

Technische Universiät Wien
A-1040 Wien  Karlsplatz 13  Tel. +43-1-58801-0  www.tuwien.ac.at

Project Observation and Analysis in
Heterogeneous Software & Systems

Development Environments

DISSERTATION

zur Erlangung des akademischen Grades

Doktor der technischen Wissenschaften

eingereicht von

Wikan Danar Sunindyo
Matrikelnummer 0828018

an der
Fakultät für Informatik der Technischen Universität Wien
Institut für Softwaretechnik und Interaktive Systeme

Betreuung
Betreuer : a.o. Univ. Prof. Dr. Stefan Biffl
Zweitbetreuer : o. Univ. Prof. Dr. A Min Tjoa

Diese Dissertation haben begutachet:

 _________________________ _______________________
 a.o. Univ. Prof. Dr. Stefan Biffl o. Univ. Prof. Dr. A Min Tjoa

Wien, 26.11.2012 __________________
 Wikan Danar Sunindyo

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

i

Erklärung zur Verfassung der Arbeit

Wikan Danar Sunindyo
Dürergasse 7/12, 1060 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst have, dass ich die
verwendeten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die
Stellen der Arbeit – einschließlich Tabellen, Karten und Abbildungen -, die anderen
Werken oder dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden
Fall unter Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 26.11.2012
(Ort, Datum) Wikan Danar Sunindyo

ii

Acknowledgements

Praise to the God that I can finish my study in Vienna University of Technology.

I would like to thank Prof. Stefan Biffl and Prof. A Min Tjoa for guiding me through
my PhD and for spending lots of time for thorough discussion and providing very con-
structive feedback for my research topics.

Furthermore, I want to thank my colleagues, Amin Anjomshoaa, Deepak Dhungana,
Stefan Dösinger, Stefan Farfeleder, Christian Frühwirth, Erik Gotischa-Franta, Inah
Omoronyia, Prof. Paul Grünbacher, Olga Kovalenko, Kristof Meixner, Martin Melik-
Merkumians, Munir Merdan, Richard Mordinyi, Thomas Moser, Jürgen Musil, Andreas
Pieber, Estefania Serral Asensio, Alexander Schatten, Natascha Surnic, Dindin Wa-
hyudin, Florian Waltersdorfer and Dietmar Winkler, for interesting discussions, re-
search collaborations and experience exchanges.

I also thank Reza Ferrydiansyah and Ida Siahaan for proofreading my thesis. Thank to
my friends, Muhammad Asfand-e-yar, Muhammad Zuhri Catur Candra, Farman Ali
Khan, Tasawwar Iqbal, and Iman Paryudi. Thank to Indonesian community in Vienna,
Indonesian Student Association in Austria and other parties for supporting my life and
my study during my time in Vienna.

Last but not least, I want to thank my wife Astri Indriyati, my children Serenada Cinta
and Aninda Valerina, and my parents for supporting me during my studies.

Thank to the Directorate General for Higher Education, Department of Education of the
Republic of Indonesia for sponsoring my study in Vienna.

Wikan Danar Sunindyo
Vienna, Austria
November 2012

iii

Abstract

Software and systems development projects often depend on the expertise from

multiple engineering domains, e.g., mechanical, electrical, and software engineering.

Experts in these domains use tools from a heterogeneous software tool landscape, which

poses the challenge of integrating the relevant data from several tools to support coop-

eration and to provide an overview on the project status. For example, in the power

plant which consists of different stakeholders from mechanical, electrical, and software

engineering fields who should exchange and share information about signals change

which used by those different engineering fields, the project manager should observe

the signal changes and analyze some metrics of signal changes, e.g., the number of sig-

nal changes for different stakeholders, the number of signal changes related to the pro-

ject phases, the operation on signals, in order to support project progress and risk moni-

toring.

However, the heterogeneity of data formats and tools used by different stakeholders

to manage the signal changes makes the project progress and risk monitoring is hard to

do. In this thesis, a semantic integration approach is proposed to collect and integrate

heterogeneous data to support the project progress and risk monitoring. By using the

integrated signal change data, then the project manager can observe and analyze data to

monitor the project progress and risk in broader view. The presentation of the analysis

result can also be delivered to different types of stakeholders, e.g., the project manager

and the engineer, make the project observation and analysis more dynamic.

The using and changing workflows in the project can be very helpful in managing

process running on the project, but can also affect the progress of the project, e.g., de-

laying a project. The planned workflows and the event data captured on the real work-

flows during run time are main components for systematic process observation and

analysis to support the project manager and other stakeholders.

Major challenges of engineering process observation and analysis in heterogeneous

engineering environments are as follows. (1) Only loosely integrated data from hetero-

geneous data sources need human experts to integrate and are, therefore, not easily

available for automated support for an overall analysis of the observed systems. For

example, in the power plant, different stakeholders use different formats and tools to

iv

represent the signal change, hence make the observation and overall analysis hard. (2)

Specific analysis methods often only work in a specific engineering field and do not

support effective overview on multidisciplinary engineering projects. For example, in

the power plant, the software engineers have a specific requirement to analyze only the

signal change variables in database, which is actually connected to other engineering

fields, but is not considered in software engineering fields. (3) The presentation of

analysis results only supports a specific type of stakeholders. For example, in the power

plant, the presentation of signal change analysis results for software engineer may differ

to the presentation of analysis results for the project manager due to different analysis

requirements.

This work introduces the Project Observation and Analysis Framework (POAF), a

novel approach, which aims to support project managers and engineers in observing and

analyzing engineering processes in heterogeneous engineering environments. The most

important and novel contributions of POAF are (1) the semantic integration approach

and integrated data model to support more efficient engineering process data collection

and integration, (2) the using of combination of different analysis methods to strengthen

the conclusion of the project status, and (3) the workflow validation cycle to support the

conformance checking between the designed and the actual process model.

The POAF consists of data collection, data analysis, and data presentation steps,

and builds on semantic web, statistical analysis, and process mining technologies to

provide a range of methods, data sources, and tools that help project managers and en-

gineers to conduct analysis and control tasks. For example, in the power plant, the

POAF is very useful in making project progress and risk monitoring and checking the

conformance between the designed and the actual process model.

The research results have been evaluated in two industrial application domains,

namely open source software engineering projects and automated systems engineering

projects, regarding feasibility, effectiveness and efficiency. Major results were that the

framework was found useful, was at least as effective and supported more efficient

workflow observation and analysis than traditional, mainly manual, approaches.

v

Kurzfassung

Software- und System-Entwicklungsprojekte brauchen oft die Expertise aus

mehreren Engineering Disziplinen, etwa mechanischem, elektrischem und Software-

Engineering. Experten aus diesen Disziplinen verwenden Werkzeuge aus einer

heterogenen Software Werkzeug Landschaft. Daraus ergibt sich die Herausforderung

der Integration der relevanten Daten aus mehreren Werkzeugen, um die Kooperation im

Team zu unterstützen und Überblick über den Projektzustand bereit zu stellen.

Projektteilnehmer aus unterschiedlichen Engineering Disziplinen arbeiten parallel und

oftmals privat an Artefakten in ihren spezifischen Disziplinen, verfolgen spezifische

Ziele und verfolgen unterschiedliche Arbeitsabläufe. An bestimmten Punkten im

Projekt, etwa vor Meilensteinen, müssen die Experten kooperieren und ihr Wissen mit

einander teilen, um gemeinsame Projektziele zu erreichen. Projektmanager haben die

Aufgabe auf einer übergeordneten Ebene den Projektfortschritt in den verschiedenen

Domänen zu überwachen, insbesondere auch die Beobachtung von Arbeitsabläufen,

etwa Änderungskaskaden, über alle betroffenen Disziplinen hinweg.

Arbeitsabläufe im Projekt sind besonders wesentlich, um Prozesse zu steuern,

können aber auch den Projektfortschritt beeinflussen, etwa ein Projekt verzögern. Die

geplanten Arbeitsabläufe und die zu realen Arbeitsabläufen zur Laufzeit gesammelten

Ereignisdaten sind wichtige Beiträge zur systematischen Prozessbeobachtung und -

analyse um den Projektmanager und andere Projektteilnehmer zu unterstützen.

Wesentliche Herausforderungen bei der Verfolgung und Analyse von Engineering

Prozessen in heterogenen Engineering Umgebungen sind daher: (1) nur lose integrierte

Daten aus heterogenen Datenquellen brauchen Fachexperten zur Integration und sind

daher nicht leicht für die automatisierte Analyse des Gesamtsystems verfügbar; (2)

bestimmte Analysemethoden wirken oft nur in speziellen Engineering-Bereichen und

unterstützen den Überblick in multidisziplinären Projekten nicht effektiv; und (3) die

Darstellung von Analyseergebnissen ist oftmals auf eine bestimmte Gruppe von

Projektteilnehmern zugeschnitten.

Diese Arbeit stellt das Projekt Beobachtungs- und Analyse Rahmenwerk vor, einen

neuen Ansatz, der Projektmanager und Ingeneure dabei unterstützt unterschiedliche

Engineering Prozesse in heterogenen Engineering Umgebungen systematisch zu

vi

beobachten und zu analysieren. Das POAF umfasst die Bereiche der Sammlung,

Analyse und Präsentation von Daten aus heterogenen Software-Werkzeugumgebungen,

und baut auf dem Semantic Web, statistischer Analyse und Process Mining auf, um

verschiedene Methoden, Datenquellen sowie (semi-)automatisierte Werkzeuge

bereitzustellen, die Projektmanager und Ingenieure bei Analyse- und

Steuerungsaufgaben unterstützen.

Die Forschungsergebnisse wurden im Rahmen von zwei industriellen

Anwendungsbereichen, Open Source Software Engineering Projekten und Projekten

für das Engineering von Automatisierungssystemen, hinsichtlich Machbarkeit,

Effektivität und Effizienz evaluiert. Wesentliche Ergebnisse der Arbeit zeigen, dass die

das Rahmenwerk nützlich war, und zumindest so effektive war und die Beobachtung

und Analyse von Arbeitsabläufen effizienter unterstützt hat als traditionelle, vor allem

manuelle, Ansätze.

vii

Contents

1 Introduction... 1
2 Related Work .. 7

2.1 OSS Projects Monitoring .. 7
2.1.1 Overview... 7
2.1.2 OSS Data Analysis Frameworks... 8
2.1.3 OSS Health Indicators .. 10

2.2 Process Analysis in ASE Environments ... 11
2.2.1 Overview... 11
2.2.2 Engineering Service Bus... 13
2.2.3 Engineering Cockpit ... 15

2.3 Workflow Validation .. 16
2.3.1 System Integration Technologies.. 16
2.3.2 Process Modeling, Analysis and Validation ... 18

3 Research Approach... 20
3.1 Research Issues ... 22

3.1.1 Heterogeneous Data Collection and Integration..................................... 24
3.1.2 Heterogeneous Data Analysis from Different Stakeholders................... 25
3.1.3 Analysis Result Presentation for Different Stakeholders 25

3.2 Research Methods and Evaluation Concept ... 26
3.2.1 Research Methods... 26
3.2.2 Evaluation Concept... 29

3.3 Application Scenarios ... 30
3.3.1 Open Source Software Projects .. 30
3.3.2 Automation Systems Engineering .. 32

4 Project Observation and Analysis Framework.. 34
4.1 Overview... 34
4.2 Architecture of the Project Observation and Analysis Framework 36

4.2.1 Preparation .. 36
4.2.2 Collection and Integration (1)... 36
4.2.3 Analysis Methods (2).. 36
4.2.4 Reporting / Visualization (3) .. 37

4.3 Preparation of the Engineering Process Observation and Analysis................ 37
4.3.1 Define process model.. 37
4.3.2 Transform to formal process model.. 37
4.3.3 Evaluate formal process model... 38
4.3.4 Transform to rule engine... 39
4.3.5 Evaluate the rule ... 39
4.3.6 Implement the event.. 39

4.4 Use of the Engineering Process Observation and Analysis 39
4.4.1 Collect Events ... 39
4.4.2 Observe Events ... 39
4.4.3 Integrate Events .. 40
4.4.4 Analyze Events Data... 41
4.4.5 Present Metrics ... 41
4.4.6 Check Conformance ... 41

viii

5 Open Source Software Projects Monitoring .. 42
5.1 Overview... 42
5.2 Framework for OSS Data Analysis .. 43
5.3 Integrated Data Model .. 46

5.3.1 Simple Example.. 46
5.3.2 Advanced Example ... 48

5.4 Health Indicators Analysis Method .. 53
5.4.1 Pilot Application ... 53
5.4.2 Study Objects.. 54
5.4.3 Threats to Validity .. 55

5.5 Bug History Analysis Method .. 56
5.5.1 Pilot Application ... 56
5.5.2 Study Objects.. 57
5.5.3 Threats to Validity .. 58

5.6 Workflow Validation Analysis Method.. 58
5.6.1 Pilot Application ... 59
5.6.2 Study Objects.. 59

5.7 Summary... 63
5.7.1 Framework for OSS Data Analysis .. 63
5.7.2 Integrated Data Model .. 63
5.7.3 Health Indicators Analysis Method .. 64
5.7.4 Bug History Analysis Method .. 64
5.7.5 Workflow Validation Analysis Method.. 64

6 Process Analysis in Automation Systems Engineering Environments 65
6.1 Overview... 65
6.2 Workflow Validation Cycle Process... 66
6.3 Change Management Process Observation and Analysis............................... 68

6.3.1 Overview... 68
6.3.2 Pilot Application ... 69
6.3.3 Study Objects.. 72

6.4 Project Progress and Risk Monitoring .. 73
6.4.1 Overview... 73
6.4.2 Pilot Application ... 74
6.4.3 Study Object ... 80

6.5 Process Model Validation... 82
6.5.1 Overview... 82
6.5.2 Pilot Application ... 83
6.5.3 Study Objects.. 85

6.6 Summary... 88
6.6.1 Workflow Validation Cycle Process... 88
6.6.2 Change Management Process Observation and Analysis....................... 88
6.6.3 Project Progress and Risk Monitoring .. 89
6.6.4 Process Model Validation... 89

7 Evaluation and Discussion ... 90
7.1 Evaluation ... 90

7.1.1 OSS Project Monitoring.. 90
7.1.2 Process Analysis in ASE Environments ... 102

7.2 Discussion... 110
7.2.1 OSS Project Monitoring.. 111
7.2.2 Process Analysis in ASE Environments ... 119

ix

8 Conclusion and Perspectives.. 125
8.1 Highlights.. 126

8.1.1 OSS Projects Monitoring .. 126
8.1.2 Process Analysis in ASE Environments ... 128

8.2 Future Work.. 130
8.2.1 OSS Projects Monitoring .. 130
8.2.2 Process Analysis in ASE Environments ... 131

References.. 133

x

List of Figures

Figure 1. Motivation on engineering process observation and analysis 4
Figure 2. Simplified Alitheia Core System Architecture, see details in (Gousios &
Spinellis, 2009a) ... 9
Figure 3. Management and Engineering Risks from Process Perspective (Winkler &
Biffl, 2012).. 13
Figure 4. High-level view on tool connections with the EngSB (Biffl & Schatten, 2009)
.. 18
Figure 5. Overview of the research challenges... 20
Figure 6. Overview of the research issues .. 23
Figure 7. Systematic literature review process (Brereton et al., 2007)........................... 27
Figure 8. Overview of Project Observation and Analysis Approach (Sunindyo, 2011) 35
Figure 9. Preparation of the Engineering Process Observation and Analysis 38
Figure 10. Use of the Engineering Process Observation and Analysis 40
Figure 11. An Analysis Framework to Support OSS Data Analysis (Sunindyo, Moser,
Winkler, et al., 2012) .. 45
Figure 12. Integrated Data Model for SVN and Mailing List (Sunindyo, Moser,
Winkler, et al., 2012) .. 47
Figure 13. Translation from different data sources to the common concepts (adaptation
from (Biffl, Sunindyo, et al., 2009)) ... 48
Figure 14. Integrated Data Model to Support OSS Health Indicators (Sunindyo, Moser,
Winkler, et al., 2012) .. 50
Figure 15. Model of the Expected CI&T process (Sunindyo et al., 2010a) 61
Figure 16. Structure of EngSB event logs (Sunindyo et al., 2010a).............................. 62
Figure 17. Transformation of event logs for further process analyses (Sunindyo et al.,
2010a) ... 63
Figure 18. A Framework for Workflows Observation and Analysis (Sunindyo, 2011). 68
Figure 19. Signal Change Management Workflow (Winkler et al., 2011)..................... 71
Figure 20. Links Among Process Groups in a Phase (IEEE, 2011) 75
Figure 21. Risk Factor Analysis Framework (Sunindyo et al., 2013) 76
Figure 22. Risk Factors Classification (Sunindyo et al., 2013) 78
Figure 23. Workflow Model for Signal Change Management (Sunindyo et al., 2013) . 82
Figure 24. Structure and Transformation of SAW event log (Sunindyo, Moser, &
Winkler, 2012) .. 84
Figure 25. Product Trees of Billy Medium and Billy Complex (Sunindyo, Moser, &
Winkler, 2012) .. 86
Figure 26. Business Goal Evaluation Framework for Production Automation Systems
(Sunindyo, Moser, & Winkler, 2012) ... 87
Figure 27. Comparison of efficiency for manual and FOSSDA data collection process
variants (Sunindyo, Moser, Winkler, et al., 2012).. 91
Figure 28. Indicator 1: Bug fixing delays in four OSS projects (Sunindyo, Moser,
Winkler, et al., 2012) .. 94
Figure 29. Indicator 2: Proportion between the number of Mailing List Postings and
Bug Reports (Sunindyo, Moser, Winkler, et al., 2012) .. 95
Figure 30. Performance Analysis of 300+ CI&T process runs (Sunindyo et al., 2010a)
.. 100
Figure 31. Project Progress Overview (Sunindyo et al., 2013) 104
Figure 32. Number of Signal Changes by Stakeholders (Sunindyo et al., 2013) 105

xi

Figure 33. Number of Signal Changes Related to Project Phases (Sunindyo et al., 2013)
.. 106
Figure 34. Operation on Signals (without status update) (Sunindyo et al., 2013)........ 107
Figure 35. Operation on Signals (with status update) (Sunindyo et al., 2013)............. 108
Figure 36. Relationships between failure classes and number of finished products
(Sunindyo, Moser, & Winkler, 2012) ... 109
Figure 37. Overview Process Model and Product Tree Conformance (Sunindyo, Moser,
& Winkler, 2012).. 110
Figure 38. Bugzilla Life Cycle ... 114
Figure 39. Process Model from RHEL version 6 ... 115
Figure 40. Accepted/Rejected Signals per Phase (Winkler et al., 2011) 119
Figure 41. Change Type of Accepted Changes (Winkler et al., 2011)......................... 120

xii

List of Tables

Table 1. Different Projects used in Project Monitoring Researches............................... 55
Table 2. Change management process: table of events (Winkler et al., 2011)............... 71
Table 3. Source Signal Data from our Industry Partner (Winkler et al., 2011) 72
Table 4. Failure Classes and Risk Analysis (Sunindyo, Moser, & Winkler, 2012) 86
Table 5. Comparison of Effort for Manual and Automated Process Variants (in work-
hours) (Sunindyo, Moser, Winkler, et al., 2012) .. 92
Table 6. Comparison between Health Indicators Analysis Results and OSS Expert
Opinion (Sunindyo, Moser, Winkler, et al., 2012) ... 96
Table 7. Name of States used in different RHEL versions and Bugzilla Life Cycles
(Sunindyo, Moser, Dhungana, et al., 2012) .. 97
Table 8. Frequency of States for Different Versions of RHEL (Sunindyo, Moser,
Dhungana, et al., 2012)... 99
Table 9. Transition Time Metric for CI&T process steps and overall process (Sunindyo
et al., 2010a).. 101
Table 10. Activity Metric for the CI&T process steps (Sunindyo et al., 2010a) 101
Table 11. Occurrences of Events based on ProM Data Analysis (Winkler et al., 2011)
.. 102
Table 12. Change Management Metrics based on Signal Comparisons (Winkler et al.,
2011) ... 119
Table 13. Signal Change Type of Accepted Signal Changes (Winkler et al., 2011).... 120

xiii

List of Listings

Listing 1. Mapping terminologies to common concepts (Biffl, Sunindyo, et al., 2009) 48
Listing 2. Simple translation rules (Biffl, Sunindyo, et al., 2009).................................. 48
Listing 3. Simple translation rules (Biffl, Sunindyo, et al., 2009).................................. 48
Listing 4. Excerpt of the ontology represented in OWL (Sunindyo, Moser, Winkler, et
al., 2012) ... 51
Listing 5. Example query to find related SVN entries from a mailing list issue
(Sunindyo, Moser, Winkler, et al., 2012) ... 52

1

1 Introduction

Today’s software application development involves engineering systems and tools

from several sources which have to cooperate for building agile process environments.

In most cases, software cannot be seen as a stand-alone system and delivered as “shrink-

wrapped package”, but embedded in larger context of systems, for example as service in

some software as a service (SAAS)1 context, as part of a network, or as part of some

infrastructure where hardware and software components have to cooperate seamlessly

(Biffl & Schatten, 2009). In heterogeneous software and systems development envi-

ronments, capabilities for effective and efficient integration of engineering systems

(Issarny, Caporuscio, & Georgantas, 2007) and the semantic integration of engineering

knowledge (Aldred, van der Aalst, Dumas, & Hofstede, 2006) are key enablers for en-

gineering process automation and advanced quality management.

A project is defined as a collaborative enterprise, frequently involving research or

design, that is carefully planned to achieve a particular aim (Simpson & Weiner, 1989).

Project management is the application of knowledge, skills, tools, and techniques to

project activities to meet the project requirements (IEEE, 2011). To achieve these pro-

ject requirements, project managers need to observe and analyze engineering process

data from heterogeneous environments. The observation is done by collecting and inte-

grating engineering process data across multidisciplinary engineering fields and the

analysis is done by using different methods and metrics, e.g., the communication met-

rics, to link data to support project manager’s goal to monitor the heterogeneous sys-

tems.

Project stakeholders are individuals or groups that are actively in the project or

whose interests may be positively or negatively affected as a result of project execution

or project completion (IEEE, 2011). The key stakeholders on heterogeneous software

and systems projects include project managers, project investors, developers, and pro-

spective users. Project managers are individuals who are responsible for managing the

project. Project investors are individuals or external groups that provide financial re-

sources, in cash or in kind, for the project. Developers are the group that is developing

products within the project. Developers are the group that is performing the work of the

project. Prospective users are the individuals or organizations that will use the project’s

product.

1 http://www.saas.com

2

The heterogeneity of components and engineering fields involved in heterogeneous

software and systems development environments make the observation and analysis of

engineering processes more complex and difficult compared to of homogeneous sys-

tems. Hence, the goal of this thesis is to develop an approach to solve the observation

and analysis problems in simpler environments like in Open Source Software projects

before solving problems in more complex environments like in multidisciplinary auto-

mation systems. The evaluation criteria used for the proposed approach in this thesis are

feasibility, efficiency and effectiveness.

Open-Source Software projects typically involve different stakeholders with differ-

ent tasks and requirements, e.g., project investors, project hosts, project managers, pro-

ject developers and users. Each stakeholder needs different information that could be

extracted from the project data. Developers could provide the project data from their

development data sources, e.g., source code management, developers’ mailing list and

bug reports. However, project managers should collect and integrate this data from dif-

ferent data sources for further analysis on the project, e.g., to support the decision for

project investors or project hosts on the future of the project based on the current status

of the project, whether it is sustainable or not. The challenges to observe and analyze

the engineering process in OSS projects is in some extent similar to the challenges in

automated systems environments, e.g., how to identify and collect the engineering proc-

ess from different projects, since different processes can be applied in the project while

we only focus on the engineering process, how to choose and decide analysis methods

used to support different goals and requirements, and how to support results presenta-

tion to the different project stakeholders based on their analysis goals and requirements.

In multidisciplinary automation systems (Moser, Biffl, Sunindyo, & Winkler,

2010), different stakeholders from heterogeneous engineering domains, e.g., mechani-

cal, electrical, and software engineering, often are required to collaborate to produce

products, services or systems, such as power plants or production automation systems.

In doing their jobs, these stakeholders use different engineering processes, methods, and

tools with specific data models, addressing the individual needs of the involved engi-

neers. One possible case is they write the processes of doing their jobs in different

workflows (Lawrence, 1997) that represent the steps describing how processes are con-

ducted, which inputs are needed and what output is produced. However, project manag-

ers need to have an integrated view on the heterogeneous workflows from different en-

3

gineering fields in order to be able to manage the engineering processes and improve

the process and product quality.

In general, the major challenges of engineering process observation and analysis in

heterogeneous engineering environments for the two presented research application are

as follows, (1) only loosely integrated data from heterogeneous data sources need hu-

man experts to integrate and are, therefore, not easily available for automated support

for an overall analysis of the observed systems, (2) specific analysis methods often only

work in a specific engineering field and do not support effective overview on multidis-

ciplinary engineering projects, (3) the presentation of analysis results only supports a

specific type of stakeholders. Some approaches for observing engineering processes in

software engineering environments have been proposed, for example the Hackystat

(Johnson, 2001) or Ginger2 (Torii, Kenichi, Kumiyo, Yoshihiro, Shingo & Kazuyuki,

1999) frameworks.

Hackystat (Johnson, 2001) is a technology initiative and research project that ex-

plores the strengths and weaknesses of a developer-centric, in-process, and non-

disruptive approach to empirical software project data collection and analysis. It is de-

signed to accelerate adoption of empirically guided software project measurement by

providing a new approach to address the barriers of cost, quality, and utility. However,

this research is more focusing on the observing engineering process in software project,

which has limited scope comparing to the multidisciplinary engineering environments.

Ginger2 (Torii et al., 1999) is a project to create and develop a Computer-Aided

Empirical Software Engineering (CAESE) framework as a substrate for supporting the

empirical software engineering lifecycle. CAESE supports empirical software engineer-

ing in the same manner as a CASE environment serves as a substrate for supporting the

software development lifecycle. This approach is using controlled experiments to de-

velop and test hypothesis about particular aspect of human behaviour, especially in de-

veloping software products. Moreover this approach is focusing on collecting data of

developers’ action, e.g., key stroke, mouse movement, window operations, changes in

window, rather on the artifacts of the project. This approach is good to measure the pro-

ductivity of the developers and investigate the factors that can improve the productivity

of the developers, however the quality measurement in multidisciplinary engineering

environments need more aspects to observe than only the developers’ activity.

Figure 1 shows the needs and motivation of engineering process observation and

analysis in heterogeneous software and systems development environments that consist

4

of different stakeholders, e.g., project managers, mechanical engineers, electrical engi-

neers, software engineers, and bookkeepers. In design time, the project manager may

have a structured process model that is expected to be run by other stakeholders in the

run time. However, in the run time, the situation is more complex than expected. Each

stakeholder may have his/her own workflow and run his/her own process. The project

manager should collect and analyze engineering process from those different stake-

holders in order to justify and match the expected process model with the process model

which is discovered from the real-life actions. This justification is important to support

the task of the project manager to monitor and manage the project in order to reach the

goal of the project.

This thesis proposes a Project Observation and Analysis Framework (POAF) that

aims to support project managers and engineers in observing and analyzing different

engineering processes in heterogeneous engineering environments. The goal is to pro-

vide project managers and engineers the capabilities to observe and analyze the engi-

neering processes more efficiently.

Figure 1. Motivation on engineering process observation and analysis

5

The POAF consists of data collection, data analysis, and data presentation steps,

and involves different methods, data sources, and automated/semi-automated tools that

can help project managers and engineers to do their jobs. The semantic web, statistical

analysis, and process mining technologies are used in designing and developing this

framework.

The aim of the POAF evaluation is to validate the feasibility of the framework to

support more effective and more efficient engineering process observation and analysis

in different application domains of the heterogeneous software and systems develop-

ment environments. The feasibility of the framework has been tested by applying the

steps and methods on two application domains, namely OSS and ASE projects to sup-

port the justification of generality of our approach. Some tools and pilot applications

has been built and implemented to collect and integrate heterogeneous data from both

application domains, for example Project Data Fetcher and Bug History Data Collector

for OSS domain and Engineering Data Base for ASE domain.

Different methods have been introduced to analyze engineering process data for

both application domains, namely health indicators, bug history, workflow validation,

change management, project progress and risk monitoring, and process model valida-

tion methods. These methods are used to support different views and purposes from

heterogeneous stakeholders. Some approaches also introduced to present the analysis

results to different stakeholders, for example Project Monitoring Cockpit and Engineer-

ing Cockpit.

Major results show that the framework can support more efficient workflow obser-

vation and analysis compared to traditional mainly manual approaches in two applica-

tion domains.

In OSS domain, a framework for OSS Data Analysis has been proposed as an in-

stantiation of the POAF. By using this framework, we can reduce up to 30% of the data

collection efforts required for the traditional manual approach. The integrated data

model for OSS projects worked well to support process and project metrics for produc-

ing the health indicators. The analysis results of conformance checking of process mod-

els from OSS projects bug history can be used to improve the process quality. The find-

ings on variations in the time needed to complete planned process steps and detected

unexpected process paths can help the quality manager to plan focused and more de-

tailed analyses and improve process control.

6

In ASE domain, a workflow validation cycle has been proposed as an instantiation

of the POAF to observe and analyze engineering processes. By following the process

steps of the framework, we can increase flexibility, improve collaboration capabilities,

and the ability to measure process metrics across discipline borders, which could not

easily be measured in common automation systems development processes. The project

and risk monitoring in ASE domain following the process steps of the framework also

can enhance the overall engineering project quality, thus enabling risk mitigation in

ASE projects. The framework also can improve the efficiency of production process

validation by providing information to support the project manager’s decision on proc-

ess improvement.

The benefits of the POAF for different stakeholders are as follows, (a) project

managers can monitor the project progress more easily, (b) project investors can get the

information on the project status faster, so can make immediate decision on the project

continuity, (c) developers can collaborate with other parties from different engineering

fields and track their contribution easier, (d) prospective users can follow the informa-

tion on the project status faster, without waiting until the final product is released.

The remainder of this work is structured as follows. Chapter 2 summarizes related

work on open source software development, automation systems engineering, and

workflow validation. Chapter 3 describes the research approach by identifying the re-

search issues, specifying the research methods and introducing the application scenar-

ios. Chapter 4 introduces the Project Observation and Analysis Framework (POAF),

describes usage scenarios and the generic framework architecture, as well as specifies

the evaluation aspects. Chapter 5 describes the Open Source Software Projects monitor-

ing context, integrated data model, health indicators analysis method, bug history analy-

sis method, and workflow validation analysis method. Chapter 6 describes process

analysis in automation systems engineering environments context, workflow validation

cycle process, change management process, project progress and risk monitoring, and

process model validation. Chapter 7 evaluates and discusses the results from two use

cases. Finally, chapter 8 concludes this thesis and gives an outlook on future research

perspectives.

7

2 Related Work

This section summarizes background information on OSS project monitoring, proc-

ess analysis in ASE environments and workflow validation.

2.1 OSS Projects Monitoring
This section summarizes related work on monitoring OSS projects, methods to col-

lect and analyze OSS project data, and research work on defining and implementing

OSS project health indicators.

2.1.1 Overview
Von Krogh and von Hippel (von Krogh & von Hippel, 2003) investigated OSS de-

velopment processes and found differences between monitoring commercial software

development and OSS development. In commercial software development, the project

manager can apply tight management of processes and take precautions, while in OSS

development software architecture and functionality are governed by a community con-

sisting of developers, who can commit code to the authorized version of the software.

Therefore, OSS project development monitoring also has to be based on the community

works and agreement rather than enforced regulation as in commercial software devel-

opment.

Yamauchi et al. (Yamauchi, Yokozawa, Shinohara & Ishida, 2000) state that in a

traditional perspective, managing and leading OSS development projects seems to be

impossible, because no formal quality control program exists and no authoritative lead-

ers monitor the development project. For them it is surprising that also OSS develop-

ment can achieve smooth coordination, consistency in design and continuous innovation

while relying heavily on electronic environments as face-to-face supplementary; how-

ever, project monitoring for OSS projects seems still quite fragile. In addition, they dis-

cuss how OSS development avoids limitations of dispersed collaboration and addresses

the sources of innovation in OSS development. Further research is needed to reveal how

typical project management methodologies can be adapted to the OSS domain in order

to improve the software quality, e.g., by monitoring typical OSS project product and

process data.

Wahyudin et al. (Wahyudin & Tjoa, 2007) discuss how project monitoring has tra-

ditionally been focused on human-based reporting, which is good for tightly coupled

8

organizations to ensure the quality of project reporting. In loosely-coupled organizations

like in OSS development projects, this approach does not work well, because the stake-

holders typically work voluntarily and flexibly. One way to measure the performance of

the project is by correlating and analyzing process event data (e.g., mailing list artifacts

or bug reports) from the OSS community.

Sharma et al. (Sharma, Sugumaran & Rajagopalan, 2002) observe OSS develop-

ment projects based on three aspects: structure, processes, and culture. The OSS com-

munities can be structured along the dimensions of division of labour, coordination

mechanisms, distribution of decision-making authority and organizational boundary. In

OSS processes, stakeholders can have governance mechanisms, for example by apply-

ing membership management, rules and institutions, monitoring and sanctions, and

reputation as one of the prime motivators for the OSS developers. Even though mem-

bership in OSS projects is open to anyone, the OSS communities manage membership

effectively. They illustrate how OSS projects can be monitored via social interaction

and sanctions from the communities. However, the relationships between the project

data produced by the stakeholders, the activities of the stakeholders, and the quality

measurement of OSS were not analyzed in their study.

To address semantic integration of data originating from heterogeneous OSS pro-

ject data sources, a tool for the extraction of project data for Apache projects called Pro-

ject Data Fetcher was initially developed and reported in (Moser, Biffl, Sunindyo, &

Winkler, 2011). This tool allows gathering project artifacts from the mailing list, the

Bugzilla2 database, and the Subversion versioning system of Apache projects. The re-

trieved data allows evaluating so-called communication metrics. The Project Data

Fetcher uses an ontology for storing extracted project data.

