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Kurzfassung

In der vorliegenden Dissertation analysieren wir diverse Parameter in markier-

ten Bäumen (d.h. in Bäumen, in denen die Knoten mit unterschiedlichen Zahlen

beschriftet sind) und allgemeiner in baumartigen Graphen.

In Bäumen betrachten wir zwei Parameter, die schon ausgiebig in endlichen

Zahlenfolgen (vor allem in Permutationen) studiert wurden, nämlich die Anzahl

der Inversionen und die Anzahl der lokalen Minima. Wir analysieren das Verhalten

dieser Kenngrößen in zufälligen Bäumen unterschiedlicher markierter Baumfami-

lien.

Des weiteren betrachten wir eine Klasse von Graphen, die als
”
k-trees“ be-

zeichnet wird. Das sind Graphen mit einer baumartigen Struktur, die man durch

einen randomisierten Graph-Evolutions-Prozess konstruieren kann, und die als ein-

faches Modell für das Wachstum komplexer Netzwerke angesehen werden können.

In diesen Graphen studieren wir Parameter, die bereits in gewöhnlichen Bäumen

analysiert wurden, nämlich die Anzahl der Vorfahren und Nachkommen von Kno-

ten und die Gradverteilung.

Wir erhalten weitgehend sehr präzise Resultate über die exakte Verteilung die-

ser Parameter für jede fixe Größe der betrachteten zufälligen Objekte. Außerdem

können wir das Grenzverhalten jedes dieser Parameter charakterisieren, wenn die

Größe der betrachteten Objekte gegen unendlich geht.

Diese Dissertation basiert auf Forschungsarbeiten, die gemeinsam mit Alois

Panholzer verfasst wurden, siehe [PS10a, PS10b, PS11, BPS]. Die Arbeit wur-

de durch den Österreichischen Wissenschaftsfond FWF, Forschungsprojekt S9608,

“Combinatorial Analysis of Data Structures and Tree-Like Structures”, un-

terstützt.
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Abstract

In this thesis, we analyse various parameters in labelled trees (i.e. in trees in which

the nodes are labelled with distinct integers) and, more generally, in labelled tree-

like graph structures.

In trees, we consider two parameters which have already been extensively stud-

ied in finite sequences (especially in permutations), namely the number of inver-

sions and the number of local minima. We analyse the behaviour of these quantities

in random trees of different labelled tree families.

Moreover, we consider a class of graphs known as k-trees. These are graphs

with a tree-like structure, which can be constructed by a certain randomised graph

evolution process, and which can be seen as a simple model for the growth of

complex networks. In these graphs, we study parameters which have already been

analysed in ordinary trees, namely the number of ancestors and descendants of

nodes and the degree distribution.

To a large extent we obtain very precise results on the exact distribution of

these quantities if the size of the considered random objects is fixed. Apart from

that, we can characterize the limiting behaviour of each of these quantities as the

size of the considered objects tends to infinity.

This thesis is based on research papers jointly written with Alois Panholzer,

see [PS10a, PS10b, PS11, BPS]. The research has been supported by the Austrian

Science Foundation FWF, research project S9608, “Combinatorial Analysis of Data

Structures and Tree-Like Structures”.
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“Hannes” Morgenbesser, who never let me run out of sweets and assured that

my caffeine level was always high enough. Apart from that, I should note that

Corollary 5.3.1 is based on an idea by Hannes.

Moreover, I want to thank my parents, who financed my diploma studies and

thus made it possible for me to finance my Ph.D. studies myself. Last but not least,

I’d like to put forward my girlfriend Sabine Palatin, who provided the necessary

non-mathematical contrast to my studies, and yet always smiles and nods when I

try to tell her about another interesting mathematical fact :-).

iii



Contents

1 Introduction 1

2 Preliminaries 4

2.1 Generating functions . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Probabilistic tools . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Inversions in labelled tree families 16

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Simply generated trees . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 Proof: Global behaviour . . . . . . . . . . . . . . . . . . . . . . . 25

3.5 Proof: Local behaviour . . . . . . . . . . . . . . . . . . . . . . . . 34

4 Increasing k-trees 43

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Combinatorial description . . . . . . . . . . . . . . . . . . . . . . 45

4.3 The number of increasing k-trees . . . . . . . . . . . . . . . . . . 46

4.4 Relation to the considered growth rules . . . . . . . . . . . . . . . 50

4.5 Considered quantities . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.6 Ancestors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.7 Descendants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.8 Degree distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5 Local minima in trees 101

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.3 Proofs of the results . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.4 Relation to up-down alternating trees . . . . . . . . . . . . . . . . 115

iv



A Probability distributions 121

A.1 Gamma distribution, exponential distribution . . . . . . . . . . . 121

A.2 Beta distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

A.3 Negative binomial distribution, geometric distribution . . . . . . . 122

A.4 Normal distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 122

A.5 Rayleigh distribution . . . . . . . . . . . . . . . . . . . . . . . . . 123

A.6 Airy distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

B The method of characteristics 124

C Difference calculus 126

Notation 128

List of Figures 131

Bibliography 132

Lebenslauf 137

v



CHAPTER 1
Introduction

Trees appear in various different contexts, in practical applications as well as in

theoretical considerations. For example, they appear as data structures in com-

puter science, as game models in game theory, and in biology they are used to

represent evolutionary relationships among various species. It is therefore not sur-

prising that trees themselves are a major subject of current research. In this thesis,

we present our contribution to the topic, namely the analysis of some parameters

in trees and, more generally, in certain tree-like structures known as k-trees. In

the following, we give a short overview of our work.

In Chapter 2, we collect the preliminaries which will be needed throughout

this thesis. Since almost all of our results will be obtained by means of generating

functions, we introduce the required tools and auxiliary results which will be used

when working with those functions, such as the symbolic method and singularity

analysis. Moreover, we collect some probabilistic tools, namely some facts on

probability and moment generating functions and criteria for the weak convergence

of random variables.

In Chapter 3, we study the number of inversions in random trees. The no-

tion of inversions was originally introduced for permutations p1p2 . . . pn, where an

inversion denotes a pair of entries (pi, pj) such that i < j and pi > pj. The num-

ber of inversions in permutations appears very naturally in the analysis of certain

sorting algorithms, since it counts the number of pairs whose relative order has

to be changed in order to obtain the increasingly sorted sequence 1 2 3 . . . n. In

analogy to such increasing sequences, one can define increasing trees to be those

rooted labelled trees in which the labels along each path starting at the root form

1



Introduction

an increasing sequence. Moreover, in analogy to inversions in permutations, an

inversion in a tree denotes a pair of labels (ℓi, ℓj), such that ℓi lies on the path from

ℓj to the root and ℓi > ℓj. The number of inversions then measures the degree to

which a tree is not increasing.

In our studies, we determine the limiting behaviour of the total number of

inversions in a random tree, where we use as tree model any family of the large

class of so-called simply generated tree families. Ordered and unordered trees,

d-ary trees, cyclic trees, and Motzkin trees are some well-known instances of this

class. Apart from the total number of inversions, we also study the number of

inversions induced by a specific label j, i.e. the number of inversions of the form

(i, j), where i lies on the path from node j to the root and i > j. We fully

characterize the limiting behaviour of this quantity in a random tree of size n of a

simply generated tree family, not only for fixed j but also under the assumption

that j = j(n) grows with n. Moreover, we compute the exact distribution of this

parameter for fixed j and n in some special instances.

In Chapter 4, we consider so-called increasing k-trees. These are graphs with

a tree-like structure, which can be constructed by a certain randomised graph

evolution process, and which can be seen as a simple model for the growth of

complex networks.

We analyse different parameters in these k-trees, which are based on “inheri-

tance relations” between the nodes in these growing networks. One such parameter

is the number of descendants of a node v, i.e. the number of nodes which have

joined the network directly or indirectly via v. Another considered parameter is

the number of ancestors of a node v, i.e. the number of nodes of which v is a

descendant. Moreover, we analyse the node degree of a node v, i.e. the number of

nodes which are directly connected to v. This will also give us a corollary on the

so-called clustering coefficient (which is considered as an important parameter in

the study of real-world networks) in increasing k-trees.

We study all these parameters in three different families of increasing k-trees,

which are constructed by different rules for the evolution process. The first rule

may be called “uniform attachment” and assumes that for every node that newly

joins the network each of the possible locations to which it can connect is chosen

equally likely. For the second rule, which is called “preferential attachment” (or

“success breeds success”), one assumes that a possible location which has already

been chosen by many nodes will have a higher probability to acquire even more

new nodes. The third rule assumes a “saturation property”, which means that

there is a maximum number of nodes which can connect to each location, and

2



Introduction

the probability that a location is chosen by a new node decreases with increasing

saturation.

For each of these growth rules we compute the exact distribution of all men-

tioned parameters both for a fixed node v and a randomly chosen node, and

additionally determine their limiting behaviour.

In Chapter 5, we consider another quantity in trees, namely the number of

local minima. A local minimum in a tree is a node v with label l(v) with the

property that the label l(w) of each neighbour (i.e. adjacent node) w of v satisfies

l(w) > l(v). Like the number of inversions, also this parameter has already been

considered for permutations, and it is natural to extend this study to trees. As

tree models we consider both ordered and unordered trees and study the number

of local minima in a random tree of size n of the respective family. We both

characterize the exact distribution of this quantity for fixed n and its limiting

behaviour for n → ∞.

Apart from these probabilistic considerations, we also show that there are inter-

esting connections between the number of trees of size n with m local minima and

certain other combinatorial quantities involving the same tree families, namely the

number of unordered trees of size n with m leaf nodes, and the number of so-called

up-down alternating trees of size n in the respective tree family.

3



CHAPTER 2
Preliminaries

2.1 Generating functions

Throughout this thesis we will work with generating functions : If (an)n≥0 is a

sequence of real numbers, then the (ordinary) generating function of (an)n≥0 is

the (formal) power series

A(z) =
∑

n≥0

anz
n. (2.1)

Furthermore, the (formal) power series

Â(z) =
∑

n≥0

an
zn

n!
, (2.2)

is called exponential generating function of the sequence (an)n≥0.

2.1.1 Combinatorial constructions and the symbolic

method

In our studies, the numbers an in (2.1) and (2.2) will mostly be given by the sizes

an = |An| of sets An of combinatorial objects. The symbolic method from [FS09]

is a powerful tool in this context, which allows to translate certain combinatorial

constructions directly to equations for generating functions.

We consider classes of combinatorial objects, in which each object α has a size

|α| (which is just a natural number assigned to that object, e.g., if the considered

4



2.1. Generating functions

objects are graphs, then |α| could for example denote the number of nodes of

α). If A is such a class, we denote the class of all objects of A of size n by An.

Furthermore we assume that the objects in A are labelled, i.e. that each object

of size n of A contains n “atoms” (e.g., the nodes in a graph), onto which the

numbers 1, . . . , n are distributed (in [FS09], such objects are called well-labelled).

We sometimes also consider objects in which the atoms are labelled with arbitrary

distinct integers. These objects will then be called weakly labelled objects.

The exponential generating function A(z) associated with the class A is the

exponential generating function of the sequence (|An|)n≥0, i.e.

A(z) =
∑

n≥0

|An|
zn

n!
=
∑

α∈A

z|α|

|α|! .

In the following, we collect some of the constructions from [FS09] (called “ad-

missible constructions”) which make it possible to build complex labelled classes

from simpler ones, and which allow for a direct translation into equations for the

associated exponential generating functions:� Disjoint union, which we denote by ∪̇ : If A and B are two disjoint labelled

classes, then A ∪̇ B just denotes the union (in the set-theoretic sense) of A
and B. However, ∪̇ can also be defined for not necessarily disjoint classes: If

A and B are two arbitrary labelled classes, then A ∪̇ B denotes the union of

two disjoint copies of A and B. Such disjoint copies can, e.g., be constructed

by choosing two distinct colors, and painting the elements of A with the first

color, and the elements of B with the second one.� Labelled product: The labelled product β ∗ γ of two labelled objects β and

γ is a set of objects (each of size |β| + |γ|), defined by

β ∗ γ := {(β ′, γ′) | (β ′, γ′) is well-labelled, ρ(β ′) = β, ρ(γ′) = γ} ,

where ρ relabels each weakly labelled object of size n such that exactly the

integers {1, . . . , n} are used, while preserving the relative order of all labels.

The labelled product B ∗ C of two labelled classes B and C is defined by

B ∗ C :=
⋃

β∈B,γ∈C
(β ∗ γ).

5



2.1. Generating functions� Sequences: We let Seq (B) denote the sequence class of B, which is defined

by

Seq (B) := {ǫ} ∪̇ B ∪̇ B ∗ B ∪̇ B ∗ B ∗ B ∪̇ . . . =
⋃

k≥0

Bk,

where ǫ denotes the empty sequence.� Sets: We let Set (B) denote the set class of B, which is defined as the

quotient Seq (B) /R, where the equivalence relation R identifies sequences

of equal length whenever the components of one are a permutation of the

components of the other.� Cycles: We let Cyc (B) denote the cycle class of B, which is defined as

the quotient (Seq (B) \ {ǫ}) /R, where the equivalence relation R identifies

sequences of equal length whenever one can be obtained from the other by

cyclically shifting the components of the other (i.e. (β1, . . . , βk)R(γ1, . . . , γℓ))

iff (βs, . . . , βk, β1, . . . , βs−1) = (γ1, . . . , γℓ) for some s).� Boxed product: The boxed product B�∗C denotes the subclass of B∗C which

consists of those elements where the smallest label lies in the B component.

The following theorem states how the combinatorial constructions above can

directly be translated to equations for the associated generating functions:

Theorem 2.1.1 (Symbolic method [FS09]). Let A, B, C be classes of labelled

objects, and A(z), B(z), C(z), respectively, the associated exponential generating

functions. Then the following holds:

If A = B ∪̇ C, then A(z) = B(z) + C(z),

if A = B ∗ C, then A(z) = B(z) · C(z),

if A = Seq (B) and B0 = ∅, then A(z) =
1

1− B(z)
,

if A = Set (B) and B0 = ∅, then A(z) = exp (B(z)) ,

if A = Cyc (B) and B0 = ∅, then A(z) = log

(
1

1− B(z)

)

,

if A = B� ∗ C, then DzA(z) = (DzB(z)) · C(z),

where Dz :=
∂
∂z
.

6



2.1. Generating functions

However, in our studies we will mostly be interested in enumerating combina-

torial objects of a class A not only according to their size but in addition according

to some parameter χ = (χ1, . . . , χd), which is just a function which maps every

element α ∈ A to a d-tuple χ(α) = (χ1(α), . . . , χd(α)) of natural numbers (in our

studies, we will mostly have d = 1).

Given a combinatorial class A and a d-dimensional parameter χ on A, the

exponential generating function of the pair 〈A, χ〉 is defined by

A(z,u) :=
∑

α∈A
uχ(α) z

|α|

|α|! ,

where u := (u1, . . . , ud) and u(k1,...,kd) := uk1
1 · · ·ukd

d . One also says that the variable

z in A(z,u) marks the size whereas uj marks χj.

When working with such multivariate generating functions, one can use an

extension of the symbolic method. We restrict our attention to so-called compatible

parameters, that is, parameters whose values are invariant under order-preserving

relabellings of objects (i.e. parameters which do not depend on the absolute value

of labels, but may for example depend on their relative order). Moreover, we will

only consider inherited parameters: Given three pairs of combinatorial classes with

d-dimensional parameters 〈A, χ〉, 〈B, ξ〉, and 〈C, ζ〉, the parameter χ is said to be

inherited in the following cases:� If A = B ∪̇ C, then χ is inherited from ξ and ζ iff

χ(α) =

{

ξ(α), if α ∈ B,
ζ(α) if α ∈ C,

for all α ∈ A.� If A = B ∗ C, then χ is inherited from ξ and ζ iff its value is obtained

additively from ξ and ζ , i.e.

χ((β, γ)) = ξ(β) + ζ(γ),

for all (β, γ) ∈ A.� If A is Seq (B), Set (B), or Cyc (B), then χ is inherited from ξ iff its value

is obtained additively from the values of ξ on components.

Using the above definitions, the statement of Theorem 2.1.1 can in the case of

compatible inherited parameters be directly extended to multivariate generating

functions:

7



2.1. Generating functions

Theorem 2.1.2 (Symbolic method with inherited parameters [FS09]). Let 〈A, χ〉,
〈B, ξ〉, and 〈C, ζ〉 be three combinatorial classes with d-dimensional parameters. If

χ is inherited from ζ and (as the case may be) from ζ, then the implications in

Theorem 2.1.1 hold analogously for the associated multivariate generating functions

A(z,u), B(z,u), and C(z,u).

2.1.2 Operators

In order to simplify notation when working with power series, we define the fol-

lowing operators:� The operator Nz evaluates G(z) at z = 0, i.e. NzG(z) := G(0).� The operator Uz evaluates G(z) at z = 1, i.e. UzG(z) := G(1).� Dz :=
∂
∂z

is the differential operator with respect to z.� The operator Z just multiplies a power series with z, i.e. ZG(z) := zG(z)

(for variables other than z we will never use an operator of this kind).

Note that we mark the operators N, U, and D with the corresponding variable

as a subindex, such that we can savely apply them to multivariate power series

(e.g. UqG(z, q) := G(z, 1)).

2.1.3 Extraction of coefficients

Having computed the generating function A(z) associated to some combinatorial

class A, one is of course interested in the coefficients of A(z). Throughout this

thesis, we denote by [zn] the operator which extracts the coefficient of zn from a

(formal) power series, i.e. [zn]A(z) = an, if A(z) =
∑

k≥0 akz
k. If the radius of

convergence of a power series A(z) is positive, then the coefficient [zn]A(z) can in

principle be obtained from Cauchy’s integral formula,

[zn]A(z) =
1

2πi

∮
A(z)

zn+1
dz, (2.3)

where the integral is taken in counter-clockwise direction along a simple closed

curve around the origin which lies completely inside the circle of convergence of

A(z). However, in our studies we will mostly be able to extract coefficients by

8



2.1. Generating functions

using one of the following well-known power series expansions,

(1 + z)α =
∑

n≥0

(
α

n

)

zn,
1

(1− z)α+1
=
∑

n≥0

(
n+ α

n

)

zn,

exp (z) =
∑

n≥0

zn

n!
, log

(
1

1− z

)

=
∑

n≥1

zn

n
,

and use (2.3) only in order to arrive at one of these expansions by applying suitable

substitutions. Furthermore, the following bivariate generating function, which

involves the (unsigned) Stirling numbers of the first kind
[
i
j

]
, will occur (cf., e.g.,

[FS09]):

1

(1− z)v
=
∑

i≥0

i∑

j=0

[
i

j

]
zi

i!
vj, (2.4)

On some occasions, we will also deal with generating functions T (z) which are

implicitly given by a functional equation of the form T (z) = zϕ(T (z)). In order

to extract coefficients of such a function, the following theorem proves useful:

Theorem 2.1.3 (Lagrange’s inversion formula [FS09]). Let T (z) and ϕ(x) be

formal power series which satisfy T (z) = zϕ(T (z)) and [x0]ϕ(x) 6= 0. Then one

has

[zn]f(T (z)) =

{
1
n
[T n−1]f ′(x)(ϕ(T ))n, n > 0

[T 0]f(T ), n = 0,

for every formal power series f(x).

