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Abstract

Service Level Agreements (SLAs) play a fundamental role in service compositions. As they
represent binding contracts between service consumers and service providers, their violation is
usually linked with profit loss. In order to maximize profit a multitude of SLA violation detec-
tion mechanisms exist that can roughly be classified into two categories: the ex-post and ex-ante
detection, whereas the latter is fundamental when preventing SLA violations and subsequently
is of great interest.
Most of the current approaches either focus on the ex-post detection or insufficiently consider
the behavior of SLAs over time. Moreover, the accurate prediction of target values, being of
categorical nature, is still open.
The following thesis elaborates a new ex-ante SLA violation detection mechanism, which makes
use of the general statistical class of Autoregressive Integrated Moving Average (ARIMA) mod-
els. Thereby the past realization values of specific target values - called Service Level Objectives
(SLOs) - are analyzed and fitted into a time series model. As the application of SLAs involves the
validation of as many services as possible at the same time, the reduction of human intervention
is desirable. Therefore, the creation and training of the statistical models is done automatically.
All theoretical models are implemented and tested within the research prototype Vienna Runtime
for Service Compositions (VRESCo) and the results are validated in the course of a practically
relevant example use case, proving the great potential of ARIMA models in the domain of fore-
casting SLA violations: Differently behaving SLAs (e.g. the delivery time of a reseller) result in
a prediction accuracy ranging from 99.31% up to 99.77%. In the case of categorical SLAs the
resulting prediction accuracy of 7.18% indicates the need of further research work.
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Kurzfassung

Service Level Agreements (SLAs) spielen eine fundamentale Rolle in Service Kompositionen.
Sie stellen verbindliche Verträge zwischen Service Verbrauchern und Service Dienstleistern dar
und schreiben somit ein zu leistendes Qualitäts-Mindestmaß eines Services vor. Da die Verlet-
zung von SLAs meist mit Kosten verbunden ist, existiert eine Vielzahl an Methoden zu deren
Erkennung, welche grob in zwei Kategorien eingeteilt werden können: die ex-ante und ex-post
Methode. Letztere beschreibt die Vorhersage von Verstößen bevor diese überhaupt auftreten und
ist daher von großer Bedeutung.
Aktuell verbreitete Ansätze fokussieren meist auf die ex-post Erkennung oder messen dem
Zeitreihenverhalten von SLAs zu wenig Bedeutung zu. Darüber hinaus ist die Vorhersage von
Zielwerten kategorischer Art noch weitgehend unbehandelt.
Die folgende These erarbeitet eine neue ex-ante Methode zur Erkennung von SLA Verletzungen,
welche auf der allgemeinen statistischen Klasse von Autoregressive Integrated Moving Avera-
ge (ARIMA) Modellen basiert. Dabei werden die vergangenen Realisierungen von spezifischen
Zielwerten - genannt Service Level Objectives (SLOs) - analysiert und in ein Zeitreihenmodell
eingepasst.
Da der Anwendungsbereich von SLAs die Validierung von möglicherweise vielen Services zur
gleichen Zeit beinhaltet, ist es wünschenswert menschliche Interventionen weitestgehend zu
vermeiden. Daher erfolgt die Erzeugung und Adjustierung der statistischen Modelle automa-
tisch. Alle theoretischen Modelle sind im Rahmen des Forschungs-Prototyp Vienna Runtime for
Service Compositions (VRESCo) umgesetzt und die Ergebnisse anhand eines praxisnahen An-
wendungsfalls validiert. Diese zeigen das große Potenzial der ARIMA Modelle im Bereich der
Prognose von SLA Verletzungen: SLAs mit unterschiedlichem Verhalten über die Zeit (z.B. die
Lieferzeit von einem Reseller) erreichen eine Vorhersagegenauigkeit von 99, 31% bis 99, 77%.
Die Testergebnisse für kategorische SLAs ergeben eine Vorhersagegenauigkeit von 7, 18% und
weisen somit auf die Notwendigkeit weiterer Forschungen hin.
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CHAPTER 1
Introduction

The way of designing software has changed significantly over the past decades. Requirements
for today’s applications focus more and more on aspects of distributed environments, leading to
certain key success factors such as adaptability, reusability, scalability, openness etc.
As a result, development processes are getting more complex and the need for concepts, which
support software developers in managing all involved difficulties, arises. That’s where Service
Oriented Architecture (SOA) [9, 28, 31] comes into play. SOA is a paradigm that aims to support
the development of platform-independent and reusable software, by structuring pieces of coher-
ent functional modules into autonomous services that can be accessed by any user - indepen-
dently from platforms or transmission protocols. Moreover, customers that want to use certain
services need to search and find them. This is done by so-called service registries whose purpose
is the provision of search mechanisms and standardized description of the offered services. Such
a description normally not only includes the pure functionality but also information about how
this functionality is offered. If, for example, a customer needs to solve a time critical task, per-
formance attributes of the service may be as important as the functionality itself. In order to be
able to classify provisioned services by means of their non-functional aspects one or more SLAs
[2, 16, 8] can be established between service consumers and providers. Such agreements not
only describe quality aspects but also measurements that have to be taken, if the agreed issues
were not fulfilled. As it is not desirable to violate beforehand specified SLAs ongoing research
work is exploring the automatic detection and statistical analysis of such events to minimize
them and their impact. A multitude of methods exist [48, 59, 35, 14] that range from the un-
complicated descriptive case, where the violation of an SLA is detected and simply reported to a
specific entity, to sophisticated mechanisms that use statistical analysis to predict the occurrence
of undesirably events and automatically seek for adequate replacements [30, 27, 37, 11, 55, 57].
Especially the second case is getting more and more important if one considers the enforcement
of whole business process through so-called Service Compositions.
Service Compositions cascade a multitude of services - that are discovered and called through
service registries - so that specific work flows can be executed automatically. It is obvious that
the automatic prediction of undesirable service conditions (e.g. service not available or service
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has an unusual high response time) imposes a great potential to enhance the performance of
work flows. In the right environment service compositions can be changed dynamically during
execution. Together with precise statistical tools, low-performing parts can be replaced by oth-
ers leading to a better overall performance of work flow executions.
This thesis aims to explore the prediction of SLA violations before they actually occur. It is
achieved through the statistical analysis of data that is collected during execution phases. Es-
pecially (but not only) historical data of concerned services acts as information base for the
deduction of future behaviors.

1.1 Motivation

SLAs play an important role in service compositions. They represent contracts between two or
more parties that constitute certain quality requirements upon service usage. As quality is hardly
measurable, SLAs consist of SLOs: functions that map numerically measurable metrics onto a
target value. When the target value is met, the service is considered to provide the expected
quality. In the other case, the quality is not met and a penalty, dependent on the divergence, is
triggered.
As service compositions are an integral part of nowadays business processes, the settlement and
enforcement of viable SLAs is vital. It lies in the very nature of SLAs that their violation is
almost certainly linked with profit loss - directly or indirectly. If, for example, a reseller is not
able to deliver his products in time - according to beforehand specified SLAs -, a payoff between
customer dissatisfaction and a discount (profit loss) has to be considered.
As it is desirable to avoid such violations, the need for automated prediction techniques arises.
Thereby, the creation of statistical models is helpful, as they provide a possibility to predict fu-
ture service behaviors in respect to their quality attributes. Once an undesirably event is detected,
the impact can then be minimized by replacing the problematic service with another one. The
creation of such models should be done automatically since it speeds up work flow executions
and lowers costs.
Current approaches are available, but do not consider the behavior of SLO values over time
[48, 59, 35, 14]. In reality, many applications are dependent on their own former states and
exhibit some kind of auto regressive behavior [5, 50, 60]. This thesis aims to predict SLA vi-
olations that occur in service compositions, by analyzing historical SLO values and creating a
mathematical model that describes dependencies on past values as well as on external factors.
Therefore, an application is implemented within the research prototype VRESCo [54] which is
used to evaluate the work within a sample use case scenario.

1.2 Problem Statement

As mentioned before, techniques to predict SLA violations as well as a multitude of statistical
models, to describe the mathematical behavior of time series, already exist. However, the ap-
plication of SLAs is very wide and allows the definition of many quality aspects of different
kinds. This variety makes it hard to create measuring and predicting techniques to cover all pos-
sible forms of SLAs. Most of the current SLA violation detection techniques focus on the cause
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rather than trying to avoid them. Few approaches for the ex-ante detection exist but are instance
based. This means, that the history of the SLO process is not considered. The involvement of
historical data makes it possible to detect SLA violations in earlier points of service composition
executions and therefore helps to minimize the impact thereof.

1.3 Technical Contribution

The main contribution of this thesis deals with the automated forecast of target values of specific
SLAs in service compositions. Therefore the C# project TSForecasting is implemented within
the research prototype VRESCo. Its purpose is the creation of time series models to predict
the future outcome of SLO values. Additionally, it makes use of so-called estimates and facts,
which are treated as external factors that can influence the behavior of SLOs over time. This
work addresses the issues that arise from the following research questions:

• How to fit and estimate a model, which mathematically describes a set of values as a time
series that depends on its own past realization values, without human intervention?

• Is it possible to avoid SLA violations before they actually occur by describing a set of SLO
values as mathematical regression model with exogenous inputs? What is the prediction
accuracy of this method?

• How to create an Autoregressive (AR) model for categorical SLO values?

1.4 Thesis Organization

Chapter 2 provides an overview of time series in general, a more specific view on the class of
ARIMA models and methods to parameterize and fit them. Moreover, a basic understanding
of SOA, Windows Communication Foundation (WCF) [7] and SLAs is established. Recent
research work, that is closely related to the automatic detection of SLA violations, is presented
in Chapter 3. After a short description of a use case in chapter 4, which contains a sample
scenario for testing and evaluating purposes, a detailed overview of the contributed work is
given in chapter 5. While the evaluation is detailed in Chapter 6, the last chapter closes this
thesis by concluding the results and providing an outlook of possible future work.
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CHAPTER 2
State of the Art

2.1 Service Oriented Architecture

In general, Service Oriented Architecture (SOA) describes an abstract concept of software archi-
tecture, that deals with the growing complexity of nowadays software development. Although
its concepts are known for a long time, it gained popularity with the rise of web services. The
basic idea of SOA involves the separation of complex systems into several independent services,
that interact in a standardized way.
Since SOA describes an abstract concept, it is hard to provide an exact definition. Among var-
ious definitions [9, 31, 28, 15, 63, 33, 32, 53, 42, 52, 39], this Thesis uses a basic specification
according to [31, 28]. Hence, at least the following requirements must be satisfied to support a
SOA:
First of all, it should be possible to describe and publish a service. As SOA is strongly related
to web services, it is common to use its standards and technology. Specifically, the Web Service
Description Language (WSDL) [65] - which is based on the XML standard [19] - is a good
choice, as it has an open and well known specification. Furthermore a public registry such as
UDDI [38] is used to publish the service along with its standardized description. Such registries
generally fulfill the second requirement. That is the discovery of specific services. A client is
able to search for services, according to their descriptions and keywords. Finally, a service has
to be accessible. A common implementation of this requirement is the SOAP [66] protocol in
combination with the HTTP standard [18].
Since this Thesis only provides a basic overview of the SOA definition, the interested reader can
find a comprehensive overview in [9, 31, 28]. Figure 2.1 depicts a graphical overview of the
basic SOA concept.
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Figure 2.1: Graphical Overview of SOA

Windows Communication Foundation

Windows Communication Foundation (WCF) was introduced in 2006 as part of the Microsoft
.NET Framework 3.0. Its main goal is the creation of a platform, that unifies existing communi-
cation technologies, as well as ensuring the interoperability with other technologies by providing
a service oriented approach. In order to ensure this the WCF uses SOAP [66] in the messaging
layer, as well as the WSDL [65] specification. As the WCF is a very extensive feature, only a
basic overview is provided. For specific details one can have a look at [7, 36, 62]

Windows Communication Foundation Services

A WCF Service consists of a service class, a hosting process and one or more endpoints. The
definition of a service class can be made in any Common Language Runtime (CLR)-based [46]
language. It typically involves a public interface, that is known to the caller, a specific implemen-
tation and a set of attributes, that define data types and service behaviors. The standard way of
implementing a WCF service is to create an interface, that is annotated with the ServiceContract
attribute. Every operation that should be accessed remotely is marked as OperationContract. A
sample Interface is shown in Listing 2.1

1 /∗
2 ∗ The a t t r i b u t e [ S e r v i c e C o n t r a c t ] d e f i n e s
3 ∗ t h i s i n t e r f a c e as p u b l i c s e r v i c e
4 ∗ /
5 [ S e r v i c e C o n t r a c t ]
6 p u b l i c i n t e r f a c e I S e r v i c e
7 {
8 /∗
9 ∗ [ O p e r a t i o n C o n t r a c t ] e n a b l e s t h e p u b l i c a c c e s s o f t h i s method

10 ∗ /
11 [ O p e r a t i o n C o n t r a c t ]

6



12 Boolean d a t a V a l i d ( S e r v i c e D a t a d a t a ) ;
13 }

Listing 2.1: A Sample Interface for a WCF Service

If the service only deals with primitive data types, it is enough to implement this interface
and link it to a service host - such as the Internet Information Services (IIS) or the Windows
Activation Service (WAS) [44]. Listing 2.2 shows a sample implementation of interface 2.1.

