
MASTERARBEIT

Optimization-based Site Planning System

ausgeführt zum Zwecke der Erlangung des akademischen Grades

einer Diplom-Ingenieurin

unter der Leitung

 Ao.Univ.Prof. Dipl.-Arch. Dr.phil. Georg Suter

E259

Institut für Architekturwissenschaften

eingereicht an der Technischen Universität Wien

Fakultät für Architektur und Raumplanung

von

Lamprogianni Aikaterini

0925997

Märzstrasse 135/17, 1140 Wien

Wien, am 02.10.2012

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

2

Abstract. This thesis explores optimizing the arrangement of buildings on a site according to a set of spatial
constraints. Design objectives include solar insolation and building proximity. The difficulty of this task
increases considerably with the number of buildings on a site or the complexity of site and building geometries.
The solution space associated with such a problem is typically infinitely large and therefore its exploration
could be supported by design optimization methods. For that purpose, an optimization-based site planning
system was designed and implemented. The system was implemented in an existing geometric design software
that provides optimization functionality based on genetic and simulated annealing algorithms. The system was
further improved using fine-tuning procedures, involving experiments with the different algorithms and with
different implementation decisions. The efficiency of the system and the quality of the results produced is
evaluated in two ways: By producing a series of optimization examples according to different system settings
for an arbitrary set of buildings and site and by simulating an existent design problem for two case studies.
After the simulation is completed, the values of the design criteria of each case are calculated for the actual
buildings and compared to the ones produced by the system.

Keywords. massing design, site planning, optimization, generative design, genetic algorithm, simulated
annealing algorithm

3

Table of Contents

1 Introduction.. 6

1.1 Motivation .. 6
1.2 Background .. 6
1.3 Fundamentals of Computational Optimization ... 8
1.4 Methodology .. 13

2 System Design .. 14
2.1 System Terminology ... 14
2.2 Input ... 15
2.3 Optimization ... 15

2.3.1 Solution Synthesis.. 15
2.3.2 Solution Evaluation .. 17

2.4 Output .. 19
3 Implementation .. 20

3.1 Environment ... 20
3.2 Site Planner .. 22

3.2.1 Input .. 22
3.2.2 Optimization .. 23
3.2.3 Output ... 32

3.3 Fine-tuning ... 34
3.3.1 Experimenting with Spatial Constraints ... 34
3.3.2 GA VS SA .. 42
3.3.3 Automated parameters input .. 45

3.4 Use Scenario ... 46
4 Examples .. 47
5 Case studies .. 52

5.1 Taipei City Wall by BIG Architects ... 52
5.2 Greater Noida Housing by FXFOWEL ... 57

6 Conclusion .. 63
6.1 Capacities/limitations ... 63
6.2 Proposals for future research ... 64

References ... 65
Appendix A. System Operators .. 67
Appendix B. User Interface .. 69
Appendix C. Genetic Solver ... 74
Appendix D. Simulated Annealing Solver ... 81

`

4

List of figures

Figure 1.1: Display of access paths in a SEED layout (Flemming, Coyne, et al. 1994) .. 7
Figure 1.2: Solutions generated by the subjects and by HeGel (Akin, Dave and Pithavadian 1992) 7
Figure 1.3: Two Pareto-optimal designs found by the genetic algorithm (Ciftcioglu and Bitterman 2008) 7
Figure 1.4: Alberti byAcadGraph (Lobos and Donath 2010) ... 8
Figure 1.5: Vectorworks10 by Nemetscheck (Lobos and Donath 2010) .. 8
Figure 1.6: Classification of Genetic and Simulated-Annealing Algorithms ... 9
Figure 1.7 : Evolutionary algorithm structure .. 10
Figure 1.8: Crossover Operator.. 11
Figure 1.9: Genetic algorithm -final solutions (Yang 2010) ... 11
Figure 1.10: Genetic algorithm -initial population and solutions (Yang 2010) .. 11
Figure 2.1: System Structure ... 14
Figure 2.2: Site Planning Terms ... 15
Figure 2.3: Constructible Site Definition .. 16
Figure 2.4: Definition of Location Points .. 16
Figure 2.5: Generation of a solution .. 17
Figure 2.6: Spatial Constraint A: Building Containment in Constructible Site ... 18
Figure 2.7: Spatial Constraint B: Buildings Overlap with each other ... 18
Figure 2.8: Spatial Constraint C: Accessibility Requirements .. 18
Figure 3.1: Grasshopper ‘Definition’ .. 20
Figure 3.2: Genetic Solver Available in Grasshopper .. 21
Figure 3.3: ‘Site Planner’ in Grasshopper ... 22
Figure 3.4: Design Parametes Input ... 22
Figure 3.5: Design Parametes Input ... 23
Figure 3.6 : Calculation of Grid points .. 23
Figure 3.7: Grid Operations ... 24
Figure 3.8: Calculation of grid points contained in constructible site ... 24
Figure 3.9: The variables that produce each solution... 25
Figure 3.10: Generation of a solution .. 25
Figure 3.11: Spatial constraints definition ... 26
Figure 3.12: Minimum distances.. 26
Figure 3.13: Constructible site ... 26
Figure 3.14: SCA = FALSE .. 27
Figure 3.15: SCA = TRUE ... 27
Figure 3.16: SCB = FALSE .. 28
Figure 3.17: SCB = TRUE ... 28
Figure 3.18: SCC = FALSE .. 29
Figure 3.19: SCC = TRUE ... 29
Figure 3.20: Evaluation Criteria Definition ... 30
Figure 3.21: Multi Optimization Function .. 31
Figure 3.22: Documentation file .. 32
Figure 3.23: Display options .. 32
Figure 3.24: Visualization options .. 33
Figure 3.25: Perspective display of output ... 33
Figure 3.26: Floor plan display of output ... 34
Figure 3.27 : 25 best solutions produced by the GA solver for constraint C acting as a ‘bonus’ value 35
Figure 3.28: 25 best solutions produced by the SA solver for constraint C acting as a ‘bonus’ value 36
Figure 3.29: 25 best solutions produced by the SA solver while feedback for fulfillment of SCC is given 37
Figure 3.30: Accessibility Constraint Operators ... 38
Figure 3.31: 25 samples of the 200 best solutions produced by the SA solver after implementing negative
evaluation criteria ... 40
Figure 3.32: Volume overlap and failure in site containment for two buildings that meet the two-dimensional
spatial constraints ... 41
Figure 3.33: ‘Site-Planner’ Interface .. 46
Figure 5.1: Taipei City Wall (http://www.big.dk/#projects)... 52
Figure 5.2: Building Module... 53
Figure 5.3: Vertical placement ... 53
Figure 5.4: Maximal height and central placement in order to gain public green space 53

5

Figure 5.5: Stretching the volume to promote daylight and add shared recreational gardens 53
Figure 5.6: The volume is lowered at one side in order to break down the scale of the building 54
Figure 5.7: Pushing the building back into the site creates overlapping which hold the cores 54
Figure 5.8: Greater Noida Housing Complex (http://www.fxfowle.com/) .. 57
Figure 5.9: Buildings Elevation ... 58
Figure 5.10: Building Section ... 58
Figure 5.11: Site Plan (http://www.fxfowle.com/) ... 58
Figure C.1: : Fitness Landscape for a problem with two variables .. 74
Figure C.2: Generation 0 Population .. 74
Figure C.3: Intermediate Generation Population ... 74
Figure C.4: Later Generation Population .. 75
Figure C.5: Last Generation Population ... 75
Figure C.6: Genome route ... 75
Figure C.7: Population routes .. 75
Figure C.8: Fitness Landscape .. 76
Figure C.9 Local maxima .. 76
Figure C.10 Maxima with small basin area ... 76
Figure C.11: Flat basins .. 76
Figure C.12: Noise in fitness landscape .. 76
Figure C.13: Isotropic Selection ... 77
Figure C.14: Exclusive selection ... 77
Figure C.15: Biased Selection ... 77
Figure C.16 : Genome Map .. 78
Figure C.17 : Incestuous mating... 78
Figure C.18 : Zoophilic mating ... 78
Figure C.19 : Population with sub-species ... 78
Figure C.20 : Balanced in- and out-breeding .. 79
Figure C.21 : Crossover, Blend and Preferenced-Blend Coalesence.. 79
Figure C.22: Genome Graph of a 5-gene genome .. 80
Figure C.23 : Inversion Mutation ... 80
Figure C.24 : Point mutation .. 80
Figure C.25 : Adding a gene ... 80
Figure C.26 : Deleting a gene ... 80
Figure D.1: Atoms in liquid metal .. 81
Figure D.2: Atoms in liquid metal .. 81
Figure D.3 Crystal seeds in semi-liquid metal ... 81
Figure D.4: Regular atomic lattice .. 81
Figure D.5: A schematic annealing track .. 82

List of charts

Chart 3.1: Evaluation values (FFINAL’) of EA solver for constraint C acting as a ‘bonus’ value 35
Chart 3.2 : Evaluation values (FFINAL) of SA solver for constraint C acting as a ‘bonus’ value 36
Chart 3.3: Evaluation values (FFINAL’) of SA solver for constraint C acting as a negative evaluation criterion.

All solutions displayed .. 38
Chart 3.4: Evaluation values (FFINAL’) of SA solver for constraint C acting as a negative evaluation criterion.

Only valid solutions displayed ... 38
Chart 3.5: Evaluation values (FFINAL’) of SA solver after implementing negative evaluation criteria. All

solutions displayed. .. 41
Chart 3.6: Evaluation values (FFINAL’) of SA solver after implementing negative evaluation criteria. Only

valid solutions displayed ... 41
Chart 3.7: Evaluation values for point parameter : discontinuous landscape ... 45
Chart 3.8: Evaluation values for point parameter: continuous landscape .. 45

6

1 Introduction

1.1 Motivation

Ever since the first attempts to introduce computational tools into the concept design phase -50 years ago-, an
ongoing conversation has started about the role of the computer into the design procedure. Between the two
extremes (absolute automation in floor plan design or complete denial of the computational contribution), a
balanced way can be found to facilitate the tools available so that they can forward the design procedure,
always under a specific scope and with certain limitations. Subjective matters, such as aesthetics or
functionality – in its general meaning- cannot be addressed by computational tools since it is not even easy to
define such problems. There are though many design aspects that can have a clear definition or at least clear
evaluation criteria; these aspects can be computationally optimized in less time and more efficient way.

Even though computational optimization techniques are particularly popular for many years now, they are not
widely implemented and used in architectural practices. This is happening on the one hand because of the
declination in the variables that are driving the design and on the other hand because of the nature of the
implementations, that are not designed to be widely used but mainly for research. The work that is done,
attempts to minimize the distance between optimization tools and design everyday-life. Therefore tries to
explore the capabilities of software that are already familiar to designers and find out in what extend
optimization techniques can be implemented in order to give an answer to specific design problems. In terms
of meeting the design criteria of the users, this attempt began with solving shading issues, an aspect
considered rather important in the phase of conceptual site planning. Accessibility constraints couldn’t be
omitted since they almost always affect the design decisions. Another criterion considered necessary was the
buildings proximity.

Site planning was chosen as an appropriate field for optimization mainly because it of the desire to study the
optimization of criteria that are strongly related to the buildings environmental sustainability than e.g. the
minimization of costs, optimization of material-use or structural optimization. The design phase in which the
implementation is intended for use, is the conceptual phase; thus it was considered more appropriate to study
the actual placement of the building since materials, façade openings and construction details are introduced
in a latter phase of the design. Apart from these factors this case of optimization has an appropriate problem
definition, since the evaluation criteria are clearly defined (maximizing/minimizing solar insolation and
buildings proximity). It is also a case where computational contribution would be highly appreciated since
infinite possible combinations should be tested in order to manually verify which ones produce the best results;
it is in fact unfeasible to manually test more than a limited number.

1.2 Background

The extensive research done during the last 50 years in the area of automated floor plan design is particularly
relevant with site planning optimization, in the sense that the optimal solution for a configuration of different
spaces is sought.
In the case of floor plan layout, the design constraints are usually the spaces boundaries and the range of
dimensions. The criteria that are being evaluated are mainly the space areas, the proportions and the relations
between the spaces, even though in some cases orientation or other criteria are also object of evaluation. In
the case of optimizing a building complex configuration on a site, there is a slight alteration on the constraints
as well as on the evaluation criteria. The boundaries and the overlaps between the buildings are still an
important spatial constraint, but they are defined in a different way. The relations between the buildings are
also here an evaluation criterion (building proximity) whereas the relation to the site is also important. Shading
efficiency is the key evaluation criterion.

Many approaches and different strategies have been undertaken, while searching for a way to automate floor
plan design. The method of evaluation that guides the process is the main feature of the different approaches,
according to which they can be distinguished into three categories (Ligget 2000): the ones optimizing a single
criterion function, the ones based on graph theoretic approaches where nodes represent activities to be
located and edges represent a direct adjacency requirement (Grason 1971, Muther 1973), and the ones trying
to find an arrangement that satisfies a diverse set of constraints or relations instead of optimizing a single
measure. The various methods followed by the third group, are of particular interest for the implementation of

7

this system, since the optimization is going to be done according to a set of constraints and considering more
than one evaluation criteria. Early such examples are the ‘General Space Planner’ (Eastman 1973) and the
‘Design Problem Solver’ (Pfefferkorn 1972) where the goal is to satisfy a set of constraints such as position,
orientation, adjacency, path, view or distance. ‘SEED’ is a software system that supports the early phases in
building design by generating rectangular space under various constraints like access, natural light and privacy
(Flemming, Coyne, et al. 1994). It was developed at Carnegie Mellon along with ‘HeGel’ (Akin, Dave and
Pithavadian 1992) and ‘WRIGHT’ (Baykan 1991), two other methods with similar representation but
significantly different approaches to constraint satisfaction. ‘HeGel’ uses a hierarchical generate-and-test
method that incrementally constructs solutions by adding one space area (one rectangle) at a time to a partial
solution, testing for constraint satisfaction at each step. If no possible addition of a new space meets the
constraints, the system backtracks. If one possible new space meets the criteria, the placement is made and if
more than one spaces meet the criteria, they are presented to the user for selection. ‘WRIGHT’ implements a
constraint-directed search in which constraints are incrementally satisfied in order to produce a full solution
that finds all significantly different solutions. All three methods are based on construction algorithms.