2.1.4 Singularity analysis

Singularity analysis is a technique which allows to extract asymptotic expansions

of the coefficients of power series which have isolated singularities on the boundary

of their disc of convergence. If the power series under consideration has a unique

dominant singularity ρ, one may of course use the scaling rule

[zn]f(z) = ρ−n[zn]f(ρz),

and hence it is sufficient to consider the case where the singularity is at 1. In this

case, the following theorem applies:

Theorem 2.1.4 (Big-Oh transfer [FO90]). Let R > 1 and 0 < φ < π
2
, and assume

that f(z) is analytic in the domain

∆ = ∆(φ,R) := {z | |z| < R, z 6= 1, |Arg(z − 1)| > φ}

9



2.1. Generating functions

Figure 2.1: Sketch of a ∆-domain.

(see Figure 2.1). Furthermore, assume that, as z → 1 in ∆,

f(z) = O(|1− z|α) ,

for some constant α ∈ R. Then, as n → ∞,

[zn]f(z) = O
(
n−α−1

)
.

A direct consequence of this is the following:

Theorem 2.1.5 (Singularity analysis [FO90]). Assume that f(z) is analytic in

the domain ∆ from Theorem 2.1.4, and that, as z → 1 in ∆,

f(z) =

m∑

j=0

cj(1− z)αj +O
(
|1− z|A

)
,

for real numbers α0 ≤ α1 ≤ . . . ≤ αm < A and a sequence of complex numbers

(cj)0≤j≤m. Then, as n → ∞,

[zn]f(z) =

m∑

j=0

cj

(
n− αj − 1

n

)

+O
(
n−A−1

)
.

A similar theorem applies for functions with a finite number of dominant sin-

gularities, in which case one can analyse each singularity separately and then add

up all contributions. For details, we refer to [FS09].

10



2.2. Probabilistic tools

In our studies we will sometimes need to differentiate functions of which only

singular expansions are available. On these occasions, the following theorem comes

in handy:

Theorem 2.1.6 (Differentiation of singular expansions [FFK05]). Assume that

f(z) satisfies the conditions of Theorem 2.1.5. Then, for each r ∈ N, the r-th

derivate f (r)(z) of f(z) is also analytic in ∆ and admits an expansion obtained

through term-by-term differentiation:

f (r)(z) = (−1)r
m∑

j=0

cj
Γ(αj + 1)

Γ(αj + 1− r)
(1− z)αj−r +O

(
|1− z|A−r

)
.

2.2 Probabilistic tools

In this section we collect some probabilistic tools (cf., e.g., [Bil84]) which we will

use throughout this thesis.

2.2.1 Probabilities, moments, and cumulants

LetX be a discrete random variable supported by N0. Then we define the following

three generating functions which are closely related to the distribution of X :� The function pX(z) := E
(
zX
)
is called probability generating function of

X . This name derives from the fact that pX(z) is the (ordinary) generating

function of the sequence of probabilities (P{X = ℓ})ℓ≥0, i.e.

pX(z) =
∑

ℓ≥0

P{X = ℓ} zℓ.

If pX(z) exists in a neighbourhood of z = 1, then the factorial moments

E(Xn) of X (where x0 := 1, and xn := x(x − 1) · · · (x − n + 1), for n ≥ 1)

can be computed using pX(z), via

E(Xn) = UzD
n
zpX(z). (2.5)� The moment generating function mX(t) of X is defined by

mX(t) := E
(
etX
)
= pX(e

t) =
∑

ℓ≥0

P{X = ℓ} etℓ.

11



2.2. Probabilistic tools

Its name is justified by the fact that, if mX(t) exists in a neighbourhood of

t = 0, then

NtD
n
tmX(t) = E(Xn) ,

that is,

mX(t) =
∑

ℓ≥0

E
(
Xℓ
) tℓ

ℓ!
,

i.e. mX(t) is the exponential generating function of the sequence of moments

(E
(
Xℓ
)
)ℓ≥0.� The function

CX(t) := log(mX(t)) = log
(
E
(
etX
))

,

is called cumulant generating function of X . The coefficient κℓ(X) in the

expansion

CX(t) =
∑

ℓ≥1

κℓ(X)
tℓ

ℓ!
,

is the ℓ-th cumulant of X . In particular, the first two cumulants of X are the

expected value and the variance ofX , respectively, i.e. one has κ1(X) = E(X)

and κ2(X) = V(X).

For the sum X + Y of two independent random variables X and Y , there

holds κℓ(X + Y ) = κℓ(X)+ κℓ(Y ) for all ℓ ∈ N. Moreover, if c is a constant,

one has κℓ(cX) = cℓκℓ(X) for all ℓ ∈ N.

We will use the following relations between (ordinary) moments, factorial moments,

and cumulants:� The ordinary moments E(Xr) of every random variable X can of course be

computed by a linear combination of its factorial moments E
(
Xj
)
. More

precisely,

E(Xr) =
r∑

j=0

{
r

j

}

E
(
Xj
)
, (2.6)

where the numbers
{
r
j

}
are the Stirling numbers of the second kind.� Each cumulant κℓ(X) of X can be expressed as a polynomial in the moments

E(X) ,E(X2) , . . . ,E
(
Xℓ
)
, and vice versa. For details, we refer to [Bil84].
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2.2.2 Convergence in distribution

Let (Xn)n∈N be a sequence of random variables, and (Fn(x))n∈N the respective

distribution functions. Furthermore, let X be another random variable with dis-

tribution function F (x). The sequence (Xn)n∈N is said to converge in distribution

to X iff

lim
n→∞

Fn(x) = F (x),

for each x ∈ R at which F is continuous. We then also say that (Xn)n∈N converges

weakly to X , and we write

Xn
(d)−→ X.

2.2.2.1 Tools for proving convergence in distribution

In our studies we will mainly use the method of moments in order to show con-

vergence in distribution of a sequence (Xn)n∈N of random variables to another

random variable X , i.e. we will show that for all r ∈ N the sequence of r-th

moments (E(Xr
n))n∈N converges to E(Xr). Given that the distribution of X is

uniquely determined by its moments, the convergence in distribution then follows

directly from the following theorem:

Theorem 2.2.1 (Fréchet and Shohat [Loè77]). Let X and X1, X2, . . . be random

variables. If limn→∞ E(Xr
n) = E(Xr) for all r ∈ N and the sequence of moments

(E(Xr))r∈N uniquely determines the distribution of X, then Xn
(d)−→ X.

Regarding the question whether a sequence of moments uniquely determines a

distribution, we will make use of the following sufficient condition:

Lemma 2.2.2 (Uniqueness of distribution [Bil84]). Let µ be a probability measure

on R having finite moments αk of all orders. If the power series
∑

k≥0 αk
tk

k!
has

a positive radius of convergence, then µ is the only probability measure with the

sequence of moments (αk)k∈N.

In our studies, we will mostly show the convergence of moments in an indirect

way, by using one of the following two ideas:� Since our studies will mainly be based on probability generating functions, it

will often be easier to study the asymptotics of the factorial moments E(Xr
n)

(which can be obtained from the probability generating function of Xn using

equation (2.5)) instead of studying the ordinary moments E(Xr
n) directly.

13



2.2. Probabilistic tools

But, as already noted, the ordinary and factorial moments are related by

equation (2.6) (where, in particular,
{
r
r

}
= 1). Hence, if we have E(Xr

n) ≫
E

(

X
r−1
n

)

for all r ∈ N (which is always satisfied in our studies), it follows

that the ordinary and factorial moments are asymptotically equivalent, i.e.

for all r ∈ N holds

E(Xr
n) = E(Xr

n) +O
(

E

(

X
r−1
n

))

, for n → ∞.

We will make frequent use of this fact.� Since the cumulants and moments of each random variable X are polyno-

mially related (see Section 2.2.1), the following holds: (E(Xr
n))n∈N converges

to E(Xr) for all r ∈ N iff (κr(Xn))n∈N converges to κr(X) for all r ∈ N.

Moreover, the sequence of moments (E(Xr))r∈N uniquely determines the dis-

tribution of X iff the sequence of cumulants (κr(X))r∈N does. Hence, instead

of proving the convergence of all moments, one can always choose to show

the convergence of all cumulants in order to apply Theorem 2.2.1. This is

particularly useful for proving convergence to the normal distribution, which

has very simple cumulants (cf. Appendix A.4).

Another useful theorem, which can often be applied in order to show that

a sequence of discrete random variables is after standardization asymptotically

normally distributed, is the following:

Theorem 2.2.3 (Hwang’s quasi-powers theorem [FS09]). Let (Xn)n∈N be a se-

quence of discrete random variables supported by N0, with probability generating

functions (pn(v))n∈N. Assume that, uniformly in a fixed complex neighbourhood of

v = 1, for sequences βn, κn → ∞, there holds

pn(v) = A(v) · B(v)βn

(

1 +O
(

1

κn

))

,

where A(v), B(v) are analytic at v = 1 and A(1) = B(1) = 1. Assume finally that

B(v) satisfies the so-called “variability condition”,

B′′(1) +B′(1)− B′(1)2 6= 0.

Under these conditions, the mean and variance of Xn satisfy

E(Xn) = βnB
′(1) + A′(1) +O

(
κ−1
n

)
,

V(Xn) = βn(B
′′(1) +B′(1)−B′(1)2) + A′′(1) + A′(1)−A′(1)2 +O

(
κ−1
n

)
.
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Furthermore, Xn is after standardization asymptotically normally distributed, with

speed of convergence O
(

κ−1
n + β

−1/2
n

)

, i.e.

P

{

Xn − E(Xn)
√

V(Xn)
≤ x

}

= Φ(x) +O
(

1

κn
+

1√
βn

)

,

where Φ(x) is the distribution function of the standard normal distribution.

We close this section with the following lemmata, which will be valuable when

deriving some of our limiting distribution results:

Lemma 2.2.4 (Stirling’s formula [AS64]). For fixed ǫ > 0, the Gamma function

Γ(z) satisfies, in the range |Arg(z)| < π
2
− ǫ,

log (Γ(z)) =

(

z − 1

2

)

log z − z +
log 2π

2
+O

(
1

|z|

)

, for |z| → ∞.

From this, one gets the following useful lemma:

Lemma 2.2.5. For fixed α and β, there holds

Γ(n + α)

Γ(n + β)
= nα−β

(

1 +O
(
1

n

))

, for n → ∞ in N.

Moreover, if only β is fixed, the O-bound is uniform for bounded α.
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CHAPTER 3
Inversions in labelled tree families

3.1 Introduction

In this chapter we consider rooted trees T in which the nodes are labelled with

distinct integers of {1, . . . , |T |}, where |T | is the size (i.e. the number of nodes) of

T . An inversion in a tree T is a pair (i, j) of nodes (we will always identify each

node with its label), such that i > j and i lies on the unique path from the root

node root(T ) of T to j (see Figure 3.1 for an example). Let us denote by inv(T )

the number of inversions in T .

In [GYS99, MR68] studies concerning the number of inversions in some impor-

tant combinatorial tree families T have been given by introducing so-called tree

inversion polynomials. They shall be defined as follows:

Jn(q) :=
∑

T∈T :|T |=n

qinv(T ).

Actually, unlike in our studies, in [GYS99, MR68] the authors exclusively consid-

ered trees with the root node labelled 1. Thus, in order to avoid confusion, we

introduce also the slightly modified polynomials

Ĵn(q) :=
∑

T∈T :
|T |=n and root(T )=1

qinv(T ).

For unordered trees (cf. Section 3.2.1), Mallows and Riordan [MR68] could give

an explicit formula for a suitable generating function of the corresponding tree
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3.1. Introduction

Figure 3.1: A tree with 3 inversions.

inversion polynomials:

exp

(
∑

n≥1

(q − 1)n−1Ĵn(q)
tn

n!

)

=
∑

n≥0

q(
n
2) t

n

n!
.

Gessel et al. [GYS99] considered Ĵn(q) for three other tree families:� Ordered trees (we will formally define this tree family later, cf. Section 3.2.1)� Cyclic trees (also, cf. Section 3.2.1)� Plane trees: these are equivalence classes of ordered trees, where rearrange-

ments of the subtrees of the root node lead to a tree of the same class.

Unlike for unordered trees, no explicit formulæ for a suitable generating function

of the tree inversion polynomial of the latter tree families could be given, but the

authors provide exact and asymptotic results for the evaluations of Ĵn(q) for the

special values q = 0, 1,−1. In particular, Ĵn(0) enumerates so-called increasing

trees (cf., e.g., [BFS92, PP07]), i.e. trees, where each child node has a label larger

than its parent node.

Besides these studies it seems natural to ask, for a given combinatorial family

T of trees, questions about the “typical behaviour” of the number of inversions in a

tree T ∈ T of size n. In a probabilistic setting we may introduce a random variable

In, which counts the number of inversions of a random tree of size n, i.e. a tree

chosen uniformly at random from all trees of the family T of size n. Of course, this

more probabilistic point of view and the before-mentioned combinatorial approach

are closely related. Let us denote by Tn the number of trees of T of size n. Then

there holds

Jn(q) = Tn

∑

k≥0

P{In = k} qk,

17



3.1. Introduction

i.e. the probability generating function pn(q) :=
∑

k≥0 P{In = k}qk of the random

variable In is simply given by pn(q) =
Jn(q)
Tn

, and it holds Tn,k = TnP{In = k} for

the number Tn,k := [qk]Jn(q) of trees of size n with exactly k inversions.

The main concern of this chapter is to describe the asymptotic behaviour of

the random variable In for various important tree families by proving limiting

distribution results. In our studies of In we use as tree-models simply generated

tree families (see Section 3.2), which are tree families in which each tree T has a

weight w(T ), and when speaking about a random tree of size n we assume that

each tree T in T of size n is chosen with a probability proportional to its weight.

For many important tree families T (such as binary trees, ordered trees, unordered

trees, cyclic trees, cf. Section 3.2.1) the total weight

Tn :=
∑

T∈T :
|T |=n

w(T ),

of all trees of size n is a natural number and can be intepreted as the number of

trees of size n in T . In these cases, choosing each (weighted) tree with a probability

proportional to its weight corresponds to choosing each of the Tn trees of T of size

n with the same probability 1
Tn
.

As a main result we can show, provided the degree-weight sequence satisfies

certain mild growth conditions (which are all satisfied for the before-mentioned

tree families), that, after a suitable normalization of order n
3
2 , In converges in dis-

tribution to the Airy distribution (see Appendix A.6 for some details on this distri-

bution). For the particular tree family of unordered trees this limiting distribution

result for In has already been shown by Flajolet et al. in [FPV98] during their

analysis of a linear probing hashing algorithm by using close relations between the

insertion costs of this algorithm and the number of inversions in unordered trees.

We note that we show convergence in distribution, thus obtaining asymptotic re-

sults for P{In ≤ xn
3
2} or alternatively for the sums

∑

k≤xn
3
2
Tn,k, with x ∈ R+,

but we do not obtain local limit laws, i.e. results concerning the behaviour of the

probabilities P{In = k} or the numbers Tn,k itself.

Besides this “global study” of the number of inversions in a random tree we are

additionally interested in the contribution to this quantity induced by a specific

label j, i.e. in a “local study”. To do this we introduce random variables In,j,

which count the number of inversions of the kind (i, j), with i > j an ancestor of

j, in a random tree of size n. Of course, one could also introduce “local inversion

polynomials” Jn,j(q) := Tn

∑

k≥0 P{In,j = k}qk. Note that In =
∑n

j=1 In,j, but
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3.2. Simply generated trees

the random variables In,j are highly dependent. In our studies we describe the

asymptotic behaviour of the random variable In,j, depending on the growth of

j = j(n) with respect to n. In particular, we obtain that for the main portion of

labels, i.e. for j ≪ n − √
n, In,j converges, after suitable normalization of order√

n, in distribution to a Rayleigh distribution (cf. Section A.5). If n − j ∼ ρ
√
n

or n− j = o(
√
n) then the behaviour changes. Apart from asymptotic results, we

can for two tree families, namely ordered and unordered trees, also give explicit

formulæ for the probabilities P{In,j = k}.
We remark that the asymptotic results obtained for inversions in trees are com-

pletely different from the corresponding ones for permutations of a set {1, 2, . . . , n}.
It is well-known (see, e.g., [LP03]) that the total number of inversions in a random

permutation of size n is asymptotically normally distributed with expectation and

variance of order n2 and n3, respectively. Trivially, the number of inversions of the

kind (i, j), with i > j an element to the left of j, in a random permutation of size

n is uniformly distributed on {0, 1, . . . , n− j}.

3.2 Simply generated trees

Families of simply generated trees were introduced by Meir and Moon in [MM78].

Many important combinatorial tree families such as, e.g., labelled unordered trees

(also called Cayley trees), binary trees, labelled cyclic trees (also called mobile

trees) and ordered trees (also called planted plane trees), can be considered as

special instances of simply generated trees. In the following, we recall how simply

generated tree families are defined in the labelled context, and then collect some

well-known auxiliary results. In the following, the term “tree” always denotes a

labelled tree if not otherwise stated.

