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Abstract. This thesis explores optimizing the arrangement of buildings on a site according to a set of spatial 
constraints. Design objectives include solar insolation and building proximity. The difficulty of this task 
increases considerably with the number of buildings on a site or the complexity of site and building geometries. 
The solution space associated with such a problem is typically infinitely large and therefore its exploration 
could be supported by design optimization methods. For that purpose, an optimization-based site planning 
system was designed and implemented. The system was implemented in an existing geometric design software 
that provides optimization functionality based on genetic and simulated annealing algorithms. The system was 
further improved using fine-tuning procedures, involving experiments with the different algorithms and with 
different implementation decisions. The efficiency of the system and the quality of the results produced is 
evaluated in two ways: By producing a series of optimization examples according to different system settings 
for an arbitrary set of buildings and site and by simulating an existent design problem for two case studies. 
After the simulation is completed, the values of the design criteria of each case are calculated for the actual 
buildings and compared to the ones produced by the system.  
 

Keywords. massing design, site planning, optimization, generative design, genetic algorithm, simulated 
annealing algorithm 
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1 Introduction 
 

1.1 Motivation  
 
Ever since the first attempts to introduce computational tools into the concept design phase -50 years ago-, an 
ongoing conversation has started about the role of the computer into the design procedure. Between the two 
extremes (absolute automation in floor plan design or complete denial of the computational contribution), a 
balanced way can be found to facilitate the tools available so that they can forward the design procedure, 
always under a specific scope and with certain limitations. Subjective matters, such as aesthetics or 
functionality – in its general meaning- cannot be addressed by computational tools since it is not even easy to 
define such problems. There are though many design aspects that can have a clear definition or at least clear 
evaluation criteria; these aspects can be computationally optimized in less time and more efficient way.  

Even though computational optimization techniques are particularly popular for many years now, they are not 
widely implemented and used in architectural practices. This is happening on the one hand because of the 
declination in the variables that are driving the design and on the other hand because of the nature of the 
implementations, that are not designed to be widely used but mainly for research. The work that is done, 
attempts to minimize the distance between optimization tools and design everyday-life. Therefore tries to 
explore the capabilities of software that are already familiar to designers and find out in what extend 
optimization techniques can be implemented in order to give an answer to specific design problems. In terms 
of meeting the design criteria of the users, this attempt began with solving shading issues, an aspect 
considered rather important in the phase of conceptual site planning. Accessibility constraints couldn’t be 
omitted since they almost always affect the design decisions. Another criterion considered necessary was the 
buildings proximity.  

Site planning was chosen as an appropriate field for optimization mainly because it of the desire to study the 
optimization of criteria that are strongly related to the buildings environmental sustainability than e.g. the 
minimization of costs, optimization of material-use or structural optimization. The design phase in which the 
implementation is intended for use, is the conceptual phase; thus it was considered more appropriate to study 
the actual placement of the building since materials, façade openings and construction details are introduced 
in a latter phase of the design. Apart from these factors this case of optimization has an appropriate problem 
definition, since the evaluation criteria are clearly defined (maximizing/minimizing solar insolation and 
buildings proximity). It is also a case where computational contribution would be highly appreciated since 
infinite possible combinations should be tested in order to manually verify which ones produce the best results; 
it is in fact unfeasible to manually test more than a limited number.  

 

1.2 Background  
 
The extensive research done during the last 50 years in the area of automated floor plan design is particularly 
relevant with site planning optimization, in the sense that the optimal solution for a configuration of different 
spaces is sought. 
In the case of floor plan layout, the design constraints are usually the spaces boundaries and the range of 
dimensions. The criteria that are being evaluated are mainly the space areas, the proportions and the relations 
between the spaces, even though in some cases orientation or other criteria are also object of evaluation. In 
the case of optimizing a building complex configuration on a site, there is a slight alteration on the constraints 
as well as on the evaluation criteria. The boundaries and the overlaps between the buildings are still an 
important spatial constraint, but they are defined in a different way. The relations between the buildings are 
also here an evaluation criterion (building proximity) whereas the relation to the site is also important. Shading 
efficiency is the key evaluation criterion.  
 

Many approaches and different strategies have been undertaken, while searching for a way to automate floor 
plan design. The method of evaluation that guides the process is the main feature of the different approaches, 
according to which they can be distinguished into three categories (Ligget 2000): the ones optimizing a single 
criterion function, the ones based on graph theoretic approaches where nodes represent activities to be 
located and edges represent a direct adjacency requirement (Grason 1971, Muther 1973), and the ones trying 
to find an arrangement that satisfies a diverse set of constraints or relations instead of optimizing a single 
measure. The various methods followed by the third group, are of particular interest for the implementation of 
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this system, since the optimization is going to be done according to a set of constraints and considering more 
than one evaluation criteria. Early such examples are the ‘General Space Planner’ (Eastman 1973) and the 
‘Design Problem Solver’ (Pfefferkorn 1972) where the goal is to satisfy a set of constraints such as position, 
orientation, adjacency, path, view or distance. ‘SEED’ is a software system that supports the early phases in 
building design by generating rectangular space under various constraints like access, natural light and privacy 
(Flemming, Coyne, et al. 1994). It was developed at Carnegie Mellon along with ‘HeGel’ (Akin, Dave and 
Pithavadian 1992) and ‘WRIGHT’ (Baykan 1991), two other methods with similar representation but 
significantly different approaches to constraint satisfaction. ‘HeGel’ uses a hierarchical generate-and-test 
method that incrementally constructs solutions by adding one space area (one rectangle) at a time to a partial 
solution, testing for constraint satisfaction at each step. If no possible addition of a new space meets the 
constraints, the system backtracks. If one possible new space meets the criteria, the placement is made and if 
more than one spaces meet the criteria, they are presented to the user for selection. ‘WRIGHT’ implements a 
constraint-directed search in which constraints are incrementally satisfied in order to produce a full solution 
that finds all significantly different solutions. All three methods are based on construction algorithms. 

 

  

Genetic algorithms and iterative improvement-based algorithms (including simulated annealing) improved the 
efficiency and the speed of the optimization process. Applications of genetic algorithms show excellent results 
for the floor plan layout problem (Ligget 2000). A simulated annealing-based method for solving the facility 
layout problem was applied, by Sharpe and Marksjo (Sharpe and Marksjo 1986) providing a simple but 
powerful approach to facility layout optimization that was successfully applied to large scale problems with up 
to 200 locations.  

A method of evolutionary computation with the Pareto front based on a weighted function of the objectives 
used for multi-objective optimization was designed by Ciftcioglu and Bittermann and applied successfully on a 
case study positioning houses in a residential neighborhood according to the garden performance and visual 
privacy performance requirements. (Ciftcioglu and Bitterman 2008) 
 

 

Figure 1.3: Two Pareto-optimal designs found by the genetic algorithm (Ciftcioglu and Bitterman 2008) 

                         

 

 

 

Figure 1.1: Display of access paths in a SEED layout 
(Flemming, Coyne, et al. 1994) 

Figure 1.2: Solutions generated by the subjects and by 
HeGel (Akin, Dave and Pithavadian 1992) 
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Apart from the theoretical approaches, the prototypes and generally the research (academic or not) that has 
been done in the field, it also worth mentioning the recent efforts that have been done in the direction of 
making such tools available in architectural practices.  In 1998, the German company AcadGraph produced 
‘Alberti’, a software for producing automated floor plans, by giving the input of stories number, name 
orientation and relations between the rooms. (Lobos and Donath 2010) The software handles the relationships 
and constraints through the application of the concepts of Neural Networks and produces around a hundred of 
solutions per second, which are then evaluated according to the criteria.  The tool is no longer available.  
 

 

 

Figure 1.4: Alberti byAcadGraph (Lobos and Donath 2010) 
 
 

 

‘Vectorworks’ 10th version released in 
2004 by Nemetcheck, included space 
planning tools, where the user could see 
a planar, non-overlapping distribution of 
the rooms on the screen, after defining 
the space program. It can be used as 
basis to create a floor plan, even though 
it doesn’t consider a floor boundary 
constraint. 

 
 
Figure 1.5: Vectorworks10 by Nemetscheck (Lobos and Donath 2010) 

 
 

1.3 Fundamentals of Computational Optimization 
 
Since the implementation is done based on meta-heuristic techniques, this chapter covers some basic concepts 
of computational optimization techniques and a short description of the ones that are implemented in the 
system.  
 
Algorithms with stochastic components were often referred to as heuristic in the past, though the recent 
literature tends to refer to them as metaheuristics. All modern nature-inspired algorithms could conventionally 
be called metaheuristics (Glover and Kochenberger, Handbook of metaheuristics 2003). Heuristic means –in a 
more general sense- to find or to discover by trial and error. Here meta- means beyond or higher level, and 
metaheuristics generally perform better than simple heuristics. The word "metaheuristic" was coined by Fred 
Glover in his seminal paper (F. Glover 1986), and a metaheuristic can be considered as a "master strategy that 
guides and modifies other heuristics to produce solutions beyond those that are normally generated in a quest 
for local optimality" (Glover and Laguna 1986). In addition, all metaheuristic algorithms use a certain tradeoff 
of randomization and local search. Quality solutions to difficult optimization problems can be found in a 
reasonable amount of time, but there is no guarantee that optimal solutions can be reached. It is hoped that 
these algorithms work most of the time, but not all the time. Almost all metaheuristic algorithms tend to be 
suitable for global optimization. (Yang 2010) 
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Many problem-solving processes tend to be heuristic throughout the human history; however heuristic as a 
scientific method for optimization is a modern phenomenon. From the 1940s to 1960s, heuristic methods have 
been used in various applications, but the first landmark came with the advent of evolutionary algorithms. In 
1963 Ingo Rechenberg and Hans-Paul Schwefel, then both at the Technical University of Berlin, 
developed evolutionary strategies while L. J. Fogel et al. developed evolutionary programming in 1966. Genetic 
algorithms were developed by J. Holland in the 1960s and 1970s, though his seminal book on genetic 
algorithms was published in 1975 (Holland 1975). 
The 1980s and 1990s were the most exciting time for metaheuristic algorithms. One big step was the 
development of simulated annealing (SA) in 1983, an optimization technique, pioneered by S. Kirkpatrick et al., 
and inspired by the annealing process of metals.  
The two subfields of metaheuristics optimization that are going to be used for the implementation of the 
system are the genetic algorithms and the simulated annealing algorithm. There are many optimization 
algorithms which can be classified in many ways, depending on the focus and characteristics. We will mention 
the ones according to which genetic and simulated annealing algorithms can be classified (Figure 1.6). 
 

If the derivative or gradient of a function is the focus, optimization can be classified into gradient-based 
algorithms and gradient-free algorithms. Gradient-free algorithms do not use any derivative information but 
the values of the function itself.  From a different perspective, optimization algorithms can be classified into 
trajectory-based and population-based. A trajectory-based algorithm typically uses a single agent or one 
solution at a time, which will trace out a path as the iterations continue, while population-based algorithms 
such as genetic algorithms use multiple agents which will interact and trace out multiple paths. Optimization 
algorithms can also be classified as deterministic or stochastic. If an algorithm works in a mechanical 
deterministic manner without any random nature, it is called deterministic. For such an algorithm, it will reach 
the same final solution if we start with the same initial point. On the other hand, if there is some randomness 
in the algorithm, the algorithm will usually reach a different point every time the algorithm is executed, even 
though the same initial point is used.  Search capability can also be a basis for algorithm classification. In this 
case, algorithms can be divided into local and global search algorithms. Local search algorithms typically 
converge towards a local optimum, not necessarily the global optimum. Modern metaheuristic algorithms in 
most cases tend to be suitable for global optimization, though not always successful or efficient.  
 

