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Abstract

Crowdsourcing, a distributed problem-solving model, is gaining more and more interest.

Enterprises around the world show interest in using crowdsourcing systems to outsource

work. Right now task-based crowdsourcing systems support only a very simple model

work, a simple task. In general, a simple task is seen as an atomic unit of work, which is

assigned to one single worker. However, the demands of enterprises to share more com-

plex work are evident. The integration of complex work into task-based crowdsourcing

leads to a number of challenges due the fact that complex work in general cannot be

split into units of work, which can be assigned to a single worker.

In this thesis we introduce different techniques of collaboration, based on the integra-

tion of complex work to a task-based crowdsourcing system. We model complex work

as a composite task. A composite task has a set of sub-tasks; the sub-tasks can have

dependency between each other, which show how much cooperation is needed to solve

the dependent task. Besides the introduction of complex work to crowdsourcing, we

introduce a social collaboration network. All workers are part of this collaboration

network, ties between workers in this social network represent the fact how well two

workers can work together. Further, we introduce two team structures, namely static

and dynamic teams. The models of a composite task, the social collaboration network

and the two team-based approaches are implemented in a task-based crowdsourcing

simulation framework. We further perform an evaluation, based on the implementation

of our concepts, to show the advantages and limitations of both team-based approaches.

The evaluation results show significant differences between the quantity of performed

tasks and the quality of the processed work depending on the team structure.
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Kurzfassung

Aktuelle Crowdsourcing Systeme unterstützen nur ein sehr einfaches Arbeitsmodell.

Das Interesse von Unternehmen auf der ganzen Welt, die höchst komplexe Arbeit mit-

tels Crowdsourcing auslagern möchten, steigt dabei kontinuierlich. Deshalb ist es not-

wendig Konzepte zu entwickeln um die Integration komplexer Arbeit in Crowdsourcing

Systeme zu ermöglichen. Dabei birgt die Integration von komplexer Arbeit eine Rei-

he von Herausforderungen, da komplexe Aufgabenstellungen im Allgemeinen nicht in

Arbeitspakete teilbar sind, welche von einzelnen Personen unabhängig voneinander ab-

gearbeitet werden können.

Wir nutzen verschiedene Formen der Kollaboration um die Integration von komplexer

Arbeit in Crowdsourcing Systeme zu ermöglichen. Wir modellieren komplexe Arbeit

als sogenannte Composite Tasks. Ein Composite Task besteht aus einer Reihe von Teil-

aufgaben, welche Abhängigkeiten untereinander haben können. Diese Abhängigkeiten

zeigen das Maß an Zusammenarbeit, welches nötig ist, um voneinander abhängige Teil-

aufgaben zu lösen. Ergänzend stellen wir ein Modell für ein Soziales Kollaborations-

netzwerk vor. Alle Arbeiter sind Teil dieses Netzwerks. Die Beziehungen zwischen Ar-

beitern im sozialen Netzwerk zeigen dabei, wie gut diese miteinander zusammenarbei-

ten können. Darauf aufbauend führen wir zwei Team-Strukturen, nämlich statische und

dynamische Teams, ein. Unsere vorgestellten Konzepte werden in eine Simula- tions-

umgebung für Crowdsourcing implementiert um eine Evaluierung zu ermöglichen. Wir

führen eine Reihe von Auswertungen durch um Vor- und Nachteile der beiden Team-

strukturen aufzuzeigen. Die Ergebnisse der Evaluierung zeigen signifikante Unterschie-

de in der Anzahl der erfolgreich abgearbeiteten Aufgaben und der Qualität der erbrach-

ten Arbeit in Abhängigkeit der Teamstruktur.
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CHAPTER 1
Introduction

Crowdsourcing, a term coined by Jeff Howe in 2006 [19], is a problem-solving model

based on outsourcing work in a distributed way via an open call to a network of people,

the so called crowd. Since its beginning around the millennia crowdsourcing is gaining

more and more popularity throughout companies around the world [41]. A more com-

prehensive and thorough definition provided by [10] is as follows:

’Crowdsourcing is a type of participative online activity in which an individual, an

institution, a non-profit organization, or company proposes to a group of individuals of

varying knowledge, heterogeneity, and number, via a flexible open call, the voluntary

undertaking of a task. The undertaking of the task, of variable complexity and modular-

ity, and in which the crowd should participate bringing their work, money, knowledge

and/or experience, always entails mutual benefit. The user will receive the satisfaction

of a given type of need, be it economic, social recognition, self-esteem, or the develop-

ment of individual skills, while the crowdsourcer will obtain and utilize to their advan-

tage that what the user has brought to the venture, whose form will depend on the type

of activity undertaken.’

Getting a more practical understanding of crowdsourcing, we will try to give a sim-

ple example according to the definitions stated before. As can be seen, there are two
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types of actors within the model of crowdsourcing. Crowdsourcers, also known as re-

questers, and workers. A requester has a problem, e.g. a small task to sort pictures

according to some criteria, which needs to be solved. The requester publishes this spe-

cific problem to an unknown crowd of workers. One or more of the workers will make

the attempt to solve the problem and will send the problem’s solution back to the re-

quester. As crowdsourcing is used as a business model in most cases a small kind of

revenue, e.g. money or prestige, is offered to the worker for successfully solving the

stated problem.

After defining crowdsourcing and giving a simple example on how crowdsourcing

works, the remainder of this chapter is divided into three parts. Beginning with a se-

lective overview of the history of crowdsourcing, we continue with some examples for

state-of-the-art crowdsourcing platforms. The next section will elaborate on the prob-

lems current crowdsourcing systems are facing. We state the approaches used right

now and explain the motivation behind this master’s thesis. The last section gives an

organizational overview of the remaining chapters of this thesis.

1.1 History

To get a better understanding on the topic of crowdsourcing we will give a selective

overview of the predecessors of modern crowdsourcing. These predecessors can be

found as early as 1714, when the British government offered a price of £20.000 for

solving ’The Longitude Problem’, which was eventually solved by John Harrison, a

worker-class carpenter [18].

As described in The Surgeon of Crowthorne [46], in the second half of the 19th century

an open call was made for contributions to index the words of the English language. The

input of this open call led to one of the first versions of the well known Oxford English

Directory.

In the mid of the 20th century an international architectural competition for the Sydney

Opera House was started [37], which lead to 233 suggestions from around the world.
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The examples, given before, show that the idea behind crowdsourcing is in fact a very

old one. However only the success of the web in its current technological stage made

it possible to get quick and easy access to a broad audience of workers. Hence the web

provides the foundations to make state-of-the-art crowdsourcing systems possible. This

is the reason why after the millennia modern crowdsourcing systems, described to some

extend in [3] and [41], have been populated throughout the internet. Three of the most

well known crowdsourcing platforms available today are explained below.

• Wikipedia, which is [11] according to Alexa [1] within the top 10 webpages

around the world, was founded in 2001. Wikipedia, a plattform for crowdwis-

dom, is an online encyclopaedia. Each article in Wikipedia is created, checked

and rated by the users visiting the webpage.

• One very popular and successful crowdsourcing system founded in the first half

of 2000, is iStockphoto.com [24]. iStockphoto.com is a platform where everyone

can buy royalty-free photographs. The pictures get uploaded and categorized by

registered photographers, which represent the crowd. To become a photographer

you have to go through a registration process, described in [3]. Clients can buy

the images. For each image bought, the photograph receives a small amount of

money, the bigger share of the selling price belongs to iStockphoto.com.

• Another well known crowdsourcing system, launched in 2005, is Amazon’s Me-

chanical Turk (AMT) [20]. AMT, a micro-task aware crowdsourcing system,

is offering a platform where everyone can publish human intelligence tasks, so

called HITs. Some of the HITs require a certain qualification level, which has

to be specified by the worker, during task creation. AMT’s workers solve HITs,

which have been created beforehand, according to their qualification level, and

gain income by doing so.

1.2 Motivation

Like in AMT’s case, state-of-the-art task-based crowdsourcing systems only allow the

creation and population of micro-tasks. Micro-tasks are atomic tasks, which cannot be

3



split up. They are meant to be solved by one single worker. As can easily be seen, this

model for work does not meet all the demands introduced by the increasing interests of

enterprises around the world to solve more complex work with crowdsourcing systems.

Thereby the need to integrate forms of complex work into task-based crowdsourcing

systems can clearly be seen.

Another problem arises with the introduction of complex work. As complex work can-

not be solved by a single individual, the means of splitting the work into manageable

tasks have to be defined. Three approaches can be made to address this issue.

• The requester himself has to do a conclusive partitioning and has to split the com-

plex work into tasks. This approach seems to be infeasible, as it cannot be applied

to every kind of complex work in general, moreover it is even not sure if the re-

quester has the knowledge to split the task.

• A second approach would be to let the complex work be analysed by the crowd

itself, this approach was proposed in [25]. Still the same problem as before re-

mains, it might not be possible to find an adequate set of subtasks, which each can

be performed by a single individual.

• When partitioning complex work is not possible the crowdsourcing platform could

support mechanisms for collaborative structures, so that the complex work can be

solved by a group of individuals.

The third approach leads to another limitation of crowdsourcing systems. There is no

support for workers communicating with each other. There is neither support for tech-

niques for collaboration, nor is the social network, formed by the crowd itself, used to

solve problems with more focus on the distributed knowledge represented by the crowd.

This means that workers have no chance to solve problems together, which can clearly

be seen as a reason why only micro-tasks are supported right now.

The limitations of currently implemented crowdsourcing systems described before,

make crowdsourcing an interesting, challenging and important research area in the field

of computer science and are the basis for the motivation behind this master’s thesis.

4



1.3 Contribution

In this thesis the limitations discussed before will be addressed. To overcome the issue

of not supporting the social network, the crowd is explicitly defined as a social collabo-

ration network. The system is aware of the social network and can take advantage of this

fact. We propose a solution for integrating a model for complex work into a task-aware

crowdsourcing system. The focus is on the investigation to find suitable techniques-

of-collaboration in the context of task-based crowdsourcing systems. The contribution

itself is split in the following parts:

• Besides supporting micro-tasks, we introduce the model of a composite task to

support complex work. A composite task itself has a finite set of subtasks, which

are allowed to have dependencies among each other, therefore the composite task

is represented with the help of an undirected labelled graph.

• Two different techniques of collaboration, namely static and dynamic teams will

be defined. Both approaches towards introducing teams to task-based crowd-

sourcing will be based on the crowd, which is structured as a social collaboration

network as mentioned before.

• An algorithm for partitioning composite tasks within a team, based on the quali-

fication of the workers within the team, is presented.

• Both structures for collaboration, namely static and dynamic teams, are evalu-

ated and the results are compared to see advantages and limitations of the chosen

approach. For the evaluation the proposed changes to task-based crowdsourc-

ing systems will be implemented into a framework for simulating crowdsourcing

systems.

1.4 Organization

The remainder of the thesis is organized as follows:

• Chapter 2 gives an overview of state-of-the-art task-based crowdsourcing systems,

social networks and collaboration networks, besides that the focus will be on re-

5



lated work in the area of supporting complex tasks in crowdsourcing systems,

collaborative- and social-computing and the team formation problem.

• Chapter 3 starts by introducing a generic model for task-based crowdsourcing.

Based on this model, we introduce the concepts for our social collaboration net-

work. On top of the social network we will describe in detail static and dynamic

teams. Right after defining teams, our concept for supporting complex-work,

namely the composite task, is explained in detail.

• Implementing the concepts and models explained in chapter 3 into a framework

for simulating crowdsourcing are the focus of chapter 4.

• Chapter 5 will explain the configuration used to perform an evaluation of the

concepts, which were implemented in chapter 4, and will discuss the results of

the data, gathered by the evaluation.

• Chapter 6, a summary with suggestions on future work, will complete this mas-

ter’s thesis.
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CHAPTER 2
Literature Overview

This chapter is twofold. The first part gives an overview of the state-of-the-art concern-

ing crowdsourcing systems, social networks and collaboration networks. The second

part focuses on related work in the area of social computing, the team formation prob-

lem. Furthermore extensions to micro-task aware crowdsourcing are presented and two

frameworks for simulating crowdsourcing are introduced.

2.1 State-of-the-art

Crowdsourcing is a very versatile area, different platforms have been set up through-

out the last decade. The platforms diversity reaches from games, over crowd-wisdom

platforms, to micro-task aware marketplaces as partly described in [3] and categorized

into four distinctive groups in [44]. All crowdsourcing platforms support the interac-

tion between the platform and users and dynamic web-based applications, which can

be accessed by the users via a web browser. We split our overview of state-of-the-art

crowdsourcing systems into two sections. First we give an overview of the most popular

market-based crowdsourcing systems, then we will give an overview of crowdsourcing

systems without the need of using a marketplace.
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2.1.1 Market-based Crowdsourcing

Market-based crowdsourcing systems use a marketplace as the interaction point between

requesters and workers. Usually these systems offer a salary as incentives for workers to

solve tasks. AMT, a crowdsourcing system launched in 2005, offers workers the possi-

bility to solve a huge number and variety of ’Human Intelligence Tasks’ (HIT). Workers

receive a small amount of money for the work they have performed, according to [44]

the worker’s salary is in most cases less than 5 cents USD. HITs can be submitted by

requesters. Requesters can define and create certain qualifications, a worker needs, to

be able to solve a HIT. To obtain a qualification, in most cases a worker has just to select

it. However there are also certain qualifications for which a worker has to perform a test

before s/he can obtain the qualification. A worker is able to access and select HITs he

wants to solve by simply using a web browser. On the requester side AMT uses Web

Services. Therefore AMT uses a Service-oriented Architecture (SOA) [17]. In AMT’s

case a HIT can be solved exclusively by one worker. Therefore workers are not in a

direct competition with each other. Taskcn [38], described in [47] as one of the biggest

task-based crowdsourcing systems in China, uses a more competitive approach. There,

workers compete with each other directly, by simultaneously submitting solutions for

the same tasks. As analyzed in [47], this leads to an environment, which attracts people

with a certain amount of expertise. Due to the high rate of competition requesters try

to make tasks as simple as possible, so that a broader range of solutions is submitted

by workers. Another highly competitive crowdsourcing platform, which offers remark-

able high salaries in comparison to platforms like AMT or Taskcn is Innocentive [21].

Innocentive is a crowdsourcing system which provides the capabilities for companies

to outsource research and development. Innocentive offers a wide range of different

types of challenges a company can create. The challenges are split into three categories,

namely Brainstorm Challenge, Premium Challenge and Grand Challenge. Depending

on the challenge’s category the salary offered to workers ranges from 500 USD to more

than 100.000 USD per challenge.
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2.1.2 Non Market-based Crowdsourcing

Besides the very popular market-based crowdsourcing systems, presented in the last

section, various other systems exist, where workers and requesters are not communi-

cating with each other via a market. Wikipedia [11], a plattform for crowdwisdom, is

an online encyclopaedia. Each article in Wikipedia is created, edited and rated by the

users visiting the web page. The crowd of users accessing the Wikipedia share a dual

role, while most visitors are seeking for information of a specific topic, others take there

time to help and correct existing articles or to write brand new ones. To guarantee a cer-

tain amount of quality Wikipedia introduces ratings for articles. Besides that, Wikipedia

supports policies and techniques to counter vandalism. This is accomplished by promot-

ing trusted users to editors. Those editors are there to guarantee the quality of certain

articles, by checking the changes submitted by normal users. Other non market-based

crowdsourcing systems including Yahoo Answers [23] or Stackoverflow [22] focus on

providing a web page where users can ask questions, which are then answered by other

users. Unlike market-based crowdsourcing systems non-monetary incentives are given

to users answering questions. These incentives typically include badges and a system

of reward points. Whereas Yahoo Answers focuses on providing a platform to ask and

answer generic questions, Stackoverflow calls itself a site for answering and asking

questions around the topic of programming.