1 / / t h i s i m p l e m e n t a t i o n i s invoked
2 p u b l i c c l a s s T h e S e r v i c e : I S e r v i c e
3 {
4 p u b l i c Boolean d a t a V a l i d ( S e r v i c e D a t a d a t a )
5 {
6 r e t u r n d a t a . i s V a l i d ( ) ;
7 }
8 }

Listing 2.2: Interace implementation of 2.1

If, however, the service should be hosted in an arbitrary process, WCF provides the Sys-
tem.ServiceModel.ServiceHost class, that takes as argument the class type, creates a new hosting
process and publishes the service.
The specification of complex data types is done by using the attributes DataContract - which
defines an arbitrary class or other type as a usable data structure - and DataMember marking
any primitive type as part of the contract. A complex type has to be serializable, and is therefore
defined in the System.Runtime.Serialization name space. See Listing 2.3 for a sample data type
declaration.

1 /∗
2 ∗ c l a s s has t o be s e r i a l i z a b l e i f
3 ∗ d a t a t y p e i s used w i t h i n a s e r v i c e
4 ∗ /
5 [ S e r i a l i z a b l e ]
6 p u b l i c c l a s s S e r v i c e D a t a
7 {
8 /∗
9 ∗ e v e r y a t t r i b u t e marked as [ DataMember ]

10 ∗ can be used i n a s e r v i c e i n v o k a t i o n
11 ∗ /
12 [ DataMember ]
13 b o o l e a n i s V a l i d ;
14 /∗ more d a t a t y p e s ∗ /
15
16 /∗
17 ∗ some method
18 ∗ /
19 p u b l i c Boolean i s V a l i d ( )
20 {
21 r e t u r n t h i s . i s V a l i d ( ) ;
22 }
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23 }

Listing 2.3: A Sample Data Type declaration for WCF Service Usage

As described before, a WCF service is made public through one or more endpoints. The
most convenient way to define an endpoint is to provide an XML configuration file, which con-
tains the description of the endpoint address, a specific binding and the class type of the service
contract. Details can be found in [7]
Listing 2.4 gives an example for publishing a WCF Service within the System.ServiceModel.ServiceHost
class.

1 / / t h e wcf namespace
2 u s i n g System . Se rv i ceMode l ;
3 u s i n g System . Runtime . S e r i a l i z a t i o n
4
5 namespace S e r v i c e s
6 {
7 / / c l a s s c o n t a i n s code t o p u b l i s h a WCF S e r v i c e v i a s e r v i c e h o s t
8 p u b l i c c l a s s WCFService
9 {

10 s t a t i c vo id main ( S t r i n g [ ] a r g s )
11 {
12 / / c r e a t e t h e h o s t
13 S e r v i c e H o s t h o s t = new S e r v i c e H o s t ( t y p e o f ( I S e r v i c e ) ) ;
14 h o s t . Open ( ) ;
15 / / wait f o r i n v o k a t i o n s . . .
16 h o s t . C lose ( ) ;
17 }
18 }
19 }

Listing 2.4: Publishing a WCF Service in an arbitrary Process

The following listing depicts a simple example for a WCF service definition.

Windows Communication Foundation Clients

The creation of a WCF client is relatively simple. All the client has to know, is the definition
of the service contract and all included data contracts. With the given information a proxy can
be created and linked with an according endpoint address. The client can then invoke all public
service operations through the proxy. [7]
A simple example for this is illustrated in the following listing:

1 u s i n g System . Se rv i ceMode l ;
2 / / t h e namespace o f t h e p u b l i c i n t e r f a c e and t h e d a t a c o n t r a c t s
3 u s i n g S e r v i c e s ;
4
5 namespace C l i e n t
6 {
7 / / a s i m p l e example t o in vok e a s e r v i c e t h r o u g h a proxy
8 c l a s s WCFClient
9 {

10 s t a t i c vo id Main ( S t r i n g [ ] a r g s )

8



11 {
12 / / s p e c i f y a b i n d i n g
13 WSHttpBinding b i n d i n g = new WSHttpBinding ( ) ;
14 / / c o n f i g u r a t i o n o f t h e b i n d i n g . . .
15
16 / / s p e c i f y b i n d i n g , and e n p o i n t a d d r e s s
17 C ha n n e l F a c t o r y < I S e r v i c e > c f = new C h a n n e l F a c t o r < I S e r v i c e >( b i n d i n g , new

E n d p o i n t A d d r e s s ( " h t t p : / / m y s e r v i c e . h o s t . a t / s e r v i c e " ) ) ;
18 / / r e t r e i v e t h e proxy
19 I S e r v i c e s e r v i c e = c f . C r e a t e C h a n n e l ( ) ;
20
21 / / w i l l r e t u r n t r u e
22 s e r v i c e . d a t a V a l i d (New S e r v i c e D a t a ( t r u e ) ) ;
23 }
24 }
25 }

Listing 2.5: A simple example for a WCF service client

Following illustration presents a graphical overview of a WCF service invocation through a
proxy

Figure 2.2: Graphical overview of a WCF service invocation (taken from [7])

Service Level Agreements

Service Level Agreements (SLAs) are an important concept in the context of SOA. Although
a significant effort was put into the development of standards, that describe the functional be-
havior of services, the question of quality aspects is still open. Basically, an SLA is a contract
between a service provider and a service consumer, that defines certain non-functional require-
ments. These requirements are typically expressed through so-called Quality of Service (QoS)
parameters, which describe the mutual understandings and expectations of a service between
several stakeholders [2].
Formally, an SLA consists of Service Level Objectives (SLOs), that define the guaranteed condi-
tion of a service in a given process [16]. An SLO is therefore a function that yields a measurable
output, indicating whether a certain quality requirement of a service is satisfied or not. If, for
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example, an SLA states that the availability of a service has to be at least 99%, the according
SLO is characterised by the following equation:

Availability =
ServiceInvocationsSuccessful
ServiceInvocationsTotal

(2.1)

Moreover an SLA describes actions, that must be taken in case of violations and SLA pa-
rameters (called metrics), depicting the methods of measurements. A metric can either define
how to measure a service item (resource metric), or how to aggregate other metrics (composite
metric). In the above example the metric ServiceInvokationsTotal depicts a composite metric
that is measured by summing up the resource metric ServiceInvocation over a month.

An SLA is typically specified within an XML schema [17] definition, that constitutes basic
rules of the SLA definition [8, 2, 34, 61, 16, 21, 4, 64, 69, 41]. When definitions of concrete
SLAs are available, they are measured and - in case of a violation - previously constituted ac-
tions have to be taken. Such actions could be the notification of the SLA signers. However in
most cases these actions are defined by penalties that the service provider has to pay. In the case
of Availability an appropriate penalty would oblige the service provider to offer a 5% discount
if the availability, falls below 95% and a 10% discount if it is lower than 90%.

2.2 Time Series

The following description of Time Series is mostly based on [5, 60, 50, 12, 49, 47]. The aim of
time series analysis is to construct a mathematical model for a given set of time-ordered data, in
order to obtain assumptions about its probabilistic behavior.

A time series or stochastic process is a collection of random variables {x1, x2, x3, . . . }
,where {xt} denotes a random variable at a specific time point t. In general, the index t consists
of integer values {+−1,+− 2, . . . }. A good description of a stochastic process xt can be obtained
by the probability distribution p(xt) and its first 2 moments. Namely, the mean

µ = E(xt) =

∫ ∞
−∞

xp(x)dx (2.2)

and the auto covariance function

γ(s, t) = cov(xs, xt) = E[(xs − µs) ∗ (xt − µt)] (2.3)

which can be normalized to the interval [-1, +1] with the Autocorrelation Function (ACF)
function given by

ρ(s, t) =
γ(s, t)√

γ(s, s) ∗ γ(t, t)
(2.4)

Since stochastic processes often require weak stationarity a short definition is provided here.
Details can be found in [60]. A stochastic process is said to be stationary if
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1. the mean µt is a constant and does not depend on the time t

2. the auto covariance function γ(s, t) only depends on the time lags |t − s| and not on the
specific time point itself

Regression

The classical regression model consists of a univariate or multivariate dependent variable {Xt},
which produces an output over time, that needs to be predicted, a collection of independent
variables {zt1, . . . , ztm} - also called covariates - and a number of fixed coefficients, that need
to be estimated. The classical regression model has the following form

xt = β1zt1 + · · ·+ βmztm + εt (2.5)

where xt denotes the dependent variable zt1, . . . , ztm the matrix of independent variables,
β1, . . . , βm the parameters, that need to be estimated and εt the classical error term with a zero
mean E(εt) = 0 and a constant variance V (εt) = σ2

The unknown parameter vector β can be estimated with common methods like the Ordinary
Least Squares (OLS) estimator, or the Maximum Likelihood (ML) estimator [60, 50].

Differencing Time Series

The main goal of differencing time series arises from the need to remove non-linear trends from
a given process, such that the resulting series can be represented as a linear model. The order
can be determined by examining the polynomial order of the original function. Consequently, if
the original series possesses a quadratic trend, the resulting stationary series can be obtained by
taking the second order difference.

In general, time series can have two different kinds of trends. The first one is resulting from
the polynomial order of the process. Additionally, the process can hold a seasonal component.
While the polynomial trend can be removed by taking the dth difference of the original time
series, the seasonal trend can be removed by taking the dth difference at a specific lag. In case
of a yearly trend, a time series with monthly measured data has a seasonal trend with a lag of 12
month. The dth difference at lag 12 will therefore remove the yearly trend.[60, 5]

Autoregressive Integrated Moving Average

Autoregressive Integrated Moving Average (ARIMA) models are a class of models, that deal
with time correlated stochastic processes, that arise from a so-called white-noise process.
A white noise process is defined as a set of uncorrelated normally distributed random variables
wtwith a mean E[wt] = 0 and a constant variance V (wt) = σ2. It can be denoted by

wt wn(0, σ2) (2.6)
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The general purpose of ARIMA models is to map the resulting output of a given time series
to a white noise process through different transformations, such as differencing and applying
linear filters to past values. [5, 50, 26, 67]

Moving Average Model

The Moving Average (MA) model is a linear filter that produces an averaged value of past
realizations of a white noise process. The number of past terms can be specified by a lag q and
describes the dependence on former outcomes. The MA(q) process is therefore defined as

Xt = εt +

q∑
i=1

φi ∗ εt−i (2.7)

where εt is a white noise process and the parameters φ1, . . . , φq are the coefficients that
should be estimated. The MA process is stationary.[5, 60, 50]

Autoregressive Model

The Autoregressive (AR) model of order p is a stochastic process, that is linearly dependent on
its own past p Values. More specifically, it consists of a weighted sum of its former p realizations
and a white noise process εt.

The mathematical formulation of an AR(p) process is given by

Xt = α+

p∑
i=1

βi ∗Xt−i + εt (2.8)

Where α is a constant parameter called intercept and β1, . . . , βp are parameters that need to
be estimated.

The model is called autoregressive, because the estimation of the parameters is normally
done by using a regression method like OLS or ML estimation.
Since an AR(p) process is not always stationary, it must be ensured that the roots of the charac-
teristic equitation of the process lie outside the unit circle, so that the process converges. Details
can be found in [5, 60, 50]

Autoregressive Moving Average Model

The ARMA(p, q) model is a mix of the AR and the MA model with the parameter p specifying
the autoregressive and q the moving average orders. If the parameter q is set to zero the Autore-
gressive Moving Average (ARMA) Model falls back to an AR Process of order p and it is a MA
Process respectively if the parameter p is set to zero.
The ARMA Model of orders p and q is given by

Xt = α+

p∑
i=1

βi ∗Xt−i +

q∑
i=1

φi ∗ εi−1 + εt (2.9)
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Where εt represents the values of a white noise process, α is a constant term called inter-
cept, β1, . . . , βp are coefficients of the autoregressive term and φ1, . . . , φq the coefficients of the
moving average term respectively. Both φi and βi need to be estimated.[5, 60, 50, 26, 67]

Autoregressive Integrated Moving Average Model

The ARIMA model extends the linear ARMA approach, by allowing the dependent process to
be non-stationary. In general the concerned time series has a polynomial trend of a certain de-
gree d. If the process possesses such a trend, it can be transformed into a stationary process by
taking the dth difference. If the resulting stationary process satisfies anARMA(p, q) model, the
original time series is said to be an ARIMA(p, d, q) process.