2.1.2 OSS Data Analysis Frameworks
There are several reports on tool support for a more comprehensive observation of

OSS projects for data analysis. These reports involve different data sources and analysis

methods as part of OSS data analysis frameworks, e.g., Alitheia Core3 (Gousios &

Spinellis, 2009a, 2009b) and Ohloh4 (Hu & Zhao, 2008).

2 http://www.bugzilla.org
3 http://www.sqo-oss.org
4 http://www.ohloh.net

9

Figure 2. Simplified Alitheia Core System Architecture, see details in (Gousios & Spinellis, 2009a)

The Alitheia Core tool is an extensible platform for software quality analysis de-

signed specifically to facilitate software engineering research on large and diverse data

sources. Figure 2 shows the simplified Alitheia Core System Architecture, which con-

sists of three tiers: (a) data mirroring, storage and retrieval (tier 1); (b) system core (tier

2); and (c) results presentation (tier 3). Tier 1 enables the collection of data from differ-

ent data sources, e.g., subversion, mailing list, and bug reports. However, the mirroring

of the data sources tends to make data management inefficient for large projects. Tier 2

provides a range of metric plug-ins for analyzing individual OSS data to support the

interpretation of the OSS project status. However, the lack of interaction and combina-

tion between these different metrics makes the conclusions on the OSS project status

less strong than analyzing integrated data sources. Tier 3 provides results presentation to

web interface or IDE plug-in via SQO-OSS connector library. This platform allows im-

porting data from OSS projects into a meta-database and provides an infrastructure to

run metrics on clusters of processing nodes. Currently, this tool has been applied to ana-

lyze OSS data limited to a single OSS project community, namely the Gnome ecosys-

tem (Gousios & Spinellis, 2009b).

Ohloh is an OSS directory that anyone can edit (Hu & Zhao, 2008). Ohloh retrieves

data from revision control repositories (such as CVS5, SVN6, or Git7) and provides de-

scriptive statistics about the longevity of projects, their license and metrics such as

source lines of code and commit statistics. Currently, Ohloh provides information about

11,800 major OSS projects involving 94,330 people. However, the reports on introduc-

ing a framework for analyzing OSS project data do not report on health indicators,

which allow detecting the OSS project status in a timely fashion.

5 http://savannah.nongnu.org/projects/cvs
6 http://tortoisesvn.net/
7 http://git-scm.com/

10

2.1.3 OSS Health Indicators
The term OSS project “health indicators” was introduced by Wahyudin et al.

(Wahyudin, Schatten, Mustofa, Biffl & Tjoa, 2006) to help OSS stakeholders to get an

overview on a large portfolio of OSS projects. Using a health indicator can be seen as

analogous to measuring the temperature of the human body with respect to indicating

whether a person is likely to be sick or in healthy condition (Wahyudin, 2008). This

work analyzed some project metrics, e.g., open issues, proportions, and communication

metrics, in four OSS Apache projects, namely HTTPD8, Tomcat 9, Xindice 10, and

Slide11, and discussed the results with OSS experts to investigate the external validity of

the indicators. Major result was, that those important indicators such as developer activ-

ity or bug management performance are easy to measure but have to be augmented with

other indicators, e.g., the probability of bug occurrence and/or experts’ opinion, which

are concealed behind the development process to determine the project health compre-

hensively.

In the past decade, only a limited number of studies and publication addresses

communication metrics, for example (Brügge & Dutoit, 1997), who reported empirical

evidence that metrics based on communication artifacts generate better insight into the

health of application development processes than code-based metrics. Many developers

ignore the fact that software code is only available late in the development process,

while communication artifacts, such as e-mails, mailing list entries, or memo notes are

valuable information that is available early and can be used to investigate the health of

development project. To draw valid conclusions on the communication behavior of the

project members and measures for improvement, a new set of metrics has to be de-

signed. Roche (Roche, 1994) showed that the results of these novel metrics may assist

project managers and that their potential should not be ignored.

Early research towards OSS health indicators has been reported by Mockus et al.

(Mockus, Fielding, & Herbsleb, 2000, 2002) who ran an experiment on two major OSS

projects, Apache Web Server12 and the Mozilla browser 13, to investigate aspects of

developer participations to compare the strengths and weaknesses of OSS projects and

commercial projects. However, the focus of this work is more on the comparison of

8 http://httpd.apache.org/
9 http://tomcat.apache.org/
10 http://xml.apache.org/xindice/
11 http://jakarta.apache.org/slide/
12 http://httpd.apache.org/
13 http://www.mozilla.org/

11

different aspects, e.g., size of the core team, productivity, and problem resolution inter-

vals in the OSS projects than on project health. This research is a starting point to im-

prove measurements that help the OSS developer and manager to obtain the project

status faster by introducing the concept of project health indicators.

This work was continued by Wahyudin et al. (Wahyudin, Mustofa, Schatten, Biffl

& Tjoa, 2007) by empirically evaluating development processes to get a status overview

of OSS projects in a timely fashion and to predict project survivability based on the data

available on project web repositories. However, the data collection for this approach

was still done manually, by retrieving data from source code management, mailing lists,

and bug reports websites. The high effort for manual data collection and for quality is-

sues warrants the automation of data collection, integration, and quality assurance. The

evaluation of the data was done separately for each data source, and did not yet discover

further relationships between different sources, which could reveal further health indica-

tors.

Bachmann and Bernstein (Bachmann & Bernstein, 2009) focus on using bug track-

ing databases and version control system log files to support a historical view analysis

for improving software process data quality. The results show that a poor correlation

between linked bug reports is a strong indicator for the missing traceability and justifi-

cation of source code changes. The rate of linked bug reports can be observed by link-

ing commit messages for valid bug report numbers to the numbers of all bug reports. A

poor rate is obtained when the commit messages have few connections with the bug

reports. We extend the using of bug reports as health indicators by combining with other

metrics in OSS projects.

2.2 Process Analysis in ASE Environments

This section summarizes background information on Automation Systems Engi-

neering, the Engineering Service Bus (EngSB), the Engineering Cockpit (EngCo) proto-

type, and on risk management.

2.2.1 Overview
Automation systems, e.g., complex industrial automation plants for manufacturing,

steel mills, or power plants include a set of heterogeneous engineering environments,

e.g., mechanical, electrical, and software engineering disciplines who should collaborate

and interact for successfully completing ASE projects (Biffl, Sunindyo, & Moser,

2009). Expert knowledge is embodied in domain-specific standards, terminologies,

12

people, processes, methods, models, and tools (Moser, Biffl, et al., 2011; Moser,

Mordinyi, Mikula, & Biffl, 2009). Nevertheless, individual disciplines including disci-

pline specific tools and data models and are isolated and/or with limited support for in-

teraction and collaboration (Biffl, Schatten, & Zoitl, 2009). Thus, a major challenge is

to synchronize specification data and plans from a wide range of engineering aspects in

the overall engineering process, e.g., physical plant design, mechanical and electrical

engineering artifacts, and process and project planning (Winkler & Biffl, 2012).

Figure 3 illustrates a basic engineering process, observed at our industry partner,

including five phases in sequential order: initial, drawing started, customer approval,

factory tests, and customer commissioning. Note that these phases correspond to the

individual states of engineering objects. A more detailed view on the sequential steps,

e.g., during the phase “drawing started”, showed that engineers follow their own (iso-

lated) engineering processes within their assigned discipline or domain. In addition,

engineers from individual disciplines work in parallel on similar engineering objects

from different perspectives (Winkler & Biffl, 2012). Thus, they have to synchronize and

exchange data to keep the engineering project consistent. Note that similar processes

apply for all engineering phases.

Changes from disciplines have to be passed to related engineers who might be af-

fected by those changes. For instance changing a sensor from hardware perspective

might have an impact on electrical engineers (how to connect the sensor) and to the

software engineer (how to control and analyze sensor data). Observations in industry

projects showed a less frequent and informal synchronization process, executed by ex-

perts manually. Because of a high effort of human experts, who are familiar with at least

two engineering disciplines, this synchronization process is executed less frequently

and, thus, include a high risk regarding the consistency of engineering objects and the

impact of changes.

Based on our observation we found a set of risks in the ASE which can have a ma-

jor impact on the individual engineers and on the project: (a) Domain specific risks fo-

cus on individual and isolated disciplines, where engineers apply well-established risk

management approaches, e.g., RiskIt (Kontio, 1999) for the software engineering do-

main. As individual disciplines can apply appropriate countermeasures which have ef-

fects on these disciplines, related disciplines might be affected by these measures; (b)

Collaboration risks focus on the need for frequent synchronization of individual artifacts

and engineering objects coming from different disciplines. Because of a high manual

13

effort for synchronization (if not automated) the frequency of data exchange is quite

low; e.g., once per month. If done less frequently the number of changes might be very

high leading to additional risks with respect to related disciplines in case of changes; (c)

project management risks focus on project monitoring and control challenges, which

usually depend on the capability to capture and analyze project data and draw appropri-

ate solutions. Because of a lack of synchronization and limited access to comprehensive

data additional risks arise, even if the data are available very late in the project. Thus,

late changes, e.g., during the factory test or during the commissioning phase at the cus-

tomers’ site, result in inefficient, error-prone and risky engineering processes (Sadiq,

Orlowska, Sadiq, & Foulger, 2004).

Electrical Engineering

Software Engineering

Mechanical EngineeringChange

Change

Change
Synchronization

Change & Conflict Resolution

T
oo

l-
S

pe
ci

fic
 C

ha
ng

e
M

an
ag

em
en

t

Synchronized Data Models

Risk

Risk

Risk

(a) Domain Specific Risks

Risk

Initial
Drawing
Started

Customer
Approval

Factory
Test

Customer
Commissioning

(c) Project Management
Risks

Observed sequential Engineering Process

Synchronization of various Disciplines

Risk Risk Risk Risk

(b) Collaboration
Risk

Figure 3. Management and Engineering Risks from Process Perspective (Winkler & Biffl, 2012).

To overcome risks on (a) management level, i.e., enabling project observation and

control across disciplines and domain borders and (b) on engineering level, i.e., support-

ing efficient change management and frequent synchronization across disciplines, the

Engineering Service Bus (Biffl, Schatten, et al., 2009) supports interaction of related

stakeholder within a heterogeneous engineering environments with respect to improving

(a) engineering processes and change management, (b) quality assurance activities, and

(c) risk management in the ASE domain.

2.2.2 Engineering Service Bus
Current developers of software systems use a wide range of tools from software

vendors, open source communities, and in-house developers. Getting these tools to

work together to support a development process in an engineering environment remains

challenging as there is a wide variety of standards these tools follow (IEEE, 2007). Any

integration approach has to address the levels of technical heterogeneity, i.e., how to

14

connect systems that use different platforms, protocols, etc., so they can exchange mes-

sages (Chappell, 2004; Hohpe & Woolf, 2003; Rademakers & Dirksen, 2008) and se-

mantic heterogeneity, i.e., how to translate the content of the messages between systems

that use different local terminologies for common concepts in their domain of discourse,

so these systems can understand each other and conduct a meaningful conversation

(Aldred et al., 2006; Doan, Noy, & Halevy, 2004; Hohpe, 2006; Moser et al., 2009;

Noy, Doan, & Halevy, 2005). Particularly in ASE, integration of engineering systems is

a challenge as typically a broad range of engineering tools from different vendors are

used to solve specific problems (Rangan, Rohde, Peak, Chadha, & Bliznakov, 2005).

Biffl and Schatten proposed a platform called Engineering Service Bus (EngSB),

which integrates not only different tools and systems but also different steps in the

software development lifecycle (Biffl, Schatten, et al., 2009). The platform aims at inte-

grating software engineering disciplines e.g., mechanical, electrical or software engi-

neering, rather than individual services (Chappell, 2004). The EngSB consists of the

following main components: (1) engineering discipline specific tools to be integrated

(2) so called connectors which enable communication between the bus and the specific

engineering tool and which consist of a technical specific and a technical neutral inter-

face. The technical specific interface is implemented within the engineering tool while

the technical neutral interface (i.e. tool domain) represents a standardization of connec-

tors of a specific engineering tool type. This seems possible since different tools, devel-

oped to solve the same problem have, more or less, similar interfaces. For example, the

source code management (SCM) tools Subversion and CVS both provide similar func-

tionality, which allows describing these tools as instances of the SCM tool domain. This

concept allows the EngSB to interact with a tool domain without knowing which spe-

cific tool instances are actually present. Note that tool domains do not implement tool

instances but provide the abstract description of events and services, which have to be

provided by concrete connectors of tool instances to the EngSB. This implies that the

EngSB not only facilitates data integration but more importantly functional integration

as well (3) the Engineering Database (Moser, Waltersdorfer, Winkler, & Biffl, 2011)

and the Engineering Knowledge Base (Moser, Biffl, et al., 2011) which enable version-

ing of common data used and an automated transformation of common concepts repre-

sented differently in the various engineering tools. (4) project relevant added-value ap-

plications like the Engineering Cockpit (Moser, Mordinyi, Winkler, & Biffl, 2011) for

efficient project monitoring or the Engineering Object Editor (Mordinyi, Pacha, & Biffl,

15

2011) for quality assured integration of data sources. (5) a workflow engine executing

engineering processes which describe a configurable sequence of process steps satisfy-

ing project integration requirements. The engine is responsible for the correct manage-

ment of the workflow relevant rules and events while the configuration of it makes use

of the modeled concepts of tool instances and tool domains in the Engineering Knowl-

edge Base.

2.2.3 Engineering Cockpit
The Engineering Cockpit (EngCo) is a social-network-style collaboration platform

for automation system engineering project managers and engineers, applying technical

(Biffl, Schatten, et al., 2009) and semantic integration (Boehm, 1991; Jakoubi & Tjoa,

2009) (Sadiq et al., 2004) approaches for bridging gaps between heterogeneous ASE

project data sources as foundation for comprehensive project monitoring and manage-

ment, which was first introduced in (Moser, Mordinyi, et al., 2011). It builds on seman-

tic web technology, the Engineering Knowledge Base (EKB) and semantic integration

framework (Moser, Biffl, et al., 2011), to explicitly link the data model elements of sev-

eral heterogeneous ASE project data sources based on their data semantic definitions.

The EngCo is generic framework for project reporting across tool and domain

boundaries, and shows the prototypic implementation to demonstrate how to calculate a

set of metrics for project managers and engineers. In (Moser, Mordinyi, et al., 2011) a

general EngCo concept has been described and discussed by taking into account con-

crete evaluation data from industry. The feasibility of the EngCo prototype was evalu-

ated by performing a set of project-specific queries across engineering discipline

boundaries for information on current and historic project activities based on real-world

ASE project data from our industry partner in the hydro power plant engineering do-

main.

Major results were that EngCo (a) enables the definition of project-specific queries

across engineering discipline boundaries and therefore minimizes the effort for near-

time analysis of the project progress, (b) automatically shows the current view on pro-

ject progress as soon as the engineering groups send their local changes to planning data

to the common data basis, and (c) enables early risk detection and analysis, e.g., an un-

expectedly large number of changes to engineering objects late in the project.

16

2.3 Workflow Validation
This section summarizes related work on system integration technologies to inte-

grate technologically and semantically heterogeneous systems to make them appear as

one big system and process analysis and validation methods for engineering process

analysis purposes.

2.3.1 System Integration Technologies

Technical integration. Several approaches have been reported for integrating

technical and semantic aspects of SE environments. Mordinyi et al. propose a model-

driven system configuration approach for integrating systems in the safety-critical Air

Traffic Management domain (Mordinyi, Moser, Kühn, Biffl, & Mikula, 2009). This

approach explicitly models the components of the heterogeneous network infrastruc-

tures to produce and deploy a technical solution model using an integration platform.

However, this approach does not focus on process analysis that will be useful for ana-

lyzing system performance. Muller and Knoll propose an integrated approach for cross-

platform automated software builds and the implementation of a test framework (T.

Muller & Knoll, 2009). They use virtualization tools for automated software builds,

tests and deployment with a large academic software library project as use case. By us-

ing this virtualization framework, the tasks for cross platform target operating systems

can be performed efficiently and effectively. However, this framework has limitations

in automating the interactive parts of an application.

The Enterprise Service Bus (ESB) concept originating from the business IT field

offers a technical integration backbone for enterprise application integration (Chappell,

2004). The ESB separates the business logic from the integration logic and provides a

distributed integration platform. MULE14 is an example of a Java-based ESB frame-

work that separates the business logic layer from the messaging layer. The application

of the service-oriented performance modeling to the ESB is a good method that we can

reproduce for different contexts in various engineering areas (Brebner, 2009). However,

typical ESB systems cannot easily be bundled for deployment with individual solutions

and do not support synchronization features for accommodating desktop applications

that are usually not online permanently (Biffl & Schatten, 2009).

Semantic integration is defined as the solving of problems resulting from the in-

tent to share data across disparate and semantically heterogeneous data (Halevy, 2005).

14 http://www.mulesoft.org

17

These problems include the matching of ontologies or schemas, the detection of dupli-

cate entries, the reconciliation of inconsistencies, and the modeling of complex relations

in different data sources (Noy et al., 2005). One of the most important and most actively

studied problems in semantic integration is establishing semantic correspondences (also

called mappings) between vocabularies of different data sources (Doan et al., 2004).

The application of ontologies as semantic web technologies for managing knowledge in

specific domains is inevitable. Noy and Guinness (Noy & McGuinness, 2001) note five

reasons to develop an ontology, namely (a) to share common understanding of the struc-

ture of information among people or software agents, (b) to enable reuse of domain

knowledge, (c) to make domain assumptions explicit, (d) to separate domain knowledge

from the operational knowledge, and (e) to analyze domain knowledge.

Moser et al. (Moser et al., 2010) introduced the Engineering Knowledge Base

(EKB) framework as a semantic web technology approach for addressing challenges

coming from data heterogeneity that can be applied for a range domains, e.g., in the

production automation domain (Moser et al., 2010) and also SE. Further, Biffl et al.

(Biffl, Sunindyo, & Moser, 2010a) used the approach for solving similar problems in

the context of Open Source Software projects, in particular, frequent-release software

projects.

Engineering Service Bus. Some approaches for managing tools in SE environ-

ments were done, for example by Heinonen (S. Heinonen, 2006; S. Heinonen,

Kääriäinen, & Takalo, 2007) who introduced “tool chain”, a framework supporting the

efficient usage of resources and transparency between partners in collaborative software

development. However, this approach primarily focuses on requirements management

than on other steps of the software development lifecycle. Biffl and Schatten improved

this situation by proposing a platform called Engineering Service Bus (EngSB) which

integrates not only different tools and systems but also different steps in the software

development lifecycle (Biffl & Schatten, 2009). The successful development of modern

software-based systems, such as industrial automation systems, depends on the coopera-

tion of several engineering disciplines, e.g., mechanical, electrical and software engi-

neering, so-called (software+) engineering environments. The EngSB addresses re-

quirements such as the capability to integrate a mix of user-centered tools and backend

systems, mobile work stations that may go offline, and flexible and efficient configura-

tion of new project environments and SE processes.

18

Figure 4 shows an overview on the elements of the EngSB platform. The technical

integration of the components is based on the EngSB (1). The semantic integration be-

tween heterogeneous data models and tools is based on data models in the EKB (2).

Project management includes tools to administrate, i.e., plan, monitor, and control, a

software project and product requirements. Software development tools consist of the

well-known types of SE tools, such as software development environments, source code

management systems and build servers. Team communication tools consist of tools for

synchronous and asynchronous communication and notification in the team regarding

relevant events such as changes in/to the systems. The workflow engine (3) defines

work steps beyond single process steps and provides functions to describe rules for in-

tegrating the communication between tools on the engineering team level. The event

engine (4) stores the events on the EngSB for further process analysis and validation.

Figure 4. High-level view on tool connections with the EngSB (Biffl & Schatten, 2009)

2.3.2 Process Modeling, Analysis and Validation
Process analysis has been applied to complex systems, like workflow management

systems, Enterprise Resource Planning (ERP) and Customer Relationship Management

(CRM) systems. Van der Aalst et al. use workflow technology to structure the processes

running inside the systems. The workflow technology supports events provision that

could be useful for process analysis in SE by enabling particular models that link basic

tool events to process/workflow events (van der Aalst, Weijters, & Maruster., 2004).

19

Ferreira and Ferreira (Ferreira & Ferreira, 2004) proposed a reusable workflow en-

gine based on Petri Net theory as basis for workflow management. They introduced the

Workflow Kernel, a prototype implementation of common workflow functionality

which can be abstracted and reused in systems or embedded in applications intended to

become workflow-enabled. The workflow engine is based on common workflow func-

tionality from several workflow engines, while the Petri net theory can be used as a

process representation language for process analysis.

Another approach was proposed by van der Aalst et al. (van der Aalst et al., 2004).

This approach uses stored events, which refer to tasks and process cases coming from

people/tools/systems, to monitor and analyze real workflows with respect to designed

workflows. This approach is called process mining, and can be used for process discov-

ery, performance analysis, and conformance checking. The approach has been imple-

mented in the open source tool ProM15 and can be used to discover the process model

based on the available event log, analyze the performance of the processes and suggest

possible process improvement candidates.

Rembert and Ellis (A. J. Rembert & Ellis, 2009) extended process mining tech-

niques, which focused on mining the control-flow of business processes, towards ana-

lyzing multiple perspectives of a business process. The extension of the process mining

techniques includes explaining formal and general definitions of a business process per-

spective and presenting the approach to mine other business process perspectives using

these definitions, i.e., the behavioral perspective and the role assignment perspective,

that can be useful for analyzing processes in the SE context.

In order to allow more efficient and effective process monitoring, Ammon and

Wolff (Ammon, Silberbauer, & Wolff, 2007) introduced complex event processing

(CEP) (Luckham, 2002) for detecting event patterns in an event cloud or in event

streams for Business Activity Monitoring (BAM). The reference models for event pat-

terns can dramatically reduce time and costs as well as improve the quality of BAM

projects. The challenge of the BAM domain is similar to a challenge in engineering sys-

tems, namely how to build the process model out of the event log. The events in the

BAM domain are filtered from event clouds or from event streams for further process

analysis, while the events in engineering domain are snapshots of running processes in

certain periods. Therefore, workflow monitoring and event-analysis models and tech-

niques can provide the theoretical foundations for event-based SE process analysis.

15 http://www.processmining.org

20

3 Research Approach

This chapter describes the research approach by defining the research issues, identi-

fying the research methods and their evaluation concept, and specifying the two applica-

tion scenarios, namely Open Source Software (OSS) projects and Automation Systems

Engineering (ASE) environments. The research issues consists of several issues on col-

lecting and integrating engineering process data from different environments, how to

analyze the integrated data, and how to present the analysis results to heterogeneous

stakeholders.

The scope of this work is a development team consisting of project management

and experts from one or several engineering discipline(s), who work on engineering

process tasks with systems and role-specific tools that encapsulate project data and en-

gineering models.

Different types of stakeholders work on the software/systems environments, e.g.,

the project/quality managers and the engineers from different engineering field who

have different requirements and goals. The project/quality managers need to be able to

monitor/observe the engineering process in order to enhance the quality of product, to

ensure that the project is finished in time and the product is delivered as request.

Figure 5. Overview of the research challenges

Figure 5 shows an overview of the research challenges of this thesis. The research

challenges cover more general perspective of the problems, while the research issues

cover more detail perspective of the engineering process observation and analysis in

heterogeneous systems. In Figure 5, each engineering role (e.g., engineer A, engineer B,

and engineer C) uses different engineering tools and systems (e.g., plan A, plan B, and

plan C respectively) that have specific data models and formats. The example of engi-

21

neering tools in the open source software projects are source code management (like

SVN16), developers’ mailing list, and bug reporting (like Bugzilla17) that support devel-

opers’ tasks and communication between developers (Biffl et al., 2010a).

To support data exchange between different engineering tools and analysis on the

engineering data, an additional component is needed. In a typical process step in the

engineering process, translation tools are used to map the data model from one tool to

other tools in different engineering fields. This allows data transfer and communication

between the engineers. The major challenge here is that the number of translation tools

across different engineering fields goes up exponentially based on the number of engi-

neering fields and engineering tools involved in the system.

The research challenges for the heterogeneous software and systems development

environments are represented as numbers in red circle shown in Figure 5, namely

(1) Only loosely integrated data from heterogeneous data sources need human

experts to integrate and are, therefore, not easily available for automated support

for an overall analysis of the observed systems. Different stakeholders used different

representations of data/process model to illustrate their data/process requirements. For

example, in the OSS projects, developers use SVN, developers’ mailing list, and bug

reports to develop the product (Biffl et al., 2010a), while in the automation systems en-

gineering, the customers uses flowcharts to draw the informal process model and the

designers use BPM notation to draw the formal process model (Sunindyo, 2011). These

heterogeneous representations/notations should be managed (e.g., integrated) for further

analysis by the higher levels of stakeholders, e.g., the project managers.

(2) Specific analysis methods often only work in a specific engineering field

and do not support effective overview on multidisciplinary engineering projects.

Heterogeneous data which is produced during project development of complex systems

needs to be analyzed to support the project manager’s decision on the project sustain-

ability. Some specialized analysis methods have been applied to simple projects, for

example using standard statistical method to measure the mean, median or mode of the

projects’ data. However, more complex systems demand more complex analysis meth-

ods as well. This typically involves multiple analysis methods rather focusing on single

analysis method for a specific purpose (Sunindyo, Moser, Winkler, & Biffl, 2012) . We

propose to use a combination of analysis methods to analyze heterogeneous data in a

16 http://tortoisesvn.net/
17 http://www.bugzilla.org/

22

complex system and compare the results with the results obtained from single analysis

method.

(3) The presentation of analysis results only supports a specific type of stake-

holders. Different stakeholders in complex systems have different concerns regarding

the analysis of the project status. The presentation of analysis result should take into

account the different layer/hierarchy of stakeholders, concerning their different roles

and goals. Because complex, dynamic real-time data is used in complex systems, the

results should be presented in a flexible way to support the usability and understandabil-

ity of the analysis results. Failure to support the stakeholders’ need will render the

analysis results to be useless and obsolete. We propose to use dynamic visualiza-

tion/presentation on reporting the analysis results for different layers of stakeholders.

This visualization approach supports the analysis results by using different analysis

methods for different stakeholders, for example, by giving different layouts and analysis

results to the project managers and the engineers.

We propose a Project Observation and Analysis Framework ((POAF) to address

these research challenges. The POAF provides tools and processes to observe and ana-

lyze engineering process from heterogeneous software and systems development envi-

ronments. The major contributions that are offered by this framework are (1) methods

to collect and integrate data efficiently, (2) methods for analyzing engineering

process data, (3) methods for presenting analysis results to heterogeneous stake-

holders.

3.1 Research Issues

This section identifies the research issues addressed in this thesis. The key research

item of this thesis is the framework for engineering process analysis in heterogeneous

software and systems development environments, which aims at enabling effective and

efficient engineering process data observation and analysis to support the decision mak-

ing of the project management. The common goal of these research issues is to gain a

better quality assurance of the heterogeneous software and systems development envi-

ronments, by monitoring the engineering processes of the projects.

The application area of the framework are engineering environments which use

software engineering to manage other software or engineering fields, which range from

single engineering field projects like OSS project to multidisciplinary engineering field

projects like automation systems engineering projects. The heterogeneous engineering

23

fields involved in the engineering environments make it hard for project managers to

observe and analyze different engineering process data; hence it is difficult to make

decisions on running projects based on dynamic/ever changing facts.

In the current approach project managers use their experience rather on real data

from different engineering tools. The local perspective on local tools used by certain

engineering field is quite a good fit for its own specific task. However it is not enough

for larger perspectives, for instance for project managers who want to have overview on

the situation across different engineering fields or different developers. Hence, a

framework is proposed to help project managers to collect, integrate, and analyze het-

erogeneous engineering process data efficiently and effectively comparing to traditional

approach which is based more on intuition and expertise.

Figure 6. Overview of the research issues

Figure 6 shows three major research issues, which were derived from three major

contributions of the proposed approach. The first research issue deals with the question

how to collect and integrate heterogeneous data efficiently (RI-1), so that is useful

for further analysis. Current data collection and integration is primarily manual, which

is error-prone and takes a lot of time. We propose to develop and use automated tools to

collect and integrate the data and compare it with the conventional approach to prove its

efficiency.

The second research issue deals with the question how to analyze heterogeneous

data from different stakeholders (RI-2). The heterogeneity of data models, tools and

formats used by different stakeholders makes it difficult to use uniform analysis meth-

ods. Some combination on analysis methods could be used to give different perspectives

on the data to support stronger conclusion on status in the complex systems.

The third research issue deals with the question how to present analysis results

for different stakeholders (RI-3). The heterogeneity of analysis results from combined

analysis methods used to analyze the data makes it difficult to support different goals of

24

different types of stakeholders. The different types of stakeholders, e.g., developers,

project managers, or project investors need specific analysis results in the form of re-

ports that could be different from one type to another. That’s why we come to a proposi-

tion to support different presentation types of analysis results to fulfill the different

goals and requirements of each type of stakeholders. This kind of result presentation

should be flexible, easy to maintain, easy to customize and understandable to support

the stakeholders on monitoring the project and make a decision based on the project

monitoring.

3.1.1 Heterogeneous Data Collection and Integration
In this thesis, we apply the Project Observation and Analysis Framework (POAF)

to two application scenarios from two different application domains, namely Open

Source Software Projects and Automation Systems Environments. The first research

issue category deals with the heterogeneous data collection and integration for two ap-

plication domains. As a precondition for this research issue, we needed to ensure that a)

the application domain provides data in heterogeneous formats and data models, and b)

the data can be accessed by tools, e.g., web-based tools or database.

RI-1.1. Feasibility of the proposed data collection and integration approach. In

this research issue, we investigate the feasibility of the proposed approach, whether we

can collect and integrate data from heterogeneous data sources by following the ap-

proach steps (collect, integrate, analyze, and present) by using supporting tools.

RI-1.2. Foundations for data collection and integration. In this research issue,

we investigate the methods and tools as foundations for data collection and integration.

For each application scenario, we propose different methods to collect and integrate

heterogeneous data like using an Engineering Knowledge Base (EKB) (Moser, 2009) or

Engineering Service Bus (EngSB) (Biffl & Schatten, 2009). Different tools can also be

used to support the application of foundations to different application scenarios.

RI-1.3. Efficiency of data collection and integration approach. In this research

issue, we compare the use of a traditional data collection process to a semantically-

enabled data collection process to check the efficiency of proposed approach compared

to the conventional one. Data collection is an important part in heterogeneous data col-

lection and integration approach.

RI-1.4. Effectiveness of integration of additional data sources. In this research

issue, we investigate the effectiveness of integration of additional data sources. In com-

plex systems, adding new data sources to the current systems occurs often. The systems

25

should be flexible enough to adapt with new data sources. The adaptation should be

done quick and effectively to the whole systems.

3.1.2 Heterogeneous Data Analysis from Different Stakeholders
In this thesis, we apply several analysis methods to analyze data from different

stakeholders in the heterogeneous software and systems environments. The use of dif-

ferent analysis methods in analyzing data is important to compare the strengths and the

weaknesses of each analysis method, and whether further improvement to the current

analysis methods could be applied to improve the quality of analysis process.

RI-2.1. Feasibility and validity of heterogeneous data analysis approaches. In

this research issue, we investigate the feasibility of the different analysis approaches to

heterogeneous data collected and integrated in complex systems. Our analysis ap-

proaches should not only be valid for a specific project but also valid to many projects

in general. In the case of Open Source Software projects where the projects usually be-

long to certain project umbrella, we also check the validity of our approach to other pro-

ject umbrellas.

RI-2.2. Integrated analysis approaches of data from heterogeneous sources. In

this research issue, we investigate the strengths and weaknesses of integrated analysis

approaches of data from heterogeneous sources compared to single analysis approaches.

Integrated analysis approaches consist of several applications of different analysis

methods that are applied to similar set of data. The results of integrated analysis ap-

proaches are expected to be more powerful than the result of the single analysis ap-

proach, because the integrated approaches offer different types of results overview that

can be used by different types of stakeholders according to their goals and requirements.

RI-2.3. Validation of designed process model with actual engineering process

data. This research issue involves the process model discovery of the engineering proc-

ess data, validity/conformance checking between the designed process model and the

actual process model generated from the actual data, and process performance/risk

analysis including bottleneck analysis to the generated process model.

3.1.3 Analysis Result Presentation for Different Stakeholders
In this thesis, we apply several analysis result presentation approaches for different

types of stakeholders in the heterogeneous software and systems environments. We de-

fine two types of stakeholders, namely project managers and engineers. Each type of

stakeholder has different goals and requirements in getting the analysis results from

26

previous approaches. For example, project managers focus on the results on the overall

projects in the graph-mode, while engineers focus on the results on the specific parts of

projects showing in the textual-mode.

RI-3.1. Feasibility of tool support for project monitoring and reporting. In this

research issue, we investigate the feasibility of tool support for project monitoring and

reporting. This approach is useful for different types of stakeholders, for example pro-

ject managers and engineers, who want to monitor the project status in certain phase of

project. In current complex systems, we cannot wait until the end of project to get the

status of products being developed or services being delivered. The stakeholders should

have abilities to monitor running projects to know the current status, not only at the end

of the project. This approach could support the quality of the systems at run time.

RI-3.2. Usability and understandability of analysis results presentation. In this

research issue, we investigate whether the analysis result presentations to different types

of stakeholders are really useful, understandable and learnable. The project report-

ing/monitoring results that are not understandable by users will be useless and catastro-

phic. We want to check that the different types of stakeholders can use the project moni-

toring tools and result representation in an easy way to enhance their understanding on

the process running, thus can improve the quality of project in advance.

3.2 Research Methods and Evaluation Concept

This section describes the research methods, the evaluation concept, and evaluation

criteria used in this thesis.

3.2.1 Research Methods
The research on observing and analyzing heterogeneous software and systems de-

velopment environments is done by following these steps.