After giving an overview of market-based and non market-based crowdsourcing sys-

tems the next sections focus on social networks and collaboration networks.

2.1.3 Social Networks

Social networks are formed by group of people. Each individual represents a node. As

people are acquainted with each other, there exists a number of ties between the nodes

of the social network. Sociologists around the world have studied social networks in

detail. The work presented in [31] analyses the average path length between two in-

dividuals in a social network. It shows that the path length in comparison to the size

of a social network is very low (e.g. is the path length between two American citizens
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six hops). The author of [15] separate the links between individuals of social networks

into strong and weak ties and argues that strong ties are tightly clustered. Lately online

social networks are gaining more and more popularity. Research of these kind of social

networks has shown that online social networks share the same properties as their of-

fline pendants [32]. Milgram [31] determines that social networks are structured with

a ’small world’ property. Research in [14] shows that social networks contain commu-

nity structures. Altogether over the last decades research in the area of networks has

determined certain properties. These properties are shared among social networks and

include the following:

1. Power-law degree distribution: As explained in [32] social networks with a

power-law distribution have nodes, where the nodes probability to have a degree

of k is proportional to k−λ. This holds for a large k and a λ > 1. λ is called the

power-law coefficient.

2. Scale-free property: The scale-free property is a property of power-law dis-

tributed networks. It describes the characteristic that nodes with a high degree

are connected to other nodes with a high degree. A detailed explanation of the

scale-free property can be found in [29].

3. Small-world property: The small-world property was first described in [31]. A

network, having a small-world property, can be characterized as having an small

average path length in comparison to networks size. That means that two indi-

viduals, being part of a social network, are connected with each other through a

small number of intermediaries.

4. Network-transitivity/ Clustering: Network-transitivity describes the property,

that if two nodes A and B have both a connection to node C then the probability

of node A and B being connected to each other is heightened.

2.1.4 Collaboration Networks

Collaboration networks are a specialized kind of social networks. In collaboration net-

works the ties between the individuals are used to quantify the collaboration. Different
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models to represent collaboration networks have been discussed in [33], [29]. Each of

the models adds a value, indicating the collaboration, as a label (or weight) to a tie

between two nodes. The results presented in [33] confirm that collaboration networks

share the same properties as social networks in general do.

We explain the papers stated before as part of the next section, which is focusing on re-

lated work in the area of social computing, team formation and extensions to micro-task

aware crowdsourcing systems.

2.2 Related Work

This section focuses on work in the research area of task-based crowdsourcing, human-

based and social computing.

2.2.1 Social Computing

A research area in particular related to social networks and collaboration between indi-

viduals is social computing, which is described in [42]. The authors of [8] propose a

novel approach, Social Compute Unit (SCU), to integrate social computing into modern

workflow systems [5] and systems for business process management [39]. A SCU is

a virtual construct. Computing within an SCU is performed by humans, brought to-

gether through a social network. According to the authors a SCU utilizes aspects for

programmability, compute power and elasticity.

A SCU itself is created at request time and is disbanded after computing the assigned

task. The life-cycle of SCU includes the following stages:

• Request: A SCU is requested for an specific problem domain.

• Create: A SCU is created.

• Assimilate: The SCU is introduced to the problem and the problem’s domain.

• Virtualize: The SCU is installed. This includes providing a collaboration space

for the members of a SCU to communicate with each other and also providing a

test environment for the SCU.
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• Deploy: The SCU is producing results.

• Dissolve: The SCU is dissolved and rewarded for the work, which it has per-

formed.

An AppStore like architecture is proposed to implement the SCU. Humans can reg-

ister at the system. Upon request for a SCU by a client, a SCU Compiler is used to

create a SCU for the problem domain, which was specified by the client. To accomplish

this an assessment unit is used for finding the right persons to form a SCU.

The work in [9] describes the Social Routing Principle. A principle to help to overcome

the problem of integrating social networks and mobile applications like smart phone

apps or web applications [45] to solve tasks based on social computing. The authors

propose the mechanisms for task delegations in mobile applications, to achieve this they

introduce a Social Router, which aim is to delegate work, by using a model for solv-

ing problems vertically across different collaborative systems, e.g. task-based crowd-

sourcing systems like Amazon’s Mechanical Turk. The router supports three kinds of

collaborative environments, namely personal communities, context-based communities

and crowd-sourcing systems. For delegating work to this systems the router has to have

the knowledge on how to communicate with the systems. The authors point out that the

introduction of a Social Router introduces opportunities and challenges. This challenges

include the integration of trust and privacy features when delegating tasks. Besides that

people have to be supported by applications to formulate a problem or task in a way that

it can be translated by a Social Router.

2.2.2 Team Formation

Besides social computing, the NP-hard team formation problem, described in [7] and

[28], is a very important area of research. It is the foundation for automatically forming

teams based on a social network, which is implicitly introduced by social computing.

The work presented in [7] describes heuristics to form teams effectively based on the

structure of an underlying expert social network. Recommendations of collaboration

and the number of direct interactions between experts are used to find teams effectively.

Team formations are used for a task, requiring a set of skills, to be solved. The authors
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propose two heuristics for performing team selection. The first heuristic is based on a

genetic algorithm, which treats the problem of team formation as the problem of finding

the best individual (i.e. a team), by determining the individual with the highest fitness,

defined by their chromosomes (i.e. the team configuration). A chromosome is defined

by a set of genes, where a gene represents a skill of an expert. The algorithm uses two

steps. A crossover step to mate individuals and a mutation step, which switches the

value of a gene (i.e. an expert is switched with another expert). The second heuristic is

based on an algorithm for simulated annealing, there the problem of team configuration

is simulated as a hot system which is being cooled down with a number of transitions

until it reaches a cold state. The algorithm uses the same technique as described by the

mutation step of the genetic algorithm. Each changed team configuration is compared

with the current configuration, if the new configuration is worse than the current, the

system cools down.

Work, presented in [28], focuses on solving the team formation problem, by minimiz-

ing the communication cost within a team. The work is based on modelling a social

network, as an undirected weighted graph, where edges between people represent the

communication cost. Several algorithms are proposed. The algorithms are based on

the diameter communication cost within a group of individuals, which is defined by the

largest shortest path within two individuals of the group, and by the costs of a minimum

spanning tree, which is computed for the group of people. The costs represent the sum

of weights of the edges included in the diameter or the minimum spanning tree.

2.2.3 Extensions to Micro-task Aware Crowdsourcing

Besides related work in the research areas of social computing and solutions to the

team formation problem, we also present work in the area of task-based crowdsourcing,

specifically we focus on the area of micro-task aware markets like AMT.

TurKit [30] is a toolkit, which makes it possible to program iterative task for AMT. The

toolkit supports writing tasks as imperative programs and gives examples for iterative

text improvement and a simple sorting algorithm using AMT workers.

CrowdForge, a general purpose framework for solving complex tasks within standard

micro-task aware crowdsourcing systems, is proposed in [25]. The aim of the work
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is to solve complex tasks within normal micro-task aware crowdsourcing systems like

Amazon’s Mechanical Turk. To accomplish this, the authors propose a system, which

supports building a workflow for a general complex task. Building a workflow includes

the following three types of sub-tasks:

• Partition task: A partitioning task, is sent to the crowdsourcing system. The pur-

pose is to get a partition of a bigger task.

• Map task: A map task is processed by one or more workers.

• Reduce task: The aim of the reduce task is to reduce the number of results for a

specific sub-task to one result.

All three types of sub-tasks can be assigned as micro-tasks to a crowdsourcing platform.

The aim is to use a divide-and-conquer strategy to process the complex task. A typical

approach is to send a partition task to a crowdsourcing system and to use the partitioning

result to generate map tasks for each partition. As the last step the results produced by

the map tasks for each partition get reduced to a final result, by using the reduce task.

As pointed out by the authors, it might not be always possible, to split complex work,

in a partitioning of sub-tasks which can all be solved by individuals.

Turkomatic [27], yet another framework to make it possible to process complex work

with the help of predefined workflows, introduces a similar approach as before. A

divide-and-conquer approach is used to process complex tasks. The authors propose

a recursive algorithm and implement a visual workflow editor to support requesters in

designing a workflow.

The work presented in [35] focuses on another problem which arises with the support for

complex work. The authors argue that the introduction of complex work to crowdsourc-

ing results in a significant increase of tasks, which need to be processed by the platform.

Therefore the focus is not only on the quality of the results processed by workers but

also on the throughput of the crowdsourcing system itself. A voting mechanism, for en-

suring high quality of results and maintaining a higher throughput in comparison with

typical strategies of using redundancy to keep the error rate low, is proposed. Based

on the voting algorithm another algorithm is used to boost the throughput further. The
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boosting algorithm is based on the assumption, that workers who produced few errors

in a certain amount of time are more reliable than other workers.

2.2.4 Simulation Frameworks for task-based Crowdsourcing

As crowdsourcing itself is a novel research area not a lot of frameworks exist to simu-

late crowdsourcing. The work presented in [34] introduces a task-based crowdsourcing

system, which supports skill evolution. Workers and requesters communicate via a mar-

ketplace with each other; direct communication is not supported. The framework uses

an auction-based task assigning process, based on the usage of sealed-bid auctions. To

support skill-evolution workers have a confidence value, determining the trust in the

quality of solutions, which the worker delivers. Determining the confidence of work-

ers is performed by using so called ’assessment tasks’. If a newly registered worker,

which has not been assessed yet, wins a task in an auction then the system assigns the

same task to another worker, who’s confidence has been determined before. The results

of both workers are then compared to determine the confidence of the newly assessed

worker.

The simulation framework for task-based crowdsourcing proposed in [16] uses also

auctions to assign tasks to workers. The framework is built on top of the agent-based

modelling framework JABM [12]. The framework is highly configurable and supports

the simulation of different scenarios. Besides supporting different types of auctions (e.g.

Dutch auction, English auction, second price sealed-bid auction and continuous double

auction) the framework also supports the configuration of different requester and worker

behaviours. This is accomplished by providing several trading strategies and valuation

policies, which are used by workers and requesters when participating in an auction.
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CHAPTER 3
Methodology

The aim of this thesis is to overcome some limitations state-of-the-art crowdsourcing

systems are facing. We want to accomplish this by introducing techniques of collab-

oration to task-based crowdsourcing systems. This chapter is split into three sections.

The first section describes a generic model for task-based crowdsourcing. We use this

model to explain the aforementioned limitations. Then the second section introduces ex-

tensions to overcome the limitations discussed before. The extensions include the intro-

duction of a collaboration-based social network and the concept of composite task, our

approach to support complex work in the context of task-based crowdsourcing systems.

Based on these extensions we will introduce techniques for collaboration, manifested as

static and dynamic teams, which are two different types of collaborative structures.

3.1 The Task-based Crowdsourcing Model

In chapter 2 we give an overview of state-of-the-art task-based crowdsourcing (TC) sys-

tems. Based on our observations we introduce a generic model for task-based crowd-

sourcing. Figure 3.1 illustrates the generic TC model. The TC model has two actors,

namely requesters, workers, which interact with each other with the help of the mar-

ketplace. To understand the abilities and limitations of current TC systems, in the next
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Figure 3.1: The Task-based Crowdsourcing Model

subsection we describe the marketplace. Then we introduce the notion of a task. After

explaining the marketplace and the task, the focus is on requesters and workers.

3.1.1 Marketplace

The marketplace acts as the link between requesters and workers. Before any inter-

action between workers and requesters can take place, both group of actors have to

register themselves at the marketplace. The marketplace holds a list of all tasks, created

by requesters, which can be solved by an individual worker. The marketplace can be

configured in a way to show a particular worker only a specific selection of all available

tasks. This selection of tasks depends on the worker’s skill set and rating. In TC systems

a task listed in the marketplace can only be selected by a single worker.

A requester creates and submits tasks to the marketplace. Upon completion of a task,

the requester transfers the offered reward to a worker. Besides that, the requester rates

the worker according to the solution, which was submitted by the worker.

Upon registration a worker is able to solve tasks. If the worker submits a valid solu-

tion for the selected task within the deadline, specified by the requester, the worker will

receive the offered award and a rating based on the worker’s solution. The ratings are

used to maintain a certain quality level.
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3.1.2 Tasks

The TC model is based on the notion of tasks. A task represents an arbitrary set of

problems, for which a requester requires a solution. However a task is assigned only to

one worker, that means that the task has to be solvable by an individual. Therefore tasks

are usually some sort of simple work (e.g. Categorize a certain amount of pictures with

predefined categories). Tasks are created by requesters, tasks are distributed to a worker

via the marketplace, and the workers solve tasks. A task has certain properties, which

have to be specified, according to the TC model we introduce. The properties include

the following:

• a description

• the offered salary

• a deadline

• the set of required skills

The description is essential in solving a task. It has to give access to all information,

which are necessary to start solving the tasks. Furthermore, it has to describe as exactly

as possible what challenge the task represents and how a solution for the challenge has

to be provided. The salary defines the maximum price a requester is willing to pay for

a valid solution. The deadline marks the maximum timespan for a worker to solve the

task and to submit a solution. In addition, a requester has to specify all mandatory skills

needed for a worker to solve the task. By selecting a certain skill, a requester has also

to specify the quality level and the weight of the particular skill. The weight shows how

important a skill is to solve a task. The sum of the weights for all specified skills is

determined by a weighting function. It is defined over all required skills s and denotes

the fact, that the sum of all specified skill weights w cannot exceed 1.0.

s∑
i=0

wi = 1.0
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The skill quality is defined by a number within the interval of 0.0 and 1.0, where a value

close to 1.0 means that the quality has to be very high.

3.1.3 Requesters

A requester is a person who has a task to solve. The task includes one or more problems.

The requester wants to use the crowd of workers, which the marketplace offers, to find

a solution for the problems. Each requester has to register at the marketplace to be able

to participate in a TC system. Requesters create tasks. Doing that, requesters have to

specify what work needs to be done and until when the task has to be finished. Besides

that requesters have to specify a reward for solving the task. Hence in TC systems

requesters specify the price they are willing to pay if a worker submits a solution within

time. Moreover as the TC system supports workers with multiple skills, requesters have

to define which skills are needed to solve a task and how high the skill-based quality

level has to be for a worker to successfully perform the task. Then the skills have to

be weighted. If all the necessary information has been specified, a requester can send

the task to the crowdsourcing platform. A suitable worker can select the task. After

receiving a solution provided by a worker, the requester has the possibility to rate the

worker’s solution. This rating, based on the workers skills, is necessary due to the fact

that the quality of the solutions submitted by workers is never constant.

