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Abstract

The performance of an information retrieval system depends on the document collec-
tion it has to work on and can be influenced to a certain degree by tuning the systems
parameter values. There are several different measures to evaluate the effectiveness of
retrieval systems. All of them have in common that they require human relevance judg-
ments to determine if search results are satisfying the information need of the queries.
However, their creation is both very expensive and time consuming.

There have been three fundamentally different approaches to create performance
rankings without the need of these relevance judgments. This thesis first introduces rel-
evant background information and then takes a closer look at the approach that shows
the most potential in determining the top performers. It employs an unsupervised mea-
sure called retrievability which expresses how accessible documents are for the system.
Experiments are conducted to compare various effectiveness measures to the retrievabil-
ity bias at different system parameter values. This is done with three different retrieval
methods on four different collections.

Results show that while there is usually always a general correlation of high effec-
tiveness and low retrievability bias observable, it largely depends on the length and/or
quality of the user queries issued. In some cases a minimal retrievability bias does not
indicate a good parameter setting for maximizing the effectiveness values. There might
be several reasons for this behavior which still require further research.

v





Kurzfassung

Die Leistung eines Information Retrieval Systems hängt von der zu bearbeitenden Do-
kumentensammlung ab und kann bis zu einem gewissen Ausmaß durch das Abstimmen
seiner Parameterwerte beeinflusst werden. Es existieren unterschiedliche Maße, um die
Effektivität von Retrieval Systemen zu beurteilen. Diese haben jedoch allesamt gemein-
sam, dass von Menschen durchgeführte Beurteilungen der Relevanz nötig sind, um fest-
zustellen, ob die Suchergebnisse die Informationsanforderungen der Suchanfragen be-
friedigen. Diese Beurteilungen sind jedoch mit einem hohem Kosten- und Zeitaufwand
verbunden.

Es existieren drei fundamental unterschiedliche Ansätze, um Leistungsrankings zu
erstellen, ohne dass dafür Beurteilungen der Ergebnisrelevanz nötig sind. In dieser Ar-
beit werde zunächst wichtige Grundlagen präsentiert und dann jener Ansatz weiter ver-
folgt, der das größte Potential zum Ermitteln der Top-Performer zu besitzen scheint.
Dabei kommt ein unüberwachtes Maß zum Einsatz, welches sich Retrievability nennt
und angibt, wie zugänglich Dokumente für ein bestimmtes System sind. Es werden mit
unterschiedlichen Parametereinstellungen Experimente durchgeführt, um einige Effek-
tivitätsmaße mit dem Bias der Retrievability bei denselben Parametern zu vergleichen.
Dies geschieht für drei verschiedene Retrievalmethoden und vier Dokumentensamm-
lungen.

Die Ergebnisse zeigen, dass fast immer eine generelle Korrelation zwischen ho-
hen Effektivitätswerten und niedrigem Retrievability Bias zu beobachten ist. Allerdings
hängt dies stark von der Länge und/oder der Qualität der vom Benutzer verwendeten
Suchanfragen ab. In manchen Fällen weist ein minimaler Retrievability Bias nicht auf
einen guten Parameterwert hin, um die Effektivität des Systems zu maximieren. Die-
ses Verhalten könnte mehrere Gründe haben, welche weiterführende Untersuchungen
nahelegen.
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CHAPTER 1
Introduction

Nowadays millions of people produce new media content every day. No matter if short
micro blog entries, long articles, pictures, music or video content, they all face the
same challenge: once published, can they also be found again by other users? Retrieval
systems and their optimization for the specific content they are employed to find, play
a vital role in this. Even the best content is virtually worthless if it can’t be easily and
correctly retrieved again.

1.1 Motivation

Evaluation is an important cornerstone of Information Retrieval (IR) research. Test doc-
ument collections play a vital role in this process, as they offer a controlled setting for
the evaluation and enable researchers to compare retrieval systems under similar con-
ditions. However, due to the fact that the relevance of documents in respect to search
topics need to be determined by humans, the construction of these collections is a very
time consuming and expensive procedure. The Text REtrieval Conference (TREC) tries
to cope with this problem by pooling the top 100 documents retrieved by each partici-
pant and only judging the relevance of them. While this leads to good results, it is still
very costly. This raises the need to find alternative ways to determine and optimize the
effectiveness of retrieval systems.
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In the last years several different methods have been proposed that allow to create a
ranking of retrieval systems without the need of these relevance judgments. There are
three basic approaches. The first is to replace the human judgments by automatically
created pseudo-relevance judgments. The second is to create a ranking based on the re-
trieval systems similarity. The third is to use the retrieval bias as a measure for ranking,
as there is supposed to be some correlation between this and the systems effectiveness
measures. Since the results of the first and second approach positively correlated with
official TREC rankings but usually failed to properly identify the top performing sys-
tems, this thesis takes a closer look at the latter one.

1.2 Goal

The aim of this thesis is to investigate the following three questions:

• To what degree is there a relationship between effectiveness measures and the
retrievability bias?

• Is this relationship consistent for different document collections?

• Is it possible to employ retrievability (as an unsupervised measure) to tune the
parameters of a retrieval system in order to optimize its effectiveness measures?

1.3 Outline

This thesis is organized as follows:

Chapter 1 contains the motivation for this work, the goals it wants to achieve and
this outline explaining the structure of the document.

Chapter 2 tries to give a definition what information retrieval is and what it is not.
Then the basic theoretical background of information retrieval systems and related work
get introduced, on which the practical part builds upon. This includes index creation,
term weighting, the retrieval models employing these weights and ways to improve
query generation. Then it is explained how the performance of a system can be eval-
uated by means of different measures, toolkits and test collections. Finally different
approaches from other scientific publications are presented that offer possible starting
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points for the experiments. The most promising one is selected, concluding the theoret-
ical part.

Chapter 3 contains information about hardware and software used for the practical
part, followed by detailed explanations of the experiment setups.

In the next chapter 4, all experimental results are analyzed in detail, interesting
findings presented and possible relations discussed.

Finally, chapter 5 concludes the thesis by providing a comprehensive summary of
achieved insights and an outlook on further possible work to be conducted in this field
of study.

3





CHAPTER 2
Fundamentals

This section first tries to give a definition of what IR is and what it is not. Then generic
concepts and problems of IR in computer science are presented upon which the follow-
ing sections are based on. Starting with common IR tasks, where the ad hoc retrieval
task is further elaborated. The steps needed in order to create an index are stated, term
weighting schemes and their use in retrieval models explained, and possible ways to
improve queries presented. Finally, the important area of evaluation gets examined, in-
cluding different evaluation measures followed by important toolkits and standard test
collections, which are often used to compute these.

2.1 Information Retrieval Basics

Information retrieval (IR), as an academic field of study, is a rather old and well estab-
lished discipline and goes back to the late 1940s. It was originally an activity which
only a few and mostly professional people concerned themselves with. The main focus
used to be the retrieval of unstructured text, in fact in many cases the term ‘information’
could simply be substituted with ‘document’ when describing the process [58, pp. 1, 3].

In the last two decades, especially since the Word Wide Web gained popularity, this
began to change. Nowadays, hundreds of millions engage themselves with IR every day
in one way or another. IR has also overtaken the traditional form of information access,
which used to be performing searches in some kind of structured database. The already
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vast amount of information is growing fast one a daily basis and IR is now often also
used to retrieve other data that goes beyond plain text, like content from multimedia
archives.

This development and the new challenges surfacing with it, greatly amplified the
interest in IR as a field of study. Already established methods get revisited and en-
hanced, new ones proposed, representation and structure of the information changed in
order to improve automatic retrieval. Generally speaking, research in this field focuses
on finding better methods to do the same. Evaluation always plays a key role in all of
this [27, p. 1], [4], [31, pp. 1-2].

2.1.1 Definition

A general definition of IR is that from Baeza-Yates and Ribeiro-Neto [6, p. 1]:

“Information retrieval (IR) deals with the representation, storage, organi-

zation of, and access to information items. The representation and organi-

zation of the information items should provide the user with easy access to

the information in which he is interested.”

The following is a more narrow definition of IR as an academic field of study by Man-
ning et al. [31, p. 1]:

“Information retrieval (IR) is finding material (usually documents) of an

unstructured nature (usually text) that satisfies an information need from

within large collections (usually stored on computers).”

2.1.2 Data versus Information Retrieval

The computer science disciplines data retrieval and information retrieval are closely
related, therefore, their distinguishing characteristics and differences are presented here
in order to further refine the IR definition.

A data retrieval system uses an artificial language with a rather restrictive vocabu-
lary and syntax in order to retrieve data that has a well defined structure and semantics.
The query is a complete specification of the data that should be retrieved where even a
small error can lead to total failure of the process, as it aims for total matching where
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the document has to satisfy every part of it. It provides a suitable solution for a database
system where you enter clearly defined key terms like an identification code. Nonethe-
less, it does not solve the problem of retrieving information in a desirable way where
the query only partly matches.

IR on the other hand normally uses natural language text for the query, which also
can be incomplete. The goal of an IR system is not just to extract the information out
of unstructured data, but in most cases also to decide how relevant regarding the query
it is. This needs to be done, because unlike database searches, there is no clear hit
and miss for the results in IR. Ideally, all relevant documents should be retrieved while
retrieving as few as possible non-relevant ones, so the user can sift through the list of
partly matching ranked results in order to easily pick the ones satisfying his information
need [6, p. 2], [12, pp. 29-30].

2.1.3 IR Tasks

The most standard IR task for a system is to provide relevant documents from a collec-
tion that satisfy a user’s indiscriminate information need. This is called ad hoc retrieval.
The information need is the subject about which the user wants to gain additional knowl-
edge. The user tries to communicate this to the system by issuing a one-time query of
which he thinks it conveys his need in a suitable way. A document returned by the
system is considered a relevant one if the user perceives that it contains information
relevant to his initial information need [31, p. 5].

Other tasks are for example the retrieval of multimedia content like speech, music,
images and videos. In cross-language IR the system tries to retrieve results in several
languages for a query in one. Also routing, filtering and further processing of already
retrieved sets of information are important tasks, too [31, pp. 2, 478].

However, the major part of this thesis focuses solely on the ad hoc retrieval task for
documents.

2.1.4 Ad Hoc Retrieval Process

Figure 3.1 illustrates the basic and generic interaction steps and components of an ad
hoc IR system.
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User︷ ︸︸ ︷ IR System︷ ︸︸ ︷ Documents︷ ︸︸ ︷
Information Need

Query Normalization Normalization

Collection

Preprocessing

Retrieval

Indexing

Ranking

Index

Result List

Feedback

Figure 2.1: Generic information retrieval process adapted from Baeza-Yates and
Ribeiro-Neto [6, p. 10].

First of all, a document collection is needed and has to be indexed. To do that, it is nor-
mally necessary to preprocess the collection first by converting it into a format which
the indexer can parse. The indexer then chops the documents into tokens and optionally
applies certain normalization operations like case-folding, stop word removal, equiva-
lence classing, stemming and lemmatization to them. These tokens are then added to
the index.

Once this is done, it is possible for a user to search documents. He has some infor-
mation need which he wants to satisfy. The IR system cannot understand that imprecise
need directly, so the user has to try to express it with a query and submit that to the
system. Usually the same normalization methods used for the documents also get ap-
plied to the query, to allow correct matching. The IR system then retrieves documents
that partially match the query. Most retrieval models have the ability to rank these doc-
uments now, by comparing the query with each of them and computing a similarity
measure. Finally, a list of these ranked documents gets returned to the user. Optional
some IR systems allow to improve the result list by giving a relevance feedback [6, pp.
9-10].
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2.2 Index Creation

The most basic way to perform document retrieval is by simply performing linear scans
on the documents. This method is also called grepping, named after the Unix command
grep. For simple querying on small collections this is basically all you need, but there
are several limitations to it [31, p. 19]:

• The performance of this method depends on the document collection, it dimin-
ishes when the collection grows in size.

• It does not work well with complex query matching operations.

• It does not allow ranked retrieval, which is needed to get the best answer to an
information need.

In order to avoid grepping through all the documents for every query, a popular solu-
tion is to index them first. One possible way to do this would be to construct a term-
document matrix in which every document gets a unique documentID and the mapping
gets saved in a lookup table. The rows and columns of the matrix contain both vectors
for each document, showing the terms it contains and vectors for each term, listing the
documents it appears in. But it is obvious that for large collections with a usually also
huge vocabulary, the dimensions of this matrix would be rather bulky. This is due to the
fact that it would contain a lot of redundant information, like all these document-term
combinations that do not occur and would have to be labeled with 0’s.