A class T of (labelled) simply generated trees is defined in the following way:

One chooses a sequence (ϕℓ)ℓ≥0 (the so-called degree-weight sequence) of nonneg-

ative real numbers with ϕ0 > 0. Using this sequence, the weight w(T ) of each

ordered tree (i.e. each rooted tree, in which the children of each node are ordered

from left to right) is defined by

w(T ) :=
∏

v∈T
ϕd(v),

where v ∈ T means that v is a node of T and d(v) denotes the number of children of

v (i.e. the out-degree of v). The family T associated to the degree-weight sequence

(ϕℓ)ℓ≥0 then consists of all trees T together with their weights.
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3.2. Simply generated trees

We let

Tn :=
∑

|T |=n

w(T )

denote the the total weight of all trees of size n in T , and let T (z) be the exponential

generating function of (Tn)n≥1, i.e.

T (z) :=
∑

n≥1

Tn
zn

n!
.

Then it follows that T (z) satisfies the (formal) functional equation

T (z) = zϕ(T (z)), (3.1)

where the degree-weight generating function ϕ(t) is defined via ϕ(t) :=
∑

ℓ≥0 ϕℓt
ℓ.

We remark that each simply generated tree family T can also be defined by a

formal equation of the form

T = ©∗ ϕ(T ), (3.2)

where © denotes a node, ∗ is the combinatorial product of labelled objects, and

ϕ(T ) is a certain substituted structure. Hence, the functional equation (3.1) can

be obtained directly from the combinatorial construction of T using the symbolic

method (cf. Section 2.1.1). Furthermore, as already noted in the introduction

of this chapter, (Tn)n≥1 is for many important simply generated tree families a

sequence of natural numbers, and then the total weight Tn can be interpreted as

the number of trees of size n in T . We now give several examples where this is

the case.

3.2.1 Examples� Binary trees can be defined combinatorially as follows:

T = ©∗ ({�} ∪̇ T ) ∗ ({�} ∪̇ T ).

Here, � denotes an empty subtree and ∪̇ is the disjoint union. This formal

equation expresses that each binary tree consists of a root node and a left

and a right subtree, each of which is either a binary tree or empty. The

formal equation for T can directly be translated into a functional equation

for T (z), namely

T (z) = z(1 + T (z))2.
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3.2. Simply generated trees

Hence, binary trees are the simply generated tree family defined by ϕ(t) =

(1 + t)2, i.e. by the degree-weight sequence ϕℓ =
(
2
ℓ

)
, ℓ ≥ 0. More generally,

d-ary trees (d ≥ 2), which can be described combinatorially as

T = ©∗ ({�} ∪̇ T ) ∗ · · · ∗ ({�} ∪̇ T )
︸ ︷︷ ︸

d times

,

are the simply generated tree family defined by ϕ(t) = (1 + t)d, i.e. by the

degree-weight sequence ϕℓ =
(
d
ℓ

)
, ℓ ≥ 0.� Ordered trees are rooted trees, in which the children of each node are linearly

ordered. Thus, combinatorially speaking, each ordered tree consists of a root

node and a sequence of ordered trees,

T = ©∗ Seq (T ) = ©∗
(
{�} ∪̇ T ∪̇ T 2 ∪̇ T 3 ∪̇ . . .

)
.

From this one gets the functional equation

T (z) =
z

1− T (z)
, (3.3)

i.e. ϕ(t) = 1
1−t

. Of course, this corresponds to the degree-weight sequence

ϕℓ = 1, ℓ ≥ 0.� Unordered trees are rooted trees in which there is no order on the children

of any node. Hence, each unordered tree consists of a root node and a set of

unordered trees, which can be written formally as

T = ©∗ Set (T ) = ©∗
(

{�} ∪̇ T ∪̇ T 2

2!
∪̇ T 3

3!
∪̇ . . .

)

.

This leads to the functional equation

T (z) = z exp (T (z)) ,

i.e. one has ϕ(t) = exp (t), or equivalently ϕℓ = 1/ℓ!, ℓ ≥ 0.� Cyclic trees may be considered as equivalence classes of ordered trees, where

cyclic rearrangements of the subtrees of nodes lead to a tree of the same

class. Hence, each cyclic tree is either a single root node or it consists of a

root node and a (non-empty) cycle of unordered trees, which can be written

formally as

T = © ∪̇ © ∗Cyc (T ) = ©∗
(
{�} ∪̇Cyc(T )

)
.
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This leads to the functional equation

T (z) = z

(

1 + log

(
1

1− T (z)

))

,

i.e. one has ϕ(t) = 1+ log
(

1
1−t

)
, or equivalently ϕ0 = 1 and ϕℓ = 1/ℓ, ℓ ≥ 1.

3.2.2 Auxiliary results

We now collect some known results (see, e.g., [FS09, Pan04a]) on the function

T (z) satisfying (3.1). First note that in general T (z) and ϕ(t) must be regarded

as formal power series, because they do not need to have a positive radius of

convergence, and then (3.1) must be understood as a formal equation. Thus,

in order to analyze properties of simply generated tree families using analytic

methods, we will need to make certain assumptions on ϕ. In particular, we will

assume that ϕ(t) has a positive radius of convergence R, and that there exists a

minimal positive solution τ < R of the equation

tϕ′(t) = ϕ(t). (3.4)

If we define

d := gcd{k : ϕk > 0}, (3.5)

then it follows that (3.4) has exactly d solutions of smallest modulus, which are

given by τj = ωjτ , for 0 ≤ j ≤ d − 1, where ω = exp
(
2πi
d

)
. From the implicit

function theorem it follows that the equation z = t
ϕ(t)

is not invertible in any

neighbourhood of t = τj , for 0 ≤ j ≤ d− 1. This leads to d dominant singularities

of T (z) at z = ρj , where ρj = ωjρ, ρ = τ
ϕ(τ)

.

For our purpose, it is important to note that under the above assumptions,

T (z) is amenable to singularity analysis (cf. Section 2.1.4), i.e. there are constants

η > ρ and 0 < φ < π/2 such that T (z) is analytic in the domain

{z ∈ C : |z| < η, z 6= ρj , |Arg(z − ρj)| > φ, for all 0 ≤ j ≤ d− 1} .

The local expansion of T (z) around the singularity z = ρj is given by

T (z) = τj − ωj

√

2ϕ(τ)

ϕ′′(τ)

√

1− z

ρj
+O(ρj − z) . (3.6)
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Using singularity analysis and summing up the contributions of the d dominant

singularities, one obtains

Tn

n!
= [zn]T (z) =

d
√

ϕ(τ)
√

2πϕ′′(τ)ρnn
3
2

(

1 +O
(
1

n

))

, (3.7)

for n ≡ 1 mod d. If n 6≡ 1 mod d, one has of course Tn = 0, because in this case

each plane tree of size n has weight zero.

In our analysis, we will further make use of the functions ϕ(k)(T (z)) (where

ϕ(k)(t) is the k-th derivative of ϕ(t)). Each of these functions has d dominant

singularities at z = ρj, 0 ≤ j ≤ d − 1, and complies with the requirements for

singularity analysis. Around z = ρj , one has the expansion

ϕ(k)(T (z)) = ϕ(k)(τj)− ϕ(k+1)(τj)ω
j

√

2τ

ρϕ′′(τ)

√

1− z

ρj
+O(ρj − z) , (3.8)

and we will especially make use of the expansion

zϕ′(T (z)) = 1−
√

2ρτϕ′′(τ)

√

1− z

ρj
+O(ρj − z) . (3.9)

3.3 Results

Let T be the labelled family of simply generated trees associated to a degree-

weight sequence (ϕℓ)ℓ≥0, where the function ϕ(t) :=
∑

ℓ≥0 ϕℓt
ℓ has positive radius

of convergence R, and equation (3.4) has a minimal positive solution τ < R. Fur-

thermore, let ρ = τ
ϕ(τ)

(recall the definitions of Section 3.2.2). Then the following

holds:

Theorem 3.3.1 (Global behaviour). The random variable In, which counts the

total number of inversions in a random tree of size n of T is, after proper normal-

ization, asymptotically Airy distributed:

There holds E(In) ∼ cϕ
√
πn3/2, where cϕ = 1√

8ρτϕ′′(τ)
, and

In
cϕn3/2

(d)−→ I,

where I is an Airy distributed random variable.
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Theorem 3.3.2 (Local behaviour). The random variable In,j, which counts the

number of inversions of the kind (i, j), with i > j an ancestor of j, in a random

tree of size n of T has, depending on the growth of 1 ≤ j = j(n) ≤ n, the following

asymptotic behaviour.� Region n − j ≫ √
n: In,j is, after proper normalization, asymptotically

Rayleigh distributed: √
n

n− j
In,j

(d)−→ Xσ,

where Xσ is a Rayleigh distributed random variable with parameter σ :=
1√

ρτϕ′′(τ)
.� Region n−j ∼ α

√
n, with α ∈ R+: In,j converges in distribution to a discrete

random variable Yγ, with

P{Yγ = k} =
γk

k!

∫ ∞

0

xk+1e−
x2

2
−γxdx, k ∈ N0,

where γ := α√
ρτϕ′′(τ)

.� Region n− j ≪ √
n: In,j converges in distribution to a random variable with

all its mass concentrated at 0, i.e. In,j
(d)−→ 0.

Furthermore, for ordered and unordered trees the exact distribution of In,j can be

stated explicitly. It holds that

P{In,j = k} =
(j − 1)!(n− j)!

nn−1

n−k−1∑

ℓ=n−j−k

(
ℓ

n− j − k

)(
n− ℓ− 1

k

)
(n− ℓ)nℓ−1

ℓ!
,

(3.10)

for unordered trees, and

P{In,j = k} =

1
(
n−1
j−1

)(
2(n−1)
n−1

)

n−k−1∑

ℓ=n−j−k

(
ℓ

n− j − k

)(
2n− 2

ℓ

)(
n− ℓ− 1

k

)
2n− 1− 2ℓ

2n− 1− ℓ
,

(3.11)

for ordered trees (1 ≤ j ≤ n and 0 ≤ k ≤ n− j).
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3.4. Proof: Global behaviour

3.3.1 Examples

Before we prove these results, we apply them to our example tree families from

Section 3.2.1:� Binary trees: From the equation 2t(t + 1) = tϕ′(t) = ϕ(t) = (t + 1)2 we

get the positive solution τ = 1, and hence cϕ = 1
2
and σ =

√
2. Thus, if

we let In denote the number of inversions in a random binary tree of size n,

then 2In
n3/2 converges in distribution to an Airy distributed random variable.

Furthermore, for the number In,j of inversions in a random binary tree of

size n induced by node j, it holds that
√
n

n−j
In,j converges, for n− j ≫ √

n, in

distribution to a Rayleigh distributed random variable with parameter
√
2.� Ordered trees: The equation t

(1−t)2
= 1

1−t
yields τ = 1

2
, and further cϕ = 1

4

and σ = 1√
2
. Hence, for the number In of inversions in a random ordered tree

of size n, it holds that 4In
n3/2 is asymptotically Airy distributed. Furthermore,

the normalized number of inversions
√
n

n−j
In,j induced by node j, is, for n−j ≫√

n, asymptotically Rayleigh distributed with parameter 1/
√
2.� Unordered trees: Here, one has τ = 1 and thus cϕ = 1√

8
and σ = 1. This

shows that
√
8In

n3/2 converges in distribution to an Airy distributed random

variable and that
√
n

n−j
In,j converges, for n − j ≫ √

n, in distribution to a

Rayleigh distributed random variable with parameter 1.� Cyclic trees: The positive real solution of the equation t
1−t

= 1+ log
(

1
1−t

)
is

numerically given by τ ≈ 0.682155. One further gets cϕ =
√
1−τ√
8

≈ 0.199325

and σ =
√
1− τ ≈ 0.563776. Thus, In

cϕn3/2 converges in distribution to an

Airy distributed random variable, and
√
n

n−j
In,j converges, for n− j ≫ √

n, in

distribution to a Rayleigh distributed random variable with parameter σ.

3.4 Proof of the result concerning the global

behaviour

3.4.1 Short overview of the proof

We prove our result given in Theorem 3.3.1 by using the method of moments,

i.e. we show that the moments of In converge (after proper normalization) to the
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3.4. Proof: Global behaviour

moments of the Airy distribution. Since this distribution is uniquely determined

by its moments, the convergence result then follows directly from the Theorem of

Fréchet and Shohat (Theorem 2.2.1). To start with, we do not study the random

variable In directly, but consider a closely related random variable În. Using the

same tree decomposition which was used in [GYS99], we then obtain a q-difference-

differential equation for a suitably chosen generating function which encodes the

distribution of În. From this equation, we can “pump” the moments of În using

techniques from [FPV98] and singularity analysis, and finally transfer our result

to In. Note that we will in the following make frequent use of the operators acting

on generating functions which we defined in Section 2.1.2.

3.4.2 Introduction of În and generating functions

We let T̂ be the subset of T which consists exactly of those trees in which the root

has label 1. Obviously, the total weight of trees of size n in T̂ is then given by
Tn

n
. Also note that each tree in T̂ has the nice property that the root is not part

of any inversion. Hence, the total number of inversions of each tree can just be

obtained by summing up the contributions of the individual subtrees of the root.

This fact will later be useful when we translate a decomposition of the trees in T̂
to generating functions.

We let În denote the number of inversions in a random tree of size n in T̂ ,

where each element of T̂ of size n is chosen with a probability proportional to its

weight. Furthermore, we introduce the generating function

F (z, q) :=
∑

n≥1

∑

k≥0

P

{

În = k
} Tn

n
qk
zn

n!
. (3.12)

Note that n![znqk]F (z, q) = P

{

În = k
}

Tn

n
is the total weight of all trees of size n in

T̂ which contain exactly k inversions. Moreover, observe that UF (z, q) = F (z, 1)

is just the exponential generating function of
(
Tn

n

)

n≥1
, and hence we have the

relation

ZDzUF (z, q) = T (z), (3.13)

which we will use frequently. We further introduce the functions

fr(z) := UDr
qF (z, q),
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3.4. Proof: Global behaviour

which are generating functions of the factorial moments E

(

(În)
r
)

of În, in the

sense that

fr(z) =
∑

n≥1

E

(

Îrn

) Tn

n

zn

n!
. (3.14)

Clearly, we can recover the r-th factorial moment of În from (3.14) by

E

(

Îrn

)

=
[zn]fr(z)

[zn]f0(z)
,

but as we will see later, it is more convenient to use

E

(

Îrn

)

=
[zn]zf ′

r(z)

[zn]zf ′
0(z)

=
[zn]zf ′

r(z)

[zn]T (z)
, (3.15)

where the second equality follows from (3.13).

3.4.3 The q-difference-differential equation for F (z, q)

It turns out that F (z, q) satisfies a certain equation involving a q-difference opera-

tor H which is very similar to the one Flajolet, Poblete and Viola used in [FPV98]

in their analysis of linear probing hashing. In our case, we define H by

HG(z, q) :=
G(z, q)−G(qz, q)

1− q
.

Using this, we get:

Lemma 3.4.1. The function F (z, q) defined by (3.12) satisfies

DzF (z, q) = ϕ(HF (z, q)). (3.16)

Proof. This equation can be obtained by establishing mutually dependent recur-

rences for the total weights Tn,k := P{In = k}Tn and T̂n,k := P

{

În = k
}

Tn

n
of

trees of size n with k inversions in T and T̂ , respectively. However, we choose to

give a combinatorial argument.

In order to derive (3.16), we establish relations between T and T̂ , which can

be translated into functional equations for F (z, q) =
∑

n≥1

∑

k≥0 T̂n,kq
k zn

n!
and

T (z, q) :=
∑

n≥1

∑

k≥0

Tn,kq
k z

n

n!
.
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3.4. Proof: Global behaviour

Figure 3.2: Adding inversions by exchanging labels.

For this purpose, we consider the sets Tn and T̂n, which contain exactly the trees

of size n of T and T̂ , respectively. Clearly, Tn can be partitioned into n disjoint

subsets T (1)
n , T (2)

n . . . , T (n)
n , where T (j)

n contains exactly those trees in which the

root is labelled by j (in particular, T (1)
n = T̂n). Now consider the bijective mapping

between T̂n and T (2)
n which is obtained by just swapping the labels 1 and 2 in each

tree, and leaving all other labels and the structure of each tree unchanged. Since

this mapping does not alter the relative order of any pair of nodes except (1, 2),

it clearly holds that each tree of T̂n with m inversions is mapped to a tree of T (2)
n

with m+ 1 inversions. Repeating this argument (see Figure 3.2), we see that the

trees in T̂n with m inversions can bijectively be mapped to the trees with m+ j−1

inversions in T (j)
n .

This leads for the generating functions F (z, q) and T (z, q) to the equation

T (z, q) =
∑

n≥1

∑

k≥0

T̂n,k (1 + . . .+ qn−1)
︸ ︷︷ ︸

1−qn

1−q

qk
zn

n!
= HF (z, q). (3.17)

Next, remember that T is defined by the formal equation T = ©∗ ϕ(T ) (cf. Sec-

tion 3.2), and that T̂ consists exactly of those trees of T in which the root has

label 1. It thus follows that T̂ satisfies the formal equation

T̂ =O1 � ∗ ϕ(T ), (3.18)

which involves a boxed product (cf. Section 2.1.1). Due to the observation that

the root nodeO1 of any tree in T̂ does not contribute to the number of inversions,

equation (3.18) can be translated by an application of the symbolic method to the

differential equation

DzF (z, q) = ϕ(T (z, q)).

Using equation (3.17), we thus obtain (3.16).
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3.4.4 Application of the pumping method

In order to extract expressions for the functions fr(z) as defined in (3.14) from

(3.16), we use the pumping method from [FPV98]. This method basically rests on

the idea of applying the operator UDr
q to the given functional equation involving H,

and using a ”commutation rule” for the operators UDr
q and H. Since our operator

H is slightly different from the one in [FPV98], we will first establish the suitable

commutation rule for our case.

Lemma 3.4.2. The operator UDj
qH satisfies the operator equation

UDj
qH =

j
∑

s=0

(
j

s

)
1

s+ 1
Zs+1Ds+1

z UDj−s
q . (3.19)

Proof. Since all occurring operators are linear, it suffices to show that the two sides

of the equation coincide when applied to a function of the form G(z, q) = qkzn.

Remember that H(qkzn) = qk(1 + q + · · ·+ qn−1)zn, and thus we have

UDj
qH(q

kzn) = zn
n−1∑

i=0

UDj
q(q

kqi) = zn
n−1∑

i=0

j
∑

s=0

(
j

s

)

kj−sis

= zn
j
∑

s=0

(
j

s

)

kj−ss!
n−1∑

i=0

(
i

s

)

= zn
j
∑

s=0

(
j

s

)

kj−ss!

