
DIPLOMARBEIT

Nonlinear and Dynamic

Average Consensus Algorithms

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines

Diplomingenieurs

unter der Leitung von

Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Gerald Matz

Projektass. Dipl.-Ing. Valentin Schwarz

Institute of Telecommunications

eingereicht an der Technischen Universität Wien

Fakultät für Elektrotechnik und Informationstechnik

von

Raman Jafroudi

Portnergasse 19/8/34

1220 Wien

Wien, im September 2011

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

—— To my parents ——

Abstract

This thesis deals with distributed averaging methods in wireless sensor networks. To

this end, wireless sensor nodes are equipped with dedicated sensing, computing, and

communication devices. Our goal is to calculate the average of measurements through

the average consensus (AC).

To provide the reader with the necessary prerequisites, we summarize graph theory

and different network topologies in the first part of this work. We then discuss static

and dynamic variants of the AC algorithm. The static algorithm is used if all sensors

measure constant signals that do not change over time. In the case where the sensors

measure time-varying signals, the dynamic algorithm is used. For both the static and

the dynamic case, we consider different linear and nonlinear AC weight design methods

to improve performance in transient and stationary scenarios. We further study the

behavior of the various versions of AC in different network topologies and different

simulation settings.

Our numerical results suggest that nonlinear AC is superior to linear AC and that

dynamic AC succeeds in tracking rapidly varying signal means.

END

END

END

END

END

END

END

END

END

END

iii

Kurzfassung

Diese Diplomarbeit beschäftigt sich mit verteilten Mittelungsverfahren in drahtlosen

Sensornetzwerken. Drahtlose Sensorknoten bestehen aus Komponenten für die Mes-

sung, Berechnung und Kommunikation von Daten. Unser Ziel ist es, den Mittelwert der

Messwerte mit dem Average Consensus (AC) Algorithmus zu berechnen.

Um dem Leser das nötige Vorwissen zu vermitteln, geben wir im ersten Teil dieser

Arbeit eine Einführung in die Graphentheorie und verschiedene Netzwerktopologien.

Danach diskutieren wir eine statische und eine dynamische Variante des

AC-Algorithmus. Die statische Mittelwertbildung wird verwendet, wenn die Sensoren

konstante Signale messen, die sich nicht über die Zeit ändern. Im Fall wo die Senso-

ren zeitlich veränderliche Signale messen, wird die dynamische Mittelwertbildung ver-

wendet. Sowohl für den statischen als auch für den dynamischen Fall betrachten wir

verschiedene lineare und nichtlineare Methoden für den Entwurf der AC-Gewichte, um

die Leistungsfähigkeit in transienten und stationären Szenarien zu verbessern. Wir un-

tersuchen weiters das Verhalten der unterschiedlichen AC-Versionen in verschiedenen

Netzwerktopologien und für verschiedene Simulationsparameter.

Unsere numerischen Ergebnisse legen den Schluss nahe, dass nichtlineare AC-Algorithmen

den linearen Verfahren überlegen sind und dass dynamische AC-Verfahren schnell zeit-

variante Signalmittelwerte erfolgreich schätzen können. END

END

END

END

END

END

END

END

iv

Acknowledgements

I would like to express my sincerest gratitude to Gerald Matz for giving me the

opportunity to work on this thesis and for his continuous encouragement and devoted

guidance.

I would also like to gratefully acknowledge the supervision of Valentin Schwarz, who

has supported me with patient guidance, great kindness, and friendly assistance during

this thesis.

Finally, I take this opportunity to express my profound gratitude to my beloved

parents, Azita and Fereydoon for their support and patience during my study.

END

END

END

END

END

END

END

END

END

END

END

END

END

END

END

END

END

v

Contents

1 Introduction 1

2 Prerequisite 3

2.1 Introduction . 3

2.2 Graph Theory . 4

2.2.1 Definitions . 4

2.2.2 Adjacency Matrix . 9

2.2.3 Neighbor Set . 11

2.2.4 Degree Matrix . 12

2.2.5 Incidence Matrix . 14

2.2.6 Laplacian Matrix . 16

2.3 Network Topologies . 19

2.3.1 Random Geometric Graph . 19

2.3.2 Random Regular Graph . 20

2.3.3 Ring Graph . 20

2.3.4 Complete Graph . 21

2.3.5 Graph with Bottleneck . 22

3 Static Average Consensus 24

3.1 Introduction . 24

3.2 Problem Statement . 25

3.3 Linear Static Average Consensus Algorithm 26

3.4 Convergence Conditions . 30

3.5 Convergence Speed . 32

vi

vii

3.6 Weight Matrix . 33

3.6.1 Weight Matrix based on Constant Weights 33

3.6.2 Weight Matrix based on Convex Optimization 36

3.6.3 Weight Matrix based on Metropolis-Hastings algorithm 37

3.6.4 Influence of Eigenvalues of Weight Matrix on Convergence Speed . . . 38

3.7 Nonlinear Static Average Consensus Algorithm 40

3.7.1 Nonlinearity by Varying the Weights of a Weight Matrix 40

3.7.2 Nonlinearity by Combination of two Weight Matrices 42

4 Dynamic Average Consensus 44

4.1 Introduction . 44

4.2 Linear Dynamic Average Consensus Algorithm 45

4.2.1 First-Order Linear Dynamic Average Consensus Algorithm 45

4.2.2 nth-Order Linear Dynamic Average Consensus Algorithm 48

4.3 Nonlinear Dynamic Average Consensus Algorithm 49

5 Simulation Results 51

5.1 Simulation Setup . 51

5.2 Linear Static Average Consensus Algorithm 52

5.2.1 Influence of Number of Edges on Performance 53

5.2.2 Influence of Number of Nodes on Performance 56

5.2.3 Measurement from a Spatial Field 57

5.2.4 Impact of the Graph Topology . 59

5.3 Nonlinear Static Average Consensus Algorithm 64

5.3.1 Determination of Parameters of Nonlinear Function 64

5.3.2 Influence of Number of Edges on Performance 70

5.4 Nonlinear Static Average Consensus Algorithm with Combination of two Weight

Matrices . 72

5.5 Linear Dynamic Average Consensus Algorithm 75

5.5.1 Measurement from Time-Varying Spatial Field 75

5.5.2 Influence of Frequency of Time-Varying Spatial Field on Performance . 75

5.5.3 Influence of Order of Algorithm on Performance 78

5.6 Nonlinear Dynamic Average Consensus Algorithm 79

5.6.1 Determination of Parameters of Nonlinear Function 79

5.6.2 Measurement from Time-Varying Spatial Field 80

5.6.3 Influence of Frequency of Time-Varying Spatial Field on Performance . 84

viii

5.6.4 Influence of Order of Algorithm on Performance 87

6 Summary 90

Bibliography 92

Notation 93

List of Abbreviations 95

1
Introduction

Wireless sensor networks (WSN) are low-cost sensors which can be distributed over

large area. They can accomplish simple computations and local measurements and

connect to their neighbors via wireless connections to exchange informations. WSN

can be applied in many different areas. Environmental monitoring, surveillance, micro-

surgery, and agriculture are only a few examples.

The goal of this work is to calculate the average value of sensor measurements.

One possible way is that we connect all sensors to a fusion center which collects the

whole sensor measurements and do all computations. The problem of this way is that

each wireless sensor has a limited communication range which makes it difficult that all

sensors communicate with fusion center directly. We can solve this problem by using

relaying techniques or by increasing the transmit power of sensors. But if we have too

many sensors which are distributed over a large area, this will be more complicated

and yield to an uneconomical method. Because of that it is more advantageous to use

distributed averaging methods. We discuss in this thesis the average consensus (AC)

algorithm as a distributed averaging method. Each sensor has locally access to its

measurements and through wireless communication to measurements of its neighbors

which are connected with this sensor. With this informations and by applying the AC

algorithm each sensor is able to estimate a global quantity which is the average value.

We consider the static and the dynamic variants of AC algorithm. The Static AC

algorithm is used to calculate the average value of sensor measurements which do not

change over different iterations. In case of sensors which measure time-varying signals,

we use dynamic AC algorithm. For both the static and the dynamic case, we consider

different linear and nonlinear AC weight design methods to improve performance.

1

Chapter 1. Introduction 2

We model the WSN as graphs to describe them mathematically. We consider mostly

random geometric graphs which represent wireless networks with limited communica-

tion range, but we will also consider the performance of algorithms for some other

graphs like random regular graph, Ring Graph, Complete Graph.

This work is structured as follow:

Chapter 2: This chapter gives us a basic introduction in graph theory. Furthermore,

different network topologies are discussed here.

Chapter 3: This part of the work deals with static AC algorithm with its linear and

nonlinear variants. We discuss the necessary conditions for convergence to average value

and the convergence speed. We will also study different AC weight design methods.

Chapter 4: In this chapter we consider the dynamic AC algorithm with its linear

and nonlinear variants. The first-order algorithm and nth-order algorithm will be also

discussed.

Chapter 5: This chapter shows the most important results of different simulation set-

tings.

Chapter 6: In last part we give a summary of this work.

2

Prerequisite

2.1 Introduction

In this chapter we will consider different definitions of graph theory and their properties

which we use in this work. Moreover we explain different network topologies which are

applied to illustrate sensor networks. Many of following definitions can be found in [1]

and [2].

3

Chapter 2. Prerequisite 4

2.2 Graph Theory

In this section we will consider different definitions of graphs and describe most impor-

tant properties of them which we use in this work.

2.2.1 Definitions

Directed and Undirected Graphs: A directed graph G is represented by G = (V , E)

with the set of vertices (nodes) V and the set of edges E ⊆ V × V . The cardinality

|V| = N corresponds to the number of nodes of the graph. We illustrate nodes by

circles or points and the edges as communication links between nodes by directed lines

(preferably straight lines). A directed edge (i, j) expresses the propagation from node

i to node j but not vice versa.

We see in Fig. 2.1 an example of a directed graph with V = {1, 2, 3, 4, 5, 6, 7} and

E = {(1, 2), (1, 3), (2, 3), (2, 5), (3, 4), (4, 5), (4, 6), (5, 6), (6, 7)}. For example node 3 can

be reached from node 1 over the edge (1, 3) or over the edges (1, 2) and then (2, 3).

Propagation against the direction of edge is not allowed, for example from node 3 to

node 1.

1

2

3

4

5

6

7

Figure 2.1: Directed graph.

1

2

3

4

5

6

Figure 2.2: Undirected graph.

An undirected graph is similar to directed graphs except that the edges are undi-

rected lines. An undirected edge {i, j} expresses the propagation from node i to node j

Chapter 2. Prerequisite 5

and from node j to node i. It can be seen as a two-way street. On the other hand the

directed edge (i, j) is like a one-way street, so we have a Propagation just from node i

to node j and not vice versa.

In Fig. 2.2 can be seen an example of a undirected graph with V = {1, 2, 3, 4, 5, 6}
and E = {{1, 2} , {2, 3} , {2, 4} , {2, 5} , {3, 4} , {4, 5} , {5, 6}}. For example we can reach

node 4 from node 1 over edges {1, 2} and {2, 4} or over {1, 2}, {2, 3} and {3, 4}.

Tails and Heads: It is obvious in Fig. 2.3 that a directed edge (i, j) has the start

node i and the end node j. It begins from node i and ends at node j, so node i is the

tail and node j is the head of edge (i, j). If we have the edge (i, j) ∈ E , node j is

adjacent to node i. The edge (i, j) is incident to nodes i and j.

Head Tail

i j

Figure 2.3: Tail and Head.

Degrees: The indegree of a node is the number of edges that terminate at the node

and the outdegree of it is the number of edges that emanate from the node. The degree

of a node is the sum of its indegree and outdegree.

id=1, od=2

id=0, od=2

id=2, od=1 id=2, od=1

id=2, od=1

id=1, od=2 id=1, od=0

1

2

3

4

5

6

7

Figure 2.4: Directed graph outdegree (od) and indegree (id) of each node.

Fig. 2.4 shows the same graph in Fig. 2.1, but it includes also the indegree and the

outdegree of each node. For example the node 2 has an indegree of 1 and an outdegree

of 2, the degree of node 2 will be then 3.

The sum of indegrees of all nodes equals to the sum of outdegree of them and they

are equal to the number of edges in graph. In Fig. 2.4 the sum of indegree or outdegree

Chapter 2. Prerequisite 6

is 9 and this is the number of edges.

Multiedges and Loops Multiedges are two or more edges that connect same two

nodes together. If an edge connects a node with itself, it is called a loop. In this work

we consider only graphs without loops and multiedges.

Multiedges Loop

i j

Figure 2.5: Multiedges and loops.

Subgraph: We have two graphs G = (V , E) and G´= (V´, E´). The graph G´ is a

subgraph of G if V´ ⊆ V and E´⊆ E . In Fig. 2.6(b) we illustrated a subgraph of the

graph shown in Fig. 2.6(a) because all nodes and edges which are in Fig. 2.6(b) are all

included in Fig. 2.6(a) too.

1

2

3

4

5

6

7

(a)

1

2 5

6

7

(b)

1

2

3

4

5

6

7

(c)

1

2

3

5

(d)

Figure 2.6: (a) Graph G, (b) subgraph G´, (c) spanning subgraph G´ and (d) subgraph
G´ induced by V´.

Chapter 2. Prerequisite 7

The graph G´ is a spanning subgraph of G if V´= V and E´⊆ E . It is shown in Fig.

2.6(c) the spanning subgraph G´ of 2.6(a). All nodes that we have in G are in G´ too

and the set of edges E´⊆ E .

We say that G´ is the subgraph of G induced by V´ if in edges set E´ we have all

possible edges from E that connect every two nodes from V´. In Fig. 2.6(a) we see the

graph G and in Fig. 2.6(d) the subgraph G´ induced by V´.

Walk: We assume that we have a subgraph of G = (V , E). This subgraph consists of a

sequence of nodes ik with the start node i1 and the end node ir and a sequence of edges

ek with the first edge e1 and the last edge er−1 (see Fig. 2.7). If for all 1 ≤ k ≤ r − 1

is either ek = (ik, ik+1) ∈ E or ek = (ik+1, ik) ∈ E , we have a walk in graph G.

i1 i2 i3 ik ik+1 ir-1 ir
e1 e2 ek er-1

Figure 2.7: Walk.

In Fig. 2.8(a) we have the graph G and the Fig. 2.8(b) and (c) illustrates two

different walks in this graph, the first walk is 1-2-5-6 and second one 1-2-4-5-2-3.

3

1 2 5

3

4

6

(a)

1 2 5 6

(b)

1 2 5

3

4

(c)

Figure 2.8: (a) Graph G, (b) and (c) examples of walks in graph G.

Chapter 2. Prerequisite 8

In a directed walk we have an ”orientation” in comparison with undirected walk. It

means for any consecutive nodes ik and ik+1 on the walk, (ik, ik+1) ∈ E . The walk in

Fig. 2.8(b) is undirected but the walk in 2.8(c) is directed.

Path: A path is a walk if we visit each node of the path just once. The walk in Fig.

2.8(b) is a path but the walk in Fig. 2.8(c) is not because we visit the node 2 twice.

We have in a path forward edges and/or backward edges. An edge (i, j) is forward if the

path goes over node i before node j and is backward otherwise. For example in Fig.

2.8(b) the edges (1, 2) and (5, 6) are forward and the edge (5, 2) is backward.

A directed path is a directed walk if we visit each node of the path just once. So,

we do not have any backward edges.

Cycle: A cycle is a path such that start node and end node are the same. So, we have

the edge (ir, i1) or (i1, ir) between i1 the start node and ir the last node before start

node in our path. We have in cycles like paths forward and backward edges. In Fig.

2.9(a) the edge (5, 3) is forward but the edges (2, 3) and (5, 2) are backward in cycle

2-5-3.

2

3

5

(a)

2

4

5

(b)

Figure 2.9: Example of cycles.

A directed cycle is a path with the edge (ir, i1) between the end node ir and node i1.

We do not have any backward edge in a directed cycle. In Fig. 2.9(b) we have a directed

cycle because if we assume that node 2 is the start node and node 5 is the last node

before start node 2 in our path, we have an edge (5, 2) ∈ E . The cycle in Fig. 2.9(a) is

not a directed cycle. If we do not have any directed cycle in a graph, the graph is acyclic.

Connectivity: Two nodes are connected if there is a path between them. A graph is

connected if there is a path from each node of the graph to all other nodes otherwise

the graph is disconnected. Each connected subgraph of a graph is a component of the

graph. A connected graph is illustrated in Fig. 2.10(a). The graph in Fig. 2.10(b) is

disconnected because the edges (3, 4) and (2, 5) are deleted.

Chapter 2. Prerequisite 9

1

2

3

4

5

6

(a)

1

2

3

4

5

6

(b)

Figure 2.10: (a) Connected and (b) disconnected graphs.

A graph is strongly connected if there is a ”directed” path from each node of the

graph to all other nodes. It is obvious that the graph in Fig. 2.10(a) is not strongly

connected because we do not have any directed path from node 4 to all other nodes

but in Fig. 2.11 we have instead of edge (3, 4) the edge (4, 3), so this graph is strongly

connected.

1

2

3

4

5

6

Figure 2.11: Strongly connected graph.

2.2.2 Adjacency Matrix

One of the possible ways to represent a graph is the adjacency matrix A . This matrix

defines neighbors of each node, so the name of it is adjacency matrix. The adjacency

matrix A is a N×N matrix with N = |V| corresponds to the number of nodes of graph.

Each element aij of A is equal to 1 if there is a directed edge from node j to node i

otherwise it is 0.