The mathematical formulation is given by

∆dXt = α+

p∑
i=1

βi ∗Xt−i +

q∑
i=1

φi ∗ εi−1 + εt (2.10)

Where d denotes the order of differencing of the original time series Xt [5, 60, 50]

Building Autoregressive Integrated Moving Average Models

In order to be able to build an ARIMA model - given a non-seasonal time series - several trans-
formation have to be performed. First of all, it is desirably to stabilize the variance of the process.
A common method for correcting an invariability in growing data is to perform a Box-Cox trans-
formation (details can be found in [58]).
When the process is stabilized, the orders p (autoregressive), d (difference) and q (moving aver-
age) of the models have to be estimated.
In a first step the order of difference d is determined. A common and very widely used method
is the manual detection, by looking at plots and applying a kind of trial and error method. As [5]
suggest, the autocorrelation function can be a good indicator for the stationarity of a given time
series Xt. That is, if the autocorrelation function comes close to zero very quickly, the process
might be stationary. In the other case, a difference ∆dXt might be stationary. As most of the
times the difference order does not exceed three, it may be sufficient to only examine the first
five orders with different lags between 1 and 20. Common lags are 4,8 and 12.[5]

If it is not possible to manually examine the stationarity of a process, because a model has to
be created within an automatic procedure, two test statistics provide the necessary information:
The Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test [10] indicates whether a given time series
is stationary or not.
In the case of seasonal stationarity, the Canova–Hansen (CH) test [6] can be used.
As it was applied in the manual approach, the trial and error method can be used to automatically
obtain a stationary process. This is done by iterating through common lags until both statistics
show a satisfying result.
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For the estimation of the autoregressive and moving average parameters the Partial Autocor-
relation Function (PACF) is of great interest.
The PACF φkk describes the correlation of (xt, xs), |t− s| = k where the linear dependence of
{xt+1, . . . , xs−1} is removed. Details for obtaining the PACF can be found in [5] or [60]
The procedure of finding the autoregressive order p and the moving average order q is as follows:

• if the process has more than 0 MA terms and no AR parts the ACF comes close to zero
after lag q and the PACF decays exponentially.

• if the process has more than 0 AR terms and no MA parts the PACF comes close to zero
after lag p and the ACF decays exponentially.

• if the process has both - more than 0 AR and MA terms - the ACF decays exponentially
at lag q and the PACF decays exponentially at lag p.

An extensive description about this procedure is provided by [5, 60].

Quality of Fitted Models

As mentioned before the ARIMA model building is often done by using trial and error. Although
there are supporting methods like the ACF or PACF, it is often necessary to build several versions
with different parameters and compare the fit of each model based on some performance criteria.
The first criterion that can be used is the Akaike’s Information Criterion, Bias Corrected (AICc),
which compares the error of the fitted model with the number of used parameters. The AICc is
given by

AICc = log(σ̂2
k) +

n+ k

n− k − 2
(2.11)

where σ̂2
k denotes the ML estimator for the variance, k the number of model parameters and n

the sample size
Another common criterion is the Bayesian Information Criterion (BIC) - also called Schwarz
Information Criterion (SIC) - which tends to be superior for a large sample size n

BIC = log(σ̂2
k) +

klog(n)

n
(2.12)

where σ̂2
k denotes the ML estimator for the variance, k the number of model parameters and n

the sample size
Given one of the 2 criteria it is possible to select the best model. [60]
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CHAPTER 3
Related Work

As the practical part of this work is based on the research prototype Vienna Runtime for Service
Compositions (VRESCo) [54, 51], a short overview is presented here.
As its name suggests VRESCo mostly deals with challenges of SOA. All core features of
VRESCo are exposed as Web Services and can be accessed either directly through the SOAP
protocol or by using the included client library. VRESCo consists of the following core services:

• The Query Engine offers the possibility to search for any entity within the system (e.g. a
service) by using the VRESCo Query Language (VQL).

• Clients can subscribe to any event at the Notification Engine.

• The Publishing/Metadata Service provides possibilities to add metadata and publish it
along with a specific service.

• The Management Service handles all access control related data.

• Services can be composed according to requirements on QoS attributes using the Compo-
sition Engine

A comprehensive description of VRESCo can be found in [2] or [51].
A graphical overview of VRESCo is provided in Figure 3.1.
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Figure 3.1: Graphical Overview of VRESCo (taken from [54, 51])

3.1 SLA Violation Detection

In general, there are two different possibilities to detect the violation of a specific SLA. The first
approach deals with the detection of the case when it already occurred. This can be interesting
when it is necessary to have an exact measure of impact that the violation imposes. When the
violation of an SLA is known, the source of the problem can be identified and future problems
can be avoided. This post hoc method is therefore crucial for the creation of reliable service
compositions.
On the other hand, it is desirable to avoid SLA violations as much as possible. Therefore, the
second approach tries to detect them before they actually occurred. This is done by using for-
mer collected data to deduce the possible future behavior of services. As this kind of detection
occurs in an early stage of an execution of a service composition, it provides the possibility to
dynamically find and invoke alternative services in case of a predicted violation. It is therefore
an important technique to avoid impacts of possible SLA violations.

[48] suggests ADULA - a framework for automated dynamic update of Business Process
Execution Language (BPEL) processes. Its basic functionality is based on the automatic trans-
formation of existing BPEL workflows. Once they are modified, the processes are registered
within the ADULA framework, which then assigns them a unique name and creates dynamic
bindings. Upon an execution of a service composition the transformed version requests a new
binding for concerned services and notifies ADULA when it has finished or an error occurred.
As opposed to the original service composition, the transformed one is invoked by proxies,
which measure performance-related QoS attributes, such as the response time of a specific ser-
vice. When ADULA receives a notification of success/failure a Violation Detector component is
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triggered, which then requests QoS parameters from the proxy and performs a statistical hypoth-
esis test to determine whether an SLA is violated or not. Especially the average response time is
of great interest as it indicates possible performance degradations. In case of an SLA violation
the process is modified according to a specific Repair Action. Specifically, if a service is the
possible origin of the recognized problem, the Service Manager component puts the concerned
services into a quarantine and renews dependent bindings. Additionally, the whole process in-
stance is restarted, if the problem originator was a stateful service. Suspended process parts are
reused after a certain amount of time or - in case of a failure - when they are repaired. The pro-
posed method of [48] is a good way to prevent multiple violations of the same SLA. However,
the ADULA framework lacks of efficient methods to predict possible performance degradations
as the statistical models are rather rudimentary. Autoregressive relations or a non-linear trend
cannot be described by hypothesis tests, that are based on simple QoS parameters such as the
average response time of a service. Moreover, [48] focuses mainly on performance-related at-
tributes, so that it is not possible to predict categorical values of interest.

[59] focus more on the detection of SLAs concerning network QoS and performance param-
eters. Specifically, the following network metrics:

• One Way Delay (OWD)

• Inter Packet Delay Variation (IPDV)

• Packet Loss Ratio (PLR)

are used to provide an exact description of the current profile/condition of a monitored net-
work. Since the computation of these metrics is linked with bandwidth loss and computational
effort, the profiles are created in advance (or updated when necessary) and stored along with a
metric whose gathering is less problematic - namely the Inter Packet Arrival Time (IPAT). The
advantage of the IPAT is, that it is less resource consuming and can be linked with the before
mentioned metrics through a predefined function - called Valid Valid IPAT Distribution (VID).
When sufficient VIDs are collected, the network is monitored by sending the IPATs to a spe-
cific machine, which then creates an empirical distribution within a given interval and compares
it with all known VIDs. This is done by computing the Kullback Leibler Divergence (KLD)
(given in the following equation) between the current and every known VID.

K(P,Q) =
∑
i

P (x)log
P (x)

Q(x)
(3.1)

where Q is the distribution to be tested, P the reference distribution and K(P,Q) the degree of
similitude between them.

Since the KLD expresses the relative entropy between two distributions, the VID with the
minimum outcome is assumed to be the most similar distribution. When the VID of interest
is found, an SLA violation is triggered if the profile does not satisfy the specified SLA. The
KLD only compares existing distributions which makes it necessary to compute many theoreti-
cal distributions before being able to detect possible SLA violations. Moreover, the question of
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exogenous inputs is left open, as every additional input has to be manually related to the current
IPAT distribution. The approach of [59] is therefore not optimal for the automatic detection of
SLAs in service compositions.

An instance based approach - which is implemented in the research prototype VRESCo - is
suggested by [35]. As mentioned before, one of the core components of VRESCo is the compo-
sition engine. Among the dynamic composition of services, it provides the basic functionality
for detecting SLA violations. This is done by defining checkpoints, which are triggered at pre-
defined points within the execution of a specific service composition. Each checkpoint contains
a predictor component that makes use of historical data and additional information in order to
predict a target value of interest. The additional information consists of facts and estimates.
While the first represents information that is known before a service invocation takes place, es-
timates are user defined functions, that deliver an approximately value of measures that are not
yet known. A checkpoint is defined within an XML file and contains the following SLA related
information:

• An SLO together with its target value and a penalization function if the target value is not
met.

• A list of facts and estimates to be included within the prediction of the SLO value.

• A specific prediction model, that is used to derive possible future SLO values.

The approach of [35] is very comprehensive and allows the detection of SLAs of many pos-
sible kinds (including the categorical case). The drawback of this method is, that the current
implemented prediction models are instance based and therefore not sufficiently considering the
behavior of time series. The current prediction models are Multilayer Perceptron Networks and
Decision Trees which are trained and evaluated with the help of the WEKA machine learning
tool [68]. The contribution of this work extends this approach by modifying the predictor com-
ponent as well as introducing new prediction models, that are able to model historical data as
time series.

[14] suggest the Detecting SLA Violation infrastructure (DeSVi), which helpts to monitor
and detect SLA violations in the Foundations of Self-governing Infrastructures (FoSII). FoSII is
an infrastructure that proposes methods for the automatic SLA management in cloud environ-
ments. To do so, DeSVi introduces a Runtime Monitor, which allocates the necessary resources
for a service in a Virtual Machine (VM) and deploys it. The service itself has to implement the
following three interfaces:

• A Negotiation Interface, that is used to manage and establish SLAs.

• The Application Management Interface, being responsible for application startup, shut-
down and data uploads.

• The Self-Management Interface, which describes actions in case of SLA violations.
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In order to be able to deal with SLAs, the proposed method makes use of the Low Level
Metrics to High Level SLA (LoM2His) framework [13] that allows to transform resource met-
rics into high level SLA parameters. The transformation rules are implemented by the service
provider in a Domain Specific Language (DSL). When a service is deployed, Host Monitors, that
communicate with the help of the Java Messaging Service (JMS) [40], are used to continuously
measure relevant resource metrics. The prediction of possible SLA violations is carried out by
the Runtime Monitor which uses knowledge databases [3] and Case-based Reasoning (CBR) to
deduce future outcomes of SLA parameters. The CBR procedure gathers a formatted instance of
a problem - called case - and then looks for similar cases in order to determine possible solutions
for the given problem. A knowledge database is used to store the known cases and - if a solution
is satisfying - adding or modifying relevant cases. The following steps are executed when a new
problem instance arrives:

• retrieve the most similar cases.

• reuse relevant information of the retrieved cases to solve the problem

• revise the deduced solution

• store relevant information inside the knowledge database

The main drawback of the approach of [14] is, that the time series behavior of the SLAs
cannot be modeled because CBR does not consider the evolution of SLOs over the time.
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3.2 Time Series Analysis

In general, time series can be modeled in different kinds. Since the two mostly considered
ways are ARIMA models and state space models, a brief overview of the former is given in the
following. State space models consist of a non-observable process Xt, which is not known and
produces an output Yt. It is assumed, that Yt is linearly dependent on Xt with an additional
white noise process εt. A state space model is defined by two equations. Namely the state space
equation:

Xt+1 = AtXt +Bt + εt+1 (3.2)

which describes the behavior of state Xt over time, and the observation equation:

Yt = CtXtηt (3.3)

At, Bt and Ct are known sequences, ηt and εt are white noise processes. The estimation of the
non-observable state is possible by applying the Kalman-Filter [50]. It is noteworthy, that ev-
ery ARIMA model can be converted into a state space model representation. See [50] for details.