  

METAHEURISTIC OPTIMIZATION ALGORITHMS 

CLASSIFICATION 1 CLASSIFICATION 2 CLASSIFICATION 3 CLASSIFICATION 4 

GRADIENT
-BASED 

GRADIENT
-FREE 

TRAJECTORY-
BASED 

POPULATION-
BASED 

DETERMINISTIC STOCHASTIC 
LOCAL 

SEARCH 
GLOBAL 
SEARCH 

GENETIC 
ALGORITHM 

  x   x   x   x 

SIMULATED 
ANNEALING 
ALGORITHM 

x  
 

x     x   x 

 
Figure 1.6: Classification of Genetic and Simulated-Annealing Algorithms 

 
 

  
 
Genetic Algorithms 

Genetic algorithms (GAs) are probably the most popular evolutionary algorithms with a diverse range of 
applications. A vast majority of well-known optimization problems have been solved by genetic algorithms. In 
addition, genetic algorithms are population-based and many modern evolutionary algorithms are directly 
based on, or have strong similarities to, genetic algorithms. 
Genetic algorithms, developed by John Holland and his collaborators in the 1960s and 1970s, are a model or 
abstraction of biological evolution based on Charles Darwin's theory of natural selection. Holland was the first 
to use crossover, recombination, mutation and selection in the study of adaptive and artificial systems (Holland 
1975). These genetic operators are the essential components of genetic algorithms as a problem-solving 
strategy and are the minimum set of operators, that distinguish GAs from other evolutionary computation 

http://www.scholarpedia.org/article/Evolution_Strategies
http://www.scholarpedia.org/article/Evolutionary_programming


10 
 

methods even though there is no rigorous definition of ‘genetic algorithm’ accepted by all in the evolutionary-
computation community. (Mitchell 1996) 
The goal while running a genetic algorithm is to optimize an evaluation criterion, which in terms of evolutionary 
computing is the fitness function. This fitness function is the evaluation of every solution variation. Each 
solution is created after combining a set of variables: the genes -and thus each solution can also be called a 
chromosome or a genome (a combination of genes). The encoding of the genomes was done in its original 
version as arrays of bits or character strings, even though that doesn’t always have to be the case.  

Therefore the two first steps, in order to initiate a genetic algorithm are : 

 the definition of the solution space (the genes)    and 

 the definition of the fitness function 
The following steps are: 

 creation of a population of genomes (generation) 

 evaluation of the fitness of every genome in the population 

 creation of a new population by performing fitness-proportionate selection, crossover and mutation 

 replacement of the old population by the new one 
 
 

The last three steps are then repeated for a number of generations. Each iteration, which leads to a new 
population of genomes, is called a generation. The algorithm always starts with a random-selected generation: 
generation0. In every iteration of the algorithm every new generation is an improved version of the previous 
one. The best genome of the last generation is decoded to obtain a solution to the problem. 
 

 

Figure 1.7 : Evolutionary algorithm structure 

DEFINE VARIABLES (GENES) 

DEFINE FITNESS FUNCTION 

FITNESS EVALUATION 

CREATION OF NEW 
POPULATION 

REPLACEMENT OF OLD 
POPULATION 

INITIAL STEPS 

ALGORITHM 
ITERATIONS 

CREATION OF GENERATION 0 

SELECTION 

CROSSOVER 

MUTATION 

FINAL OUTCOME: BEST GENOME OF LAST GENERATION 
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The selection operator selects the genomes for reproduction. The fitter the genome, the more times it is likely 
to be selected to reproduce. Sometimes, in order to make sure that the best genomes remain in the 
population, they are transferred to the next generation without much change, which is called elitism. (Koziel 
and Yang 2011) 

 Crossover operator randomly chooses a locus and exchanges the 
subsequences of genes before and after that locus between two 
genomes to create the offspring. The crossover operator roughly 
mimics biological recombination between two single-chromosome 
organisms. The mutation operator randomly flips some of the genes 
is a genome, according to some probability factor that is usually very 
small. (Mitchell 1996) 

 

An important issue is the formulation or choice of an appropriate fitness function that determines the selection 
criterion in a particular problem. A proper criterion for selecting the best chromosomes is important, because it 
determines how chromosomes with higher fitness are preserved and transferred to the next generation. This is 
often carried out in association with a certain form of elitism. The basic form is to select the best chromosome 
(in each generation) which will be carried over to the new generation without being modified by the genetic 
operators. This ensures that a good solution is attained more quickly. Another important issue is the choice of 
various parameter values. The crossover probability pc is usually very high, typically in the interval [0.7,1.0] . On 
the other hand, the mutation probability pm is usually small (typically, in the interval [0.001,0.05]). If pc is too 
small then crossover is applied sparsely, which is not desirable. If the mutation probability is too high, the 
algorithm could still `jump around' even if the optimal solution is close. 
 

Other issues include multiple sites for mutation and the use of various population sizes. The mutation at a 
single site is not very efficient, so mutation at multiple sites typically increases the evolution of the search. On 
the other hand, too many mutants will make it difficult for the system to converge or even lead the system 
toward wrong solutions. In real ecological systems, if the mutation rate is too high under high selection 
pressure, then the whole population might become extinct. The choice of the right population size is very 
important, because if the population size is too small, there will not be enough evolution, and there is a risk for 
the whole population to converge prematurely. In the real world, ecological theory suggests that a species with 
a small population is in real danger of extinction. In a small population, if a genome with a fitness substantially 
larger than the fitness of the other chromosomes in the population appears too early, it may produce enough 
offspring to overwhelm the whole (small) population. This will eventually drive the system to a local optimum 
(not the global optimum). On the other hand, if the population is too large, more evaluations of the objective 
function are needed, which will require extensive computing time. 
 

As a simple example, an initial population is generated and its final solution locations aggregate towards 
optimal solutions (Figure 1.10, Figure 1.9) 

 

 

 

 

 

 

 

                        

 

 

 

 

Figure 1.10: Genetic algorithm -initial population 
and solutions (Yang 2010) 

Figure 1.9: Genetic algorithm -final solutions (Yang 
2010) 

Figure 1.8: Crossover Operator 



12 
 

Simulated Annealing Algorithm 

Similarly to the theoretical approach of the evolutionary algorithm, the optimization problem is structured in 
the following way: We are searching a set of solution candidates in order to find the optimal solution that 
minimizes the cost function. The cost function is similar to the fitness function in GAs, with the difference that 
in Simulated Annealing theory we regard the optimization as a minimization function. This originates from the 
physical inspiration of the algorithm, where the objective is to bring a system to a state of minimum energy.  
The simulated annealing algorithm is a technique that belongs to a class of search algorithms called threshold 
algorithms. A starting point is initially selected from the solution candidates. For every step of the algorithm a 
new candidate is selected. The cost of the original solution is abstracted from the cost of the new one. If the 
cost difference between the two solutions is below the threshold (t) the new solution replaces the previous 
one, otherwise the original one remains as current. This procedure is repeated until the termination of the 
algorithm. The algorithm terminates either because of a time limit or because it reached a specific result.  
There are three types of threshold algorithms (Aarts, Korst and van Laarhoven 2003): 

 Iterative improvement: The cost function of the new solution must always be less than the previous 
one (t=0). This is a greedy local search variant. 

 Threshold accepting: The threshold (t) can have values bigger than or equal to zero, which are 
decreasing on every comparison. As a result other solutions with larger costs are accepted but in a 
limited way, mostly at the beginning of each run. Gradually the algorithm reaches a point where the 
cost difference must be zero and only improvements are accepted.  

 Simulated annealing: The threshold (t) is a random variable with values between zero and infinity that 
follows a probability distribution function formulated in such a way that solutions that correspond to 
large increases in cost have small probability of being accepted, whereas solutions that correspond in 
small increases in cost have larger probability. In simulated annealing each new solution can be 
chosen to replace the current one. 

The probability distribution function is the negative exponential distribution with parameter 1/ck  
(Kirkpatrick, Gelatt and Vecchi 1983).The parameter ck is used in the simulated annealing algorithm as 
a control parameter, and it plays an important role since it leads to the selection of larger increases in 
cost at the beginning of the algorithm and rejects them while the algorithms is getting closer to the 
solution.  
     

    
           {

                                      

   (
         

  
)                 

 

 

Where i,j are solutions that belong to the solution set of the problem, f is the cost function  of (i) and 
(j), k the number of iteration (k=0,1,2,….) and    

 is the probability of accepting j from i at the kth 

iteration.  

 
 
The procedure that is followed in simulated annealing is inspired by statistical mechanics and is very similar to 
annealing in metallurgy, a technique where heating and controlled cooling of a material are used in order to 
increase the size of its crystals and reduce its defects. Statistical mechanics is the central discipline of 
condensed matter physics that applies a probability theory for dealing with large populations, while analyzing 
the atoms’ properties found in samples of liquids or solids. The state of the system in such samples can only be 
described by average behaviors, because of the large number of atoms per cubic centimeter, when the average 
is taken over the ensemble of identical system introduced by Gibbs (Kirkpatrick, Gelatt and Vecchi 1983). In this 
ensemble each configuration defined by the atomic positions r{i} of the system is weighted by its Boltzmann 
probability factor exp (-E({ri})/kBT), where E({ri}) is the energy of the configuration, kB is Boltzmann’s constant 
and T is temperature. The Boltzmann factor is a weighting factor that determines the relative probability of a 
particle to be in a state i in a multi-state system in thermodynamic equilibrium at temperature T. As T is 
lowered the Boltzmann distribution (sum of all the Boltzmann factors for all the states of the system) collapses 
into the lowest energy state or states and therefore ground state configurations of a macroscopic body 
dominate its properties at low temperatures, even though they are extremely rare among all the 
configurations. A Boltzmann factor drastically increases the efficiency of the system’s ground state search.  
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In practical contexts, low temperature is not a sufficient condition for finding ground states of matter. In order 
to determine the low-temperature state of a material (for example by growing a single crystal from a melt) 
experiments are done by careful annealing: first melting the substance and then slowly lowering the 
temperature while spending a lot of time in the vicinity of the freezing point. Otherwise the substance is 
allowed to get out of equilibrium and the resulting crystal displays many defects.  

The Metropolis algorithm for sampling from multi-dimensional distributions is used in order to utilize the 
techniques of statistical mechanics for solving optimization problems. 

 

 

 

1.4 Methodology 
 
 
In order to fulfill the task of designing the optimization system for site planning, the following steps are 
followed: 

System Design. The structure of the system is initially designed schematically, independently of the 
implementation and the tools that are going to be used, by defining how the input, the output and the 
optimization task should be done. The input is the design input that the user gives i.e. the buildings, the site, 
local data and the desired optimization setting that will define the weights that each criterion has and the type 
of optimization (maximize/minimize). The output should be a proper documentation of the results, so that they 
are in later time accessible and an instant visualization of the ranked and evaluated solutions. The design of the 
optimization task is mainly about the definition of the constraints, the evaluation criteria and the relations 
between them. The constraints are actually the spatial constraints of site planning i.e. the appropriate 
placement of the buildings (elimination of building overlaps, containment in the site boundary, ease of access).  
 

Implementation. As soon as the appropriate tools are found, the system should be implemented, in a way that 
exploits the tools capacities and explores the possibilities and the limitations. The way the user interacts with 
the system should also be considered, while finding the proper balance between user-interaction and the 
ability of the system to be ‘user-friendly’ and not too technical.  

 

Examples. A set of examples based on an arbitrary set of buildings and site, displays how the system works for 
different input and different optimization settings. 

 

Case studies. The most appropriate way of verifying the efficiency of the implementation or discovering 
possible limitations, is to test it on case studies i.e. cases that are already built and whose design objectives can 
be translated to the evaluation criteria of the optimization system.  This way the results of the evaluation 
values between built-examples and the variations produced by the system can be compared.  
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2 System Design 
 
The system consists of the following three parts: input, optimization and output.  
During the input the user must provide the system with the design parameters and the desired optimization 
settings.  
The optimization is the technical part of the system and is done mainly in two steps: the creation of different 
solutions (solution synthesis) and their evaluation. In order to create a solution, the solution space and the way 
according to which the solutions are generated have to be defined.  In order to evaluate a solution we have to 
define the spatial constraints and the evaluation criteria.  
The output is given in the form of documenting the results and visualizing them on the screen.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1 System Terminology  
 
In order to avoid confusion during the next chapters, we should clarify all the terms and concepts to which we 
are going to refer to.  The site access area (SA) is the area on the site that is defined as the desired access area. 
It could be a street or a square; in general it is a boundary where nothing built is allowed to be on and that 
serves as circulation area. The buildings of the site are attracted to it and should be adjacent to its boundaries. 
The non-constructible zone (NCZ), is also an area where nothing should be built, but doesn’t have any 
accessibility features; it’s irrelevant whether the buildings are near or far from it. It could be an area where the 
site isn’t suitable for a building’s placement like a water-area, for example, or an area of very steep slope. It 
could also represent an existing building or be used to create zones that let the wind pass through. Thus, the 
constructible area of the site (CS) is the site area minus the site access area and the non-constructible zone, 
while considering the desired offset from the site boundary that expresses the minimum distance the buildings 
should keep from it. The building access area (BA) is the area inside a building boundary that should be 
adjacent to the site access area. It could be the lobby of the building, the entrance area. We will call overlap 
zone (OZ) an area of certain width, surrounding the site access area. This is the zone where the entrances of 
the buildings should be located in. The buildings are described by the letter “B” and number i, for i Є {1,2,…,n} 
and n number of buildings on site. ”d” is the distance of a building from the site access area 
 
 

INPUT 

OPTIMIZATION 

OUTPUT 

SOLUTION SPACE 

SOLUTION GENERATION 

EVALUATION CRITERIA 

DOCUMENTATION 

VISUALIZATION 

Figure 2.1: System Structure 

SOLUTION SYNTHESIS 

SPATIAL CONSTRAINTS 
SOLUTION EVALUATION 

DESIGN PARAMETERS 

OPTIMIZATION SETTINGS 
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2.2 Input 
 

The design parameters that the user has to provide to the system are a) a set of objects i.e. the site, the site 
access area, the non-constructible zone, the buildings and the access area of the buildings and b) some 
planning parameters i.e. the minimum distance between the buildings, the minimum distance from the site 
boundary, the north angle and the site location (latitude and longitude). The input of the site access area and 
the non-constructible zone is optional; if they do not exist the system should still have the capacity to work 
efficiently.  Regarding the optimization settings, the user must enter the weight that represents the level of 
importance during the optimization procedure for each evaluation criterion, and select whether the criteria 
should be maximized or minimized. 