Chapter 2. Prerequisite 10

For a directed graph we define each element of adjacency matrix as follow:

aij =

1, (j, i) ∈ E ,

0, (j, i) /∈ E .
(2.1)

For an undirected graph we replace in (2.1) the edge (j, i) by {i, j}, it leads to

a symmetric adjacency matrix because if in undirected graph two nodes i and j are

connected, they can communicate in both directions. In this case we define each element

of adjacency matrix as follow:

aij =

1, {i, j} ∈ E ,

0, {i, j} /∈ E .
(2.2)

If any diagonal element of A is equal to 1 it means that we have a loop on this

node.

In a directed graph to find the precursor nodes of node i, we should consider the

ith row of A. The number of columns of ith row that have elements equal to 1, is the

number of precursor nodes of node i. For successor nodes of node i we consider the ith

column of A.

In undirected graph to find the neighbor nodes of node i, we can consider the ith

row or ith column of A because the adjacency matrix A is symmetric and the edges

are undirected.

Example 2.1. The graph in Fig. 2.12 that we take into account, is undirected.

1

2

3

4

5

6

7

8

Figure 2.12: Undirected graph.

We write the adjacency matrix with help of (2.1) and begin with a11. It is equal

to zero because we do not have any loop in the graph. a12 = a13 = 1 because there is

an edge between nodes 1 and 2 and between nodes 1 and 3. Due to missing of edges

between node 1 and nodes 4, 5, 6, 7, and 8, a14 = a15 = a16 = a17 = a18 = 0. We

Chapter 2. Prerequisite 11

calculate in the same manner the other elements of A. The 8× 8 adjacency matrix A

is then as follow:

A =



0 1 1 0 0 0 0 0

1 0 1 0 1 0 0 0

1 1 0 1 0 0 0 0

0 0 1 0 1 1 0 0

0 1 0 1 0 0 1 1

0 0 0 1 0 0 0 1

0 0 0 0 1 0 0 1

0 0 0 0 1 1 1 0


.

The matrix A is because of undirected graph symmetric.

2.2.3 Neighbor Set

The neighbor set Ni defines the neighbor nodes of node i that communicate with it.

In a directed graph the elements of Neighbor Set Ni are neighbors which send

information to node i. It means that the edges between node i and its neighbors which

are in the neighbor set Ni , emanates from these neighbors and terminates at node i,

so the neighbor nodes are the tails and node i is the head of these edges. We define a

neighbor set for a directed graph as below:

Ni = {j ∈ V : (j, i) ∈ E} . (2.3)

In a undirected graph we do not have any direction thus if there is an edge between

node i and other nodes, these nodes will be then in neighbor list Ni. We define a

neighbor set for a undirected graph as below:

Ni = {j ∈ V : {i, j} ∈ E} . (2.4)

The (2.4) is similar to (2.3), we replaced only the directed edge (j, i) with the undirected

edge {i, j}.

Example 2.2. In this example we consider again the undirected graph in Fig. 2.12.

It is obvious that for example node 1 is connected with node 2 and with node 3 which

are its neighbors. We obtain the following neighbor sets for each node:

N1 = {2, 3}, N2 = {1, 3, 5},

N3 = {1, 2, 4}, N4 = {3, 5, 6},

Chapter 2. Prerequisite 12

N5 = {2, 4, 7, 8}, N6 = {4, 8},

N7 = {5, 8}, N8 = {5, 6, 7}.

2.2.4 Degree Matrix

The degree matrix D is a N × N diagonal matrix with N = |V| corresponds to the

number of nodes.

In directed graph the diagonal elements are equal to indegree, outdegree or degree

of each node depending on the application that we use. The indegree of a node is the

number of edges that terminate at this node, the outdegree of a node is the number of

edges that emanate from this node and the degree of a node is the sum of its indegree

and outdegree. We can obtain them as follow:

Indegree:

di,in =
N∑
j=1

aij, for i 6= j and i = 1 . . . N. (2.5)

Outdegree:

di,out =
N∑
j=1

aji, for i 6= j and i = 1 . . . N. (2.6)

Degree:

di = di,in + di,out, for i = 1 . . . N. (2.7)

aij (or aji) is the element of ith row and jth column (or jth row and ith column) of

adjacency matrix A.

In undirected graph we define the diagonal elements equal to the number of con-

nected neighbors of each node thus the sum of row or column of adjacency matrix. It

is equal to number of elements of Neighbor set Ni. The degree of node i is as below:

di = |Ni| =
N∑
j=1

aij =
N∑
j=1

aji, for i 6= j. (2.8)

Chapter 2. Prerequisite 13

The degree matrix D is then as follow:

D =



d1 0 . . . 0

0 d2 0 . . .

. 0 . .

. . .

. . 0

0 . . . 0 dN


. (2.9)

Example 2.3. We consider again the undirected graph which is shown in Fig. 2.12

and calculate the sum of each row of adjacency matrix

A =



0 1 1 0 0 0 0 0

1 0 1 0 1 0 0 0

1 1 0 1 0 0 0 0

0 0 1 0 1 1 0 0

0 1 0 1 0 0 1 1

0 0 0 1 0 0 0 1

0 0 0 0 1 0 0 1

0 0 0 0 1 1 1 0


.

︸ ︷︷ ︸[
2 3 3 3 4 2 2 3

]

In Example 2.2 we have the neighbor set of each node, so we calculate the cardinally

of each Neighbor set |Ni| and we get the following values:

|N1| = 2, |N2| = 3, |N3| = 3, |N4| = 3,

|N5| = 4, |N6| = 2, |N3| = 2, |N8| = 3.

It is obvious that the sum of each column of adjacency matrix is equal to number of

elements of neighbor set of each node, so the (2.8) is satisfied. With help of Equations

Chapter 2. Prerequisite 14

(2.8) and (2.9) we calculate the 8× 8 degree matrix:

D =



2 0 0 0 0 0 0 0

0 3 0 0 0 0 0 0

0 0 3 0 0 0 0 0

0 0 0 3 0 0 0 0

0 0 0 0 4 0 0 0

0 0 0 0 0 2 0 0

0 0 0 0 0 0 2 0

0 0 0 0 0 0 0 3


.

2.2.5 Incidence Matrix

Another possible way to represent a graph is the incidence matrix B. It is a N ×M
matrix with N number of nodes and M number of edges. Each row of B corresponds

to one node and each column to one edge. We consider the incidence matrix for two

cases: directed and undirected graph.

In a directed graph each element bil of B is equal to 1 if node i and edge l are

incident and l emanates from i. The element bil is equal to -1 if node i and edge l are

incident and l terminates at i. If i and l are not incident, bil will be zero. We define

each element of incidence matrix as follow:

bil =


1, if edge l emanates from node i,

−1, if edge l terminates at node i,

0, otherwise.

(2.10)

In a undirected graph we have two kinds of incidence matrices: unoriented and

oriented. In an unoriented incidence matrix each element bil of B is equal to 1 if node

i and edge l are incident. If they are not incident, bil will be zero. We define each

element of incidence matrix as follow:

bil =

1, if edge l and node i are incident,

0, otherwise.
(2.11)

For an oriented incidence matrix, we assign arbitrarily a reference direction for each edge

in the undirected graph which leads to a directed graph and then write the incidence

matrix in sense of the matrix elements in (2.10).

Chapter 2. Prerequisite 15

(a)

(b)

1

2 5

3

4

6

7

8

9

5

1

2

3

4

5

6

7

1

2

3

4

5

6

7

1

2

3

4

6

Figure 2.13: (a) Directed and (b) undirected graph.

Example 2.4. We consider the directed graph in Fig. 2.13(a) (this is the Fig. 2.1 with

defined edge number). This graph has 7 nodes and 9 edges, so the incidence matrix

B has a dimension of 7 × 9. We write the incidence matrix with help of (2.10). For

example the row 2 corresponds to node 2. This node is incident with edges 1, 3 and 4.

The edges 3 and 4 emanate from node 2 and the edge 1 terminates at node 2. So, the

b23 = b24 = 1 and b21 = −1. Node 2 and the other edges 2, 5, 6, and 7 are not incident,

so b22 = b25 = b26 = b27 = 0. To calculate other elements of incidence matrix we use

the same manner. The incidence matrix B is as follow:

B =



1 1 0 0 0 0 0 0 0

−1 0 1 1 0 0 0 0 0

0 −1 −1 0 1 0 0 0 0

0 0 0 0 −1 1 1 0 0

0 0 0 −1 0 −1 0 1 0

0 0 0 0 0 0 −1 −1 1

0 0 0 0 0 0 0 0 −1


.

In Fig. 2.13(b) is an undirected graph illustrated (this is the Fig. 2.2 so that the

edges are numbered). We calculate the incidence matrix with help of (2.11). There are

here 6 nodes and 7 edges, so the incidence matrix is a 6 × 7 matrix. For example the

node 2 is incident with edges 1,2,3, and 4, so b21 = b22 = b23 = b24 = 1 but it is not

incident to any other edges, so b25 = b26 = b27 = b28 = b29 = 0. The incidence matrix

Chapter 2. Prerequisite 16

B is as follow:

B =



1 0 0 0 0 0 0

1 1 1 1 0 0 0

0 1 0 0 1 0 0

0 0 1 0 1 1 0

0 0 0 1 0 1 1

0 0 0 0 0 0 1


.

2.2.6 Laplacian Matrix

Another possible representation of a graph is the Laplacian matrix L. It is a N × N
matrix with N = |V| corresponds to the number of nodes.

In a directed graph we illustrate each element lij of Laplacian matrix as follow:

lij =


di,in, if i = j,

−1, if (j, i) ∈ E ,

0, otherwise.

(2.12)

It is obvious that diagonal elements of L are indegree di,in of node i. If (j, i) ∈ E ,

the element lij is equal to −1. This is the same value of same element of adjacency

matrix multiplied by −1.

For an undirected graph we replace in (2.12) the edge (j, i) by {i, j}, it leads to

a symmetric Laplacian matrix because if we have an undirected edge between node i

and j, this nodes can communicate with each other in both directions. In a undirected

graph each element lij of Laplacian matrix is defined as follow:

lij =


di, if i = j,

−1, if {i, j} ∈ E ,

0, otherwise.

(2.13)

The Laplacian matrix is defined as difference of the degree matrix D and the adja-

cency A:

L = D−A. (2.14)

The Laplacian Matrix in an undirected graph could be also calculated from the

oriented incidence matrix B,

L = BBT . (2.15)

Chapter 2. Prerequisite 17

We consider now some spectral properties of Laplacian matrix. The sum of each

row of Laplacian matrix is zero, thus vector 1 is the right eigenvector of L:

L1 = 0. (2.16)

Another property of Laplacian matrix is that If L is a Laplacian matrix of an

undirected graph, It is a positive semi-definite matrix, i.e., for all x ∈ RN ,

xTLx ≥ 0. (2.17)

There are N eigenvalues of L which are all real and we can order the eigenvalues as

follow:

0 = λN(L) ≤ λN−1(L) ≤ . . . ≤ λ1(L) ≤ 2∆ (2.18)

where λi(.) denotes the ith largest eigenvalue of a matrix and ∆ = maxi di is the

maximum degree of a graph. The first smallest eigenvalue of L is the zero eigenvalue

λN(L)=0, it is the trivial eigenvalue of L. The second smallest eigenvalue λN−1(L)

is called algebraic connectivity. If λN−1(L) is greater than 0, our graph is connected.

Generally number of eigenvalues of L that are zero, define number of components of

graph which are disconnected. We can define an upper bound for the sum of eigenvalues

of L:
N∑
i=1

λi =
N∑
j=1

di ≤ ∆N. (2.19)

Example 2.5. In this example we consider the undirected graph in Fig. 2.12. In

Examples 2.1 and 2.3 are the adjacency matrix A and the degree matrix D calculated.

With help of (2.14) we calculate the Laplacian matrix

L = D−A =



2 −1 −1 0 0 0 0 0

−1 3 −1 0 −1 0 0 0

−1 −1 3 −1 0 0 0 0

0 0 −1 3 −1 −1 0 0

0 −1 0 −1 4 0 −1 −1

0 0 0 −1 0 2 0 −1

0 0 0 0 −1 0 2 −1

0 0 0 0 −1 −1 −1 3


.

Chapter 2. Prerequisite 18

There are due to 8 different nodes in graph (N = 8), 8 eigenvalues of L:

λ1 = 5.72, λ2 = λ3 = 4, λ4 = 3.34,

λ5 = 2.68, λ6 = 1.54, λ7 = 0.7, λ8 = 0.

It is obvious that algebraic connectivity λ7 = 0.7 is greater than zero, so our graph is

connected. The graph in Fig. 2.12 has ∆ = maxi di = 4, we see that the (2.18) satisfies:

λ8 = 0 ≤ λ7 = 0.7 ≤ λ6 = 1.54 ≤ λ5 = 2.68 ≤ λ4 = 3.34 ≤ λ3 = λ2 = 4 ≤ λ1 = 5.72 ≤ 8.

Example 2.6. The disconnected graph in Fig. 2.14 is considered here.

1

2

3

4

5

6

Figure 2.14: Disconnected graph.

We have 6 nodes, so the adjacency matrix A, degree matrix D, and Laplacian matrix

L are 6× 6 matrices:

A =



0 1 1 0 0 0

1 0 1 0 0 0

1 1 0 0 0 0

0 0 0 0 1 1

0 0 0 1 0 1

0 0 0 1 1 0


, D =



2 0 0 0 0 0

0 2 0 0 0 0

0 0 2 0 0 0

0 0 0 2 0 0

0 0 0 0 2 0

0 0 0 0 0 2


,

L = D−A=



2 −1 −1 0 0 0

−1 2 −1 0 0 0

−1 −1 2 0 0 0

0 0 0 2 −1 −1

0 0 0 −1 2 −1

0 0 0 −1 −1 2


.

Chapter 2. Prerequisite 19

There are due to 6 different nodes in graph (N = 6), 6 eigenvalues of L:

λ1 = λ2 = λ3 = λ4 = 3, λ5 = λ6 = 0.

We see that two eigenvalues λ5 and λ6 are equal to zero, so this graph is disconnected

and has two components.

2.3 Network Topologies

In this section we will consider different network topologies and their properties that

we use in this work to represent sensor networks.

2.3.1 Random Geometric Graph

A random geometric graph is a graph G(N, r). There are N nodes which are ran-

domly and uniformly distributed on the unit square. Two nodes are connected if their

Euclidean distance is at most the radius r.

r

Figure 2.15: Random geometric graph.

Such a random geometric graph with N = 32 is illustrated in Fig. 2.15. It is shown

that each node in the center of a circle with radius r (the dashed circle) is connected

to all other nodes which are in this circle.

If we consider two nodes i and j with Euclidean distance d(i, j) between them, we

Chapter 2. Prerequisite 20

define the elements of adjacency matrix of random geometric graph as follow:

aij = ajj =

1, if d(i, j) ≤ r,

0, otherwise.
(2.20)

2.3.2 Random Regular Graph

A random regular graph G(N, d) is a graph with N nodes and d defines number of

connected neighbors of each node.

In Fig. 2.16 we have an example of a random regular graph with N = 32 nodes and

each node is connected to d = 3 other nodes. The advantage of such a graph is that

the failure of one node can be compensated because we have for each node d different

links nodes.

Figure 2.16: Random regular graph (d=3).

2.3.3 Ring Graph

Ring graph is a graph with N nodes which are connected together in form of a ring.

Each node is connected with its two neighbor nodes. We can declare a ring graph as a

random regular graph G(N, d) with d = 2 in that the nodes are placed in a form of a

Chapter 2. Prerequisite 21

ring. One possible adjacency matrix for a ring graph is as follow:

A =



0 1 0 . . . 0

1 0 1 .

0 1 . . .

.

. . . 1 .

. 1 0 1

0 . . . 0 1 0


.

It is obvious that the main diagonal elements are all zero and the elements in the first

diagonal above and below the main diagonal are all 1, all other elements are zero.

A ring graph with N = 20 is shown in Fig. 2.17. Each node has just two independent

ways to transmit informations, because of that is the data transmission over such a

network very slow. Another disadvantage is that the failure of two edges leads to

disconnection of graph.

Figure 2.17: Ring graph.

2.3.4 Complete Graph

In a complete graph all nodes are connected to each other. A complete graph with N

nodes has N(N−1)
2

edges. We can declare a complete graph as a random regular graph

G(N, d) with d = N−1. The complement graph of a complete graph is an empty graph.

Chapter 2. Prerequisite 22

The adjacency matrix of a complete graph is as follow:

A = J− I =



0 1 1 . . . 1

1 0 1 . . . 1

1 1 . .

. . . .

. . . .

. . 0 1

1 1 . . . 1 0


.

where J is the unit matrix 1 and I the identity matrix 2. All diagonal elements of A are

zero, other elements are equal to 1.

The advantage of this graph in comparison with other graphs is that the failure of

an edge can be compensated with help of other edges and the information transmission

is very fast. On the other side increase of number of edges leads to higher cost.

A complete graph with N = 6 nodes and 15 edges can be seen in Fig. 2.18. All

nodes are incident with 5 other edges and are connected together.

Figure 2.18: Complete graph.

2.3.5 Graph with Bottleneck

One special case is that we have two different graphs which are connected together over

a single edge. The transmission of informations from one graph to other one can achieve

just over this single edge, so it will be very slow.

1The unit matrix J is a matrix with all elements equal to one.
2The identity matrix I is a N ×N matrix, The main diagonal elements are all ones and the other

elements are zeros.

Chapter 2. Prerequisite 23

In Fig. 2.19 is such a graph with bottleneck illustrated. We have two different

random geometric graphs which are connected over a single edge.

Figure 2.19: Graph with Bottleneck.

3

Static Average Consensus

3.1 Introduction

In this chapter we consider static average consensus (AC) and its referred algorithms.

These algorithms and their structures were introduced in [3], [4], and [5].