[30] implemented two different approaches for the automatic forecasting of time series. The
first approach is exponential smoothing of underlying state space models. There are 15 differ-
ent types of exponential smoothing classes, which result from varying the trend- and seasonal
components. The following table from [30] depicts the summary of all possible model classes:

Trend Component
Seasonal Component

N A M
(None) (Additive) (Multiplicative)

N (None) N,N N,A N,M
A (Additive) A,N A,A A,M
Ad (Additive damped) Ad, N Ad, A Ad,M
M (Multiplicative) M,N M,A M,M
Md (Multiplicative damped) Md, N Md, A Md,M

Table 3.1: Possible Exponential Smoothing Classes (taken from [30])

Each of these methods can be expressed by two according state space representations (see
[27] for details). When an appropriate model is selected, the conditional mean of a future obser-
vation:

µt+h|t = E(yt+h|xt) (3.4)

can be estimated. xt contains unobserved components, such as trend and seasonality. In order to
derive the conditional mean, the state space representation of the according model is taken, and
the parameters of the model are estimated with the maximum likelihood method. The approach
of automated forecasting is as follows:

• Apply every appropriate model for a given time series

• Select the best model according to the AICc
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• Produce the forecast

The second method involves the automatic estimation of an appropriate ARIMA model. As
ARIMA models are described in section Section 2.2 the automated process is briefly summa-
rized. In a first step, the time series has to be tested for stationarity. Therefore, two tests are
used: The KPSS test, to determine whether the underlying series is stationary or not, and the CH
test, which is applied when the data is seasonal. After the selection of the order of difference,
the orders of AR and MA terms has to be estimated. This is done as follows:

1. Try the following four models to start with: ARIMA(2,d,2), ARIMA(0,d,0), ARIMA(1,d,0),
ARIMA(0,d,1). The model with the smallest AICc is now selected as the current model.

2. Try to vary the model parameters according to the following rules: at a first step, the
parameter p or q is varied by −+1. Then both parameters are varied by −+1. At last the
constant parameter is excluded or included. Every time a model has a lower AICc than
the current model it becomes the new current model. When no better model is found, the
algorithm has finished.

As [30] describes, the number of model classes for ARIMA is quite larger than that of the expo-
nential smoothing. Although exponential smoothing often provides better results, the ARIMA
modeling approach is more preferable to use when dealing with the automatic detection of SLA
violations, where the target SLO values can have an arbitrary underlying model. The ARIMA
method of [30], which was implemented in R - A Statistical Language [56], was used in the
contribution of this thesis, as it is considered to be optimal for automatic forecasting.

Another semi-automated ARIMA modeling approach is suggested by [37]. This method was
implemented in MATLAB [43] and involves the following steps:

1. Achieve a seasonal time series: This iterative procedure uses the natural logarithm trans-
formation for variance non-stationarity, seasonal differencing for seasonal non-stationarity
and normal differencing for mean non-stationarity. Thereby, the transformation methods
are applied iteratively and then tested by manual judgment and an automatic hypothesis
test.

2. When a stationary time series is obtained the model parameters need to be estimated: This
step is again iterative, trying out different model settings and then applying a test. Accord-
ing to prior research work the model orders do not exceed 2 for nearly every possible real-
world case. Since the resulting number of models is relatively low, all the combinations
are fitted and then, the best one - according to the Root Mean Squared Error (RMSE) - is
selected.

The approach of [37] is semi-automated, because a manual judgment for the stationarity of a
time series is needed. Therefore, an SPS simulation template was created by using the Sim-
phony modeling environment [25]. Although this method is very similar to the one, that is used
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in the practical part of this thesis, it is not suitable for this purpose since it requires human inter-
action.

[11] suggests a mixed state Hidden Markov Model (HMM) in order to represent a time series
as the output of a Markov Process. The mixed states are characterized by Ψ(t) = (s(t), x(t))
where s(t) ∈ S = s1, ..., sn represents the number of possible states. The state space view of
the underlying time series can be written as:

Ψ(t+ 1) = F (Ψ(t)) + εΨ(t) (3.5)

y(t) = G(Ψ(t)) + εy(t) (3.6)

where F is a function, that describes the state space dynamics, y an observation, calculated
from the state with the help of G and εΨ and εy white noise processes. To find a numerical
solution for the mixed state HMM, the model has to be rewritten in the following form:

s(t+ 1) = Fs(Ψ(t)) + εΨ(t) (3.7)

xi(t+ 1) = Fi(Ψ(t)) + εxi(t) (3.8)

y(t) = G(Ψ(t)) + εy(t) (3.9)

With the constraints that the distribution P (y(t), x(t)), s(t) = si, s(t+ 1) = sj is multivari-
ate normal with a mean and covariance matrix according to transitions si → sj , [11] refers to
this model as mixed state HMM. When a specific model is chosen, it is possible to estimate its
parameters with the Maximum Likelihood method. This approach lacks of an efficient way for
the parameter estimation.

[57] suggests an Support Vector Machine (SVM) based approach, where an SVM regression
is carried out. Thereby, the basic function f(x) = sign(wx + b) is minimized according to a
prediction error from a set of samples (x1, y1) . . . (xn, yn). The hyperplane vector w is given
by the training set (xi, yi) and the coefficients (αi), which are estimated during the optimization
process: w =

∑
αiyixi. The optimization problem is given by:

Ψ(w, ξ, ξ∗) =
1

2
(wTw) + C

n∑
i=0

ξi, i = 1, . . . , n (3.10)

subject to:
yi(x

T , xi + b) ≤ 1− ξi, i = 1, . . . , n (3.11)

ξi ≥ 0, i = 1, . . . , n (3.12)
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Kernel functions are used to extend the given linear approach to non-linear problems. In the
case of an AR(p) model, the linear kernel function k(x, y) = xy can be used to predict the out-
come of an AR(p) process. As [57] describes, the SVM regression tends to have a lower RMSE
than the ARMA approach. However, a problem arises from choosing the appropriate kernel
function. As there are many possible kernel functions, which need to be chosen manually, it is
hardly possible to develop this approach as fully-automated method. Furthermore the training of
SVM models tends to be much slower, as the optimization problem can be very time consuming.

A regression model for categorical time series is proposed by [55]. In this case, the response
variable Yt, representing the outcome of possible q + 1 categories, consists of q dichotomous
variables. That is, each variable can only take the values 0 or 1. Formally defined:

Yt,j =
1, Yt = categoryj
0, else

(3.13)

With the help of Yt, a process (Zt, Xt), t = 1, 2, . . . is considered, where Xt represents a q-
dimensional response vector Xt = {Yt,1, Yt,2, . . . , Yt,q} and Zt are covariates. The conditional
expectation vector µt = E(Xt|Z1, X1, . . . , Zt−1, Xt−1, Zt) can then be modeled by µt = h(ηt),
where h : Rq → Rq is a specific response function and ηt = (ηt,1, . . . , ηt,q)

T is the linear
regression term. As [55] describes, the regression term can be written as the following:

ηt = α+ γµt−1 + ΛT (Xt−1)λ+ 1βTZt (3.14)

where 1 = (1, . . . , 1)T ∈ Rq and Λ(x) a q′ x q - matrix which expresses the models dependence
on the last response Xt−1. (α, β, γ, λ) are coefficients that need to be estimated. Since ηt is
dependent on former outcomes Xt−1, this equation represents a multivariate AR process. [55]
further suggest the following response function:

hj(η) =
exp(ηj)

1 +
∑q

k=1 exp(ηk)
, j = 1, . . . , q (3.15)

which describes a multivariate logistic regression model. The parameters can be obtained by
using the Maximum Likelihood estimator. The basic concept of this method is used in the
practical part of this work, since it describes a good way to deal with categorical time series.
However, this will be extended, as it only covers the special AR(1) case.
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CHAPTER 4
Use Case

In this section, the scenario that is used to test and evaluate the contributed work is presented. As
the practical part is integrated into the research prototype VRESCo, the results will be related as
much as possible to former research work. Especially the outcome of [54] serves as interesting
comparison factor.
In order to carry out a suitable evaluation, the same use case as it was employed in [54] will be
taken here. Details thereof are emitted; however, a short overview is presented in this section.
The scenario consists of a customer, that orders a specific product from a reseller. Based on the
specification details of the product - called RFQ (request for quotation) - , the reseller carries
out a cost and time estimation of the order process. When the estimation is satisfying, and the
customer confirms, the reseller has to check whether all required components are in-house. If
this is not the case, the missing parts have to be requested from a set of external suppliers. Once
the external delivery has finished, the composition of the product is carried out and an optional
quality assurance takes place. The shipping of the complete product is now initialized, while an
invoice is created. Finally - when the customer has delivered the payment according to a chosen
payment option and the desired product is delivered - the order process has finished. In order to
simulate the scenario as realistic as possible, a Windows Workflow (WWF) with the following
WCF services is used:

• Assembly Planning Service: calculation of assembly costs and time

• Warehouse Service: availability check and reservation of required parts

• Construction Service & External Construction Service: planning of the (external) product
assembly

• Customer Service: settlement of the payment options & details

• Supplier Service: availability check of external parts, estimation of the shipping time,
purchase order of external parts
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• Banking Service: payment processing

• Billing Service: calculation of additional costs, invoice generation

• execution of the shipping process
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Figure 4.1: Graphical Overview of the Assembly Process (taken from [54])

A complete workflow diagram can be found in Appendix A.1

Challenges

To have a clear look on the challenges provided by this example, five SLAs are established.
These SLAs are signed between the reseller and its customers. The five according SLOs are as
shown in Table 4

Each of these SLOs is mapped to SLAs by specifying target values that are penalized in case
of a violation, as shown in Table 4

It is clear that the reseller tries to avoid the violation of these SLAs, since it is linked with
profit loss. Furthermore, a key client could choose another reseller, if some or all SLAs are
violated frequently. In order to achieve such a goal, the service composition can be reorganized
by interchanging (or omitting) specific services, so that the balance between costs, quality and
shipping time can be preserved. If - for example - the price of the product falls below the
estimated price, but the delivery time is expected to be higher, the reseller could use a faster
shipping service, which in turn is more expensive. As VRESCo enables the dynamic adaptation
of service compositions [54], the only further requirement is a reliable method to predict the
outcome of future SLO values, such that the service composition can be reorganized during
execution. The forecast of the specified SLOs poses some problems that need to be considered.
These problems are consequently addressed by the contribution of this work:
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SLO # Name Description Measure
1 Delivery Time The time between receiving an RFQ (re-

quest for quotation) and the final product
delivery

Working Days

2 Payment Process-
ing Time

The time between generating an invoice
and the settled payment

Working Days

3 Shipping Process-
ing Time

The time between the reseller sends the
product and the customer receives it

Working Days

4 Quality The product has the specified quality Category
5 Additional Costs The cost overflow of estimation and real

costs
Overflow
Percentage

Table 4.1: Possible SLOs

SLO # Target Value Penalty
1 <= 6 The reseller has to offer a discount of 5% for each additional day.

Maximum: 20, No addition to SLO #2 or #3
2 <= 3 The reseller offers a 3 % disount per additional day. Maximum:

15%. No addition to SLO #1 or #3
3 <= 3 The reseller has to offer a discount of 5 % per additional day. Max-

imum: 20%. No addition to SLO #1 and #2
4 = requested quality If the quality is not satisfying, the reseller has to reship an appropri-

ate product within 7 days.Additionally a discount of 5% is offered
5 <= 5 Reseller cannot charge more than 5% cost overflow

Table 4.2: SLO Target Values and their Penalties

• A recent market research of the reseller has shown, that the overall workload of a year
for all delivering partners is constant. However, the monthly workload varies very strong.
Specifically, the shortest Shipping Processing Time is expected to be in the winter season,
following a constant increase until the summer season, where the workload has its maxi-
mum in July or August. The Shipping Processing Time then decays, again constantly, up
to the winter season having its minimum in January or February. A graphical representa-
tion of the workload research can be found in Figure 4.2

• The Payment Processing Time depends on available banking services. Since considered
banks process thousands of transactions per day, the Payment Processing Time follows
a random distribution. If a client initializes several transactions in a row, the payment
process takes longer, because of a temporary increase of workload. However, in the case of
key clients, the bank assigns a higher priority to the concerned payments and the Payment
Processing Time is shorter. Consequently, banking transactions are not only randomly
distributed, but also follow an AR process.

• Additional Costs mainly depend on two factors. Firstly, the priority - which is chosen by
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the client - influences the delivery time of the product. Consequently, if a customer orders
a product with a high priority, faster and more expensive services have to be used and
the costs are more likely to be higher than expected. Secondly, the overall workload of
the reseller delays products with higher priorities. This requires - again - faster and more
expensive services. It follows that Additional Costs are both: AR, because key customers
order frequently at the same priority in recurrent time points, and MA, because the overall
workload of the reseller changes in weekly cycles.

• The Quality of the Product is classified in categories. The forecasting approach has to be
able to deal with categorical time series. Since the same customers order products of the
same quality in recurrent time points, the Quality of a Product is an AR process.

• The Delivery Time of a product depends on all other SLOs - which are time series. There-
fore, the Delivery Time is a composition of multiple time series and follows an ARIMA
process of unknown orders.