Genetic algorithms and iterative improvement-based algorithms (including simulated annealing) improved the
efficiency and the speed of the optimization process. Applications of genetic algorithms show excellent results
for the floor plan layout problem (Ligget 2000). A simulated annealing-based method for solving the facility
layout problem was applied, by Sharpe and Marksjo (Sharpe and Marksjo 1986) providing a simple but
powerful approach to facility layout optimization that was successfully applied to large scale problems with up
to 200 locations.

A method of evolutionary computation with the Pareto front based on a weighted function of the objectives
used for multi-objective optimization was designed by Ciftcioglu and Bittermann and applied successfully on a
case study positioning houses in a residential neighborhood according to the garden performance and visual
privacy performance requirements. (Ciftcioglu and Bitterman 2008)

Figure 1.3: Two Pareto-optimal designs found by the genetic algorithm (Ciftcioglu and Bitterman 2008)

Figure 1.1: Display of access paths in a SEED layout
(Flemming, Coyne, et al. 1994)

Figure 1.2: Solutions generated by the subjects and by
HeGel (Akin, Dave and Pithavadian 1992)

8

Apart from the theoretical approaches, the prototypes and generally the research (academic or not) that has
been done in the field, it also worth mentioning the recent efforts that have been done in the direction of
making such tools available in architectural practices. In 1998, the German company AcadGraph produced
‘Alberti’, a software for producing automated floor plans, by giving the input of stories number, name
orientation and relations between the rooms. (Lobos and Donath 2010) The software handles the relationships
and constraints through the application of the concepts of Neural Networks and produces around a hundred of
solutions per second, which are then evaluated according to the criteria. The tool is no longer available.

Figure 1.4: Alberti byAcadGraph (Lobos and Donath 2010)

‘Vectorworks’ 10th version released in
2004 by Nemetcheck, included space
planning tools, where the user could see
a planar, non-overlapping distribution of
the rooms on the screen, after defining
the space program. It can be used as
basis to create a floor plan, even though
it doesn’t consider a floor boundary
constraint.

Figure 1.5: Vectorworks10 by Nemetscheck (Lobos and Donath 2010)

1.3 Fundamentals of Computational Optimization

Since the implementation is done based on meta-heuristic techniques, this chapter covers some basic concepts
of computational optimization techniques and a short description of the ones that are implemented in the
system.

Algorithms with stochastic components were often referred to as heuristic in the past, though the recent
literature tends to refer to them as metaheuristics. All modern nature-inspired algorithms could conventionally
be called metaheuristics (Glover and Kochenberger, Handbook of metaheuristics 2003). Heuristic means –in a
more general sense- to find or to discover by trial and error. Here meta- means beyond or higher level, and
metaheuristics generally perform better than simple heuristics. The word "metaheuristic" was coined by Fred
Glover in his seminal paper (F. Glover 1986), and a metaheuristic can be considered as a "master strategy that
guides and modifies other heuristics to produce solutions beyond those that are normally generated in a quest
for local optimality" (Glover and Laguna 1986). In addition, all metaheuristic algorithms use a certain tradeoff
of randomization and local search. Quality solutions to difficult optimization problems can be found in a
reasonable amount of time, but there is no guarantee that optimal solutions can be reached. It is hoped that
these algorithms work most of the time, but not all the time. Almost all metaheuristic algorithms tend to be
suitable for global optimization. (Yang 2010)

9

Many problem-solving processes tend to be heuristic throughout the human history; however heuristic as a
scientific method for optimization is a modern phenomenon. From the 1940s to 1960s, heuristic methods have
been used in various applications, but the first landmark came with the advent of evolutionary algorithms. In
1963 Ingo Rechenberg and Hans-Paul Schwefel, then both at the Technical University of Berlin,
developed evolutionary strategies while L. J. Fogel et al. developed evolutionary programming in 1966. Genetic
algorithms were developed by J. Holland in the 1960s and 1970s, though his seminal book on genetic
algorithms was published in 1975 (Holland 1975).
The 1980s and 1990s were the most exciting time for metaheuristic algorithms. One big step was the
development of simulated annealing (SA) in 1983, an optimization technique, pioneered by S. Kirkpatrick et al.,
and inspired by the annealing process of metals.
The two subfields of metaheuristics optimization that are going to be used for the implementation of the
system are the genetic algorithms and the simulated annealing algorithm. There are many optimization
algorithms which can be classified in many ways, depending on the focus and characteristics. We will mention
the ones according to which genetic and simulated annealing algorithms can be classified (Figure 1.6).

If the derivative or gradient of a function is the focus, optimization can be classified into gradient-based
algorithms and gradient-free algorithms. Gradient-free algorithms do not use any derivative information but
the values of the function itself. From a different perspective, optimization algorithms can be classified into
trajectory-based and population-based. A trajectory-based algorithm typically uses a single agent or one
solution at a time, which will trace out a path as the iterations continue, while population-based algorithms
such as genetic algorithms use multiple agents which will interact and trace out multiple paths. Optimization
algorithms can also be classified as deterministic or stochastic. If an algorithm works in a mechanical
deterministic manner without any random nature, it is called deterministic. For such an algorithm, it will reach
the same final solution if we start with the same initial point. On the other hand, if there is some randomness
in the algorithm, the algorithm will usually reach a different point every time the algorithm is executed, even
though the same initial point is used. Search capability can also be a basis for algorithm classification. In this
case, algorithms can be divided into local and global search algorithms. Local search algorithms typically
converge towards a local optimum, not necessarily the global optimum. Modern metaheuristic algorithms in
most cases tend to be suitable for global optimization, though not always successful or efficient.

METAHEURISTIC OPTIMIZATION ALGORITHMS

CLASSIFICATION 1 CLASSIFICATION 2 CLASSIFICATION 3 CLASSIFICATION 4

GRADIENT
-BASED

GRADIENT
-FREE

TRAJECTORY-
BASED

POPULATION-
BASED

DETERMINISTIC STOCHASTIC
LOCAL

SEARCH
GLOBAL
SEARCH

GENETIC
ALGORITHM

 x x x x

SIMULATED
ANNEALING
ALGORITHM

x

x x x

Figure 1.6: Classification of Genetic and Simulated-Annealing Algorithms

Genetic Algorithms

Genetic algorithms (GAs) are probably the most popular evolutionary algorithms with a diverse range of
applications. A vast majority of well-known optimization problems have been solved by genetic algorithms. In
addition, genetic algorithms are population-based and many modern evolutionary algorithms are directly
based on, or have strong similarities to, genetic algorithms.
Genetic algorithms, developed by John Holland and his collaborators in the 1960s and 1970s, are a model or
abstraction of biological evolution based on Charles Darwin's theory of natural selection. Holland was the first
to use crossover, recombination, mutation and selection in the study of adaptive and artificial systems (Holland
1975). These genetic operators are the essential components of genetic algorithms as a problem-solving
strategy and are the minimum set of operators, that distinguish GAs from other evolutionary computation

http://www.scholarpedia.org/article/Evolution_Strategies
http://www.scholarpedia.org/article/Evolutionary_programming

10

methods even though there is no rigorous definition of ‘genetic algorithm’ accepted by all in the evolutionary-
computation community. (Mitchell 1996)
The goal while running a genetic algorithm is to optimize an evaluation criterion, which in terms of evolutionary
computing is the fitness function. This fitness function is the evaluation of every solution variation. Each
solution is created after combining a set of variables: the genes -and thus each solution can also be called a
chromosome or a genome (a combination of genes). The encoding of the genomes was done in its original
version as arrays of bits or character strings, even though that doesn’t always have to be the case.

Therefore the two first steps, in order to initiate a genetic algorithm are :

 the definition of the solution space (the genes) and

 the definition of the fitness function
The following steps are:

 creation of a population of genomes (generation)

 evaluation of the fitness of every genome in the population

 creation of a new population by performing fitness-proportionate selection, crossover and mutation

 replacement of the old population by the new one

The last three steps are then repeated for a number of generations. Each iteration, which leads to a new
population of genomes, is called a generation. The algorithm always starts with a random-selected generation:
generation0. In every iteration of the algorithm every new generation is an improved version of the previous
one. The best genome of the last generation is decoded to obtain a solution to the problem.

Figure 1.7 : Evolutionary algorithm structure

DEFINE VARIABLES (GENES)

DEFINE FITNESS FUNCTION

FITNESS EVALUATION

CREATION OF NEW
POPULATION

REPLACEMENT OF OLD
POPULATION

INITIAL STEPS

ALGORITHM
ITERATIONS

CREATION OF GENERATION 0

SELECTION

CROSSOVER

MUTATION

FINAL OUTCOME: BEST GENOME OF LAST GENERATION

11

The selection operator selects the genomes for reproduction. The fitter the genome, the more times it is likely
to be selected to reproduce. Sometimes, in order to make sure that the best genomes remain in the
population, they are transferred to the next generation without much change, which is called elitism. (Koziel
and Yang 2011)

 Crossover operator randomly chooses a locus and exchanges the
subsequences of genes before and after that locus between two
genomes to create the offspring. The crossover operator roughly
mimics biological recombination between two single-chromosome
organisms. The mutation operator randomly flips some of the genes
is a genome, according to some probability factor that is usually very
small. (Mitchell 1996)

An important issue is the formulation or choice of an appropriate fitness function that determines the selection
criterion in a particular problem. A proper criterion for selecting the best chromosomes is important, because it
determines how chromosomes with higher fitness are preserved and transferred to the next generation. This is
often carried out in association with a certain form of elitism. The basic form is to select the best chromosome
(in each generation) which will be carried over to the new generation without being modified by the genetic
operators. This ensures that a good solution is attained more quickly. Another important issue is the choice of
various parameter values. The crossover probability pc is usually very high, typically in the interval [0.7,1.0] . On
the other hand, the mutation probability pm is usually small (typically, in the interval [0.001,0.05]). If pc is too
small then crossover is applied sparsely, which is not desirable. If the mutation probability is too high, the
algorithm could still `jump around' even if the optimal solution is close.

Other issues include multiple sites for mutation and the use of various population sizes. The mutation at a
single site is not very efficient, so mutation at multiple sites typically increases the evolution of the search. On
the other hand, too many mutants will make it difficult for the system to converge or even lead the system
toward wrong solutions. In real ecological systems, if the mutation rate is too high under high selection
pressure, then the whole population might become extinct. The choice of the right population size is very
important, because if the population size is too small, there will not be enough evolution, and there is a risk for
the whole population to converge prematurely. In the real world, ecological theory suggests that a species with
a small population is in real danger of extinction. In a small population, if a genome with a fitness substantially
larger than the fitness of the other chromosomes in the population appears too early, it may produce enough
offspring to overwhelm the whole (small) population. This will eventually drive the system to a local optimum
(not the global optimum). On the other hand, if the population is too large, more evaluations of the objective
function are needed, which will require extensive computing time.

As a simple example, an initial population is generated and its final solution locations aggregate towards
optimal solutions (Figure 1.10, Figure 1.9)

Figure 1.10: Genetic algorithm -initial population
and solutions (Yang 2010)

Figure 1.9: Genetic algorithm -final solutions (Yang
2010)

Figure 1.8: Crossover Operator

12

Simulated Annealing Algorithm

Similarly to the theoretical approach of the evolutionary algorithm, the optimization problem is structured in
the following way: We are searching a set of solution candidates in order to find the optimal solution that
minimizes the cost function. The cost function is similar to the fitness function in GAs, with the difference that
in Simulated Annealing theory we regard the optimization as a minimization function. This originates from the
physical inspiration of the algorithm, where the objective is to bring a system to a state of minimum energy.
The simulated annealing algorithm is a technique that belongs to a class of search algorithms called threshold
algorithms. A starting point is initially selected from the solution candidates. For every step of the algorithm a
new candidate is selected. The cost of the original solution is abstracted from the cost of the new one. If the
cost difference between the two solutions is below the threshold (t) the new solution replaces the previous
one, otherwise the original one remains as current. This procedure is repeated until the termination of the
algorithm. The algorithm terminates either because of a time limit or because it reached a specific result.
There are three types of threshold algorithms (Aarts, Korst and van Laarhoven 2003):

 Iterative improvement: The cost function of the new solution must always be less than the previous
one (t=0). This is a greedy local search variant.

 Threshold accepting: The threshold (t) can have values bigger than or equal to zero, which are
decreasing on every comparison. As a result other solutions with larger costs are accepted but in a
limited way, mostly at the beginning of each run. Gradually the algorithm reaches a point where the
cost difference must be zero and only improvements are accepted.

 Simulated annealing: The threshold (t) is a random variable with values between zero and infinity that
follows a probability distribution function formulated in such a way that solutions that correspond to
large increases in cost have small probability of being accepted, whereas solutions that correspond in
small increases in cost have larger probability. In simulated annealing each new solution can be
chosen to replace the current one.

The probability distribution function is the negative exponential distribution with parameter 1/ck
(Kirkpatrick, Gelatt and Vecchi 1983).The parameter ck is used in the simulated annealing algorithm as
a control parameter, and it plays an important role since it leads to the selection of larger increases in
cost at the beginning of the algorithm and rejects them while the algorithms is getting closer to the
solution.

 {

 (

)

Where i,j are solutions that belong to the solution set of the problem, f is the cost function of (i) and
(j), k the number of iteration (k=0,1,2,….) and

 is the probability of accepting j from i at the kth

iteration.

The procedure that is followed in simulated annealing is inspired by statistical mechanics and is very similar to
annealing in metallurgy, a technique where heating and controlled cooling of a material are used in order to
increase the size of its crystals and reduce its defects. Statistical mechanics is the central discipline of
condensed matter physics that applies a probability theory for dealing with large populations, while analyzing
the atoms’ properties found in samples of liquids or solids. The state of the system in such samples can only be
described by average behaviors, because of the large number of atoms per cubic centimeter, when the average
is taken over the ensemble of identical system introduced by Gibbs (Kirkpatrick, Gelatt and Vecchi 1983). In this
ensemble each configuration defined by the atomic positions r{i} of the system is weighted by its Boltzmann
probability factor exp (-E({ri})/kBT), where E({ri}) is the energy of the configuration, kB is Boltzmann’s constant
and T is temperature. The Boltzmann factor is a weighting factor that determines the relative probability of a
particle to be in a state i in a multi-state system in thermodynamic equilibrium at temperature T. As T is
lowered the Boltzmann distribution (sum of all the Boltzmann factors for all the states of the system) collapses
into the lowest energy state or states and therefore ground state configurations of a macroscopic body
dominate its properties at low temperatures, even though they are extremely rare among all the
configurations. A Boltzmann factor drastically increases the efficiency of the system’s ground state search.