At the beginning of this chapter in Section 3.2 we present the problem statement

and compare different centralized and distributed averaging methods. In Section 3.3

we consider linear static AC algorithm and its generic form. We explain detailed the

function of this algorithm. In Section 3.4 we present the convergence conditions which

the algorithm must satisfy. After that in Section 3.5 we investigate the convergence

speed and explain the used parameters. We will continue in Section 3.6 with a detailed

discussion of the weight matrix and the methods to construct it. In the last section

we present the nonlinear static average algorithm which yields a better performance in

term of convergence than static AC.

24

Chapter 3. Static Average Consensus 25

3.2 Problem Statement

Let us assume a network with N different wireless sensors. These sensors are equipped

with dedicated sensing, computing, and communication devices. Each sensor i mea-

sure a constant local value si ∈ R and we want to calculate the average s of these

measurements:

s =
1

N

N∑
i=1

si. (3.1)

Our goal is that each sensor achieve asymptotically this average value. One possible

way is to connect all sensors with a fusion center which can calculate the average value.

The problem of this method is that the wireless sensors have a constricted range of

connection and they can not be out of this connection range from the fusion center, so

the distribution of sensors on a larger area in not possible. Moreover it is required that

the fusion center transmit the average value to each sensor which waste an additional

energy. In a centralized architecture the failure of the fusion center leads to a collapse

of the entire network.

The reliability of the sensor network can be increased by using distributed architec-

ture. Distributed averaging can be done in different ways.

One way is that each sensor maintain a table of measured values of sensors. Initially

it puts its own measured value in the table and lets the place of other sensors empty.

Each sensor exchanges this table at each iteration with its connected neighbors and

completes its own table. After a number of iterations dependent on number of the

sensors and the connectivity, each sensor has a complete table with values of all sensors

and can calculate the average value. The disadvantage of this way is that each sensor

must store values of all sensors, so it needs a greater storage capacity. After each

iteration each sensor transmit a higher amount of data thus we need a higher bandwidth.

Another and the better way for distributed averaging is the average consensus (AC).

Each sensor puts the measured value initially as its state. It communicates with con-

nected neighbors and transmits its state. Then, the sensors use the received values and

update their internal states. After a same time each sensor will have an estimation of

the global average. In comparison with the before mentioned algorithm each sensor

needs to store and transmit its own state to its neighbors, so we need a less storage

capacity and also we have lower amount of data that is transmitted and respectively

need less bandwidth.

Distributed averaging found a wide range of applications. Some of them are for-

mation flight of unmanned air vehicles and clustered satellites, coordination of mobile

robots, synchronization of coupled oscillators, load balancing for parallel processors and

Chapter 3. Static Average Consensus 26

i jxi [k]
xj [k]

Figure 3.1: Sensor network in which node i receives the state xj of node j and the
states of other nodes.

network synchronization.

3.3 Linear Static Average Consensus Algorithm

Generally in wireless sensor networks (WSN), the connected sensors can communicate

in both directions. Therefore we represent a wireless sensor network as a connected

undirected graph G = (V , E) with the set of nodes (sensors) V and the set of edges

(communication links) E ⊆ V ×V . The cardinality |V| = N corresponds to the number

of nodes. If two nodes i and j are connected, the edge {i, j} = {j, i} ∈ E is the

communication link between them. The set of connected neighbors of node i is denoted

as neighbor set Ni = {j ∈ V : {i, j} ∈ E}.
In some special cases in WSN, some sensors can communicate just in one direction.

For example if sensor i has a larger connection range than other sensors, it can transmit

informations to them in this range, but some of these sensors are too far from sensor

i and have a less range, so they can not transmit informations to sensor i. In these

cases we represent a WSN as a strongly connected directed graph G. Instead of the

undirected edge we use {i, j}, the directed edge (i, j). If just node i can communicate

with node j and not vice versa, the edge (i, j) ∈ E . The neighbor set of node i is then

Ni = {j ∈ V : (j, i) ∈ E}.
In this work we concentrate us on undirected graphs so wireless sensors which can

communicate in both directions.

As shown in Fig. 3.1, we denote the state of node i by xi[k] and the state of node j

by xj[k] where k is the discrete time index. Node i measure the constant value si. The

Chapter 3. Static Average Consensus 27

state of node i is initially equal to this measured value:

xi [0] = si, for i = 1, . . . , N . (3.2)

At each iteration the neighbors of node i which are listed in neighbor set Ni, send

their states. Node i updates its own state as follow:

xi [k + 1] = Wiixi [k] +
∑
j∈Ni

Wijxj [k] , i = 1, . . . , N, (3.3)

The weight Wij is the weight of edge {i, j} (edge weights). We set Wij = 0 for j /∈ Ni.
The value Wii weights the node’s internal state (self-weights). Under certain conditions

which we will describe later, the state of node i will asymptotically converge to the

average value s:

lim
k→∞

xi [k] = s. (3.4)

The generic form of (3.3) follows as:

x[k + 1] = Wx[k], (3.5)

where x [k] = (x1 [k] , . . . xN [k])T denotes the state vector consisting of the states of

all nodes at discrete time k. The weight matrix W consists of the elements Wij and

belongs therefore to the set J ,

J =
{
W ∈ RN×N : Wij = 0 if {i, j} /∈ E and i 6= j

}
. (3.6)

State vector x[k] will converge asymptotically to average vector:

lim
k→∞

x [k] = s, where s = s 1. (3.7)

where 1 denotes a vector with all coefficients one. This applied algorithm is called as

linear static AC algorithm.

In Fig. 3.2 we see an arbitrary graph with 150 nodes which are distributed on a

unit square. The axes r1 and r2 define the locations of nodes which are represented

as circles. If two nodes communicate with each other, we represent them as connected

circles. Fig. 3.3 shows an example of AC applied at this graph. Each colored line refers

to state of a node which converge to average value. We see that the states of nodes

converge after 275 iterations to average value 0.4431 with precision of 10−4.

Chapter 3. Static Average Consensus 28

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
topology

r1

r 2

Figure 3.2: Distribution of nodes in unit square.

50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X: 275
Y: 0.4431

number of iterations

x i[k
] X: 170

Y: 0.4426
X: 80
Y: 0.441

X: 5
Y: 0.6143

X: 1
Y: 0.9644

(a)

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of iterations

x i[k
]

(b)

Figure 3.3: States of nodes versus number of iterations with (a) linear static AC of a
network and (b) its zoomed plot for the first 30 iterations.

Chapter 3. Static Average Consensus 29

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X: 1882
Y: 0.25

number of iterations

x i[k
]

Figure 3.4: States of nodes versus number of iterations for unconstrained consensus
with single leader (x [k] = 0.25).

As mentioned in [3], AC is a cooperative task and needs participation of all nodes. If

a single node does not cooperate with the other nodes and keeps its state unchanged but

still exchanges messages, the average value s in (3.1) can not be achieved. However in

this case all nodes asymptotically converge to a common value, this common value is the

unchanged state value of that single node. We call this node as a leader. Therefore we

can distinguish between a unconstrained and constrained consensus. In unconstrained

consensus all nodes converge to a common value but it should not be necessarily the

average value but in constrained consensus all nodes converge to the average value s.

Such a unconstrained consensus with a single leader is demonstrated in Fig. 3.4. We

see that a single node denoted with green dashed line has a state value of x [k] = 0.25

and it keeps this state unchanged. All the nodes converge after 1882 iterations to state

value of leader with precision of 10−4.

If there are multiple leaders with different states, then no consensus can be asymp-

totically reached. In Fig. 3.5 is such a unconstrained consensus with two different

leaders demonstrated. We see that two nodes have states of xleader,1 [k] = 0.25 (denoted

with green dashed line) and xleader,2 [k] = 0.75 (denoted with blue dashed line) which

stay unchanged over iterations. In this case, all nodes can not converge to a common

value.

Chapter 3. Static Average Consensus 30

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of iterations

x i[k
]

Figure 3.5: States of nodes versus number of iterations for unconstrained consensus
with two leaders (xleader,1 [k] = 0.25 and xleader,2 [k] = 0.75).

3.4 Convergence Conditions

According to [4], the (3.5) can be reformulated as follow:

x[k] = Wkx[0], for k = 1, 2, 3, . . . (3.8)

The average vector s can be transformed with help of Equations (3.1) and (3.2):

s =
(
1Tx[0]/N

)
1 =

(
11T/N

)
x[0]. (3.9)

The weight matrix W should be chosen so that for any initial state vector x [0], state

vector x [k] converge for k →∞ to the average vector:

lim
k→∞

x [k] = lim
k→∞

Wkx[0] =
11T

N
x[0]. (3.10)

This is equivalent to Equation

lim
k→∞

Wk =
11T

N
. (3.11)

Chapter 3. Static Average Consensus 31

To satisfy this equation, weight matrix W must fulfill the necessary and sufficient

following conditions as defined in [4]:

1TW = 1T , (3.12)

W1 = 1, (3.13)

ρ

(
W− 11T

N

)
< 1, (3.14)

where ρ (·) is the spectral radius1.

We give now some interpretations of this conditions:

• (3.12) shows that 1 is a left eigenvector of weight matrix W with associated

eigenvalue one. This condition implies that the sum of the states of the nodes

remains unchanged over different iterations, respectively the average of the states

of the nodes remain also unchanged:

1Tx[k + 1] = 1TWx[k] = 1Tx[k].

• (3.13) shows us that 1 is a right eigenvector of weight matrix W with associated

eigenvalue one. This condition implies that 1 or any multiply of it (multiplied by

a constant c) is the fix point of AC algorithm:

if x[k] = c1⇒ x[k + 1] = Wx[k] = cW1 = c1,

this means that if consensus is a fixed point, hence, if consensus is reached the

states will not change.

• Condition in (3.14) ensures that AC converges to the fixed point and therefore to

the average, i.e., the algorithm will be stable.

• Together with conditions in (3.12) and (3.13), the condition (3.14) implies accord-

ing to [4] for the eigenvalues of weight matrix W (of a strongly connected graph)

the following condition:

−1 < λN(W) ≤ λN−1(W) ≤ . . . ≤ λ2(W) < λ1(W) = 1 (3.15)

1If λ1, λ2, . . . are the eigenvalues of matrix A, the spectral radius is defined as ρ (A) = max
i

(|λi|).

Chapter 3. Static Average Consensus 32

3.5 Convergence Speed

To have an AC the condition in (3.11) must be satisfied. In this case, [4] defines the

asymptotic convergence factor to measure the convergence speed as below:

rasymptotic (W) = sup
x[0] 6=s

lim
k→∞

(
||x [k]− s||2
||x [0]− s||2

)1/k

, (3.16)

which is used for calculation of convergence time:

τasymptotic =
1

log (1/rasymptotic)
, (3.17)

this defines the asymptotic number of iterations for the error to decrease by a factor of

1/e.

According to [4], another factor to measure the speed of convergence is per-step

convergence factor,

rstep (W) = sup
x[0] 6=s

||x [k + 1]− s||2
||x [k]− s||2

, (3.18)

and the referred convergence time is as below:

τstep =
1

log (1/rstep)
. (3.19)

We know from Section 3.4 that the weight matrix W must hold the conditions in

Equations (3.12), (3.13), and (3.14) to satisfy the property in (3.11), so according to [4],

the (3.16) can be reformulated with help of spectral radius as,

rasymptotic (W) = ρ

(
W− 11T

N

)
, (3.20)

and the (3.18) with help of spectral norm as,

rstep (W) =

∣∣∣∣∣∣∣∣W− 11T

N

∣∣∣∣∣∣∣∣
2

. (3.21)

Chapter 3. Static Average Consensus 33

3.6 Weight Matrix

Here we consider different possible weight matrices and their performance in dependence

of their eigenvalues distribution.

3.6.1 Weight Matrix based on Constant Weights

The simplest method to design a weight matrix is to set all edge weights equal to a

constant α. According to [3] and [4], the elements of W can be represented as below:

Wij =


α, {i, j} ∈ E ,

1− diα, i = j,

0, otherwise,

(3.22)

where di is the indegree of node i. Respectively the weight matrix W can be written

as designed in [3] and [4] as follow:

W = I− αL, (3.23)

where I is the identity matrix and L is the Laplacian matrix (see Section 2.2.6).

We see in (3.22) that in each row i of the weight matrix W, we have di times constant

edge weights with equal values α. The value of diagonal element in each row equals to

1− diα. So, the sum of each row is diα + 1− diα = 1 which means that the condition

in (3.13) holds.

Another condition that must be satisfied is the condition in (3.12). It means that

the sum of each column of weight matrix must be also equal to 1. In undirected graphs

the weight matrix is symmetric which means that we have the same elements in ith

column and ith row, therefore, the sum of each column will be like sum of each row

equal to 1. It yields in undirected graphs if the condition in (3.13) holds, the condition

in (3.12) holds also. But in directed graphs, the structure of graph lead to a asymmetric

weight matrix. The condition in (3.12) satisfies if the graph is balanced. In a balanced

graph the number of edges which emanates from a node and terminates at this node

are equal which means that because of design of weight matrix with defined elements

in (3.22) (equal values of edge-weights), we have an equal value for sum of ith row and

sum of ith column:

N∑
j=1

aij =
N∑
j=1

aji = diα + 1− diα = 0, for i 6= j and i = 1 . . . N, (3.24)

Chapter 3. Static Average Consensus 34

where aij are the elements of adjacency matrix (see Section 2.2.2). Therefore if a

balanced graph satisfies the condition 3.13 respectively it satisfies the condition 3.12

too.

Another condition that must be satisfied is the condition ρ

(
W− 11T

N

)
< 1 (in

(3.14)). From (3.23) we can express the relation between eigenvalues of weight matrix,

λi(W), and eigenvalues of Laplacian matrix, λi(L) as

λi(W) = 1− αλN−i+1(L), for i = 1, 2, 3, . . . , N, (3.25)

where λi(.) denotes the ith largest eigenvalue of a matrix. We know from (2.18) that zero

is the smallest eigenvalue of L, consequently it is obvious from (3.25) that the largest

eigenvalue of W is one, i.e., λN(L) = 0 and λ1(W) = 1. The possible eigenvalues of

W are represented in (3.15), we consider now the possible eigenvalues of
11T

N
,

λ1

(
11T

N

)
= 1, λ2

(
11T

N

)
= λ3

(
11T

N

)
= . . . = λN

(
11T

N

)
= 0. (3.26)

so the eigenvalues of W− 11T

N
are as follow:

λ1

(
W− 11T

N

)
= λ1 (W)− λ1

(
11T

N

)
= 0,

λ2

(
W− 11T

N

)
= λ2 (W)− λ2

(
11T

N

)
= λ2 (W),

λ3

(
W− 11T

N

)
= λ3 (W)− λ3

(
11T

N

)
= λ3(W), (3.27)

.

.

.

λN

(
W− 11T

N

)
= λn(W)− λN

(
11T

N

)
= λN(W).

According to (3.15), λ2(W) is the largest eigenvalue and λN(W) the smallest eigenvalue,

respectively we express the condition in (3.14) as follow:

ρ

(
W− 11T

N

)
= max {λ2(W), −λN(W)} = max {1− αλN−1(L), αλ1(L)− 1} < 1.

(3.28)

We determine the range of α so that the condition 3.28 (or 3.14) satisfies. If 1−αλN−1(L)

is the maximum, the condition satisfies for all α > 0 because in a connected graph

λN−1(L) is always greater than zero. If αλ1(L) − 1 is the maximum, the condition

Chapter 3. Static Average Consensus 35

satisfies for all α < 2
λ1(L)

. So to satisfy the condition the range of α is defined as follow:

0 < α <
2

λ1(L)
. (3.29)

According to [4], the best choice of α that minimize the (3.28) is as below, we call its

referred weights as best constant (BC) weights.

αbc =
2

λ1(L) + λN−1(L)
. (3.30)

The bound defined in (3.29) utilizes the Laplacian matrix L but we have another choices

to express this bound without knowledge of Laplacian matrix. We know from [4] that

λ1(L) ≤ max
{i,j}∈E

(di + dj),

so if we put this in (3.29) we get the following bound for α independent of Laplacian

matrix:

0 < α <
2

max{i,j}∈E(di + dj)
. (3.31)

Now if di=dj=dmax where dmax = ∆ is the maximum indegree over all nodes in graph

the (3.31) can be expressed as

0 < α ≤ 1

dmax

. (3.32)

As discussed in [4], the convergence is guaranteed if

αmd =
1

dmax

. (3.33)

αmd is the maximum degree constant and its referred elements of weight matrix are

called as maximum degree (MD) weights.

With help of (3.22), (3.3) can be expressed as shown in [3] as,

xi [k + 1] = xi [k] + α
∑
j∈Ni

(xj [k]− xi [k]) , for i = 1, . . . , N. (3.34)

It is obvious that in a undirected graph or in a directed balanced graph with the

weight matrix W with elements defined in (3.22) and the edge-weights α which are

constricted in the bound defined in (3.29), the convergence conditions in (3.12), (3.13),

and (3.14) are satisfied.

Chapter 3. Static Average Consensus 36

3.6.2 Weight Matrix based on Convex Optimization

To make convergence asymptotically faster, convex optimization is utilized. As dis-

cussed in [4], the weight matrix W will be designed so that the asymptotic convergence

factor rasymptotic (W) from (3.20) is minimized, i.e.,

minimize rasymptotic (W) = ρ

(
W− 11T

N

)
subject to W ∈ J , 1TW = 1T , W1 = 1.

(3.35)

It is called as spectral radius minimization problem. The solving of this problem is very

difficult because the spectral radius ρ (.) of a matrix is not a convex function.

According [4], another method to increase the convergence speed is that per-step

convergence factor rstep (W) from (3.21) is minimized, i.e.,

minimize rstep (W) =

∣∣∣∣∣∣∣∣W− 11T

N

∣∣∣∣∣∣∣∣
2

subject to W ∈ J , 1TW = 1T , W1 = 1.