Figure 4.2: Workload of Delivering Partners
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CHAPTER 5
Contribution

The main contribution of this thesis is the development of a methodology to automatically create
and train a statistical model, given a specific time series. Thereby, the characteristic of each new
instance is different, so that the creation of selection and testing mechanisms, that require no
human intervention, is needed. The generalized class of ARIMA models build the base of the
algorithms, which are integrated and tested within the C# research prototype VRESCo.

5.1 Overview

In this section the architectural essentials of the contribution are briefly depicted. The theoretical
model is implemented, as already mentioned, in the research prototype VRESCo.
All relevant data is coming from the Composition Engine whose main purpose is the automatic
composition and execution of Windows Workflows. In order to be able to define and measure
SLAs an XML configuration file is defined and passed to the Prediction Manager component.
It contains all necessary information such as the defined facts, metrics and at which point the
prediction should take place. The Prediction Manager then passes the configurations as well
as historical SLO values to the Checkpoint Predictor. As the Checkpoint Predictor is hooked
into the execution flow it has the possibility to retrieve facts and estimates for a specific SLOs.
When the work flow has started its execution, the Checkpoint Predictor component collects
necessary facts and estimates and invokes the training method of the Forecasting Service, while
resuming the execution of the workflow meanwhile. When it is called, the Forecasting Service
first makes a lookup to the Forecasting Database to retrieve previously measured SLO instances
and prediction models. Based on the collected information it then builds a new - if it was not
created before - or trains an existing model respectively. The model building process includes
the transformation of data, such as converting categorical variables into a set of dichotomous
vectors. The actual training takes place in the Forecasting Engine which is connected to the
Service through a special library (see section 5.3 for details). Once it is trained the model is
persisted in the Forecasting Database and the Forecasting Service waits for further requests.
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Every time the Composition Engine reaches a checkpoint the execution is suspended and the
SLO prediction process, which is evaluating the next service that should be called, is launched.
At this point the current facts and estimates of the concerned service are passed to the prediction
method of the Forecasting Service. After retrieving the beforehand trained model from the
Prediction Database the Forecasting Service makes a call to the Forecasting Engine and passes
the model and - if available - current facts and estimates. In the case of missing facts or estimates
a statistical model without any external values (whether or not they were collected before) is
created. In the other case the additional information is included as well. After the Forecasting
Engine has finished the prediction process necessary information such as the model dimensions,
the statistical error and especially the prediction value itself is returned to the Forecasting Service
which in turn passes the results to the Checkpoint Predictor.
If the resulting prediction indicates that an SLA will be violated by the next service that is
scheduled within the execution, the composition engine can - depending on the configuration -
invoke an alternative service to continue the work flow or resume without any modifications in
the other case. Additionally, the retrieved data can be passed to a client where the data can be
further analyzed.
Figure 5.1 clarifies the described overall architecture of the contributed work.

Figure 5.1: Overview of the Model Architecture (adapted from [35])
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For the better understanding an example execution - according to the use case of section
4 - is depicted in the following. The graphical representation is depicted in figure 5.2, which
contains an extended flow chart, not only capturing the steps of an order, but also showing the
facts and estimates that are relevant for the prediction process. The work flow is fully executed
in course of an incoming order, and the prediction is carried out for the Delivery Time. The
target value Delivery Time is chosen, because the reseller has signed an SLA that commits him
to offer a discount of 5% for each day, that the order is delayed. If a violation of the SLA is
predicted, the reseller wants to change the normal shipping modus to a faster one. The bound-
ary for the Delivery Time was negotiated beforehand with the customer and amounts to 10 days
(80.000 time units). It is important to mention that one day corresponds to 8.000 time units of
the reseller (for internal calculation purposes).

Figure 5.2: Example Execution of the Work Flow with Delivery Time as Target SLO (adapted
from [35])

The customer 111-11234 is ordering a van with the product variant deluxe. As the order
is received by the reseller, the first step is to check the warehouse and find out whether or not
all products are available. In this phase of the work flow execution, the provided information
is relatively sparse: some facts like the total number of items that the reseller needs for the
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assembling process or the complexity of the product. Moreover, an estimate of the average
delivery time of the two external suppliers is known at this time. As not all required parts are
in-house the total response time of the external suppliers can be measured in the construction
step. At this point the application provides the estimates for the Shipping Time and the Payment
Processing Time which strongly influence the overall Delivery Time and therefore are important
factors for the following prediction process. Before executing the lasts steps in the work flow it
is suspended and the prediction takes place. Therefore all collected data as listed in the following
is sent to the Forecasting Service:

• The Customer: 111-11231

• The Product: van

• Complexity of the product: 5 (ranging from 0 to 15)

• Total number of items the van consists of: 9

• The estimated average delivery time of the external suppliers: 174

• The measured total delivery time of both external suppliers: 365

• The overall construction time for the product (including external deliveries): 6399

• The estimated payment processing time: 2540

• The estimated shipping time: 1200

• A list of 100 previously measured total Delivery Times (SLOs)

The most important information is extracted from the historical SLO values. With 100 his-
torical values, the prediction is relatively reliable and therefore serves as a good decision help.

As the prediction of 10.78 days (86.229 time units) is violating the specified boundary of 10
days (80.000 time units), the reseller is now able to change the transportation type to Express
Shipping in order to deliver the product in time. As the transportation type Standard Shipping
is much cheaper this option is only chosen if the delivery time is expected to be above the spec-
ified boundary. Under the premise that the SLA violation for the Delivery Time will occur, the
reseller is able to avoid this event and consequently lowers the overall costs: The beforehand
agreed price discount of 5% is more expensive than the faster delivering option. However, the
express delivery is unnecessary in most of the times, which is the reason for that the reseller tries
to use the transportation type Standard Shipping whenever it is possible.
As in most of the times the prediction is accurate and the total Delivery Time of 10.54 days
(84.280 time units) is in fact too high when using the standard delivery option. If the reseller
chooses to change the transportation type to Express Delivery, the SLA will not be violated lead-
ing to lower costs.
Given scenarios like this one, the Composition Engine of the VRESCo framework has the pos-
sibility to automatically seek for better alternative options. In this case the delivering service
would have been automatically changed to Express Shipping resulting in a cheaper overall or-
dering process.
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5.2 Model

The training and evaluation of the statistical model mainly takes place in the Forecasting En-
gine component of section 5.1. As stated before, the general class of ARIMA models is used to
capture the mathematical relations, that a specific time series expresses. This is mainly due to
the fact that many real-world processes exhibit dependencies on their own past. The contributed
model analyses SLO values of SLAs, that were specified along with a set of facts and estimates.
As the proposed model is not constrained to numerical values only, the case of categorical time
series is also considered. The mathematical formulation of the statistical model is repeated in
the following equation:

∆dXt = α+

p∑
i=1

βi ∗Xt−i +

q∑
i=1

φi ∗ εi−1 + εt (5.1)

where Xt represents the prediction value,
∑p

i=1 βi ∗Xt−i the historical SLO values, εi the
error terms and α a constant term.

In a first step, all historical realizations of SLOs, along with the according facts and esti-
mates, are collected. Facts and estimates are used as exogenous variables that can influence the
behavior of the SLO development in time. All categorical variables are transformed into several
dichotomous variables, according to the number of possible classifications. That is, for every
categorical instance, a vector of same length as the number of categories is created. This vector
consists of but zeros, except on the index of the corresponding category. If, for example, there is
a categorical variable Quality with possible classifications A,B and C, then an instance of value
B would be translated into its according vector (0, 1, 0). If all required data is available, two
different cases have to be considered:

• The dependent variable is categorical and therefore requires a multivariate model.

• The dependent variable is numerical.

The categorical case only considers multivariate AR models and is therefore relatively sim-
ple: A first current model is evaluated, by using least squares regression with one AR lag. The
current model is now iteratively compared to results of other models, having a lag ranging from
two to six. The current model changes, if the current AICc is lower than the new one, or if
the former could not be estimated due to an error. As the outcome of this method is varying
around -2 and 2, the resulting vector has to be transferred back to a valid vector of dichotomous
variables, where only one entry is set to 1 while the others are zero. This is done by assuming
the category with the highest value to be the most probable one. If, for example, the outcome of
the categorical forecast is (1.2, 0.3, 0.02) according to categories (A,B,C), then the most prob-
able category is A and the vector is transformed into (1,0,0). A graphical representation of the
procedure is given in Figure 5.3.

The model estimation process of numerical time series is more complicated, as it also con-
siders MA terms, trends and seasonality: In a first step, it has to be determined whether a series
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Figure 5.3: Procedure for Estimating the best VAR model

is stationary in its mean. This is done by applying the KPSS test. If the test is showing, that
the underlying series is not stationary, then the first difference is taken, and the resulting output
is tested again. When the mean is stabilized, the process is tested with the CH test to detect
seasonal non-stationarity. If this is the case, a sort of trial and error procedure takes place, to
find the problematic lag. The lags 4, 6, 8, 12 and multiples of them have proved to be the
most frequent. When the problematic lag is identified the first difference is taken, and the CH
test is applied again until the underlying series is fully stationary.Figure 5.4 depicts the process
stabilizing procedure:

When a stationary time series is obtained, the model orders have to be estimated. This is
done within the following steps:

• Choose the model with the lowest AICc among the following: ARIMA(2,d,2), ARIMA(0,d,0),
ARIMA(1,d,0), ARIMA(0,d,1). (Figure 5.5)

• Try to find a model with a lower AICc by varying either the AR or the MA orders by +
−1.

If a better model is found, it becomes the current model and the step is repeated. If no
better model can be found, the process proceeds to the next step. (Figure 5.5)
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Figure 5.4: Partial Step of the Model Building Process to obtain a stationary Model

Figure 5.5: Partial Step of the Model Building Process to choose the Initial Current Model and
find a better Model by varying AR and MA Terms
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Figure 5.6: Last Partial Step of the Model Building Process to find a better Model by varying
MA and AR Terms and including/removing an Intercept

• Try to find a model with a lower AICc by varying both: the AR and the MA orders by +
−1.

A better result will again become the current model and the step is repeated. If no better
model can be found, the next step is executed accordingly. (Figure 5.6)

• Try to find a model with a lower AICc by excluding or including the intercept and repeat
this step if a better model is found. In the other case, the procedure supposes the current
model to be the best one and the procedure finishes. (Figure 5.6)

As an example, the equation for an ARIMA(2,2,1) model with 99 historical realizations is
given in the following:

∆2X100 = α+ β99 ∗X99 + β98 ∗X98 + φ99 ∗ ε99 + ε100 (5.2)

⇒

X100 = ∆2X100 −X99 = ∆2X100 −∆2(α+ β98 ∗X98 + β97 ∗X97 + φ98 ∗ ε98 + ε99) (5.3)
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where Xt are the realization values of the SLOs, βi the values of a white noise process and
α, βi and φi the coefficients to be estimated.

As the AICc serves as main performance indicator for the accuracy of a model, its equation
(from chapter 2) is repeated in the following:

AICc = log(σ̂2
k) +

n+ k

n− k − 2
(5.4)

where σ̂2
k denotes the ML estimator for the variance, k the number of model parameters and n

the sample size

To preserve the performance and avoid endless loops, the maximum overall orders of the
model does not exceed 5.

For both of the mentioned methods, two models are fitted: namely one with and one without
exogenous inputs. This is done to prevent prediction errors. The measured data comes from
monitors of specific service compositions that can partially fail. If this is the case, the involved
monitors cannot measure any data. As the forecasting mechanism needs current inputs of ex-
ogenous inputs, it would raise an error if any of the needed data is not provided. In order to
overcome that issue, the contributed model first tries to make a prediction, involving the influ-
encing external factors. If this is not possible, the basic model which considers the value of
interest only, takes over and returns a forecast.

5.3 Implementation

The contribution of this work is implemented within the research prototype VRESCo, which
is based on the programming language C# .NET 3.5 [45] and uses WCF as communication
model. Thereby, the project TSForecasting is exposed to the VRESCo framework as a WCF
service. It is directly invoked by the Service Composition component. The project makes use
of the statistical language R [56], mainly because it is a powerful, open source application that
includes a rich set of statistical operations. Furthermore, R possesses a dynamic packaging sys-
tem, which offers the possibility to download and use many open source libraries. It is published
under the GNU General Public License GPL 2 [23]. As R is written in C, its Dynamic Link Li-
brary (DLL) cannot be directly used within a C# application. To overcome that issue, the open
source project R.NET [1] is used to call the unmanaged code of the R DLL . R.NET is published
under the GNU General Public License GPL2 as well. The project is a modified version in order
to be compatible with C# .NET 3.5. Unnecessary parts, which rely on .NET 4.0, were removed
and the whole library was recompiled and integrated within the TSForecasting project.