13

In practical contexts, low temperature is not a sufficient condition for finding ground states of matter. In order
to determine the low-temperature state of a material (for example by growing a single crystal from a melt)
experiments are done by careful annealing: first melting the substance and then slowly lowering the
temperature while spending a lot of time in the vicinity of the freezing point. Otherwise the substance is
allowed to get out of equilibrium and the resulting crystal displays many defects.

The Metropolis algorithm for sampling from multi-dimensional distributions is used in order to utilize the
techniques of statistical mechanics for solving optimization problems.

1.4 Methodology

In order to fulfill the task of designing the optimization system for site planning, the following steps are
followed:

System Design. The structure of the system is initially designed schematically, independently of the
implementation and the tools that are going to be used, by defining how the input, the output and the
optimization task should be done. The input is the design input that the user gives i.e. the buildings, the site,
local data and the desired optimization setting that will define the weights that each criterion has and the type
of optimization (maximize/minimize). The output should be a proper documentation of the results, so that they
are in later time accessible and an instant visualization of the ranked and evaluated solutions. The design of the
optimization task is mainly about the definition of the constraints, the evaluation criteria and the relations
between them. The constraints are actually the spatial constraints of site planning i.e. the appropriate
placement of the buildings (elimination of building overlaps, containment in the site boundary, ease of access).

Implementation. As soon as the appropriate tools are found, the system should be implemented, in a way that
exploits the tools capacities and explores the possibilities and the limitations. The way the user interacts with
the system should also be considered, while finding the proper balance between user-interaction and the
ability of the system to be ‘user-friendly’ and not too technical.

Examples. A set of examples based on an arbitrary set of buildings and site, displays how the system works for
different input and different optimization settings.

Case studies. The most appropriate way of verifying the efficiency of the implementation or discovering
possible limitations, is to test it on case studies i.e. cases that are already built and whose design objectives can
be translated to the evaluation criteria of the optimization system. This way the results of the evaluation
values between built-examples and the variations produced by the system can be compared.

14

2 System Design

The system consists of the following three parts: input, optimization and output.
During the input the user must provide the system with the design parameters and the desired optimization
settings.
The optimization is the technical part of the system and is done mainly in two steps: the creation of different
solutions (solution synthesis) and their evaluation. In order to create a solution, the solution space and the way
according to which the solutions are generated have to be defined. In order to evaluate a solution we have to
define the spatial constraints and the evaluation criteria.
The output is given in the form of documenting the results and visualizing them on the screen.

2.1 System Terminology

In order to avoid confusion during the next chapters, we should clarify all the terms and concepts to which we
are going to refer to. The site access area (SA) is the area on the site that is defined as the desired access area.
It could be a street or a square; in general it is a boundary where nothing built is allowed to be on and that
serves as circulation area. The buildings of the site are attracted to it and should be adjacent to its boundaries.
The non-constructible zone (NCZ), is also an area where nothing should be built, but doesn’t have any
accessibility features; it’s irrelevant whether the buildings are near or far from it. It could be an area where the
site isn’t suitable for a building’s placement like a water-area, for example, or an area of very steep slope. It
could also represent an existing building or be used to create zones that let the wind pass through. Thus, the
constructible area of the site (CS) is the site area minus the site access area and the non-constructible zone,
while considering the desired offset from the site boundary that expresses the minimum distance the buildings
should keep from it. The building access area (BA) is the area inside a building boundary that should be
adjacent to the site access area. It could be the lobby of the building, the entrance area. We will call overlap
zone (OZ) an area of certain width, surrounding the site access area. This is the zone where the entrances of
the buildings should be located in. The buildings are described by the letter “B” and number i, for i Є {1,2,…,n}
and n number of buildings on site. ”d” is the distance of a building from the site access area

INPUT

OPTIMIZATION

OUTPUT

SOLUTION SPACE

SOLUTION GENERATION

EVALUATION CRITERIA

DOCUMENTATION

VISUALIZATION

Figure 2.1: System Structure

SOLUTION SYNTHESIS

SPATIAL CONSTRAINTS
SOLUTION EVALUATION

DESIGN PARAMETERS

OPTIMIZATION SETTINGS

15

2.2 Input

The design parameters that the user has to provide to the system are a) a set of objects i.e. the site, the site
access area, the non-constructible zone, the buildings and the access area of the buildings and b) some
planning parameters i.e. the minimum distance between the buildings, the minimum distance from the site
boundary, the north angle and the site location (latitude and longitude). The input of the site access area and
the non-constructible zone is optional; if they do not exist the system should still have the capacity to work
efficiently. Regarding the optimization settings, the user must enter the weight that represents the level of
importance during the optimization procedure for each evaluation criterion, and select whether the criteria
should be maximized or minimized.

2.3 Optimization

2.3.1 Solution Synthesis

Definition of Solution Space

Each possible solution to the problem of placing a given set of buildings onto a given site can be accurately
expressed with the help of two variables per building:

 The building location parameter, which is in fact a two-dimensional point:

P(x,y)
 The orientation, which is a numerical value of the rotation angle in respect to the positive y axis:

aЄ {0,1,2,…,360}

The possible points (P) are given after creating a grid of points that is contained into the boundary of the
constructible site area (Figure 2.3,Figure 2.4). The possible angle values (a) are the integers between 0 and 360.

Site Access Area (SA)

Overlap Zone (OZ)

Building Access Area (BA)

Constructible Site (CS)

Figure 2.2: Site Planning Terms

Non Constructible Zone (NCZ)

B1

B2

B3

d

distance from SA (d)

Bi : Building (i Є {1,2,…,n}, for n

 buildings on the site)

16

Figure 2.3: Constructible Site Definition

Figure 2.4: Definition of Location Points

Thus the problem’s solution space is the set of all possible combinations of the two variables for all buildings
(equations (2.1),(2.2)). For N buildings we would be searching for the best solutions in a 2*N-dimensional
solution landscape. The number of possible solutions (k) is given if we multiply the number of buildings with
the number of possible points and the number of discrete angle values. If we assume for example that the
contained-in-constructible-site grid of a given site consists of 5000 points and there are 10 buildings on the site,
then the number of possible solutions is 36*106.

Solution Generation

In order to generate a solution each building is moved from its starting point to one of the points of the
constructible-site-grid and rotated around it for some angle. The starting point is one point generated from the
building’s boundary given by the user.

 (Site offset from boundary) - (Site Access Area) - (Non Constructible Zone) = (Constructible Site)

 (Constructible Site) (Location Points)

 for k=N*NP*Na, the number of all possible solutions,

 N: the number of buildings on the site,

NP: the number of points on the site,

Na: the number of discrete angle values,

i Є {1,2,….,k}

SolutionSpace = {S1, S2,…., Sk}

Si = {P1,a1, P2,a2, …., PN,aN}

(2.1)

(2.2)

17

Figure 2.5: Generation of a solution

2.3.2 Solution Evaluation

Spatial Constraints

In order to control the quality of the solutions produced and avoid solutions that make no sense, there is a set
of spatial constraints that the solutions should always meet. If they don’t then they should be considered
invalid and not provided in the final output.

INITIAL POSITION

PLACEMENT ROTATION

Spatial Constraints:

1. All the buildings must be contained in the constructible site

2. The buildings shouldn’t overlap with each other

3. The buildings access area should be at least in some extend contained in the overlap zone

angle: 0o ≤A ≤ 360o

18

Figure 2.8: Spatial Constraint C: Accessibility Requirements

SPATIAL CONSTRAINT C

SPATIAL CONSTRAINT B

SPATIAL CONSTRAINT A

Valid Solution Invalid Solution

Figure 2.6: Spatial Constraint A: Building Containment in Constructible Site

Valid Solution Invalid Solution

Figure 2.7: Spatial Constraint B: Buildings Overlap with each other

Valid Solution Invalid Solution

19

Evaluation Criteria

The optimization of the solar insolation is in fact the maximization/minimization of the sum of solar insolation
values on the building envelope. Depending on the desired result and factors like local climate, the user can
choose whether maximum or minimum values should be guiding the algorithm. The optimization of the
building proximity is performed by either minimizing or maximizing the distances between the buildings.
It is obvious that these two criteria can either cooperate (when solar insolation is being maximized and building
proximity is being minimized and vice versa) or conflict (when both criteria are being maximized or minimized).
Thus the weights of each criterion can define the orientation of the optimization. The final evaluation values
should be a sum of each evaluation criterion value for each building, while considering whether the spatial
constraints are fulfilled or not.

2.4 Output

The results that should be documented are the total evaluation value of the solution, the evaluation values of
each criterion and each building, the variables of the solutions (point and angle for each building) so that every
solution can be later reproduced the solution iteration number and the solution efficiency number (number of
solution in the set of ranked according to the efficiency solutions).
The visualization of the results should be a display of a number of desired solutions on the screen, according to
their total efficiency, or their efficiency according to one of the criteria. It should also be possible that the user
selects a number of the above mentioned characteristics to be displayed along with each solution.

20

3 Implementation

3.1 Environment

The selection of the tools for the implementation was done while having in mind three main goals:

 The tools should already be widely spread and familiar to a great number of users. The users should be
able to find solutions to the site planning problem without having advanced knowledge of
computational techniques, programming etc.

 They should facilitate an easy workflow so that interoperability problems can be avoided and the
designer can work quickly without having to confront problems met while importing and exporting
data between different software.

 They should have the necessary capacities to forward the system implementation.

The most suitable software meeting the above objectives are: Rhinoceros which is a modeling software and
Grasshopper, a graphical algorithm editor integrated in Rhinoceros’ modeling tools. The ability to work with
genetic algorithms and simulated annealing algorithms is available inside Grasshopper.

In the Figure 3.1 we can see the interface of Grasshopper and an example showing the creation of a curve
based on the user input. The tabs located on the top contain the tools available, which are mainly of two types:
the parameters and the components. The parameters contain data and can either have an input from
Rhinoceros, Grasshopper or directly from the user. The components are functions which require a specific
input and result in an output. Every set of parameters and components is, in terms of Grasshopper, called a
‘definition’ and produces a specific design or solves a specific problem, in the same way and logic that an
algorithm would do.

Figure 3.1: Grasshopper ‘Definition’

21

In Figure 3.2 we can see the interface of ‘Galapagos’, which is a grasshopper component applying optimization
solvers using a Genetic Algorithm (GA) and a Simulated annealing Algorithm (SA). The detailed description of
both solvers as described in the Galapagos documentation is provided in Appendix C and Appendix D. Both
solvers can both function, requiring exactly the same input. The input for galapagos is the range of value of
some variables i.e. the solution space of the problem (in terms of GA the ‘genes’), that describe a solution and
the value of the evaluation criterion of this solution (in terms of GA the ‘fitness’) which should be optimized.
Provided with this range of values the solver searches the solution space through several iterations and tries to
optimize the evaluation criterion by searching different combinations of values.

The variables can be multiple, whereas the evaluation criterion is single. Therefore the optimization of multiple
criteria must be implemented by the user. The output of Galapagos, is the combination of variables values (in
terms of GA the ‘genomes’) that produce the most efficient - according to the evaluation criterion - results. The
output of the process can be seen directly on the screen but a user-defined way to record it in order to reuse it
has to be found. There is also a possibility to change some of the solvers’ settings in the options menu. These
settings are related to the structure of these solvers and the type of the optimization problem. That means that
the user should experiment a little bit with the settings and their effect on the quality of the solution and the
time the solver needs to find it.

Figure 3.2: Genetic Solver Available in Grasshopper

22

3.2 Site Planner

In
Figure 3.3 we can see the general structure of the implementation which follows the system structure.

Figure 3.3: ‘Site Planner’ in Grasshopper

3.2.1 Input

In order to initiate the process the user gives an input of
the design objects in grasshopper interface. This input is
concerning four categories: the site, the buildings, the
layout preferences and the sun calculation parameters.

SITE INPUT

The user must provide one closed polyline defining the site
and one defining the access area in the site (streets, paths,
e.t.c). Furthermore the user can provide a closed polyline
defining area that shouldn’t be built; the non-constructible
area. The site access area is also optional. In case a
parameter has no input, its component should remain
empty.

INPUT OPTIMIZATION OUTPUT

DOCUMENTATION

VISUALIZATION

DESIGN
PARAMETERS

OPTIMIZATION
SETTINGS

SOLUTION SPACE

EVALUATION CRITERIA

SPATIAL CONSTRAINTS

SOLVER

SOLUTION
GENERATION

Figure 3.4: Design Parametes Input

23

BUILDINGS

Regarding the buildings, the user must select a polyline
defining the floor plan and one defining the entrance plus the
volume defined by a closed polysurface for each building.
It is important that during the selection all input concerning
one building is one object, for example the floor plan is only
one polyline, the building volume only one polysurface, etc. It
is also important that a specific order is maintained i.e if the
selection of the floor plans is following the order Building 1-
Building 2 – Building 3 -…. then all other inputs (entrances,
volumes etc) should also keep the same order.
When several building types are involved, the user should give
the above mentioned input once per building type and then
fill the list by entering the number that each building type is
repeated. When building types do not exist and the planning
concerns individual buildings only, each list item should have
a value of 1.

LAYOUT PREFERENCES

The user provides the value of the distance that should be
kept between the different buildings on the site and the
distance that the buildings should keep from the site
boundaries.

SUN CALCULATION PARAMETERS

The parameters needed for the sun calculation (longitude,
latitude, time zone, north angle)

3.2.2 Optimization

Solution Definition

Solution Space

In order to define the solution space we must as described during the system design, produce a grid of points
contained in the constructible area of the site.

Figure 3.6 : Calculation of Grid points

The final grid points located on the constructible area of the site are produced, as we can see in Figure 3.6 and
Figure 3.7, by finding which points of the initial grid are contained in the site boundary, the access area and the
non-constructible zone and then subtracting the last two from the first one.

Figure 3.5: Design Parametes Input

24

Figure 3.7: Grid Operations

Figure 3.8: Calculation of grid points contained in constructible site

The points generated by this process are the ones that are going to be used for the buildings’ placement on the
site. Each one of them has an ID number - the Point ID -, which is used together with the angle to characterize
the parameters (Bi(P,A)) of each building in every solution. The angle values range from 0 to 360. All the
different combinations of location points and angles of each building produce the solution space.