 

2.3 Optimization 
 

2.3.1 Solution Synthesis 
 

Definition of Solution Space 

 
Each possible solution to the problem of placing a given set of buildings onto a given site can be accurately 
expressed with the help of two variables per building: 
 

 The building location parameter, which is in fact a two-dimensional point: 

P(x,y) 
 The orientation, which is a numerical value of the rotation angle  in respect to the positive y axis: 

aЄ {0,1,2,…,360} 
 
The possible points (P) are given after creating a grid of points that is contained into the boundary of the 
constructible site area (Figure 2.3,Figure 2.4). The possible angle values (a) are the integers between 0 and 360. 
 

Site Access Area (SA) 

Overlap Zone (OZ) 

Building Access Area (BA) 

Constructible Site (CS) 

Figure 2.2: Site Planning Terms 

Non Constructible Zone (NCZ) 

B1 

B2 

B3 

d 

distance from SA (d) 

Bi :  Building ( i Є {1,2,…,n}, for n 

    buildings on the site) 
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Figure 2.3: Constructible Site Definition 

 

 

Figure 2.4: Definition of Location Points 

 

Thus the problem’s solution space is the set of all possible combinations of the two variables for all buildings 
(equations (2.1),(2.2)). For N buildings we would be searching for the best solutions in a 2*N-dimensional 
solution landscape. The number of possible solutions (k) is given if we multiply the number of buildings with 
the number of possible points and the number of discrete angle values. If we assume for example that the 
contained-in-constructible-site grid of a given site consists of 5000 points and there are 10 buildings on the site, 
then the number of possible solutions is 36*106. 
 
 
 

 

 

 

 
Solution Generation 

In order to generate a solution each building is moved from its starting point to one of the points of the 
constructible-site-grid and rotated around it for some angle. The starting point is one point generated from the 
building’s boundary given by the user.  
 

        
    (Site offset from boundary) -  (Site Access Area)   -    (Non Constructible Zone)  =  (Constructible Site) 

                           
 (Constructible Site)    (Location Points) 

 

   for       k=N*NP*Na, the number of all possible solutions, 

 N: the number of buildings on the site, 

NP: the number of points on the site, 

Na: the number of discrete angle values, 

i Є {1,2,….,k} 

 

 

SolutionSpace = {S1, S2,…., Sk} 
 

Si = {P1,a1, P2,a2, …., PN,aN} 

(2.1) 

(2.2) 



17 
 

 

 

Figure 2.5: Generation of a solution 

 

 
 
 

2.3.2 Solution Evaluation 
 
Spatial Constraints 

In order to control the quality of the solutions produced and avoid solutions that make no sense, there is a set 
of spatial constraints that the solutions should always meet. If they don’t then they should be considered 
invalid and not provided in the final output.  
 

 

 

 

 

 

 

                     
INITIAL POSITION 

 

  
PLACEMENT    ROTATION 

 

Spatial Constraints: 

1. All the buildings must be contained in the constructible site 

2. The buildings shouldn’t overlap with each other 

3. The buildings access area should be at least in some extend contained in the overlap zone 

 

angle: 0o ≤A ≤ 360o  
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Figure 2.8: Spatial Constraint C: Accessibility Requirements 

SPATIAL CONSTRAINT C 

              

   

SPATIAL CONSTRAINT B 

SPATIAL CONSTRAINT A 

Valid Solution Invalid Solution 
 

Figure 2.6: Spatial Constraint A: Building Containment in Constructible Site 

Valid Solution Invalid Solution 
 

Figure 2.7: Spatial Constraint B: Buildings Overlap with each other 

Valid Solution Invalid Solution 
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Evaluation Criteria 

The optimization of the solar insolation is in fact the maximization/minimization of the sum of solar insolation 
values on the building envelope. Depending on the desired result and factors like local climate, the user can 
choose whether maximum or minimum values should be guiding the algorithm. The optimization of the 
building proximity is performed by either minimizing or maximizing the distances between the buildings.  
It is obvious that these two criteria can either cooperate (when solar insolation is being maximized and building 
proximity is being minimized and vice versa) or conflict (when both criteria are being maximized or minimized). 
Thus the weights of each criterion can define the orientation of the optimization. The final evaluation values 
should be a sum of each evaluation criterion value for each building, while considering whether the spatial 
constraints are fulfilled or not.  

 

  

2.4 Output 
 
The results that should be documented are the total evaluation value of the solution, the evaluation values of 
each criterion and each building, the variables of the solutions (point and angle for each building) so that every 
solution can be later reproduced the solution iteration number and the solution efficiency number (number of 
solution in the set of ranked according to the efficiency solutions).  
The visualization of the results should be a display of a number of desired solutions on the screen, according to 
their total efficiency, or their efficiency according to one of the criteria. It should also be possible that the user 
selects a number of the above mentioned characteristics to be displayed along with each solution.  
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3 Implementation 
 

3.1 Environment 
 
The selection of the tools for the implementation was done while having in mind three main goals: 

 The tools should already be widely spread and familiar to a great number of users. The users should be 
able to find solutions to the site planning problem without having advanced knowledge of 
computational techniques, programming etc. 

 They should facilitate an easy workflow so that interoperability problems can be avoided and the 
designer can work quickly without having to confront problems met while importing and exporting 
data between different software.  

 They should have the necessary capacities to forward the system implementation. 
 

The most suitable software meeting the above objectives are: Rhinoceros which is a modeling software and 
Grasshopper, a graphical algorithm editor integrated in Rhinoceros’ modeling tools. The ability to work with 
genetic algorithms and simulated annealing algorithms is available inside Grasshopper.  

In the Figure 3.1 we can see the interface of Grasshopper and an example showing the creation of a curve 
based on the user input. The tabs located on the top contain the tools available, which are mainly of two types: 
the parameters and the components. The parameters contain data and can either have an input from 
Rhinoceros, Grasshopper or directly from the user. The components are functions which require a specific 
input and result in an output. Every set of parameters and components is, in terms of Grasshopper, called a 
‘definition’ and produces a specific design or solves a specific problem, in the same way and logic that an 
algorithm would do.  

 

Figure 3.1: Grasshopper ‘Definition’ 
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In Figure 3.2 we can see the interface of ‘Galapagos’, which is a grasshopper component applying optimization 
solvers using a Genetic Algorithm (GA) and a Simulated annealing Algorithm (SA). The detailed description of 
both solvers as described in the Galapagos documentation is provided in Appendix C and Appendix D. Both 
solvers can both function, requiring exactly the same input. The input for galapagos is the range of value of 
some variables i.e. the solution space of the problem (in terms of GA the ‘genes’), that describe a solution and 
the value of the evaluation criterion of this solution (in terms of GA the ‘fitness’) which should be optimized. 
Provided with this range of values the solver searches the solution space through several iterations and tries to 
optimize the evaluation criterion by searching different combinations of values.  

The variables can be multiple, whereas the evaluation criterion is single. Therefore the optimization of multiple 
criteria must be implemented by the user. The output of Galapagos, is the combination of variables values (in 
terms of GA the ‘genomes’) that produce the most efficient - according to the evaluation criterion - results. The 
output of the process can be seen directly on the screen but a user-defined way to record it in order to reuse it 
has to be found. There is also a possibility to change some of the solvers’ settings in the options menu. These 
settings are related to the structure of these solvers and the type of the optimization problem. That means that 
the user should experiment a little bit with the settings and their effect on the quality of the solution and the 
time the solver needs to find it.   

 
 
 

 
Figure 3.2: Genetic Solver Available in Grasshopper 
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3.2 Site Planner 
 
 
In  
Figure 3.3 we can see the general structure of the implementation which follows the system structure. 
 

 

 

 

 

 
Figure 3.3: ‘Site Planner’ in Grasshopper 

 

3.2.1 Input 
 

 

In order to initiate the process the user gives an input of 
the design objects in grasshopper interface. This input is 
concerning four categories: the site, the buildings, the 
layout preferences and the sun calculation parameters.  
 

SITE INPUT 

 
The user must provide one closed polyline defining the site 
and one defining the access area in the site (streets, paths, 
e.t.c). Furthermore the user can provide a closed polyline 
defining area that shouldn’t be built; the non-constructible 
area. The site access area is also optional. In case a 
parameter has no input, its component should remain 
empty.  
 

 

 

INPUT OPTIMIZATION OUTPUT 

DOCUMENTATION 

VISUALIZATION 

DESIGN  
PARAMETERS 

OPTIMIZATION 
SETTINGS 

SOLUTION SPACE 

EVALUATION CRITERIA 

SPATIAL CONSTRAINTS 

SOLVER 

SOLUTION 
GENERATION 

Figure 3.4: Design Parametes Input 
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BUILDINGS 

Regarding the buildings, the user must select a polyline 
defining the floor plan and one defining the entrance plus the 
volume defined by a closed polysurface for each building.  
It is important that during the selection all input concerning 
one building is one object, for example the floor plan is only 
one polyline, the building volume only one polysurface, etc. It 
is also important that a specific order is maintained i.e if the 
selection of the floor plans is following the order Building 1-
Building 2 – Building 3 -…. then all other inputs (entrances, 
volumes etc) should also keep the same order.  
When several building types are involved, the user should give 
the above mentioned input once per building type and then 
fill the list by entering the number that each building type is 
repeated. When building types do not exist and the planning 
concerns individual buildings only, each list item should have 
a value of 1.  
 

LAYOUT PREFERENCES 

The user provides the value of the distance that should be 
kept between the different buildings on the site and the 
distance that the buildings should keep from the site 
boundaries. 

SUN CALCULATION PARAMETERS 

The parameters needed for the sun calculation (longitude, 
latitude, time zone, north angle) 
 

 

3.2.2 Optimization 
 
Solution Definition  

Solution Space  
 
In order to define the solution space we must as described during the system design, produce a grid of points 
contained in the constructible area of the site.  
 

 

Figure 3.6 : Calculation of Grid points 
 

The final grid points located on the constructible area of the site are produced, as we can see in Figure 3.6 and 
Figure 3.7, by finding which points of the initial grid are contained in the site boundary, the access area and the 
non-constructible zone and then subtracting the last two from the first one.  

Figure 3.5: Design Parametes Input 
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Figure 3.7: Grid Operations 

   

 

Figure 3.8: Calculation of grid points contained in constructible site 

  

 
The points generated by this process are the ones that are going to be used for the buildings’ placement on the 
site. Each one of them has an ID number - the Point ID -, which is used together with the angle to characterize 
the parameters (Bi(P,A)) of each building in every solution. The angle values range from 0 to 360. All the 
different combinations of location points and angles of each building produce the solution space.  
   

The range of the parameter values defining the solution space is then provided to the solver (Galapagos) so 
that it can explore the solution space in order to find the optimal solutions. This range is given through the 
‘slider’ component, a component that after setting a lower and upper limit produces a range of numbers. As 
the optimization runs the solver tries different values of this range and in this way explores the solution space 
(Figure 3.9). 
 

 
 

 
Points of the grid contained in the site, after the zone defining the boundaries distance is removed 

           

 Points of the grid defining the site access area 

         

Points of the grid defining the non-constructible zone 

 

 
 
 

          
The final points are the points contained in the site minus the points inside the access area and inside the non-
constructible area 
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For a specific input of e.g. a site containing 1000 location points and 3 buildings that should be located on it, 
the solver would need three sliders with a range from 1 to 1000 to locate the buildings and three sliders with a 
range from 0 to 360 to rotate them. The production of these sliders and the connection to the solver has to be 
done by the user, since their number is not predefined; it depends on the number of buildings.  
 In order to avoid the fact that the user would have to set manually the upper limit for the point slider, since 
the number of the points generated depends on the site input, the point list is mapped to a new list with a 
value range from 0 to 1 in a way that every value from 0 to 1 corresponds to one point ID. The angle slider has 
a fix upper limit independent of the specific problem at 360 degrees.  
 