This problem is usually solved via an inverted index, which is also the most efficient
way for text applications, according to Witten et al. [61, p. 109]. The inverted index
only stores term-document combinations which actually occur. It consists of two major
parts: a dictionary and postings. The dictionary, which sometimes is also referred to
as a lexicon, consists of all terms in the collection. For each of these terms a list is
used, storing in which documents the term occurs in. Optional also the position in the
document can be stored. This automatically stores how often the term in contained, as
the amount of positions can simply be accumulated to obtain that information. Each
item in such a list is called a posting, and the combination of all lists is referred to as
postings. This basic concept is illustrated in the following figure 2.2.
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Dictionary︷ ︸︸ ︷ Postings︷ ︸︸ ︷
Corneille −→ 1 3 14 39 126 136 180

Diderot −→ 3 4 63

Goethe −→ 8 45 51 76 114 144 192 211 212 · · ·

Schiller −→ 1 4 8 39 176 212

...

Figure 2.2: Components of an inverted index adapted from Manning et al. [31, p. 7].

To create such an inverted index, Manning at al. [31, p. 19] describe four major steps
that are required:

• All documents that should be indexed need to be collected.

• Tokens from each documents text are extracted, creating a token list out of it.

• The indexing terms are created by normalizing these tokens with linguistic pre-
processing.

• The inverted index is created by indexing the documents each term occurs in.

To further optimize this, the terms in the dictionary can be replaced by termIDs. This
is done by assigning each term a unique number and creating a term-termID mapping,
very similar to the way it is done for documents, too.

2.2.1 Document Collection

Basically any compilation of documents can be used here. To simplify the process and
provide even testbeds, usually standard test collections are used in IR research. For
further information regarding test collections, see chapter 2.7.

The main task in this step is to determine the document unit for indexing. One
option might be to simply handle each file as a document, but that is not always the
ideal solution. For example in Unix, email messages usually get stored in a single file,
but it might make sense to handle each email as a separate document. Also for large
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books, in most cases it will not be the best solution to handle the entire book as a single
document. Separating it into chapters first could be the preferred way to index it. This
issue is referred to as indexing granularity. Sometimes text that might commonly be
regarded as a single document might be split into smaller files, too. For example when
information is processed for the web and stored in various HTML files. In this case it is
sensible to merge them into a single document. A good understanding of the document
collection, the information need and the usage patterns is helpful to come to a decision
regarding the document unit [31, p. 22].

2.2.2 Tokenization

Tokenization is the process of chopping the document units into smaller pieces. These
are consequently called tokens. A token consists of a sequence of characters from the
document, which form a semantic unit that is useful for further processing. The class of
all tokens which contain the same sequence of characters is called a type.

In this step, certain characters like punctuation marks can be discarded. Some char-
acter combinations also provide a real challenge for the tokenization process. For ex-
ample in the English language, apostrophes are used for different semantic purposes
like the contraction of words or indicating possession. There are also several uses of
hyphenation: grouping words, bonding nouns together as names or splitting up vowels
in words. This shows that some tokenization issues are related to the language of the
document, which consequently should be known to the tokenizer. For this purpose clas-
sifiers exist that recognize languages via character subsequences. Various other special
character sequences exist that should be recognized as a single token. Popular exam-
ples are city names which sometimes consist of several words separated by white space,
certain programming languages like C++ containing special characters, URLs for web
pages, IP or email addresses which partially consist of punctuation marks and some
other unusual characters.

Other languages add new issues that need to be addressed. In German compound
nouns are written without spaces in between, so the tokenizer needs to try to split them
into single tokens which appear in a vocabulary. This is usually done with a so called
compound-splitter. This problem gets even more complicated in some Asian languages
like Chinese, Korean and Japanese. In these, text is written without any additional white
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spaces to separate the words, so word segmentation has to be performed first. This is
a source for errors, as it is not always clear where their word boundaries are [31, pp.
22-28].

2.2.3 Normalization

Before the tokens get added to the IR system’s dictionary, various normalization pro-
cesses can be applied to remove superficial differences and merge several tokens into a
single one. In most cases this helps improving match finding with user queries. For this
purpose, the same normalization steps that are applied for index generation are usually
also applied to the queries.

Case-folding

A very common normalization approach is to reduce all letters to lower case, also known
as case-folding. This way a token that begins with a capital letter, because its position
is at the beginning of a sentence, gets folded to the same spelling as it would have in
the middle of a sentence. This change also brings some downsides with it, as some
information gets lost this way. It will not be possible any more to distinguish between
common and proper nouns and acronyms might get merged with a similar written word,
although they got a completely different meaning. For English texts, an alternative
to prevent this information loss would be to use true-casing. This only reduces these
tokens to lower case that are at the beginning of a sentence or either completely or
mostly uppercase because they are part of a headline. Since most users do not pay
attention to proper capitalization and submit their queries all in lower case, simply case-
folding everything is usually the best solution [31, p. 30].

Stop Word Removal

Extremely common terms are usually of little help to distinguish and select these docu-
ments, which satisfy the user need. These terms are referred to as stop words, because
text processing stops when one is encountered and they are not added to the dictionary.
The usual approach to building a stop list, is by sorting the terms by their collection
frequency and add the most common ones to the list. Collection frequency is the accu-
mulated number of times, each term appears in the entire document collection. Often
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it also makes sense to manually edit the stop list with the purpose to adjust it to the
semantic domain of the documents. One advantage of using a stop list is the drasti-
cally reduced number of postings that needs to be stored in the index [p. 64] [20]. An
example stop list of common words in English texts is shown in figure 2.3.

a an and are as at be by for from has he in
is it its of on that the to was were will with

Figure 2.3: Stop list of 25 common words from the Reuters-RCV1 corpus [31, p. 26].

For most queries the fact that these stop words are not indexed has little to no impact,
as long as the stop list is created with caution and not too many words are removed. But
there are also exceptions, like phrase queries or when searching for song titles or verses.
These often consist of very common words and important parts might be stopped out.
Using the example stop list from figure 2.3 on the famous soliloquy quote from William
Shakespeare’s play The Tragical History of Hamlet, Prince of Denmark “To be or not
to be”, would result in a search on only the two terms ‘or’ and ‘not’.

If you look at the history of stop list usage in IR systems, they generally used to
be rather large in the range of 200 to 300 terms. Nowadays it is more common to use
small lists consisting of about 10 stop words or no stop list at all, as there are rarely any
problems with processing performance or storage space in modern systems [31, p. 27].

Stemming and Lemmatization

The goal of both stemming and lemmatization is to reduce grammatically altered forms
of a term into a common base form. Stemming is a rather crude but also fast approach,
as it simply chops off the ends and derivational suffixes of the terms in an attempt to
achieve this. The most widely used one for English texts is the Porter Stemmer, which
applies various rules in five sequential phases to shorten the term [35]. Lemmatization

on the other hand tries to fully morphological analyze the term and return the lemma of
it, which is the form usually found in a dictionary. This method is more elaborate, but in
most cases does not improve the results for IR purposes in a meaningful way compared
to the much simpler stemming. Generally speaking, both methods do not necessary help
with all queries, rather they improve the performance of some and hurt that of others.
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During retrieval, recall gets boosted at the expense of precision [pp. 65-67] [20] For
further information about these two values see chapter 2.5.

Equivalence Classing

After stemming is done, several tokens are merged into one as they are equivalent.
Nonetheless, there are also plenty of cases when two tokens are not quite the same, but
it is still desired that a match occurs. An example is a search query for the term ‘USA’,
where the user also might want to have documents returned that include ‘U.S.A.’, which
just contains some superficial character differences. The standard way to normalize
this is by creating equivalence classes, which are usually named after one member of
the set of tokens they consist of. This way searches for one of the terms will retrieve
documents that include either of them. This can be easily done by creating mapping
rules that remove certain characters. Then again, it is not obvious when characters
could be added, as these mapping rules used are implicit.

Instead of creating equivalence classes, one can also use synonym relations between
tokens which are stored in a list and can be manually expanded. These relations can be
employed during index creation, when a document for example contains the term ‘lift’,
it also gets indexed under ‘elevator’. Alternatively they can be indexed the way they
are and the synonym list gets considered for query terms. This is the standard way and
further explained in section 2.4.2 which handles query expansion [31, p. 28].

2.2.4 Indexing

Indexing is usually done by whatever indexer the IR system has available. As we have
seen in the previous section, there are several issues with phrasal or multiword queries
that are needed for many technical concepts, organization or street names. To counter
that problem, there are different indexing approaches. A biword index sees pairs of con-
secutive terms as a phrase, while a phrase index does the same for several terms. How-
ever, the most often used method is the use of a positional index, storing the position of
each term within the document. Occasionally, both approaches are combined [31, pp.
39-43].

Once the indexing is done, the IR system is ready to accept queries and respond to
user information needs.

14



2.3 Retrieval Models

The performance of the information retrieval relies heavily on the retrieval model used.
This section gives an introduction to some of the major models and explains the most
important term weighting schemes they employ.

2.3.1 Boolean Retrieval

The first developed and most widely used retrieval model is Boolean Retrieval. Until
the early 1990s, it was the only model implemented by huge commercial information
providers, despite several decades of academic research that proclaimed the advantages
of ranked retrieval systems. The Boolean model only knows binary weights. That means
an index term is either present in a document and therefore has a binary value of 1, or
absent and has a value of 0. It does not pay attention to any other factors, no grading
scale is possible. The queries for this model follow simple semantics and consist of
index terms connected with ‘AND’, ‘OR’ and ‘NOT’ as operators.

One of the major drawbacks of this relatively simple approach is the fact that it uses
exact matching, so document retrieval is based on binary decisions. As this allows no
ranking, the amount of retrieved documents is directly dependent on the query and can
lead to very few or also too many results, which can exceed the number a user can
look at more comprehensive. The three operators mentioned above are also too limited
for some information needs and make it hard to express them properly, so extended

Boolean models were developed that also implemented operators for the proximity of
terms [6, pp. 25-27], [31, pp. 14-15, 109].

2.3.2 Vector Space Model

This model recognizes the limiting factors of the Boolean Retrieval and offers a frame-
work that also allows partial matching and the computation of a grade of relevance
towards the query by finding the documents which have the highest similarity to the
query. Unlike boolean retrieval, it can create a list of ranked results.

The basic idea of the vector space model is to represent each document as a vector
in a multidimensional vector space, where each dimension is corresponding to one term
from the dictionary. Coefficients are used to represent the presence or importance of the
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terms. This can be done by using binary values, yet most of the time some scaled non-
binary term weights are employed. Queries can be represented in the same vector space
and are normally entered as a list of terms without using a query language to connect
them like Boolean retrieval models do. This concept is illustrated in figure 3.1, which
shows a two-dimensional vector space spanned by two terms. In it the document 1 has
the highest similarity to the query.

Figure 2.4: Vector space model adapted from [45].

There are two possible methods to quantify the similarity of two documents in a vector
space. One of them is to measure the distance between the endpoints of the document
vectors. This has the drawback that documents with very similar content might still
have a huge distance between each other, simply because one of them is considerably
longer than the other. The second possibility to measure the similarity is the most com-
monly used one, called cosine similarity, which is represented by the cosine of the angle
between the vectors ~q and ~d in the following equation:

similarity(q, d) =
~q · ~d
|~q||~d|

(2.1)

In equation 2.1 the numerator represents the inner product of the two vectors. The
denominator is the product of their Euclidean lengths, which normalizes their lengths
and thus counters the drawback the first method had [57], [6, pp. 27-30], [31, pp. 120-
121].
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TF

The most simple way to assign some kind of scaled weight to each term in a document
is by setting the weight of the terms equal to the amount of times they occur in the
document. This is referred to as term frequency (TF) and denoted as tft,d with t being
the term and d the document. In this weighting scheme the ordering of the terms is
not important, which is referred to as a bag of words. All terms are considered equally
important towards the relevancy of a query, although there are often some which have
little to no discriminating power at all. Thus this equal importance is considered a
problem.

TF-IDF

Instead of the raw term frequency, most of the time some variation of the term frequency

- inverse document frequency (tf-idf) weight is used. As some terms are generally really
common this should be also taken into consideration, which is done by the inverse
document frequency, diminishing the weight of terms that are frequent within the entire
collection and on the other hand increasing that of terms with a rare occurrence. The
tf-idf weight for a term t in a document d is calculated as depicted in equation 2.2. With
N being the total number of documents in the collection and dft the total amount of
documents containing t.

tfidft,d = tft,d × log
N

dft
(2.2)

Standard tf-idf is biased towards large absolute term frequencies, as it does not nor-
malize them relative to the document length. Normalized tf-idf addresses this issue by
utilizing the document length |d| [31, pp. 117-119].