As possibly many service compositions are handled at the same time, the according data
structures for SLO forecasting are established as follows:
The fundamental part of the TSForecasting project is a TSProcess, which can be uniquely iden-
tified by its Globally Unique Identifier (GUID). A TSProcess stores all relevant information for
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predicting the future values of an SLO. It contains an SLO ID, the underlying model, a current
prediction value, which is set when a new prediction is retrieved, and a set of time series in-
stances. As a TSProcess is responsible for creating and storing new models and training them, it
also contains the following public methods:

• updateInstance: This method is called every time before a model is trained. It takes as ar-
gument a specific instance that has the same description (TSField) as one of the contained
TSInstances. The new Instance is then merged with the corresponding existing one, by
adding new realization values, if not already existent.

• trainProcess: As the data consolidation is already done by updateInstance, the train-
Process method does not have any arguments. In fact, it only delegates the call to the
underlying model and then returns without any result.

• doPrediction: The prediction follows the same scheme as the model training. The TSPro-
cess delegates any prediction call to the underlying model, then fetches the prediction
result and stores it in his member variable predictionValue.

Instances are encapsulated within a TSInstance class. Among a numerical ID, they contain
a detailed field description (TSField), a list of realization values, and the boolean variable isDe-
pendentInstance to indicate whether it is the SLO value to be predicted or not. Moreover, the
TSInstance class offers the following important methods:

• addValue: This method takes a TSValue as argument and appends the value at the end of
the existing list of realizationvalues.

• mergeInstance: Whenever a big amount of data has to be unified, this method should be
called with another TSInstance as argument. It merges all the data of the new TSInstance
with its own. Duplicates are removed by comparing the instanceIdentifier of the new
TSValue with existing ones.

• getDoubleSeries: As the further data processing requires numerical values, this method
converts the internal structure of the stored time series into an array of double values. The
numerical array can then be passed to the R environment.

• getDoubleSeriesList: When the underlying instance is of nominal nature, the transforma-
tion into a list of dichotomous vectors is done by this method.

As mentioned, the TSField is responsible for storing all relevant information about time se-
ries. Such information includes the type of the value of interest, which is specified with the help
of the contained enumeration TSFieldType. The currently supported types are: NUMERICAL,
DECIMAL and NOMINAL. If the TSFieldType is specified as NOMINAL, a list of possible
classifications has to be included. Moreover, the TSField contains methods to transform given
values, so that they can be used for the prediction process. In the case of a NOMINAL field, the
transformation method takes a string value, which has to be available in the list of possible clas-
sifications. It then returns a vector of dichotomous variables which only contains zeros, except
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at the index, where the corresponding classification is located. The TSField offers the following
important methods:

• getValue: As the realization values of time series are internally stored within string vari-
ables, this method offers the possibility to transform the string representation of numbers
into real numbers. Additionally, the method rounds a non-decimal value if the TSField-
Type is specified as DECIMAL.

• getValueForNominal: This method should be called, if the TSFieldType is set to NOM-
INAL. It converts categories into a vector of dichotomous variables. It will throw an
Exception if it is called within a non NOMINAL TSField instance.

As one can see in figure 5.7 the TSProcess, TSInstance, TSField, TSValue and the service
classes IForecastingService and ForecastingService together implement the Forecasting Service
component that is depicted in section 5.1.

The model of a TSProcess is described by a subtype of the IForecastModel. This interface
defines the two most important methods:

• train: This method consolidates the available data of all TSInstances and transforms them
into numerical lists in order to build up a suitable model. Its implementation (ARI-
MAModel) does so by forwarding all relevant information to the RCommunicator and
storing the byte representation of the model that was built by the R environment.

• doPrediction: this method takes the future values of all required estimates and facts, and
then calculates an actual 1-step forecast for the SLO of interest. The current implemen-
tation restores the byte representation of the beforehand created model and forwards the
values into the R environment. When a prediction is done it gathers the result from the R
environment and stores it in its member variable.

Before calling one of those methods, at least the series to be predicted has to be set. Ad-
ditionally, the external inputs - if present - can be specified as well. As mentioned above the
current only implementation is the ARIMAModel, which fits an appropriate ARIMA model and
estimates its parameters. To do so, the ARIMAModel makes use of the helper class RCommuni-
cator, which handles all communication between the TSForecasting project and R. In detail, the
RCommunicator has two responsibilities:

• Converting C# data types to transmittable information, so that it can be sent to the R
environment, and converting information that is received from the R environment back to
C# data types.

• Handling all the communication between the R environment and the project.

The communication between the R environment and the RCommunicator is implemented
within two public methods:
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• trainModel: this method takes as argument an instance of the ARIMAModel, collects all
relevant information from it, and then sends it to the R environment. The created model is
then serialized within the R environment, sent back in form of a byte representation and
then further returned.

• doPrediction: As in the training method, an instance of the ARIMAModel is passed as
an argument. Additionally, the numerical representation of current facts and estimates
is forwarded (if present). The model then gathers the serialized R model and sends it to
the environment. Once the model is restored, the prediction takes place. The results are
directly stored within the instance of the ARIMAModel, which is then returned.

Together with the two model classes IForecastModel and ARIMAModel the RCommunicator
implements the functionality for the Forecasing Engine component of the architectural overview
(see section 5.1 for details), whereas the model classes reflect the functionality of the Statistical
Model.

Additionally, the project implements the WCF service interface IForecasingService, which
specifies the basic contract for any other WCF service, that wants to use its forecasting fea-
tures. It is the main class of the Forecasting Service component of section 5.1 and exposes the
following methods:

• initProcess: Creates and stores a new TSProcess. Thereby the desired modelClassifier -
which equals to the fully qualified class name of the model implementation class (currently
only ARIMAModel) - and the SLO ID - for which the prediction should be done - are
passed as an argument. If isAdaption is set to true, it searches for an existing TSProcess
with the ID processIDToUse. Once the TSProcess is created or successfully found, its ID
is returned, so that the originator of the call can use this process to train and predict a
model.

• trainProcess: Builds up and trains the model for a given TSProcess. Thereby the new
time series instances are passed as parameters and then merged with the existing data.
The method then calls the trainProcess method of the underlying TSProcess.

• makePrediction: Like the trainProcess method, also this one delegates the call to the
underlying TSProcess. Additionally it forwards the current estimates and facts, that are
needed for the prediction process of models with external regressors (if given), and then
returns the prediction result to the caller.

• deleteProcess: deletes an existing process, including all stored historical data.

The implementing class - ForecastingService - uses a simple persistence mechanism based
on NHibernate [20] which is implemented within the ProcessDao and represents the specific
implementation for the Forecasting Database component of the architectural overview (see sec-
tion 5.1). It is not only responsible for persisting a single TSProcess, but rather a whole object
tree that is included within a TSProcess. This means that also all values, field descriptions and
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even the serialized R model are included. Since NHibernate requires all entities to possess a se-
rializable ID, the classes TSInstance, TSField and TSValue implement the Persistable Interface
whose only purpose is to ensure a valid ID type. The abstract class SimpleGenericDao possesses
generic persistence mechanisms so that the implementation of methods for new entity types - in
case of a program extension - is as easy as possible.
Since it can be called by multiple clients concurrently, the TSForecasting project includes a lock-
ing mechanism for shared resources, such as the R environment. To prevent failures within the
R.NET library, a short pause of 100 milliseconds is made to allow the garbage collection to free
unused resources.

Figure 5.7 depicts the Unified Modelling Language (UML) class diagram [24] of the TS-
Forecasting project.

As mentioned before, the contribution of this thesis makes use of special R packages, that
were specifically built for the automatic creation of ARIMA models: Namely the dse package
[22], the forecast package [29] and the package tsforecasting - which was created within the
contribution of this thesis. The main purpose of the tsforecasting package, is to merge the
capability of handling multivariate AR models (dse) with the creation of univariate ARIMA
models forecast. Its source code can be found in Appendix B.1.
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Figure 5.7: Class Diagram of the TSForecasting Project
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CHAPTER 6
Evaluation

In the following section of this thesis a comprehensive evaluation of the conducted tests is de-
tailed. The example use case of section 4 was implemented within a Windows Workflow and
executed 500 times to collect a necessary amount of data. During execution the monitoring
mechanisms of VRESCo were used to measure facts and estimates as well as the resulting SLO
values, being present in the end of each work flow execution. As already described in section 4
the following SLO values were used to test the prediction accuracy of the developed model:

1. The Payment Processing Time of the customer, when purchasing an ordered item.

2. Additional Costs of a product.

3. The overall Delivery Time.

4. The total Shipping Time.

5. The Quality of the product.

The goal of this evaluation is to show that the use of the implemented prediction method
opens a new possibility to effectively save costs within the automated execution of service com-
positions, by performing a sample run and comparing the predicted classifications of the SLOs
(SLA violated / SLA not violated) to the real outcome. The classifications are based on before-
hand specified SLO boundaries. Since all parameters of an SLA are normally negotiated with
key customers or arbitrarily chosen by the service provider, they are determined in a way that the
violation of an SLA is very unlikely. It is obviously advantageous to proceed like this, because
a service provider is normally never willing to sign a contract whose key requirements cannot
be fulfilled. Moreover, a service consumer usually chooses reliable services. That is, services
that are unlikely to violate the specified contract. In order to simulate business cases as realistic
as possible the SLO boundaries for the evaluation were chosen in a way that the violation of a
service occurs very rarely. In addition to the evaluation of the prediction accuracy the model
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training times are presented to demonstrate the applicability in real world cases where the time
component may be critical.

All tests have been carried out on a Laptop with 4GB RAM, Intel Core 2 Duo P8400 pro-
cessor @ 2.26 GHZ, Windows 7 Professional 64-Bit. The core services as well as the work flow
were executed on the same machine. IIS 7 was used to host the core services, whereas the con-
tributed work was deployed directly into a process within the System.ServiceModel.ServiceHost
class. The mechanisms to simulate the behavior of ARIMA models was integrated into the exist-
ing project AtomicAssemblyServices, which is responsible for publishing the required services.

6.1 Performance

The training processes are growing constantly with the time. As the plots from of figures 6.1 -
6.3 show, the duration to train a specific model is growing linearly with the number of available
past realization values. The number of instances ranges from 1 to 500 whereas the duration has
its minimum at below one and its maximum under 45 seconds. As all tests were conducted on
the same physical machine, the performance of training times is strongly fluctuating. However,
they are expected to be more constant when the TSForecasting project is published on a single
machine. Another performance influencing factor is the number of external regressors. When a
current value of an estimate or fact is unknown, the prediction mechanism is excluding all other
external regressors as well (the prediction process cannot be completed without the presence of
all current external regressors) resulting in a significant shorter training time. Although the five
performance plots may seem different on the first look, the graphics reveal that all training times
possess a similar behavior.

Figure 6.1 is showing the training times for the SLOs Delivery Time and Additional Costs.
The duration for training a current model is growing constantly for both. The strong fluctuations
at a relatively low level of instances are indicating that the most influencing part is the current
workload of the computer itself. That is, the overhead of creating a new connection to the Fore-
casting Service as well as persisting and fetching data to or from the database is the main ẗime
waster.̈ The difference in later time points clarifies this, as the stabilization of the training times
for the Delivery Time is less fluctuating than that of the Additional Costs, indicating that the
prediction process for the first is outweighing the overhead as opposed to the latter.

In Figure 6.2 the performance measurements for the prediction of the SLOs Delivery Time
and Quality are presented. In this case, the quick training of the Quality in earlier execution
phases is arising from the condition that categorical variables need at least 10 times more his-
torical instances than the number of their possible classifications. As 15 categories are possible,
the Quality is not predicted for the first 150 instances and therefore doesn’t consume a lot of
resources. However, the later fluctuations have a different reason than that of figure 6.1. In this
case, a special fallback mechanism of the prediction process is the origin. Every time when a
fact or estimate for a current SLO instance is missing the Forecasting Engine is ignoring all of
the additional information. This is because the mathematical model, considering external re-
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Figure 6.1: Training Times for the SLOs: Delivery Time and textitAdditional Costs

Figure 6.2: Training Times for the SLOs: Shipping Processing Time and textitQuality
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gressors as well, would fail as a result of missing values. At this point, to prevent failures, the
prediction process focuses on the historical SLO values only, which results in a faster prediction
time. In the case of the Quality, which uses 2 facts and 2 estimates, the statistical model would
be reduced from 6 to 2 coefficients that have to be estimated. In the case of anAR(2) model, the
amount of information is reduced to 33%, which in turn means a speed up of 67%. The training
times for the Shipping Time are, like for the Additional Costs, relatively small compared to the
communication overhead of the Forecasting Service.

The last performance plot of figure 6.3, which shows the results for the Payment Processing
Time is showing the same behavior as the Additional Costs. The communication and preparation
overhead is much more deciding than the prediction process itself.