 
Figure 3.9: The variables that produce each solution 

  

For every optimization iteration, these variables are the input to the solution generation and in this way 
produce one unique solution which is then subject to examination of whether or not it is successful enough.  

 

Solution Generation 
 

 
Figure 3.10: Generation of a solution 

 

In order to produce one solution we need each building relocated from its input location to one of the points of 
the constructible site and rotated according to angle between 0 and 360 degrees, according to the values that 
the solver selects on every iteration while it is running.  
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Solution Evaluation 

 
 In order for a solution to be valid, it has to fit the spatial constraints as described in the system design.  

 

Spatial Constraints 
 
In order to ensure that the spatial constraints (constructible site containment, building zero overlap, 
accessibility requirements) are met, three functions are formulated (SCA, SCB, SCC) that are resulting in a 
TRUE/FALSE condition and are later used to turn the final evaluation of the solution to zero when the 
constraints are not met. 
 

 
Figure 3.11: Spatial constraints definition 

 

The operators needed for this functions are the boundary of the site constructible area (ASC), the boundary of 
the site access area (ASA), the boundaries of the buildings (AB) and the boundaries of the buildings’access area 
(ABA). Given these operators and the minimum distances between the buildings and the buildings and site, we 
can produce the rest of the operators required.  
The boundary of the site constructible area (ACS), is calculated by producing an offset boundary of the site (AS’), 
with an offset value y, set by the user (Figure 3.12) and then subtracting from it the boundaries of the site 
access area and the non-constructible zone (ANCZ). (Figure 3.13). 

While calculating the buildings overlap with each other, the buildings’ boundary is replaced by a new boundary 
(AB’) created with an offset value set from the user. If x is the minimum distance that should be kept between 
the buildings, then x/2 is the offset distance of the boundary (Figure 3.12).  

 

 

 

 

 

 
Figure 3.13: Constructible site 

 
 

 

 
Figure 3.12: Minimum distances  

 

ACS 

ACS 

ASA 

ANCZ 
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 Constraint A: Constructible site containment 

The sum of the buildings boundaries (ABi) is compared with the intersection of their union with the 

constructible site. When these two values are equal then the function results in a TRUE value (equation 
(3.1)).TRUE always equals 1, while FALSE equals zero. 

 

 

 

 

Figure 3.14: SCA = FALSE 

 

 

Figure 3.15: SCA = TRUE 
 
 
 

SCA = TRUE, when AB1 + AB2 +... + ABN =( AB1 U AB2 U... U ABN)∩ACS 
 
where     N the number of buildings on site    

 ABi  the area of building(i) floor plan, iЄ{1,2,…,N} 

ACS the site constructible area 

 ACS = AS’\(ASA U ANCZ) 

 AS’ the area included in the boundary offset from the site to y, 

 y the minimum distance that the buildings have to keep from the site, 

 ASA the area of the site access area, 

 ANCZ the area of the non-constructible zone 

 

 

 

 

(3.1) 

AB1 

AB2 AB2 AB1 (AB1U AB2)∩ACS 
 

AB1 

AB2 
AB2 AB1 (AB1U AB2)∩ACS 
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 Constraint B: Overlap between buildings 

Even though the buildings overlap with each other is already controlled through Constraint A, the minimum 
distance between the buildings is not yet considered. Therefore Constraint B is implemented in order to ensure 

that minimum distance is always kept. The sum of the new buildings boundaries (ABi’) according to offset x/2, is 

compared with their union. When these two values are equal the function results in a TRUE value (equation 
(3.2)). 

 

 
 

 

 

Figure 3.16: SCB = FALSE 

 

Figure 3.17: SCB = TRUE 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

AB1’ 

AB2’ AB2’ AB1’ AB1’U AB2’ 

AB1’ 

AB2’ AB2’ AB1’ 
AB1’U AB2’ 

SCB = TRUE, when AB1‘ + AB2‘ +... + ABN‘ = AB1‘ U AB2‘ U... U ABN‘ 
 

where     ABi’  is the area included in the boundary offset from the buildings boundary to x/2, 

 x is the minimum distance between two buildings, 

  

(3.2) 
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 Constraint C: Accessibility Requirements 

The overlap between the buildings access area and the overlap zone should be at least 5% of the buildings 
access area, in order to certify that the accessibility requirements of the design are met. 

 

 

 
 

 

Figure 3.18: SCC = FALSE 

 

 

Figure 3.19: SCC = TRUE 
 
 

Evaluation Criteria 
 
The value of each evaluation criterion (∑F) is a sum of the value of all buildings evaluation (Fi), as seen in 
equations (3.7) and (3.11). Each Fi should have a maximum value of 1 so that all criteria can be equally rated 
(equations (3.6),(3.10)). Thus the maximum value each ∑F will be N, where N is the number of buildings. The 
criteria can either be maximized or minimized according to the user’s option settings.  

 

     

0.05 *  

 

            

SCC = TRUE, when ABAi ∩ AOZ > 0,05* ABAi 

 

where ABAi the area of a building(i) access area and AOZ the area of the site overlap zone 

(3.3) 

ABA ∩ AOZ > 0.05 * ABA 

ABA ∩ AOZ = 0 
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Figure 3.20: Evaluation Criteria Definition 
 
 

 Criterion A: Buildings Proximity 

The building proximity efficiency of each solution is evaluated for each building by measuring the distances 
between itself and the other buildings on the site. This sum of distances is then divided by the number of the 
other buildings to result in an average value of distance. This average distance is then further divided with the 
maximum distance between two points on the site so that it can always be expressed as a value between 0 and 
1. The resulting value is the value of the evaluation criterion A for each building (FAi) when we want to 
minimize the buildings proximity, and is subtracted from  1 to give the final value in the case that we want to 
maximize the buildings proximity.   
The maximum value is accomplished when all the buildings have an average distance from each other that 
equals the distance between two further points, when minimizing buildings proximity. When maximizing it 
then the maximum value appears for zero distances between the buildings (equation (3.5)). 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

1-(0/(N-1))/ DPoPM=1, when maximizing proximity 
FAi max = 

  ((N-1)* DPoPM /(N-1))/ DPoPM=1, when minimizing proximity 
 

0 ≤ FAi ≤1 

∑FA=FA1 + FA2 + ……. + FAN        , for N number of buildings 

1-[((DB1Bi  + DB2Bi + …… + DBNBi)/(N-1)) / DPoPM], when maximizing proximity 
FAi = 

((DB1Bi  + DB2Bi + …… + DBNBi)/(N-1)) / DPoPM, when minimizing proximity 

 
Where DBiBj the distance between building (i) and building (j), N the number of buildings and i, j Є 

(1, 2, …, N) and Po, Pm the two more distant points on the site 

(3.4) 

(3.6) 

(3.7) 

(3.5) 
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 Criterion B: Solar Insolation 

The solar insolation is evaluated for each building in a very rough way that is not result of proper solar analysis 
but can give some rough basis for the evaluation. The sun rays vectors are produced by calculating the sun 
position on an annual basis and according to the user’s input of longitude, latitude, time zone and north angle. 
The calculation algorithm is produced by Ted Ngai (http://www.tedngai.net/experiments/incident-solar-
analemma.html) and is based on the algorithm published by the National Oceanic and Atmospheric 
Administration (NOAA).The values in the system do not consider the scattering and absorption effects such as 
water vapor, ozone and aerosol; therefore the numbers are not accurate and can only provide a rough 
approximation.  
Each building’s exposure to the sun is then calculated as the sum of sines of the angles between the sun ray 
vectors and the building. The maximum value would be accomplished for a horizontal surface, while 0 would be 
the number of rays passing through a north-facing façade, or a façade behind another building, in the case that 
we are trying to maximize solar insolation, and vice versa in the case we are trying to minimize solar insolation.  

 

  

 

 

 

 

 

M.O. Optimization 
Since the optimization solver can only evaluate one 
number and cannot set any constraints, a function 
has to be formulated, that combines all Evaluation 
Criteria and keeps the Spatial constraints, resulting 
in one final evaluation value.  
First of all a weight for each evaluation criterion is 
set, so that the user can decide whether or not this 
criterion is important for the design and if yes, then 
to what percentage, related to the other criteria. 
The weights have a value from 0 to 1(equation 
(3.12)) 
The weighted evaluation values (∑F’), are then 
added resulting in the total evaluation value FFinal 
(equation (3.14)). 
The value of FFinal is set to zero when the spatial 
constraints are not met; thus all zero values 
represent invalid solutions. This final value FFinal’ is 
being evaluated by the solver through the 
optimization iterations (equation (3.13)).  

 Σsin(a)/NR, when maximizing solar insolation 

FBi =  
  1 - Σsin(a)/NR, when minimizing solar insolation 

,where a the angle between the sun ray vector and the building and NR the total vectors of 
the sun analemma produced 

NR / NR =1, when maximizing solar insolation 

FBi max =  
1-0/NR =1, when minimizing solar insolation 

 
 

 

 0 ≤ FBi ≤1 

∑FB=FB1 + FB2 + ……. + FBN  , for N number of buildings 

(3.8) 

(3.10) 

(3.11) 

(3.9) 

 
Figure 3.21: Multi Optimization Function 

 

http://www.tedngai.net/experiments/incident-solar-analemma.html
http://www.tedngai.net/experiments/incident-solar-analemma.html
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3.2.3 Output 
 

The output is given in two ways: by documenting the results and by visualizing them on the screen  
 
Documentation 

 
The results are documented in an excel file, whose location and name is given by the user. The data are sorted 
in such a way that each row is a solution and each column displays the solution ID number (the numbering is 
chronological), the final evaluation value, the evaluation of each criterion and the solution variables (point and 
location for each building) 
 

 
 
Figure 3.22: Documentation file 

 
Visualization 

 
After documenting the results the user can choose to 
display the ranked according to efficiency solutions on 
the screen in order to visualize the output. The 
ranking can be according to the total evaluation value 
or according to the evaluation value of one of the 
criteria. The user can select to dislpay a desired 
number of solutions, not necessarily continuously but 
also every x solution and can also select which of the 
solutions characteristics should be displayed 
(parameters, evaluation criteria values, etc). 
 

There is also a set of options regarding graphical 
aspects like for example the scale of the displayed 
solutions the distance that should be kept between 
them etc., since these depend on the size of each site 
given as output and should be easily manipulated by 
the user.  

∑F’ = ∑F*w  , where 0≤w≤1 the weight of the criterion 

FFinal=∑FA’ + ∑FB’, for criteria A and B 

FFinal’=  FFinal*SCA* SCB* SCC 

(3.12) 

(3.14) 

(3.13) 

 
Figure 3.23: Display options 
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Figure 3.25: Perspective display of output 

 

 
Figure 3.24: Visualization options 
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Figure 3.26: Floor plan display of output 
 
 

3.3 Fine-tuning  
 

3.3.1 Experimenting with Spatial Constraints 
 
Efficiency of Spatial Constraints  

The accessibility constraint that turns the final evaluation into zero when no overlap between the building 
access area and the overlap zone exists turned out after several experiments to be a major drawback for the 
efficiency of the algorithm. After several runs of both the Genetic and the Simulated Annealing solver, no 
positive evaluation output came up.  
 The problem is that the case that all buildings display at least 5% overlap, is extremely rare and until one such 
solution is found, the algorithm wanders around in the solution space, receiving no feedback about whether or 
not it is getting closer to a better solution.  
 