Step 1: Systematic literature review. We conduct a systematic literature review

(Brereton, Kitchenham, Budgen, Turner, & Khalil, 2007) for reviewing related literature

on open source software project monitoring, engineering process observation, and

workflow validation. In a systematic literature review, we focus on aggregating empiri-

cal evidence from widely differing contexts by using a variety of techniques to achieve

certain goals, e.g., to find out the state-of-the-art of methods used in certain topics or to

find out the open issues in certain topics.

A systematic literature review is defined as “a form of secondary study that uses a

well-defined methodology to identify, analyze, and interpret all available evidence re-

27

lated to a specific research question in a way that is unbiased and (to a degree) repeat-

able” (Kitchenham, 2007).

Figure 7. Systematic literature review process (Brereton et al., 2007)

The characteristics of systematic literature review can be summarized as follows:

(a) a systematic review protocol defined in advance of conducting the review, (b) a

documented search strategy, (c) explicit inclusion and exclusion criteria to select rele-

vant studies from the search results, (d) quality assessment mechanisms to evaluate each

study, (e) review and cross-checking processes to control researcher bias.

Conducting a systematic literature review involves three main phases of discrete ac-

tivities, namely planning, conducting and documenting the review. Figure 7 shows the

10-stage review process in three main phases, namely (1) specify research questions, (2)

develop review protocol, (3) validate review protocol, (4) identify relevant research, (5)

28

select primary studies, (6) assess study quality, (7) extract required data, (8) synthesize

data, (9) write review report, (10) validate report.

Step 2: Definition of data modelling. For modelling, we use the standard Unified

Modeling Language (UML) for understandability reason. UML has been the industry

standard for visualizing, specifying, constructing, and documenting the artifacts of a

software-intensive system. UML also facilitates communication and reduces confusion

among project stakeholders as de facto standard modelling language (Booch,

Rumbaugh, & Jacobson, 2005).

We use the entity-relationship (ER) model (Chen, 1976; Silberschatz, Korth, &

Sudarshan, 2010) for semantic modelling (Hull & King, 1987). This model (Thalheim,

2000) incorporates some of the important semantic information about the real world.

Semantic modelling provides mechanisms for representing structurally complex interre-

lations among data typically arising in commercial applications. In general terms, se-

mantic modelling complements work on knowledge representation and on database

models based on the object-oriented paradigm of programming languages.

Step 3: Prototypes building. For feasibility evaluation, we implement prototypes

as proof-of-concept of our conceptual approaches (Floyd, 1984). The term prototype in

relationship with software development indicates a primary interest in a process rather

than in the prototype as a product. The goal of the prototyping process is the identifica-

tion of processes which involve an early practical demonstration of relevant parts of the

desired software, and which are able to be combined with other processes in system

development with a view to improve the quality of the target systems. Many software

developers are motivated to employ prototyping by important conclusions drawn from

their working experience.

Step 4: Empirical Study. For performance evaluation, we follow the guidelines for

empirical research in software engineering (Kitchenham et al., 2002). The guidelines

are intended to assist researchers, reviewers, and meta-analyst in designing, conducting,

and evaluating empirical studies.

Step 5: Statistical Analysis. For statistical evaluation, we use descriptive statistics

as well a statistical tests. Descriptive statistics deal with the presentation and numerical

processing of a data set. The goal of descriptive statistics is to get a feeling for how the

data set is distributed. Statistical tests are available to test the experiment hypotheses.

Hypothesis tests can be classified into parametric tests and non-parametric tests. Para-

metric tests care based on a statistical model that involves a specific distribution. Non-

29

parametric tests do not make the same type of assumptions concerning the distribution

of parameters as parametric test do (Freimut, Punter, Biffl, & Ciolkowski, 2001). In this

research, we use parametric tests to test our hypotheses on application context.

3.2.2 Evaluation Concept

This section discussed the plan for validating our proposed framework to observe

workflows in the multidisciplinary engineering environments. We classify the plan

based on the validation criteria as follows.

(1) Feasibility. The first criterion is the feasibility of the proposed approach. We

made a pilot application by following the framework, to collect, integrate, and analyze

the workflow data. The input to this criterion is heterogeneous data representations from

our industrial partner. The process steps to evaluate the feasibility criterion are as fol-

lows, (1) learning the workflow representation, (2) learning the workflow data collec-

tion and integration, (3) learning the proposed framework, (4) making a pilot applica-

tion based on the proposed framework.

The output of these processes is a pilot application to collect and integrate the

workflow data for managing several workflows from different engineering fields. An

example of the pilot application is management of signal change workflows from me-

chanical, electrical, and software engineering fields for our industrial partner in a power

plant system (Sunindyo, Moser, Winkler, Mordinyi, & Biffl, 2011).

(2) Effectiveness. Effectiveness means the capability to reach a defined goal. In

this case, we aim at observing and validating the role of the workflow usage in project

management. The measurement of the efforts to reach the goal is useful to justify the

possible modification in the project progress monitoring.

The input to the measurement of this criterion is a workflow model and heteroge-

neous data from our industry partner. The processes are including (1) capturing the

event data from different engineering fields, (2) measuring the process metrics, and (3)

deriving the product metrics from process metrics. We expected product and process

metrics as our output for this criterion. An example of effectiveness measurement is by

using signal change management in the power plant to produce product and process

metrics from a workflow model (Winkler, Moser, Mordinyi, Sunindyo, & Biffl, 2011).

(3) Efficiency. Efficiency means unit of output per unit of input. We compare effi-

ciencies between a primarily manual approach and the proposed automated approach

following the proposed framework.

30

The inputs to this criterion measurement are the measured efforts using the manual

approach and the automated approach. We expect to have the percentage of the effi-

ciency from the comparison as our output. The processes are as follows, (1) measuring

the efforts as input and the results as output, (2) comparing the efforts and the results

between manual approach and automated approach, and (3) calculating the efficiency.

3.3 Application Scenarios

The project analysis and observation framework is applied to two different applica-

tions domain, namely the Open Source Software Projects domain and the automation

systems engineering domain to show the ability of the framework to adapt to changed

domain-specific requirements. We describe shortly the two application scenarios and

their special characteristics in the following two subsections.

3.3.1 Open Source Software Projects

Open Source Software (OSS) development projects use different data management

techniques for managing heterogeneous data from different data sources, e.g., Source

Code Management (SCM), developer’s mailing list, and bug repository, which produces

a new insight on the software development (Biffl, Sunindyo, & Moser, 2010b). A set of

different data management approaches, such as data warehousing (Biffl et al., 2010a) or

data mining techniques (Gegick, Rotella, & Tao, 2010), have successfully been applied

to observe the processes of OSS projects and to improve the quality of products and

processes of these OSS projects (Biffl et al., 2010b). Data warehousing and data mining

techniques enable the observation of OSS projects processes based on measuring differ-

ences of expected requirements and the actual implementation. Measurement results can

be used for improving the techniques itself as well as the underlying methods for devel-

oping OSS.

OSS project managers need to collect, integrate and analyze heterogeneous data

originating from different tools used in the OSS project, such as source code manage-

ment, developer’s mailing list, and bug reporting tools to observe the processes and de-

termine the status of OSS projects (Biffl et al., 2010b). Typically, project management

in OSS projects is based on dynamically changing conventions between developers or

contributors - usually it is performed either by senior contributors or the project initiator

- while project management in conventional software project is determined prior to the

actual project life time.

31

Observations of OSS processes are needed as an initial way to improve the quality

of OSS processes and products. By observing the OSS processes, we can measure the

current state of certain processes, for example the times taken to report and resolve is-

sues, and then find out how to reduce idle or non-productive time windows or to address

bottlenecks. In OSS projects, project managers can not directly inspect the software

development, since developers usually work geographically distributed including inter-

actions through communication tools, such as SVN, mailing list, or Bugzilla (Biffl et

al., 2010a). Another aspect of OSS project observation focuses on the structure and cul-

ture of OSS models. The structure of OSS projects typically is more democratic com-

pared to conventional software development projects and consists of more flexible work

structures as well as of global or multi-cultural communities (Sharma, Sugumaran, &

Rajagopalan, 2002). A promising approach of project managers to observe OSS engi-

neering processes is by analyzing data generated during the development phases, e.g.,

bug data, developers’ communication data, and source code management data. How-

ever, the analysis process itself is not straightforward. Some preparatory steps are re-

quired to get the data ready for analysis, for example data collection, data integration,

and data validation. Since the data typically originates from more than one, often het-

erogeneous, tool, project managers need to identify the relationships between heteroge-

neous data sources to get meaningful patterns out of the collected data for further deci-

sions regarding the OSS project.

Status determination with respect to the project timeline and prediction of project

survivability based on “health indicators” (Wahyudin, Schatten, Mustofa, Biffl, & Tjoa,

2006) of OSS projects is a key activity of project managers (Wahyudin, Mustofa,

Schatten, Biffl, & Tjoa, 2007; Wahyudin et al., 2006). By knowing the status of OSS

projects early in the development project and phases, project managers and other stake-

holders, e.g., project hosts and project contributors, can decide whether the project is

healthy, sustainable and worth-supported. Among key indicators to determine the OSS

project health status is a proportional number of code contributions per developer email

and the number of bug status report per developer email. In “unhealthy” OSS projects,

the ratio between code contributions per developer email and bug status report per de-

veloper email is imbalanced (Wahyudin et al., 2007).

A more specific part of OSS projects in this thesis is the Continuous Integration and

Test (CI&T) use case (Biffl & Schatten, 2009). The CI&T use case illustrates a key part

in an iterative software development process: if part of a system or engineering model

32

gets changed, the system has to be re-built and tested in order to identify defects early

and to provide fast feedback on implementation progress to the project manager and the

owners of the changed system parts.

The implementation of CI&T use case in OSS context is done in Open Continuous

Integration and Test (OpenCIT18) server. The OpenCIT server can be used to automati-

cally build, test and deploy projects. It makes it easier for developers to integrate

changes and easier for users to obtain fresh builds of a project. The Open CIT tries to

provide additional benefits compared to other CI&T solutions by building upon the

open and highly customizable OpenEngSB19 platform. Furthermore the OpenCIT itself

is also a FOSS (Free and Open Source Software) project, which provides its users with

the possibility to adapt all aspects of the CI&T process. The domain and connector con-

cept of the OpenEngSB make it possible to define the OpenCIT workflow completely

independent of specific tools. Therefore any build, test and deploy tool can be used to-

gether with the OpenCIT.

3.3.2 Automation Systems Engineering
Automation Systems Engineering (ASE), e.g., the engineering of production auto-

mation systems or power plants, includes a wide range of heterogeneous disciplines,

such as mechanical engineering (e.g., physical layout), electrical engineering (e.g., cir-

cuit diagrams), and software engineering (e.g., UML diagrams, function plans, and

software code) (Biffl & Schatten, 2009). Normally, different disciplines apply individ-

ual engineering processes, methods, and tools with specific data models, addressing

individual needs of involved engineers.

Observations at our industry partner – a hydro power plant systems integrator –

showed that traditional ASE processes follow a basic sequential process structure with

distributed parallel activities in specific phases and suffer from a lack of systematic

feedback to earlier steps, inefficient change management and synchronization mecha-

nisms of disciplines, and low engineering process automation across domain boundaries

(Moser & Biffl, 2010). Specific tools and data models typically address only the needs

of one individual discipline and hinder efficient collaboration and interaction between

disciplines. Because of this lack of collaboration, change management becomes even

more difficult, leading to development delays and risks for system operation.

18 http://opencit.openengsb.org/about.html
19 http://www.openengsb.org/

33

For instance, changing hardware components (e.g., hardware sensors) might require

changes in software components (e.g., caused by changed value ranges, data types (e.g.,

analogue / digital sensor), or number of connection points). Other cases of automation

systems engineering are production automation systems. The industrial production

automation systems typically involve manufacturing systems, such as assembly work-

shops that combine smaller parts into more complex products, e.g., cars or furniture.

Several domains have to cooperate for manufacturing: (1) business order processing and

work order scheduling, (2) technical processes for workshop and systems coordination,

and (3) technical designs of a set of machines in a defined workshop layout (Lüder,

Peschke, & Reinelt, 2006).

In typical engineering disciplines, models (e.g., model-based design and testing

(Baker, Zhen, Gabrowksi, & Oystein, 2008)) help to construct new systems products

and to verify and validate the solutions regarding the requirements, specification, and

design models. Traditional systems engineering processes follow a water-fall like engi-

neering process with late testing approaches. Unfortunately, insufficient attention is

paid in the field of automated systems engineering to capabilities for Quality Assurance

(QA) of software-relevant artifacts and change management across engineering do-

mains, possibly due to technical and semantic gaps in the engineering team. Thus, there

is considerably higher effort for testing and repair, if defects get identified late in the

engineering process.

34

4 Project Observation and Analysis Framework

This chapter summarizes the proposed Project Observation and Analysis Frame-

work (POAF). In the first section, an overview of the framework is given, as well as an

explanation of preconditions and the used technologies for the application of the POAF.

The first section also summarizes the challenges of the POAF and tries to classify the

approach regarding related approaches. The second section presents some scenarios that

could benefit from using the POAF. The third section explains the generic architecture

of the POAF as well as the two major phases of the process of using the POAF.

4.1 Overview
Heterogeneous software and systems development environments introduce different

kind of tools to produce engineering process data that is useful for project monitoring

and reporting. The result of the project monitoring and reporting then can be analyzed to

improve the quality of the products.

However, a major challenge in current project monitoring and reporting approaches

is insufficient observation and analysis across different stakeholders (Moser, Mordinyi,

et al., 2011)(Sunindyo, Moser, Winkler, et al., 2012). Different and partly overlapping

observation and analysis requirements from different stakeholders make the project

monitoring and reporting inefficient. Consequently, the weak tool support for project

monitoring for project managers and engineers hinders quality management and flexible

engineering process automation, leading to late project status acquisition and risks for

system operation.

The strategic goal of making project monitoring process more flexible without de-

livering significantly more risky end products translates into the capability to efficiently

observe and analyze the engineering process of a project environment. While there are

approaches based on personal software processes (Humphrey, 1996, 2000a) and team

software processes (Humphrey, 2000b; Humphrey, Chick, Nichols, & Pomeroy-Huff,

2010), experience has shown that such engineering process tends to be different com-

pared to the designed model (Sunindyo, Moser, Dhungana, Winkler, & Biffl, 2012) and

that different stakeholders need more flexibility to define their own workflows to do

their tasks (Sunindyo et al., 2011). Thus a key goal is to allow the stakeholders to ana-

lyze engineering process data using different methods and tools based on their require-

ments and to provide mechanisms to integrate data sources for those different data

35

analysis. In the past, several approaches for providing observation and analysis frame-

work for engineering process data have been investigated (Gousios & Spinellis, 2009a,

2009b; Hu & Zhao, 2008). However, these approaches focus primarily on analyzing

engineering process data for specific stakeholders rather than providing support for ob-

serving and analyzing engineering process data from various data sources for heteroge-

neous stakeholders, which is the main focus of this thesis.

Figure 8. Overview of Project Observation and Analysis Approach (Sunindyo, 2011)

In this thesis, we introduce a generic approach for project monitoring and reporting

in software and systems engineering (see Figure 8) with a focus on providing support

between heterogeneous tools and data sources to support the analysis and visualization

for different stakeholders and thus making project reporting more efficient and flexible.

Our approach is the so called Project Observation and Analysis (POA) framework, a

project monitoring and reporting approach which supports heterogeneous engineering

process data collection and integration for observation and analysis in the heterogeneous

software and systems development environments. Therefore, we can automate the data

collection and integration processes that build the integrated view of engineering proc-

ess data for observation and analysis needs. The POAF collects, integrates and stores

the engineering process data in ontologies and provides integrated data for flexible

analysis methods and reporting/visualization approaches to different stakeholders. The

POAF aims at making data collection, integration, analysis and reporting more efficient.

36

4.2 Architecture of the Project Observation and Analysis
Framework

This section introduces the Project Observation and Analysis Framework (POAF),

describes the POAF architecture and pictures the process for establishing and using the

POAF. For understandability reasons, an example from the open source software project

domain is chosen. We describe the architecture of POAF, as shown in the Figure 8. The

general mechanism of the POAF uses heterogeneous goals and analysis requirements

from stakeholders as basis for engineering process data collection, integration, analysis

and presentation for the project manager and participants (Sunindyo, 2011). In the fol-

lowing, the detail architecture of the POAF is described; the numbers directly refer to

the numbered tags in Figure 8.

4.2.1 Preparation
The preparation part consists of intermediary steps should be taken before data col-

lected and integrated. The content of the preparation part depends on the engineering

domain and treatment to adapt the engineering process data for further steps.

4.2.2 Collection and Integration (1)

As first step, heterogeneous engineering process data produced by different tools

are collected and then integrated by using some integration mechanisms, e.g., data inte-

gration or service integration. The data integration mechanism, like Engineering

Knowledge Base (EKB) (Moser, 2009; Moser et al., 2010) or ontology approach (Doan

et al., 2004) integrate heterogeneous data semantically. It means that interrelated infor-

mation from the different data models and tools are integrated based on their meaning.

The service integration mechanisms, like Enterprise Service Bus (ESB) (Chappell,

2004)(Yin, Chen, Deng, Wu, & Pu, 2009) or Engineering Service Bus (EngSB) (Biffl &

Schatten, 2009; Biffl, Schatten, et al., 2009) provide a platform for integrating hetero-

geneous services from different systems and software engineering environments.

4.2.3 Analysis Methods (2)

The collected and integrated engineering process data are processed and analyzed

using different analysis methods, e.g., health indicators (Wahyudin et al., 2007, 2006),

bug history (Sunindyo, Moser, Dhungana, et al., 2012), workflow validation (Sunindyo

37

et al., 2011), change management (Winkler et al., 2011), project progress and risk moni-

toring (Sunindyo, Moser, Winkler, & Mordinyi, 2013), and process model validation

(Sunindyo, Moser, & Winkler, 2012). The selection of the methods used to analyze en-

gineering process data is based on (a) the context of the domain, (b) the goals from the

stakeholders, and (c) the requirements from the stakeholders. Further explanation for

each analysis method will be in the chapter 5 and 6.

4.2.4 Reporting / Visualization (3)

The reporting/visualization part consists of several approaches and tools to present

the analysis results that can be useful for the project manager or other project partici-

pants. The reporting/visualization could be in the form of project monitoring cockpit

(Biffl et al., 2010b), engineering cockpit (Moser, Mordinyi, et al., 2011), or other inter-

faces to connect to other application like Decision Support Systems or Executive Infor-

mation Systems.

4.3 Preparation of the Engineering Process Observation and
Analysis

This section describes the process for the preparation of the engineering process

observation and analysis using the POAF in more details. Figure 9 shows the overview

of those preparation processes. The following sections describe each process step in

details.

4.3.1 Define process model

As a first step for the preparation of the engineering process observation and analy-

sis, a process model is defined to identify intended running process in the heterogeneous

engineering environments. The input of this process comes from the requirements for

process definition that can be easily obtained from the stakeholders.

4.3.2 Transform to formal process model

The process model obtained in the first step then is formalized using some formal

notation, for example BPMN20. The formalization of process model is useful to make

the model machine-readable by the rule engine and event generator.

20 http://www.bpmn.org/

38

4.3.3 Evaluate formal process model

The formal process model obtained in the previous step is evaluated with the re-

quirements from the stakeholders to check whether all items have been fulfilled in the

formal process model. The evaluation is also useful for checking the formal process

model with the notation standard.

Figure 9. Preparation of the Engineering Process Observation and Analysis

39

4.3.4 Transform to rule engine

The rule is useful to set what kind of event we want to produce. The transformation

of the process to the rule engine is following the formal process model obtained in pre-

vious step.

4.3.5 Evaluate the rule

The rule generated from the rule engine then is evaluated to check whether the rule

is really following the formal process model, before the event is generated using event

generator.

4.3.6 Implement the event

The event then is generated using an event generator, following the rule defined be-

fore. We can observe and analyze the generated event for checking the conformance

between the designed process model and the actual process in the running systems.

4.4 Use of the Engineering Process Observation and Analysis

This section describes the process for the use of the engineering process observa-

tion and analysis using the POAF in more details. Figure 10 gives an overview of the

process for the use of engineering process observation analysis. The following sections

describe each process step in details.

4.4.1 Collect Events

The event data generated from heterogeneous systems and software development

environments are collected for further steps, e.g., observation, integration, and analysis.

The information in the event data show the type of event, the time when the event takes

place, the source of event, and other related information that could be useful for analy-

sis.

4.4.2 Observe Events

The event observation is useful to filter the completed event sequences from the

uncompleted event sequences. Only completed event sequences are useful for analysis

40

purpose, because they can show the behaviour of the events from the beginning until the

end.

4.4.3 Integrate Events

The observed events then are integrated to support engineering process data analy-

sis. By using integrated event data, it is much easier for the project managers to analyze

the data because they don’t have to deal with heterogeneous data models and tools that

are usually appear prior to data analysis process.

Figure 10. Use of the Engineering Process Observation and Analysis

41

4.4.4 Analyze Events Data
The next process is to analyze integrated events data. In this phase, the project

managers or other stakeholders can analyze integrated events data for their purposes.

The analysis methods used are based on their needs, for example by using descriptive

statistics method to show the tendency of data (mean, mode, median) (Wohlin et al.,

2000) or by using statistical tests to test the experiment hypotheses (Juristo & Moreno,

2001).

4.4.5 Present Metrics

The results of events data analysis are shown in the form of metrics. The usage of

metrics to show the results of event data analysis makes it easier for the project manag-

ers and other stakeholder to read the analysis results. One of methods to produce metrics

from analysis process is Goal Question Metrics (GQM) method (Basili, Caldiera, &

Rombach, 1994; Van Solingen & Berghout, 1999).

4.4.6 Check Conformance

Conformance checking means comparison between existing process model and an

event log of the same process (A Rozinat & van der Aalst, 2008; Anne Rozinat & van

der Aalst, 2006). The existing process model we have designed in prior steps, while the

event log is generated during the project runs. By performing conformance checks, we

want to find out the similarities and deviation between the reality and the designed

process model. By using conformance checking, we can detect the problems of the pro-

ject, e.g., a bottleneck of the project, so we can suggest for process improvement.

42

5 Open Source Software Projects Monitoring

This chapter summarizes the results of applying the POAF to an application sce-

nario from the Open Source Software projects domain, as described in section 3.3.1.

5.1 Overview

Current Open Source Software (OSS) projects involve a range of stakeholders, from

core developers and co-developers to potential users and project investors. Typically,

stakeholders, such as potential users or project investors need to know the status and the

likely future performance of the project to determine whether the project is likely to

sustain for a reasonable period of time in order to justify their investments into the pro-

ject.

Recent research on using project data to support OSS health monitoring to provide

immediate OSS project status, e.g., Sourcerer (Linstead, Bajracharya, Ngo, Rigor,

Lopes & Baldi, 2009), focus on analyzing author-topic relationships in different OSS

artifacts to increase understanding of the project and to raise the awareness on the health

status of a project. Gall et al. (Gall, Fluri & Pinzger, 2009) introduced the Evolizer ap-

proach to analyze the software evolution of OSS projects within Eclipse. This analysis

is useful to investigate the current stage of OSS to be adapted continuously to changing

environments, business reorientation, or modernization. Recent research on OSS project

status monitoring includes participation aspects (Choi, Chengalur-Smith & Whitmore,

2010), productivity aspects (Wahyudin, Dindin & Tjoa, 2007), communication aspects

(Biffl, Sunindyo & Moser, 2010a), and community aspects (Kaltenecker, 2010). The

research presented in this thesis is based on the concept of project health indicators,

which has been introduced by Wahyudin et al. for monitoring the health status of OSS

projects during development (Wahyudin, D., Schatten, Mustofa, Biffl & Tjoa, 2006).

Example indicators that can be used by experts to assess an OSS project are: (a) service

delays on open issues – the time it takes to fix bugs and issues listed in the project bug

reporting system; (b) proportions of activity metrics in the community, e.g., the volume

of mailing list postings, bug status changes per times slot, and updates in the SVN to

learn the health of relationships between relevant activities, e.g., activities on the same

bug; and (c) communication and use intensity. In a healthy project community, a rea-

sonable relationship can be expected between measures such as the number of

43

downloads, mailing list postings, and developer interactions in mailing lists (Wahyudin,

D., Mustofa, Schatten, Biffl & Tjoa, 2007).

However, challenges for monitoring the health status of OSS projects easily and fre-

quently are: (a) manual data collection and integration from heterogeneous data sources,

i.e., data sources, which represent common project-level concepts in various data for-

mats that are non-trivial to reconcile, tend to be prone to errors and take considerable

effort to integrate (Conklin, 2006); (b) the need to correlate data on different activities

requires data integration; (c) manual data validation of the integrated data is hard due to

different representation of common concepts, e.g., different names for one person in the

data models involved; (d) data analyses of individual data sources, e.g., mailing lists,

bug database (Mockus, Fielding & Herbsleb, 2002), SVN/CVS (German 2004), and

change logs (Chen, Schach, Yu, Offutt & Heller, 2004) have been shown to be weak to

detect the health status of OSS project accurately; and (e) the large amount of data to

maintain for analysis in an OSS project over time takes significant resources for storing.

5.2 Framework for OSS Data Analysis

The framework for OSS data analysis (FOSSDA) is an instantiation of Project Ob-

servation and Analysis Framework (POAF) in chapter 4 for OSS project context. The

proposed FOSSDA consists of four layers: (a) Layer 1: data sources, (b) Layer 2: core

framework, (c) Layer 3: key performance indicators, and (d) Layer 4: presentation layer.

This framework is built based on an ontology-based knowledge representation, map-

ping, and reasoning and uses the Project Data Fetcher tool for data collection. Major

novel contributions of this framework are (a) an ontology to store the structure of inte-

grated data collection results, (b) improvement of tools for collecting data, and (c) im-

provement of tools to analyze the collected and integrated data. Figure 11 illustrates the

framework for analyzing OSS engineering process data using a combination of existing

analysis approaches. The description of each layer is as follows.

Layer 1: Data Sources. OSS projects generate a wide range of data during devel-

opment and as product application. These data can be classified as process metrics or

product metrics. Process metrics can be derived from development tools that are used

by the developers or other stakeholders during the development process, e.g., source

code management systems, bug reporting systems, or mailing list. Product metrics can

be derived from the final product, e.g., by counting the number of lines of code, the

number of modules, the coupling and cohesion metrics between modules. In this layer,

44

we provide the basis for collecting data from several types of OSS projects artifacts for

further use in the next steps. Examples of common data sources for OSS process analy-

sis and improvement are: source code management systems, bug reporting systems, and

mailing lists.

Layer 2: Core Framework. The OSS data sources have heterogeneous data formats

and models that impede the analysis process. Therefore, the data have to be integrated

before storing and analyzing them. We applied an ontology as promising approach for

data storage. The ontology consists of three heterogeneous data models (see Figure 14)

derived from the tools used during software development process (i.e., versioning sys-

tem, mailing list, and issue tracker). The data models of these tools contain elements

which are only used in the context of the specific tool, as well as elements which are

also used in context of other tools. In order to integrate the data models respectively

tools, so called “common concepts” (see Figure 14 for project/process level) has to be

introduced to link heterogeneous data models and tools. As a next step, the concepts of

local tool data models has to be mapped to the common data model concept (mapping

from data source level to project/process level in Figure 14) (Biffl, Sunindyo & Moser,

2010a; Moser, 2009).

We apply an ontology-based tool called Project Data Fetcher (see Figure 11) (Biffl,

Sunindyo & Moser, 2010b) to collect data from heterogeneous tools and store the re-

sults in an ontology. The application of an ontology allows (a) checking the data and (b)

linking connected data (based on identified common concepts) from different sources,

e.g., identifying that several author names in mailing list postings actually belong to the

same persons who committed code to the SCM. After collecting and integrating the

data, we check the validity of the data and their connections by reasoning to the ontol-

ogy. The integrated and validated data are the foundation for good analysis results in the

next layer. Note that the Project Data Fetcher allows data validation by using an ontol-

ogy for data consistency checking.

45

Figure 11. An Analysis Framework to Support OSS Data Analysis (Sunindyo, Moser, Winkler, et al.,
2012)

Layer 3: Key Performance Indicators. This layer provides approaches to derive

key performance indicators based on the integrated and validated data. The key per-

formance indicators are defined and applied in FOSSDA by analyzing the OSS project

ontology as a knowledge representation of heterogeneous data sources. The related data

sources are identified and then calculated to produce process metrics for key perform-

ance indicators. We use several OSS key performance indicators, namely health indica-

tors (Wahyudin et al., 2007), bug history (Sunindyo, Moser, Dhungana, et al., 2012) and

workflow validation (Sunindyo, Moser, Winkler, & Biffl, 2010a).

Layer 4: Presentation Layer. This layer contains monitoring and reporting tools to

provide OSS health indicators to project and quality managers. The information is pro-

vided in a textual or graphical format that is most suitable for project and quality man-

agers to take actions based on the health indicators. One example of such tools is the

Project Monitoring Cockpit (ProMonCo) tool (Biffl, Sunindyo & Moser, 2010a) which

can be connected to the Project Data Fetcher and provide analysis results as sample im-

plementation of the FOSSDA presentation layer.

46

5.3 Integrated Data Model
This section explains the simple and advanced examples of the integrated data model

to answer the heterogeneous data collection and integration research issues (see section

3.1.1) in OSS domain.

5.3.1 Simple Example

In this section, we want to show the simple example of integrated data model from

two heterogeneous data sources, namely SVN and mailing list. SVN21 is a software ver-

sioning and revision control system distributed under an open source license. Develop-

ers use Subversion (SVN) to maintain current and historical versions of files such as

source code, web pages, and documentation. A mailing list is a collection of names and

addresses used by an individual or an organization to send material to multiple recipi-

ents. In OSS projects, the developers use mailing lists for communication and distribu-

tion of the materials related with the projects.

Figure 12 left-hand side shows the data model of SVN (upper side) and the data

model of mailing list (lower side). From this figure, we can see the heterogeneities of

both data models. We can identify four types of heterogeneities, namely (a) different

data model, (b) different data entities, e.g., person, developer, (c) different data types,

e.g., string, number, and (d) different data representation, e.g., time representation, with

date or without date, with timezone or without timezone.

21 http://subversion.apache.org/

47

Figure 12. Integrated Data Model for SVN and Mailing List (Sunindyo, Moser, Winkler, et al., 2012)

Figure 13 shows how the ontology area of Engineering Knowledge Base (Biffl,

Sunindyo, et al., 2009; Moser, 2009) can provide integration approach for bridging het-

erogeneity from SVN and mailing list data model. The SVN has the local terminology

“Person”, while the mailing list has the local terminology “Developer”. Both share the

common concept “User” in the Ontology Areas. Then, both terminologies will be

mapped to the class “User” as mentioned in Listing 1.

48

Figure 13. Translation from different data sources to the common concepts (adaptation from (Biffl,
Sunindyo, et al., 2009))

Listing 1. Mapping terminologies to common concepts (Biffl, Sunindyo, et al., 2009)

mapping('Person','User').
mapping('Developer','User').

From the mappings above, we can have a translation between two local terminol-

ogies by using a rule, e.g., the rule described in Listing 2. The query and result can be

seen in Listing 3.

Listing 2. Simple translation rules (Biffl, Sunindyo, et al., 2009)

translate(Term1,Term2) :-
 mapping(Term1,CommonConcept),
 mapping(Term2,CommonConcept),
 not(Term1 = Term2).

Listing 3. Simple translation rules (Biffl, Sunindyo, et al., 2009)

translate(X,Y).
X = 'User'
Y = 'Developer'

This translation is a simple example of translations in general. Ontology Areas for

this use case would consider the parts of the ontologies for the stakeholders involved

(e.g., stakeholder concepts, their local terminologies and mappings), which can more

easily be added to and removed from an ontology as stakeholders change in a particular

context (Biffl, Sunindyo, et al., 2009).

5.3.2 Advanced Example

In this section we describe an advanced example of the using of EKB approach

(Moser, Biffl, et al., 2011) for integrating heterogeneous OSS data sources.

49

To support the finding process of OSS health indicators efficiently, we propose an

integrated data model based on different data model based on different OSS data

sources, which is illustrated in Figure 14. The left-hand side of Figure 14 shows how to

identify the local data models from different data sources, e.g., SVN, mailing list and

bug tracker and relevant relationships of the local data sources. The process and product

level concepts (“common concepts”) are obtained from these local data model as illus-

trated by the dashed colored linked to the common concepts in the top right hand side of

Figure 14. The health indicators we derived from querying the ontology in the analysis

level are shown in the bottom right hand side of Figure 14.

 Typical efforts for collecting data from different OSS data sources have been sum-

marized by Robles et al. (Robles, González-Barahona, Izquierdo-Cortazar & Herraiz,

2009), who proposed to collect data from source code management, mailing list ar-

chives, and bug tracking systems. This work reports experiences on obtaining and ana-

lyzing information from rich set of development-related information in OSS projects. It

gives advice for the problem that can be found when retrieving and preparing the data

sources that is useful for our analysis. We follow their suggestion by capturing data

from SVN, developers’ mailing list, and bug report. Those data sources have similari-

ties, e.g., the names of people involved, the time stamps when some action occurred,

and names of artifacts involved that could be useful to derive the relationships between

those different data sources (see Figure 14).

 By identifying different data sources on the data source level we can create the inte-

grated data model on the project/process level. We classify the data model into three

parts, namely people, process, and product, based on their support for calculating the

health indicators. The benefit of the integrated data model is the flexibility of the data

model regarding the data sources in the data source level, i.e., we can add/introduce a

new data source into the existing data sources, as long as the new data source can pro-

vide the information for the integrated data model on the project/process level. The

common concepts in the integrated data model for calculating e.g., the health indicators,

remain stable, even if we experiment with varying data sources to run tests or variants

of empirical studies.