3.1.4 Workers

A worker is a person, who wants to spend time to solve tasks to gain rewards by doing

so. The tasks are accessible through the marketplace. Like requesters, workers have to

register themselves at the marketplace. Upon successful registration, each worker has to

specify the skills he has. An initial rating of skills can be performed with training tasks

as described in [34] or with an optional test, as used by AMT.

The workers aim is to solve as many tasks as possible, while delivering high-quality

solutions so that the skill-based rating increases. After the qualification of a worker

has been defined, a worker can select a task from the list of available tasks, which he
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wants to solve. If the worker manages to provide a solution to the problem stated in the

task within the deadline the requester has specified, he submits the solution via the mar-

ketplace to the requester. In exchange he receives the salary offered by the requester.

Besides that the worker will be rated by the requester according to the quality of the

worker’s solution.

The generic model for task-based crowdsourcing, which we propose, works well for

simple work. However task-based crowdsourcing platforms, like AMT, are getting

more and more popular. As stated in [41] the rising demands of enterprises around

the world to use crowdsourcing show the limitations of the generic task-based crowd-

sourcing model.

3.1.5 Limitations

The model presented above has a limitation, regarding the complexity of work which

is supported. Right now TC systems only support simple work, which is solved by

an individual. To overcome this limitation a model for task-based crowdsourcing has

to be defined which introduces complex work. So far extensions to micro-task aware

crowdsourcing, which are presented in chapter 2, support only a limited range of com-

plex work. Both approaches, described in [27] and [25], focus on work which is partly

iterative and which can be modelled as a simple workflow. The workflow uses a divide-

and-conquer approach, that means that the complex work is split into sub-tasks. The

results of the sub-tasks are then merged together. Splitting and merging can both be

performed several times.

However in general not every kind of complex work can be split into parts, which are

solved by individuals. That means that a form of collaboration is required between the

workers to solve that kind of complex work. If we look at the model for task-based

crowdsourcing, which we have introduced before, then we can see that a form of col-

laboration is not supported. The workers cannot communicate with each other directly,

furthermore there is no way for workers to work together within the context of a task-

based crowdsourcing system.

Therefore, to overcome the lack of techniques for collaboration, we propose in the next
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section extensions to the model for task-based crowdsourcing to support collaboration.

As a foundation, to make collaboration possible, we introduce a collaboration-based

social network. Furthermore we define a model for complex work, the composite task.

Then two approaches to support collaboration within task-based crowdsourcing are pre-

sented.

3.2 Extending the Task-based Crowdsourcing Model

This section explains in detail our approach to introduce worker collaboration within

the context of a task-based crowdsourcing system. The demand for doing more com-

plex work with the help of crowdsourcing systems is rising, currently state-of-the-art

crowdsourcing systems do not offer support for processing complex work. Our ap-

proach towards overcoming this limitation is the introduction of worker collaboration.

Currently the worker crowd is unstructured, that means that in TC systems workers have

no possibility to contact each other directly and there is no support for workers to col-

laborate. Therefore, in the next subsection we introduce a model for defining the crowd

explicitly as a social collaboration network. Besides that we define how complex work

is represented in our extended model for task-based crowdsourcing.

3.2.1 The Social Collaboration Network Model

We want to introduce collaboration to task-based crowdsourcing systems, therefore the

purpose of this section is to introduce a structure, which makes collaboration between

workers quantifiable. The foundation on which our model is based is the crowd of work-

ers and the ability of two workers to work with each other. That means that workers span

a social structure. Furthermore to explicitly model the collaboration between workers,

we have to introduce a relationship between a pair of workers in the social structure.

This leads us directly to the well known model of social networks.

Social networks are a social structure spanned by individuals, acting as nodes, and the

relationships between each of these individuals. As can easily be seen, social networks

fit all the requirements to model the collaboration between workers.
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Figure 3.2: The Social Collaboration Network Model

In computer science a network is modelled as a graph. A graph consists of a set of

nodes, and a set of edges between the nodes. For our model of a social collaboration

network we use an undirected labelled graph. Every node in the graph represents a

worker, and each edge between two workers A and B denotes the fact that the workers

can collaborate with each other. Figure 3.2 shows a graphical representation of the

social collaboration network. We see a number of nodes, representing workers. Besides

that we see connections between the nodes, these connections represent the ability of

a pair of workers to work with each other. Furthermore we add a label l to each edge

to quantify the collaboration between workers. l, the collaboration factor, is a numeric

value between 0.0 and 1.0, which defines how good worker A and B can work together.

As we see later, the collaboration factor is essential for solving a composite task, as it

describes how good people work together. Therefore a bad collaboration factor close to

0.0, will have indirectly a negative effect on solving a composite task. The explanation

for this is simple. As the work is shared between a group of people, the ability of the

people to collaborate with each other becomes important. Collaboration requires a lot

of communication, scheduling, adjusting to each other, hence a problem in doing so

will have an impact on the result of the work performed by the group of people, and
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reflects in a low collaboration factor. This also means, that the collaboration factor

between a pair of workers can change. If workers work together more often, then their

collaboration factor will increase. We argument here that collaboration is based on

training and therefore increased training will sustain in higher ability to work together

with each other.

3.2.2 Composite Tasks

We have so far introduced the model used for representing our collaboration network. In

the next section we introduce techniques of collaboration based on our network model,

therefore we have to rethink the structure and the variety of tasks supported by crowd-

sourcing systems. So far TC systems only offer tasks, which cannot be split and which

are solved by a single worker. Supporting only this form of tasks ignores the high de-

mand of enterprises to solve complex work within task-based crowdsourcing systems.

Hence we introduce a new form of task, called the composite task. A composite task

has a finite set of sub-tasks. Each sub-task can either be a composite task itself or a

task. We introduce dependencies between sub-tasks, this is due to the fact that generally

complex work cannot be divided into independent tasks. If a dependency between a

pair of sub-tasks exists, that implies that the workers assigned to these sub-tasks have to

work together to solve both tasks.

Like the social collaboration network, we model the set of sub-tasks and the depen-

dencies between the sub-tasks as undirected labelled graph. Each node of the graph

represents a sub-task. As mentioned before sub-tasks can be composite or normal tasks,

that implies that one could theoretically make a complex task with an infinite depth. An

edge between a pair of sub-tasks shows that these two subtasks depend on each other.

The edge is labelled with the cooperation factor, a value between 0.0 and 1.0. A cooper-

ation factor between sub-tasks A and B close to the maximum 1.0 denotes the fact that

A and B have a high dependability on each other, which implies that a high amount of

cooperation, denoted by the collaboration factor between a pair of workers, is required

to solve both tasks.

Figure 3.3 shows an example of a composite task. The composite task has 6 sub-

tasks A, B, C, D, E and F . As we can see sub-tasks A, B and C depend on each other.
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Figure 3.3: An Example of a Composite Task

In detailB andC have a low cooperation factor of 0.23. The cooperation factor between

A and C is 0.63, that is moderately higher then the factor between A and B, which is

0.43. Another group of dependent sub-tasks is formed byE and F . E and F have a very

high dependency of 0.88 between each other, that means that workers assigned to those

two tasks will have to work together very closely to manage to find a solution for both

sub-tasks with a high quality. In addition to the two groups of sub-tasks the composite

task has also one sub-task D which has no dependency to another sub-task.

Figure 3.4 gives an overview of the extended task-based crowdsourcing model we pro-

pose. In this section we have introduced a social collaboration network, which explicitly

shows the collaboration between workers. Furthermore we have defined a generic struc-

ture to model complex work, the composite task. Therefore in our extended model for

task-based crowdsourcing, the requesters, the marketplace and the crowd of workers

have to support composite tasks. Besides that, to make the introduction of the social

collaboration network meaningful, the next section defines the techniques of collabora-

tion, which are used to take advantage of the social collaboration network.
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Figure 3.4: The Extended Task-based Crowdsourcing Model

3.3 Introducing Techniques for Collaboration to

Task-based Crowdsourcing

Built upon the extended model of task-based crowdsourcing, which is shown in Figure

3.4 we introduce techniques for collaboration. These techniques use the social collabo-

ration network, which the workers span. As we have argued before, the introduction of

composite tasks is necessary for workers to collaborate with each other. Therefore we

introduce two team structures for workers. Both team structures are based on the social

collaboration network, which has been introduced in the section before. Once again this

means, that we have to extend our crowdsourcing model in a way that teams can be

supported. This means that the marketplace, the central component of a crowdsourcing

system has to be extended, to support the registration of and the interaction with teams.

For a requester there are no changes necessary, this is due to the fact, that a team just

represents a special form of worker.
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3.3.1 Static Team

A static team (ST) describes our first approach towards introducing collaborative work

into crowdsourcing systems. STs are based on the structure of the underlying social

collaboration network. Workers who know each other and workers, which work well

together, can form a ST. By doing so the workers have to register themselves at the

marketplace as a static team. It is implied that all members of the team are themselves

registered at the marketplace as well. The ST is represented as a virtual worker and be-

comes part of the crowd. That means upon successful registration of the ST, members

will have a dual role within the task-based crowdsourcing system, they will be normal

workers as before and they will also be part of a team, which is also represented as a

worker. Therefore they can solve tasks within the bounds of their ST or as a single

worker alone. The fact that the team has to be operated by at least one team member to

successfully interact with the marketplace is not of our concern.

Static teams offer the members some advantages.

• Skills are aggregated by the virtual worker representing the static team, this means

that all different skills of all members are thrown together. This increases the

possibility to conduct a wider range of tasks.

• Our model of static teams follows an optimistic approach, where the rating and

level for each skill of the virtual team is determined by the maximum of the team

member’s individual ratings and levels.

• With the approach chosen before to use the maximum rating, workers within a

team have a higher possibility to get access to tasks for which they would have

been rejected as an individual worker due to their skill level and rating.

• The dual role of being a normal worker and being member of a ST increases the

possibility to receive more work over time.

Figure 3.5 gives and example for the teams skill-aggregation. The team consists of

four workers. All four workers have together four different skills S1, S2, S3 and S4.

The number close to the skill determines the worker’s skill level. A higher value means
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that a worker is more skilled than a colleague with a lower value. Two workers share the

skill S1; one worker has a level of 0.8, the other worker has a level of 0.3. Therefore, by

using our optimistic approach, this will result in the team having skill S1 with a level of

0.8. The same approach is used for all other skills which the workers share.

S1: 0.8

S2: 0.7

S3: 0.6

S3: 0.7

S1: 0.3 S4: 0.3

Team

S1: 0.8 S2: 0.7

S3: 0.7 S4: 0.3

Figure 3.5: Skill-aggregation

The purpose of static teams is to exist for a long time, therefore the average collaboration-

factor within static teams is very high, because all the team members are supposed to

know each other and because they are used to work with each other frequently.

3.3.2 Dynamic Team

Our second approach introducing team-structures to task-based crowdsourcing is the

dynamic team (DT). A DT is represented the same way as a static team. Upon forming

a dynamic team it is represented by a virtual worker. However forming the dynamic

team and also the aim of the dynamic team differ from a ST. A DT is created by one

individual worker. The worker tries to create a DT, if he wants to solve a composite task.
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However as the task requires more than one worker to solve, he asks his neighbours in

the underlying collaboration network if they can help him solving the task. If enough

neighbours agree to participate in finding a solution for the task, the single worker will

register himself and the neighbours participating as a DT at the marketplace. The pur-

pose of a dynamic team is to solve one specific task, upon completion of this task the DT

is disbanded. This concept might also lead to teams, where the average collaboration

factor is lower in comparison to ST teams, this is due to the fact, that for each new task

a new DT is registered.

3.3.3 Static Versus Dynamic Teams

As the aim of this thesis is to find out which advantages and limitations arise by in-

troducing static and dynamic teams to a task-based crowdsourcing system, we want to

compare both approaches presented by us. Table 3.1 summarizes the differences be-

tween both team structures.

Static team Dynamic team
Purpose solving multiple tasks solving one task
Life span undefined for one task
Team size static tailored for solving one task
Collaboration high medium

Table 3.1: Static Versus Dynamic Teams

In this chapter we introduced a model for TC. We extended this generic model step

by step to overcome limitations, which are present in TC systems. We defined an ex-

tended model for task-based crowdsourcing, which supports the collaboration between

workers. Furthermore our model supports complex work, represented by a composite

task. As a next step we defined two collaboration models, namely static and dynamic

teams, and explained their role within the context of a TC system.

As a logical consequence we want to evaluate our extended model for task-based crowd-

sourcing. Therefore we need to implement the concepts presented in this chapter into

a task-based crowdsourcing system. The next chapter demonstrates the implementation

of all the concepts presented in this chapter within an existing crowdsourcing simula-
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tion framework. The focus will be on explaining how we have overcome the challenges

of integrating teams and composite tasks. This includes presenting and algorithm for

splitting and assigning a composite task to individual team members.
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CHAPTER 4
Implementation of the Simulation

Environment

The aim of this thesis is to extend the generic task-based crowdsourcing model, pre-

sented in chapter 3, with techniques for collaboration and to evaluate the advantages and

limitations of the concepts presented in chapter 3. In chapter 3 we propose a generic

model for task-based crowdsourcing. We extend the model by introducing a social col-

laboration network. Besides that the extended model supports complex work. This

is accomplished by extending the simple task model state-of-the-art task-based crowd-

sourcing systems use. As explained in detail in chapter 3, we use a composite task for

that purpose. Built on top of the integration of a social collaboration network and the

support of complex work, we introduce two team structures, namely static and dynamic

teams.

After introducing these concepts the next logical step is to evaluate the advantages and

limitations of both approaches towards introducing teams, based on a social collabo-

ration network, to task-based crowdsourcing. To perform an evaluation we need an

environment to do so. The remainder of this chapter deals with the details of the envi-

ronment used for evaluation, the extensions made to the chosen environment to support

the extended model for task-based crowdsourcing. Besides that we describe in detail

how an evaluation run is performed and what data will be evaluated.
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4.1 A Simulation Framework for Crowdsourcing

In chapter 3 we introduce an extended model for task-based crowdsourcing. We want

to evaluate the proposed extensions. Therefore we have to find a solution to perform

evaluation. Three possible ways exist to accomplish this:

• Integration into an existing task-based crowdsourcing system, e.g. Amazon’s Me-

chanical Turk

• Design and development of a new task-based crowdsourcing system.

• Usage of an existing simulation framework for task-based crowdsourcing.

The first option seems to be a theoretical one. The integration of a novel model for

task-based crowdsourcing within an commercial crowdsourcing system, without having

gathered data about the limitations and advantages of the proposed concepts, seems to

be very unlikely. Option number two is out of scope of this thesis. There are existing

frameworks to simulate crowdsourcing, e.g. work presented in [34] and [16]. Therefore,

we choose to extend an existing task-based crowdsourcing framework. We want to use

a framework which provides the following capabilities and features:

• Task-based crowdsourcing: The chosen system shall support the generic model

for task-based crowdsourcing as described in chapter 3.

• Extensibility: Implementing new features like our approaches towards collabora-

tion and the integration of the collaboration network should require as little effort

as possible.

• Configuration: The framework should be highly configurable, so that simulation

runs can be easily performed with different settings and scenarios.

• Reporting capabilities: Evaluation is a very important part of this thesis, there-

fore the framework has to have support for reporting data. The reported data is

the foundation for performing an accurate evaluation later on.
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We choose to implement the extensions to task-based crowdsourcing into a simulation

framework for crowdsourcing (SFC) presented in [16] because it fulfils the requirements

stated above.