(3.36)

It is called as spectral norm minimization problem. The solving of this problem is in

comparison with (3.35) more easier because the problem is convex.

If the weight matrix W is symmetric, i.e., Wij = Wji, the spectral radius minimiza-

tion problem and the spectral norm minimization problem are identical. In this case,

both problems from 3.35 and 3.36 can be expressed as defined by [4] as:

minimize

∣∣∣∣∣∣∣∣W− 11T

N

∣∣∣∣∣∣∣∣
2

subject to W ∈ J , W = WT , W1 = 1.

(3.37)

which is a convex problem.

To solve the problem in (3.37) the weight matrix W can be replaced according to [4]

as follow:

W = I−B diag(w)BT , (3.38)

The matrix B is an N ×M oriented incidence matrix with N nodes and M edges. Here

we assign arbitrarily a reference direction for each edge in the undirected graph which

leads to a directed graph and then write the incidence matrix in sense of the matrix

elements in (2.10) for directed graphs. The vector w ∈ RM consists of weights on all

edges. For each edge we give a weight wl = Wij = Wji where edge l is incident with

nodes i and j.

Chapter 3. Static Average Consensus 37

Respectively (3.37) can be reformulated as as mentioned in [4] as follow:

minimize

∣∣∣∣∣∣∣∣I−B diag(w)BT − 11T

N

∣∣∣∣∣∣∣∣
2

. (3.39)

To solve this equation we use in this work the CVX a Matlab software for disciplined

convex programming from [6] and [7]. The elements of vector w and respectively the

elements of weight matrix W that we calculate here are called as convex optimization

(CXO) weights.

It is obvious that the designed weight matrix W satisfies the condition in (3.13)

because of its design expressed in (3.38). On the other hand, the weight matrix is

symmetric thus, it satisfies also the condition in (3.12). Therefore, we can use the weight

matrix based on convex optimization just for undirected graphs because in directed

graphs the weight matrix is not symmetric. Due to spectral minimization problem that

we have here, the condition (3.14) holds too.

3.6.3 Weight Matrix based on Metropolis-Hastings algorithm

As discussed in [4], another method to design the weight matrix W is that to assign

the weight on each edge as follow:

wl =
1

max {di, dj}
, (3.40)

for each {i, j} ∈ E or we can express the elements of W as

Wij =


1

max{di,dj} , {i, j} ∈ E ,

1−
∑N

k=1Wik, i = j,

0, otherwise.

(3.41)

The matrix that we designed here is a weight matrix based on Metropolis-Hastings

algorithm, used to simulate a Markov chain with uniform equilibrium distribution. The

elements of this matrix are called as Metropolis-Hastings (MH) weights.

It is obvious that because of design of weight matrix W the sum of each row equals

to one so the W satisfies the condition in (3.13). To satisfy the condition in (3.12)

it must be a symmetric matrix. Therefore the weight matrix based on Metropolis-

Hastings algorithm is also like the weight matrix based on convex optimization just for

undirected graphs.

Chapter 3. Static Average Consensus 38

20 40 60 80 100 120 140 160 180 200
−140

−120

−100

−80

−60

−40

−20

0
mean square error

number of iterations

M
S

E
 [d

B
]

linear MD
linear MH
linear BC
linear CXO

(a)

5 10 15 20 25 30 35 40
−60

−50

−40

−30

−20

−10

0
mean square error

number of iterations

M
S

E
 [d

B
]

linear MD
linear MH
linear BC
linear CXO

(b)

Figure 3.6: (a) MSE of linear static AC algorithm versus number of iterations and
(b) its zoomed plot for the first 40 iterations.

MD MH BC CXO
ρ
(
W− 11T/N

)
0.93883 0.91813 0.88964 0.78324

τ = 1/ log(1/ρ) 15.8439 11.7074 8.5511 4.0931

Table 3.1: Convergence factors and times of different weight matrices.

3.6.4 Influence of Eigenvalues of Weight Matrix on Convergence Speed

We expressed in Section 3.6 weight matrices based on different methods. One possible

example for this methods can be seen in Figure 3.6. We see the mean square error

(MSE) of linear static AC algorithm versus number of iterations. It can be seen that the

method with CXO weights is asymptotic the fastest and the method with MD weights

asymptotic the slowest. The method with BC is faster than MH but both of them

are slower than the method with CXO. By studying of the transient phase (beginning

phase), we see that the method with MH weights is the fastest in comparison to others.

The asymptotic convergence factors and convergence times for different methods

of this example, are represented in Tbl. 3.1. As mentioned before, we see that the

method with CXO weights is asymptotic the fastest and the method with MD weights

asymptotic the slowest. It can be seen that the method with CXO weights is about

two times faster than the method with BC weights, about three times faster than MH

weights and about four times faster than MD weights.

Chapter 3. Static Average Consensus 39

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

10

20

eigenvalues

nu
m

be
r

of
 e

ig
en

va
lu

es MD

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

10

20

eigenvalues

nu
m

be
r

of
 e

ig
en

va
lu

es MH

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

10

20

eigenvalues

nu
m

be
r

of
 e

ig
en

va
lu

es BC

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

10

20

eigenvalues

nu
m

be
r

of
 e

ig
en

va
lu

es CXO

Figure 3.7: Distribution of eigenvalues of weight matrices (r = 0.28) .

We consider the distribution of eigenvalues of weight matrix W for each method in

Figure 3.7 and come to following conclusions:

• It is obvious that we have always a single eigenvalue at one.

• We see that for a asymptotic faster method the second largest eigenvalue (alge-

braic connectivity) denoted by dashed lines on the right side of figure, is smaller

than second largest eigenvalue of a slower method. For the MD and MH weights,

the convergence factor is just dependent on the second largest eigenvalue, so

ρ
(
W− 11T

N

)
= λ2(W), (from (3.28)) but for BC and CXO weights the conver-

gence factor is dependent on the second largest eigenvalue and the smallest eigen-

value (both denoted by dashed lines), so ρ
(
W− 11T

N

)
= λ2(W) = −λN(W).

• The approximately symmetric distribution of eigenvalues around zero leads to a

faster asymptotically convergence. It can be seen that for the method with CXO

weights, we have an approximately symmetric distribution.

Chapter 3. Static Average Consensus 40

3.7 Nonlinear Static Average Consensus Algorithm

We try to improve the convergence speed of AC algorithm through nonlinearity. Here

we consider two different ways, ones is varying the elements (weights) of a weight matrix

appropriately through a nonlinear function. Another way is that we switch through a

nonlinear function between two different weight matrices here ones with MH weights

(fast convergence in transient phase) and the another one with CXO weights (fast

convergence in asymptotic phase) and use the advantages of both methods.

3.7.1 Nonlinearity by Varying the Weights of a Weight Matrix

To improve the convergence speed, [5] leaves the linear weights which are defined in

Section 3.6 at asymptotic phase unchanged or multiplied with a constant factor but we

modulate them appropriately during the transient phase so we use a new weight matrix

W´
(
x[k]

)
which is dependent on state vector x[k] and its weights change over different

iterations. This algorithm is called as nonlinear static AC algorithm. The nonlinear

generic form of the linear form defined in (3.5) can be written as

x[k + 1] = W´
(
x[k]

)
x[k]. (3.42)

According to [5], the elements of weight matrix W´
(
x[k]

)
are defined as below:

Wij´ =


Wij f (uij [k]) , {i, j} ∈ E ,

1−
∑N

k=1Wik´, i = j,

0, otherwise,

(3.43)

where Wij are the elements of weight matrices which are defined in Section 3.6 and

are multiplied with the nonlinear function f (uij [k]). The node states difference uij [k]

which equals to difference between states of nodes that are connected together is as

follow:

uij [k] = xj [k]− xi [k] . (3.44)

The function f(u) is a continuous function with following properties:

f(0) = 1, (3.45)

f(u) = f(−u), (3.46)

−1 ≤ df

du
≤ 1. (3.47)

Chapter 3. Static Average Consensus 41

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

X: 0.5
Y: 0.7616

f(
u)

u

X: 0.2
Y: 0.9499

θ1 θ2

Figure 3.8: The function f(u) for θ1 = 2 and θ2 = 0.5.

As discussed in [5], one possible function that satisfies this properties and modulate the

weights appropriately is

f(u) =
tanh (θ1u) θ2

u
, (3.48)

with the parameters θ1, θ2 ∈ R+. θ1 and θ2 defines the slope of the curve and their

product θ1θ2 defines the maximum value of it. An example of f(u) with θ1 = 2 and

θ2 = 0.5 is shown in Fig. 3.8.

We put now uij [k] = xj [k] − xi [k] as input of function f(u). In transient phase

is the difference between node states larger (larger uij [k]) so the function f (uij [k])

returns a value which is smaller than the maximum θ1θ2 but after several iterations

this difference between node states will be smaller (smaller uij [k]) and respectively the

function f (uij [k]) returns a larger value which is closer to the maximum θ1θ2. Therefore

each element Wij´ of weight matrix W´
(
x[k]

)
takes for larger uij [k] a value smaller

than the product of Wij and the maximum of f(uij [k]) (θ1θ2) and for smaller uij [k] a

value close to this product. For example it can be seen in Fig. 3.8 that if uij [k] takes

at the beginning a value equal to 0.5 the f(uij) is then equal to 0.7616 and respectively

Wij´ [k] = 0.7616 Wij and after several iterations if uij [k] takes a value equal to 0.2 the

f(uij) is then equal to 0.9499 and respectively Wij´ [k] = 0.9499 Wij.

Chapter 3. Static Average Consensus 42

3.7.2 Nonlinearity by Combination of two Weight Matrices

We have seen in Fig. 3.6 that the method with MH weights is the fastest method in

transient phase and the method with CXO weights is the fastest method at asymptotic

phase. Now we combine this two different methods together so that the algorithm uses

in transient phase the MH weights and at asymptotic phase the CXO weights. We

call this algorithm as nonlinear static AC algorithm with combination of MH and CXO

weights. We use the weight matrix W´
(
x[k]

)
which is dependent on node states x[k]

and its weights change over different iterations. Similar to (3.42) the generic form is as

follow:

x[k + 1] = W´
(
x[k]

)
x[k].

The elements of weight matrix W´
(
x[k]

)
are defined as follow:

Wij´ =


WMH,ij (1− g (vij [k])) +WCXO,ij g (vij [k]) , {i, j} ∈ E ,

1−
∑N

k=1Wik´, i = j,

0, otherwise,

(3.49)

where WMH,ij are the MH weights which are defined in (3.41), WCXO,ij are the CXO

weights from (3.39), and the nonlinear function g (vij [k]) for switching between MH

and CXO weights. The relative node states difference vij [k] which is the input of the

nonlinear function is defined as below:

vij [k] =
xj [k]− xi [k]

max (xi [k] , xj [k])
. (3.50)

The continuous function g(v) can be expressed as follow:

g(v) =
1

2
tanh (γ1 (|v| − γ2)) +

1

2
, (3.51)

with the parameters γ1, γ2 ∈ R+. γ2 defines that in which range of inputs the function

equals to 0 and in which range equals to 1, γ1 defines the slope of the curve by switching

between 0 and 1. One possible example of function g(v) is shown in Fig. 3.9 with γ1 = 10

and γ2 = 1.

It is obvious that for a larger difference between states of neighbor nodes i and j, we

get a larger value for vij [k] and for smaller difference a smaller value. The difference of

node states is in numerator and the maximum state value between node i and node j

is in denominator so vij [k] is a relative value. It consequents that vij [k] is independent

of input range of xi [k] and xj [k]. To understand this better we give an example. Let

Chapter 3. Static Average Consensus 43

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−0.2

0

0.2

0.4

0.6

0.8

1

v

g(
v)

Figure 3.9: The function g(v) for γ1 = 10 and γ2 = 1.

assume that the node states can take values between 0 and 1, node 1 takes the value

0.25 and node 2 the value 0.75, in this case v12 [k] of neighbor nodes 1 and 2 equals to
0.75−0.25

0.75
= 0.6677. Now assume that the node states can take values from a wider range

between 0 and 100, node 1 takes the value 25 and node 2 the value 75, v12 [k] equals also

to 75−25
75

= 0.6677. It is here obvious that for different range of input values the relative

difference vij [k] returns us an equal value. This is advantageously for us because we

should not modify γ1 and γ2 in algorithm for any change in input range of node states.

Now we put vij [k] in function g(v). It is obvious that the function equals to 0 for values

greater than γ2 or smaller than −γ2 (|γ2| < vij [k]) and equals to 1 for values between

γ2 and −γ2 (−γ2 < vij [k] < γ2). γ1 defines the switching speed between 0 and 1. We

know that in transient phase MH weights and in asymptotic phase the CXO weights

are faster therefore we define γ2 so that in transient phase the function g(vij [k]) give us

because of larger value of vij [k], a value equal to 0 and respectively Wij´ [k] = WMH,ij

(see (3.49)) and in asymptotic phase because of smaller value of vij [k], a value equal

to 1 and respectively Wij´ [k] = WCXO,ij (see (3.49)). In the switching time between

transient and asymptotic phase, we have a combination of MH and CXO weights.

4

Dynamic Average Consensus

4.1 Introduction

In this chapter we will present the dynamic average consensus (AC) and its correspond-

ing algorithms. This algorithms and their structures were introduced in [8].

We study at the beginning of this chapter in section 4.2, the linear dynamic AC

algorithm. It will be studied in two different parts: the first-order algorithm in Section

4.2.1 and the nth-order algorithm in Section 4.2.2. Thereafter, we present in Section

4.3 the nonlinear dynamic AC algorithm and we try to improve the performance by

using nonlinear methods as considered in Section 3.7.

44

Chapter 4. Dynamic Average Consensus 45

4.2 Linear Dynamic Average Consensus Algorithm

In chapter 3 we considered sensors which measure a constant local value. This value

is time independent and does not change over all iterations. Now we consider the case

that an arbitrary sensor i measure at time k a local signal si [k]. In comparison to the

static case the measured signal is not constant and can change over different iterations

(time dependent). The average of this measured local signals is as follow:

s [k] =
1

N

N∑
i=1

si [k] . (4.1)

Our goal is that each sensor reaches asymptotically this average signal.

We consider again the sensor network of Fig. 3.1. The state of node i is denoted

by xi[k]. Node i measure the local signal si [k]. At each iteration the neighbors of node

i which are listed in neighbor set Ni, send their states to it. All nodes apply dynamic

AC algorithm to read the dynamic average s [k]. In the next sections we explain the

first-order and the nth-order linear dynamic AC algorithm.

4.2.1 First-Order Linear Dynamic Average Consensus Algorithm

As considered in [8], each node i updates its own state according to the first-order linear

dynamic AC algorithm as follow:

xi [k + 1] = Wiixi [k] +
∑
j∈Ni

Wijxj [k] + ∆si[k] i = 1, . . . , N, (4.2)

It is obvious that we have here in comparison to linear static AC an additional part

∆si[k]. The ∆si[k] is defined as follow:

∆si[k] = si [k]− si [k − 1] , (4.3)

and the initial state of each node i is defined as below:

xi [0] = 0, for i = 1, . . . , N . (4.4)

As defined in [8], the generic generic form of (4.2) is:

x[k + 1] = Wx[k] + ∆s[k], (4.5)

where ∆s[k] = s [k]− s [k − 1] with s [k] = (s1 [k] , . . . sN [k])T as local signal vector con-

Chapter 4. Dynamic Average Consensus 46

0 50 100 150 200 250 300 350 400 450 500
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

time

x i[k
]

Figure 4.1: Node measurements over time.

sisting of local signals measured by each node. The weight matrix W has the constraint

W ∈ J defined in (3.6) and must satisfy the convergence conditions defined in (3.12),

(3.13), and (3.14). This applied algorithm is called as first-order linear dynamic AC

algorithm.

We consider now an example for first-order linear dynamic AC algorithm. The node

measurements over time are illustrated in Fig. 4.1 so that each colored line denotes the

measurement of one of this nodes. The measurements are different sinus signals with

different amplitudes, frequencies, and phases. The average signal of this measurements

over time is shown in Fig. 4.2.

The Fig. 4.3 shows the states of nodes versus the number of iterations. Each colored

line refers to state of a single node. It can be seen in Fig. 4.3 that the node states

have in transient phase larger differences with each other but after some iterations

these differences are smaller and as shown in Fig. 4.2 the node states converge to an

estimation of average signal.

In Fig. 4.4, we see the MSE versus number of iterations. It can be seen that the

MSE decreases in the beginning until it reaches a value. Thereafter, in tracking phase,

it changes slowly. It is shown in Fig. 4.4(a) that the method with CXO weights has

the best tracking behavior followed by BC, MH and at the end the method with MD

weights which has the worst tracking behavior. In transient phase, as shown in Fig.

4.4(b), the method with CXO weights is faster than other methods.

Chapter 4. Dynamic Average Consensus 47

50 100 150 200 250 300 350 400 450 500

0.6

0.8

1

1.2

1.4

1.6

time

av
er

ag
e

si
gn

al

Figure 4.2: Average signal over time.

50 100 150 200 250 300 350 400 450 500

0.6

0.8

1

1.2

1.4

1.6

time

x i[k
]

(a)

2 4 6 8 10 12 14
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

time

x i[k
]

(b)

Figure 4.3: States of nodes versus number of iterations with (a) first-order dynamic
AC of a network and (b) its zoomed plot for the first 15 iterations.

Chapter 4. Dynamic Average Consensus 48

0 50 100 150 200 250 300 350 400 450 500
−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

time

M
S

E
 [d

B
]

linear MD
linear MH
linear BC
linear CXO

(a)

5 10 15 20 25 30 35 40
−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

time

M
S

E
 [d

B
]

linear MD
linear MH
linear BC
linear CXO

(b)

Figure 4.4: (a) MSE of first-order linear dynamic AC algorithm versus number of
iterations and (b) its zoomed plot for the first 40 iterations.