50

Figure 14. Integrated Data Model to Support OSS Health Indicators (Sunindyo, Moser, Winkler, et al.,
2012)

 This integrated data model shown in Figure 14 is formulated in UML. Listing 4

shows an example of the formal representation of software developer concepts in OWL

(Ontology Web Language, http://www.w3.org/TR/owl-features/). This example shows

the project ontology including developers, deadline, name and role as representation of

the data model. This example and other representation models were built with the Pro-

tégé (http://protege.stanford.edu) editor that provides useful tools to generate and man-

51

age ontologies. The Project Data Fetcher tool (Huber, 2010) supports the storage of

project data modeled in the data model using an ontological representation. The general

ontology architecture consists of a set of so-called tool ontologies (one for each data

source to be integrated), and a single so-called project ontology representing the com-

mon concepts as well as the mappings and required transformation between tool spe-

cific concepts and common concepts.

Listing 4. Excerpt of the ontology represented in OWL (Sunindyo, Moser, Winkler, et al., 2012)
<SubClassOf>

<Class URI="&Ontology1265201409169 ; Project" />
<ObjectMinCardinality cardinality="1">
 <ObjectProperty URI="&Ontology1265201409169; developers"/>
 <Class URI="&Ontology1265201409169; Developer"/>
</ObjectMinCardinality>

</SubClassOf>
<SubClassOf>

<Class URI="&Ontology1265201409169; Project“/>
<DataMinCardinality cardinality="1">
 <DataProperty URI="&Ontology1265201409169 ; deadline"/>
 <Datatype URI="&xsd ; dateTime"/>
</DataMinCardinality>

</SubClassOf>
<SubClassOf>

<Class URI="&Ontology1265201409169; Project“/>
<DataMinCardinality cardinality="1">
 <DataProperty URI="&Ontology1265201409169 ; name"/>
 <Datatype URI="&xsd ; string"/>
</DataMinCardinality>

</SubClassOf>
<Declaration>

<Class URI="&Ontology1265201409169; Project“/>
</Declaration>
<SubClassOf>

<Class URI="&Ontology1265201409169 ; Role"/>
<DataExactCardinality cardinality="1">
 <DataProperty URI="&Ontology1265201409169 ; name"/>
 <Datatype URI="&xsd ; string"/>
</DataExactCardinality>

</SubClassOf>
<Declaration>

 <Class URI="&Ontology1265201409169 ; Role "/>
</Declaration>

52

Listing 5. Example query to find related SVN entries from a mailing list issue (Sunindyo, Moser,
Winkler, et al., 2012)

SELECT count(?a) WHERE {domain:bug_id_17034 domain:resolvedBy ?a}

domain:bug_id_17034 owl:equalTo bugtracker:bug_id_17034

SELECT (?b) WHERE
{bugtracker:bug_id_17034 bugtracker:hasAffectedArtifact ?b}
Result: b = bugtracker:dist.xml

bugtracker:dist.xml owl:equalTo domain:dist.xml
domain:dist.xml owl:equalTo SVN:dist.xml

SELECT (?c) WHERE
{?c SVN:hasAffectedArtifact SVN:dist.xml}
Result: c = SVN:SVN_891529_dist.xml

 c = SVN:SVN_891533_dist.xml

SVN:SVN_891529_dist.xml owl:equalTo domain:SVN_891529_dist.xml
SVN:SVN_891533_dist.xml owl:equalTo domain:SVN_891533_dist.xml

Result: count(?a) = 2

The Project Data Fetcher tool has been developed using the Java programming lan-

guage. For accessing the ontologies, we use the ontology processing features of the Jena

(http://jena.sourceforge.net) framework. The Jena framework provides an OWL API for

programmatic access to OWL ontologies using Java. Jena also provides the tool “sche-

magen”, which creates a Java class file containing an instance of the ontology model as

well as the elements of the input ontology as static fields. The Jena Framework also

contains a basic element, the OntModel class. The OntModel provides features to mod-

ify the model and persist the model into a file. Once the ontology model is accessible,

the next step is to provide a way to configure the tool using “Common Configuration”.

This configuration enables Java applications to read configuration data from a variety

of sources, e.g., the URL of SVN, mailing list, and bug tracker data sources. For access-

ing the subversion repository, we used the “SVNKit” (http://svnkit.com) code library.

This library is an OSS toolkit for Java and provides an API to access and manipulate

subversion repositories online as well as local working copies. For accessing the data

from the mailing list archives, we used “mstor” (http://mstor.sourceforge.net) library.

This library provides access to email messages in mbox format, which is stored file-

based.

53

Listing 5 shows an example of ontology-based querying for project monitoring to find

related SVN entry from the mailing list issue.

5.4 Health Indicators Analysis Method

The term “health indicators” was introduced by Wahyudin et al. (Wahyudin et al.,

2006) to measure the healthy status of OSS project, as analogous to measuring the tem-

perature of the human boy with respect to indicating whether a person is likely to be

sick or in healthy condition (Wahyudin, 2008). The aim of the using of health indicators

analysis method is to help the OSS stakeholders to get an overview on a large portfolio

of OSS projects.

In this section, we provide an overview of a pilot application for empirically investi-

gate the feasibility of health indicators analysis method in four OSS Apache projects

(Lenya, Log4J, Excalibur, and OJB), its study objects, and its threats to validity.

5.4.1 Pilot Application
As explained in section 5.2, the FOSSDA is an instantiation of the POAF for OSS

project context. To investigate the feasibility of FOSSDA, we implement a pilot appli-

cation based on a set of tools, e.g., the Project Data Fetcher (Biffl, Sunindyo & Moser,

2010b) and the Project Monitoring Cockpit (Biffl, Sunindyo & Moser, 2010a). The im-

plementation of each FOSSDA layer is as follows.

Layer 1: Data Sources. In the data sources layer (FOSSDA layer 1 in Figure 11) of

our pilot application, we used SVN22, developers’ mailing lists, and Bugzilla23 tools.

SVN is a source code management tool that is widely used to control the revision of

source code during the development of OSS products. We used SVN as a data source

for analysis purposes because of its popularity and ease to provide data. Developer’s

mailing lists allow collecting information about the activities of developers during de-

velopment phase. Bugzilla is a bug reporting system, which can be used to monitor in-

formation on bugs and for tracking the status of the bugs.

Layer 2: Core Framework. The core framework includes the Project Data Fetcher

(Biffl, Sunindyo & Moser, 2010b) to collect and integrate data from the different data

sources listed in layer 1. We can collect the data by defining the tool configuration, e.g.,

the starting number of SVN revision, starting date of mailing list posts, and the starting

date of bug report collection, and then run the application. By using the ontology, we

22 http://subversion.tigris.org
23 http://www.bugzilla.org

54

can also validate the data by using reasoning to the collected and integrated data, e.g., to

identify missing or incomplete entries.

Layer 3: Key Performance Indicators. In this pilot application, we implemented

the calculation of two health indicators derived from (Wahyudin, D., Mustofa, Schatten,

Biffl & Tjoa, 2007).

Indicator 1: Bug delays. We measured the service delays on open issues by subtract-

ing the closing date of issues in the bug report from the opening date of the issues. We

called this service delay the “bug closure duration”. We classify the bug closure dura-

tion of a project into five categories: closure duration of (a) less than 7 days, (b) be-

tween 7 and 30 days, (c) between 30 and 100 days, (d) between 100 and 365 days, and

(e) more than 365 days. We use bar graphs to show the number of bugs for each cate-

gory as percentage values (see Figure 28). A healthy project should provide shorter bug

resolution durations with most bugs fixed in less than 7 days. We use this threshold

value to see the response of developers in addressing a new bug status change within

one week. We consider the developers to be fast enough to react to the bug status

change within one week; otherwise they are not aware of that change.

Indicator 2: Proportion of activities. We measured the proportions by comparing the

number of bug status changes per times slot and the volume of mailing list postings in

the same time slots. We used a line graph to show the proportions between the bug

status changes and the volume of mailing list postings per month (see Figure 29). A

healthy project shows a stable proportion of activities (neither many mails nor few mails

per bug). The fluctuations of activities show the imbalance between developer email

submissions and bug status reports.

Layer 4: Presentation. For presenting the results of OSS health indicators analysis,

we used a tool, called Project Monitoring Cockpit (ProMonCo) (Biffl, Sunindyo &

Moser, 2010a). The ProMonCo takes the analysis results as inputs and displays the

health indicators in graphical format for the project/quality managers.

5.4.2 Study Objects

We studied four projects from the Apache Software Foundation24, namely Apache

Lenya25, Apache Log4J26, Apache Excalibur27 and Apache OJB28. The reasons of

24 http://www.apache.org/
25 http://lenya.apache.org/
26 http://logging.apache.org/log4j/1.2/
27 http://excalibur.apache.org/
28 http://db.apache.org/ojb/

55

choosing these study objects were (a) the completeness of data sources to collect, i.e., at

least SVN, mailing list, and bug reports, (b) the ease to collect the data and obtain in-

formation about the projects, (c) the activities of developers during development phase,

(d) the maturity and lifetime of the projects are quite long for investigation, and (e) ac-

cess to OSS experts who can provide expert opinions on the actual health of these pro-

jects. According to OSS experts’ opinion, Lenya and Log4J were active projects. We

used Excalibur and OJB, two inactive projects that were moved to Apache Attic29 () as

counter examples for the comparison of health indicator analysis results on different

project conditions.

Table 1 shows the information of four projects used as study objects.

Table 1. Different Projects used in Project Monitoring Researches

Project Name Stable Release Date Release Status Type

Lenya 2.0.3 20.01.2010 Active Content manage-

ment system

Log4J 1.2.16 06.04.2010 Active Logging tool

Excalibur 2.2.3 05.07.2007 Inactive Inversion of control

framework

OJB 1.0.4 31.12.2005 Inactive Object-relational

mapping

We collected SVN entries, mailing list, and Bugzilla data from four projects starting

from January 1st, 2007 until December 31st, 2010 (36 months), so we have enough data

for comparison of developers’ activity in long period. The data set retrieved from Lenya

consists of total 8,464 e-mail conversations (mean per month = 176.33) and 810 bug

status changes (mean per month = 16.87). The data set retrieved from Log4J consists of

total 4,605 e-mail conversations (mean per month = 95.94) and 580 bug status changes

(mean per month = 12.08). The data set retrieved from Excalibur consists of total 886 e-

mail conversations (mean per month = 18.46) and 20 bug status changes (mean per

month = 0.42). The data set retrieved from OJB consists of total 369 e-mail conversa-

tions (mean per month = 7.68) and 18 bug status changes (mean per month = 0.38).

5.4.3 Threats to Validity

In this section, we discuss four types of threats to the validity of an empirical study and

how we addressed these threats.

29 http://attic.apache.org/

56

Conclusion validity. Threats to conclusion validity are the reliability of treatment

implementation and random heterogeneity of subjects. To deal with these threats, we

use an automated tool to collect data to avoid human error during data collection. We

also used limited data sources, i.e., SVN, mailing list, and Bugzilla instead of a bigger

number of data sources to reduce the heterogeneity of our subjects.

Internal validity. Threats to internal validity are the risk that the history affects the

experimental results and the subjects respond differently at different time, if the test is

repeated. To deal with these threats, we used a specific range of date for data collection,

e.g., from January 1st, 2007 to December 31st, 2010. This date range provides stable

results each time the experiment is repeated. The use of an automated tool to collect the

data also makes the subject, i.e., project data sources; respond similarly each time the

test is conducted.

Construct validity. Threats to construct validity are the inadequate preoperational

explication of constructs and mono-method bias. To deal with these threats, we con-

ducted a literature survey on related topics and conducted prior experiments with differ-

ent methods to get experience with the OSS data analysis topic. We also used several

methods for health indicator analysis.

External validity. Threats to external validity are the limited number of projects we

analyzed and the use of single project management standard in our experiment. There-

fore, the study results have reasonable validity for OSS Apache projects but should be

applied to other kinds of projects with care. To strengthen external validity in future

work, we will add more projects from other project management standards, e.g.,

SourceForge and RedHat.

5.5 Bug History Analysis Method
Bug resolution process could be one of project observation sources. By analyzing

bug report data, we can provide engineering process observation for improving the

process quality (Sunindyo, Moser, Dhungana, et al., 2012). In this section, we provide

an overview of a pilot application for empirically investigate the feasibility of the bug

history analysis method, its study objects, and its threats to validity.

5.5.1 Pilot Application
The pilot application for bug history analysis method is based on FOSSDA and a set

of tools, e.g., the Bug History Data Collector (Sunindyo, Moser, Dhungana, et al., 2012)

57

and the Process Mining (ProM) (van der Aalst, 2011). The implementation of each

FOSSDA layer is as follows.

Layer 1: Data Sources. In the data source layer, we have bug database which con-

tains all bugs information that are used in software development. However, in this case,

we don’t need all of those data and focus on bug history data, which can be extracted

from the bug data.

Layer 2: Core Framework. In the core framework layer, we extract and collect bug

history data from filtered bugs. Filtering on the bug database for example focusing on

project, version, status (open or closed bugs), times duration of bugs, priority, severity,

or bug reporter. We collect the bug history data from the bug database by using a bug

history collector.

A bug history is a set of state transitions of one bug id. We collect bug history data

from some bug ids, integrate and validate them in the bug event data log by using data

integrator and validator.

Layer 3: Key Performance Indicators. The even data log from previous level is

analyzed by using Process Mining tool. As a key performance indicator here, we inves-

tigate the frequency of states for different versions of OSS project.

Layer 4: Presentation. The analysis results are presented to the project managers.

The results of Bug History Analysis Method are obtained by comparing the designed

process model and the process model generated from actual bug history data.

5.5.2 Study Objects

In this section, we use Bugzilla on RHEL30 as case of our bug database on OSS pro-

jects. RHEL is a Linux distribution produced by Red Hat Company and is targeted to-

ward the commercial market, including mainframes. RHEL is a popular, quite stable

and mature OSS development project that is well-supported by the company and com-

munity.

Currently, in the Red Hat Bugzilla browser, there are in total 21.640 bugs reported

for RHEL version 4 (2.300 open bugs and 19.340 closed bugs), 41.187 bugs reported

for RHEL version 5 (6.441 open bugs and 34.746 closed bugs) and 23.768 bug reported

for RHEL version 6 (7.465 open bugs and 16.303 closed bugs).

We focus on the use of closed bugs data from RHEL 4, RHEL 5, and RHEL 6. The

usage of closed bugs only allows for an easier analysis of the process model based on

the historical data, especially on the status changes of each bug.

30

 https://bugzilla.redhat.com

58

The selection of using closed bugs data in our research is based on the assumption

that closed bug data contains all necessary steps which are required from introducing

bugs till closing the bugs in a complete cycle. Open bugs may contain a lot of introduc-

tionary bug states and unnecessary intermediate states that may hinder an effective and

efficient generation of valid process models. We also have conducted preliminary ex-

periments on previous versions of RHEL (version 2.1 and 3), but the resulting data con-

tains more unnecessary or duplicate bug states which were getting reduced in the next

versions. The usage of data from version 4, 5 and 6 is representative enough to show the

trend of states reducing between versions.

5.5.3 Threats to Validity

We identified and addressed threats to internal and external validity of our evaluation

results as follows.

Threats to internal validity - Numbers of states. As we have conducted previous ex-

periments using fewer data, there is a tendency of increasing of the numbers of states as

new data is added. So we put more focus on the frequency of states taken during devel-

opment, rather than only the number of states in the process model, since the number of

states can be unnecessary increasing, while the top states remain stable.

Threat to external validity. In this study we focus on three versions of RHEL pro-

jects with similar size and characteristics. The selection of these homogeneous OSS

projects may raise concerns whether the resulting process models are also valid for

other project contexts. While we assume our approach to hold for projects similar to our

study objects (i.e., under Red Hat or similar managements with active and large devel-

oper community), further research work is necessary to investigate projects with

strongly differing characteristics.

5.6 Workflow Validation Analysis Method

In heterogeneous software and systems development environments, different stake-

holders from different engineering fields, typically work separately in their workplaces,

defining and using their own workflows to solve some specific tasks. The interactions

between different stakeholders are coordinated and monitored by the project managers,

who have the responsibility to monitor the progress of project and take actions or deci-

sions based on the current status of the project, e.g., to add more personnel or

change/improve the overall engineering process

59

To be able to monitor the progress of projects, the project managers require an inte-

grated overview across different workflows used by the heterogeneous project stake-

holders, such as that project managers can monitor the interactions between engineers

and that they can validate the designed workflows compared to the actual engineering

processes (Sunindyo et al., 2011).

The workflow validation analysis method provides the project manager the way to

integrate and validate different workflows used by the different stakeholders. In this

section, we provide an overview of a pilot application for empirically investigate the

feasibility of workflow validation analysis method in Continues Integration and Test

(CI&T) context and its study objects.

5.6.1 Pilot Application
The pilot application for workflow validation analysis method is based on FOSSDA.

The implementation of each FOSSDA layer for the workflows validation analysis

method is as follows (Sunindyo et al., 2010a).

Layer 1: Data Sources. The data source layer consists of event data from different

tools, e.g., build servers, software development environment, and source code manage-

ment systems.

Layer 2: Core Framework. The core framework layer collects and integrates het-

erogeneous tool event data for further process analysis and improvement. The capability

to observe the tool-based engineering process enables model-based analysis of the engi-

neering process in order to compare expected and actual process variants as foundations

for planning and tracking the improvement of the engineering process.

Layer 3: Key Performance Indicators. We perform three types of analysis (van der

Aalst, 2005): (a) process conformance of actual to designed processes, i.e., the analysis

of processes and occurring unexpected exceptions as foundation for process improve-

ment); (b) performance analysis based on the process models to identify process bottle-

neck for process improvement; and (c) decision point analysis, i.e., to measure relative

frequency of process execution paths to identify normal and exceptional paths.

Layer 4: Presentation. The analysis results are presented to the project managers.

The results of Workflow Validation Analysis Method are obtained by comparing the

designed process model and the process model generated from actual event log data.

5.6.2 Study Objects

60

In this section, we describe the design and results of the workflow validation in the

context of the standard CI&T process. We selected the CI&T process approach because

of the involvement of a set of various tools (build, automated tests, and deployment) as

a representative best-practice approach from the agile software engineering. The evalua-

tion fulfils requirements for SE process analysis and improvement, namely (a) design

events as system outputs and collect all events from the system for further usage, (b)

filter and transform collected events to the format of the process analysis tool, so that

they can be used for further analysis, (c) define what kind of process analysis methods

we use for analyzing event logs, (d) use the process analysis tool for analyzing event

logs and use the results for improving processes.

The evaluation also follows process analysis and mining guidelines (van Dongen &

van der Aalst, 2005) to organize, plan, and execute the evaluation study. Goal of the

evaluation is (a) to show the benefits of integrated event capturing across disciplines,

(b) to illustrate the capabilities of the proposed event analysis process, and (c) to ana-

lyze the designed process and the real-life process. First, we define the expected process

model based on the CI&T use case and then present a set of analysis results gathered

using the process analysis tool ProM.

The expected SE process model for the CI&T use case implemented in EngSB sys-

tems in our lab as shown in Figure 15 is represented using Business Process Modeling

Notation (BPMN) notation. The model consists of a set of activities for the CI&T proc-

ess implementation: building the system, running tests, deploy activities, and finally

reporting test and deployment results. The CI&T use case shows a key feature of an

iterative software development process: if part of a system or engineering model gets

changed, the system has to be rebuilt and tested in order to identify defects early and to

provide fast feedback on the implementation progress to the project manager and the

owners of the changed system parts. In modern SE environments this part is done by

Continuous Integration (CI) servers like Continuum (http://continuum.apache.org/) or

Hudson (http://hudson-ci.org/). For a typical Java project a Maven

(http://maven.apache.org/) or Ant (http://ant.apache.org/) script will guide the CI proc-

ess (Biffl & Schatten, 2009) . In a large system, the process model involves more proc-

esses for more components. Some parts could be on testing level, while other parts are

already on deployment level.

61

Figure 15. Model of the Expected CI&T process (Sunindyo et al., 2010a)

With respect to tool level events, we record events between every activity, from the

start event to the end event. After the check-in event, we set the build-start event before

the Build System that produces either build-failed event or build-successful event. If the

build is successful, then the test-start event is set before the tests run (Test Run). The

test activity result is either the test-failed event or the test-successful event. If the test is

successful, then the deploy-start event is set before the deployment activity (Deploy).

The deployment activity result is either the deploy-failed event or the deploy-successful

event. The failed events or the deploy-successful event leads to the end event, which

triggers report generation and notification of the relevant SE roles. Note that a report

will be generated and sent to related stakeholders in case of failed activities (Send Re-

port). For evaluation, we identified and captured event logs from running EngSB sys-

tems. There are seven event types: check in, build-start, build-complete, test-start, test-

complete, deploy-start and deploy-complete. The tool-level events in Figure 15 are the

model of expected CI&T process that is compared with the actual model derived from

SE process-level events in Figure 30.

We collected 360 event log files from running a CI&T configuration of the EngSB

system with the structure as shown in Figure 16.

62

Figure 16. Structure of EngSB event logs (Sunindyo et al., 2010a)

The collected event logs were transformed into MXML format as shown in Figure 17

for further analysis. From the transformed event logs, we performed process model veri-

fication and process performance analysis by using the ProM tool.

63

Figure 17. Transformation of event logs for further process analyses (Sunindyo et al., 2010a)

5.7 Summary
In this chapter we proposed and evaluated the FOSSDA (an instantiation of POAF)

to observe and analyze engineering process in OSS domain to provide an easier way for

the project management to monitor and manage the OSS projects based on the immedi-

ate status of OSS projects.

In contrast to current project management technologies like SVN or bug reporting,

the FOSSDA-based approached integrate different methods to monitor and manage the

projects, make the project managers have greater confidence on the project status that is

supported by the hard data on the OSS project.

The following sub-sections describe the findings and results for the FOSSDA de-

scription, for integrated data model, for the health indicators analysis method, for the

bug history method and for the workflow validation analysis method.

5.7.1 Framework for OSS Data Analysis
In this section, we introduced and evaluated the framework for OSS data analysis

(FOSSDA) as an instantiation of the POAF for OSS Project context. The FOSSDA con-

sists of four layers, namely data sources, core framework, key performance indicators,

and presentation. Major contributions of FOSSDA are ontology to store the structure of

integrated data collection results, improvement of tools for collecting data, and im-

provement of tools to analyze the collected and integrated data. (Sunindyo, Moser,

Winkler, et al., 2012)

5.7.2 Integrated Data Model
In this section, we explained the simple and advanced examples of the integrated

data model to support the collection and integration of heterogeneous data sources, for

64

example SVN, mailing list, and bug report. By following the example of integrated data

model, there is possibility to add new data sources to existing integrated data model

(Sunindyo, Moser, Winkler, et al., 2012).

5.7.3 Health Indicators Analysis Method
In this section, we explained the use of health indicators analysis method to measure

the healthy status of OSS project. A pilot application is implemented to investigate the

feasibility of the approach in four OSS Apache projects, namely Lenya, Log4J, Excali-

bur and OJB. In this section we also discuss four types of threats to the validity of the

empirical study, namely conclusion validity, internal validity, construct validity, and

external validity, and how we addressed these threats (Sunindyo, Moser, Winkler, et al.,

2012).

5.7.4 Bug History Analysis Method
In this section, we explained the bug history analysis method to observe and analyze

bug report data to improve the process quality. We use Bugzilla on RHEL as case of our

bug database on OSS projects. The number of states and the using of homogeneous OSS

projects are among threats to our experiment validity for this method (Sunindyo, Moser,

Dhungana, et al., 2012).

5.7.5 Workflow Validation Analysis Method

In this section, we explained the workflow validation analysis method to observe and

analyze engineering process data from CI&T domain. The workflow validation analysis

method provides the project manager the way to integrate and validate different work-

flows used by different stakeholders. By comparing the designed process model with

the process model generated from actual event log data we could get the information of

process deviation and suggest for process improvement (Sunindyo et al., 2010a).

65

6 Process Analysis in Automation Systems Engineer-

ing Environments

This chapter summarizes the results of applying the Project Observation and Analy-

sis Framework (POAF) to application scenarios from automation systems domain. The

process directly relates to the three general steps of the POAF, namely data collection

and integration, data analysis, and data presentation.

The first section gives an overview of the application scenarios, the common chal-

lenges and a detailed description of the specific requirements of these application sce-

narios. The second section gives explanation on the workflow validation cycle process

as instantiation of the POAF applied to support signal change management process ob-

servation and analysis in ASE environments. The third section gives an overview of the

signal change management as an example of application domains of workflow valida-

tion in automation systems. The fourth section gives an overview of the project progress

and risk monitoring method. The fifth section gives an overview of the process model

validation method. Finally, the sixth section concludes the chapter.

6.1 Overview

In multidisciplinary engineering environments, different stakeholders from heteroge-

neous engineering domains, e.g., mechanical, electrical, and software engineering, often

are required to collaborate to produce products or services, like power plants or produc-

tion automation systems. In doing their jobs, these stakeholders use different engineer-

ing processes, methods, and tools with specific data models, addressing the individual

needs of the involved engineers.

The processes of doing their jobs are written in different workflows that represent the

steps describing how processes are conducted, which inputs are needed and what output

is produced. However, project managers need to have an integrated view on the hetero-

geneous workflows from different engineering fields in order to be able to manage the

engineering processes and improve the process and product quality.

Major challenges for the project managers in the multidisciplinary engineering envi-

ronments are as follows, (1) the heterogeneity of data models, tools, and semantic to

represent workflows is hard to manage, (2) manual data collection for workflows analy-

sis is time-consuming and error-prone, (3) the relationship analysis on different work-

66

flows is hard to do due to the lack of linkage information between different workflows

that use and share similar information.

Some approaches for observing engineering processes in software engineering envi-

ronments have been proposed, for example Hackystat (Johnson, 2001) and Ginger2

(Torii et al., 1999) frameworks. However, the research on engineering processes obser-

vation in multidisciplinary engineering environments is surprisingly limited.

In this research, we propose applications of the workflow validation cycle process as

an instantiation of common observation and analysis framework to four application sce-

narios of the automation systems, namely continuous integration and test, cascading

continuous integration and test, signal change management, and production automation

systems.

6.2 Workflow Validation Cycle Process

For achieving the research objective and solving the research questions in section 3,

we propose a framework for supporting workflow observation and validation for project

progress monitoring. This work is a part of larger project in the CD Lab31 with intention

to monitor the impact of introducing/using different workflows to the project progress

in general.

Figure 18 illustrates the framework for observing and validating the engineering

workflows in the multidisciplinary engineering environments. The framework includes

some preparation steps and core steps. The preparation steps consist of some prelimi-

nary steps to prepare and process workflow data from different stakeholders, including

their transformation and evaluation to different forms. The core steps consist of impor-

tant steps in observing and validating the engineering workflows which become the

main part of our research contributions. The explanation for each step is as follows.

(1) Informal model description. The users, e.g., the customers use informal model,

e.g., flowchart to represent their intended process. They design their intended workflow

by using representation of model and free tool, e.g., flowchart or sketch to make a

higher flexibility to the customers to express their requirements and not restricted to the

rules of the notation. The customers then send the informal model to the workflow

model for formalization of the model in machine-readable notation.

(2) Formal model description. The workflow designers get the informal model de-

scription of the workflow from the customers. They transform the informal model into

31 http://cdl.ifs.tuwien.ac.at

67

the formal model, e.g., by using BPM notation. The output of this transformation is a

formal workflow model, including tools, events and process steps needed to implement

the workflow. The workflow designers then check with the customers about the validity

of the model to fulfill the customers’ requirements, e.g., by interview or survey.

(3) Rule engine transformation. The transformation of the formal workflow model

to the rule engine is aiming at deriving some rules from the workflow model that must

be obeyed during the workflow implementation and the running of the system. The

workflow designers set the rules for the model, e.g., what kind of rules for events pro-

duced. The rules contain condition and action, criteria and objects to be arranged. The

workflow designers also set the different cases for the events produced, e.g., normal

case, exception, abort, start and end. The rules are also evaluated to check whether the

rules in the rule engine are really suitable with the formal workflow model in the BPM

notation.

(4) EngSB transformation. After generating rules from the rule engine, the rules

structures are sent to EngSB for generating workflow events. Even though the EngSB

has many functions, in this case we see the EngSB as events generator for workflow

analysis.

(5) Workflow results. The EngSB send the workflow to the Engineering Data Base

(EDB) and the Workflow Results. The EDB will store the workflow data for semantic

analysis purpose, while the workflow results will be useful for quality analysis purpose.

(6) Event logs. The results of workflow for quality analysis purpose are kept in the

event log with certain format. The contents of event log are evolving following the con-

tents of the workflow results.

(7) Process analysis. The event data in the log are sent to be analyzed in the next

step. The analysis is including validating the event log data with the workflow model in

the BPM Notation or other representation.

(8) Evaluation of process metrics. The analysis step takes event log data as inputs

and produce some metrics, e.g., process and product metrics, as results of analysis.

(9) Conformance checking. The process and product metrics produced from analy-

sis step, later are sent for conformance checking by using process mining tool (ProM).

The results of this step are displayed to the project manager for further ac-

tions/decisions.

68

Figure 18. A Framework for Workflows Observation and Analysis (Sunindyo, 2011)

6.3 Change Management Process Observation and Analysis
This section provides an overview, pilot application, and study object of the change

management process observation and analysis method as implementation of the work-

flow validation cycle framework to the automation systems engineering.

6.3.1 Overview
Automation Systems Engineering (ASE), e.g., the engineering of production automa-

tion systems or power plants, includes a wide range of heterogeneous disciplines, such

as mechanical engineering (e.g., physical layout), electrical engineering (e.g., circuit

diagrams), and software engineering (e.g., UML diagrams, function plans, and software

code) (Biffl & Schatten, 2009). Normally, different disciplines apply individual engi-

neering processes, methods, and tools with specific data models, addressing individual

needs of involved engineers.

Observations at our industry partner – a power plant systems integrator – showed

that traditional ASE processes follow a basic sequential process structure with distrib-

uted parallel activities in specific phases and suffer from a lack of systematic feedback

to earlier steps, inefficient change management and synchronization mechanisms of

disciplines, and low engineering process automation across domain boundaries (Moser

& Biffl, 2010). Specific tools and data models typically address only the needs of one

individual discipline and hinder efficient collaboration and interaction between disci-

plines. Because of this lack of collaboration, change management becomes even more

difficult, leading to development delays and risks for system operation.

69

For instance, changing hardware components (e.g., hardware sensors) might require

changes in software components (e.g., caused by changed value ranges, data types (e.g.,

analogue / digital sensor), or number of connection points). Thus, key questions in con-

text of change management are (a) how changes can be handled more efficient and (b)

how relevant change requests can be passed to involved engineers. From project man-

agement perspective, loosely coupled processes hinder a comprehensive observation of

current project states and make project control more difficult (Biffl & Schatten, 2009).

Thus, there is a need for flexible and comprehensive engineering process support across

disciplines to enable collaboration and interaction between disciplines, tools, and data

models. In context of process observation, key questions include (a) how to model and

evaluate engineering processes in heterogeneous environments and (b) how to derive

project metrics based on these observations.

The Engineering Service Bus (EngSB) – a middleware platform for supporting col-

laboration across disciplines and domain borders – bridges the gap between heterogene-

ous disciplines by providing semantic integration of data models (Biffl, Sunindyo, et al.,

2009; Moser, 2009; Moser & Biffl, 2010) based on the technical integration of domain-

specific tools (Biffl & Schatten, 2009; Biffl, Schatten, et al., 2009). An integrated view

on heterogeneous engineering environments enables (a) comprehensive process support

across disciplines, (b) efficient change management, and (c) process and project obser-

vation. Defined processes intertwined with tools and data models can enable process

automation, observation, and improvement based on process measurement.

6.3.2 Pilot Application
This section presents (a) “Signal Engineering” as a common concept in the automa-

tion systems domain, (b) a proposed change management process for signal changes at a

power plant systems integrator, and (c) concepts for process evaluation (verification and

validation) and analysis (as basis for project observation).

6.3.2.1 Signal Engineering
Collaboration between heterogeneous disciplines and tools requires common con-

cepts for mapping individual models and activities. Our observation at the power plant

systems integrator showed that signals (Sunindyo, Moser, Winkler, & Biffl, 2010b) are

common concepts in this domain that link information across different engineering dis-

ciplines. Signals include process interfaces (e.g., wiring and piping), electrical signals

(e.g., voltage levels), and software I/O variables. Consequently, we use signals as a ve-

70

hicle to link domain-specific data between different engineering disciplines and define

the application field “Signal engineering” with focus on signal management facing the

following important challenges: (a) make signal handling consistent, (b) integrate sig-

nals from heterogeneous data models/tools, and (c) manage versions of signal changes

across engineering disciplines. Note that the identification of common concepts (signals

in this thesis) depend on the application domain and may differ. More general, the

common concept can be described as “engineering object” and may include other build-

ing blocks of the automation systems, e.g., hardware components or software control

units.

6.3.2.2 Change Management Process Design
System integrators have to synchronize several engineering data, i.e., signals, derived

from heterogeneous sources, e.g., electrical, mechanical and software engineering, to a

virtual common data model (VCDM) used by the EDB. Note that changes are defined

within modified signal lists derived from individual tools and have to be synchronized

with the current overall signal list in the EDB. Thus, change management refers to the

merging process of signal lists with EDB data during synchronization. Figure 19 pre-

sents a basic signal check-in workflow at the synchronization step.

In addition to unchanged signal, changes can include (a) new signals, (b) removed

signals, and (c) modified signals. Signal modifications result in a notification of in-

volved stakeholders based on the project environment, e.g., involved stakeholders, re-

lated roles, and engineering process phase. Based on signal synchronization, individual

engineers gain updated signals (prepared for specified tools and data models) for appli-

cation within their individual tools. We introduced events (marked by circles in Figure

19) to (a) evaluate the change management process and (b) to measure project metrics

based on changes. Table 2 summarizes the events used to observe and evaluate the pro-

posed change management process.