2.3.3 Probabilistic Models

When using the boolean or vector space model for IR, the system only has a seman-
tically imprecise calculus of index terms. With just one query, it can only produce an
uncertain guess whether a document has content that is relevant to the information need,
as the IR systems understanding for the information need is unsure. Probability theory

can be used for reasoning under uncertainty and can be used to estimate the likelihood
of a document being relevant. There are several retrieval models which have a prob-
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abilistic basis, representatively the Binary Independence Model and the Okapi BM25
Model are presented here [31, p. 219].

Binary Independence

As one of the first probabilistic models, the Binary Independence uses binary term
weights, which in this case is equivalent to Boolean. Both the queries and the doc-
uments are represented as binary vectors of the form ~x = (x1, ..., xn). If a term t is
present in the document, then xt is set to 1, which reduces many potential documents
to the same representation. It assumes that terms occur independently within the doc-
uments, meaning that no association between them are recognized, which is actually
not correct. Nonetheless, it still performs quite well on most collections, but was not
adapted for modern full-text retrieval [31, pp. 222-223].

Okapi BM25

The Okapi BM25 was the first non-binary model and employs as the name already hints
BM25 as weighting scheme. It was developed under the premise that a probabilistic
model for full-text retrieval should pay attention to the term frequency and document
length, while not introducing too many additional parameters [25]. It was first made
public in the 1990s and gained popularity fast, as it demonstrated good performance
in full-text retrieval, especially in many of the TREC test collections. Section 2.7.1
provides further information about TREC. Nowadays, Okapi BM25 is one of the most
widely used models and there are many different variations of the formula. A commonly
used version is displayed in 2.3.

BM25(q, d) =
∑
t∈q

log

[
N

dft

]
(k + 1)tftd

k((1− b) + b× ( Ld

Lave
)) + tftd

(2.3)

Here Ld is the length of the document d and Lave the average document length within
the collection. The two variables b with 0 ≥ b ≥ 1 and k with 0 ≤ k are tuning
parameters. The document length can be scaled by adjusting the value of b, with b = 0

corresponding to no length normalization and b = 1 fully scaling the term weight by
the document length. k calibrates the document term frequency scaling, with k = 0

representing no scaling and thus corresponds to a binary model [31, pp. 232-234].
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2.3.4 Language Models

The usual approach for a user to formulate a good query, is to try express his infor-
mation need in terms that are likely to appear in the relevant documents. This basic
idea is directly implemented by language models. Instead of modeling the likelihood
of a document to be of relevance to the query, the basic language modeling approach
builds for each document d a probabilistic language modelMd. Based on the probability
P (query|Md) to generate that query, the documents get ranked. To be able to do this, it
is necessary to assign probability values to the terms of the language. Different models
exist to achieve this by constructing probabilities over sequences of terms, like for ex-
ample the unigram, bigram and multinomial unigram ones. A language model over an
alphabet A can be denoted as the following function, putting a probability measure over
the strings s, whereas the accumulated probability is always equal 1 [31, pp. 237-238]:∑

s∈A

P (s) = 1 (2.4)

Unigram

The unigram language model shown in equation 2.5 simply ignores all conditioning
context and the ordering of the terms within the document, making it a bag of words
model. The fact that it estimates each term t independently, makes it the simplest form
of a language model [31, pp. 117, 240].

Puni(t1t2t3t4) = P (t1)P (t2)P (t3)P (t4) (2.5)

Bigram

An example for a more complex model which also takes the preceding context into eval-
uation, is the bigram language model depicted in equation 2.6. Here there probability
for each term is conditioned on the previous one [31, p. 240].

Pbi(t1t2t3t4) = P (t1)P (t2|t1)P (t3|t2)P (t4|t3) (2.6)

Multinomial Unigram

The unigram and bigram models do not take the multinomial probability of a bag of
words into account, as they do not sum over all the possible orderings of the tokens.
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This can be done by using the multinomial coefficient Cq shown in 2.7, resulting in the
standard multinomial unigram language model for the query q in equation 2.8, with Md

being the model for a specific document d.

Cq =
Ld!

tft1,d!tft2,d!...tftM ,d!
(2.7)

P (q|Md) = Cq
∏
V ∈q

P (t|Md)
tft,d (2.8)

For a particular bag of words the coefficient Cb will be simply a constant. Also, if
some of the terms from the query do not appear in the document at all, it might result
in a similarity score equal zero. To compensate this, these language models usually
employ some form of term smoothing. Not only does the zero problem get prevented
this way, but at the same time also major parts of the term weighting component are
implemented [13], [31, pp. 241-244].

2.4 Query Improvements

“The last time that I stood here was seven years ago. [...] You accused me

of being the representative of a barbarous species.”

“I believe my exact words were: a dangerous, savage, child-race.”

Captain Picard and Q, Star Trek: The Next Generation, “All Good Things...”

As already briefly mentioned in the equivalence classing subsection 2.2.3, synonyms

often pose a problem for the IR system when trying to retrieve relevant documents.
The degree of overlap between the query terms and terms in the relevant documents
influences the effectiveness of the IR system.

Users often try to address this problem by manually resubmitting a query with dif-
ferent synonyms and refining it that way, until they get a desired result list. However, the
ability of the user to successfully formulate alternative queries depends on his general
experience of searching and his expert knowledge in the domain of the collection he is
searching in. There are ways for the IR system to take on that tedious process or at least
to assist the user with it [21], [31, p. 177].
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2.4.1 Relevance Feedback

The idea behind relevance feedback is that it is often hard for the user to formulate a
good query if he does not know the collection well. So he is given the option to interact
with the retrieval process, with the purpose to improve the final result list. The basic
procedure consists of the following steps:

• The user submits a query, which should be simple and short, to the system.

• The system returns an initial result list.

• The user gives feedback by flagging some of them as relevant or non-relevant.

• Based on that feedback, the system computes an improved representation of the
information need.

• The systems returns a revised result list.

The relevance feedback can go through multiple iterations, repeating the last three steps
for further refinement. Relevance feedback is especially potent when performing image
search, where it can be hard to express the need in a few terms, but easy to quickly judge
the results. Nonetheless, it is often not popular with users as they do not want to invest
further time into refining the query or are reluctant to provide additional feedback. It
is sometimes also difficult to comprehend why a certain feedback choice influenced the
next result set the way it did.

To cope with the issue of the user potentially refusing the explicit interaction, some
modified versions of relevance feedback have been developed. Blind relevance feed-

back automatically presumes that the top ranked documents in the result list are relevant
and uses this assumption to generate feedback data, so it can feed the feedback-loop
itself. Implicit relevance feedback analyses the user actions, like the clicking on a re-
turned document in order to read it, and rearranges the ranking based on that indirect
feedback [6, pp. 117-118], [31, pp. 178, 185-188].

2.4.2 Query Expansion

With query expansion users have the option to give additional input on the query terms
themselves instead on the result. Some IR systems, especially those used on the web,
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suggest alternate but related queries to the one submitted by the user. The most common
way to generate these alternate suggestions is global analysis by the use of a thesaurus,
which contains synonyms or semantically related subjects. It is also possible to automat-
ically expand the query by adding for each query term its synonyms from the thesaurus
to the query. This generally increases the amount of relevant documents retrieved while
not requiring a user input.

There are several ways to create such a thesaurus, either manual by human editors or
automatically. For example the editors can maintain a list with canonical terms for each
concept, much like in traditional libraries where you have subject indices and under
each of these a vocabulary of possible synonyms or related terms. This is an especially
common procedure for well resourced domains. A thesaurus can also be automatically
derived by the use of statistics about term co-occurrences in a collection of documents
from a specific domain. Another automatic option to suggest query alternatives to a
new user is by exploiting the manual query reformulation attempts of users who already
used the IR system before him. To perform this query log mining, a huge amount of
generated queries and thus users is needed, which makes it an eligible method for web
search systems [31, pp. 189-192].

2.5 Evaluation of Information Retrieval Systems

The objective evaluation of search performance is an important cornerstone of IR re-
search.

2.5.1 Reasons for Evaluation

Given the experimental nature of IR research, progress critically depends upon experi-
menting with new ideas. However, experience has shown that new ideas and potential
improvements for the search ability of a system that look good in theory often have very
little or no impact at all when observed under excessive testing. To make noticeable
progress, it is necessary to keep evaluating the performance and experimenting with
alternatives, so useful changes can be distinguished from superfluous ones [48].

Two different ways to evaluate the performance of an IR system are effectiveness
and efficiency. In a general sense, effectiveness measures the ability to find the right
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information. More specific, if a definition of relevance is available, it is possible to de-
termine the effectiveness by comparing the ranking an IR system produced in response
to a query to the ranking created by user relevance judgments. Efficiency, on the other
hand, measures how much time or space the system needs to create that ranking.

Most of the time, IR research first focuses on improving the effectiveness and once
a new technique is found to do that, resources are used to create an efficient implemen-
tation. It is usually done this way, because the main intention is to actually find relevant
information. A retrieval system that is only fast without producing good results would
be useless in most use cases [58, p. 112], [20, pp. 269-271].

2.5.2 Basic Requirements

To measure the performance of an IR system in the standard way, the following three
components are required:

• A document collection.

• A set of queries, expressing the information need.

• A set of relevance judgments, labeling the relevance of each query-document pair
in a binary way.

2.5.3 Evaluation Measures

The most common measures to evaluate if a retrieval system is effective and satisfies
the information need are Precision and Recall. These two are usually inversely related,
so it is not possible to get the best value for each of them. A typical relation is shown in
figure 2.5. While the slope of the curve may vary for different collections and retrieval
systems used, the general relationship remains. The optimum value would be in the
upper right corner of the graph, maximizing both Precision and Recall.

23



Figure 2.5: Precision and Recall inverse relation.

In order to express the Precision and Recall combination as a single value, F-measure
can be used. There three values are in principle measures between 0 and 1, but it is com-
mon practice to express them as percentages. A single measure for Precision and Recall
in ranked retrieval sets is the Mean Average Precision. Something all these measures
have in common is the fact that they require relevance judgments. If they are not com-
plete, Binary Preference can be used. Another measure, which does not need relevance
judgments at all, is retrievability. This fact will play a vital role for the experiments
conducted in the practical part of this thesis.

In unranked retrieval the IR system returns a set of documents for a given query.
There exist four possible combinations of retrieval state and relevance of a document.
This is depicted in table 2.1.

Table 2.1: Relevance and retrieved combinations [31, p. 155].

relevant not relevant
retrieved true positives (tp) false positives (fp)
not retrieved false negatives (fn) true negatives (tn)
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Accuracy

Accuracy measures the fraction of classifications that an IR system did correct and is
defined as shown in equation 2.9.

Accuracy =
tp+ tn

tp+ fp+ fn+ tn
(2.9)

While this is an often used method to evaluate machine learning classification problems,
it usually is not a useful one for IR systems. This is due to the fact that in information
retrieval the data is in most cases massively skewed and less than 0.1 percent of the
documents are actually relevant to a given query. The Accuracy of an IR system can
simply be maxed by labeling all documents as non-relevant. However, this wouldn’t be
in the interest of the user at all, as he expects to get some relevant documents returned
(tp). As long as his information need gets satisfied he usually does not mind if some of
the returned documents he has to look through are not relevant (fp) [31, pp. 155-156].

Precision

Precision measures the share of documents returned by the system that are also relevant
for the query relative to the total amount of documents retrieved. Knowledge about
relevance and documents retrieved is needed to calculate it, as shown in equation 2.10.
However, if for example the collection contains a lot of relevant documents and all
the IR system returns is a single relevant document, the Precision is still 100 percent,
without this being a satisfying result set in most cases. That is why Precision is often
couped with Recall [31, pp. 154-155].

Precision =
tp

tp+ fp
(2.10)

Recall

Normally it is not worthwhile to just maximize Recall either, as for example 100 percent
Recall can be achieved if the system simply returns all documents from the collection as
result set. This automatically includes all relevant documents, but basically completely
ignores the query.

Recall measures the ability of a retrieval system to successfully retrieve these doc-
uments from a collection that are relevant to the query. To measure this, knowledge
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about relevance, documents retrieved and documents not retrieved is needed. Recall has
a value between 0 and 1 and is defined as shown in 2.11.

Recall =
tp

tp+ fn
(2.11)

An ideal IR system should have both a high Recall and Precision value. Meaning
it should retrieve as many relevant documents as possible while only retrieving a small
amount of non-relevant ones. While one approach can be to simply maximize the com-
bination of both, it not always represents the ideal combination for the needs of the user
or the purpose of the system, where another balance might be considered more favorable
to the desired result.