(
n

s+ 1

)

=

j∑

s=0

(
j

s

)

kj−sn
s+1zn

s+ 1
=

j∑

s=0

(
j

s

)
1

s+ 1
Zs+1Ds+1

z UDj−s
q (qkzn).

Using (3.19), we can now establish a recurrence for the derivatives f ′
r(z) of the

factorial moment generating functions:

Lemma 3.4.3. The factorial moment generating functions fr(z) satisfy, for r ≥ 1,

f ′
r(z) =

1

1− zϕ′(T (z))

(

ϕ′(T (z))
r∑

t=1

(
r

t

)
1

t + 1
zt+1f

(t+1)
r−t (z)

+
∑

(k1,...,kr−1)∈Br

[

r!

k1! · · ·kr−1!
ϕ(k1+...+kr−1)(T (z))

·
r−1∏

m=1

(

1

m!

m∑

s=0

(
m

s

)
1

s+ 1
zs+1f

(s+1)
m−s (z)

)km ])

, (3.20)
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where B1 := ∅, and

Br :=
{
(k1, k2, . . . , kr−1) ∈ N

r−1
0 : k1 + 2k2 + . . .+ (r − 1)kr−1 = r

}
,

for r ≥ 2.

Proof. We apply UDr
q to (3.16) and express Dr

qϕ(HF (z, q)) using Faá di Bruno’s

formula for higher derivatives of composite functions (cf., e.g., [Rio58]),

Dr
qf(g(q)) =

∑

(k1,...,kr)∈Ar

r!

k1! · · · kr!
(D(k1+...+kr)

q f)(g(q))
r∏

m=1

(
Dm

q g(q)

m!

)km

,

where Ar := {(k1, k2, . . . , kr) ∈ Nr
0 : k1 + 2k2 + . . .+ rkr = r}. We then obtain the

claimed result by applying Lemma 3.4.2, solving for f ′
r(z) and using the fact that

Uϕ(HF (z, q)) = ϕ(UHF (z, q)) = ϕ(ZDzUF (z, q)) = ϕ(T (z)),

which follows from (3.19) and (3.13).

3.4.5 Application of singularity analysis

We now investigate the singular behaviour of the functions in (3.20) in order to

compute the factorial moments E
(

Îrn

)

asymptotically. In the following, we carry

out only the computations for the case d = 1 (where d is defined by (3.5) and

thus gives the number of dominant singularities of the functions considered). The

general case runs completely analogous: when applying singularity analysis, one

just has to take care of the contributions of all d singularities and add them.

In a first step, we want to find an asymptotic formula for the expected value

E

(

În

)

. From Lemma 3.4.3, we have

f ′
1(z) =

ϕ′(T (z)) z
2

2
f ′′
0 (z)

1− zϕ′(T (z))
,

and using the fact that f ′′
0 (z) = T ′(z)ϕ′(T (z)) = ϕ(T (z))ϕ′(T (z))

1−zϕ′(T (z))
, which is easily

obtained by differentiating (3.1) and (3.13), we get

f ′
1(z) =

1

2

z(ϕ′(T (z)))2T (z)

(1− zϕ′(T (z)))2
.
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Note that zϕ′(T (z)) 6= 1 for |z| ≤ ρ, which can be seen by differentiating (3.1),

and thus f ′
1(z) inherits the dominant singularity at z = ρ from T (z) and ϕ′(T (z)).

Using the expansions (3.6) and (3.9), we find

zf ′
1(z) =

1

2

(
1 +O

(
(ρ− z)1/2

))2
τ
(
1 +O

(
(ρ− z)1/2

))

2ρτϕ′′(τ)
(

1− z
ρ

)

(1 +O((ρ− z)1/2))
,

=
1

4ρϕ′′(τ)
(

1− z
ρ

)
(
1 +O

(
(ρ− z)1/2

))
, z → ρ.

(3.21)

By applying basic singularity analysis, this immediately yields

[zn]zf ′
1(z) =

1

4ρn+1ϕ′′(τ)

(
1 +O

(
n−1/2

))
.

Now, using (3.15) and (3.7), we get the expected value

E

(

În

)

=
[zn]zf ′

1(z)

[zn]T (z)
=

1

ρ

√
π

8ϕ(τ)ϕ′′(τ)
n3/2

(
1 +O

(
n−1/2

))

= cϕ
√
πn3/2

(
1 +O

(
n−1/2

))
,

where cϕ is defined as in Theorem 3.3.1.

We will now consider f ′
r(z) for general r. It turns out that all f ′

r(z) have a

unique dominant singularity at z = ρ. The singular expansions around this point

are given in the following lemma.

Lemma 3.4.4. For r ≥ 1, each f ′
r(z) has a unique dominant singularity at z = ρ,

where the expansion

zf ′
r(z) = crϕ

√

ϕ(τ)

2ϕ′′(τ)

2Cr
(

1− z
ρ

)(3r−1)/2

(
1 +O

(
(ρ− z)1/2

))
, z → ρ, (3.22)

holds. Here, the constants Cr are the same which appear in the moments of the

Airy distribution (cf. equation (A.4) in Appendix A.6).

Proof. One easily checks that in the case r = 1 equation (3.22) coincides with

(3.21). For r > 1 we proceed by induction, following the inductive definition (A.4)

of the constants Cr. So let r > 1 and assume that (3.22) holds for all functions

fj(z) with 1 ≤ j < r. By the rules for singular differentiation (see Theorem 2.1.6)
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we then also have the following singular expansions for the k-th derivatives f
(k)
j of

the functions fj(z), for all k ≥ 1 and 1 ≤ j < r:

zf
(k)
j (z) = crϕ

√

ϕ(τ)

2ϕ′′(τ)

2Cj ·
(
3j−1
2

)k−1

ρk−1
(

1− z
ρ

)(3j−3+2k)/2

(
1 +O

(
(ρ− z)1/2

))
, z → ρ,

(3.23)

where xk denotes the k-th rising factorial of x, i.e. x0 := 1, and, for k ≥ 1,

xk := x(x+ 1) · · · (x+ k − 1). From this, one concludes that the dominant contri-

butions in (3.20) can only arise from the terms corresponding to t = 1 and s = 0,

i.e.

zf ′
r(z) =

z

1− zϕ′(T (z))

(

ϕ′(T (z))
r

2
z2f ′′

r−1(z)

+
∑

(k1,...,kr−1)∈Br

r!

k1! · · ·kr−1!
ϕ(k1+...+kr−1)(T (z))

r−1∏

m=1

(
zf ′

m(z)

m!

)km )

·
(
1 +O

(
(ρ− z)1/2

))
.

Now note that

r−1∏

m=1

(
1

m!
zf ′

m(z)

)km

= O
(

1

(ρ− z)(3r−(k1+...+kr−1))/2

)

,

which implies that the dominant terms in the remaining sum correspond to those

(k1, . . . , kr−1) ∈ Br with k1 + . . .+ kr−1 = 2, and we thus get

zf ′
r(z) =

z

1− zϕ′(T (z))

(

ϕ′(T (z))
r

2
z2f ′′

r−1(z)

+

r−1∑

s=1

r!

2
ϕ′′(T (z))z2

f ′
s(z)

s!

f ′
r−s(z)

(r − s)!

)
(
1 +O

(
(ρ− z)1/2

))
.

Now, expanding the occurring functions using (3.8), (3.9) and (3.23), we obtain
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after some simplifications

zf ′
r(z) =

ρ
√

2ρτϕ′′(τ)
√

1− z
ρ





r

2
cr−1
ϕ

√

ϕ(τ)

2ϕ′′(τ)

2Cr−1 · 3(r−1)−1
2

ρ
(

1− z
ρ

)(3(r−1)+1)/2

+
1

2

r−1∑

s=1

(
r

s

)

ϕ′′(τ)csϕc
r−s
ϕ

(
ϕ(τ)

2ϕ′′(τ)

)
2Cs · 2Cr−s

(

1− z
ρ

)(3s−1)/2+(3(r−s)−1)/2






·
(
1 +O

(
(ρ− z)1/2

))

= crϕ

√

ϕ(τ)

2ϕ′′(τ)

(3r − 4)rCr−1 +
∑r−1

s=1

(
r
s

)
CsCr−s

(

1− z
ρ

)(3r−1)/2

(
1 +O

(
(ρ− z)1/2

))
,

= crϕ

√

ϕ(τ)

2ϕ′′(τ)

2Cr
(

1− z
ρ

)(3r−1)/2

(
1 +O

(
(ρ− z)1/2

))
, z → ρ.

Lemma 3.4.4 can now be used in order to compute the moments of În asymp-

totically:

Lemma 3.4.5. The random variable În satisfies

E

(

Îrn

)

=
2
√
πcrϕn

3r/2

Γ(3r−1
2

)
Cr

(
1 +O

(
n−1/2

))
.

Proof. By singularity analysis, it follows from Lemma 3.4.4 that

[zn]zf ′
r(z) = 2crϕ

√

ϕ(τ)

2ϕ′′(τ)

n
3r−1

2
−1

ρnΓ(3r−1
2

)
Cr

(
1 +O

(
n−1/2

))
,

and together with (3.15) and (3.7) this shows

E

(

Îrn

)

=
[zn]zf ′

r(z)

[zn]T (z)
=

2
√
πcrϕn

3r/2

Γ(3r−1
2

)
Cr

(
1 +O

(
n−1/2

))
.

Using the relation (2.6) between the factorial moments and the ordinary moments,

we obtain that E

(

Îrn

)

= E

(

Îrn

)

+ O
(

E

(

Î
r−1
n

))

, and hence we get the desired

result.
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3.4.6 Transfer of the result to In

We now transfer the result for În to the random variable In, which counts the total

number of inversions in a random tree of size n of T . In fact, we prove that the

moments of În and In coincide asymptotically:

Lemma 3.4.6. The random variable In satisfies

E(Irn) =
2
√
πcrϕn

3r/2

Γ(3r−1
2

)
Cr

(
1 +O

(
n−1/2

))
. (3.24)

Proof. The relation between T and T̂ (compare equation (3.17)) directly translates

to the following relation between the moments of In and În:

E(Irn) =
1

n

(

E

(

Îrn

)

+ E

(

(În + 1)r
)

+ . . .+ E

(

(În + n− 1)r
))

.

From this, one deduces

E(Irn) = E

(

Îrn

)

+
1

n

r−1∑

ℓ=0

(
r

ℓ

)

(1r−ℓ + 2r−ℓ + . . .+ (n− 1)r−ℓ)
︸ ︷︷ ︸

O(nr−ℓ+1)

E

(

Îℓn

)

︸ ︷︷ ︸

O
(

n
3ℓ
2

)

= E

(

Îrn

)

+O
(

n
3r−1

2

)

,

and hence (3.24) follows directly from Lemma 3.4.5.

By comparing (3.24) with µr in (A.3), we conclude that the moments of the

normalized random variable In
cϕn3/2 converge to the moments of the Airy distribu-

tion. Due to Lemma A.6.1, the convergence in distribution of In
cϕn3/2 to an Airy

distributed random variable thus follows directly from the Theorem of Fréchet and

Shohat (Theorem 2.2.1).

This finishes the proof of our result on the total number of inversions in random

trees.

3.5 Proofs of the results concerning the local

behaviour

3.5.1 The generating functions approach

A main ingredient in the proof of Theorem 3.3.2 concerning the behaviour of the

random variable In,j is to introduce and study a suitable generating function for the
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probabilities P{In,j = k}, which reflects in a simple way the recursive description

of a tree as a root node and its subtrees. It turns out that the following trivariate

generating function is appropriate:

N(z, u, q) :=
∑

m≥0

∑

j≥1

∑

k≥0

P{Im+j,j = k} Tm+j
zj−1

(j − 1)!

um

m!
qk. (3.25)

Proposition 3.5.1. The generating function N(z, u, q) is given by the following

explicit formula:

N(z, u, q) =
ϕ(T (z + u))

1− (z + uq)ϕ′(T (z + u))
. (3.26)

Proof. We will show the functional equation

N(z, u, q) = ϕ(T (z+u))+zϕ′(T (z+u))N(z, u, q)+uqϕ′(T (z+u))N(z, u, q), (3.27)

which is equivalent to (3.26). To do this we introduce specifically tricoloured

trees: in each tree T ∈ T exactly one node is coloured red, all nodes with a label

smaller than the red node are coloured white, whereas all nodes with a label larger

than the red node are coloured black. Let us denote by TC the family of all such

tricoloured trees. Then in the generating function N(z, u, q) the variable z encodes

the white nodes, the variable u encodes the black nodes, whereas q encodes the

black ancestors of the red node, i.e.

N(z, u, q) =
∑

TC∈TC

w(TC)
z♯ white

(♯ white)!

u♯ black

(♯ black)!
q♯ black ancestors of red.

Since the black nodes as well as the white nodes are labelled it is appropriate to

use a double exponential generating function.

As auxiliary family we consider specifically bicoloured trees: the nodes in each

tree T ∈ T are coloured black and white in a way such that each white node has a

label smaller than any black node (i.e. all nodes up to a certain label are coloured

white, whereas all remaining nodes are coloured black). Let us denote by TB the

set of all such bicoloured trees. The double exponential generating function of

bicoloured trees,

B(z, u) =
∑

TB∈TB

w(TB)
z♯ white

(♯ white)!

u♯ black

(♯ black)!
,
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can be computed easily. It holds:

B(z, u) =
∑

n≥1(0)

∑

T∈T :|T |=n

w(T )

n∑

m=0

zn−m

(n−m)!

um

m!

=
∑

n≥0

n∑

m=0

zn−m

(n−m)!

um

m!

∑

T∈T :|T |=n

w(T )

=
∑

n≥0

Tn

n∑

m=0

zn−m

(n−m)!

um

m!
=
∑

n≥0(1)

Tn

n!
(z + u)n = T (z + u).

(3.28)

Now we consider the decomposition of a tricoloured tree TC ∈ TC into the root

node root(TC) and its ℓ ≥ 0 subtrees T1, . . . , Tℓ. Note that then the degree-weight

of the root node is given by ϕℓ. Three cases may occur.� Case 1: The root node is the red node. Then the red node does not have any

black ancestors and all of the subtrees T1, . . . , Tℓ are, after order preserving

relabellings, specifically bicoloured trees, i.e. elements of TB.� Case 2: The root node is a white node. Then the red node is contained in one

of the ℓ subtrees. Let us denote this subtree by Ts. After an order preserving

relabelling Ts is itself an element of TC , while all remaining subtrees are, after

order preserving relabellings, elements of TB. Moreover, the number of black

ancestors of the red node in TC is the same as the number of black ancestors

of the red node in the subtree Ts.� Case 3: The root node is a black node. Again the red node is contained in one

of the ℓ subtrees, which we call Ts. After an order preserving relabelling Ts is

an element of TC , whereas all remaining subtrees are, after order preserving

relabellings, elements of TB. In this case the number of black ancestors of

the red node in TC is one more than the number of black ancestors of the

red node in the subtree Ts.

By considering all tricoloured trees of TC , and taking into account (3.28), the above

decomposition leads to

N(z, u, q) =
∑

ℓ≥0

ϕℓ

(
T (z + u)

)ℓ
+ z

∑

ℓ≥0

ℓϕℓ

(
T (z + u)

)ℓ−1
N(z, u, q)

+ uq
∑

ℓ≥0

ℓϕℓ

(
T (z + u)

)ℓ−1
N(z, u, q)

= ϕ(T (z + u)) + zϕ′(T (z + u))N(z, u, q) + uqϕ′(T (z + u))N(z, u, q),
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which is exactly the claimed equation (3.27) for N(z, u, q).

3.5.2 Computation of the factorial moments

Starting with the explicit formula for the trivariate generating function N(z, u, q)

given in Proposition 3.5.1 we will compute the r-th factorial moments of In,j.

According to the definition (3.25) of N(z, u, q) one obtains:

E
(
I
r
n,j

)
=

(j − 1)!(n− j)!

Tn
[zj−1un−j]UqD

r
qN(z, u, q)

=
(j − 1)! (n− j)! r!

Tn

[zj−1un−j−r]
(ϕ′(T (z + u)))r ϕ(T (z + u))

(1− (z + u)ϕ′(T (z + u)))r+1 .

Since for any power series g(x) holds

[zaub]g(z + u) =

(
a + b

a

)

[za+b]g(z), (3.29)

one further obtains the following expression, which will be the starting point for

our asymptotic considerations:

E
(
Irn,j
)
=

(j − 1)! (n− j)! r!

Tn

(
n− r − 1

j − 1

)

[zn−r−1]
(ϕ′(T (z)))r ϕ(T (z))

(1− zϕ′(T (z)))r+1

=
(j − 1)! (n− j)! r!

Tn

(
n− r − 1

j − 1

)

[zn]
(zϕ′(T (z)))r T (z)

(1− zϕ′(T (z)))r+1 .

(3.30)

In order to evaluate E
(
Irn,j
)
asymptotically we use the local expansions (3.6)

and (3.9) and apply singularity analysis. Again for simplicity in presentation we

will only carry out the computations for the case that the functions involved have

d = 1 dominant singularities (see Section 3.2.2); for d > 1 one just has to add the

contributions of all these singularities.

We obtain (for r arbitrary, but fixed):

[zn]
(zϕ′(T (z)))r T (z)

(1− zϕ′(T (z)))r+1 = [zn]

(
1 +O

(
(ρ− z)1/2

))r
τ
(
1 +O

(
(ρ− z)1/2

))

(
√

2ρτϕ′′(τ)
√

1− z
ρ
+O(ρ− z)

)r+1

= [zn]
τ

(2ρτϕ′′(τ))
r+1
2 (1− z

ρ
)
r+1
2

(
1 +O

(
(ρ− z)1/2

))

=
τ n

r−1
2

(2ρτϕ′′(τ))
r+1
2 ρnΓ( r+1

2
)

(
1 +O

(
n−1/2

))
.
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Together with the asymptotic formula for Tn given in (3.7), we obtain from

(3.30) after simple computations:

E
(
Irn,j
)
=

(n− j)!r!(n− r − 1)!
√

2πϕ′′(τ)n
3
2 τn

r−1
2

(n− r − j)!n!
√

ϕ(τ)(2ρτϕ′′(τ))
r+1
2 Γ( r+1

2
)

(
1 +O

(
n−1/2

))

=
r!
√
π

(2ρτϕ′′(τ))
r
2Γ( r+1

2
)

(n− j)r

n
r
2

(
1 +O

(
n−1/2

))
.