SFC is a round-based simulation framework, which means that a simulation is per-

formed within a certain amount of rounds. The marketplace is the component of SFC,

which simulates a task-based crowdsourcing system. Workers and requesters, modelled

as agents, communicate bidirectionally with each other and the market with the help

of events. SFC uses a more specialized model of task-based crowdsourcing. Instead

of allowing workers to pick tasks in a ’first-come-first-serve’ matter auctions are used

to assign tasks to workers. We do not see the usage of auctions as a disadvantage or

a violation of the generic model for task-based crowdsourcing. Actually, the usage of

auctions is a common approach used by other task-based crowdsourcing systems as de-

scribed in [6], [2] and [34].

SFC provides an easy way to configure simulation with the help of Spring [36]. SFC

also supports the reporting of data, acquired by a simulation. For a more detailed insight

to SFC the interested reader may read [16].

The next subsection gives a more detailed overview of the interactions between re-

questers, workers and the marketplace and tries to give a better understanding on how

SFC works.

4.1.1 Crowdsourcing With SFC

When a simulation with SFC is started the framework initializes itself. Next the workers

and requesters register themselves at the framework. Then the normal crowdsourcing

workflow is started. Figure 4.1 is an UML [40] sequence diagram, showing the basic

interactions between requesters, workers and the marketplace. As shown in Figure 4.1

in each simulation round requesters create and submit tasks to the market. The mar-

ket spawns an auction for every task, selects workers who are allowed to bid in the

auctioning-process and informs those workers about the auctioned task. The informed

workers have then the possibility to submit a bid for the task. They can submit only
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Figure 4.1: SFC Requester - Market - Worker Interactions

one bid per auction and round. The bidding strategies of workers and requesters can be

configured; multiple strategies are supported. The market determines at the end of the

auction if there is a winner for the auction. If yes, the task is assigned to the winning

worker. The worker, who wins the auction, has to solve the assigned task. If the worker

manages to process the task within the specified deadline, set by the requester, he will
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notify the market. Then the promised salary is transferred from the requester to the

worker’s account and the requester rates the worker according to the result produced by

the worker when processing the task.

The next subsection demonstrates the architecture of SFC and defines the compo-

nents, which need to be adapted and extended, to integrate complex work based on a

collaboration network into SFC.

4.1.2 SFC’s Architecture

We have selected SFC as the platform on which we want to implement our concepts of

a collaboration-based social network and static and dynamic teams. Therefore we have

to determine the areas, where we need to apply changes and where we need to add our

extensions to SFC. Figure 4.2 gives an overview of the architecture of SFC and shows

the areas, which need to be modified.

As shown in Figure 4.2 SFC’s SimulationController is the core of the framework, it

reads a Configuration File and configures the framework according to the configuration

specified in the file. Configuration includes setting up reports for the Reporting compo-

nent, defining with which settings the simulation is performed and which population is

set up for a simulation. Besides that, the SimulationController is the component control-

ling the simulation itself. SFC is a round-based framework, therefore the Simulation-

Controller informs all other components about start and end of a simulation and about

the start and end of a single round. The SimulationController uses events to accom-

plish this. The MarketSimulation is the core component for simulating the marketplace,

like the SimulationController it sends events to all other components to interact with

them, e.g. an event is that the auction has started. The Marketplace is closely related

to the MarketSimulation, it includes the Market, where auctions are preformed. It re-

acts to the events triggered by the MarketSimulation. The population, which includes

requesters and workers, interacts not directly with the market, it uses events to interact

with the MarketFacade, which is an intermediary between the population and the mar-

ket. Requesters send tasks to the marketplace to be auctioned, workers interact with

the marketplace to bid for an auctioned task and to process the tasks acquired through
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Figure 4.2: Extensions to the SFC Framework

auctions.

The structure of SFC makes it possible for us to implement our proposed extensions

in an easy way. The marked components of Figure 4.2 show the areas which need to

be adapted or extended. Besides changing the configuration to our needs, this includes
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defining reports to collect the data used for evaluation as described in chapter 5. Fur-

thermore to integrate complex work, we have to extend SFC’s task model. Next, we

have to extend SFC’s worker model to introduce the collaboration network, on which

we base our teams.

The next section will explain step-by-step how SFC is extended to implement the con-

cepts, which have been introduced by us in chapter 3.

4.2 Extending SFC

So far we have introduced SFC, a simulation framework for task-based crowdsourcing.

We have described, which parts of SFC need to be adapted, to include the concepts

presented in chapter 3. To start with, we extend SFC to support a social collabora-

tion network. Next we extend SFC’s task model to introduce composite tasks. Based

on these extensions, we explain all changes necessary to introduce static and dynamic

teams.

4.2.1 Implementing the Social Network

Figure 4.3: Implementation of the Collaboration Network
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Figure 4.4: Extending SFC’s worker model

As we explain in chapter 3, our social collaboration network is represented by an

undirected labelled graph. We used the Java Universal Network/Graph Framework

(JUNG) [13] to represent the graph. Figure 4.3 shows an abstract model of our network

implementation. NetworkedWorkers are the nodes of the graph. The edges between the

workers show the collaboration factor and represent the fact how well two workers can

work together. Like in other task-based crowdsourcing systems, workers implemented

in SFC cannot contact each other. Therefore each worker, being part of the social net-

work, needs access to the network, due to that we extend SFC’s woker model as shown

in Figure 4.4. The NetworkedWorker, which we implement, is part of and has access to
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the underlying social network, which supports the following methods:

• Retrieve all workers

• Retrieve all neighbours of one worker

• Retrieve the collaboration factor

• Update the collaboration factor

The network implementation supports retrieving all neighbours of a specific worker

within the network. This method is used in the context of creating dynamic teams, which

we explain in detail in the next section. Retrieving and updating the collaboration factor

are both necessary when a task is processed. The collaboration factor plays an important

role in determining a tasks result and is updated when two workers work together. This

will be explained in detail with the implementation of our teams.

As shown in 4.4 a NetworkFactory is introduced. Besides offering generic classes

to model graph structures, JUNG provides us with a network generator for generating a

random graph structures.

4.2.1.1 Kleinberg small-world network model

Our approach towards generating a random social network is based on a very simple

network model introduced in [26] which follows the well known mathematical model

for small-world networks defined in [43]. The ’Kleinberg small-world network’ model

uses the small-world property to generate a random graph structure. The small-world

property is based on the corresponding small-world problem, which was introduced

in [31]. The small-world property can be described as follows. Each individual in

the social network has only a small amount of people it is connected to, however each

individual in the whole social network is connected through a very small number of

intermediaries to each other. Therefore by using the ’Kleinberg small-word network’

model, we create a network which is split into cliques with a few remote connections

to other cliques. A clique represents a group of workers which collaborate together.

Hence, the team structures, which are introduced by us, heavily rely on these cliques.
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Figure 4.5: The Kleinberg small-world network model

Figure 4.5 shows the ’Kleinberg small-world network model’ used to generate our

social network. The network is represented by mathematical undirected labelled graph,

with and underlying lattice of size n×n. Node W has 4 connections to his close neigh-

bours N1, N2, N3 and N4, besides that W has one remote connection to a node R.

This randomly chosen connection is selected with the probability defined by r−α, where

r is the lattice distance, also known as M̈anhattend̈istance, of node W to node R and

α ≥ 0 is the constant clustering exponent defined at creation time. We use the net-

work generator to generate a social network, this includes generating workers and the

dependencies between the workers. The collaboration factor, represented by the edges

between the workers, is randomly uniformly distributed within the range of 0.0 and

1.0. SFC is configured to use the factory to initialize the collaboration network and the

worker population at simulation start.

After introducing a new worker used by our collaboration network, the next subsec-

tion focuses on the extensions to SFC to support complex work.
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4.2.2 Implementing Composite Tasks

Figure 4.6: Extending SFC’s task model

Figure 4.6 is an UML class diagram, showing the extensions made to SFC’s task

model. JUNG is used for the implementation of composite tasks. Again an undirected

graph is used as the data structure to represent composite tasks. Each node in the graph

represents a sub-task. An edge between two sub-tasks represents the fact that both tasks

depend on each other. The value, the edge is labelled with, is the cooperation factor.

Besides representing sub-tasks with the help of an undirected graph, composite tasks

share the same interface introduced by SFC for tasks. Therefore, according to the con-

tract defined by SFC’s task interface, the following properties have to be implemented

for composite tasks:
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• minimum duration: As mentioned before SFC is round-based. Therefore a du-

ration is defined in rounds. The maximum duration a simple task can have is

defined as 24 rounds. The minimum duration defines the time a perfect worker

needs to process a task. We defined the minimum duration of a composite task

as the sum of all minimum durations of the sub-tasks. The right definition of the

minimum duration is important as the framework uses the minimum duration for

calculating the deadline of a task.

• expected result: The expected result is a randomly generated result between 0.0

and 1.0, it is used to determine later how well a worker performed and is randomly

generated, when the task is created.

• result: The result is the outcome of the worker processing a task, nothing had to

be changed here.

• effort: The effort for a simple task is defined by dividing the minimum duration

by the maximum duration, which is as mentioned before 24 rounds. As the effort

can be used by workers to determine how high a bid has to be, we use the average

minimum duration of all-subtasks and divide it by the maximum duration. We

chose this approach, because of the fact that the sub-tasks of a composite task are

usually assigned to different persons.

• skill quality and weight: SFC uses the same approach as described by the generic

model for task-based crowdsourcing, skills have two values, a quality determining

how good a worker should be to perform the task, and a weight to show how

important the particular skill is. The average quality and weight, calculated over

all sub-tasks, is used as quality and weight for a composite task.

A factory has been implemented to automatically generate composite tasks. The

factory is used during simulation by requesters to generate new composite tasks. For

simplicity and performance reasons the factory implementation is limited to generate

composite tasks with a number of three to six sub-tasks. We only support the creation

of simple task as sub tasks, furthermore we generate the dependencies between the
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sub tasks randomly and assign to each dependency, represented as an edge, a random

uniformly distributed cooperation factor as described in chapter 3.

So far the implementation of the collaboration network and the implementation of

a composite task has been explained. Next, we explain how we implement our team

structures on top of SFC.

4.2.3 Introducing Teams to Task-based Crowdsourcing

This section focuses on the implementation of both team structures. As the biggest

difference between static and dynamic teams is the life cycle, we choose to base both

approaches on the implementation of a common team worker. The team worker imple-

ments SFC’s worker interface. To explain our implementation in detail we first have

to elaborate on the details of workers in SFC. As in our generic model for task-based

crowdsourcing each worker has multiple skills. Currently SFC supports a maximum of

5 skills. Each skill is represented by an integer, which is the unique id of a skill. For

each skill the following three values are specified:

• real performance: The real performance determines the performance of a worker.

The value is between 0.0 and 1.0 and is generated with a normal distribution.

Mean and standard deviation have to be specified in the configuration file to run a

simulation with SFC.

• confidence: The confidence in the worker’s performance, a number in the range

of 0.0 and 1.0, is set at creation time of a worker. The confidence is generated

with a normal distribution. The mean and standard deviation for the confidence

have to be specified in the Spring configuration file to run SFC.

• observed performance: The observed performance is the performance value ob-

served by requesters. It will increase or decrease according to the workers rating.

Initially the observed performance rating is determined with a normal distribu-

tion. The real performance is used as mean and 1.0 − confidence is used as the

standard deviation. Skills are randomly initialized when a worker is created by

the SFC framework.
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Figure 4.7: Implementing Teams

The next step to introduce teams to SFC is to extend SFC’s existing model of work-

ers with all the components needed to use teams later. Figure 4.7, an UML class dia-

gram, shows the extension, which we introduce to SFC, to support teams. SFC’s worker

model is based on a Worker interface and an AbstractWorker implementation of the in-

terface. The AbstractWorker is the class which needs to be extended to implement a
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TeamWorker. Therefore we have to extend or use the four main components, which an

AbstractWorker uses to interact with SFC. This four components are:

• valuation policy: The valuation policy determines the price a worker is willing

to bid for an auctioned task. SFC supports different valuation policies. Chapter 5

explains in detail which valuation policy is used for simulation.

• trading strategy: SFC supports different types of trading strategies. A trading

strategy is used to change the price, determined by the valuation policy before, ac-

cording to a set of rules and facts determined by the strategy. E.g. a rule could be

that a worker decreases or increases the price depending on the current workload.

• transaction book: The market assigns a transaction for each won auction to the

worker. A transaction includes a reference to the requester, the winning worker

and the task. It specifies the requester price, the worker price and the price for

which the auction was cleared. Besides that it also specifies the deadline, until the

worker has to finish the auctioned task. All the transactions assigned to a worker

are processed with the help of the transaction book. The transaction book is the

place where the time, a worker needs to process a task, is determined and the

result of processing the task is calculated.

• account: All funds earned by a worker by processing an auction successfully are

stored in the account. The price to be paid is determined by the result of the

auction, and is as described before stored in a transaction.

For a detailed explanation of all components described above the interested reader

is referred to the work presented in [16].

As Figure 4.7 shows, we introduce a TeamTransactionBook and a TeamAccount to

implement teams properly. This is necessary, because athe SimpleTransacationBook can

only handle normal SFC tasks. We also had to adapt the account, as it was implemented

to be used by a single worker and not by a team of workers. Therefore as the transaction

book is the core component for processing and handling tasks, we start by implementing

44



a transaction book which allows us to work with the composite tasks, which we have

introduced before. Our transaction book for teams has to do the following tasks:

• Handle composite tasks: Handling of composite tasks includes splitting up com-

plex tasks into parts, which can be solved by team members. It also means that the

transaction book has to make sure that the parts can later be put together again.

• Process composite tasks: Processing of composite tasks means, that all sub-tasks

assigned to members have to be put together when they are finished. A result for

the composite task has to be determined. To determine a result accordingly, it is

necessary to include the cooperation factor between sub-tasks and the collabora-

tion factor between the team members.

The next three subsections will focus on both items mentioned above. First we de-

scribe in detail how composite tasks are split up. Next we will explain how a group of

workers is selected for processing a sub-task and then we show how the result of a com-

posite task is calculated. After that we explain how we implemented the TeamAccount

shown in Figure 4.7 and introduce static and dynamic teams.

4.2.3.1 Handling Composite Tasks

To handle and process composite tasks we had to implement a transaction book which

supports composite tasks. The implementation we have chosen, splits a composite task

into sub-tasks and assigns each sub-task to one or more workers.

Algorithm 4.1 describes how we split a task. The algorithm itself is split into two

parts. The first part assigns a composite task. With the help of the function map we

introduce a bidirectional mapping between the parent task and the composite task we

want to assign. We need to establish this mapping for the following reasons:

• Tasks are processed by the team members. Upon completion of a task, a team

member informs the worker, that the task is completed. The team worker checks

the parent of the task to determine if the parent can be processed and finished.

• A parent task is processed, when all its sub-tasks have been processed. Therefore

a parent task has a list of all the sub-tasks which are not processed.
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The communication between the team worker and its team members is done via

the help of team transactions. As described before, the market assigns a transaction to

the winner of an auction, to be able to use the same interface to assign team tasks we

derived our team transaction from the normal transaction. The only difference to a nor-

mal transaction is that a team transaction stores a reference to the team which created

the transaction. This reference is used by a team member to notify the team when the

member finishes a task, which was assigned by the team. After mapping the task and its

parent, we invoke assign recursively for each sub-task st of the task to be assigned.