To make comparisons between different IR systems easier, a single value that can be
used is the breakeven point. This is the point at which Precision and Recall are equal,
which usually can be achieved by tuning the IR systems parameters [31, pp. 154-156,
161].

F-Measure

A single measure used to tune Precision versus Recall is called F-measure, which is the
weighted harmonic mean of these two and calculated as depicted in equation 2.12. With
β < 1 Precision (P ) is emphasized and with β > 1 Recall (R). The default value for β
is 1, equally weighting both. This is referred to as the balanced F-measure, also called
F1 which is an abbrevation for Fβ=1 [31, p. 156].

F =
(β2 + 1)PR

β2P +R
(2.12)

Mean Average Precision

Nowadays it is standard for search engines to use ranked retrieval, which means the
system usually returns the top k documents considered relevant for the query as a result
list and the user is usually more interested in the ones at the beginning. This can be
displayed in Precision-Recall Curves. The most standard measure to express that infor-
mation as a single measure of quality is Mean Average Precision (MAP). For a single
information need expressed as a query, the Average Precision is calculated by averaging
the Precision values after each relevant document that is found. This results in a high
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Average Precision value if many relevant documents are among the top k retrieved ones.
To get the MAP, this is done for many queries and the thus obtained Average Precision
values get averaged themselves. The equation is shown in 2.13, with {d1, ..., dmj

} being
the set of relevant documents for an information need qj ∈ Q. Rjk is a set of ranked
results, from the top one until document dk is reached [31, pp. 159-160].

MAP (Q) =
1

|Q|

|Q|∑
j=1

1

mj

mj∑
k=1

P (Rjk) (2.13)

As the MAP values for different information needs within the same system often vary
extremely, they are more often used to compare a system to others by the use of a single
information need [31, p. 161].

Binary Preference

For incomplete relevance judgments, the Binary Preference (bpref) measure can be
used. It computes a preference relation of judged documents: whether relevant ones
are retrieved ahead of irrelevant ones. Bpref is calculated as shown in 2.14, with r ∈ R
being a relevant document and n being a member of the first R judged non-relevant
documents retrieved by the IR system.

bpref =
1

R

∑
r

(1− |n ranked higher than r|
min(R,N)

) (2.14)

Bpref works well in most practical cases, unless the amount of relevant documents is
extremely small [17].

Retrievability

To compute the retrievability, which is often also called findability, no relevance judg-
ments are needed at all. For this a qualitative measure was introduced for the first time
by Azzopardi and Vinayin in [5] and adopted from the over 50 year old concept of
Accessibility, used in the field of land use and transportation planning. There it was
defined as a measure of interaction with certain resources in a physical space like din-
ing, education, employment, shopping etc. via the use of certain transportation systems,
for example, streets for cars, public transportation like bus and railroad or by the use
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of bicycles [24]. In the context of IR the analogy of physical space is the information
space, usually represented by the document collection. Instead of various transportation
systems, the user has an IR system that allows him to access that information by issu-
ing queries. Unlike in physical space the current location of the user, meaning which
document he retrieved last, does not matter. Everything is potentially accessible from
everywhere at any time, as the user can issue any query he likes. However, the choice
of the route and the distance the user is willing to travel have a direct impact on how
accessible a document is within that information space [4].

Based on that analogy, retrievability indicates how easy the information within a
document collection can be accessed with a given retrieval model, or if it can be accessed
at all. A high retrievability value means the probability for a user to find it by querying
is high, too. Intuition tells us that the retrievability is high if:

• There are many different queries q ∈ Q which can be expressed to retrieve a
document d or the probability oq to formulate a relevant query is very high.

• The user is willing to examine a certain amount of documents in the result list,
which is called rank cutoff c. The rank kdq of the document in question for a
certain query is as low as possible, but at least as low as the rank cutoff.

The willingness of the user to go down the list of ranked results is a very important factor
and varies wildly from application to application. When using a web search engine the
user usually only looks at the first page and is nearly never willing to go past page three,
so c is rather low in this case. Based on this reasoning, the following measure 2.15 for
the retrievability of a document r(d) can be formulated.

r(d) =
∑
q∈Q

oq · f(kdq, c) (2.15)

The function f(kdq, c) is a generalized utility/cost function and returns 1 if kdq ≤ c,
in all other cases 0. As the likeliness that a user issues a query oq is really hard to
determine, unless the queries are based on a set of historical query samples, it is in
most cases straightforward set to 1, giving all queries equal probability values. By this
definition, the retrievability of a document is simply the accumulated amount of times
it can be retrieved below the cutoff level over the set of all queries Q. In most cases
it is impractical to calculate the absolute r(d) values because of the large size of Q, so
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some estimation of the retrievability has to be used. An approach to that problem is to
use subsets of the possible queries, containing a sufficiently large amount of probable
queries. This can for example be done by the use of a historical set of queries from a
query log or by using an algorithm for query based sampling [18].

A visual way to analyze the inequality of retrievability in document collections is by
the use of Lorenz Curves, which are especially popular in economics where they are for
example used to visualize population income distributions, as shown in 2.6.

Figure 2.6: Example Lorenz Curve adapted from [44].

This is done by first sorting the population in ascending order of their wealth and then
creating a plot of this cumulative distribution. In an equal distribution the line would be
like the Line of Equality. The extent to which the distribution deviates from the Line
of Equality is reflected by its skewness. This concept can be applied for retrievability
analysis in the same way, by simply using r(d) instead of wealth and thus visualizing
the bias of an IR system.

The Gini-Coefficient G can be used to summarize the Lorenz Curve into a single
value. Looking at figure 2.6 from a bird’s eye view, it is given by the ratio of the areas
bounded by the curve as shown in equation 2.16. It can be computed as shown in
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equation 2.17, with D being the amount of documents in the collection [22].

G =
A1

A1 + A2

(2.16)

G =

∑|D|
i=1(2 · i− |D| − 1) · r(di)
(|D| − 1)

∑|D|
j=1 r(dj)

(2.17)

Consequently G can have a value between 0 and 1. If it equals 0, then there is no bias
at all and all documents are equally retrievable. The higher G, the more bias is present
in the retrieval system towards the document collection used [5].

2.6 Search Engines and IR Toolkits

Several different search engines exist that allow comfortable indexing, retrieval and op-
tional ranking of documents. This section will give a brief overview of some established
open source search engines and IR toolkits which still received updates in the last four
years, are not stagnating and therefore do not have to be considered outdated. A more
elaborate description of the Lemur Toolkit is given, as this is the one employed for the
experiments conducted in this thesis.

2.6.1 Comparison

Table 2.2 gives a basic comparison of the toolkits by means of nine important character-
istics. Filetype describes the type of file the toolkit is able to parse. Storage describes the
way the index is stored, which can either be in a database or a more simple file system,
like an inverted index. The possibility to add new files to that index without the need of
recreating it, is indicated by the increment column. Stop words indicates if the indexer
is capable of using a list of words that should be discarded, and stemming if there is a
possibility to apply stemming operations over words. Fuzzy search is the ability to solve
queries without exact matching. Ranking describes if the results of a search are based
on a ranking function. Three possible search types are Boolean (b), phrase (p) and wild
card (w). Finally, language lists the programming language that was used to implement
the toolkit.
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Table 2.2: Comparison of search engine characteristics adapted from [32].
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DataparkSearch html txt xml database X X X X X b C
IXE Toolkit html txt xml file X X X X p b w C++

Lemur Toolkit html txt xml pdf file X X X X X p b w C++
Lucene html txt pdf file X X X X X p b w Java
MG4J html txt file X X X X p b w Java

mnoGoSearch html txt database X X X X X b C
Namazu html txt file X X p b w C
Omega html txt pdf ps file X X X X p b w C++

Omnifind html txt xml pdf ps file X X X X X p b w Java
OpenFTS html txt database X X X X X b p Perl
SWISH-E html txt xml file X X X X X p b w C
SWISH++ html txt file X X X X p b w C++

Terrier html txt xml pdf ps file X X X X p b w Java
XMLSearch xml file X X X p b w C++

Zettair html txt file X X X X p b w C

Supplementing the comparision table, a short additional description of the main charac-
teristics is given in the following subsections.

DataparkSearch

The DataparkSearch Engine is a search engine with a web CGI front-end designed for
searching websites, the intranet or a local system [63].

IXE Toolkit

The Ideare indeXing Engine (IXE) is a set of modular object-oriented frameworks con-
sisting of C++ classes and utilities, providing indexing, querying and analyzing fuc-
tionalities for collections of documents. While there exists a commercial version from
Tiscali, there is also a non-commercial version available for academic use [32].
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Lucene

As full-featured text search engine library, part of the Apache Software Foundation,
Lucene is often used in various applications that make use of it [1].

MG4J

Managing Gigabytes for Java (MG4J) was developed at the the University of Milano
initially as a text indexer consisting of a loosely coupled set of classes. It has evolved
into a complex system implementing a large class of scalable algorithms that are of
interest to the text-retrieval community [16].

mnoGoSearch

While the Windows version of mnoGoSearch has a graphical user interface and is sold
commercially, the unix command line version is open source. Besides the usual index-
ing and retrieval of website content, this toolkit is also capable of indexing multilingual
websites and fetching versions of the same page in different languages via content ne-
gotiation technology [29].

Namazu

Namazu, which is the japanese word for catfish, does not only allow easy search in
document collections, but also provides a personal search system for emails or other
files [41].

Omega

Omega is a retrieval application based on the Xapian Project, which is a probabalistic IR
library and can be binded to different programming languages like Perl, Python, PHP,
Java, Tcl, C#, Ruby and Lua [43].

Omnifind Yahoo! Edition (IBM)

The Omnifind Yahoo! Edition (IBM) combines an internal search based on the Lucene
search engine with the possibility to search the Internet using the Yahoo! search en-
gine [32].
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OpenFTS

The Open Source Full Text Search engine (OpenFTS) provides online indexing of data
and relevance ranking for database searching. The close database integration allows the
use of metadata to restrict search results [7].

SWISH-E and SWISH++

Simple Web Indexing System for Humans-Enhanced (SWISH-E) is an improved version
of the original SWISH which was written by Kevin Huges in 1994. SWISH-E was
completely rewritten in C++ and released as SWISH++ containing most of the features,
but not all of them [32].

Terrier

TERabyte RetrIEveR (Terrier) was developed at the University of Glasgow as a modular
platform allowing the creation of large scale search applications. It is also often used
for the evaluation of TREC collections [38].

XMLSearch

XMLSearch is a set of classes developed in C++, for indexing document collections
and searching with text operators like equality, prefix, suffix, phrase, etc. There is a
commercial version available from Barcino and a non-commercial version available for
academic use [32].

Zettair

Zettair was originally known as Lucy and developed at the Royal Melbourne Institute
of Technology University [32].

2.6.2 Lemur Toolkit

The Lemur Toolkit is an open source framework for language modeling and informa-
tion retrieval, offering sophisticated structured query languages. It was developed as a
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cooperative work between the Center for Intelligent Information Retrieval at the Univer-
sity of Massachusetts and the Language Technologies Institute at the Carnegie Mellon
University as part of the Lemur Project. It offers Porter and Krovetz word stemming,
acronym and stop word recognition for English, Chinese and Arabic text. The Lemur
Toolkit includes the Indri Search Engine, which was originally developed as a stand-
alone project, but later integrated into the toolkit. Indri offers both command line tools
and a Java GUI and was designed to address the following goals:

• The query language supports complex queries which involve evidence combina-
tion and has the ability to specify a wide variety of constraints.

• Superior effectiveness across a range of query and document types provided by
the retrieval model.

• Both query language and retrieval model allow retrieval at different granularity
levels.

• Support very large and multiple databases, fast and concurrent indexing, opti-
mized query execution, and portability.

As these four aims are partially in conflict with one another, decisions were made to
support one at the expense of another. Nonetheless, the creators of Indri believe that
they managed to achieve a functional balance between its goals while keeping a clear
and easily modifiable code that is usable in an academic setting [53].

For index creation, compressed inverted lists for each term and field in memory
are build and periodically written to disk. The data created this way is self-contained,
meaning all necessary information to process a query is saved in it. It is also stored in
an accessible manner to support the development of new retrieval strategies. Several
retrieval models are supported, including tfidf, Okapi BM25, a method based on the
KL-divergence language model, InQuery, cosine similarity model or the Indri structured
query language. Different parameter settings can be used for these models.

