lower than the ranking
score of a central node with many connections.

3.5.2 Ranking-Based Multilevel Heuristic

The previous construction heuristics referred to in Section 3.2 and 3.4 are based on adding edges
to a partial solution trying to minimize the costs in each step. However, the delay is ignored as
long as no constraint violation occurs. This can sometimes lead to relatively poor solutions
with a rather low potential for further improvement by local search methods. This motivates a
heuristic that uses the above described ranking score to decide which edges should be part of a
solution.

Our approach is based on the multilevel refinement paradigm [183], firstly creating a hierar-
chy of approximations of the original problem by recursive coarsening. After an initial solution
has been found on the coarsest level it is iteratively refined in each level obtaining a feasible
solution for the original problem in the end. In our case the vertices are iteratively merged to
components until only one component is left. The key difference to the Kruskal-based construc-
tion heuristic from Section 3.4 is the iterative merge process. In each level a number of vertices,
including the source node, is selected as so-called super-vertices. The remaining vertices are
connected directly to these super-vertices creating multiple subtrees in each level. These sub-
trees are contracted to vertices in the next level and the process continues until only the source
node remains. The resulting tree is a spanning tree and due to checks during the merge process
it is guaranteed that the delay-constraints are not violated. The construction heuristic is shown
in detail in Algorithm 3.2.

Selecting Super-vertices

In each level the ranking-based multilevel heuristic has to choose a number of vertices to be-
come super-vertices. These super-vertices act as root nodes to which the remaining vertices can
be connected. For a practical application, i.e. a shipment organization, this can be compared to
choosing the site of a regional distribution center and creating a hierarchical network of trans-
portation. The two major questions concerning super-vertices are how many vertices should
become super-vertices and which vertices should be chosen.

The number of super-vertices chosen during each level is determined by a user parameter
called superrate, a simple percentage. A low superrate leads to a low number of super-vertices,
therefore to a high number of remaining vertices which have to be connected. The advantage
of a low superrate is comparatively fast coarsening since the number of levels will be low, too.
However since the number of super-vertices is directly related to the number of possible con-
nections for each node the search space is smaller. A low superrate is a promising choice if the
solution is expected to be a star-like network. In constrast a higher superrate leads to a slower
coarsening since more levels can be expected. Note that the superrate is not directly related to
the number of levels due to a mechanism ensuring a feasible solution which will be introduced
later. The obvious advantage of a high superrate is that more and maybe better connections are
available for each non-super-vertex.

43

Algorithm 3.2: Ranking-Based Multilevel Heuristic
Input: graph G = (V,E)
Output: feasible solution T = (V,E′) to the RDCMST problem

1 calculate ranking scores σe, ∀e ∈ E, and σv, ∀v ∈ V
2 LE ... list of edges E sorted by decreasing ranking scores σe
3 V ′ = V
4 pv = v, δmax

v = 0, ∀v ∈ V // predecessors, subtree delays
5 while ∃v ∈ V \ {s} : pv = v do
6 choose super-vertices S ⊆ V ′ depending on scores σv and parameter superrate
7 V ′ = V ′ \ S
8 forall the e = {u, v} ∈ LE do
9 if u ∈ S ∧ v ∈ V ′ ∧ pv = v ∧ dmin

u + duv + δmax
v ≤ B then

10 pv = u, E′ = E′ ∪ {e}, V ′ = V ′ \ {v}
11 if δmax

u < δmax
v + duv then δmax

u = δmax
v + duv

12 if u /∈ S ∨ v /∈ S then LE = LE \ {e}
// connect rest of nodes via shortest-delay-paths

13 forall the v ∈ V ′ do
14 u ... predecessor of v in shortest-delay-path P (s, v)
15 S = S ∪ {u}, V ′ = V ′ \ {u, v}
16 pv = u, E′ = E′ ∪ {{u, v}}
17 if pu 6= u then
18 if δmax

pu = δmax
u + dpuu then δmax

pu = maxw∈V, pw=pu{δmax
w + dpuw}

19 E′ = E′ \ {{pu, u}}, pu = u

20 if δmax
u < δmax

v + duv then δmax
u = δmax

v + duv
21 forall the e = {u,w} ∈ E \ LE , w ∈ S do LE = LE ∪ {e}
22 V ′ = S
23 update vertex ranking scores σv, ∀v ∈ V ′, considering only edges e ∈ LE
24 return T

44

(3, 1)

2

s 3

4 6

5

(2, 2)

(4, 6) (3, 4)

(4, 5)

(1, 2)

(3, 4)

(a)

2s
(1, 2) (2, 4)

(1, 2) (3, 1)

4

3

(b)

Figure 3.5: (a) An example graph with B = 10. We consider edge {3, 4}: dmin
4 = 3, dt3 = 5.

(b) An example graph with B = 5. Node 3 can only be connected via node 4.

The second question is which vertices should become super-vertices. Here we apply the
ranking score for vertices. The vertices with the highest ranking scores are those with either
a high number of connections, thus ensuring a high number of possibilities, or very promising
connections. In case of equal ranking scores super-vertices are randomly selected making the
selection process non-deterministic. Finally, root node s is always selected as super-vertex.

Merge Process

After the selection of super-vertices the next step is to connect the remaining vertices. Sorted by
ascending ranking scores, the only edges considered in the merging process are those between
super-vertices and other nodes. If

dmin
u + duv + δmax

v ≤ B (3.16)

is satisfied for an edge {u, v} we know that its use would not violate the delay-constraint. δmax
v

represents the delay caused by the current subtree of node v, see Fig. 3.5a. If node 4 is chosen
as super-vertex and we want to use edge {3, 4} to connect node 3, we have to consider dmin

4

and δmax
3 . Summing up these delays plus the edge delay results in an overall delay equal to B.

Therefore, this edge can safely be used to connect node 3.
However, there is no guarantee that all non-super-vertices can be connected this way. Fig-

ure 3.5b illustrates the problem. For a delay-bound of 5 the only possible path to connect node
3 is via node 4. In case node 4 is not a super-vertex there is no possibility to connect node 3.
Therefore, a repair strategy for these problematic vertices is required. If an instance is solv-
able a feasible path to connect a node to the source is given by the shortest-delay-path, cf. Sec-
tion 3.4.2. For each problem node the immediate predecessor in the shortest-delay-path becomes
a super-vertex in the current level. Additionally, a connection between the new super-vertex and
a possibly already assigned predecessor is removed. This way a new subtree is created.

After this merge process all non-super-vertices are connected and a set of subtrees with
super-vertices as their root remains. These subtrees are contracted and represent the vertices in
the next level, whereas only edges connecting two super-vertices are now considered anymore.
This process is continued until only the source node remains, corresponding to a feasible solution
for the original problem. The RBMH runs in O(|E| log |E|+ |V |2) time, see [14] for a detailed
runtime analysis.

45

(4,2)

(3,2)

(1,2)

(1,1)

(5,2)

(3,3)

(1,1)

(8,1)

(2,3)

1s

2 3

4 5

(a)

(4,2)

(3,2)

(1,2)

(1,1)

(5,2)

(3,3)

(1,1)

(8,1)

(2,3)

1s

2 3

4 5

(b)

(4,2)

(3,2)

(1,2)

(1,1)

(5,2)

(3,3)

(1,1)

(8,1)

(2,3)

1s

2 3

4 5

(c)

(4,2)

(3,2)

(1,2)

(1,1)

(5,2)

(3,3)

(1,1)

(8,1)

(2,3)

1s

2 3

4 5

(d)

(4,2)

(3,2)

(1,2)

(1,1)

(5,2)

(3,3)

(1,1)

(8,1)

(2,3)

1s

2 3

4 5

(e)

(4,2)

(3,2)

(1,2)

(1,1)

(5,2)

(3,3)

(1,1)

(8,1)

(2,3)

1s

2 3

4 5

(f)

Figure 3.6: Applicaton of ranking-based multilevel heuristic on input graph in (a) with B = 4:
Level 1 in (b)–(c), level 2 in (d), level 3 in (e), and the final solution in (f).

3.5.3 Example

Applying the ranking-based multilevel heuristic on the input graph from Section 3.4.3 with
delay-bound B = 4 results in the solution construction shown in Fig. 3.6. According to For-
mula 3.15 the edge ranking scores are: σ{s,1} = 0.22, σ{s,2} = 0.67, σ{s,3} = 0.11, σ{1,3} =
0.37, σ{2,3} = 1, σ{2,4} = 0.12, σ{2,5} = 0.15, σ{3,5} = 1, σ{4,5} = 0.15. Corresponding
node ranking scores are: σs = 1, σ1 = 0.59, σ2 = 1.94, σ3 = 2.48, σ4 = 0.27, σ5 = 1.3. The
parameter controlling the selection of super-vertices is set to superrate = 50%, here. Super-
vertices are colored blue in Fig. 3.6. The following coarsening steps are performed:

• Level 1 (Fig. 3.6b): S = {s, 2, 3}, V ′ = {1, 4, 5},
LE = {{2, 3}, {3, 5}, {s, 2}, {1, 3}, {s, 1}, {2, 5}, {4, 5}, {2, 4}, {s, 3}}:

46

1. {2, 3}: connects two super-vertices⇒ skip.

2. {3, 5}: 1 + 1 + 0 ≤ B ⇒ p5 = 3, E′ = {{3, 5}}, δmax
3 = 1.

3. {s, 2}: connects two super-vertices⇒ skip.

4. {1, 3}: 1 + 2 + 0 ≤ B ⇒ p1 = 3, E′ = {{3, 5}, {1, 3}}, δmax
3 = 2.

5. {s, 1}: node 1 is already connected⇒ skip.

6. {2, 5}: node 5 is already connected⇒ skip.

7. {4, 5}: connects two non-super-vertices⇒ skip.

8. {2, 4}: 2 + 3 + 0 > B ⇒ skip.

9. {s, 3}: connects two super-vertices⇒ skip.

Set V ′ = {4} is still non-empty. Therefore, we connect node 4 using the last edge of the
shortest-delay-path P (s, 4) = {{s, 3}, {3, 5}, {5, 4}}: S = {s, 2, 3, 5}, p4 = 5, E′ =
{{3, 5}, {1, 3}, {4, 5}}. Node 5 is now a super-vertex and thus its connection to node 3 is
removed again: E′ = {{1, 3}, {4, 5}}, p5 = 5, δmax

5 = 2, see Fig. 3.6c. Relevant vertex
ranking scores are now: σs = 0.78, σ2 = 1.82, σ3 = 2.11, σ5 = 1.15.

• Level 2 (Fig. 3.6d): S = {s, 3}, V ′ = {2, 5},
LE = {{2, 3}, {3, 5}, {s, 2}, {2, 5}, {s, 3}}:

1. {2, 3}: 1 + 1 + 0 ≤ B ⇒ p2 = 3, E′ = {{1, 3}, {4, 5}, {2, 3}}, δmax
3 = 2.

2. {3, 5}: 1 + 1 + 2 ≤ B ⇒ p5 = 3, E′ = {{1, 3}, {4, 5}, {2, 3}, {3, 5}}, δmax
3 = 3.

3. {s, 2}: node 2 is already connected⇒ skip.

4. {2, 5}: connects two non-super-vertices⇒ skip.

5. {s, 3}: connects two super-vertices⇒ skip.

Set V ′ is now empty. Thus, we only have to update the vertex ranking scores needed for
the next level: σs = σ3 = 0.11.

• Level 3 (Fig. 3.6e): LE = {{s, 3}}, S = {s}, V ′ = {3}. Edge {2, 3} can be added since
0 + 1 + 3 ≤ B: p3 = s, E′ = {{1, 3}, {4, 5}, {2, 3}, {3, 5}, {s, 3}}, δmax

s = 4.

Since all nodes v ∈ V \ {s} now have a valid predecessor, edges E′ form a feasible solution,
see Fig. 3.6f. In this case we even obtain an optimal solution with cT = 18.

3.6 Greedy Randomized Adaptive Search Procedure

To provide many different feasible starting solutions for a subsequent improvement phase we
extended stage one of the Kruskal-based construction heuristic towards a greedy randomized
adaptive search procedure (GRASP) [48]. In each iteration of stage one we do:

1. store all feasible edges in a candidate list (CL),

47

2. select a subset of least-cost edges of CL with

ce ≤ min
e∈CL

ce + α · (max
e∈CL

ce − min
e∈CL

ce), (3.17)

for a predefined parameter α ∈ [0, 1] and insert them into a restricted candidate list (RCL),

3. randomly choose an edge from the RCL, and

4. merge components by adding this edge, see Section 3.4.1.

3.7 Neighborhood Structures

Local search methods are commonly used to heuristically improve existing feasible solutions
and can easily be integrated in many other metaheuristics and exact methods, see 2.2 and 2.3.
However, their efficiency heavily depends on the used neighborhood structure and the according
search algorithm. Too small neighborhoods possibly restrict the search space too much while
too large ones might not be completely searched in reasonable time. Additionally, in many cases
it is not trivial to provide an efficient feasibility check to quickly sort out infeasible neighboring
solutions. In preliminary tests we experimented with different neighborhood structures for the
RDCMST problem, but here we only discuss the two most relevant and successful ones, the
Edge-Replace and Component-Renew neighborhoods.

3.7.1 Edge-Replace Neighborhood

A move in the Edge-Replace neighborhood simply removes an edge and connects the resulting
two components in the cheapest feasible way. To efficiently find a new feasible edge after
removing one from the solution, we first compute the maximal delay extents dmax

v for all nodes v
in the component which is now separated from the root node. The determination of these values
takes linear time, see Section 3.4.1, but then allows us to check the feasibility of a candidate
edge {u, v} in constant time by testing the condition

du + duv + dmax
v ≤ B, (3.18)

where node u is part of the root component and node v is included in the separated component.
By examining all candidates in the order of ascending costs we therefore are able to find the
cheapest feasible replacement edge in O(|E| log |E|) time.

Since we use additional supporting data structures, it turned out to be practically benefi-
cial w.r.t. runtime to always perform a complete neighborhood search until a local optimum is
reached before turning to an alternative neighborhood structure. Furthermore, we apply a next
improvement step function considering the removal edges in decreasing cost order since the
more time-consuming best improvement provided no significant advantage, here. Both the set
of edges in the current solution and the set of candidate edges for replacement are managed by
a priority queue based on heaps [31] to allow constant time access to the most expensive and
cheapest edge, respectively, and insertions and deletions in logarithmic time.

48

Due to the required cost decrease in each move it can easily be seen that we can perform
at most O(|E|) moves, leading to the whole local search in the Edge-Replace neighborhood
running in O(|E|2 log |E|) time.

3.7.2 Component-Renew Neighborhood

A Component-Renew move also deletes an edge, but completely dissolves the component which
is now separated from the root node. It then re-adds the individual nodes by applying Prim’s
algorithm [145] always respecting the delay-bound. A feasibility check for a candidate edge
{u, v} within Prim’s algorithm can be done in constant time by testing

du + duv ≤ B, (3.19)

where node u is part of the root component and node v is one of the singletons. In some cases not
all nodes can be added due to the delay-bound, cf. [166]. These remaining nodes are again joined
to the root component by shortest-delay-paths, dissolving created cycles, see Section 3.4.2. Alto-
gether, one move takesO(|E| log |E|) time which is dominated by the management of candidate
edges in priority queues for Prim’s algorithm.

The cost gain of one specific move cannot be determined until the end of this move which
may comprise many modifications to the tree. In the beginnings we used to work on a solution
copy which turned out to be inefficient in practice because of repeated creations and deletions
of complete trees. Thus, we introduced some kind of snapshot mechanism recording all modifi-
cations within a move. If the total tree cost finally increases we just undo all operations, else we
do not need to do anything but deleting all records. Additionally, in some cases we are able to
decide a priori whether a move can improve a solution or not: Assume that we previously per-
formed an improving move by removing edge {u, v} and renewing the subtree of v by Prim’s
algorithm. Then it makes no sense to consider an edge part of this new subtree of v as long as
node delay dv is not decreased by subsequent moves or adding shortest-delay-paths, since we
would obtain exactly the same solution again.

A neighborhood search is done similarly as for the Edge-Replace neighborhood following a
next improvement strategy considering the edges in decreasing cost order until a local optimum
is reached, running in O(|E|2 log |E|) time, too.

3.8 Variable Neighborhood Descent

We introduce a variable neighborhood descent (VND) [79] for improving a constructed solu-
tion by performing a local search switching between the two previously described neighborhood
structures: Edge-Replace and Component-Renew. The standard implementation of a VND as it
is described in [79] was modified to provide here better results in shorter runtime: A neighbor-
hood structure is searched by next improvement until a local optimum is reached, see Section 3.7
for details; then we switch to the other one continuing until no better solution can be found any-
more. However, a VND only provides mechanisms for intensification without a possibility to
escape from a local optimum w.r.t. all used neighborhood structures.

49

3.9 General Variable Neighborhood Search

To further improve the quality of a constructed solution we apply the metaheuristic framework
general variable neighborhood search (GVNS) as introduced by Hansen et al. [79]. Compared
to the VND described before, a GVNS includes methods for diversification to possibly escape
from local optima. In each iteration the so far best solution is perturbed by shaking and then
improved by an embedded VND.

3.9.1 Shaking

Three different kinds of shaking moves are used in the GVNS framework. The algorithm always
chooses one at random with equal probabilities:

1. Replacing a random edge by another randomly chosen edge not violating the delay-
constraint and tree structure.

2. Adding the shortest-delay-path to a random node, see Section 3.4.2.

3. Adding the delay-constrained least-cost path to a random node, see Section 3.3.2 for de-
tails.

To ensure feasibility of the solution two issues have to be considered: Firstly the last two
shaking moves could possibly cause cycles which have to be dissolved, and secondly the delay-
bound in the third move can be set at most to the global delay-bound reduced by the maximal
delay in the subtree of the randomly chosen node. The number of shaking moves performed in
one iteration is d|V |∗sre, where sr ∈ (0, 1] is called shaking rate. This shaking rate is either set
to a fixed value or dynamically changed in the search process. In the latter case sr is initialized
with 0.01, increased by 0.01 when no better solution could be found in an iteration, limited from
above by 0.3, and reset again to 0.01 in case of an improvement.

3.10 Ant Colony Optimization

We apply the concept of theMAX −MIN Ant System (MMAS) by Stützle et al. [176] to our
problem implementing the following key features:

• Only a single ant is allowed to deposit pheromones at the end of an iteration, either the
best ant of the iteration or the globally best one, focusing the search to the best solutions
found.

• Pheromone values are limited to an interval [τmin, τmax] preventing a stagnation of the
search.

• The initial pheromone values are set to τmax leading to a high diversification at the begin-
ning of the search.

Combining all these features provides both intensification and diversification throughout the
search process, which is essential for a well-performing metaheuristic.

50

3.10.1 Pheromone Values

Pheromone values τv,δ ∈ [τmin, τmax] are defined for each node v ∈ V \ {s} in combination
with any node delay δv ∈ [1, B] it might have. The root s by definition always has a node delay
0 and therefore has no pheromone values associated.

Notice that if we would consider real-valued delays the pheromone values do not form a
classical finite matrix. However, when considering a specific instance graph the number of
feasible node delays is finite (but possibly very large). Therefore, in an implementation one has
to consider efficient techniques for handling large sparse matrices [45].

Limits τmin and τmax are initialized and updated according to [176] using parameter pbest =
0.00005. Preliminary tests have shown that these parameter settings work well in general.

3.10.2 Solution Construction

The method for constructing a solution based on the pheromone values is inspired by the level-
based construction heuristic introduced in [75] for the BDMST problem and runs in timeO(|V | ·
B + |V | log |V |+ |E|):

1. For each node v ∈ V \ {s} a delay value δv is selected with a probability proportional to
the according pheromone value.

2. All nodes are then sorted by these delay values in ascending order.

3. The nodes are added in the specified order to the existing tree – initialized with the root
node – always choosing the cheapest possible edge without causing a node delay higher
than the selected delay. If there is no edge satisfying this constraint, the shortest-delay-
path to the problematic node is added, overriding the given order but guaranteeing a fea-
sible solution.

3.10.3 Local Improvement

After its construction, a solution is improved either by the VND or by a local search in one of the
two neighborhoods Edge-Replace or Component-Renew, see Sections 3.7 and 3.8, depending on
the instance size. In the latter case the neighborhood Edge-Replace is chosen with probability
0.8 because of its usually higher performance.

3.10.4 Depositing Pheromones

After each ant constructed and improved a solution the pheromone values are updated. Here the
mixed strategy suggested in [176] is used: At the beginning of the search only the best ant of the
current iteration is allowed to deposit its pheromones. Later in the search process intensification
has higher priority in order to concentrate on the surrounding of the so far best solution. This
leads to the following update strategy: The more iterations have been performed, the higher the
frequency of reinforcing the pheromone trail of the so far best solution instead of the iteration
best one. More precisely, an instance-dependent number of iterations I = 50000

|V | is defined. In
iterations [1, I] only the iteration best solution deposits pheromones, in (I, 2I] the so far best

51

solution is chosen every fifth iteration, in (2I, 3I] every third iteration, in (3I, 6I] every other
iteration and in (6I,∞) every time. A predefined pheromone decay coefficient p controls the
evaporation and enforcement of the pheromone values.

3.11 Memetic Algorithm

Here, we describe a genetic algorithm for the RDCMST problem, using a special solution repre-
sentation and incorporating an improvement method to finally form a memetic algorithm (MA).

3.11.1 Solution Representation

One of the key aspects in designing genetic algorithms is choosing a meaningful solution rep-
resentation. This is not an easy task especially when dealing with solutions represented by
complex graph structures, e.g. constrained trees. An obvious encoding of general graph struc-
tures is a binary array of length |E| indicating which edges are part of the solution. However,
only a small subset of all possible edge selections may correspond to feasible solutions, e.g. for
the RDCMST problem, and naive standard variation operators are therefore unlikely to produce
feasible solutions. There are various encodings intended to uniquely represent spanning trees,
e.g. Prüfer codes [146], but here again we are faced with the problem that many trees may violate
the delay-constraints.

Similar to [75] and our ant colony optimization approach, the genotype in our genetic algo-
rithm consists of an array of length |V | − 1 with one delay value δv ∈ [1, B] assigned to each
node v ∈ V \ {s}. Value δv here represents the maximal allowed delay of path P (s, v) in the
corresponding phenotype. To convert such a delay array to a feasible constrained spanning tree
we use the following decoding method which is similar to the solution construction in the ant
colony optimization approach, see Section 3.10.2:

1. Sort all nodes v ∈ V \ {s} by delay values δv in ascending order.

2. Initialize tree with source s.

3. Add next node v in the given order to the tree by choosing the cheapest possible edge
without causing a delay higher than δv on the path P (s, v); if there is no such edge the
shortest-delay-path to v is added and possibly introduced cycles are dissolved.

4. If the tree spans all nodes we obtain a feasible solution, else go to 3.

The decoding method runs in O(|V | log |V | + |E|) time. Encoding a feasible tree T to
a delay array runs in O(|V |) time by simply using the actual path delays δv = dTv , ∀v ∈
V \ {s}. Important about this representation is that every delay array can be decoded to a
feasible solution but there is no bijective mapping between delay array and tree: different delay
arrays may decode to the same tree while different trees may be encoded by the same delay
array. Even encoding and decoding in a row may not lead to the same tree but the resulting
tree costs are guaranteed to be at least as low. Additionally, small changes of the delay array
caused by genetic operators may result in completely different solutions leading to poor locality

52

Algorithm 3.3: Memetic algorithm with duplicate detection

1 initialize(P)
2 while time limit is not reached do
3 (p1, p2) = select(P)
4 o = recombine(p1, p2)
5 mutate(o)
6 if is_duplicate(o, P) then restart loop or transform(o)
7 T = decode(o)
8 improve(T)
9 o = encode(T)

10 if is_duplicate(o, P) then restart loop or transform(o)
11 replace(o, P)

and heritability, similar to the unique encoding of trees by Prüfer numbers [63]. However, in
preliminary tests all these disadvantages turned out to be outweighed by the possibility to easily
apply standard genetic operators without caring about solution feasibility. Furthermore, the
poor locality of our encoding acts as additional diversification mechanism complementing the
intensification methods in our MA.

3.11.2 Components and Operators

Our MA is based on a steady-state genetic algorithm [188] selecting only two parent individuals
to produce one offspring per iteration or time step, see Algorithm 3.3. The main components
and operators have been decided in preliminary tests:

• Population initialization: a random delay value δv ∈ [1, B] is assigned to each node
v ∈ V \ {s} of an individual

• Selection: parent individuals are selected by binary tournaments

• Recombination: an offspring is derived by uniform crossover proportional to the parents’
solution quality

• Mutation (two different operators):

– a different random delay is assigned to a node v with probability pm

– the delays of two different, randomly chosen nodes are swapped

• Replacement: an offspring randomly replaces one of the r worst individuals

3.11.3 Improvement

Additionally, offsprings are locally improved after mutation by local search methods previously
described, see Sections 3.7 and 3.8. Depending on the instance size the individuals are either

53

v 2 41 53
δv 12 43 2

root

v = 1

v = 2

v = 3

v = 4

v = 5

Figure 3.7: Given an instance with five nodes and delay-bound B = 4. The solution archive on
the right contains three solutions where the black trie nodes correspond to the solution encoded
by the delay array on the left.

improved by a local search in a single neighborhood or by a VND switching between the two
neighborhood structures Edge-Replace and Component-Renew.

3.12 Tackling Duplicates

One of the basic problems of local search and population-based heuristics is the potentially
repeated examination of already visited solutions. We exemplarily analyze this issue for our
memetic algorithm. Duplicates decrease the diversity in a population and time is wasted by
analyzing or trying to improve these solutions. In a first rather obvious approach to detect revisits
hash values of all individuals are computed and maintained in a hash-table. We only store hash
values of individuals in the current population, hashes of replaced solutions are discarded. In
Section 3.13.6 we will see that this apparently artificial limitation is quite beneficial. However,
an efficient transformation of duplicates to guaranteed unvisited solutions is not possible.

In a more sophisticated second approach a complete solution archive is built efficiently stor-
ing solutions and making it possible to derive new unvisited solutions as replacements of de-
tected duplicates. Promising experiments with similar solution archives to enhance standard
genetic algorithms for binary benchmark problems are presented in [152, 175]. Here we adopt
and extend this concept for our MA. As in [152], our archive uses a trie data structure, which is
mostly known from the domain of (language) dictionaries, where a huge number of words has to
be stored in a compact way. In our trie, each node contains an array of B references to nodes at
the next level, and at each level a dedicated node’s delay in a given solution array decides which
pointer to follow. Therefore, a single solution is uniquely represented by |V | − 1 trie nodes. An
example is given in Fig. 3.7. In this way, the trie has maximum height O(|V |), and an insertion
operation and a check whether or not a solution is already contained can always be done in time
O(|V |) independently of the number of stored solutions. Some special adaptions are applied
to the basic trie data structure in order to reduce the used space while at the same time not in-
creasing access time too much. More specifically, not all delay values are feasible for a node, so
the number of array elements of a trie node can be appropriately reduced. To maintain constant
access time to an array element a global mapping between delay values and array indices is

54

stored. Furthermore, fully explored subtrees are pruned and replaced by an appropriate marker.
The essential aspect which makes our archive approach different to more common simple solu-
tion caching strategies as e.g. described in [106], is the provision of a function that derives for
each duplicate a typically similar but definitely not yet considered delay array. This operation
can also be seen as a kind of “intelligent” mutation. In general finding an unvisited delay array
in the archive takes O(|V |) time and the modification is done by assigning a randomly chosen
unvisited delay value to a random node. An interesting, although more theoretical side effect of
the extension of a metaheuristic by our archive is that the metaheuristic in principle becomes a
complete, exact optimization approach with bounded runtime: In each iteration, (at least) one
new delay array is evaluated, and by the archive it is also efficiently possible to detect when the
whole search space has been covered and the search can be terminated.

An important question is where to integrate the archive in the (meta-)heuristic process and
which metaheuristics can benefit from such an extension at all. At some points the solution
diversity may be very high and the probabilities of revisits low, e.g. after shaking the solution
randomly. Then, the archive would just grow very large possibly consuming too much space.
At other points revisits typically occur more frequently, e.g. after applying local improvement
methods, but due to the structure of the metaheuristic it cannot benefit much from consulting the
archive. Generally speaking, the solution archive must be used with caution but has the potential
to speed up a metaheuristic significantly, cf. [152]. We integrated the duplicate check at two
different positions in our MA, see Algorithm 3.3. The first check is performed immediately
before decoding the delay array and improving the solution to prevent wasting time on revisits,
the second after encoding the solution again to preserve diversity in the population.

3.13 Computational Results

In this section we provide a computational comparison of our heuristic approaches to solve
the RDCMST problem: Kruskal-based construction heuristic (KBH), ranking-based multilevel
construction heuristic (RBMH), GRASP, variable neighborhood descent (VND), general vari-
able neighborhood search (GVNS), ant colony optimization (MMAS), and memetic algorithm
(MA). Since there is only one previously existing heuristic method – the Prim-based heuristic
(PBH) by Salama et al. [166], see Section 3.2 –, we mainly compare our algorithms to each other.
The state-of-the-art exact approaches for the RDCMST problem are considered in comparisons
in Chapter 4 when discussing MIP methods for the RDCST problem.

3.13.1 Test Instances and Environment

Several benchmark instances for the RDCMST problem are used in the work by Salama et
al. [166] comprising graphs with 20 to 200 nodes. However, it was not possible to get further
information about these graph data. Gouveia et al. [68] apply their MIP approaches on graphs
with 20 and 40 nodes, which are used for computational results in Section 4.11 when considering
exact approaches, but are much too small to draw reasonable conclusions for heuristics with
statistical significance. For example the GVNS, see Section 3.9, is able to find optimal solutions
for most of these instances within seconds.

55

Therefore, we generated our own instance sets R100, R500, R1000, and R5000 each con-
taining 30 complete instances with 100, 500, 1000, and 5000 nodes, respectively, and random
integer edge costs and delays uniformly distributed in [1, 99]. The root node s is set to node 0
for all instances. All instances are available for download in the web1.

Additionally, we used two sets EU500 and EU1000 each consisting of 15 Euclidian instances
from the OR-Library [12] originally used for the Euclidian Steiner tree problem [13]. These
instances consist of 500 and 1000 points, respectively, randomly distributed in the unit square
and the edge costs correspond to the Euclidian distances between these points. We extended
these input data by edge delays normally distributed around the associated costs and chose a
point near the center as root node. To obtain integer cost and delays the according real values
are scaled by 107 and rounded. The final objective values are then converted to the original
domain back again. Because of these extremely large delay values the preprocessing test based
on alternative paths, the MMAS, and the MA cannot successfully be applied to these instances
since both rely on rather small sets of achievable delay values and delay-bounds of about B ≤
1000. Therefore, we used these instance sets only in Section 3.13.3.

The testing environment for comparing the Prim-based construction heuristic by Salama et
al. [166] to our Kruskal-based heuristic in Tables 3.2 and 3.3 consists of Intel Core 2 Quad
Q9550 processors with 2.83 GHz where four cores share 8 GB memory. All other tests are
performed on Intel Xeon E5540 processors with 2.53 GHz where eight cores share 24 GB of
memory. However, all implemented algorithms only run on single cores without utilizing multi-
core architecture.

3.13.2 Preprocessing

Edges e ∈ E with de > B are already omitted when importing a graph instance, so we do
not consider those edges here anymore. The rest of the preprocessing methods described in
Section 3.3 are applied in the following order to an instance:

1. discard infeasible edges satisfying the shortest-delay-path conditions (3.3)

2. discard redundant edges satisfying the root edges conditions (3.4)

3. discard redundant edges based on alternative triangles, see Theorem 3.3.1

4. discard redundant edges satisfying the alternative path conditions (3.12)

The results of these preprocessing phases for instance sets R100, R500, and R1000 are shown
in Table 3.1. Keep in mind that cost and delay values of these random instances are within the
interval [1, 99]. The first phase is able to discard many infeasible edges when considering low
delay-bounds and clearly is less successful for high delay-bounds. The third phase based on
alternative triangles is the most successful method here whereupon the graph density is directly
correlated with the percentage of discarded edges. Since the first phase already removes large
delay edges and the second phase is kind of related to the third one, we can see that the theo-
retically derived expected number of discarded edges in the third phase is near our results, see

1https://www.ads.tuwien.ac.at/w/Research/Problem_Instances

56

https://www.ads.tuwien.ac.at/w/Research/Problem_Instances

Set B |E| |Ep| |Er|% t[s] |E1
r | % t1[s] |E2

r | % t2[s] |E3
r | % t3[s] |E4

r | % t4[s]

R100 16 798 490 39 0 35 0 0 0 2 0 1 0
30 1501 932 38 0 19 0 1 0 11 0 8 0
50 2498 1269 49 0 11 0 3 0 24 0 11 0

100 4950 1695 66 0 5 0 12 0 39 0 10 0
R500 6 7560 3338 56 0 55 0 0 0 1 0 0 0

20 25204 11666 54 5 16 0 1 0 20 0 17 5
50 63029 16454 74 20 7 0 3 0 49 0 15 20

100 124750 20108 84 45 2 0 12 0 59 1 11 44
R1000 6 30254 14928 51 1 48 0 0 0 1 0 1 1

20 100874 35938 64 101 14 0 1 0 30 1 19 101
50 252217 47938 81 300 6 0 3 0 58 3 14 296

100 499500 57878 88 626 2 0 12 0 65 6 9 619

Table 3.1: Preprocessing applied on instance sets R100, R500 and R1000 (B: delay-bound,
Ep: edge set after preprocessing, Er: set of discarded edges, t[s]: median runtimes of complete
preprocessing in seconds, Eir: set of edges discarded in preprocessing phase i, ti[s]: median
runtimes of preprocessing phase i).

Section 3.3.2: Considering the complete graphs for B = 100, for R100 instances we observe
56% removals in the first three phases compared to the expectation value 54% for stage three
only, for R500 instances we obtain 73% compared to expected 73%, and for R1000 instances
we obtain 79% compared to expected 79%.

It can be seen that the runtimes of the first three phases are below one second for all in-
stance sets and can therefore be neglected. However, the runtimes of the fourth phase based
on computing delay-constrained shortest paths heavily depends on the delay-bounds because of
the pseudo-polynomial runtime of the underlying dynamic program. Thus, this last phase has
to be used with caution, especially when using heuristic algorithms which are mainly used to
tackle R500 and R1000 instances. Preprocessing is in general only senseful if the needed time
is moderate compared to the runtime for construction and optimization stages. Furthermore, the
total runtime including preprocessing clearly should not be higher than the total runtime without
preprocessing.

Regarding exact algorithms which usually can only be applied to rather small instances
with about 100 nodes in reasonable time when considering complete graphs, see Chapter 4
and 5, it is important to discard as many infeasible and redundant edges as possible, so the
fourth phase should be enabled for all instances, here. Additionally, the consumed runtime of
all preprocessing phases for those small instances is not worth mentioning.

Obviously, since the preprocessing tests based on alternative triangles and paths rely on the
fact that neither cost nor delay values are Euclidian, they are not able to reduce instances with
Euclidian edge costs or delays. Thus, in general the number of edges removed by the whole
preprocessing phase is much lower if considering these kind of input graphs.

Without showing detailed results here, we observed in preliminary tests that the quality of
heuristic solutions including preprocessing in general is not better than without preprocessing,
but the runtime is usually shorter. In a few cases the final cost values of tests on the preprocessed

57

R500 R1000
PBH KBH PBH KBH

B Test c σ t[s] c σ t[s] c σ t[s] c σ t[s]

6 C 19651 1583 0.1 10785 643 0.0 24053 3065 0.5 14717 710 0.0
CV 9624 624 0.8 9177 633 0.5 11691 845 4.0 10123 544 3.0

CGV 9340 578 12.2 9067 643 9.2 10858 558 64.6 9942 505 57.5
8 C 13020 1709 0.0 8285 428 0.0 15291 1826 0.0 11779 575 0.0

CV 6795 546 0.8 6035 292 0.5 9433 1163 4.2 6796 322 3.2
CGV 6352 368 13.8 5871 293 12.8 7719 471 68.8 6610 284 60.3

10 C 9555 1666 0.0 7071 328 0.0 11275 2051 0.0 10277 500 0.0
CV 5914 686 0.8 4554 210 0.8 7299 747 4.3 5172 219 3.3

CGV 4975 274 14.7 4421 200 13.5 5715 408 72.7 5040 202 70.3
15 C 5793 1037 0.0 5565 401 0.0 6945 1113 0.1 7996 533 0.0

CV 3941 432 1.1 2939 142 0.8 4726 562 4.7 3402 158 3.6
CGV 3102 238 15.9 2811 117 16.0 3459 205 79.8 3291 121 86.4

20 C 4235 861 0.0 4733 379 0.0 4972 892 0.1 6788 437 0.1
CV 2947 378 1.1 2215 117 0.9 3410 415 5.0 2603 108 5.1

CGV 2247 192 15.0 2124 87 18.9 2579 112 84.9 2517 83 98.7
30 C 2783 400 0.0 3757 359 0.0 3382 502 0.2 5062 475 0.2

CV 2011 245 1.2 1553 87 1.0 2314 204 7.5 1888 67 6.4
CGV 1501 88 19.2 1468 69 21.7 1825 61 111.3 1812 56 134.3

40 C 2070 318 0.0 3353 353 0.0 2540 358 0.5 3979 416 0.5
CV 1496 194 1.4 1221 52 1.1 1894 212 7.4 1562 55 7.4

CGV 1167 56 20.8 1155 52 25.4 1491 45 134.1 1486 42 189.1

Table 3.2: Comparison of Prim-based and Kruskal-based heuristics, applied on instance sets
R500 and R1000 (B: delay-bound, C: only construction, CV: construction and VND, CGV:
construction with GRASP and VND, c: average final objective values, σ: standard deviations,
t[s]: median runtimes in seconds).

graphs are even a bit worse, most likely caused by reducing the solution space and thus leading
to fewer possibilities to modify solutions in improvement heuristics.

3.13.3 Prim-Based vs. Kruskal-Based Heuristic

Three kinds of tests are performed to compare the Kruskal-based to the Prim-based heuris-
tic [166]:

1. only the deterministic construction heuristic (in the result tables this test is abbreviated
with “C”)

2. the deterministic construction followed by the VND, using Fd = 1.5 (“CV”) (see Sec-
tion 3.4.4

3. the construction with the GRASP extension followed by the VND, using α = 0.25, stop-
ping after ten starts without gain and taking the average values of 30 runs (“CGV”)

58

EU500 EU1000
PBH KBH PBH KBH

B Test c σ t[s] c σ t[s] c σ t[s] c σ t[s]

0.8 C 19.12 0.44 0.1 18.03 0.40 0.1 27.56 0.43 0.7 25.40 0.32 0.3
CV 19.00 0.47 1.4 17.53 0.40 2.1 27.15 0.65 22.0 24.81 0.32 15.6

0.9 C 19.11 0.41 0.1 18.04 0.38 0.1 27.48 0.44 0.7 25.36 0.32 0.4
CV 19.02 0.37 1.6 17.41 0.36 2.2 26.97 0.76 20.9 24.65 0.29 16.3

1.0 C 19.17 0.49 0.1 17.83 0.43 0.1 27.38 0.49 0.8 25.32 0.29 0.4
CV 18.97 0.49 1.9 17.26 0.34 2.1 26.80 0.93 16.7 24.51 0.31 15.4

1.5 C 18.92 0.48 0.2 17.46 0.52 0.1 27.30 0.50 1.0 24.78 0.32 0.4
CV 18.75 0.56 2.9 16.79 0.36 2.4 26.71 1.07 23.9 23.85 0.26 19.4

2.0 C 18.87 0.60 0.2 17.37 0.49 0.1 27.29 0.46 1.1 24.54 0.37 0.5
CV 18.69 0.67 3.3 16.51 0.33 2.6 26.33 1.29 34.6 23.49 0.23 16.6

3.0 C 18.53 0.59 0.2 17.02 0.49 0.1 27.04 0.43 1.2 24.17 0.29 0.6
CV 18.09 0.80 4.0 16.22 0.30 2.3 25.69 1.43 48.9 23.14 0.24 14.0

Table 3.3: Comparison of Prim-based and Kruskal-based heuristics, applied on Euclidian in-
stance sets EU500 and EU1000 (B: delay-bound, C: only construction, CV: construction and
VND, c: average final objective values, σ: standard deviations, t[s]: median runtimes in sec-
onds).

The comparison of only one constructed solution, see test “C” in Table 3.2, indicates that KBH
produces usually significantly better solutions than the Prim-inspired algorithm PBH, especially
if the delay-constraint is strict. Only in tests with high delay-bounds the Prim-based solution
exceeds the Kruskal-based one, but this advantage disappears when also applying the VND. In
this test and also when using the GRASP extension (“CV” and “CGV”) KBH outperforms PBH
with clear statistical significance. In addition we can observe a higher dependence of PBH on
the specific edge costs and delays of the instances noticeable in the higher standard deviation
values.

Concerning the runtime KBH can compete with PBH and often even beats it, although the
administration effort is higher when updating the node information in each step of stage one. We
can observe that the runtime is nearly independent of the specified delay-bound B in contrast to
PBH, where tight bounds lead to longer runtimes due to the repeated delay-relaxation process,
see Table 3.2. The general slight increase of the runtime when raising the bound is caused by
the fact that in a preprocessing step all edges with de > B are discarded. So tests with lower
delay-bounds have to handle less edges.

The results on EU500 and EU1000 instances shown in Table 3.3 clearly demonstrate the
superiority of KBH even if using high delay-bounds. At no time even the VND-improved PBH
solution reaches the quality of our just constructed spanning tree.

3.13.4 Ranking-Based Multilevel vs. Kruskal-Based Heuristic

Due to RBMH being non-deterministic, 30 runs are performed for every instance and aver-
age results are used for comparison with KBH. Results without additional improvement in Ta-
ble 3.4 show that in general KBH creates much better solutions within shorter runtime. However,

59

R500 R1000
RBMH KBH RBMH KBH

B c σ t[s] c σ t[s] c σ t[s] c σ t[s]

10 9282 415 0.35 7087 335 0.02 13288 593 1.59 10296 484 0.06
30 4817 245 1.11 3768 382 0.04 7059 253 5.12 5064 460 0.15
50 3711 161 1.94 2824 232 0.06 5513 174 8.85 3243 360 0.24
75 3142 140 3.00 2048 255 0.09 4669 133 13.86 2185 232 0.35

100 2812 153 3.99 1695 250 0.11 4180 128 19.20 1605 196 0.46
150 2802 149 4.62 1007 145 0.11 4168 126 19.30 1165 131 0.38
200 2802 149 4.44 784 124 0.10 4168 126 18.92 1080 81 0.35

Table 3.4: Comparison of ranking-based multilevel and Kruskal-based heuristics without ad-
ditional improvement, applied on random instance sets R500 and R1000 (B: delay-bound, c:
average final objective value, σ: standard deviation, t[s]: average runtimes in seconds).

R500 R1000
RBMH+VND KBH+VND RBMH+VND KBH+VND

B c σ t[s] c σ t[s] c σ t[s] c σ t[s]

10 4634 225 1.99 4557 205 1.45 5290 212 9.33 5171 215 7.52
30 1530 85 4.42 1554 88 4.37 1871 71 23.55 1884 55 20.04
50 1010 64 7.99 1042 56 6.22 1334 50 33.81 1373 44 32.93
75 765 33 10.90 800 37 9.44 1113 32 57.75 1146 32 51.42

100 642 28 13.64 687 44 12.75 1038 12 75.79 1070 32 62.76
150 547 11 16.71 587 36 12.25 1005 4 74.13 1022 24 57.96
200 522 6 13.55 545 27 10.90 1001 2 74.58 1008 16 37.65

Table 3.5: Comparison of Ranking-based Multilevel (RBMH) and Kruskal-based (KBH) heuris-
tics with additional improvement (VND), applied on random instance sets R500 and R1000 (B:
delay-bound, c: average final objective value, σ: standard deviation, t[s]: average runtimes in
seconds).

RBMH is not directly intended to produce low cost spanning trees but rather use edges which
have low costs as well as low delay. Therefore, there may be a lot of improvement potential
in a solution provided by RBMH. To use this potential to obtain a solution of higher quality
we applied the VND described in Section 3.8. The results with this additional improvement in
Table 3.5 show that except for very low delay-bounds RBMH typically provides a better starting
point for further improvement. Especially for very high delay-bounds the solutions provided by
RBMH can be improved significantly. However, RBMH results also show higher runtimes due
to the algorithm’s higher complexity and longer improvement phases.