4.2.2 nth-Order Linear Dynamic Average Consensus Algorithm

We use here the nth-order linear dynamic AC algorithm to update the state of each

node. First we consider the second-order algorithm from [8],

x
[2]
i [k + 1] = Wiix

[2]
i [k] +

∑
j∈Ni

Wijx
[2]
j [k] + x

[1]
i [k + 1] ,

x
[1]
i [k + 1] = Wiix

[1]
i [k] +

∑
j∈Ni

Wijx
[1]
j [k] + ∆[2]si[k], i = 1, . . . , N,

(4.6)

with x
[1]
i [k] and x

[2]
i [k] (or x

[1]
j [k] and x

[2]
j [k]) as the first-order and second-order states

of each node i (or each node j) and ∆[2]si[k] = ∆si[k] −∆si[k − 1]. The second-order

linear dynamic AC algorithm can be extended to higher-order as considered in [8] and

reach the following relations:

x
[l]
i [k + 1] = Wiix

[l]
i [k] +

∑
j∈Ni

Wijx
[l]
j [k] + x

[l−1]
i [k + 1] , l = 1, . . . , n,

x
[1]
i [k + 1] = Wiix

[1]
i [k] +

∑
j∈Ni

Wijx
[1]
j [k] + ∆[n]si[k], i = 1, . . . , N,

(4.7)

Chapter 4. Dynamic Average Consensus 49

with x
[l]
i (or x

[l]
j) the lth-order states of node i (or node j) and ∆[n]si[k] defined as

∆[n]si[k] = ∆[n−1]si[k]−∆[n−1]si[k − 1], (4.8)

where ∆[1]si[k] = ∆si[k]. The initial state of each node is defined:

x
[l]
i [0] = 0, for i = 1, . . . , N . (4.9)

According to [8], the generic form of (4.7) can be written as

x[l][k + 1] = Wx[l][k] + x[l−1][k + 1], l = 1, . . . , n,

x[1][k + 1] = Wx[1][k] + ∆[n]s[k],
(4.10)

where x[l] [k] =
(
x
[l]
1 [k] , . . . x

[l]
N [k]

)T
with l = 1, . . . , n is the lth-order state vector con-

sisting of the lth-order states of the nodes at discrete time k and ∆[n]s[k] = ∆[n−1]s[k]−
∆[n−1]s[k − 1] with s [k] = (s1 [k] , . . . sN [k])T as local signal vector consisting of local

signals measured by each node. The weight matrix W has again the constraint W ∈ J
defined in (3.6) and must satisfy the convergence conditions defined in (3.12), (3.13),

and (3.14). This applied algorithm is called as nth-order linear dynamic AC algorithm.

4.3 Nonlinear Dynamic Average Consensus Algorithm

We try to improve the performance of dynamic AC algorithm by changing the linear

form to nonlinear form. Therefore, we apply the weight matrix W´
(
x[k]

)
which its

elements are defined in (3.43). This weight matrix is dependent on state vector x[k]

and changes over different times. We put it in (4.5) and get the state vector update for

the first-order nonlinear dynamic algorithm:

x[k + 1] = W´
(
x[k]

)
x[k] + ∆s[k], (4.11)

For higher-order algorithms we put the weight matrix W´
(
x[k]

)
in (4.10) as follow:

x[l][k + 1] = W´
(
x[k]

)
x[l][k] + x[l−1][k + 1], l = 1, . . . , n,

x[1][k + 1] = W´
(
x[k]

)
x[1][k] + ∆[n]s[k],

(4.12)

This applied algorithm is called as nth-order nonlinear dynamic AC algorithm. It is

obvious that in linear dynamic algorithm the elements of weight matrix are constant

but in nonlinear dynamic algorithm, this elements changes through a nonlinear function

Chapter 4. Dynamic Average Consensus 50

over different times.

5
Simulation Results

5.1 Simulation Setup

We show in this chapter the results of different simulations settings. Our goal is to

study the performance of different average consensus (AC) algorithms in the sense of

convergence speed in transient and asymptotic phases. To describe the convergence

speed we use the MSE because a faster convergence leads to faster decrease of MSE.

We define the MSE for static AC, normalized and averaged over all nodes and scenarios

denoted by ε [k] as follow:

ε [k] =

∑
i,q (xi,q [k]− sq)2∑

q s
2
q

, (5.1)

and for dynamic AC as,

ε [k] =

∑
i,q (xi,q [k]− sq [k])2∑

q sq [k]2
, (5.2)

where i denotes the node and q the scenario. xi,q[k] represents the state of node i in

scenario q and sq (or sq [k]) the average signal in same scenario. This two equations are

similar with difference that the average signal in the second one is time dependent. We

can write the MSE for static AC in vector form for each scenario q as follow:

εq [k] =
||xq [k]− sq1||22
||sq1||22

, (5.3)

51

Chapter 5. Simulation Results 52

number of nodes N = 100
number of scenarios 150 scenarios
measured local values for static
AC

uniform distributed between 0
and 1 (U(0, 1))

measured local signals for dy-
namic AC

measured from a time-varying
field constructed by Fourier basis

graph random geometric graph with ra-
dius r = 0.38

Table 5.1: Simulation parameters which are mostly used in this work.

and also for dynamic AC in vector form for each scenario q:

εq [k] =
||xq [k]− sq [k]1||22
||sq [k]1||22

, (5.4)

where xq [k] is the state vector consisting of the states of the nodes at discrete time k

and scenario q. We calculate the average of MSE over all scenarios and get ε [k].

In this chapter we use usually for simulations the settings as depicted in Tbl. 5.1.

We consider 100 nodes which are distributed uniformly on unit square. The graph that

is used, is a random geometric graph and the nodes which are in a distance of r = 0.38

of each other are connected. In static AC algorithm the local values which are measured

by nodes are sampled from a uniform distribution U(0, 1). In dynamic AC algorithm

the measured local signals are from a time-varying field constructed by Fourier basis.

The results are averaged over 150 different scenarios. If we do not mention any changes

of this settings, we choose them for our simulations.

5.2 Linear Static Average Consensus Algorithm

Here we consider from Section 3.3 the linear static AC algorithm with different weight

matrices which are presented in Section 3.6. We will see which influence has the number

of edges and also the number of nodes on the performance of algorithm. The number

of edges are defined with radius r of random geometric graph. The behavior of the

algorithm if the nodes measure values from a spatial field, is also considered. Finally

we study the performance of algorithm in different graphs and network structures.

Chapter 5. Simulation Results 53

10 20 30 40 50 60 70 80 90 100
−110

−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

number of iterations

M
S

E
 [d

B
]

linear MD
linear MH
linear BC
linear CXO

(a)

2 4 6 8 10
−40

−35

−30

−25

−20

−15

−10

−5

0

number of iterations

M
S

E
 [d

B
]

linear MD
linear MH
linear BC
linear CXO

(b)

Figure 5.1: (a) MSE of linear static AC algorithm versus number of iterations with
r = 0.38 and (b) its zoomed plot for the first 10 iterations.

5.2.1 Influence of Number of Edges on Performance

We consider here three different networks with N = 100 nodes uniformly distributed on

unit square. The graph that we use is a random geometric graph and the initial states

are sampled from a uniform distribution U(0, 1).

In the First network, we have for settings a random geometric graph with r =

0.38. Each node has a degree equal to 31.1975 and there are altogether 1559.88 edges

(averaged over all nodes and scenarios).

The MSE of such a network versus number of iterations, is illustrated in Fig. 5.1.

Each colored line denotes a different method to design the weight matrix. We consider

the convergence speed in two different phases, asymptotic and transient phase.

It can be seen in Fig. 5.1(a) that in asymptotic phase the method with CXO is the

fastest method and the method with MD is the slowest. It is also seen that with BC

we have a faster convergence speed than with MH but both behave worse than with

CXO. Although the method with CXO is the fastest method in asymptotic phase but

we see in Fig. 5.1(b) that in transient phase is this method the slowest. In transient

phase MH leads to a lower MSE and therefore is faster. First after 7th iteration the

method with CXO begins to have a lower MSE. Therefore if in this graph a precision

up to about 10−3 is desired, it is more advantageous to use MH weights than the CXO

weights.

Chapter 5. Simulation Results 54

10 20 30 40 50 60 70 80 90 100
−110

−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

number of iterations

M
S

E
 [d

B
]

linear MD
linear MH
linear BC
linear CXO

(a)

5 10 15 20

−30

−25

−20

−15

−10

−5

0

number of iterations

M
S

E
 [d

B
]

linear MD
linear MH
linear BC
linear CXO

(b)

Figure 5.2: (a) MSE of linear static AC algorithm versus number of iterations with
r = 0.26 and (b) its zoomed plot for the first 20 iterations.

Now let consider what happens if we reduce the radius of random geometric graph

down to r = 0.26, it leads to our second network. In this network each node has a

degree equal to 16.5512 and there are altogether 827.56 edges.

It can be seen in Fig. 5.2(a) that again the method with CXO is asymptotic the

fastest and the method with MD asymptotic the slowest method but here in converse

to last network, we have in asymptotic phase with MH a faster convergence speed than

with BC. This is because of lower number of edges which leads to a faster convergence

with MH. As shown in Fig. 5.2(b), in transient phase until about 16th iteration and

for a precision up to about 10−3, MH leads to a lower MSE and therefore, it is faster.

Now in the third network we increase the radius up to r = 0.8. In this network the

degree of each node equals to 84.2332. We have altogether 4211.66 edges.

We see in Fig. 5.3(a) that similar to last studied two networks the method with

CXO is asymptotic the fastest method and the method with MD the slowest. Here is

again like the first network the convergence speed with BC asymptotically faster than

with MH. As shown in Fig. 5.3(b), the main difference to the first and second networks

is that here in transient phase is not more the method with MH the fastest but the

method with CXO. Therefore, for a higher number of edges the algorithm with CXO

has a faster convergence speed in transient and also asymptotic phase.

The MSE versus different radiuses of random geometric graph can be seen for tran-

sient phase in Fig. 5.4(a) and for asymptotic phase in Fig. 5.4(b). It can be seen that

Chapter 5. Simulation Results 55

2 4 6 8 10 12 14
−110

−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

number of iterations

M
S

E
 [d

B
]

linear MD
linear MH
linear BC
linear CXO

(a)

1 2 3 4 5 6 7
−70

−60

−50

−40

−30

−20

−10

0

number of iterations

M
S

E
 [d

B
]

linear MD
linear MH
linear BC
linear CXO

(b)

Figure 5.3: (a) MSE of linear static AC algorithm versus number of iterations with
r = 0.8 and (b) its zoomed plot for the first 7 iterations.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−15

−14.5

−14

−13.5

−13

−12.5

−12

−11.5

radius

M
S

E
 [d

B
]

linear MD
linear MH
linear BC
linear CXO

(a)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−180

−160

−140

−120

−100

−80

−60

−40

−20

radius

M
S

E
 [d

B
]

linear MD
linear MH
linear BC
linear CXO

(b)

Figure 5.4: MSE of linear static AC algorithm versus different radiuses of random
geometric graph in (a) transient phase and in (b) asymptotic phase.

Chapter 5. Simulation Results 56

in transient phase the method with MH has the lowest MSE with radiuses up to r = 0.6

but with larger radiuses the MSE is lower for the method with CXO. In asymptotic

phase, the method with CXO has always the lowest MSE and its distance to other

methods is higher for larger radiuses.

We come from this simulations to following conclusions: In asymptotic phase is the

method with CXO the fastest method and the method with MD the slowest. It is also

seen that the methods with MH and BC weights behave both worse than CXO. If we

have a low number of edges between nodes, MH leads to a asymptotic faster convergence

than BC otherwise is always BC faster. In Transient phase is the method with MH

the fastest method but for a high number of edges is the method with CXO not just

in asymptotic phase but also in transient phase the fastest method. It is also seen that

for a higher number of edges (increase of radius r) with each defined weight matrix of

AC algorithm, the convergence speed is higher. For example in Figures 5.1, 5.2, and

5.3 the MSE of method with CXO equals approximately to 10−10 respectively in about

30th, 92th, and 7th iteration.

5.2.2 Influence of Number of Nodes on Performance

In Section 5.2.1 we considered the influence of number of edges on performance of

algorithm. Now we want consider what happens if we change the number of nodes in

our network and which influence it has on performance.

In Fig. 5.1 we considered a network with N = 100 nodes. Now we increase the

number of nodes up to N = 200 and N = 300 and achieve two new additional networks.

It is shown in Fig. 5.5(a) and (b) the MSE of each network versus number of iterations.

The comparison of this three figures shows us that the increase of number of nodes,

decrease the convergence speed. For example in Figures 5.1, 5.5(a), and 5.5(b) the MSE

equals approximately to 10−5 respectively in about 13th, 47th and 82th iteration. This

is because of higher number of nodes. Each node send its state to its neighbors and

this is done for all other nodes, so if the network is larger (higher number of nodes),

the distribution of informations through the network needs a longer time which causes

a slower convergence speed. It is also seen that the method with MH has in transient

phase for a longer time (higher number of iterations), lower MSE than other methods.

Chapter 5. Simulation Results 57

10 20 30 40 50 60 70 80 90 100
−70

−60

−50

−40

−30

−20

−10

0

number of iterations

M
S

E
 [d

B
]

linear MD
linear MH
linear BC
linear CXO

(a)

10 20 30 40 50 60 70 80 90 100
−70

−60

−50

−40

−30

−20

−10

0

number of iterations

M
S

E
 [d

B
]

linear MD
linear MH
linear BC
linear CXO

(b)

Figure 5.5: MSE of linear static AC algorithm versus number of iterations with (a)
N = 200 nodes (r = 0.2) (b) N = 300 nodes (r = 0.15).

5.2.3 Measurement from a Spatial Field

We sampled in previous simulations the initial states of nodes from a uniform distri-

bution U(0, 1). In that case each node can take randomly a value between 0 and 1.

Instead of that we assume, each node which is located uniformly on a unit square mea-

sure dependent on its location, a value from a spatial field. This spatial field is shown

in Fig. 5.6. The location of each node on the unit square can be defined by horizontal

axes r1 and r2. The vertical axis define the value of field in each point. It can be seen

that the neighbor nodes measure values which are not too different of each other, i.e.,

the difference between initial states of neighbor nodes are smaller than the difference of

initial states of nodes which are not located near each other. As shown in Fig. 5.7, It

causes in transient phase either a higher or equal MSE for the method with MH than

the method with CXO or just for a short time a lower MSE, but if we choose the initial

states from a uniform distribution, as we saw in Fig. 5.1(b), the method with MH is in

transient phase faster than all other methods (lower MSE).

Chapter 5. Simulation Results 58

0
0.2

0.4
0.6

0.8
1

0

0.5

1
−1

−0.5

0

0.5

1

1.5

2

r1
r2

fie
ld

va
lu

e

Figure 5.6: Spatial field

10 20 30 40 50 60 70 80 90 100

−100

−80

−60

−40

−20

0

number of iterations

M
S

E
 [d

B
]

linear MD
linear MH
linear BC
linear CXO

(a)

2 4 6 8 10
−20

−15

−10

−5

0

5

10

number of iterations

M
S

E
 [d

B
]

linear MD
linear MH
linear BC
linear CXO

(b)

Figure 5.7: (a) MSE of linear static AC algorithm versus number of iterations with
r = 0.38 with node measurement from a spatial field and (b) its zoomed
plot for the first 10 iterations.

Chapter 5. Simulation Results 59

200 400 600 800 1000 1200 1400
−40

−35

−30

−25

−20

−15

−10

−5

number of iterations

M
S

E
 [d

B
]

linear MD
linear MH
linear BC
linear CXO

Figure 5.8: MSE of linear static AC algorithm versus number of iterations in ring
graph.

5.2.4 Impact of the Graph Topology

We considered random geometric graphs with different number of nodes, radiuses and

initial states. Now we want to study the influence of different graphs and network struc-

tures on performance of linear static AC algorithm with different weight matrices. In

this graphs and network structures we have 100 nodes and the initial states are sampled

from uniform distribution U(0, 1).

Ring Graph: We know as mentioned in Section 2.3.3 that in a ring graph all nodes are

connected together in a ring form and each node is connected just with two neighbor

nodes thus, the number of edges is too low.

We see in Fig. 5.8 the MSE versus number of iterations in a ring graph. It can

be seen that in ring graph we achieve the same performance with MD and MH. We

know from (3.22) and (3.33) that for weight matrix with MD, each edge weight Wij for

{i, j} ∈ E equals to 1/dmax. dmax is the maximum indegree over all nodes and equals

in ring graph to 2. For a Weight matrix with MH, each edge weight Wij for {i, j} ∈ E
equals to 1/max {di, dj} where di and dj are the indegrees of two neighbor nodes i and

j and they have in a ring graph the same value 2. Thus, we can represent the elements

Chapter 5. Simulation Results 60

20 40 60 80 100 120 140
−110

−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

number of iterations

M
S

E
 [d

B
]

linear MD
linear MH
linear BC
linear CXO

(a)

5 10 15 20 25 30 35 40 45 50
−300

−250

−200

−150

−100

−50

0

number of iterations

M
S

E
 [d

B
]

linear MD
linear MH
linear BC
linear CXO

(b)

Figure 5.9: MSE of linear static AC algorithm versus number of iterations in random
regular graph with (a) d = 3 and (b) d = 10.

of weight matrix with MD (Wij,MD) or with MH (Wij,MH) for a ring graph as follow:

Wij,MD = Wij,MH =


1
2
, {i, j} ∈ E ,

1−
∑N

k=1Wik, i = j,

0, otherwise.

(5.5)

It is also seen that the performance is similar for the methods with BC and with CXO.