‘Bonus’ in Evaluation Value when Spatial Constraints are met 

While trying to improve the system performance the following alternative was tested:  
Instead of turning the total evaluation of the solution to zero, the overlap of the buildings’ access area with the 
overlap zone is measured and added as a positive value to the sum of the evaluation. In this way, the solutions 
that do not display the desired overlap, but meet the other two constraints, can still be positively evaluated 
and forward the solution search of the solver, while an extra ‘bonus’ value would lead the solver to find the 
solutions that satisfy the third constraint as well. In order to maintain the importance of the evaluation criteria 
as guidelines for the solver, this extra value is translated within a numerical range that has a lower maximum 
value, than the evaluation criteria. Since the value range for each criterion is set to [0,1], the value range 
assigned to the constraint is [0,0.1]. In order to verify whether or not such a variation would work correctly, 
some experiments were done. The outcome of two of them (one for each solver) is seen on the images and 
diagrams below. The images show the best 25 solutions of each experiment and the diagrams show the 
evaluation values along a timeline. The weight of the insolation criterion is turned into zero, in order to 
minimize calculation times. The type of criteria driving the optimization does not affect the efficiency of the 
spatial constraints.  
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Figure 3.27 : 25 best solutions produced by the GA solver for constraint C acting as a ‘bonus’ value  

 

 

Chart 3.1: Evaluation values (FFINAL’) of EA solver for constraint C acting as a ‘bonus’ value 

 

The algorithm terminated after running for 13h and finding 4235 solutions above zero after 17226 iterations. 
27 of them have a value above 2 (maximum FFINAL’ =3,3). Even the ones with the higher values are not valid 
ones, since they do not have all buildings placed in the overlap zone. The criterion C is not met.  
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Figure 3.28: 25 best solutions produced by the SA solver for constraint C acting as a ‘bonus’ value  
 

 
Chart 3.2 : Evaluation values (FFINAL) of SA solver for constraint C acting as a ‘bonus’ value 
 

The algorithm ran for 13h finding 3935 solutions above zero in 23816 iterations. 1815 of them have a value 
above2 (maximum FFINAL’ =3,3). That doesn’t mean though that all 3935 solutions are valid solutions since the 
fulfillment of constraint C isn’t a restriction. We can see though that, at least in the best solutions, all buildings 
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are placed inside the overlap zone; thus there are valid solutions produced but their number cannot be directly 
calculated.  
 

Distance from path used as a guideline 

Even though the SA algorithm did manage to find proper solutions without having Constraint C setting the 
evaluation to zero, it was considered more appropriate to find a way to implement the constraints into the 
system in a way that we can have a clear expression of the results according to whether a solution is valid or 
not.  
Therefore criterion C was once again activated to turn the evaluation to zero and a workaround was 
implemented to ensure that the algorithm receives some sort of feedback while spatial constraints are not 
met.  

This feedback is the distance that each building has from the site access boundary. This distance is given a 
negative sign and added to the final evaluation value. That way instead of a constant zero value, when the 
performance criteria are not met, now the algorithm receives a negative value and tries to maximize it by 
bringing the buildings closer to the site access path.  This distance acts as a negative evaluation criterion, in the 
sense that it doesn’t actually evaluate a valid solution but an invalid one in order to improve it. As soon as the 
spatial constraints are met the negative distance value is no longer added to the total evaluation value, so that 
it won’t alter the evaluation results.  
 

 
Figure 3.29: 25 best solutions produced by the SA solver while feedback for fulfillment of SCC is given  
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Chart 3.3: Evaluation values (FFINAL’) of SA solver for constraint C acting as a negative evaluation criterion. All solutions 
displayed 

 

 

Chart 3.4: Evaluation values (FFINAL’) of SA solver for constraint C acting as a negative evaluation criterion. Only valid 
solutions displayed 
 

The algorithm ran for 10h finding 5409 valid solutions in 18106 iterations. 393 of them have a value above2 
(maximum FFINAL’ =3,3). All solutions above zero are valid solutions that meet all three constraints 
 

 
Alteration of Spatial Constraint C 

 
Since the buildings’ distance from the site 
access path also controls the accessibility 
requirements, it is considered unnecessary 
to maintain the operator that controls the 
overlap of the building’s access area with the 
overlap zone. Therefore the accessibility 
requirements constraint is no longer given by 
measuring the containment of the buildings’ 
access area in the overlap zone” but, by 
measuring the distance between the 
building’s access area and the site access 
area (d). The constraint leads to a valid 
solution if this distance is smaller than the 
longer edge of the building access area’s 
bounding polygon (L). In order to forward 
further flexibility in the accessibility 
requirements, this constraint is controlled by 
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Figure 3.30: Accessibility Constraint Operators 
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a weight parameter by the user. This accessibility weight “loosens” the constraint with a value range from 0-
100. 0% constraint relaxation means that the constraint acts as described previously and results in a solution 
where the building is adjacent to the site access area. 100% relaxation means that the building is allowed to be 
as far away from the path as possible. All the intermediate values result in respective way.  
 

SPATIAL CONSTRAINT C: ACCESSIBILITY REQUIREMENTS: 

 
 

 
Negative Evaluation Criteria 

After some experiments done for a relative big number of buildings the algorithm’s performance was still low 
because of the restrictions imposed by the other two spatial constraints: For a problem of locating many 
buildings into a relative small site (high density) the solver easily got lost without finding positive solutions, 
since the buildings almost always would overlap with each other and return 0 as an evaluation value without 
helping the algorithm orient in the solution space. Therefore the same logic was once again applied here: The 
overlap of the buildings with each other and also with the non-constructible area of the site is given a negative 

sign and added to the final evaluation value. The site’s non-constructible area ANCS is the union of a)the site 

access area, b)the non-constructible zone and c) the difference of the area of the site’s bounding box minus the 
site offset to y (y is the minimum distance that should be kept from the site boundaries). As soon as the spatial 
constraints are met, the overlaps turn, by definition, into zero and can be added to the final result without 
altering it.  

Thus the system is now producing three more values: NCA, NCB, NCB, the negative evaluation criteria. Each one 
of them corresponds to one of the spatial constraints and mainly expresses how far the solution is from the 
constraint’s fulfillment. They all have negative or zero values, and they are added to the final evaluation value. 

 

 

 

 
 

 

 

 

 

NCB = - [(AB1‘ + AB2‘ +... + ABN‘) ∩ (AB1‘ U AB2‘ U... U ABN‘)] 
 

where     ABi’  is the area included in the boundary offset from the buildings boundary to x/2, 

 iЄ{1,2,…,N} ,N the number of buildings on site    

 x is the minimum distance between two buildings, 

  

NCA = - Σ(ABi∩ANCS) 
 

where    ABi  the area of building(i) floor plan, iЄ{1,2,…,N} 

N the number of buildings on site    

ANCS the site non constructible area  

  

SCC = TRUE, when d < f(w) * L 
f(w)=((D-L)*w)/100+L 

where    d the distance between the building’s access area and the site access area 

L the longest edge of the building access area bounding polygon 

D the longest one of the distances between the points of the constructible site and 

the site access area 

0≤w≤100 the weight controlling the constraint’s relaxation  

(3.15) 

(3.16) 

(3.17) 

   -d  ,when SCC =FALSE 
NCC =  

    0 ,when SCC =TRUE 
 
where  d the distance between the building’s access area and the site access area 

 

(3.18) 
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 The system performance was tested for 5 buildings, while both criteria weights were set to 1 and so as to 
maximize both buildings proximity and solar insolation. 

 

Figure 3.31: 25 samples of the 200 best solutions produced by the SA solver after implementing negative evaluation 
criteria  
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Chart 3.5: Evaluation values (FFINAL’) of SA solver after implementing negative evaluation criteria. All solutions displayed. 
 
 

 
Chart 3.6: Evaluation values (FFINAL’) of SA solver after implementing negative evaluation criteria. Only valid solutions 
displayed 
 

The algorithm ran for 13h and finding 852 valid solutions in 2094 iterations.  
 

3-Dimensional spatial constraints 

The spatial constraints as already applied, express the relationships between the buildings and the site on two-
dimensional space, by controlling overlap and containment constraints through their floor plans. For irregular 
building geometries, where the building volume doesn’t exactly correspond to the floor plan, it is possible that 
the buildings overlap with each other or that they are not contained in the site even if the spatial constraints 
are met. Therefore the two first criteria should be adjusted in order to provide valid solutions independently of 
the geometry input. The negative evaluation criteria are also respectively adjusted. 

 

Figure 3.32: Volume overlap and failure in site containment for two buildings that meet the two-dimensional spatial 
constraints 
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3.3.2 GA VS SA 
 
As seen in the above experiments, the simulated annealing solver works better than the genetic solver in all of 
the implementation variations. The diagrams below show the evaluation values along with the parameters 
values that produce each solution. We can see that the genetic solver has a small range of values in the 
parameters, meaning that doesn’t actually experiment a lot in the solution space. It is rather focusing on one 
solution and tries to optimize it, in contrast with the SA, which finds a new solution in every iteration. We could 
conclusively say that the GA would be more suitable for a problem where only one solution exists and we aim 
at getting as closer to it as possible. In our case it is preferred that we find many good solutions, whose slight 
differences in the evaluation value are not particularly important. It is more important that a wide variety of 
solutions is produced each one with its pros and cons, so that the user can decide which is more suitable for 
the specific project.  
 

 

 

 

SCA = TRUE, when VB1 + VB2 +... + VBN =( VB1 U VB2 U... U VBN)∩VCS 
 
where     N the number of buildings on site    

 VBi  the volume of building(i), iЄ{1,2,…,N} 

VCS is the z extrusion of the site constructible area 

 VCS = VS’\(VSA U VNCZ) 

 VS’ is the z extrusion of the boundary offset from the site to y, 

 y is the minimum distance that the buildings have to keep from the site, 

 VSA is the z extrusion of the site access area, 

 VNCZ is the z extrusion of the non-constructible zone 

 
 
 
 
 
 
(3.19) 

SCB = TRUE, when VB1‘ + VB2‘ +... + VBN‘ = VB1‘ U VB2‘ U... U VBN‘ 
 

where     VBi’  is the volume of building (i) 

  

(3.20) 

NCB = - [(VB1‘ + VB2‘ +... + VBN‘) ∩ (VB1‘ U VB2‘ U... U VBN‘)] 
 

where     VBi’  is the volume produced by an offset of the buildings volume to x/2, 

 iЄ{1,2,…,N} ,N the number of buildings on site    

 x is the minimum distance between two buildings, 

  

NCA = - Σ(VBi∩VNCS) 
 

where    VBi  the volume of building(i) , iЄ{1,2,…,N} 

N the number of buildings on site    

VNCS the z extrusion of the site non-constructible area 

  

(3.21) 
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GENETIC SOLVER 
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SIMULATED ANNEALING SOLVER 
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3.3.3 Automated parameters input 
 
According to the way the system is finally implemented, the parameter input to the optimization solver has to 
be manually done by the user (3.2.2.Optimization.Solution Definition). Manually means that the user will have 
to copy and paste the sliders for a given number of times and then connect them to the solver component. 
Since the system designed should be a general application and is not designed to solve one specific problem, it 
would be more appealing to have in the end only one slider per parameter, one for the points and one for the 
angle.  This could be done if the parameter input for the solver was for each parameter a slider with a value 
from 0 to 1, which then leads to a selection of n random values from the original lists, where n is the number of 
buildings. In this way two numbers, both from 0 to 1 produce the solutions and each one of them results in n 
point ID and n angle values. The user doesn’t have to interfere with the procedure since it is automated and 
works independently of the number of buildings that exist in the specific problem. There is though one major 
drawback in this choice: the parameter input of the solver, these two 0-1 sliders, produce the buildings’ 
location points and values in an unexpected and random way and this is minimizing the efficiency of the solver, 
since it produces a problem whose solution landscape is discontinuous (Chart 3.8). 

 

 

 

Chart 3.7: Evaluation values for point parameter : discontinuous landscape 

 
 
 
 

 
Chart 3.8: Evaluation values for point parameter: continuous landscape 
 

 

Therefore the decision made was to sacrifice the user’s convenience in some degree in order to gain a much 
higher efficiency of the system.   

 
 
 
 

0,00

0,50

1,00

1,50

2,00

2,50

3,00

0
71

35
1

50
7

66
5

99
9

11
39

12
59

13
29

13
60

13
72

13
76

13
76

13
90

14
19

14
19

14
19

14
20

14
23

14
25

14
26

14
27

14
28

14
29

14
29

14
29

14
29

14
32

14
32

14
32

14
32

14
32

14
36

14
40

14
43

14
43

14
43

14
43

14
43

14
49

14
50

14
50

14
50

14
50

14
50

14
50

14
50

14
50

14
50

14
50

F F
IA

N
L'

  V
al

u
es

 

Point Parameter 

FFINAL'

0

0,5

1

1,5

2

2,5

3

74
0

74
0

74
0

74
0

74
0

74
0

74
0

97
8

99
3

10
01

10
01

10
01

10
01

10
01

10
01

10
01

10
01

10
01

10
01

10
01

10
01

10
01

10
01

10
01

10
01

10
01

10
01

10
01

10
01

10
01

10
01

10
01

10
01

10
01

10
01

10
01

10
01

10
01

10
01

10
01

10
01

10
01

10
01

10
01

10
01

10
01

10
01

10
01

10
01

10
01

F F
IN

A
L'

  V
al

u
es

 

Point Parameter 

FFINAL'



46 
 

3.4 Use Scenario 
 
The actual user interface is mainly the ‘Grasshopper’ interface. The user shouldn’t have any previous 
programming experience, knowledge of the optimization algorithms or of the system structure. Previous 
experience in ‘Grasshopper’s” environment would be helpful since the user would already be familiar with the 
actions required in order to set the input and handle the setting options. It isn’t though a requirement, since it 
is easily manageable from anyone with experience in CAD systems.  
 