3.13.5 GRASP vs. GVNS vs. MMAS

Each result presented in Table 3.6 is derived from 30 runs with a CPU time limit of 300
seconds for each of the 30 instances. Three metaheuristics are included in the comparison:
GRASP+VND, GVNS and MMAS (with 5 ants). All preprocessing steps except the search for
alternate constrained paths, see Section 3.3.2, have been applied before starting the search re-

60

B 6 20 50 100
α/sr/p c σ c σ c σ c σ

G+V 0.25 8997.3 672 2048.3 87 942.1 37 616.3 14
dynamic 8703.0 620 1961.5 88 901.1 35 601.1 14

0.05 8701.1 617 1947.2 88 897.7 35 601.1 15
GVNS 0.1 8691.7 618 1938.9 89 893.7 34 599.3 14

0.15 8691.6 618 1942.7 88 894.0 34 599.2 14
R500 0.2 8696.1 618 1947.8 90 896.4 35 599.8 14

0.6 8727.5 616 1937.4 85 891.4 34 598.0 13
0.7 8726.4 614 1935.1 85 889.5 34 597.1 12

MMAS 0.8 8723.4 612 1932.1 84 887.5 34 596.8 13
0.9 8722.4 613 1930.8 82 891.2 36 602.2 14

0.95 8720.4 610 1941.3 83 914.9 40 612.2 14
G+V 0.25 9775.3 487 2473.0 76 1290.3 31 1026.8 9

dynamic 9497.9 486 2377.7 81 1257.4 33 1020.0 7
0.05 9397.2 476 2346.9 80 1253.4 31 1020.1 7

GVNS 0.1 9412.1 480 2353.6 78 1252.5 31 1019.4 7
0.15 9455.2 487 2365.8 80 1254.7 31 1019.6 7

R1000 0.2 9488.3 485 2374.3 80 1257.0 32 1019.9 7
0.5 9385.3 485 2323.4 75 1243.7 28 1021.3 8
0.6 9378.4 483 2312.4 73 1239.3 27 1020.9 8

MMAS 0.7 9376.4 481 2308.8 73 1238.2 27 1022.1 10
0.8 9369.1 478 2309.9 74 1241.3 31 1028.8 14
0.9 9367.7 477 2320.9 76 1281.3 46 1042.8 14

Table 3.6: Comparison of GRASP+VND, GVNS and MMAS on random instance sets R500
and R1000 (B: delay-bound, c: average final objective values, σ: standard deviations; CPU
time limit: 300 seconds; best results are printed bold)

ducing the complexity of the instances significantly. When having higher time limits the omitted
preprocessing step might be advantageous.

The GRASP+VND approach was outperformed by almost all GVNS and MMAS runs al-
most independent of the parameter settings, which might be explained by the fact that the
GRASP+VND has no memory. It “forgets” the solutions of past iterations and therefore cannot
build on already obtained information. The MMAS mostly produces the best solutions probably
because it has the most effective memory of all three methods in terms of the pheromone values
containing the information of many solutions in one data structure.

A matter of high importance when using a MMAS is the fact that it can typically only exhibit
its full effectiveness on a rather high number of iterations because of the longer exploration phase
in the beginning [176], see Figure 3.8. When considering the R1000 instances, a full VND
improvement of each constructed solution takes much time which leads to a smaller number
of iterations within the time limit. The pheromone values therefore have not enough time to
converge and the solutions are constructed rather randomly. So a faster local search in one of the
two neighborhoods instead of the VND produces in general worse solutions in a single iteration
but yields higher quality in the end due to the higher number of iterations. For the smaller R500
instances it is better to use the VND improvement since it is fast enough to allow a sufficient

61

 8200

 8400

 8600

 8800

 9000

 9200

 9400

 9600

 9800

 10000

 0 50 100 150 200 250 300

c
o

s
ts

seconds

MMAS

GVNS

GRASP+VND

Figure 3.8: Typical run characteristics of all three heuristics applied on a R1000 instance with
B = 6 with a time limit of 300 seconds.

number of iterations before time is running out.
When considering strict delay-bounds finding feasible solutions is more difficult and there-

fore the search gets caught in a local optimum more easily. Rather big changes have to be made
to catapult the solution to another basin of attraction. Small changes like replacing a single edge
to decrease the costs are often not possible because of a lack of residual delay in the nodes. So
choosing the wrong way in the beginning of the search has more impact on the quality of the
finally best solution than in cases with looser bounds. This fact can be observed in Table 3.6
independent of the heuristic method: The stricter the bound the higher the standard deviations.

A too small pheromone decay coefficient in the MMAS causes a fast convergence of the
pheromone values and thus disregards diversification; a too high p-value has the opposite effect:
the exploration phase lasts too long especially when having a tight time limit.

Relating to the MMAS results the following observation can be made: When tightening the
delay-bound the p-value has to be increased to obtain better results. This behavior is another
consequence of the facts mentioned above: When having strict bounds the quality and structure
of the produced solutions varies much more and by using a higher p-value a single bad solution
has not that much influence on the pheromone values because of the smoother evaporation of
already deposited pheromones.

Generally speaking, the whole parameter setting of the MMAS heavily depends on the
predefined target runtime. Here the small number of five ants speeds up the evolution of the
pheromone values which is necessary for the time limit of 300 seconds. Regarding the final
results it is not disadvantageous that possibly worse solutions are allowed to update pheromone
values.

Applying Wilcoxon signed-rank tests with confidence level 0.95 to the results for α = 0.25

62

GVNS MMAS MA
no duplicate detection hashing solution archive

R500 swap 0.005 0.01 swap 0.005 0.01 swap 0.005 0.01
B = 6 8691.6 8720.4 8716.3 8712.0 8703.8 8707.2 8705.2 8700.3 8710.3 8706.1 8702.0

20 1938.9 1930.8 1930.1 1929.4 1929.2 1929.9 1929.7 1928.3 1933.4 1933.8 1933.2
50 893.7 887.5 886.2 885.9 886.5 886.1 886.4 886.7 887.2 887.8 888.7

100 599.2 596.8 596.1 596.0 596.0 595.9 596.1 596.1 596.3 596.5 596.8
R1000 swap 0.001 0.005 swap 0.001 0.005 swap 0.001 0.005
B = 6 9397.2 9367.7 9367.6 9393.6 9366.8 9363.6 9388.1 9366.8 9353.6 9369.7 9354.7

20 2346.9 2308.8 2307.2 2313.5 2322.8 2307.2 2314.2 2322.2 2315.9 2320.9 2333.9
50 1252.5 1238.2 1238.1 1240.9 1248.0 1237.6 1241.2 1248.2 1240.7 1242.9 1250.0

100 1019.4 1020.9 1020.8 1021.7 1023.1 1021.0 1021.9 1023.5 1021.2 1021.9 1023.3

Table 3.7: Comparison of GVNS, MMAS, and MA with different methods of duplicate detection
and mutation operators (swap, two values for pm); values are average tree costs,B: delay-bound,
time limit: 300 sec., best results are printed bold.

no det. hashing solution archive
Set B I = O I D [%] O I = O D [%] GB

R500 6 5018 4774 33 3187 4993 61 0.30
20 2365 2260 20 1792 1494 19 0.30
50 1211 1185 10 1056 924 7 0.45

100 804 797 5 747 678 4 0.65
R1000 6 4251 4309 17 3553 4820 27 0.70

20 1783 1789 3 1732 1485 2 0.70
50 1020 1017 0 1014 958 0 1.00

100 660 662 0 659 650 0 1.35

Table 3.8: Statistics; I: number of iterations, D: detected duplicates in percent, O: kept off-
springs, GB : approx. memory consumption of archive, best results are printed bold.

(GRASP), sr = 0.1/0.05 (GVNS on R500/R1000) and p = 0.8/0.7 (MMAS on R500/R1000)
yields the following error probabilities perr: GVNS and MMAS produce better results than
GRASP with perr � 0.01 for all bounds. MMAS performs better than GVNS on R500 instances
with perr = 1 (B = 6), perr � 0.01 (B = 20), perr � 0.01 (B = 50, 100) and on R1000
instances with perr � 0.01 (B = 6), perr � 0.01 (B = 20, 50), perr = 1 (B = 100).

3.13.6 Memetic Algorithm

Due to the in-determinism of the MA, 30 runs are performed for each instance and setting. We
use a time limit of 300 seconds for each run. All preprocessing methods presented in Section 3.3
except the most time-consuming arbitrary-path test are applied to the instances reducing the
number of edges significantly. We compare the MA to MMAS and GVNS. In preliminary tests
promising parameter values for the MA have been identified: the population size is set to 50,
for R500 instances we set the mutation rate to pm ∈ {0.005, 0.01} and perform full VND for
local improvement, for R1000 instances pm ∈ {0.001, 0.005} and only a single neighborhood is

63

randomly chosen (Edge-Replace with higher probability p = 0.7). The replacement parameter
r ∈ {10, ..., 40} is dynamically adapted at runtime: initially r = 10; if a new best solution
is found, r is decreased by 2, and if the search stagnates, r is increased by 2. The higher
the parameter r the higher the diversity in the population and the other way round. So if the
algorithm should concentrate on intensification of the best solutions, r is automatically lowered
while if it gets stuck in a local optimum diversity is increased again.

Experimental results are shown in Table 3.7. In most cases the MA outperforms existing
methods except for two settings where GVNS is still leading. A surprising result is that the use
of the trie-based solution archive in general is less beneficial than expected. For the considered
problem and MA, the overhead of maintaining the archive is too high even though the operations
on it are rather efficient. This can be clearly seen in Table 3.8 in the average numbers of iterations
within the time limit. Here the variant with duplicate detection by hash values yields more kept
offsprings after discarding detected duplicates (but one has to consider that only the current
population is checked for duplicates). Only for rather low delay-bounds the archive is able
to yield better results, i.e. both a higher number of new offsprings and a finally higher solution
quality. The number of revisits is in general much higher for low delay-bounds since the solution
space is smaller and the probability of getting stuck in a local optimum after local improvement
is higher. Immediately after mutation the duplicate rate is in general rather low provided that
the mutation operator is not too limited. Additionally, it can be observed that higher mutation
rates are more beneficial in cases of tight bounds, see also the results in Table 3.6. This can be
explained again by the fact that it is easier to get stuck in a local optimum requiring a substantial
modification of the solution to reach new basins of attraction. In case of loose bounds small
changes are enough to escape local optima making a simple swap move in most cases the best
choice. Furthermore, the higher the mutation rate, the higher the diversity in the population and
the smaller the probability of a revisit. So the solution archive is more effective when having
low mutation rates. Generally, most of the time is spent with local improvement and if using
full VND the number of achieved iterations further decreases. If only single neighborhoods
are examined more iterations are possible and higher mutation rates to cover more areas of the
search space are beneficial. Tests without local improvement substantially increased the number
of iterations but lead to far worse solution quality.

3.14 Future Work

The idea of the ranking score to provide some kind of edge quality measurement could be fur-
ther extended by investigating different variants of the ranking score formula. Weighting factors
could be used to control the influence of costs versus delays which may be dynamically adapted
throughout the solution process: Priority on low costs intensifies the search whereas attaching
importance to low delays leads to more feasible possibilities in the remaining solution construc-
tion or improvement.

The VND and GVNS methods could be improved by additional neighborhood structures
maybe based on new solution representations to better diversify the search and therefore find
new feasible solutions. A further idea would be to generalize the Edge-Replace neighborhood to
replace k edges in one move: first, a set of k probably most expensive edges is removed from the

64

solution, and then the k + 1 components are reconnected as cheap as possible. To achieve this
we could apply e.g. the idea of the Kruskal-based heuristic or delay-constrained shortest paths
or even reconnect the separated components optimally for small values of k.

In the memetic algorithm alternative more sophisticated problem-specific operators would
be interesting, to pursue for example a recombination operator based on path relinking: we
conjecture that any feasible RDCMST solution can be transformed to any other feasible solution
by only applying a series of simple edge exchanges guaranteeing that all intermediate solutions
are feasible, too. However, a proof of this assumption is still missing. Assuming the correctness
of this conjecture, we apply it by creating a modification path linking together two feasible
parent solution and choose the best intermediate solution as offspring. Alternatively, we could
determine the optimal “offspring” tree in the subgraph only consisting of the edges from the two
parent solutions.

Since in the ant colony and memetic algorithms local improvement of decoded solutions
consumes most of the runtime, we should think about an adaptation of the decoding method to
improve the quality of just constructed solutions. Then maybe less improvement is necessary
leading to a higher number of iterations within a given time limit. One way to possibly achieve
this is similar to the heuristic in [111] and iteratively adds a delay-constrained cheapest path,
see Section 3.3.2, to an unconnected node using the corresponding delay in the encoded array as
delay-bound. However, we have to assure that the solution construction does not consume too
much time leading again to fewer iterations. Thus, we could also think about heuristic methods
to solve the delay-constrained shortest path problem.

Regarding multilevel approaches, the ranking-based construction heuristic could be extend-
ed towards an iterated multilevel approach in which obtained solutions are iteratively re-coarsen-
ed and refined. Including some kind of diversification mechanism in the coarsening phase such
an improvement method could be interesting in comparison to the leading approaches. Addi-
tionally, in each step of the refinement phase usually some sort of local search or VND is used
for further improvement.

Finally, we want to further analyze the integration of solution archives in heuristics for the
RDCMST problem, improve the transformation of revisited solutions to more promising ones
by considering the solution quality, see e.g. [71] for a branch-and-bound extension, and decrease
the time and space overhead caused by the archive. Since different delay arrays may decode to
the same tree, a new unvisited delay array derived from the archive may again lead to an already
visited solution. By using more sophisticated transformation mechanisms we can hopefully
handle this situation.

65

CHAPTER 4
Rooted Delay-Constrained Steiner Tree

Problem

This chapter discusses several exact mixed integer programming approaches for solving the
rooted delay-constrained Steiner tree (RDCST) problem. Section 4.1 formally defines the con-
sidered problem and Section 4.2 mentions previous related work. In Section 4.3 some exten-
sions to the reduction techniques for the RDCMST problem from Section 3.3 are described.
Sections 4.4, 4.5, and 4.6 discuss existing and revised formulations for the RDCST problem: A
model based on Miller-Tucker-Zemlin subtour elimination inequalities, a path model contain-
ing an exponential number of variables, and a multi-commodity flow model. Furthermore, in
Section 4.7 we present a formulation based on infeasible path cuts extended by a set of strength-
ening valid inequalities. Section 4.8 shows how to transform the input graph to a so-called
layered graph which is then utilized in a strong formulation in Section 4.9. We compare all the
formulations from a polyhedral point of view in Section 4.10 and in experimental tests in Sec-
tion 4.11. Finally, Section 4.12 mentions open problems and possible future research directions.
Some parts of this chapter are based on the published articles [113–115, 163, 165].

4.1 Problem Definition

The RDCST problem is a generalization of the RDCMST problem discussed in Chapter 3 since
we now do not have to connect all nodes to the root node but only a given subset. The rest of the
nodes can optionally be included in a solution as intermediate relay nodes.

More formally, we are given an undirected graph G = (V,E) with node set V , a fixed
root node s ∈ V , set R ⊆ V \ {s} of terminal or required nodes, set S = V \ (R ∪ {s}) of
potential Steiner nodes, edge set E, a cost function c : E → Z+

0 , a delay function d : E → Z+,
and a delay bound B ∈ Z+. A feasible solution to the RDCST problem is a Steiner tree T =

67

(V ′, E′), s ∈ V ′, R ⊂ V ′ ⊆ V, E′ ⊆ E, satisfying the delay-constraints

dTv =
∑

e∈PT (s,v)

de ≤ B, ∀v ∈ R. (4.1)

PT (s, v) denotes the unique path from the specified root node s to terminal node v ∈ R in
Steiner tree T and dTv the corresponding total delay on this path. Further, we define the cost
function

cT =
∑
e∈E′

ce, (4.2)

summing up the cost values of all edges in a solution T . An optimal solution T ∗ to the RDCST
problem is a feasible solution with minimal total edge costs, i.e. cT ∗ ≤ cT , ∀T .

Similarly to the RDCMST problem, we define a directed variant of this problem on graph
G′ = (V,A) with arc set A = {(s, v) : {s, v} ∈ E} ∪ {(u, v), (v, u) : {u, v} ∈ E, u, v 6= s}
consisting of two opposite arcs for each edge in graph G except for edges incident to root node
s, for which we include only the corresponding arc going out from s. A feasible solution to
the directed variant is a Steiner arborescence T ′ = (V ′, A′), s ∈ V ′, R ⊂ V ′ ⊆ V, A′ ⊂ A,
directed out of root node s. It can be easily seen that each feasible Steiner tree T bijectively
corresponds to a feasible Steiner arborescence T ′.

The NP-hardness of the RDCST problem can be shown in several ways by reduction from
NP-hard special cases, e.g. the RDCMST problem, the Steiner tree problem on graphs [44, 89,
90, 123], where B = ∞, and the Hop-Constrained Steiner Tree (HCST) Problem [181], where
de = 1, ∀e ∈ E, respectively.

A lower bound to the optimal cost value is provided by a minimal-cost Steiner tree T l with-
out considering the delay values. If such a tree T l is feasible for the RDCST problem, i.e.
satisfies the delay-constraints, then T l also is an optimal solution for it. However, finding an
optimal Steiner tree T l is NP-hard. Similarly to the RDCMST problem, if a feasible solution
exists we are always able to construct a trivial feasible Steiner tree T u via the shortest-delay-
paths from root s to all terminal nodes v ∈ R without considering edge costs computed e.g. by
Dijkstra’s polynomial time algorithm for the single-source shortest path problem [41]. Again, if
T u exceeds the given delay-bound for any terminal node there is no feasible solution for the RD-
CST problem. Additionally, all feasible solutions for the RDCMST problem on G are feasible
solutions for the RDCST problem on G. However, these trees possibly contain Steiner nodes as
redundant leaves in the tree which can safely be pruned in linear time usually reducing the tree
costs.

Instead of using c{u,v} and d{u,v} to denote cost and delay values assigned to edge {u, v} ∈
E, we use the better readable notation cuv and duv, respectively. The same holds for arcs (u, v) ∈
A in directed graph G′. Variable dv, v ∈ V , refers to the node delay with respect to one specific
tree T . In case of multiple solutions the considered tree is explicitly included in the notation, i.e.
dTv , v ∈ V .

68

4.2 Related Work

Many different names can be found in the literature for the RDCST problem: Delays are often
interpreted as distances [68], leading to the name Distance-Constrained Steiner Tree Problem.
The widely used term Multicast Routing Problem is application-oriented and rather unspecific
concerning the included constraints. The prefix “source-based” usually describes the situation
when the source node is aware of the whole network structure, whereas in distributed problem
variants a node only knows information about its neighbors. Extensive surveys about optimiza-
tion problems with different quality of service (QoS) constraints can be found in [135,136,156].

The original Steiner tree problem was introduced by Gilbert and Pollak in 1968 [56] and
is defined in the Euclidian plane using any points in this plane as potential Steiner nodes. The
Steiner tree problem on graphs was proposed by Dreyfus and Wagner in 1971 [44], together with
an exact enumeration algorithm with runtime exponential in the number of terminal nodes. Kou,
Markowsky, and Bernan [105] present a widely-known construction heuristic: First, a closure
graph Gc = (R,E′) is built where an edge {u, v}, u, v ∈ R, represents the shortest path from
terminal u to terminal v with minimum cost cuv. After finding a minimum spanning tree in Gc,
all edges of this tree are expanded to their original paths. The final Steiner tree is obtained by
again deriving a minimum spanning tree in this path graph. This fast 2-approximation algorithm
has been the basic concept for numerous algorithms in literature, e.g. [102,187]. Another famous
and frequently applied construction concept for Steiner trees is presented by Takahashi and
Matsuyama [177]. They start with a single terminal node and in each step attach a not yet
connected required node to the partial tree in the cheapest possible way. This simple heuristic is
also 2-approximative and runs inO(|R|·|V |2) time using Dijkstra’s shortest path algorithm [41].
Further improved approximation algorithms have been presented, e.g. with a ratio of about 1.55
in [158].

Solving the Steiner tree problem to proven optimality is subject to numerous articles in
literature. Thus, we only want to mention some basic and influential work here. Wong [191]
presents a dual ascent approach, Goemans et al. [62] compare several MIP formulations from
a polyhedral point of view, Chopra et al. [27] provide detailed polyhedral analyses and some
facet-defining inequalities, Koch et al. [100] apply many reduction rules before they solve the
problem by a classical branch-and-cut approach, and Aragao et al. [142] propose dual heuristics
to accelerate a branch-and-cut and branch-and-ascent approach. Polzin et al. [143] also provide
a polyhedral comparison of Steiner tree relaxations and additionally introduce a new formulation
based on so-called common flows yielding the so-far best LP bounds.

Since the introduction of the Steiner tree problem on graphs many variants of this problem
with additional constraints emerged in literature. Practical applications, e.g. multimedia con-
tent distribution and VoIP, ask for QoS constraints such as limiting the communication delay
between server and clients. Therefore, two problem variants particularly increased in popularity,
the already mentioned RDCST problem and the hop-constrained Steiner tree (HCST) problem
where de = 1, ∀e ∈ E, modeling the fact that in many cases only the number of distribution
and routing nodes in an end-to-end connection is relevant.

The RDCST problem was introduced and proven to be NP-hard by Kompella et al. [102,
103] who also presented a construction heuristic based on the Steiner tree heuristic by Kou et

69

al. [105]. To guarantee the satisfaction of the delay-constraints the closure graph in the first step
is built using delay-constrained cheapest paths, see Section 3.3.2. Second, a Prim-based heuristic
is applied to the closure graph to derive a feasible RDCST solution. A distributed variant of this
algorithm can be found in [104]. A construction heuristic based on the idea by Takahashi et
al. [177] can be found in [111] where again instead of shortest paths delay-constrained cheapest
paths are utilized to satisfy the delay-constraints. Further construction heuristics can be found
in [6, 76, 139, 196].

There are lots of recent publications for the RDCST problem presenting metaheuristic ap-
proaches, such as a genetic algorithm [195], tabu-search [173], GRASP [174, 192], path-relink-
ing [55], and variable neighborhood descent (VND) [150]. A hybrid algorithm in [193] com-
bines scatter search with tabu-search, VND, and path-relinking. An approach applying the mul-
tilevel refinement paradigm described in Section 2.2.4 and 3.5 in an iterative way can be found
in the master’s thesis of Seidl [169]. Construction and local search heuristics for the HCST
problem have been described by Voß [181], Fernandes et al. [49], and Gouveia et al. [69].

Manyem and Stallmann [126] showed that the RDCST and HCST problem are not in APX
even when considering the spanning tree variants, see Section 3.2.

Exact methods for the RDCST and related problems are dominated by MIP methods. Many
basic results for comparing different MIP formulations for tree problems are described by Mag-
nanti and Wolsey in [124]. Gouveia [64] proposed a MIP formulation based on Miller-Tucker-
Zemlin (MTZ) inequalities [129] for the HCMST problem – the spanning tree variant of the
HCST problem. In 1996, Gouveia [65] presents a multi-commodity flow (MCF) formulation
and different Lagrangian relaxations for the HCMST problem and mentions a possible problem
generalization with arbitrary edge distances which is now known as the RDCMST problem, see
Chapter 3. Leggieri et al. [111] adapt the MTZ formulation in [64] to the RDCST problem
and present a compact extended node-based formulation using lifted MTZ inequalities yielding,
however, rather weak LP relaxation bounds, see Section 4.4. Hence, they further tightened the
formulation in [110] by adding directed connection inequalities in a typical branch-and-cut way.
Further MIP approaches for the RDCMST problem have been proposed in [68] and described
in detail in Section 3.2. Gouveia et al. [70] extended the layered graph approach in [68] for the
HCMST problem, such that not the hop-constrained shortest path problems for each terminal
but the whole HCMST problem is modeled on a single layered graph which reduces to solving
the classical Steiner tree problem on this graph without additional constraints. Using a classical
directed cut formulation on this layered graph yields an LP bound which is at least as tight as
the one of all other known formulations for the HCMST problem: When modeling the hop-
constrained shortest path problems in separated layered graphs, in a fractional solution the same
arc can be in different hop positions in different paths, which is not possible for the formulation
in [70] modeling the whole problem in one layered graph.

Recently, Leitner, Raidl, and the author of this thesis [113–115] proposed a successful
branch-and-price approach based on a natural path formulation for the RDCST problem. The
column generation method by Gouveia et al. [68] for the RDCMST problem strongly suffers
from degeneracy. Leitner et al. improved this situation by proposing a generally-applicable effi-
cient approach based on alternative dual-optimal solutions to stabilize column generation. This
acceleration technique is able to choose “more meaningful” delay-constrained paths with nega-

70

tive reduced costs in the pricing subproblem, in the sense that finally a much lower number of
columns is needed in the path model to prove optimality.

4.3 Preprocessing

Obviously, we can apply all preprocessing techniques for the RDCMST problem to the RDCST
problem, too, see Section 3.3. By additionally considering set S of potential Steiner nodes, we
can possibly further reduce input graph G, cf. [111]. Many of these methods are adopted from
the Steiner tree problem, cf. [100] for an extensive summary on reduction techniques. However,
in contrast to the Steiner tree problem we have to give additional consideration on the edge
delays. Therefore, not all preprocessing rules for the Steiner tree problem are feasible for the
RDCST problem, and most methods have to be adapted to respect the delay-constraints. But we
may also benefit from delay-constraints by being able to eliminate optional nodes that cannot
act as relay nodes in any feasible solution. More formally, let dmin

v be the delay of the shortest-
delay-path from root s to a node v ∈ V , cf. Section 3.3.1. Furthermore, let

dRv := min
P (v,u), u∈R

∑
e∈P (v,u)

de, ∀v ∈ S, (4.3)

be the delay of the shortest-delay-path from a potential Steiner node v ∈ S to the “nearest”
terminal node u ∈ R. Next, we define the maximal path-delay to a node v ∈ V by

dmax
v =

0 if v = s
B if v ∈ R
B − dRv if v ∈ S

. (4.4)

Thus, if v ∈ S and
dmin
v > dmax

v , (4.5)

then node v can be eliminated together with all incident edges. It is important for the computa-
tion of dRv to only consider paths P (v, u), u ∈ R, which do not include root s since it makes
no sense to use an optional node as relay node to a terminal node if the root node is nearer to
this required node. Therefore, we compute the dRv values in the directed graph G′ where the root
does not have incoming arcs.

4.4 Miller-Tucker-Zemlin Formulation

The following formulation has originally been presented by Gouveia [64] for the HCMST prob-
lem and by Leggieri et al. [111] for the RDCST problem. The model is based on MTZ in-
equalities to eliminate subtours and at the same time guarantee a feasible solution regarding
the delay-constraints. Here, we only discuss a basic variant of the finally strengthened model
in [111] since we use this simpler model in the polyhedral comparison in Section 4.10. However,
for experimental comparisons in Section 4.11 we use the tightest formulation from [111].

Leggieri et al. [111] introduce a dummy node 0 and extend arc set A to Ā = A ∪ {(0, v) :
v ∈ S ∪ {s}} where all new arcs get assigned zero costs and delays. A feasible solution for

71

the RDCST problem is defined as spanning arborescence rooted in 0 where only root s and all
unused optional nodes are allowed to connect directly to dummy node 0. Arcs are modeled by
binary decision variables xuv, ∀(u, v) ∈ Ā, and real-valued variables δv, ∀v ∈ V , represent the
total delay of path P (s, v) in a solution. Model MTZ is defined as follows:

min
∑

(u,v)∈A

cuvxuv (4.6)

s.t.
∑

(u,v)∈Ā

xuv = 1 ∀v ∈ V (4.7)

x0v + xuv + xvu ≤ 1 ∀v ∈ S, ∀(u, v) ∈ A (4.8)

δu + duvxuv ≤ δv + (B − 1)(1− xuv) ∀(u, v) ∈ A (4.9)

δs = 0 (4.10)

δv ∈ [1, B] (4.11)

xuv ∈ {0, 1} ∀(u, v) ∈ Ā (4.12)

Equalities (4.7) force the indegree to each node to exactly 1 which is feasible also for root s and
unused optional nodes due to dummy node 0. Inequalities (4.8) state that if a potential Steiner
node is linked to dummy node 0 then it has to be a leaf. MTZ inequalities (4.9) eliminate subtours
by assigning increasing delays to nodes along a path starting from root s, i.e. δu + duv ≤ δv if
xuv = 1. Furthermore, by limiting the node-delay values by inequalities (4.10) and (4.11), the
MTZ inequalities ensure compliance with delay-constraints. MTZ LP denotes the LP relaxation
of MTZ .

4.5 Path Formulation

Gouveia et al. [68] propose a path formulation for the RDCST problem with a set of expo-
nentially many path variables. Recently, we [113–115] reused this formulation to introduce a
stabilized branch-and-price approach.

Consider binary arc variables xuv, ∀(u, v) ∈ A, and path variables λp ∈ {0, 1}, ∀p ∈ P ,
where P =

⋃
v∈R Pv, and Pv ⊆ 2A is the set of all feasible paths from root s to terminal v ∈ R

represented by their set of arcs;
∑

(u,v)∈p duv ≤ B must hold for each path p ∈ P . Model
PATH is defined as follows:

min
∑

(u,v)∈A

cuvxuv (4.13)

s.t.
∑
p∈Pv

λp ≥ 1 ∀v ∈ R (4.14)

∑
p∈Pv |(u,v)∈p

λp ≤ xuv ∀v ∈ R, ∀(u, v) ∈ A (4.15)

∑
(u,v)∈A

xuv ≤ 1 ∀v ∈ V \ {s} (4.16)

72

λp ≥ 0 ∀p ∈ P (4.17)

xuv ∈ {0, 1} ∀(u, v) ∈ A (4.18)

Inequalities (4.14) ensure that at least one path is realized for each terminal node, while inequal-
ities (4.15) link path variables to arcs used by them. Inequalities (4.16) restrict the indegree of
each node and thus together with inequalities (4.14) and (4.15) ensure that the directed solution
is an arborescence rooted in s. Given strictly positive edge costs, removing inequalities (4.16)
would also yield a valid model. We did nevertheless include them to stay consistent with the
model by Gouveia et al. [68]. Further note that only lower bounds are given for variables
λp, ∀p ∈ P , in inequalities (4.17). These variables will become automatically integral due
to the remaining inequalities: In case of integral arc variables, inequalities (4.15) bound the λ
variables from above and ensure together with inequalities (4.14) that there exists a solution with
integral path variables. PATH LP denotes the LP relaxation of PATH .

The number of feasible paths and hence the total number of variables of the model PATH
may be exponentially large for each terminal. Thus, we cannot solve it directly, but apply branch-
and-price, i.e. embed delayed column generation in a branch-and-bound approach, cf. [11, 39].
For each node of the branch-and-bound tree we then need to solve the restricted master prob-
lem (RMP). This RMP is defined by replacing the integrality constraints (4.18) by xuv ≥
0, ∀(u, v) ∈ A, and additionally considering only a small subset ∅ 6= P̃v ⊆ Pv, ∀v ∈ R,
of path variables.

When solving a node of the branch-and-price tree by column generation, we need to repeat-
edly identify path variables with negative reduced costs and add at least one of them to the RMP,
which in turn needs to be resolved. This process is repeated until no more variables with negative
reduced costs exist. In order to prove that no more negative reduced cost variables do exist, we
need to compute the path variable yielding minimal reduced costs. This pricing subproblem can
be solved by finding a delay-constrained cheapest path, see Section 3.3.2, from root s to each
terminal v ∈ R in a support graph with non-negative arc costs corresponding to dual variable
values.

4.6 Multi-Commodity Flow Formulation

We adopted the MCF formulation from Gouveia [65] for the HCMST problem to the RDCST
problem. Additionally and independently, the following MCF model is presented in a recent
article [111] in 2011. We use binary decision variables xuv, ∀(u, v) ∈ A. Furthermore, real-
valued flow variables fwuv, ∀(u, v) ∈ A, ∀w ∈ R, denote the flow on arc (u, v) from root s to
terminal w. Model MCF is defined as follows:

min
∑

(u,v)∈A

cuvxuv (4.19)

s.t.
∑

(s,v)∈A

fwsv = 1 ∀w ∈ R (4.20)

∑
(u,v)∈A

fwuv −
∑

(v,u)∈A

fwvu = 0 ∀v ∈ V \ {s, w}, ∀w ∈ R (4.21)

73

∑
(v,w)∈A

fwvw −
∑

(w,v)∈A

fwwv = 1 ∀w ∈ R (4.22)

∑
(u,v)∈A

duvf
w
uv ≤ B ∀w ∈ R (4.23)

0 ≤ fwuv ≤ xuv ∀(u, v) ∈ A, ∀w ∈ R (4.24)

xuv ∈ {0, 1} ∀(u, v) ∈ A (4.25)

Classical flow conservation constraints (4.20), (4.21) and (4.22) describe the flow of one com-
modity for each terminal w ∈ R originating in root s, possibly passing any nodes in V \ {s, w},
and ending in target node w, respectively. Inequalities (4.23) add up the delays on the path to a
terminal and bound these path-delays byB. Finally, linking inequalities (4.24) connect flow and
arc variables. MCF LP denotes the LP relaxation of MCF .

Note that, providing edge costs are strictly positive, objective (4.19) together with flow
constraints (4.20)–(4.22), (4.24) and (4.25) describe optimal Steiner trees in directed graphs,
cf. [124]. In principle, MCF models can also be formulated using undirected edge variables.
However, Magnanti et al. [124] and Gouveia [65] show for the Steiner tree and the HCMST
problem, respectively, that in this case O(|R|2 · |E|) constraints are needed to obtain the same
strength as the directed variant with only O(|R| · |A|) constraints.

4.7 Path-Cut Formulation

Although flow formulations usually provide rather tight LP bounds, the huge number of flow
variables often leads to a slow and memory-intensive solving process, which can be clearly seen
in the experimental results in Section 4.11. Thus, it is common practice for tree problems to
consider a formulation only defined on arc variables but in general with an exponential number
of inequalities guaranteeing connectivity. For tree problems without further constraints, e.g. the
Steiner tree problem, the equivalence of a multi-commodity flow and a directed connection cut
formulation can be shown by applying the max-flow-min-cut theorem [5]. In case of the RDCST
problem it is not obvious how to model the delay-constraints only with arc variables. Here, we
use a rather general approach by forbidding all simple paths with a delay higher than bound B.
Let P (v1, vk) = {(vi, vi+1) : vi ∈ V, i = 1, ..., k − 1, vi 6= vj , i 6= j} denote a simple path
consisting of k different nodes and k − 1 arcs. A path P is called infeasible for the RDCST
problem if it cannot occur in any feasible solution, i.e. a solution including P violates the delay-
bound. Let Pinf denote the set of all infeasible paths P . Much work on infeasible paths has
been published for the traveling salesman problem (TSP) with time windows, cf. [7, 8, 37], and
the vehicle routing problem (VRP) with time windows, cf. [96]. However, to the best of the
author’s knowledge this topic has not yet been discussed for MIP approaches on constrained
tree problems.

Similarly to model MCF , we use binary decision variables xuv, ∀(u, v) ∈ A. Model PC is

74

then defined as follows:

min
∑

(u,v)∈A

cuvxuv (4.26)

s.t.
∑

(u,v)∈A, u∈W, v/∈W

xuv ≥ 1 ∀W ⊂ V, s ∈W, W ∩R 6= ∅ (4.27)

k−1∑
i=1

xvivi+1 ≤ k − 2 ∀P (v1, vk) ∈ Pinf (4.28)

xuv ∈ {0, 1} ∀(u, v) ∈ A (4.29)

Inequalities (4.27) guarantee connectivity by stating that at least one arc has to cross any cut
partitioning node set V into a setW containing the source and a setW = V \W including at least
one terminal node. Inequalities (4.28) assure in a rather abstract way that the delay-constraints
are satisfied. Both sets have in general an exponential number of inequalities. Thus, we add them
in the typical branch-and-cut way, see Section 4.7.2 for according separation methods. PC LP

denotes the LP relaxation of PC .
To provide a “hot-start” of the branch-and-cut algorithm, we a priori add some inequalities

which are indeed included in the sets above. Inequality (4.27) withW = {s} ensures at least one
arc going out from the root, and a subset of the subtour elimination inequalities [124] (equivalent
to inequalities (4.27)) with two-node-sets prevents cycles of length two:∑

(s,v)∈A

xsv ≥ 1 (4.30)

xuv + xvu ≤ 1 ∀{u, v} ∈ E (4.31)

Furthermore, inequalities (4.32) guarantee exactly one incoming arc for each terminal node.
Provided that the objective function only has non-negative cost coefficients – as it is in our case
– these in-degree constraints are also subsets of inequalities (4.27).∑

(u,v)∈A

xuv = 1 ∀v ∈ R (4.32)

4.7.1 Valid Inequalities

Ascheuer et al. [7, 8] and Kallehauge et al. [96] argue that the general infeasible path inequali-
ties (4.28) can be rather weak for the TSP with time windows and the VRP with time windows,
respectively, and therefore propose various lifted variants of them, e.g. the so-called tournament
inequalities. However, their stronger inequalities heavily rely on the fact that in these routing
problems each node has exactly one incoming and one outgoing arc in a feasible solution. For
the RDCST problem we can only assume that the indegree of a node is at most one. Neverthe-
less, we provide one set of lifted infeasible path inequalities: Let V i

P = {u ∈ V : (u, vi) ∈
A, u 6= vi−1, vi+1, (u, vi) ∪ P (vi, vk) ∈ Pinf}, ∀i ∈ {2, ..., k − 1}, be the sets of nodes which

75

u1

v1u2 v3

u5u4

v3v2v1 vk

(a)

0.5

s

1

2

3 4

0.5

0.5 0.5

1

B = 2

(b)

Figure 4.1: (a) Illustration of lifted infeasible path inequalities. We assume that all paths starting
in nodes v1, ui, i = 1, ..., 5, and ending in vk are infeasible (without considering the additional
reverse arcs). (b) The solution with da = 1, ∀a ∈ A, andB = 2 is feasible for PC LP (arc labels
denote variable values of the LP solution), but violates inequalities (4.33), e.g. for infeasible path
P = {(s, 1), (1, 3), (3, 4)} since xs1 + x13 + x34 + x23 = 2.5 > |P | − 1 = 2. Squared nodes
denote terminal nodes.

form together with a sub-path of P again infeasible paths. The lifted inequalities are defined as
follows:

k−1∑
i=1

xvivi+1 +

k−1∑
i=2

∑
u∈V i

P

xuvi +

k−1∑
i=2

xvi+1vi ≤ k − 2 ∀P (v1, vk) ∈ Pinf (4.33)

Figure 4.1a shows an illustration of inequalities (4.33). Note, that the first sum and the right
side of inequalities (4.33) are identical to inequalities (4.28). Thus, by including additional arc
variables on the left side the constraints get tighter, see Fig. 4.1b for an example. It can be
easily seen that due to the paths’ infeasibility and the limited node’s indegree we can choose
at most k − 2 arcs at the same time for a feasible solution. Note that these liftings are also
applicable to many other tree problems since they only require the representation of the solution
as arborescence and a maximal node indegree of one.

A subset of inequalities (4.33) considering infeasible paths of length two can optionally be
added a priori to model PC :∑

u∈V 1
P

xuv1 + xv1v2 + xv2v1 ≤ 1 ∀(v1, v2) ∈ A (4.34)

Obviously, inequalities (4.34) include inequalities (4.31).

4.7.2 Separation Methods

Here, we discuss details about used separation methods for inequalities (4.27), (4.28) and (4.33).
In our implementation directed connection cuts (4.27) are separated first until no violated in-
equality can be found anymore. Then, we search for violated infeasible path inequalities (4.28)
and (4.33), respectively. All found violated inequalities are stored in a simple archive based on
hashes [31] making it possible to detect and discard duplicates.

76

Directed Connection Cuts

The separation problem for inequalities (4.27) basically reduces to finding the minimum cut in a
flow network. Due to the equivalence of maximum flow and minimum cut [5] we determine the
minimum cut by computing a maximum flow. First, we construct a flow network Gx = (V,A)
with arc capacities ςuv depending on the current LP solution xLP, i.e. ςuv = xuv, ∀(u, v) ∈ A.
Then, we obtain the maximum flow from root s to a terminal node r ∈ R by applying a push-
relabel method by Cherkassky and Goldberg [25] based on FIFO queues which runs in O(|V |3)
time. If the capacity of the according minimum cut with cut-set W, s ∈ W, r /∈ W , is less
than one, i.e.

∑
(u,v)∈A, u∈W, v/∈W ςuv < 1, then we have found a violated inequality (4.27) with

set W . This directly follows from the definition of the arc capacities above. If we repeat this
for all terminal nodes r ∈ R, we obtain an exact separation algorithm for directed connection
cuts (4.27) running in polynomial time.

Usually and also here this standard method is improved by several extensions, cf. [5,26,100,
119]:

• Source- and back-cuts: In general there can be more than one minimum cut separating
root s and a terminal r ∈ R. However, there is exactly one minimum cut “nearest” to the
source, i.e. minimizing the cardinality of cut-setW , and there is exactly one minimum cut
“nearest” to terminal r, i.e. minimizing the cardinality of cut-set W . In case of multiple
violating minimum cuts both the so-called source-cut and back-cut are added to the model.

• Nested cuts: In many cases it is beneficial to add as many violated inequalities as possible
within one separation iteration. Thus, by setting the arc capacities of a found violating
minimum cut to one and repeating the maximum flow computation to the same terminal
node, we possibly obtain another minimum cut with capacity less than one.

• Minimum cardinality cuts: Due to the structure of inequalities (4.27) it can be beneficial
to provide cuts consisting of a small number of arc variables. Therefore, by adding the
same value ε > 0 to all arc capacities we finally obtain the minimum cut with the least
number of cut arcs.

• Random terminal sequence: If using nested cuts it may be disadvantageous if the terminal
nodes are always examined in the same order. Due to the capacity modification the detec-
tion of violated inequalities with respect to later considered terminals may be prevented
leading to a possibly unbalanced cut generation. Thus, at the beginning of a separation
iteration we derive a random permutation of the set of terminal nodes R defining the ex-
amination order. (To preserve determinism of our branch-and-cut algorithm we initialize
the seed value of the random generator always with the same value 0.)

Infeasible Path Cuts

Ascheuer et al. [7] show that the problem of deciding whether a given path is infeasible is NP-
complete for the TSP with time windows. However, the situation is different for the RDCST
problem:

77

Theorem 4.7.1. Let P (v1, vk) ⊆ A be a simple path from node v1 to vk inG′. Whether P ∈ Pinf

or not can be decided in polynomial time.

Proof. If P (v1, vk) is a feasible path, i.e. is part of some feasible solution T , then all incoming
arcs for nodes vi, i = 2, ..., k, are fixed to the corresponding arcs in P . Since each node of
a feasible tree can only have at most one incoming arc all other arcs to nodes vi, i = 2, ..., k,
cannot be in T . Thus, we eliminate all these arcs and obtain a graph G′′ = (V,A′′) with
A′′ = A \ {(u, vi) : u 6= vi−1, i = 2, ..., k}. Now we apply the simple instance feasibility test
by computing the shortest-delay-paths to all terminal nodes which can be done in polynomial
time by Dijkstra’s algorithm [41]. If dmin

v ≤ B, ∀v ∈ R, inG′′ then we obtain a feasible solution
and thus P is feasible. Otherwise, if not even the shortest-delay-paths provide a feasible solution,
P ∈ Pinf .

Although the proof of Theorem 4.7.1 provides an exact method, for efficiency reasons we
use a heuristic decision method similar to the one proposed in [8, 37]. For a path P (v1, vk) we
check if condition

dmin
v1 +

k−1∑
i=1

dvivi+1 ≤ dmax
vk

(4.35)

holds. For definitions of dmin
v and dmax

v see Section 4.3. In case of violation of (4.35), we clearly
found a sufficient condition for the infeasibility of path P . Otherwise, we assume path P to be
feasible. Thus, our separation method is only able to find a subset P ′inf ⊆ Pinf of all infeasible
paths. However, if the current LP solution is integer, then our separation method is exact, i.e.
P ′inf = Pinf , cf. [8, 37].

We build a support graph based on the current LP solution and enumerate all paths by back-
tracking from each node. Ascheuer et al. [8] argue – without a written proof – that there can
only be a polynomial number of paths violating the tournament constraints in LP solutions for
the TSP with time windows due to the node-degree limitations. Thus, by using some simple
stopping criteria for backtracking they obtain a polynomial separation algorithm (with heuristic
path infeasibility test). In case of the RDCST problem the question is still open if there can only
be a polynomial number of paths violating inequalities (4.28). However, in our experimental
results we always observed rather small numbers of backtracking steps within one separation.
Further details about this enumeration procedure can also be found in [37]. When searching for
violated lifted inequalities (4.33) the according strengthening arcs are considered in the enumer-
ation algorithm to guarantee that all violations are found (w.r.t. set P ′inf).

4.8 Transformation to Layered Graph

Similarly to [70] we transform digraph G′ = (V,A) to a layered digraph GL = (VL, AL) with
node set VL = {s} ∪ {vl | v ∈ V \ {s}, 1 ≤ l ≤ B}. Thus, we introduce copies of all nodes
except the root for each possible delay value. Arc set AL = As

L ∪A
g
L consists of

• root arcs As
L = {(s, vdsv) | (s, v) ∈ A} and

• general arcs Ag
L = {(ul, vl+duv) | (u, v) ∈ A, u, v 6= s, 1 ≤ l ≤ B − duv}.

78

Arc delays duv are not needed in GL since they are implicitly contained in the layered structure:
node vl in GL represents node v in G′ with delay dTv = l on path PT (s, v) in some solution T .
Arc costs in AL are the same as the costs of corresponding arcs in A.