In transient phase, we achieve for all methods a similar result. Therefore we have for a

ring graph, the best performance with weight matrices with BC or CXO.

Random Regular Graph: As described in Section 2.3.2, a random regular graph

G(N, d) has N nodes and d connected neighbors for each node. The ring graph that we

studied, is a regular graph with d=2.

We consider in Fig. 5.9 the MSE versus number of iterations in random regular

graphs with d = 3 and d = 10. It can be seen that because of equal number of

neighbors d for each node, the method with MD and the method with MH have the

same performance. Thus we can write for elements of weight matrix with MD (Wij,MD)

Chapter 5. Simulation Results 61

5 10 15 20 25 30 35 40
−110

−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

number of iterations

M
S

E
 [d

B
]

d=3
d=6
d=10
d=20
d=30

Figure 5.10: MSE of linear static AC algorithm with CXO versus number of iterations
in random regular graph for different values of d.

or with MH (Wij,MH) in a random regular graph, with some changes of (5.5) as,

Wij,MD = Wij,MH =


1
d
, {i, j} ∈ E ,

1−
∑N

k=1Wik, i = j,

0, otherwise.

(5.6)

It is also seen that in asymptotic phase the method with CXO is the fastest method and

the methods with MD and MH are the slowest methods. The method with BC behaves

better than the methods with MH and MD but it is worse than the CXO. In transient

phase all methods have approximately a similar convergence speed. Therefore we have

for a random regular graph the best performance in transient and in asymptotic phase

independent of number of d, with the method with CXO.

In Fig. 5.10 we consider the MSE of linear static AC algorithm with CXO versus

number of iterations in random regular graphs with different values of d. It can be seen

that the convergence speed increases for higher values of d. This can be explained by

higher number of edges.

Complete Graph: As we studied the complete graph in Section 2.3.4, each node in

this graph is connected to all other nodes, so we have a large number of edges between

nodes and each node is connected to N − 1 other nodes. We can say that a complete

graph is a random regular graph with d = N − 1. In Fig. 5.11, we can see the MSE of

Chapter 5. Simulation Results 62

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
−110

−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

number of iterations

M
S

E
 [d

B
]

linear MD
linear MH
linear BC
linear CXO

Figure 5.11: MSE of linear static AC algorithm versus number of iterations in a com-
plete graph.

linear static AC algorithm versus number of iterations in a complete graph. It can be

seen that the methods with MD and MH have the same performance, so the elements

of weight matrix with MD (Wij,MD) or with MH (Wij,MD) in a complete graph are as

follow:

Wij,MD = Wij,MH =


1

N−1 , {i, j} ∈ E ,

1−
∑N

k=1Wik, i = j,

0, otherwise.

(5.7)

We replaced the parameter d in (5.6) with N − 1. The weight matrices with BC and

CXO have also a similar performance. In comparison with MD and MH, they have a

higher convergence speed in transient and in asymptotic phase. Therefore in a complete

graph, we can reach the best results with BC or CXO.

Graph with Bottleneck: Let consider two random geometric graphs which are con-

nected together over a single edge. We call this as a graph with bottleneck which is

explained in Section 2.3.5.

We see in Fig. 5.12 the states of nodes versus number of iterations. Each colored

line denotes a state of a node. It can be seen in Fig. 5.12(b) that in the beginning

the node states of each side of the single edge (bottleneck) converge approximately to

a common value. The common value of one side is not equal to the common value

of other side. It can be seen in Fig. 5.12(a) that after this primary convergence, we

have two bundle of lines so that each of them denotes the states of one side. Then

Chapter 5. Simulation Results 63

500 1000 1500 2000 2500 3000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

number of iterations

x i[k
]

(a)

5 10 15 20
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of iterations

x i[k
]

(b)

Figure 5.12: States of nodes versus number of iterations in a graph with bottleneck:
(a) linear static AC of a network and (b) its zoomed plot for the first 20
iterations.

100 200 300 400 500 600 700 800 900 1000
−110

−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

number of iterations

M
S

E
 [d

B
]

linear MD
linear MH
linear BC
linear CXO

(a)

10 20 30 40 50 60
−30

−25

−20

−15

−10

−5

0

number of iterations

M
S

E
 [d

B
]

linear MD
linear MH
linear BC
linear CXO

(b)

Figure 5.13: (a) MSE of linear static AC algorithm versus number of iterations in a
graph with bottleneck with r = 0.38 and (b) its zoomed plot for the first
60 iterations.

Chapter 5. Simulation Results 64

after several iterations, this bundles converges to a common value which is the average

value. This behavior can be explained as follow: we have a faster convergence in each

side because of higher number of edges but the convergence of both sides together to

average value is slower because of a single edge between them.

We consider in Fig. 5.13 the MSE of linear static AC algorithm versus number of

iterations in a graph with bottleneck with r = 0.38. It can be seen in Fig. 5.13(a) that

the method with CXO is asymptotic the fastest and the method with MD is the slowest.

The method with BC is better than MH but both behave worse than the CXO. It can

be seen in Fig. 5.13(b) that in transient phase, the method with MH is the fastest.

5.3 Nonlinear Static Average Consensus Algorithm

Here we consider the nonlinear static AC algorithm defined in Section 3.7.1. We de-

termine the nonlinear function f(u) and its parameters so that a faster convergence

speed is reached. After that we study the behavior of algorithm for different radiuses

of random geometric graph.

5.3.1 Determination of Parameters of Nonlinear Function

For the nonlinear static AC algorithm, we use as weight matrix, the matrices defined

in Section 3.6. We let for the asymptotic phase, the weight matrix elements unchanged

or multiplied with a constant factor but in transient phase we modulate them appro-

priately. The varying of the elements of weight matrix is done through a nonlinear

function f(u) defined in (3.48),

f(u) =
tanh (θ1u) θ2

u
,

with the parameters θ1, θ2 ∈ R+. θ1 and θ2 define the slope of the curve and their

product θ1θ2 defines the maximum value of it (shown in Fig. 3.8).

We put the state difference uij [k] = xj [k] − xi [k] as input of nonlinear function

f(u) where xi [k] and xj [k] are the states of two neighbor nodes i and j. The difference

of states uij [k] converge to zero because the state of nodes converge to a common value

which is the average value. This convergence of uij [k] to zero causes that f(uij [k]) con-

verge to maximum value θ1θ2. This nonlinear function f(uij [k]) is multiplied with edge

weights Wij of linear algorithm with {i, j} ∈ E (defined in (3.43)). Thus, the weights of

nonlinear algorithm change over different iterations and converge in asymptotic phase

to weights of linear algorithm or to a multiple of them.

Chapter 5. Simulation Results 65

Now we want to determine the best possible values of this parameters for each

weight matrix. We determine at the beginning the product θ1θ2 (the maximum value

of nonlinear function f(u)) for a random geometric graph with radius r = 0.38 and

for N = 100 nodes which their initial states are sampled from a uniform distribution

U(0, 1). The results are here averaged over 150 scenarios. We see in Fig. 5.14 the

MSE of nonlinear static AC algorithm versus number of iterations for different weight

matrices. Each colored line denotes the MSE of nonlinear algorithm for a defined

product of θ1 and θ2. We choose for this parameters an equal value which is the root

of their product value. Now we try to find the line which exhibits the lowest MSE and

take its value as best possible product of θ1 and θ2. It can be seen that this product for

nonlinear algorithm equals with MD to 1.7, with MH to 1.6, with BC and CXO to 1.

Our next goal is to find the exact values of θ1 and θ2 in the determined best possible

product of them. As shown in Fig. 5.15, we have here again the MSE versus number of

iterations. The results are here averaged over 300 scenarios. Each colored line denotes

different values for θ1 and θ2 so that their product equals to the values that we found in

Fig. 5.14. It can be seen that with θ1 and θ2 values of lines number 8 and 9, we do not

reach the lowest MSE but with other lines we have an approximately equal MSE. To

find the best possible values between these lines, we calculate the MSE averaged over

all iterations and come to following results1:

• MD: line number 5 with θ1 = 1.3038 and θ2 = 1.3038 and an averaged MSE equal

to 1.2608.10−3

• MH: line number 6 with θ1 = 2 and θ2 = 0.8 and an averaged MSE equal to

1.1802.10−3

• BC: line number 6 with θ1 = 2 and θ2 = 0.5 and an averaged MSE equal to

1.2741.10−3

• CXO: line number 5 with θ1 = 1 and θ2 = 1 and an averaged MSE equal to

1.4533.10−3

The nonlinear functions with best possible parameters θ1 and θ2 for different meth-

ods are demonstrated in Fig. 5.16.

These results are reached with a radius of r = 0.38, if we change this radius, we

should calculate anew the parameters θ1 and θ2 in the same way. The appropriate

1It is to be attended that each calculated averaged MSE for each weight matrix, is just in favor to
find the best possible values of θ1 and θ2 and have an overview of corresponding MSE but it is not
appropriate to compare different weight matrices because we used for each simulation different random
local values and communication links.

Chapter 5. Simulation Results 66

10 20 30 40 50 60 70 80 90 100
−110

−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

number of iterations

M
S

E
 [d

B
]

1) θ1θ2=0.5

2) θ1θ2=0.75

3) θ1θ2=1

4) θ1θ2=1.1

5) θ1θ2=1.3

6) θ1θ2=1.5

7) θ1θ2=1.6

8) θ1θ2=1.7

9) θ1θ2=1.8

(a)

10 20 30 40 50 60 70 80 90 100
−110

−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

number of iterations

M
S

E
 [d

B
]

1) θ1θ2=0.75

2) θ1θ2=1

3) θ1θ2=1.1

4) θ1θ2=1.2

5) θ1θ2=1.3

6) θ1θ2=1.4

7) θ1θ2=1.5

8) θ1θ2=1.6

9) θ1θ2=1.7

(b)

10 20 30 40 50 60 70 80 90 100
−110

−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

number of iterations

M
S

E
 [d

B
]

1) θ1θ2=0.2

2) θ1θ2=0.5

3) θ1θ2=0.75

4) θ1θ2=0.8

5) θ1θ2=0.9

6) θ1θ2=1

7) θ1θ2=1.1

(c)

10 20 30 40 50 60 70 80 90 100
−110

−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

number of iterations

M
S

E
 [d

B
]

1) θ1θ2=0.2

2) θ1θ2=0.5

3) θ1θ2=0.75

4) θ1θ2=0.8

5) θ1θ2=0.9

6) θ1θ2=1

7) θ1θ2=1.1

(d)

Figure 5.14: MSE of nonlinear static AC algorithm versus number of iterations to
define the best multiply of θ1 and θ2 with (a) MD, (b) MH, (c) BC, and
(d) CXO (r=0.38).

Chapter 5. Simulation Results 67

10 20 30 40 50 60 70 80 90 100
−110

−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

number of iterations

M
S

E
 [d

B
]

1) θ1=0.013038, θ2=130.384

2) θ1=0.17, θ2=10

3) θ1=0.34, θ2=5

4) θ1=0.85, θ2=2

5) θ1=1.3038, θ2=1.3038

6) θ1=2, θ2=0.85

7) θ1=5, θ2=0.34

8) θ1=10, θ2=0.17

9) θ1=130.384, θ2=0.013038

(a)

10 20 30 40 50 60 70 80 90 100
−110

−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

number of iterations

M
S

E
 [d

B
]

1) θ1=0.02, θ2=80

2) θ1=0.16, θ2=10

3) θ1=0.32, θ2=5

4) θ1=0.8, θ2=2

5) θ1=1.2649, θ2=1.2649

6) θ1=2, θ2=0.8

7) θ1=5, θ2=0.32

8) θ1=10, θ2=0.16

9) θ1=80, θ2=0.02

(b)

10 20 30 40 50 60 70 80 90 100
−110

−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

number of iterations

M
S

E
 [d

B
]

1) θ1=0.02, θ2=50

2) θ1=0.1, θ2=10

3) θ1=0.2, θ2=5

4) θ1=0.5, θ2=2

5) θ1=1, θ2=1

6) θ1=2, θ2=0.5

7) θ1=5, θ2=0.2

8) θ1=10, θ2=0.1

9) θ1=50, θ2=0.02

(c)

10 20 30 40 50 60 70 80 90 100
−110

−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

number of iterations

M
S

E
 [d

B
]

1) θ1=0.01, θ2=100

2) θ1=0.1, θ2=10

3) θ1=0.2, θ2=5

4) θ1=0.5, θ2=2

5) θ1=1, θ2=1

6) θ1=2, θ2=0.5

7) θ1=5, θ2=0.2

8) θ1=10, θ2=0.1

9) θ1=100, θ2=0.01

(d)

Figure 5.15: MSE of nonlinear static AC algorithm versus number of iterations to
define θ1 and θ2 with (a) MD, (b) MH, (c) BC, and (d) CXO (initial
states sampled from U(0, 1) and r=0.38).

Chapter 5. Simulation Results 68

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

u

f(
u)

MD
MH
BC
CXO

Figure 5.16: Nonlinear functions with best possible parameters θ1 and θ2 for different
weight matrices.

r = 0.26 r = 0.38 r = 0.8

MD θ1 = 1.3038, θ2 = 1.3038 θ1 = 1.3038, θ2 = 1.3038 θ1 = 1.1832, θ2 = 1.1832
MH θ1 = 2, θ2 = 0.75 θ1 = 2, θ2 = 0.8 θ1 = 1.1401, θ2 = 1.1401
BC θ1 = 2, θ2 = 0.5 θ1 = 2, θ2 = 0.5 θ1 = 2, θ2 = 0.5

CXO θ1 = 1, θ2 = 1 θ1 = 1, θ2 = 1 θ1 = 1, θ2 = 1

Table 5.2: θ1 and θ2 for radiuses r = 0.26, r = 0.38, r = 0.8 and initial states sampled
from U(0, 1) for nonlinear static AC algorithm.

values of this parameters for radiuses r = 0.26 and r = 0.8 and also the mentioned

radius r = 0.38 can be find in Tbl. 5.2.

Now if we sample the initial states from uniform distribution U(0, 100), instead from

U(0, 1) and the radius of graph remains unchanged (r = 0.38), we should find anew

the values of θ1 and θ2. The best possible product of them for each weight matrix with

defined weights remains unchanged (same values as in Fig. 5.14) but we should find

the exact values of them in these determined products. It is shown in Fig. 5.17 the

MSE versus number of iterations. The results are here averaged over 300 scenarios. It

can be seen that we get the lowest MSE for the line number 1 with θ1 = 0.013 and

θ2 = 130.384 for MD, θ1 = 0.02 and θ2 = 80 for MH, θ1 = 0.02 and θ2 = 50 for BC,

and θ1 = 0.01 and θ2 = 100 for CXO.

We come to conclusion that for any changes of radius of graph and respectively

the structure of it and also any changes in range of initial states of nodes, we must

Chapter 5. Simulation Results 69

0 20 40 60 80 100
−110

−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

number of iterations

M
S

E
 [d

B
]

1) θ1=0.013, θ2=130.384

2) θ1=0.17, θ2=10

3) θ1=0.34, θ2=5

4) θ1=0.85, θ2=2

5) θ1=1.3038, θ2=1.3038

6) θ1=2, θ2=0.85

7) θ1=5, θ2=0.34

8) θ1=10, θ2=0.17

9) θ1=130.384, θ2=0.013

(a)

10 20 30 40 50 60 70 80 90 100
−110

−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

number of iterations

M
S

E
 [d

B
]

1) θ1=0.02, θ2=80

2) θ1=0.16, θ2=10

3) θ1=0.32, θ2=5

4) θ1=0.8, θ2=2

5) θ1=1.2649, θ2=1.2649

6) θ1=2, θ2=0.8

7) θ1=5, θ2=0.32

8) θ1=10, θ2=0.16

9) θ1=80, θ2=0.02

(b)

10 20 30 40 50 60 70 80 90 100
−110

−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

number of iterations

M
S

E
 [d

B
]

1) θ1=0.02, θ2=50

2) θ1=0.1, θ2=10

3) θ1=0.2, θ2=5

4) θ1=0.5, θ2=2

5) θ1=1, θ2=1

6) θ1=2, θ2=0.5

7) θ1=5, θ2=0.2

8) θ1=10, θ2=0.1

9) θ1=50, θ2=0.02

(c)

10 20 30 40 50 60 70 80 90 100
−110

−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

number of iterations

M
S

E
 [d

B
]

1) θ1=0.01, θ2=100

2) θ1=0.1, θ2=10

3) θ1=0.2, θ2=5

4) θ1=0.5, θ2=2

5) θ1=1, θ2=1

6) θ1=2, θ2=0.5

7) θ1=5, θ2=0.2

8) θ1=10, θ2=0.1

9) θ1=100, θ2=0.01

(d)

Figure 5.17: MSE of nonlinear static AC algorithm versus number of iterations to
define θ1 and θ2 with (a) MD, (b) MH, (c) BC, and (d) CXO (initial
states sampled from U(0, 100) and r=0.38).

Chapter 5. Simulation Results 70

5 10 15 20 25 30 35 40 45 50
−110

−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

number of iterations

M
S

E
 [d

B
]

nonlinear MD
nonlinear MH
nonlinear BC
nonlinear CXO

(a)

2 4 6 8 10
−40

−35

−30

−25

−20

−15

−10

−5

0

number of iterations

M
S

E
 [d

B
]

nonlinear MD
nonlinear MH
nonlinear BC
nonlinear CXO

(b)

Figure 5.18: (a) MSE of nonlinear static AC algorithm versus number of iterations
with r = 0.38 and (b) its zoomed plot for the first 10 iterations.

determine anew the parameters θ1 and θ2.

5.3.2 Influence of Number of Edges on Performance

We consider here the nonlinear static AC algorithm with calculated parameters from last

Section 5.3.1. The networks that we study here, are the same three different networks

of Section 5.2.1.