71

Figure 19. Signal Change Management Workflow (Winkler et al., 2011)

Table 2. Change management process: table of events (Winkler et al., 2011)

Abbr. Event Name & Description

E1
E10

E_checkin_started (E1) and E_checkin_completed (E10) represent one completed
check-in sequence, i.e., a sequence of individual signals derived from a defined source.

E2
E9

E_signal_comparison_started (E2) and E_signal_comparison_completed (E9) focus on
one signal within a check-in process in one signal list.

E3 Unchanged signals are reported by using the event E_signal_similar (E3). This event is
necessary to see whether the change management process works as expected.

E4
E5
E6
E7

Signal changes (i.e., deviations of EDB signal attributes and new signal list attributes)
can be rejected (E_signal_not_changed (E4)) or accepted. In case of accepting signal
changes, three different events are required: (a) signal modified (E_signal_changed
(E5)), (b) a new signal introduced (E_signal_new (E6)), or an existing signal should be
removed from the EDB, i.e., missing entry in the signal list (E_signal_deleted (E7)).

E8 After change handling (accepted or rejected) a summarized notification (E_notification
(E8)) will be sent to all related stakeholder.

6.3.2.3 Process Evaluation and Project Metrics

Events are the foundation for process evaluation and project measurement. Derived

event data from the change management process implementation show whether the

process behaves like expected (process verification and validation) and what the bottle-

necks of individual process steps are in terms of number of executed transitions and

72

duration. In addition, process event data is the foundation for analyzing data for project

planning and control. We applied ProM32, a process mining workbench (van der Aalst,

2005) for process evaluation, observation and analysis, i.e., defining the expected proc-

ess model and evaluating the implemented process workflow based on captured events.

Table 2 presents the event description of the implemented change management work-

flow presented in Figure 19.

Evaluating captured project event data enables project observation and monitoring

from project management perspective. Based on discussions with our industry partners,

important metrics focus on signal changes over project phases and time. A key assump-

tion of our industry partner was that approximately 20% of signals are changed along

the project progress. These assumptions are based on expert estimations. Missing proc-

ess observation data and loosely coupled non-transparent processes of individual disci-

plines hinders measurement of the amount of changes in detail. Thus, we evaluated the

captured events and derived a set of metrics based on the defined change management

process.

6.3.3 Study Objects
This section presents the study objects of the prototype implementation of the change

management process based on real world-data from a project at our industry partner, a

power plant system integrator.

We used three different signal lists from a real world project at our industry partner

and captured occurring events, defined by the change management process. Table 3

presents an overview on used signals per signal list and captured events by the EngSB

application. Note that the project is in a very early stage of development, i.e., in the sys-

tems design phase, where changes come up frequently. Also note that the signal change

handling process does not include the overall project data but a subset of selected and

defined components.

Table 3. Source Signal Data from our Industry Partner (Winkler et al., 2011)

 Phase 1.1 Phase 1.2 Phase 1.3

Number of signals 708 720 592

No of captured events 2,834 5,113 2,450

32 http://prom.win.tue.nl/tools/prom6/

73

6.4 Project Progress and Risk Monitoring
This section provides an overview, pilot application, and study object of the project

progress and risk monitoring method as implementation of the POAF to the automation

systems engineering environments.

6.4.1 Overview
Automation Systems Engineering (ASE) project management typically involves het-

erogeneous engineering fields, e.g., mechanical, electrical, or software engineering,

which should work together to reach common goals such as delivering high quality

automation systems using an efficient and effective automation systems development

process (Schafer & Wehrheim, 2007). However, engineers from different engineering

fields typically use their own tools and data models for performing specific tasks within

their specific engineering fields. The heterogeneity of data models hinders efficient pro-

ject progress monitoring and risk management. Hence project managers need an inte-

grated view coping with the semantic heterogeneities of the different involved hetero-

geneous engineering fields.

For communicating, disseminating, and managing objects across the borders of dif-

ferent engineering fields, engineers typically create and use their own specific engineer-

ing workflows (Becker, Lew, & Olsina, 2011; Biffl, Sunindyo, et al., 2009) with limited

interaction capabilities between the different fields. An engineering workflow (usually

the part of more generic company-wide engineering processes) has its main focus on

observation and monitoring of a set of individual engineering steps (within one disci-

pline), instead on business processes that usually provide a comprehensive view on the

entire project. The goal of using engineering workflows is to support engineers and pro-

ject managers with suitable information on the implementation and enactment of proc-

esses running in the system. Unlike typical business workflows, engineering workflows

not necessary are connected directly to customers (Sunindyo et al., 2011). In addition,

current approaches for managing engineering workflows still do not satisfactorily ad-

dress risk awareness during process analysis. This leads to analysis results which are

hard to justify from a business management perspective, e.g., the costs of changes are

typically higher if performed at a later stage of an engineering process (Winkler et al.,

2011). Current solutions only provide limited capabilities to analyze and present change

management process data across disciplines.

With focus on raising the risk awareness of object change management workflows,

the key questions for project management and engineers are (a) how changes can be

74

handled more efficient and (b) how relevant change requests can be passed to the in-

volved engineers. Thus, there exists the need for flexible and comprehensive engineer-

ing process support across disciplines to enable collaboration and interaction between

disciplines, tools, and data models. In the context of addressing risk awareness for engi-

neering workflow validation, the major challenges are (a) different stakeholders of ASE

projects, who need to be able to identify and mitigate risks efficiently, and (b) different

stakeholders of ASE projects, who need to classify their specific risk factors based on

their requirements.

6.4.2 Pilot Application

This section presents the pilot application for project progress and risk monitoring in

automation systems engineering. The project progress monitoring is part of project

management processes (IEEE, 2011) which can be classified into five sub-processes as

shown in Figure 20, namely initiating, planning, executing, controlling, and closing

processes. Initiating processes means to authorize a project or phase. Planning processes

means to define and refine objectives and to select the best of the alternative courses of

action to attain the objectives that the project was undertaken to address. Executing

processes means to coordinate people and other resources to carry out the plan. Control-

ling processes means to ensure that project objectives are met by monitoring and meas-

uring progress regularly to identify variances from plan so that corrective action can be

taken when necessary. Closing processes means to formalize the acceptance of a project

or phase and to bring it to an orderly end.

Risk monitoring (IEEE, 2011) is the process of keeping track of the identified risks,

of monitoring of residual risks and of identifying new risks, of ensuring the execution of

risk plans, and of evaluating their effectiveness in risk-reduction. Risk monitoring col-

lects risk metrics that are associated with contingency plans. Risk monitoring is an on-

going process for the life of the project. Risks change as new risks develop, anticipated

risks disappear, or the project is getting more mature.

75

Figure 20. Links Among Process Groups in a Phase (IEEE, 2011)

6.4.2.1 Risk Factors Analysis
The scope of the risk factor analysis framework is to support multidisciplinary engi-

neering teams that add, update and delete signals as well as project managers to support

monitoring and decision making process. Each discipline has specific engineering mod-

els and tools. These engineering models work well for the specific discipline or expert,

but are not well designed for interdisciplinary cooperation. The goal of this framework

is to support risk factor analysis across different types of stakeholders, e.g., engineers

and project managers, and to fulfill different requirements of different types of stake-

holders.

The target audiences of this risk factor analysis framework are two types of stake-

holders, namely engineers and project managers. Engineers, e.g., mechanical engineers,

electrical engineers, or software engineers, want to effectively and efficiently analyze

risk factors of their engineering process in signal change management, e.g., incorrect-

ness or incompleteness of the signal change process. However, often problems of integ-

rity appear due to heterogeneous data models and formats used in those different engi-

neering fields.

Knowledge beneficiaries, such as project managers, want to monitor, control and im-

prove engineering processes such that the processes do not violate risk factors like over

budgeting or late project deliveries. This intention is often complicated by the required

high effort for performing cross-domain risk factors analyses, e.g., to know which par-

ties should be responsible for over budgeting or project delays.

The major precondition for using the risk factor analysis framework is a working

communication link between the engineering tools to be integrated, such as Engineering

76

Service Bus (Biffl, Schatten, et al., 2009), Enterprise Service Bus (Chappell, 2004), or

point-to-point integration.

Figure 21. Risk Factor Analysis Framework (Sunindyo et al., 2013)

Figure 21 shows the framework for risk factor analysis which consists of two types

of stakeholders, namely engineers and project managers. Engineers, e.g., mechanical

engineer, electrical engineer, and software engineer give inputs in the form of event log

data which are based on their own development environments (e.g., mechanical plan,

electrical plan, and software development environment). The configuration of the event

log is set up by project managers.

This event log is useful for further risk factors analysis in the next layer, which is

distributed into two parts, namely the engineers’ part and the project managers’ part.

Engineers are more concerned about the correctness and completeness of the signal

changes between different engineering fields, and consider the incorrectness and in-

completeness of the changed signals as risk factors between the engineers. In contrast,

project managers are more concerned about budget and project schedule, such that the

risk factors for the project managers are related to over budgeting and project delays.

The results of this risk factor analysis are presented in the engineering cockpit to show

the risks that should be mitigated by each type of stakeholder.

77

6.4.2.2 Risk Factors Classification
This section further classifies risk factors based on different stakeholder types. The

types of risks classified here are related to the data of specific projects and specific level

which may be defined beforehand. The risk analysis can be based on the phases (e.g.,

timeline of the project) or on the related tools (e.g., EPlan33, logi.DOC34). Source of

changes in the project could be an option for risk analysis, e.g., 5 % of changes may

originate from external partners, if the number of changes exceeds 5 %, then a new con-

tract needs to be negotiated and thus the budget is affected. Any change by project re-

lated tool is considered as an internal change, while any change using the Engineering

Object Editor (EOE35) (Mordinyi et al., 2011) is considered as external change. The

EOE is an Excel Add-on to support efficient quality assurance activities for contribu-

tions from external project partners.

Risk analysis could also be done to analyze project values based on the experience of

different stakeholders, e.g., to analyze the data of multiple comparable projects or to

analyze the number of changes per component. Other types of risk analyses can be

based on the number of internal changes per user, or the occurrence of signal changes in

late project phases.

From the discussion with our industry partner, we classified a set of risk factors,

which often lead to a high effort for analysis and rework during development, commis-

sioning, and deployment. Besides, modifications (e.g., change of a sensor) are critical

issues during maintenance because changed sensor attributes at the mechanical site may

have an impact on electrical requirements (e.g., wiring) and software requirements (e.g.,

modified value ranges as data input).

Based on the three important risk groups, i.e., (a) Domain Specific Risks, (b) Col-

laboration Risks, and (c) Project Management Risks, we focus on collaboration risks

and project management risks as they are the most critical aspects in ASE projects to (a)

enable efficient collaboration between disciplines and (b) enable a comprehensive view

on the project from project management perspective. Thus, we identified a set of risk

factors based on (a) the number of signals as project progress indicator, (b) the number

of changes, and (c) the periods of engineering object changes (i.e., signals). Figure 22

illustrates the context of the investigated risks.

33 EPlan Electric: http://www.eplan.de
34 Logi.DOC: http://www.logicals.com
35 http://cdl.ifs.tuwien.ac.at/files/CDL-Flex_ASB_UC31_EOE_en.pdf

78

Figure 22. Risk Factors Classification (Sunindyo et al., 2013)

Project Progress Overview. The project progress overview presents the overall num-

ber of the signals grouped by engineering phase over time. It illustrates the fluctuation

of the number of signals available in a certain phase based on operations applied to (a

subset of) signals. If signals are added, it means that the number of signals in a certain

phase is increasing. If some signals are deleted, it means that the number of signals in

certain phase is decreasing. Updates include two different types of changes: (a) modifi-

cations of signal content (non-status updates) and (b) status updates (i.e., upgrading in-

dividual signals or groups of signals to the next sequential engineering phase). Signal

status updates do not have any impact on the numbers of signals; if a signal has been

modified (content change) its status is reset to initial. Based on this setting, we can ob-

serve how the signal change operations affect the number of signals available in certain

phases, and how the signal updates change signals from an initial phase to a commis-

sioned/final phase. In a healthy project, we could expect a continuous increase of the

number of signals (i.e., added signals) and increasing signal status information (i.e., the

79

signals are passing individual phases) over time. On the opposite a decreasing number

of signals and the reset of signals from advanced states to initial might indicate risks.

Impact of Stakeholders. Changes might be initiated from different sources, e.g., by

internal engineers or externally by the customer. A high number of external changes

(even late in the project) might lead to high risks; a high number of internal changes

(especially removed and updated signals) might indicate issues in the engineering proc-

ess of a related discipline. Thus the source of change is an important measure for risk

identification. We identify the sources of signal changes to analyze the potential risks,

e.g., what’s the most frequent signal changes source? What’s the trend of signal changes

across different types of stakeholders? Or how signal changes can be displayed over

time?

Impact on Project Phases. Projects can be divided into several phases, namely ini-

tial, drawing started, approved, factory test completed, and commissioned. Risks arise if

signals are changed very often, especially late in the engineering project, e.g., a sensor

has to be changed during the commissioning phase. Thus the related signals have to be

changes as well. In addition, related disciplines might be affected by this change as

well. Modification of signals results in resetting the signal state to initial (i.e., the start-

ing phase) and all other phases have to be processed again. Thus, signals assigned to a

project phase might be an indicator for risk assessment. As risk, we identify the number

of signal changes for each phase across the period of time. From this analysis, we can

observe the fluctuation of signal changes across time, depending on the project phase.

Some signals can be changed from a phase to next phase, and it is expected that at the

end of a project all signals will be in the final phase (commissioned).

Impact of Signals Operations. Operations on signals increase (add new signals) or

decrease (deletion of signals) the number of signals available in the project. Signal up-

dates will not change the number of signals but either the signal content or the assign-

ment to a project phase. The update operation itself can be divided further into updates

of a signal status or updates without signal status changes, i.e. signal content updates. In

this type of risk factor analysis, we observe the relationship between the types of signal

change operations over time. The results of this analysis can be used to measure possi-

ble risks that could happen during signal changes, e.g., the number of deletion should

always less than or equal to the number of available signals.

80

6.4.3 Study Object
This section presents a multi-disciplinary engineering study objects from an indus-

trial partner developing, creating, and maintaining hydro power plants, and demon-

strates a typical process related to the management of signal changes during the life cy-

cle of the power plant. Depending on the size of the commissioned power plant there

are about 40 to 80 thousand signals to be managed and administrated in different tools

of different engineering disciplines. Signals consist of structured key value pairs created

by different hardware components and represent one of the base artifacts in the course

of developing power plants. Signals include process interfaces (e.g., wiring and piping),

electrical signals (e.g., voltage levels), and software I/O variables. Today’s integrated

tool suites often consist of a pre-defined set of tools and a homogeneous common data

model, which work well in their narrow scope but do not easily extend to other tools in

the project outside the tool's scope. Therefore, system integrators in multi-disciplinary

engineering projects want to be able to conduct automated change management across

all tools that contribute project-level data elements regardless of the origin of the tool

and data model.

The current life cycle of a power plant is divided into several phases, each of them

reflecting the progress in building the system and the states of the signals. Highly sim-

plified, the following steps are retrieved from the experiences of the industrial partner:

(1) First of all engineers start with the requirement & specification phase. In this phase

the required data is gathered, such as signals for turbines and generators. It results in the

number of sensors, signals and types of sensors. (2) From this data the typology of the

system can be created. The output of this step is a number of I/O cards and a network

typology. (3) In the next step the circuit diagram is designed. It produces the allocation

plan for mechanical resources. (4) Finally the hardware design is finished to be assem-

bled. (5) After this step the Programmable Logic Controller (PLC) software is created to

map hardware pin to software pin addresses. (6) Finally the system can be rolled out. In

overall these phases are mapped on one of the following signal status: Initial (1), Draw-

ing Started (2, 3), Approved (4) Factory Test Completed (5) and Commissioned (6).

At least there are two different types of stakeholders of the system who are responsi-

ble for changes in the power plant system, namely external and internal stakeholders.

The external stakeholders, e.g., the customers or the business managers may introduce

new requirements or new rules/regulations that affect to the signal changes. The internal

stakeholders, e.g., the internal engineers or the project managers also have their own

81

requirements to change the signals in the systems. The previously described process

refers to a perfect scenario, whereas in general 25% of all signals change due to chang-

ing customer requirements at any point in the life cycle of the development of the power

plant. However, the later signals are changed, the more effort has to be invested in co-

ordination with other disciplines and thus the more costs are created. Project managers

would welcome monitoring tools allowing them to identify risks and hotspots in the

different phases of development. The combination of data sources from different disci-

plines may provide information about e.g., customer behavior due to the number of

change request per project phase, difficult and complex areas in construction due to

high number of explicit and implicit changes. A specific type of risk may be related to

the source of changes. For example if there are more than 5% of changes from external

stakeholders, it triggers an alarm to revise the budget. Hence the project manager should

measure the sources of the signals change and calculate the percentage of overall

change for risk mitigation.

Figure 23 presents a basic change management process, a signal check-in workflow.

The process refers to the fact that collaboration between heterogeneous disciplines and

tools requires common concepts for mapping individual models and activities and that

system integrators have to synchronize engineering data from those tools.

Signal as a common concept link information across different engineering disci-

plines. Consequently, management of signals face important challenges like: (a) make

signal handling consistent, (b) integrate signals from heterogeneous data models/tools,

and (c) manage versions of signal changes across engineering disciplines. The check in

workflow supports handling of such challenges by tracking changes on signals and noti-

fying particular engineers.

Note that changes are defined within modified signal lists derived from individual

engineering tools to be synchronized with the current overall signal list. Thus, change

management refers to the merging process of signal lists provided by engineering tools

with signal data known to the Engineering Service Bus. In addition to unchanged signal,

changes can include (a) new signals, (b) removed signals, and (c) modified signals re-

garding its content or status. Signal changes result in a notification of involved stake-

holders based on the project environment, e.g., involved stakeholders, related roles, and

engineering process phase.

82

Figure 23. Workflow Model for Signal Change Management (Sunindyo et al., 2013)

6.5 Process Model Validation
This section provides an overview of application of workflow observation and analy-

sis framework to the process model validation of the automation systems engineering

environments.

6.5.1 Overview
In heterogeneous engineering environments, like production automation systems, co-

operation between different engineering fields, e.g., mechanical, electrical, and software

engineering is required to obtain a common goal, e.g., to produce a good quality of

product or to deliver a good service to the customers (Biffl & Schatten, 2009). In these

systems, the software engineering provides an increasing share of added value to the

resulting software-intensive systems and also depends on the seamless collaboration

with all other engineering disciplines.

The quality of the processes and products of the production automation systems will

always be a concern for the project managers. However, measuring and validating the

83

processes and products of the production automation systems is not an easy task, due to

the heterogeneity of engineering fields involved in those systems. The current chal-

lenges to measure and validate the processes and products of the production automation

systems are as follows. (1) Manual process and product data collection and integration

is tedious and error-prone, (2) Testing heterogeneous process components from differ-

ent engineering fields is hard due to the complexity of tools and data models used by

each engineering field, (3) Validating the process models from different levels is diffi-

cult, e.g., from business level to production level, due to different interfaces used by

those levels.

 In this section, we propose to improve a simulation-based process validation (SbPV)

(Biffl & Schatten, 2009) with conformance checking analysis to validate production

processes on the system level. Currently process validation on system level is done by

e.g. checking manually whether the processes are correctly done to produce products

required by the business manager. SbPV is focusing more on validating processes rather

than testing of products. SbPV is used to simulate the main behavior of the system and

test different kinds of parameters to validate the system, e.g., by measuring the number

of finished products. Major benefits of SbPV were that (1) simulation allows (auto-

mated) process validation on various levels, such as between the business level and the

process level and between the machine level and the process level; (2) simulation is the

foundation for capturing data on process level with respect to run-time data (Terzic,

Merdan, Zoitl, & Hegny, 2008); and (3) when comparing runtime data with simulation

data, this can improve the simulation and support runtime diagnosis.

6.5.2 Pilot Application
The validation between the business processes and the production processes in the

production automation systems is done by collecting and analyzing data from both

processes. The business processes data are obtained from the product trees, while the

production processes data are obtained from the process event log (see Figure 26).

The process event logs contain information of conveyors and machines activities in

the form of XML files, during the running of experiment on the SAW simulator. The

files consist of following attributes, i.e., identifier for test run, identifier of event, time-

stamp, type of event, identifier of order, identifier of work piece, and component name.

This information will be validated with the product trees from the business layer by

using Process Mining (ProM) tool.

84

ProM is an open-source tool for implementing process and organizational mining

techniques in a standard environment, which allows the extraction of information from

event logs. The using of ProM is based on the minimal amount of information that

should be present in the general cooperative information systems, e.g., event type, name

of event, originator, and timestamp.

The event log should follow these requirements i.e., (1) each logged event should be

a single event that occurred at a defined point in time, (2) each logged event should re-

fer to one single activity only, (3) each logged event should contain a description of the

event that happened with respect to the activity, (4) each logged event should refer to a

specific process instance (case), and (5) each process instance should belong to a spe-

cific process. The originator of the event is optional information for the event. This in-

formation is useful for advanced analysis, i.e., organizational mining.

The analysis process in ProM needs a special format of input file which is called

mining XML. Hence, we have to transform our SAW event logs format into mining

XML format. Figure 24 shows the SAW event logs (top) and its transformation (bot-

tom). The transformation is as follows. (1) The OrderId becomes ProcessInstance Id. (2)

The type of event becomes EventType. (3) The Workpiece Id becomes Workflow

Model Element. (4) The Component Name becomes Originator. (5) The Timestamp is

calculated to get the date and time format. The transformed file becomes an input for

ProM tool and produces a process model for business process validation.

Figure 24. Structure and Transformation of SAW event log (Sunindyo, Moser, & Winkler, 2012)

85

6.5.3 Study Objects
This section presents the study objects of the prototype implementation of the proc-

ess model validation. For evaluating the business goal achievement in the production

automation systems, we use the SAW simulator (Merdan, Moser, Wahyudin, & Biffl,

2008) as our use case of the production automation systems.

The SAW simulator consists of heterogeneous agent-controlled components that

simulate the components and behaviors of the real assembly workshop layout. It con-

sists of 40 conveyors, 17 junctions, more than 15 pallets, 3 product parts and storage

areas, 6 machines, and 4 robots. By using the SAW simulator, we can set the relevant

parameters of simulation, e.g., failure classes, scheduling strategy, and number of pal-

lets, to accommodate the different risks and situations that could be faced in the real

assembly workshop.

The input of the SAW simulator is a set of test cases. During production process

simulation, the SAW simulator produces process events, e.g., starting events, finishing

events, and other relevant events which are stored in the process event log.

For test cases on the business goal validation, we design experiments on the simula-

tor by setting several parameters on the business orders fed into the simulator. The busi-

ness orders consist of 1,500 products with two fictional types of products, named Billy

Medium and Billy Complex. The illustration of Billy Medium and Billy Complex prod-

uct trees can be seen in Figure 25.

Billy Medium consists of one simple part and one intermediate part. Medium int part

1 and medium int part 2 are combined by machine function M2 and become medium int

1. By using machine function M4, the medium int 1 together with medium part 1 will

build the Billy Medium product.

Billy Complex consists of two intermediate parts. SW003 and DP003 together will

build K003 via machine function M3. F002 and F003 together will build P003 by using

machine function M3 as well. By using machine function M5, K003 and P003 will

build the Billy Complex. We evaluate 40 test cases of business goals, by comparing the

results of simulating 4 different classes of failures.

86

Figure 25. Product Trees of Billy Medium and Billy Complex (Sunindyo, Moser, & Winkler, 2012)

The classification of classes of failures is based on the risk of machine failures and/or

conveyor failures in the simulation workshop, according to the position and the impor-

tance of the machine and conveyor for the overall system (refer to Table 4). For effec-

tive comparison of the robustness of workflow scheduling strategies regarding their

exposure to failures in the transportation system, we used First Come First Served

(FCFS) strategy, which execute the first allocated task first.

The explanation of test cases with different class of failures is as follows. (1) C0 con-

sists of test cases with no failure. (2) C1 consists of test cases with 5 conveyor failures

in each test case. (3) C2 consists of test cases with 2 machine failures in each test case.

(4) C3 consists of test cases with combination of 5 conveyor failures and 2 machine

failures in each test case. The machine failures and the conveyor failures occur ran-

domly in the test cases.

Table 4. Failure Classes and Risk Analysis (Sunindyo, Moser, & Winkler, 2012)

Classes of
Failure

Failure Impact

C0 No Failure
C1 Conveyor Failures
C2 Machine Failures
C3 Combined Conveyor and Machine

Failures

We propose a framework to evaluate the business goal achievement in the SAW

simulator. The framework consists of three layers, namely business layer, process layer

and machine layer, which is illustrated in Figure 26.

In the business layer, the business manager dispatches and schedules business orders,

which contain specification of products in the form of product trees and other required

information, e.g., the number of products and due date of production process.

87

In the process layer, the workshop configurator configures the layout of simulation

of assembly workshop (SAW) (Merdan et al., 2008) that supports the business man-

ager’s requirements. The workshop operator runs the simulation based on the business

orders. Each process event during the production process is stored in the process event

log for further purposes, e.g., process analysis by quality manager. In the middle of

process layer, there is a schematic view of an assembly workshop.

In the machine layer, the system engineer provides the real workshop systems that

interact with real machines which are provided by the machine vendor. In this thesis, we

don’t discuss further about the machine layer and put focus on the interaction between

the business layer and the process layer.

The results of the simulation can be used as input for real assembly workshop in the

machine layer. The usage of a software simulator here is needed to accommodate the

reconfiguration of the production automation system in order to get a better perform-

ance. Validation on hardware test bed is expensive, hence we build software simulator

with agent-controlled components that imitate behaviors of real components in the real

system.

Figure 26. Business Goal Evaluation Framework for Production Automation Systems (Sunindyo, Moser,
& Winkler, 2012)

88

6.6 Summary
In this chapter we proposed and evaluated the POAF to observe and analyze engi-

neering process in Automation Systems Engineering environments, to provide an easier

way for the project management to monitor and manage the ASE projects based on the

immediate status of OSS projects.

We also provide a workflow validation cycle as an instantiation of POAF to support

signal change management process observation and analysis in ASE environments, es-

pecially in the power plant as our industrial partner.

The current project management technologies focus on the using of single and spe-

cific tool to analyze and mine the process data, like ProM. However, the POAF provides

more integrated approach and view on managing heterogeneous data from different

stakeholders in ASE project, before submitting data for analysis. The POAF also pro-

vides the possibility of different stakeholders to get different kinds of analysis result

presentations based on their requirements and goals.

The following sub-sections describe the findings and results for the POAF process

description, for change management process observation and analysis method, for pro-

ject progress and risk monitoring method and for process model validation method.

6.6.1 Workflow Validation Cycle Process
In this section, we introduced and evaluated the workflow validation cycle as an in-

stantiation of the POAF for ASE project context.

The workflow validation cycle consists of nine process steps, namely informal model

description, formal model description, rule engine transformation, EngSB transforma-

tion, workflow results, event logs, process analysis, evaluation of process metrics, and

conformance checking.

Major results show that the framework can support the project manager in observing

and validating workflows more efficiently compared to the traditional mainly manual

approaches (Sunindyo, 2011).

6.6.2 Change Management Process Observation and Analysis
In this section, we explained the change management process observation and analy-

sis method as implementation of the workflow validation cycle to the automation sys-

tems engineering domain.

A pilot application is proposed to introduce “signal engineering” as a common con-

cept in the automation systems domain, to explain a change management process for

89

signal changes at a power plant systems integrator, and to explain concepts for process

evaluation and analysis.

As study objects, we used three different signal lists from a real world project at our

industry partner (Winkler et al., 2011).

6.6.3 Project Progress and Risk Monitoring

In this section, we explained the project progress and risk monitoring in the power

plant as implementation of POAF to the automation systems engineering domain.

A pilot application is proposed to monitor project progress and risk in the ASE do-

main. The project progress monitoring is part of project management processes which

can be classified into five sub-processes, namely initiating, planning, executing, control-

ling, and closing processes.

We classified the risk based on the project progress overview, the impact of the

stakeholders, the impact on the project phases, and the impact of signals operations. As

study object, we used signals changes during the life cycle of the power plants. Signals

here could represent process interfaces (e.g., wiring and piping), electrical signals (e.g.,

voltage levels), or software I/O variables (Sunindyo et al., 2013).

6.6.4 Process Model Validation
In this section, we explained the process model validation in the production automa-

tion systems as implementation of POAF to the automation systems engineering do-

main.

A pilot application is proposed to validate between the business processes and the

production processes of the production automation systems by collecting and analyzing

data from both processes.

As study object, we use the business orders of 1,500 products of two types of prod-

ucts, namely Billy Medium and Billy Complex to simulate 4 different classes of fail-

ures, namely no failure, conveyor failures, machine failures, and combined conveyor

and machine failures (Sunindyo, Moser, & Winkler, 2012).

90

7 Evaluation and Discussion

This chapter explains the evaluation results and their discussion based on the re-

search issues and the application scenarios in previous chapter (see section 3.1). The

first section describes the empirical evaluation on two application scenarios, namely

OSS and ASE application scenarios. Evaluation results from different analysis methods

are explained, namely from health indicators analysis method, bug history analysis

method, workflow validation analysis method, change management process observation

and analysis, project progress and risk monitoring, and process model validation. In the

second section, the evaluation results are discussed according to the specified research

issues and the analysis methods used in different application scenarios.

7.1 Evaluation
This section describes the evaluation results for different analysis methods used to

analyze OSS and ASE application scenarios. The explanation of each analysis method

can be found on chapter 5 and 6.

7.1.1 OSS Project Monitoring
The evaluation on OSS application scenarios is based on three different analysis

methods, namely health indicators analysis method, bug history analysis method, and

workflow validation analysis method.

Health Indicators Analysis Method
The criteria of analyzing OSS projects using health indicators analysis method are

the efficiency of data collection and the accuracy of health indicators. The efficiency of

OSS projects data collection is measured by comparing between the manual and the

automated approach to collect and process heterogeneous data for deriving OSS health

indicators. The accuracy of health indicators is measured by comparing the results from

different indicators with the experts’ opinion.

Efficiency of Data Collection

The efficiency of data collection is measured by comparing the efforts to collect and

process heterogeneous data for deriving OSS health indicators (see Table 5). Figure 27

illustrates the comparison of efforts between two approaches, namely the traditional

manual approach and the proposed (semi-)automated approach with FOSSDA.

The traditional manual approach follows three steps for data collection and analysis

(see Figure 27 upper part).

91

Figure 27. Comparison of efficiency for manual and FOSSDA data collection process variants
(Sunindyo, Moser, Winkler, et al., 2012)

92

(a) Manual data collection. The researcher chooses the projects to analyze, and then

collects data directly from the project tools, e.g., by downloading the repository content

from SVN, postings from developers’ mailing list website, and bug reports from the

Bugzilla website.

(b) Manual data integration. The data from different data sources are integrated

manually. The researcher has to analyze each data source and find out the structure of

each data source and similarities between different data sources. This work is hard to do

manually, because there are hundreds or even thousands types of data points, which

may have possible relationships. The possibility to find relationships manually between

different data sources is easier to be based on time aggregation (e.g., weekly, monthly,

or annually), rather based on other detail information (e.g., name of authors, email ad-

dress).

(c) Manual data validation. Manual data validation is hard to do. One possible ef-

fort is to manually query the database to check the validation of data, for example, make

query on the name of developers and the name of mailing list authors and find out their

relationships.

Table 5. Comparison of Effort for Manual and Automated Process Variants (in work-hours) (Sunindyo,

Moser, Winkler, et al., 2012)

Observed Projects Effort
Variants

Process
Steps

Process Items

Lenya Log4J Excalibur OJB

Data coll. SVN 1.4 0.7 0.4 0.2
Data coll. mailing 1.0 0.5 0.3 0.2

Data
Collection

Data coll. bug 0.7 0.4 0.2 0.1
Normalize data 1.0 0.6 0.3 0.2
Identify 4.0 3.0 3.0 3.0
Clean data 4.0 3.0 3.0 3.0

Data
Integration

Integrate format 3.0 3.0 3.0 3.0
Data Manual data 6.0 6.0 6.0 6.0

Traditional
Manual
Process
Effort

TOTAL 21.1 17.2 16.2 15.7
Data Run data 0.1 0.1 0.1 0.1

Describe 2.0 2.0 2.0 2.0
Manage ontology 1.0 1.0 1.0 1.0

Data
Integration

Extract data to 0.8 0.8 0.5 0.5
Data Data Consistency 3.0 3.0 3.0 3.0

Tool-
Supported
Process
Effort

TOTAL 6.9 6.9 6.6 6.6

93

The proposed (semi-)automated approach with FOSSDA uses specific tools to auto-

mate project data collection and analysis (see Figure 27 lower part).

(a) Tool-supported data collection. The Project Data Fetcher tool supports the

automated collection of data from different data sources, i.e., SVN, mailing list, and bug

report. The input of this tool is the configuration setting of each data source tool (i.e.,

SVN, mailing list, bug report) to specify scope and range of project data we want to

analyze. The example configuration setting includes information of repository URL for

SVN, start revision for SVN, archive URL for mailing list, starting data for mailing list,

Bug List URL for Bug Report, and Starting Date for Bug Report. The configuration

setting does not involve ontology setting, since the ontology setting is done automati-

cally in the tool. This approach is suitable for normal developers and not necessarily a

job for an ontology expert. The processes for data collection are defined as follows: (a)

choose a project to analyze; (b) set the configurations of SVN, mailing list, and bug

report, e.g., the revision number (for SVN) and the starting date of the data (mailing list

and bug report); (c) run the project data fetcher to collect the required data automati-

cally.

(b) Tool-supported data integration. The steps of data integration are as follows:

(a) inspect the structure of collected data, (b) find similarities of data attributes between

different data models, e.g., name of committers in SVN and name of authors in mailing

list, (c) map each data source to the ontology as data storage, (d) set the relationships

between different data sources. The input to these steps is the collected data, including

their structure. The output is the integrated data in the ontology.