Finally, we use the duplication formula (cf. [AS64]) for the Gamma function

Γ

(
r + 1

2

)

Γ
(r

2
+ 1
)

=
r!
√
π

2r
,

and thus obtain the following expansion of the r-th factorial moment of In,j, which

holds uniformly for all 1 ≤ j ≤ n:

E
(
Irn,j
)
=

2
r
2Γ
(
r
2
+ 1
)

(ρτϕ′′(τ))
r
2

(n− j)r

n
r
2

(
1 +O

(
n−1/2

))
. (3.31)

3.5.3 Application of the method of moments

The asymptotic behaviour of the moments of In,j for n → ∞ depending on the

growth of j = j(n) can be obtained easily from the uniform expansion (3.31). An

application of the method of moments shows then the limiting distribution results

stated in Theorem 3.3.2.

3.5.3.1 Region n− j ≫ √
n

For this region it holds

(n− j)r

n
r
2

=
(n− j)r

n
r
2

(
1 +O

(
(n− j)−1

))
=

(n− j)r

n
r
2

(
1 +O

(
n−1/2

))
,

which implies the following expansion for the factorial moments:

E
(
Irn,j
)
=

2
r
2Γ
(
r
2
+ 1
)

(ρτϕ′′(τ))
r
2

(n− j)r

n
r
2

(

1 +O
(

n− 1
2

))

. (3.32)

Together with equation (2.6), which connects the factorial and the ordinary mo-

ments, we obtain the following asymptotic expansion for the r-th moments of In,j:

E
(
Irn,j
)
=

2
r
2Γ( r

2
+ 1)

(ρτϕ′′(τ))
r
2

(n− j)r

n
r
2

(

1 +O
( √

n

n− j

))

.
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Thus we obtain for each fixed r and n → ∞:

E

(( √
n

n− j
In,j

)r)

→
(

1
√

ρτϕ′′(τ)

)r

2
r
2Γ
(r

2
+ 1
)

,

i.e. the moments of
√
n

n−j
In,j converge to the moments of a Rayleigh distributed

random variable with parameter σ = 1√
ρτϕ′′(τ)

. An application of the Theorem of

Fréchet and Shohat (Theorem 2.2.1) now shows the corresponding limiting distri-

bution result of Theorem 3.3.2.

3.5.3.2 Region n− j ∼ α
√
n, α ∈ R+

Also for this region the asymptotic expansion (3.32) of the r-th factorial moments

computed above holds and one further gets

E
(
Irn,j
)
→ 2

r
2Γ
(
r
2
+ 1
)

(ρτϕ′′(τ))
r
2

αr =

(

α
√

ρτϕ′′(τ)

)r

2
r
2 Γ
(r

2
+ 1
)

. (3.33)

Our aim is now to find the distribution of a random variable Y whose factorial

moments E(Y r) are given by the right-hand side of (3.33) (a-priori we don’t know

whether this distribution is unique, but as it turns out, it is). This distribution can

luckily be “guessed” by assuming that the probability generating function pY (z)

of Y exists in a neighbourhood of z = 1, in which case one can use

∑

r≥0

E(Y r)
zr

r!
=
∑

r≥0

∑

k≥0

P{Y = k} kr z
r

r!
=
∑

k≥0

P{Y = k}
∑

r≥0

(
k

r

)

zr

=
∑

k≥0

P{Y = k} (z + 1)k = pY (z + 1).

We omit the computation of pY (z), instead we directly state the result in the

following lemma:

Lemma 3.5.2. Let Yγ, with γ > 0, be a discrete random variable with distribution

P{Yγ = k} =
γk

k!

∫ ∞

0

xk+1e−
x2

2
−γxdx, for k ∈ N0.

Then it holds that the r-th factorial moments of Yγ are given as follows:

E
(
Y r
γ

)
= γr2

r
2Γ
(r

2
+ 1
)

.

Moreover, the distribution of Yγ is uniquely defined by its sequence of moments.
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Proof. For r ≥ 0 (the case r = 0 shows that the probabilities sum up to 1, i.e.

they define indeed a probability distribution) we get:

E
(
Y r
γ

)
=
∑

k≥0

kr γ
k

k!

∫ ∞

0

xk+1e−
x2

2
−γxdx =

∫ ∞

0

e−
x2

2
−γxγrxr+1

∑

k≥r

(γx)k−r

(k − r)!
dx

=

∫ ∞

0

e−
x2

2
−γxγrxr+1eγxdx = γr

∫ ∞

0

xr+1e−
x2

2 dx = 2
r
2γr

∫ ∞

0

u
r
2 e−udu

= γr 2
r
2 Γ
(r

2
+ 1
)

.

In order to show that the sequence of moments uniquely characterizes the

distribution we consider the moment generating function mYγ (s) := E
(
esYγ

)
of Yγ,

mYγ (s) =
∑

k≥0

P{Yγ = k} eks =
∑

k≥0

(esγ)k

k!

∫ ∞

0

xk+1e−
x2

2
−γxdx

=

∫ ∞

0

xe−
x2

2
−γx
∑

k≥0

(esγx)k

k!
dx =

∫ ∞

0

xe−
x2

2
−γx+γesxdx.

Clearly, this function exists in a real neighbourhood of s = 0 (actually it exists for

all real s), which implies (by Lemma 2.2.2) that the corresponding distribution is

uniquely defined by its moments.

Since the r-th factorial moments (and thus also the ordinary moments) of In,j
converge to the corresponding moments of Yγ, with γ = α√

ρτϕ′′(τ)
, an application

of the Theorem of Fréchet and Shohat now shows the limiting distribution result

stated in Theorem 3.3.2 for this case.

3.5.3.3 Region n− j ≪ √
n

From (3.31) one easily gets that E
(
Irn,j
)
→ 0, for r ≥ 1, which, by an application of

the Theorem of Fréchet and Shohat, shows In,j
(d)−→ 0 as stated in the corresponding

part of Theorem 3.3.2.

3.5.4 Explicit formulæ for probabilities

For some special tree families it is possible to obtain explicit formulæ for the

probabilities P{In,j = k} by extracting coefficients from the trivariate generating

function N(z, u, q) as given in (3.26).
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3.5.4.1 Unordered trees

For unordered trees (ϕ(t) = et) the generating function N(z, u, q) is given by the

following expression:

N(z, u, q) =
eT (z+u)

1− (z + uq)eT (z+u)
, with T (z) = zeT (z).

From this one gets

[qk]N(z, u, q) =
eT (z+u)

1− zeT (z+u)
[qk]

1

1− ueT (z+u)

1−zeT (z+u) q
= uk

(
eT (z+u)

1− zeT (z+u)

)k+1

= uk
∑

ℓ≥0

(
ℓ+ k

k

)

e(k+ℓ+1)T (z+u)zℓ,

and further

[zj−1un−jqk]N(z, u, q) =

j−1∑

ℓ=0

(
ℓ+ k

k

)

[zj−ℓ−1un−j−k]e(k+ℓ+1)T (z+u).

Now, using (3.29), this leads to

[zj−1un−jqk]N(z, u, q) =

j−1
∑

ℓ=0

(
ℓ+ k

k

)(
n− k − ℓ− 1

j − ℓ− 1

)

[zn−k−ℓ−1]e(k+ℓ+1)T (z).

(3.34)

In order to proceed, we use Lagrange’s inversions formula (Theorem 2.1.3). Since

T (z) satisfies the equation z = T (z)

eT (z) , we have, for a, b ∈ N,

[za]ebT (z) =
b

a
[T a−1]ebT eaT =

b(a + b)a−1

a!
. (3.35)

Note that the last expression actually gives the correct coefficient also in the case

a = 0. Hence, using (3.35) in (3.34), we get

[zj−1un−jqk]N(z, u, q) =

j−1
∑

ℓ=0

(
ℓ+ k

k

)(
n− k − ℓ− 1

j − ℓ− 1

)
(k + ℓ+ 1)nn−k−ℓ−2

(n− k − ℓ− 1)!
.

By reversing the order of summation and using the relation

P{In,j = k} =
(j − 1)!(n− j)!

Tn
[zj−1un−jqk]N(z, u, q),

as well as the well-known formula Tn = nn−1 for the number of unordered labelled

trees (which can also be derived from (3.35)), we thus finally obtain the formula

for the exact probabilities P{In,j = k} given in Theorem 3.3.2.
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3.5.4.2 Ordered trees

For ordered trees (ϕ(t) = 1
1−t

), the generating function N(z, u, q) is given by

N(z, u, q) =
1− T (z + u)

(1− T (z + u))2 − z − uq
, with T (z) =

z

1− T (z)
.

From this one can again extract the coefficient of zj−1un−jqk in order to obtain the

required probabilities. We omit the necessary computations since they are very

similar to the ones in the previous case, but we stated the corresponding result in

(3.11).
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CHAPTER 4
Increasing k-trees

4.1 Introduction

k-trees, also called k-dimensional trees, are certain simple graphs that have been

introduced and studied first by Beineke and Pippert [BP69], Moon [Moo69], and

Harary and Palmer [HP68]. These graphs owe their name to the fact that they

allow a recursive description analogous to trees: a k-tree T is either a k-clique

(i.e. a complete connected graph with k nodes) or there exists a node u, which is

incident to exactly k edges that connect this node to all of the nodes of a k-clique,

such that, when removing u and the k incident edges from T , the remaining graph

is itself a k-tree.

Since the pioneering studies mentioned before various families of k-trees (such

as, e.g., labelled and unlabelled, ordered and unordered ones) have been introduced

and considered. Very recently an interesting random graph model based on k-trees

has been proposed in [Gao09] and some quantities (the degree distribution and

distance parameters) have been analyzed in [Gao09] and [DHBS10], respectively.

The model can be described by a simple graph evolution process. Starting with

a k-clique (the so-called root clique) of nodes (the so-called root nodes) labelled

by 01, 02, . . . , 0k, successively the nodes with labels 1, 2, . . . , n are inserted, where

in each step the new node j is attached to all of the nodes of an already existing

k-clique. In each insertion step one uses a “uniform attachment”-rule, i.e. one of

the already existing k-cliques is chosen uniformly at random to attach the new

node.

When considering the special instance k = 1 the resulting graphs are of
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course trees and this “uniform attachment”-rule leads to an important tree model

called recursive trees, which is of interest in combinatorics and probability theory,

see [Drm09, MS95]. For trees also other probabilistic growth rules have been in-

troduced leading to further important tree models. In particular when applying

“preferential attachment” (or “success breeds success”), i.e. carrying out the inser-

tion process where in each step the probability that a new node will be attached to

an already existing node x is proportional to one plus the number of nodes already

attached to x, one obtains the model of plane recursive trees (also called plane-

oriented recursive trees, or non-uniform recursive trees), see [MS95]. Furthermore,

when applying a “saturation”-rule, where there is a maximum d for the number of

children that can be attached to a node, and the probability that a new node will

be attached to an already existing node x is proportional to the difference between

the maximum possible number d and the actual number of nodes already attached

to x, this leads to tree models known in combinatorics as d-ary increasing trees.

It seems natural to also apply these growth rules to generate k-trees, which will

lead then to random k-tree models different from the one introduced in [Gao09].

To be precise, for the “preferential attachment”-rule we modify the graph evolution

process for k-trees described above, such that in each insertion step the following

probabilistic growth rule will be applied: the probability that a new node will be

attached to an already existing k-clique is proportional to one plus the number of

nodes that have been previously attached to this k-clique. Furthermore, for the

“saturation”-rule we modify the graph evolution process by applying in each inser-

tion step the following probabilistic growth rule: the probability that a new node

will be attached to an already existing k-clique is proportional to the difference

between the maximum possible number d of children and the actual number of

nodes already attached to the considered k-clique.

Thus we will deal with three different random k-tree models, which we will

call:� unordered increasing k-trees (they correspond to “uniform attachment”),� ordered increasing k-trees (they correspond to “preferential attachment”),� d-ary increasing k-trees (they correspond to the “saturation”-rule).

These notions will be justified in the following section.
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4.2. Combinatorial description

4.2 Combinatorial description of increasing

k-trees

We now give a combinatorial description of the considered k-tree models. We will

here always consider rooted k-trees, which means that in each k-tree one k-clique

is distinguished as the root clique. The nodes contained in the root clique are

called root nodes, whereas the remaining nodes are non-root nodes. For the k-tree

models studied in this work we will also call the non-root nodes “inserted nodes”.

Then, apart from the edges connecting the root nodes with each other, this induces

a natural orientation on the edges: For each non-root node, we can distinguish

between ingoing edges (coming from the direction of the root clique) and outgoing

edges, which also defines the in-degree d−(u) and the out-degree d+(u) of a node

u. For a root node we will only define the out-degree. It is immediate from the

definition that each non-root node u has exactly k ingoing edges, and these edges

connect u with a k-clique K = {w1, . . . , wk}. We might then say that u is a child

of the k-clique K or that u is attached to K and that w1, . . . , wk are the parents

of u. For the degree d(u) of a node u it holds that d(u) = d+(u)+k for a non-root

node and d(u) = d+(u) + k − 1 for a root node. We also define the out-degree

d+(K) of a k-clique K as the number of children of K.

For our purpose of modelling different growth rules it is important to introduce

the following three variants of rooted k-trees:� Unordered k-trees: one assumes that to each k-clique there is attached a set

of children.� Ordered k-trees: one assumes that to each k-clique there is attached a se-

quence of children, i.e. the children of each k-clique are linearly ordered and

one might speak about the first, second, etc. child of a k-clique.� d-ary k-trees: they can be considered as ordered k-trees, where each k-clique

has exactly d positions at which a child might be attached or not (thus there

are exactly
(
d
l

)
different ways in which the sequence of 0 ≤ l ≤ d nodes

w1, w2, . . . , wl can be attached to a k-clique K in this linear order).

Furthermore, we introduce specific labellings of the nodes of k-trees, which might

be called increasing labellings (in analogy to the corresponding term for trees,

see, e.g., [BFS92]). Given a (unordered, ordered, d-ary) k-tree with n non-root

nodes we label the set of root nodes by {01, . . . , 0k}, whereas the non-root nodes
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Figure 4.1: A binary increasing 2-tree of size 3. Boxes represent empty slots.

are labelled by {1, . . . , n} in such a way that the label of a node is always larger

than the labels of all its parent nodes (of course, in this context the value of 0ℓ,

1 ≤ ℓ ≤ k, is defined as 0).

Then the following graph families:� T [u] := T [u](k): “unordered increasing k-trees”,� T [o] := T [o](k): “ordered increasing k-trees”,� T [d] := T [d](k): “d-ary increasing k-trees”,

can be described combinatorially as the family of all increasingly labelled un-

ordered k-trees, ordered k-trees, and d-ary k-trees, respectively. It is apparent

from the definition, see [Drm09], that for k = 1 one gets the tree families of re-

cursive trees, plane recursive trees, and d-ary increasing trees, respectively. We

remark that it is often appropriate to add at each position in a d-ary increasing

k-tree, where no child has been attached, a so-called “external node” (which does

not get any label) that represents an “empty slot”.

Throughout our work we use the convention that the size |T | of a k-tree T is

given by the number of non-root nodes. Thus the k-tree consisting only of the

root clique K0 = {01, . . . , 0k} has size 0. Examples of k-trees from the families

considered are given in Figures 4.1 and 4.2.

4.3 The number of increasing k-trees

For each of the families T [u], T [o] and T [d], respectively, let Tn denote the number

of different increasing k-trees of size n (we do not explicitly express the dependence
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Figure 4.2: Two different ordered increasing 2-trees of size 5 (the order on the
children of each 2-clique is expressed by drawing the nodes “in front of each other“).
Regarded as unordered increasing 2-trees these are just two different drawings of
the same object.

on k, which is of course always given). There exist simple enumeration formulæ

for Tn as is shown next.

Proposition 4.3.1. The number Tn of different increasing k-trees of size n is, for

n ∈ N0, given as follows:

Tn =







n−1∏

ℓ=0

(
1 + kℓ

)
= n!kn

(
n− 1 + 1

k

n

)

, family T [u],

n−1∏

ℓ=0

(
1 + (k + 1)ℓ

)
= n!(k + 1)n

(
n− 1 + 1

k+1

n

)

, family T [o],

n−1∏

ℓ=0

(
d+ (kd− 1)ℓ

)
= n!(kd− 1)n

(
n− 1 + d

kd−1

n

)

, family T [d].

(4.1)

Proof. We consider the three graph families separately.� Family T [u]: Obviously it holds T0 = T1 = 1. To get an enumeration formula

for Tn we observe that when inserting a node into an unordered increasing k-

tree this always increases the number of possible ways of attaching a further

node by k due to the newly generated k-cliques. Thus there are always

1 + k(n− 1) possible ways of inserting node n into an unordered increasing

k-tree of size n − 1. Since each unordered increasing k-tree of size n is

uniquely obtained from an unordered increasing k-tree of size n− 1 and the

insertion of node n in a possible way, it holds that Tn = (1 + k(n− 1))Tn−1,

which shows that the number of different unordered increasing k-trees of size

n is given by equation (4.1).� Family T [o]: Again it holds T0 = T1 = 1. When inserting a node into an

ordered increasing k-tree this always increases the number of possible ways

47



4.3. The number of increasing k-trees

of attaching a further node by k+1: k due to the newly generated k-cliques

and a further one due to a new available position at the parent k-clique of

the newly inserted node. Thus there are always 1 + (k + 1)(n− 1) possible

ways of inserting node n into an ordered increasing k-tree of size n−1, which

implies Tn = (1 + (k + 1)(n− 1))Tn−1 and equation (4.1).� Family T [d]: It holds T0 = 1 and T1 = d. When inserting a node into a

d-ary increasing k-tree this always increases the number of possible ways of

attaching a further node by kd− 1: one gets kd new empty slots due to the

newly generated k-cliques, but one previously empty slot is now occupied by

the new node. Thus there are always d + (kd − 1)(n − 1) possible ways of

inserting node n into a d-ary increasing k-tree of size n − 1, which implies

Tn = (d+ (kd− 1)(n− 1))Tn−1 and equation (4.1).