In the first network, we have for settings a random geometric graph with r = 0.38.

It is shown in Fig. 5.18 the MSE of nonlinear static AC algorithm versus number of

iterations. Each colored line denotes a nonlinear algorithm with different matrices.

It can be seen in Fig. 5.18(a) that method with CXO is asymptotic the fastest and

the method with MD asymptotic the slowest. The method with MH is in this phase

better than BC but both behave worse than the CXO. If we compare this results with

linear algorithm in Fig. 5.1(a), we see a great improvement for MH through nonlinearity

because in that figure was the method with MH slower than method BC but here is vice

versa. It is shown in Fig. 5.18(b) that although the method with CXO is the fastest

method in asymptotic phase but it is the slowest one in transient phase. In this phase,

the method with MH has the lowest MSE and the fastest convergence speed.

Chapter 5. Simulation Results 71

10 20 30 40 50 60 70 80 90 100
−110

−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

number of iterations

M
S

E
 [d

B
]

nonlinear MD
nonlinear MH
nonlinear BC
nonlinear CXO

(a)

5 10 15 20 25
−40

−35

−30

−25

−20

−15

−10

−5

0

number of iterations

M
S

E
 [d

B
]

nonlinear MD
nonlinear MH
nonlinear BC
nonlinear CXO

(b)

Figure 5.19: (a) MSE of nonlinear static AC algorithm versus number of iterations
with r = 0.26 and (b) its zoomed plot for the first 25 iterations.

In the second network we decrease the radius down to r = 0.26 and hence we have

a lower number of edges between nodes. It is shown in Fig. 5.19 that We reach for

convergence speed similar results like the first network. The method with CXO is

asymptotic the fastest and after that respectively the methods with MH, BC and MD

are the asymptotic fastest methods. In transient phase has again the method with MH

a faster convergence speed.

In the third network we increase the radius up to r = 0.8 and thus we have a higher

number of edges. It can be seen in Fig. 5.20 that in asymptotic phase we have again

with CXO the fastest convergence speed followed by MH, BC and at the end MD. In

transient phase we have in opposite of last network with CXO a higher or approximately

equal convergence speed to MH.

We come to conclusion that for nonlinear static AC algorithm is the method with

CXO independent of radius of random geometric graph asymptotic the fastest method.

In transient phase just for higher number of edges, we can reach with CXO a better or

similar results to MH otherwise the method with MH is in this phase always faster.

Chapter 5. Simulation Results 72

1 2 3 4 5 6 7 8 9 10 11 12
−110

−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

number of iterations

M
S

E
 [d

B
]

nonlinear MD
nonlinear MH
nonlinear BC
nonlinear CXO

(a)

1 2 3 4 5 6 7
−80

−70

−60

−50

−40

−30

−20

−10

0

number of iterations

M
S

E
 [d

B
]

nonlinear MD
nonlinear MH
nonlinear BC
nonlinear CXO

(b)

Figure 5.20: (a) MSE of nonlinear static AC algorithm versus number of iterations
with r = 0.8 and (b) its zoomed plot for the first 6 iterations.

5.4 Nonlinear Static Average Consensus Algorithm with Combi-
nation of two Weight Matrices

We consider now the nonlinear static AC algorithm with combination of two weight

matrices with MH and CXO which is defined in Section 3.7.2. It is shown in Figures

5.1 and 5.2 that in transient phase the method with MH and in asymptotic phase the

method with CXO are the fastest methods. We combine this different methods so

that in transient phase the MH and in asymptotic phase the CXO are applied. To

characterize this behavior we use the vij [k] from (3.50),

vij [k] =
xj [k]− xi [k]

max (xi [k] , xj [k])
,

which is a time dependent relative difference between states xi [k] and xj [k] of two

neighbor nodes i and j. In transient phase the MSE and also the absolute value of

vij [k] decrease with MH faster than with CXO, so we use in this phase MH. After some

iterations with MH, the speed of decrease of MSE and the absolute value of vij [k] begin

to be slower than with CXO, we switch in this point from MH to CXO and call this

absolute value of vij [k] at this time as switching value.

Chapter 5. Simulation Results 73

5 10 15 20 25 30
−110

−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

number of iterations

M
S

E
 [d

B
]

linear MH
linear CXO
nonlinear MH+CXO

Figure 5.21: MSE of nonlinear static AC algorithm with combination of MH and CXO
versus number of iterations with r = 0.38.

To switch between this weights we use the nonlinear function g(v) defined in (3.51),

g(v) =
1

2
tanh (γ1 (|v| − γ2)) +

1

2
,

with the parameters γ1, γ2 ∈ R+. We define with γ2 in which range of inputs the

function equals to 0 and in which range equals to 1 and with γ1 the slope of the curve

by switching between 0 and 1 (switching speed between 0 and 1).

We put the vij [k] as input of nonlinear function g(v) and set γ2 equal to switching

value of vij [k]. It causes that the nonlinear function g(vij [k]) equals to 1 for γ2 < vij [k]

and for vij [k] < −γ2 (in transient phase) and equals to 0 for −γ2 ≤ vij [k] ≤ γ2

(in asymptotic phase). Thus as defined in (3.49), the elements of weight matrix of

this algorithm can be calculated as a sum of the multiplication of nonlinear function

g(vij [k]) with MH and the multiplication of 1− g(vij [k]) with CXO.

We consider a network of 100 nodes in a random geometric graph with radius r=0.38

and the initial states are sampled from a uniform distribution U(0, 1). We choose for

nonlinear function, γ1 = 0.18 and γ2 = 1000. It is shown in Fig. 5.21 the MSE of

linear static AC algorithm with MH and with CXO and also the MSE of nonlinear

static AC algorithm with combination of MH and CXO versus number of iterations.

It can be seen that in transient phase the method with MH is faster than the method

with CXO but in asymptotic phase is vice versa. Thus the nonlinear algorithm applies

in this simulation until third iteration the MH and after that switches to CXO, so we

get in transient phase an equal MSE with a algorithm which applies just MH and in

Chapter 5. Simulation Results 74

10 20 30 40 50 60 70 80 90 100
−110

−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

number of iterations

M
S

E
 [d

B
]

linear MD
linear MH
linear BC
linear CXO
nonlinear MD
nonlinear MH
nonlinear BC
nonlinear CXO
nonlinear MH+CXO

(a)

2 4 6 8 10 12 14
−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

number of iterations

M
S

E
 [d

B
]

linear MD
linear MH
linear BC
linear CXO
nonlinear MD
nonlinear MH
nonlinear BC
nonlinear CXO
nonlinear MH+CXO

(b)

Figure 5.22: (a) MSE of linear and nonlinear static AC algorithms versus number of
iterations with r = 0.38 and (b) its zoomed plot for the first 6 iterations.

asymptotic phase lower MSE than a algorithm with CXO.

We reach with nonlinear static AC with combination of MH and CXO a better result

in all cases where the MH is in transient phase faster than the CXO. Therefore as long

as this conditions satisfy we can use this algorithm for all different radiuses of random

geometric graph. Furthermore the relative form of difference of node states vij [k] has

the advantage that if we change the range of initial states, we should not define anew

the parameters γ1 and γ2 in converse what we did for parameter θ1 and θ2 of nonlinear

static AC algorithm.

To compare the performance of all static linear and nonlinear algorithms that we

considered until now, We study the Fig. 5.22. We see in this figure for same settings

as above, the MSE versus number of iterations for all linear and nonlinear static AC

algorithms. It can be seen that we get the best result with nonlinear algorithm with

combination of MH and CXO. We see also that the nonlinear algorithms have a better

performance than the linear algorithms. The most improvements for nonlinear algo-

rithms in comparison with linear ones can be seen with the methods with MD and

MH.

Chapter 5. Simulation Results 75

5.5 Linear Dynamic Average Consensus Algorithm

We discussed the linear dynamic AC algorithm in Section 4.2. We consider here the

performance of linear algorithm for measurements from a time-varying spatial field.

Furthermore, We study the performance of linear algorithm for different frequencies of

this field and also for different orders.

5.5.1 Measurement from Time-Varying Spatial Field

We consider here a network of 100 nodes distributed in a time-varying field constructed

with Fourier basis. The Fourier coefficients which we use to construct the field, change

over time with sinus signals with different amplitudes and phases but a defined equal

frequency. It leads to a time-varying field so that each node measure a local signal

from this field. Such a field is demonstrated in Fig. 5.23 on different times. The field

should change very slowly (low frequency of sinus signal) otherwise the algorithm will

be unstable. The graph that we use is a random geometric graph with radius r = 0.38.

In Fig. 5.24, we see the MSE of first-order linear dynamic AC algorithm versus

number of iterations. It can be seen that in the beginning, the MSE decreases for

all methods. After some iterations it stabilizes around a constant value. It can be

seen that in transient phase the method with MH is for a short time faster than other

methods but after some iterations the method with CXO will be the fastest method

and it stabilizes itself around a lower MSE value in comparison to others. Therefore,

the method with CXO has the best tracking behavior and the lowest MSE. The method

with MD has the highest MSE. The method with BC has a better tracking behavior

than MH but both behave worse than the CXO.

5.5.2 Influence of Frequency of Time-Varying Spatial Field on Performance

As we discussed in last Section, the nodes measure from a time-varying spatial field.

The Fourier coefficients that we use to construct the field, change with sinus signals

with a defined frequency. Now we want to consider the influence of varying of this

frequency on performance of algorithm.

In Fig. 5.25 we see the MSE of first-order linear dynamic AC algorithm with CXO

versus number of iterations for different frequencies. The results in this figure are

averaged over 50 different scenarios. It can be seen that increases of frequency leads to

a higher MSE and also higher fluctuation of it.

The MSE versus different frequencies is represented in Fig. 5.26. The results are

Chapter 5. Simulation Results 76

Figure 5.23: Spatial field

0 50 100 150 200 250 300 350 400 450 500
−40

−35

−30

−25

−20

−15

−10

−5

0

5

10

time

M
S

E
 [d

B
]

linear MD
linear MH
linear BC
linear CXO

(a)

2 4 6 8 10 12 14
−40

−35

−30

−25

−20

−15

−10

−5

0

5

10

time

M
S

E
 [d

B
]

linear MD
linear MH
linear BC
linear CXO

(b)

Figure 5.24: (a) MSE of first-order linear dynamic AC algorithm versus number of
iterations with r = 0.38 and (b) its zoomed plot for the first 15 iterations.

Chapter 5. Simulation Results 77

0 500 1000 1500

−50

−40

−30

−20

−10

0

10

20

time

M
S

E
 [d

B
]

 f1= 6.6667e−005

f2= 0.00033333

f3= 0.00066667

f4= 0.002

f5= 0.0033333

f6= 0.0066667

Figure 5.25: MSE of first-order linear dynamic AC algorithm with CXO versus num-
ber of iterations for different frequencies (r=0.38).

0 1 2 3 4 5 6 7

x 10
−3

−70

−60

−50

−40

−30

−20

−10

frequency

M
S

E
 [d

B
]

linear MD
linear MH
linear BC
linear CXO

Figure 5.26: MSE of first-order linear dynamic AC algorithm versus frequency
(r=0.38).

Chapter 5. Simulation Results 78

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−200

−150

−100

−50

0

50

100

time

M
S

E
 [d

B
]

first order
second order
third order
fourth order
fifth order
sixth order

(a)

50 100 150
−200

−150

−100

−50

0

50

100

time

M
S

E
 [d

B
]

first order
second order
third order
fourth order
fifth order
sixth order

(b)

Figure 5.27: (a) MSE of linear dynamic AC algorithm with CXO versus number of
iterations for different orders and (b) its zoomed plot for the first 150
iterations (r=0.38).

here averaged over 150 different scenarios. It can be seen that for different frequencies,

the method with CXO has the lowest MSE and the method with MD the highest. The

method with BC has a better performance than MH but both behave worse than the

CXO.

5.5.3 Influence of Order of Algorithm on Performance

We want now to consider which performance have algorithms with different orders. We

study the same network as last Section. The MSE of linear dynamic AC algorithm

with CXO versus number of iterations is shown for different orders in Fig. 5.27. The

results in this figure are averaged over 50 different scenarios. It can be seen in Fig. 5.27

(b) that for first-order algorithm, the MSE decreases and after some iterations it will

be stabilized. For second- and third-order the MSE increase in the beginning and then

start to decrease. Thereafter, it will be stabilized. For algorithms which have orders

higher than 3 (fourth-, fifth- and sixth-order in figure), they start in the beginning to

increase and after some iterations they decrease until they reach their minimum MSE.

Thereafter as shown in Fig. 5.27 (a), they begin to increase again. We considered the

same simulation for other methods with MD, MH, and BC too and reached the same

results.

Chapter 5. Simulation Results 79

1 2 3 4 5 6
−160

−140

−120

−100

−80

−60

−40

−20

0

20

order

M
S

E
 [d

B
]

linear MD
linear MH
linear BC
linear CXO

Figure 5.28: MSE of linear dynamic AC algorithm versus order (r=0.38).

Now we consider in Fig. 5.28 the MSE of linear dynamic AC algorithm with different

weights versus order. The results are here averaged over 150 different scenarios. It can

be seen that for all methods, the MSE has for third-order its minimum. We see that

for this order the method with CXO has the lowest MSE and the method with MD the

highest. The method with BC has a lower MSE than MH but both behave worse than

the CXO.

5.6 Nonlinear Dynamic Average Consensus Algorithm

We considered the nonlinear dynamic AC algorithm in Section 4.3. In this Section

we determine the parameters of nonlinear function f(u) to achieve the fastest possible

convergence speed. Thereafter, we will study the behavior of nonlinear algorithm for

node measurements from time-varying spatial field. The performance of nonlinear al-

gorithms for time-varying spatial field with different frequencies and orders will be also

discussed.

5.6.1 Determination of Parameters of Nonlinear Function

Similar to Section 5.3.1, we want to determine the parameters θ1 and θ2 of nonlinear

function f(u) (Equation (3.48)). We consider a network with N = 100 nodes in a

random geometric graph with radius r=0.38. The nodes measure from a time-varying

spatial field constructed with Fourier basis.

Chapter 5. Simulation Results 80

MD MH BC CXO

θ1 = 0.36, θ2 = 5 θ1 = 0.85, θ2 = 5 θ1 = 0.2, θ2 = 5 θ1 = 1.0488, θ2 = 1.0488

Table 5.3: θ1 and θ2 for nonlinear dynamic AC algorithm.

In the beginning we try to find the best possible product θ1θ2 which defines the

maximum value of f(u). In Fig. 5.29, we see the MSE versus number of iterations for

different weight matrices and different products of parameters for nonlinear dynamic

AC algorithm. The results are here averaged over 150 different scenarios. For each

colored line, the parameters θ1 and θ2 are chosen so that each of them equals to the

root of their product value. It can be seen that we have the lowest MSE for different

weight matrices with MD, MH, BC, and CXO respectively for line 8 with θ1θ2 = 1.8,

for line 7 with θ1θ2 = 1.7, for line 5 with θ1θ2 = 1, and for line 6 with θ1θ2 = 1.1.

Now our next goal is to find the exact values of θ1 and θ2 in the determined best

possible product of them. We see in Fig. 5.30 the MSE versus number of iterations

for different weight matrices and different values of parameters. The results are here

averaged over 300 different scenarios. Each colored line denotes different values for θ1

and θ2 so that their product equals to the values that we found in Fig. 5.29. To find

the best choices, we search for the line which is faster stabilized. The corresponding

θ1 and θ2 are the best possible choices for their exact values. It can be seen that the

fastest stabilized line with different weight matrices with MD, MH, BC, and CXO is

respectively the line 3 with θ1 = 0.36 and θ2 = 5, the line 4 with θ1 = 0.85 and θ2 = 2,

the line 3 with θ1 = 0.2 and θ2 = 5, and the line 5 with θ1 = 1.0488 and θ2 = 1.0488.

This values can be found also in Tbl. 5.3.

5.6.2 Measurement from Time-Varying Spatial Field

We consider the same network as mentioned in last Section 5.6.1. It can be seen in

Fig. 5.31 the MSE of first-order nonlinear dynamic AC algorithm with parameters

calculated in the last section versus number of iterations. It can be seen in Fig. 5.31(b)

that in the beginning, the MSE decreases for all methods and after some iterations it

stabilizes around a constant value. We see in transient phase that the methods with

MD, MH and, BC are for a short time faster than the method with CXO but after

some iterations the method with CXO will be faster and it stabilizes around a MSE

value which is the lowest in comparison to other methods. The method with CXO has

the best tracking behavior and the lowest MSE. The methods with MD and BC have

together the highest MSE. Between them is the method with MH.

Chapter 5. Simulation Results 81

0 100 200 300 400 500
−35

−30

−25

−20

−15

−10

−5

0

5

10

time

M
S

E
 [d

B
]

1) θ1θ2=0.5

2) θ1θ2=0.9

3) θ1θ2=1.1

4) θ1θ2=1.3

5) θ1θ2=1.5

6) θ1θ2=1.6

7) θ1θ2=1.7

8) θ1θ2=1.8

9) θ1θ2=1.9

(a)

0 100 200 300 400 500
−40

−35

−30

−25

−20

−15

−10

−5

0

5

10

time

M
S

E
 [d

B
]

1) θ1θ2=0.5

2) θ1θ2=0.9

3) θ1θ2=1.1

4) θ1θ2=1.3

5) θ1θ2=1.5

6) θ1θ2=1.6

7) θ1θ2=1.7

8) θ1θ2=1.8

9) θ1θ2=1.9

(b)

0 100 200 300 400 500
−35

−30

−25

−20

−15

−10

−5

0

5

10

time

M
S

E
 [d

B
]

1) θ1θ2=0.5

2) θ1θ2=0.7

3) θ1θ2=0.8

4) θ1θ2=0.9

5) θ1θ2=1

6) θ1θ2=1.1

7) θ1θ2=1.2

8) θ1θ2=1.3

9) θ1θ2=1.4

(c)

0 100 200 300 400 500
−40

−35

−30

−25

−20

−15

−10

−5

0

5

10

time

M
S

E
 [d

B
]

1) θ1θ2=0.5

2) θ1θ2=0.7

3) θ1θ2=0.8

4) θ1θ2=0.9

5) θ1θ2=1

6) θ1θ2=1.1

7) θ1θ2=1.2

8) θ1θ2=1.3

9) θ1θ2=1.4

(d)

Figure 5.29: MSE of nonlinear dynamic AC algorithm versus number of iterations to
define the best multiply of θ1 and θ2 with (a) MD, (b) MH, (c) BC, and
(d) CXO (r=0.38).