With respect to the RDCST problem, we want to find an arborescence TL = (V T
L , A

T
L)

in GL with V T
L ⊆ VL, A

T
L ⊆ AL, rooted in s ∈ V T

L , including exactly one node vl ∈ V T
L

for each terminal node v ∈ R and at most one node ul ∈ V T
L for each potential Steiner node

u ∈ S, having minimal costs cTL =
∑

(uk,vl)∈AT
L
cuv. An optimal arborescence T ∗L in GL as

defined above corresponds to an optimal Steiner arborescence T ∗ for the RDCST problem on
G′, moreover cT ∗L = cT ∗ . A solution T in G is obtained from an arborescence TL by simply
mapping all nodes vl ∈ V T

L \ {s} to v and arcs (uk, vl) ∈ ATL to (u, v), respectively.
Due to its possibly huge size preprocessing in GL is even more important than in G′. Let

deg−(uk) and deg+(uk) denote the indegree and outdegree of node uk, respectively. The fol-
lowing reduction steps are repeated as long as GL is modified by one of them:

1. To partly prevent cycles of length two in G′ an arc (uk, vl) ∈ AL can be removed if
deg−(uk) = 1 ∧ (vm, uk) ∈ AL or v ∈ S ∧ deg+(vl) = 1 ∧ (vl, um) ∈ AL.

2. If node vl ∈ VL \ {s} has no incoming arcs it cannot be reached from s and therefore is
removed.

3. If node vl ∈ VL \ {s}, v ∈ S, has no outgoing arcs it is removed since a Steiner node
cannot be a leaf in an optimal solution.

These preprocessing rules are able to reduce the number of nodes and arcs usually dramati-
cally, especially for instances with a broad range of delay values. Further reduction methods for
Steiner trees can be found in [100, 119]. See Fig. 4.2 for an example of layered graph transfor-
mation, preprocessing, and solution correspondence.

Furthermore, let G′L = (V ′L, A
′
L) be an extended layered graph with node set

V ′L = VL ∪RL, RL = {v̂ | v ∈ R} (4.36)

and arc set
A′L = AL ∪ Â, Â = {(vl, v̂) | vl ∈ VL, v̂ ∈ RL, v ∈ R}. (4.37)

In this extension we add terminal node set RL and according arcs to graph GL. Solving the
RDCST problem on graph G corresponds to solving the classical Steiner arborescence prob-
lem on layered graph G′L. In principle, we can now apply any existing approach to solve the
Steiner arborescence problem. Note that due to the definition of the layered graph it has the
property of acyclicity which may be utilized in a solution method, e.g. when modeling connec-
tivity: All general MIP tree models either need additional variables or an exponential number
of constraints. Acyclicity makes it possible to model the problem effectively with a polynomial
number of constraints without additional variables, see [67, 133] and Section 4.9. Approxima-
tion algorithms for the Steiner arborescence problem in acyclic digraphs are presented e.g. by
Zelikovsky et al. [194] and Hsu et al. [86].

Picard and Queyranne [140] considered as one of the first authors a layered graph approach
for the time-dependent traveling salesman problem in 1978. Here, the cost of using an edge

79

2 3

(1,2)

(3,2)

(4,1)

(1,2)

(1,2)

(3,1)

(1,1)

(8,1)

(2,3)

4 5

1s

(a)

11 21 31

12 22 32

13 23 33

14 24 34

5242

5141

43 53

5444

d = 1

d = 2

d = 3

d = 4

d = 0 s

(b)

11 21 31

12 22 32

13 23 33

14 24 34

5242

5141

43 53

5444

d = 1

d = 2

d = 3

d = 4

d = 0 s

(c)

3

(1,2)

(3,2)

(4,1)

(1,2)

(1,2)

(3,1)

(1,1)

(8,1)

(2,3)

54

2

1s

(d)

Figure 4.2: (a) Example graph with edge labels (ce, de). Squared nodes denote terminal nodes.
(b) Corresponding layered digraph for B = 4 (arc costs are omitted). (c) Preprocessed graph
GL with optimal solution denoted by blue arcs. (d) Optimal tree T ∗ in G with cT ∗ = 9.

80

depends on the time when it is crossed. Especially this kind of problem aspects can be modeled
quite easily on layered graphs since we simply assign different costs to the same original arc on
different layers. Recently, layered graph approaches again increased in popularity, see [60] for
strong formulations for the capacitated vehicle routing problem with unit demands, and [117,
118] for models for the hop-constrained facility location problem.

4.9 Layered Graph Formulation

Combining parts of the hop-indexed model in [67] and the layered graph model in [70] for the
HCMST problem, we propose a MIP formulation on layered graph GL for the RDCST problem.
Again, we use binary variables xuv, ∀(u, v) ∈ A, to model original arcs in G′. Additionally,
continuous variables ylv, ∀vl ∈ VL \ {s}, and xluv, ∀(ul, vk) ∈ AL, represent nodes and arcs in
layered graph GL, respectively. Model LAY is then defined as follows:

min
∑

(u,v)∈A

cuvxuv (4.38)

s.t.
∑
vl∈VL

ylv = 1 ∀v ∈ R (4.39)

∑
vl∈VL

ylv ≤ 1 ∀v ∈ S (4.40)

∑
(uk,vl)∈AL

xkuv = ylv ∀vl ∈ VL \ {s} (4.41)

∑
(uk,vl)∈AL,u6=w

xkuv ≥ xlvw ∀(vl, wj) ∈ Ag
L (4.42)

x0
sv = xsv ∀(s, v) ∈ A (4.43)∑

(uk,vl)∈AL

xkuv = xuv ∀(u, v) ∈ A, u 6= s (4.44)

xkuv ≥ 0 ∀(uk, vl) ∈ AL (4.45)

ylv ≥ 0 ∀vl ∈ VL \ {s} (4.46)

xuv ∈ {0, 1} ∀(u, v) ∈ A (4.47)

Inequalities (4.39) and (4.40) state that from the set of layered graph nodes corresponding to
one particular original node exactly one has to be chosen for required nodes and at most one
for potential Steiner nodes, respectively. Indegree constraints (4.41) in GL restrict the number
of incoming arcs to a layered graph node vl in dependency of ylv to at most one. Since GL is
acyclic inequalities (4.42) are enough to ensure connectivity. Equalities (4.43) and (4.44) link
layered graph arcs to original arcs. LAY LP denotes the LP relaxation of LAY .

In principle, variables xuv and ylv are redundant since they can be substituted by Boolean
layered graph arc variables xluv using equalities (4.41), (4.43) and (4.44). However, model LAY
is better readable by including them and branching on xuv and Boolean ylv variables turned out to
be more efficient in practice than branching on variables xluv. In fact, branching on original arcs

81

usually is more balanced since setting xluv = 1 for one particular layered graph arc in general is
a stronger constraint on the set of feasible solutions than setting xuv = 1.

Theorem 4.9.1. Model LAY can be used to solve the RDCST problem.

Proof. Constraints (4.39) and (4.41) force exactly one incoming arc to exactly one layered graph
node vl in GL for each terminal node v ∈ R. We have to show that all included nodes vl ∈ VL

are connected to the root node s. If the incoming arc (uk, vl) originates in s, i.e. uk = s, we
are done. Otherwise inequalities (4.42) ensure an incoming arc to uk. Due to the acyclicity and
the layered structure of GL the source of an arc can only be in a lower layer than the target.
Repeating this argumentation for node uk extends the path in a backtracking way to the root
node in layer 0. The union of all such paths forms a connected acyclic subgraph including one
layered graph node for each terminal node. Since inequalities (4.41) restrict the indegree to a
layered graph node to at most one, the resulting subgraph is an arborescence TL rooted in s.
Finally, linking inequalities (4.44) and (4.43) transform TL back to a feasible arborescence T ′ in
graph G′.

The number of variables and constraints of model LAY can be estimated by equations (4.48)
and (4.49) showing the high dependency on delay-bound B. Therefore B is crucial for the per-
formance and memory consumption of this model which can be clearly observed in the experi-
mental results, see Section 4.11.

#variables = |A|+ |VL|+ |AL| = O((|V |+ |A|) ·B) (4.48)

#constraints = |R|+ |S|+ 2(|VL| − 1) + |Ag
L|+ 2|A|+ |AL| = O((|V |+ |A|) ·B)

(4.49)

4.9.1 Valid Inequalities

The following sets of valid inequalities are not necessary for the feasibility of model LAY but
are useful to strengthen it w.r.t. its LP relaxation. Inequalities (4.30), (4.31), and (4.27) used for
model PC in Section 4.7 are able to strengthen model LAY , too, see Fig. 4.3a for an example.

A stronger variant of (4.27) can be defined on the extended layered graph G′L, see [70]:∑
(uk,vl)∈A′L, uk∈WL, vl∈WL

xkuv ≥ 1 ∀WL ⊂ V ′L, s ∈WL, WL ∩RL 6= ∅ (4.50)

It can be easily seen that inequalities (4.50) include (4.27). Figure 4.3b shows an example for
strengthening model LAY .

4.9.2 Separation Methods

Inequalities (4.30) and (4.31) are included in the model a priori while (4.27) and (4.50) need
to be separated dynamically during branch-and-cut. Violated inequalities are found in the same
way as for model PC , see Section 4.7.2 for details. Clearly, the separation of inequalities (4.50)
takes place on layered graph G′L, and capacities for arcs Â are set to 1 in the maximum flow
calculations.

82

0.1W

11 21 31 41

12 22

13 4323 33

32

0.3

0.4
0.6

0.1

0.1

0.3

0.3 0.3
0.3

0.3
0.3

42

0.3

0.3

s

(a)

WL

11 21 31

12 22 32

13 23 33

0.4

0.1

0.1

0.3
0.3

0.3 0.3
0.3

0.3

0.3

0.3

1̂ 2̂ 3̂

s

(b)

Figure 4.3: Both examples are feasible for LAY LP (arc labels denote variable values of the
LP solution, gray arcs mean xluv = 0). (a) The solution violates inequality (4.27) with W =
{s, 1} and the root-constraint (4.30). (b) The solution violates inequality (4.50) with WL =
{s, 11, 13, 1̂}.

We observed in our experiments that usually a large number of violated inequalities (4.50)
on the layered graph is found resulting in a significant increase of the according dual bound. In
many cases the LP relaxation including all violated inequalities even is integral, without need for
branching anymore. However, often many separation iterations are necessary to reach this best
dual bound. Additionally, the LP resolvings after adding cuts usually take much time because
of the huge size of the corresponding layered graph formulation. One of the reasons for the high
number of resolvings may be the capacity modifications within the separation problem when
searching for nested cuts: Setting the capacity of all detected cut arcs to 1 possibly prevents
finding violating cuts to other terminal nodes, which then have to be found in later iterations.
Therefore, by disabling nested cuts and capacity modifications we are hopefully able to reduce
the number of separation rounds and thus the number of LP resolvings. Clearly, we have to
accept the consequence that probably redundant violated inequalities are added to the model.
However, preliminary results indicate that in most cases this version is advantageous compared
to the variant including nested cuts.

4.10 Polyhedral Comparison

The aim of this section is to theoretically compare the polyhedra associated to the LP relax-
ation of the following formulations for the RDCST problem and projected into the space of x
variables:

83

LAY ′′

PATH

MCF

MTZ ′

MTZ

LAY ′

LAY PC ′

PC

Figure 4.4: Polyhedral comparison of all described formulations. An arrow describes a direct
relation between two formulations: the formulation at the tail of an arrow is weaker than the
formulation at the head. If there is no directed path between two formulations, the corresponding
polyhedra are incomparable.

• MTZ : compact extended formulation based on Miller-Tucker-Zemlin inequalities in Sec-
tion 4.4

• MTZ ′: formulation MTZ with directed connection cut inequalities (4.27) on graph G′

• PATH : path formulation in Section 4.5

• MCF : multi-commodity flow formulation in Section 4.6

• PC : path-cut formulation in Section 4.7

• PC ′: formulation PC with inequalities (4.28) replaced by lifted variants (4.33)

• LAY : layered graph formulation in Section 4.9 with inequalities (4.30)–(4.31)

• LAY ′: formulation LAY with directed connection cut inequalities (4.27) on graph G′

• LAY ′′: formulation LAY with directed connection cut inequalities (4.50) on layered
graph G′L

We denote the polyhedra of the according LP relaxations projected into the space of x variables
by PMTZ , PMTZ ′ , PBP , PMCF , PPC , PPC ′ , PLAY , PLAY ′ , and PLAY ′′ , respectively. We write
P1 ⊂ P2 if P1 ⊆ P2 and there exist instances such that ∃x ∈ P2 : x /∈ P1. Figure 4.4
summarizes the relations between the formulations which are now discussed one by one.

Proposition 4.10.1. PLAY ⊂ PMTZ .

Idea of proof. In principle, we can relate a node vl ∈ VL in layered graphGL to node v ∈ V with
node-delay δv = l in formulation MTZ . However, the notion of node-delay is described more
accurately in LAY since it equals the sum of the actual arc delays on the path to a node, whereas
in MTZ it also depends on the arc variables on that path. Additionally, MTZ inequalities 4.9

84

10

2

0.5

0.5

0.5

0.5

0.5

0.5

2

1

s 3

B = 2

(a)

0.5 0.5

10.5
2

1

s 3

d = 5
B = 4

(b)

0.5 0.5

10.5
2

1

s 3

d = 4
B = 4

(c)

0.5 0.5

0.5

1

s

d = 2
B = 1

2

(d)

0.5 0.5

0.5

d = 2
B = 33

2

1

s 4
0.5 0.5

0.5

(e)

0.5

41

42

4323

22

2111

12

13

32

31

33

s

0.5 0.5

0.5
0.5

0.5

(f)

Figure 4.5: Examples for polyhedral comparison. Arc labels in all figures denote variable values
of the LP solution, arc delays are 1 if not explicitly defined, and squared nodes denote terminal
nodes.

relate δv values in a way that only upper bounds on the actual node-delays in a solution are
obtained, even in the integer case. Therefore, an arc can be included in a solution of MTZ LP

which is infeasible according to the shortest-delay-path from root s in this solution, as shown in
Fig. 4.5a for arc (2, 3), which is not feasible for LAY LP.

Proposition 4.10.2. PMTZ ′ ⊂ PMTZ .

Proof. Clearly, PMTZ ′ ⊆ PMTZ holds. Figure 4.5a shows a solution which is feasible for
MTZ LP but violates directed connection cut inequalities (4.27) with W = {s}.

Proposition 4.10.3. PLAY ′ ⊂ PLAY .

Proof. Clearly, PLAY ′ ⊆ PLAY holds. Figure 4.3a shows an example where directed connection
cut inequalities (4.27) are able to strengthen LAY LP: Basically, “oscillations” between layered
graph nodes, e.g. arcs (31, 22) and (22, 33), which represent cycles of length two in graph G′,
prevent in some cases a feasible flow of one unit from root s to a terminal node in G′. Thus,
there has to be minimum cut of capacity less than one resulting in a violated connection cut
inequality (4.27).

Proposition 4.10.4. PLAY ′ ⊂ PMTZ ′ .

Idea of proof. Both formulations include directed connection cut inequalities (4.27). Apart from
that, we can apply the same argumentation as in Proposition 4.10.1, here.

85

Proposition 4.10.5. PPC ′ ⊂ PPC .

Proof. Clearly, PPC ′ ⊆ PPC holds. Figure 4.1b shows an example where lifted infeasible path
inequalities (4.33) are able to strengthen PC LP. In principle, the fact that inequalities (4.33) are
able to combine different infeasible paths helps to tighten the formulation.

Proposition 4.10.6. PLAY ′ ⊂ PPC ′ .

Idea of proof. Directed connection cut inequalities (4.27) are included in both formulations, and
it is not hard to see that a similar argumentation as in Proposition 4.10.1 can be used here, too:
Solution 4.5d is feasible for PC ′LP but not for LAY ′LP since due to B = 1 the corresponding
layered graph only has one layer additional to root node s, and thus arc (1, 2) has no counterpart
in GL.

Proposition 4.10.7. PMCF ⊂ PMTZ ′ .

Idea of proof. By applying the max-flow-min-cut theorem [5] we know that subtour elimination
by multi-commodity flows is equivalent to using directed connection cut inequalities. Further-
more, in [137] MTZ inequalities have been shown to be weaker than multi-commodity flow
inequalities to prevent cycles. Regarding the delay-constraints, MTZ inequalities (4.9) provide
a weak description of a delay-feasible path P (s, v), v ∈ R, in a sense that they cannot combine
different fractional paths to terminal v whereas inequalities (4.23) in model MCF sum up the
whole flow assigned to this terminal node possibly using different fractional paths. Example 4.5b
shows such a situation: the solution is feasible for MTZ ′LP with δ1 = 0.5, δ2 = 3, δ3 = 4, but
not for MCF LP with f3

uv = xuv, ∀(u, v) ∈ A, and
∑

(u,v) duvf
3
uv = 4.5 > B.

Proposition 4.10.8. PPATH ⊂ PMCF .

Proof. Dahl et al. [32] argue for the HCMST problem that formulation PATH describes the
convex hull of the incidence vectors of delay-feasible paths which is in general not the case for
MCF . Thus, MCF possibly includes delay-infeasible paths in a fractional solution. Obviously,
this result can also be applied to the more general RDCST problem. An example is shown
in Fig. 4.5c: The solution is feasible for MCF but infeasible for PATH LP since path P =
{(s, 1), (1, 2), (2, 3)} is delay-infeasible and thus not part of the formulation. Therefore, path
P = {(s, 2), (2, 3)} has to be set to 1 forcing arc (s, 2) to 1, too.

Proposition 4.10.9. PPATH ⊂ PLAY ′ .

Idea of proof. It is well-known that formulation PATH includes directed connection cut in-
equalities (4.27) on graph G′. Further, we already know that PATH describes the convex hull
of the incidence vectors of delay-feasible paths [32]. Additionally, connection cut inequali-
ties (4.27) in model LAY ′ work on graph G′ and thus do not respect delays. Therefore, a
minimum cut in G′ for some set S may have capacity greater or equal than 1 but using these cut
arcs in a solution may violate the delay-bound. Connection cut inequalities (4.50) on layered
graph G′L prevent these situations, significantly strengthening LAY ′LP, see Proposition 4.10.10.
In other words, LAY ′ is not able to combine different fractional delay-feasible paths to one

86

terminal node in a way that the multiple use of common arcs is reflected in the according arc
variables. In contrast, PATH sums up multiple arc crossings to the same terminal node.

The solution 4.5e on graph G′ and the equivalent arborescence on layered graph GL are
feasible for LAY ′LP, but not for PATH LP since path P = {(s, 1), (1, 2), (2, 3), (3, 4)} is in-
feasible. Thus, to fulfill inequalities (4.14) for terminal node 4, we e.g. combine paths P1 =
{(s, 2), (2, 3), (3, 4)} and P2 = {(s, 2), (2, 4)}, but then arc (s, 2) is forced to 1.

Proposition 4.10.10. PLAY ′′ ⊂ PPATH .

Proof. This result is shown in [70] for the HCMST problem and can easily be adapted to the
RDCST problem. Basically, Gouveia et al. argue that in a fractional solution of PATH LP the
same arc can appear in different delay positions in different paths, which is not possible for
formulation LAY ′′.

Proposition 4.10.11. P1 6= P2, ∀P1 ∈ {PMTZ , PMTZ ′ , PMCF}, ∀P2 ∈ {PPC , PPC ′}.

Proof. Solution 4.5c is feasible for MCF LP with f3
uv = xuv for all arcs (u, v) ∈ A, and∑

(u,v) duvf
3
uv = 4 ≤ B, but not for PC LP with infeasible path P = {(1, 2), (2, 3)} since

x12 + x23 = 1.5 > |P | − 1 = 1. Furthermore, solution 4.5d is feasible for PC ′LP but not for
MTZ LP with δ1 = 0.5, δ2 = 1.5 > B. These two examples together with previously shown
results imply all incomparableness relations.

Proposition 4.10.12. PMCF 6= P2, P2 ∈ {PLAY , PLAY ′}.

Proof. Solution 4.5c is feasible for MCF LP with f3
uv = xuv for all arcs (u, v) ∈ A, and∑

(u,v) duvf
3
uv = 4 ≤ B, but not for LAY LP since there is no arc in layered graph GL cor-

responding to arc (1, 2). Furthermore, the solution in Fig. 4.5e and 4.5f is feasible for LAY ′LP

but not for MCF LP with f4
uv = xuv, ∀(u, v) ∈ A, and

∑
(u,v) duvf

4
uv = 3.5 > B.

Proposition 4.10.13. PLAY 6= P2, P2 ∈ {PMTZ ′ , PPC , PPC ′}.

Proof. Formulation LAY does not include all directed connection cut inequalities (4.27), see
Fig. 4.3a for an example, whereas formulations MTZ ′, PC , and PC ′ include them. Further-
more, solution 4.5d is feasible for PC ′LP but not for LAY LP because of arc (1, 2) which has no
counterpart in layered graph GL. Finally, solutions 4.5b and 4.5c are feasible for MTZ ′LP but
not for LAY LP again due to arc (1, 2).

4.11 Computational Results

In this section we compare all mentioned formulations on different sets of benchmark instances.
In detail we discuss the following solution approaches:

• M1: branch-and-cut (BC) based on compact extended formulation MTZ but with lifted
MTZ inequalities by Leggieri et al. [111]

• M2: M1 extended by directed connection cut inequalities (4.27)

87

• BP: branch-and-price approach by Leitner et al. [113] based on path formulation PATH
from Section 4.5 stabilizing column generation by using alternative dual-optimal solutions
(algorithm-specific parameter Q is set to 20)

• FL: BC based on multi-commodity flow formulation MCF in Section 4.6

• P1: BC based on path-cut formulation PC in Section 4.7 with inequalities (4.30)–(4.32)
added a priori to the model

• P2: P1 with inequalities (4.28) replaced by lifted variants (4.33), and (4.34) added a priori
to the model PC

• L1: BC based on layered graph formulation LAY in Section 4.9 with inequalities (4.30)–
(4.31) added a priori to the model

• L2: L1 extended by directed connection cut inequalities (4.27) on graph G′

• L3: L1 extended by directed connection cut inequalities (4.50) on layered graph G′L

4.11.1 Test Instances and Environment

We apply all MIP approaches to benchmark instances originally proposed by Gouveia et al. [68]
for the spanning tree variant of the RDCST problem consisting of complete graphs with 41
nodes. The three main instance sets R, C, and E each have different graph structures defined
by their edge cost functions: R has random edge costs, C and E both have Euclidian costs
fixing root node s near the center and near the border, respectively. Each main instance set
consists of different subsets of five input graphs varying in the number of possible discrete edge
delay values, e.g. C100 denotes the set of instances with 100 different integer delay values
de ∈ {1, ..., 100}, ∀e ∈ E.

Additional instance sets Tα are based on the self-generated R100 instances for the RDCMST
problem, cf. Section 3.13.1, where the set of terminal nodes is R = {1, ..., α}.

The third set of benchmark instances is introduced by Leggieri et al. [111] and based on
instances from the SteinLib Library1 [101]. All instances of SteinLib set B, the first ten in-
stances of set C, and the first five instances of set D are used which contain sparse graphs
with |V | ∈ [50, 1000] and |E| ∈ [63, 1250]. Each edge is assigned a random integer cost
value uniformly distributed in {1, ..., 10}. Additionally, ten Euclidian complete graphs based
on SteinLib instances Berlin52 (|V | = 52, |R| = 16) and Brazil58 (|V | = 58, |R| = 25) are
used. Since SteinLib instances do not contain edge delays, they have been generated by Leg-
gieri et al. in two different ways: randomly within {1, ..., 100} (subset Ran), and correlated to
the cost value by choosing a random number r ∈ [0.8, 1.2] for each edge and setting de = r · ce
(subset Cor). Tested delay-bounds depend on a particular input graph by computing the maxi-
mum among the shortest-delay-paths to all terminal nodes, i.e. δmax = maxv∈R d

min
v , and using

B ∈ {1.1 · δmax, 1.5 · δmax}.
1http://steinlib.zib.de

88

http://steinlib.zib.de

To reduce the input graphs we applied all preprocessing methods described in Section 3.3
and 4.3 prior to solving. To provide an initial primal solution for the MIP tests in Section 4.11.3
we applied the Kruskal-based heuristic (KBH) from Section 3.4 followed by the VND from
Section 3.8 to all spanning tree instances, whereas a simple heuristic denoted by CSP is used
if R ⊂ V \ {s}, which iteratively adds delay-constrained shortest paths from the root node
to terminal nodes while dissolving possible cycles [111]. However, since the KBH and VND
work on undirected graphs and all MIP approaches are based on the corresponding directed
counterpart, situations can arise where preprocessing on the directed graph is able to remove
additional arcs which are included in the feasible solution obtained by the heuristics. In such
cases the primal bound is still feasible but the tree cannot be handed over to the MIP solver as
guiding solution. Especially for branch-and-price approach BP this is problematic since here we
need an initial set of feasible paths to all terminal nodes. Thus, for BP we use the CSP heuristic
which can cope with directed graphs for both Steiner and spanning tree instances.

We used IBM ILOG CPLEX 12.3 to solve the MIP models. The layered node and arc
variables in model LAY and the flow variables in MCF are declared Boolean since the CPLEX
presolver benefits from integrality of these variables and therefore can significantly reduce the
model. Furthermore, because of too high time consumption we disabled the probing extension
of CPLEX which checks the logical implications of setting each Boolean variable to 0 or 1.
Branch-and-price approach BP is solved by ZIB SCIP 2.1.0 [2] with CPLEX 12.3 as embedded
LP solver since CPLEX is not able to add columns within branch-and-bound nodes other than
the root node. However, to provide a fair comparison between the approaches we have to take
into account that SCIP is in average about 2-3 times slower than CPLEX when considering
general benchmark instances2. For BP, we further deactivated presolving and separation of
general purpose cutting planes (as recommended) and set parameter “fastmip” to 1. The dual
simplex algorithm has been used for solving LPs in CPLEX, since it turned out to significantly
outperform other options (primal simplex, barrier) in preliminary tests. Finally, a memory limit
of 4 GB and a time limit of 10 000 CPU-seconds are set for each experiment. Apart from that,
all other CPLEX and SCIP settings remain at their default.

Similarly to RDCMST problem benchmarks, cf. Section 3.13.1, all tests are performed on
a single core of Intel Xeon E5540 processors with 2.53 GHz where eight cores share 24 GB of
memory.

4.11.2 LP Bounds

Tables 4.1–4.3 show results for several instance sets when only solving the LP relaxation of the
considered formulations. We report obtained average gaps between the optimal LP relaxation
value and the optimal integer value denoted as LP-gap, and the median runtime to reach these
best possible LP bounds. Dashes in LP-gap columns are used if for at least one of the instances
the optimal LP value could not be obtained within the given time limit, whereas dashes in time
columns represent the time limit of 10 000 seconds.

In general, Euclidian instances seem to be harder to solve, e.g. see C and E sets compared to
R instances in Table 4.1. This is mainly because of the lower success rate of our preprocessing

2http://scip.zib.de

89

http://scip.zib.de

average LP-gap in % median time in seconds
Set B M1 M2 BP FL P1 P2 L1 L2 L3 M1 M2 BP FL P1 P2 L1 L2 L3

R5 6 31.9 31.7 0.0 16.2 40.0 1.9 0.6 0.6 0.0 0 0 2 22 0 0 0 0 0
8 30.8 30.5 0.1 16.6 32.3 6.4 0.6 0.6 0.0 0 0 3 20 0 0 0 0 0

10 24.4 24.0 0.0 12.3 23.2 8.5 1.2 1.2 0.0 0 0 4 18 0 0 0 0 0
12 16.3 15.9 0.1 7.6 14.7 5.3 0.4 0.4 0.0 0 0 3 10 0 0 0 0 0

C5 6 15.9 13.8 0.2 7.2 19.0 1.7 1.0 0.7 0.0 0 0 2 8 0 0 0 0 0
8 16.7 13.9 0.1 4.6 16.2 3.4 1.9 1.5 0.0 0 0 4 10 0 0 0 0 0

10 16.0 13.1 0.5 5.2 13.6 5.8 4.4 3.1 0.1 0 0 4 8 0 0 0 0 1
12 13.5 10.5 0.2 4.0 10.3 5.5 4.6 3.1 0.0 0 0 4 5 0 0 0 0 3

E5 6 23.0 21.1 0.4 9.3 26.2 5.0 3.4 3.1 0.0 0 0 7 79 0 0 0 0 0
8 22.9 20.2 0.2 6.8 21.7 9.0 5.4 4.6 0.0 0 0 14 117 0 1 0 0 1

10 20.2 16.9 0.3 4.5 16.8 9.9 6.5 5.6 0.0 0 0 25 122 0 0 0 1 5
12 17.6 14.3 0.5 3.9 14.1 9.5 7.3 5.6 0.0 0 0 44 88 0 0 0 1 18

R10 10 32.2 31.9 0.1 16.8 36.1 4.4 1.1 1.1 0.0 0 0 3 25 0 0 0 0 0
15 30.6 30.2 0.0 15.9 31.2 8.4 1.1 1.1 0.0 0 0 4 27 0 0 0 0 0
20 21.0 20.6 0.0 9.8 19.8 7.0 0.5 0.5 0.0 0 0 4 16 0 0 0 0 0
25 14.9 14.5 0.1 7.8 14.1 6.3 1.0 0.9 0.0 0 0 4 15 0 0 0 1 1

C10 10 16.1 14.3 0.0 7.9 16.9 2.6 2.1 1.6 0.0 0 0 3 14 0 0 0 0 0
15 16.7 14.2 0.2 5.8 15.1 4.6 2.9 2.1 0.0 0 0 4 15 0 0 0 0 2
20 13.7 10.8 0.2 4.3 10.7 5.3 4.1 2.7 0.0 0 0 5 14 0 0 0 1 12
25 10.9 8.1 0.2 3.7 7.8 4.6 4.2 2.4 0.0 0 0 6 8 0 0 1 3 41

E10 10 22.7 20.9 0.1 8.9 25.0 4.2 2.7 2.3 0.0 0 0 6 75 0 0 0 0 0
15 22.2 19.2 0.5 6.6 19.9 10.1 6.8 5.9 0.0 0 0 19 134 0 0 0 1 9
20 18.7 15.4 0.7 4.7 15.1 10.4 7.8 6.2 0.0 0 0 64 131 0 0 0 3 70
25 15.5 12.3 0.8 3.7 11.9 9.2 8.3 6.2 0.1 0 0 85 105 0 0 1 9 265

R100 100 32.4 32.0 0.2 18.2 35.6 7.1 3.3 3.3 0.1 0 0 4 28 0 0 2 2 4
150 25.7 25.4 0.1 13.1 24.4 8.6 2.8 2.7 0.0 0 0 4 20 0 0 5 7 56
200 16.5 16.2 0.0 8.2 15.1 6.0 0.6 0.5 0.0 0 0 5 13 0 0 14 20 24
250 10.3 10.0 0.0 5.4 9.4 4.4 0.2 0.2 0.0 0 0 6 7 0 0 34 46 181

C100 100 19.3 16.9 0.1 8.6 18.6 5.7 4.1 3.3 0.0 0 0 8 51 0 0 3 9 192
150 14.9 11.9 0.0 4.9 12.1 5.1 3.4 2.4 0.0 0 0 9 31 0 0 16 67 1293
200 11.5 8.5 0.1 3.7 8.2 4.5 3.9 2.2 - 0 0 13 16 0 0 43 417 6202
250 8.9 6.0 0.1 2.9 5.8 3.5 3.4 1.8 - 0 0 11 14 0 0 76 566 -

E100 100 22.2 19.6 0.3 8.0 21.9 7.9 6.5 5.2 0.0 0 0 17 163 0 0 4 13 713
150 19.1 16.0 0.3 5.2 16.1 9.2 7.6 5.5 - 0 0 37 130 0 0 17 115 -
200 15.8 12.6 0.5 4.1 12.2 8.3 8.0 5.5 - 0 0 79 122 0 0 57 423 -
250 12.7 9.6 0.3 3.0 9.3 7.0 7.4 4.7 - 0 0 59 79 0 0 160 4117 -

R1000 1000 39.4 38.9 0.4 21.3 43.3 11.2 3.0 2.9 0.0 0 0 10 54 0 0 143 174 1596
1500 29.4 29.0 0.5 15.5 29.3 13.5 4.2 4.1 - 0 0 16 32 0 0 825 1336 -
2000 19.1 18.8 0.0 9.3 17.6 7.8 1.6 1.6 - 0 0 20 23 0 0 1634 2241 2328
2500 11.2 10.8 0.0 5.6 10.2 4.2 1.1 1.1 - 0 0 20 14 0 0 3679 2994 3139

C1000 1000 20.0 17.4 0.0 9.1 21.1 4.5 2.2 1.9 - 0 0 15 57 0 0 152 252 6560
1500 17.2 14.2 0.2 5.8 14.6 6.1 4.0 2.8 - 0 0 19 36 0 0 930 2818 -
2000 14.6 11.7 0.5 5.4 11.4 7.0 5.4 - - 0 0 33 27 0 0 2352 - -
2500 10.2 7.4 0.1 3.3 7.1 4.5 - - - 0 0 36 11 0 0 5299 - -

E1000 1000 22.3 20.0 0.0 9.3 21.8 7.7 5.6 4.7 - 0 0 24 122 0 0 339 1091 -
1500 19.7 16.5 0.3 5.6 16.7 9.4 6.6 - - 0 0 50 122 0 0 1184 8089 -
2000 16.2 13.0 0.1 3.6 12.6 8.5 7.4 - - 0 0 77 95 0 0 3044 - -
2500 13.3 10.2 0.3 2.6 9.8 7.0 - - - 0 0 150 71 0 0 7256 - -

Table 4.1: LP results for instances by Gouveia et al. [68] (B: delay-bound, LP-gap: gap between
optimal LP relaxation and optimal integer value, M1: Miller-Tucker-Zemlin approach, M2:
M1 with connection cuts, BP: stabilized branch-and-price, FL: flow approach, P1: path-cut
approach, P2: P1 with lifted cuts, L1: layered graph approach, L2: L1 with connection cuts on
G′, L3: L1 with connection cuts on G′L, best results are printed bold).

90

average LP-gap in % median time in seconds
Set B M1 M2 BP FL P1 P2 L1 L2 L3 M1 M2 BP FL P1 P2 L1 L2 L3
T10 16 24.2 21.8 0.1 10.5 20.6 16.3 2.0 0.9 0.0 0 0 0 1 0 0 0 0 0

30 37.9 35.5 0.1 16.4 35.4 31.2 2.9 1.4 0.1 0 0 2 10 0 0 0 1 1
50 43.2 40.7 0.2 17.5 40.8 36.6 4.0 2.0 0.1 0 0 3 31 1 1 5 8 15

100 42.8 40.7 0.0 18.1 41.3 36.9 4.5 2.1 0.0 0 0 5 59 1 1 69 124 187
T30 16 23.3 22.7 0.1 12.4 23.3 13.6 0.4 0.3 0.1 0 0 2 19 0 0 0 0 0

30 37.0 36.1 0.1 17.7 37.2 27.1 1.7 1.4 0.0 0 0 8 255 1 1 1 1 2
50 40.5 39.6 0.3 19.7 40.5 31.6 2.8 2.2 0.1 0 0 17 641 1 2 8 11 52

100 40.6 39.9 0.4 19.2 41.2 33.0 4.0 3.5 - 0 0 41 1863 2 2 118 176 1033
T50 16 22.3 22.0 0.1 13.2 23.7 10.3 0.5 0.5 0.0 0 0 5 146 0 0 0 0 0

30 36.4 35.9 0.2 19.2 38.0 22.3 1.6 1.5 0.1 0 0 18 971 1 1 1 1 3
50 38.9 38.3 0.2 19.5 40.0 25.9 2.1 1.9 0.1 0 0 37 2480 2 2 8 10 53

100 39.3 38.9 0.4 - 40.7 27.8 3.6 3.4 - 0 1 109 7429 2 3 77 124 1461
T70 16 21.0 20.8 0.0 13.4 23.3 6.0 0.3 0.3 0.0 0 0 8 454 1 0 0 0 0

30 34.8 34.4 0.2 19.7 37.4 15.4 1.5 1.5 0.1 0 0 30 1824 1 2 1 1 4
50 37.5 37.1 0.2 - 39.6 19.6 1.8 1.7 0.1 0 0 65 4758 2 3 7 8 53

100 38.1 37.8 0.4 - 40.0 22.5 2.8 2.7 - 0 1 231 - 3 5 76 91 1277
T99 16 20.2 20.1 0.2 13.9 23.7 0.8 0.5 0.4 0.1 0 0 14 1463 0 0 0 0 0

30 32.4 32.2 0.3 19.5 36.1 4.4 1.4 1.4 0.1 0 0 53 2917 1 1 1 1 4
50 35.8 35.6 0.3 - 38.9 8.7 1.7 1.7 0.1 0 1 118 7598 1 3 6 6 50

100 36.0 35.9 0.4 - 38.6 12.4 2.2 2.2 - 0 1 367 - 2 5 43 51 886

Table 4.2: LP results for random instances from Section 3.13.1 (B: delay-bound, LP-gap: gap
between optimal LP relaxation and optimal integer value, M1: Miller-Tucker-Zemlin approach,
M2: M1 with connection cuts, BP: stabilized branch-and-price, FL: flow approach, P1: path-cut
approach, P2: P1 with lifted cuts, L1: layered graph approach, L2: L1 with connection cuts on
G′, L3: L1 with connection cuts on G′L, best results are printed bold).

phase which includes special rules for random graphs like alternative paths and triangles, see
Section 3.3.2 for details. Additionally, Gouveia et al. [68] already mentioned that the E instances
with the root node placed near the border are much harder to solve than the similar C instances
with root s near the center.

The theoretical discussion in Section 4.10 indicates the superiority of formulations PATH
and LAY ′′, which is also reflected in the experimental results. Especially the LP relaxation of
LAY ′′ is in most cases integral – if it can be computed within the time limit. We can clearly see
the crucial disadvantage of layered graph approaches here: When the number of achievable delay
values and the delay-bound increases, the size of the layered graph and thus the corresponding
model increases, too, resulting in high computation times, e.g. see instance sets R1000, C1000,
and E1000 in Table 4.1 and Brazil-Cor in Table 4.3. How this drawback can be partly avoided
is discussed in Chapter 6.

Compared to LAY ′′, the second strongest formulation PATH seems to be more robust
and rather independent of the delay-bound, although the runtime of the pricing subproblem
indeed depends on B. However, the main reason for the low runtimes of BP is the method
introduced by Markus Leitner [113] stabilizing and accelerating the column generation process.
The unstabilized variant is presented in [68] showing rather poor performance mainly due to
degeneracy issues.

91

average LP-gap in % median time in seconds
Set B M1 M2 BP FL P1 P2 L1 L2 L3 M1 M2 BP FL P1 P2 L1 L2 L3

B-Ran 314 5.9 5.0 0.0 3.9 3.1 1.7 0.3 0.1 0.0 0 0 0 0 0 0 0 0 0
427 4.4 3.3 0.0 2.2 2.8 1.4 0.7 0.2 0.0 0 0 0 0 0 0 0 0 0

B-Cor 40 3.0 2.1 0.0 1.3 1.7 0.9 0.4 0.2 0.0 0 0 0 0 0 0 0 0 0
54 2.0 0.9 0.0 0.6 0.8 0.6 0.7 0.1 0.0 0 0 0 0 0 0 0 0 0

C-Ran 397 6.1 5.3 0.0 - 4.4 2.7 0.8 0.2 0.0 0 0 19 892 1 1 0 1 1
541 4.1 2.8 0.0 - 2.6 1.9 0.6 0.1 - 0 0 49 125 1 2 39 47 226

C-Cor 50 3.9 2.4 0.0 - 1.9 1.3 1.7 0.2 0.0 0 0 24 513 1 2 0 1 2
68 1.1 0.2 0.0 - 0.2 0.1 1.0 0.0 0.0 0 0 49 177 1 1 6 6 22

D-Ran 554 4.5 3.0 0.0 - 2.3 1.3 0.0 0.0 0.0 0 1 73 548 7 6 2 2 5
755 2.8 1.0 0.0 - 0.9 0.5 1.0 0.0 - 0 0 140 317 5 5 180 384 1315

D-Cor 66 1.6 1.5 0.0 - 0.3 0.1 0.0 0.0 0.0 0 0 97 243 5 5 1 2 3
90 1.1 0.1 0.0 0.0 0.1 0.0 1.2 0.0 0.0 0 1 217 107 4 5 16 20 28

Berlin-Ran 19 4.7 4.6 0.2 3.7 3.3 2.2 0.4 0.2 0.2 0 0 0 0 0 0 0 0 0
26 7.3 6.6 0.0 5.6 5.8 3.4 0.1 0.0 0.0 0 0 0 0 0 0 0 0 0

Berlin-Cor 165 13.7 3.3 0.0 1.5 1.9 1.5 7.7 0.3 0.0 0 0 1 0 0 0 0 2 19
225 17.6 3.0 0.0 0.8 2.6 2.3 12.6 0.7 - 0 0 3 1 0 0 10 80 8021

Brazil-Ran 20 9.9 9.3 0.0 5.6 8.2 5.3 0.1 0.0 0.0 0 0 0 0 0 0 0 0 0
27 16.8 14.3 0.0 9.5 15.1 7.3 1.3 1.1 0.0 0 0 1 4 0 0 0 0 0

Brazil-Cor 3979 18.5 8.4 0.0 4.7 5.7 1.2 - - - 0 0 39 5 1 0 4731 - -
5425 15.7 3.9 0.0 1.3 3.1 1.5 - - - 0 0 76 4 0 0 - - -

Table 4.3: LP results for instances by Leggieri et al. [111] (B: average delay-bound, LP-gap: gap
between optimal LP relaxation and optimal integer value, M1: Miller-Tucker-Zemlin approach,
M2: M1 with connection cuts, BP: stabilized branch-and-price, FL: flow approach, P1: path-cut
approach, P2: P1 with lifted cuts, L1: layered graph approach, L2: L1 with connection cuts on
G′, L3: L1 with connection cuts on G′L, best results are printed bold).

The results obtained by path-cut formulation PC ′ are quite surprising: From a theoretical
point of view this formulation cannot compete with most of the other ones because of the rather
weak infeasible path inequalities, see Section 4.7.1. However, in practice the strengthened in-
equalities (4.33) could significantly reduce the LP-gap outperforming the MTZ and flow formu-
lations in most cases. At the same time the consumed runtime remains extremely low, i.e. below
some seconds in all cases. Additionally, compared to the layered graph approaches the runtime
of P2 is obviously independent of the delay-bound. To conclude, formulations with a low num-
ber of variables and some sets of strong valid inequalities added in the typical branch-and-cut
way to the model seem to be highly promising from a practical point of view, cf. [96].

4.11.3 Branch-and-Cut Results

Tables 4.4–4.7 show results for all considered instance sets when solving the RDCST problem to
optimality using the formulations within a branch-and-cut system. We report obtained average
gaps between the best primal and dual bounds, the median runtime to reach these bounds, and the
number of instances solved to optimality within the time limit. Dashes in gap and time columns
represent 100% and 10 000 seconds, respectively. It may be surprising that for some instances
the time to find the optimal solution is even less than the corresponding time for just solving the

92

av
er

ag
e

ga
p

in
%

m
ed

ia
n

tim
e

in
se

co
nd

s
#

op
tim

al
so

lu
tio

ns
(o

ut
of

5)
Se

t
B

M
1

M
2

B
P

FL
P1

P2
L

1
L

2
L

3
M

1
M

2
B

P
FL

P1
P2

L
1

L
2

L
3

M
1

M
2

B
P

FL
P1

P2
L

1
L

2
L

3
R

5
6

0.
0

0.
0

0.
0

4.
7

3.
0

0.
0

0.
0

0.
0

0.
0

7
18

2
-

12
98

0
0

0
0

5
5

5
2

4
5

5
5

5
8

0.
0

0.
0

0.
0

3.
0

6.
8

0.
0

0.
0

0.
0

0.
0

32
33

0
3

65
58

36
24

1
0

0
0

5
5

5
3

3
5

5
5

5
10

0.
0

2.
5

0.
0

1.
4

6.
7

0.
0

0.
0

0.
0

0.
0

37
30

6
3

77
6

29
98

2
0

0
0

5
4

5
4

3
5

5
5

5
12

0.
0

0.
0

0.
0

1.
3

2.
5

0.
0

0.
0

0.
0

0.
0

10
74

4
63

26
7

1
0

0
0

5
5

5
4

4
5

5
5

5
C

5
6

0.
0

0.
0

0.
0

1.
5

1.
5

0.
0

0.
0

0.
0

0.
0

3
12

2
31

87
16

20
0

0
0

0
5

5
5

3
3

5
5

5
5

8
1.

5
0.

0
0.

0
0.

9
5.

6
0.

0
0.

0
0.

0
0.

0
83

23
5

3
61

25
-

1
0

0
0

4
5

5
3

2
5

5
5

5
10

4.
6

3.
3

0.
0

1.
4

4.
9

0.
0

0.
0

0.
0

0.
0

-
-

7
-

-
42

2
1

1
1

1
5

2
1

5
5

5
5

12
5.

1
2.

7
0.

0
0.

5
4.

3
0.

0
0.

0
0.

0
0.

0
-

-
7

27
15

-
72

7
4

3
0

1
5

3
0

5
5

5
5

E
5

6
0.

0
1.

6
0.

0
6.

5
15

.2
0.

0
0.

0
0.

0
0.