The range of the parameter values defining the solution space is then provided to the solver (Galapagos) so
that it can explore the solution space in order to find the optimal solutions. This range is given through the
‘slider’ component, a component that after setting a lower and upper limit produces a range of numbers. As
the optimization runs the solver tries different values of this range and in this way explores the solution space
(Figure 3.9).

Points of the grid contained in the site, after the zone defining the boundaries distance is removed

 Points of the grid defining the site access area

Points of the grid defining the non-constructible zone

The final points are the points contained in the site minus the points inside the access area and inside the non-
constructible area

25

For a specific input of e.g. a site containing 1000 location points and 3 buildings that should be located on it,
the solver would need three sliders with a range from 1 to 1000 to locate the buildings and three sliders with a
range from 0 to 360 to rotate them. The production of these sliders and the connection to the solver has to be
done by the user, since their number is not predefined; it depends on the number of buildings.
 In order to avoid the fact that the user would have to set manually the upper limit for the point slider, since
the number of the points generated depends on the site input, the point list is mapped to a new list with a
value range from 0 to 1 in a way that every value from 0 to 1 corresponds to one point ID. The angle slider has
a fix upper limit independent of the specific problem at 360 degrees.

Figure 3.9: The variables that produce each solution

For every optimization iteration, these variables are the input to the solution generation and in this way
produce one unique solution which is then subject to examination of whether or not it is successful enough.

Solution Generation

Figure 3.10: Generation of a solution

In order to produce one solution we need each building relocated from its input location to one of the points of
the constructible site and rotated according to angle between 0 and 360 degrees, according to the values that
the solver selects on every iteration while it is running.

26

Solution Evaluation

 In order for a solution to be valid, it has to fit the spatial constraints as described in the system design.

Spatial Constraints

In order to ensure that the spatial constraints (constructible site containment, building zero overlap,
accessibility requirements) are met, three functions are formulated (SCA, SCB, SCC) that are resulting in a
TRUE/FALSE condition and are later used to turn the final evaluation of the solution to zero when the
constraints are not met.

Figure 3.11: Spatial constraints definition

The operators needed for this functions are the boundary of the site constructible area (ASC), the boundary of
the site access area (ASA), the boundaries of the buildings (AB) and the boundaries of the buildings’access area
(ABA). Given these operators and the minimum distances between the buildings and the buildings and site, we
can produce the rest of the operators required.
The boundary of the site constructible area (ACS), is calculated by producing an offset boundary of the site (AS’),
with an offset value y, set by the user (Figure 3.12) and then subtracting from it the boundaries of the site
access area and the non-constructible zone (ANCZ). (Figure 3.13).

While calculating the buildings overlap with each other, the buildings’ boundary is replaced by a new boundary
(AB’) created with an offset value set from the user. If x is the minimum distance that should be kept between
the buildings, then x/2 is the offset distance of the boundary (Figure 3.12).

Figure 3.13: Constructible site

Figure 3.12: Minimum distances

ACS

ACS

ASA

ANCZ

27

 Constraint A: Constructible site containment

The sum of the buildings boundaries (ABi) is compared with the intersection of their union with the

constructible site. When these two values are equal then the function results in a TRUE value (equation
(3.1)).TRUE always equals 1, while FALSE equals zero.

Figure 3.14: SCA = FALSE

Figure 3.15: SCA = TRUE

SCA = TRUE, when AB1 + AB2 +... + ABN =(AB1 U AB2 U... U ABN)∩ACS

where N the number of buildings on site

 ABi the area of building(i) floor plan, iЄ{1,2,…,N}

ACS the site constructible area

 ACS = AS’\(ASA U ANCZ)

 AS’ the area included in the boundary offset from the site to y,

 y the minimum distance that the buildings have to keep from the site,

 ASA the area of the site access area,

 ANCZ the area of the non-constructible zone

(3.1)

AB1

AB2 AB2 AB1 (AB1U AB2)∩ACS

AB1

AB2
AB2 AB1 (AB1U AB2)∩ACS

28

 Constraint B: Overlap between buildings

Even though the buildings overlap with each other is already controlled through Constraint A, the minimum
distance between the buildings is not yet considered. Therefore Constraint B is implemented in order to ensure

that minimum distance is always kept. The sum of the new buildings boundaries (ABi’) according to offset x/2, is

compared with their union. When these two values are equal the function results in a TRUE value (equation
(3.2)).

Figure 3.16: SCB = FALSE

Figure 3.17: SCB = TRUE

AB1’

AB2’ AB2’ AB1’ AB1’U AB2’

AB1’

AB2’ AB2’ AB1’
AB1’U AB2’

SCB = TRUE, when AB1‘ + AB2‘ +... + ABN‘ = AB1‘ U AB2‘ U... U ABN‘

where ABi’ is the area included in the boundary offset from the buildings boundary to x/2,

 x is the minimum distance between two buildings,

(3.2)

29

 Constraint C: Accessibility Requirements

The overlap between the buildings access area and the overlap zone should be at least 5% of the buildings
access area, in order to certify that the accessibility requirements of the design are met.

Figure 3.18: SCC = FALSE

Figure 3.19: SCC = TRUE

Evaluation Criteria

The value of each evaluation criterion (∑F) is a sum of the value of all buildings evaluation (Fi), as seen in
equations (3.7) and (3.11). Each Fi should have a maximum value of 1 so that all criteria can be equally rated
(equations (3.6),(3.10)). Thus the maximum value each ∑F will be N, where N is the number of buildings. The
criteria can either be maximized or minimized according to the user’s option settings.

0.05 *

SCC = TRUE, when ABAi ∩ AOZ > 0,05* ABAi

where ABAi the area of a building(i) access area and AOZ the area of the site overlap zone

(3.3)

ABA ∩ AOZ > 0.05 * ABA

ABA ∩ AOZ = 0

30

Figure 3.20: Evaluation Criteria Definition

 Criterion A: Buildings Proximity

The building proximity efficiency of each solution is evaluated for each building by measuring the distances
between itself and the other buildings on the site. This sum of distances is then divided by the number of the
other buildings to result in an average value of distance. This average distance is then further divided with the
maximum distance between two points on the site so that it can always be expressed as a value between 0 and
1. The resulting value is the value of the evaluation criterion A for each building (FAi) when we want to
minimize the buildings proximity, and is subtracted from 1 to give the final value in the case that we want to
maximize the buildings proximity.
The maximum value is accomplished when all the buildings have an average distance from each other that
equals the distance between two further points, when minimizing buildings proximity. When maximizing it
then the maximum value appears for zero distances between the buildings (equation (3.5)).

1-(0/(N-1))/ DPoPM=1, when maximizing proximity
FAi max =

 ((N-1)* DPoPM /(N-1))/ DPoPM=1, when minimizing proximity

0 ≤ FAi ≤1

∑FA=FA1 + FA2 + ……. + FAN , for N number of buildings

1-[((DB1Bi + DB2Bi + …… + DBNBi)/(N-1)) / DPoPM], when maximizing proximity
FAi =

((DB1Bi + DB2Bi + …… + DBNBi)/(N-1)) / DPoPM, when minimizing proximity

Where DBiBj the distance between building (i) and building (j), N the number of buildings and i, j Є

(1, 2, …, N) and Po, Pm the two more distant points on the site

(3.4)

(3.6)

(3.7)

(3.5)

31

 Criterion B: Solar Insolation

The solar insolation is evaluated for each building in a very rough way that is not result of proper solar analysis
but can give some rough basis for the evaluation. The sun rays vectors are produced by calculating the sun
position on an annual basis and according to the user’s input of longitude, latitude, time zone and north angle.
The calculation algorithm is produced by Ted Ngai (http://www.tedngai.net/experiments/incident-solar-
analemma.html) and is based on the algorithm published by the National Oceanic and Atmospheric
Administration (NOAA).The values in the system do not consider the scattering and absorption effects such as
water vapor, ozone and aerosol; therefore the numbers are not accurate and can only provide a rough
approximation.
Each building’s exposure to the sun is then calculated as the sum of sines of the angles between the sun ray
vectors and the building. The maximum value would be accomplished for a horizontal surface, while 0 would be
the number of rays passing through a north-facing façade, or a façade behind another building, in the case that
we are trying to maximize solar insolation, and vice versa in the case we are trying to minimize solar insolation.

M.O. Optimization
Since the optimization solver can only evaluate one
number and cannot set any constraints, a function
has to be formulated, that combines all Evaluation
Criteria and keeps the Spatial constraints, resulting
in one final evaluation value.
First of all a weight for each evaluation criterion is
set, so that the user can decide whether or not this
criterion is important for the design and if yes, then
to what percentage, related to the other criteria.
The weights have a value from 0 to 1(equation
(3.12))
The weighted evaluation values (∑F’), are then
added resulting in the total evaluation value FFinal
(equation (3.14)).
The value of FFinal is set to zero when the spatial
constraints are not met; thus all zero values
represent invalid solutions. This final value FFinal’ is
being evaluated by the solver through the
optimization iterations (equation (3.13)).

 Σsin(a)/NR, when maximizing solar insolation

FBi =
 1 - Σsin(a)/NR, when minimizing solar insolation

,where a the angle between the sun ray vector and the building and NR the total vectors of
the sun analemma produced

NR / NR =1, when maximizing solar insolation

FBi max =
1-0/NR =1, when minimizing solar insolation

 0 ≤ FBi ≤1

∑FB=FB1 + FB2 + ……. + FBN , for N number of buildings

(3.8)

(3.10)

(3.11)

(3.9)

Figure 3.21: Multi Optimization Function

http://www.tedngai.net/experiments/incident-solar-analemma.html
http://www.tedngai.net/experiments/incident-solar-analemma.html

32

3.2.3 Output

The output is given in two ways: by documenting the results and by visualizing them on the screen

Documentation

The results are documented in an excel file, whose location and name is given by the user. The data are sorted
in such a way that each row is a solution and each column displays the solution ID number (the numbering is
chronological), the final evaluation value, the evaluation of each criterion and the solution variables (point and
location for each building)

Figure 3.22: Documentation file

Visualization

After documenting the results the user can choose to
display the ranked according to efficiency solutions on
the screen in order to visualize the output. The
ranking can be according to the total evaluation value
or according to the evaluation value of one of the
criteria. The user can select to dislpay a desired
number of solutions, not necessarily continuously but
also every x solution and can also select which of the
solutions characteristics should be displayed
(parameters, evaluation criteria values, etc).

There is also a set of options regarding graphical
aspects like for example the scale of the displayed
solutions the distance that should be kept between
them etc., since these depend on the size of each site
given as output and should be easily manipulated by
the user.

∑F’ = ∑F*w , where 0≤w≤1 the weight of the criterion

FFinal=∑FA’ + ∑FB’, for criteria A and B

FFinal’= FFinal*SCA* SCB* SCC

(3.12)

(3.14)

(3.13)

Figure 3.23: Display options

33

Figure 3.25: Perspective display of output

Figure 3.24: Visualization options

34

Figure 3.26: Floor plan display of output

3.3 Fine-tuning

3.3.1 Experimenting with Spatial Constraints

Efficiency of Spatial Constraints

The accessibility constraint that turns the final evaluation into zero when no overlap between the building
access area and the overlap zone exists turned out after several experiments to be a major drawback for the
efficiency of the algorithm. After several runs of both the Genetic and the Simulated Annealing solver, no
positive evaluation output came up.
 The problem is that the case that all buildings display at least 5% overlap, is extremely rare and until one such
solution is found, the algorithm wanders around in the solution space, receiving no feedback about whether or
not it is getting closer to a better solution.

‘Bonus’ in Evaluation Value when Spatial Constraints are met

While trying to improve the system performance the following alternative was tested:
Instead of turning the total evaluation of the solution to zero, the overlap of the buildings’ access area with the
overlap zone is measured and added as a positive value to the sum of the evaluation. In this way, the solutions
that do not display the desired overlap, but meet the other two constraints, can still be positively evaluated
and forward the solution search of the solver, while an extra ‘bonus’ value would lead the solver to find the
solutions that satisfy the third constraint as well. In order to maintain the importance of the evaluation criteria
as guidelines for the solver, this extra value is translated within a numerical range that has a lower maximum
value, than the evaluation criteria. Since the value range for each criterion is set to [0,1], the value range
assigned to the constraint is [0,0.1]. In order to verify whether or not such a variation would work correctly,
some experiments were done. The outcome of two of them (one for each solver) is seen on the images and
diagrams below. The images show the best 25 solutions of each experiment and the diagrams show the
evaluation values along a timeline. The weight of the insolation criterion is turned into zero, in order to
minimize calculation times. The type of criteria driving the optimization does not affect the efficiency of the
spatial constraints.

35

Figure 3.27 : 25 best solutions produced by the GA solver for constraint C acting as a ‘bonus’ value

Chart 3.1: Evaluation values (FFINAL’) of EA solver for constraint C acting as a ‘bonus’ value

The algorithm terminated after running for 13h and finding 4235 solutions above zero after 17226 iterations.
27 of them have a value above 2 (maximum FFINAL’ =3,3). Even the ones with the higher values are not valid
ones, since they do not have all buildings placed in the overlap zone. The criterion C is not met.

0

0,5

1

1,5

2

2,5

3

1
50

79
60

54
66

15
69

93
75

04
81

20
83

84
86

27
88

16
89

96
92

02
94

05
95

75
97

38
98

91
10

05
8

10
21

1
10

37
5

10
56

7
10

75
6

10
94

4
11

15
4

11
39

7
11

60
3

11
80

9
12

04
8

12
43

9
13

18
3

14
10

1
14

46
5

14
68

3
14

86
0

15
05

3
15

20
6

15
35

2
15

50
2

15
66

1
15

84
4

16
01

7
16

20
9

16
46

4
17

04
9

F F
IN

A
L'

V

al
u

es

Iteration number

FFINAL'

36

Figure 3.28: 25 best solutions produced by the SA solver for constraint C acting as a ‘bonus’ value

Chart 3.2 : Evaluation values (FFINAL) of SA solver for constraint C acting as a ‘bonus’ value

The algorithm ran for 13h finding 3935 solutions above zero in 23816 iterations. 1815 of them have a value
above2 (maximum FFINAL’ =3,3). That doesn’t mean though that all 3935 solutions are valid solutions since the
fulfillment of constraint C isn’t a restriction. We can see though that, at least in the best solutions, all buildings

0,00

0,50

1,00

1,50

2,00

2,50

3,00

1
46

6
64

0
85

7
10

48
12

51
16

21
18

76
21

49
23

79
26

22
28

64
60

14
62

53
65

16
67

69
69

80
72

63
74

90
77

33

79
37

81
30

83
29

85
25

10
35

4
10

55
3

10
71

7
10

88
7

11
06

1
11

24
4

11
42

5
17

44
6

17
64

9
17

85
9

18
04

2
18

24
6

18
46

5
18

64
7

23
36

2

23
71

4

F F
IN

A
L'

 V
al

u
es

Iteration number

FFINAL'

37

are placed inside the overlap zone; thus there are valid solutions produced but their number cannot be directly
calculated.