 (c) Tool-supported data validation. The steps of the data validation are as follows:

(a) take integrated data in the ontology as input, (b) use rules and restrictions to check

the relationships and constraints of the data, (c) use queries to the ontology to check the

consistency and integrity of the data, (d) check the data with intended data model to

support the data analysis. The input to these steps is the integrated data as an ontology,

including rules and relationships. The output is validated data ready for analysis.

For analyzing the data and presenting the results, we used the Project Monitoring

Cockpit (ProMonCo) (Biffl et al., 2010b) to display the health indicators to project and

quality managers. This automated tool can be combined with the Project Data Fetcher

and provides synergies of the data collection and analysis to support efficient health

indicator analysis with FOSSDA for project supervisors. The analysis steps are as fol-

lows (a) handling project ontology as an input for ProMonCo, (b) processing this ontol-

94

ogy and analyze into different purposes and criteria, e.g., total communication metrics,

user coupling metrics, bug history metrics, (c) presenting the analysis results to the pro-

ject managers. Table 5 reports the effort needed to complete the process steps using

manual and tool-supported process approaches. Using the automated approach allows

reducing % of the effort needed for operating traditional approach by up to 30%.

Accuracy of Health Indicators

This section provides results from the health indicator analysis study with two indi-

cators, namely bug delays and proportion of activities for four OSS projects: Lenya,

Log4J, Excalibur and OJB.

Indicator 1: Bug Delays. Figure 28 shows the percentage of bug delays between active

projects (Lenya, Log4J) and inactive projects (Excalibur, OJB).

Figure 28. Indicator 1: Bug fixing delays in four OSS projects (Sunindyo, Moser, Winkler, et al., 2012)

Most bugs get solved in less than 7 days (Lenya: 51 %, Log4J: 45 %, Excalibur: 45

% and OJB: 50 %). Further, 55% of bugs in Excalibur and 39 % of bugs in OJB can be

solved in less than 100 days. The conclusion of OSS health status is only based on these

indicators and thus limited. The results cannot identify the current status of the OSS

project.

95

Indicator 2: Proportion of Activities. Figure 29 shows the proportion of activities be-

tween the numbers of bug reports per number of mailing list postings each month from

January 1st, 2007 until December 31st, 2010 for Lenya, Log4J, Excalibur and OJB pro-

jects. It is assumed that in a healthy community a project should exhibit more uniform

ratio among process metrics, i.e., every bug report ideally should be followed up by the

developer discussion in the mailing list. We found that the inactive projects (Excalibur

and OJB) show more fluctuation and higher ratios between the number of mailing list

postings and bug reports as illustrated in Figure 29. It means, the developer community

retrieved more notification related to bug reports but responded less in the mailing list.

This situation may indicate illness symptoms, e.g., developers pay less attention to

the project status changes and the project employs a small proportion of active develop-

ers which also signifies discouragement of developers, which need to be investigated

further with OSS experts.

On the other side, the Lenya and Log4J projects show more reasonable proportions

in the ratio of developer contribution. This can be interpreted as the fact that most of the

changes of bug status may trigger some responses from the developers.

Figure 29. Indicator 2: Proportion between the number of Mailing List Postings and Bug Reports
(Sunindyo, Moser, Winkler, et al., 2012)

The accuracy of health indicator analysis depends on many factors, e.g., the number of

data sources and the type of methods used. To measure the accuracy of health indicators

across different projects, we compare the results of different analysis methods and data

sources with the opinion of OSS experts on assessing the OSS project health status. In

the context of this study we handle the OSS expert opinion as “truth” to allow assessing

the quality of the results of the proposed on the health indicator approach. The experts

were selected from Apache Project Management Committee (PMC) or the Apache

96

Software Foundation (ASF). There are 10 experts selected from the projects and the

foundation (4 from Lenya, 2 from Log4J, 1 from Excalibur, 1 from OJB and 2 from

ASF). Their opinion was taken from observations on the OSS project development ac-

tivities which are lead by the PMC. The experts decide their judgment on the status of

the project based on their experiences and comparison of different project activities and

their opinion was consistent during this study.

Table 6 shows the comparison between the results of the health indicator analysis

and OSS expert opinion to assess the status of OSS project health. The results of using

combined project metrics as health indicators (bug delays and proportion of activities)

shows that the use of a single project metric (namely bug delays) provided in the em-

pirical study context overoptimistic assessments of the OSS project health status com-

pared to the expert opinion, which is assumed to be correct as the expert opinion uses a

much wider range of input for their status assessment.

Table 6. Comparison between Health Indicators Analysis Results and OSS Expert Opinion (Sunindyo,
Moser, Winkler, et al., 2012)

Indicators Item Project Indicators Result Expert’s Opinion

Lenya Healthy Healthy

Log4J Healthy Healthy

Excalibur Healthy Unhealthy

Bug Delays (single
project metric)

OJB Healthy Unhealthy

Lenya Healthy Healthy

Log4J Healthy Healthy

Excalibur Unhealthy Unhealthy

Proportion of Ac-
tivities (combined
project metrics)

OJB Unhealthy Unhealthy

The use of multi-data sources and combination of different health indicators makes

matched the expert opinion for all investigated projects and can, therefore, be consid-

ered as more accurate than using a single data source and a single health indicator

analysis method in the context of this study.

Bug History Analysis Method

The evaluation is done by analyzing the bug history data sets from three different

RHEL versions (4, 5 and 6) by using Heuristics Mining algorithm from Process Mining

(ProM) tool. We analyzed the number of states in the process models generated by

ProM and counted the frequency of each state for each RHEL version. We compare the

results with the designed process model from Bugzilla life cycle.

The RHEL developers are following the naming and the ordering of the bug

states from Bugzilla life cycle. Table 7 shows the comparison of bug states used in the

97

Bugzilla life cycle, RHEL 4, RHEL 5, and RHEL 6. From Table 7 we can see different

bug state names are used during addressing bug in different RHEL versions.

This result shows us that the developers don’t really follow the process model in the

Bugzilla Life Cycle. The Bugzilla Life Cycle is build to give guidance for the develop-

ers in handling the bug issues in the project. However, in the implementation, the devel-

opers have capability to introduce and modify new bug states as long as this is mutually

agreed among the developers.

Table 7. Name of States used in different RHEL versions and Bugzilla Life Cycles (Sunindyo, Moser,
Dhungana, et al., 2012)

States Bugzilla

LC
RHEL 4 RHEL 5 RHEL

6
UNCONFIRMED    
NEW    
ASSIGNED    
RESOLVED    
VERIFIED    
REOPENED    
CLOSED    
NEEDINFO    
MODIFIED    
ON_QA    
RELEASE_PENDING    
QA_READY    
NEEDINFO_REPORT
ER

   

INVESTIGATE    
NEEDINFO_PM    
PROD_READY    
FAILS_QA    
PASSES_QA    
NEEDINFO_ENG    
ASSIGN_TO_PM    
ON_DEV    
SPEC    
POST    
States 7 21 15 13

The using of too many different states in the Bugzilla sometimes is confusing and

makes a lot of confusion among the developers. Some intervention should be taken to

make common understanding about the meaning of the states and when it should be

used to prevent ambiguity and duplication of similar states. From this result, we can see

how the using of bug states evolves in different RHEL versions that bring more com-

98

mon understanding between the developers about the using of states in handling the bug

issues.

From Table 7, we can see that there are differences between the names and orders of

bug states from RHEL different versions and those from Bugzilla Life Cycle. The

names and orders of bug states in the Bugzilla Life Cycle are focusing on main states of

the bugs and minimal requirements of the bugs with assumption that the bug informa-

tion and the bug states are self-explained. However, in the reality, not all bug informa-

tion and bug states are understandable by other developers. Thus, some states are cre-

ated to ask for further explanation, e.g., needinfo, needinfo_reporter, needinfo_PM, and

needinfo_eng. Thus four new states represent a need for further information from other

parties, e.g., reporter, project manager, or engineer.

Other new states also related with QA (quality assurance), e.g., on_QA, QA_ready,

fails_QA, and passes_QA, which mean that the quality assurance become a part of im-

provement in dealing with the bug. On_QA means that the bugs resolving is still on

quality assurance. QA_ready means the bugs are ready to enter the quality assurance

phase. Fails_QA means that the bugs are failed in quality assurance testing. Passes_QA

means that the bugs have passed the quality assurance testing. However, these QA-

related states are introduced in RHEL version 4 and not continued in version 5 and 6,

means that the QA-related states are not really useful in dealing with the bugs.

Other new states are including modified, investigate, release_pending, prod_ready,

on_dev, spec, and post. These states are more specific to some conditions, e.g., modi-

fied means that the bugs are still modified, investigate means that the developers need

more investigation on the bugs, release_pending asks for pending of the product release,

prod_ready means that the product is ready, on_dev means that the product is on devel-

opment, spec asks for specification, and post means that the product has been posted.

From this result, we can see that by analyzing the different states using bug historical

data, we can learn how the developers using the bug states to communicate the idea how

to deal with the bugs. The change of using bug state names in different versions also

show the importance of the bug state names in handling the bugs, some names are re-

main, but some others are not used anymore.

The RHEL developers are using all bugs states for each bug history in the same

number of frequency. Table 8 shows the frequencies of the using of each bug state in

the bug history. From Table 8, we can see that the frequencies for different bugs in one

99

RHEL version are not similar. The usage of some states is more frequent then of other

states.

By seeing this result, we can learn how the developers deal with the bug issues by

using Bugzilla. The developers seem to uses some state rather than the other states. The

“closed” state is on the top of each version means that (1) whatever state as starting

state, all states tend to go to closed states, (2) there are some possibility to reopen the

closed bug and close it again (especially in RHEL version 4). From this result, we can

see the priority of the developers, in managing bug states and suggest for improvement,

e.g., reducing the number of bug states to make the development/bug handling more

efficient.

Table 8. Frequency of States for Different Versions of RHEL (Sunindyo, Moser, Dhungana, et al., 2012)

Version 4 Version 5 Version 6 States

Occ.
(abs)

Occ.
(rel)

Occ.
(abs)

Occ.
(rel)

Occ.
(abs)

Occ.
(rel)

CLOSED 557 41.0
%

578 30.3
%

546 33.6
%

ASSIGNED 282 20.8
%

407 21.3
%

255 15.7
%

NEEDINFO 150 11.1
%

204 10.7
%

6 0.37 %

MODIFIED 126 9.3 % 345 18.1
%

306 18.9
%

REOPENED 52 3.8 % 8 0.4 % 1 0.1 %
RESOLVED 47 3.5 %
ON_QA 29 2.1 % 67 3.5 % 259 16.0

%
RELEASE_PENDING 25 1.8 % 61 3.2 %
QA_READY 25 1.8 %
NEW 16 1.2 % 44 2.3 % 7 0.4 %
NEEDINFO_REPORTER 11 0.8 % 14 0.7 % 2 0.1 %
INVESTIGATE 10 0.7 % 2 0.1 % 2 0.1 %
VERIFIED 9 0.7 % 122 6.4 % 199 12.3

%
NEEDINFO_PM 3 0.2 %
PROD_READY 3 0.2 %
FAILS_QA 3 0.2 % 10 0.5 %
PASSES_QA 2 0.1 %
NEEDINFO_ENG 2 0.1 % 1 0.1 %
ASSIGN_TO_PM 2 0.1 % 2 0.1 % 1 0.1 %
ON_DEV 2 0.1 % 8 0.5 %
SPEC 1 0.1 %
POST 43 2.3 % 31 1.9 %

100

Workflow Validation Analysis Method

The process model verification is done by comparing the real process with respect to

the expected designed process. Figure 30 shows the real process model based on the

event logs that were fed into the ProM tool and processed by using the process model-

ing plug-in. By using the process performance analysis plug-in of ProM, we can assess

the Key Performance Indicators (KPIs) in an intuitive way. In this thesis, we focus on

the relevant performance information of the ProM plug-in: the place time metrics and

activity metrics.

Figure 30. Performance Analysis of 300+ CI&T process runs (Sunindyo et al., 2010a)

The transition time metric, based on the Petri Net model, is illustrated in Table 9. It

consists of the statistical values of the waiting time (average, minimum, and maximum

in milliseconds) that passes from the (full) enabling of a transition between processes

until its firing, i.e., time that tokens spend in the place waiting for a transition (to which

the place is an input place) to fire and consume the tokens. Based on this metric, we can

identify bottlenecks of the system. A bottleneck in a process is a transition with a high

average waiting time. In our analysis three levels of waiting time are distinguished: low,

medium and high waiting time (in our case low, medium, and high thirds of waiting

time observed over several instances of the process). After calculation, the used Petri

net will be visualized with colors according to their waiting time level, pink for high,

yellow for medium and blue for low. The use of auto bottleneck settings will estimate

values for upper bounds, each level will contain approximately one third of the state

transitions. If project manager does not have prior knowledge about threshold for bot-

tleneck, this auto setting can help him to know the situation and then reapply perform-

ance analysis with better bottleneck estimation setting.

101

Table 9. Transition Time Metric for CI&T process steps and overall process (Sunindyo et al., 2010a)

No Transition Avg

(ms)
Min
(ms)

Max
(ms)

t1 Check In 1,806 1,442 4,154

t2 Build Start 2,808 2,176 13,524

t3 Build Complete 1,785 1,425 2,941

t4 Test Start 3,473 2,778 13,022

t5 Test Complete 2,243 1,393 7,536

t6 Deploy Start 3,131 2,211 18,380

t7 Deploy Complete 0 0 0

 CI&T Process 15,246 11,425 59,557

Figure 30 shows the high waiting time (above 2.808 ms) activities are during the test

(between start and complete events) and during the deployment (between start and

complete events). This bottleneck information can be used as input for the project man-

ager for further process improvement. The activity metric is illustrated in Table 10. It

consists of waiting time, execution time, and sojourn time. Waiting time is defined as

the time between the moment the activity is scheduled and the moment at which execu-

tion of the activity is started. Execution time is the time in which the activity is actually

executed. Sojourn time is the time between the scheduling the activity and finishing its

execution, the sum of waiting and execution time. In most cases the actual CI&T proc-

ess conformed well to the designed process. Note that the event logs showed some un-

expected path in the process: in rare cases the test process step timed out due to an ex-

ception. This new path is shown (red) in Figure 30.

Table 10. Activity Metric for the CI&T process steps (Sunindyo et al., 2010a)
No Activity Time Avg

(ms)
Min
(ms)

Max
(ms)

A1 Check In Waiting
time

0 0 0

 Exec. time 0 0 0
 Sojourn

time
0 0 0

A2 Build Waiting
time

1.806 1.442 4.154

 Exec. time 2.808 2.176 13.524
 Sojourn

time
4.614 3.756 17.678

A3 Test Waiting
time

1.785 1.425 2.941

 Exec. time 3.473 2.778 13.022
 Sojourn

time
5.258 4.397 15.963

A4 Deploy Waiting
time

2.243 1.393 7.536

 Exec. time 3.131 2.211 18.380
 Sojourn

time
5.374 3.878 25.177

102

7.1.2 Process Analysis in ASE Environments
The evaluation on ASE environments is based on three different analysis methods,

namely signal change management, project progress and risk monitoring, and process

model validation.

Signal Change Management

Process evaluation focuses on verification and validation of the implemented change

management process. The basic process evaluation includes (a) inspection of event

traces with ProM (van der Aalst, 2005), (b) analysis of captured events per event type

(see Table 11), and (c) consistency checks. In a first step, we analyzed the captured

events after every phase, i.e., phase 1.1, 1.2, and 1.3, and compared the event traces

with the expected traces, defined in the change management workflow (see Figure 19).

The results showed that the implemented process behaves like expected, i.e., the process

and the event capturing approach was implemented correctly. The second step includes

a basic evaluation of captured events based on the ProM evaluation results. Table 11

presents the details of this analysis.

Table 11. Occurrences of Events based on ProM Data Analysis (Winkler et al., 2011)

Occurrence of events Phase 1.1 Phase 1.2 Phase 1.3 Total

 Abs. Rel. Abs. Rel. Abs. Rel. Abs. Rel.

E1: E_checkin_started 1 <0.1% 1 <0.1% 1 <0.1% 3 <0.1%

E2: E_signal_comparison_
started

708 25.0% 1,300 25.4% 720 29.4% 2,728 26.3%

E3: E_signal_similar 89 1.7% 432 17.6% 521 5.0%

E4: E_signal_not_changed 20 0.4% 12 0.5% 32 0.3%

E5: E_signal_changed 19 0.4% 148 6.0% 167 1.6%

E6: E_signal_new 708 25.0% 592 11.6% 1,300 12.5%

E7: E_signal_deleted 580 11.4% 128 5.2% 708 6.8%

E8: E_notification 708 25.0% 1,211 23.7% 288 11.9% 2,207 21.2%

E9: E_signal_comparison_
completed

708 25.0% 1,300 25.4% 720 29.4% 2,728 26.3%

E10: E_checkin_completed 1 <0.1% 1 <0.1% 1 <0.1% 3 <0.1

Total 2,834 100% 5,113 100% 2,450 100% 10,397 100%

The third step includes a set of consistency checks to verify that the process was

completely executed and that all signals have been processed. The consistency checks

include the following metrics:

(a) Number of signals: According to the defined workflow, the number of signals

(input data and EDB data) must be equal to the number of signal comparison

events (E2 = E9).

103

(b) Signals compared: The number of compared signals summarizes similar signals,

accepted and rejected changes.

(c) Notification: Signal changes (rejected or accepted signal changes) result in noti-

fications to related stakeholders. Note that notification objects (e.g., engineering

tickets) are summarized on component level to keep the number of notifications

as small and focused as possible.

Based on ProM process analysis and analyzing the individual occurrences of events

within the defined workflow, we reason on a well-designed and correctly implemented

workflow.

Project Progress and Risk Monitoring

This section presents the empirical results of the risk factor analysis based on the

data from our industrial partner in the area of hydro power plant engineering. Special

emphasis is put on monitoring project progress overview, changes from different type of

stakeholders, changes in different project phases, and changes in different signals opera-

tion.

Project Progress Overview

The first analysis shows the overall number of signals grouped by phase per commit

which is done weekly. Note that we focus on one snapshot per week for analysis pur-

poses. Thus several commits could have been executed during the previous week. The

result illustrates the project progress overview, where we can see the progress of num-

bers of signal changes across project phases. The number of signals is increasing when

new signals are added, and is decreasing when old signals are deleted. Updating the

content of signals will not change the number of changes. Updates of the signal status

will move signals to the next phase, illustrated by the colors given in Figure 31. Figure

31 presents the number of signals per week and project phase based on different opera-

tions on signals, namely add, update, and delete.

The results showed an overall number of 3000 signals (after week 44) when the pro-

ject is completed and strong variations of the number of signals along the project

course.

The number of signals is increasing from week 1 to 7, and then the signals are up-

graded to the next phase (drawing started). From week 9 to 12, new signals are added

and then upgraded to the next phase (drawing started) in week 13. From week 14 to 18,

new signals are introduced and then deleted in week 19. From week 19 to 21, new sig-

104

nals are added and then upgraded to the next phase in week 22. Some new signals are

added in week 23 and upgraded to the drawing started phase in week 24, and then de-

leted in week 25. From week 25 to 28, new signals are introduced, upgraded to the next

phase in week 29, and deleted in week 30. From week 30 to 32, new signals are intro-

duced and upgraded to the next phase (drawing started) in week 33. Some new signals

are still added, until week 35, and then upgraded to the phase approved in week 36. The

signals are changed to the phase factory test completed in week 40, and in week 44 all

signals available are moved to the phase commissioned. Note that – starting from week

36, a high share of signals passed all sequential phases to the final phase commissioning

completed.

Project Progress Overview

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

Week

S

ig
n

al
s

Initial Drawing Started Approved Factory Test Completed Commissioned

Figure 31. Project Progress Overview (Sunindyo et al., 2013)

Nevertheless it is notable that in week 19 a very high number of signals (about 80%)

has been removed. A more detailed investigation of the results showed that the engi-

neers used templates of components and also reused components from other projects

without adjusting them to the current project. During a project review the components

have been moved from the integrated solution to the local representations to adjust their

project data. A smaller but similar effect happens in week 25 and week 29. Thus this

analysis supports project managers and engineers in better assessing the current project

state over time.

105

Number of Signal Changes by Stakeholder Group

The second analysis focuses on the impact of changes by different stakeholders, i.e.,

internal (engineers) and external stakeholders (customer). Signal changes originate from

external stakeholders, if the customers ask for signal changes based on their require-

ments. Signal changes are coming from internal stakeholders, if engineers add new sig-

nals, update signals, or delete signals used in the project. Signal changes between both

stakeholder groups are communicated across the project.

Number of Signal Changes by Stakeholder

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

Week

C

h
an

g
es

 /
 S

ta
ke

h
o

ld
er

Internal Stakeholder External Stakeholder

Figure 32. Number of Signal Changes by Stakeholders (Sunindyo et al., 2013)

Figure 32 illustrates the bar graph of the number of signal changes by stakeholder.

Most of the changes were introduced by the engineering company and their engineers,

typically add, update, and signal changes. Infrequent changes were introduced by the

customer e.g., caused by reviewing processes or status meetings. The external stake-

holder passes signal changes to the project during a certain period, for example in week

13, week 24, week 29, and week 36, while the other regular changes originate from in-

ternal stakeholders. A more detailed investigation of the external changes showed that

typical changes focuses on signal description changes rather than on critical changes by

the customer. Nevertheless, it is notable that in week 36 - very late in the project – a

high number of external changes happens. As late changes make projects more critical,

error-prone and risky, this analysis results supports project managers in better negotiat-

ing changes with the customer.

106

Number of Signal Changes Related to Project Phases

The impact of signal changes on the project state is another critical issue, as all signal

changes (i.e., content changes) require a reset to the initial state and all phases/reviews

(i.e. signal status upgrades) have to be repeated. As this process requires some effort

and might delay the project, these analysis results help project managers in better under-

standing possible delays of the project.

Number of Signal Changes Related to Project Phases

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

Week

C

h
an

g
e

/
P

h
as

es

Initial Drawing Started Approved Factory Test Completed Commissioned

Figure 33. Number of Signal Changes Related to Project Phases (Sunindyo et al., 2013)

Figure 33 illustrates the bar graph of the number of signal changes related to the pro-

ject phases. Most of the signal changes are done during the initial phases, while some

are also done during drawing started, approved, and factory test completed. At the end

of our observation (week 44), all signals are upgraded to the final phase (commis-

sioned). It is notable that until week 35 almost all signals and changes are in a very

early stage, i.e., in the initial and the drawing started phase. This indicates that the re-

quirements are not well-defined and/or the customer initiated a set of changes. In week

36 we observed a high number of external changes and also the approval by the cus-

tomer. This indicates that these minor changes were implemented and approved within a

very short time interval, i.e., one week. As the project proceeds, short iterations and

interaction with the customer could be observed, i.e., adding a small set of new signals

by the engineering company and signal status updates in week 40 of about 2600 signals.

107

Finally a similar effect could be observed in weeks 41-44, in which the project has been

completed.

Operations on Signals

Another interesting aspect focuses on the impact of operations, i.e., the amount of

operations applied to the signals (i.e., signals added, signals updated, and signals re-

moved). Two different types of operations are introduced, i.e., content updates of sig-

nals and signal status updates. Content updates do not change the status/phase of signals

and focuses on changing the content of signals, e.g., range of devices, device descrip-

tion, tool names, hardware addresses, and path used. Status updates refer to the upgrade

of signal stati/phases from one phase to the next phase. All signal content changes result

in a reset of the signal status to initial.

Operations on Signals (without status update)

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

Week

S

ig
n

al
s

/
O

p
er

at
io

n

Signals Added Signals Updated Signals Removed

Figure 34. Operation on Signals (without status update) (Sunindyo et al., 2013)

Figure 34 illustrates the stack-bar chart of the number of signals grouped by opera-

tions (i.e., add, delete, and update content). Similar to the previous analysis results, we

observed added signals along the project duration until the very end of the project, i.e.

in week 43. In addition we observed two other issues: (a) a relatively low number of

signal content updates, mainly between week 10 to 13 (early in the project) and in week

24. An explanation for this process could be that engineers applied templates and reused

components from previous projects; in addition they modified them according to new

project requirements. Anyway, as the amount of changes is rather high, a large number

108

of components and signals have been removed in week 19, 25 and 30. After this clarifi-

cation and cleanup steps the new (and correct) signal have been introduced. There are

only few changes on the already available signals.

Finally the last evaluation focuses on the impact of signal status updates (see Figure

35 for details). It is notable that signal status updates are typically following a system-

atic approach, e.g., once a month during project progress meetings. Figure 35 shows

that the number of signal status updates is increasing in the project, especially during

week 24 to week 44. In general, signal status updates are performed monthly.

Operations on Signals (with status update)

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

Week

S

ig
n

al
s

/
O

p
er

at
io

n

Signals Updated

Figure 35. Operation on Signals (with status update) (Sunindyo et al., 2013)

Process Model Validation

This section describes the results of our solution approaches which are written in sec-

tion 6.5. The results show that the business goal evaluation framework can be used to

provide illustration of different outputs achieved by different parameters setting for in-

puts, e.g., the product types, the number of orders, and the classes of failures. The vali-

dation between the business processes and production processes can be achieved via

conformance checking between the business process models (product trees) and the

production process model generated from process event logs.

Business Goal Achievement Evaluation

The evaluation of business goal achievement is done by running several experiments

on the SAW simulator by setting different parameters, e.g., classes of failures and the

109

product types, and showing the results in the graphical mode. Figure 37 shows the rela-

tionships between the different parameters and the number of finished products.

700

710

720

730

740

750

760

770

780

C0 C1 C2 C3

Machine and Conveyor Failure Class

N
u

m
b

er
 o

f
F

in
is

h
ed

 P
ro

d
u

ct
s

Billy Medium

Billy Complex

Figure 36. Relationships between failure classes and number of finished products (Sunindyo, Moser, &

Winkler, 2012)

There are 1,500 business orders that distributed into of two types of products, namely

Billy Medium and Billy Complex. The SAW simulator introduces four failure classes,

C0 (no failure), C1 (conveyor failures), C2 (machine failures), and C3 (combined con-

veyor and machine failures) as simulation to the possible failures in the real situation.

From Figure 36, we can see that the number of finished products depends on the type

of products produced and the failure classes occurred during the running experiment in

the SAW simulator. The number of finished products is decreasing following the com-

plexity of the product trees and the failure classes. The machine failures have a greater

impact to the number of finished product rather than the conveyor failures. This is be-

cause when some machines fail, it is harder to overcome this problem. The operator

should change the machine, or reroute the conveyors that lead to failing machine to

other substitute machine. The machine failure could lead to other conveyor failure as

well. While in case of conveyors fail, the operator can just reroute the direction of other

conveyors to substitute the failing conveyor.

Business Processes Validation

The validation of business processes in the production automation systems is done by

conformance checking between the designed process model in the business layer and

the generated process model from actual process event data in the process layer. The top

of Figure 37 shows the process model from actual process event data, which is gener-

ated by using Alpha Algorithm plugin of ProM. This process model conforms to the

product trees (see bottom of Figure 37) of two product types, namely Billy Medium and

110

Billy Complex. A product tree consists of description of products, the parts to build the

product and machine function that build the product from its parts. The product tree is

written in XML notation and can be illustrated as a tree with the product as a root and

its parts as nodes and a machine connects between the product and its parts.

The validation between the business processes and the production processes in the

SAW simulator is done by using Alpha Algorithm from ProM tool. By analyzing the

process event log obtained from running experiments in the SAW simulator using

ProM, we obtain a process model that shows the orders how the products are built.

Figure 37. Overview Process Model and Product Tree Conformance (Sunindyo, Moser, & Winkler,
2012)

Figure 37 shows the analysis results by using Alpha Algorithm plugin from ProM,

and illustrates orders and structure on how the products building from their parts. Billy

Medium product (5) is built from medium_part1 (3) and medium_int1 (4). The me-

dium_int1 (4) is built from two raw materials, namely medium_int_part1 (1) and me-

dium_int_part2 (2). Billy Complex product (12) is built from two intermediate materi-

als, namely K003 (10) and P003 (11). P003 (11) is built from F002 (8) and F003 (9),

while K003 (10) is built from SW003 (6) and DP003 (7). This result validates the prod-

uct trees in Figure 25.

7.2 Discussion
This section discusses the results evaluation of analysis methods on two application

scenarios, namely OSS and ASE application scenarios, based on research issues on sec-

tion 3.

111

7.2.1 OSS Project Monitoring
The discussion on OSS project monitoring analysis methods focus on efficiency, ac-

curacy, and how the analysis methods can support and improve the engineering process

quality.

Health Indicators Analysis Method

In this section, we discuss the results from our research issues, namely (a) efficiency

of FOSSDA tool-supported collection, integration and validation of heterogeneous data

and (b) accuracy of OSS health indicators by using multiple data sources and combined

project metrics.

Data collection and validation efficiency

For the empirical study, we measured the effort for collecting, integrating and vali-

dating heterogeneous data from Apache projects (Lenya, Log4J, Excalibur, OJB) with

the proposed FOSSDA framework. We compared the results with the traditional manual

effort to collect, integrate and validate data from heterogeneous data sources. The key

size metrics for data collection and integration from these projects were especially

based on the derivation of communication metrics and bug reporting metrics.

The design and implementation of FOSSDA is based on the needs to analyze OSS

data more efficiently, based on our experience on collecting the data manually. Hence

we have experience regarding measuring the effort of manual data collection and fur-

thermore regarding the tool-supported data collection process variants. The results in

Initial Empirical Results Section show that the automated approach can reduce up to

30% of the efforts required for the traditional manual approach.

The advantage of the manual approach is that there is no effort needed to create a

new tool to collect and analyze data, i.e., the approach uses just existing tools and

knowledge on the project to collect and analyze the data. Limitations of this approach

are: (a) the error-proneness of the results and tediousness to repeatedly measure data

from a project at different points in time, (b) need to follow similar steps each time we

want to analyze a new project, (c) no use of links with similar data that could support

data analysis, e.g., the name of committers and the name of mailing list post’s authors.

The benefits of using the tool-supported FOSSDA can be described as follows: (a)

by using an ontology as project data storage, it is easy to maintain and query the data

(see the example listings 1 and 2 in Research Issues and Approach Section); it is easy to

validate data, and it is easy to establish links between related data (e.g., the name of

author and contributor of different data sources) using heuristic algorithm. For example,

112

it is assumed, that the username of a person is the part of the email address before the

‘@’ character. Further, it is assumed that every person uses the same username in all of

the tools associated with the project, hence our data sources. By applying these assump-

tions, it is possible to identify individuals already included in the ontology as the identi-

cal person. Even if there are variations to this rule, new rules or exceptions can be easily

added to the ontology. The project manager does not have to store all project data but

can focus on (the limited amount of) data needed for analysis. (b) The similarity of the

Apache foundation management practices for all of their projects (e.g., all projects have

a SVN, mailing list, and bug report to manage their project development) makes the

configuration and the automation of data collection easy. (c) If a researcher/project and

quality manager wants to analyze another project, they just have to change the configu-

ration setting and run the tool to collect the new project data. They do not have to re-

build the tool fundamentally.

Initial extra costs of FOSSDA was the effort to use the Project Data Fetcher tool, the

need to learn the semantic web technology to build the tool, and to learn the project tool

setting before it was possible to operate and run the tool to collect data. Now, operating

the Project Data Fetcher only needs the knowledge about running a Java application and

how to set the tool and configurations, i.e., the structure of project to investigate, e.g.,

the location of artifacts and posting date of artifacts.

This work improved the manual data collection and validation which was proposed

by Wahyudin et al. (Wahyudin, Mustofa, Schatten, Biffl & Tjoa, 2007). The usage of

ontologies for data model representation and data storage is also one of FOSSDA

framework benefits compared to the Alitheia (Gousios & Spinellis, 2009a) or the Ohloh

(Hu & Zhao, 2008) framework.

Health Indicator Accuracy

Current using of individual health indicator methods to observe the OSS project

status may raise inconsistencies on the conclusions given by those different methods.

Therefore, the conclusion on the OSS project status could be different depending on the

chosen indicator, e.g., one indicator may label an OSS project status healthy, while an-

other indicator labels the same OSS project status unhealthy, which may confuse a deci-

sion maker.

In the study context, health indicators based on several project data sources have

proven consistent with expert opinion to provide an overview on the status of an OSS

project, i.e., whether the project is “unhealthy” or “healthy”. Therefore, this information

113

can be useful for the project manager, project investor, and other stakeholders to support

decision on the OSS project, e.g., whether to add new programmers or allocate some

programmers to develop some critical modules.

The combination of different indicators can strengthen the conclusion of the OSS

project status compare to using the indicators separately. Adding new types of data

sources is easily possible using FOSSDA and can further increase the accuracy of health

indicators in varying OSS contexts.

In this research, we have compared the usage of single indicators (bug delays) and

combined indicators (proportion of activities). While this study provided a promising

research result, more empirical studies are needed to strengthen the external validity for

a wider range of OSS projects.

We improved the health indicators notion from Wahyudin et al. (Wahyudin,

Mustofa, Schatten, Biffl & Tjoa, 2007) and involving expert’s opinion as one of aspects

to assess the project status. The combination of different metrics, e.g., communication

metrics and bug report metrics provide a new variant of data source combination, for

example related to the research of Bachmann and Bernstein (Bachmann & Bernstein,

2009) which focuses more on the usage of bug tracking databases and version control

system log files.

Bug History Analysis Method

The evaluation of actual engineering process model is done by checking its confor-

mance to the designed process model. The actual engineering process model can be

generated by using Heuristic Mining algorithm, e.g., process model which is generated

from RHEL 6 bug history data shown in Figure 39. This process model can be con-

formed to the designed process model (Bugzilla Life Cycle) shown in Figure 38 to see

the similarities and differences of both process models.

114

Figure 38. Bugzilla Life Cycle36

From the process model generation on 3 RHEL versions, we answer the two research

hypotheses as follows.