The system is graphically divided into ‘user’ and ‘technical’ area. The red outline defines the user area which is 
numbered according to the steps the user should complete in order to perform an optimization run: 
 

1. Design parameters input 
2. Optimization settings 
3. Optimization 
4. Documentation 
5. Visualization 

 
Explanation comments describe the procedure that should be followed in every step. The technical part is 
available for users who are already in a high extend familiar with the software, to facilitate possible 
experimentation or system improvement. Thus all the options and settings could potentially be manipulated by 
the user, allowing for a high extend of flexibility, without though resulting in a complex interface, since the 
absolute necessary steps are isolated and ordered.  
 

 

 

Figure 3.33: ‘Site-Planner’ Interface 
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4 Examples 
EXAMPLE 1 

INPUT: 

 
OUTPUT:

 

SITE INPUT: 

       
BUILDINGS  INPUT: 

                                      
     (Building 1)  *  2                              (Building 2)  *  1                                (Building 3)  *  2  

 

EVALUATION CRITERIA: 
 
W BUILDINGS PROXIMITY = 1    minimize buildings proximity 
W SOLAR INSOLATION = 0 
 
declination from site access: 70% 

 
 
 

                                       

             

 

BUILDINGS PROXIMITY = 1,79 (maximum=5) 
Calculation time = 17 min 
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EXAMPLE 2 
INPUT: 

 
OUTPUT:

 

 

SITE INPUT: 

       
BUILDINGS  INPUT: 

                                      
     (Building 1)  *  2                              (Building 2)  *  1                                (Building 3)  *  2 

 

EVALUATION CRITERIA: 
 
W BUILDINGS PROXIMITY = 1    minimize buildings proximity 
W SOLAR INSOLATION = 0  
  
declination from site access: 0% 

 
 
 

                                       

             

 

BUILDINGS PROXIMITY = 1,43 (maximum=5) 
Calculation time = 42 min 
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EXAMPLE 3 
INPUT: 

 

OUTPUT:

 

SITE INPUT: 

       
BUILDINGS  INPUT: 

                                      
     (Building 1)  *  2                              (Building 2)  *  1                                (Building 3)  *  2 

 

EVALUATION CRITERIA: 
 
W BUILDINGS PROXIMITY = 1    maximize buildings proximity 
W SOLAR INSOLATION = 0 

 
declination from site access: 0% 

 
 
 

                                       

 

 

BUILDINGS PROXIMITY = 4,48 (maximum=5) 
Calculation time = 36 min 
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EXAMPLE 4 
INPUT: 

 

OUTPUT:

 

SITE INPUT: 

       
BUILDINGS  INPUT: 

                                      
     (Building 1)  *  2                              (Building 2)  *  1                                (Building 3)  *  2  

 

EVALUATION CRITERIA: 
 
W BUILDINGS PROXIMITY = 0 
W SOLAR INSOLATION = 1      maximize solar insolation     
 
declination from site access: 10% 

 
 
 

                                       

 

 

SOLAR INSOLATION = 0,66 (maximum=5) 
Calculation time = 6h 21 min 

 

Latitude: 48.21
o
 

Longitude: 16.37o 
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EXAMPLE 5 
INPUT: 

 

OUTPUT:

 

SITE INPUT: 

       
BUILDINGS  INPUT: 

                                      
     (Building 1)  *  2                              (Building 2)  *  1                                (Building 3)  *  2  

 

EVALUATION CRITERIA: 
 
W BUILDINGS PROXIMITY = 1               maximize buildings proximity     
W SOLAR INSOLATION = 1              maximize solar insolation     
 
declination from site access: 30% 

 
 
 

                                       

 

                                

BUILDINGS PROXIMITY = 4,35 (maximum=5) 
SOLAR INSOLATION = 1,16 (maximum=5) 

Calculation time = 7h 08 min 

 

Latitude: 25.03
o
 

Longitude: 121.53o 
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5 Case studies 
 
In order to verify how useful such a system would be and whether or not it could produce meaningful results 
we will examine two case studies, that represent existent design, simulated in the above described 
implementation. The case studies are chosen with main criterion that the designer was driven by the specific 
constraints we already set as evaluation criterion i.e. solar insolation and distance between buildings. Under 
such circumstances, we can prove whether or not the above criteria are confronted by the system in a better 
way than by human design and what the consequences are for other design aspects.  
 

5.1 Taipei City Wall by BIG Architects 
 

 

Figure 5.1: Taipei City Wall  (http://www.big.dk/#projects) 
 

 

The Taipei City Wall, a 82,000 m2 residential project in the center of Taipei, was assigned to the Danish 
architectural practice BIG by Taiwan Land Development Corporation.  

The architects wanted to achieve the high density of a city center without losing the benefits of the less dense 
populated suburban areas. Maximization solar insolation and wind penetration, maximization of green roofs 
and gardens and the creation of a more ‘neighborhood-like’ atmosphere were the main goals of the design.  

Starting point for the design process was a set of 5-floor cubical building modules of 15m long edges, with 
equivalent in floor plan exterior space. As a second step the modules were placed on top of each other in order 

http://www.big.dk/#projects
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Figure 5.4: Maximal height and central placement in 
order to gain public green space 
(http://www.big.dk/#projects) 
 

 

to increase the density. The overlap of the buildings is minimized to a small surface large enough to host the 
vertical connections, in order to achieve the desired garden areas.  

 

 

 

 
 
This unit was then multiplied across the central axis of the site resulting in a 72-cube “wall”, leaving most of the  
site’s area free to create public green space.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.5: Stretching the volume to promote daylight 
and add shared recreational gardens 
(http://www.big.dk/#projects) 
 

 

Figure 5.2: Building Module  
(http://www.big.dk/#projects) 

Figure 5.3: Vertical placement  
(http://www.big.dk/#projects) 
 

 

http://www.big.dk/#projects
http://www.big.dk/#projects
http://www.big.dk/#projects
http://www.big.dk/#projects
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Figure 5.6: The volume is lowered at one side in order 
to break down the scale of the building 
(http://www.big.dk/#projects) 
 

 
 

 
 

 
Figure 5.7: Pushing the building back into the site 
creates overlapping which hold the cores 
(http://www.big.dk/#projects) 
 
 

 

By ‘pressing’ the cubes in order to be contained in the site, the wall becomes curved and the gardens between 
them become trapezoid in floor plan instead of rectangular, therefore having an opening to the sun which is on 
the one side bigger than on the other.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

At the end 6 cubes are removed in an attempt to balance the relationship of the building with the neighboring 
plots, where lower building and open heights are more dominant.  

The result is as dense as desired by the developers while simultaneously doubles the free space available.  

 

The desire to maximize solar insolation in this project makes it an ideal case study for testing the implemented 
system. The building simulation will be done based on the initial concept of the vertical unit repetition, without 
the final adjustments of extracting some units and lowering one side. This is a decision that can be made after 
the basic design is produced. The solar insolation criterion can be evaluated once in the given design and once 
in the system outcome and the results will be compared also taking in mind the other criteria of the design. The 
maximization of the buildings proximity is also object of optimization since, the intention was to gather the 
buildings to the center of the site. Both weights are set to 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.big.dk/#projects
http://www.big.dk/#projects
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CURRENT BUILDING 

 
EVALUATION VALUES: 

 
SOLAR INSOLATION: 1.44 (12 max.) 
BUILDING PROXIMITY: 8.45 (12max. ) 

 

ABSOLUTE VALUES: 

 
SOLAR INSOLATION: 552.38 
BUILDING PROXIMITY: 1488.10 m 
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SOLUTION 1 

 
EVALUATION VALUES: 

 
SOLAR INSOLATION: 1.19 < 1.44 (12 max.) 
BUILDING PROXIMITY: 8.63 > 8.45 (12 max.) 

 

ABSOLUTE VALUES: 

 
SOLAR INSOLATION: 456 < 552.38 
BUILDING PROXIMITY: 1321 < 1488.10 m 

Calculation time: 72,5 h 
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The system didn’t achieve a better insolation value than the one that the original layout of the buildings 
displayed. Moreover the result displays major ‘disorder’ in the way the buildings are placed next to each other 
and therefore it is more likely that it wouldn’t be approved by the designers.  
This mainly happened because of the extremely large calculation times needed. The high density in the site 
means that the system needs to search for a long time in the solution space until a valid solution, where the 
spatial constraints are met, is found. Therefore it produces very few valid solutions in a long time period. 
During the 72,5h run, the system was able to perform three SA runs which means that the results depict three 
solutions categories. Each category includes many valid solutions which mainly express one basic design with 
only small alterations that sometimes are not even noticeable.  

 

5.2 Greater Noida Housing by FXFOWEL 
 
 

The Greater Noida Housing Project is a 400,000 m² residential development, in the planned city of Greater 
Noida situated 30 miles southwest of New Delhi. It is designed by FXFOWEL architects, who considered the 
environmental and social sustainability as main criterion of this project.  
 

 

Figure 5.8: Greater Noida Housing Complex (http://www.fxfowle.com/) 
 

 

 

 

http://www.fxfowle.com/
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In order to reach environmental sustainability, the architects placed the units above each other while shifting 
floors and creating voids and open outdoor spaces, thus not only adding a textural vertical living environment 
and lightening the scale of the project, but also letting air and sunlight penetrate the complex.  

The complex consists of 22 buildings which are formulated by modules stacked between terracotta colored 
sheet walls that also act as sun blocks. The majority of the planned 1700 residential units have a north-south 
orientation to maximize solar exposure in the winter months. A number of floors are left open to allow cooling 
summer monsoon breezes maintain comfortable living conditions within the elevated living spaces. The voids 
between floors also contain balconies and public spaces encouraging interaction between the residents.  
Larger buildings stand up to forty-five stories and block winds on the north side of the 47 acre site. A cluster of 
smaller buildings to the south let winter light penetrate the green belt between the buildings, creating an 
overall effect of a small scale city.  

 

Figure 5.11: Site Plan (http://www.fxfowle.com/) 
 

For the needs of the simulation it was considered an appropriate solution to divide the site in two parts, since 
the strategy was to place all the high buildings to the north and the lower ones to the south. Therefore the site 
is divided according to the given design in two parts: The northern one containing 5 higher buildings and the 
southern one containing the 17 rest. The intention is to maximize solar insolation and minimize buildings 
proximity, since it is important that wind and light penetrates the site. Both criteria weights are set to 1.  

Figure 5.9: Buildings Elevation  
(http://www.fxfowle.com/) 

 

Figure 5.10: Building Section 
(http://www.fxfowle.com/) 

 

http://www.fxfowle.com/
http://www.fxfowle.com/
http://www.fxfowle.com/
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CURRENT BUILDING – Part A 

 
EVALUATION VALUES: 

 
SOLAR INSOLATION: 0.96 (max. 5) 
BUILDING PROXIMITY: 1.58 (max. 5) 

 

ABSOLUTE VALUES: 

 
SOLAR INSOLATION: 347  
BUILDING PROXIMITY: 1140.00 m 
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CURRENT BUILDING – Part B 

 
EVALUATION VALUES: 

 
SOLAR INSOLATION: 2.61 (max. 17) 
BUILDING PROXIMITY: 5.17 (max. 17) 

 

ABSOLUTE VALUES: 

 
SOLAR INSOLATION: 948 
BUILDING PROXIMITY: 3418.00 m 
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SOLUTION 1 – Part A 

 
EVALUATION VALUES: 

 
SOLAR INSOLATION: 1.10 > 0.96 (max. 5) 
BUILDING PROXIMITY: 1.46 < 1.58 (max. 5) 

 

ABSOLUTE VALUES: 

 
SOLAR INSOLATION: 400 > 347  
BUILDING PROXIMITY: 1052.31<1140.00 m 

Calculation time: 2,8 h 
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CURRENT BUILDING – Part B 

 
EVALUATION VALUES: 

 
SOLAR INSOLATION: 2.77 > 2.61 (17 max.) 
BUILDING PROXIMITY: 5.12 < 5.17 (17 max.) 