The second part of the algorithm assigns simple tasks to networked workers. In

most cases a simple task is assigned to one simple worker, however as we have an

environment with multiple skills, it can be the case that simple tasks require more skills

than each single team member has. Therefore, more than one worker can be assigned.

Then for each worker a bidirectional mapping between parent and task is made. This

ensures that a parent task is only completed when all its sub-tasked are processed, even

when one sub-task is distributed to more than one worker to process.

Algorithm 4.1: assign(Task task, CompositeTask parent)

input: task: the task to be assigned, parent: the parent of the task to be assigned

1 if task is a CompositeTask then
2 map(task, parent);
3 createTransaction(task, parent);
4 foreach sub-task st of task do assign(st, task);
5 end
6 else
7 team← selectTeam (task);
8 transaction← createTransaction(task, parent);
9 foreach worker w of team do

10 assignTransaction(w, transaction);
11 map(task, parent);
12 end
13 end
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4.2.3.2 The Team Selection

This section focuses on the design of the select function, which was introduced in Al-

gorithm 4.1.. The select function determines, to how many team members a task is

distributed for processing. A team worker only participates in an auction if the team has

all skills required by the auctioned task. To accomplish this, we merge all skills of the

team members together. Merging is performed by selecting from each available skill

the best confidence and performance value the group of members offers. Therefore we

reduce the problem of selecting a suitable team to the following.

We have a task which requires n skills to be processed, and we have x workers,

which each have a subset k of the required n skills. Therefore it can easily be seen, that

the problem is an instance of the NP-hard set covering problem (SCP) [4]. We use a

greedy algorithm to overcome the SCP problem. The input to our algorithm is a set of

workers and all required skills of the task for which we want to find a suitable team.

Our algorithm uses the following steps:

1. Remove all workers who have no required skills.

2. Sort the workers according to the number of required skills they have.

3. Select the worker with the most required skills. If more than one worker has

the same amount of required skills, choose the worker with best average real

performance.

4. Remove all required skills, which the selected worker has, from our set of required

skills.

5. Stop if no skills are required any more or no workers can be chosen, else start

with step 1 again.

To achieve better results, we perform this algorithm several times. As a start the

algorithm searches for a group of workers including all team members. If a group of

workers can be found, then we continue with a sub set all team members. If a team

consists of x team members, then we try this approach x times. Each time we take

47



all team members and remove one them. The reduced group of people is then used

as the input to the algorithm stated above. This strategy of team selection leads to the

possibility that we have a set of teams, which are suitable to perform the specified task.

Therefore, we choose the team, which has the highest suitability factor. The suitability

factor is the average real performance of all team members multiplied by the result of

1.0 minus the team’s workload. We use this approach to distribute the workload within

a team as best as possible, while keeping a maximum level of performance.

4.2.3.3 Processing Composite Tasks

So far we have implemented a team transaction book, which supports splitting up com-

plex tasks. Besides that the team transaction book uses an algorithm to select members,

to which tasks get assigned. Therefore as a next time, we have to implement an al-

gorithm to determine a composite task’s result. We have multiple sub-tasks, and it is

possible that each sub-task has more than one result, therefore determining the result of

a composite task becomes more difficult. Listing 4.1 describes how a result is calcu-

lated. Besides having multiple results for one task, we have to in-cooperate the collabo-

ration factor, which shows how well workers work together, and the cooperation factor,

which shows how much cooperation is needed to solve the sub-tasks of a composite task

successfully.
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1 double maxCoopera t ion = 0d , m a x C o l l a b o r a t i o n = 0d ;

2 double a v g D i f f e r e n c e = 0d ;

3

4 f o r ( i n t i = 0 ; i < s u b t a s k s . s i z e ( ) ; i ++) {

5 Task t a s k 1 = s u b t a s k s . g e t ( i ) ;

6 a v g D i f f e r e n c e +=

7 Math . abs ( t a s k 1 . g e t R e s u l t ( ) − t a s k 1 . g e t E x p e c t e d R e s u l t ( ) ) ;

8

9 f o r ( i n t j = i + 1 ; j < s u b t a s k s . s i z e ( ) ; j ++) {

10 Task t a s k 2 = s u b t a s k s . g e t ( j ) ;

11

12 double l o c a l C o o p e r a t i o n = c o m p o s i t e . g e t C o o p e r a t i o n ( t a s k 1 , t a s k 2 ) ;

13 maxCoopera t ion += l o c a l C o o p e r a t i o n ;

14

15 L i s t <NetworkedWorker > worke r s1 =

16 t r a n s a c t i o n s . g e t ( t a s k 1 ) . ge tWorke r s ( ) ;

17 L i s t <NetworkedWorker > worke r s2 =

18 t r a n s a c t i o n s . g e t ( t a s k 2 ) . ge tWorke r s ( ) ;

19

20 double a v g C o l l a b = 0d ;

21

22 f o r ( NetworkedWorker w1 : worke r s1 ) {

23 f o r ( NetworkedWorker w2 : worke r s2 ) {

24 double c o l l a b = worker . g e t C o l l a b o r a t i o n ( w1 , w2 ) ;

25 updateTeamwork ( c o l l a b , l o c a l C o o p e r a t i o n , w1 , w2 ) ;

26 a v g C o l l a b += c o l l a b ;

27 }

28 }

29 a v g C o l l a b /= ( double ) worke r s1 . s i z e ( ) ∗ worke r s2 . s i z e ( ) ;

30 m a x C o l l a b o r a t i o n += a v g C o l l a b ∗ l o c a l C o o p e r a t i o n ;

31 }

32 }

33

34 a v g D i f f e r e n c e /= ( double ) s u b t a s k s . s i z e ( ) ;

35 double r a t i o = m a x C o l l a b o r a t i o n / maxCoopera t ion ;

36

37 i f ( r a t i o > 1) {

38 r a t i o = 1 . 0 ;

39 }

40

41 double r e s u l t = random . n e x t G a u s s i a n (

42 e x p e c t e d R e s u l t , a v g D i f f e r e n c e ∗ ( 1 . 0 + ( 1 . 0 − r a t i o ) ) ) ;

Listing 4.1: Determining the result of a composite task
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The algorithm shown in Listing 4.1, is a simplified version of the algorithm imple-

mented in our extension to SFC. It calculates three basic values and determines a result

based on these three values. The maximum cooperation represents the sum of every

single cooperation factor between two sub-tasks of the composite task. The maximum

collaboration represents the sum off all average cooperation between the workers of one

subtask to another. The third value necessary to calculate a result for our composite task,

is the average difference between the result and the expected result of each sub-task. We

determine the three values between line 4 and line 39 of Listing 4.1. Next we determine

the ratio between maximum collaboration and maximum cooperation. This ratio shows

us if our team is working good enough together to accomplish the complex task with

a good result. On line 41 the result is randomly generated by a normal distribution.

The mean of the normal distribution is the complex task’s expected result. The standard

deviation σ is determined by the following formula:

σ = avgDifference ∗ (1.0 + (1.0− ratio))

The calculation of the result of a simple task is performed with the same algorithm,

the only difference in that case is that the cooperation factor will be 1.0 as distributing

one task over several workers requires as much cooperation as possible to solve this

simple task.

We also want to point out that on line 26 the teamwork between two workers is

updated. We update the teamwork according to the following formula:

teamwork = teamwork + cooperation ∗ (1.0− teamwork)

This formula guarantees us that the teamwork cannot exceed a value of 1.0, more-

over the teamwork increases as the cooperation, which is required to solve the task,

enhances. We take the assumption here that a training effect applies to teamwork, that

means the more you work together, the better the teamwork gets. Therefore, if a higher

amount of cooperation is required the workers benefit from it.
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4.2.3.4 Team Account

Besides changing the transaction book, we had also to change another component,

namely the Account. Our implementation of an account distributes the team income

to all team members in equal parts. We have chosen this simple implementation be-

cause we imply that the workload in a team is distributed evenly over all team members.

Hence, there was no need to implement a more complex team account.

So far we have implemented a new transaction book and a new account. Two core

components, namely trading strategy and valuation policy are still missing. However it

was not necessary to change this part of the code, as the representation of our complex

task was implemented according to the contract SFC specified. Therefore we can use

the standard implementations of trading strategies and valuation policies.

As shown in Figure 4.7 this means that we have defined all the core components of

our team worker. Therefore we can introduce a TeamWorker and can describe in detail

how static teams and dynamic teams are created and how the life cycle of both team

structures looks.

4.2.3.5 Static Teams

As shown in Figure 4.7 we implement a TeamWorker, which represents a static team.

Static teams are created at simulation start, directly after the creation of the network.

We randomly generate teams with the help of a normal distribution N (5.0, 2.0). We

have chosen this size due to the fact that our composite tasks have a maximum of 5 sub-

tasks. We generate static teams in a way that each team member knows all other team

members. We also increase the collaboration factor between static teams slightly. We

do this due to the assumption, that people willing to create a static team, have a better

understanding of each other. Hence those people can work together better. As defined in

chapter 3 static teams exist from the start to the end of the simulation, we do not change

the structure of teams, nor are teams dissolved in the mid of the simulation.
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4.2.3.6 Dynamic Teams

In contrary to static teams, dynamic teams are not created at simulation start. Therefore,

we had to implement a specific implementation of our team worker for dynamic teams.

The only change we implement for dynamic teams is that dynamic teams automatically

dissolve themselves after finishing their task, besides that dynamic teams do not partic-

ipate in any auction. We also have to extend our implementation of a networked worker

to implement dynamic teams in the following way:

• If a networked worker receives the notification from the market that an auction for

a composite task starts, the networked worker asks his neighbours via the social

network if they want to help him in solving the task.

• Each neighbour is a networked worker himself. Currently a neighbour accepts

a request to solve a composite task with another neighbour if the worker’s own

workload is smaller than 80

• If a networked worker receives enough positive answers from his neighbours, he

uses the team selection strategy described before to form a team to solve the task.

• If a suitable team for solving the composite task is found, the networked worker

who initiated the team finding process, spawns a dynamic worker and assigns the

auction to the dynamic worker.

• The worker spawning the dynamic worker can be seen as the team leader. The

trading strategy and the valuation policy of this worker are used by the dynamic

worker to make a bid for the auction.

These are the only changes necessary based on our implementation of a team worker.

4.3 A Simulation Run With SFC

We have introduced all the extensions to SFC, which are necessary to perform an eval-

uation. To perform an evaluation and to retrieve data, which can be used to show the
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advantages and limitations of dynamic and static teams we need to perform a simulation

run with SFC. We first have to explain, what SFC does on a simulation start.

4.3.1 Simulation Start

On simulation start, SFC’s Simulation Controller initializes the framework according to

the configuration. This includes the following steps:

• The Reporting component gets set up according to the configuration specified.

The reports are used to retrieve data, which is generated during the simulation.

• The MarketSimulation is configured. SFC’s MarketSimulation component is re-

sponsible for initializing the Market, besides that it handles the interaction be-

tween Requesters, Market and Workers.

• After setting up the MarketSimulation, SFC initialzes the population. The popu-

lation includes requesters and workers.

– Requesters are set up according to the configuration. This includes config-

uring a valuation policy and a trading strategy. Besides that requesters get a

task factory assigned. This task factory is used to generate tasks later. We

use the task factory to generate composite tasks as described in section 4.2.2.

– Besides the requesters, workers have to be set up. We have extended SFC

to use a social collaboration network. This network has to be generated at

simulation start. It includes all workers. We use the factory, described in

section 4.2.1.1, for this purpose.

– After creating the social collaboration network, static teams can be gener-

ated. Once again we use a factory to accomplish this. The details on how

static teams are created are described in section 4.2.3.5.

• All requesters and workers are registered at the Market.

After all the initialization tasks have been performed, the actual round-based sim-

ulation is started. The SimulationController notifies all components of the framework

about this.
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4.3.2 Simulation Round

The two groups of actors, namely requesters and workers, interact each round with the

Market component. We try to give a chronological overview, on the actions which are

performed:

• When a new round is started, all requesters are informed. A Requester has then

the choice to create composite tasks. The task is sent to the Market for auctioning.

• The market receives the task and spawns a new auction. Then the market informs

all workers (including static teams) about the new notification.

• The workers are then allowed to bid for the task. We have to distinguish here

between two cases:

– Static teams are participating, they just send a bid for the task to the market.

– Normal workers, implemented as NetworkedWorkers by us, will try to spawn

a dynamic team. If this is successful, then the dynamic team will send a bid

in for the task, else no bid will be send in.

• At round end the Market checks all started auctions. Each auction is cleared. We

have to distinguish again between two cases:

– No valid bid was submitted. The auction gets closed and the task is not

assigned.

– At least one valid bid is submitted. According to the auction, the winner is

determined and requester and worker are notified. Besides that, the task is

assigned to the worker.

• If a task is assigned to a worker, the worker (either a dynamic or a static team)

has to distributed the task to its members. This is accomplished as described in

section 4.2.3.1. The team use the algorithm described in 4.2.3.2 to form a team.

• When a round is being finished, the market informs as well the workers. The

workers have to check then if a task, which has been assigned before, has already
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been processed. As described in section 4.2.3.3 processing a task is a non trivial

task. We use an algorithm which determines the result of a composite tasks by

calculating a factor describing the proportion of required cooperation to the of-

fered teamwork of the team. If a task is processed, the worker sends the task to

the market.

• When the market receives a finished task, the market informs the requester. Next

the worker is rated according to the quality of his result. As the last action the

salary is transferred from the requester’s to the worker’s account.

To be able to perform an evaluation, we use a report, which records every transac-

tion happening between requester and worker. A transaction is created by the market

upon receiving a new task from the requester. The transaction shows the result of the

auction, besides that it also shows if a task was processed, when a task was processed

and how well a task was processed. Besides that every round each worker registered

at the market is recorded as well. The records include information about skills, if the

worker represents a team, additional information is recorded. The information includes

the average teamwork within the team and and the team’s size.

4.3.3 Simulation End

At simulation end, the SimulationController stops the MarketSimulation. A notification

to the workers is send that the simulation has stopped. All collected data is written to

the report files and the framework shuts itself down.

In this chapter we explained the implementation of the extensions to SFC, a task-based

crowdsourcing simulation framework, which we proposed in chapter 3. First we ex-

plained how the different components of SFC interact with each other, then we intro-

duced the implementations of composite tasks and the collaboration network. Based

on these implementations we introduced step-by-step all extensions and adaptations to

SFC to support static and dynamic teams. The next chapter focuses on the evaluation of

both team-based approaches and shows advantages and limitations of both approaches.
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CHAPTER 5
Evaluation

The previous chapter explains the implementation of the concepts and data structures

introduced in chapter 3. This chapter’s purpose is to give an overview of the evalua-

tion we have performed, to show advantages and limitations of the extensions, which

we have proposed and implemented as described before. The chapter is split into three

sections. The first section explains in detail the configuration which is used to perform

the evaluation. The second section explains the scenarios, which we use for our eval-

uation. The third section discusses the results of the evaluation and summarizes the

advantages and limitations of static and dynamic teams operating within a task-based

crowdsourcing system.