Distance from path used as a guideline

Even though the SA algorithm did manage to find proper solutions without having Constraint C setting the
evaluation to zero, it was considered more appropriate to find a way to implement the constraints into the
system in a way that we can have a clear expression of the results according to whether a solution is valid or
not.
Therefore criterion C was once again activated to turn the evaluation to zero and a workaround was
implemented to ensure that the algorithm receives some sort of feedback while spatial constraints are not
met.

This feedback is the distance that each building has from the site access boundary. This distance is given a
negative sign and added to the final evaluation value. That way instead of a constant zero value, when the
performance criteria are not met, now the algorithm receives a negative value and tries to maximize it by
bringing the buildings closer to the site access path. This distance acts as a negative evaluation criterion, in the
sense that it doesn’t actually evaluate a valid solution but an invalid one in order to improve it. As soon as the
spatial constraints are met the negative distance value is no longer added to the total evaluation value, so that
it won’t alter the evaluation results.

Figure 3.29: 25 best solutions produced by the SA solver while feedback for fulfillment of SCC is given

38

Chart 3.3: Evaluation values (FFINAL’) of SA solver for constraint C acting as a negative evaluation criterion. All solutions
displayed

Chart 3.4: Evaluation values (FFINAL’) of SA solver for constraint C acting as a negative evaluation criterion. Only valid
solutions displayed

The algorithm ran for 10h finding 5409 valid solutions in 18106 iterations. 393 of them have a value above2
(maximum FFINAL’ =3,3). All solutions above zero are valid solutions that meet all three constraints

Alteration of Spatial Constraint C

Since the buildings’ distance from the site
access path also controls the accessibility
requirements, it is considered unnecessary
to maintain the operator that controls the
overlap of the building’s access area with the
overlap zone. Therefore the accessibility
requirements constraint is no longer given by
measuring the containment of the buildings’
access area in the overlap zone” but, by
measuring the distance between the
building’s access area and the site access
area (d). The constraint leads to a valid
solution if this distance is smaller than the
longer edge of the building access area’s
bounding polygon (L). In order to forward
further flexibility in the accessibility
requirements, this constraint is controlled by

-80

-60

-40

-20

0

16
65

16
28

81
4

41
81

50
69

18
87

29
6

80
29

10
43

4
14

94
8

78
81

42
92

16
83

5
57

72
17

35
3

10
91

5
14

28
2

32
56

35
89

20
35

27
38

41
07

44
77

60
68

89
91

12
39

5
42

55
65

12
69

19
14

09
7

70
67

80
66

90
65

10
17

5
12

58
0

99
53

10
69

3
12

65
4

98
79

11
98

8
14

24
5

13
80

1
14

20
8

14
43

0
14

39
3

16
94

6
17

27
9

15
72

5
16

20
6

F F
IN

A
L'

 V
al

u
es

Iteration number

FFINAL'

0

0,5

1

1,5

2

2,5

3

3,5

37
40

7
77

7
11

47
15

17
18

87
22

57
26

27
29

97
33

67
37

37
41

07
44

77
48

47
52

17
55

87
59

57
63

27
66

97
70

67
74

37
78

07
81

77
85

47
89

17
92

87
96

57
10

02
7

10
39

7
10

76
7

11
13

7
11

50
7

11
87

7
12

24
7

12
61

7
12

98
7

13
35

7
13

72
7

14
09

7
14

46
7

14
83

7
15

20
7

15
57

7
15

94
7

16
31

7
16

68
7

17
05

7
17

42
7

17
79

7

F F
IN

A
L'

 V
al

u
es

Iteration number

FFINAL'

Figure 3.30: Accessibility Constraint Operators

39

a weight parameter by the user. This accessibility weight “loosens” the constraint with a value range from 0-
100. 0% constraint relaxation means that the constraint acts as described previously and results in a solution
where the building is adjacent to the site access area. 100% relaxation means that the building is allowed to be
as far away from the path as possible. All the intermediate values result in respective way.

SPATIAL CONSTRAINT C: ACCESSIBILITY REQUIREMENTS:

Negative Evaluation Criteria

After some experiments done for a relative big number of buildings the algorithm’s performance was still low
because of the restrictions imposed by the other two spatial constraints: For a problem of locating many
buildings into a relative small site (high density) the solver easily got lost without finding positive solutions,
since the buildings almost always would overlap with each other and return 0 as an evaluation value without
helping the algorithm orient in the solution space. Therefore the same logic was once again applied here: The
overlap of the buildings with each other and also with the non-constructible area of the site is given a negative

sign and added to the final evaluation value. The site’s non-constructible area ANCS is the union of a)the site

access area, b)the non-constructible zone and c) the difference of the area of the site’s bounding box minus the
site offset to y (y is the minimum distance that should be kept from the site boundaries). As soon as the spatial
constraints are met, the overlaps turn, by definition, into zero and can be added to the final result without
altering it.

Thus the system is now producing three more values: NCA, NCB, NCB, the negative evaluation criteria. Each one
of them corresponds to one of the spatial constraints and mainly expresses how far the solution is from the
constraint’s fulfillment. They all have negative or zero values, and they are added to the final evaluation value.

NCB = - [(AB1‘ + AB2‘ +... + ABN‘) ∩ (AB1‘ U AB2‘ U... U ABN‘)]

where ABi’ is the area included in the boundary offset from the buildings boundary to x/2,

 iЄ{1,2,…,N} ,N the number of buildings on site

 x is the minimum distance between two buildings,

NCA = - Σ(ABi∩ANCS)

where ABi the area of building(i) floor plan, iЄ{1,2,…,N}

N the number of buildings on site

ANCS the site non constructible area

SCC = TRUE, when d < f(w) * L
f(w)=((D-L)*w)/100+L

where d the distance between the building’s access area and the site access area

L the longest edge of the building access area bounding polygon

D the longest one of the distances between the points of the constructible site and

the site access area

0≤w≤100 the weight controlling the constraint’s relaxation

(3.15)

(3.16)

(3.17)

 -d ,when SCC =FALSE
NCC =

 0 ,when SCC =TRUE

where d the distance between the building’s access area and the site access area

(3.18)

40

 The system performance was tested for 5 buildings, while both criteria weights were set to 1 and so as to
maximize both buildings proximity and solar insolation.

Figure 3.31: 25 samples of the 200 best solutions produced by the SA solver after implementing negative evaluation
criteria

41

Chart 3.5: Evaluation values (FFINAL’) of SA solver after implementing negative evaluation criteria. All solutions displayed.

Chart 3.6: Evaluation values (FFINAL’) of SA solver after implementing negative evaluation criteria. Only valid solutions
displayed

The algorithm ran for 13h and finding 852 valid solutions in 2094 iterations.

3-Dimensional spatial constraints

The spatial constraints as already applied, express the relationships between the buildings and the site on two-
dimensional space, by controlling overlap and containment constraints through their floor plans. For irregular
building geometries, where the building volume doesn’t exactly correspond to the floor plan, it is possible that
the buildings overlap with each other or that they are not contained in the site even if the spatial constraints
are met. Therefore the two first criteria should be adjusted in order to provide valid solutions independently of
the geometry input. The negative evaluation criteria are also respectively adjusted.

Figure 3.32: Volume overlap and failure in site containment for two buildings that meet the two-dimensional spatial
constraints

-6000

-5000

-4000

-3000

-2000

-1000

0

1
51

10
1

15
1

20
1

25
1

30
1

35
1

40
1

45
1

50
1

55
1

60
1

65
1

70
1

75
1

80
1

85
1

90
1

95
1

10
01

10
51

11
01

11
51

12
01

12
51

13
01

13
51

14
01

14
51

15
01

15
51

16
01

16
51

17
01

17
51

18
01

18
51

19
01

19
51

20
01

20
51

F F
IN

A
L'

 V
al

u
es

Iteration number

FFINAL'

0

1

2

3

4

5

1
51

10
1

15
1

20
1

25
1

30
1

35
1

40
1

45
1

50
1

55
1

60
1

65
1

70
1

75
1

80
1

85
1

90
1

95
1

10
01

10
51

11
01

11
51

12
01

12
51

13
01

13
51

14
01

14
51

15
01

15
51

16
01

16
51

17
01

17
51

18
01

18
51

19
01

19
51

20
01

20
51

F F
IN

A
L'

 V
al

u
es

Iteration number

FFINAL'

42

3.3.2 GA VS SA

As seen in the above experiments, the simulated annealing solver works better than the genetic solver in all of
the implementation variations. The diagrams below show the evaluation values along with the parameters
values that produce each solution. We can see that the genetic solver has a small range of values in the
parameters, meaning that doesn’t actually experiment a lot in the solution space. It is rather focusing on one
solution and tries to optimize it, in contrast with the SA, which finds a new solution in every iteration. We could
conclusively say that the GA would be more suitable for a problem where only one solution exists and we aim
at getting as closer to it as possible. In our case it is preferred that we find many good solutions, whose slight
differences in the evaluation value are not particularly important. It is more important that a wide variety of
solutions is produced each one with its pros and cons, so that the user can decide which is more suitable for
the specific project.

SCA = TRUE, when VB1 + VB2 +... + VBN =(VB1 U VB2 U... U VBN)∩VCS

where N the number of buildings on site

 VBi the volume of building(i), iЄ{1,2,…,N}

VCS is the z extrusion of the site constructible area

 VCS = VS’\(VSA U VNCZ)

 VS’ is the z extrusion of the boundary offset from the site to y,

 y is the minimum distance that the buildings have to keep from the site,

 VSA is the z extrusion of the site access area,

 VNCZ is the z extrusion of the non-constructible zone

(3.19)

SCB = TRUE, when VB1‘ + VB2‘ +... + VBN‘ = VB1‘ U VB2‘ U... U VBN‘

where VBi’ is the volume of building (i)

(3.20)

NCB = - [(VB1‘ + VB2‘ +... + VBN‘) ∩ (VB1‘ U VB2‘ U... U VBN‘)]

where VBi’ is the volume produced by an offset of the buildings volume to x/2,

 iЄ{1,2,…,N} ,N the number of buildings on site

 x is the minimum distance between two buildings,

NCA = - Σ(VBi∩VNCS)

where VBi the volume of building(i) , iЄ{1,2,…,N}

N the number of buildings on site

VNCS the z extrusion of the site non-constructible area

(3.21)

43

GENETIC SOLVER

0

0,5

1

1,5

2

2,5

3
1

50
79

60
54

66
15

69
93

75
04

81
20

83
84

86
27

88
16

89
96

92
02

94
05

95
75

97
38

98
91

10
05

8
10

21
1

10
37

5
10

56
7

10
75

6
10

94
4

11
15

4
11

39
7

11
60

3
11

80
9

12
04

8
12

43
9

13
18

3
14

10
1

14
46

5
14

68
3

14
86

0
15

05
3

15
20

6
15

35
2

15
50

2
15

66
1

15
84

4
16

01
7

16
20

9
16

46
4

17
04

9

F F
IN

A
L'

V

al
u

es

Iteration number

FFINAL'

-300

700

1700

2700

3700

4700

1
50

79
60

54
66

15
69

93
75

04
81

20
83

84
86

27
88

16
89

96
92

02
94

05
95

75
97

38
98

91
10

05
8

10
21

1
10

37
5

10
56

7
10

75
6

10
94

4
11

15
4

11
39

7
11

60
3

11
80

9
12

04
8

12
43

9
13

18
3

14
10

1
14

46
5

14
68

3
14

86
0

15
05

3
15

20
6

15
35

2
15

50
2

15
66

1
15

84
4

16
01

7
16

20
9

16
46

4
17

04
9

P
o

in
t

ID

Iteration number

BUILDING 1 BUILDING 2 BUILDING 3

-40

60

160

260

360

1
50

79
60

54
66

15
69

93
75

04
81

20
83

84
86

27
88

16
89

96
92

02
94

05
95

75
97

38
98

91
10

05
8

10
21

1
10

37
5

10
56

7
10

75
6

10
94

4
11

15
4

11
39

7
11

60
3

11
80

9
12

04
8

12
43

9
13

18
3

14
10

1
14

46
5

14
68

3
14

86
0

15
05

3
15

20
6

15
35

2
15

50
2

15
66

1
15

84
4

16
01

7
16

20
9

16
46

4
17

04
9

A
n

gl
e

(d
eg

re
es

)

Iteration number

BUILDING 1 BUILDING 2 BUILDING 3

44

SIMULATED ANNEALING SOLVER

0,00

0,50

1,00

1,50

2,00

2,50

3,00
1

46
6

64
0

85
7

10
48

12
51

16
21

18
76

21
49

23
79

26
22

28
64

60
14

62
53

65
16

67
69

69
80

72
63

74
90

77
33

79
37

81
30

83
29

85
25

10
35

4
10

55
3

10
71

7
10

88
7

11
06

1
11

24
4

11
42

5
17

44
6

17
64

9
17

85
9

18
04

2
18

24
6

18
46

5
18

64
7

23
36

2

23
71

4

F F
IN

A
L'

 V
al

u
es

Iteration number

FFINAL'

-300

700

1700

2700

3700

4700

1
46

6
64

0
85

7
10

48
12

51
16

21
18

76
21

49
23

79
26

22
28

64
60

14
62

53
65

16
67

69
69

80
72

63
74

90
77

33
79

37
81

30
83

29
85

25
10

35
4

10
55

3
10

71
7

10
88

7
11

06
1

11
24

4
11

42
5

17
44

6
17

64
9

17
85

9
18

04
2

18
24

6
18

46
5

18
64

7
23

36
2

23
71

4

P
o

in
t

ID

Iteration number

BUILDING 1 BUILDING 2 BUILDING 3

-40

60

160

260

360

1

46
6

64
0

85
7

10
48

12
51

16
21

18
76

21
49

23
79

26
22

28
64

60
14

62
53

65
16

67
69

69
80

72
63

74
90

77
33

79
37

81
30

83
29

85
25

10
35

4

10
55

3

10
71

7

10
88

7

11
06

1

11
24

4

11
42

5

17
44

6

17
64

9

17
85

9

18
04

2

18
24

6

18
46

5

18
64

7

23
36

2

23
71

4

A
n

gl
e

(d
eg

re
es

)

Iteration number

BUILDING 1 BUILDING 2 BUILDING 3

45

3.3.3 Automated parameters input

According to the way the system is finally implemented, the parameter input to the optimization solver has to
be manually done by the user (3.2.2.Optimization.Solution Definition). Manually means that the user will have
to copy and paste the sliders for a given number of times and then connect them to the solver component.
Since the system designed should be a general application and is not designed to solve one specific problem, it
would be more appealing to have in the end only one slider per parameter, one for the points and one for the
angle. This could be done if the parameter input for the solver was for each parameter a slider with a value
from 0 to 1, which then leads to a selection of n random values from the original lists, where n is the number of
buildings. In this way two numbers, both from 0 to 1 produce the solutions and each one of them results in n
point ID and n angle values. The user doesn’t have to interfere with the procedure since it is automated and
works independently of the number of buildings that exist in the specific problem. There is though one major
drawback in this choice: the parameter input of the solver, these two 0-1 sliders, produce the buildings’
location points and values in an unexpected and random way and this is minimizing the efficiency of the solver,
since it produces a problem whose solution landscape is discontinuous (Chart 3.8).