 The RHEL developers are following the naming and the ordering of the bug

states from Bugzilla life cycle. As shown in Table 7, we can see the differences of

number of states used in the designed process model (Bugzilla life cycle) and states

used in the generated process models from RHEL 4, RHEL and RHEL 6.Therefore {

 (V4,V5,V6) | P() ≠ P()} thus we can reject our null hypothesis H01.

36 http://www.bugzilla.org/docs/3.0/html/lifecycle.html

115

Figure 39. Process Model from RHEL version 6

An interpretation of these results can be the fact that the number of bug states avail-

able and used in the different RHEL versions decreases with the version number, mean-

ing that states which were not used at all or only very infrequently are removed for the

next RHEL version.

The using of extra bug states of the RHEL versions comparing to the original Bug-

zilla Life Cycle represents the needs of developers to enhance their understanding on

handling the bug issues. The decreasing of the bug states used between different RHEL

versions means the developers have come to some convergences of understanding, such

that they don’t use some bug states, due to better way to explain and deal with the bugs,

e.g., some bug states which means need for more information from different parties,

means that the explanation about the bugs is getting better than previous version. The

better explanation of the bug to other developers can increase faster bug handling, thus

increasing the productivity and process quality.

116

The RHEL developers are using all bug states for each bug history in the same

number of frequency. As shown in Table 8, each bug state is used in different fre-

quency by the developers. Some bug states are used more often than the others. There-

fore {si,si+1 | N(si) ≠ N(si+1)} thus we can reject our null hypothesis H02.

An interpretation of these results can be the fact the typically OSS projects do not

follow a strict waterfall-like software engineering process, but rather a sometimes

mixed dynamic software engineering process.

Some bug states are more frequent than the others, for example closed, assigned,

modified, verified, and On_QA.

Closed state is on the top of all versions justifies this state as the goal of other states.

All other states are tending to finish in the closed state, even though there are some op-

tions to reopen the closed bugs.

Assigned state represents the beginning of the bug state which should be assigned

among the developers. When the bug issue is introduced for the first time, there is an

opportunity whether to offer the bug handling to a specific person or to ask other devel-

opers publicly to voluntarily taking the chance for handling the bug issue. At some

points, the bug reporter should ensure that each bug issue has been assigned to another

developer such that the bug issue can be solved immediately.

Modified state represents the condition where the bug has been modified. The result

shows that the numbers of modified bugs are increasing across different versions, means

that more bugs are identified as modified rather than other states that are less frequent

and not used in later version (e.g., resolved, QA_ready).

Verified state becomes more common across different versions. More bug issues are

needed to be verified during their handling, and in other side, the resolved state be-

comes extinct in later version.

On_QA state is also increasing across different versions, while other states related to

QA (QA_ready, Fails_QA, Passess_QA) become extinct, means the QA-related states

converge to On_QA state.

Other states are used not so frequently. From this result, we can see how the devel-

opers focus on some important states rather than the others. The understanding of the

developers in dealing with the bug states is also increasing the bug resolving period,

hence improving the process quality.

117

Workflow Validation Analysis Method

In this thesis, we have proposed a process analysis approach based on the observa-

tion by using the EngSB platform. The process analysis on the EngSB has been per-

formed on event logs produced in the research lab regarding a research prototype, i.e., a

CI&T use case. In this section, we discuss the benefits and limitations of the proposed

approach.

Observation of tool-based engineering processes. The major issue is how to inte-

grate the events from a range of heterogeneous tools into a consolidated event frame-

work for further analysis of SE processes. The evaluation of the CI&T standard SE

process showed the capability of the EngSB platform to enable the observation of this

kind of processes: SE processes that are automated and readily provide the required

events. In comparison to the standard process running on dedicated CI servers there no

difference in performance observed from implementing the process in a more flexible

and better observable way that enables automated process analysis.

In the evaluation use case, which is based on back-end SE tools, the EngSB had the

capability to provide technical integration for the SE tools involved, which are represen-

tative of modern SE environments. Based on the successful integration of backend tool

events, a next step would be to extend the scope of processes and also include events

from SE tools that focus on the interaction with humans, such as IDEs and making

events from human actions observable, e.g., with a ticketing system. Semantic integra-

tion was successfully used with knowledge-based components in the EngSB context to

consolidate the data models of the tools involved and transform the tool events into an

SE process event model, which can be understood by process analysis tools. In SE envi-

ronments data models in tools that contribute to SE processes vary considerable in their

complexity. Therefore, the investigation of more complex and heterogeneous data mod-

els in SE processes is a natural next step, e.g., change management of data models

across engineering tools.

Process analysis based on the integrated data. For process analysis we focused in

this thesis on conformance analysis, performance analysis, and decision point analysis.

In the CI&T use case the process could be observed in sufficient detail to support these

kinds of analysis. We found that the implemented process worked most times very well

but led in some cases to unexpected exceptions that need further investigation. Also we

found considerable variation in the waiting and execution times of the process consider-

ing that the process instances were run under comparable circumstances. The empirical

118

data analysis can help to set controls in the process, e.g., time out levels, to balance

process risks and effort of operators.

The input to compare the expected and actual process variants in engineering envi-

ronment is the model of the expected process based on the expertise of local domain

experts. The actual process model can be obtained from analyzing the event logs from

the running system. A challenge in practice may arise for processes that use events that

are not easily obtained from the tools that regularly support the process. In these cases

the EngSB platform allows integrating tools that support human processes. Most cases

could be addressed with a ticketing system, where the ticket data model can be extended

to hold relevant information on the process activities and the tools involved. Events that

contain the information on these tickets can then provide the relevant event log attrib-

utes for process analysis and improvement. In this context we see the need for further

empirical studies on process observation requirements in engineering processes, in par-

ticular, for projects, which bring together engineers and domain experts from several

disciplines.

Lessons learned. We proposed the foundations for event-based engineering process

analysis that show several strong points. With this approach, we can build data integra-

tion models that link available tool events to relevant SE processes and allow their

automated observation and analysis. While the effort to build and validate the platform

was considerable, the effort to model the tool events, their transformation and analysis

seems moderate compared to the manual analysis of SE processes, which is likely to

focus on a few process instances. Similar to the benefits of test automation, automated

process analysis can be repeated often and with little additional cost. In our case we

were able to identify rare cases of deviating process behavior and variations in process

performance that would be unlikely to observe with a manual approach. We started with

the rather simple CI&T process to show the capability of performing process analyses,

which can be applied to more complex processes. As success factors we see the avail-

ability of domain knowledge, sufficiently well-defined SE processes, and access to the

tool events. Our research focuses on making tool events in heterogeneous engineering

environments available to SE process analysts. This approach can be generalized in

other systems, especially in process aware information systems, where the information

of processes is stored in the form of event log. Investments should be done by the pro-

ject manager are on producing event log from non-event systems and finding right proc-

ess analysis methods and building tool supporting those methods.

119

7.2.2 Process Analysis in ASE Environments
The discussion on ASE environments analysis methods focus on the feasibility, accu-

racy and validation between designed process model and process model generated from

actual engineering process event logs.

Signal Change Management

The initial process evaluation confirmed the implementation of the proposed change

management process and enables a more detailed analysis for project management pur-

poses, e.g., measuring the number of signal changes per event type. Table 12 summa-

rizes the derived metrics from analyzing captured events. The data sets have been de-

rived from a very early phase of the development project, i.e., system design phase,

which is an explanation of the high variability of signals (1,211 changes and 89 similar

signals in phase 1.2; the number of changes decreases to 288 and the number of similar

signals increases to 432 in phase 1.3).

Table 12. Change Management Metrics based on Signal Comparisons (Winkler et al., 2011)

 Phase 1.1 Phase 1.2 Phase 1.3 Total

 No % No % No % No %

Similar Signals 0 0% 89 6.9% 432 60% 521 19.1%

Accepted Changes 708 100% 1,191 91.6% 276 38.3% 2,175 79.7%

Rejected Changes 0 0% 20 1.5% 12 1.7% 32 1.2%

Signal Comparisons 708 100% 1,300 100% 720 100% 2,728 100%

Note that we do not consider multiple changes of the same signals. The metrics are

based on signal comparison values, i.e., the number of signals in the EDB and the num-

ber of signals captured during check-in sequences. See Figure 40 and Figure 41 for bar

charts of individual check-in sequences.

Figure 40. Accepted/Rejected Signals per Phase (Winkler et al., 2011)

120

Figure 40 presents the analysis results of accepted, rejected and unchanged (similar)

signals per phase. The number of similar signals increases to 60% in phase 1.3 and the

number of accepted changes decreases across the three check-in phases. Figure 41 and

Table 13 present a more detailed view on signal changes based on accepted changes and

on signal comparison activities. An interesting finding was that in phase 1.2 and phase

1.3 a high number of signals were removed, because sets of components have been re-

placed in early phases of development. Note that no new signal was introduced in phase

1.3.

Figure 41. Change Type of Accepted Changes (Winkler et al., 2011)

Based on the observed events and captured data after the third check-in (i.e., summa-

rizing phase 1.1, 1.2, and 1.3) we observed an overall number of 2,728 signal compari-

sons and a number of 2,175 accepted changes (new, removed, and changed signals). A

more detailed analysis of changes showed an overall change acceptance rate after phase

1.3 of 79.7%. Experts estimated approximately 20% of signal changes along the overall

project course – this seems to be contradictory. Nevertheless, explanations for this de-

viation are: (a) we applied signal lists based on a very early project phase, i.e., the sys-

tems design phase, with incomplete and unstable requirements and a basic systems ar-

chitecture; (b) the signal lists does not cover all components of the plant but is limited to

a small subset of components, i.e., most critical components.

Table 13. Signal Change Type of Accepted Signal Changes (Winkler et al., 2011)
 Phase 1.1 Phase 1.2 Phase 1.3 Total

New Signals 708 100% 592 49.7% 0 0% 1,300 59.8%

Deleted Signals 0 0% 580 48.7% 128 46.4% 708 32.5%

Changed Signals 0 0% 19 1.6% 148 53.6% 167 7.7%

Accepted Changes 708 100% 1,191 100% 276 100% 2,175 100%

121

Nevertheless, we see the prototype evaluation as proof-of-concept of the proposed

process, product, and project observation approach based on events that can support

project managers in better understanding and analyzing the underlying processes and

measuring generated products along the project course.

Project Progress and Risk Monitoring

This section summarizes the major findings of our risk-based approach for ASE pro-

jects based on the initial evaluation of real-world industry data derived from a large-

scale engineering company in the hydro power plant domain. We identified three differ-

ent risk groups: (a) Domain specific risks, (b) Collaboration risks, and (c) Project man-

agement risks.

While domain specific risks are typically addressed by domain specific tools and

methods, e.g., RiskIt method in software engineering (Kontio, 1999), we observed

strong limitations regarding risk assessment in the ASE domain focusing on heteroge-

neous engineering environments. Collaboration risks typically focus on the synchroni-

zation of data models, engineering objects (e.g., signals) and engineering artifacts where

engineering propagate changes – the most critical engineering process in ASE projects,

especially if various stakeholders from various disciplines are involved – to related en-

gineers in other disciplines. In addition we observed strong limitations on a comprehen-

sive view on the overall engineering project from the project management perspective

(Project Management Risks).

Identify and assess risks by using engineering workflows in ASE projects. We

identified the change management workflow in heterogeneous environments as the most

critical process in ASE projects. Changes, even late in the project, can have a major

impact on the project progress and success, even in a heterogeneous environment. Thus

frequent synchronization of engineering artifacts is essential for successful collaboration

and to enable a consistent project data for all related engineers. The Engineering Service

Bus (Biffl, Schatten, et al., 2009) provides a middleware platform that enables technical

integration of heterogeneous tools and semantic integration of data models coming from

different sources (Biffl, Sunindyo, et al., 2009). Based on technical and semantic inte-

gration, project managers and engineers are able to synchronize data across disciplines

more effective and efficient. In addition, metrics on the project progress become meas-

122

urable, an important benefit for project managers. To address risk management we iden-

tified a set of metrics, enabling the observation and control of ASE projects.

The number of engineering objects (signals) is an important indicator regarding the

identification of the project progress with respect to individual project risks. Figure 31

presented the number of signals per week and project phase in our initial evaluation

study. One might assume an increasing number of engineering objects over time. Nev-

ertheless the results showed a rapid decrease of the number of signals between week 18

and week 19. The main reason was that previously engineers reused large components

from previous projects (some copy / paste approach). In week 18, an in-depth review

takes place where it has been decided that the currently used solution approach was not

appropriate. Thus, almost all parts of the components have been removed. Similar ef-

fects appear between week 21/22 and week 29/30. An analysis at the customer site iden-

tified some critical changes in a few components which have been fixed, i.e., exchanged

by more appropriate components. Typically the analysis, illustrated in Figure 31 high-

lighted the risk of reusing components to a wide exchange to reduce effort and cost.

Using wrong components will result in high rework effort. Thus, it is required to plan

component reuse strategies appropriately.

Classify Risk Factors based on Different Types of Stakeholders. Based on observa-

tions at our industry partner and results from previous analysis results (Sadiq et al.,

2004) we identified a set of metrics as promising candidate metrics for project risk as-

sessment.

An overview on the Project Progress has already been applied to demonstrate the ap-

plication of risk assessment, based on the number of engineering objects (i.e., signals) in

the engineering database. Instable and the frequent changing number of available sig-

nals is an indicator for reusing components (copy/paste) approach or some unclear re-

quirements which require high rework effort by engineers and experts.

The Impact of Changes from various Stakeholders (e.g., internal engineers or exter-

nal stakeholder, i.e., the customer) is another important aspect in change management

processes and can result in high risks (even if external changes come up frequently).

Figure 32 presented the number of changes per stakeholder group. The results showed

that the external stakeholders introduce changes every two months at the beginning and

monthly at the end of the project. These analysis results help project-managers in better

discussing the changes with the customer. In our initial evaluation the duration between

123

external changes seems to be appropriate. It is notable that the last pile of changes takes

effect in week 36, 2 months before project completion.

Impact on project phases. Signal changes, especially signal updates result in a reset

of the current project phase based on a rather sequential engineering process. Thus an

important information and consequence of changes is an analysis on the impact of

changes per phase (see Figure 32). It is notable that until week 35 almost all signals are

in the state “initial” or “drawing started”, early phases in the ASE project. After apply-

ing the last pile of customer changes (i.e., in week 36) the signal status develop to the

project finalization time rapidly, e.g., more than one signal status update per week. Note

that the evaluation focuses on snapshots (once a week) for analysis purposes.

Impact of Signal Operation. Finally, it is important to have an idea on the share and

type of signal changes, i.e., added signals newly introduced to the system, modified

(updated) signals, and – the most critical aspect – removed signals. As discussed before,

three main risks apply, (a) in week 19 where almost 80% of signals have been removed;

(b) in week 25; and (c) in week 30. Main reason for this large amount of deleted signals

was the reuse of components and templates which have to be improved for future pro-

jects.

Process Model Validation

Evaluation of the business goal achievement in the production automation sys-

tems. We have introduced the business goal evaluation framework to enable the pro-

ject/quality managers to analysis different processes types from different layers (e.g,

business layer and process layer) and provide analysis results to the project/quality

managers for further decision on the process improvement.

The evaluation shows some parameters in the test cases, e.g., the product types,

number of products ordered, and classes of possible failures, affect the productivity of

the systems, e.g., the number of finished products. This information is also useful for

the project/quality managers to plan the configuration of workshop layout in the real

situation.

Validation of the business processes with the production processes data in the pro-

duction automation systems. The validation of different processes types from different

layers is done by collecting the processes data from different layers, e.g, product trees

from the business layer and processes event from the process layer. The collected data

then is analyzed by using the conformance checking tool from Prom Alpha Algorithm

124

plugin to compare the suitability between the process model generated from actual data

and the designed process model in the process tree. The results show that the production

processes are really follow the product trees and not violating the structure and orders

on how the products are built from their parts.

Some failures have been introduced during the running of experiments in the SAW

simulator, e.g., the machine failures, conveyor failures, and the combination of both

failures. However, these classes of failures only impact on the number of finished prod-

ucts and do not impact on the form of products. Hence the project/quality managers can

guarantee that the products delivered will always in the good form and conform their

design, and the failures only effect on the processes and not the form of products.

125

8 Conclusion and Perspectives

In heterogeneous software and systems development environments which involves

engineering systems and tools from several sources, the software is no longer be seen as

a stand-alone system and delivered as “shrink-wrapped package”, but embedded in lar-

ger context of systems, for example as part of some infrastructure where hardware and

software components have to cooperate seamlessly (Biffl & Schatten, 2009).

The capabilities for effective and efficient integration of engineering systems

(Issarny et al., 2007) and the semantic integration of engineering knowledge (Aldred et

al., 2006) are key enablers for engineering process automation and advanced quality

management (Weinberg, 1993). The next core question is how to observe and analyze

engineering process in those heterogeneous software and systems development envi-

ronments.

Current engineering process observation and analysis is limited to software-only de-

velopment environments (Johnson, 2001) or focus on developers’ action rather on the

artifacts of the projects (Torii et al., 1999), making the results of observation and analy-

sis are limited only to certain engineering domains.

This work proposes the Project Observation and Analysis Framework (POAF) for

supporting engineering process observation and analysis in heterogeneous software and

systems development environments. Since it is hard for the project manager to manage

and monitor different engineering processes run by heterogeneous stakeholders in the

project, the project manager needs a way to collect, integrate and analyze those hetero-

geneous engineering process and validate the results of analysis with the expected proc-

ess model from the project manager.

The POAF consists of data collection, data analysis, and data presentation steps, and

involves different methods, data sources, and automated/semi-automated tools that can

help project managers and engineers to do their jobs. The semantic web, statistical

analysis, and process mining technologies are used in designing and developing this

framework. Key contributions of this work are industrial application and proof-of-

concept of the proposed engineering process analysis and observation approach.

The research results were evaluated in two application domains, namely open-source

software projects and automation systems engineering domains, regarding feasibility,

efficiency, and effectiveness. The evaluation is based on the prototypes for a set of spe-

126

cific use cases of the two industrial application domains, as well as on empirical studies

of beneficiary roles as proof-of-concepts. Major results of this work are the feasibility

of the POAF, i.e., the process, method and tool support is usable and useful across engi-

neering domains, as well as better accuracy, effectiveness and efficiency.

8.1 Highlights
In this section, the main results of the work done by the practitioners and the re-

searchers in two application domains are summarized.

8.1.1 OSS Projects Monitoring
The highlights on OSS projects monitoring focus on the framework for OSS Data

Analysis as an instantiation of the Project Observation and Analysis Framework in OSS

application domain, integrated data model to support data analysis on heterogeneous

data sources, bug history analysis method to analyze bug report data, and workflow

validation analysis.

Framework for OSS Data Analysis

The framework for OSS Data Analysis is originated from the needs of OSS projects

stakeholders for reliable and easy-to-determine project health indicators to predict

whether the project is likely to sustain for a sufficient period of time in order to justify

their investments into the project.

Section 5.2 of this thesis presented the Framework for OSS Data Analysis

(FOSSDA) as an instantiation of the Project Observation and Analysis Framework

(POAF) in OSS domain. An empirical study has been conducted with four Apache pro-

jects to investigate whether the FOSSDA can support efficient data collection and

analysis from heterogeneous data sources.

By using this framework, the data collection efforts required for the traditional man-

ual approach can be reduced up to 30%. With the support of Project Data Fetcher tool in

FOSSDA, project and quality manager of OSS projects can collect, integrate and vali-

date the data easily and then use the tool Project Monitoring Cockpit to analyze and

assess health indicators of OSS projects within hours.

Integrated Data Model

The integrated data model is originated from the needs of OSS projects stakeholders

to have a common view on heterogeneous data models of OSS data sources. This inte-

grated data model is useful to support observation and analysis of OSS engineering

processes over several data sources.

127

In section 5.3 of this thesis, the integrated data model for our research work is pre-

sented. This model comes from our observation and analysis on Apache projects and

worked well to support process and project metrics for producing the health indicators

and can be easily adapted to the project management standards in other OSS families,

like SourceForge or RedHat. The flexibility in the data sources level makes the addition

and modification of the data sources easy to handle, while the integrated data model in

the process and project level remains stable make the observation of OSS project health

indicators more robust against changes on the data source level.

Bug History Analysis Method

In section 5.5 of this thesis, the bug history analysis method is presented as an effort

to improve the quality of OSS processes and products. Bugs are an important source for

project observation. However, the use of advanced approaches, such as data mining

approaches, to analyze bug report data, has not yet been intensively researched and

therefore requires further investigations regarding its usefulness for OSS projects obser-

vation and quality improvement.

In this section, the contribution of an observation framework in improving the proc-

ess quality in OSS projects has been explained, e.g., by observing the end states of bugs

are not reopened frequently. The bug history data from RHEL projects have been used

as a use case for our observation framework application and the Heuristics Mining

(Weijters & Ribeiro, 2010; Weijters, van der Aalst, & de Medeiros, 2006) algorithm

from the Process Mining (ProM) tool (de Medeiros & Weijters, 2009) have been used as

our analysis tool. The analysis results on conformance checking of process models from

RHEL bug history data can be used to improve the process quality.

Workflow Validation Analysis Method

In section 5.6, the workflow validation analysis method is presented to support a sys-

tematic analysis and improvement of software development projects. A service-oriented

platform based on the EngSB has been introduced to integrate heterogeneous engineer-

ing tools and an approach to monitor and analyze tool-based engineering process has

been proposed.

The approach has been initially evaluated with the best-practice “continuous integra-

tion and test” process. The analysis of the tool-based engineering process was demon-

strated by comparing expected process model and actual process model that was ob-

128

tained from applying process mining method on event logs provided by the EngSB plat-

form.

Major result was that the approach allowed comparing expected (designed) and ac-

tual (real-life) engineering processes regarding their structure, performance, and risk of

bottlenecks. We analyzed the performance of the processes, found surprising variations

in the time needed to complete planned process steps and detected unexpected process

paths. These findings can help the quality manager to plan focused and more detailed

analyses and improve process control. Therefore, EngSB-based process analysis and

validation can help project and quality managers to determine the status of running SE

projects and measure key performance indicators.

8.1.2 Process Analysis in ASE Environments
The highlights on process analysis in ASE environments focus on signal change

management, project progress and risk monitoring, and process model validation.

Signal Change Management

Collaboration and interaction between different engineering fields are critical issues

in automation systems engineering (ASE) because individual disciplines apply different

tools and data models. This heterogeneity hinders efficient collaboration and interaction

between various stakeholders, such as mechanical, electrical, and software engineers.

Based on the EngSB, the Virtual Common Data Model (VCDM) enables efficient data

exchange based on common concepts, e.g., signals or engineering objects, as foundation

for change management and process observation.

Process evaluation is required for process verification and validation, i.e., whether

the designed (and implemented) workflow behaves like expected. Collecting and ana-

lyzing event data with data mining and analysis tools (e.g., ProM) enables the investiga-

tion of processes and event traces for process and workflow verification and validation

purposes. Applying process measurement within the signal change management proc-

ess, the results showed that (a) the designed change management process is appropriate

in context of automation systems engineering projects and (b) the presented event defi-

nition, collection, and evaluation is a valuable approach for process evaluation.

In addition, event data (captured during process execution) can enable project moni-

toring and control for project management purposes. Implicit data, such as the number

of changes per phase (and/or per time interval), can be made explicitly for decision

makers to get an overview on the overall project and to implement counter-measures in

case of project plan deviations.

129

Project Progress and Risk Monitoring

Engineers from different engineering fields, as occurring typically in large-scale

Automation Systems Engineering (ASE) projects, rely on their own tools and data mod-

els to perform their specific tasks of their specific engineering fields. Furthermore, these

engineers typically create and use their own specific engineering workflows for com-

municating, disseminating, and managing objects across the borders of different engi-

neering fields. Thus, there is a need for flexible and comprehensive engineering process

support across disciplines to allow risk-aware collaboration and interaction between

disciplines, tools, and data models. With this focus on raising the risk awareness of ob-

ject change management workflows, the key questions for project management and en-

gineers are (a) how changes can be handled more efficient and (b) how relevant change

requests can be passed to involved engineers.

This thesis presented the Engineering Service Bus (EngSB) framework to provide (a)

an efficient change management process and (b) integrated views on heterogeneous

engineering environments to better analyze and highlight upcoming risks. Based on

real-world engineering project data from a hydro power plant systems integrator, the

proposed approach is evaluated and discussed.

First results showed that – based on the change management workflow – the consid-

eration of risk factors can enhance the overall engineering project quality and enables

risk mitigation in ASE projects. Based on change management data, we identified four

main risk factors context of the initial evaluation: (a) Overall number of signal data in

the engineering base; (b) the impact of changes from different stakeholder groups, i.e.,

internal and external stakeholders; (c) Impact of Changes with respect to signal status

within a defined engineering process; and (d) impact of different operations on engi-

neering objects (i.e., add, update, delete, and status updates). The analysis results

showed that these initially defined metrics are reasonable for assessing the current ASE

project from engineers and management perspective.

Nevertheless, the presentation of data and analysis results is essential for individual

stakeholders by providing individual views on the project, e.g., focus on a comprehen-

sive view on the project from project management perspective or focus on individual

disciplines from the perspective of individual engineers. In (Moser, Mordinyi, et al.,

2011) we observed the engineering cockpit, a promising solution to present captured

data from the change management process to related engineers and the project manag-

ers.

130

Process Model Validation

In this thesis, we have introduced the business goal evaluation framework to improve

SbPV (Simulation-based Process Validation) approach in the production automation

systems. The results showed that the business goal evaluation framework can help the

project/quality managers to evaluate the business goal achievement and validate the

business processes and the production processes in the production automation systems.

SbPV is laid as a part of the SAW simulator in the evaluation framework and support

the project/quality managers to validate the simulation results that will be useful in for

running manufacturing processes in the real world.

There are two findings which are interesting for the quality/project managers. First,

the number of finished products is decreasing following the complexity of the product

types and the failure classes. Second, the failure classes introduced in the test case of

running experiment did not impact the form of products. So the project/quality manag-

ers can guarantee that the products produced are following the product design in the

product trees.

8.2 Future Work
This section discusses the future work of engineering process observation and analy-

sis in two directions, whether in single domain like OSS projects monitoring or multid-

isciplinary engineering fields, like process analysis in ASE environments.

8.2.1 OSS Projects Monitoring
The future work in OSS projects monitoring direction will include the extension of

FOSSDA with new health indicators (e.g., communication metrics and interaction be-

tween the developers) and additional data sources to investigate robust OSS health

status indicator in several environments, e.g., SourceForge and RedHat project man-

agement standards.

Bug report data is proven to be a good source for OSS data analysis and can be used

to explain the historical behavior of the developers on resolving the bug reports during

OSS project development period. Hence, the analysis on the bug report data should be

intensified to show the relationships between the bug report data and other OSS artifacts

to support the prediction and estimation of OSS project quality, for example by using

process mining and other data mining approach.

For generalization of our approach, we propose to apply the framework to other OSS

projects and also for closed source software projects. New tools or improvement from

131

previous tools can be introduced in collecting and integrating data sources. The seman-

tic web technology is proven to be successful in collecting and integrating the data

structures more efficiently and can be used to integrate a new data structure into previ-

ous data structure which is already available, e.g., in the form of ontology. The setting

of tools parameters, like name and location of the data source and collecting period,

make the data collection and integration is also faster than by using manual approach.

The analysis of challenging engineering processes and environments in a range of

engineering domains will be covered. Our proposed foundations can be used and im-

proved for analyzing processes in other engineering domains. Advanced process analy-

sis can build on the combination of event data and knowledge models on the engineer-

ing process, learning both from SE process models and domain-specific practices.

8.2.2 Process Analysis in ASE Environments
The future work for process analysis in ASE environments can be done into three re-

search directions, namely signal change management, project progress and risk monitor-

ing, and process model validation.

In signal change management, future work will include (a) the integration of addi-

tional workflows aligned with a more detailed engineering process to better understand

and automate engineering processes in general, (b) refining the change management

process with respect to identify the number of changes per signal, i.e., detecting multi-

ple changes per signal, and (c) an ongoing observation of product metrics with respect

to better understand automation systems projects based on real-world project observa-

tions. In addition, a more sophisticated workflow component will allow a more flexible

engineering process definition and implementation, and thus would make a large step

towards agile signal change management in the automation systems engineering do-

main. Furthermore, we will focus on the introduction and adaptation of agile processes

from software engineering to the automation systems engineering domain.

In project progress and risk monitoring, future work will include three different di-

rections: (a) more detailed investigation of risk factors and the development / extension

of the identified metrics to enable a better understanding of ASE projects; (b) additional

evaluations and case studies to verify and validate the presented approach with respect

to applicability and scalability; and (c) more detailed investigation on the current need

of engineers, managers, and related stakeholders to learn more about ASE projects and

the need for measurement, data collection, analysis and presentation with respect to de-

velop an engineering cockpit for better supporting ASE projects.

132

In process model validation, the future work will include analysis on the relation-

ships of structure and source of failures to the output of products by using organiza-

tional mining approaches or social network analysis method.

133

References

A. J. Rembert, & Ellis, C. (2009). An initial approach to mining multiple perspectives
of a business process. 5th Richard Tapia Celebration of Diversity in Computing
Conference: Intellect, Initiatives, Insight, and Innovations (pp. 35–40). Portland,
Oregon.

Aldred, L., van der Aalst, W., Dumas, M., & Hofstede, A. t. (2006). Understanding the
Challenges in Getting Together: The Semantics of Decoupling in Middleware.
Eindhoven, The Netherlands.

Ammon, R. v., Silberbauer, C., & Wolff, C. (2007). Domain Specific Reference Models
for Event Patterns - for Faster Developing of Business Activity Monitoring Appli-
cations. VIPSI 2007. Lake Bled, Slovenia.

Baker, P., Zhen, R. D., Gabrowksi, J., & Oystein, H. (2008). Model-Driven Testing:
Using the UML Testing Profile. Springer.

Basili, V., Caldiera, G., & Rombach, D. H. (1994). The goal question metric approach.
In J. Marciniak (Ed.), Encyclopedia of Software Engineering.

Becker, P., Lew, P., & Olsina, L. (2011). Strategy to improve quality for software appli-
cations: a process view. International Conference on on Software and Systems
Process (ICSSP 2011) (pp. 129–138). Waikiki, Honolulu, HI, USA: ACM.
doi:10.1145/1987875.1987897

Biffl, S., & Schatten, A. (2009). A Platform for Service-Oriented Integration of Soft-
ware Engineering Environments. 2009 conference on New Trends in Software
Methodologies, Tools and Techniques (SoMeT’09). IOS Press.

Biffl, S., Schatten, A., & Zoitl, A. (2009). Integration of Heterogeneous Engineering
Environments for the Automation Systems Lifecycle. 5th IEEE International Con-
ference on Industrial Informatics (IndIn) (pp. 576–581).

Biffl, S., Sunindyo, W. D., & Moser, T. (2009). Bridging Semantic Gaps Between
Stakeholders in the Production Automation Domain with Ontology Areas. 21st In-
ternational Conference on Software Engineering & Knowledge Engineering
(SEKE 2009) (pp. 233–239). USA.

Biffl, S., Sunindyo, W. D., & Moser, T. (2010a). Semantic Integration of Heterogene-
ous Data Sources for Monitoring Frequent-Release Software Projects. In L. Ba-
rolli, F. Xhafa, S. Vitabile, & H.-H. Hsu (Eds.), 2010 International Conference on
Complex, Intelligent and Software Intensive Systems (pp. 360–367). Krakow:
IEEE. doi:10.1109/CISIS.2010.58

Biffl, S., Sunindyo, W. D., & Moser, T. (2010b). A Project Monitoring Cockpit Based
On Integrating Data Sources in Open Source Software Development. Proc.
Twenty-Second International Conference on Software Engineering and Knowledge
Engineering (SEKE 2010) (pp. 620–627).

134

Boehm, B. W. (1991). Software Risk Management: Principles and Practices. IEEE
Software, 8(1), 32–41.

Booch, G., Rumbaugh, J., & Jacobson, I. (2005). Unified Modeling Language User
Guide (2nd Editio.). Addison-Wesley Professional.

Brebner, P. (2009). Service-Oriented Performance Modeling the MULE Enterprise Ser-
vice Bus (ESB) Loan Broker Application. 35th Euromicro Conference on Software
Engineering and Advanced Applications (Euromicro SEAA 2009) (pp. 404–411).
Patras, Greece.

Brereton, P., Kitchenham, B., Budgen, D., Turner, M., & Khalil, M. (2007). Lessons
from applying the systematic literature review process within the software engi-
neering domain. The Journal of Systems & Software, 80(4), 571–583.

Chappell, D. A. (2004). Enterprise Service Bus. O’Reilly Media.

Chen, P. P.-S. (1976). The entity-relationship model - toward a unified view of data.
ACM Trans. Database Syst., 1(1), 9–36.

Doan, A. H., Noy, N. F., & Halevy, A. Y. (2004). Introduction to the special issue on
semantic integration. SIGMOD Rec., 33, 11–13.

Ferreira, D. M. R., & Ferreira, J. J. P. (2004). Developing a reusable workflow engine.
J. Syst. Archit., 50(6), 309–324.

Floyd, C. (1984). A systematic look at prototyping. (R. Budde, K. Kuhlenkamp, L.
Mathiassen, & H. Züllighoven, Eds.)Approaches to prototyping, 1, 1–18.

Freimut, B., Punter, T., Biffl, S., & Ciolkowski, M. (2001). State-of-the-Art in Empiri-
cal Studies. Virtuelles Software Engineering Kompetenzzentrum (Visek).

Gegick, M., Rotella, P., & Tao, X. (2010). Identifying security bug reports via text min-
ing: An industrial case study. 7th IEEE Working Conference on Mining Software
Repositories (MSR 2010) (pp. 11–20).

Gousios, G., & Spinellis, D. (2009a). Alitheia Core: An extensible software quality
monitoring platform. IEEE 31st International Conference on Software Engineering
(ICSE 2009) (pp. 579–582). Vancouver, Canada: IEEE Computer Society.