5.1 Configuring SFC

We perform our evaluation with the help of SFC, which is a task-based crowdsourcing

simulation framework. Therefore we have to configure SFC accordingly to perform our

evaluation. SFC is configured with the help of a Spring configuration file. We give an

overview of our configuration in this section. For a detailed insight into the configura-

tion, the interested reader is referenced to the example configuration for a simulation for

static workers, which can be found in Appendix A.
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Simulation
# of simulations 1
# of rounds 500
Auction
Type second price sealed-bid auction
Duration 1 round
Requester
Valuation policy quality and effort aware
Trading strategy truth telling
# of tasks per round 1
Networked workers
Valuation policy skill and effort aware
Trading strategy truth telling
Social (collaboration) network
# of workers 2500 (graph lattice size 50 x 50)
clustering exponent 0.55

Table 5.1: Basic framework configuration

Table 5.1 gives an overview of the basic configuration of the SFC framework. Each

scenario, which we introduce in the next section, will be performed as one simulation

run with 500 rounds. The first property we have to configure is the auction type we want

to use. SFC offers different kind of auctions that can be used to perform a simulation.

All auctions are reversed auctions. The following auction types are supported:

• Dutch auction

• English auction

• Second price sealed-bid auction

• Continuous double auction

We use the second price sealed-bid auction for our evaluation. Sealed-bid auction

means that all bids are secret, the workers and requesters do not know what other work-

ers are bidding. Second price means that the auction winner, which has made the bid

with the lowest price, has to pay the second lowest price. We have chosen this auction
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type, because as described in [16] the second price sealed-bid auction leads to slightly

better and fairer results than the other auction types. The duration of each auction,

started by SFC, is configured to be a single round, that means the workers have to send

in their bids within one round. The winner of the auction is determined at the end of the

round.

As a next step we have to configure the requesters, which participate in our simu-

lation. Requesters use a quality and effort aware valuation policy, that means that the

price p is calculated depending on the weighted quality q and the effort e. The weighted

quality q is determined as the average of quality times the weight for each skill.

µ = max(e, q)

σ = min(e, q)

p = N (µ, σ)

The price p is defined according to the normal distribution stated above. As a trading

strategy we use a truth telling strategy. This means that the price, defined by the valua-

tion policy, is not changed and is used as the maximum price the requester is willing to

pay for a task. Each requester creates one task each round. The task gets then submitted

to the market to be auctioned.

Next we have to define the worker population. The networked workers, that we

introduced in chapter 4, are configured with a skill and effort aware valuation policy.

The price is determined by two factors. The first factor, incorporating the quality and

effort, is calculated exactly the same way as the price for a requester. The second factor

is calculated as the average proportion of the task’s required quality to the worker’s real

performance. We also use a truth telling strategy as trading strategy, hence the price

calculated by the valuation policy is not changed by the trading strategy.

As explained in chapter 3 and 4, the underlying collaboration network is generated

randomly by a factory. The Kleinberg small-world generator provided by JUNG, is used
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by the factory. We configure the generator with a n ∗ n lattice size of 50, resulting in a

worker population of 2500 workers. As there was no information available for selecting

a clustering exponent for a collaboration network, we choose a factor of 0.55.

A summary of the most important configuration settings is shown in Table 5.1, the

next section will introduce the scenarios we use to perform the evaluation.

5.2 Evaluation Scenarios

So far this chapter explained the basic configuration of the SFC framework, this section

focuses on explaining the scenarios, that we use for evaluation. We define six scenarios.

Each scenario is performed by static teams and dynamic teams separately resulting in a

total amount of 12 simulation runs. The aim of the scenarios is to simulate a system with

low, medium and high workload for the workers. To compare all 12 simulation runs,

each run uses the same collaboration network, representing 2500 workers. Therefore

the only possibility to increase or decrease the workload of the workers is to vary the

number of requesters. Hence 20, 40 and 60 requesters are used to simulate a task-based

crowdsourcing marketplace with low, medium and high work load. Besides that, the

focus is also on the workers themselves. As described in chapter 4 the workers’ perfor-

mance and confidence can be configured via SFC’s configuration files. We choose, for

each of the three scenarios described before, the following two worker configurations:

1 <bean i d =" h i g h P e r f o r m a n c e C o n f i g "

2 c l a s s =" a t . ac . t u wie n . dsg . crowdsim . a g e n t . worker . S k i l l C o n f i g ">

3 < p r o p e r t y name=" meanPerformance " v a l u e =" 0 . 7 " / >

4 < p r o p e r t y name=" d e v i a n c e P e r f o r m a n c e " v a l u e =" 0 . 2 5 " / >

5 < p r o p e r t y name=" meanConf idence " v a l u e =" 0 . 8 " / >

6 < p r o p e r t y name=" d e v i a n c e C o n f i d e n c e " v a l u e =" 0 . 2 5 " / >

7 < / bean >

Listing 5.1: High performance worker configuration
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1 <bean i d =" lowPer fo rmanceConf ig "

2 c l a s s =" a t . ac . t u wie n . dsg . crowdsim . a g e n t . worker . S k i l l C o n f i g ">

3 < p r o p e r t y name=" meanPerformance " v a l u e =" 0 . 3 " / >

4 < p r o p e r t y name=" d e v i a n c e P e r f o r m a n c e " v a l u e =" 0 . 2 5 " / >

5 < p r o p e r t y name=" meanConf idence " v a l u e =" 0 . 8 " / >

6 < p r o p e r t y name=" d e v i a n c e C o n f i d e n c e " v a l u e =" 0 . 2 5 " / >

7 < / bean >

Listing 5.2: Low performance worker configuration

Listing 5.1 shows a worker configuration with a high performance value of 0.7, Listing

5.2 shows a configuration with significant lower performance of 0.3.

The three scenarios concerning the system’s workload, combined with the two dif-

ferent worker configurations, each performed with static and dynamic teams separately

lead to 12 simulation runs, as shown by Table 5.2.

hhhhhhhhhhhhhhhhhhhh# requesters
worker performance

0.3 0.7

20
H

HHH
HHS1
D1 H

HHH
HHS2
D2

40
HHH

HHHS3
D3 HHH

HHHS4
D4

60
HHH

HHHS5
D5 HHH

HHHS6
D6

Table 5.2: Evaluation scenarios

The simulation runs, shown in Table 5.2 are labelled with SX and DX. A label

starting with S represents a static team run and a label starting with D represents a

dynamic team run.

Static teams are generated at start, the team size is normal distributed with a distri-

bution of N (5, 2), workers are randomly added to a team. After adding workers to a

team, it is assured that all team members know each other, that means that we add edges

to our collaboration network if necessary. We also boost the team’s collaboration factor

slightly. We argument this by the fact that a group of people most likely only registers

itself as a static team if the team members know each other and if the team members are

sure that they can work together well.
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To compare the results of dynamic and static teams better, we implemented a worker

selection policy for the dynamic team runs. That means that SFC allows 500 dynamic

teams to participate within a single auction. This is reasonable because at the start of

a static simulation run 502 static teams are generated. The number of static teams is

determined, by the settings chosen for social collaboration network and the normal dis-

tribution used to generate static teams. Therefore the number of static teams is for each

simulation run constant.

5.3 Evaluation Results

To begin with the results of our evaluation, we first give an overview of the worker

population. We show how the skills are distributed and calculate the average worker

performance. Based on that we compare the simulation runs of static and dynamic

teams with the same scenario. Therefore we will compare simulation run S1 with D1,

S2 with D2 and so on. The focus of the evaluation is on the following properties:

• Team size: We use histograms to present the team size of all static and dynamic

teams, that have performed a task successfully.

• # of tasks submitted/ finished: We compare the number of tasks assigned and

finished in each simulation. This should give insight on how well static and dy-

namic teams are reacting to higher and lower load rates.

• Quality: Besides checking the quantity of finished tasks, we check also if there

are significant differences in the quality of tasks solved by dynamic and static

teams.

Both quantity and quality are important properties to evaluate. The quantity is a

measurement of how high the throughput of the crowdsourcing platform is. As crowd-

sourcing is gaining more and more interest, throughput is becoming more and more im-

portant, as more tasks get created and processed on crowdsourcing platforms. Therefore

we want to check, which of our collaboration based approaches has a better throughput
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rate. Besides that quality is also a very important aspect of crowdsourcing, however

a balance between quality and quantity has to be found. This means that a successful

collaboration-based approach like dynamic or static teams has to maintain a certain level

of quality while processing tasks with an acceptable speed.

We retrieve all the data, used for the evaluation, with the help of SFC’s reporting

capabilities. We use two reports for collecting all the data necessary for our evaluation.

Both reports use a CSV format.

• Transaction report: The transaction report collects the data of all transactions

performed by the system. The most important information the report includes is,

if a task was assigned, successfully finished or if a deadline violation occurred.

Besides that, the report shows us the quality of a successfully processed task.

• Worker report: The worker report is round-based. It shows us all registered

workers at the market each round. It shows the worker performance and gives

us information regarding the team’s size and the average collaboration factor of a

team.

Based on the scenarios described in the last section the evaluation is performed. As

a start we focus on the workers and show the skill distribution of the worker population.

Next we give an overview of the team size used during the simulations and compare the

size of the static teams to the size of the dynamic teams. After doing so, we focus on

the task throughput during simulation. We show detailed statistics about the submitted,

assigned and successfully finished tasks and compare static and dynamic teams. Finally

we change the focus from quantity to quality. We show how the ratings for successfully

finished tasks are distributed and compare the average ratings of our static and dynamic

approaches.

5.3.1 Worker and Team Population

Figure 5.1 shows the skill distribution of all 2500 workers of the collaboration network.

We show distributions for the high and low worker configurations, which were explained
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Figure 5.1: Worker skill distribution

in the section before. The X-axis shows the five different skills, which are supported by

the worker population, on the Y-axis we see the frequency of the skills occurring. As

we can see the skills are not as evenly distributed. The skill S1 is occurring less in the

worker population in comparison to the four other skills S0, S2, S3, S4.
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SX D1 D2 D3 D4 D5 D6
# teams 502 834 811 1597 1568 2251 2227

ACF 0.75 0.62 0.62 0.62 0.64 0.59 0.60

Table 5.3: Created teams

Figure 5.2 and Figure 5.3 show the distribution of the team-sizes. In the interest

of clarity, we have made two diagrams, each diagram compares the static team size

distribution, shown as SX, with three dynamic teams. The X-axis corresponds to the

team size. The Y-axis shows the series labels, which correspond to the ones shown in

Table 5.2. Series SX represents the static teams, as those are always created with the

same algorithm the results regarding the team-size are the same for all simulation runs.

As expected the size of dynamic teams is varying, the size gets always adapted to the

needs of a task. Therefore dynamic teams have always a high team utilization close

to 100%, static teams cannot compete with this due to the fact that they are created

at simulation start and that their size is not adaptable during simulation. Besides the

information shown in Figure 5.2 and Figure 5.3 Table 5.3 gives an overview of the

number of teams created. Moreover, the second line of the table shows the average

cooperation factor (ACF). As we can see, static teams have in general a higher ACF.

The increased ACF of static teams is based on the reasoning that the members of static
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teams know each other and work better together, because they actively register as a static

team. Therefore we imply that there is a higher commitment to the team and the work

performed by a static team in comparison to a dynamic team.

5.3.2 Task Throughput

scenario submitted assigned completed % assigned/ completed/
submitted assigned

S1 796 429 301 54% 70%
D1 1194 789 731 66% 93%
S2 819 520 315 63% 61%
D2 1172 776 712 66% 92%
S3 1416 699 416 49% 60%
D3 2287 1512 1356 66% 90%
S4 1609 984 552 61% 56%
D4 2255 1522 1355 67% 89%
S5 2034 923 516 45% 56%
D5 3234 2083 1778 64% 85%
S6 2454 1452 786 59% 54%
D6 3208 2122 1784 66% 84%

Table 5.4: Overview of the 12 simulation runs

The data presented in Table 5.4 shows the task throughput of all simulation runs.

The table shows the number of submitted, assigned and completed tasks. It can easily

be seen that static teams have a lower throughput than dynamic teams. This is due to the

reason that each round the same 502 static teams are asked to perform tasks. At some

point the constant number of static workers will reach a high workload and therefore

the numbers of bids go down and the number of deadline violations increases. Besides

that, deadline violations and therefore bad ratings of tasks trigger the requesters to stop

creating new tasks, the reasoning for this is described in detail in [16]. In comparison to

the static teams, each round a randomly chosen set of 500 workers can perform in auc-

tions and can spawn dynamic teams. As we already have seen the size of dynamic teams

is dependent on the task. This means that the workload is better distributed among all

workers when using dynamic teams.
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Another detail we can see is that the number of completed tasks is going down drasti-

cally if we increase the workload by increasing the number of requesters. Scenarios S1

through D6 show this clearly. The static teams percentage of successfully completed

tasks drops from 70% in S1 to 54% in S6; for dynamic teams the percentage drops from

93% in D1 to 84% in D6.

5.3.3 Quality - Ratings
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Figure 5.4: Rating histogram - Scenario 1

PPPPPPPPPTeams
Run 1 2 3 4 5 6

S 0.838 0.871 0.834 0.868 0.830 0.869
D 0.814 0.863 0.830 0.854 0.820 0.856

Table 5.5: Average ratings

In the last subsection, we have focused on throughput, a measurement for the quan-

tity of the solved tasks. This subsection focuses on quality, we can monitor quality with

SFC by comparing the task ratings. A high rating close to 1.0 means good quality, a

rating below 0.3 stands for very bad quality. As explained before, workers will stop
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Figure 5.5: Rating histogram - Scenario 2
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Figure 5.6: Rating histogram - Scenario 3

submitting tasks, if the rating of a finished tasks is under 0.3. Figures 5.4, 5.5, 5.6, 5.7,

5.8 and 5.9 show each a histogram of the ratings of completed tasks. Each diagram

compares the ratings for static and dynamic teams for one of the six evaluated scenar-

ios.

Besides that, Table 5.5 shows the average rating for all successfully completed tasks.
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Figure 5.7: Rating histogram - Scenario 4
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Figure 5.8: Rating histogram - Scenario 5

We can see that although dynamic teams process way more tasks, they still have lower

average rating than static teams. That means that static teams process tasks with an

average higher quality than dynamic teams. We argue that these results are due to the

reason that the same workers in static teams work together all the time. This leads to a

higher collaboration factor due to the increased number of attempts to collaborate with

68



0

200

400

600

800

1000

1200

0.30 0.45 0.60 0.75 0.90 1.00

f
r
e
q
u
e
n
c
y

rating classes

D6

S6

Figure 5.9: Rating histogram - Scenario 6

each other. As explained in chapter 4 the collaboration factor is important in determin-

ing the result of a composite task. A higher average collaboration factor within a team

leads to a better quality of the processed work and therefore triggers a higher rating of

the requester.

5.4 Discussions

In general, performing evaluation with crowdsourcing systems is a challenging task.