Chapter 5. Simulation Results 82

5 10 15 20 25 30
−20

−15

−10

−5

0

5

10

time

M
S

E
 [d

B
]

1) θ1=0.02, θ2=90

2) θ1=0.18, θ2=10

3) θ1=0.36, θ2=5

4) θ1=0.9, θ2=2

5) θ1=1.3416, θ2=1.3416

6) θ1=2, θ2=0.9

7) θ1=5, θ2=0.36

8) θ1=10, θ2=0.18

9) θ1=90, θ2=0.02

(a)

5 10 15 20 25 30 35

−15

−10

−5

0

5

10

time

M
S

E
 [d

B
]

1) θ1=0.02, θ2=85

2) θ1=0.17, θ2=10

3) θ1=0.34, θ2=5

4) θ1=0.85, θ2=2

5) θ1=1.3038, θ2=1.3038

6) θ1=2, θ2=0.85

7) θ1=5, θ2=0.34

8) θ1=10, θ2=0.17

9) θ1=85, θ2=0.02

(b)

10 20 30 40 50 60 70
−25

−20

−15

−10

−5

0

5

10

time

M
S

E
 [d

B
]

1) θ1=0.02, θ2=50

2) θ1=0.1, θ2=10

3) θ1=0.2, θ2=5

4) θ1=0.9, θ2=2

5) θ1=1, θ2=1

6) θ1=2, θ2=0.5

7) θ1=5, θ2=0.2

8) θ1=10, θ2=0.1

9) θ1=50, θ2=0.02

(c)

5 10 15 20 25 30 35 40 45

−20

−15

−10

−5

0

5

10

time

M
S

E
 [d

B
]

1) θ1=0.02, θ2=55

2) θ1=0.11, θ2=10

3) θ1=0.22, θ2=5

4) θ1=0.55, θ2=2

5) θ1=1.0488, θ2=1.0488

6) θ1=2, θ2=0.55

7) θ1=5, θ2=0.22

8) θ1=10, θ2=0.11

9) θ1=55, θ2=0.02

(d)

Figure 5.30: MSE of nonlinear dynamic AC algorithm versus number of iterations to
define θ1 and θ2 for (a) MD, (b) MH, (c) BC, and (d) CXO (r=0.38).

Chapter 5. Simulation Results 83

0 50 100 150 200 250 300 350 400 450 500
−40

−35

−30

−25

−20

−15

−10

−5

0

5

10

time

M
S

E
 [d

B
]

nonlinear MD
nonlinear MH
nonlinear BC
nonlinear CXO

(a)

2 4 6 8 10 12 14
−40

−35

−30

−25

−20

−15

−10

−5

0

5

10

time

M
S

E
 [d

B
]

nonlinear MD
nonlinear MH
nonlinear BC
nonlinear CXO

(b)

Figure 5.31: (a) MSE of first-order nonlinear dynamic AC algorithm versus number of
iterations with r = 0.38 and (b) its zoomed plot for the first 15 iterations.

50 100 150 200 250 300 350 400 450 500
−40

−35

−30

−25

−20

−15

−10

−5

0

5

10

time

M
S

E
 [d

B
]

linear MD
linear MH
linear BC
linear CXO
nonlinear MD
nonlinear MH
nonlinear BC
nonlinear CXO

(a)

2 4 6 8 10 12 14
−40

−35

−30

−25

−20

−15

−10

−5

0

5

10

time

M
S

E
 [d

B
]

linear MD
linear MH
linear BC
linear CXO
nonlinear MD
nonlinear MH
nonlinear BC
nonlinear CXO

(b)

Figure 5.32: (a) MSE of first-order linear and nonlinear dynamic AC algorithms ver-
sus number of iterations with r = 0.38 and (b) its zoomed plot for the
first 15 iterations.

Chapter 5. Simulation Results 84

In Fig. 5.32, we see the MSE of all first-order linear and nonlinear dynamic AC

algorithms with different weight matrices versus number of iterations. It can be seen

that for nonlinear algorithms with MD, MH, and CXO, we achieve a lower MSE than

linear algorithms. Just with BC we have similar results for both linear and nonlinear

algorithms. In transient phase is for a short time the linear algorithm with MH the

fastest method but after some iterations the nonlinear algorithm with CXO will be

faster than other methods and it has the best tracking behavior and the lowest MSE.

Therefore, we achieve the best results for most of the iterations with nonlinear algorithm

with CXO.

5.6.3 Influence of Frequency of Time-Varying Spatial Field on Performance

We know that the nodes measure from a spatial field constructed with Fourier basis so

that Fourier coefficients change with different sinus signals with different amplitudes,

phases but a defined equal frequency. Now we want to consider the influence of different

frequencies on performance of nonlinear algorithm.

We see in Fig. 5.33 the MSE versus number of iterations for different frequencies.

The results are here aveaged over 50 different scenarios. It can be seen that increase of

frequency, causes a higher MSE and also higher fluctuation of it.

It can be seen in Fig. 5.34 the MSE of nonlinear algorithm for different frequencies.

To have a higher precision we increase the number of scenarios and average over 150

different scenarios. It can be seen that with increase of frequency, the MSE of each

method will be stabilized around a higher MSE value. For all of this frequencies, we

have the lowest MSE with CXO and the highest with MD and BC. Between them is

the method with MH.

The MSE of all linear and nonlinear algorithms for different weight matrices and

frequencies, can be seen in Fig. 5.35. It can be seen that with increase of frequency,

the MSE of each weight matrix increases also but they do not change in comparison

with each other, it means that for example the nonlinear method with CXO has for

each frequency the lowest MSE and this remains unchanged over all frequencies.

Chapter 5. Simulation Results 85

0 500 1000 1500
−60

−50

−40

−30

−20

−10

0

10

20

time

M
S

E
 [d

B
]

 f1= 6.6667e−005

f2= 0.00033333

f3= 0.00066667

f4= 0.002

f5= 0.0033333

f6= 0.0066667

Figure 5.33: MSE of first-order nonlinear dynamic AC algorithm with CXO versus
number of iterations for different frequencies (r=0.38).

0 1 2 3 4 5 6 7

x 10
−3

−65

−60

−55

−50

−45

−40

−35

−30

−25

−20

−15

frequency

M
S

E
 [d

B
]

nonlinear MD
nonlinear MH
nonlinear BC
nonlinear CXO

Figure 5.34: MSE of first-order nonlinear dynamic AC algorithm versus frequency
(r=0.38).

Chapter 5. Simulation Results 86

0 1 2 3 4 5 6 7

x 10
−3

−70

−60

−50

−40

−30

−20

−10

frequency

M
S

E
 [d

B
]

linear MD
linear MH
linear BC
linear CXO
nonlinear MD
nonlinear MH
nonlinear BC
nonlinear CXO

(a)

0.5 1 1.5 2 2.5 3 3.5

x 10
−4

−60

−55

−50

−45

−40

−35

frequency

M
S

E
 [d

B
]

linear MD
linear MH
linear BC
linear CXO
nonlinear MD
nonlinear MH
nonlinear BC
nonlinear CXO

(b)

0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
−3

−40

−38

−36

−34

−32

−30

−28

−26

−24

−22

−20

frequency

M
S

E
 [d

B
]

linear MD
linear MH
linear BC
linear CXO
nonlinear MD
nonlinear MH
nonlinear BC
nonlinear CXO

(c)

3 3.5 4 4.5 5 5.5 6 6.5

x 10
−3

−25

−20

−15

−10

frequency

M
S

E
 [d

B
]

linear MD
linear MH
linear BC
linear CXO
nonlinear MD
nonlinear MH
nonlinear BC
nonlinear CXO

(d)

Figure 5.35: (a) MSE of first-order dynamic AC algorithm versus frequency and its
zoom for (b) f1 and f2, (c) f3 and f4, and (d) f5 and f6 (r=0.38).

Chapter 5. Simulation Results 87

5.6.4 Influence of Order of Algorithm on Performance

In last two sections, we considered the first-order nonlinear dynamic AC algorithms,

now we want to study the performance of higher-order algorithms.

We see in Fig. 5.36 the MSE of nonlinear dynamic AC algorithm with CXO versus

number of iterations for different orders. The results are here averaged over 50 different

scenarios. It can be seen that for first- and second-order, the MSE deceases until it

reaches a minimum value and then will be stabilized around this value. For third-

order, the MSE increases in the beginning but after some iterations it starts to decrease

until it reaches its minimum and then will be stabilized around this minimum. For

fourth-, fifth- and sixth-order, the MSE increases also in the beginning and after some

iterations, it starts to decrease until a minimum is reached. Thereafter, in converse to

other algorithms with lower orders, the MSE begins again to increase. It can be seen

that the nonlinear algorithm with CXO has the lowest MSE over different iterations.

We see in Fig. 5.37 the MSE of nonlinear dynamic AC algorithm versus order.

The results are here averaged over 150 different scenarios. It can be seen that for all

nonlinear algorithms with different weight matrices, the lowest MSE is for third-order.

For this order, the method with CXO has the lowest MSE and the methods with MD

and BC the highest. Between them is the method with MH.

In Fig. 5.38, we see a comparison of MSE of all linear and nonlinear algorithms

with different weight matrices and orders. It can be seen as mentioned before, that for

linear and nonlinear algorithms, the lowest MSE can be achieved for third-order and

for the nonlinear algorithm with CXO.

Chapter 5. Simulation Results 88

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−200

−150

−100

−50

0

50

100

time

M
S

E
 [d

B
]

first order
second order
third order
fourth order
fifth order
sixth order

(a)

100 200 300 400
−200

−150

−100

−50

0

50

100

time

M
S

E
 [d

B
]

first order
second order
third order
fourth order
fifth order
sixth order

(b)

Figure 5.36: (a) MSE of nonlinear dynamic AC algorithm with CXO versus number
of iterations for different orders and (b) its zoomed plot for the first 450
iterations (r=0.38).

1 2 3 4 5 6
−160

−140

−120

−100

−80

−60

−40

−20

0

20

order

M
S

E
 [d

B
]

nonlinear MD
nonlinear MH
nonlinear BC
nonlinear CXO

Figure 5.37: MSE of nonlinear dynamic AC algorithm versus order(r=0.38).

Chapter 5. Simulation Results 89

1 2 3 4 5 6
−180

−160

−140

−120

−100

−80

−60

−40

−20

0

20

order

M
S

E
 [d

B
]

linear MD
linear MH
linear BC
linear CXO
nonlinear MD
nonlinear MH
nonlinear BC
nonlinear CXO

(a)

1 2

−110

−100

−90

−80

−70

−60

−50

−40

order

M
S

E
 [d

B
]

linear MD
linear MH
linear BC
linear CXO
nonlinear MD
nonlinear MH
nonlinear BC
nonlinear CXO

(b)

3 4

−165

−160

−155

−150

−145

−140

−135

−130

−125

−120

order

M
S

E
 [d

B
]

linear MD
linear MH
linear BC
linear CXO
nonlinear MD
nonlinear MH
nonlinear BC
nonlinear CXO

(c)

5 6
−70

−60

−50

−40

−30

−20

−10

0

order

M
S

E
 [d

B
]

linear MD
linear MH
linear BC
linear CXO
nonlinear MD
nonlinear MH
nonlinear BC
nonlinear CXO

(d)

Figure 5.38: (a) MSE of dynamic AC algorithm versus order and its zoom for (b)
first- and second-, (c) third- and forth-, and (d) fifth- and sixth-order
(r=0.38).

6
Summary

In this thesis, we considered different wireless sensor networks (WSN). They consist

of low-cost sensors which are distributed over an area. This sensors accomplish sim-

ple computations and local measurements and they can also communicate over wireless

links with their neighbors and exchange different informations. To describe WSN math-

ematically, we model them as graphs. Each node represents a sensor and each edge the

communication link between the sensors. We discussed a distributed averaging method

to estimate a global quantity which is the average value. This distributed averaging al-

gorithm is called as average consensus (AC) algorithm. For AC algorithm we discussed

also different AC weight design methods with maximum degree (MD), Metropolis-

Hasting (MH), best constant (BC), and convex optimization (CXO) weights.

In case of sensors which measure constant values so that this values do not change

over different iterations, we used static AC algorithm. We considered the linear static

AC algorithm and the nonlinear version of it and gave each node a state value which is

initially equal to measured value and converge asymptotically to average value.

For linear static AC algorithm, our numerical results suggest that for the most of

scenarios that we discussed, MH weights have a faster convergence in transient phase

and CXO weights have the best performance in asymptotic phase. The performance of

algorithms is dependent on network structure as like number of nodes and edges. It is

also dependent from the measured values of sensors. For example if the sensors measure

from a spatial field, the method with MH weights has not more in transient phase the

best performance.

For nonlinear static AC algorithms we used a nonlinear function which modulates

the elements of weight matrix in dependence of node states. It causes an improvement

90

Chapter 6. Summary 91

of transient phase of algorithms. The results suggest for our defined scenarios that

the fastest convergence in transient phase is with MH weights and in asymptotic phase

with CXO weights. We came through comparison of linear and nonlinear algorithms to

conclusion that the nonlinear algorithms are superior to linear ones.

We used also the advantages of MH and CXO weights to design a new weight matrix

which is a combination of MH and CXO weights. It leads to an algorithm which has

the best performance in transient and also asymptotic phase. We call this algorithm as

nonlinear static AC algorithm with combination of MH and CXO weights.

In case of sensors which measure time-varying signals, we used dynamic AC algo-

rithm. We considered the linear dynamic AC algorithm and the nonlinear version of

it. It is concluded from results that in our defined scenarios, we have with nonlinear

algorithm with CXO weights the best tracking behavior. We considered also dynamic

AC algorithms with higher-order differences. The third-order dynamic AC algorithm

has in our simulations the best performance in tracking phase. We discussed also that

an increase of frequency of time-varying signals, causes a worse performance.

Bibliography

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network flows - theory, algorithms

and applications. Prentice Hall, 1993.

[2] V. Turau, Algorithmische Graphentheorie (2. Aufl.). Oldenbourg, 2004.

[3] R. Olfati-Saber, J. Fax, and R. Murray, “Consensus and cooperation in networked

multi-agent systems,” Proceedings of the IEEE, vol. 95, pp. 215 –233, jan. 2007.

[4] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,” in Decision

and Control, 2003. Proceedings. 42nd IEEE Conference on, vol. 5, pp. 4997 – 5002

Vol.5, dec. 2003.

[5] L. Georgopoulos and M. Hasler, “Nonlinear average consensus,” in Proceedings of the

2009 International Symposium on Nonlinear Theory and its Applications, (Sapporo,

Hokaido), pp. 10–13, IEICE, 2009.

[6] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex programming,

version 1.21.” http://cvxr.com/cvx, Apr. 2011.

[7] M. Grant and S. Boyd, “Graph implementations for nonsmooth convex programs,”

in Recent Advances in Learning and Control (V. Blondel, S. Boyd, and H. Kimura,

eds.), Lecture Notes in Control and Information Sciences, pp. 95–110, Springer-

Verlag Limited, 2008.

[8] M. Zhu and S. Mart́ınez, “Discrete-time dynamic average consensus,” Automatica,

vol. 46, no. 2, pp. 322–329, 2009.

92

Notation

Throughout this thesis, vectors are denoted by boldface letters. Time dependent quan-

tities are denoted by x[k] in the discrete time. Unless noted otherwise, the meaning of

the following symbols is as stated below.

Symbol Meaning

(i, j) Directed edge

{i, j} Undirected edge

A Adjacency matrix

aij Element of adjacency matrix

B Incidence matrix

bil Element of incidence matrix

D Degree matrix

d Number of connected node neighbors in random regular graph

di Degree

di,in Indegree

di,out Outdegree

E Edges set

f(u) Nonlinear function

g(v) Nonlinear function

G Graph

I Identity matrix

i Node i

J Unit matrix

93

Notation 94

M Number of edges

N Number of nodes

Ni Neighbor set

L Laplacian matrix

lij Element of Laplacian matrix

rasymptotic Asymptotic convergence factor

rstep Per-step convergence factor

s Average value of measurements

s Average vector

s [k] Average signal at time k

s [k] Average signal vector

uij [k] Node states difference at time k

V Nodes set

vij [k] Relative node states difference at time k

W Weight matrix

Wij Element of weight matrix

xi [k] State of node i at time k

x
[l]
i [k] lth-order state of node i at time k

x [k] Node states vector at time k

x[l][k] lth-order node states vector at time k

∆ Maximum degree of graph

∆s[k] State differences

∆[n]s[k] nth-order state differences

λi ith largest eigenvalue

ρ (·) Spectral radius

τasymptotic Asymptotic convergence time

τstep Per-step convergence time

List of Abbreviations

AC Average Consensus

BC Best Constant

CXO ConveX Optimization

MD Maximum Degree

MH Metropolis Hasting

MSE Mean Square Error

WSN Wireless Sensor Networks

END

END

END

END

END

END

END

END

END

END

END

END

END

END

END

END

END

95