The scaling behavior of the Forecasting Service is constant with a flat increase as the number
of instances is growing. The measured training times therefore show that this method is appli-
cable in real world business cases, where the time component is an important factor.

6.2 Simple Cases

When not dealing with trends or seasonality, the creation of a simulator is relatively simple.
After setting a fixed number of AR and MA terms the coefficients are selected randomly. The
formulas of Chapter 2.2 are then simply applied to the white noise, which is created, by taking
the expected value of several realizations of a random process. Additionally the white noise is
normalized into specified boundaries. All required parameters can be applied by using an XML
based simulator configuration file.

As described in Chapter 4, the Payment Processing Time follows a simple AR process and
the Additional Costs an ARMA process. Therefore, the simulator configuration for the Banking
Service is as follows:

Banking Service Configuration

Minimum Value 200
Maximum Value 500

AR Terms 2
MA Terms 0
Differences 0
Seasonality 0

Table 6.1: Banking Service Configuration

As the payment processing time is coupled with the Billing Service and Customer Service as
well, their settings are nearly the same. Only their differing minimum and maximum values are
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therefore listed in the following:

Billing Service Configuration

Minimum Value 50
Maximum Value 250

Table 6.2: Billing Service Configuration

Customer Service Configuration

Minimum Value 100
Maximum Value 200

Table 6.3: Customer Service Configuration

Additional Costs do not require a special simulator since they are dependent on the quality
of a product (detailed in Section 6.4) and the general workload of the reseller.

Figure 6.4 shows the results for Additional Costs. The real values for this SLO are ranging
from 2770 to 6340 as the green line depicts. The value range of the prediction - shown as
red dashed line - is similar with a lowest value of 2896 and a highest value of 6340. The
prediction accuracy is quite good, as the standard deviation is beyond 140. A closer look at the
plot discloses peaks that are not predicted very precisely. As the model fitting process is done
automatically it is not possible to avoid these prediction inaccuracies. However it is possible to
reduce the impact by choosing a lower SLA violation boundary under the condition of accepting
an occasional false positive alert. The chosen boundary in this case is 1100, resulting in a
confusion matrix shown in Table 6.2.

Predicted
Violated Not Violated

Actual
Violated 0 3

Not Violated 1 574

Table 6.4: Confusion Matrix for Additional Costs

The prediction accuracy for Additional Costs is 99.31% providing a very good ex-ante SLA
violation detection. Additionally a Student t-test was performed to confirm the statistical sig-
nificance. The resulting p-value of 0.7281 is far above the requested value of 0.05 (a 95% con-
fidence interval was chosen ) indicating that the Null-Hypothesis H0 = The result is statistical
significant should be accepted.

The Payment Processing Time depicts an important factor of success when modeling time
series. Namely the careful selection of additional regressors. There are 2 ways in which the
selection of external regressors can be done wrong:
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Figure 6.3: Training Times for the SLO: Payment Processing Time

Figure 6.4: Prediction Accuracy for Additional Costs
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1. Taking not enough regressors into consideration

2. Over fitting the model by choosing to many additional variables

The first case is shown in figure 6.5, where only the target SLO is considered itself. Here,
the information that comes from the time series is not sufficient because it is influenced not only
by its own past, but also depends on some unknown additional variables.
With an SLA boundary of 4000 the confusion matrix of the corresponding Figure 6.5 is as
depicted in Table 6.2

Predicted
Violated Not Violated

Actual
Violated 2 1

Not Violated 0 435

Table 6.5: Confusion Matrix for the Payment Processing Time without External Regressors

Although the prediction accuracy of 99.77% and a p-value of 0.9077 is a sufficient result,
the addition of more information can improve the results a little further.

Figure 6.5: Prediction Accuracy for the Payment Processing Time without External Regressors

On the other hand, it is almost always worse to use additional, but unnecessary information.
In this case, the prediction accuracy not only does not improve, but sometimes leads to a wrongly
fitted model, resulting in a much inferior prediction accuracy. As one can see in Figure 6.6, the
prediction quality of the Payment Processing Time is very bad, which arises from the unneces-
sary estimates RESPONSE_TIME_credit_cc and RESPONSE_TIME_request_cc_authorization
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of the Banking Service.
The confusion matrix of table 6.2 confirms this first impression giving a prediction accuracy of
0.68%. The p-value being lower than 2.2e−16 is indicating a clear rejection of the null hypothe-
sis H0 = The result is statistical significant.

Predicted
Violated Not Violated

Actual
Violated 3 0

Not Violated 435 0

Table 6.6: Confusion Matrix for the Payment Processing Time with Additional Estimates: RE-
SPONSE_TIME_credit_cc and RESPONSE_TIME_request_cc_authorization

Figure 6.6: Prediction Accuracy for the Payment Processing Time with Additional Estimates:
RESPONSE_TIME_credit_cc and RESPONSE_TIME_request_cc_authorization

Finally, the model that was found to be the best, is depicted in Figure 6.7. It does not only
consider the Payment Processing Time itself, but also the estimates RESPONSE_TIME_get_cc_details
and RESPONSE_TIME_get_payment_prefs from the Customer Services. The inclusion of the 2
estimates leads to a standard prediction error of 275.89 which is slightly better than the first, and
much better than the second model. The resulting p-value of 0.8066 and a prediction accuracy of
99.77% confirm the statistical significance. The corresponding confusion matrix can be found
in Table 6.2.
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Predicted
Violated Not Violated

Actual
Violated 2 1

Not Violated 0 435

Table 6.7: Confusion Matrix for the Payment Processing Time with Additional Estimates: RE-
SPONSE_TIME_get_cc_details and RESPONSE_TIME_get_payment_prefs

Figure 6.7: Prediction Accuracy for the Payment Processing Time with Additional Estimates:
RESPONSE_TIME_get_cc_details and RESPONSE_TIME_get_payment_prefs

6.3 Time Series with Trend

The Delivery Time is influenced by all other SLOs. It possess an unknown trend that is estimated
during the prediction process.
As figure 6.8 shows the Delivery Time possesses a linearly growing trend. That is, the long-term
behavior of the process is increasing with time. It is not obvious to see, that the prediction of
this time series is quite good. Although the standard deviation of the residuals is above 15.000
one has to consider that it has to be compared to the maximum value of the delivery time (above
150,000). Since SLO values are always compared to predefined boundaries, the violation of an
SLA can be often prevented by choosing the boundaries a little bit lower (e.g. if the real SLA
violation occurred at a value > 120,000 the boundary will be set to 100,000).

Moreover, the p-value of 0.608 and a prediction accuracy of 99.52% prove that the results
are statistical significant. The confusion matrix, showing the correct/incorrect classifications
with an SLA boundary of 155, 000, is found in Table 6.3.
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Figure 6.8: Prediction Accuracy for the Delivery Time

Predicted
Violated Not Violated

Actual
Violated 0 3

Not Violated 0 624

Table 6.8: Confusion Matrix for the Delivery Time

6.4 Saisonality

The trend component was simulated with the help of sinusoidal waves. As described by [60], a
cyclic behavior of time series can be described by the sine or cosine function accordingly. As
both functions can be used, the simulation technique for the seasonality is - as opposed to [60] -
based on the sine function. The equation for describing a seasonal process is as follows:

xt = A ∗ sin(
2π

w
∗ t+ Φ) (6.1)

Where A denotes the amplitude, that is, the boundary in which xt is oscillating. In the
case of the simulation, A is given by the maximum value that a certain series can take, divided
through three (to damp the oscillations). W describes the cycle, by specifying the time steps that
are necessary to complete one cycle. While t denotes the current time step, Φ is called the phase
and determines the starting point of the sine function. Φ is set to zero, since the determination
of the exact starting point is not necessary during the simulations.
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The Shipping Processing Time is expected to follow a seasonal trend which oscillates within
a 12 month cycle. Because the main influencing factor is given by the Shipping Service, it was
configured as follows:

Shipping Service Configuration

Minimum Value 500
Maximum Value 1000

AR Terms 1
MA Terms 0
Differences 0
Seasonality 12

Table 6.9: Shipping Service Configuration

Predicted
Violated Not Violated

Actual
Violated 0 3

Not Violated 0 606

Table 6.10: Confusion Matrix for the Shipping Processing Time

Figure 6.9 depicts the prediction process of the Shipping Processing Time. One can see,
that the series possesses a cycle of 12 (month). The Standard Error of 203 and a prediction
accuracy of 99.51% indicate, that the seasonal component of this process is well depicted by the
automatically fitted model. With an SLA boundary of 2, 400 the p-value of the t-test is 0.4469
which indicates a clear statistical result. The corresponding confusion matrix is found in Table
6.4

6.5 Categorical Cases

Instances
Correct 45

Not Correct 582

Table 6.11: Confusion Matrix for the Quality

The simulation of categorical time series was done with the help of the R package dse [22].
Thereby, the simulator makes use of the RCommunicator class of the TSForecasting package. A
special method simVAR takes as arguments the number of dimensions, AR terms and the sample
size. The method then creates a new model with the according dimensions, and assigns random
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Figure 6.9: Prediction Accuracy for Shipping Processing Time

Figure 6.10: Prediction Accuracy for Quality
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coefficients. When the model is built, the simulation returns a list of the specified size, which
contains vectors of dichotomous variables. The resulting vectors can then be translated into cat-
egorical variables.
As the QUALITY of the product is strongly influenced by the customer’s choice of priority, the
chosen priorities of the customers are generated by a random AR(2) process with categories
reaching from 1 up to 15.

Figure 6.10 shows the prediction process of the QUALITY. As categorical variables are con-
verted into dichotomous vectors the AR approach does not perform very well. This is due to
the fact, that the AR models depict linear dependencies between current and past values. As
the dichotomous vectors contain but zeros and ones, the estimated coefficients do not optimally
describe the behavior of the time series. A further t-test with a resulting p-value of lower than
2.2e16 and a prediction accuracy of only 7.18% confirms the bad prediction performance. As
Table 6.5 shows, only 45 out of 627 instances were classified correctly.

In the case of categorical variables, one might use other techniques such as decision trees
proposed by [35].

6.6 Results Review

The evaluation of this chapter is showing that the prediction performance of the contributed work
is quite accurate. In all numerical cases, the performance results are very satisfying. The cal-
culated prediction accuracy is consistently above 99% (except for the categorical and overfitted
model) which indicates that the Forecasing Service is of great value when composing services
automatically. Furthermore the example of the Payment Processing Time shows that the careful
selection of facts and estimates, which should be included, is crucial for the prediction perfor-
mance. The main drawback of the proposed model is the prediction for categorical SLO values.
The prediction accuracy of 7.18% leads to the suboptimal number of correct classifications of
45 instances out of 627.
The main message of this chapter is that the contributed work provides an accurate way of pre-
dicting SLA violations with SLOs of numerical nature. In the case of categorical values more
research work is required. Thereby, statistical methods like HMM or SVM are promising.
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CHAPTER 7
Conclusion

7.1 Summary

The prediction and prevention of SLA violations is becoming more and more important within
the context of service compositions. Especially when whole business processes are to be per-
formed without human intervention, the automatic building and training of adequate statistical
models is fundamental. As current solutions lack of the involvement of historical data - or solely
focus on the detection of SLA violations - this thesis aims to close this specific gap. The first
part of this work served as introduction and constituted the concrete scientific questions and is-
sues that justify the utilization of statistical models for the prediction of SLA violations. While
the chapters 3 and 4 outlined the technical background and related research work, chapter 5
presented an example scenario that emphasized the need for the contribution of this thesis. A
concrete methodology and algorithms that address the issues of chapter 1 were established in
chapter 6. Thereby, the statistical language R was used to implement procedures for the au-
tomatic creation of ARIMA models. Based on the example use case chapter 7 revealed the
potentials of the contributed work, by showing, that its deployment can possibly predict and,
more importantly, prevent many possible SLA violations.