The Indri system architecture offers concurrency. Queries can be run and evaluated
against several indexes simultaneously, which do not necessarily have to be on the same
machine. In addition to queries, also document deletions and insertions can be pro-
cessed simultaneously, allowing retrieval operations on dynamic data collections like
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constantly updating news feeds. It can handle terabyte-sized document collections and
can be used on a cluster of machines to speed up the indexing and retrieval process [39].

2.7 Standard Test Collections

The principal tool the evaluate IR systems are test collections. They usually consist of
documents, a set of queries and relevance judgments, which are a vital part of a test
collection. It does not take much effort to gather the documents or create queries for
them, but the manual creation of relevance judgments requires a lot of resources and is
usually very costly, too. Therefore it is often an economic necessity to re-use the same
collections for which these judgments already exist. There are other advantages of using
standard collections, like the ability to allow researchers to better understand, reproduce
and compare results [47].

This section presents test collections with the main evaluation focus on ad hoc IR
systems and further explains the creation of relevance judgments.

2.7.1 Popular Collection

20 Newsgroups

A single but widely used collection which is called 20 Newsgroups consists of 18941
accumulated documents, which were nearly evenly distributed across 20 different news-
groups, each corresponding to a different subject [28].

CLEF

The Conference and Labs of the Evaluation Forum (CLEF), which was formerly known
as Cross-Language Evaluation Forum, focuses mainly on documents containing Euro-
pean language text and cross-language IR. For this purpose it provides plenty of collec-
tions, including an annually ad hoc retrieval one, between the years 2000 and 2009 [19].

Cranfield

The Cranfield collection was the first one to allow precise quantitative IR evaluation
and was created in the late 1950s. It has an extremely small size of only 1398 abstracts
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from aerodynamic journal articles, 225 queries and the corresponding list of relevance
judgments. Because of that, nowadays it is not really used for anything any more except
very elemental experiments [31, p. 153].

NTCIR

The NII Test Collection for IR Systems (NTCIR) project focuses on documents con-
taining East Asian language text and cross-language IR. The size and amount of the
collections is comparable to the TREC ones [37].

Reuters

Reuters is the largest international television and text news agency. The Reuters-21578
corpus is one of the most widely used collections for text classification and information
retrieval and was used for hundreds of published studies. It originally contained 22173
newswire articles from 1987 and was made available for research purposes for the first
time in 1990. During a cleanup and relabeling process in 1996, some of the documents
that were exact duplicates of each other were removed, reducing the original corpus to
21578 documents, which gave the collection its name. Meanwhile, there also exists a
follow up corpus called the Reuters Corpus Volume 1 (RCV1). The purpose of this
was to eliminate some weaknesses of its predecessor, like the limited overall size of the
collection or the fact its articles did not cover a whole year, arguably causing a somewhat
biased content [46].

TREC

The Text REtrieval Conference (TREC) is a yearly recurring conference for the evalua-
tion of IR systems, which was hosted for the first time in 1992. It originally developed
out of TIPSTER, a project to encourage the advancement of text handling technologies.
TREC provides many large English language collections, consisting of millions of doc-
uments. They are used very frequently by both scientific and commercial members as
an equal testbed to evaluate and compare their results. For the practical part of this the-
sis, several TREC collections served as a testbed. An example document is depicted in
listing 2.1.
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Listing 2.1: Example Federal Broadcast Information Service document.
1 <DOC>
2 <DOCNO> FBIS3-3070 </DOCNO>
3 <HT> "drchi051_s_94001" </HT>
4 <HEADER>
5 <AU> FBIS-CHI-94-051 </AU>
6 Document Type:Daily Report
7 <DATE1> 10 Mar 1994 </DATE1>
8 </HEADER>
9 <F P=100> Northeast Region </F>

10 <H3> <TI> Heilongjiang Facilitates Border Trade With CIS,
Japan </TI></H3>

11 <F P=102> OW1003134394 Beijing XINHUA in English 1313 GMT 10
Mar 94 </F>

12 <F P=103> OW1003134394 </F>
13 <F P=104> Beijing XINHUA </F>
14 <TEXT>
15 Language: <F P=105> English </F>
16 Article Type:BFN
17 [Text] Harbin, March 10 (XINHUA) -- Among 21 state-approved

border ports in northeast China’s Heilongjiang Province, 17
have gone into operation. According to one official, more
and more ports with improved facilities have boosted the
province’s border trade with the Commonwealth of
Independent States (CWIS) [abbreviation as received]. Up to
now, the ports have handled over 273,000 tons of cargo
annually and 1.76 million businessmen entering and leaving
China. A transportation network has been established in the
province, including airlines from Harbin, capital of the
province, to Japan and CWIS, railways to Russia and
shipping routes to Russia and Japan. In 1993, the
province’s import and export volume rose to over 2.6
billion Swiss francs.

18 </TEXT>
19 </DOC>
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Because of the enormous size of some of the collections, no exhaustive relevance judg-
ments exist for all of them [31, pp. 153-154], [56].

2.7.2 Relevance Judgments

To create a complete set of relevance judgments, for each query every single document
has to be judged if it contains relevant material. These relevance judgments, which are
also known as ground truth, have to be manually created and usually contain binary
relations between the queries and documents. For such a relation to be labeled as rele-
vant, it is not important that the document contains all terms of the query, it simply has
to satisfy the information need that stands behind the query, which is often also called
the topic. A difficulty that arises during the labeling process is the fact that humans
usually disagree about the relevance of some documents. However, studies have shown
that looking at the big picture this has little influence [51], [59].

An example TREC relevance description for a query is shown in listing 2.2. While
the <title> field contains a very short query, consisting of a maximum of three words,
the <desc> field holds a description of the topic area in a single sentence. Finally,
<narr> gives an exact definition of what makes a document relevant.

Listing 2.2: Example TREC topic relevance description.
1 <top>
2 <num> Number: 396
3 <title> sick building syndrome
4 <desc> Description: Identify documents that discuss sick

building syndrome or building-related illnesses.
5 <narr> Narrative: A relevant document would contain any data

that refers to the sick building or building-related
illnesses, including illnesses caused by asbestos, air
conditioning, pollution controls. Work-related illnesses
not caused by the building, such as carpal tunnel syndrome,
are not relevant.

6 </top>

To avoid having to manually label every query-document pair with a relevance judg-
ment, which is nearly impossible for very large collections and would take thousands of
hours for a single query, the National Institute of Standards and Technology (NIST) uses
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a method called pooling to create a subset of potential relevant documents of the TREC
collections. Only the documents in this pool are then judged for relevance regarding a
specific topic and documents that are not in that pool are automatically assumed to be
not relevant. This technique is considered valid when there are enough relevant doc-
uments found that the judgments set resulting from it is unbiased and approximately
complete. The following steps are taken for the creation of such a pool [60]:

• NIST creates 50 new topic statements and releases them to the TREC participants.

• The participants are free to use any method they wish to create queries from these
topics to search the document set. It is distinguished for comparison reasons if
results were acquired with automatic or manual created queries.

• Each participant submits some number of runs, which consist of a maximum of
1000 top retrieved documents. A subset of these runs are labeled official runes.

• From each official run, NIST takes the top 100 documents per topic to form the
pool for this topic. Duplicate documents are removed from the pool.

2.8 Information Retrieval Problems

This section introduces some important problems IR has to deal with, which are also
relevant for the practical work conducted in this thesis.

2.8.1 Bias

In the IR domain, bias is the representativeness of a set of retrieved documents in re-
sponse to a set of queries. Undue inclusion or exclusion of certain documents implies
such a bias. An IR system is therefore highly biased if the results created by it are no-
ticeable different from the norm created by a group of IR systems. There are plenty of
sources that might create such a bias, for example the decision of what documents are
included into a collection, in which way they are indexed or what algorithm is employed
to retrieve them [33].
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2.8.2 Vagueness and Uncertainty

In 1985 an often cited study by Blair and Maron [15] on the effectiveness of IBM’s
Storage And Information Retrieval System (STAIRS) was published. This IR system
was state-of-the-art at that time and the study came to a surprising conclusion. Users
were only able to retrieve about 20 percent of the relevant documents, while they thought
themselves to be retrieving more than 75 percent. According to that study the main
reason for these low recall values was the following:

“...full-text retrieval is difficult to use to retrieve documents by subject be-

cause its design is based on the assumption that it is a simple matter for

users to foresee the exact words and phrases that will be used in the docu-

ments they will find useful, and only in those documents [...] (however) it is

impossibly difficult for users to predict the exact words, word combinations,

and phrases that are used...”

While the study itself is quite old, especially in the fast changing field of computer-
ized information technology, its conclusion still holds true today. There exist two basic
problems when trying to access and retrieve information [14], [26]:

• Vagueness, which means that the user does not have a precise idea of what his
actual information need is. Therefore the conditions for query generation are
vague.

• Uncertainty on the other hand describes the lack of knowledge of the system about
the content of one or several documents. One reason for this can for example be
homographs, words that share the same spelling but have different meanings, like
the word ‘bow’, which can be the front of a ship, a ranged weapon, the action
of bending forward at the waist and a lot of other things [36]. The true meaning
is usually only conveyed by the context, which is a common cause for incorrect
retrieval.

2.8.3 Lack of Retrievability

With evaluation by means of the retrievability value, another major problem gets obvi-
ous: some retrieval systems are not able to retrieve some documents at all via means
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of reasonable queries. So no matter what query the user issues, he will not be able to
access them although they are present in the document collection. This is especially
problematic in recall oriented fields like the patent law domain, where it is imperative to
find all documents dealing with prior art and a failure to do so can cause very expensive
lawsuits [5].

2.9 Related Work to substitute Relevance Judgments

The creation of human relevance judgments for large document collections is a very time
and resource consuming process, as already elaborated in section 2.7. Nevertheless, this
ground truth is needed for most evaluation processes. For this reason the interest in
the IR research community has sparked to propose new methods to evaluate retrieval
systems without the need of these judgments. This chapter provides an overview of
other work related topic of this thesis, divided into three different approaches. First the
replacement of human relevance judgments by automatically created ones is explained,
followed by various experiments for retrieval system ranking by means of their similar-
ity. Finally, a method to create the ranking based on the retrieval bias is presented.

2.9.1 Pseudo-Relevance Judgments

Based on previous observations that different human relevance judgments do not af-
fect the relative measured effectiveness of the retrieval systems, Soboroff et al. propose
in [49] to replace the human relevance judgments altogether. They use automatically
created pseudo-relevance judgments instead. This is done by taking the top retrieved
documents from a wide spectrum of retrieval systems like it is done for the TREC pool-
ing method explained in subsection 2.7.2. Instead of having humans assign relevance
to this selected subset, relevance judgments are created by randomly mapping topics
to the documents. They conclude their experiments with the findings that the retrieval
rankings created by their method positively and significantly correlates with the actual
TREC rankings. They noticeable separate the best and worst systems from the middle
ones. Still, the method is not good at predicting the best system.

In [34] Nuray and Can also employ pseudo-relevance judgments for automatic re-
trieval model evaluation. Much like Soboroff et al., they use a subset of top retrieved
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documents for the creation of these judgments. Furthermore, they try several methods
to find a good performing subset of retrieval systems for the creation of that document
pool, instead of using all of them. The best performing method they found is to use
retrieval systems with a large bias that deviate a lot from the average model. In addition
to the selection of a retrieval model subset, they also try three different methods for
merging the results created by them. These methods are rank position, Borda count and
Condorcet election. The latter one performed the best. Their results are easy compa-
rable to those of Soboroff et al., as they work with a similar set of TREC collections.
They come to the conclusion that their method generally creates better results on these
datasets used.

2.9.2 Retrieval System Similarity

Aslam proposes in [2] a measure to quantify the similarity of retrieval systems. This is
done by assessing the similarity of their retrieval results as depicted in equation 2.18,
where Reti indicates the set of documents returned by system i.

similarity(System1, System2) =
|Ret1 ∩Ret2|
|Ret1 ∪Ret2|

(2.18)

With the purpose to create an evaluation for the systems, they are ranked according
to their average similarity with the other systems. Aslam concludes that this similar-
ity measure does not properly rank the top retrieval system and declares the similarity
scores as a measure of the aggregate bias which must be overcome to achieve valid
evaluation of a retrieval systems performance.

Wu and Crestani also employ the similarity between retrieval systems in order to
rank them. They propose in [62] a measure called reference count to do that. This
measure is computed by examining the result sets of different IR systems created by
a query in the following way. A certain amount of top documents is selected in the
result set of one system. The occurrences of these documents in the results of all other
systems get accumulated. This creates a reference count score for the system under
this particular query. This method can be further refined by assigning weights to the
documents, for example weighting those superior that appear more frequent in the top
positions of the result sets. They conclude that the reference count method is effective
to predict the performance of retrieval systems and provides a good alternative measure
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for their ranking. Like most methods without relevance judgments, it performs better at
the bottom end of the ranking and the best systems cannot be predicted well.