0
92

4
49

54
8

-
-

9
1

1
1

5
4

5
0

0
5

5
5

5
8

11
.3

10
.7

0.
0

6.
7

20
.4

1.
5

0.
0

0.
0

0.
0

-
-

18
-

-
16

3
6

6
3

0
0

5
0

0
4

5
5

5
10

14
.2

11
.5

0.
0

1.
9

16
.9

5.
6

0.
0

0.
0

0.
0

-
-

50
-

-
-

27
43

6
0

0
5

1
0

1
5

5
5

12
14

.2
11

.5
0.

0
2.

3
14

.1
7.

1
0.

7
0.

3
0.

0
-

-
15

7
-

-
-

19
3

27
4

22
0

0
5

2
0

0
4

4
5

R
10

10
0.

0
0.

0
0.

0
2.

6
4.

6
0.

0
0.

0
0.

0
0.

0
27

10
1

3
-

10
42

1
0

0
0

5
5

5
2

4
5

5
5

5
15

0.
0

1.
4

0.
0

4.
2

7.
1

0.
0

0.
0

0.
0

0.
0

82
68

6
4

-
35

32
2

0
0

0
5

4
5

1
3

5
5

5
5

20
0.

0
1.

6
0.

0
1.

2
3.

0
0.

0
0.

0
0.

0
0.

0
29

12
52

4
20

66
20

81
4

0
0

0
5

4
5

4
4

5
5

5
5

25
0.

0
0.

0
0.

0
0.

0
0.

7
0.

0
0.

0
0.

0
0.

0
11

16
8

4
20

8
13

9
5

1
1

1
5

5
5

5
4

5
5

5
5

C
10

10
0.

0
0.

0
0.

0
2.

5
0.

0
0.

0
0.

0
0.

0
0.

0
15

89
4

-
95

1
0

0
0

0
5

5
5

1
5

5
5

5
5

15
2.

1
1.

6
0.

0
1.

3
6.

1
0.

0
0.

0
0.

0
0.

0
25

5
35

72
4

53
37

-
11

1
1

2
3

3
5

3
1

5
5

5
5

20
5.

2
3.

2
0.

0
0.

0
3.

4
0.

0
0.

0
0.

0
0.

0
-

-
6

28
16

-
84

15
21

10
1

0
5

5
2

5
5

5
5

25
3.

8
0.

9
0.

0
0.

3
1.

2
0.

0
0.

0
0.

0
0.

0
-

59
54

27
15

75
23

29
53

12
5

34
22

1
3

5
4

3
5

5
5

5
E

10
10

2.
6

2.
0

0.
0

4.
9

13
.2

0.
0

0.
0

0.
0

0.
0

-
62

53
7

-
-

5
1

1
1

2
3

5
1

0
5

5
5

5
15

14
.2

12
.5

0.
0

6.
9

20
.5

7.
0

0.
6

0.
0

0.
0

-
-

43
-

-
-

25
30

10
0

0
5

0
0

0
4

5
5

20
13

.5
12

.0
0.

0
3.

5
15

.6
8.

8
1.

0
2.

0
0.

0
-

-
40

5
-

-
-

81
8

69
2

83
0

0
5

0
0

0
4

3
5

25
12

.0
10

.8
0.

0
3.

0
13

.3
11

.9
6.

9
4.

7
0.

0
-

-
14

25
-

-
-

-
-

31
7

0
0

5
2

0
0

1
0

5

Ta
bl

e
4.

4:
B

ra
nc

h-
an

d-
cu

tr
es

ul
ts

fo
ri

ns
ta

nc
es

by
G

ou
ve

ia
et

al
.[

68
](
B

:
de

la
y-

bo
un

d,
ga

p:
ga

p
be

tw
ee

n
be

st
pr

im
al

an
d

du
al

bo
un

d,
M

1:
M

ill
er

-T
uc

ke
r-

Z
em

lin
ap

pr
oa

ch
,M

2:
M

1
w

ith
co

nn
ec

tio
n

cu
ts

,B
P:

st
ab

ili
ze

d
br

an
ch

-a
nd

-p
ri

ce
,F

L
:fl

ow
ap

pr
oa

ch
,P

1:
pa

th
-c

ut
ap

pr
oa

ch
,P

2:
P1

w
ith

lif
te

d
cu

ts
,L

1:
la

ye
re

d
gr

ap
h

ap
pr

oa
ch

,L
2:

L
1

w
ith

co
nn

ec
tio

n
cu

ts
on
G
′ ,

L
3:

L
1

w
ith

co
nn

ec
tio

n
cu

ts
on
G
′ L

,
be

st
re

su
lts

ar
e

pr
in

te
d

bo
ld

).

93

average
gap

in
%

m
edian

tim
e

in
seconds

#
optim

alsolutions
(outof5)

Set
B

M
1

M
2

B
P

FL
P1

P2
L

1
L

2
L

3
M

1
M

2
B

P
FL

P1
P2

L
1

L
2

L
3

M
1

M
2

B
P

FL
P1

P2
L

1
L

2
L

3
R

100
100

6.0
6.1

0.0
7.9

12.0
1.3

0.0
0.0

0.0
85

263
4

-
2688

2
4

5
5

4
4

5
2

3
4

5
5

5
150

7.1
7.7

0.0
4.0

9.7
7.0

2.5
0.0

0.0
32

177
4

1556
539

1
9

10
10

4
4

5
4

4
4

4
5

5
200

4.2
4.2

0.0
1.9

5.5
0.0

0.0
0.0

0.0
47

286
6

387
632

1
18

19
19

4
4

5
4

4
5

5
5

5
250

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.0

0.0
7

83
6

44
47

2
51

59
62

5
5

5
5

5
5

5
5

5
C

100
100

8.3
3.6

0.0
5.9

12.2
0.9

0.0
0.0

0.0
-

-
8

-
-

13
35

65
228

0
2

5
0

0
4

5
5

5
150

7.3
4.9

0.0
1.5

6.9
0.0

0.0
0.0

0.9
-

-
10

-
-

71
476

1367
627

0
1

5
2

0
5

5
5

4
200

6.0
2.3

0.0
0.2

3.7
1.2

2.3
1.2

2.1
-

-
13

4334
-

138
4567

1046
7747

0
1

5
4

2
3

3
4

3
250

3.4
0.7

0.0
0.0

1.1
1.0

2.4
1.3

3.9
-

2428
14

59
422

17
-

2987
-

2
3

5
5

3
3

1
3

0
E

100
100

13.0
13.3

0.0
7.6

16.3
1.2

0.0
0.0

0.0
-

-
16

-
-

884
419

591
593

0
0

5
0

0
3

5
5

5
150

15.1
12.8

0.0
6.4

17.3
7.4

7.8
5.4

2.1
-

-
40

-
-

-
-

-
9162

0
0

5
0

0
1

0
0

3
200

14.0
11.4

0.0
3.9

12.8
10.4

11.6
8.8

10.4
-

-
245

-
-

-
-

-
-

0
0

5
0

0
0

0
0

0
250

12.9
9.5

0.0
1.6

10.5
10.0

10.3
7.8

11.7
-

-
425

-
-

-
-

-
-

0
0

5
2

0
0

0
0

0
R

1000
1000

9.1
18.5

0.0
9.9

23.3
0.0

0.0
0.0

0.0
974

-
12

-
-

6
272

306
245

3
1

5
1

0
5

5
5

5
1500

15.1
18.5

0.0
8.8

21.0
0.0

3.0
3.1

2.4
-

-
18

-
-

132
4370

4117
9586

1
1

5
1

1
5

4
4

3
2000

6.7
5.3

0.0
0.0

7.4
3.2

0.0
0.0

0.9
241

2316
20

7966
1155

20
2855

3632
3548

3
3

5
5

3
4

5
5

4
2500

1.0
1.9

0.0
0.0

2.1
0.0

20.0
1.8

20.0
17

342
25

88
91

1
5815

5603
6099

4
4

5
5

4
5

4
4

4
C

1000
1000

4.4
3.8

0.0
4.7

9.8
1.2

2.0
1.6

2.7
-

7714
17

-
-

5
458

478
6018

2
3

5
1

1
4

4
4

3
1500

11.2
6.1

0.0
2.2

12.6
0.0

4.0
3.1

6.8
-

-
29

-
-

52
-

-
-

0
0

5
2

0
5

1
2

0
2000

10.3
7.1

0.0
2.6

10.3
4.6

26.5
28.0

13.2
-

-
39

-
-

-
-

-
-

0
0

5
2

0
0

0
0

0
2500

5.8
2.3

0.0
0.6

1.7
1.3

64.2
64.5

64.5
-

-
33

677
1952

96
-

-
-

0
2

5
4

3
3

0
0

0
E

1000
1000

12.9
9.9

0.0
7.6

17.2
3.3

6.0
6.0

8.9
-

-
26

-
-

449
-

-
-

0
1

5
0

1
3

1
1

1
1500

15.5
11.6

0.0
5.8

17.2
6.4

10.3
15.1

16.1
-

-
50

-
-

-
-

-
-

0
0

5
1

0
2

0
0

0
2000

15.7
13.4

0.0
2.4

15.6
12.8

31.2
49.4

33.4
-

-
88

-
-

-
-

-
-

0
0

5
1

0
0

0
0

0
2500

13.8
10.0

0.0
0.5

12.1
10.6

-
-

-
-

-
218

8067
-

-
-

-
-

0
0

5
4

0
0

0
0

0

Table
4.5:

B
ranch-and-cutresults

forinstances
by

G
ouveia

etal.[68](B
:

delay-bound,gap:
gap

betw
een

bestprim
aland

dualbound,
M

1:
M

iller-Tucker-Z
em

lin
approach,M

2:
M

1
w

ith
connection

cuts,B
P:stabilized

branch-and-price,FL
:flow

approach,P1:
path-cut

approach,P2:P1
w

ith
lifted

cuts,L
1:layered

graph
approach,L

2:L
1

w
ith

connection
cuts

on
G
′,L

3:L
1

w
ith

connection
cuts

on
G
′L ,

bestresults
are

printed
bold).

94

av
er

ag
e

ga
p

in
%

m
ed

ia
n

tim
e

in
se

co
nd

s
#

op
tim

al
so

lu
tio

ns
(o

ut
of

30
)

Se
t

B
M

1
M

2
B

P
FL

P1
P2

L
1

L
2

L
3

M
1

M
2

B
P

FL
P1

P2
L

1
L

2
L

3
M

1
M

2
B

P
FL

P1
P2

L
1

L
2

L
3

T
10

16
0.

0
0.

0
0.

0
0.

0
0.

3
0.

0
0.

0
0.

0
0.

0
1

1
0

7
4

1
0

0
0

30
30

30
30

29
30

30
30

30
30

8.
2

12
.7

0.
0

0.
0

25
.3

10
.7

0.
0

0.
0

0.
0

63
-

2
14

7
-

64
3

1
1

1
20

13
30

30
7

17
30

30
30

50
14

.7
23

.4
0.

0
0.

6
33

.6
21

.4
0.

0
0.

0
0.

0
54

69
-

3
74

9
-

-
7

7
7

15
6

30
29

1
6

30
30

30
10

0
22

.2
31

.7
0.

0
2.

1
38

.8
29

.1
0.

4
0.

9
0.

0
-

-
5

18
05

-
-

76
72

76
9

1
30

24
1

4
29

29
30

T
30

16
0.

0
0.

8
0.

0
2.

9
1.

6
0.

0
0.

0
0.

0
0.

0
4

7
2

55
38

58
3

0
0

0
30

28
30

19
27

30
30

30
30

30
14

.4
18

.8
0.

0
15

.1
34

.0
14

.5
0.

0
0.

0
0.

0
-

-
9

-
-

-
2

2
2

8
3

30
0

0
12

30
30

30
50

26
.2

32
.6

0.
0

19
.5

43
.1

27
.1

0.
0

0.
0

0.
0

-
-

20
-

-
-

20
21

34
0

0
30

0
0

3
30

30
30

10
0

36
.5

37
.6

0.
0

20
.7

47
.3

36
.7

0.
4

0.
6

0.
0

-
-

47
-

-
-

14
2

12
9

36
2

0
0

30
0

0
0

29
28

30
T

50
16

0.
0

0.
0

0.
0

11
.4

1.
6

0.
0

0.
0

0.
0

0.
0

10
25

5
-

50
1

4
0

0
0

30
30

30
1

24
30

30
30

30
30

16
.6

19
.1

0.
0

19
.5

34
.0

6.
6

0.
0

0.
0

0.
0

-
-

19
-

-
59

0
4

4
4

2
1

30
0

0
19

30
30

30
50

28
.4

29
.0

0.
0

20
.2

43
.8

22
.7

0.
0

0.
0

0.
0

-
-

44
-

-
-

23
20

33
0

0
30

0
0

6
30

30
30

10
0

36
.3

36
.9

0.
0

42
.1

47
.0

36
.1

0.
7

0.
8

0.
0

-
-

20
2

-
-

-
32

0
28

2
76

8
0

0
30

0
0

0
27

27
30

T
70

16
0.

0
0.

4
0.

0
13

.1
3.

0
0.

0
0.

0
0.

0
0.

0
14

57
8

-
10

90
1

0
0

0
30

28
30

0
21

30
30

30
30

30
16

.0
19

.0
0.

0
21

.0
32

.8
2.

7
0.

0
0.

0
0.

0
-

-
31

-
-

26
2

4
4

4
0

0
30

0
0

23
30

30
30

50
26

.1
30

.0
0.

0
33

.9
42

.4
17

.3
0.

0
0.

0
0.

0
-

-
79

-
-

-
23

26
50

0
0

30
0

0
9

30
30

30
10

0
33

.3
36

.2
0.

1
95

.4
47

.0
32

.5
0.

7
0.

7
0.

9
-

-
24

1
-

-
-

25
4

31
8

87
3

0
0

28
0

0
0

28
27

29
T

99
16

0.
2

0.
5

0.
0

17
.0

4.
1

0.
0

0.
0

0.
0

0.
0

46
19

5
15

-
74

62
0

0
0

0
28

27
30

0
15

30
30

30
30

30
14

.6
15

.6
0.

0
30

.3
29

.2
0.

3
0.

0
0.

0
0.

0
-

-
66

-
-

17
3

3
4

0
0

30
0

0
29

30
30

30
50

23
.3

26
.9

0.
0

-
39

.7
6.

3
0.

0
0.

0
0.

0
-

-
15

0
-

-
40

1
22

24
44

0
0

30
0

0
18

30
30

30
10

0
31

.6
31

.8
0.

3
-

42
.9

16
.5

0.
4

0.
3

0.
6

-
-

52
6

-
-

-
25

4
25

0
71

9
0

0
28

0
0

2
27

28
28

Ta
bl

e
4.

6:
B

ra
nc

h-
an

d-
cu

tr
es

ul
ts

fo
r

ra
nd

om
in

st
an

ce
s

fr
om

Se
ct

io
n

3.
13

.1
(B

:
de

la
y-

bo
un

d,
ga

p:
ga

p
be

tw
ee

n
be

st
pr

im
al

an
d

du
al

bo
un

d,
M

1:
M

ill
er

-T
uc

ke
r-

Z
em

lin
ap

pr
oa

ch
,M

2:
M

1
w

ith
co

nn
ec

tio
n

cu
ts

,B
P:

st
ab

ili
ze

d
br

an
ch

-a
nd

-p
ri

ce
,F

L
:fl

ow
ap

pr
oa

ch
,P

1:
pa

th
-c

ut
ap

pr
oa

ch
,P

2:
P1

w
ith

lif
te

d
cu

ts
,L

1:
la

ye
re

d
gr

ap
h

ap
pr

oa
ch

,L
2:

L
1

w
ith

co
nn

ec
tio

n
cu

ts
on
G
′ ,

L
3:

L
1

w
ith

co
nn

ec
tio

n
cu

ts
on
G
′ L

,b
es

tr
es

ul
ts

ar
e

pr
in

te
d

bo
ld

).

95

average
gap

in
%

m
edian

tim
e

in
seconds

#
optim

alsolutions
(outof18/10/5/5/5)

Set
B

M
1

M
2

B
P

FL
P1

P2
L

1
L

2
L

3
M

1
M

2
B

P
FL

P1
P2

L
1

L
2

L
3

M
1

M
2

B
P

FL
P1

P2
L

1
L

2
L

3
B

-R
an

314
0.0

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.0

0
0

0
0

0
0

0
0

0
18

18
18

18
18

18
18

18
18

427
0.0

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.0

0
0

0
0

0
0

0
0

0
18

18
18

18
18

18
18

18
18

B
-C

or
40

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0

0
0

0
0

0
0

0
0

18
18

18
18

18
18

18
18

18
54

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0

0
0

0
0

0
0

0
0

18
18

18
18

18
18

18
18

18
C

-R
an

397
0.9

0.8
0.0

21.8
2.7

0.3
0.0

0.0
0.0

12
123

18
-

77
14

1
1

2
8

8
10

4
7

9
10

10
10

541
1.9

2.4
0.0

21.8
3.9

2.5
0.0

0.0
0.0

19
30

48
5415

10
6

89
93

106
7

7
10

5
7

7
10

10
10

C
-C

or
50

0.3
0.4

0.0
21.3

0.7
0.1

0.0
0.0

0.0
9

38
23

-
52

15
1

1
2

8
8

10
4

7
9

10
10

10
68

0.0
0.0

0.0
10.1

0.3
0.0

0.0
0.0

0.0
7

2
48

333
13

3
11

8
21

10
9

10
8

9
10

10
10

10
D

-R
an

554
0.3

2.0
0.0

40.2
0.3

0.0
0.0

0.0
0.0

11
110

76
-

105
44

3
3

3
3

3
5

2
3

5
5

5
5

755
0.1

0.1
0.0

1.9
0.1

0.0
0.0

0.0
0.1

7
248

145
-

95
20

442
481

1725
4

3
5

2
4

5
5

5
4

D
-C

or
66

0.0
0.0

0.0
20.9

0.0
0.0

0.0
0.0

0.0
6

17
113

1572
36

16
2

2
2

5
5

5
3

5
5

5
5

5
90

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.0

0.0
1

1
199

999
10

8
27

32
32

5
5

5
4

5
5

5
5

5
B

erlin-R
an

19
0.0

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.0

0
0

0
0

0
0

0
0

0
5

5
5

5
5

5
5

5
5

26
0.0

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.0

0
0

0
3

0
0

0
0

0
5

5
5

5
5

5
5

5
5

B
erlin-C

or
165

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.0

0.0
2

1
1

2
1

0
9

4
7

5
5

5
5

5
5

5
5

5
225

0.0
0.0

0.0
0.0

0.0
0.0

2.4
0.0

3.3
58

1
4

3
1

1
-

115
5155

5
5

5
5

5
5

2
5

4
B

razil-R
an

20
0.0

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.0

0
0

0
15

1
0

0
0

0
5

5
5

5
5

5
5

5
5

27
0.0

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.0

2
5

1
401

16
4

0
0

0
5

5
5

5
5

5
5

5
5

B
razil-C

or
3979

7.6
0.0

0.0
0.0

0.0
0.0

33.4
57.0

39.4
-

2
44

11
3

1
-

-
-

0
5

5
5

5
5

0
0

0
5425

10.3
0.8

0.0
0.0

0.0
0.0

-
-

-
-

191
67

14
25

48
-

-
-

0
3

5
5

5
5

0
0

0

Table
4.7:

B
ranch-and-cutresults

for
instances

by
L

eggierietal.[111]
(B

:
average

delay-bound,gap:
gap

betw
een

bestprim
aland

dualbound,M
1:

M
iller-Tucker-Z

em
lin

approach,M
2:

M
1

w
ith

connection
cuts,B

P:stabilized
branch-and-price,FL

:flow
approach,

P1:path-cutapproach,P2:P1
w

ith
lifted

cuts,L
1:layered

graph
approach,L

2:L
1

w
ith

connection
cuts

on
G
′,L

3:L
1

w
ith

connection
cuts

on
G
′L ,bestresults

are
printed

bold).

96

LP relaxation, see Section 4.11.2. This is because of the built-in features of modern MIP solvers
like CPLEX and SCIP, e.g. sophisticated presolving methods, general purpose mixed integer
cuts, and efficient primal heuristics, see [120] for a general overview of acceleration techniques
for MIP solvers.

The overall picture looks similar to the LP results in the previous Section 4.11.2: When
considering dense graphs with large sets of achievable edge delays and high delay-bounds in
Table 4.5 the branch-and-price approach significantly outperforms all other methods. However,
regarding some of these instances path-cut approach P2 is close on BP’s heels, sometimes it is
even slightly faster. All other formulations including layered graph models are out of question,
here.

However, on instance sets with small delay-bounds, see Tables 4.4, the layered graph ap-
proaches seem to be more suitable than BP. Here, the small size of corresponding layered graphs
allow both extremely tight bounds and efficient computation of them. It is interesting to see
that e.g. for the instances in Table 4.4 it definitely makes sense to add directed connection cut
inequalities (4.50) on layered graph G′L to tighten the LP bounds, but in Tables 4.5–4.7 variants
L1 and L2 are superior to L3. Here, the additional overhead of cut separation and the repeated
LP resolvings does not pay off.

The picture is not clear for the experiments in Table 4.7: BP is the only one which can solve
all instances to optimality within the given time limit. However, other approaches like P2, L1-3,
or even M1, have lower average computation times. But if we take the slightly worse general
performance of SCIP in comparison to CPLEX into account, runtimes get similar again. In other
words, no clear winner can be determined for these instances.

To conclude, the formulations based on MTZ and simple path-cut inequalities provide too
weak bounds to be competitive and the multi-commodity flow formulation typically includes
too many variables. The rest of the approaches – branch-and-price, layered graph approaches,
and the path-cut formulation with lifted inequalities – all have their strengths and weaknesses:
BP provides robust performance throughout all tests. The formulations based on layered graphs
provide the tightest bounds and are leading on sets with small delay-bounds but are unusable for
large delays and bounds. Finally, the lifted path-cut approach P2 does not obtain the best LP
bounds but due to the small number of variables and the fact that the model stays quite small
throughout the branch-and-cut process this approach is still competitive in some cases.

4.12 Future Work

We have seen that the size of the corresponding layered graph is crucial for the performance of
these approaches. Thus, we aim at extending our preprocessing methods to further reduce graph
GL. It is definitely worth to spend more runtime here applying more sophisticated and complex
reduction rules which may additionally consider costs to eliminate suboptimal arcs and nodes.
A different approach to deal with large graph sizes will be discussed in Chapter 6.

The simple formulation based on lifted infeasible path inequalities yields surprisingly good
results. Thus, we want to find further strengthenings of these inequalities or maybe find other
similar sets of valid inequalities. Currently, edge delays are not incorporated in the inequalities
but considered in a more abstract way in the definition of infeasible paths. However, we also

97

may sum up the delays of used edges within the constraint and then ensure the satisfaction of the
delay-bound. We already considered inequalities of this type but they are still in a preliminary
and rather weak stage.

Similarly as Gouveia et al. [70] did for the HCMST problem, we should further think about
the reasons why layered graph formulations are that strong. Maybe we are able to find new
sets of valid inequalities projected from the layered graph space into the space of original arc
variables. These additional inequalities can then be used to further strengthen formulation PC .

Within a branch-and-bound system it is highly important for the overall performance to
provide strong primal bounds, i.e. feasible solutions. Whenever an incumbent solution is found
it could be improved by heuristics, e.g. by a variable neighborhood descent. The hopefully better
bound could then be used as new cut-off value for subtree pruning and the corresponding tree as
guiding solution for MIP solver internal heuristics.

There are already many articles presenting heuristic approaches for the RDCST problem.
However, it might be worth to adapt our methods presented in Chapter 3 for the RDCMST
problem accordingly and apply them on the RDCST problem. This is not a trivial task since
successful heuristics for the RDCST problem usually consider potential Steiner nodes in a spe-
cial way, e.g. it is common for genetic algorithms for Steiner tree problems to use a binary
vector for the optional nodes deciding which optional nodes are included in the tree and which
not. Clearly, even if we know the exact set of nodes included in the solution the problem to
decode one specific vector to an according optimal delay-constrained tree is still NP-hard in
our case since then we are actually faced with the RDCMST problem.

98

CHAPTER 5
Rooted Delay- and

Delay-Variation-Constrained Steiner
Tree Problem

This chapter discusses several exact mixed integer programming approaches for solving the
rooted delay- and delay-variation-constrained Steiner tree (RDDVCST) problem. Section 5.1
formally defines the problem and Section 5.2 summarizes previous related work. Modifications
and extensions to the reduction techniques for the RDCST problem from Section 4.3 are pro-
posed in Section 5.3. In Section 5.4 we present a formulation based on multi-commodity flows
for the RDDVCST problem. The transformation to a layered graph and a corresponding model
is described in Section 5.5 and 5.6, respectively. The presented models are compared theoreti-
cally in Section 5.7 and practically in Section 5.8. Finally, Section 5.9 discusses open problems
and possible future research directions. Most parts are based on the published article [165].

5.1 Problem Definition

The RDDVCST problem is a generalization of the RDCST problem discussed in Chapter 4 in
which we have to satisfy an additional constraint relating the path-delays to different terminal
nodes.

More formally, we are given an undirected graph G = (V,E) with node set V , a fixed root
node s ∈ V , set R ⊆ V \ {s} of terminal or required nodes, set S = V \ (R ∪ {s}) of potential
Steiner nodes, edge set E, a cost function c : E → Z+

0 , a delay function d : E → Z+, a delay
bound B ∈ Z+, and a delay-variation-bound D ∈ Z+

0 . A feasible solution to the RDDVCST
problem is a Steiner tree T = (V ′, E′), s ∈ V ′, R ⊂ V ′ ⊆ V, E′ ⊆ E, satisfying the
delay-constraints

dTv =
∑

e∈PT (s,v)

de ≤ B, ∀v ∈ R, (5.1)

99

where PT (s, v) denotes the unique path from the specified root node s to terminal node v ∈ R in
Steiner tree T and dTv the corresponding total delay on this path. We further limit the difference
between the path-delays to any two terminal nodes by the constraint

max
u,v∈R

|dTu − dTv | ≤ D. (5.2)

Finally, we define the cost function
cT =

∑
e∈E′

ce, (5.3)

summing up the cost values of all edges in a solution T . An optimal solution T ∗ to the RD-
DVCST problem is a feasible solution with minimal total edge costs, i.e. cT ∗ ≤ cT , ∀T .

Similarly to the RDCST problem, we define a directed variant of this problem on graph
G′ = (V,A) with arc set A = {(s, v) : {s, v} ∈ E} ∪ {(u, v), (v, u) : {u, v} ∈ E, u, v 6= s}
consisting of two opposite arcs for each edge in graph G except for edges incident to root node
s, for which we include only the corresponding arc going out from s. A feasible solution to
the directed variant is a Steiner arborescence T ′ = (V ′, A′), s ∈ V ′, R ⊂ V ′ ⊆ V, A′ ⊂ A,
directed out of root node s. It can be easily seen that each feasible Steiner tree T bijectively
corresponds to a feasible Steiner arborescence T ′.

The RDDVCST problem is NP-hard because the RDCST problem, where D = B, is an
NP-hard special case, see Chapter 4. Furthermore, Rouskas and Baldine [160] showed that
even the problem of finding a feasible solution without considering the costs is NP-hard.

A lower bound to the optimal cost value clearly is provided by relaxing the delay- and/or the
delay-variation-constraints, e.g. resulting in a minimal-cost Steiner tree T l without considering
any constraints on delays. If such a tree T l is feasible for the RDDVCST problem, i.e. satisfies
the delay- and delay-variation-constraints, then T l also is an optimal solution for it. However,
finding an optimal Steiner tree T l is still NP-hard. In contrast to the RDCMST and RDCST
problem, we are not able to construct a trivial feasible solution here, due to the NP-hardness
result mentioned above.

Instead of using c{u,v} and d{u,v} to denote cost and delay values assigned to edge {u, v} ∈
E, we use the better readable notation cuv and duv, respectively. The same holds for arcs (u, v) ∈
A in directed graph G′. Variable dv, v ∈ V , refers to the node delay with respect to one specific
tree T . In case of multiple solutions the considered tree is explicitly included in the notation, i.e.
dTv , v ∈ V .

5.2 Related Work

Rouskas and Baldine [159, 160] introduce a variant of the RDDVCST problem called delay-
and delay-variation-bounded multicast tree (DVBMT) problem. In it the aim is to just find a
feasible tree satisfying both the delay- and delay-variation-constraints without considering edge
costs at all. To solve the DVBMT problem the authors present a construction heuristic with rela-
tively high runtime complexity again adapting the concept by Takahashi and Matsuyama [177],
cf. Section 4.2: They start with a feasible path to one terminal node and iteratively connect
the rest of the terminals in feasible ways as long as possible by computing k-shortest-delay-
paths. Haberman and Rouskas [77] tackle the RDDVCST problem for the first time and present

100

(1,2)
s

1 2

3

(1,1)

(2,1)

(1,1)

(a)

s 2

3

(1,1) (3,3)

(1,1)

4

1

(1,1)(1,3)

(b)

Figure 5.1: Example graphs with B = 4, D = 0, and squared nodes representing terminal
nodes: (a) Removing edge {1, 2} according to reduction rule (3.4) results in an infeasible in-
stance. (b) Similarly, removing edge {1, 2} according to Theorem 3.3.1 also leads to infeasibil-
ity.

a heuristic similar to the one in [160] but additionally considering edge costs. Lee et al. [109]
provide another construction heuristic: first, the shortest-delay-paths to all terminals are com-
bined to form a tree naturally satisfying the delay-constraint. Second, tree costs are reduced
possibly violating delay- and delay-variation-constraints. Not feasibly connected terminals are
then removed and re-added to the tree by low-delay paths. Low et al. [121] present a two phase
construction approach: in the first phase a tree is obtained by only considering the costs and the
delay-constraint. If the delay-variation-constraint is violated in this solution the second phase
searches for alternative paths in a distributed way. Sheu et al. [171] improve the worst-case time
complexity of the heuristic in [160] for the DVBMT problem still obtaining high quality solu-
tions in the sense that the delay-variation is quite low. A further construction heuristic avoiding
drawbacks of previously proposed approaches can be found in [10]. Zhang et al. [108] propose a
simulated annealing approach for the RDDVCST problem using a path-based solution encoding
scheme and a path-exchange neighborhood only allowing feasible moves. Several of the men-
tioned articles also discuss the complexity of the solution modification if nodes join or leave the
multicast group.

To the best of our knowledge only one MIP formulation exists so far for another problem
variant in which the delay-variation D is minimized while satisfying the delay-constraints with-
out considering edge costs: Sheu et al. [172] present an MCF formulation, which we revise and
adapt to the RDDVCST problem in Section 5.4.

5.3 Preprocessing

Clearly, we can apply all procedures to eliminate infeasible edges described in Section 3.3.1
and 4.3 for the RDCMST and RDCST problem, respectively. However, unfortunately it is not
feasible here to use methods removing suboptimal edges as defined in Section 3.3.2. In some
cases we may have to choose more expensive paths with higher delay to a terminal node to
satisfy the delay-variation-constraint. In other words, smaller delay combined with smaller cost
does not imply a better connection anymore. Figure 5.1 shows two of these situations where
preprocessing based on root edges (3.4) and alternative triangles subject to Theorem 3.3.1 is

101

invalid, respectively. A similar counterexample can easily be found for the reduction procedure
based on alternative paths.

However, we are still able to utilize the delay-variation-bound to further reduce graph G by
removing all edges connecting two terminal nodes with de > D because they clearly cannot
appear in any feasible solution. Additionally, in graph G′ we can safely remove all arcs (u, v) ∈
A going out of a terminal node u ∈ R with duv > D.

5.4 Multi-Commodity Flow Formulation

The following formulation extends the multi-commodity flow formulation for the RDCST prob-
lem in Section 4.6 by additionally considering the delay-variation-constraint. We use binary
decision variables xuv, ∀(u, v) ∈ A. Furthermore, real-valued flow variables fwuv, ∀(u, v) ∈
A, ∀w ∈ R, denote the flow on arc (u, v) from root s to terminal w. The minimal path-delay is
described by variable δmin. Model MCF is defined as follows:

min
∑

(u,v)∈A

cuvxuv (5.4)

s.t.
∑

(u,v)∈A

fwuv −
∑

(v,u)∈A

fwvu =

−1 if v = s
1 if v = w
0 else

∀w ∈ R (5.5)

δmin ≤
∑

(u,v)∈A

duvf
w
uv ≤ δmin +D ∀w ∈ R (5.6)

δmin ∈ [1, B −D] (5.7)

0 ≤ fwuv ≤ xuv ∀(u, v) ∈ A, ∀w ∈ R (5.8)

xuv ∈ {0, 1} ∀(u, v) ∈ A (5.9)

Classical flow constraints (5.5) describe the flow of one commodity for each terminal w ∈ R
originating in root s, possibly passing any nodes in V \ {s, w}, and ending in target node w,
respectively. Constraints (5.6) add up the delays on the path to a terminal and define lower and
upper delay-bounds over all required nodes respecting the delay-variation D. Since variable
δmin is restricted to [1, B −D], inequalities (4.23) are included in (5.6) and thus delay-bound B
is satisfied implicitly. Finally, linking constraints (5.8) connect flow and arc variables.

Providing edge costs are strictly positive, objective (5.4) together with constraints (5.5), (5.8)
and (5.9) describe optimal Steiner trees in directed graphs, cf. [124]. However, by adding con-
straints (5.6) and (5.7) detached cycles consisting of Steiner nodes may occur in an optimal
solution to model MCF , see Fig. 5.2b: arcs (0, 1) and (1, 2) connect both terminal nodes to the
root within the given delay-bound B = 4 but result in a delay-variation of D = 3. Instead of
using optimal arcs (0, 1) and (0, 2), see Fig. 5.2a, it is cheaper and feasible in model MCF to
add a circular flow for terminal 1 on the detached cycle (3, 4, 5), so f1

01 = f1
34 = f1

45 = f1
53 = 1

and f2
01 = f2

12 = 1. Due to constraints (5.6) the “path-delay” to node 1 is now increased to 4 and
thus D = 0. To prevent infeasible solutions we guarantee root connectivity for all used Steiner
nodes. Therefore, we add sets of flow variables and constraints for each potential Steiner node.

102

(1,1) (1,1)

(1,1)
(1,1)

(1,1)
(6,1)

(1,3)
1 2

5 4

3

s

(a)

(1,1) (1,1)

(1,1)
(1,1)

(1,1)
(6,1)

(1,3)
1 2

5 4

3

s

(b)

Figure 5.2: (a) Example graphGwith edge labels (ce, de). Squared nodes denote terminal nodes
and blue edges show the optimal solution for B = 4, D = 0, with cT = 7. (b) The optimal
solution to model MCF has costs cT = 5 but is infeasible for the RDDVCST problem.

But only if there is an incoming arc to a Steiner node the corresponding flow is activated. This
finally feasible model MCF ′ extends MCF by:

∑
(u,v)∈A

fwuv −
∑

(v,u)∈A

fwvu =

−

∑
(u,w)∈A

xuw if v = s∑
(u,w)∈A

xuw if v = w

0 else

∀w ∈ S (5.10)

0 ≤ fwuv ≤ xuv ∀(u, v) ∈ A, ∀w ∈ S (5.11)

Flow constraints (5.10) for optional nodes are similar to the counterparts (5.5) for terminal nodes
but extended by indegree terms to optionally enable or disable the corresponding flows.

5.5 Transformation to Layered Graph

The transformation of graphG′ = (V,A) to a layered graphGL = (VL, AL) works exactly in the
same way as for the RDCST problem, see Section 4.8 for further details. Again, we want to find
an arborescence TL = (V T

L , A
T
L) in GL with V T

L ⊆ VL, A
T
L ⊆ AL, rooted in s ∈ V T

L , including
exactly one node vl ∈ V T

L for each terminal node v ∈ R and at most one node ul ∈ V T
L for each

potential Steiner node u ∈ S, having minimal costs cTL =
∑

(uk,vl)∈AT
L
cuv. Additionally, we

have to satisfy the transformed delay-variation-constraint

max
uk,vl∈V T

L , u,v∈R
|k − l| ≤ D. (5.12)

Due to its possibly huge size preprocessing in GL is even more important than in G′. Let
deg−(uk) and deg+(uk) denote the indegree and outdegree of node uk, respectively. The fol-
lowing reduction steps are repeated as long as GL is modified by one of them:

1. A node vl ∈ VL, v ∈ R, is removed if ∃u ∈ R \ {v} with uk /∈ VL, ∀k ∈ {l−D, l+D},
since vl cannot be in any feasible solution.

103

2 3

(1,2)

(3,2)

(4,1)

(1,2)

(1,2)

(3,1)

(1,1)

(8,1)

(2,3)

4 5

1s

(a)

11 21 31

12 22 32

13 23 33

14 24 34

5242

5141

43 53

5444

d = 1

d = 2

d = 3

d = 4

d = 0 s

(b)

11 21 31

12 22 32

13 23 33

14 24 34

5242

5141

43 53

5444

d = 1

d = 2

d = 3

d = 4

d = 0 s

(c)

2 3

(1,2)

(3,2)

(4,1)

(1,2)

(1,2)

(3,1)

(1,1)

(8,1)

(2,3)

4 5

1s

(d)

Figure 5.3: (a) Example graph with edge labels (ce, de). Squared nodes denote terminal nodes.
(b) Corresponding layered digraph for B = 4 and D = 1 (arc costs are omitted). (c) Prepro-
cessed graph GL with optimal solution denoted by blue arcs. (d) Optimal tree T ∗ in G with
cT ∗ = 17.

104

2. To partly prevent cycles of length two in G′ an arc (uk, vl) ∈ AL can be removed if
deg−(uk) = 1 ∧ (vm, uk) ∈ AL or v ∈ S ∧ deg+(vl) = 1 ∧ (vl, um) ∈ AL.

3. If node vl ∈ VL \ {s} has no incoming arcs it cannot be reached from s and therefore is
removed.

4. If node vl ∈ VL \ {s}, v ∈ S, has no outgoing arcs it is removed since a Steiner node
cannot be a leaf in an optimal solution.

A naive implementation of the first rule would examine for each layered node vl ∈ VL, v ∈ R,
all other nodes uk ∈ VL, u ∈ R \ {s}, k ∈ {l −D, l +D}, running in O(|VL| · |R| ·D) time.
We significantly improved this performance by using a sweep algorithm basically dragging a
“window” with width 2D + 1 through the layers of GL. In each window position we update the
set of active terminal nodes within that interval. If at any time the number of active nodes falls
below |R| then all nodes vl ∈ VL, v ∈ R, on layer l in the middle of the current window can be
removed. This improved variant runs in O(|VL|) time.

It was interesting to see in preliminary tests that the complete reduction procedure is some-
times able to eliminate the whole layered graph if the delay-variation-constraint is set too tight
to allow a feasible solution. On the same instances a branch-and-cut approach based on model
MCF ′ had to solve thousands of branch-and-bound nodes to prove infeasibility. Thus, the lay-
ered graph transformation and reduction can be seen as a heuristic method for detecting infeasi-
bility in an early stage of the solving process.

See Fig. 5.3 for an example of layered graph transformation, preprocessing, and solution cor-
respondence. Note that example graph G is the same as in Fig. 4.2 for the RDCST problem but
the cost of an optimal solution increases from 9 to 17 by imposing a delay-variation-constraint
with D = 1.

5.6 Layered Graph Formulation

We extend the model presented in Section 4.9 for the RDCST problem without delay-variation-
constraint. Again, we use binary variables xuv, ∀(u, v) ∈ A, to model original arcs in G′.
Additionally, continuous variables ylv, ∀vl ∈ VL \ {s}, and xluv, ∀(ul, vk) ∈ AL, represent
nodes and arcs in layered graph GL, respectively. Model LAY is then defined as follows:

min
∑

(u,v)∈A

cuvxuv (5.13)

s.t.
∑
vl∈VL

ylv = 1 ∀v ∈ R (5.14)

∑
vl∈VL

ylv ≤ 1 ∀v ∈ S (5.15)

∑
(uk,vl)∈AL

xkuv = ylv ∀vl ∈ VL \ {s} (5.16)

105

∑
(uk,vl)∈AL,u6=w

xkuv ≥ xlvw ∀(vl, wj) ∈ AgL (5.17)

x0
sv = xsv ∀(s, v) ∈ A (5.18)∑

(uk,vl)∈AL

xkuv = xuv ∀(u, v) ∈ A, u 6= s (5.19)

δmin ≤
B∑
l=1

l · ylv ≤ δmin +D ∀v ∈ R (5.20)

δmin ∈ [1, B −D] (5.21)

xkuv ≥ 0 ∀(uk, vl) ∈ AL (5.22)

ylv ≥ 0 ∀vl ∈ VL \ {s} (5.23)

xuv ∈ {0, 1} ∀(u, v) ∈ A (5.24)

Inequalities (5.14) and (5.15) state that from the set of layered graph nodes corresponding to
one particular original node exactly one has to be chosen for required nodes and at most one
for potential Steiner nodes, respectively. Indegree constraints (5.16) in GL restrict the number
of incoming arcs to a layered graph node vl in dependency of ylv to at most one. Since GL is
acyclic inequalities (5.17) are enough to ensure connectivity. Equalities (5.18) and (5.19) link
layered graph arcs to original arcs. Delay-variation-bound D is guaranteed by (5.20) and (5.21).
LAY LP denotes the LP relaxation of LAY .

In principle, variables xuv and ylv are redundant since they can be substituted by Boolean
layered graph arc variables xluv using equalities (5.16), (5.18) and (5.19). However, model LAY
is better readable by including them and branching on xuv and Boolean ylv variables turned out to
be more efficient in practice than branching on variables xluv. In fact, branching on original arcs
usually is more balanced since setting xluv = 1 for one particular layered graph arc in general is
a stronger constraint on the set of feasible solutions than setting xuv = 1.

5.6.1 Valid Inequalities

The following sets of valid inequalities are not necessary for the feasibility of model LAY but
are useful to strengthen it w.r.t. its LP relaxation. The different sets of directed connection
cut inequalities and their separation discussed in Section 4.9.1 and 4.9.2, respectively, clearly
are valid for the RDDVCST problem, too. Additionally, we now introduce some sets of valid
inequalities especially considering the delay-variation-constraint.

Let Lv = {l | vl ∈ VL} ⊆ {1, ..., B} denote the set of achievable layers in GL for a node
v ∈ V . We know that a terminal node uk ∈ VL, u ∈ R, on layer k ∈ Lu can only be in a
feasible solution if no other terminal node vl ∈ VL, v ∈ R, on layer l ∈ Lv outside the interval
[k −D, k +D] is included. This leads to inequalities

yku + ylv ≤ 1 ∀u, v ∈ R, ∀k ∈ Lu, ∀l ∈ Lv, |k − l| > D. (5.25)

The number of inequalities (5.25) is in O(|R|2 · B2). We can aggregate them to form stronger

106

constraints
yku +

∑
l∈Lv\{k−D,...,k+D}

ylv ≤ 1 ∀u, v ∈ R, ∀k ∈ Lu. (5.26)

The number of these is inO(|R|2 ·B). Now we relate arbitrary subsets of layers of two terminal
nodes leading to a violation of the delay-variation-constraint:∑

l∈L′u

ylu +
∑
l∈L′v

ylv ≤ 1 ∀u, v ∈ R, ∀L′u ⊆ Lu, ∀L′v ⊆ Lv with

|lu − lv| > D, ∀lu ∈ L′u, ∀lv ∈ L′v (5.27)

In the most general variant we consider infeasible combinations of arbitrary subsets of layers of
an arbitrary subset of terminal nodes:∑

v∈R′

∑
l∈L′v

ylv ≤ 1 ∀R′ ⊆ R, ∀v ∈ R′, ∀L′v ⊆ Lv, with

|lu − lv| > D, ∀u, v ∈ R′, ∀lu ∈ L′u, ∀lv ∈ L′v (5.28)

Note that due to the inequalities’ conditions w.r.t. R′, v, and L′v, the sum on the left side can
include at most B y-variables, but the number of constraints can be exponential. In Fig. 5.4a an
example is given where constraints (5.26)–(5.28) tighten LAY LP.

5.6.2 Separation Methods

To find violated inequalities (5.28) we consider an optimal LP solution S and build a support
graph GS = (VS , AS) with node set

VS = {s} ∪ {vl ∈ VL | v ∈ R, ylv > 0} (5.29)

and arc set

AS = {(s, vl) | vl ∈ VS \ {s}}
∪ {(vk, vl) | vk, vl ∈ VS \ {s}, k < l, @vi ∈ VS : k < i < l}
∪ {(uk, vl) | uk, vl ∈ VS \ {s}, u 6= v, k < l, l − k > D}. (5.30)

Furthermore, we assign arc costs ca = ylv, ∀a = (uk, vl) ∈ AS .

Lemma 5.6.1. Given an LP solution S and the corresponding graph GS , each path P ⊆ AS
with source node s and costs cP > 1 corresponds to an inequality (5.28) IPS by solution S and
vice versa.