Chart 3.7: Evaluation values for point parameter : discontinuous landscape

Chart 3.8: Evaluation values for point parameter: continuous landscape

Therefore the decision made was to sacrifice the user’s convenience in some degree in order to gain a much
higher efficiency of the system.

0,00

0,50

1,00

1,50

2,00

2,50

3,00

0
71

35
1

50
7

66
5

99
9

11
39

12
59

13
29

13
60

13
72

13
76

13
76

13
90

14
19

14
19

14
19

14
20

14
23

14
25

14
26

14
27

14
28

14
29

14
29

14
29

14
29

14
32

14
32

14
32

14
32

14
32

14
36

14
40

14
43

14
43

14
43

14
43

14
43

14
49

14
50

14
50

14
50

14
50

14
50

14
50

14
50

14
50

14
50

14
50

F F
IA

N
L'

 V
al

u
es

Point Parameter

FFINAL'

0

0,5

1

1,5

2

2,5

3

74
0

74
0

74
0

74
0

74
0

74
0

74
0

97
8

99
3

10
01

10
01

10
01

10
01

10
01

10
01

10
01

10
01

10
01

10
01

10
01

10
01

10
01

10
01

10
01

10
01

10
01

10
01

10
01

10
01

10
01

10
01

10
01

10
01

10
01

10
01

10
01

10
01

10
01

10
01

10
01

10
01

10
01

10
01

10
01

10
01

10
01

10
01

10
01

10
01

10
01

F F
IN

A
L'

 V
al

u
es

Point Parameter

FFINAL'

46

3.4 Use Scenario

The actual user interface is mainly the ‘Grasshopper’ interface. The user shouldn’t have any previous
programming experience, knowledge of the optimization algorithms or of the system structure. Previous
experience in ‘Grasshopper’s” environment would be helpful since the user would already be familiar with the
actions required in order to set the input and handle the setting options. It isn’t though a requirement, since it
is easily manageable from anyone with experience in CAD systems.

The system is graphically divided into ‘user’ and ‘technical’ area. The red outline defines the user area which is
numbered according to the steps the user should complete in order to perform an optimization run:

1. Design parameters input
2. Optimization settings
3. Optimization
4. Documentation
5. Visualization

Explanation comments describe the procedure that should be followed in every step. The technical part is
available for users who are already in a high extend familiar with the software, to facilitate possible
experimentation or system improvement. Thus all the options and settings could potentially be manipulated by
the user, allowing for a high extend of flexibility, without though resulting in a complex interface, since the
absolute necessary steps are isolated and ordered.

Figure 3.33: ‘Site-Planner’ Interface

47

4 Examples
EXAMPLE 1

INPUT:

OUTPUT:

SITE INPUT:

BUILDINGS INPUT:

 (Building 1) * 2 (Building 2) * 1 (Building 3) * 2

EVALUATION CRITERIA:

W BUILDINGS PROXIMITY = 1 minimize buildings proximity
W SOLAR INSOLATION = 0

declination from site access: 70%

BUILDINGS PROXIMITY = 1,79 (maximum=5)
Calculation time = 17 min

48

EXAMPLE 2
INPUT:

OUTPUT:

SITE INPUT:

BUILDINGS INPUT:

 (Building 1) * 2 (Building 2) * 1 (Building 3) * 2

EVALUATION CRITERIA:

W BUILDINGS PROXIMITY = 1 minimize buildings proximity
W SOLAR INSOLATION = 0

declination from site access: 0%

BUILDINGS PROXIMITY = 1,43 (maximum=5)
Calculation time = 42 min

49

EXAMPLE 3
INPUT:

OUTPUT:

SITE INPUT:

BUILDINGS INPUT:

 (Building 1) * 2 (Building 2) * 1 (Building 3) * 2

EVALUATION CRITERIA:

W BUILDINGS PROXIMITY = 1 maximize buildings proximity
W SOLAR INSOLATION = 0

declination from site access: 0%

BUILDINGS PROXIMITY = 4,48 (maximum=5)
Calculation time = 36 min

50

EXAMPLE 4
INPUT:

OUTPUT:

SITE INPUT:

BUILDINGS INPUT:

 (Building 1) * 2 (Building 2) * 1 (Building 3) * 2

EVALUATION CRITERIA:

W BUILDINGS PROXIMITY = 0
W SOLAR INSOLATION = 1 maximize solar insolation

declination from site access: 10%

SOLAR INSOLATION = 0,66 (maximum=5)
Calculation time = 6h 21 min

Latitude: 48.21
o

Longitude: 16.37o

51

EXAMPLE 5
INPUT:

OUTPUT:

SITE INPUT:

BUILDINGS INPUT:

 (Building 1) * 2 (Building 2) * 1 (Building 3) * 2

EVALUATION CRITERIA:

W BUILDINGS PROXIMITY = 1 maximize buildings proximity
W SOLAR INSOLATION = 1 maximize solar insolation

declination from site access: 30%

BUILDINGS PROXIMITY = 4,35 (maximum=5)
SOLAR INSOLATION = 1,16 (maximum=5)

Calculation time = 7h 08 min

Latitude: 25.03
o

Longitude: 121.53o

52

5 Case studies

In order to verify how useful such a system would be and whether or not it could produce meaningful results
we will examine two case studies, that represent existent design, simulated in the above described
implementation. The case studies are chosen with main criterion that the designer was driven by the specific
constraints we already set as evaluation criterion i.e. solar insolation and distance between buildings. Under
such circumstances, we can prove whether or not the above criteria are confronted by the system in a better
way than by human design and what the consequences are for other design aspects.

5.1 Taipei City Wall by BIG Architects

Figure 5.1: Taipei City Wall (http://www.big.dk/#projects)

The Taipei City Wall, a 82,000 m2 residential project in the center of Taipei, was assigned to the Danish
architectural practice BIG by Taiwan Land Development Corporation.

The architects wanted to achieve the high density of a city center without losing the benefits of the less dense
populated suburban areas. Maximization solar insolation and wind penetration, maximization of green roofs
and gardens and the creation of a more ‘neighborhood-like’ atmosphere were the main goals of the design.

Starting point for the design process was a set of 5-floor cubical building modules of 15m long edges, with
equivalent in floor plan exterior space. As a second step the modules were placed on top of each other in order

http://www.big.dk/#projects

53

Figure 5.4: Maximal height and central placement in
order to gain public green space
(http://www.big.dk/#projects)

to increase the density. The overlap of the buildings is minimized to a small surface large enough to host the
vertical connections, in order to achieve the desired garden areas.

This unit was then multiplied across the central axis of the site resulting in a 72-cube “wall”, leaving most of the
site’s area free to create public green space.

Figure 5.5: Stretching the volume to promote daylight
and add shared recreational gardens
(http://www.big.dk/#projects)

Figure 5.2: Building Module
(http://www.big.dk/#projects)

Figure 5.3: Vertical placement
(http://www.big.dk/#projects)

http://www.big.dk/#projects
http://www.big.dk/#projects
http://www.big.dk/#projects
http://www.big.dk/#projects

54

Figure 5.6: The volume is lowered at one side in order
to break down the scale of the building
(http://www.big.dk/#projects)

Figure 5.7: Pushing the building back into the site
creates overlapping which hold the cores
(http://www.big.dk/#projects)

By ‘pressing’ the cubes in order to be contained in the site, the wall becomes curved and the gardens between
them become trapezoid in floor plan instead of rectangular, therefore having an opening to the sun which is on
the one side bigger than on the other.

At the end 6 cubes are removed in an attempt to balance the relationship of the building with the neighboring
plots, where lower building and open heights are more dominant.

The result is as dense as desired by the developers while simultaneously doubles the free space available.

The desire to maximize solar insolation in this project makes it an ideal case study for testing the implemented
system. The building simulation will be done based on the initial concept of the vertical unit repetition, without
the final adjustments of extracting some units and lowering one side. This is a decision that can be made after
the basic design is produced. The solar insolation criterion can be evaluated once in the given design and once
in the system outcome and the results will be compared also taking in mind the other criteria of the design. The
maximization of the buildings proximity is also object of optimization since, the intention was to gather the
buildings to the center of the site. Both weights are set to 1.

http://www.big.dk/#projects
http://www.big.dk/#projects

55

CURRENT BUILDING

EVALUATION VALUES:

SOLAR INSOLATION: 1.44 (12 max.)
BUILDING PROXIMITY: 8.45 (12max.)

ABSOLUTE VALUES:

SOLAR INSOLATION: 552.38
BUILDING PROXIMITY: 1488.10 m

56

SOLUTION 1

EVALUATION VALUES:

SOLAR INSOLATION: 1.19 < 1.44 (12 max.)
BUILDING PROXIMITY: 8.63 > 8.45 (12 max.)

ABSOLUTE VALUES:

SOLAR INSOLATION: 456 < 552.38
BUILDING PROXIMITY: 1321 < 1488.10 m

Calculation time: 72,5 h

57

The system didn’t achieve a better insolation value than the one that the original layout of the buildings
displayed. Moreover the result displays major ‘disorder’ in the way the buildings are placed next to each other
and therefore it is more likely that it wouldn’t be approved by the designers.
This mainly happened because of the extremely large calculation times needed. The high density in the site
means that the system needs to search for a long time in the solution space until a valid solution, where the
spatial constraints are met, is found. Therefore it produces very few valid solutions in a long time period.
During the 72,5h run, the system was able to perform three SA runs which means that the results depict three
solutions categories. Each category includes many valid solutions which mainly express one basic design with
only small alterations that sometimes are not even noticeable.

5.2 Greater Noida Housing by FXFOWEL

The Greater Noida Housing Project is a 400,000 m² residential development, in the planned city of Greater
Noida situated 30 miles southwest of New Delhi. It is designed by FXFOWEL architects, who considered the
environmental and social sustainability as main criterion of this project.

Figure 5.8: Greater Noida Housing Complex (http://www.fxfowle.com/)

http://www.fxfowle.com/

58

In order to reach environmental sustainability, the architects placed the units above each other while shifting
floors and creating voids and open outdoor spaces, thus not only adding a textural vertical living environment
and lightening the scale of the project, but also letting air and sunlight penetrate the complex.

The complex consists of 22 buildings which are formulated by modules stacked between terracotta colored
sheet walls that also act as sun blocks. The majority of the planned 1700 residential units have a north-south
orientation to maximize solar exposure in the winter months. A number of floors are left open to allow cooling
summer monsoon breezes maintain comfortable living conditions within the elevated living spaces. The voids
between floors also contain balconies and public spaces encouraging interaction between the residents.
Larger buildings stand up to forty-five stories and block winds on the north side of the 47 acre site. A cluster of
smaller buildings to the south let winter light penetrate the green belt between the buildings, creating an
overall effect of a small scale city.

Figure 5.11: Site Plan (http://www.fxfowle.com/)

For the needs of the simulation it was considered an appropriate solution to divide the site in two parts, since
the strategy was to place all the high buildings to the north and the lower ones to the south. Therefore the site
is divided according to the given design in two parts: The northern one containing 5 higher buildings and the
southern one containing the 17 rest. The intention is to maximize solar insolation and minimize buildings
proximity, since it is important that wind and light penetrates the site. Both criteria weights are set to 1.

Figure 5.9: Buildings Elevation
(http://www.fxfowle.com/)

Figure 5.10: Building Section
(http://www.fxfowle.com/)

http://www.fxfowle.com/
http://www.fxfowle.com/
http://www.fxfowle.com/

59

CURRENT BUILDING – Part A

EVALUATION VALUES:

SOLAR INSOLATION: 0.96 (max. 5)
BUILDING PROXIMITY: 1.58 (max. 5)

ABSOLUTE VALUES:

SOLAR INSOLATION: 347
BUILDING PROXIMITY: 1140.00 m

60

CURRENT BUILDING – Part B

EVALUATION VALUES:

SOLAR INSOLATION: 2.61 (max. 17)
BUILDING PROXIMITY: 5.17 (max. 17)

ABSOLUTE VALUES:

SOLAR INSOLATION: 948
BUILDING PROXIMITY: 3418.00 m

61

SOLUTION 1 – Part A

EVALUATION VALUES:

SOLAR INSOLATION: 1.10 > 0.96 (max. 5)
BUILDING PROXIMITY: 1.46 < 1.58 (max. 5)

ABSOLUTE VALUES:

SOLAR INSOLATION: 400 > 347
BUILDING PROXIMITY: 1052.31<1140.00 m

Calculation time: 2,8 h

62

CURRENT BUILDING – Part B

EVALUATION VALUES:

SOLAR INSOLATION: 2.77 > 2.61 (17 max.)
BUILDING PROXIMITY: 5.12 < 5.17 (17 max.)