Many premises have to be made about worker and requester behaviour. The optimal

solution to evaluate the work that we present in this thesis, would be access to a real life

crowdsourcing systems. However as the approach itself is introducing team structures

based on a social collaboration network, this seems very hard to accomplish. Right

now no existing crowdsourcing platform, which supports the generic task-based crowd-

sourcing model presented in chapter 3, is supporting this. The data gathered by our

evaluation shows us advantages and limitations of introducing static and dynamic teams

to task-based crowdsourcing. The biggest advantage of introducing techniques of col-

laboration is the possibility to solve complex work. Teams provide the means to solve
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complex work. Supporting teams seems to be a solution to overcome the problem of the

arising demand for the integration of complex work within task-based systems. Com-

panies themselves use teams and divisions to manage complex work, therefore it is a

natural solution to bring these techniques of collaboration to task-based crowdsourcing

systems. The data gathered by our evaluation shows us the following advantages and

limitations of both approaches:

• Dynamic Teams: Our implementation of dynamic teams has a higher throughput

than static teams. In numbers this means that dynamic teams process minimum

50% more complex tasks than static teams. This is due to the following reasons:

– Dynamic teams are generated on demand. The team is trimmed to the de-

mands of composite tasks. Each auction 500 randomly chosen workers are

asked to place a bid for a composite task. That means that a possible amount

of 500 different dynamic teams can be formed. In comparison to static teams

this is a huge advantage. All 502 static teams participate in every auction.

Therefore the pressure generated by the requesters to solve tasks is higher

than for a randomly selected dynamic team. This also means that the work-

load, generated by the requesters, is better distributed throughout the whole

crowd if dynamic teams are used.

– Workers with a high workload are not participating in a dynamic team.

Therefore a dynamic team always consists of workers with a low workload.

– Both reasons stated before reduce the number of deadline violations, which

increases throughput as well.

• Static Teams: Static teams have due to the nature of their implementation not as

high throughput as dynamic teams. This is based on the fact that static teams can-

not change their team size. However static teams process tasks with moderately

better results. This is based on the fact, that static teams have a higher average

collaboration factor. Besides that integrating static teams in an existing crowd-

sourcing platform seems to be easier to perform, this is due to the fact that static

teams are not dependent on a social network when performing work. Systems,

70



implementing static teams, have to provide a meaningful way for individuals to

register as a team, but there is no need to implement and support a social net-

work. Therefore static teams are an interesting possibility to support complex

work, within the boundaries of existing crowdsourcing systems.
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CHAPTER 6
Conclusion and Future Work

Modern task-based crowdsourcing systems like Amazon’s Mechanical Turk offer a

marketplace-based crowdsourcing platforms, where requesters can post tasks which get

solved by a crowd of workers. The tasks supported by such platforms are limited in the

way, that they only support tasks which can be independently solved by one worker. The

arising demand of enterprises around the world to crowdsource more complex work with

task-based crowdsourcing platforms, shows the need to extend state-of-the-art crowd-

sourcing systems in a way, that they can fulfil these demands.

In this thesis we have addressed the problem of integrating complex work into task-

based crowdsourcing and have come up with a solution, which is based on the introduc-

tion of techniques for collaboration. We introduce two team structures, namely static

and dynamic teams, for workers, which make it possible to integrate and process com-

plex work within the context of a crowdsourcing system. Both team approaches are

based on a social collaboration network, which shows how well the workers in a the

crowd can work together. Static teams exist in contrast to dynamic teams for a long

time. The aim of static teams is to solve as many tasks together as possible. In compari-

son to that, dynamic teams are formed to solve a single task. To integrate complex work

to a task-based crowdsourcing, we introduce a composite task. A composite-task has

a set of sub-tasks, which can have dependency between each other. The dependencies
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show how much cooperation is required to solve the sub-tasks. We implement our model

of composite tasks and both team structures into an existing simulation framework for

crowdsourcing systems. The implementation addresses the challenges of splitting, as-

signing and processing composite tasks. In the evaluation of our implementation for

static and dynamic teams, it became apart that there are differences in the quantity and

quality of processed tasks. We show that dynamic teams have a higher performance,

but a moderately lower level of quality when solving tasks. Besides that, we argue

that the integration of static teams into existing crowdsourcing platforms is easier, as it

does not solely rely on a collaboration-based social network, which is mandatory for the

implementation of dynamic teams.

6.1 Future work

The current implementation of a model for complex work and techniques for collabo-

ration between workers into a simulation framework can be seen as a first step of intro-

ducing complex work to crowdsourcing. Further improvements and changes have to be

made to make the integration into an existing crowdsourcing platform, e.g. Amazon’s

Mechanical Turk, possible.

• Finding and selecting teams is right now based on a greedy algorithm. As ex-

plained in chapter 2 different strategies to solve the team formation problem exist.

These strategies could be supported to give alternatives to select suitable teams to

process a composite task.

• Instead of automatically forming teams, a mechanism could be implemented, to

assist workers in creating a dynamic or static team. The suggestions could be

based on the team selection strategies discussed in chapter 2. Based on these

suggestions a worker could decide then to form a team individually.

• Static and dynamic teams, have been discussed separately. In this thesis they

both stand in contest to each other. Future work could include, combining both

approaches. This could lead to a generally higher level of quality and throughput

for composite tasks.
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• Another possibility would be to extend the classical model of crowdsourcing in

a way, that workers can also interact with the system as requester. This dual

role of workers could make it possible for teams to split composite tasks and to

crowdsource parts of a composite task.

• We have evaluated both approaches with a specific simulation framework for task-

based crowdsourcing with a randomly generated social collaboration network. A

next step could be the evaluation of our approach using a real social network.
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APPENDIX A
Configuration File

<? xml v e r s i o n =" 1 . 0 " e n c o d i n g ="UTF−8" ?>

< !−−
An example c o n f i g u r a t i o n t o per form a s i m u l a t i o n

w i t h 20 r e q u e s t e r s and 2500 worker s .

s t a t i c t e a m s : e n a b l e d

dynamic t e a m s : d i s a b l e d

r e p o r t s : CSV worker r e p o r t

−−>

< beans xmlns=" h t t p : / /www. s p r i n g f r a m e w o r k . o rg / schema / beans "

x m l n s : x s i =" h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema−i n s t a n c e "

x s i : s c h e m a L o c a t i o n ="

h t t p : / /www. s p r i n g f r a m e w o r k . o rg / schema / beans

h t t p : / /www. s p r i n g f r a m e w o r k . o rg / schema / beans / s p r i n g−beans . xsd ">

< i m p o r t r e s o u r c e =" r e p o r t s . xml " / >

< i m p o r t r e s o u r c e =" ne twork . xml " / >

<bean i d =" marke tFacade "

c l a s s =" a t . ac . t uw ie n . dsg . crowdsim . marke t . Marke tFacade ">

< p r o p e r t y name=" c o n t r o l l e r " r e f =" s i m u l a t i o n C o n t r o l l e r " / >
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< p r o p e r t y name=" marke t " r e f =" marke t " / >

< / bean >

< !−− S t a r t c l a s s o f t h e framework , s i m u l a t i o n and r e p o r t s are c o n f i g u r e d here −−>

<bean i d =" s i m u l a t i o n C o n t r o l l e r "

c l a s s =" n e t . s o u r c e f o r g e . jabm . S p r i n g S i m u l a t i o n C o n t r o l l e r ">

< p r o p e r t y name=" numSimula t i ons " v a l u e =" 1 " / >

< p r o p e r t y name=" s imula t ionBeanName ">

< i d r e f l o c a l =" m a r k e t S i m u l a t i o n " / >

< / p r o p e r t y >

< p r o p e r t y name=" r e p o r t s ">

< l i s t >

< r e f bean=" workerCSVReport " / >

< r e f bean=" w o r k e r R e p o r t V a r i a b l e s " / >

< / l i s t >

< / p r o p e r t y >

< / bean >

<bean i d =" m a r k e t S i m u l a t i o n " scope =" p r o t o t y p e "

c l a s s =" a t . ac . t uw ie n . dsg . crowdsim . marke t . M a r k e t S i m u l a t i o n ">

< p r o p e r t y name=" maximumRounds " v a l u e =" 500 " / >

< p r o p e r t y name=" p o p u l a t i o n " r e f =" p o p u l a t i o n " / >

< p r o p e r t y name=" a g e n t I n i t i a l i s e r " r e f =" a g e n t I n i t i a l i s e r " / >

< p r o p e r t y name=" a g e n t M i x e r " r e f =" randomRobinAgentMixer " / >

< p r o p e r t y name=" s i m u l a t i o n C o n t r o l l e r " r e f =" s i m u l a t i o n C o n t r o l l e r " / >

< / bean >

<bean i d =" marke t "

c l a s s =" a t . ac . t uw ie n . dsg . crowdsim . marke t . Market ">

< p r o p e r t y name=" marke tFacade " r e f =" marke tFacade " / >

< p r o p e r t y name=" a u c t i o n F a c t o r y " r e f =" a u c t i o n F a c t o r y B e a n " / >

< p r o p e r t y name=" s k i l l U p d a t e P o l i c y " r e f =" u n i f o r m S k i l l U p d a t e " / >

< p r o p e r t y name=" a u c t i o n Q u a l i f i c a t i o n P o l i c y " r e f =" m i n P e r f o r m a n c e Q u a l i f i c a t i o n " / >

< / bean >

< !−− a u c t i o n f a c t o r y , an a u c t i o n runs f o r 1 round −−>

<bean i d =" a u c t i o n F a c t o r y B e a n "

c l a s s =" a t . ac . t uw ie n . dsg . crowdsim . marke t . a u c t i o n . A u c t i o n F a c t o r y ">
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< p r o p e r t y name=" a u c t i o n D u r a t i o n " v a l u e =" 1 " / >

< p r o p e r t y name=" a u c t i o n P r o t o t y p e " r e f =" s e a l e d B i d " / >

< p r o p e r t y name=" orde rBookPro toType " r e f =" l o w e s t P r i c e O r d e r B o o k " / >

< p r o p e r t y name=" seed " r e f =" seed " / >

< / bean >

<bean i d =" l o w e s t P r i c e O r d e r B o o k " scope =" p r o t o t y p e "

c l a s s =" a t . ac . t uw ie n . dsg . crowdsim

. marke t . a u c t i o n . o r d e r b o o k . Lowes tPr i ceOrde rBook " / >

< !−− a u c t i o n t o be used −−>

<bean i d =" s e a l e d B i d " scope =" p r o t o t y p e "

c l a s s =" a t . ac . t uw ie n . dsg . crowdsim

. marke t . a u c t i o n . S e a l e d B i d S e c o n d P r i c e A u c t i o n ">

< p r o p e r t y name=" marke tFacade " r e f =" marke tFacade " / >

< / bean >

<bean i d =" a g e n t I n i t i a l i s e r "

c l a s s =" n e t . s o u r c e f o r g e . jabm . i n i t . B a s i c A g e n t I n i t i a l i s e r ">

< / bean >

<bean i d =" randomRobinAgentMixer "

c l a s s =" n e t . s o u r c e f o r g e . jabm . mixing . RandomRobinAgentMixer ">

< p r o p e r t y name=" prng " r e f =" prng " / >

< / bean >

<bean i d =" p o p u l a t i o n " scope =" p r o t o t y p e "

c l a s s =" n e t . s o u r c e f o r g e . jabm . P o p u l a t i o n ">

< p r o p e r t y name=" a g e n t L i s t ">

<bean c l a s s =" n e t . s o u r c e f o r g e . jabm . a g e n t . A g e n t L i s t ">

< c o n s t r u c t o r −a r g >

< l i s t >

< r e f bean=" r e q u e s t e r A g e n t L i s t " / >

< r e f bean=" w o r k e r A g e n t L i s t " / >

< / l i s t >

< / c o n s t r u c t o r −a r g >

< / bean >

< / p r o p e r t y >
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< p r o p e r t y name=" prng " r e f =" prng " / >

< / bean >

<bean i d =" r e q u e s t e r A g e n t L i s t "

c l a s s =" n e t . s o u r c e f o r g e . jabm . a g e n t . A g e n t L i s t ">

< c o n s t r u c t o r −a r g r e f =" r e q u e s t e r L i s t " / >

< / bean >

<bean i d =" r e q u e s t e r L i s t "

c l a s s =" org . s p r i n g f r a m e w o r k

. beans . f a c t o r y . c o n f i g . P r o p e r t y P a t h F a c t o r y B e a n ">

< p r o p e r t y name=" t a r g e t O b j e c t " r e f =" r e q u e s t e r L i s t F a c t o r y " / >

< p r o p e r t y name=" p r o p e r t y P a t h " v a l u e =" r e q u e s t e r s " / >

< / bean >

< !−− D e f i n e s t h e number o f r e q u e s t e r s −−>

<bean i d =" r e q u e s t e r L i s t F a c t o r y "

c l a s s =" a t . ac . t uw ie n . dsg . crowdsim . a g e n t . r e q u e s t e r . R e q u e s t e r F a c t o r y ">

< c o n s t r u c t o r −a r g v a l u e =" 20 " / >

< c o n s t r u c t o r −a r g r e f =" r e q u e s t e r F a c t o r y " / >

< c o n s t r u c t o r −a r g r e f =" c o m p o s i t e T a s k F a c t o r y " / >

< / bean >

< !−− The f a c t o r y used f o r m a n u f a c t u r i n g t h e p a t r o n s −−>

<bean i d =" r e q u e s t e r F a c t o r y "

c l a s s =" org . s p r i n g f r a m e w o r k

. beans . f a c t o r y . c o n f i g . O b j e c t F a c t o r y C r e a t i n g F a c t o r y B e a n ">

< p r o p e r t y name=" ta rge tBeanName ">

< i d r e f l o c a l =" s i m p l e R e q u e s t e r " / >

< / p r o p e r t y >

< / bean >

< !−− The p r o t o t y p e used t o m a n u f a c t u r e r e q u e s t e r a g e n t s −−>

<bean i d =" a b s t r a c t R e q u e s t e r " scope =" p r o t o t y p e "

c l a s s =" a t . ac . t uw ie n . dsg . crowdsim . a g e n t . r e q u e s t e r . S i m p l e R e q u e s t e r ">

< p r o p e r t y name=" s t r a t e g y " r e f =" n o S t r a t e g y " / >

< p r o p e r t y name=" marke tFacade " r e f =" marke tFacade " / >

< p r o p e r t y name=" s c h e d u l e r " r e f =" s i m u l a t i o n C o n t r o l l e r " / >
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< p r o p e r t y name=" p r i c e M o d e l " r e f =" q u a l i t y E f f o r t V P " / >

< p r o p e r t y name=" s u p p l y P o l i c y " r e f =" s i m p l e T a s k S u p p l y P o l i c y " / >

< p r o p e r t y name=" r a t i n g P o l i c y " r e f =" s i m p l e R a t i n g P o l i c y " / >

< / bean >

< !−− The p r o t o t y p e used t o m a n u f a c t u r e r e q u e s t e r a g e n t s −−>

<bean i d =" s i m p l e R e q u e s t e r "

scope =" p r o t o t y p e " p a r e n t =" a b s t r a c t R e q u e s t e r "

c l a s s =" a t . ac . t uw ie n . dsg . crowdsim . a g e n t . r e q u e s t e r . S i m p l e R e q u e s t e r ">

< p r o p e r t y name=" t r a d i n g S t r a t e g y " r e f =" t r u t h T e l l i n g T S " / >