4.3.1 “Top-down” computation of Tn

In the proof of Proposition 4.3.1 we computed the numbers Tn of unordered, or-

dered and d-ary increasing k-trees, respectively, in a “bottom-up” fashion, i.e.

by inductively considering the number of possible ways in which node n can be

attached to an increasing k-tree of size n− 1. We now present an alternative ap-

proach which works “top-down”, i.e. by describing how an increasing k-tree of size

n can be decomposed into smaller increasing k-trees. We will later use the same

approach when we consider the degree distribution in random increasing k-trees

(Section 4.8).

Let T be one of the families T [u], T [o] or T [d]. We construct an auxiliary

family T̃ := T̃ [u], T̃ [o] or T̃ [d], respectively, in the following way: T̃ contains all

increasingly labelled k-trees which can be created from the (k+1)-clique consisting

of the nodes {01, 02, . . . 0k, 1} (which we will denote by ∆) and k elements T1, . . . , Tk

of T by� relabelling the non-root nodes of T1, . . . , Tk in an order-preserving way, such

that exactly the labels 2, . . . , n are used, where n := |T1|+ · · ·+ |Tk|+1, and� identifying the root-cliques of the Tis each with one of the k-cliques of ∆

which contain node 1.
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In other words, T̃ is constructed from ∆ and T by using a boxed product

(cf. Section 2.1.1):

T̃ = ∆� ∗ T k. (4.2)

Note that T̃ [u] and T̃ [o] are just the families of unordered and ordered increasing

k-trees, respectively, in which the root-clique has exactly one child. In contrast,

T̃ [d] is not a sub-family of T [d]: In each element of T̃ [d], the root clique has exactly

one child but no “empty slots”.

From the combinatorial description in Section 4.2 one gets the following formal

equations, which describe how T [u], T [o] and T [d] can be constructed from T̃ [u],

T̃ [o] and T̃ [d], respectively (� denotes a k-tree of size 0, i.e. it is a placeholder for

an empty slot):

T [u] = Set

(

T̃ [u]
)

, (4.3)

T [o] = Seq

(

T̃ [o]
)

, (4.4)

T [d] = ({�} ∪̇ T̃ [d])d. (4.5)

We can now apply the symbolic method in order to re-obtain the enumeration

result given in Proposition 4.3.1. Let us denote by Tn the number of unordered,

ordered or d-ary increasing k-trees of size n, respectively, and by T̃n the number of

objects of size n in the corresponding auxiliary family T̃ . Furthermore, we define

T (z) =
∑

n≥0

Tn
zn

n!
, and

T̃ (z) =
∑

n≥1

T̃n
zn

n!
.

By an application of the formal method to the formal equations (4.2)-(4.5) one

gets the following system of equations:

T̃ ′(z) = T (z)k, T̃ (0) = 0, (4.6)

T (z) =







exp
(

T̃ (z)
)

, family T [u],

1
1−T̃ (z)

, family T [o],

(1 + T̃ (z))d, family T [d].

(4.7)

Inserting (4.7) into (4.6), we obtain in all three cases a simple ordinary differential

equation for T̃ (z), which can be solved by separation of variables. The solution is
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given by

T̃ (z) =







1
k
log
(

1
1−kz

)
, family T [u],

1− (1− (k + 1)z)
1

k+1 , family T [o],
1

(1−(kd−1)z)
1

kd−1
− 1, family T [d],

and by inserting this into (4.7), we obtain

T (z) =







1

(1−kz)
1
k
, family T [u],

1

(1−(k+1)z)
1

k+1
, family T [o],

1

(1−(kd−1)z)
d

kd−1
, family T [d].

(4.8)

From this, the formulæ for the numbers Tn as given in (4.1) are easily re-discovered

via the relation Tn = n![zn]T (z).

4.4 Relation to the considered growth rules

When studying parameters in unordered, ordered and d-ary increasing k-trees we

always assume the “random increasing k-tree model” of the corresponding family,

which means that we assume that each of the Tn increasing k-trees of size n of the

family considered appears with the same probability. It remains to show that this

combinatorial description of the random k-tree models indeed coincides with the

probabilistic growth rules discussed in the introduction.

Proposition 4.4.1. The following graph evolution process generates unordered,

ordered, and d-ary increasing k-trees, respectively, uniformly at random:� Step 0: start with the root clique labelled by 01, 02, . . . , 0k.� Step n: the node with label n is attached to any k-clique K with out-degree

d+(K) in the already grown k-tree of size n−1 with a probability p(K) given

as follows:

p(K) =







1

1 + k(n− 1)
, family T [u],

d+(K) + 1

1 + (k + 1)(n− 1)
, family T [o],

d− d+(K)

d+ (kd− 1)(n− 1)
, family T [d].

(4.9)
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Proof. Again we consider the three graph families separately.� Family T [u]: each unordered increasing k-tree of size n can be obtained in

a unique way by attaching node n to one of the 1 + k(n − 1) existing k-

cliques of an unordered increasing k-tree of size n − 1. Thus the “uniform

attachment”-rule generates k-trees of this family uniformly at random.� Family T [o]: when a k-clique K in an ordered increasing k-tree has ℓ children,

i.e. d+(K) = ℓ, then there are always exactly ℓ+1 possible ways of attaching

a new node to K, namely as the first child, second, child, . . . , (ℓ + 1)-th

child, leading to different ordered increasing k-trees. Since there are exactly

1+(k+1)(n−1) possibilities of inserting node n into an ordered increasing k-

tree of size n−1, the stated “preferential attachment”-rule generates k-trees

of this family uniformly at random.� Family T [d]: when a k-cliqueK in a d-ary increasing k-tree has ℓ children, i.e.

d+(K) = ℓ, then there are always exactly d− ℓ possible ways of attaching a

new node to K, namely at one of d− ℓ empty slots, leading to different d-ary

increasing k-trees. Since there are exactly d+(kd−1)(n−1) possibilities (=

the total number of empty slots) of inserting node n into a d-ary increasing

k-tree of size n − 1, the stated “saturation”-rule generates k-trees of this

family uniformly at random.

4.5 Considered quantities

We will study various quantities in our three k-tree models, which shall give some

insight into the structure of these random objects, namely the number of ancestors,

the number of descendants, and the out-degree as well as the local clustering

coefficient of the nodes. We will now define what we mean by these notions. Note

that in the rest of this chapter we always identify each node with its label.� We call node y an ancestor of node x in a k-tree T if there exists a path

0ℓ = w0, w1, . . . , wr = x in T with the property that each node wi has been

inserted after node wi−1, 1 ≤ i ≤ r, and which contains node y; we might

call such a path an increasing path, since it holds that the labels of this path

are forming an increasing sequence, i.e. w0 < w1 < · · · < wr (again, in this

context the value of a root node 0ℓ, 1 ≤ ℓ ≤ k, is defined as 0).
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4.5. Considered quantities� We call node y a descendant of node x exactly if node x is an ancestor of y.

We also want to mention the following equivalent, but recursive definition

of the term descendant, which is advantageous for our analysis: node y is a

descendant of node x, iff

– either x = y, or

– y is a child of a descendant of x.� As we already defined in the beginning of Section 4.2, the out-degree d+(x)

of node x is the number of children of x.� The local clustering coefficient has been introduced by [WS98] and is con-

sidered as an important parameter in the study of real-world networks. The

local clustering coefficient CG(u) of a node u in a graph G(V,E) is defined

as the proportion of edges between neighbours of u divided by the number

of edges between the neighbours that could possibly exist. Formally, CG(u)

is given by

CG(u) :=







|{(x,y)∈E(G) | x,y∈N(u)}|
(d(u)2 )

, if d(u) ≥ 2,

0, if d(u) = 0 or d(u) = 1,
(4.10)

where E(G) denotes the set of edges in G and N(u) the set of neighbours

(i.e. adjacent nodes) of u.

4.5.1 Relation to existing work

Before we start with our analysis, we want to mention that the quantities we are

considering have already been thoroughly studied in the case of trees (i.e. in the

case k = 1).

First of all, for trees there is a unique path from the root node to an arbitrary

node x and the number of ancestors of node x is exactly one plus the number

of edges contained in this path, i.e. it is one plus the root-to-node distance, also

called the depth, of node x. Thus for trees this quantity has been studied exten-

sively. In particular limiting distribution results for the number of ancestors of a

random node and of the last inserted node, respectively, in a random tree of size

n have been obtained for recursive trees, plane-oriented recursive trees and d-ary

increasing trees, see, e.g., [DS96, MS95, PP07]. Although, for k ≥ 2, the number of

ancestors of x is not closely related to the ordinary distance, i.e. the shortest-path
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distance, between root nodes and node x, we remark that the analogy to trees

allow an interpretation of this quantity as a kind of “clique-distance”: the number

of ancestors of node x is exactly k plus the number of (k+1)-cliques contained in

the smallest sub-k-tree containing the root clique and node x. Furthermore, it is

not difficult to see that for each inserted node x the number of ancestors of x is

given by k plus the number of edges in a longest increasing path starting at a root

node 0ℓ and ending at x.

The number of descendants of node x in a tree can be described easily as the

size of the subtree rooted at node x. However, for k-trees with k ≥ 2, there does

not seem to exist such a simple description. There exist various studies concerning

descendants in increasing trees, see, e.g., [KP06, Pro96] for results concerning the

number of descendants of nodes in random trees for random tree models mentioned

before.

Of course, also the node degrees in random increasing trees have already been

studied, for example in [KP07].

In our work we will give a precise distributional analysis of the mentioned

quantities in a random k-tree of size n for all growth models described above. We

will not only provide results for random nodes, but a main emphasis is given on

describing the behaviour of the parameters for the j-th inserted node in a random

k-tree of size n, depending on the growth of j = j(n). The results describe quite

well aspects of the local behaviour of the nodes during the graph evolution process.

Since various tree models are contained in our k-tree models as the special

instance k = 1, our studies mostly generalize the corresponding results for these

tree families. But note that for some quantities (e.g., for the out-degree of the

nodes in unordered increasing k-trees), the case k = 1 shows a behaviour which

is qualitatively different from the cases where k ≥ 2. For better readability, and

since the case k = 1 has already been thoroughly studied, we will thus always

assume that k ≥ 2 in our analysis.

As a final remark in this section, we want to mention that the special in-

stance d = 1 of d-ary increasing k-trees leads to network models which have been

introduced previously and are known as random Apollonian networks, see, e.g.,

[AM08].

4.5.2 Considered random variables

In the following, the random variable Dn,j, with n ≥ j ≥ 1, counts the number

of descendants of node j in a random increasing k-tree of size n. Furthermore
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the random variable Dn counts the number of descendants of a randomly selected

inserted node in a random increasing k-tree of size n ≥ 1, i.e. Dn
(d)
= Dn,Un,

where Un
(d)
= Uniform({1, 2, . . . , n}) denotes a discrete random variable that is

uniformly distributed on {1, . . . , n}. The random variable An counts the number

of ancestors of node n in a random increasing k-tree of size n ≥ 1. We note

that it is not necessary to study the random variable An,j counting the number

of ancestors of node j in a random increasing k-tree of size n separately, since

it holds An,j
(d)
= Aj,j = Aj , which is a direct consequence of the graph evolution

process for the k-tree models considered. Furthermore, the random variable An

counts the number of ancestors of a randomly selected inserted node in a random

increasing k-tree of size n ≥ 1, i.e. An
(d)
= AUn , where Un

(d)
= Uniform({1, 2, . . . , n}).

The random variable On,j, with n ≥ j ≥ 1, denotes the out-degree of node j in a

random increasing k-tree of size n, and Ōn the out-degree of a randomly selected

node in a random increasing k-tree of size n. Finally, the random variable Cn

denotes the local clustering coefficient of a randomly selected node (amongst the

root nodes and the inserted nodes) in a random increasing k-tree of size n.

Note that we will not explicitly express the dependence of the random variables

on k in our notation, although this dependence is of course always given.

4.6 Ancestors

4.6.1 Results

Theorem 4.6.1. The random variable An, which counts the number of ancestors of

node n in a random increasing k-tree of size n, has the following exact distribution:

P{An = m+ k} =







1

(n−1+ 1
k

n−1 )

∑n
i=m

[ i−1
m−1]
(i−1)!

(
n−i−1+ 1

k
n−i

)
, family T [u],

km−1

(k+1)m−1(n−1+ 1
k+1

n−1
)

∑n
i=m

[ i−1
m−1]
(i−1)!

(n−i−1+ 2
k+1

n−i

)
, family T [o],

(kd)m−1

(kd−1)m−1(n−1+ d
kd−1

n−1
)

∑n
i=m

[ i−1
m−1]
(i−1)!

(n−i−1+ d−1
kd−1

n−i

)
, family T [d],

for n ≥ m ≥ 1, where the numbers
[
i
j

]
are the (unsigned) Stirling numbers of the

first kind.

Furthermore, An admits the following decomposition into a sum of independent

random variables:

An = (k + 1)⊕ 11(Cn,1)⊕ 11(Cn,2)⊕ · · · ⊕ 11(Cn,n−1),
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where Cn,j denotes the event that node j is an ancestor of node n. It holds that the

indicator variables of the events Cn,j, 1 ≤ j ≤ n− 1, are Bernoulli distributed ran-

dom variables with success probabilities independent of n: 11(Cn,j)
(d)
= Bernoulli(pj),

with

pj = P{Cn,j} =







k
kj+1

, family T [u],
k

(k+1)j+1
, family T [o],

kd
(kd−1)j+d

, family T [d].

Theorem 4.6.2. The random variable An is, for n → ∞, asymptotically normally

distributed:

P

{

An − E(An)
√

V(An)
≤ x

}

= Φ(x) +O
(

1√
log n

)

,

where Φ(x) denotes the distribution function of the standard normal distribution.

The expectation E(An) and the variance V(An) satisfy

E(An) =







log n+O(1) , family T [u],
k

k+1
logn +O(1) , family T [o],

kd
kd−1

log n+O(1) , family T [d],

and V(An) = E(An) +O(1).

Theorem 4.6.3. The random variable An, which counts the number of ancestors

of a randomly selected inserted node in a random increasing k-tree of size n, is,

for n → ∞, asymptotically normally distributed:

P







An − E
(
An

)

√

V
(
An

) ≤ x






= Φ(x) +O

(
1√
log n

)

,

where the expectation E
(
An

)
and the variance V

(
An

)
satisfy E

(
An

)
= E(An) +

O(1) and V
(
An

)
= E

(
An

)
+O(1).

4.6.2 Proofs of the results

4.6.2.1 Derivation of the exact distribution

We derive the exact distribution of An by finding a recurrence relation for the

probabilities P{An = m}. Consider, for n ≥ 2, the event

Cn := [node n is a child of node n− 1].
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By the law of total probability, it holds that

P{An = m} = P{Cn}P{An = m | Cn}+ P{Cc
n}P{An = m | Cc

n} ,

where P{A | B} denotes the conditional probability of event A, given event B, and
Cc
n is the complement of event Cn. Now we use the following two observations:� If node n is a child of a node x, then it has exactly one ancestor more than

x. It follows in particular that

P{An = m | Cn} = P{An−1 = m− 1 | Cn} .� Consider the set of (unordered, ordered or d-ary) increasing k-trees with the

property that node n is not a child of node n − 1. Clearly this set can be

mapped onto itself bijectively by swapping the nodes n and n − 1. This

implies

P{An = m | Cc
n} = P{An−1 = m | Cc

n} .

Furthermore, the number of ancestors of node n − 1 is of course independent

from the event Cn, i.e. we have P{An−1 = m− 1 | Cn} = P{An−1 = m− 1} and

P{An−1 = m | Cc
n} = P{An−1 = m}. Hence we get the desired recurrence for the

probabilities:

P{An = m} = P{Cn}P{An−1 = m− 1}+ P{Cc
n}P{An−1 = m} , (4.11)

for n > 1 and m ≥ 1. Of course, the probabilities P{Cn} in this recurrence

depend on the family of increasing k-trees we are considering and, due to the

graph evolution process stated in Proposition 4.4.1, they are given as follows:

P{Cn} =







k
k(n−1)+1

, family T [u],
k

(k+1)(n−1)+1
, family T [o],

kd
(kd−1)(n−1)+d

, family T [d].

Before treating recurrence (4.11) we note that the above considerations show, for

n > 1, a decomposition

An = Ãn−1 ⊕ 11(Cn) = Ãn−1 ⊕ 11(Cn,n−1), with Ãn−1
(d)
= An−1, (4.12)

and Cn,n−1 defined as in Theorem 4.6.1. Here the random variable Ãn−1 counts

the number of ancestors of node n − 1 in the increasing k-tree T̃ (of size n − 1)
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obtained by starting with a random increasing k-tree T of size n and applying the

following simple construction: (i) if n is a child of n − 1, i.e. event Cn occurs for

T , then T̃ is obtained by removing node n from T ; (ii) if n is not a child of n− 1,

then T̃ is obtained from T by interchanging the nodes n and n− 1, and removing

node n afterwards. Iterating the decomposition (4.12) and taking into account

that Ã1 = A1 = (k + 1) (the ancestors of node 1 are the k root nodes 01, . . . , 0k
and node 1 itself) immediately shows the corresponding result in Theorem 4.6.1.

Now we continue our computations leading to an exact formula for the prob-

abilities P{An = m} by treating (4.11) (of course, one could alternatively study

further the decomposition of An into independent random variables to show these

results).

Family T [u] (unordered increasing k-trees): In the case of unordered in-

creasing k-trees, (4.11) reads

P{An = m} =
k

k(n− 1) + 1
P{An−1 = m− 1}+ k(n− 2) + 1

k(n− 1) + 1
P{An−1 = m} .

Multiplying this equation by Tn, we get the following recurrence for the number

Tn,m := TnP{An = m} of increasing k-trees of size n in which node n has m

ancestors:

Tn,m = kTn−1,m−1 + (k(n− 2) + 1)Tn−1,m, (4.13)

for n > 1 and m ≥ 1. Furthermore, we have the initial values T1,k+1 = 1, and

T1,m = 0 for m 6= k + 1 (since there is exactly one unordered increasing k-tree

of size 1, and in this k-tree node 1 has k + 1 ancestors). In order to solve this

recurrence, we introduce the generating function

T (z, v) :=
∑

n≥1

∑

m≥1

Tn,m
zn−1

(n− 1)!
vm. (4.14)

We multiply (4.13) by zn−2

(n−2)!
vm and sum up for n ≥ 2 and m ≥ 1. The left-hand

side of (4.13) then gives

∑

n≥2

∑

m≥1

Tn,m
zn−2

(n− 2)!
vm =

∑

n≥2

∑

m≥1

(n− 1)Tn,m
zn−2

(n− 1)!
vm = Tz(z, v),
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and the right-hand side sums up to

∑

n≥2

∑

m≥1(2)

kTn−1,m−1
zn−2

(n− 2)!
vm +

∑

n≥2

∑

m≥1

(k(n− 2) + 1)Tn−1,m
zn−2

(n− 2)!
vm

= kv
∑

n≥1

∑

m≥1

Tn,m
zn−1

(n− 1)!
vm +

∑

n≥1

∑

m≥1

(k(n− 1) + 1)Tn,m
zn−1

(n− 1)!
vm

= kvT (z, v) + kzTz(z, v) + T (z, v).