ABSOLUTE VALUES:

SOLAR INSOLATION: 1003.82>948
BUILDING PROXIMITY: 3389.85<3418.00 m

Calculation time: 8,5 h

63

The interpretation of the final arrangement of the buildings is controversial, basically because very small
distances between the buildings where sometimes kept and it can be considered that this contradicts the initial
wish of the designers to keep large distances and let sun and wind penetrate the building. Another issue would
be here as well the amount of order in the final layout, which is rather a matter of aesthetics and personal
preferences.

The solar insolation of the building complex was indeed improved by 7,45%.

6 Conclusion

6.1 Capacities/limitations

User Input

The user input regarding the buildings is not quite straight forward. The system is designed in such a way, that
the user won’t have to manually insert the appropriate number of components according to the number of
buildings on the site. In order to accomplish that and facing the fact that the system is not actually
implemented in a programming language but in a graphical algorithm editor, that treats data structures with
certain limitations, the input process is designed in such a way that the user has to be extremely careful when
selecting the input geometry: all the buildings have to be selected the same order for each parameter. That
means that the user should select one polyline defining the buildings floor plan boundary for Building 1,
Building 2, …. and then maintain this order of buildings while selecting the rest of the parameters (building
access boundary, building volume). All the parameters have to be one single object. If one building has for
example two entrances, they still have to be entered as one polyline. If one parameter is omitted for one
building, then the output will be incorrect: if one building does not have a defined entrance area the user
should enter the whole area in the building access input, in order to maintain a proper data structure in the
system.

Solar Insolation

The solar insolation criterion is evaluated through an abstracted method, of calculating the sun rays that hit the
buildings envelope. A more accurate calculation could be done through a software for solar analysis ‘Ecotect’,
since there is already a connection between these platforms that allows interactive feedback by exporting the
grasshopper geometry into the ecotect environment and importing the results for visual feedback. Such a
solution would be though unfeasible, since the calculation time is at least 10 times bigger than is currently
needed and for a big number of buildings or for complex geometry, that would strongly reduce time efficiency.

Offsets

The spatial constraints are built on operators that produce curve and polysurface offsets. Therefore they are
subject to malfunctions that often occur in design software depending on the geometry input. Such
malfunctions may result in falsification of the results and the solution evaluation.

Calculation Time

The calculation time grows along with the complexity of the design simulated. For a set of five buildings of
relatively simple geometry and both criteria weights bigger than zero, the system needs approximately 3-4
hours to produce one solution. Reaching the number of 10 buildings the calculation time can last 24h. The long
calculation times are mainly a result of the time needed to calculate the solar insolation. Even though the
system doesn’t perform a regular solar analysis but just a calculation based on a simplification method, its
efficiency regarding the time parameter is still low. Considering the fact that the system is designed in order to
provide solutions for a complex design input, this is a major drawback.
Respectively, when displaying on screen results of solutions where solar insolation is calculated, the response
time while manipulating the display settings is also large.

64

6.2 Proposals for future research

Partial Solar Insolation Evaluation

It is seen in many cases that the placement of a building is done in a way that tries to optimize sun exposure
only in parts of the buildings, either because of the intended usage (different uses in south/north façade) or
because of the intention to use specific facades or the roof for solar panels. Thus it would be a very useful
feature if the user could only select parts of the building for the solar insolation evaluation.

Buildings’ Distribution on the Site

We noticed through several experiments and examples that the system tends to ‘group’ the buildings while
trying to minimize their proximity. Since this is not always the desired result, it would be a useful feature if the
type of distribution of the buildings on the site could be controlled by the user.

Layout Rules

As seen by the results, the system output almost always diverges from conventional site planning design
because of the lack of order in the layout. Independently of whether order should be a desired feature or not,
the system could be adjusted to fit such design criteria. A simple method to achieve that, would be to
implement a settings option restricting the difference of the value angles of the buildings to n*90 degrees with
n Є (0,1,2,3). This would of course have a negative impact on the solar insolation optimization, since the
solution space would be considerably reduced.

Neighboring Buildings Input

The neighboring buildings affect the shading efficiency of the buildings on site, and should be in the future
incorporated into the system implementation.

Site Input

Another useful feature that affects both accessibility and solar insolation is the sites morphology; the current
implementation considers the site as a two dimensional object. By introducing a z-value, a reconsideration of
the spatial constraints regarding accessibility would be necessary.

Design Criteria

In general, more evaluation criteria could be implemented so that the system could be more efficient in terms
of meeting the needs of a designer. One of these criteria could be the ability to obtain certain views from
certain locations on the site or the privacy/publicity of space.

65

References

Bibliography

Aarts, Emile, H.,L., Jan,H.M. Korst, and Peter,J.M. van Laarhoven. "Simulated Annealing." In Local Search in
Combinatorial Optimization, by Emile, H.,L. Aarts, & J.K. Lenstra, 91-120. New Jersey: Princeton
University Press, 2003.

Aho, A. V., J.E. Hopcroft, and J.D. Ullman. The Design and Analysis of Computer Algorithms. Boston: Addison-
Wesley, 1974.

Akin, O., B. Dave, and S. Pithavadian. "Heuristic generation of layouts (HeGeL): based on a paradigm for
problem structuring." Environ. Plan. B:Plan. Des. 19 (1992): 33-59.

Baeck, Thomas. Evolutionary Algorithms in Theory and Practice: Evolution Strategies , Evolutionary
Programming, Genetic Algorithms. New York: Oxford University Press, 1996.

Baykan, C. Formulating spatial layout as a disjunctive constraint satisfaction problem. Ph.D. diss. Department of
Architecture, Carnegie Mellon University, 1991.

Ciftcioglu, O., and M.S. Bitterman. "Solution Diversity in Multi-Objective Optimization: A study in Virtual
Reality." IEEE Word Congress on Computational Intelligence. Hong Kong, 2008.

Dorigo, Marco, and Thomas Stuetzle. Ant Colony Optimization: Overview and Recent Advances. Brussels: IRIDIA-
Technical Report Series, Université Libre de Bruxelles, 2009.

Eastman, Charles. "Automated space planning." Artificial Intelligence (Elsevier) 4, no. 1 (1973): 41-64.
Flemming, U., C. Baykan, and R. Coyne. "Hierarchical generate-and-test versus constraint-directed search."

Edited by J. Gero. Proceedings of the Artificial Intelligence un Design Conference '92. Dordrecht:
Kluwer, 1992. 817-838.

Flemming, U., R. Coyne, S. Fenves, J. Garrett, and R. Woodbury. "SEED-software environment to supprot the
early phases in building design." Proc. IKM '94. Weimar, 1994. 5-10.

Glover, F, and M. Laguna. Tabu Search. Boston: Kluwer, 1986.
Glover, F. "Future paths for integer programming and links to artficial intelligence." Computers and Operations

Research 13 (1986): 533-549.
Glover, F., and G. A. Kochenberger. Handbook of metaheuristics. Springer, 2003.
Grason, J. "An approach to computerized space planning using graph theory." Proceedings of the Design

Automation Workshop. New York: IEEE, 1971. 170-179.
Holland, J. Adaptation in Natural and Artificial Systems. Ann Arbor: University of Michigan Press, 1975.
Kirkpatrick, S., C. D. Gelatt, and M. P. Vecchi. "Optimization by Simulated Annealing." Science 220, no. 4598

(1983): 671-680.
Koziel, Slawomir, and Xin,She Yang. Computational Optimization, Methods and Algorithms . Berlin: Springer,

2011.
Ligget, Robin S. "Automated facilities layout:past, present and future." Automation in Construction (Elsevier) 9

(2000): 197-215.
Lobos, D., and D. Donath. "The problem of space layout in architecture: A survey and reflections."

arquiteturarevista 6 (2010): 136-161.
Mitchell, Melanie. An Introduction to Genetic Algorithms. Massachusetts: MIT Press, 1996.
Muther, R. Systematic Layout Planning. Boston: Cahners Books, 1973.
Pfefferkorn, C. The design problem solver: a system for designing equipment or furniture layouts. Pittsburgh:

Department of Computer Science, Carnegie-Mellon University, 1972.
Poli, Richardo, William,B. Langdon, and Nicholas,F. McPhee. A Field Guide to Genetic Programming. Riccardo

Poli, William B. Langdon, Nicholas Freitag McPhee, 2008.
Sharpe, R., and B. Marksjo. "Solutions of the facilities layout problem by simulated annealing." Comp. Environ.

Urban Syst. 11, no. 4 (1986): 147-154.
Yang, Xin,She. Nature-Inspired Metaheuristic Algorithms. Frome: Luniver Press, 2010.

66

Web Sources

http://alexandria.tue.nl/repository/freearticles/496713.pdf
http://artint.info/html/ArtInt.html
http://housing03.blogspot.co.at/
http://ieatbugsforbreakfast.wordpress.com/2011/03/04/epatps01/
http://slingshot-dev.wikidot.com/ghdb-genome
http://theprovingground.wikidot.com/usc-spring2011-resources
http://www.grasshopper3d.com/forum
http://www.srrb.noaa.gov/highlights/sunrise/azel.html
http://www.tedngai.net/

http://alexandria.tue.nl/repository/freearticles/496713.pdf
http://artint.info/html/ArtInt.html
http://housing03.blogspot.co.at/
http://slingshot-dev.wikidot.com/ghdb-genome
http://theprovingground.wikidot.com/usc-spring2011-resources
http://www.grasshopper3d.com/forum
http://www.tedngai.net/

67

Appendix A. System Operators

Spatial Constraints

Evaluation Criteria

A: CONTAINMENT IN CONSTRUCTIBLE SITE

SCA = TRUE, when VB1 + VB2 +... + VBN =(VB1 U VB2 U... U VBN)∩VCS

where N the number of buildings on site

 VBi the volume of building(i), iЄ{1,2,…,N}

VCS is the z extrusion of the site constructible area

 VCS = VS’\(VSA U VNCZ)

 VS’ is the z extrusion of the boundary offset from the site to y,

 y is the minimum distance that the buildings have to keep from the site,

 VSA is the z extrusion of the site access area,

 VNCZ is the z extrusion of the non-constructible zone

B: BUILDINGS OVERLAP

SCB = TRUE, when VB1‘ + VB2‘ +... + VBN‘ = VB1‘ U VB2‘ U... U VBN‘

where VBi’ is the volume of building (i)

C: ACCESSIBILITY REQUIREMENTS

SCC = TRUE, when d < f(w) * L
f(w)=((D-L)*w)/100+L

where d the distance between the building’s access area and the site access area

L the longest edge of the building access area bounding polygon

D the longest one of the distances between the points of the constructible site and the

site access area

0≤w≤100 the weight controlling the constraint’s relaxation

A: BUILDINGS PROXIMITY

1-[((DB1Bi + DB2Bi + …… + DBNBi)/(N-1)) / DPoPM], when maximizing proximity
FAi =

((DB1Bi + DB2Bi + …… + DBNBi)/(N-1)) / DPoPM, when minimizing proximity

Where DBiBj the distance between building (i) and building (j), N the number of buildings and i, j Є

(1, 2, …, N) and Po, Pm the two more distant points on the site

∑FA=FA1 + FA2 + ……. + FAN , for N number of buildings

68

Negative Evaluation Criteria

MO Optimization

B: SOLAR INSOLATION

 Σsin(a)/NR, when maximizing solar insolation

FBi =
 1 - Σsin(a)/NR, when minimizing solar insolation

where a the angle between the sun ray vector and the building and NR the total vectors of the sun
analemma produced

∑FB=FB1 + FB2 + ……. + FBN , for N number of buildings

A: CONSTRUCTIBLE SITE CONTAINMENT

NCA = - Σ(VBi∩VNCS)

where VBi the volume of building(i) , iЄ{1,2,…,N}

N the number of buildings on site

VNCS the z extrusion of the site non-constructible area

B: BUILDINGS OVERLAP

NCB = - [(VB1‘ + VB2‘ +... + VBN‘) ∩ (VB1‘ U VB2‘ U... U VBN‘)]

where VBi’ is the volume produced by an offset of the buildings volume to x/2,

 iЄ{1,2,…,N} ,N the number of buildings on site

 x is the minimum distance between two buildings,

C: ACCESSIBILITY REQUIREMENTS

 -d ,when SCC =FALSE
NCC =

 0 ,when SCC =TRUE

where d the distance between the building’s access area and the site access area

∑F’ = ∑F*w , where 0≤w≤1 the weight of the criterion

∑NC = NCA + NCB + NCC

FFinal=∑FA’ + ∑FB’+∑NC, for criteria A and B

FFinal’= FFinal*SCA* SCB* SCC

69

Appendix B. User Interface

70

71

72

73

74

Appendix C. Genetic Solver

Provided in Galapago’s documentation by David Rutten

(http://ieatbugsforbreakfast.wordpress.com/2011/03/04/epatps01/)

PROCCESS
For the problem subject to optimization we should be able to
define a set of variables to whom in terms of evolutionary
computing we refer to as genes. The fitness of every solution
is the function, depending on these variables, that decides
how suitable every solution is or how close it is to the optimal
solution, if there is one. For a model that would contain two
variables (genes) the fitness landscape would look like Figure
C.1.
As we change Gene A, the fitness of the solution model
changes and it either becomes better or worse (depending on
what we’re looking for). But for every value of A we can also
vary gene B, resulting in better or worse combinations of A
and B. Every combination of A and B results in a particular
fitness and this fitness is expressed as the height of the
Fitness Landscape.

Of course a lot of problems are defined by a much higher number of genes, in which case there is no longer a
“landscape” in the traditional sense but a n-dimensional fitness volume deformed in n+1 dimensions,(where n
is the number of genes), as in the previous example a two dimensional fitness plane is deformed in 3
dimensions.
For simplification reasons the process is explained using the two-dimensional example.

Beginning to find the best fitting solution we start with a randomly selected population of genomes –
Generation 0-since we have no information about what should be the starting point. After the fitness of every
genome of generation 0 is evaluated, they are sorted from lower to higher value. Based on the reasonable
assumption that the higher genomes are closer to the highest solution, the worst performing genomes are
excluded and the remainder are the ones on which the focus is on.