Spoerri assumes in [52] that the use of all available retrieval models, as it was usually
done in other similarity experiments, can create a biased boost for certain retrieval sys-
tems. This is due to the fact that some retrieval systems are nearly the same. Based on
this assumption he experimented with multiple sets of five randomly selected retrieval
systems and the result set similarities among them. To create a system ranking, the re-
sults of all random system subsets are averaged. Spoerri concludes that the correlations
with the TREC rankings are stronger than the ones in previous works, especially due to
the fact that the best systems usually reside in the top half of his performance ranking.

2.9.3 Retrievability and Effectiveness

Azzopardi and Bache conduct a preliminary study in [3] on the relation between ef-
fectiveness and retrievability. They compare the retrieval bias represented by the Gini-
Coefficient with the effectiveness represented by the precision value at different retrieval
model parameter settings. They come to the conclusion, that the goals of both improving
retrievability and precision are indeed compatible, as parameters that lead to maximum
retrievability still lead to good precision values. Thus, they propose the hypothesis that
the performance of retrieval systems can be tuned using access based measures which
do not require relevance information.

Bashir and Rauber conduct an experiment in [11] to investigate in which way im-
proving the retrievability effects the accuracy on a retrieval system. For this they parti-
tion the documents into two categories which consist of documents with high and low
retrievability and can be accessed separately. To avoid extensive retrievability analysis
in order to create that split, they do that classification via a set of surface-level features
as they describe in [10]. After the partitions are processed separately, their result sets are
merged again. They come to the conclusion that this does not only improve the overall
retrievability, but also has a positive influence on the accuracy of the result set. They
remark that the accuracy improvement is dependent on the query generation process and
the retrieval model used.

In [8] Bashir does an experiment with different parameter settings in which a strong
relationship between the effectiveness measures and the Gini-Coefficient is indicated.
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Nevertheless, on the collection used some parameter settings that lead to a low retrieval
bias actually hurt the effectiveness by a small fraction.

2.9.4 Conclusion for the Experiments

The methods employing Pseudo-Relevance Judgments and Retrieval System Similarity
usually only perform well in identifying the worst systems, but mostly fail to correctly
distinguish the ones in the top performing half. However, for the tuning of retrieval
systems especially the top performers are the interesting ones. Therefore, the experi-
ments in this thesis will pursue the idea of a potential relationship between retrievability
and effectiveness measures to investigate if this offers a suitable way for top performer
identification.
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CHAPTER 3
Methods

The main objective of this thesis is to investigate if and to what degree it is possible to
optimize different search engine effectiveness measures by tuning them via the retriev-
ability bias and thus avoiding the need for relevance judgments. In order to examine
if good parameter values can be deduced this way, comparisons of these measures are
created across a broad spectrum of parameter values. This is done for three different re-
trieval models, which were selected based on results shown in the related work, namely
those of Bashir [8].

To allow the investigation of consistency across different collections, all experiments
are conducted on four different document collections. These were chosen based on
possessing different surface level features.

The basic steps taken and their dependencies on one another are illustrated in figure
3.1 and explained in detail in the rest of this chapter.
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Obtain several document collections for which queries and relevance judgments created by
human experts are available.

Select four collections which possess different surface level features.

Install and configure an Information
Retrieval tool.

Install and configure a tool for retriev-
ability calculations.

Index each
collection.

Preprocess the
queries.

Create docu-
ment vectors.

Create large
query sets.

Repeat the next two steps for 3 retrieval
methods at 11 parameter settings.

Repeat the next two steps for 3 retrieval
methods at 11 parameter settings.

Retrieval with short/long queries. Compute retrievability values.

Compute Effectiveness values with rele-
vance judgments.

Normalize retrievability values and
compute the Gini-Coefficients.

Visualize relations between effectiveness measures and Gini-Coefficients.

Compare and analyze results.

Conduct a simple comparison of the 3 retrieval model implementations of both programs.

Figure 3.1: Basic steps of the experiment setup.
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3.1 Hardware and Operation System

For the experiments including document preprocessing, indexing, and evaluation two
different systems with the following main characteristics were used:

Laptop PC

• Intel Core i5 CPU M 460 @ 2.53GHz

• 8 Gigabyte main memory

• Ubuntu 11.10 (Oneiric Ocelot) - 3.0.0-13-generic Kernel

• Java 1.6.0_25-b06

TU Vienna Supercluster - Auxiliary Server

• 32 clusters with Intel Xeon X7560 CPU @ 2.27GHz

• 256 Gigabyte main memory

• Ubuntu 11.10 (Oneiric Ocelot) - 3.0.0-14-server Kernel

• Java 1.6.0_26-b03

All additional software used was identical:

• Lemur 4.12 with Indri 5.2

• trec eval 9.0

• Tool for Calculating Document Retrievability with Standard Retrieval Models
(December 2011)

• R 2.14.1

The setup, use of these programs and parameter settings employed for the experiments
will be further explained in the following subsections.

47



3.2 Document Collections

A general overview of widely used text test collections was already given in section 2.7.
For this thesis four different document collections served as testbed which were selected
based on the fact that they possess distinguishable surface level features and thus might
require different parameter settings for the system to have good effectiveness and low
retrievability bias values. The collections used are from TIPSTER Volume 1 and TREC
Volume 5:

• Los Angeles Times (LAT) consisting of randomly selected articles from the years
1989 and 1990.

• Foreign Broadcast Information Service (FBIS) containing articles for 1996.

• Federal Register (FR) contains issues from 1989 that serve as a reporting source
for actions taken by government agencies.

• Department of Energy (DOE) which is created out of short abstracts from the U.S.
Department of Energy.

The surface level features of the collections are displayed in table 3.1 and figure 3.2.
Following fields were indexed: graphic, headline, text, ti.

Table 3.1: Collection surface level features.
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Los Angeles Times 131,896 67,453,174 272,184 511.4 16 26,144
FBIS 130,471 66,675,831 290,968 511.0 9 144,218
Federal Register 45,820 68,512,915 282,563 1,495.3 0 425,711
Department of Energy 226,087 28,448,406 202,972 125.8 0 445
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Figure 3.2: Document length distribution for collections used in the experiments.

3.3 Used Retrieval Models

As the Okapi BM25 Model and Language Modeling with Dirichet and TwoStage smooth-
ing showed the strongest correlations in previous works by Shariq Bashir [8], these
models were selected for further investigation in this thesis.
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3.4 Computing the Effectiveness Measures

For both the indexing and retrieval process Lemur with indri 5.2 was used.

3.4.1 Indexing

In order to create an index, Lemur requires a parameter file containing some basic infor-
mation, as depicted in listing 3.1. index is used to set the path for index creation.
memory provides a rough limit to the bytes of memory the indexer will consume.
indexType offers the choice between ‘key’ for KeyfileIncIndex (.key) or ‘indri’ for
IndriIndex (.ind). corpus/path sets the path to the file or directory that should be
indexed and corpus/class the type of the file(s) which can for example be ‘html’
for web page data, ‘pdf’ for Adobe PDF or ‘trectext’ for standard TREC collections.
field/name specifies which field should be indexed as data and can be used multi-
ple times. Additional parameters, for example the stemmer that should be used can be
added, although for the experiments conducted here these described were sufficient. No
stop word removal, case folding, stemming or lemmatization was applied [40].

Listing 3.1: Lemur parameter file - ‘parameters.txt’.
1 <parameters>
2 <index>/path/to/output/index</index>
3 <memory>1G</memory>
4 <indexType>indri</indexType>
5 <corpus>
6 <path>/path/to/collection/</path>
7 <class>trectext</class>
8 </corpus>
9 <field><name>title</name></field>

10 <field><name>body</name></field>
11 </parameters>

The indexing process is started by issuing the following command:

/path/to/indri-5.2/buildindex/IndriBuildIndex parameters.txt
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3.4.2 Retrieval

The retrieval can be started without any parameter file. Nevertheless, due to the large
amount of queries issued, these were stored in a query parameter file. This was created
out of TREC topics and uses the same query numbering. During file creation, all punctu-
ation marks, superfluous white spaces, and separators were removed. Listing 3.2 shows
by means of an example snippet how such a file is formatted, with number containing
the number of the query and text the query terms.

Listing 3.2: Lemur query parameter file - ‘query.txt’.
1 <parameters>
2 <query>
3 <number>307</number>
4 <text>New Hydroelectric Projects</text>
5 </query>
6 <query>
7 <number>308</number>
8 <text>Implant Dentistry</text>
9 </query>

10 </parameters>

For the experiments sets of short and long queries are employed, which use the same
relevance judgments. The short ones are created out of the <title> fields and the long
ones from the <desc> fields TREC topic files contain, as shown in the fundamentals
section in listing 2.2.

For the Los Angeles Times and Federal Broadcast Information Service collections,
topics 301-450 (TREC-6, TREC-7 and TREC-8 ad hoc) and topics 601-700 (TREC
2003 and 2004 Robust Track) are used, resulting in a total of 250 queries for which
complete relevance judgments exist. This includes topic 672 for which no relevant
document exists in any of the collections used.

The same relevance judgments are not available for the Federal Register and De-
partment of Energy collections. So for experiments with these collections, the topics
51-200 (TREC-1, TREC-2 and TREC-3 ad hoc) are employed, resulting in a set of 150
queries [30], [55].
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The retrieval process itself is started by issuing variations of the following command:

/path/to/indri-5.2/runquery/IndriRunQuery query.txt
-count=1000 -index=/path/to/index -trecFormat=true
-baseline=okapi,k1:1.2,k2:0.7,b:0.7 > results.txt

Where count restricts the amount of results returned for each query, and trecFormat
set to true ensures the output can be further processed by evaluation software like ireval

or trec eval by formatting it like shown in listing 3.3. The baseline argument was
used for okapi retrieval.

Listing 3.3: TREC formatting.
<queryID> Q0 <DocID> <rank> <score> <runID>

For retrieval experiments with language models, Dirichlet and TwoStage Smoothing
were employed. This is done by issuing the following variation of the command shown
above [50]:

/path/to/indri-5.2/runquery/IndriRunQuery query.txt
-count=1000 -index=/path/to/index -trecFormat=true
-rule=method:dirichlet,mu:5000 > results.txt

To thoroughly investigate the effects of different parameter values, the b parameter for
Okapi BM25 and the λ parameter for TwoStage Smoothing were varied in steps of 0.1,
from 0.0 to 1.0. For Dirichlet Smoothing the µ parameter was incremented in steps of
1000, from 0 to 10000.

3.4.3 Evaluation

The retrieved documents are evaluated against the relevance judgments provided in the
TREC query relevance (qrel) files. The content of such a file is shown in listing 3.4 via
a short clipping of three exemplary lines.
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Listing 3.4: TREC query relevance file - ‘qrel.txt’.
1 161 0 DOE1-20-0168 0
2 161 0 DOE1-20-0902 0
3 161 0 DOE1-20-0913 1

One entry consist of four fields. The one in the first column contains the number of
the corresponding topic, as used in the query parameter file. The second contains the
feedback iteration which is nearly always 0 and not used. In the third field, the official
document number is stored. It is followed by the relevance judgment itself in the last
column which can be either 1 for relevant or 0 for not relevant [54].

The evaluation itself is done with trec eval which is a freely available program that
allows the evaluation of TREC results using standard evaluation procedures from the
National Institute of Standards and Technology (NIST). It can also be used to evaluate
other collections as long as they get converted into TREC format first. An exemplary
result set is depicted in listing 3.5.

Listing 3.5: Example trec eval result.

1 runid all indri

2 num_q all 249

3 num_ret all 222829

4 num_rel all 4887

5 num_rel_ret all 3090

6 map all 0.2316

7 gm_map all 0.0537

8 Rprec all 0.2439

9 bpref all 0.2268

10 recip_rank all 0.5608

11 iprec_at_recall_0.00 all 0.5811

12 iprec_at_recall_0.10 all 0.4708

13 iprec_at_recall_0.20 all 0.3855

14 iprec_at_recall_0.30 all 0.3057

15 iprec_at_recall_0.40 all 0.2548

16 iprec_at_recall_0.50 all 0.2142

17 iprec_at_recall_0.60 all 0.1597
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18 iprec_at_recall_0.70 all 0.1316

19 iprec_at_recall_0.80 all 0.0996

20 iprec_at_recall_0.90 all 0.0729

21 iprec_at_recall_1.00 all 0.0632

22 P_5 all 0.3229

23 P_10 all 0.2522

24 P_15 all 0.2137

25 P_20 all 0.1878

26 P_30 all 0.1525

27 P_100 all 0.0731

28 P_200 all 0.0453

29 P_500 all 0.0222

30 P_1000 all 0.0124

3.5 Computing the Retrievability Bias

In order to compute the retrievability bias for a specific model and parameter setting, it is
first necessary to calculate the retrievability of every single document for that model and
parameters. This can be done at different cutoff levels, which represent the willingness
of the user to go down the result list.