7.2 Future Work

A fundamental shortcoming of the contributed work is the poor performance when dealing with
nominal SLO values. As it is out of scope, further research work should be conducted, to
explore the prediction quality of other statistical models, such as HMM or SVM. Especially the
generalized class of state-space models will serve as an interesting starting point.
As the evaluation of the contributed work was realized by a set of simulators further tests need to
be performed. Thereby, comprehensive test within real business cases is desirable as this ensures
that the developed algorithms appropriately perform in a constantly changing environment with
unexpected side-effects.
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APPENDIX A
Diagrams

A.1 Complete Workflow Diagram of the Use Case

Figure A.1: Complete Workflow Diagram of the Use Case Part1 (taken from [51])
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Figure A.2: Complete Workflow Diagram of the Use Case Part2 (taken from [51])
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Figure A.3: Complete Workflow Diagram of the Use Case Part3 (taken from [51])
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Figure A.4: Complete Workflow Diagram of the Use Case Part4 (taken from [51])
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Figure A.5: Complete Workflow Diagram of the Use Case Part5 (taken from [51])
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APPENDIX B
Listings

B.1 Listings of Implemented R Code

1 t r a inTSMode l <− f u n c t i o n ( d , x r eg = NULL) {
2 model = l i s t ( )
3 model$ x reg = NULL
4 model$ noxreg = NULL
5 c a t e g o r i c a l = FALSE
6
7 # f i x t h e NA v a l u e s i n x reg columns
8 i f ( ! i s . n u l l ( x r eg ) ) {
9 # remove columns w i t h o n l y NA v a l u e s

10 xreg <− x reg [ , colSums ( i s . na ( x r eg ) ) <nrow ( x r eg ) ]
11 x reg <− na . approx ( xreg , r u l e =2)
12 }
13
14 i f ( i s . matrix ( d ) ) {
15 #do i t w i t h t h e dse package
16 i f ( ! i s . n u l l ( x r eg ) ) {
17 c u r r e n t M o d e l = NULL
18 bes tAIC = NULL
19 f o r ( i i n 1 : 6 ) {
20 s u p p r e s s W a r n i n g s ( {
21 t r y C a t c h ( {
22 t s d <− TSdata ( i n p u t =xreg , o u t p u t =d )
23 tmpModel <− estVARXls ( t s d , max . l a g = i )
24 s i z e = l e n g t h ( d [ , 1 ] )
25 tmpAIC <− tmpModel$ e s t i m a t e s $ l i k e [ 1 ] + ( ( s i z e + i ) / ( s i z e − i − 2)

)
26
27 i f ( i s . n u l l ( c u r r e n t M o d e l ) | | bes tAIC > tmpAIC ) {
28 c u r r e n t M o d e l <− tmpModel
29 bes tAIC <− tmpAIC
30 }
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31 } , e r r o r = f u n c t i o n ( e ) {
32 c u r r e n t M o d e l <− NULL
33 } )
34 } )
35 }
36 model$ x reg <− c u r r e n t M o d e l
37 }
38
39 c u r r e n t M o d e l <− NULL
40 bes tAIC <− NULL
41 f o r ( i i n 1 : 6 ) {
42 s u p p r e s s W a r n i n g s ( {
43 t r y C a t c h ( {
44 t s d <− TSdata ( o u t p u t =d )
45 tmpModel <− estVARXls ( t s d , max . l a g = i )
46 s i z e = l e n g t h ( d [ , 1 ] )
47 tmpAIC <− tmpModel$ e s t i m a t e s $ l i k e [ 1 ] + ( ( s i z e + i ) / ( s i z e − i − 2) )
48 i f ( i s . n u l l ( c u r r e n t M o d e l ) | | bes tAIC > tmpAIC ) {
49 c u r r e n t M o d e l <− tmpModel
50 bes tAIC <− tmpAIC
51 }
52 } , e r r o r = f u n c t i o n ( e ) {
53 c u r r e n t M o d e l <− NULL
54 } )
55 } )
56 }
57 model$ noxreg <− c u r r e n t M o d e l
58
59 c a t e g o r i c a l = TRUE
60 } e l s e {
61 #do i t w i t h t h e f o r e c a s t package
62 i f ( ! i s . n u l l ( x r eg ) ) {
63 s u p p r e s s W a r n i n g s ( {
64 t r y C a t c h ( {
65 model$ x reg <− a u t o . a r ima ( x=d , x reg = xreg )
66 } , e r r o r = f u n c t i o n ( e ) {
67 model$ x reg <− NULL
68 } )
69 } )
70 }
71
72 s u p p r e s s W a r n i n g s ( {
73 t r y C a t c h ( {
74 model$ noxreg <− a u t o . a r ima ( x=d , x reg =NULL)
75 } , e r r o r = f u n c t i o n ( e ) {
76 model$ noxreg <− NULL
77 } )
78 } )
79
80 c a t e g o r i c a l = FALSE
81 }
82
83 i f ( i s . n u l l ( model$ x reg ) && i s . n u l l ( model$ noxreg ) ) {
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84 s top ( "No model c o u l d be found " )
85 }
86
87 re turn ( l i s t ( model=model , c a t e g o r i c a l = c a t e g o r i c a l ) )
88 }

Listing B.1: R Function to Train a Suitable Model for a concrete Time Series

1 g e t T S P r e d i c t i o n <− f u n c t i o n ( model , f _ x reg =NULL) {
2 i f ( model$ c a t e g o r i c a l == TRUE) {
3 f c <− NULL
4 i f ( ! i s . n u l l ( f _ x reg ) ) {
5 s u p p r e s s W a r n i n g s ( {
6 t r y C a t c h ( {
7 m <− model$model$ x reg $model
8 newModel <− ARMA(A=m$A, B=m$B ,C=m$C ,TREND=m$TREND, c o n s t a n t s =m$

c o n s t a n t s )
9 f c <− l ( newModel , model$model$ x reg $ data )

10 } , e r r o r = f u n c t i o n ( e ) {
11 p r i n t ( " S k i p p i n g exogenous i n p u t " )
12 f c <− NULL
13 } )
14 } )
15 }
16 i f ( i s . n u l l ( f c ) ) {
17 s u p p r e s s W a r n i n g s ( {
18 t r y C a t c h ( {
19 m = model$model$ noxreg $model
20 newModel = ARMA(A=m$A, B=m$B ,C=m$C ,TREND=m$TREND, c o n s t a n t s =m$

c o n s t a n t s )
21 f c <− l ( newModel , model$model$ noxreg $ data )
22 } , e r r o r = f u n c t i o n ( e ) {
23 f c <− NULL
24 } )
25 } )
26 }
27 i f ( i s . n u l l ( f c ) ) {
28 s top ( " Model c o u l d n o t be p r e d i c t e d " )
29 }
30
31 # i f p r e d i c t i o n r e c e i v e d , g e t r e s u l t s
32 d i m e n s i o n s = c ( l e n g t h ( f c $model$A[ , 1 , 1 ] ) , 0 , l e n g t h ( f c $model$B [ , 1 , 1 ] ) )
33 sigma2 = mean ( f c $ e s t i m a t e s $ cov )
34 p r e d i c t i o n = f c $ e s t i m a t e s $ p red [ ( l e n g t h ( f c $ e s t i m a t e s $ p red [ 1 , ] ) +1) , ]
35 p r e d i c t i o n = t o R e s u l t ( p r e d i c t i o n )
36 } e l s e {
37 f c <− NULL
38 i f ( ! i s . n u l l ( f _ x reg ) ) {
39 s u p p r e s s W a r n i n g s ( {
40 t r y C a t c h ( {
41 m <− model$model$ x reg
42 i f ( i s . n u l l (m) ) {
43 f c <− NULL
44 p r i n t ( " S k i p p i n g exogenous i n p u t " )
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45 } e l s e {
46 f c <− f o r e c a s t . Arima ( o b j e c t =m, x reg = f _ x reg )
47 }
48 } , e r r o r = f u n c t i o n ( e ) {
49 f c <− NULL
50 p r i n t ( " S k i p p i n g exogenous i n p u t " )
51 } )
52 } )
53 }
54
55 i f ( i s . n u l l ( f c ) ) {
56 s u p p r e s s W a r n i n g s ( {
57 t r y C a t c h ( {
58 m <− model$model$ noxreg
59 f c <− f o r e c a s t . Arima ( o b j e c t =m, x reg =NULL)
60 } , e r r o r = f u n c t i o n ( e ) {
61 f c <− NULL
62 } )
63 } )
64 }
65
66 i f ( i s . n u l l ( f c ) ) {
67 s top ( " Model c o u l d n o t be p r e d i c t e d " )
68 }
69
70 m <− model$model$ noxreg
71 d i m e n s i o n s <− m$ arma [ ( l e n g t h (m$ arma ) −2) : l e n g t h (m$ arma ) ]
72 sigma2 <− m$ s igma2
73 p r e d i c t i o n <− f c $mean [ 1 ]
74 }
75
76 re turn ( l i s t ( d i m e n s i o n s = d imens ions , s igma2=sigma2 , p r e d i c t i o n = p r e d i c t i o n ) )
77 }

Listing B.2: R Function to get a Prediction from a fitted Model

1 t o R e s u l t <−
2 f u n c t i o n ( v e c t o r ) {
3
4
5 v e c t o r [ v e c t o r >= max ( v e c t o r ) ] <− 1
6 v e c t o r [ v e c t o r < max ( v e c t o r ) ] <− 0
7
8 i f ( sum ( v e c t o r ) > 1 ) {
9 f o r ( i i n 1 : l e n g t h ( v e c t o r ) ) {

10 i f ( v e c t o r [ i ] == 1) {
11 v e c t o r [ ] = 0
12 v e c t o r [ i ] = 1
13 re turn ( v e c t o r )
14 }
15 }
16 }
17
18 re turn ( v e c t o r )
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19 }

Listing B.3: R Function to normalize a categorical output vector

1 simVAR <− f u n c t i o n ( dim , a r , N) {
2 mu = 1 / ( a r +dim )
3 AR = matrix ( rnorm ( dim ^2 , mean=mu , sd =(mu / 3) ) , dim )
4
5 i f ( a r > 1) {
6 f o r ( i i n 2 : a r ) {
7 AR = cbind (AR, matrix ( rnorm ( dim ^2 , mean=mu , sd =(mu / 3) ) , dim ) )
8 }
9 }

10
11 tmp <− matrix ( t ( cbind ( diag ( dim ) ,AR) ) , nco l = dim , byrow=TRUE)
12 m <− ARMA(A=array ( tmp , c ( ( a r +1) , dim , dim ) ) , B= diag ( dim ) , TREND=rnorm ( dim ) )
13
14 s t a r t <− v e c t o r ( l e n g t h =dim , mode=" numer ic " )
15 s t a r t [ ] = 1
16
17 r e s <− s i m u l a t e (m, sampleT=N)
18
19 r e s <− r e s $ o u t p u t
20
21 f o r ( i i n 1 : l e n g t h ( r e s [ , 1 ] ) ) {
22 vec <− r e s [ i , ]
23 vec [ vec >= max ( vec ) ] <− 1
24 vec [ vec < max ( vec ) ] <− 0
25 vec [ vec >= max ( vec ) ] <− 1
26 r e s [ i , ] <− vec
27 }
28
29 re turn ( r e s )
30 }

Listing B.4: R Function to Simulate a Multivariate AR Model
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Acronyms

ACF Autocorrelation Function 10, 14

AICc Akaike’s Information Criterion, Bias Corrected 14, 20, 21, 33, 34, 36, 37

AR Autoregressive 3, 12, 14, 21, 23, 27, 28, 33–36, 41, 46, 53, 55, 69

ARIMA Autoregressive Integrated Moving Average v, vii, ix, 3, 11–14, 20, 21, 28, 29, 33, 39,
41, 44, 57

ARMA Autoregressive Moving Average 12, 13, 23, 46

BIC Bayesian Information Criterion 14

BPEL Business Process Execution Language 16

CBR Case-based Reasoning 19

CLR Common Language Runtime 6

DeSVi Detecting SLA Violation infrastructure 18

DLL Dynamic Link Library 37

DSL Domain Specific Language 19

FoSII Foundations of Self-governing Infrastructures 18

GUID Globally Unique Identifier 37

HMM Hidden Markov Model 22, 55, 57

IIS Internet Information Services 7, 44

IPAT Inter Packet Arrival Time 17, 18

JMS Java Messaging Service 19
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KLD Kullback Leibler Divergence 17

LoM2His Low Level Metrics to High Level SLA 19

MA Moving Average 12, 14, 21, 28, 33–36, 46, 53

ML Maximum Likelihood 11, 12, 14, 37

OLS Ordinary Least Squares 11, 12

PACF Partial Autocorrelation Function 14

QoS Quality of Service 9, 15–17

RMSE Root Mean Squared Error 21, 23

SIC Schwarz Information Criterion 14

SLA Service Level Agreement v, vii, ix, 1–3, 9, 10, 16–19, 21, 26, 29–33, 43, 47, 49, 51, 53,
55, 57

SLO Service Level Objective v, vii, 2, 3, 9, 10, 18, 19, 21, 26, 28–33, 37–40, 43–49, 51, 55, 57

SOA Service Oriented Architecture ix, 1, 3, 5, 6, 9, 15

SVM Support Vector Machine 22, 23, 55, 57

UML Unified Modelling Language 41

VID Valid IPAT Distribution 17

VM Virtual Machine 18

VQL VRESCo Query Language 15

VRESCo Vienna Runtime for Service Compositions v, vii, 2, 3, 15, 16, 18, 26, 29, 32, 37, 43

WAS Windows Activation Service 7

WCF Windows Communication Foundation ix, 3, 6–9, 25, 37, 40

WSDL Web Service Description Language 5, 6
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