 

ABSOLUTE VALUES: 

 
SOLAR INSOLATION: 1003.82>948 
BUILDING PROXIMITY: 3389.85<3418.00 m 

Calculation time: 8,5 h 
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The interpretation of the final arrangement of the buildings is controversial, basically because very small 
distances between the buildings where sometimes kept and it can be considered that this contradicts the initial 
wish of the designers to keep large distances and let sun and wind penetrate the building. Another issue would 
be here as well the amount of order in the final layout, which is rather a matter of aesthetics and personal 
preferences.  

The solar insolation of the building complex was indeed improved by 7,45%. 

 

 

6 Conclusion 
 

6.1 Capacities/limitations  
 
 

User Input 

The user input regarding the buildings is not quite straight forward. The system is designed in such a way, that 
the user won’t have to manually insert the appropriate number of components according to the number of 
buildings on the site. In order to accomplish that and facing the fact that the system is not actually 
implemented in a programming language but in a graphical algorithm editor, that treats data structures with 
certain limitations, the input process is designed in such a way that the user has to be extremely careful when 
selecting the input geometry: all the buildings have to be selected the same order for each parameter. That 
means that the user should select one polyline defining the buildings floor plan boundary for Building 1, 
Building 2, …. and then maintain this order of buildings while selecting the rest of the parameters (building 
access boundary, building volume). All the parameters have to be one single object. If one building has for 
example two entrances, they still have to be entered as one polyline. If one parameter is omitted for one 
building, then the output will be incorrect: if one building does not have a defined entrance area the user 
should enter the whole area in the building access input, in order to maintain a proper data structure in the 
system.  
 

Solar Insolation 

The solar insolation criterion is evaluated through an abstracted method, of calculating the sun rays that hit the 
buildings envelope. A more accurate calculation could be done through a software for solar analysis ‘Ecotect’, 
since there is already a connection between these platforms that allows interactive feedback by exporting the 
grasshopper geometry into the ecotect environment and importing the results for visual feedback. Such a 
solution would be though unfeasible, since the calculation time is at least 10 times bigger than is currently 
needed and for a big number of buildings or for complex geometry, that would strongly reduce time efficiency.  

 
Offsets 

The spatial constraints are built on operators that produce curve and polysurface offsets. Therefore they are 
subject to malfunctions that often occur in design software depending on the geometry input. Such 
malfunctions may result in falsification of the results and the solution evaluation.  
 

Calculation Time 

The calculation time grows along with the complexity of the design simulated. For a set of five buildings of 
relatively simple geometry and both criteria weights bigger than zero, the system needs approximately 3-4 
hours to produce one solution. Reaching the number of 10 buildings the calculation time can last 24h. The long 
calculation times are mainly a result of the time needed to calculate the solar insolation. Even though the 
system doesn’t perform a regular solar analysis but just a calculation based on a simplification method, its 
efficiency regarding the time parameter is still low. Considering the fact that the system is designed in order to 
provide solutions for a complex design input, this is a major drawback.  
Respectively, when displaying on screen results of solutions where solar insolation is calculated, the response 
time while manipulating the display settings is also large.  
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6.2 Proposals for future research 
 
 

Partial Solar Insolation Evaluation 

It is seen in many cases that the placement of a building is done in a way that tries to optimize sun exposure 
only in parts of the buildings, either because of the intended usage (different uses in south/north façade) or 
because of the intention to use specific facades or the roof for solar panels. Thus it would be a very useful 
feature if the user could only select parts of the building for the solar insolation evaluation. 

 

Buildings’ Distribution on the Site  

We noticed through several experiments and examples that the system tends to ‘group’ the buildings while 
trying to minimize their proximity. Since this is not always the desired result, it would be a useful feature if the 
type of distribution of the buildings on the site could be controlled by the user.  
 

Layout Rules  

As seen by the results, the system output almost always diverges from conventional site planning design 
because of the lack of order in the layout. Independently of whether order should be a desired feature or not, 
the system could be adjusted to fit such design criteria. A simple method to achieve that, would be to 
implement a settings option restricting the difference of the value angles of the buildings to n*90 degrees with 
n Є (0,1,2,3). This would of course have a negative impact on the solar insolation optimization, since the 
solution space would be considerably reduced. 

 

Neighboring Buildings Input 

The neighboring buildings affect the shading efficiency of the buildings on site, and should be in the future 
incorporated into the system implementation.  

 

Site Input 

Another useful feature that affects both accessibility and solar insolation is the sites morphology; the current 
implementation considers the site as a two dimensional object. By introducing a z-value, a reconsideration of 
the spatial constraints regarding accessibility would be necessary.  
 
 

Design Criteria 

In general, more evaluation criteria could be implemented so that the system could be more efficient in terms 
of meeting the needs of a designer. One of these criteria could be the ability to obtain certain views from 
certain locations on the site or the privacy/publicity of space.  
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Appendix A. System Operators 
 
Spatial Constraints 

 

 

 

 
Evaluation Criteria 

 

 

A: CONTAINMENT IN CONSTRUCTIBLE SITE 

SCA = TRUE, when VB1 + VB2 +... + VBN =( VB1 U VB2 U... U VBN)∩VCS 
 
where     N the number of buildings on site    

 VBi  the volume of building(i), iЄ{1,2,…,N} 

VCS is the z extrusion of the site constructible area 

 VCS = VS’\(VSA U VNCZ) 

 VS’ is the z extrusion of the boundary offset from the site to y, 

 y is the minimum distance that the buildings have to keep from the site, 

 VSA is the z extrusion of the site access area, 

 VNCZ is the z extrusion of the non-constructible zone 

B: BUILDINGS OVERLAP 

SCB = TRUE, when VB1‘ + VB2‘ +... + VBN‘ = VB1‘ U VB2‘ U... U VBN‘ 
 

where     VBi’  is the volume of building (i) 

  

C: ACCESSIBILITY REQUIREMENTS 

SCC = TRUE, when d < f(w) * L 
f(w)=((D-L)*w)/100+L 

where    d the distance between the building’s access area and the site access area 

L the longest edge of the building access area bounding polygon 

D the longest one of the distances between the points of the constructible site and the 

site access area 

0≤w≤100 the weight controlling the constraint’s relaxation  

A: BUILDINGS PROXIMITY 

1-[((DB1Bi  + DB2Bi + …… + DBNBi)/(N-1)) / DPoPM], when maximizing proximity 
FAi = 

((DB1Bi  + DB2Bi + …… + DBNBi)/(N-1)) / DPoPM, when minimizing proximity 

 
Where DBiBj the distance between building (i) and building (j), N the number of buildings and i, j Є 

(1, 2, …, N) and Po, Pm the two more distant points on the site 

∑FA=FA1 + FA2 + ……. + FAN        , for N number of buildings 
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Negative Evaluation Criteria 

 

 

 

 

MO Optimization 

 

 

 

 

 

 

B: SOLAR INSOLATION 

 Σsin(a)/NR, when maximizing solar insolation 

FBi =  
  1 - Σsin(a)/NR, when minimizing solar insolation 

where a the angle between the sun ray vector and the building and NR the total vectors of the sun 
analemma produced 

∑FB=FB1 + FB2 + ……. + FBN  , for N number of buildings 

A: CONSTRUCTIBLE SITE CONTAINMENT 

NCA = - Σ(VBi∩VNCS) 
 

where    VBi  the volume of building(i) , iЄ{1,2,…,N} 

N the number of buildings on site    

VNCS the z extrusion of the site non-constructible area 

  

B: BUILDINGS OVERLAP 

NCB = - [(VB1‘ + VB2‘ +... + VBN‘) ∩ (VB1‘ U VB2‘ U... U VBN‘)] 
 

where     VBi’  is the volume produced by an offset of the buildings volume to x/2, 

 iЄ{1,2,…,N} ,N the number of buildings on site    

 x is the minimum distance between two buildings, 

  

C: ACCESSIBILITY REQUIREMENTS 

   -d  ,when SCC =FALSE 
NCC =  

    0 ,when SCC =TRUE 
 
where  d the distance between the building’s access area and the site access area 

 

∑F’ = ∑F*w  , where 0≤w≤1 the weight of the criterion 

∑NC = NCA + NCB + NCC 

FFinal=∑FA’ + ∑FB’+∑NC, for criteria A and B 

FFinal’=  FFinal*SCA* SCB* SCC 
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Appendix B. User Interface 
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Appendix C.  Genetic Solver 

Provided in Galapago’s documentation by David Rutten  

(http://ieatbugsforbreakfast.wordpress.com/2011/03/04/epatps01/) 

 
PROCCESS 
For the problem subject to optimization we should be able to 
define a set of variables to whom in terms of evolutionary 
computing we refer to as genes. The fitness of every solution 
is the function, depending on these variables, that decides 
how suitable every solution is or how close it is to the optimal 
solution, if there is one. For a model that would contain two 
variables (genes) the fitness landscape would look like Figure 
C.1. 
As we change Gene A, the fitness of the solution model 
changes and it either becomes better or worse (depending on 
what we’re looking for). But for every value of A we can also 
vary gene B, resulting in better or worse combinations of A 
and B. Every combination of A and B results in a particular 
fitness and this fitness is expressed as the height of the 
Fitness Landscape.  
 

 
Of course a lot of problems are defined by a much higher number of genes, in which case there is no longer a 
“landscape” in the traditional sense but a n-dimensional fitness volume deformed in n+1 dimensions,(where n 
is the number of genes), as in the previous example a two dimensional fitness plane is deformed in 3 
dimensions.  
For simplification reasons the process is explained using the two-dimensional example.  
 
Beginning to find the best fitting solution we start with a randomly selected population of genomes –
Generation 0-since we have no information about what should be the starting point. After the fitness of every 
genome of generation 0 is evaluated, they are sorted from lower to higher value. Based on the reasonable 
assumption that the higher genomes are closer to the highest solution, the worst performing genomes are 
excluded and the remainder are the ones on which the focus is on.   
 

 

 
By breeding these more efficient genomes we can form the next generation, generation 1. When we breed two 
genomes their offspring will end up somewhere in the intermediate model space; thus exploring fresh ground. 
The new population, which is no longer completely random, is already starting to cluster around the fitness 
“peaks”. Repeating the above steps will lead eventually to the highest one.  
 

Figure C.2: Generation 0 Population Figure C.3: Intermediate Generation Population 

Figure C.1: : Fitness Landscape for a problem with 
two variables 
 

http://ieatbugsforbreakfast.wordpress.com/2011/03/04/epatps01/
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In order to perform this process, an evolutionary solver requires five interlocking parts, which will be further 
described: 
 

 Fitness Function 

 Selection Mechanism 

 Coupling Algorithm 

 Coalesence Algorithm 

 Mutation Factory 
 

Fitness Functions, Definition of Fitness 
 
Opposed to biological evolution where fitness is the result of a huge number of conflicting forces, in 
evolutionary computation fitness is a very easy concept. It can be whatever we want it to be.   When we are 
trying to solve a specific problem we know what it means to be fit and we can define a strict fitness function to 
express it.  
 
Taking once more as an example the fitness landscape that refers to a problem with two variables, we can 
depict in the following shape how every genome is trying to improve its fitness through the process of the 
solver. Focusing on a genome that was initially positioned on the bottom of the fitness landscape (Figure C.6) 
the route that represents the pathway of its most successful offspring is a route climbing uphill along the 
steepest slope to the nearest local optima. If this representation was done for a large amount of sample points 
the fitness landscape would look like the shape of Figure C.7 

 
 
 
 

Figure C.4: Later Generation Population Figure C.5: Last Generation Population 

Figure C.6: Genome route Figure C.7: Population routes 
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As shown in the figures above, every peak in the fitness landscape has a basin of attraction around it that 
represents all genomes that converge upon that specific peak. The area of each basin is definitely not 
representative of the quality of the peak. A poor solution can actually have a large basin of attraction, while a 
good solution may have a very small one, depending on the nature of the problem. This relation between the 
area of the basin of attraction and the quality of the solution and in general the form of the fitness landscape 
has major impact on how successful the solver is going to be.  
 

In the following example (Figure C.8 ) we see a 2-
dimensional graph representing the fitness 
landscape while the solver tries to find the 
minimum bounding box of a cylinder, using as 
variables two axis of rotation (two genes). We can 
see that such a problem could be successfully 
confronted by the solver: the fitness landscape is 
periodic, the solutions are of equal quality and 
there are no local optima. No matter where the 
starting point of a genome is, it will definitely end 
up in a peak that is of maximum quality.  

 

 

 

Unfortunately, not all problems can be so easily solved. In the following graphs Figure C.9-Figure C.12 ) we can 
see a number of different cases representing problems, whose solutions are much more difficult to find.   