3.5.1 Retrievability Tool

To obtain the retrievability values of the documents, a Tool for Calculating Document

Retrievability with Standard Retrieval Models written by Shariq Bashir was employed.
It is capable of calculating retrievability scores for documents with different retrieval
models and requires various input files which had to be created.

First of all, the documents need to be represented as vectors containing number
pairs of term ID and their frequency. Each vector has to finish with a -17 -17 end header
tag. This is saved in fullText01.txt, where 01 is the vector files unique ID and can be
changed, helping the user to remember or distinguish the collection he stored in it. The
basic structure of such a file is shown in listing 3.6, containing three example document
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vectors. To improve visibility and help understand the format, here the term frequencies
are highlighted bold, although the real file itself only contains plain text.

Listing 3.6: Retrievability tool file - ‘fullText01.txt’.
1 1 14 2 4 3 7 4 7 -17 -17
2 1 4 8 3 27 4 36 11 56 4 57 8 62 5 67 3 -17 -17
3 2 2 3 11 8 2 9 5 11 1 12 1 13 3 56 1 -17 -17

Additionally a file called ItemsetProcessing01.txt, using the same unique ID as the vec-
tor file it belongs to, stores that vector files total amount of vectors and the highest term
ID it contains. An example with content matching the fullText01.txt shown above is de-
picted in listing 3.7, where 3 is the total amount of vectors and 67 the ID of the highest
term.

Listing 3.7: Retrievability tool file - ‘ItemsetProcessing01.txt’.
1 3
2 67

Also, a set of queries is required. The name of this file containing them can be chosen
freely, so let’s call it querySet01.txt. The terms for the queries are represented by the
same term IDs used in the fullText01.txt file and it uses a single -17 end tag for each
query. An example content is given in listing 3.8.

Listing 3.8: Retrievability tool file - ‘querySet01.txt’.
1 1 2 4 -17
2 1 27 36 62 -17
3 3 11 12 -17

Finally, a file called Settings.txt is needed. It contains information about the total num-
ber of threads the program should use, the name of the query set file employed for the
computations and entries for five cutoff levels which should be used for the retrievability
calculation. Four additional settings that allow the use of extra term-posting and cluster
files as well as their split detection were not required for the experiments conducted
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here and marked as such in the Settings.txt. The content of listing 3.9 shows the settings
employed.

Listing 3.9: Retrievability tool file - ‘Settings.txt’.
1 25
2 query_set_long.txt
3 10
4 30
5 50
6 100
7 150
8 not required
9 not required

10 not required
11 not required

The retrievability tool is started by issuing this command:

/path/to/tool/RetrievabilityTool /path/to/myfiles
<vectorFileID> <NN> <vectorAmount> <NN> <ModelID>
<ModelParameter>

The <vectorFileID> represents the unique ID of the vector file and the amount of
vectors it contains is submitted via the <vectorAmount> argument. <ModelID> is
for example 2 for Okapi BM25 with <ModelParameter> having a value between 0
and 1 to set the b variable. Arguments denoted with <NN> are not needed and initialized
with a value of 0. Once finished, the program creates an output file containing six
different retrievability values for each document vector. These are the values at the five
rank cutoff levels defined in the Settings.txt file and the total number of queries that
retrieved the document without any cutoff being considered [9].

3.5.2 Document Preprocessing

A document vector tool was written to parse the same document fields used for the
effectiveness calculations with Indri into a vector file which satisfies the input format
need of the retrievability tool described in the previous section.

56



It is started with the following command, containing two program arguments:

/path/to/tool/VectorTool /path/to/collection <fieldsToUse>

The first argument is the main directory of the collection. The <fieldsToUse> argu-
ment contains all fields within each document that should be included in the conversion
process. The different fields are separated by comma, with ‘title,text,graphic’ being a
possible example for that argument.

3.5.3 Query Generation

To calculate the retrievability, a large set of queries is needed. These were created out
of the vector files obtained in the document preprocessing. For this purpose a query
generation tool was written which uses for each collection all terms contained as one-
term queries. For the creation of two-term queries the following procedure is employed
to obtain a reasonable amount. All terms with a collection frequency equal or greater
than 20 percent of the amount of documents in that collection are considered too generic
and excluded. For each document out of all remaining terms that occur more than once
within it, two-term combinations are generated in a way that does not produce any
permutations or duplicate queries. Finally, the set of one-term and two-term queries are
merged. The amount of resulting queries per document collection is shown in table 3.2
for the different collections used.

Table 3.2: Queries generated for the retrievability computation.

Indexed Fields One Term Two Term Total
Los Angeles Times headline, text, graphic 272,184 56,197,490 56,469,674
FBIS ti, text 290,968 87,770,416 88,061,384
Federal Register text 282,563 249,253,111 249,535,674
Department of Energy text 202,972 7,636,442 7,839,414
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3.5.4 Retrievability Normalization and Gini-Coefficient

The retrievability was calculated for the total set of combined queries at five different
rank cutoff levels. As proposed by Bashir in [8, p. 27], the retrievability values were
normalized to compensate the fact that long and vocabulary rich documents generate
more queries than short documents and therefore retrievability scores based on these
queries would favor long documents. The normalization is done by dividing the retriev-
ability values of each document at the desired rank cutoff level through the retrievability
value produced without any rank cutoff. This represents the total amount of queries that
are potentially able to retrieve that document.

For the calculation of the Gini-Coefficient, R was used which is an environment
and language for statistical computing. By employing the reldist package, the Gini-
Coefficient can be computed out of the previously created vector files by issuing the
following commands in R [23], [42]:

library(reldist)
gini(read.table("BM25_full_0.100000.txt", skip=6)[[1]])

Where BM25_full_0.100000.txt is the name of a result file created by the re-
trievability calculation tool described in subsection 3.5.1, skip=6 makes sure the pars-
ing starts where the actual data starts and [[1]] selects the first column, which was set
to store the results at a cutoff level of 10.

As R also allows the component wise division of vectors, the normalized Gini-
Coefficient r̂ can be calculated by the use of the sixth column which contains the re-
trievability without any cutoff level considered. These are the retrievability bias values
used for the comparison with the effectiveness measures and are computed as follows:

library(reldist)
gCutoff10 <- read.table("BM25_full_0.100000.txt", skip=6)[[1]]
gNoCutoff <- read.table("BM25_full_0.100000.txt", skip=6)[[6]]
gini(gCutoff50/gNoCutoff)
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3.6 Retrieval Model Implementation Similarity

A lot of possible variations exist for the Okapi BM25, Dirichlet and TwoStage Smooth-
ing formulas. Before starting to draw conclusions from the experimental results, a sim-
ple comparison of their implementation in Lemur with Indri and the Tool for Calcu-

lating Document Retrievability with Standard Retrieval Models is conducted. For this,
the ranking created by a single query issued on the Los Angeles Times collection is
compared for both programs. The collection consists of 131,896 documents. For this
purpose, the short query from TREC topic 301 is employed, ’International Organized
Crime’. Parameter settings used are b = 0.5 for Okapi BM25, µ = 5000 for Dirichlet
Smoothing and λ = 0.5 for TwoStage Smoothing.

To create a ranking with the retrievability tool, it has to be executed several times to
calculate all cutoff levels from 1 to 10. The ranking can then be created manually by
adding each document that is new at a higher cutoff level to the bottom of a ranked list.
The original TREC document number can be acquired by looking up the line number
from the retrievability result file in a document number mapping file that was created as
a byproduct of the fullText01.txt. Finally, the Lemur ranking of that document number
can be directly read from a Lemur query result file.

A comparison of both rankings is depicted in table 3.3, where the rank position
returned by Lemur is displayed for the top 10 retrievable documents for three different
retrieval methods.

Table 3.3: Lemur rank position of the top 10 retrievable documents for three different
retrieval models.

Okapi BM25 Dirichlet TwoStage
1 1 8 2
2 2 2 7
3 4 3 3
4 3 7 8
5 20 10 15
6 18 13 12
7 21 31 30
8 8 28 28
9 6 35 14

10 34 15 31
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While the representative power of this single query sample is not strong, considering
these numbers it at least suggests that the implementations of all three retrieval models
are mostly similar in both programs. Implementation differences will therefore only
minimally distort the direct comparison of effectiveness and retrievability bias values
acquired in the experiment.
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CHAPTER 4
Experimental results

This chapter will thoroughly examine and analyze the experimental results for the three
retrieval models employed and explain observations by means of examples. The com-
plete result set as visualizations and tables is attached in the appendices A and B.

4.1 Basic Information
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Figure 4.1: Gini-Coefficient at different cutoff levels, Okapi BM25, Los Angeles Times.
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The Gini-Coefficients are calculated at several cutoff levels c, namely 10, 30, 50, 100
and 150. As shown in figure 4.1 on an example with Okapi BM25 and the Los Angeles
Times collection, the general shapes of the curves barely change at the different cutoff
levels. The setting resulting in the lowest Gini-Coefficient slightly fluctuates. As the
relative difference between the Gini-Coefficient values is in most cases more prominent
with a low cutoff level, c =10 is chosen for all further comparisons. For similar visual-
izations of Gini Coefficients at different cutoff levels for all other document collections
and retrieval models used in the experiments, see figures A.1, A.7, A.13 in the appendix.

When comparing the results of Binary Preference, Mean Average Precision, Preci-
sion at 30 documents, Precision at Recall 50 and Precision at Recall 100 with each other
it becomes obvious that the general shape of their visualization curves usually have a
strong similarity. This is true across all collections and for all three retrieval models and
shown with an exemplary visualization in figure 4.2. Only a few minor fluctuations can
be noticed, like the rise in performance of Binary Preference for long queries on high
settings of b in this example. This observation suggests that a parameter setting which
is good for one of the effectiveness measures in most cases also delivers good results
for the others.
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Figure 4.2: Comparison of different effectiveness measures, Okapi BM25, Los Angeles
Times.

62



The following sections report noticeable results of the three retrieval models employed.
Each of them contains a table, namely 4.1, 4.2, 4.3, which shows the performance rank
of different effectiveness measures at the same parameter settings that minimize the
retrieval bias represented by the Gini-Coefficient, where the best possible rank is 1 and
the worst performing one is 11.

Azzopardi and Bache notice in [3], that in their experiment the parameter setting
leading to the lowest retrieval bias does not directly correspond with the one maximiz-
ing effectiveness. Nonetheless, the difference in performance is usually quite small.
Therefore, in the three comparison tables mentioned above, the achieved effectiveness
at the suggested parameter setting is also expressed as a percent value in relation to the
best possible effectiveness that can be reached with one of the 11 different settings.

4.2 Okapi BM25

Table 4.1: Effectiveness measures ranking at minimum Gini-Coefficient, Okapi BM25.
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As table 4.1 shows, the Federal Register collection has low effectiveness values at the
parameter setting that leads to the lowest and thus considered optimum Gini-Coefficient.
This is especially true for long queries, where the suggested parameter setting only leads
to a Mean Average Precision value with 52.4 percent performance of the optimum Mean
Average Precision that can be obtained. This setting is ranked 8th out of 11 possible
ranks. What also stands out for this collection is the fact that with the parameter tuning
employed in the experiment here, the retrievability bias cannot be reduced as much as
for other collections. This is not only true for the Okapi BM25 retrieval where it is most
prominent, but also for the Dirichlet and TwoStage Smoothing methods.

The visualization for this collection shows the same characteristic as the Associated

Press and Wall Street Journal TREC collections investigated with Okapi BM25 retrieval
by Azzopardi and Bache in [3]. There the minimum Gini-Coefficient does not directly
correspond with the setting that maximizes the Mean Average Precision either and sug-
gests a b value that is shifted 0.3 or 0.4 higher than the optimum. Here this phenomenon
is actually even stronger and the shift has a magnitude of 0.6 on the b parameter scale.
To further investigate a possible cause for this behavior a comparison with the document
length distribution is conducted, which is depicted in figure 4.3.