Proof. Assume a path P in GS starting in s with costs cP > 1 is given. By relating arc a =
(uk, vl) to variable ylv the sum of arc costs of P corresponds to a sum of ylv-variable values since
ca = ylv. Due to the definition of GS , P can only consist of arcs (uk, vl) ∈ AS with k < l and
either u = v or u 6= v∧ l−k > D. Therefore the sum of variables ylv corresponding to a path P

107

0.5

0.5

0.5

0.5

0.25

21 3111
0.25

12 22 32

13 23 33

14 24 34

15 25 35

0.5

s

(a)

1

0.5

0.5

1

0.25

1.5

1.25

32

s

22

11

14

23

24

35

(b)

Figure 5.4: (a) The solution (D = 1, arc labels denote variable values of the LP solution, gray
arcs mean xluv = 0) is feasible for LAY LP and for inequalities (5.25) but not for (5.26)–(5.28)
since y1

1 + y3
2 + y4

2 = 1.25 > 1 and y1
1 + y3

2 + y5
3 = 1.5 > 1. (b) Graph GS for the separation

problem corresponding to solution (a): The blue arcs represent the longest path tree and the node
values denote the maximal costs.

forms the left side of a valid inequality (5.28) and since cP > 1 we obtain a violated inequality
IPS for solution S.

Now, let IS be a violated inequality (5.28) for solution S. First we remove all variables with
ylv = 0 and sort the remaining sum of variables ylv by ascending layers l. Due to the constraint
definition no two variables can have the same layer l and if we consider two consecutive variables
yku and ylv then either u = v or u 6= v ∧ l − k > D. Furthermore, there has to be either an arc
(uk, vl) ∈ AS or in case of u = v possibly a path P ′ = (uk, ..., ul) including other nodes ui
with k < i < l. So the series of variables in IS can again be related to a path P in GS starting
in s and since the sum of variable values is larger than 1 the costs of path P are at least that
high.

Following Lemma 5.6.1 we now search for the longest paths from s to at most |R| leaves
in GS . The single-source longest path problem can here be solved in linear time since GS
is a directed acyclic graph, cf. [5]. Obviously, all inequalities IP

′
S corresponding to sub-paths

P ′ ⊂ P with cP ′ > 1 are dominated by IPS . To further strengthen inequality IPS we try to feasibly
add as many summands as possible, not only the node variables which are positive in solution S.
Otherwise similar violated inequalities are possibly found in further iterations. So if we consider
an arc (vk, vl) ∈ AS on a violating path P connecting two layered graph nodes corresponding to
the same original node we additionally add all variables yiv, ∀vi ∈ VL, k < i < l, to IPS . Using
this separation routine we are able to guarantee that the “most violated” inequalities are found

108

LAY ′′

MCF ′ LAY ′

LAY

LAYD ′′

LAYD ′

LAYD

Figure 5.5: Polyhedral comparison of all described formulations. An arrow describes a direct
relation between two formulations: the formulation at the tail of an arrow is weaker than the
formulation at the head. If there is no directed path between two formulations, the corresponding
polyhedra are incomparable.

hopefully resulting in a large increase of the optimal LP relaxation value.
Figure 5.4b shows graph GS for the separation problem corresponding to solution 5.4a: Arc

costs ca = ylv, ∀a = (uk, vl) ∈ AS , can be easily derived from Fig. 5.4a since equalities 5.16
directly link layered node and incoming arc variables, i.e. y1

1 = y4
1 = y3

2 = y2
3 = y5

3 = 0.5, y2
2 =

y4
2 = 0.25. The longest paths can be obtained by a straight-forward label-setting algorithm [5]

examining each arc exactly once. Finally, the set of blue arcs represent the longest path tree and
the node values denote the according maximal costs. Considering the cost values assigned to
leaves 14, 24, and 35, there are two values greater than 1, and by backtracking the corresponding
paths to root s we obtain the two violated inequalities y1

1 + y3
2 + y4

2 ≤ 1 and y1
1 + y3

2 + y5
3 ≤ 1.

5.7 Polyhedral Comparison

We did not consider a formulation based on MTZ inequalities for the RDDVCST problem sim-
ilar to the one in Section 4.4 because first, these models usually have a weak performance for
the RDCST problem and second, it is not obvious how to model the delay-variation-constraint
since the δv variables only represent upper bounds to the exact node-delays in an integer solu-
tion. Similarly, the formulation based on infeasible path inequalities from Section 4.7 cannot
be adapted in a straight-forward way to include the delay-variation-constraint since there is no
notion of node-delay in this model. Finally, an adaptation of the path formulation utilized in a
branch-and-price approach as described in Section 4.5 is currently work in progress. Unfortu-
nately, the according pricing subproblem is in general much more difficult to solve than the one
for the RDCST problem since we now may have negative costs on arcs in the delay-constrained
cheapest path problem. Therefore, we cannot re-use the simple dynamic programming approach.

Now we theoretically compare the polyhedra associated to the LP relaxation of the following
formulations for the RDDVCST problem and projected into the space of x variables:

• MCF ′: multi-commodity flow formulation in Section 5.4

• LAY : layered graph formulation in Section 5.6 with inequalities (4.30)–(4.31)

109

11

32

31

13

12

33

s

21

22

23

0.4 0.4

0.4

0.4

0.6
0.4

0.2

D = 1

Figure 5.6: Example solution which is feasible LAY ′′LP but not for LAYD ′′LP. Arc labels denote
variable values of the LP solution and squared nodes denote terminal nodes.

• LAY ′: formulation LAY with directed connection cut inequalities (4.27) on graph G′

• LAY ′′: formulation LAY with directed connection cut inequalities (4.50) on layered
graph G′L

• LAYD : formulation LAY with delay-variation inequalities (5.28)

• LAYD ′: formulation LAY ′ with delay-variation inequalities (5.28)

• LAYD ′′: formulation LAY ′′ with delay-variation inequalities (5.28)

We denote the polyhedra of the according LP relaxations projected into the space of x variables
by PMCF ′ , PLAY , PLAY ′ , PLAY ′′ , PLAYD , PLAYD ′ , and PLAYD ′′ , respectively. We write P1 ⊂
P2 if P1 ⊆ P2 and there exist instances such that ∃x ∈ P2 : x /∈ P1. Figure 5.5 summarizes the
relations between the formulations which are now discussed one by one. Most of these relations
are implied by corresponding propositions from Section 4.10 for the RDCST problem.

Proposition 5.7.1. PLAY ′′ ⊂ PLAY ′ ⊂ PLAY , and PLAYD ′′ ⊂ PLAYD ′ ⊂ PLAYD .

Proof. These relations directly follow from Proposition 4.10.10, 4.10.9, and 4.10.3.

Proposition 5.7.2. PLAYD ′′ ⊂ PLAY ′′ , PLAYD ′ ⊂ PLAY ′ , and PLAYD ⊂ PLAY .

Proof. Clearly, PLAYD ′′ ⊆ PLAY ′′ , PLAYD ′ ⊆ PLAY ′ , and PLAYD ⊆ PLAY holds. Figure 5.6
shows an example with D = 1 where delay-variation inequalities (5.28) are able to strengthen
LAY ′′LP:

∑
l l · yl1 = 2.8,

∑
l l · yl3 = 1.8 ⇒ δmin = 1.8, but y3

1 + y1
3 = 1.4 > 1. Obviously,

this example can also be used to show the proper inclusion of the other relations.

Proposition 5.7.3. PLAY ′′ ⊂ PMCF ′ .

Proof. By applying the max-flow-min-cut theorem, we know that formulation LAY ′′ ensures a
flow of one unit from root s to each terminal node v ∈ RL in layered graph G′L. Moreover, this
also holds in graph G′ since inequalities (4.50) include (4.27). Since the flow in G′L can only

110

use delay-feasible paths the sum in inequalities (5.6) is always less or equal than delay-bound
B. Furthermore, by setting

∑
(u,v) duvf

w
uv =

∑
l l · ylw, ∀w ∈ R, we can easily see that for

each feasible solution for LAY ′′LP we can construct a feasible solution for MCF ′LP. However,
we also know from Fig. 4.5c and Proposition 4.10.12 that MCF ′LP may include delay-infeasible
paths in a fractional solution.

Proposition 5.7.4. PMCF ′ 6= P2, P2 ∈ {PLAY , PLAY ′ , PLAYD , PLAYD ′}.

Proof. This directly follows from Proposition 4.10.12 by using a non-restricting delay-variation-
constraint in the example solutions, e.g. D = B.

Proposition 5.7.5. PLAY ′′ 6= PLAYD , PLAY ′′ 6= PLAYD ′ , and PLAY ′ 6= PLAYD .

Proof. On the one hand, Fig. 5.6 shows a solution which is feasible for LAY ′LP and LAY ′′LP

but not for LAYDLP. On the other hand, by setting D = B, Fig. 4.3a is feasible for LAYDLP

but infeasible for LAY ′LP, and Fig. 4.3b is feasible for LAYD ′LP but not for LAY ′′LP.

5.8 Computational Results

In this section we compare all mentioned formulations on different sets of benchmark instances.
In detail we discuss the following solution approaches:

• FL: branch-and-cut (BC) based on multi-commodity flow formulation MCF ′ in Sec-
tion 5.4

• L1: BC based on layered graph formulation LAY in Section 5.6 with inequalities (4.30)–
(4.31) added a priori to the model

• L2: L1 extended by directed connection cut inequalities (4.27) on graph G′

• L3: L1 extended by directed connection cut inequalities (4.50) on layered graph G′L

• D1: L1 extended by delay-variation inequalities (5.28)

• D2: L2 extended by delay-variation inequalities (5.28)

• D3: L3 extended by delay-variation inequalities (5.28)

5.8.1 Test Instances and Environment

We apply all MIP approaches to the set of benchmark instances introduced by Gouveia et al. [68]
and re-used for computational experiments for the RDCST problem, see Section 4.11.1 for fur-
ther details. However, we focus here on the most difficult subset E with Euclidian costs and the
root s placed near the border. Additionally, we also consider E sets containing smaller com-
plete graphs with 21 nodes. Thus, e.g. E21-10 denotes the set of instances where |V | = 21 and
de ∈ {1, ..., 10}, ∀e ∈ E. These instances originally have been designed for the RDCMST

111

problem requiring all nodes in a solution. However, imposing an additional delay-variation-
constraint possibly results in a star-like solution tree with low height since all nodes have to
be connected with a similar path-delay. Therefore, we set R = {0, ..., b|V |/2c} to allow more
“practicable” solutions (root s = |V | − 1 for all instances). Moreover, D ∈ {1, 3, 5} for sets
E21-10 and E41-10, and D ∈ {10, 30, 50} for sets E21-100 and E41-100.

To reduce the input graphs we applied all preprocessing methods described in Section 5.3
prior to solving. No initial primal solution is provided since we currently have no working
heuristics for the RDDVCST problem at hand and the methods proposed in Chapter 3 cannot be
reliably used here since they are not able to ensure the delay-variation-constraint.

We used IBM ILOG CPLEX 12.3 to solve the MIP models. The layered node and arc
variables in model LAY and the flow variables in MCF ′ are declared Boolean since the CPLEX
presolver benefits from integrality of these variables and therefore can significantly reduce the
model. Furthermore, because of too high time consumption we disabled the probing extension
of CPLEX which checks the logical implications of setting each Boolean variable to 0 or 1.
The dual simplex algorithm has been used for solving LPs in CPLEX, since it turned out to
significantly outperform other options (primal simplex, barrier) in preliminary tests. Finally, a
memory limit of 3 GB and a time limit of 10 000 CPU-seconds are set for each experiment.
Apart from that, all other CPLEX settings remain at their default.

All tests are performed either on a single core of Intel Xeon E5540 processors with 2.53 GHz
where eight cores share 24 GB of memory, or on a single core of Intel Xeon E5649 processors
with 2.53 GHz where 12 cores share 48 GB of memory. In preliminary tests both systems yielded
nearly the same performance within usual limits of tolerances.

5.8.2 LP Bounds

Table 5.1 shows results for several instance sets when only solving the LP relaxation of the con-
sidered formulations. Since optimal integer values are not available for all instances, we report
average LP bounds relative to FL in percent, and the median runtime to reach these bounds.
Dashes in time columns represent the time limit of 10 000 seconds.

According to the polyhedral comparison in Section 5.7, D3 should always obtain at least
as good LP bounds as all other approaches. However, as indicated in the results this best dual
bound cannot always be reached within the given time limit. In many cases huge numbers of
added connection cuts on layered graphG′L and delay-variation inequalities lead to large models
and slow LP resolvings. However, the combination of these two sets of valid inequalities is often
able to dramatically increase the dual bound compared to all other formulations.

In contrast to the layered graph approaches, the results clearly illustrate the independence of
FL’s runtime from the delay-bound. Thus, FL yields quite good LP bounds in moderate runtimes
even for the most difficult subset E41-100 where the layered graph approaches obviously show
weaknesses. Interestingly, this does not imply superiority of FL when embedded in a branch-
and-cut, as shown in the next section.

In general, the obtained integrality gaps even if adding all valid inequalities, are much higher
than those of the corresponding RDCST problem without the delay-variation-constraint, see Sec-
tion 4.11.2. This documents that the delay-variation-constraint indeed imposes a big additional
challenge.

112

average LP bounds relative to FL in % median time in seconds
Set B D FL L1 L2 L3 D1 D2 D3 FL L1 L2 L3 D1 D2 D3

E21-10 10 1 0.0 14.5 19.9 22.5 20.5 24.5 28.3 0 0 0 0 0 0 0
3 0.0 2.1 5.8 9.0 7.7 11.5 16.0 0 0 0 0 0 0 1
5 0.0 1.7 4.5 7.0 5.1 7.9 12.6 0 0 0 0 0 0 0

15 1 0.0 7.1 12.4 15.3 15.4 20.5 27.0 0 0 0 0 1 1 4
3 0.0 -0.8 3.6 7.2 5.1 10.3 14.7 1 0 0 2 1 1 11
5 0.0 -2.4 1.8 5.1 0.2 5.2 10.5 1 0 1 2 1 1 5

20 1 0.0 1.7 8.0 12.3 9.0 15.6 23.1 0 1 1 3 4 11 82
3 0.0 -2.7 3.6 6.6 3.3 9.6 14.4 1 2 2 6 3 6 88
5 0.0 -3.6 2.4 5.6 -0.6 5.6 10.3 1 1 2 10 2 4 76

25 1 0.0 -2.7 5.6 9.2 5.8 13.6 20.1 1 1 2 7 24 44 655
3 0.0 -4.2 3.0 5.5 1.6 9.3 13.8 1 3 4 19 7 18 702
5 0.0 -5.1 2.2 4.5 -1.9 5.6 9.8 1 1 2 49 3 8 347

E41-10 10 1 0.0 7.4 10.9 13.8 12.5 15.4 20.0 14 0 1 1 1 2 10
3 0.0 -0.4 4.0 8.5 4.2 6.9 13.4 32 1 1 6 1 3 14
5 0.0 -0.7 3.9 9.2 2.4 5.2 12.1 46 1 1 6 1 1 6

15 1 0.0 1.8 7.0 11.8 6.4 11.2 18.1 54 1 3 25 16 52 560
3 0.0 -4.8 0.7 6.0 -2.1 3.2 10.5 56 2 7 85 6 27 827
5 0.0 -5.3 0.4 6.4 -3.3 2.3 10.5 59 2 7 97 5 19 463

20 1 0.0 -2.5 4.0 8.8 1.2 7.3 13.7 37 4 11 306 118 430 5349
3 0.0 -5.9 1.0 6.1 -4.1 3.1 9.6 62 8 24 3070 29 112 7957
5 0.0 -6.2 0.2 5.9 -4.8 2.0 9.5 48 9 22 1578 19 72 5819

25 1 0.0 -4.7 2.7 7.3 -1.5 5.6 10.6 58 7 29 3024 405 1693 -
3 0.0 -6.6 1.3 5.8 -4.8 3.5 8.4 58 13 54 - 93 307 -
5 0.0 -6.6 1.0 6.1 -5.3 2.9 8.7 54 18 62 5329 55 183 -

E21-100 100 10 0.0 9.5 13.5 15.5 22.2 26.1 32.8 0 0 1 1 2 3 11
30 0.0 0.0 9.7 11.0 8.7 11.7 13.8 0 2 3 10 4 7 12
50 0.0 0.9 7.4 11.2 8.0 10.3 15.4 0 2 3 10 2 3 12

150 10 0.0 1.6 7.5 11.3 12.4 18.3 26.8 1 2 6 43 33 105 2844
30 0.0 -3.8 5.1 7.2 2.9 8.5 12.7 1 16 30 297 30 101 1327
50 0.0 -2.5 3.4 5.9 1.9 6.5 11.5 0 9 21 131 19 44 785

200 10 0.0 -4.1 3.8 6.6 5.3 13.0 19.3 1 10 25 580 276 1116 -
30 0.0 -6.4 2.4 4.8 -1.5 6.3 9.7 1 23 82 3390 279 1139 -
50 0.0 -4.6 1.8 4.1 -0.9 5.1 9.5 1 23 58 1640 110 500 -

250 10 0.0 -6.3 1.7 4.6 2.0 10.5 12.5 0 18 49 5251 1276 4553 -
30 0.0 -7.7 1.3 3.3 -3.0 5.3 6.5 1 40 155 - 504 2494 -
50 0.0 -6.0 1.2 2.5 -2.5 4.3 7.1 1 46 155 3253 245 588 -

E41-100 100 10 0.0 6.0 9.8 13.9 12.8 16.0 21.5 35 14 30 628 182 412 -
30 0.0 -2.3 3.3 7.9 0.8 5.4 10.9 68 47 118 4496 107 524 -
50 0.0 -2.9 2.4 6.8 -1.4 3.2 9.5 86 37 84 2439 57 170 -

150 10 0.0 -1.4 4.5 7.5 3.6 8.2 8.2 60 77 305 - 2864 - -
30 0.0 -5.4 1.1 3.9 -3.0 1.5 1.9 70 233 721 - 4269 - -
50 0.0 -5.4 0.5 3.2 -4.2 -0.5 0.7 56 126 1472 - 764 - -

200 10 0.0 -4.6 2.8 2.6 -1.1 -1.2 -1.2 52 223 757 - - - -
30 0.0 -6.3 0.1 -0.7 -4.8 -4.9 -4.8 75 601 4582 - - - -
50 0.0 -6.2 0.3 -0.6 -5.2 -5.2 -4.8 88 352 - - - - -

250 10 0.0 -6.2 2.0 -0.7 -4.0 -3.9 -3.8 49 405 2060 - - - -
30 0.0 -25.1 -21.0 -22.2 -24.3 -24.3 -24.3 65 933 - - - - -
50 0.0 -6.5 -3.2 -4.4 -5.9 -5.9 -5.9 77 2297 - - - - -

Table 5.1: LP results for instances by Gouveia et al. [68] (B: delay-bound, D: delay-variation-
bound, FL: flow approach, L1: layered graph approach, L2: L1 with connection cuts on G′, L3:
L1 with connection cuts on G′L, D1-3: L1-3 with delay-variation cuts, best results are printed
bold).

113

5.8.3 Branch-and-Cut Results

Test results embedding our model variants in a branch-and-cut approach are shown in Tables 5.2
and 5.3 where dashes denote either a 100% gap or reached time limit.

It can clearly be seen that while the layered graph approaches performed at least reasonably
well, FL is not competitive in most cases. Only for the small E21-100 instances FL can some-
times outperform the other methods since here the number of nodes is quite low resulting in a
manageable number of flow variables and the delay-bounds are rather high which is disadvan-
tageous for the layered graph approaches. However, for most E41 instances FL could not even
find a feasible solution indicated by the 100% gaps. Although the LP relaxation bounds of the
flow model can be computed quite fast, see Table 5.1, they are much too weak often leading to
a huge branch-and-bound tree.

It is interesting to see that L1 mostly obtains worse LP bounds than FL and often needs
even more time to compute them, but when considering the corresponding branch-and-cut ap-
proaches, L1 outperforms FL in most cases. Here, the CPLEX presolver and integrated general-
purpose cuts greatly benefit from the structure of the layered graph model and thus can both
significantly reduce the formulation size in the beginning and additionally strengthen the LP
relaxations throughout the solving process.

Approaches L1, L2, D1, and D2, performed best without being able to elect one clear win-
ner and could at least solve about half of the instances to optimality. Considering the subsets
with small delay-bounds in Table 5.2, we can clearly see that it makes sense to separate delay-
variation inequalities. However, the picture is not that clear anymore for instances in Table 5.3:
Here, we observed for D1 and D2 a high number of added cuts due to a larger graph GL and
thus more possibilities to combine nodes in VL to form violated delay-variation inequalities.
Analogously to infeasible path inequalities for the RDCST problem in Section 4.7, many similar
violated inequalities are found differing only in a few terms. To partly prevent these situations
we aim to find stronger inequalities relating more than one node combinations within one in-
equality.

Obviously, directed connection cuts are only rarely in graph G′ and not at all in G′L helpful
to improve computation times. Reasons for this are both the higher complexity of the separation
problem compared to the fast method for finding violated inequalities (5.28) and the fact that
in most cases the number of added connection cuts is rather high leading to slow LP relaxation
resolvings.

We can see for both the flow and layered graph approaches that in most cases it is easier to
solve instances with higher delay-variation-bound which is quite intuitive since it is usually hard
for CPLEX heuristics to find good primal bounds if D is rather strict. Note that this obvious
correlation does not hold for delay-bounds when considering layered graph approaches: Here,
stricter delay-bounds result in smaller layered graphs and thus smaller search spaces. We are
able to implicitly encode the delay-bound in the layered structure which is not possible for the
delay-variation-bound. To satisfyD we need additional inequalities (5.20) which are not directly
reflected in the structure of layered graph GL and therefore make it usually harder to solve the
LP relaxation and to find useful feasible solutions.

114

#
op

tim
al

so
lu

tio
ns

(o
ut

of
5)

av
er

ag
e

ga
p

in
%

m
ed

ia
n

tim
e

in
se

co
nd

s
Se

t
B

D
FL

L
1

L
2

L
3

D
1

D
2

D
3

FL
L

1
L

2
L

3
D

1
D

2
D

3
FL

L
1

L
2

L
3

D
1

D
2

D
3

E
21

-1
0

10
1

5
5

5
5

5
5

5
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
25

99
1

1
1

1
1

1
3

5
5

5
5

5
5

5
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
18

82
2

2
4

2
2

2
5

5
5

5
5

5
5

5
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
15

0
1

1
0

1
1

1
15

1
0

5
5

5
5

5
5

23
.4

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

-
6

13
12

6
13

11
73

3
1

5
5

5
5

5
5

14
.8

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

-
18

25
34

6
16

21
11

7
5

2
5

5
5

5
5

5
5.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
-

12
18

48
15

17
45

20
1

0
5

5
2

5
5

3
31

.2
0.

0
0.

0
7.

3
0.

0
0.

0
4.

1
-

55
85

-
21

0
18

1
10

77
3

0
5

5
1

5
5

4
18

.9
0.

0
0.

0
14

.8
0.

0
0.

0
2.

3
-

28
4

87
0

-
22

0
24

3
73

81
5

1
5

5
3

5
5

4
14

.0
0.

0
0.

0
3.

4
0.

0
0.

0
0.

1
-

21
5

18
8

85
96

12
7

11
7

14
04

25
1

0
5

5
0

4
3

1
27

.9
0.

0
0.

0
19

.1
1.

5
4.

8
14

.2
-

34
7

43
4

-
45

92
23

30
-

3
0

5
5

1
5

5
1

17
.2

0.
0

0.
0

46
.2

0.
0

0.
0

12
.3

-
78

7
17

30
-

29
34

31
15

-
5

0
5

5
1

5
5

2
17

.2
0.

0
0.

0
21

.2
0.

0
0.

0
6.

7
-

77
2

19
81

-
82

4
66

9
-

E
41

-1
0

10
1

0
5

5
5

5
5

5
-

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

-
26

43
41

4
26

33
79

3
0

5
5

4
5

5
5

62
.1

0.
0

0.
0

0.
5

0.
0

0.
0

0.
0

-
11

6
19

1
77

9
43

63
22

3
5

0
5

5
5

5
5

5
53

.2
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
-

17
34

15
9

18
24

17
15

1
0

4
0

0
1

0
0

-
2.

7
15

.6
24

.3
8.

7
10

.3
24

.4
-

36
31

-
-

-
-

-
3

0
2

0
0

4
2

0
-

8.
5

15
.1

30
.2

0.
8

4.
3

17
.2

-
-

-
-

67
07

-
-

5
0

4
3

0
5

5
3

-
3.

0
7.

8
22

.7
0.

0
0.

0
5.

3
-

18
55

89
22

-
13

46
17

70
82

19
20

1
0

0
0

0
0

0
0

-
27

.5
26

.1
88

.2
34

.9
32

.7
56

.0
-

-
-

-
-

-
-

3
0

0
0

0
0

0
0

-
28

.3
27

.6
71

.2
22

.8
18

.8
51

.4
-

-
-

-
-

-
-

5
0

0
0

0
0

0
0

-
21

.5
21

.7
52

.4
20

.0
17

.5
43

.3
-

-
-

-
-

-
-

25
1

0
0

0
0

0
0

0
-

35
.3

35
.2

-
52

.5
68

.4
-

-
-

-
-

-
-

-
3

0
0

0
0

0
0

0
-

35
.3

33
.9

-
27

.6
26

.8
71

.1
-

-
-

-
-

-
-

5
0

0
0

0
0

0
0

-
33

.0
28

.4
75

.1
28

.1
23

.3
67

.7
-

-
-

-
-

-
-

Ta
bl

e
5.

2:
B

ra
nc

h-
an

d-
cu

tr
es

ul
ts

fo
r

in
st

an
ce

s
by

G
ou

ve
ia

et
al

.[
68

]
(B

:
de

la
y-

bo
un

d,
D

:
de

la
y-

va
ri

at
io

n-
bo

un
d,

FL
:fl

ow
ap

pr
oa

ch
,

L
1:

la
ye

re
d

gr
ap

h
ap

pr
oa

ch
,L

2:
L

1
w

ith
co

nn
ec

tio
n

cu
ts

on
G
′ ,

L
3:

L
1

w
ith

co
nn

ec
tio

n
cu

ts
on
G
′ L

,D
1-

3:
L

1-
3

w
ith

de
la

y-
va

ri
at

io
n

cu
ts

,b
es

tr
es

ul
ts

ar
e

pr
in

te
d

bo
ld

).

115

#
optim

alsolutions
(outof5)

average
gap

in
%

m
edian

tim
e

in
seconds

Set
B

D
FL

L
1

L
2

L
3

D
1

D
2

D
3

FL
L

1
L

2
L

3
D

1
D

2
D

3
FL

L
1

L
2

L
3

D
1

D
2

D
3

E
21-100

100
10

0
5

5
4

5
5

5
19.8

0.0
0.0

0.8
0.0

0.0
0.0

-
42

76
1489

46
49

168
30

4
5

5
5

5
5

5
1.7

0.0
0.0

0.0
0.0

0.0
0.0

2733
89

193
349

79
36

65
50

5
5

5
5

5
5

5
0.0

0.0
0.0

0.0
0.0

0.0
0.0

1015
27

22
63

23
24

35
150

10
0

4
2

0
1

0
0

45.5
2.9

10.0
53.9

23.6
20.4

67.9
-

2152
-

-
-

-
-

30
1

5
4

1
4

5
1

13.9
0.0

0.6
27.1

1.6
0.0

8.6
-

3405
2034

-
8009

7673
-

50
4

5
5

4
5

5
5

5.3
0.0

0.0
5.2

0.0
0.0

0.0
1250

1475
633

5220
491

577
3309

200
10

0
1

0
0

0
0

0
37.3

22.5
33.5

91.0
59.9

76.4
-

-
-

-
-

-
-

-
30

2
1

1
0

1
1

1
8.4

17.2
15.8

46.0
17.5

17.8
63.2

-
-

-
-

-
-

-
50

4
1

4
0

1
2

1
5.4

10.5
1.9

26.5
13.5

5.7
60.7

2353
-

7225
-

-
-

-
250

10
0

0
0

0
0

0
0

48.0
62.6

66.0
-

-
-

-
-

-
-

-
-

-
-

30
1

1
1

1
1

1
1

22.0
26.0

26.0
80.0

37.6
37.3

80.0
-

-
-

-
-

-
-

50
3

0
1

0
1

1
0

9.8
22.5

11.7
52.1

13.8
14.5

81.3
5830

-
-

-
-

-
-

E
41-100

100
10

0
0

0
0

0
0

0
-

48.2
42.4

89.6
63.6

66.1
-

-
-

-
-

-
-

-
30

0
0

0
0

0
0

0
-

32.9
32.4

70.0
30.5

25.7
90.3

-
-

-
-

-
-

-
50

0
0

0
0

0
1

0
86.7

14.5
13.2

44.5
15.6

13.2
54.7

-
-

-
-

-
-

-
150

10
0

0
0

0
0

0
0

-
92.0

80.0
-

-
-

-
-

-
-

-
-

-
-

30
0

0
0

0
0

0
0

-
42.7

48.4
-

88.0
86.6

-
-

-
-

-
-

-
-

50
0

0
0

0
0

0
0

-
38.1

31.0
-

50.2
27.6

-
-

-
-

-
-

-
-

200
10

0
0

0
0

0
0

0
-

-
-

-
-

-
-

-
-

-
-

-
-

-
30

0
0

0
0

0
0

0
-

87.8
88.2

-
-

-
-

-
-

-
-

-
-

-
50

0
0

0
0

0
0

0
-

56.1
56.2

-
49.5

-
-

-
-

-
-

-
-

-
250

10
0

0
0

0
0

0
0

-
-

-
-

-
-

-
-

-
-

-
-

-
-

30
0

0
0

0
0

0
0

-
89.1

-
-

-
-

-
-

-
-

-
-

-
-

50
0

0
0

0
0

0
0

-
57.9

86.6
-

75.6
-

-
-

-
-

-
-

-
-

Table
5.3:

B
ranch-and-cutresults

for
instances

by
G

ouveia
etal.[68]

(B
:

delay-bound,
D

:
delay-variation-bound,FL

:flow
approach,

L
1:

layered
graph

approach,L
2:

L
1

w
ith

connection
cuts

on
G
′,L

3:
L

1
w

ith
connection

cuts
on
G
′L ,D

1-3:
L

1-3
w

ith
delay-variation

cuts,bestresults
are

printed
bold).

116

5.9 Future Work

As clearly shown in the experimental results, the generally still relatively large integrality gaps
of all models ask for investigating also other modeling approaches, e.g. path models. How-
ever, as already mentioned in Section 5.7, the according pricing subproblem definitely is a hard
challenge. Moreover, an adaptation of the quite successful formulation based on infeasible path
inequalities for the RDCST problem from Section 4.7 would be interesting, here. But then we
need some additional sets of valid inequalities to ensure the delay-variation-constraint which do
not seem to be obvious. For addressing the poor scalability of the layered graph models w.r.t.
larger delay-bounds, an appropriate extension of the approach presented in Chapter 6 seems to
be highly promising. However, we will also see that this is not as straight-forward as e.g. for
the RDCST problem. The proof of Proposition 5.7.3 shows us a way to link flow variables of
MCF ′ to layered node variables of LAY . Thus, in principle we can use delay-variation inequal-
ities (5.28) to strengthen formulation MCF ′. Whether such an improved multi-commodity flow
model is interesting in a practical sense will be subject to future experiments.

To continue the discussion in the last paragraph of Section 5.8.3, our aim is to find a modeling
scheme for constructing a layered graph where both the delay- and delay-variation-constraint
are implicitly ensured without need to consider them explicitly in a corresponding MIP model.
Having the tight LP bounds of the layered graph formulations for the RDCST problem from
Section 4.11.2 in mind, we believe that we could close a significant part of the current integrality
gaps by using such a modeling approach.

Further computational gains could be obtained by finding additional graph reduction meth-
ods on both the original and corresponding layered graph, and fast construction and LP heuristics
to provide tighter primal bounds. Most heuristic approaches in literature rely on k-shortest-path
algorithms which are computationally expensive. Additionally, not much local search meth-
ods exist which have been applied successfully in numerous other problems and can be easily
integrated in other metaheuristic and exact methods to improve incumbent solutions. Two con-
struction ideas came to our mind, the first one working on graphG and the second one on layered
graph GL.

Inspired by the re-balancing of AVL trees [31], a construction heuristic could work similar
to the following procedure:

1. Start with an arbitrary tree solution containing all terminal nodes and satisfying delay-
bound B, e.g. obtained by exact or heuristic methods for the RDCST problem, see Chap-
ter 4.

2. If the tree satisfies the delay-variation-constraint then stop, else continue.

3. Find two terminals u, v ∈ R with maximal delay-variation and follow the common path
from root s to the unique branching node w where the two paths split up.

4. Examine path P (u, v) and find the nodew′ on the path which divides the whole path delay
in two parts with minimum delay difference.

5. Exchange path P (s, w) by a new path P (s, w′) which could be obtained in different ways,
e.g. by computing shortest-delay-paths or delay-constrained cheapest paths.

117

6. Optionally repeat this “re-balancing” for sub-branches on path P (u, v).

7. Go to 2.

Clearly, an implementation of this algorithm may comprise sophisticated treatment of special
cases. Additionally, this procedure could be used in a modified variant within a local search.

Our second construction concept works on layered graph GL and is defined as follows:

1. Search for D consecutive layers {l, ..., l+D − 1} including at least one layered node for
each terminal node v ∈ R; there are B −D + 1 such intervals and checking whether one
interval includes all required nodes can be done similarly to the sweep algorithm from
Section 5.3.

2. Remove all nodes vk ∈ VL on layers k > l+D−1 and all terminal nodes uk ∈ VL, u ∈ R,
on layers k < l.

3. Try to find a feasible solution in this heavily reduced layered graph by some kind of simple
heuristic or solving a corresponding MIP. Note that the delay-variation-constraint does not
have to be considered here anymore. If no solution can be found, go to 1.

The existence of D consecutive layers containing all terminal nodes is only a necessary but not
sufficient condition for feasibility. First, we have to figure out if after reducing the layered graph
all terminal nodes can still be reached from the root node. However, even if all terminals are
reachable connectivity may be only possible by using two layered graph nodes corresponding
to the same original node which again is not feasible. To conclude, deciding whether there is a
feasible solution for one particular set ofD consecutive layers is in generalNP-complete. If we
consider all feasible sets of layers and solve the according subproblem by an exact method, e.g.
a MIP, then we even obtain an exact algorithm for solving the RDDVCST problem. However,
we believe that this is not competitive from a computational point of view.

Finally, we could consider the problem variant minimizing the delay-variation without con-
sidering edge costs at all. However, in preliminary tests this problem turned out to be even harder
to solve than the RDDVCST problem. Additionally, the delay-variation inequalities (5.28) are
not valid for this variant since the delay-variation-constraint D is implied in the definition of
these inequalities and thus has to known a priori. Clearly, we may assume a large value for
D at the beginning resulting in rather weak inequalities, and decrease D when new incumbent
solutions are found.

118

CHAPTER 6
Adaptive Layers Framework

This chapter discusses a quite general approach to solve network design and routing problems
with constraints limiting consumed resources on paths and routes, respectively. Section 6.1
motivates our so-called Adaptive Layers Framework (ALF) and Section 6.2 summarizes similar
approaches. Section 6.3 describes the theoretical foundation on which our method is based. The
details of two variants of our framework are discussed in Section 6.4 followed by computational
results in Section 6.5 on the RDCMST and RDCST problems from Chapter 3 and 4, respec-
tively. Section 6.6 examines the application of ALF to a variant of the RDCST problem with
additional consideration of a quota constraint. A case study of using ALF to solve the vehicle
routing problem with time windows is presented in Section 6.7. Finally, Section 6.8 discusses
open problems and possible future research directions. Some parts are based on the published
article [163].

6.1 Motivation

The discussion of the RDCST problem in Chapter 4 shows that MIP models on layered graphs
usually provide tight LP relaxation values. A connection cut formulation on a layered graph
yields the best LP bounds known so far and in many cases LP solutions are obtained which are
already integral with no need for additional branching. However, the crucial disadvantage of
these layered graph approaches is the strong dependence on given resource bounds. In case of
a large set of achievable path delay values together with a high delay-bound the corresponding
layered graph consists of a huge number of layers, nodes and arcs. Thus, a strong MIP formula-
tion on this extended graph often is too large to be tractable in one piece in practice exceeding
both time and space limits in many cases. Classical column and row generation methods, e.g.
Dantzig-Wolfe [28] and Benders [54] decomposition, may help to deal with the size but only if
the MIP structure is suitable for these rather general approaches.

We propose a different method which partly overcomes the problems with possibly large-
sized layered graphs but still benefits from the tight dual bounds obtained by the corresponding
layered graph models. Our framework approximates the LP relaxation and the optimal integer

119

value of a complete layered graph formulation by solving a sequence of usually much smaller
models. More detailed, ALF starts with a strongly reduced node set in the layered graph redi-
recting arcs in a way to provide lower and upper bounds to the LP relaxation and the optimal
integer value of the complete formulation. According to the obtained solutions the layered graph
is iteratively extended, decreasing the gap.

In a second variant of ALF we only approximate the LP relaxation of a formulation on
the full layered graph in a first phase. Additionally, during this approximation procedure the
framework can optionally provide a sequence of improving primal feasible solutions. After
certain stopping criteria are met the final formulation extended by valid inequalities necessary
for guaranteeing feasibility is solved in the usual branch-and-cut way supported by the best
obtained primal bound.

In principle, when considering the RDCST problem ALF can be seen as a flexible method to
discretize delay values which does not fix a priori chosen discretized values but iteratively adapts
and refines them to obtain a better approximation of the “real” delay values. Basically, also the
layered graph model from Section 4.9 can be interpreted as a discretized model if considering
the RDCST problem with real-valued edge delays: If we round all delay values to the next lower
integer then the optimal solution of the corresponding layered graph model is a lower bound to
the optimal solution of the original problem. On the other hand, if we round up all delays we
obtain an upper bound.

6.2 Related Work

There are some existing articles discussing discretization methods for routing and scheduling
problems with time constraints: Wang et al. [185, 186] tackle the (multiple) traveling salesman
problem with time windows (TSPTW) and suggest a scheme to partition the time windows into
equal sub-windows. Similarly to the layered graph transformation in Section 4.8, each sub-
window induces a replication of the according original node. These sub-windows are then used
to linearize a non-linear MIP formulation for the TSPTW problem. The smaller the sub-windows
the larger the corresponding MIP model and the better the approximation of the original model.
By considering either the start or the end of a sub-window when connecting two nodes the
authors are able to provide either lower or upper bounds to the optimal solution of the original
problem. In an iterative way they decrease the width of the sub-windows to monotonically
tighten the bounds. Already obtained solutions are utilized in the sense that the time window
is additionally split up at the optimal visiting time in the solution of the last iteration. Apart
from that, time windows are partitioned in a rather homogeneous and unadapted way without
taking previous solutions into account. The repeated solving of MIP models causes a quite high
computational overhead.

Dash et al. [37] proposed in 2010 a more sophisticated discretization approach for the
TSPTW. They divide each time window into so-called buckets not necessarily with equal width.
An according time-indexed MIP formulation uses one variable for each bucket and additional
valid inequalities to guarantee feasibility: Directed connection cut inequalities (4.27) have to
be added to eliminate subtours and infeasible path inequalities similarly to (4.28) are necessary
to avoid tours violating the original time windows. In a first phase the buckets are iteratively

120

refined to improve the dual bound obtained by the LP relaxation of the time bucket formulation.
By examining the current optimal LP solution the buckets are further partitioned in a sophisti-
cated way respecting the possibly fractional bucket and arc variables. If the buckets cannot be
refined anymore by this procedure the formulation is solved in the usual branch-and-cut way
extended by some sets of strong problem-specific variants of the classical subtour elimination
and infeasible path inequalities additionally exploiting the bucket structure. However, the in
general quite promising results indicate that stronger primal bounds are needed to accelerate the
branch-and-bound process especially for the harder instances.

To the best of our knowledge there are no further approaches for network design problems
which are at least partly related to our ALF.

6.3 Basics

This section discusses the theoretical foundation of our framework illustrated on the RDCST
problem from Chapter 4. However, ALF is not limited to the RDCST problem and the corre-
sponding basics can easily be adapted to related problems, e.g. see Sections 6.6 and 6.7. We use
the same notation as in Chapter 4.

We are given a graph G = (V,E) and the corresponding layered graph GL = (VL, AL) after
applying the transformation and preprocessing described in Section 4.8. In GL we now consider
an arc (uj , vl) ∈ AL, d

min
v < l < dmax

v , and redirect its target to a node vk ∈ VL on a lower
layer k < l. Since l > dmin

v there always exists a feasible node vk with k < l. We denote the
resulting graph ǦL.

Lemma 6.3.1. Let T ∗L and Ť ∗L be optimal solutions to the transformed RDCST problem on
GL and ǦL, respectively. Furthermore, we denote by T ∗ and Ť ∗ the corresponding reverse
transformed solutions in G, respectively. Then cŤ ∗ ≤ cT ∗ .

Proof. Redirecting an arc in GL from target vl to node vk on a lower layer k < l corresponds to
a decrease of the related edge delay in G. Therefore, the solution space may be extended since
it may now be easier to satisfy the delay-bound B. The optimal solution T ∗ still stays feasible
but one or more of the new solutions may have less cost than T ∗, so cŤ ∗ ≤ cT ∗ .

Figure 6.1b shows layered graph ǦL derived from example graph G in Fig. 6.1a. One arc is
redirected to a new target on a lower layer. The optimal solution Ť ∗L in ǦL has less cost than the
optimal solution T ∗L inGL. Thus, Ť ∗ cannot be feasible for the RDCST problem onG otherwise
T ∗ would not be optimal. On the other hand, if Ť ∗ would be feasible Lemma 6.3.2 applies.

Lemma 6.3.2. If Ť ∗ is feasible for the RDCST problem on G then it is optimal.

Proof. According to Lemma 6.3.1, cŤ ∗ ≤ cT ∗ . If Ť ∗ is feasible for the RDCST problem on G
then cŤ ∗ = cT ∗ . Therefore, Ť ∗ is an optimal solution to the original problem.

Proposition 6.3.3. The transformed RDCST problem on redirected layered graph ǦL is a relax-
ation to the RDCST problem on G.

121

3

(1,2)

(3,2)

(4,1)

(1,2)

(1,2)

(3,1)

(1,1)

(8,1)

(2,3)

54

2

1s

(a)

11

12 22 32

13 23 33

14 24 34

5242

5141

43 53

5444

d = 1

d = 2

d = 3

d = 4

d = 0 s

21 31

(b)

11

12 22 32

13 23 33

14 24 34

5242

5141

43 53

5444

d = 1

d = 2

d = 3

d = 4

d = 0

21 31

s

(c)

3

(1,2)

(3,2)

(4,1)

(1,0)

(1,2)

(3,1)

(1,1)

(8,1)

(2,3)

54

2

1s

(d)

Figure 6.1: (a) Example graph G with edge labels (ce, de) and B = 4. Squared nodes denote
terminal nodes and blue arcs denote the optimal solution T ∗ with cT ∗ = 9. (b) Layered graph
ǦL derived from GL by redirecting arc (21, 33) to node 31. (c) Optimal solution Ť ∗L in ǦL. (d)
Reverse transformed infeasible solution Ť ∗ in G with cŤ ∗ = 8. Edge delay d23 is decreased to
0.

122

If we redirect an arc to a target node on a higher layer instead of a lower one and denote the
resulting graph ĜL, Lemma 6.3.4 holds.

Lemma 6.3.4. Let T̂L be any feasible solution in ĜL and T̂ the corresponding reverse trans-
formed tree in G. Then T̂ is feasible for the RDCST problem on G. Furthermore, cT̂ ∗ ≥ cT ∗ .

Proof. Redirecting an arc inGL to a new target node on a higher layer corresponds to increasing
the respective edge delay in G. Therefore, it may be harder to satisfy the delay-bound and the
solution space may be pruned. Nevertheless, all feasible solutions T̂ stay feasible for the original
RDCST problem onG since replacing the modified edge delay by its original smaller one cannot
violate the delay-bound. However, former optimal solutions may now be infeasible in ĜL, so
cT̂ ∗ ≥ cT ∗ .

Figure 6.2 shows an example for this case. By redirecting arc (21, 42) to a higher layer the
former optimal solution T ∗L now is not valid anymore in ĜL. Here, the new optimal solution T̂ ∗

in G has higher cost and therefore provides an upper bound to cT ∗ .
Note that Lemma 6.3.1, 6.3.2, and 6.3.4, and also Proposition 6.3.3 do not hold for the

RDDVCST problem from Chapter 5 since modifying an edge delay in graph G may result in
delay-variation changes between terminal nodes, sometimes even leading to infeasibility of an
instance. Thus, we are not able to apply ALF to the RDDVCST problem in a straight-forward
way, see the discussion in Section 6.8 for further comments on this situation. Generally speak-
ing, the results presented in this section are only valid for problems which define upper bound
constraints on resources consumed on paths or tours. They do not hold for problems which re-
late the resources of different paths in a solution and set limits on these relations, similar to the
delay-variation-constraint in the RDDVCST problem.