Furthermore, we have T (0, v) =
∑

m≥1 T1,mv
m = vk+1. Hence, T (z, v) satisfies

(kz − 1)Tz(z, v) + (kv + 1)T (z, v) = 0, T (0, v) = vk+1,

or equivalently

Tz(z, v) =
kv + 1

1− kz
T (z, v), T (0, v) = vk+1,

This is an ordinary differential equation with respect to z which can be solved

easily, and hence we find that T (z, v) is given by

T (z, v) = vk+1exp

(∫ z

0

kv + 1

1− kζ
dζ

)

=
vk+1

(1− kz)v+
1
k

. (4.15)

In order to extract coefficients from (4.15) we use the expansion (2.4) for 1
(1−z)v

which involves the (unsigned) Stirling numbers of the first kind. With this we

obtain

Tn,m+k

(n− 1)!
= [zn−1vm+k]T (z, v) = [zn−1vm−1]

1

(1− kz)v+
1
k

= kn−1[zn−1]

(

1

(1− z)
1
k

∑

i≥m−1

[
i

m− 1

]
zi

i!

)

= kn−1
∑

i≥m−1

[
i

m−1

]

i!
[zn−i−1]

1

(1− z)
1
k

= kn−1

n−1∑

i=m−1

[
i

m−1

]

i!

(
n− i− 2 + 1

k

n− i− 1

)

.

Hence, using the relation P{An = m+ k} =
Tn,m+k

Tn
and the formula for Tn given

in Theorem 4.6.1, we obtain the exact probabilities P{An = m+ k} for the family
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T [u]:

P{An = m+ k} =
(n− 1)!kn−1

n!kn
(
n−1+ 1

k
n

)

n−1∑

i=m−1

[
i

m−1

]

i!

(
n− i− 2 + 1

k

n− i− 1

)

=
1

(
n−1+ 1

k
n−1

)

n∑

i=m

[
i−1
m−1

]

(i− 1)!

(
n− i− 1 + 1

k

n− i

)

.

Family T [o] (ordered increasing k-trees): For ordered increasing k-trees,

equation (4.11) becomes

P{An = m} =

k

(k + 1)(n− 1) + 1
P{An−1 = m− 1}+ (k + 1)(n− 2) + 2

(k + 1)(n− 1) + 1
P{An−1 = m} ,

for n > 1 and m ≥ 1. Multiplication by Tn leads to the recurrence

Tn,m = kTn−1,m−1 + ((k + 1)(n− 2) + 2)Tn−1,m, (4.16)

for n > 1 and m ≥ 1. Moreover, one has the initial values T1,k+1 = 1, and T1,m = 0

for m 6= k + 1 (since there is exactly 1 ordered increasing k-tree of size n, and in

this k-tree node 1 has k + 1 ancestors). Like in the previous case, we solve this

equation using the generating function T (z, v) defined by (4.14). By multiplying

(4.16) with zn−2

(n−2)!
vm and summing up, we find that in this case T (z, v) satisfies the

following ordinary differential equation with respect to z:

((k + 1)z − 1)Tz(z, v) + (kv + 2)T (z, v) = 0, T (0, v) = vk+1.

Of course, this equation can be solved as easily as in the previous case, and we

find the solution

T (z, v) =
vk+1

(1− (k + 1)z)
kv+2
k+1

. (4.17)
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Again we extract coefficients using (2.4), and obtain:

Tn,m+k

(n− 1)!
= [zn−1vm+k]T (z, v) = [zn−1vm−1]

1

(1− (k + 1)z)
kv+2
k+1

=
(k + 1)n−1km−1

(k + 1)m−1
[zn−1]

(

1

(1− z)
2

k+1

∑

i≥m−1

[
i

m− 1

]
zi

i!

)

= (k + 1)n−mkm−1
∑

i≥m−1

[
i

m−1

]

i!
[zn−i−1]

1

(1− z)
2

k+1

= (k + 1)n−mkm−1

n−1∑

i=m−1

[
i

m−1

]

i!

(
n− i− 2 + 2

k+1

n− i− 1

)

.

From this, the formula for the probabilities P{An = m+ k} for the family T [u] as

stated in Theorem 4.6.1 can easily be derived using Theorem 4.6.1.

Family T [d] (d-ary increasing k-trees): In the case of d-ary increasing k-trees,

equation (4.11) reads

P{An = m} =

kd

(kd− 1)(n− 1) + d
P{An−1 = m− 1}+ (kd− 1)(n− 2) + d− 1

(kd− 1)(n− 1) + d
P{An−1 = m} ,

for n > 1 and m ≥ 1. By multiplication with Tn, this leads for the numbers Tn,m,

which count d-ary increasing k-trees of size n in which node n has m ancestors, to

the recurrence

Tn,m = kdTn−1,m−1 + ((kd− 1)(n− 2) + d− 1)Tn−1,m,

for n > 1 and m ≥ 1. Furthermore, one has the initial values T1,k+1 = d, and

T1,m = 0 for m 6= k + 1 (since there are exactly d d-ary increasing k-trees of size

1, and node 1 has k+ 1 ancestors in each of them). Proceeding as in the previous

two cases, we get the differential equation

((kd− 1)z − 1)Tz(z, v) + (kdv + d− 1)T (z, v) = 0, T (0, v) = dvk+1,

which yields the solution

T (z, v) =
dvk+1

(1− (kd− 1)z)
kdv+d−1

kd−1

. (4.18)

By extracting coefficients as in the previous two cases, one obtains the formula for

P{An = m+ k} given in Theorem 4.6.1 for the family T [d].
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4.6.2.2 Derivation of the limiting distributions results

We derive the limiting distributions for the number of ancestors directly from the

exact results.

Family T [u] (unordered increasing k-trees): From (4.15) we can compute the

probability generating function pn(v) :=
∑

m≥0 P{An = m} vm of An as follows:

pn(v) =
(n− 1)!

Tn

[zn−1]T (z, v) =
(n− 1)!

n!kn
(
n−1+ 1

k
n

)v
k+1kn−1

(
n− 2 + v + 1

k

n− 1

)

= vk+1

(
n−2+v+ 1

k
n−1

)

(
n−1+ 1

k
n−1

) =
vk+1Γ

(
n− 1 + v + 1

k

)
Γ
(
1 + 1

k

)

Γ
(
v + 1

k

)
Γ
(
n+ 1

k

) .

(4.19)

From this we get, by an application of Lemma 2.2.5, the asymptotic expansion

pn(v) =
vk+1Γ

(
1 + 1

k

)

Γ
(
v + 1

k

) nv−1

(

1 +O
(
1

n

))

, for n → ∞, (4.20)

which holds uniformly for v in a complex neighbourhood of 1. Clearly, (4.20) can

be written in the form

pn(v) = A(v)B(v)βn
(
1 +O

(
κ−1
n

))
, for n → ∞, (4.21)

with B(v) = exp (v − 1), βn = logn and κn = n. This is exactly a situation, where

Hwang’s quasi-powers theorem (Theorem 2.2.3) can be applied to show that the

centered and normalized random variable An−E(An)√
V(An)

converges in distribution to the

standard normal distribution (with rate of convergence O
(

1√
logn

)

), and that the

mean E(An) and the variance V(An) of An satisfy

E(An) = βnB
′(1) +O(1) = logn +O(1) ,

V(An) = βn(B
′′(1) +B′(1)− (B′(1))2) +O(1) = log n+O(1) .

This completes the proof of the corresponding result in Theorem 4.6.2.

Family T [o] (ordered increasing k-trees): In analogy to the computations for

the family T [u], we extract the probability generating function pn(v) of An from
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(4.17). We find that for ordered increasing k-trees pn(v) is given by

pn(v) =
(n− 1)!

Tn
[zn−1]T (z, v)

=
(n− 1)!

n!(k + 1)n
(
n−1+ 1

k+1
n

)v
k+1(k + 1)n−1

(
n− 2 + kv+2

k+1

n− 1

)

= vk+1

(n−2+ kv+2
k+1

n−1

)

(n−1+ 1
k+1

n−1

) =
vk+1Γ

(
n− 1 + kv+2

k+1

)
Γ
(
1 + 1

k+1

)

Γ
(
kv+2
k+1

)
Γ
(
n+ 1

k+1

)

=
vk+1Γ

(
1 + 1

k+1

)

Γ
(
kv+2
k+1

) n
k

k+1
(v−1)

(

1 +O
(
1

n

))

, for n → ∞,

(4.22)

where we have again used Lemma 2.2.5 in the last step. Hence, also in this case

pn(v) satisfies an equation of the form (4.21), which holds uniformly for v in a

neighbourhood of 1, where now B(v) = exp
(

k
k+1

(v − 1)
)
, βn = log n and κn = n.

Thus, by another application of Hwang’s quasi-powers theorem, we get

E(An) = βnB
′(1) +O(1) =

k

k + 1
log n+O(1) ,

V(An) = βn(B
′′(1) +B′(1)− (B′(1))2) +O(1) =

k

k + 1
logn +O(1) ,

and the claimed convergence result for the centered and normalized random vari-

able An−E(An)√
V(An)

for family T [o].

Family T [d] (d-ary increasing k-trees): Analogously to the other two cases

we compute pn(v) from (4.18):

pn(v) =
(n− 1)!

Tn
[zn−1]T (z, v)

=
(n− 1)!

n!(kd− 1)n
(
n−1+ d

kd−1
n

)dv
k+1(kd− 1)n−1

(
n− 2 + kdv+d−1

kd−1

n− 1

)

= vk+1

(n−2+ kdv+d−1
kd−1

n−1

)

(n−1+ d
kd−1

n−1

) =
vk+1Γ

(
n− 1 + kdv+d−1

kd−1

)
Γ
(
1 + d

kd−1

)

Γ
(
kdv+d−1
kd−1

)
Γ
(
n + d

kd−1

)

=
vk+1Γ

(
1 + d

kd−1

)

Γ
(
kdv+d−1
kd−1

) n
kd

kd−1
(v−1)

(

1 +O
(
1

n

))

, for n → ∞.

(4.23)

Hence, pn(v) is of the form (4.21) with B(v) = exp
(

kd
kd−1

(v − 1)
)
, βn = log n and

κn = n in this case. Thus, another application of the quasi-powers theorem gives

the result in Theorem 4.6.2 for the family T [d].
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4.6.2.3 Derivation of the results for a randomly selected node

To obtain the results for An, i.e. the number of ancestors of a randomly selected

node in a random increasing k-tree of size n, as stated in Theorem 4.6.3, we use

P
{
An = m

}
=

n∑

j=1

P
{
An = m | node j is chosen

}
P{node j is chosen}

=
1

n

n∑

j=1

P{Aj = m} ,

and the exact results for Aj .

Family T [u] (unordered increasing k-trees): We consider the probability

generating function of An,

pn(v) :=
∑

m≥0

P
{
An = m

}
vm, (4.24)

and obtain, by using (4.19):

pn(v) =
1

n

n∑

j=1

pj(v) =
vk+1

n

n∑

j=1

(
j−2+v+ 1

k
j−1

)

(
j−1+ 1

k
j−1

) . (4.25)

To carry out the summation we consider the expression

n∑

j=1

(
j−1+α
j−1

)

(
j−1+β
j−1

) =
1

(
α

α−β

)

n−1∑

j=0

(
j + α

α− β

)

,

for real α, β, where we assume that −α, −β, and β − α 6∈ N. Using the formula

n∑

j=0

(
j + a

b

)

=

(
n + a+ 1

b+ 1

)

−
(

a

b+ 1

)

, (4.26)

which is a direct consequence of the representation
(
j+a
b

)
=
(
j+1+a
b+1

)
−
(
j+a
b+1

)
, which

yields a telescoping sum, one easily obtains

n∑

j=1

(
j−1+α
j−1

)

(
j−1+β
j−1

) =
1

(
α

α−β

)

((
n + α

α− β + 1

)

−
(

α

α− β + 1

))

=
β

α− β + 1

( (
n+α
n

)

(
n+β−1

n

) − 1

)

.

(4.27)
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A direct application of (4.27) to (4.25) (via α = v − 1 + 1
k
, β = 1

k
) gives the

following exact formula for pn(v):

pn(v) =
vk

kn

((
n+v−1+ 1

k
n

)

(
n−1+ 1

k
n

) − 1

)

.

From this one gets, by applying Lemma 2.2.5, the following asymptotic formula

(which holds, for arbitrarily small ǫ > 0, uniformly in a neighbourhood of v = 1):

pn(v) =
vkΓ
(
1 + 1

k

)

Γ
(
v + 1

k

) nv−1
(
1 +O

(
n−1+ǫ

))

= A(v)B(v)βn
(
1 +O

(
κ−1
n

))
,

with B(v) = exp (v − 1), βn = log n and κn = n1−ǫ. Hwang’s quasi-powers theorem

now shows the corresponding part of Theorem 4.6.3.

Family T [o] (ordered increasing k-trees): We compute the probability gener-

ating function pn(v) defined by (4.24) from the exact expressions for the functions

pj(v) which we found in (4.22):

pn(v) =
1

n

n∑

j=1

pj(v) =
vk+1

n

n∑

j=1

(j−2+ kv+2
k+1

j−1

)

(j−1+ 1
k+1

j−1

) =
vk+1

n(kv + 1)

((
n−1+ kv+2

k+1
n

)

(
n−1+ 1

k+1
n

) − 1

)

.

Note that we have used (4.27) with α = kv+2
k+1

−1 and β = 1
k+1

in the last step. From

this one gets, again by an application of Lemma 2.2.5, the following asymptotic

formula, which holds (for arbitrary ǫ > 0) uniformly in a neighbourhood of v = 1:

pn(v) =
vk+1Γ

(
1

k+1

)

(kv + 1)Γ
(
kv+2
k+1

)n
k

k+1
(v−1)

(
1 +O

(
n−1+ǫ

))
.

Hence we can apply Theorem 2.2.3 with B(v) = exp
(

k
k+1

(v − 1)
)
, βn = log n and

κn = n1−ǫ, which proves the result in Theorem 4.6.3 for the family T [o].

Family T [d] (d-ary increasing k-trees): Analogously to the previous two cases,

we compute pn(v) using (4.23). We carry out the summation using (4.27) with
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α = kdv+d−1
kd−1

− 1 and β = d
kd−1

, and then apply Lemma 2.2.5, in order to obtain

pn(v) =
1

n

n∑

j=1

pj(v) =
vk+1

n

n∑

j=1

(n−2+ kdv+d−1
kd−1

n−1

)

(n−1+ d
kd−1

n−1

)

=
dvk+1

n(kdv − 1)

((
n−1+ kdv+d−1

kd−1
n

)

(
n−1+ d

kd−1
n

) − 1

)

=
dvk+1Γ

(
d

kd−1

)

(kdv − 1)Γ
(
kdv+d−1
kd−1

)n
kd

kd−1
(v−1)

(
1 +O

(
n−1+ǫ

))
.

Hence, Hwang’s quasi-powers theorem is applicable withB(v) = exp
(

kd
kd−1

(v − 1)
)
,

βn = log n and κn = n1−ǫ. This finishes the proof of Theorem 4.6.3.

4.7 Descendants

4.7.1 Results

Theorem 4.7.1. The random variable Dn,j, which counts the number of descen-

dants of node j in a random increasing k-tree of size n, has the following exact

distribution:

P{Dn,j = m} =







(n−m−1+ 1
k

n−m−j+1 )

(n−1+ 1
k

n−j )
, family T [u],

(m−1− 1
k+1

m−1
)(n−m−1+ 2

k+1
n−m−j+1

)

(n−1+ 1
k+1

n−j
)

, family T [o],

(m−1+ 1
kd−1

m−1
)(n−m−1+ d−1

kd−1
n−m−j+1

)

(n−1+ d
kd−1

n−j
)

, family T [d],

for n ≥ j ≥ 1 and m ≥ 1.

Theorem 4.7.2. The limiting distribution behaviour of Dn,j is, for n → ∞ and

depending on the growth of j, characterized as follows:� The region for j fixed: The normalized random variable
Dn,j

n
is asymptotically

Beta(α, β) distributed with parameters

α =







1, family T [u],
k

k+1
, family T [o],

kd
kd−1

, family T [d],

and β =







j − 1 + 1
k
, family T [u],

j − 1 + 2
k+1

, family T [o],

j − 1 + d−1
kd−1

, family T [d],
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i.e.
Dn,j

n

(d)−→ Dj, where the moments of Dj are, for s ≥ 0, given as follows:

E
(
Ds

j

)
=







s!
Γ(j+ 1

k)
Γ(s+j+ 1

k)
, family T [u],

Γ(s+ k
k+1)Γ(j+

1
k+1)

Γ( k
k+1)Γ(s+j+ 1

k+1)
, family T [o],

Γ(s+ kd
kd−1)Γ(j+

d
kd−1)

Γ( kd
kd−1)Γ(s+j+ d

kd−1)
, family T [d].� The region for j small: j → ∞ such that j = o (n): The normalized random

variable j
n
Dn,j is asymptotically Gamma(α, θ) distributed with parameters

α =







1, family T [u],
k

k+1
, family T [o],

kd
kd−1

, family T [d],

and θ = 1,

(for the family T [u] this is the Exp(1) distribution), i.e. j
n
Dn,j

(d)−→ D, where

the moments of D are, for s ≥ 0, given as follows:

E(Ds) =







s!, family T [u],
Γ(s+ k

k+1)
Γ( k

k+1)
, family T [o],

Γ(s+ kd
kd−1)

Γ( kd
kd−1)

, family T [d].� The central region for j: j → ∞ such that j ∼ ρn, with 0 < ρ < 1:

The shifted random variable Dn,j − 1 is asymptotically negative binomial

distributed NegBin(r, p) with parameters

r =







1, family T [u],
k

k+1
, family T [o],

kd
kd−1

, family T [d],

and p = ρ,

(for the family T [u] this is the Geom(ρ) distribution), i.e. Dn,j − 1
(d)−→ Dρ,

where the probability mass function of Dρ is given by

P{Dρ = m} =







ρ(1− ρ)m, family T [u],
(
m− 1

k+1
m

)
ρ

k
k+1 (1− ρ)m, family T [o],

(
m+ 1

kd−1
m

)
ρ

kd
kd−1 (1− ρ)m, family T [d],

for m ∈ N0.
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4.7. Descendants� The region for j large: j → ∞ such that n − j = o (n): It holds that

P{Dn,j = 1} → 1.