Gousios, G., & Spinellis, D. (2009b). A platform for software engineering research. 6th
IEEE International Working Conference on Mining Software Repositories (MSR
’09) (pp. 31–40). Vancouver, Canada: IEEE Computer Society.

Halevy, A. (2005). Why Your Data Won’t Mix. Queue, 3(8), 50–58.
doi:http://doi.acm.org/10.1145/1103822.1103836

Hohpe, G. (2006). 06291 Workshop Report: Conversation Patterns. In F. et al. Leymann
(Ed.), The Role of Business Processes in Service Oriented Architectures.
Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI).
Schloss Dagstuhl, Germany.

135

Hohpe, G., & Woolf, B. (2003). Enterprise integration patterns: Designing, building,
and deploying messaging solutions. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc.

Hu, D., & Zhao, J. L. (2008). A Comparison of Evaluation Networks and Collaboration
Networks in Open Source Software Communities. 14th Americas Conference on
Information Systems (AMCIS 2008) (pp. 1–8). Toronto, ON, Canada: Association
for Information Systems (AIS).

Hull, R., & King, R. (1987). Semantic database modeling: survey, applications, and
research issues. ACM Comput. Surv., 19(3), 201–260.

Humphrey, W. (1996). Using A Defined and Measured Personal Software Process.
IEEE Software, 13, 77–88.

Humphrey, W. (2000a). The personal software process: status and trends. Software,
IEEE, 17(6), 71–75.

Humphrey, W. (2000b). The Team Software Process (TSP). Pittsburgh, Pennsylvania
15213.

Humphrey, W., Chick, T. A., Nichols, W. R., & Pomeroy-Huff, M. (2010). Team Soft-
ware Process (TSP) Body of Knowledge (BOK) (pp. 1–150).

IEEE. (2007). IEEE Recommended Practice for CASE Tool Interconnection - Charac-
terization of Interconnections. IEEE Std 1175.2-2006, 1–45 ST – IEEE Recom-
mended Practice for CASE Tool.

IEEE. (2011). IEEE Guide--Adoption of the Project Management Institute (PMI(R))
Standard A Guide to the Project Management Body of Knowledge (PMBOK(R)
Guide)--Fourth Edition. IEEE Std 1490-2011.
doi:10.1109/IEEESTD.2011.6086685

Issarny, V., Caporuscio, M., & Georgantas, N. (2007). A Perspective on the Future of
Middleware-based Software Engineering. 2007 Future of Software Engineering,
International Conference on Software Engineering (pp. 244–258). Washington,
DC.

Jakoubi, S., & Tjoa, S. (2009). A reference model for risk-aware business process man-
agement. Fourth International Conference on Risks and Security of Internet and
Systems (CRiSIS 2009) (pp. 82–89).

Johnson, P. (2001). Project Hackystat: Accelerating adoption of empirically guided
software development through non-disruptive, developer-centric, in-process data
collection and analysis. Honolulu, HI: Department of Information and Computer
Sciences, University of Hawaii.

Juristo, N., & Moreno, A. (2001). Basics of Software Engineering Experimentation.
Boston, MA: Kluwer Academic Publishers.

136

Kitchenham, B. (2007). Guidelines for performing Systematic Literature Reviews in
Software Engineering.

Kitchenham, B., Pfleeger, S. L., Pickard, L. M., Jones, P. W., Hoaglin, D. C., Emam, K.
E., & Rosenberg, J. (2002). Preliminary guidelines for empirical research in soft-
ware engineering. IEEE Transactions on Software Engineering, 28(8), 721–734.

Kontio, J. (1999). Risk Management in Software Development: a technology overview
and the RiskIt method. 21st ICSE conference (pp. 679–680).

Lawrence, P. (1997). Workflow Handbook 1997 (p. 508). Chichester, UK, UK: John
Wiley & Sons, Ltd.

Luckham, D. (2002). The Power of Events (p. 376). Boston, MA, USA: Addison-
Wesley.

Lüder, A., Peschke, J., & Reinelt, D. (2006). Possibilities and Limitations of the Appli-
cation of Agent Systems in Control. International Conference On Concurrent En-
terprising (ICE).

Merdan, M., Moser, T., Wahyudin, D., & Biffl, S. (2008). Performance evaluation of
workflow scheduling strategies considering transportation times and conveyor fail-
ures. IEEE International Conference on Industrial Engineering and Engineering
Management (IEEM 2008) (pp. 389–394).

Mockus, A., Fielding, R. T., & Herbsleb, J. (2000). A case study of open source soft-
ware development: the Apache server. 22nd International Conference on Software
Engineering. Limerick, Ireland: ACM.
doi:http://doi.acm.org/10.1145/337180.337209

Mockus, A., Fielding, R. T., & Herbsleb, J. (2002). Two case studies of open source
software development: Apache and Mozilla. ACM Trans. Softw. Eng. Methodol.,
11(3), 309–346. doi:http://doi.acm.org/10.1145/567793.567795

Mordinyi, R., Moser, T., Kühn, E., Biffl, S., & Mikula, A. (2009). Foundations for a
Model-Driven Integration of Business Services in a Safety-Critical Application
Domain. 35th Euromicro Conference on Software Engineering and Advanced Ap-
plications (Euromicro SEAA 2009) (pp. 267–274). Patras, Greece.

Mordinyi, R., Pacha, A., & Biffl, S. (2011). Quality Assurance for Data from Low-Tech
Participants in Distributed Automation Engineering Environments. In Z. Mammeri
(Ed.), Proceeding of the 16th IEEE International Conference on Emerging Tech-
nologies and Factory Automation (pp. 1–4). doi:10.1109/ETFA.2011.6059149

Moser, T. (2009). Semantic Integration of Engineering Environments Using an Engi-
neering Knowledge Base. Faculty of Informatics. Vienna University of Technol-
ogy, Vienna, Austria.

Moser, T., & Biffl, S. (2010). Semantic Tool Interoperability for Engineering Manufac-
turing Systems. 15th IEEE International Conf. on Emerging Technologies and
Factory Automation (ETFA). Bilbao, Spain.

137

Moser, T., Biffl, S., Sunindyo, W. D., & Winkler, D. (2010). Integrating Production
Automation Expert Knowledge Across Engineering Stakeholder Domains. In L.
Barolli, F. Xhafa, S. Vitabile, & H.-H. Hsu (Eds.), Proceedings of the 4th Interna-
tional Conference on Complex, Intelligent and Software Intensive Systems (CISIS
2010). IEEE Computer Society.

Moser, T., Biffl, S., Sunindyo, W. D., & Winkler, D. (2011). Integrating Production
Automation Expert Knowledge Across Engineering Domains. International Jour-
nal of Distributed Systems and Technologies (IJDST), 2(3), 88–103.

Moser, T., Mordinyi, R., Mikula, A., & Biffl, S. (2009). Making Expert Knowledge
Explicit to Facilitate Tool Support for Integrating Complex Information Systems in
the ATM Domain. International Conference on Complex, Intelligent and Software
Intensive Systems (CISIS’09) (pp. 90–97). Fukuoka, Japan: IEEE Computer Soci-
ety.

Moser, T., Mordinyi, R., Winkler, D., & Biffl, S. (2011). Engineering project manage-
ment using the Engineering Cockpit: A collaboration platform for project manag-
ers and engineers. IEEE 9th International Conference on. Industrial Informatics
(INDIN’2011) (pp. 579–584). doi:10.1109/INDIN.2011.6034943

Moser, T., Waltersdorfer, F., Winkler, D., & Biffl, S. (2011). Version Management and
Conflict Detection across Tools in a (Software+) Engineering Environment. Pro-
ceedings of the Software Quality Days 2011 (pp. 1–4).

Noy, N. F., Doan, A. H., & Halevy, A. (2005). Semantic Integration. AI Magazine, 26,
7–10.

Noy, N. F., & McGuinness, D. L. (2001). Ontology Development 101: A Guide to Cre-
ating Your First Ontology. Stanford Knowledge Systems Laboratory, Stanford
Medical Informatics.

Rademakers, T., & Dirksen, J. (2008). Open-source ESBs in action. Manning Publica-
tions.

Rangan, R. M., Rohde, S. M., Peak, R., Chadha, B., & Bliznakov, P. (2005). Streamlin-
ing Product Lifecycle Processes: A Survey of Product Lifecycle Management Im-
plementations, Directions, and Challenges. Journal of Computing and Information
Science in Engineering, 5, 227–237 ST – Streamlining Product Lifecycle Proce.

Rozinat, A, & van der Aalst, W. (2008). Conformance checking of processes based on
monitoring real behavior. Information Systems, 33(1), 64–95.

Rozinat, Anne, & van der Aalst, W. (2006). Conformance Testing: Measuring the Fit
and Appropriateness of Event Logs and Process Models. In C. Bussler & A. Haller
(Eds.), Business Process Management Workshops (Vol. 3812, pp. 163–176).
Springer Berlin / Heidelberg. doi:10.1007/11678564_15

S. Heinonen. (2006). Requirements Management Tool Support for Software Engineer-
ing in Collaboration. University of Oulu.

138

S. Heinonen, Kääriäinen, J., & Takalo, J. (2007). Challenges in Collaboration: Tool
Chain Enables Transparency Beyond Partner Borders. Enterprise Interoperability
II, 529–540.

Sadiq, S., Orlowska, M., Sadiq, W., & Foulger, C. (2004). Data flow and validation in
workflow modelling. 15th Australasian database conference (ADC 2004) (pp.
207–214).

Schafer, W., & Wehrheim, H. (2007). The Challenges of Building Advanced Mecha-
tronic Systems. Future of Software Engineering (FOSE ’07) (pp. 72–84). Wash-
ington, DC, USA: IEEE Computer Society. doi:DOI=10.1109/FOSE.2007.28
http://dx.doi.org/10.1109/FOSE.2007.28

Sharma, S., Sugumaran, V., & Rajagopalan, B. (2002). A framework for creating hy-
brid-open source software communities. Information Systems Journal, 12(1), 7–25.

Silberschatz, A., Korth, H. F., & Sudarshan, S. (2010). Database System Concepts (p.
1376). McGraw-Hill.

Simpson, J., & Weiner, E. (1989). The Oxford English Dictionary (p. 22000). Oxford
University Press.

Sunindyo, W. D. (2011). Observing and Validating Heterogeneous Workflows in Mul-
tidisciplinary Engineering Environments. In D. Dhungana (Ed.), Proceedings of In-
ternational Doctoral Symposium on Software Engineering and Advanced Applica-
tions (IDoSEAA 2011) (pp. 1–7).

Sunindyo, W. D., Moser, T., Dhungana, D., Winkler, D., & Biffl, S. (2012). Improving
Open Source Software Process Quality based on Defect Data Mining. In S. Biffl,
D. Winkler, & J. Bergsmann (Eds.), Software Quality Days 2012 - Research Track
(pp. 84–102). Vienna, Austria: Springer-Verlag. doi:10.1007/978-3-642-27213-4

Sunindyo, W. D., Moser, T., & Winkler, D. (2012). Process Model Validation for Het-
erogeneous Engineering Environments. Software Quality Days 2012 - Practical
Track. Vienna, Austria.

Sunindyo, W. D., Moser, T., Winkler, D., & Biffl, S. (2010a). Foundations for Event-
Based Process Analysis in Heterogeneous Software Engineering Environments.
Proc. 36th EUROMICRO Conference on Software Engineering and Advanced Ap-
plications (SEAA 2010) (pp. 313–322).

Sunindyo, W. D., Moser, T., Winkler, D., & Biffl, S. (2010b). A Process Model Dis-
covery Approach for Enabling Model Interoperability in Signal Engineering. In J.
Bezivin, R. M. Soley, & A. Vallecillo (Eds.), Proceedings of the First Interna-
tional Workshop on Model-Driven Interoperability (MDI 2010) (pp. 15–21). ACM
Press.

Sunindyo, W. D., Moser, T., Winkler, D., & Biffl, S. (2012). Analyzing OSS Project
Health with Heterogeneous Data Sources. IJOSSP SEPA, 1–23.

139

Sunindyo, W. D., Moser, T., Winkler, D., & Mordinyi, R. (2013). Project Progress and
Risk Monitoring in Automation Systems Engineering. Software Quality Days 2013
(p. 24). Vienna, Austria.

Sunindyo, W. D., Moser, T., Winkler, D., Mordinyi, R., & Biffl, S. (2011). Workflow
Validation Framework in Distributed Engineering Environments. Proceedings of
3rd International Workshop on Information Systems in Distributed Environment
(ISDE’11) (pp. 1–10).

T. Muller, & Knoll, A. (2009). Virtualization Techniques for Cross Platform Automated
Software Builds, Tests and Deployment. Fourth International Conference on Soft-
ware Engineering Advances (ICSEA ’09) (pp. 73–77).

Terzic, I., Merdan, M., Zoitl, A., & Hegny, I. (2008). Modular assembly machine - on-
tology based concept. IEEE International Conference on Emerging Technologies
and Factory Automation (ETFA 2008) (pp. 241–244).

Thalheim, B. (2000). Entity-Relationship Modeling: Foundations of Database Technol-
ogy (p. 627). Berlin, Heidelberg: Springer.

Torii, K., Kenichi, M., Kumiyo, N., Yoshihiro, T., Shingo, T., Kazuyuki, S., & Ken-
ichi, M. (1999). Ginger2: An Environment for Computer-Aided Empirical Soft-
ware Engineering. IEEE Transactions on Software Engineering, 25, 474–492.

Van Solingen, R., & Berghout, E. (1999). The Goal/Question/Metric Method. McGraw-
Hill Education.

Wahyudin, D. (2008). Quality Prediction and Evaluation Models for Products and
Processes in Distributed Software Development. Vienna University of Technology.

Wahyudin, D., Mustofa, K., Schatten, A., Biffl, S., & Tjoa, A. M. (2007). Monitoring
the “health” status of open source web-engineering projects. International Journal
of Web Information Systems, 3(1/2), 116–139.

Wahyudin, D., Schatten, A., Mustofa, K., Biffl, S., & Tjoa, A. M. (2006). Introducing
“Health” Perspective in Open Source Web-Engineering Software Projects, Based
on Project Data Analysis. International Conference on Information Integration,
Web-Applications and Services (IIWAS 2006). Yogyakarta Indonesia: Austrian
Computer Society.

Weijters, A. J. M. M., & Ribeiro, J. T. S. (Joel). (2010). HeuristicsMiner 6.0: Users
Guide. Eindhoven, The Netherlands: Department of Technology Management,
Eindhoven University of Technology.

Weijters, A. J. M. M., van der Aalst, W., & de Medeiros, A. K. A. (2006). Process Min-
ing with the HeuristicsMiner Algorithm. BETA Working Paper Series. Eindhoven:
Eindhoven University of Technology.

Weinberg, G. M. (1993). Quality Software Management (p. 346). New York, USA:
Dorset House Publishing.

140

Winkler, D., & Biffl, S. (2012). Improving Quality Assurance in Automation Systems
Development Projects. In P. M. Savsar (Ed.), Quality Assurance and Management
(pp. 20–40). Intec Publishing. doi:10.5772/33487

Winkler, D., Moser, T., Mordinyi, R., Sunindyo, W. D., & Biffl, S. (2011). Engineering
Object Change Management Process Observation in Distributed Automation Sys-
tems Projects. Proceedings of 18th European System & Software Process Im-
provement and Innovation (EuroSPI 2011) (pp. 1–12).

Wohlin, C., Runeson, P., Höst, M., Ohlsson, N., Regnell, B., & Wesslen, A. (2000).
Experimentation in Software Engineering - An Introduction. The Kluwer Interna-
tional Series in Software Engineering. Kluwer Academic Publishers.

Yin, J., Chen, H., Deng, S., Wu, Z., & Pu, C. (2009). A Dependable ESB Framework
for Service Integration Internet Computing. IEEE, 13, 26–34.

de Medeiros, A. K. A., & Weijters, A. J. M. M. (2009). ProM Framework Tutorial (p.
47). Eindhoven, The Netherlands.

van Dongen, B. F., & van der Aalst, W. (2005). A Meta Model for Process Mining
Data. CAiSE’05 WORKSHOPS (pp. 309–320).

van der Aalst, W. (2005). Business Alignment: Using Process Mining as a Tool for
Delta Analysis and Conformance Testing. RE Journal, 10(3), 198–211.

van der Aalst, W. (2011). Process Mining - Discovery, Conformance and Enhancement
of Business Processes (p. 352). Heidelberg: Springer.

van der Aalst, W., Weijters, A. J. M. M., & Maruster., L. (2004). Workflow Mining:
Discovering Process Models from Event Logs. IEEE Transactions on Knowledge
and Data Engineering, 16(9), 1128–1142.

Wikan Danar Sunindyo Curriculum Vitae

Wikan Danar Sunindyo, M.Sc. conducted his PhD at the Insti-
tute of Software Technology and Interactive Systems (ISIS)
with an Indonesian Directorate General of Higher Education
scholarship since November 2008. He received his master de-
gree in Computational Logic at the Dresden University of
Technology, Germany in 2007. He received his bachelor degree
in Informatics at the Bandung Institute of Technology (ITB),
Indonesia in 2000. Later, he works as a PhD researcher at TU
Vienna, Austria in the research area “Complex Systems” since
2008. His main research areas include Open Source Software,
automation systems, process observation and analysis, and se-
mantic web technologies to better integrate heterogeneous engi-
neering environments. He is also an associated researcher at the Christian Doppler
Laboratory for “Software Engineering Integration for Flexible Automation Systems”
(CDL-Flex).

Personal Data

Name : Wikan Danar Sunindyo
Date of Birth : January 10th, 1977
Sex : Male
Place of Birth : Magelang, Indonesia
Nationality : Indonesian
Current position : Ph.D student at Vienna University of Technology
 Institute of Software Technology and Interactive Systems

Postal Address
 Street, Number : Dürergasse 7/12
 Postal Code, City : A-1060 Vienna
 Country : Austria
 Email : wikan.danar@gmail.com
 Phone : +436505870648
 Website : http://www.isis.tuwien.ac.at/wikan

Education

University (postgraduate)
Master Program in Computational Logic
Faculty of Informatics
Dresden University of Technology
Dresden, Germany
2004 - 2007

University (undergraduate)
Department of Informatics
Bandung Institute of Technology (ITB)
Bandung, Indonesia
1995 – 2000

Research Experience

Christian Doppler Laboratory
Software Engineering Integration for Flexible Automation Systems
Vienna University of Technology (TU Wien)
Vienna, Austria
as Associated Researcher
2010 - now

Program Insentif
(Incentive Program)
Open Source Software Competence Center
Bandung Institute of Technology (ITB)
Bandung, Indonesia
as Researcher
2007 - 2008

Master Thesis Research
Title: Toward Software Transactional Memory and Mobility
Master Program in Computational Logic
Dresden University of Technology
Dresden, Germany
2006 – 2007

Project Research
Title: An Introductory Tutorial for the use of Mobility Workbench
Master Program in Computational Logic
Technische Universität Dresden
2006

Riset Unggulan Strategis Nasional (Rusnas)
(National Research of Excellence and Strategic Product)
on Software Component Development
as Software Developer
2001 – 2004

Riset Unggulan Terpadu (RUT) IX
(Integrated Excellence Research)
on Format Integrator Development
Bandung Institute of Technology (ITB)
Bandung, Indonesia
as Researcher
2001 - 2004

Publications

Book Chapters

1. Wikan Danar Sunindyo, Thomas Moser, Dietmar Winkler, Richard Mordinyi,
Stefan Biffl (2012) Workflow Validation Framework in Collaborative Engineer-
ing Environments. In Distributed Computing Innovations for Business, Engi-
neering and Science (in print).

2. Thomas Moser, Richard Mordinyi, Wikan Danar Sunindyo, Stefan Biffl
(2010) Semantic Service Matchmaking in the ATM Domain Considering Infra-
structure Capability Constraints, 133-157. In Canadian Semantic Web: Tech-
nologies and Applications.

Journal Papers

1. Wikan Danar Sunindyo, Thomas Moser, Dietmar Winkler, Stefan Biffl (2011)
Analyzing OSS Project Health with Heterogeneous Data Sources, 1-23. In Inter-
national Journal of Open Source Software and Pocesses (IJOSSP), October-
December 2011, Vol. 3, No. 4 (in print).

2. Thomas Moser, Stefan Biffl, Wikan Danar Sunindyo, Dietmar Winkler (2010)
Integrating Production Automation Expert Knowledge across Engineering Do-
mains, 1-15. In International Journal of Distributed Systems and Technologies
(IJDST).

Conference Papers

1. Wikan Danar Sunindyo, Thomas Moser, Dietmar Winkler et al. (2013) Project
Progress and Risk Monitoring in Automation Systems Engineering, 1-24. In
Software Quality Days 2013 (to be published).

2. Wikan Danar Sunindyo, Thomas Moser, Dietmar Winkler, Deepak Dhungana
(2012) Improving Open Source Software Process Quality based on Defect Data
Mining, 84-102. In Software Quality Days 2012.

3. Dietmar Winkler, Thomas Moser, Richard Mordinyi, Wikan Danar Sunindyo,
Stefan Biffl (2011) Engineering Object Change Management Process Observa-
tion in Distributed Automation Systems Projects, 1-12. In Proceedings of 18th
European System & Software Process Improvement and Innovation (EuroSPI
2011).

4. Inah Omoronyia, G Sindre, T Stalhane, Stefan Biffl, Thomas Moser, Wikan
Danar Sunindyo (2010) A Domain Ontology Building Process for Guiding Re-
quirements Elicitation, 188-202. In Proc. 16th International Working Conference
on Requirements Engineering (RefsQ 2010).

5. Stefan Biffl, Wikan Danar Sunindyo, Thomas Moser (2010) A Project Moni-
toring Cockpit Based On Integrating Data Sources in Open Source Software De-
velopment, 620-627. In Proc. Twenty-Second International Conference on Soft-
ware Engineering and Knowledge Engineering (SEKE 2010).

6. Wikan Danar Sunindyo, Thomas Moser, Dietmar Winkler, Stefan Biffl (2010)
Foundations for Event-Based Process Analysis in Heterogeneous Software En-
gineering Environments, 313-322. In Proc. 36th EUROMICRO Conference on
Software Engineering and Advanced Applications (SEAA 2010).

7. Thomas Moser, Stefan Biffl, Wikan Danar Sunindyo, Dietmar Winkler (2010)
Integrating Production Automation Expert Knowledge Across Engineering
Stakeholder Domains. In Proceedings of the 4th International Conference on
Complex, Intelligent and Software Intensive Systems (CISIS 2010).

8. Stefan Biffl, Wikan Danar Sunindyo, Thomas Moser (2010) Semantic Integra-
tion of Heterogeneous Data Sources for Monitoring Frequent-Release Software
Projects, 360-367. In 2010 International Conference on Complex, Intelligent and
Software Intensive Systems.

9. Stefan Biffl, Wikan Danar Sunindyo, Thomas Moser (2009) Bridging Seman-
tic Gaps Between Stakeholders in the Production Automation Domain with On-
tology Areas, 233-239. In 21st International Conference on Software Engineer-
ing & Knowledge Engineering (SEKE 2009).

10. Thomas Moser, Richard Mordinyi, Wikan Danar Sunindyo, Stefan Biffl
(2009) Semantic Service Matchmaking in the ATM Domain Considering Infra-
structure Capability Constraint, 222-227. In Proceedings The 21st International
Conference on Software Engineering & Knowledge Engineering (SEKE 2009).

Workshop Papers

1. Wikan Danar Sunindyo, Thomas Moser, Dietmar Winkler (2012) Process
Model Validation for Heterogeneous Engineering Environments. In Software
Quality Days 2012 - Practical Track.

2. Wikan Danar Sunindyo, Martin Melik-Merkumians, Thomas Moser, Stefan
Biffl (2011) Enforcing Safety Requirements for Industrial Automation System at
Runtime - Position Paper, 37-42. In Proceedings of 2nd International Workshop
on Requirements@Run.Time (RE@RunTime 2011).

3. Wikan Danar Sunindyo (2011) Observing and Validating Heterogeneous
Workflows in Multidisciplinary Engineering Environments, 1-7. In Proceedings
of International Doctoral Symposium on Software Engineering and Advanced
Applications (IDoSEAA 2011).

4. Thomas Moser, Wikan Danar Sunindyo, Munir Merdan, Stefan Biffl (2011)
Supporting Runtime Decision Making in the Production Automation Domain
Using Design Time Engineering Knowledge, 9-22. In Proceedings of 1st Inter-
national Workshop on Ontology and Semantic Web for Manufacturing (OSEMA
2011).

5. Wikan Danar Sunindyo, Stefan Biffl (2011) Validating Process Models in Sys-
tems Engineering Environments, 25-32. In Proceedings of the Workshop on In-
dustrial Automation Tool Integration Project Automation.

6. Wikan Danar Sunindyo, Thomas Moser, Dietmar Winkler, Richard Mordinyi,
Stefan Biffl (2011) Workflow Validation Framework in Distributed Engineering

Environments, 1-10. In Proceedings of 3rd International Workshop on Informa-
tion Systems in Distributed Environment (ISDE'11).

7. Wikan Danar Sunindyo, Thomas Moser, Dietmar Winkler, Stefan Biffl (2010)
A Process Model Discovery Approach for Enabling Model Interoperability in
Signal Engineering, 15-21. In Proceedings of the First International Workshop
on Model-Driven Interoperability (MDI 2010).

8. Wikan Danar Sunindyo, Stefan Biffl, Richard Mordinyi, Thomas Moser,
Alexander Schatten, Mohammad Tabatabai Irani, Dindin Wahyudin, Edgar
Weippl, Dietmar Winkler (2010) An Event-Based Empirical Process Analysis
Framework, 1-2. In Proc. 4th International Symposium on Empirical Software
Engineering and Measurement (ESEM 2010) - Poster Sessions.

9. Wikan Danar Sunindyo, Stefan Biffl (2010) Bridging Semantic Heterogenei-
ties in Open Source Software Development Projects with Semantic Web Tech-
nologies, 285-286. In Proceedings of the Junior Scientist Conference 2010.

10. Wikan Danar Sunindyo, Stefan Biffl, Christian Frühwirth, Richard Mordinyi,
Thomas Moser, Alexander Schatten, Sebastian Schrittwieser, Edgar Weippl,
Dietmar Winkler (2010) Defect Detection Using Event-Based Process Analysis
in (Software+) Engineering Projects, 1-2. In Proc. 36th Euromicro Conference
Software Engineering and Advanced Applications (SEAA 2010) - Work in Pro-
gress Session.

11. Wikan Danar Sunindyo (2010) Observability of Software Engineering Proc-
esses in Open Source Software Projects Domain, 1-9. In Proceedings of the 5th
International Doctoral Symposium on Empirical Software Engineering.

12. Christian Frühwirth, Stefan Biffl, Alexander Schatten, Dietmar Winkler, Wikan
Danar Sunindyo (2010) Quantitative Software Security Measurement in an En-
gineering Service Bus Platform, 1-2. In Proc. 4th International Symposium on
Empirical Software Engineering and Measurement (ESEM 2010) - Poster Ses-
sions.

13. Christian Frühwirth, Stefan Biffl, Alexander Schatten, Sebastian Schrittwieser,
Edgar Weippl, Wikan Danar Sunindyo (2010) Research Challenges in the Se-
curity Design and Evaluation of an Engineering Service Bus Platform, 1-2. In
Proc. 36th EUROMICRO Conference on Software Engineering and Advanced
Applications (SEAA) - Work in Progress Session.

Work Experience

Department of Informatics
Bandung Institute of Technology (ITB)
Bandung, Indonesia
as lecturer staff
2001 - 2008

Tim Informatika (Workshop)
Bandung Institute of Technology (ITB)
Bandung, Indonesia
as staff
2000 – 2001

Quantum E-Commerce College
Bandung, Indonesia
as lecturer staff
2000 – 2001

Diploma Program PT Pos Indonesia
under supervision of Department of Informatics
Bandung Institute of Technology (ITB)
Bandung, Indonesia
as lecturer staff
2000

Diploma Program PT Pos Indonesia
under supervision of Department of Informatics
Bandung Institute of Technology (ITB)
Bandung, Indonesia
as teaching assistant
1998 – 1999

Department of Informatics
Bandung Institute of Technology (ITB)
Bandung, Indonesia
as teaching assistant
1997 - 1999

Professional Experience

Lembaga Penelitian dan Pemberdayaan Masyarakat (LPPM)
(Institute of Research and Community Development)
Bandung Institute of Technology (ITB)
Description: development of official website of LPPM ITB, http://www.lppm.itb.ac.id
as Software Developer
2002 - 2004

Department of Culture and Tourism
The Republic of Indonesia
Description: development of official website of Department of Culture and Tourism of
the Republic of Indonesia, http://www.depbudpar.go.id
as Software Developer
2001 – 2002

Department of Marine Exploration and Fishery
General Directorate of Caught Fishery
The Republic of Indonesia
Description: development of fishery information system based on fish resources and
market demand, http://www.pelabuhanperikanan.or.id
as Software Developer
2000 – 2001

PT Sumarno Pabottingi
(private company)
Description: development of e-commerce website, http://www.aspri.net
as Software Developer
2000 – 2001

PT Telkom
(Indonesian National Telecommunication Company)
ProBIS division
Description: development of web-based application, RPL On Line
as Software Developer
1998

PT Schlumberger Geophysics Nusantara
Description: development of official website of PT Schlumberger Geophysics Nusan-
tara, Batam Supply Base
as Software Developer
1998

Technical Expertise

Programming Language / Tools
Basic, Pascal, C, Delphi, Fortran, LISP, Prolog

Database
Oracle, MS Access, MS SQL Server, PostgreSQL, MySQL

Operating System
Linux, Windows

Miscellaneous
Power Designer

Language

Mother Tongue: Bahasa Indonesia, Javanese
Foreign: English (good), German (basic)

Vienna, November 26th, 2012

Wikan Danar Sunindyo

	1 Introduction
	2 Related Work
	2.1 OSS Projects Monitoring
	2.1.1 Overview
	2.1.2 OSS Data Analysis Frameworks
	2.1.3 OSS Health Indicators

	2.2 Process Analysis in ASE Environments
	2.2.1 Overview
	2.2.2 Engineering Service Bus
	2.2.3 Engineering Cockpit

	2.3 Workflow Validation
	2.3.1 System Integration Technologies
	2.3.2 Process Modeling, Analysis and Validation

	3 Research Approach
	3.1 Research Issues
	3.1.1 Heterogeneous Data Collection and Integration
	3.1.2 Heterogeneous Data Analysis from Different Stakeholders
	3.1.3 Analysis Result Presentation for Different Stakeholders

	3.2 Research Methods and Evaluation Concept
	3.2.1 Research Methods
	3.2.2 Evaluation Concept

	3.3 Application Scenarios
	3.3.1 Open Source Software Projects
	3.3.2 Automation Systems Engineering

	4 Project Observation and Analysis Framework
	4.1 Overview
	4.2 Architecture of the Project Observation and Analysis Framework
	4.2.1 Preparation
	4.2.2 Collection and Integration (1)
	4.2.3 Analysis Methods (2)
	4.2.4 Reporting / Visualization (3)

	4.3 Preparation of the Engineering Process Observation and Analysis
	4.3.1 Define process model
	4.3.2 Transform to formal process model
	4.3.3 Evaluate formal process model
	4.3.4 Transform to rule engine
	4.3.5 Evaluate the rule
	4.3.6 Implement the event

	4.4 Use of the Engineering Process Observation and Analysis
	4.4.1 Collect Events
	4.4.2 Observe Events
	4.4.3 Integrate Events
	4.4.4 Analyze Events Data
	4.4.5 Present Metrics
	4.4.6 Check Conformance

	5 Open Source Software Projects Monitoring
	5.1 Overview
	5.2 Framework for OSS Data Analysis
	5.3 Integrated Data Model
	5.3.1 Simple Example
	5.3.2 Advanced Example

	5.4 Health Indicators Analysis Method
	5.4.1 Pilot Application
	5.4.2 Study Objects
	5.4.3 Threats to Validity

	5.5 Bug History Analysis Method
	5.5.1 Pilot Application
	5.5.2 Study Objects
	5.5.3 Threats to Validity

	5.6 Workflow Validation Analysis Method
	5.6.1 Pilot Application
	5.6.2 Study Objects

	5.7 Summary
	5.7.1 Framework for OSS Data Analysis
	5.7.2 Integrated Data Model
	5.7.3 Health Indicators Analysis Method
	5.7.4 Bug History Analysis Method
	5.7.5 Workflow Validation Analysis Method

	6 Process Analysis in Automation Systems Engineering Environments
	6.1 Overview
	6.2 Workflow Validation Cycle Process
	6.3 Change Management Process Observation and Analysis
	6.3.1 Overview
	6.3.2 Pilot Application
	6.3.2.1 Signal Engineering
	6.3.2.2 Change Management Process Design
	6.3.2.3 Process Evaluation and Project Metrics

	6.3.3 Study Objects

	6.4 Project Progress and Risk Monitoring
	6.4.1 Overview
	6.4.2.1 Risk Factors Analysis
	6.4.2.2 Risk Factors Classification

	6.4.3 Study Object

	6.5 Process Model Validation
	6.5.1 Overview
	6.5.2 Pilot Application
	6.5.3 Study Objects

	6.6 Summary
	6.6.1 Workflow Validation Cycle Process
	6.6.2 Change Management Process Observation and Analysis
	6.6.3 Project Progress and Risk Monitoring
	6.6.4 Process Model Validation

	7 Evaluation and Discussion
	7.1 Evaluation
	7.1.1 OSS Project Monitoring
	7.1.2 Process Analysis in ASE Environments

	7.2 Discussion
	7.2.1 OSS Project Monitoring
	7.2.2 Process Analysis in ASE Environments

	8 Conclusion and Perspectives
	8.1 Highlights
	8.1.1 OSS Projects Monitoring
	8.1.2 Process Analysis in ASE Environments

	8.2 Future Work
	8.2.1 OSS Projects Monitoring
	8.2.2 Process Analysis in ASE Environments

	References