6.4 Framework

To reduce the size of a layered graph GL we consider a node vl ∈ VL, d
min
v < l < dmax

v ,
and redirect all incoming arcs (uj , vl) ∈ AL to a node vk on a different layer k 6= l. Then we
can safely remove vl together with all outgoing arcs from GL since it cannot be reached from
root s anymore and therefore cannot be part of a solution. If we want to obtain a lower bound
the layer k of the new target node vk is set to maxdmin

v ≤i<l{i : vi ∈ VL}, for an upper bound
k = minl<i≤dmax

v
{i : vi ∈ VL}. In other words, we want to minimize the difference between

the original and the redirected target layer. Repeating this redirection process for further layered
graph nodes results in a sequence of layered graphs with monotonically decreasing size. In
contrast to this reduction process ALF goes the other way and starts with the smallest possible
layered graph providing a feasible solution and extends it iteratively to tighten the bounds. Node
set V 0

L of the initial layered graph G0
L just contains root node s and nodes vdmin

v
and vdmax

v
for

all v ∈ V \ {s} on the lowest and highest feasible layer, respectively. If necessary, arcs are
redirected to the next available layers depending on the desired bound.

The next step is to compute optimal LP and integer solutions T iL,LP and T iL of an appro-
priate model, e.g. model LAY from Section 4.9, on the current layered graph GiL. For all
redirected arcs (uk, vl) ∈ AiL with xkuv > 0 in T iL,LP or T iL we extend GiL by adding the

123

3

(1,2)

(3,2)

(4,1)

(1,2)

(1,2)

(3,1)

(1,1)

(8,1)

(2,3)

54

2

1s

(a)

11 31

12 22 32

13 23 33

14 24 34

5242

5141

43 53

54

d = 1

d = 2

d = 3

d = 4

d = 0 s

21

44

(b)

11 31

12 22 32

13 23 33

14 24 34

5242

5141

43 53

54

d = 1

d = 2

d = 3

d = 4

d = 0

21

44

s

(c)

3

(1,2)

(3,2)

(4,1)

(1,2)

(1,2)

(3,3)

(1,1)

(8,1)

(2,3)

54

2

1s

(d)

Figure 6.2: (a) Example graph G with edge labels (ce, de) and B = 4. Squared nodes denote
terminal nodes and blue arcs denote the optimal solution T ∗ with cT ∗ = 9. (b) Layered graph
ĜL derived from GL by redirecting arc (21, 42) to node 44. (c) Optimal solution T̂ ∗L in ĜL. (d)
Reverse transformed feasible solution T̂ ∗ in G with cT̂ ∗ = 10. Edge delay d24 is increased to 3.

124

Algorithm 6.1: ALF v1
Input: graph G = (V,E), feasible model LAY on GL

Output: an optimal solution T ∗ to the RDCST problem
1 V 0

L = s ∪ {vdmin
v
, vdmax

v
: v ∈ V \ {s}} // initial node set

2 LB = 0, UB =∞ // global lower and upper bounds
3 redirect = down // arc redirection ∈ {down, up}
4 i = 0
5 while LB 6= UB do
6 build GiL depending on V i

L and redirect
7 obtain T iL,LP and T iL by solving model LAY on GiL
8 transform T iL to T i on G
9 if redirect == down then LB = cT i

10 if T i is feasible then
11 if redirect == up then (optionally) improve T i by heuristics
12 if cT i < UB then UB = cT i , T ∗ = T i

// extend layered graph GiL
13 V i+1

L = V i
L

14 forall the (uk, vl) ∈ T iL,LP ∪ T iL do
15 if l − k 6= duv then V i+1

L = V i+1
L ∪ {vk+duv}

16 switch redirect , i = i+ 1

17 return T ∗

node vk+duv together with related outgoing arcs. If necessary, existing arcs pointing to a node
vl, d

min
v ≤ l ≤ dmax

v , are modified to either prevent a former redirection or to reduce the dif-
ference between the original and the current target layer. The resulting graph is denoted Gi+1

L .
Applying Lemma 6.3.1 and 6.3.4 we know that cT i+1

L
≥ cT i

L
if redirecting to lower layers and

cT i+1
L
≤ cT i

L
otherwise. These steps are repeated on Gi+1

L and further graphs until the two
bounds match. Algorithm 6.1 shows this iterative solving process.

When redirecting to lower layers we have to consider that the resulting graph GiL does not
necessarily need to be acyclic anymore. Therefore, T iL,LP or T iL of model LAY may be uncon-
nected and contain cycles. Adding violated directed connection cut inequalities prevents these
cycles and thus may lift the lower bound. When redirecting the arcs to higher layers we are not
faced with this problem, so connection cut inequalities cannot improve generated upper bounds
in this case. Additionally, every time we obtain a solution feasible in G we try to improve it by
heuristic methods to further tighten the global upper bound.

Proposition 6.4.1. Algorithm 6.1 terminates.

Proof. As long as the optimal solution T iL in graph GiL is infeasible for the RDCST problem
when calculating a lower bound, T iL must contain at least one redirected arc. Adding an appro-
priate node vl to Gi+1

L prevents this redirection leading to a new solution T i+1
L . In worst case

125

all nodes vl ∈ VL are added to the layered graph resulting in the original graph GL with optimal
solution T ∗L . Since |VL| is finite the number of iterations is bounded.

To adapt ALF to work for related problems one just has to replace model LAY by an appro-
priate model for the considered problem on the layered graph. To enhance upper bounds some
problem specific heuristics could optionally be provided, too.

A disadvantage of the ALF variant described in Algorithm 6.1 may be the repeated time-
consuming solving of complete MIPs, similarly to the approach by Wang et al. [186] for the
TSPTW. Since the main motivation for ALF was to obtain the tight LP bounds of complete
layered graph models, we now primarily focus on approximating this desired LP value in a first
phase and then solve the corresponding MIP in a reduced layered graph with additional valid
inequalities to ensure feasibility of the formulation for the original problem, similarly as Dash
et al. [37] did for the TSPTW. Algorithm 6.2 shows this improved ALF variant.

In most iterations of the first phase we build reduced layered graphs by redirecting arcs to
lower layers, solve the LP relaxation of an according model, and extend the layered graph in
the same way as described above. Thus, we obtain a series of monotonically increasing lower
bounds to the LP relaxation value of the model on the complete layered graph. Since we may not
be able to construct the complete layered graph and compute the corresponding LP value because
of time and/or memory limits, we actually do not know how good our current approximated LP
value is. Therefore, from time to time we also build reduced layered graphs by redirecting arcs
to higher layers and compute the according LP values which obviously are upper bounds to
the desired LP value. The gap between the best lower and upper LP bounds provides a useful
measure to evaluate our current approximate LP bound. Additionally, solving the integer model
on these upper bound graphs yields a series of monotonically decreasing feasible primal bounds
which can be used to support the presolving of CPLEX and further prune the branch-and-bound
tree in the final MIP solving phase. The decision when to obtain upper LP or integer bounds is
controlled by a predefined parameter η ∈ Z:

• η = 0: No upper LP or integer bounds are calculated.

• η < 0: Every |η| iterations we compute an upper LP bound.

• η > 0: Every η iterations we compute upper LP and integer bounds.

Let δ ∈ [0, 1] be a second input parameter. The layered graph extension phase is stopped if
at least one of the following conditions is met:

• The gap between the best lower and upper LP bounds is less than or equal to δ.

• The relative increase of the lower LP bound of the last five values is less than or equal to
δ.

• The reduced layered graph has not been extended according to the last lower LP bound
calculation.

The final layered graph node set is then used in the second phase to compute an optimal so-
lution to the original problem. First, we construct a reduced layered graph ǦL based on the final

126

Algorithm 6.2: ALF v2
Input: graph G = (V,E), feasible model LAY on GL, parameters δ ∈ [0, 1], η ∈ Z
Output: an optimal solution T ∗ to the RDCST problem

1 V 0
L = s ∪ {vdmin

v
, vdmax

v
: v ∈ V \ {s}} // initial node set

2 LBLP = 0, UBLP = UB =∞ // global lower and upper bounds
3 gapLP = 1 // gap between lower and upper LP bounds
4 incLP = 1 // relative increase of lower LP bound of last five
values

5 redirect = down // arc redirection ∈ {down, up}
6 i = 0
// phase 1: layered graph extension + primal bounds

7 while gapLP > δ ∧ incLP > δ do
8 build GiL depending on V i

L and redirect
9 obtain T iL,LP by solving model LAY LP on GiL

10 if redirect == down then LBLP = cT i
L,LP

, update incLP

11 if redirect == up then
12 UBLP = cT i

L,LP

13 if η > 0 then
14 obtain T iL by solving model LAY on GiL
15 transform T iL to T i on G, (optionally) improve it by heuristics
16 if cT i < UB then UB = cT i

17 V i+1
L = V i

L

18 forall the (uk, vl) ∈ T iL,LP ∪ T iL do
19 if l − k 6= duv then V i+1

L = V i+1
L ∪ {vk+duv}

20 if redirect == down ∧ i mod |η| == 0 then redirect = up
21 if redirect == up then redirect = down
22 gapLP = (UBLP − LBLP)/UBLP

23 i = i+ 1

// phase 2: solve final MIP

24 build ǦL depending on V i
L and redirect = down

25 obtain ŤL by solving model LAY (+ additional inequalities) on ǦL

26 transform ŤL to T ∗ on G
27 return T ∗

127

node set V i
L by redirecting arcs to lower layers. Proposition 6.3.3 tells us that a feasible model

for the complete layered graph applied to ǦL results in a relaxation to the original problem.
Thus, we need additional valid inequalities to ensure feasibility according to the original prob-
lem: Since redirecting arcs to lower layers may annihilate the acyclicity of the layered graph we
have to explicitly ensure a connected solution, e.g. by adding directed connection cut inequali-
ties (4.27) in graph G′ or their stronger counterparts (4.50) in layered graph G′L. Furthermore,
decreasing edge delays may allow longer path-delays in a solution possibly leading to a violation
of the delay-bound. These invalid paths can be prevented e.g. by separating the lifted infeasible
path inequalities (4.33) which clearly are redundant on the complete layered graph. The small
subset (4.34) of inequalities (4.33) is added a priori to the reduced layered graph model while
inequalities (4.27), (4.50), and (4.33) are added dynamically in the usual branch-and-cut way.

Depending on the chosen layered graph model for the RDCST problem, it could be neces-
sary to separate violated inequalities already in the first phase when only solving LP relaxations.
In many cases it definitely makes sense to add strengthening inequalities in this phase to fur-
ther tighten the obtained LP bounds. Additionally, found inequalities can be re-used in future
iterations by adding them a priori to the model. However, this is only valid for inequalities
defined on original graph G′, e.g. for directed connection cuts (4.27) and infeasible path in-
equalities (4.33), and not for sets defined on the layered graph, e.g. connection cuts (4.50) on
G′L, since the structure of the current graph GiL may change dramatically by extending node set
V i

L to V i+1
L . Unfortunately, we found so far no meaningful way to adapt violated connection cut

inequalities (4.50) found in GiL to be re-used in Gi+1
L : It is not difficult to feasibly assign new

layered graph nodes to a cut-set but in preliminary tests nearly all inequalities generated this way
turned out to be redundant without strengthening the LP relaxation.

To conclude, in contrast to the approach by Dash et al. [37] for the TSPTW, the improved
variant of ALF provides both a measure to evaluate the quality of the approximated LP bound
and a way to obtain decreasing primal bounds without need for problem-specific heuristics.

6.5 Computational Results

In this section we compare ALF to two of the best approaches for the RDCST problem from
Chapter 4. In detail we discuss the following solution methods:

• BP: branch-and-price approach by Leitner et al. [113] based on path formulation PATH
from Section 4.5 stabilizing column generation by using alternative dual-optimal solutions
(algorithm-specific parameter Q is set to 20)

• L3: branch-and-cut based on layered graph formulation LAY in Section 4.9 with inequal-
ities (4.30)–(4.31) added a priori to the model and extended by directed connection cut
inequalities (4.50) on layered graph G′L

• A1: basic ALF variant shown in Algorithm 6.1 and based on the same layered graph
model as L3

128

• A2G: improved ALF variant shown in Algorithm 6.2 and based on the same layered graph
model as L3 but replacing directed connection cut inequalities (4.50) on layered graphG′L
by their weaker counterparts (4.27) on original graph G′

• A2GL: improved ALF variant shown in Algorithm 6.2 and based on the same layered
graph model as L3

We selected BP since it performed quite well throughout all instance sets, and L3 because it
yields the best LP bounds and is among the leading approaches for the RDCST problem. Addi-
tionally, we want to directly compare an approach on a complete layered graph to our adaptive
method working only on reduced layered graphs.

We chose the layered graph model of L3 also for A1 since preliminary tests showed that
this model performed best within this basic ALF approach. Directed connection cut inequali-
ties (4.50) on layered graph G′L in approach A2GL are only separated in the final MIP phase
since it is too time-consuming to add them within each LP relaxation computation in the first
layered graph extension phase. Instead of them, we search for violated connection cuts (4.27)
on graph G′ as in approach A2G since they can easily be re-used in further LP solvings.

6.5.1 Test Instances and Environment

We re-use all benchmark instances for the RDCST problem from Section 4.11.1: the diverse sets
from Gouveia et al. [68], the self-generated random instances from Section 3.13.1, and the mod-
ified SteinLib instances from Leggieri et al. [111]. Similarly, we also apply all preprocessing
methods described in Section 3.3 and 4.3 prior to solving. To provide an initial primal bound
for the ALF approaches we use the same heuristic methods as described in Section 4.11.1. Ad-
ditionally, in case of spanning tree instances all primal bounds found are improved by the VND
from Section 3.8. IBM ILOG CPLEX 12.3 is applied to solve the LP and MIP models within
ALF, configured in the same way as for the other pure branch-and-cut approaches. We set a
memory limit of 3 GB for each test which is for technical reasons less than the 4 GB limit for
approaches BP and L3. However, in contrast to them ALF is quite economical in consuming
memory due to the much smaller layered graphs and MIP models. Thus, the difference of both
limits is negligible. The overall time limit for each test run is set to 10 000 seconds and the
time for calculating an upper integer bound in the first phase of A2G and A2GL is bounded by
one percent of the residual runtime since these primal bounds should only support the final MIP
phase and not dominate the overall solving process. All tests are performed either on a single
core of Intel Xeon E5540 processors with 2.53 GHz where eight cores share 24 GB of memory,
or on a single core of Intel Xeon E5649 processors with 2.53 GHz where 12 cores share 48 GB
of memory. In preliminary tests both systems yielded nearly the same performance within usual
limits of tolerances.

6.5.2 Framework Results

Tables 6.1–6.4 show results for all considered instance sets for the RDCST problem. We report
obtained average gaps between the best primal and dual bounds, the median runtime to reach
these bounds, and the number of instances solved to optimality within the time limit. Dashes in

129

average
gap

in
%

m
edian

tim
e

in
seconds

#
optim

alsolutions
(outof5)

B
P

L
3

A
1

A
2G

A
2G

L
B

P
L

3
A

1
A

2G
A

2G
L

B
P

L
3

A
1

A
2G

A
2G

L
Set

B
\
η

-
-

-
-3

0
3

-3
0

3
-

-
-

-3
0

3
-3

0
3

-
-

-
-3

0
3

-3
0

3
R

5
6

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.0

0.0
2

0
1

0
0

1
0

1
1

5
5

5
5

5
5

5
5

5
8

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.0

0.0
3

0
2

1
1

1
1

1
1

5
5

5
5

5
5

5
5

5
10

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.0

0.0
3

0
2

2
2

2
2

2
2

5
5

5
5

5
5

5
5

5
12

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.0

0.0
4

0
2

1
1

1
1

1
1

5
5

5
5

5
5

5
5

5
C

5
6

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.0

0.0
2

0
1

0
0

0
0

1
0

5
5

5
5

5
5

5
5

5
8

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.0

0.0
3

0
2

2
2

2
2

1
2

5
5

5
5

5
5

5
5

5
10

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.0

0.0
7

1
11

8
8

11
6

5
6

5
5

5
5

5
5

5
5

5
12

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.0

0.0
7

3
17

15
12

14
6

8
7

5
5

5
5

5
5

5
5

5
E

5
6

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.0

0.0
8

1
7

7
7

6
3

3
4

5
5

5
5

5
5

5
5

5
8

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.0

0.0
18

3
21

18
18

28
8

10
12

5
5

5
5

5
5

5
5

5
10

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.0

0.0
50

6
46

92
196

153
21

27
29

5
5

5
5

5
5

5
5

5
12

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.0

0.0
157

22
91

750
675

1566
45

53
55

5
5

5
5

5
5

5
5

5
R

10
10

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.0

0.0
3

0
2

1
1

1
1

1
1

5
5

5
5

5
5

5
5

5
15

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.0

0.0
4

0
3

4
3

3
4

3
3

5
5

5
5

5
5

5
5

5
20

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.0

0.0
4

0
7

4
4

5
4

4
4

5
5

5
5

5
5

5
5

5
25

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.0

0.0
4

1
7

6
7

6
6

7
7

5
5

5
5

5
5

5
5

5
C

10
10

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.0

0.0
4

0
2

2
2

2
2

2
2

5
5

5
5

5
5

5
5

5
15

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.0

0.0
4

2
5

5
6

5
5

6
5

5
5

5
5

5
5

5
5

5
20

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.0

0.0
6

10
14

17
23

17
10

15
12

5
5

5
5

5
5

5
5

5
25

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.0

0.0
27

22
36

43
43

32
29

24
20

5
5

5
5

5
5

5
5

5
E

10
10

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.0

0.0
7

1
7

5
5

6
4

4
5

5
5

5
5

5
5

5
5

5
15

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.0

0.0
43

10
59

118
112

148
22

25
27

5
5

5
5

5
5

5
5

5
20

0.0
0.0

0.0
0.3

0.0
0.4

0.0
0.0

0.0
405

83
392

6198
2432

9196
180

140
254

5
5

5
4

5
3

5
5

5
25

0.0
0.0

0.0
2.8

1.6
2.8

0.0
0.0

0.3
1425

317
1361

-
-

-
651

751
1419

5
5

5
1

2
0

5
5

4

Table
6.1:

R
esults

for
instances

by
G

ouveia
et

al.
[68]

(B
:

delay-bound,
η:

param
eter

for
upper

L
P

and
integer

bounds,
gap:

gap
betw

een
bestprim

aland
dualbound,B

P:stabilized
branch-and-price,L

3:
layered

graph
approach

w
ith

connection
cuts

on
G
′L ,A

1:
basic

A
L

F
variant,A

2G
(L

):im
proved

A
L

F
variantw

ith
connection

cuts
on
G
′(G

′L),bestresults
are

printed
bold).

130

av
er

ag
e

ga
p

in
%

m
ed

ia
n

tim
e

in
se

co
nd

s
#

op
tim

al
so

lu
tio

ns
(o

ut
of

5)
B

P
L

3
A

1
A

2G
A

2G
L

B
P

L
3

A
1

A
2G

A
2G

L
B

P
L

3
A

1
A

2G
A

2G
L

Se
t

B
\η

-
-

-
-3

0
3

-3
0

3
-

-
-

-3
0

3
-3

0
3

-
-

-
-3

0
3

-3
0

3
R

10
0

10
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

4
5

9
4

6
5

4
6

4
5

5
5

5
5

5
5

5
5

15
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

4
10

5
6

5
8

5
6

6
5

5
5

5
5

5
5

5
5

20
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

6
19

6
5

10
7

6
9

6
5

5
5

5
5

5
5

5
5

25
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

6
62

8
6

9
5

6
9

5
5

5
5

5
5

5
5

5
5

C
10

0
10

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
8

22
8

35
34

46
27

29
25

24
5

5
5

5
5

5
5

5
5

15
0

0.
0

0.
9

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

10
62

7
69

16
2

23
1

71
79

80
72

5
4

5
5

5
5

5
5

5
20

0
0.

0
2.

1
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
13

77
47

67
54

4
16

9
20

1
14

6
18

8
12

1
5

3
5

5
5

5
5

5
5

25
0

0.
0

3.
9

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

14
-

17
5

59
62

57
58

55
53

5
0

5
5

5
5

5
5

5
E

10
0

10
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

16
59

3
37

0
99

1
96

2
66

1
14

6
15

9
15

9
5

5
5

5
5

5
5

5
5

15
0

0.
0

2.
1

0.
0

1.
9

1.
7

2.
0

0.
0

0.
0

0.
0

40
91

62
67

2
-

62
49

-
41

9
65

0
41

5
5

3
5

2
3

2
5

5
5

20
0

0.
0

10
.4

0.
3

5.
0

5.
3

5.
6

0.
4

0.
3

0.
0

24
5

-
40

51
-

-
-

54
48

48
43

34
71

5
0

4
0

0
0

4
4

5
25

0
0.

0
11

.7
0.

7
8.

1
7.

3
5.

5
2.

6
1.

4
1.

5
42

5
-

-
-

-
-

65
08

58
89

63
99

5
0

2
0

0
0

3
4

3
R

10
00

10
00

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

12
24

5
12

6
8

10
7

10
9

5
5

5
5

5
5

5
5

5
15

00
0.

0
2.

4
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
18

95
86

37
67

73
55

33
64

34
5

3
5

5
5

5
5

5
5

20
00

0.
0

0.
9

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

20
35

48
9

21
20

10
21

17
10

5
4

5
5

5
5

5
5

5
25

00
0.

0
20

.0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
25

60
99

10
7

8
7

6
7

6
5

4
5

5
5

5
5

5
5

C
10

00
10

00
0.

0
2.

7
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
17

60
18

19
10

12
11

9
10

10
5

3
5

5
5

5
5

5
5

15
00

0.
0

6.
8

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

29
-

10
8

12
1

12
2

80
74

75
59

5
0

5
5

5
5

5
5

5
20

00
0.

0
13

.2
0.

0
0.

0
0.

1
0.

0
0.

0
0.

0
0.

0
39

-
32

5
18

20
15

49
83

3
55

2
71

0
30

9
5

0
5

5
4

5
5

5
5

25
00

0.
0

64
.5

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

33
-

21
5

42
4

63
5

33
7

28
0

22
8

20
0

5
0

5
5

5
5

5
5

5
E

10
00

10
00

0.
0

8.
9

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

26
-

14
5

20
10

11
05

17
10

89
14

7
12

3
5

1
5

5
5

5
5

5
5

15
00

0.
0

16
.1

0.
0

4.
7

3.
4

2.
6

0.
1

0.
0

0.
0

50
-

62
5

-
-

33
77

93
9

12
56

63
6

5
0

4
1

2
3

4
5

5
20

00
0.

0
33

.4
0.

2
4.

4
6.

9
4.

2
0.

8
0.

0
0.

1
88

-
31

53
-

-
-

76
14

22
13

23
76

5
0

4
1

0
1

3
5

4
25

00
0.

0
-

0.
9

8.
8

5.
6

4.
4

5.
3

6.
6

3.
6

21
8

-
59

52
-

-
-

39
29

-
-

5
0

3
0

0
0

3
1

2

Ta
bl

e
6.

2:
R

es
ul

ts
fo

r
in

st
an

ce
s

by
G

ou
ve

ia
et

al
.

[6
8]

(B
:

de
la

y-
bo

un
d,
η

:
pa

ra
m

et
er

fo
r

up
pe

r
L

P
an

d
in

te
ge

r
bo

un
ds

,
ga

p:
ga

p
be

tw
ee

n
be

st
pr

im
al

an
d

du
al

bo
un

d,
B

P:
st

ab
ili

ze
d

br
an

ch
-a

nd
-p

ri
ce

,L
3:

la
ye

re
d

gr
ap

h
ap

pr
oa

ch
w

ith
co

nn
ec

tio
n

cu
ts

on
G
′ L

,A
1:

ba
si

c
A

L
F

va
ri

an
t,

A
2G

(L
):

im
pr

ov
ed

A
L

F
va

ri
an

tw
ith

co
nn

ec
tio

n
cu

ts
on
G
′

(G
′ L

),
be

st
re

su
lts

ar
e

pr
in

te
d

bo
ld

).

131

average
gap

in
%

m
edian

tim
e

in
seconds

#
optim

alsolutions
(outof30)

B
P

L
3

A
1

A
2G

A
2G

L
B

P
L

3
A

1
A

2G
A

2G
L

B
P

L
3

A
1

A
2G

A
2G

L
Set

B
\η

-
-

-
-3

0
3

-3
0

3
-

-
-

-3
0

3
-3

0
3

-
-

-
-3

0
3

-3
0

3
T

10
16

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0

0
1

0
0

0
0

0
0

30
30

30
30

30
30

30
30

30
30

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.0

0.0
2

1
11

8
9

9
8

9
8

30
30

30
30

30
30

30
30

30
50

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.0

0.0
3

7
41

40
44

43
38

44
40

30
30

30
30

30
30

30
30

30
100

0.0
0.0

0.0
0.7

0.7
0.8

0.0
0.0

0.0
5

76
136

145
177

151
117

172
142

30
30

30
28

29
28

30
30

30
T

30
16

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.0

0.0
2

0
1

1
1

1
1

1
1

30
30

30
30

30
30

30
30

30
30

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.0

0.0
9

2
19

10
11

9
9

10
9

30
30

30
30

30
30

30
30

30
50

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.0

0.0
20

34
173

60
68

61
65

78
60

30
30

30
30

30
30

30
30

30
100

0.0
0.0

0.2
1.8

0.8
0.5

2.8
0.3

0.0
47

362
580

329
453

283
283

356
297

30
30

29
25

27
27

27
29

30
T

50
16

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.0

0.0
5

0
2

1
1

1
1

1
1

30
30

30
30

30
30

30
30

30
30

0.0
0.0

0.0
0.0

0.0
0.0

0.1
0.0

0.1
19

4
37

16
15

13
13

14
14

30
30

30
30

30
30

29
30

29
50

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.0

0.0
44

33
282

63
74

52
57

66
45

30
30

30
30

30
30

30
30

30
100

0.0
0.0

1.4
1.2

0.7
1.1

2.8
3.9

0.5
202

768
2271

542
446

407
587

582
356

30
30

22
25

25
25

26
26

27
T

70
16

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.0

0.0
8

0
2

1
1

1
1

1
1

30
30

30
30

30
30

30
30

30
30

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.0

0.0
31

4
46

17
20

16
16

15
14

30
30

30
30

30
30

30
30

30
50

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.0

0.0
79

50
227

58
73

54
78

71
49

30
30

30
30

30
30

30
30

30
100

0.1
0.9

1.3
0.7

1.9
1.0

3.3
2.2

0.3
241

873
2356

398
424

370
464

715
350

28
29

25
26

25
25

26
27

26
T

99
16

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.0

0.0
15

0
2

1
2

2
1

2
2

30
30

30
30

30
30

30
30

30
30

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.0

0.0
66

4
42

14
18

13
13

16
14

30
30

30
30

30
30

30
30

30
50

0.0
0.0

0.0
0.0

0.0
0.0

0.1
0.0

0.0
150

44
238

63
64

57
67

63
60

30
30

30
30

30
30

29
30

30
100

0.3
0.6

0.5
1.4

1.1
0.5

0.9
0.9

0.1
526

719
1622

357
453

333
502

574
323

28
28

26
25

26
27

28
28

29

Table
6.3:

R
esults

forrandom
instances

from
Section

3.13.1
(B

:
delay-bound,

η:
param

eterforupperL
P

and
integerbounds,gap:

gap
betw

een
bestprim

aland
dualbound,B

P:stabilized
branch-and-price,L

3:
layered

graph
approach

w
ith

connection
cuts

on
G
′L ,A

1:
basic

A
L

F
variant,A

2G
(L

):im
proved

A
L

F
variantw

ith
connection

cuts
on
G
′(G

′L),bestresults
are

printed
bold).

132

av
er

ag
e

ga
p

in
%

m
ed

ia
n

tim
e

in
se

co
nd

s
#

op
t.

so
lu

tio
ns

(o
ut

of
18

/1
0/

5/
5/

5)
B

P
L

3
A

1
A

2G
A

2G
L

B
P

L
3

A
1

A
2G

A
2G

L
B

P
L

3
A

1
A

2G
A

2G
L

Se
t

B
\η

-
-

-
-3

0
3

-3
0

3
-

-
-

-3
0

3
-3

0
3

-
-

-
-3

0
3

-3
0

3
B

-R
an

31
4

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0
0

0
0

0
0

0
0

0
18

18
18

18
18

18
18

18
18

42
7

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0
0

0
0

0
0

0
0

0
18

18
18

18
18

18
18

18
18

B
-C

or
40

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0
0

0
0

0
0

0
0

0
18

18
18

18
18

18
18

18
18

54
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0

0
0

0
0

0
0

0
0

18
18

18
18

18
18

18
18

18
C

-R
an

39
7

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

18
2

5
3

3
3

3
3

3
10

10
10

10
10

10
10

10
10

54
1

0.
0

0.
0

0.
0

0.
0

0.
0

0.
1

0.
7

1.
5

0.
1

48
10

6
10

9
11

11
19

9
9

10
10

9
9

9
9

9
9

9
C

-C
or

50
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

1
1.

0
0.

0
23

2
7

5
4

5
6

5
11

10
10

10
10

9
10

9
9

10
68

0.
0

0.
0

0.
0

0.
0

0.
9

0.
0

0.
6

0.
9

0.
1

48
21

9
3

3
4

4
4

5
10

10
10

10
9

10
9

9
9

D
-R

an
55

4
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
76

3
9

4
3

4
4

5
5

5
5

5
5

5
5

5
5

5
75

5
0.

0
0.

1
0.

0
0.

0
1.

0
0.

0
0.

1
1.

9
0.

1
14

5
17

25
19

8
7

8
9

29
10

5
4

5
5

4
5

4
3

3
D

-C
or

66
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
11

3
2

8
4

3
5

4
3

5
5

5
5

5
5

5
5

5
5

90
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
19

9
32

6
4

4
4

4
4

4
5

5
5

5
5

5
5

5
5

B
er

lin
52

-R
an

19
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0

0
0

0
0

0
0

0
0

5
5

5
5

5
5

5
5

5
26

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0
0

0
0

0
0

0
0

0
5

5
5

5
5

5
5

5
5

B
er

lin
52

-C
or

16
5

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

1
7

1
0

1
1

0
1

1
5

5
5

5
5

5
5

5
5

22
5

0.
0

3.
3

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

4
51

55
3

3
3

2
3

3
4

5
4

5
5

5
5

5
5

5
B

ra
zi

l5
8-

R
an

20
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0

0
0

0
0

0
0

0
0

5
5

5
5

5
5

5
5

5
27

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

1
0

2
1

1
1

1
1

1
5

5
5

5
5

5
5

5
5

B
ra

zi
l5

8-
C

or
39

79
0.

0
39

.4
0.

0
0.

0
0.

0
0.

0
0.

2
0.

0
0.

0
44

-
15

5
6

10
5

6
8

5
0

5
5

5
5

4
5

4
54

25
0.

0
-

0.
0

0.
0

0.
0

0.
0

0.
7

1.
5

0.
0

67
-

32
4

25
3

16
5

20
3

71
11

27
43

41
02

5
0

5
5

5
5

3
4

4

Ta
bl

e
6.

4:
R

es
ul

ts
fo

r
in

st
an

ce
s

by
L

eg
gi

er
ie

ta
l.

[1
11

]
(B

:
av

er
ag

e
de

la
y-

bo
un

d,
η

:
pa

ra
m

et
er

fo
r

up
pe

r
L

P
an

d
in

te
ge

r
bo

un
ds

,g
ap

:
ga

p
be

tw
ee

n
be

st
pr

im
al

an
d

du
al

bo
un

d,
B

P:
st

ab
ili

ze
d

br
an

ch
-a

nd
-p

ri
ce

,L
3:

la
ye

re
d

gr
ap

h
ap

pr
oa

ch
w

ith
co

nn
ec

tio
n

cu
ts

on
G
′ L

,A
1:

ba
si

c
A

L
F

va
ri

an
t,

A
2G

(L
):

im
pr

ov
ed

A
L

F
va

ri
an

tw
ith

co
nn

ec
tio

n
cu

ts
on
G
′

(G
′ L

),
be

st
re

su
lts

ar
e

pr
in

te
d

bo
ld

).

133

gap and time columns represent 100% and 10 000 seconds, respectively. Parameter δ controlling
some of the stopping criteria for the layered graph extension phase in A2G and A2GL is set to
0.01 which turned out to work well in preliminary tests, see Section 6.4 and Algorithm 6.2 for
details. Furthermore, parameter η controlling the calculation of upper LP and integer bounds is
varied in {−3, 0, 3}. Some tests were performed to initialize the first layered graph in a more
sophisticated way, e.g. based on the initial heuristic solutions, but following the proposed trivial
way mostly yielded the best results.

In general, lower absolute values of η result in more frequent upper bound computations and
thus higher runtime overhead in the first phase. In principle, we only need upper LP bounds to
measure the quality of our lower LP bounds. However, in many cases a synergy effect could
be observed: The layered graph extensions arising from LP solutions when redirecting arcs to
higher layers often result in a faster convergence of the lower LP bound. Currently, we are not
sure about the reasons for this effect but this will be analyzed in more detail in future work.

Additionally, it would be enough to compute an upper integer bound immediately before
entering the final MIP phase since we know that this bound has to be the best one over all reduced
layered graphs. But then we would have to solve a complete MIP model on a possibly already
large layered graph without a previously known primal bound used for pruning the branch-and-
bound tree. Indeed we can use the initial heuristic primal bound which, however, may be quite
weak. On the other hand, if we obtain upper bounds from time to time on smaller layered graphs
then first we have more possibilities to improve them by heuristics and second we can utilize
the best bound in further MIP computations. In many cases, this approach could significantly
accelerate the overall primal bound calculations, although we have to repeatedly solve growing
MIPs. Finally, in case of limited runtime obtaining upper integer bounds usually yields tight
gaps already in the first layered graph extension phase.

To summarize, when comparing different values of η for A2G and A2GL, in most cases it
is beneficial to compute upper primal bounds (η = 3) but there are still situations where these
bounds are not needed in the final MIP phase and thus the calculations of them only produce
runtime overhead. Similarly, due to the synergy effect discussed above it is also preferable to
calculate upper LP bounds (η = −3) instead of completely ignoring them (η = 0). Finally, we
could not observe any significant improvements by further increasing |η|.

One would expect that the basic ALF variant A1 produces too much overhead by iteratively
solving MIPs quickly increasing in size. This can be clearly observed e.g. in the results for the
random instances in Table 6.3. However, this is mostly not the case for the Gouveia instances
in Tables 6.1 and 6.2 where A1 can obviously compete with A2G and A2GL. Here, the same
argumentation as above holds: A1 benefits from the steadily tightening series of lower and upper
bounds obtained by the MIPs. Especially computing lower integer bounds clearly provides even
stronger bounds on the optimal value than just lower LP bounds.

Compared to L3 on the full layered graph ALF can dramatically improve the performance
on instances with a large set of achievable delay values and huge bounds, as shown in Tables 6.2
and 6.4, in many cases even by orders of magnitude. Additionally, ALF consumes substantially
less memory since the graphs it works on are significantly smaller than the full layered graphs,
see Table 6.5. However, BP is still superior on the instances in Table 6.2. As results in Tables 6.1
and 6.3 indicate, for instances with low delay-bounds the framework causes too much computa-

134

tional overhead and does not pay off in the end. Finally, the most robust and best performance of
ALF is observed for the instances by Leggieri et al. [111] in Table 6.4. Here, all ALF approaches
outperform BP and L3 in all cases except for the Brazil58-Cor instances with B = 5425 where
also the reduced layered graphs become quite large due to the huge delay-bounds.

Table 6.5 provides statistics of the ALF experiments on some selected instance sets: average
numbers of solved LPs and MIPs, average sizes of preprocessed original graphs G′ and full lay-
ered graphs GL used in approach L3, and average sizes of reduced layered graphs GiL in the last
iteration of ALF relative to GL in percent. Since A2G and A2GL only differ by the sets of valid
inequalities added in the final MIP phase the presented values are the same for both. According
to Lemma 6.3.2, a solution to the LP relaxation on a reduced layered graph when redirecting arcs
to lower layers is optimal if it is feasible for the original problem; this explains the zeroes in the
columns of solved MIPs for A2G(L). In general, the number of ALF iterations stays quite low,
both for the basic A1 and the improved A2G(L). Even if A1 solved in average up to 32 MIPs
for Brazil58 instances the according runtimes are quite moderate and especially much better
than solving one MIP on the full layered graph, see Table 6.4. The reason for this immediately
becomes obvious when looking at the reduced layered graph sizes of ALF approaches. Particu-
larly, for instances with large delay-bounds, e.g. R1000, E1000, and Brazil58-Cor, the reduced
layered graphs are tiny compared to their full counterparts. This indicates that actually only a
small part of the complete layered graph is relevant to prove optimality. However, instance sets
R5 and E5 with low delay-bounds represent the opposite behavior: Here, ALF sometimes needs
more than 90% ofGL and thus it makes more sense to just solve one MIP onGL which is clearly
visible in Table 6.1.

6.6 Case Study: Quota-Constrained Rooted Delay-Constrained
Steiner Tree Problem

We now consider the application of ALF to the Quota-Constrained Rooted Delay-Constrained
Steiner Tree (QCRDCST) Problem, a variant of the RDCST problem from Chapter 4 where not
all terminal nodes R need to be connected. Each terminal node v ∈ R is assigned a node prize
pv ≥ 0, and the objective is to identify a delay-constrained solution tree T ∗ yielding minimum
total costs, while the sum of prizes of connected terminal nodes must be at least equal to a given
quota value Q, i.e. ∑

v∈(T ∗∩R)

pv ≥ Q. (6.1)

To the best of our knowledge, this problem variant has not been considered before. How-
ever, the variant without considering delay-constraints – the prize-collecting Steiner tree (PCST)
problem with a quota-constraint – has been studied in many articles: Johnson et al. [93] improve
an existing primal-dual 2-approximation algorithm for the PCST problem. Haouari et al. [83]
present a hybrid approach combining Lagrangian relaxation and a genetic algorithm to obtain
lower and upper bounds to the optimal solution, respectively. In [81] a generalized variant
of the PCST problem is considered and solved by Lagrangian relaxation comparing different
subgradient strategies. Three exact MIP formulations are presented in [82] based on MTZ con-

135

avg.#
L

Ps
avg.#

M
IPs

|V
|
|V

L |
|V

iL |/|V
L |in

%
|A
|

|A
L |

|A
iL |/|A

L |in
%

A
1

A
2G

(L
)

A
1

A
2G

(L
)

A
1

A
2G

(L
)

A
1

A
2G

(L
)

Set
B
\η

-
-3

0
3

-
-3

0
3

-
-3

0
3

-
-3

0
3

R
5

6
7

6
5

6
3

0
0

1
41

194
76.7

78.5
78.4

78.5
585

1574
75.7

77.6
77.4

77.6
8

9
8

8
8

5
0

1
1

41
273

73.7
74.2

76.4
74.2

652
2792

70.6
71.2

73.8
71.4

10
12

9
10

9
6

1
1

2
41

352
68.1

68.6
71.2

68.7
652

4030
65.4

65.6
68.5

65.6
12

12
11

9
10

5
0

0
1

41
432

59.4
61.3

60.1
60.3

652
5273

57.0
58.7

57.5
57.4

E
5

6
7

5
6

5
7

1
1

2
41

197
91.3

89.3
91.8

89.3
914

2328
90.9

88.6
91.8

88.6
8

8
8

8
8

7
1

1
3

41
276

91.0
92.8

93.7
93.1

1083
4369

89.7
92.2

93.1
92.5

10
8

9
9

9
7

1
1

3
41

355
88.0

90.7
92.1

90.8
1083

6448
85.5

88.9
90.5

89.1
12

9
9

10
9

7
1

1
3

41
434

86.9
89.4

91.4
89.9

1083
8531

85.5
88.1

90.5
88.5

R
1000

1000
13

14
16

14
12

1
1

4
41

32068
1.9

2.3
2.6

2.3
721

335931
1.8

2.2
2.4

2.2
1500

12
16

16
16

10
1

1
4

41
52068

1.6
2.2

3.0
2.3

751
694494

1.5
2.1

2.7
2.1

2000
12

15
16

15
8

1
1

3
41

72068
0.8

1.2
1.3

1.1
751

1059390
0.8

1.2
1.3

1.1
2500

12
13

15
13

6
0

0
2

41
92068

0.6
0.9

1.0
0.9

751
1424290

0.6
0.9

1.0
0.9

E
1000

1000
14

12
13

13
13

1
1

4
41

32149
3.5

3.2
4.2

3.5
1128

444632
3.2

3.1
4.0

3.4
1500

13
13

14
13

12
1

1
4

41
52149

3.6
3.3

4.4
3.5

1197
1014190

3.3
3.0

4.0
3.2

2000
12

13
12

13
11

1
1

4
41

72149
2.9

3.0
2.7

2.8
1197

1598790
2.8

2.8
2.6

2.7
2500

10
12

13
12

9
1

1
4

41
92149

2.1
2.3

1.6
2.3

1197
2183390

2.1
2.3

1.6
2.3

T
50

16
10

8
8

8
6

1
1

1
99

781
46.6

47.3
48.0

47.4
743

2914
51.1

52.2
52.9

52.3
30

13
11

12
11

11
1

1
3

100
2161

34.4
35.2

37.0
35.3

1627
19020

33.5
34.5

36.3
34.5

50
15

13
13

13
13

1
1

3
100

4136
27.8

28.5
30.7

28.9
2295

57733
26.0

26.8
29.0

27.2
100

15
16

16
16

14
1

1
4

100
9081

17.2
23.3

25.5
23.3

3109
192886

15.7
21.5

23.8
21.6

D
-R

an
554

24
10

7
10

8
1

1
1

528
45502

12.8
12.4

12.1
12.4

1365
66802

22.4
21.9

21.5
21.9

755
30

13
9

13
11

1
1

1
657

144159
2.9

2.4
2.4

2.4
1750

270689
4.7

4.3
4.3

4.3
D

-C
or

66
18

11
8

11
2

0
0

0
552

10554
20.6

19.6
19.4

19.6
1427

17759
29.8

29.5
29.3

29.5
90

21
15

14
15

2
0

0
1

670
24149

8.2
8.3

8.5
8.3

1794
47470

10.7
10.8

11.4
10.8

B
razil58-R

an
20

8
6

5
6

2
0

0
0

55
318

49.3
47.8

48.8
47.8

233
630

64.2
62.7

63.7
62.7

27
8

7
7

7
6

1
1

1
57

697
32.4

32.2
34.4

32.2
422

2336
38.0

38.2
40.2

38.2
B

razil58-C
or

3979
30

13
14

13
20

1
1

3
58

102400
0.5

0.2
0.2

0.2
909

1065070
0.8

0.3
0.3

0.4
5425

40
15

13
14

32
1

1
4

58
179983

0.9
0.2

0.1
0.2

968
2266490

1.1
0.3

0.2
0.2

Table
6.5:

Statistics
for

severalinstance
sets

(B
:

average
delay-bound,

η:
param

eter
for

upper
L

P
and

integer
bounds,|V

|,|A
|,|V

L |,
|A

L |:
avg.

sizes
of

graphs
G
′and

G
L ,|V

iL |/|V
L |,|A

iL |/|A
L |:

avg.
reduced

layered
graph

sizes
in

last
A

L
F

iteration
relative

to
full

layered
graph

G
L ,A

1:basic
A

L
F

variant,A
2G

(L
):im

proved
A

L
F

variants).

136

straints for cycle elimination and a reformulation technique originally introduced by Sherali and
Adams [170].

6.6.1 Layered Graph Model

We revise and adapt the layered graph model LAY from Section 4.9 to the QCRDCST problem.
The transformation to layered graph GL as described in Section 4.8 can be used in the same way
here, too. However, we additionally have to model the quota constraint. For this purpose we
introduce binary node variables yv, ∀v ∈ V \ {s}, to decide whether to include a node in the
solution or not. The other sets of variables are adopted in a straight-forward way: We use binary
variables xuv, ∀(u, v) ∈ A, to model original arcs in directed graph G′. Continuous variables
ylv, ∀vl ∈ VL \ {s}, and xkuv, ∀(uk, vl) ∈ AL, represent nodes and arcs in layered graph GL,
respectively. Model LAYQ is then defined as follows:

min
∑

(u,v)∈A

cuvxuv (6.2)

s.t.
∑

(uk,vl)∈AL

xkuv = ylv ∀vl ∈ VL \ {s} (6.3)

∑
(uk,vl)∈AL,u6=w

xkuv ≥ xlvw ∀(vl, wj) ∈ AgL (6.4)

∑
vl∈VL

ylv = yv ∀v ∈ V \ {s} (6.5)

x0
sv = xsv ∀(s, v) ∈ A (6.6)∑

(uk,vl)∈AL

xkuv = xuv ∀(u, v) ∈ A, u 6= s (6.7)

∑
v∈R

pvyv ≥ Q (6.8)

xkuv ≥ 0 ∀(uk, vl) ∈ AL (6.9)

ylv ≥ 0 ∀vl ∈ VL \ {s} (6.10)

xuv ∈ {0, 1} ∀(u, v) ∈ A (6.11)

yv ∈ {0, 1} ∀v ∈ V \ {s} (6.12)

Indegree constraints (6.3) in GL restrict the number of incoming arcs to a layered graph node vl
in dependency of ylv to at most one. Since GL is acyclic, inequalities (6.4) are enough to ensure
connectivity. Equalities (6.5), (6.6) and (6.7) link layered graph nodes and arcs to original nodes
and arcs, respectively. Finally, inequality (6.8) forces the inclusion of terminal nodes with node
prizes summing up to at least Q.