< / bean >

< !−− Trad ing s t r a t e g y − t r u t h t e l l i n g −−>

<bean i d =" t r u t h T e l l i n g T S " scope =" p r o t o t y p e " p a r e n t =" s t r a t e g y "

c l a s s =" a t . ac . t uw ie n . dsg . crowdsim

. a g e n t . s t r a t e g y . t r a d i n g . r e q u e s t e r . T r u t h T e l l i n g R e q u e s t e r T S ">

< p r o p e r t y name=" randomData " r e f =" randomData " / >

< / bean >

< !−− V a l u a t i o n p o l i c y − q u a l i t y and e f f o r t awar p o l i c y −−>

<bean i d =" q u a l i t y E f f o r t V P "

c l a s s =" a t . ac . t uw ie n . dsg . crowdsim . a g e n t . p r i c i n g . P r i c e Q u a l i t y E f f o r t ">

< p r o p e r t y name=" randomData " r e f =" randomData " / >

< / bean >

<bean i d =" s i m p l e T a s k S u p p l y P o l i c y " scope =" p r o t o t y p e "

c l a s s =" a t . ac . t uw ie n . dsg . crowdsim . a g e n t . p o l i c y . S impleTaskSupp ly ">

< / bean >

<bean i d =" w o r k e r A g e n t L i s t "

c l a s s =" n e t . s o u r c e f o r g e . jabm . a g e n t . A g e n t L i s t ">

< c o n s t r u c t o r −a r g r e f =" w o r k e r L i s t " / >

< / bean >

<bean i d =" w o r k e r L i s t "

c l a s s =" org . s p r i n g f r a m e w o r k

. beans . f a c t o r y . c o n f i g . P r o p e r t y P a t h F a c t o r y B e a n ">

< p r o p e r t y name=" t a r g e t O b j e c t " r e f =" n e t w o r k F a c t o r y " / >
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< p r o p e r t y name=" p r o p e r t y P a t h " v a l u e =" worke r s " / >

< / bean >

< !−− Worker f a c t o r y −−>

<bean i d =" w o r k e r A g e n t F a c t o r y "

c l a s s =" org . s p r i n g f r a m e w o r k . beans

. f a c t o r y . c o n f i g . O b j e c t F a c t o r y C r e a t i n g F a c t o r y B e a n ">

< p r o p e r t y name=" ta rge tBeanName ">

< i d r e f l o c a l =" workerAgent " / >

< / p r o p e r t y >

< / bean >

< !−− The p r o t o t y p e used t o m a n u f a c t u r e ne tworked worker s −−>

<bean i d =" workerAgent " scope =" p r o t o t y p e "

c l a s s =" a t . ac . t uw ie n . dsg . crowdsim . a g e n t . worker . NetworkedWorker ">

< p r o p e r t y name=" s t r a t e g y " r e f =" n o S t r a t e g y " / >

< p r o p e r t y name=" marke tFacade " r e f =" marke tFacade " / >

< p r o p e r t y name=" s c h e d u l e r " r e f =" s i m u l a t i o n C o n t r o l l e r " / >

< p r o p e r t y name=" v a l u a t i o n P o l i c y " r e f =" greedySki l lAwareVP " / >

< p r o p e r t y name=" randomData " r e f =" randomData " / >

< p r o p e r t y name=" t r a d i n g S t r a t e g y " r e f =" t r u t h T e l l i n g S t r a t e g y " / >

< p r o p e r t y name=" s k i l l C o n f i g " r e f =" e x p e r i e n c e d W o r k e r C o n f i g " / >

< p r o p e r t y name=" t r a n s a c t i o n B o o k " r e f =" s i m p l e T r a n s a c t i o n B o o k " / >

< / bean >

<bean i d =" s i m p l e T r a n s a c t i o n B o o k " scope =" p r o t o t y p e "

c l a s s =" a t . ac . t uw ie n . dsg . crowdsim

. a g e n t . worker . t r a n s a c t i o n . S i m p l e T r a n s a c t i o n B o o k ">

< p r o p e r t y name=" randomData " r e f =" randomData " / >

< / bean >

<bean i d =" teamWorkerAgen tFac to ry "

c l a s s =" org . s p r i n g f r a m e w o r k

. beans . f a c t o r y . c o n f i g . O b j e c t F a c t o r y C r e a t i n g F a c t o r y B e a n ">

< p r o p e r t y name=" ta rge tBeanName ">

< i d r e f l o c a l =" teamWorkerAgent " / >

< / p r o p e r t y >

< / bean >
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< !−− The p r o t o t y p e used t o m a n u f a c t u r e s t a t i c team worker s −−>

<bean i d =" teamWorkerAgent " scope =" p r o t o t y p e "

c l a s s =" a t . ac . t uw ie n . dsg . crowdsim . a g e n t . worker . TeamWorker ">

< c o n s t r u c t o r −a r g r e f =" randomData " / >

< p r o p e r t y name=" s t r a t e g y " r e f =" n o S t r a t e g y " / >

< p r o p e r t y name=" marke tFacade " r e f =" marke tFacade " / >

< p r o p e r t y name=" s c h e d u l e r " r e f =" s i m u l a t i o n C o n t r o l l e r " / >

< p r o p e r t y name=" v a l u a t i o n P o l i c y " r e f =" greedySki l lAwareVP " / >

< p r o p e r t y name=" t r a d i n g S t r a t e g y " r e f =" t r u t h T e l l i n g S t r a t e g y " / >

< / bean >

< !−− Network f a c t o r y −−>

<bean i d =" n e t w o r k F a c t o r y " scope =" s i n g l e t o n "

c l a s s =" a t . ac . t uw ie n . dsg . crowdsim

. a g e n t . worker . ne twork . f a c t o r y . Ne tworkFac to ry ">

< c o n s t r u c t o r −a r g r e f =" n e t w o r k G e n e r a t o r " / >

< c o n s t r u c t o r −a r g r e f =" teamWorkerAgen tFac to ry " / >

< c o n s t r u c t o r −a r g r e f =" seed " / >

< c o n s t r u c t o r −a r g v a l u e =" t r u e " / >

< c o n s t r u c t o r −a r g v a l u e =" f a l s e " / >

< / bean >

< !−− JUNG random ne twork g e n e r a t o r −−>

<bean i d =" n e t w o r k G e n e r a t o r " scope =" s i n g l e t o n "

c l a s s =" edu . u c i . i c s . j ung . a l g o r i t h m s

. g e n e r a t o r s . random . K l e i n b e r g S m a l l W o r l d G e n e r a t o r ">

< c o n s t r u c t o r −a r g r e f =" g r a p h F a c t o r y " / >

< c o n s t r u c t o r −a r g r e f =" v e r t e x F a c t o r y " / >

< c o n s t r u c t o r −a r g r e f =" e d g e F a c t o r y " / >

< !−− Worker p o p u l a t i o n n ∗ n −−>

< c o n s t r u c t o r −a r g v a l u e =" 50 " / >

< c o n s t r u c t o r −a r g v a l u e =" 0 . 5 5 " / >

< p r o p e r t y name=" randomSeed " r e f =" seed " / >

< / bean >

<bean i d =" g r a p h F a c t o r y " scope =" s i n g l e t o n "

c l a s s =" a t . ac . t uw ie n . dsg . crowdsim
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. a g e n t . worker . ne twork . f a c t o r y . G r a p h F a c t o r y " / >

<bean i d =" v e r t e x F a c t o r y " scope =" s i n g l e t o n "

c l a s s =" a t . ac . t uw ie n . dsg . crowdsim

. a g e n t . worker . ne twork . f a c t o r y . V e r t e x F a c t o r y ">

< c o n s t r u c t o r −a r g r e f =" w o r k e r A g e n t F a c t o r y " / >

< / bean >

<bean i d =" e d g e F a c t o r y " scope =" s i n g l e t o n "

c l a s s =" a t . ac . t uw ie n . dsg . crowdsim

. a g e n t . worker . ne twork . f a c t o r y . EdgeFac to ry ">

< c o n s t r u c t o r −a r g r e f =" randomData " / >

< / bean >

< !−− Worker s k i l l c o n f i g u r a t i o n −−>

<bean i d =" e x p e r i e n c e d W o r k e r C o n f i g "

c l a s s =" a t . ac . t uw ie n . dsg . crowdsim . a g e n t . worker . S k i l l C o n f i g ">

< p r o p e r t y name=" meanPerformance " v a l u e =" 0 . 7 " / >

< p r o p e r t y name=" d e v i a n c e P e r f o r m a n c e " v a l u e =" 0 . 2 5 " / >

< p r o p e r t y name=" meanConf idence " v a l u e =" 0 . 8 " / >

< p r o p e r t y name=" d e v i a n c e C o n f i d e n c e " v a l u e =" 0 . 2 5 " / >

< / bean >

< !−− Worker t r a d i n g s t r a t e g y −−>

<bean i d =" t r u t h T e l l i n g S t r a t e g y "

c l a s s =" a t . ac . t uw ie n . dsg . crowdsim

. a g e n t . s t r a t e g y . t r a d i n g . worker . T r u t h T e l l i n g S t r a t e g y "

p a r e n t =" s t r a t e g y ">

< p r o p e r t y name=" nrOfMaxOpenBids " v a l u e =" 100 " / >

< p r o p e r t y name=" d e a d l i n e M u l t i p l i e r " v a l u e =" 1 . 8 " / >

< / bean >

<bean i d =" s i m p l e R a t i n g P o l i c y "

c l a s s =" a t . ac . t uw ie n . dsg . crowdsim

. a g e n t . p o l i c y . TeamRa t ingPo l i cy " / >

<bean i d =" a l l Q u a l i f i c a t i o n P o l i c y "

c l a s s =" a t . ac . t uw ie n . dsg . crowdsim
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. a g e n t . p o l i c y . A l l Q u a l i f y A u c t i o n Q u a l i f i c a t i o n P o l i c y " / >

< !−− Worker v a l u a t i o n p o l i c y −−>

<bean i d =" greedySki l lAwareVP "

c l a s s =" a t . ac . t uw ie n . dsg . crowdsim

. a g e n t . p o l i c y . S k i l l E f f o r t A w a r e V a l u a t i o n P o l i c y "

scope =" p r o t o t y p e ">

< p r o p e r t y name=" randomData " r e f =" randomData " / >

< / bean >

<bean i d =" n o S t r a t e g y " scope =" p r o t o t y p e "

c l a s s =" a t . ac . t uw ie n . dsg . crowdsim . a g e n t . s t r a t e g y . N o S t r a t e g y ">

< p r o p e r t y name=" s c h e d u l e r " r e f =" s i m u l a t i o n C o n t r o l l e r " / >

< / bean >

<bean i d =" m i n P e r f o r m a n c e Q u a l i f i c a t i o n "

c l a s s =" a t . ac . t uw ie n . dsg . crowdsim

. a g e n t . p o l i c y . M i n P e r f o r m a n c e Q u a l i f i c a t i o n P o l i c y " / >

<bean i d =" u n i f o r m S k i l l U p d a t e "

c l a s s =" a t . ac . t uw ie n . dsg . crowdsim

. a g e n t . p o l i c y . U n i f o r m S k i l l U p d a t e P o l i c y ">

< p r o p e r t y name="OBS_PERF_UPDATE_RATE" v a l u e =" 0 . 2 " / >

< p r o p e r t y name="CONF_UPDATE_RATE" v a l u e =" 0 . 1 " / >

< / bean >

< !−− F a c t o r y f o r c o m p o s i t e t a s k s −−>

<bean i d =" c o m p o s i t e T a s k F a c t o r y "

c l a s s =" a t . ac . t uw ie n . dsg . crowdsim

. a g e n t . t a s k . f a c t o r y . C o m p o s i t e T a s k F a c t o r y ">

< p r o p e r t y name=" e d g e F a c t o r y " r e f =" e d g e F a c t o r y " / >

< p r o p e r t y name=" t a s k F a c t o r y " r e f =" s i m p l e T a s k F a c t o r y " / >

< p r o p e r t y name=" randomData " r e f =" randomData " / >

< p r o p e r t y name=" maxNumberOfTasks " v a l u e =" 6 " / >

< p r o p e r t y name=" minNumberOfTasks " v a l u e =" 3 " / >

< / bean >

<bean i d =" s i m p l e T a s k F a c t o r y "
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c l a s s =" a t . ac . t uw ie n . dsg . crowdsim

. a g e n t . t a s k . f a c t o r y . S i m p l e T a s k F a c t o r y ">

< p r o p e r t y name=" randomData " r e f =" randomData " / >

< / bean >

< !−− Pseudo random number g e n e r a t o r s f o r t h e s i m u l a t i o n−−>

<bean i d =" prng " scope =" s i n g l e t o n "

c l a s s =" c e r n . j e t . random . e n g i n e . MersenneTwis t e r64 ">

< c o n s t r u c t o r −a r g r e f =" seed " / >

< / bean >

<bean i d =" randomData " scope =" s i n g l e t o n "

c l a s s =" org . apache . commons . math . random . RandomDataImpl ">

< c o n s t r u c t o r −a r g r e f =" randomGenera to r " / >

< / bean >

<bean i d =" randomGenera to r " scope =" p r o t o t y p e "

c l a s s =" org . apache . commons . math . random . M er senne Twis t e r ">

< c o n s t r u c t o r −a r g r e f =" seed " / >

< / bean >

<bean i d =" seed " scope =" s i n g l e t o n " c l a s s =" j a v a . l a n g . Long ">

< c o n s t r u c t o r −a r g v a l u e =" 123 " / >

< / bean >

<bean i d =" s t r a t e g y " scope =" p r o t o t y p e " a b s t r a c t =" t r u e "

c l a s s =" n e t . s o u r c e f o r g e . jabm . s t r a t e g y . A b s t r a c t S t r a t e g y ">

< p r o p e r t y name=" s c h e d u l e r " r e f =" s i m u l a t i o n C o n t r o l l e r " / >

< / bean >

< !−− R e p o r t i n g t o c o l l e c t e v a l u a t i o n da ta−−>

<bean i d =" workerCSVReport " scope =" s i n g l e t o n "

c l a s s =" a t . ac . t uw ie n . dsg . crowdsim . r e p o r t . CSVMasterReport ">

< p r o p e r t y name=" r e p o r t V a r i a b l e s ">

<bean c l a s s =" a t . ac . t uw ie n . dsg . crowdsim

. r e p o r t . t a s k R e p o r t V a r i a b l e s . CSVRepor tVar i ab l e s ">

< p r o p e r t y name=" numColumns " v a l u e =" 31 " / >

< p r o p e r t y name=" f i l e N a m e P r e f i x " v a l u e =" d a t a / worker " / >
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< p r o p e r t y name=" r e p o r t V a r i a b l e s " r e f =" w o r k e r R e p o r t V a r i a b l e s " / >

< / bean >

< / p r o p e r t y >

< / bean >

<bean i d =" w o r k e r R e p o r t V a r i a b l e s "

c l a s s =" a t . ac . t uw ie n . dsg . crowdsim

. r e p o r t . t a s k R e p o r t V a r i a b l e s . W o r k e r R e p o r t V a r i a b l e ">

< c o n s t r u c t o r −a r g r e f =" marke tFacade " / >

< / bean >

< / beans >

Listing A.1: Example configuration with static teams
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