By breeding these more efficient genomes we can form the next generation, generation 1. When we breed two
genomes their offspring will end up somewhere in the intermediate model space; thus exploring fresh ground.
The new population, which is no longer completely random, is already starting to cluster around the fitness
“peaks”. Repeating the above steps will lead eventually to the highest one.

Figure C.2: Generation 0 Population Figure C.3: Intermediate Generation Population

Figure C.1: : Fitness Landscape for a problem with
two variables

http://ieatbugsforbreakfast.wordpress.com/2011/03/04/epatps01/

75

In order to perform this process, an evolutionary solver requires five interlocking parts, which will be further
described:

 Fitness Function

 Selection Mechanism

 Coupling Algorithm

 Coalesence Algorithm

 Mutation Factory

Fitness Functions, Definition of Fitness

Opposed to biological evolution where fitness is the result of a huge number of conflicting forces, in
evolutionary computation fitness is a very easy concept. It can be whatever we want it to be. When we are
trying to solve a specific problem we know what it means to be fit and we can define a strict fitness function to
express it.

Taking once more as an example the fitness landscape that refers to a problem with two variables, we can
depict in the following shape how every genome is trying to improve its fitness through the process of the
solver. Focusing on a genome that was initially positioned on the bottom of the fitness landscape (Figure C.6)
the route that represents the pathway of its most successful offspring is a route climbing uphill along the
steepest slope to the nearest local optima. If this representation was done for a large amount of sample points
the fitness landscape would look like the shape of Figure C.7

Figure C.4: Later Generation Population Figure C.5: Last Generation Population

Figure C.6: Genome route Figure C.7: Population routes

76

As shown in the figures above, every peak in the fitness landscape has a basin of attraction around it that
represents all genomes that converge upon that specific peak. The area of each basin is definitely not
representative of the quality of the peak. A poor solution can actually have a large basin of attraction, while a
good solution may have a very small one, depending on the nature of the problem. This relation between the
area of the basin of attraction and the quality of the solution and in general the form of the fitness landscape
has major impact on how successful the solver is going to be.

In the following example (Figure C.8) we see a 2-
dimensional graph representing the fitness
landscape while the solver tries to find the
minimum bounding box of a cylinder, using as
variables two axis of rotation (two genes). We can
see that such a problem could be successfully
confronted by the solver: the fitness landscape is
periodic, the solutions are of equal quality and
there are no local optima. No matter where the
starting point of a genome is, it will definitely end
up in a peak that is of maximum quality.

Unfortunately, not all problems can be so easily solved. In the following graphs Figure C.9-Figure C.12) we can
see a number of different cases representing problems, whose solutions are much more difficult to find.

In Figure C.9 we can see that there are two types of solution: one of lower quality but larger area of basin of
attraction (represented in pink color) and one of better quality but much smaller basin of attraction (yellow

Figure C.9 Local maxima Figure C.10 Maxima with small basin area

Figure C.11: Flat basins Figure C.12: Noise in fitness landscape

Figure C.8: Fitness Landscape

77

color). It is easily understood that many genomes (almost half) can be trapped in the area of the poorest
quality local maxima and thus result in an inefficient solution.
An even worst case is shown in Figure C.10, where the solutions are found only when a genome happens to be
generated in a very small basin. Here it is really easy to totally miss the solution or miss the best solution when
finding one local optima.

In Figure C.11 there are no forces leading the genomes while they are located in the intermediate steps toward
the peak. Therefore it is not easy to follow a route from the poorest towards the best solution since the
upgrade from step to step can only be done by luck without any indication of where the genome should lead
to.

The last example Figure C.12 shows a fitness landscape with a large amount of noise, which makes it very hard-
almost impossible- for the genomes to orient themselves towards the best solutions. Both ancestors may be of
high quality but their offspring may result in a poor solution.

As seen through these examples the definition of the problem plays a significant role on how efficiently a
genetic algorithm could act.

Selection

The process of selection refers to the selection of the genomes that get to “mate” and therefore pass their
genetic characteristics to the following generation. There are many selection algorithms available in
computation: isotropic, exclusive and biased selection.

Isotropic selection is the simplest selection algorithm; in fact it expresses the lack of a selection algorithm, since
all genomes have equal chances to mate regardless of their fitness evaluation. (Figure C.13).

Even though this strategy may seem that is not
furthering the evolution of the gene-pool, it still
serves the efficiency of the solver since it acts as a
hold up-mechanism towards the fast colonization of
local optima which could lead to an inferior solution.

Even in nature such a selection mechanism exists
indeed, like for example in wind pollination, coral
spawning or in a walrus colony where all female of
the colony get to mate independent of how fit they are.

In Exclusive selection only the best N% of the population is selected to produce offspring for the next
generation. In Biased Selection, the chances that a genome produces offspring increase as the fitness increases
resulting in a curve like the one shown in Figure C.15 , which can be further flattened or exaggerated through
the use of amplifying algorithms.

Figure C.13: Isotropic Selection

Figure C.14: Exclusive selection Figure C.15: Biased Selection

78

Coupling

As soon as the selection algorithm finds the appropriate genomes that will form the next generation, the
coupling process begins. During this process each selected genome has to find its mate in order to produce the
offspring. There are many algorithms for the coupling process.

This genomic distance is an abstract reference to the similarity of
the genomes that are chosen for mating. This is represented in
Galapagos’ interface through a graph called Genome Map
(Figure C.16), a two-dimensional mapping of the distance
between the genomes in a multi-dimensional model space.

All individuals (genomes) are displayed as dots on a grid in a way
that the distance between them relates to the distance in gene-
space. Since it isn’t possible to map an N-dimensional point
cloud (where N is the number of genes) on a 2-Dimensional grid
with pure accuracy, the genome map is by definition an
approximation graph displaying rough analogies. Therefore there
is also no value for the axis of the graph, the only information
that we can get out of it is the similarity of two genes (depending
on how close to each other or far away they are).

Based on this graph we can represent the ways that coupling takes place.

When a genome selects its mate from the area close it itself in the genome
map, it selects a very similar genome and therefore the offspring that they
produce will also be quite similar. This behavior is to some extend desirable
but when taken to extremes it can harm the diversity of the population. It is
usually characterized as incestuous mating behavior and it decreases the
chances of finding alternative solution basins – thus increases the chances
of getting stuck in local optima (Figure C.17).

The other extreme is to mate with totally different genomes, located far away in the genome map. Excluding
every genome that is near the selected one is called zoophilic mating (Figure C.18) and can also cause
extinction, especially when the population is not a single group but a sum of several sub-species (Figure C.19).
In that case it is possible that the offspring ends up somewhere in the middle between the two local optima,
not resulting in a meaningful solution.

Figure C.16 : Genome Map

Figure C.17 : Incestuous mating

Figure C.18 : Zoophilic mating Figure C.19 : Population with sub-species

79

The best option would be to balance in- and out- breeding so that the
individuals are neither too close nor too far (Figure C.20), taking of
course in mind the nature of the problem that we are trying to solve.
The morphology of the solution graphs of the problem and whether
the problem has one peak or many is quite important for the coupling
strategy that we will follow.

Working with Galapagos a certain degree of flexibility on the type of
coupling strategy that we follow exists through the option of setting
the in- and out- breeding.

The main disadvantage of the algorithm used, is that it completely ignores the fitness of the genomes that are
selected for mating and only acts based on the similarity between them.

Coalescence

While producing the offspring of two genomes in order to populate the next generation, we have to decide
what gene values are going to be selected. The gene recombination procedure in computation is much simpler
than in nature, since the genes are continuously variable qualities that do not have discrete characteristics, but
can assume instead all numerical values between two numerical extremes. There are many mechanisms for
this procedure like crossover, blend and preferenced-blend coalescence.

Crossover coalescence is the recombination of genes between two genomes when the offspring inherits a
random number of genes from one genome and the rest from the other one, so that the gene value is
maintained. This procedure is best suited for cases when the two genomes initially selected to mate, are quite
similar with each other.

During blend coalescence, the gene values are also changing, basically adapting an average value between the
two original genes.

If we apply preferenced – blend coalescence, then the new value assigned to the offspring gene, tends to be
more similar to the original gene value displaying the higher fitness.

Mutations

The previous mechanisms incorporated in the procedure of producing the next generations improve the quality
of the solution generation by generation, but unfortunately they tend to reduce the bio-diversity of the
population causing in extreme cases the population to extinct or get caught in local optima not finding the best
solution. The mechanism that can actually further bio-diversity is mutation.

Figure C.20 : Balanced in- and out-breeding

Figure C.21 : Crossover, Blend and Preferenced-Blend Coalesence

80

The explanation of mutations will be done through Genome
Graphs. A Genome Graph is a graph allowing the 2-
dimensional representation of a multi-dimensional point.
Every point in multi-dimensional space is displayed as a
series of lines that connect different values. X axis is
representing the genes and thus every vertical bar is
another dimension. The Y axis is showing the gene values.
These are absolute values in the sense that their value is
showing their location regarding to the lower and upper
limit. Using Genome Graphs not only we can describe multi-
dimensional points but we can also represent points with
different number of dimensions on the same graph.

During point mutation a single gene value is altered. Point Mutation is the only mutation available in
Galapagos. Another type of mutation is swapping the values of two neighboring genes. This type of mutation
(inversion mutation) is useful only when it serves an equivalent relation between the genes. Otherwise it has a
negative impact on the process.

Adding or deleting a gene is performed when the genomes do not require a fixed number of genes. This is not
possible when working only with a fixed number of genes.

Figure C.22: Genome Graph of a 5-gene genome

Figure C.24 : Point mutation Figure C.23 : Inversion Mutation

Figure C.26 : Deleting a gene Figure C.25 : Adding a gene

81

Appendix D. Simulated Annealing Solver

Provided in Galapago’s documentation by David Rutten

 (http://ieatbugsforbreakfast.wordpress.com/tag/simulated-annealing/)

The second solver available within Galapagos implements the Simulated Annealing algorithm. Like the existing
Evolutionary solver, Simulated Annealing is also a meta-heuristic technique, but works in a fundamentally
different fashion. Having access to both solvers makes it easier to circumvent some of the shortcomings of
each. Ironically, Simulated Annealing is a much simpler process than Simulated Evolution but may be harder to
understand since the real-world analogy is more abstract and based on a less well known process.

In metallurgy, annealing is the process of controlled heating and cooling of metal to achieve certain material
properties. At first, the metal is heated up to melting point so it can be cast or formed. At an atomic level, heat
is nothing more than particle velocity. The particles (atoms & molecules alike) in a hot substrate move faster
than the same particles in a cold substrate. At some point the velocity of two particles will be so high that they
cannot succeed in forming a persistent bond between them. When this happens the substrate loses internal
structure and turns liquid.

Similarly, when a substrate is liquid but starts to cool down, there will come a point where the atoms can form
lasting bonds and the internal structure of the substrate is resurrected, turning the liquid into a solid. In 1866
James Clerk Maxwell formulated the equations that described the distribution of particle velocities in a gas of
constant macro temperature. For example, a litre of helium gas at room-temperature contains roughly 3 ×
1022 atoms and the most probable speed of these atoms is a little over a 1000 meters per second. However
there will be a lot of very slow atoms as well as a few much faster ones. This same phenomenon holds for
liquids too, although the velocity distributions are not as well defined nor do they cover quite so large a range.

The upshot of all this is that when a substrate is allowed to cool, some atoms will cross the liquid/solid
threshold before others. In other words, a substrate doesn’t freeze everywhere at once, small clumps of
relatively slow atoms group together and form the freezing ‘seeds’. Especially when we’re talking about metals
this is important because when metal atoms freeze, they like to form a regular lattice, or crystal.

These small islands of glued together atoms grow over time as more and more slow atoms attach themselves
to the seeds, allowing the micro-crystals to expand. When cooling lasts long time, atoms are allowed to find the
optimal (minimal energy) distribution. If on the other hand cooling is very quick —for example by dumping the
hot metal into water— there is no time to form large crystals and the substrate becomes amorphous.

Figure D.1: Atoms in liquid metal

Figure D.2: Atoms in liquid metal Figure D.3 Crystal seeds in semi-liquid
metal

Figure D.4: Regular atomic lattice

http://ieatbugsforbreakfast.wordpress.com/tag/simulated-annealing/

82

Treating all the parameters in a problem as an atomic thermodynamic system allows finding relatively good
answers relatively quickly. Basically, with Simulated Annealing, Galapagos seeks to crystallize the parameters
into the lowest energy state.

A typical annealing run consists of a number of successive jumps in the problem phase-space, where the
amplitude of each jump and its legitimacy are affected by the temperature of the system. When the
temperature of the system is high, large jumps are allowed and there is a significant likelihood that a worse
answer is adopted despite being a setback. The graph below shows a typical annealing track.

Figure D.5: A schematic annealing track

Along the horizontal axis all possible states of the problem are collected. If the problem phase-space is one-
dimensional (i.e. only a single Grasshopper slider), then this is an exact representation, but since this is a
schematic representation the graph x-axis can represent any number of parameter dimensions. The vertical
axis represents the fitness of each distinct state, so the thick black curve represents the entire fitness
landscape. This particular landscape has 4 local optima with varying degrees of quality.

The first annealing jump must start at a random location because nothing is known about the landscape so no
informed decision can be made. In this particular example, the annealing track starts along the left edge of the
landscape at location (1). At this point in time the temperature is very high, so large jumps across phase-space
are allowed. A jump from (1) to (2) would indeed qualify as large as it spans almost the entire phase-space.
Since (2) is higher than (1), the new solution is automatically accepted. Now there is less energy available as the
entire system is cooling down. So the jump from (2) to (3) is most likely going to be shorter than the jump from
(1) to (2). The fitness at (3) happens to be lower than (2), so the second jump actually represents a worse
answer. However, since the temperature is still relatively high, sometimes (where “sometimes” is in
accordance with thermodynamic stochastics) the worse case is accepted. This characteristic makes the solver
less prone to getting ‘stuck’ to a local optimum.

As time goes on, the temperature of the system drops and smaller and smaller jumps are possible. Also, at low
temperatures the chance that a worse case is adopted over a better one becomes insignificant. Eventually the
temperature has dropped far enough for the entire system to be frozen, at which point the best answer from
the run is cached and a second run is started, once again at high temperature.

Because of the cooling schedule, it means that every annealing run only has a limited number of steps and
therefore terminates in a limited time-span.