Additionally, directed connection cut inequalities on G′ and G′L have to be adapted to deal
with the fact that there only has to be a connection to a terminal node if it is selected to be
included in the solution. Thus, we incorporate node variables yw, w ∈ V \ {s}, to form the

137

following inequalities:∑
(u,v)∈A, u∈W, v/∈W

xuv ≥ yw ∀W ⊂ V, s ∈W, w ∈W ∩R (6.13)

∑
(uk,vl)∈A′L, uk∈WL, vl∈WL

xkuv ≥ yw ∀WL ⊂ V ′L, s ∈WL, ŵ ∈WL ∩RL (6.14)

Note that since the right side of these inequalities can be less than one they are weaker than
their counterparts for the RDCST problem. Similarly to Section 4.7, we a priori add a subset of
inequalities (6.13) to model LAYQ to provide a “hot-start” to the branch-and-cut algorithm:∑

(s,v)∈A

xsv ≥ 1 (6.15)

xuv + xvu ≤ yu ∀{u, v} ∈ E, u 6= s (6.16)

xuv + xvu ≤ yv ∀{u, v} ∈ E, v 6= s (6.17)

6.6.2 Computational Results

In this section we want to compare the performance of ALF to other solution approaches for the
QCRDCST problem. The following methods are considered:

• BP: stabilized branch-and-price approach by Leitner et al. [113] based on path formulation
PATH from Section 4.5 slightly adapted to work with the quota-constraint

• L2: branch-and-cut based on layered graph formulation LAYQ in previous Section 6.6.1
with inequalities (6.15)–(6.17) added a priori to the model and extended by directed con-
nection cut inequalities (6.13) on original graph G′

• A1: basic ALF variant shown in Algorithm 6.1 and based on formulation LAYQ

• A1G: A1 extended by connection cut inequalities (6.13) on graph G′

• A1GL: A1 extended by connection cut inequalities (6.14) on graph G′L

• A2G: improved ALF variant shown in Algorithm 6.2 and based on the same layered graph
model as L2

• A2GL: A2G replacing directed connection cut inequalities (6.13) on graph G′ by their
stronger counterparts (6.14) on layered graph G′L

The computational environment is exactly the same as for the previous ALF experiments
on the RDCST Problem, see Section 6.5.1 for details. The only difference is that here we set a
general memory limit of 3 GB, also for BP and L2. We derived set QD of benchmark instances
from set D of preprocessed instances for the PCST problem [119] originally created by Canuto
et al. [24]. Instances from subset A are used where terminal prizes are chosen randomly from

138

gap in % time in seconds
BP L2 A1 A1G A1GL A2G A2GL BP L2 A1 A1G A1GL A2G A2GL

Instance B |V | |A| |R| Q\η - - - - - -3 0 3 -3 0 3 - - - - - -3 0 3 -3 0 3
D13-10 30 966 9009 143 30 - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 - 36 138 243 174 152 177 146 152 149 194

60 - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 - 48 251 473 234 111 140 109 207 186 101
41 966 9047 143 30 - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 - 208 64 53 72 71 91 51 69 81 75

60 - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 - 115 299 1088 2374 207 152 224 232 160 254
D13-100 228 965 8965 143 30 - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 - 438 55 111 74 192 82 58 189 71 71

60 - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 - 760 417 1275 3614 162 168 155 363 252 164
342 966 9044 143 30 - - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 - - 100 113 101 125 107 92 134 116 119

60 - - 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 - - 700 1205 - 262 278 212 1853 2504 624
D13-1000 2230 966 8953 143 30 - - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 - - 35 43 35 40 36 26 48 40 30

60 - - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 - - 167 511 341 139 124 185 160 136 152
3409 966 9029 143 30 - - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 - - 161 133 155 171 112 151 206 125 153

60 - - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 - - 402 3148 7725 445 403 188 1181 2006 223
D14-10 29 946 8905 207 30 - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 - 37 277 550 989 135 139 102 169 170 144

60 - 0.0 0.0 2.9 2.4 0.0 0.0 0.0 0.0 0.0 0.0 - 183 2160 - - 295 358 327 4346 879 404
41 946 8914 207 30 - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 87.9 0.0 - 541 471 565 6360 238 196 236 4776 - 369

60 - 0.0 0.0 0.0 1.4 0.0 0.0 0.0 0.0 0.0 0.0 - 374 369 4026 - 280 284 186 2438 609 203
D14-100 260 946 8912 207 30 - - 0.0 3.8 1.9 2.8 2.8 0.0 1.9 3.7 0.0 - - 3445 - - - - 717 - - 487

60 - - 0.0 8.3 5.6 0.0 0.0 0.0 0.0 0.4 0.0 - - 4566 - - 7360 597 594 5036 - 411
381 946 8915 207 30 - - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.2 0.0 - - 612 443 924 502 375 248 3356 - 339

60 - - 0.4 4.0 5.8 5.5 0.4 0.4 72.3 72.2 0.9 - - - - - - - - - - -
D14-1000 2209 946 8842 207 30 - - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 - - 77 151 129 35 39 35 40 40 46

60 - - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 - - 299 3453 3432 93 150 96 94 189 102
3194 946 8911 207 30 - - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 - - 634 1455 757 872 335 263 4872 841 299

60 - - 0.0 1.8 1.3 0.0 0.0 0.0 1.8 0.0 0.0 - - 335 - - 283 332 245 - 2234 768
D15-10 26 832 8198 348 30 - 0.0 0.0 2.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 - 95 513 - 3644 327 365 207 993 787 182

60 - 0.0 0.0 6.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 - 60 481 - 7583 238 282 342 403 276 305
37 832 8210 348 30 - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 - 581 285 867 3186 231 739 295 1890 1111 235

60 - 0.0 0.0 4.9 3.2 0.0 0.7 0.0 74.9 74.9 0.4 - 947 2790 - - 6923 - 1013 - - -
D15-100 218 832 8174 348 30 - 0.0 0.0 5.4 3.6 0.0 0.0 0.0 90.9 90.9 0.9 - 1075 3722 - - 2220 1400 1748 - - -

60 - 0.0 0.0 8.4 3.1 0.0 0.0 0.0 0.0 0.0 0.0 - 881 605 - - 349 483 243 2388 5180 222
323 832 8205 348 30 - - 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 - - 1157 2127 - 637 768 381 1156 1126 746

60 - - 0.0 5.9 2.6 1.5 74.9 0.0 74.9 74.9 0.8 - - 6461 - - - - 2746 - - -
D15-1000 2415 832 8192 348 30 - - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 - - 130 139 218 82 95 65 110 100 81

60 - - 0.0 4.2 0.7 0.0 0.0 0.0 77.4 77.4 0.4 - - 595 - - 6681 757 718 - - -
3385 832 8201 348 30 - - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 - - 437 431 977 499 510 322 2049 1889 345

60 - - 0.0 1.9 1.5 0.0 0.0 0.0 75.2 75.2 0.4 - - 1721 - - 1094 1193 919 - - -
D18-10 18 944 18148 111 30 - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 - 20 28 41 26 60 88 35 69 100 40

60 - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 - 51 534 501 3252 971 1199 255 1893 4004 286
27 944 19125 111 30 - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 - 579 81 48 40 206 265 75 407 360 74

60 - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 77.5 0.0 - 572 669 1061 2655 1412 1400 242 6235 - 590
D18-100 139 944 18016 111 30 - 94.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 - - 168 123 86 624 744 209 747 1072 215

60 - 77.6 3.4 6.9 8.6 0.0 3.4 0.0 77.2 77.2 1.8 - - - - - 9677 - 2209 - - -
222 944 19146 111 30 - - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 - - 138 117 127 1642 2027 89 2456 2476 1316

60 - - 2.0 3.9 5.9 3.9 3.9 3.9 77.4 77.2 3.9 - - - - - - - - - - -
D18-1000 1315 944 17830 111 30 - - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 - - 44 35 50 160 202 29 117 154 26

60 - - 0.0 3.4 8.6 0.0 0.0 0.0 0.0 0.0 0.0 - - 2181 - - 1111 866 695 2963 1911 742
2143 944 19146 111 30 - - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 - - 110 52 49 204 281 148 1541 741 160

60 - - 2.0 2.0 7.8 3.9 3.9 0.0 76.6 76.6 0.0 - - - - - - - 1148 - - 1234
D19-10 17 897 17483 147 30 - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 - 30 92 80 90 157 145 49 93 130 88

60 - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 - 51 532 1553 1396 344 426 183 369 412 316
25 897 18210 147 30 - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 - 247 1289 56 66 380 536 86 460 650 380

60 - 0.0 1.7 1.7 1.7 14.9 0.0 1.7 77.6 77.6 1.7 - 1030 - - - - 2890 - - - -
D19-100 169 897 18094 147 30 - - 0.0 0.0 0.0 94.5 94.5 11.1 94.5 94.5 0.0 - - 6223 601 2734 - - - - - 901

60 - - 4.7 11.9 7.8 6.2 79.0 3.1 78.6 78.6 3.1 - - - - - - - - - - -
274 897 18164 147 30 - - 6.7 0.0 6.3 94.6 94.6 0.0 94.6 94.6 0.0 - - - 135 - - - 9658 - - 3259

60 - - 5.1 6.7 6.8 78.3 78.3 5.1 78.3 78.3 5.1 - - - - - - - - - - -
D19-1000 1474 897 17140 147 30 - - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 94.8 0.0 - - 908 395 548 904 3280 975 833 - 3694

60 - - 5.8 8.7 10.1 78.8 7.1 5.8 78.8 78.8 5.8 - - - - - - - - - - -
2296 897 18111 147 30 - - 6.7 0.0 0.0 0.0 94.8 0.0 94.4 94.8 6.7 - - - 185 1508 2469 - 471 - - -

60 - - 5.0 5.0 8.4 78.7 78.7 1.7 78.7 78.7 3.4 - - - - - - - - - - -

Table 6.6: Results for QCRDCST problem instances (B: average delay-bound, |V |, |A|, |R|:
sizes of graph G′, Q: quota value in %, η: parameter for upper LP and integer bounds, gap:
gap between best primal and dual bound, BP: stabilized branch-and-price, L2: layered graph
approach with connection cuts on G′, A1: basic ALF variant without cuts, A1G(L): A1 with
connection cuts on G′ (G′L), A2G(L): improved ALF variant with connection cuts on G′ (G′L),
best results are printed bold).

139

interval [1, 10]1. For each original instance I , three different QCRDCST problem instances I-α
have been derived with edge delays de, ∀e ∈ E, chosen uniformly at random from [1, α] with
α ∈ {10, 100, 1000}. The Steiner node with the smallest index is used as root node. Reasonable
lower and upper bounds Bmin and Bmax for B are determined as follows:

Bmin = max
v∈R

∑
e∈P d(s,v)

de, (6.18)

Bmax = max
v∈R

∑
e∈P c(s,v)

de, (6.19)

where P d(s, v) and P c(s, v) denote the shortest-delay-path and the minimum-cost-path from s
to v, respectively. For each instance, we consider two different delay-bounds B = dBmin +
br · (Bmax − Bmin)e with br ∈ {0.3, 0.6}, and for each delay-bound two different quota values
Q = dqr ·

∑
v∈R pve with qr ∈ {0.3, 0.6}. Table 6.6 compares relative optimality gaps between

the best primal and dual bounds in percent and runtimes in seconds on the most difficult instances
from set QD. In general, the instance graphs are huge but sparse as shown in the first columns
of Table 6.6.

One of the most eye-catching results is that BP is not able to provide any reasonable bounds
for the considered instances. Here, the memory limit of 3 GB in most cases does not allow
to even setup the path model because of the |R| · |A| constraints (4.15) coupling path with arc
variables, even though the constraint matrix usually is quite sparse. Note that when increasing
the memory limit to 4 GB as done in our article [113] BP can solve some of these instances to
optimality. However, also in this case BP’s runtimes are significantly higher than those of the
ALF approaches.

We selected L2 among the model variants on the full layered graph since separating directed
connection cuts on original graph G′ turned out to be a reasonable trade-off between adding no
more valid inequalities and searching for violated connection cut inequalities on layered graph
G′L. Due to the weakness of connection cut variants for the QCRDCST problem in the latter
case a huge number of them is added to the model, much more than for the RDCST problem.
Altogether, inequalities (6.14) are not able to improve the overall performance, here. However,
as we have already seen in previous results for the RDCST problem, approaches on the full
layered graph suffer from large MIP models in case of huge delay-bounds. Thus, L2 is superior
for extremely tight B values but clearly not competitive for I-100 and I-1000 instances.

For A2G and A2GL approaches setting δ = 0.001 turned out to work best in preliminary
tests. Note that this value is one magnitude lower than the δ used for the RDCST problem.
Therefore, it seems to be advantageous to spend more effort on approximating the optimal LP
value of the full layered graph model before entering the final MIP phase. This can be explained
by the fact that by additionally considering node prizes and the quota constraint the integrality
gaps between the LP relaxation and the optimal integer value grow compared to the RDCST
problem. Thus, it is essential to provide dual bounds as strong as possible to keep the branch-
and-bound tree in the final MIP computation small.

Furthermore, it turned out to be disadvantageous to already separate connection cuts on orig-
inal graph G′ in the layered graph extension phase in A2G and A2GL. As already mentioned

1http://people.brunel.ac.uk/~mastjjb/jeb/orlib/steininfo.html

140

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/steininfo.html

in Section 6.6.1 the connection cut inequalities for the QCRDCST problem are weaker than
the ones for the RDCST problem. Thus, they are not able to contribute that much to the ob-
tained lower LP bounds while the usually vast number of added violated inequalities causes a
significant computational overhead.

Note that our initial heuristic originally created for the RDCST problem is not able to con-
sider node prizes and quota constraints and thus simply connects all terminal nodes to the
root node. The obtained solution is obviously feasible but may provide a rather bad primal
bound. One could argue that this delay-constrained shortest path heuristic could be adapted to
the QCRDCST problem with little effort by implementing some greedy decisions based on the
node prizes. However, we explicitly want to show the advantage of providing primal bounds
by solving MIPs on the reduced layered graphs with redirection to higher layers, without need
for problem-specific heuristic methods. This feature enables approaches A2G and A2GL with
η = 3 to reach the best results in most of the cases. A1G and A1GL are able to obtain quite
good results, too, mainly due to the same reason as above.

To summarize, when considering the QCRDCST problem on these large sparse graphs ALF
significantly outperforms BP and L2, in many cases by orders of magnitude. The secret of
its success lies in the fact that it starts with some small amount of approximate information
about a given instance and refines it mainly by elements which are helpful as guidance towards
optimality. In contrast, BP and L2 begin with all available information even if some of it might
be redundant and not necessary for reaching the goal.

6.7 Case Study: Vehicle Routing Problem with Time Windows

In this second case study we examine the application of ALF to a combinatorial optimization
problem from a different field of research: the vehicle routing problem with time windows
(VRPTW). We will see that it is quite intuitive to use a layered graph approach to solve the
VRPTW. Providing such a layered graph transformation ALF can be applied to the problem
without modification.

First of all, we formally define the problem: Given a directed graph G = (V,A) with node
set V and arc set A. Node 0 denotes the depot and each node v ∈ V \ {0} represents a client.
Each arc a ∈ A is assigned a travel cost ca ∈ R+

0 and a travel time ta ∈ Z+. For each client
v ∈ V \ {0} a demand qv ∈ Z+ and a time window [av, bv], av, bv ∈ Z+, av ≤ bv, are given.
Furthermore, a fleet of unlimited vehicles with capacity Q ∈ Z+ is available at the depot. The
objective of the VRPTW is to find a set of routes with minimal total travel costs such that each
client is visited exactly once within its time window, each route starts and ends at the depot, and
the total demand of clients served within one route must not exceed the vehicle capacity Q. An
optional service time at a client is added to the travel times on all outgoing arcs. It is allowed for
a vehicle to arrive at a client v before av but then has to wait until av.

This classical problem together with many variants has been exhaustively tackled by numer-
ous authors in literature in terms of both heuristic and exact approaches. We now only scratch
the surface and discuss some recent methods solving the VRPTW to proven optimality. Sur-
veys of state-of-the-art exact approaches are presented by Kallehauge [94, 95] and Desaulniers
et al. [40]. Usually, the most successful algorithms use a set partitioning formulation solved by

141

branch-and-price, extended by several classes of strong valid inequalities. However, the cur-
rent state-of-the-art method differs in some sense from previous approaches: The quite general
framework by Baldacci et al. [9] first computes tight dual solutions by using Lagrangian relax-
ation and column generation while periodically applying a fast and efficient heuristic to obtain
primal bounds. Then, suboptimal routes are eliminated based on their reduced costs with respect
to the best primal and dual bounds. In the final phase all residual routes are enumerated and used
within a set partitioning formulation extended by so-called subset-row inequalities [91] to deter-
mine an optimal solution by a standard MIP solver. Using this approach Baldacci et al. are able
to solve all but one instances of the well-known Solomon2 set and significantly outperform all
other methods proposed so far. Letchford et al. [116] provide some projection results for vehi-
cle routing problems and discuss many different sets of strengthening valid inequalities. To the
best of the author’s knowledge the only layered graph approaches for vehicle routing problems
are proposed by Godinho et al. [60, 61] for the capacitated vehicle routing problem with unit
demands: Basically, they model the flow to and through each client and limit the vehicle load
on paths and circuits on a layered graph, respectively, where the layers correspond to the vehicle
loads. By further disaggregating the flow variables they obtain a strong but computationally
impractical five-index formulation.

6.7.1 Transformation to Layered Capacity and Time Graphs

The VRPTW involves two kinds of resource constraints which have to be satisfied: the capacity
and time restrictions. Thus, our first layered graph approach models each of the two resource
constraints on a separate layered graph. Before we start with the transformation we apply the
preprocessing methods described in [94] on graphG: The time windows may induce precedence
relations between the clients which enable us to remove infeasible arcs. Additionally, by apply-
ing several rules the time windows can possibly be tightened which is quite beneficial for our
approach.

Similarly to the layered graph transformation for the RDCST problem in Section 4.8, we
transform input graph G = (V,A) to a layered digraph GLc = (VLc, ALc) modeling the vehicle
capacity restrictions. Node set VLc = {0s, 0t}∪{vl | v ∈ V \{0}, 1 ≤ l ≤ Q} consists of depot
nodes representing the start and end of a tour and duplicated nodes for all clients for all possible
vehicle loads. Node vl ∈ VLc \ {0s, 0t} denotes the state in which a vehicle arrives at client v
having already satisfied a demand of l including demand qv. Arc set ALc = As

Lc ∪ A
g
Lc ∪ At

Lc

comprises

• start depot arcs As
Lc = {(0s, vqv) | (0, v) ∈ A},

• general arcs Ag
Lc = {(ul, vl+qv | (u, v) ∈ A, u, v 6= 0, 1 ≤ l ≤ Q− qv}, and

• end depot arcs At
Lc = {(vl, 0t) | (v, 0) ∈ A, 1 ≤ v ≤ Q}.

To model the time window constraints of the clients we construct a second layered digraph
GLt = (VLt, ALt). Node set VLt = {0s, 0t} ∪ {vl | v ∈ V \ {0}, av ≤ l ≤ bv} consists of start

2http://web.cba.neu.edu/~msolomon/problems.htm

142

http://web.cba.neu.edu/~msolomon/problems.htm

(2,1)

(3,1)

(1,2)

(2,1)

(3,3)

(1,1)

(3,1)

(1,2)

v 1 2 3 4

qv 213 2

av

bv 3 4 2 3

2 3 1 1

0

1 2

3 4

(a)

11

12

13

14 24

23

22

21 31

32

33

34 44

43

42

41

0t

0s

q = 1

q = 0

q = 2

q = 3

q = 4

(b)

11

12

13

14 24

23

22

21 31

32

33

34 44

43

42

41

0t

0s

q = 1

q = 0

q = 2

q = 3

q = 4

(c)

Figure 6.3: (a) Graph G with depot 0, arc labels (ca, ta), vehicle capacity Q = 4, and table with
client demands and time windows. (b) Corresponding layered capacity graph GLc (arc costs are
omitted). (c) Preprocessed graph GLc.

and end depot nodes and duplicated nodes for all clients for all possible discrete time values
within the corresponding time window. Node vl represents the state in which a vehicle starts
servicing a client v at time l. Arc set ALt = As

Lt ∪A
g
Lt ∪At

Lt comprises

• start depot arcs As
Lt = {(0s, vmax{t0v ,av}) | (0, v) ∈ A, t0v ≤ bv},

• general arcs Ag
Lt = {(ul, vmax{l+tuv ,av}) | (u, v) ∈ A, u, v 6= 0, au ≤ l ≤ bu, l + tuv ≤

bv}, and

• end depot arcs At
Lt = {(vl, 0t) | (v, 0) ∈ A, av ≤ l ≤ bv}.

The preprocessing rules stated in Section 4.8 for layered graphs for the RDCST problem are
also valid for GLc and GLt. Figures 6.3 and 6.4 illustrate this transformation to GLc and GLt for
a small example graph G, respectively. The corresponding optimal solution is shown in Fig. 6.5.

6.7.2 MIP Model on Two Layered Graphs

Basically, on each of the two layered graphs GLc and GLt we separately model a vehicle routing
problem without capacity and time window constraints. Then, we link the two subproblems via
the original arc variables.

We use binary variables xuv, ∀(u, v) ∈ A, for the arcs in the original graph G. Addition-
ally, non-negative variables ẋkij and ẍmuv represent arcs (ik, jl) ∈ ALc and (um, vn) ∈ ALt,

143

(2,1)

(3,1)

(1,2)

(2,1)

(3,3)

(1,1)

(3,1)

(1,2)

v 1 2 3 4

qv 213 2

av

bv 3 4 2 3

2 3 1 1

0

1 2

3 4

(a)

t = 1

t = 0

t = 2

t = 3

t = 4

12

13 23

24

43

42

4131

32

0t

0s

(b)

t = 1

t = 0

t = 2

t = 3

t = 4

12

13 23

24

43

42

4131

32

0t

0s

(c)

Figure 6.4: (a) Graph G with depot 0, arc labels (ca, ta), and table with client demands and time
windows. (b) Corresponding layered time graph GLt (arc costs are omitted). (c) Preprocessed
graph GLt.

11

12

13

14

23

22

21 31

33

34 44

43

41

0s

q = 1

q = 0

q = 2

q = 3

q = 4

32

24

0t

42

(a)

t = 1

t = 0

t = 2

t = 3

t = 4

12

13 23

24

43

42

4131

32

0t

0s

(b)

(2,1)

(3,1)

(1,2)

(2,1)

(3,3)

(1,1)

(3,1)

(1,2)

v 1 2 3 4

qv 213 2

av

bv 3 4 2 3

2 3 1 1

1

3 4

2

0

(c)

Figure 6.5: (a) Optimal solution denoted by blue arcs in layered capacity graph GLc, (b) in
layered time graph GLt, and (c) in original graph G.

144

respectively. Non-negative variables ẏku and ÿlv model layered nodes uk ∈ VLc and vl ∈ VLt,
respectively. Formulation VRP1 is defined as follows:

min
∑

(u,v)∈A

cuvxuv (6.20)

s.t. xuv + xvu ≤ 1 ∀(u, v) ∈ A, u, v 6= 0 (6.21)∑
l

ẏlv = 1 ∀v ∈ V \ {0} (6.22)∑
(uk,vl)∈ALc

ẋkuv = ẏlv =
∑

(vl,wm)∈ALc

ẋlvw ∀vl ∈ VLc \ {0s, 0t} (6.23)

∑
(uk,vl)∈ALc, u 6=w

ẋkuv ≥ ẋlvw ∀(vl, wm) ∈ ALc (6.24)

∑
l

ÿlv = 1 ∀v ∈ V \ {0} (6.25)∑
(uk,vl)∈ALt

ẍkuv = ÿlv =
∑

(vl,wm)∈ALt

ẍlvw ∀vl ∈ VLt \ {0s, 0t} (6.26)

∑
(uk,vl)∈ALt, u 6=w

ẍkuv ≥ ẍlvw ∀(vl, wj) ∈ ALt (6.27)

∑
(uk,vl)∈ALc

ẋkuv =
∑

(uk,vl)∈ALt

ẍkuv = xuv ∀(u, v) ∈ A (6.28)

ẋkuv ≥ 0 ∀(uk, vl) ∈ ALc (6.29)

ẏlv ≥ 0 ∀vl ∈ VLc (6.30)

ẍkuv ≥ 0 ∀(uk, vl) ∈ ALt (6.31)

ÿlv ≥ 0 ∀vl ∈ VLt (6.32)

xuv ∈ {0, 1} ∀(u, v) ∈ A (6.33)

Inequalities (6.21) forbid short cycles between two nodes with one exception: A vehicle is al-
lowed to start at the depot, visit only one client and return again to the depot. Equalities (6.22)
and (6.25) select exactly one layered graph node in GLc and GLt corresponding to one partic-
ular client, respectively. The flow conservation for vehicles is guaranteed by equalities (6.23)
and (6.26). According to [61], inequalities (6.24) and (6.27) which are the counterparts of (4.42)
for the RDCST problem are able to strengthen the model. Finally, equalities (6.28) link arcs on
GLc and GLt, respectively, to arcs on the original graph G. In principle, these coupling con-
straints make it possible to eliminate xuv variables from the model if we declare ẋkuv and ẍkuv
Boolean. However, as noted in Section 4.9 for the RDCST problem, xuv variables can be ben-
eficial for branching. Note that the classical assignment constraints are implicitly contained in
the model by combining equalities (6.22), (6.23), (6.25), (6.26), and (6.28).

Many sets of strengthening inequalities for different MIP formulations for the vehicle routing
problem have been proposed in the past, among them several sets of capacity inequalities [116,

145

132] which are stronger variants of the directed connection cut inequalities (4.27):∑
(u,v)∈A, u/∈W, v∈W

xuv ≥ k(W) ∀W ⊂ V, 0 /∈W, (6.34)

where k(W) denotes the minimum number of vehicles necessary to serve all clients in node
set W . To find an optimal value for k(W) one has to solve a one-dimensional bin packing
problem [52] which nowadays can be done quite efficiently even for a huge number of items.
However, as described in [132] often lower bounds for k are used, such as

k(W) ≥ d
∑
v∈W

qv/Qe ∀W ⊆ V, W 6= ∅. (6.35)

Clearly, the higher the right side of inequalities (6.34) the stronger the inequality. Thus, a lower
bound for k is valid but weaker than the optimal value. The right side can even be lifted by
also considering the clients outside set W . However, the higher the right side the more difficult
the corresponding separation problem, cf. [132]. Since not even the directed connection cut
inequalities are contained in the description VRP1 all these capacity inequalities are able to
improve the according LP bound. It is still open and part of future work which of the other
known sets of valid inequalities are already included in VRP1 and which can possibly further
tighten it.

6.7.3 Transformation to Layered Capacity-Time Graph

Note that each of the two layered graphs models a set of solutions which does not respect the
other resource constraint. Thus, it seems to be quite natural to find a way to combine both
layered graphs. Our approach is based on extending the layered capacity graph GLc by an
additional dimension to allow a simultaneous consideration of the time restrictions. This results
in a tuple (v, q, t) defining one specific layered graph node: a vehicle visits client v with load q
(including qv) at time t which is a quite natural description of a vehicle state.

We transform graph G = (V,A) to a layered capacity-time digraph GL = (VL, AL). Node
set VL = {0s, 0t} ∪ {vqt | v ∈ V \ {0}, 1 ≤ q ≤ Q, av ≤ t ≤ bv} consists of start and end
depot nodes and duplicated nodes for all clients for all possible vehicle loads and time values
within the corresponding time window. Arc set AL = As

L ∪A
g
L ∪At

L includes

• start depot arcs As
L = {(0s, vqv ,max{t0v ,av}) | (0, v) ∈ A, t0v ≤ bv},

• general arcs Ag
L = {(uqt, vq+qv ,max{t+tuv ,av}) | (u, v) ∈ A, u, v 6= 0, 1 ≤ q ≤ Q −

qv, au ≤ t ≤ bu, t+ tuv ≤ bv}, and

• end depot arcs ALt = {(vqt, 0t) | (v, 0) ∈ A, 1 ≤ q ≤ Q, av ≤ t ≤ bv}.

Based on Fig. 6.3 and 6.4 it is not hard to imagine an according combined three-dimensional
layered graph GL. Note that an arc always crosses both the capacity and time dimension since
all travel times and demand values are positive.

146

6.7.4 MIP Model on the Combined Layered Graph

An according MIP model on layered graphGL can be written similarly as VRP1 . We use binary
variables xuv, ∀(u, v) ∈ A, to model arcs in graph G. Additionally, non-negative variables xqtuv
represent arcs (uqt, vkl) ∈ AL, and variables yqtv model layered nodes vqt ∈ VL. Formulation
VRP2 is defined as follows:

min
∑

(u,v)∈A

cuvxuv (6.36)

s.t. xuv + xvu ≤ 1 ∀(u, v) ∈ A, u, v 6= 0 (6.37)∑
q,t

yqtv = 1 ∀v ∈ V \ {0} (6.38)

∑
(ukl,vqt)∈AL

xkluv = yqtv =
∑

(vqt,wmn)∈AL

xqtvw ∀vqt ∈ VL \ {0s, 0t} (6.39)

∑
(ukl,vqt)∈AL, u 6=w

xkluv ≥ xqtvw ∀(vqt, wmn) ∈ AL (6.40)

∑
(ukl,vqt)∈AL

xkluv = xuv ∀(u, v) ∈ A (6.41)

xkluv ≥ 0 ∀(ukl, vqt) ∈ AL (6.42)

yqtv ≥ 0 ∀vqt ∈ VL (6.43)

xuv ∈ {0, 1} ∀(u, v) ∈ A (6.44)

This model is a straight-forward adaption of model VRP1 . It is easy to see that the optimal LP
relaxation value of model VRP2 is at least as high as the one of model VRP1 , and there are
instances where it is higher.

6.7.5 ALF for the VRPTW

Especially the three-dimensional layered graphGL but also the two independent graphsGLc and
GLt may involve excessively many nodes and arcs. Thus, ALF seems to be a natural extension
to the approaches on the full layered graphs. In fact ALF can be applied without modification to
the VRPTW. When considering formulation VRP1 as base model for ALF then we can redirect
arcs independently in GLc and GLt provided that we use the same direction – to lower or to
higher layers. In the combined layered graph GL we have to ensure that an arc is redirected to
the same direction for both resource dimensions otherwise we are not able to say whether the
obtained bound is a lower or upper one.

The infeasible path inequalities needed in the final MIP phase of the improved ALF variant
in Algorithm 6.2 can be strengthened by utilizing the fact that also the out-degree of a client
node is exactly one. Kallehauge et al. [96] apply e.g. so-called tournament inequalities and
further variants to the VRPTW. When redirecting arcs to lower layers we already know that the
according layered graph is not acyclic anymore. Thus, the following inequality which in fact is
a capacity inequality (6.34) with W = V \ {0} and redundant for the full layered graph model

147

strengthens the obtained lower LP bounds:∑
(0,v)∈A

x0v ≥ k(V \ {0}). (6.45)

Basically, it ensures that enough vehicles leave the depot to serve all client demands.

6.7.6 Preliminary Results

Until now we only performed some preliminary tests as proof-of-concept on the Solomon in-
stances which comprise complete graphs with 25-100 nodes, differently clustered clients and
several time window widths. The state-of-the-art framework by Baldacci et al. [9] is able to
solve all instances except the R208 graph with 100 nodes to optimality. Our preliminary results
are far away from this performance but nevertheless look promising. We observed large inte-
grality gaps between the LP relaxation value of models VRP1 or even VRP2 and the optimal
integer value. This indicates a need for using additional strengthening valid inequalities from the
literature since we currently only separate the simple directed connection cut inequalities (4.27)
and tournament inequalities to prevent infeasible paths. The next step will be to possibly derive
new stronger variants of existing sets of valid inequalities utilizing the more refined structure of
layered graphs.

When comparing formulations VRP1 and VRP2 on the full layered graph the approach on
two separated graphs outperforms the model on the combined graph in nearly all cases. Here,
the three-dimensional layered graph mostly is too large to be tractable within reasonable time
and memory limits. However, when ALF is applied the size of the layered graphs is not crucial
anymore and thus the approach on the tighter model VRP2 is far superior to VRP1 . In general,
ALF provides significantly better results than solving the full layered graph models.

6.8 Future Work

The unexpected synergy effect between the reduced layered graphs when redirecting to lower
and higher layers as discussed in Section 6.5.2 is definitely worth to be further analyzed. Also ef-
ficient primal heuristics could accelerate the detection of good primal bounds. A further promis-
ing method to reduce graph sizes is preprocessing based on reduced costs, cf. [111]. Since we
usually have quite tight gaps, even within the first layered graph extension phase of the improved
ALF variant, we might be able to utilize them to eliminate or fix nodes and arcs in original graph
G and layered graph GL, respectively.

As already mentioned in Section 6.3, ALF cannot be applied in a straight-forward way to the
RDDVCST problem because of the additional delay-variation-constraint relating resources on
different paths. However, if we decompose the problem as described in Section 5.9 by consid-
ering each possible variation interval independently then we are able to use ALF to solve these
subproblems since basically we reduce the RDDVCST problem to a set of RDCST problems.
On the other hand, if we find a way to implicitly encode the delay-variation-constraint in the
structure of a layered graph then ALF may also work. But whether and how such a layered
graph construction can be achieved, respectively, is still an open question.

148

We observed especially for the VRPTW problem that for some instances even the reduced
layered graph becomes too large. Thus, we could think about a meaningful way to again reduce
the layered graph node set, e.g. by removing all nodes which have rarely been included in a
fractional or integer solution. However, at the same time we would lose the guarantee of mono-
tonically improving bounds. Or is it maybe possible to efficiently decide which layered graph
nodes have become redundant again within the last iterations?

Clearly, a hot topic is to find new state-of-the-art exact approaches for vehicle routing prob-
lems and maybe solve the last open Solomon instance for the VRPTW. Obviously, the so far
leading extremely sophisticated methods are hard to outperform. Maybe ALF is a possible di-
rection to reach this goal. Especially multi-dimensional layered graphs which simultaneously
consider several resources in combination with ALF to deal with their huge sizes seem to be
quite promising.

Last but not least, we plan to adapt and apply ALF to further optimization problems and
to analyze its behavior. The so far performed tests indicate that our framework particularly is
successful on large sparse graphs which are quite common in practical applications in network
design and routing.

149

CHAPTER 7
Conclusions

In this thesis we considered several combinatorial optimization problems in the area of network
design where different QoS constraints have to be satisfied. Basically, these limitations concern
the total delays on the paths from a central server to a set of connected clients. They define
upper bounds and restrict the variation between different paths. We tackled these combinatorial
optimization problems by applying various (meta-)heuristics as well as exact approaches based
on (mixed) integer programming.

We introduced construction heuristics based on Kruskal’s minimum spanning tree algorithm
and on the multilevel refinement paradigm for the rooted delay-constrained minimum spanning
tree problem. On average the Kruskal-based heuristic avoiding some drawbacks of previous
heuristics produces faster and better results compared to other approaches especially for tight
delay-bounds. The runtime is almost independent of the delay-constraint and the cost- and
delay-values of the instances. On the contrary, the multilevel heuristic is in general a better
starting point for subsequent improvement by the presented local search techniques. Among
the applied metaheuristics the general variable neighborhood search and the genetic algorithm
outperform the other methods in terms of solution quality when considering a fixed time limit.
The first is able to quickly find high quality solutions whereas the second with its balanced mix
of diversification and intensification built on a fast and diverse solution construction usually
needs some time to converge but then yields even better solutions in many cases. Both ap-
proaches benefit from an embedded efficient variable neighborhood descent in two sophisticated
neighborhood structures. Additionally, we discussed methods to detect duplicates in the genetic
algorithm by either solution hashing or a complete trie-based archive. Hashing works well and is
able to improve final solution quality, and in contrast to the solution archive the time overhead is
negligible. The trie-based archive can be beneficial for instances with low delay-bounds and/or
if the number of revisits is very high then providing new unvisited solutions.

For solving the rooted delay-constrained Steiner tree problem we presented various exact
modeling approaches based on integer programming. A path-cut formulation with a small num-
ber of variables but an exponentially-sized set of directed connection cut and strengthened in-
feasible path inequalities stays quite compact during an according branch-and-cut algorithm but

151

in general examines a rather high number of branch-and-bound nodes due to its weaker LP re-
laxation bounds. However, the independence of given delay-bounds and the light-weight model
are beneficial for several types of instances. A branch-and-price approach stabilized by alter-
native dual-optimal solutions is quite robust and well-performing throughout all instances sets
making it often the preferred choice. However, a transformation to an appropriate layered graph
and a MIP model utilizing the special structure of this graph, mainly its acyclicity, provides the
strongest dual bounds and excellent results in many cases except on instances with huge sets of
achievable path delay values and high bounds since the size of the layered graph heavily depends
on these properties.

We tackled the rooted delay- and delay-variation-constrained Steiner tree problem by using
two different MIP models based on multi-commodity-flows and a layered graph transformation.
Furthermore, we proposed sets of valid inequalities for the second model particularly targeting
the bounding of the delay-variation and provided an efficient separation method. Experimental
results clearly show the superiority of layered graph models with or without delay-variation cuts.
Nevertheless, the generally still relatively large integrality gaps of the layered graph models ask
for investigating also other modeling approaches. We believe that finding a way to implicitly
encode the delay-variation-constraint within a layered graph structure is highly promising to
further close the gap.

Our adaptive layers framework (ALF) tries to overcome the problems with huge layered
graphs by computing lower and upper bounds to the optimal LP and integer value on reduced
layered graphs. It obtains in general rather small gaps and shows robust performance throughout
all test sets. Besides consuming significantly less memory it even yields tight bounds in cases
where it is not possible to compute LP relaxations of the model on the full layered graph in
reasonable time. Only on complete graphs and for low delay-bounds ALF produces too much
overhead due to repeated model solving. On large sparse graphs ALF is able to dramatically
outperform all other approaches, sometimes by orders of magnitude. This is also observed in a
case study on a different network design problem considering node prizes and a quota constraint.
A second case study documents ALF’s versatility by applying it to the vehicle routing problem
with time windows for which two promising alternative modeling approaches on layered graphs
are suggested.

152

Bibliography

[1] E. H. L. Aarts and J. K. Lenstra. Local search in combinatorial optimization. Princeton
University Press, 2003.

[2] T. Achterberg. SCIP: Solving constraint integer programs. Mathematical Programming
Computation, 1(1):1–41, 2009.

[3] T. Achterberg, T. Koch, and A. Martin. Branching rules revisited. Operations Research
Letters, 33(1):42–54, 2005.

[4] R. K. Ahuja, O. Ergun, J. B. Orlin, and A. P. Punnen. A Survey of Very Large-Scale
Neighborhood Search Techniques. Discrete Applied Mathematics, 123(1-3):75–102,
2002.

[5] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network flows: theory, algorithms, and
applications. Prentice Hall, 1993.

[6] M. Aissa and A. B. Mnaouer. A new delay-constrained algorithm for multicast routing
tree construction. International Journal of Communication Systems, 17(10):985–1000,
2004.

[7] N. Ascheuer, M. Fischetti, and M. Grötschel. A polyhedral study of the asymmetric
traveling salesman problem with time windows. Networks, 36(2):69–79, 2000.

[8] N. Ascheuer, M. Fischetti, and M. Grötschel. Solving the Asymmetric Travelling
Salesman Problem with time windows by branch-and-cut. Mathematical Programming,
90(3):475–506, 2001.

[9] R. Baldacci, E. Bartolini, A. Mingozzi, and R. Roberti. An exact solution framework for a
broad class of vehicle routing problems. Computational Management Science, 7(3):229–
268, 2010.

[10] S. M. Banik, S. Radhakrishnan, and C. N. Sekharan. Multicast Routing with Delay and
Delay Variation Constraints for Collaborative Applications on Overlay Networks. IEEE
Transactions on Parallel and Distributed Systems, 18(3):421–431, 2007.

[11] C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh, and P. H. Vance.
Branch-And-Price: Column Generation for Solving Huge Integer Programs. Operations
Research, 46(3):316–329, 1998.

153

[12] J. E. Beasley. OR-Library: Distributing test problems by electronic mail. Journal of the
Operational Research Society, 41:1069–1072, 1990.

[13] J. E. Beasley. A heuristic for Euclidean and rectilinear Steiner problems. European
Journal of Operational Research, 58(2):284–292, 1992.

[14] M. Berlakovich. Multilevel Heuristiken für das Rooted Delay-Constrained Minimum
Spanning Tree Problem. Master’s thesis, Vienna University of Technology, Institute of
Computer Graphics and Algorithms, Vienna, Austria, July 2010.

[15] M. Berlakovich, M. Ruthmair, and G. R. Raidl. A Multilevel Heuristic for the Rooted
Delay-Constrained Minimum Spanning Tree Problem. In R. Moreno-Díaz, F. Pichler,
and A. Quesada-Arencibia, editors, Proceedings of the 13th International Conference on
Computer Aided Systems Theory: Part I, volume 6927 of LNCS, pages 256–263. Springer,
2012.

[16] D. Bertsimas and M. Sim. Robust discrete optimization and network flows. Mathematical
Programming, 98(1):49–71, 2003.

[17] D. Bertsimas and M. Sim. The price of robustness. Operations Research, 52(1):35–53,
2004.

[18] D. Bertsimas and A. Thiele. Robust and data-driven optimization: modern decision-
making under uncertainty. In INFORMS Tutorials in Operations Research: Models,
Methods, and Applications for Innovative Decision Making. INFORMS, 2006.

[19] D. Bertsimas and J. N. Tsitsiklis. Introduction to Linear Optimization. Athena Scientific,
1997.

[20] D. Bertsimas and R. Weismantel. Optimization over Integers. Dynamic Ideas, 2005.

[21] C. Blum, M. J. B. Aquilera, A. Roli, and M. Sampels, editors. Hybrid Metaheuristics:
An Emerging Approach to Optimization, volume 114 of Studies in Computational Intelli-
gence (SCI). Springer, 2008.

[22] C. Blum and A. Roli. Metaheuristics in Combinatorial Optimization: Overview and
Conceptual Comparison. ACM Computing Surveys, 35(3):268–308, 2003.

[23] C. Blum and A. Roli. Hybrid Metaheuristics: An Introduction. In C. Blum, M. J. B. Aquil-
era, A. Roli, and M. Sampels, editors, Hybrid Metaheuristics: An Emerging Approach to
Optimization, volume 114 of Studies in Computational Intelligence (SCI), pages 1–30.
Springer, 2008.

[24] S. A. Canuto, M. G. C. Resende, and C. C. Ribeiro. Local search with perturbations for
the prize-collecting Steiner tree problem in graphs. Networks, 38(1):50–58, 2001.

[25] B. V. Cherkassky and A. V. Goldberg. On Implementing the Push-Relabel Method for the
Maximum Flow Problem. Algorithmica, 19(4):390–410, 1997.

154

[26] S. Chopra, E. R. Gorres, and M. R. Rao. Solving the Steiner tree problem on a graph
using branch and cut. ORSA Journal on Computing, 4(3):320–335, 1992.

[27] S. Chopra and M. Rao. The Steiner tree problem I: Formulations, compositions and
extension of facets. Mathematical Programming, 64(1):209–229, 1994.

[28] W. Chung. Dantzig-Wolfe Decomposition. In Wiley Encyclopedia of Operations Research
and Management Science. Wiley, 2010.

[29] Cisco Systems. Cisco Visual Networking Index: Forecast and Methodology, 2010-2015.
Technical report, Cisco Systems, 2011.

[30] R. K. Congram, C. N. Pots, and S. L. van de Velde. An iterated dynasearch algorithm for
the single-machine total weighted tardiness scheduling problem. INFORMS Journal on
Computing, 14(1):52–67, 2002.

[31] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to algorithms
second edition. The MIT Press, 2nd edition, 2001.

[32] G. Dahl, L. Gouveia, and C. Requejo. On formulations and methods for the hop-
constrained minimum spanning tree problem. In Handbook of Optimization in Telecom-
munications, chapter 19, pages 493–515. Springer, 2006.

[33] G. B. Dantzig. Maximization of a linear function of variables subject to linear inequalities.
In T. C. Koppmans, editor, Activity Analysis of Production and Allocation, pages 339–
347. Wiley, 1951.

[34] G. B. Dantzig. Linear Programming and Extensions. Princeton University Press, 1998.

[35] G. B. Dantzig and P. Wolfe. The decomposition principle for linear programs. Operations
Research, 8(1):101–111, 1960.

[36] C. Darwin. On the origin of species by means of natural selection of the preservation of
favored races in the struggle for life. Murray, 1859.

[37] S. Dash, O. Günlük, A. Lodi, and A. Tramontani. A Time Bucket Formulation for the
Traveling Salesman Problem with Time Windows. INFORMS Journal on Computing,
24(1):132–147, 2010.

[38] K. Deb. Multi-objective optimization using evolutionary algorithms, volume 16. Wiley,
2001.

[39] G. Desaulniers, J. Desrosiers, and M. M. Solomon, editors. Column Generation. Springer,
2005.

[40] G. Desaulniers, J. Desrosiers, and S. Spoorendonk. The Vehicle Routing Problem with
Time Windows: State-of-the-Art Exact Solution Methods. In Wiley Encyclopedia of Op-
erations Research and Management Science, pages 1–11. Wiley, 2010.