●

●

●

●

●
●

● ● ●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

G
in

i C
oe

ffi
ci

en
t

b parameter

M
ea

n 
A

ve
ra

ge
 P

re
ci

si
on

● Gini Coefficient r̂, c=10
MAP short queries
MAP long queries

(a) Suggested b parameter higher than optimum

Amount of documents

Terms

F
re

qu
en

cy

0 500 1000 1500 2000

0
10

00
20

00
30

00
40

00

total terms
unique terms

(b) Document length distribution, FR

Figure 4.3: Possible relation between parameter shift and document length distribution,
Okapi BM25, Federal Register.
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A large amount of very short documents are present in the first histogram bins of the
total term length distribution, then a dent occurs and the next bin only contains about
20 percent as many documents. This raises the question if something similar can be
observed for the collections Azzopardi and Bache used, as visualized in figure 4.4.
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Figure 4.4: Possible relation between parameter shift and document length distribu-
tion, Okapi BM25, Wall Street Journal (WJS) and Associated Press (AP), adapted from
Azzopardi and Bache [3].
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For the Wall Street Journal and Associated Press collections only results for one type of
query are available. The dents in the document length distribution histograms are less
prominent then observed with the Federal Register collection. However, there seems
to be a proportional relation between the size of the dent in the distribution and the
magnitude of the b parameter shift to a higher value than the optimum.
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Figure 4.5: High effectiveness at minimum retrievability bias, Okapi BM25.
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For the other three collections employed in this thesis, namely Los Angeles Times,
Foreign Broadcast Information Service and Department of Energy, the resulting effec-
tiveness values are exceptionally good, for both short and long queries. A very strong
correlation between low Gini-Coefficient and high effectiveness is noticeable across all
parameter settings, which is shown in figure 4.5, again exemplary by means of the Mean
Average Precision. The parameter shift observed here has usually a value of 0.1 or 0.2
and the distribution visualizations show no dents, see figure 3.2. The parameter shift
also depends on the optimization goal, whether retrieval should be optimized for short
or long queries.

Correlations with other effectiveness measures, which generally behave the same,
are shown in the appendix in figures A.2, A.4, A.5, A.6

4.3 Language Model with Dirichlet Smoothing

Table 4.2: Effectiveness measures ranking at minimum Gini-Coefficient, Dirichlet
Smoothing.
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The results with Dirichlet Smoothing show only slight fluctuations in performance for
most parameter settings. Nonetheless, the suggested settings perform exceptionally well
for short queries. A difference in the slope of short and long queries issued is noticeable,
with long queries always having slightly better performance at high parameter settings.
The retrievability bias suggests low settings of µ between 1000 and 3000 for all four
collections. Which raises the question if this is due to the fact that the exhaustive set
of queries used for retrievability calculations only consisted of one-term and two-term
queries and thus their suggested settings might favor short queries.

Again the Federal Register collection is an exception where the best effectiveness
values for both short and long queries can actually be found at the setting with the high-
est retrievability bias. However, in this case the bias difference at different parameter
settings is very small and therefore probably not the most important factor influencing
the effectiveness, as shown in figure 4.6.
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Figure 4.6: High effectiveness at maximum retrievability bias, Dirichlet Smoothing,
Federal Register.

Comparing the results of different collections with each other shows that a strong change
in the retrievability bias value causes a strong change in effectiveness. The extend of this
change seems to be proportional as shown in figure 4.7 by means of the Mean Average
Precision value of three collections.
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Additionally, this figure shows that with Dirichlet Smoothing the collections with
lower retrievability bias generally have noticeable higher Mean Average Precision val-
ues.
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Figure 4.7: A strong change in the retrievability bias at low µ parameters causes a
proportional change in the Mean Average Precision value, Dirichlet Smoothing.
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4.4 Language Model with TwoStage Smoothing

Table 4.3: Effectiveness measures ranking at minimum Gini-Coefficient, TwoStage
Smoothing.
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While the retrievability bias results for TwoStage Smoothing are even more linear than
with Dirichlet Smoothing, the setting at the lowest Gini-Coefficient once again favors
the performance of short queries over those of long ones.

The same strong correlations already presented in figure 4.7 for Dirichlet Smoothing
can also be observed for TwoStage Smoothing across the collections. A noticeable lower
retrievability bias leads to noticeable higher effectiveness, as shown in figure 4.8 with
Mean Average Precision.
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Figure 4.8: A strong change in the retrievability bias at high λ parameters causes a
proportional change in the Mean Average Precision value, TwoStage Smoothing.

Due to the fact that there are only very minor changes in the Gini-Coefficient values at
ten out of eleven λ parameter settings for TwoStage Smoothing, obtained results offer
no clear guideline to help to select the best performing setting, only to avoid the worst.
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CHAPTER 5
Conclusions

This section will sum up major findings while trying to answer the original three ques-
tions from subsection 1.2 that served as foundation for the experiments conducted in
this thesis. Finally, incitations for further work to be conducted based on these findings
are given.

5.1 Summary

For all three retrieval models both visual and arithmetic comparisons clearly show that
there is a very strong relationship between a low retrievability bias represented by a
normalized Gini-Coefficient and the effectiveness measures. This relationship is both
observable at different parameter settings on the same collection as well as across differ-
ent document collections. Nonetheless, the assumption that the setting with the lowest
retrievability bias always leads to a top effectiveness value cannot be confirmed in all
cases. While the parameter settings can be tuned this way and often a good result is ob-
tained, sometimes the results can also turn out slightly below average. The correlation
between retrievability bias and effectiveness seems to be most prominent with Okapi
BM25 retrieval. However, tuning the parameters via the retrievability bias always helps
to avoid the worst settings, on all three retrieval methods employed in the experiments.

The observations in this thesis raise the suspicion that there might be other important
factors influencing effectiveness which have to be considered and weighted in addition
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to the retrievability bias in order to improve the derivation of top performing parameter
settings. A parameter shift away from the top performing one was especially noticed
with the Federal Register collection and Okapi BM25 retrieval. Observations showed
dents in the collection distribution histograms which are proportional to these shifts.
With these, it might be possible to effectively predict and compensate major shifts and
thus always allow to select good performing settings for Okapi BM25, making it the
most promising retrieval model investigated here.

The retrievability bias values were computed by issuing sets of very short queries, as
they are less time consuming to create and process than exhaustive sets of long ones. The
derived parameter settings were for retrieval with both Dirichlet and TwoStage Smooth-
ing usually better suited for the effectiveness optimization of short user issued queries,
while for Okapi BM25 retrieval they slightly favored long queries. Consequently, it
also seems to be important to know for what kind of use-case and query formulation the
system should be optimized. Very short and precise or rather long and rough queries
clearly require different parameter settings for maximum performance.

5.2 Future work to be done

Further investigation should be conducted on the way the query generation for the re-
trievability bias calculation influences the predicted parameter settings and if certain
query generation processes are better suited for specific use-cases like different types
of user issued queries. While the Gini-Coefficient rankings are nearly the same for dif-
ferent retrievability cutoff levels, there also exist some minor fluctuations as to where
the lowest can be found. Which cutoff level is best suited for predicting the optimum
settings for effectiveness and if this is consistent across different collections requires
additional studies.

For the phenomenon of suggested parameter settings with Okapi BM25 sometimes
clearly not corresponding to those needed for maximum effectiveness, a hypothesis for
a possible error compensation was presented by paying attention to dents in the total
term document length distribution. This needs further investigation across a broad spec-
trum of different collections. Also other collection surface level features that influence
either the effectiveness or the retrievability bias might help to further tune and correct
parameter shifts.
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Another approach worth pursuing might be the combination of different methods.
The ranking by pseudo-relevance judgments proposed by Soboroff in [49] or by the re-
trieval system similarity as proposed by Aslam in [2] could also be adapted for different
parameter settings of the same retrieval system. While both methods were not good
at predicting the top performers, they might help refining the parameter selection of
the retrievability bias method by indicating and thus preventing those occasional below
average settings.
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APPENDIX A
Experimental Result Figures
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Figure A.1: Gini-Coefficient at five cutoff levels across different parameter values bwith
Okapi BM25. The general shapes remain the same while the parameter setting resulting
in the lowest Gini-Coefficient slightly fluctuates.
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Figure A.2: Relationship between Gini-Coefficient and Binary Preference across dif-
ferent parameter values b with Okapi BM25. A low Gini-Coefficient usually correlates
with a high Binary Preference value, both within the same collection and across differ-
ent ones. For the Federal Register collection a parameter shift occurs which results in
low effectiveness at the minimum Gini-Coefficient, especially with long queries.
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Figure A.3: Relationship between Gini-Coefficient and Mean Average Precision across
different parameter values b with Okapi BM25. A low Gini-Coefficient usually cor-
relates with a high Mean Average Precision value, both within the same collection
and across different ones. For the Federal Register collection a parameter shift occurs
which results in low effectiveness at the minimum Gini-Coefficient, especially with long
queries.
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Figure A.4: Relationship between Gini-Coefficient and Precision at 30 documents
across different parameter values b with Okapi BM25. A low Gini-Coefficient usually
correlates with a high Precision at 30 documents value, both within the same collection
and across different ones. For the Federal Register collection a parameter shift occurs
which results in low effectiveness at the minimum Gini-Coefficient, especially with long
queries.
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Figure A.5: Relationship between Gini-Coefficient and Precision at Recall 50 across
different parameter values b with Okapi BM25. A low Gini-Coefficient usually corre-
lates with a high Precision at Recall 50 value, both within the same collection and across
different ones. For the Federal Register collection a parameter shift occurs which results
in low effectiveness at the minimum Gini-Coefficient, especially with long queries.
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Figure A.6: Relationship between Gini-Coefficient and Precision at Recall 100 across
different parameter values b with Okapi BM25. A low Gini-Coefficient usually corre-
lates with a high Precision at Recall 100 value, both within the same collection and
across different ones. For the Federal Register collection a parameter shift occurs
which results in low effectiveness at the minimum Gini-Coefficient, especially with
long queries.
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Figure A.7: Gini-Coefficient at five cutoff levels across different parameter values µ
with Dirichlet Smoothing. The general shapes remain the same while the parameter
setting resulting in the lowest Gini-Coefficient slightly fluctuates.
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Figure A.8: Relationship between Gini-Coefficient and Binary Preference across dif-
ferent parameter values µ with Dirichlet Smoothing. A low Gini-Coefficient usually
correlates with a high Binary Preference value, both within the same collection and
across different ones.
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Figure A.9: Relationship between Gini-Coefficient and Mean Average Precision across
different parameter values µ of Dirichlet Smoothing. A low Gini-Coefficient usually
correlates with a high Mean Average Precision value, both within the same collection
and across different ones.
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Figure A.10: Relationship between Gini-Coefficient and Precision at 30 documents
across different parameter values µ of Dirichlet Smoothing. A low Gini-Coefficient
usually correlates with a high Precision at 30 documents value, both within the same
collection and across different ones.
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Figure A.11: Relationship between Gini-Coefficient and Precision at Recall 50 across
different parameter values µ of Dirichlet Smoothing. A low Gini-Coefficient usually
correlates with a high Precision at Recall 50 value, both within the same collection and
across different ones.
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Figure A.12: Relationship between Gini-Coefficient and Precision at Recall 100 across
different parameter values µ of Dirichlet Smoothing. A low Gini-Coefficient usually
correlates with a high Precision at Recall 100 value, both within the same collection
and across different ones.
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Figure A.13: Gini Coefficient at five cutoff levels across different parameter values λ
with TwoStage Smoothing. The general shapes remain the same while the parameter
setting resulting in the lowest Gini-Coefficient slightly fluctuates.
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Figure A.14: Relationship between Gini-Coefficient and Binary Preference across dif-
ferent parameter values λ with TwoStage Smoothing. A low Gini-Coefficient usually
correlates with a high Binary Preference value, both within the same collection and
across different ones.
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Figure A.15: Relationship between Gini-Coefficient and Mean Average Precision across
different parameter values λ with TwoStage Smoothing. A low Gini-Coefficient usually
correlates with a high Mean Average Precision value, both within the same collection
and across different ones.
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Figure A.16: Relationship between Gini-Coefficient and Precision at 30 documents
across different parameter values λ with TwoStage Smoothing. A low Gini-Coefficient
usually correlates with a high Precision at 30 documents value, both within the same
collection and across different ones.
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Figure A.17: Relationship between Gini-Coefficient and Precision at Recall 50 across
different parameter values λ with TwoStage Smoothing. A low Gini-Coefficient usually
correlates with a high Precision at Recall 50 value, both within the same collection and
across different ones.
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Figure A.18: Relationship between Gini-Coefficient and Precision at Recall 100 across
different parameter values λ with TwoStage Smoothing. A low Gini-Coefficient usually
correlates with a high Precision at Recall 100 value, both within the same collection and
across different ones.
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