 

 

 

 
 
In Figure C.9 we can see that there are two types of solution: one of lower quality but larger area of basin of 
attraction (represented in pink color) and one of better quality but much smaller basin of attraction (yellow 

Figure C.9 Local maxima Figure C.10 Maxima with small basin area 

Figure C.11: Flat basins Figure C.12: Noise in fitness landscape 

 

 
Figure C.8: Fitness Landscape 
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color). It is easily understood that many genomes (almost half) can be trapped in the area of the poorest 
quality local maxima and thus result in an inefficient solution.  
An even worst case is shown in Figure C.10, where the solutions are found only when a genome happens to be 
generated in a very small basin. Here it is really easy to totally miss the solution or miss the best solution when 
finding one local optima.  

In Figure C.11 there are no forces leading the genomes while they are located in the intermediate steps toward 
the peak. Therefore it is not easy to follow a route from the poorest towards the best solution since the 
upgrade from step to step can only be done by luck without any indication of where the genome should lead 
to.  

The last example Figure C.12 shows a fitness landscape with a large amount of noise, which makes it very hard-
almost impossible- for the genomes to orient themselves towards the best solutions. Both ancestors may be of 
high quality but their offspring may result in a poor solution.  

As seen through these examples the definition of the problem plays a significant role on how efficiently a 
genetic algorithm could act. 

 

Selection  
 
The process of selection refers to the selection of the genomes that get to “mate” and therefore pass their 
genetic characteristics to the following generation. There are many selection algorithms available in 
computation: isotropic, exclusive and biased selection.  
 
Isotropic selection is the simplest selection algorithm; in fact it expresses the lack of a selection algorithm, since 
all genomes have equal chances to mate regardless of their fitness evaluation. (Figure C.13).  
 

Even though this strategy may seem that is not 
furthering the evolution of the gene-pool, it still 
serves the efficiency of the solver since it acts as a 
hold up-mechanism towards the fast colonization of 
local optima which could lead to an inferior solution. 

Even in nature such a selection mechanism exists 
indeed, like for example in wind pollination, coral 
spawning or in a walrus colony where all female of 
the colony get to mate independent of how fit they are.   

 
In Exclusive selection only the best N% of the population is selected to produce offspring for the next 
generation. In Biased Selection, the chances that a genome produces offspring increase as the fitness increases 
resulting in a curve like the one shown in Figure C.15 , which can be further flattened or exaggerated through 
the use of amplifying algorithms.  
 

 

 

 

Figure C.13: Isotropic Selection 

Figure C.14: Exclusive selection Figure C.15: Biased Selection 
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Coupling 
 
As soon as the selection algorithm finds the appropriate genomes that will form the next generation, the 
coupling process begins. During this process each selected genome has to find its mate in order to produce the 
offspring. There are many algorithms for the coupling process.  
 

This genomic distance is an abstract reference to the similarity of 
the genomes that are chosen for mating. This is represented in 
Galapagos’ interface through a graph called Genome Map 
(Figure C.16), a two-dimensional mapping of the distance 
between the genomes in a multi-dimensional model space.  

All individuals (genomes) are displayed as dots on a grid in a way 
that the distance between them relates to the distance in gene-
space. Since it isn’t possible to map an N-dimensional point 
cloud (where N is the number of genes) on a 2-Dimensional grid 
with pure accuracy, the genome map is by definition an 
approximation graph displaying rough analogies. Therefore there 
is also no value for the axis of the graph, the only information 
that we can get out of it is the similarity of two genes (depending 
on how close to each other or far away they are). 

Based on this graph we can represent the ways that coupling takes place.  

 
 
  
When a genome selects its mate from the area close it itself in the genome 
map, it selects a very similar genome and therefore the offspring that they 
produce will also be quite similar. This behavior is to some extend desirable 
but when taken to extremes it can harm the diversity of the population. It is 
usually characterized as incestuous mating behavior and it decreases the 
chances of finding alternative solution basins – thus increases the chances 
of getting stuck in local optima (Figure C.17). 
 

 

 
The other extreme is to mate with totally different genomes, located far away in the genome map.  Excluding 
every genome that is near the selected one is called zoophilic mating (Figure C.18) and can also cause 
extinction, especially when the population is not a single group but a sum of several sub-species (Figure C.19). 
In that case it is possible that the offspring ends up somewhere in the middle between the two local optima, 
not resulting in a meaningful solution.  
 

 

 

 

 

 

 

 

 

 

Figure C.16 : Genome Map 

Figure C.17 : Incestuous mating 

Figure C.18 : Zoophilic mating Figure C.19 : Population with sub-species 
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The best option would be to balance in- and out- breeding so that the 
individuals are neither too close nor too far (Figure C.20), taking of 
course in mind the nature of the problem that we are trying to solve. 
The morphology of the solution graphs of the problem and whether 
the problem has one peak or many is quite important for the coupling 
strategy that we will follow.  

Working with Galapagos a certain degree of flexibility on the type of 
coupling strategy that we follow exists through the option of setting 
the in- and out- breeding.  

 

The main disadvantage of the algorithm used, is that it completely ignores the fitness of the genomes that are 
selected for mating and only acts based on the similarity between them.  

 

Coalescence 
 
While producing the offspring of two genomes in order to populate the next generation, we have to decide 
what gene values are going to be selected. The gene recombination procedure in computation is much simpler 
than in nature, since the genes are continuously variable qualities that do not have discrete characteristics, but 
can assume instead all numerical values between two numerical extremes. There are many mechanisms for 
this procedure like crossover, blend and preferenced-blend coalescence.   
 
Crossover coalescence is the recombination of genes between two genomes when the offspring inherits a 
random number of genes from one genome and the rest from the other one, so that the gene value is 
maintained. This procedure is best suited for cases when the two genomes initially selected to mate, are quite 
similar with each other.  
 
During blend coalescence, the gene values are also changing, basically adapting an average value between the 
two original genes.  
 
If we apply preferenced – blend coalescence, then the new value assigned to the offspring gene, tends to be 
more similar to the original gene value displaying the higher fitness.  
 

 

 
 
 
Mutations 
 
The previous mechanisms incorporated in the procedure of producing the next generations improve the quality 
of the solution generation by generation, but unfortunately they tend to reduce the bio-diversity of the 
population causing in extreme cases the population to extinct or get caught in local optima not finding the best 
solution. The mechanism that can actually further bio-diversity is mutation.  
 

Figure C.20 : Balanced in- and out-breeding 

Figure C.21 : Crossover, Blend and Preferenced-Blend Coalesence 
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The explanation of mutations will be done through Genome 
Graphs. A Genome Graph is a graph allowing the 2-
dimensional representation of a multi-dimensional point.  
Every point in multi-dimensional space is displayed as a 
series of lines that connect different values. X axis is 
representing the genes and thus every vertical bar is 
another dimension.  The Y axis is showing the gene values. 
These are absolute values in the sense that their value is 
showing their location regarding to the lower and upper 
limit. Using Genome Graphs not only we can describe multi-
dimensional points but we can also represent points with 
different number of dimensions on the same graph.  

 

 
During point mutation a single gene value is altered. Point Mutation is the only mutation available in 
Galapagos. Another type of mutation is swapping the values of two neighboring genes. This type of mutation 
(inversion mutation) is useful only when it serves an equivalent relation between the genes. Otherwise it has a 
negative impact on the process.  

 
  

 

Adding or deleting a gene is performed when the genomes do not require a fixed number of genes. This is not 
possible when working only with a fixed number of genes.  
 

 

 
 

Figure C.22: Genome Graph of a 5-gene genome 

Figure C.24 : Point mutation Figure C.23 : Inversion Mutation 

Figure C.26 : Deleting a gene Figure C.25 : Adding a gene 
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Appendix D.   Simulated Annealing Solver 
 
Provided in Galapago’s documentation by David Rutten  

 (http://ieatbugsforbreakfast.wordpress.com/tag/simulated-annealing/) 

 

The second solver available within Galapagos implements the Simulated Annealing algorithm. Like the existing 
Evolutionary solver, Simulated Annealing is also a meta-heuristic technique, but works in a fundamentally 
different fashion. Having access to both solvers makes it easier to circumvent some of the shortcomings of 
each. Ironically, Simulated Annealing is a much simpler process than Simulated Evolution but may be harder to 
understand since the real-world analogy is more abstract and based on a less well known process. 

In metallurgy, annealing is the process of controlled heating and cooling of metal to achieve certain material 
properties. At first, the metal is heated up to melting point so it can be cast or formed. At an atomic level, heat 
is nothing more than particle velocity. The particles (atoms & molecules alike) in a hot substrate move faster 
than the same particles in a cold substrate. At some point the velocity of two particles will be so high that they 
cannot succeed in forming a persistent bond between them. When this happens the substrate loses internal 
structure and turns liquid. 

Similarly, when a substrate is liquid but starts to cool down, there will come a point where the atoms can form 
lasting bonds and the internal structure of the substrate is resurrected, turning the liquid into a solid. In 1866 
James Clerk Maxwell formulated the equations that described the distribution of particle velocities in a gas of 
constant macro temperature. For example, a  litre of helium gas at room-temperature contains roughly 3 × 
1022 atoms and the most probable speed of these atoms is a little over a 1000 meters per second. However 
there will be a lot of very slow atoms as well as a few much faster ones. This same phenomenon holds for 
liquids too, although the velocity distributions are not as well defined nor do they cover quite so large a range. 

The upshot of all this is that when a substrate is allowed to cool, some atoms will cross the liquid/solid 
threshold before others. In other words, a substrate doesn’t freeze everywhere at once, small clumps of 
relatively slow atoms group together and form the freezing ‘seeds’. Especially when we’re talking about metals 
this is important because when metal atoms freeze, they like to form a regular lattice, or crystal. 

These small islands of glued together atoms grow over time as more and more slow atoms attach themselves 
to the seeds, allowing the micro-crystals to expand. When cooling lasts long time, atoms are allowed to find the 
optimal (minimal energy) distribution. If on the other hand cooling is very quick —for example by dumping the 
hot metal into water— there is no time to form large crystals and the substrate becomes amorphous. 
 

 

Figure D.1: Atoms in liquid metal 
 

 
 
 

                   
 

         
 
 

                   
 

                   
 
 

                   
 

Figure D.2: Atoms in liquid metal Figure D.3 Crystal seeds in semi-liquid 
metal 
 

Figure D.4: Regular atomic lattice 
 

http://ieatbugsforbreakfast.wordpress.com/tag/simulated-annealing/
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Treating all the parameters in a problem as an atomic thermodynamic system allows finding relatively good 
answers relatively quickly. Basically, with Simulated Annealing, Galapagos seeks to crystallize the parameters 
into the lowest energy state. 

A typical annealing run consists of a number of successive jumps in the problem phase-space, where the 
amplitude of each jump and its legitimacy are affected by the temperature of the system. When the 
temperature of the system is high, large jumps are allowed and there is a significant likelihood that a worse 
answer is adopted despite being a setback. The graph below shows a typical annealing track. 

 

 
 

 

Figure D.5: A schematic annealing track 
 

Along the horizontal axis all possible states of the problem are collected. If the problem phase-space is one-
dimensional (i.e. only a single Grasshopper slider), then this is an exact representation, but since this is a 
schematic representation the graph x-axis can represent any number of parameter dimensions. The vertical 
axis represents the fitness of each distinct state, so the thick black curve represents the entire fitness 
landscape. This particular landscape has 4 local optima with varying degrees of quality. 
 

The first annealing jump must start at a random location because nothing is known about the landscape so no 
informed decision can be made. In this particular example, the annealing track starts along the left edge of the 
landscape at location (1). At this point in time the temperature is very high, so large jumps across phase-space 
are allowed. A jump from (1) to (2) would indeed qualify as large as it spans almost the entire phase-space. 
Since (2) is higher than (1), the new solution is automatically accepted. Now there is less energy available as the 
entire system is cooling down. So the jump from (2) to (3) is most likely going to be shorter than the jump from 
(1) to (2). The fitness at (3) happens to be lower than (2), so the second jump actually represents a worse 
answer. However, since the temperature is still relatively high, sometimes (where “sometimes” is in 
accordance with thermodynamic stochastics) the worse case is accepted. This characteristic makes the solver 
less prone to getting ‘stuck’ to a local optimum. 
 

As time goes on, the temperature of the system drops and smaller and smaller jumps are possible. Also, at low 
temperatures the chance that a worse case is adopted over a better one becomes insignificant. Eventually the 
temperature has dropped far enough for the entire system to be frozen, at which point the best answer from 
the run is cached and a second run is started, once again at high temperature. 
 
Because of the cooling schedule, it means that every annealing run only has a limited number of steps and 
therefore terminates in a limited time-span.  