155

[41] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathe-
matik, 1(1):269–271, 1959.

[42] M. Dorigo, V. Maniezzo, and A. Colorni. Ant system: optimization by a colony of cooper-
ating agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,
26(1):29–41, 1996.

[43] M. Dorigo and T. Stützle. Ant Colony Optimization: Overview and Recent Advances.
In M. Gendreau and J.-Y. Potvin, editors, Handbook of Metaheuristics, volume 146 of
International Series in Operations Research & Management Science, pages 227–263.
Springer, 2010.

[44] S. Dreyfus and R. Wagner. The Steiner problem in graphs. Networks, 1(3):195–207,
1972.

[45] I. S. Duff, A. M. Erisman, and J. K. Reid. Direct methods for sparse matrices. Oxford
University Press, USA, 1989.

[46] I. Dumitrescu and N. Boland. Improved preprocessing, labeling and scaling algorithms
for the Weight-Constrained Shortest Path Problem. Networks, 42(3):135–153, Aug. 2003.

[47] T. Feo and M. Resende. A probabilistic heuristic for a computationally difficult set cov-
ering problem. Operations Research Letters, 8(2):67–71, 1989.

[48] T. A. Feo and M. G. C. Resende. Greedy Randomized Adaptive Search Procedures.
Journal of Global Optimization, 6(2):109–133, 1995.

[49] M. Fernandes, L. Gouveia, and S. Voß. Determining hop-constrained spanning trees with
repetitive heuristics. Journal of Telecommunications and Information Technology, 4:16–
22, 2007.

[50] M. L. Fisher. The Lagrangian relaxation method for solving integer programming prob-
lems. Management science, 50(12):1861–1871, 2004.

[51] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved network
optimization algorithms. Journal of the ACM, 34(3):596–615, 1987.

[52] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, New York, 1979.

[53] M. Gendreau and J. Y. Potvin, editors. Handbook of Metaheuristics, volume 146.
Springer, 2nd edition, 2010.

[54] A. M. Geoffrion. Generalized benders decomposition. Journal of optimization theory and
applications, 10(4):237–260, 1972.

156

[55] N. Ghaboosi and A. T. Haghighat. A path relinking approach for Delay-Constrained
Least-Cost Multicast routing problem. In Proceedings of the 19th IEEE International
Conference on Tools with Artificial Intelligence, volume 34, pages 383–390. IEEE Com-
puter Society, May 2007.

[56] E. N. Gilbert and H. O. Pollak. Steiner minimal trees. SIAM Journal on Applied Mathe-
matics, 16(1):1–29, 1968.

[57] P. C. Gilmore and R. E. Gomory. A Linear Programming Approach to the Cutting-Stock
Problem (Part I). Operations Research, 9:849–859, 1961.

[58] P. C. Gilmore and R. E. Gomory. A Linear Programming Approach to the Cutting-Stock
Problem (Part II). Operations Research, 11:363–888, 1963.

[59] F. Glover and G. A. Kochenberger. Handbook of metaheuristics. Springer, 2003.

[60] M. T. Godinho, L. Gouveia, and T. L. Magnanti. Combined route capacity and
route length models for unit demand vehicle routing problems. Discrete Optimization,
5(2):350–372, 2008.

[61] M. T. Godinho, L. Gouveia, T. L. Magnanti, P. Pesneau, and J. Pires. Inequalities Implied
by a Time-Dependent Model for the Unit Demand Vehicle Routing Problem. Technical
report, Technical Report 10, Centro de Investigacão Operacional, Faculdade de Ciências
da Universidade de Lisboa, 2009.

[62] M. X. Goemans and Y.-S. Myung. A catalog of Steiner tree formulations. Networks,
23(1):19–28, 1993.

[63] J. Gottlieb, B. A. Julstrom, G. R. Raidl, and F. Rothlauf. Prüfer numbers: A poor rep-
resentation of spanning trees for evolutionary search. In S. et al. L., editor, Proceedings
of the 2001 Genetic and Evolutionary Computation Conference, pages 343–350. Morgan
Kaufmann, 2001.

[64] L. Gouveia. Using the Miller-Tucker-Zemlin constraints to formulate a minimal spanning
tree problem with hop constraints. Computers & Operations Research, 22(9):959–970,
1995.

[65] L. Gouveia. Multicommodity flow models for spanning trees with hop constraints. Euro-
pean Journal of Operational Research, 95(1):178–190, 1996.

[66] L. Gouveia. Using Variable Redefinition for Computing Lower Bounds for Minimum
Spanning and Steiner Trees with Hop Constraints. Informs Journal on Computing,
10(2):180–188, 1998.

[67] L. Gouveia. Using hop-indexed models for constrained spanning and Steiner tree models.
In B. Sanso and P. Soriano, editors, Telecommunications Network Planning, pages 21–32.
Kluwer Academic Publishers, 1999.

157

[68] L. Gouveia, A. Paias, and D. Sharma. Modeling and solving the rooted distance-
constrained minimum spanning tree problem. Computers & Operations Research,
35(2):600–613, 2008.

[69] L. Gouveia, P. Patrício, and A. De Sousa. Lexicographical minimization of routing hops in
telecommunication networks. In Proceedings of the International Network Optimization
Conference, pages 216–229. Springer, 2011.

[70] L. Gouveia, L. G. Simonetti, and E. Uchoa. Modeling hop-constrained and diameter-
constrained minimum spanning tree problems as Steiner tree problems over layered
graphs. Mathematical Programming, 128(1):123–148, 2011.

[71] C. Gruber. Ein Lösungsarchiv mit Branch-and-Bound-Erweiterung für das Generalized
Minimum Spanning Tree Problem. Master’s thesis, Vienna University of Technology,
Institute of Computer Graphics and Algorithms, Sept. 2011.

[72] M. Gruber. Exact and Heuristic Approaches for Solving the Bounded Diameter Mini-
mum Spanning Tree Problem. PhD thesis, Vienna University of Technology, Institute of
Computer Graphics and Algorithms, May 2009.

[73] M. Gruber and G. R. Raidl. Exploiting Hierarchical Clustering for Finding Bounded Di-
ameter Minimum Spanning Trees on Euclidean Instances. In F. Rothlauf, editor, GECCO
2009: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Compu-
tation, pages 263–270. ACM Press, 2009.

[74] M. Gruber and G. R. Raidl. (Meta-)Heuristic Separation of Jump Cuts in a Branch&Cut
Approach for the Bounded Diameter Minimum Spanning Tree Problem. In V. Maniezzo,
T. Stützle, and S. Voß, editors, Matheuristics – Hybridizing Metaheuristics and Math-
ematical Programming, volume 10 of Annals of Information Systems, pages 209–230.
Springer, 2009.

[75] M. Gruber, J. van Hemert, and G. R. Raidl. Neighborhood Searches for the Bounded
Diameter Minimum Spanning Tree Problem Embedded in a VNS, EA, and ACO. In
Proceedings of the Genetic and Evolutionary Computation Conference, volume 2, pages
1187–1194, New York, New York, USA, 2006. ACM Press.

[76] L. Guo and I. Matta. QDMR: an efficient QoS dependent multicast routing algorithm. In
Proceedings of the Fifth IEEE Real-Time Technology and Applications Symposium, pages
213–222. IEEE, 1999.

[77] B. K. Haberman and G. N. Rouskas. Cost, delay, and delay variation conscious multicast
routing. Technical report, North Carolina State University, 1996.

[78] P. Hansen and N. Mladenovic. An introduction to variable neighborhood search. In
S. Voß, S. Martello, I. H. Osman, and C. Roucairol, editors, MIC-97: meta-heuristics
international conference, pages 433–458. Kluwer Academic Publishers, 1999.

158

[79] P. Hansen and N. Mladenović. Variable neighborhood search: Principles and applications.
European Journal of Operational Research, 130(3):449–467, 2001.

[80] P. Hansen, N. Mladenović, J. Brimberg, and J. A. M. Pérez. Variable Neighborhood
Search. In M. Gendreau and J.-Y. Potvin, editors, Handbook of Metaheuristics, volume
146 of International Series in Operations Research & Management Science, pages 61–86.
Springer, 2010.

[81] M. Haouari, S. B. Jayeb, and H. D. Sherali. The prize collecting Steiner tree problem:
Models and Lagrangian dual optimization approaches. Computational Optimization and
Applications, 40(1):13–39, 2008.

[82] M. Haouari, S. B. Layeb, and H. D. Sherali. Strength of Three MIP Formulations for
the Prize Collecting Steiner Tree Problem with a Quota Constraint. Electronic Notes in
Discrete Mathematics, 36:495–502, 2010.

[83] M. Haouari and J. C. Siala. A hybrid Lagrangian genetic algorithm for the prize collecting
Steiner tree problem. Computers & Operations Research, 33:1274–1288, 2006.

[84] D. P. Heyman and M. J. Sobel. Stochastic models in operations research, Vol. II: Stochas-
tic optimization, volume 2. Dover Publications, 2003.

[85] J. H. Holland. Adaptation in natural and artificial systems. MIT Press, 1992.

[86] T.-S. Hsu, K.-H. Tsai, D.-W. Wang, and D. T. Lee. Steiner Problems on Directed Acyclic
Graphs. Computing and Combinatorics, pages 21–30, 1996.

[87] B. Hu, M. Leitner, and G. R. Raidl. Combining Variable Neighborhood Search with Inte-
ger Linear Programming for the Generalized Minimum Spanning Tree Problem. Journal
of Heuristics, 14(5):473–499, 2008.

[88] B. Hu and G. R. Raidl. Variable Neighborhood Descent with Self-Adaptive
Neighborhood-Ordering. In C. Cotta, A. J. Fernandez, and J. E. Gallardo, editors, Pro-
ceedings of the 7th EU/MEeting on Adaptive, Self-Adaptive, and Multi-Level Metaheuris-
tics, Malaga, Spain, 2006.

[89] F. K. Hwang and D. S. Richards. Steiner tree problems. Networks, 22(1):55–89, 1992.

[90] F. K. Hwang, D. S. Richards, and P. Winter. The Steiner tree problem. North Holland,
1992.

[91] M. Jepsen, B. Petersen, S. Spoorendonk, and D. Pisinger. Subset-Row Inequalities
Applied to the Vehicle-Routing Problem with Time Windows. Operations Research,
56(2):497–511, 2008.

[92] D. S. Johnson. Approximation algorithms for combinatorial problems. Journal of com-
puter and system sciences, 9(3):256–278, 1974.

159

[93] D. S. Johnson, M. Minkoff, and S. Phillips. The prize collecting steiner tree problem: the-
ory and practice. In Proceedings of the 11th annual ACM-SIAM Symposium on Discrete
Algorithms, pages 760–769. Society for Industrial and Applied Mathematics, 2000.

[94] B. Kallehauge. On the vehicle routing problem with time windows. PhD thesis, Technical
University of Denmark, Informatics and Mathematical Modelling, Scientific Computing,
2006.

[95] B. Kallehauge. Formulations and exact algorithms for the vehicle routing problem with
time windows. Computers & Operations Research, 35(7):2307–2330, 2008.

[96] B. Kallehauge, N. Boland, and O. B. G. Madsen. Path inequalities for the vehicle routing
problem with time windows. Networks, 49(4):273–293, 2007.

[97] N. Karmakar. A new polynomial-time algorithm for linear programming. Combinatorica,
4:373–395, 1984.

[98] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer, 2004.

[99] L. Khachiyan. A polynomial algorithm in linear programming (english translation). So-
viet Mathematics Doklady, 20:191–194, 1979.

[100] T. Koch and A. Martin. Solving Steiner tree problems in graphs to optimality. Networks,
32(3):207–232, 1998.

[101] T. Koch, A. Martin, and S. Voß. SteinLib: An updated library on Steiner tree problems in
graphs, 2001.

[102] V. P. Kompella, J. C. Pasquale, and G. C. Polyzos. Multicasting for multimedia appli-
cations. In Proceedings of the 11th Annual Joint Conference of the IEEE Computer and
Communications Societies (INFOCOMM), volume 3, pages 2078–2085. IEEE, 1992.

[103] V. P. Kompella, J. C. Pasquale, and G. C. Polyzos. Multicast routing for multimedia
communication. IEEE/ACM Transactions on Networking, 1(3):286–292, 1993.

[104] V. P. Kompella, J. C. Pasquale, and G. C. Polyzos. Two Distributed Algorithms for Mul-
ticasting Multimedia Information. In Proceedings of the 2nd International Conference
on Computer Communications and Networks (ICCCN), pages 343–349, San Diego, CA,
USA, 1993.

[105] L. Kou, G. Markowsky, and L. Berman. A fast algorithm for Steiner trees. Acta Infor-
matica, 15(2):141–145, 1981.

[106] J. Kratica. Improving Performances of the Genetic Algorithm by Caching. Computers
and Artificial Intelligence, 18(3):271–283, 1999.

[107] J. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman prob-
lem. Proceedings of the American Mathematical society, 7(1):48–50, 1956.

160

[108] Z. Kun, W. Heng, and L. Feng-yu. Distributed multicast routing for delay and delay
variation-bounded Steiner tree using simulated annealing. Computer Communications,
28(11):1356–1370, 2005.

[109] H.-Y. Lee and C.-H. Youn. Scalable multicast routing algorithm for delay-variation con-
strained minimum-cost tree. In IEEE International Conference on Communications, vol-
ume 3, pages 1343–1347. IEEE Press, 2000.

[110] V. Leggieri, M. Haouari, and C. Triki. An Exact Algorithm for the Steiner Tree Problem
with Delays. In Electronic Notes in Discrete Mathematics, volume 36, pages 223–230.
Elsevier, 2010.

[111] V. Leggieri, M. Haouari, and C. Triki. The Steiner Tree Problem with Delays: A compact
formulation and reduction procedures. Discrete Applied Mathematics, 2011.

[112] M. Leitner. Solving Two Network Design Problems by Mixed Integer Programming and
Hybrid Optimization Methods. PhD thesis, Vienna University of Technology, Institute of
Computer Graphics and Algorithms, Vienna, Austria, May 2010.

[113] M. Leitner, M. Ruthmair, and G. R. Raidl. On Stabilized Branch-and-Price for Con-
strained Tree Problems. Technical Report TR 186–1–11–01, Vienna University of Tech-
nology, Vienna, Austria, 2011. accepted with revisions to Networks (INOC 2011 special
issue).

[114] M. Leitner, M. Ruthmair, and G. R. Raidl. Stabilized Branch-and-Price for the Rooted
Delay-Constrained Steiner Tree Problem. In J. Pahl, T. Reiners, and S. Voß, editors,
Network Optimization: 5th International Conference, INOC 2011, volume 6701 of LNCS,
pages 124–138, Hamburg, Germany, 2011. Springer.

[115] M. Leitner, M. Ruthmair, and G. R. Raidl. Stabilized Column Generation for the Rooted
Delay-Constrained Steiner Tree Problem. In Proceedings of the VII ALIO/EURO – Work-
shop on Applied Combinatorial Optimization, pages 250–253, Porto, Portugal, 2011.

[116] A. N. Letchford and J.-J. Salazar-González. Projection results for vehicle routing. Math-
ematical Programming, 105(2):251–274, 2006.

[117] I. Ljubic and S. Gollowitzer. Layered Graph Approaches to the Hop Constrained Con-
nected Facility Location Problem. Technical report, University of Vienna, Austria, 2010.

[118] I. Ljubic and S. Gollowitzer. Modelling the hop constrained connected facility location
problem on layered graphs. In Electronic Notes in Discrete Mathematics, volume 36,
pages 207–214. Elsevier, 2010.

[119] I. Ljubic, R. Weiskircher, U. Pferschy, G. W. Klau, P. Mutzel, and M. Fischetti. An
algorithmic framework for the exact solution of the prize-collecting Steiner tree problem.
Mathematical Programming, 105(2):427–449, 2006.

161

[120] A. Lodi. Mixed integer programming computation. 50 Years of Integer Programming
1958-2008, pages 619–645, 2010.

[121] C. P. Low and Y. J. Lee. Distributed multicast routing, with end-to-end delay and delay
variation constraints. Computer Communications, 23(9):848–862, 2000.

[122] M. E. Lübbecke and J. Desrosiers. Selected Topics in Column Generation. Operations
Research, 53(6):1007–1023, 2005.

[123] N. Maculan. The Steiner tree problem in graphs. Annals of Discrete Mathematics,
31:185–212, 1987.

[124] T. L. Magnanti and L. A. Wolsey. Optimal trees. Handbooks in operations research and
management science, 7:503–615, 1995.

[125] V. Maniezzo, T. Stützle, and S. Voß, editors. Matheuristics: Hybridizing Metaheuristics
and Mathematical Programming, volume 10 of Annals of Information Systems. Springer,
2009.

[126] P. Manyem and M. F. M. Stallmann. Some approximation results in multicasting. Tech-
nical Report TR-96-03, North Carolina State University, 1996.

[127] G. Mendel. Versuche über Pflanzen-Hybriden (Experiments on plant hybridization). In
Verhandlungen des naturforschenden Vereins Brünn (Proceedings of the Natural History
Society of Brünn), volume 4, pages 3–47, 1866.

[128] Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs, vol-
ume 19. Springer, 1992.

[129] C. E. Miller, A. W. Tucker, and R. A. Zemlin. Integer programming formulation of
traveling salesman problems. Journal of the ACM, 7(4):326–329, 1960.

[130] P. Moscato. Memetic Algorithms: A Short Introduction. In D. Corne, M. Dorigo,
F. Glover, D. Dasgupta, P. Moscato, R. Poli, and K. V. Price, editors, New Ideas in Opti-
mization, pages 219–234. McGraw Hill, 1999.

[131] P. Moscato and C. Cotta. A Modern Introduction to Memetic Algorithms. In M. Gendreau
and J.-Y. Potvin, editors, Handbook of Metaheuristics, volume 146 of International Series
in Operations Research & Management Science, pages 141–183. Springer, 2010.

[132] D. Naddef and G. Rinaldi. Branch-and-cut algorithms for the capacitated VRP. The
vehicle routing problem, 9:53–84, 2002.

[133] L. Nastansky, S. M. Selkow, and N. F. Stewart. Cost-minimal trees in directed acyclic
graphs. Mathematical Methods of Operations Research, 18(1):59–67, 1974.

[134] G. L. Nemhauser and L. A. Wolsey. Integer and combinatorial optimization. Wiley-
Interscience, 1988.

162

[135] C. A. S. Oliveira and P. M. Pardalos. A survey of combinatorial optimization problems in
multicast routing. Computers & Operations Research, 32(8):1953–1981, 2005.

[136] C. A. S. Oliveira, P. M. Pardalos, and M. G. C. Resende. Optimization problems in multi-
cast tree construction. In Handbook of Optimization in Telecommunications, chapter 25,
pages 5–35. Springer Science + Business Media, 2006.

[137] M. Padberg and T.-Y. Sung. An analytical comparison of different formulations of the
travelling salesman problem. Mathematical Programming, 52(1):315–357, 1991.

[138] C. H. Papadimitriou and K. Steiglitz. Combinatorial optimization: algorithms and com-
plexity. Dover Publications, 1998.

[139] M. Parsa, Q. Zhu, and J. J. Garcia-Luna-Aceves. An iterative algorithm for delay-
constrained minimum-cost multicasting. IEEE/ACM Transactions on Networking,
6(4):461–474, 1998.

[140] J. C. Picard and M. Queyranne. The time-dependent traveling salesman problem and its
application to the tardiness problem in one-machine scheduling. Operations Research,
26(1):86–110, 1978.

[141] S. Pirkwieser and G. R. Raidl. A Column Generation Approach for the Periodic Vehicle
Routing Problem with Time Windows. In G. Bigi, A. Frangioni, and M. G. Scutellà,
editors, Proceedings of the International Network Optimization Conference 2009, Pisa,
Italy, 2009.

[142] M. Poggi de Aragão, E. Uchoa, and R. F. Werneck. Dual heuristics on the exact solution
of large Steiner problems. Electronic Notes in Discrete Mathematics, 7:150–153, 2001.

[143] T. Polzin and S. Vahdati Daneshmand. A comparison of Steiner tree relaxations. Discrete
Applied Mathematics, 112(1-3):241–261, 2001.

[144] M. Prandtstetter and G. R. Raidl. An Integer Linear Programming Approach and a Hybrid
Variable Neighborhood Search for the Car Sequencing Problem. European Journal of
Operational Research, 191(3):1004–1022, 2008.

[145] R. Prim. Shortest connection networks and some generalizations. Bell System Technical
Journal, 36(6):1389–1401, 1957.

[146] H. Prüfer. Neuer beweis eines satzes über permutationen. Archiv für Mathematik und
Physik, 27:142–144, 1918.

[147] J. Puchinger and G. R. Raidl. Models and Algorithms for Three-Stage Two-Dimensional
Bin Packing. European Journal of Operational Research, 183(3):1304–1327, 2007.

[148] J. Puchinger and G. R. Raidl. Bringing Order into the Neighborhoods: Relaxation Guided
Variable Neighborhood Search. Journal of Heuristics, 14(5):457–472, 2008.

163

[149] J. Puchinger, G. R. Raidl, and S. Pirkwieser. MetaBoosting: Enhancing Integer Program-
ming Techniques by Metaheuristics. In V. Maniezzo, T. Stützle, and S. Voss, editors,
Matheuristics – Hybridizing Metaheuristics and Mathematical Programming, volume 10
of Annals of Information Systems, pages 71–102. Springer, 2009.

[150] R. Qu, Y. Xu, and G. Kendall. A Variable Neighborhood Descent Search Algorithm
for Delay-Constrained Least-Cost Multicast Routing. In T. Stützle, editor, Learning and
Intelligent Optimization, volume 5851 of LNCS, pages 15–29. Springer, 2009.

[151] G. R. Raidl. A Unified View on Hybrid Metaheuristics. In F. Almeida, M. J. Blesa
Aguilera, C. Blum, J. M. Moreno Vega, M. Perez, A. Roli, and M. Sampels, editors,
Proceedings of the Hybrid Metaheuristics Workshop, volume 4030 of LNCS, pages 1–12.
Springer, 2006.

[152] G. R. Raidl and B. Hu. Enhancing Genetic Algorithms by a Trie-Based Complete Solution
Archive. In P. Cowling and P. Merz, editors, Evolutionary Computation in Combinatorial
Optimisation – EvoCOP 2010, volume 6022 of LNCS, pages 239–251. Springer, 2010.

[153] G. R. Raidl and J. Puchinger. Combining (Integer) Linear Programming Techniques and
Metaheuristics for Combinatorial Optimization. In C. Blum, M. J. B. Augilera, A. Roli,
and M. Sampels, editors, Hybrid Metaheuristics – An Emergent Approach for Combina-
torial Optimization, volume 114 of Studies in Computational Intelligence, pages 31–62.
Springer, 2008.

[154] G. R. Raidl, J. Puchinger, and C. Blum. Metaheuristic Hybrids. In M. Gendreau and
J. Y. Potvin, editors, Handbook of Metaheuristics, volume 146 of International Series in
Operations Research & Management Science, pages 469–496. Springer, 2010.

[155] C. R. Reeves. Genetic Algorithms. In M. Gendreau and J.-Y. Potvin, editors, Hand-
book of Metaheuristics, volume 146 of International Series in Operations Research &
Management Science, pages 109–139. Springer, 2010.

[156] M. G. C. Resende and P. M. Pardalos. Handbook of optimization in telecommunications,
volume 10. Springer, 2006.

[157] C. C. Ribeiro, E. Uchoa, and R. F. Werneck. A Hybrid GRASP with Perturbations for the
Steiner Problem in Graphs. INFORMS Journal on Computing, 14(3):228–246, 2003.

[158] G. Robins and A. Zelikovsky. Tighter bounds for graph Steiner tree approximation. SIAM
Journal on Discrete Mathematics, 19(1):122, 2006.

[159] G. N. Rouskas and I. Baldine. Multicast routing with end-to-end delay and delay vari-
ation constraints. In Proceedings of IEEE Conference on Computer Communications,
volume 1, pages 353–360. IEEE, 1996.

[160] G. N. Rouskas and I. Baldine. Multicast routing with end-to-end delay and delay variation
constraints. IEEE Journal on Selected Areas in Communications, 15(3):346–356, 1997.

164

[161] M. Ruthmair and G. R. Raidl. A Kruskal-Based Heuristic for the Rooted Delay-
Constrained Minimum Spanning Tree Problem. In R. Moreno-Díaz, F. Pichler, and
A. Quesada-Arencibia, editors, Proceedings of the 12th International Conference on
Computer Aided Systems Theory, volume 5717 of LNCS, pages 713–720. Springer, 2009.

[162] M. Ruthmair and G. R. Raidl. Variable Neighborhood Search and Ant Colony Optimiza-
tion for the Rooted Delay-Constrained Minimum Spanning Tree Problem. In R. Schaefer
et al., editors, Proceedings of the 11th International Conference on Parallel Problem
Solving from Nature: Part II, volume 6239 of LNCS, pages 391–400. Springer, 2010.

[163] M. Ruthmair and G. R. Raidl. A Layered Graph Model and an Adaptive Layers Frame-
work to Solve Delay-Constrained Minimum Tree Problems. In O. Günlük and G. Woeg-
inger, editors, Proceedings of the 15th Conference on Integer Programming and Com-
binatorial Optimization (IPCO XV), volume 6655 of LNCS, pages 376–388. Springer,
2011.

[164] M. Ruthmair and G. R. Raidl. A Memetic Algorithm and a Solution Archive for
the Rooted Delay-Constrained Minimum Spanning Tree Problem. In R. Moreno-Díaz,
F. Pichler, and A. Quesada-Arencibia, editors, Proceedings of the 13th International
Conference on Computer Aided Systems Theory: Part I, volume 6927 of LNCS, pages
351–358. Springer, 2012.

[165] M. Ruthmair and G. R. Raidl. On Solving the Rooted Delay- and Delay-Variation-
Constrained Steiner Tree Problem. In Proceedings of the 2nd International Symposium
on Combinatorial Optimization, LNCS. Springer, 2012 (to appear).

[166] H. F. Salama, D. S. Reeves, and Y. Viniotis. An Efficient Delay-Constrained Minimum
Spanning Tree Heuristic. In Proceedings of the 5th International Conference on Com-
puter Communications and Networks. IEEE Press, 1996.

[167] H. F. Salama, D. S. Reeves, and Y. Viniotis. The Delay-Constrained Minimum Spanning
Tree Problem. In Proceedings of the 2nd IEEE Symposium on Computers and Communi-
cations, pages 699–703. IEEE Computer Society, 1997.

[168] A. Schrijver. Theory of Linear and Integer Programming. Wiley, 1986.

[169] T. Seidl. A Multilevel Refinement Approach to the Rooted Delay-Constrained Steiner
Tree Problem. Master’s thesis, Vienna University of Technology, Institute of Computer
Graphics and Algorithms, Vienna, Austria, Sept. 2011.

[170] H. D. Sherali and W. P. Adams. A hierarchy of relaxations between the continuous and
convex hull representations for zero-one programming problems. SIAM Journal on Dis-
crete Mathematics, 3(3):411–430, 1990.

[171] P.-R. Sheu and S.-T. Chen. A fast and efficient heuristic algorithm for the delay- and
delay variation-bounded multicast tree problem. Computer Communications, 25(8):825–
833, 2002.

165

[172] P.-R. Sheu, H.-Y. Tsai, and S.-C. Chen. An Optimal MILP Formulation for the Delay-
and Delay Variation-Bounded Multicast Tree Problem. Journal of Internet Technology,
8(3):321–328, 2007.

[173] N. Skorin-Kapov and M. Kos. The application of Steiner trees to delay constrained multi-
cast routing: a tabu search approach. In Proceedings of the 7th International Conference
on Telecommunications, volume 2, pages 443–448, 2003.

[174] N. Skorin-Kapov and M. Kos. A GRASP heuristic for the delay-constrained multicast
routing problem. Telecommunication Systems, 32(1):55–69, 2006.

[175] A. Sramko. Enhancing a Genetic Algorithm by a Complete Solution Archive Based on
a Trie Data Structure. Master’s thesis, Vienna University of Technology, Institute of
Computer Graphic s and Algorithms, Vienna, Austria, Feb. 2009.

[176] T. Stützle and H. H. Hoos. MAX–MIN ant system. Future Generation Computer Systems,
16:889–914, 2000.

[177] H. Takahashi and A. Matsuyama. An approximate solution for the Steiner problem in
graphs. Mathematica Japonica, 24(6):573–577, 1980.

[178] F. Vanderbeck. Implementing Mixed Integer Column Generation. In G. Desaulniers,
J. Desrosiers, and M. M. Solomon, editors, Column Generation, chapter 12, pages 331–
358. Springer, 2005.

[179] V. V. Vazirani. Approximation Algorithms. Springer, 2001.

[180] R. Viertl. Einführung in die Stochastik: mit Elementen der Bayes-Statistik und der Anal-
yse unscharfer Information. Springer, 2003.

[181] S. Voß. The Steiner Tree Problem with Hop Constraints. Annals of Operations Research,
86(0):321–345, 1999.

[182] S. Voß, S. Martello, I. H. Osman, and C. Roucairol, editors. Meta-Heuristics: Advances
and Trends in Local Search Paradigms for Optimization. Kluwer, 1999.

[183] C. Walshaw. Multilevel Refinement for Combinatorial Optimisation Problems. Annals of
Operations Research, 131(1-4):325–372, 2004.

[184] C. Walshaw. Multilevel refinement for combinatorial optimisation: Boosting metaheuris-
tic performance. In C. Blum, M. J. B. Aquilera, A. Roli, and M. Sampels, editors, Hybrid
Metaheuristics: An Emerging Approach to Optimization, volume 114 of Studies in Com-
putational Intelligence (SCI), pages 261–289. Springer, 2008.

[185] H. Wang, Z. Shi, and S. Li. Multicast routing for delay variation bound using a modified
ant colony algorithm. Journal of Network and Computer Applications, 32(1):258–272,
2009.

166

[186] X. Wang and A. C. Regan. Local truckload pickup and delivery with hard time window
constraints. Transportation Research Part B: Methodological, 36(2):97–112, 2002.

[187] B. Waxman. Routing of multipoint connections. IEEE Journal on Selected Areas in
Communications, 6(9):1617–1622, 1988.

[188] D. Whitley. A genetic algorithm tutorial. Statistics and computing, 4(2):65–85, 1994.

[189] D. H. Wolpert and W. G. Macready. No free lunch theorems for optimization. Evolution-
ary Computation, IEEE Transactions on, 1(1):67–82, 1997.

[190] L. A. Wolsey. Integer programming. Wiley, New York, 1998.

[191] R. T. Wong. A dual ascent approach for Steiner tree problems on a directed graph. Math-
ematical Programming, 28(3):271–287, 1984.

[192] Y. Xu and R. Qu. A GRASP approach for the Delay-constrained Multicast routing prob-
lem. In Proceedings of the 4th Multidisplinary International Scheduling Conference,
pages 93–104, Dublin, Ireland, 2009.

[193] Y. Xu and R. Qu. A hybrid scatter search meta-heuristic for delay-constrained multicast
routing problems. Applied Intelligence, 36(1):229–241, 2010.

[194] A. Zelikovsky. A series of approximation algorithms for the acyclic directed Steiner tree
problem. Algorithmica, 18(1):99–110, 1997.

[195] Q. Zhang and Y. W. Leung. An orthogonal genetic algorithm for multimedia multicast
routing. IEEE Transactions on Evolutionary Computation, 3(1):53–62, 1999.

[196] Q. Zhu, M. Parsa, and J. J. Garcia-Luna-Aceves. A source-based algorithm for delay-
constrained minimum-cost multicasting. In Proceedings of 14th Annual Joint Conference
of the IEEE Computer and Communications Societies, pages 377–385. IEEE, 1995.

167

APPENDIX A
Curriculum Vitae

A.1 Personal Information

Name: Mario Ruthmair
Date and place of birth: July 11, 1980, St.Pölten, Austria
Nationality: Austria
Resident: Herbeckstraße 80/1, 1180 Vienna, Austria
Family status: unmarried, no children
Languages: German (native), English (fluent)
E-mail address: ruthmair@ads.tuwien.ac.at

A.2 Education

since 2008/05: PhD (Doctorate) Studies in computer science at the Vienna Uni-
versity of Technology, Austria; under the supervision of Günther
R. Raidl and Ulrich Pferschy.

1998/10 – 2006/06: Studies of computer science at the Vienna University of Technol-
ogy, Austria; graduation to “Diplom-Ingenieur” (MSc equivalent)
passed with distinction.

1990/09 – 1998/06: Secondary School, St.Pölten, Austria; general qualification for
university entrance passed with distinction.

1986/09 – 1990/06: Elementary School, Weißenkirchen/Perschling, Austria.

169

mailto:ruthmair@ads.tuwien.ac.at

A.3 Professional Activities
since 2008/07: One-man business Ruthmair e.U. (IT Consulting and Services),

Vienna, Austria.
since 2008/05: Research and teaching assistant, Algorithms and Data Structures

Group, Institute of Computer Graphics and Algorithms, Vienna
University of Technology, Austria.

2002/12 – 2007/12: Part/Full time employment as IT technician and consultant at Syn-
comp Data Systems, St.Pölten, Austria.

2002/09: Internship at Siemens Austria (PSE), Vienna, Austria.
1999/10 – 2000/09: Civilian national service (instead of military service) at Arbeiter-

Samariterbund, St.Pölten, Austria.
1999/08: Internship at the municipal office Weißenkirchen/Perschling

A.4 International Organizational and Reviewing Activities

• Reviewer for:

– European Journal of Operational Research, since 2012.

– Information Sciences, since 2011.

– Soft Computing, since 2011.

• (Sub)referee for:

– Workshop Heuristic Problem Solving at Eurocast 2011 – 13th International Confer-
ence on Computer Aided Systems Theory.

– Workshop Heuristic Problem Solving at Eurocast 2009 – 12th International Confer-
ence on Computer Aided Systems Theory.

• Member of the Local Organizing Committee, 7th International Workshop on Hybrid Meta-
heuristics, Vienna, 2010.

A.5 Teaching Activities

Contributions as lecturer to the following courses:

• Algorithms and Data Structures (basic course)

• Algorithmics (randomized, approximation, and graph algorithms, basics of linear and in-
teger programming)

• Efficient Algorithms (selected algorithms in text search, cryptography, and random sam-
pling)

• Mathematical Programming (extended topics on integer programming)

170

A.6 List of Publications

A.6.1 Refereed Conference and Workshop Papers

1. Mario Ruthmair and Günther R. Raidl. A Kruskal-Based Heuristic for the Rooted Delay-
Constrained Minimum Spanning Tree Problem. In A. Quesada-Arencibia et al., editors,
Extended Abstracts of the 12th International Conference on Computer Aided Systems
Theory, pages 244-246, 2009.

2. Mario Ruthmair and Günther R. Raidl. A Kruskal-Based Heuristic for the Rooted Delay-
Constrained Minimum Spanning Tree Problem. In R. Moreno-Díaz, F. Pichler, and A.
Quesada-Arencibia, editors, Proceedings of the 12th International Conference on Com-
puter Aided Systems Theory, volume 5717 of LNCS, pages 713-720. Springer, 2009.

3. Jakob Walla, Mario Ruthmair, and Günther R. Raidl. Solving a Video-Server Load Re-
Balancing Problem by Mixed Integer Programming and Hybrid Variable Neighborhood
Search. In M. J. Blesa et al., editors, Hybrid Metaheuristics 2009, volume 5818 of LNCS,
pages 84-99. Springer, 2009.

4. Mario Ruthmair and Günther R. Raidl. Variable Neighborhood Search and Ant Colony
Optimization for the Rooted Delay-Constrained Minimum Spanning Tree Problem. In
R. Schaefer et al., editors, Proceedings of the 11th International Conference on Parallel
Problem Solving from Nature: Part II, volume 6239 of LNCS, pages 391-400. Springer,
2010.

5. Mario Ruthmair, Andreas Hubmer, and Günther R. Raidl. Using a Solution Archive to En-
hance Metaheuristics for the Rooted Delay-Constrained Minimum Spanning Tree Prob-
lem. In A. Quesada-Arencibia et al., editors, Extended Abstracts of the 13th International
Conference on Computer Aided Systems Theory, pages 285-287, 2011.

6. Martin Berlakovich, Mario Ruthmair, and Günther R. Raidl. A Multilevel Heuristic for the
Rooted Delay-Constrained Minimum Spanning Tree Problem. In A. Quesada-Arencibia et
al., editors, Extended Abstracts of the 13th International Conference on Computer Aided
Systems Theory, pages 247-249, 2011.

7. Mario Ruthmair and Günther R. Raidl. A Layered Graph Model and an Adaptive Lay-
ers Framework to Solve Delay-Constrained Minimum Tree Problems. In O. Günlük and
G.J. Woeginger, editors, Proceedings of the 15th Conference on Integer Programming
and Combinatorial Optimization (IPCO XV), volume 6655 of LNCS, pages 376-388.
Springer, 2011.

8. Markus Leitner, Mario Ruthmair, and Günther R. Raidl. Stabilized Branch-and-Price for
the Rooted Delay-Constrained Steiner Tree Problem. In J. Pahl, T. Reiners, and S. Voß,
editors, Network Optimization: 5th International Conference, INOC 2011, volume 6701
of LNCS, pages 124-138, Hamburg, Germany, 2011. Springer.

171

9. Markus Leitner, Mario Ruthmair, and Günther R. Raidl. Stabilized Column Genera-
tion for the Rooted Delay-Constrained Steiner Tree Problem. In Proceedings of the VII
ALIO/EURO - Workshop on Applied Combinatorial Optimization, pages 250-253, Porto,
Portugal, 2011.

10. Mario Ruthmair and Günther R. Raidl. A Memetic Algorithm and a Solution Archive for
the Rooted Delay-Constrained Minimum Spanning Tree Problem. In R. Moreno-Díaz, F.
Pichler, and A. Quesada-Arencibia, editors, Proceedings of the 13th International Confer-
ence on Computer Aided Systems Theory: Part I, volume 6927 of LNCS, pages 351-358.
Springer, 2012.

11. Martin Berlakovich, Mario Ruthmair, and Günther R. Raidl. A Multilevel Heuristic for
the Rooted Delay-Constrained Minimum Spanning Tree Problem. In R. Moreno-Díaz, F.
Pichler, and A. Quesada-Arencibia, editors, Proceedings of the 13th International Confer-
ence on Computer Aided Systems Theory: Part I, volume 6927 of LNCS, pages 256-263.
Springer, 2012.

12. Mario Ruthmair and Günther R. Raidl. On Solving the Rooted Delay- and Delay-Varia-
tion-Constrained Steiner Tree Problem. In Proceedings of the 2nd International Sympo-
sium on Combinatorial Optimization, LNCS. Springer, 2012 (to appear).

13. Thorsten Krenek, Mario Ruthmair, and Günther R. Raidl. (Hybrid) Metaheuristics to Fuel
Consumption Optimization of Hybrid Electric Vehicles. In C. Di Chio et al., editors, Pro-
ceedings of the European Conference on the Applications of Evolutionary Computation,
volume 7248 of LNCS, pages 376-385. Springer, 2012.

A.6.2 Research Reports

1. Markus Leitner, Mario Ruthmair, and Günther R. Raidl. On Stabilized Branch-and-Price
for Constrained Tree Problems. Technical Report TR 186-1-11-01, Vienna University of
Technology, Vienna, Austria, 2011. accepted with revisions to Networks (INOC 2011
special issue).

A.6.3 Thesis

1. Mario Ruthmair. Gateway zur Übertragung von Audiodaten von einem RTSP-Server in
ein IEEE1394-Netzwerk. Master’s thesis, Vienna University of Technology, Institute of
Computer Technology, Vienna, Austria, March 2006.

A.6.4 Co-Supervised Thesis

1. Martin Berlakovich. Multilevel Heuristiken für das Rooted Delay-Constrained Minimum
Spanning Tree Problem. Master’s thesis, Vienna University of Technology, Institute of
Computer Graphics and Algorithms, Vienna, Austria, July 2010.

172

2. Thorsten Krenek. Verbrauchsminimierung eines Hybridfahrzeuges im Neuen Europäis-
chen Fahrzyklus. Master’s thesis, Vienna University of Technology, Institute of Computer
Graphics and Algorithms, Vienna, Austria, July 2011.

3. Thomas Seidl. A Multilevel Refinement Approach to the Rooted Delay-Constrained Stei-
ner Tree Problem. Master’s thesis, Vienna University of Technology, Institute of Com-
puter Graphics and Algorithms, Vienna, Austria, September 2011.

4. Jakob Walla. Exakte und heuristische Optimierungsmethoden zur Lösung von Video Serv-
er Load Re-Balancing. Master’s thesis, Vienna University of Technology, Institute of
Computer Graphics and Algorithms, Vienna, Austria, April 2009.

A.7 Posters and Presentations

1. On Solving the Rooted Delay- and Delay-Variation-Constrained Steiner Tree Problem.
ISCO 2012, Athens, Greece, 2012.

2. An Adaptive Layers Framework for Resource-Constrained Network Design Problems. IN-
FORMS 2012, Boca Raton, Florida, USA, 2012.

3. A Layered Graph Model and an Adaptive Layers Framework to Solve Delay-Constrained
Minimum Tree Problems. IPCO 2011, Armonk, New York, USA, 2011.

4. A Memetic Algorithm and a Solution Archive for the Rooted Delay-Constrained Minimum
Spanning Tree Problem. EUROCAST 2011, Las Palmas, Spain, 2011.

5. Variable Neighborhood Search and Ant Colony Optimization for the Rooted Delay-Con-
strained Minimum Spanning Tree Problem. PPSN 2010, Krakòw, Poland, 2010.

6. A Kruskal-Based Heuristic for the Rooted Delay-Constrained Minimum Spanning Tree
Problem. EUROCAST 2009, Las Palmas, Spain, 2009.

173

	Introduction
	Combinatorial Optimization Problems
	Considered Problems
	Structure of the Thesis

	Methodology
	Exact Methods
	Linear Programming
	Integer Linear Programming
	LP-based Branch-and-Bound
	Cutting Planes and Branch-and-Cut
	Column Generation and Branch-and-Price

	Heuristic Methods
	Construction Heuristics
	Approximation Algorithms
	Local Search
	Metaheuristics

	Hybrid Methods

	Rooted Delay-Constrained Minimum Spanning Tree Problem
	Problem Definition
	Related Work
	Preprocessing
	Infeasible Edges
	Suboptimal Edges

	Kruskal-Based Construction Heuristic
	Stage 1: Merging components
	Stage 2: Extension to a feasible solution
	Example
	Modifications

	Multilevel Construction Heuristic
	Ranking Score
	Ranking-Based Multilevel Heuristic
	Example

	Greedy Randomized Adaptive Search Procedure
	Neighborhood Structures
	Edge-Replace Neighborhood
	Component-Renew Neighborhood

	Variable Neighborhood Descent
	General Variable Neighborhood Search
	Shaking

	Ant Colony Optimization
	Pheromone Values
	Solution Construction
	Local Improvement
	Depositing Pheromones

	Memetic Algorithm
	Solution Representation
	Components and Operators
	Improvement

	Tackling Duplicates
	Computational Results
	Test Instances and Environment
	Preprocessing
	Prim-Based vs. Kruskal-Based Heuristic
	Ranking-Based Multilevel vs. Kruskal-Based Heuristic
	GRASP vs. GVNS vs. MMAS
	Memetic Algorithm

	Future Work

	Rooted Delay-Constrained Steiner Tree Problem
	Problem Definition
	Related Work
	Preprocessing
	Miller-Tucker-Zemlin Formulation
	Path Formulation
	Multi-Commodity Flow Formulation
	Path-Cut Formulation
	Valid Inequalities
	Separation Methods

	Transformation to Layered Graph
	Layered Graph Formulation
	Valid Inequalities
	Separation Methods

	Polyhedral Comparison
	Computational Results
	Test Instances and Environment
	LP Bounds
	Branch-and-Cut Results

	Future Work

	Rooted Delay- and Delay-Variation-Constrained Steiner Tree Problem
	Problem Definition
	Related Work
	Preprocessing
	Multi-Commodity Flow Formulation
	Transformation to Layered Graph
	Layered Graph Formulation
	Valid Inequalities
	Separation Methods

	Polyhedral Comparison
	Computational Results
	Test Instances and Environment
	LP Bounds
	Branch-and-Cut Results

	Future Work

	Adaptive Layers Framework
	Motivation
	Related Work
	Basics
	Framework
	Computational Results
	Test Instances and Environment
	Framework Results

	Case Study: Quota-Constrained Rooted Delay-Constrained Steiner Tree Problem
	Layered Graph Model
	Computational Results

	Case Study: Vehicle Routing Problem with Time Windows
	Transformation to Layered Capacity and Time Graphs
	MIP Model on Two Layered Graphs
	Transformation to Layered Capacity-Time Graph
	MIP Model on the Combined Layered Graph
	ALF for the VRPTW
	Preliminary Results

	Future Work

	Conclusions
	Bibliography
	Curriculum Vitae
	Personal Information
	Education
	Professional Activities
	International Organizational and Reviewing Activities
	Teaching Activities
	List of Publications
	Refereed Conference and Workshop Papers
	Research Reports
	Thesis
	Co-Supervised Thesis

	Posters and Presentations