Theorem 4.7.3. The random variable Dn, which counts the number of descen-

dants of a randomly selected inserted node in a random increasing k-tree of size n,

has the following exact distribution:

P
{
Dn = m

}
=







(kn−km+m+1)(n−m−1+ 1
k

n−m )

m(m+1)(n−1+ 1
k

n−1 )
, family T [u],

k(n+ 1
k+1

)

(k+1)(m+ k
k+1

)(m− 1
k+1

)n

− (m−1− 1
k+1

m−1
)

n(n−1+ 1
k+1

n )

∑m−1
ℓ=0

(m−1
ℓ )(−1)ℓ

(k+1)(ℓ+1)+k

(
n−ℓ−2+ 2

k+1
n

)
, family T [o],

kd(n+ d
kd−1

)

(kd−1)(m+ kd
kd−1

)(m+ 1
kd−1

)n

− d(m−1+ 1
kd−1

m−1
)

n(n−1+ d
kd−1

n )

∑m−1
ℓ=0

(m−1
ℓ )(−1)ℓ

(kd−1)(ℓ+1)+kd

(
n−ℓ−2+ d−1

kd−1
n

)
, family T [d],

for n ≥ m ≥ 1.

For n → ∞, Dn converges in distribution to a discrete random variable D, i.e.

Dn
(d)−→ D, where the distribution of D is given as follows, with m ≥ 1:

P{D = m} =







1
m(m+1)

, family T [u],
k

(k+1)(m+ k
k+1

)(m− 1
k+1

)
, family T [o],

kd
(kd−1)(m+ kd

kd−1
)(m+ 1

kd−1
)
, family T [d].

4.7.2 Proofs of the results

4.7.2.1 Derivation of the exact distribution

Family T [u] (unordered increasing k-trees): In order to get a suitable de-

scription of the random variable Dn,j we consider the graph evolution process of

k-trees as described in Proposition 4.4.1:

Clearly, it holds that in any unordered increasing k-tree T of size j the node

with label j has exactly one descendant (namely itself). Furthermore, there are

exactly k possible ways of adding a new node x to T such that the number of

descendants of j increases, namely by attaching x to one of the k-cliques which

contain j.

Now, we use the following observation: each new descendant x of j increases

the number of possible locations for subsequent descendants of j by exactly k
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(since k new k-cliques are created when x is added to the k-tree). Thus, if in an

unordered increasing k-tree of size n node j ≥ 1 has m descendants then there

are exactly mk possible locations at which a new descendant of j can be attached,

whereas attaching a node to any of the k(n−m) + 1 other locations will keep the

number of descendants of j unchanged.

Hence, if we count by Tn,j,m := TnP{Dn,j = m} the number of unordered in-

creasing k-trees of size n in which node j has m descendants, we immediately

get, by distinguishing whether node n is a descendant of j or not, the following

recurrence:

Tn,j,m = (k(n−m− 1) + 1) Tn−1,j,m + k(m− 1)Tn−1,j,m−1, (4.28)

for n > j ≥ 1 and m ≥ 1. Moreover, one clearly has the boundary values

Tj,j,1 = Tj , for j ≥ 1, and Tj,j,m = 0, for m > 1. In order to solve this recurrence,

we introduce the generating function

T [j](z, v) :=
∑

n≥j

∑

m≥1

Tn,j,m
zn−j

(n− j)!
vm. (4.29)

Multiplying (4.28) by zn−j−1

(n−j−1)!
vm and summing up for n > j and m ≥ 1 leads then

to the following linear first order partial differential equation:

(kz − 1)T [j]
z (z, v) + kv(v − 1)T [j]

v (z, v) + (kj + 1)T [j](z, v) = 0, T [j](0, v) = Tjv.

(4.30)

This PDE can be solved by an application of the method of characteristics (see

Appendix B). For this purpose, we consider the system of characteristic differential

equations for (4.30), i.e.

ż = kz − 1, v̇ = kv(v − 1), (4.31)

where we regard z = z(t) and v = v(t) as functions of a parameter t. A first

integral of (4.31) can be found by considering the phase differential equation

dz

dv
=

kz − 1

kv(v − 1)
.

This differential equation can be solved easily by separation of variables: From

∫
dz

kz − 1
=

∫
dv

kv(v − 1)
=

1

k

∫

−1

v
+

1

v − 1
dv,
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one obtains
1

k
log |kz − 1| = 1

k
log

∣
∣
∣
∣

v − 1

v

∣
∣
∣
∣
+ const,

and thus
v(1− kz)

1− v
= const.

Hence, a first integral ζ(z, v) of (4.31) is given by

ζ(z, v) =
v(1− kz)

1− v
.

Now, in order to solve (4.30), we use the coordinate transform

ζ = ζ(z, v) =
v(1− kz)

1− v
, η = η(z, v) = 1− kz,

or equivalently

z = z(ζ, η) =
1− η

k
, v = v(ζ, η) =

ζ

ζ + η
.

By setting T̃ [j](ζ, η) := T [j](z(ζ, η), v(ζ, η)), the corresponding transformation of

(4.30) is given as follows (note that the terms containing T̃
[j]
ζ cancel, compare

Appendix B, and that ηv = 0):

0 = (kj + 1)T [j](z, v) + (kz − 1)T [j]
z (z, v) + kv(v − 1)T [j]

v (z, v)

= (kj + 1)T̃ [j](ζ, η) + (kz − 1)

(

T̃
[j]
ζ (ζ, η)

∂ζ

∂z
+ T̃ [j]

η (ζ, η)
∂η

∂z

)

+ kv(v − 1)

(

T̃
[j]
ζ (ζ, η)

∂ζ

∂v
+ T̃ [j]

η (ζ, η)
∂η

∂v

)

= (kj + 1)T̃ [j](ζ, η) + kηT̃ [j]
η (ζ, η).

Hence, we obtain the following (surprisingly simple) ordinary differential equation

with respect to η:

T̃ [j]
η (ζ, η) = −kj + 1

kη
T̃ [j](ζ, η).

This immediately yields

T̃ [j](ζ, η) = C(ζ)η−j− 1
k ,

where C is a continuous function, and thus the general solution of (4.30) is given

by

T [j](z, v) =
C
(

v(1−kz)
1−v

)

(1− kz)j+
1
k

. (4.32)
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It remains to adapt C to the boundary condition given in (4.30). By setting z = 0

in (4.32), we get

Tjv = T [j](0, v) = C

(
v

1− v

)

,

and by substituting v = x
1+x

we find

C(x) =
Tjx

1 + x
.

Hence we finally obtain the solution:

T [j](z, v) =
Tj

v(1−kz)
1−v

(

1 + v(1−kz)
1−v

)

(1− kz)j+
1
k

=
Tjv

(1− vkz)(1− kz)j−1+ 1
k

. (4.33)

From this, we can easily compute the numbers Tn,j,m by extracting the proper

coefficients:

Tn,j,m

(n− j)!
= [zn−jvm]T [j](z, v) = Tj [z

n−j ]
(kz)m−1

(1− kz)j−1+ 1
k

= Tjk
n−j[zn−m−j+1]

1

(1− z)j−1+ 1
k

= Tjk
n−j

(
n−m− 1 + 1

k

n−m− j + 1

)

.

Thus, using the relation P{Dn,j = m} =
Tn,j,m

Tn
and the formula for Tn from Propo-

sition 4.3.1, one obtains the desired formula for the probabilities P{Dn,j = m}:

P{Dn,j = m} =
Tjk

n−j(n− j)!

Tn

(
n−m− 1 + 1

k

n−m− j + 1

)

=
j!kj

(
j−1+ 1

k
j

)
kn−j(n− j)!

n!kn
(
n−1+ 1

k
n

)

(
n−m− 1 + 1

k

n−m− j + 1

)

=
Γ
(
j + 1

k

)
(n− j)!

Γ
(
n + 1

k

)

(
n−m− 1 + 1

k

n−m− j + 1

)

=

(
n−m−1+ 1

k
n−m−j+1

)

(
n−1+ 1

k
n−j

) .

Family T [o] (ordered increasing k-trees): Let now Tn,j,m denote the number

of ordered increasing k-trees of size n in which node j has m descendants. In order
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4.7. Descendants

to find a recurrence for Tn,j,m we can use an argumentation analogous to the one

for the previously considered family T [u]:

In any ordered increasing k-tree of size j node j has exactly one descendant,

and there are k possible locations at which a new descendant can be attached.

Furthermore, each new descendant increases the possible locations for subsequent

descendants by k + 1. This is because when x is added to the k-tree then k new

k-cliques are created, and, apart from that, the k-clique to which x is attached

gets one additional spot in the linear order of its children. Consequently, in each

increasing k-tree of size n in which node j hasm descendants, there are (k+1)m−1

locations at which a new descendant of j can be attached, whereas attaching a

new node at any of the remaining (k + 1)(n−m) + 2 locations doesn’t affect the

number of descendants of node j. These considerations lead for the numbers Tn,j,m

to the recurrence relation

Tn,j,m = ((k + 1)(n−m− 1) + 2)Tn−1,j,m + ((k + 1)(m− 1)− 1)Tn−1,j,m−1,

for n > j ≥ 1 and m ≥ 1, with initial values Tj,j,1 = Tj, for j ≥ 1, and Tj,j,m = 0,

for m > 1. Defining the generating function T [j](z, v) as in (4.29) and proceeding

as for the family T [u], we obtain the PDE

((k + 1)z − 1)T [j]
z (z, v) + (k + 1)v(v − 1)T [j]

v (z, v)

+ ((k + 1)j + 2− v)T [j](z, v) = 0, T [j](0, v) = Tjv.

This PDE can be solved as well by using the method of characteristics. Since the

computations are completely analogous to the ones for the family T [u], we confine

ourselves to stating the intermediary results:

A first integral of the system of characteristic equations ż = (k + 1)z − 1,

v̇ = (k + 1)v(v − 1), is given by

ζ(z, v) =
v(1− (k + 1)z)

1− v
.

Using the coordinate transform ζ = ζ(z, v), η = η(z, v) = 1 − (k + 1)z (equiv-

alently, z(ζ, η) = 1−η
k+1

, v(ζ, η) = ζ
ζ+η

), one gets that the function T̃ [j](ζ, η) :=

T [j](z(ζ, η), v(ζ, η)) satisfies the following ordinary differential equation:

T̃ [j]
η (ζ, η) =

(
ζ

(k + 1)η(ζ + η)
− (k + 1)j + 2

(k + 1)η

)

T̃ [j](ζ, η).

Solving this equation and transforming it back to (z, v)-coordinates gives

T [j](z, v) =
(1− v)

1
k+1C

(
v(1−(k+1)z)

1−v

)

(1− (k + 1)z)j+
2

k+1

, (4.34)
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where C is a continuous function. C can be determined from the boundary con-

dition T [j](0, v) = Tjv by setting z = 0 in (4.34). One gets

C(x) =
Tjx

(1 + x)
k

k+1

,

and this finally yields the solution

T [j](z, v) =
Tjv

(1− (k + 1)vz)
k

k+1 (1− (k + 1)z)j−1+ 2
k+1

.

From this, we compute the numbers Tn,j,m by extracting the proper coefficients:

Tn,j,m

(n− j)!
= [zn−jvm]T [j](z, v) = Tj

(
m− 1− 1

k+1

m− 1

)

[zn−j ]
((k + 1)z)m−1

(1− (k + 1)z)j−1+ 2
k+1

= Tj(k + 1)n−j

(
m− 1− 1

k+1

m− 1

)

[zn−m−j+1]
1

(1− (k + 1)z)j−1+ 2
k+1

= Tj(k + 1)n−j

(
m− 1− 1

k+1

m− 1

)(
n−m− 1 + 2

k+1

n−m− j + 1

)

.

Now, again using the relation P{Dn,j = m} =
Tn,j,m

Tn
and the formula for Tn from

Theorem 4.3.1, we can compute the probabilities P{Dn,j = m}:

P{Dn,j = m} =
Tj(k + 1)n−j(n− j)!

Tn

(
m− 1− 1

k+1

m− 1

)(
n−m− 1 + 2

k+1

n−m− j + 1

)

=
j!
(j−1+ 1

k+1

j

)
(n− j)!

n!
(
n−1+ 1

k+1
n

)

(
m− 1− 1

k+1

m− 1

)(
n−m− 1 + 2

k+1

n−m− j + 1

)

=

(m−1− 1
k+1

m−1

)(n−m−1+ 2
k+1

n−m−j+1

)

(n−1+ 1
k+1

n−j

) .

This proves the part of Theorem 4.7.1 concerning the family T [o].

Family T [d] (d-ary increasing k-trees): Like in the previous cases, we first

establish a recurrence relation for the numbers Tn,j,m: Clearly, it holds that in any

d-ary increasing k-tree of size j node j has exactly one descendant (namely itself).

Furthermore, in any such k-tree, there are exactly kd locations at which a descen-

dant of node j can be attached, since node j is contained in k different k-cliques,

each of which has d empty slots. Moreover, we observe that each new descendant
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x of j increases the number of possible locations for subsequent descendants by

exactly kd− 1, namely by creating k new k-cliques (each with d empty slots) but

at the same time occupying one of the existing locations. Consequently, given any

d-ary increasing k-tree of size n in which node j has m descendants, there are

(kd − 1)m + 1 slots at which a new descendant of node j can be attached, and

(kd − 1)(n − m) + d − 1 possible locations for a new node which will not be a

descendant of j. Hence, for the numbers Tn,j,m of d-ary increasing k-trees of size

n in which node j has m descendants, we get the recurrence relation

Tn,j,m = ((kd− 1)(n−m− 1) + d− 1)Tn−1,j,m

+ ((kd− 1)(m− 1) + 1) Tn−1,j,m−1,

for n > j ≥ 1 and m ≥ 1, with Tj,j,1 = Tj , for j ≥ 1, and Tj,j,m = 0, for m > 1. In

this case, one gets that the generating function T [j](z, v) defined by (4.29) satisfies

the PDE

((kd− 1)z − 1)T [j]
z (z, v) + (kd− 1)v(v − 1)T [j]

v (z, v)

+ ((kd− 1)j + d− 1 + v)T [j](z, v) = 0, T [j](0, v) = Tjv.

Like in the previous cases, one can solve this equation by an application of the

method of characteristics: A first integral for the system of characteristic equations

ż = (kd− 1)z − 1, v̇ = (kd− 1)v(v − 1), is given by

ζ(z, v) =
v(1− (kd− 1)z)

1− v
.

We use the coordinate transform ζ = ζ(z, v), η = η(z, v) = 1 − (kd − 1)z (equiv-

alently, z(ζ, η) = 1−η
kd−1

, v(ζ, η) = ζ
ζ+η

), which leads for the function T̃ [j](ζ, η) :=

T [j](z(ζ, η), v(ζ, η)) to the following ordinary differential equation:

T̃ [j]
η (ζ, η) =

(

− ζ

(kd− 1)η(ζ + η)
− (kd− 1)j − d+ 1

(kd− 1)η

)

T̃ [j](ζ, η).

This equation can easily be solved, and after transformation to (z, v)-coordinates

one obtains

T [j](z, v) =
C
(

v(1−(kd−1)z)
1−v

)(
1−(kd−1)z

1−v

) 1
kd−1

(1− (kd− 1)z)j+
d−2
kd−1

,

where C is a continuous function. Using the boundary condition T [j](0, v) = Tjv,

C can be computed like in the previous two cases, and this finally leads to the
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solution

T [j](z, v) =
Tjv

(1− (kd− 1)vz)
kd

kd−1 (1− (kd− 1)z)j−1+ d−1
kd−1

.

We extract the numbers Tn,j,m like in the previous two cases, which gives

Tn,j,m

(n− j)!
= [zn−jvm]T [j](z, v)

= Tj(kd− 1)n−j

(
m− 1 + 1

kd−1

m− 1

)(
n−m− 1 + d−1

kd−1

n−m− j + 1

)

,

from which one easily derives the formula for the exact probabilities P{Dn,j = m}
as given in Theorem 4.7.1 by using the relation P{Dn,j = m} =

Tn,j,m

Tn
and the

formula for Tn from Proposition 4.3.1.

4.7.2.2 Derivation of the limiting distributions results

We derive the limiting distribution results for Dn,j claimed in Theorem 4.7.2 di-

rectly from the exact results obtained in Section 4.7.2.1. We concentrate on the

derivations for the family T [u]. The computations for the remaining cases are only

sketched, since they are quite similar.

Family T [u] (unordered increasing k-trees):� The region for j fixed:

We use the method of moments in order to show the convergence result for
Dn,j

n
: Since the probability generating function

pn,j(v) :=
∑

m≥0

P{Dn,j − 1 = m} vm,

of the shifted random variable Dn,j − 1 is given by

pn,j(v) =
(n− j)!

Tn
[zn−j ]

T [j](z, v)

v
,

where T [j](z, v) is defined as in (4.29), one can obtain the s-th factorial

moments E((Dn,j − 1)s) via

E((Dn,j − 1)s) =
(n− j)!

Tn
[zn−j ]UvD

s
v

T [j](z, v)

v
.
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Hence, by using the formula for T [j](z, v) from (4.33), we get

E((Dn,j − 1)s) =
(n− j)! Tj

Tn
[zn−j ]

1

(1− kz)j−1+ 1
k

UvD
s
v

1

1− vkz

=
(n− j)! Tj

Tn

[zn−j ]
s!(kz)s

(1− kz)s+j+ 1
k

= s!
kn−j(n− j)! Tj

Tn
[zn−j−s]

1

(1− z)s+j+ 1
k

= s!
kn−j(n− j)! Tj

Tn

(
n− 1 + 1

k

n− j − s

)

= s!

(
n−1+ 1

k
n−j−s

)

(
n−1+ 1

k
n−j

) .

Simple manipulations of the last expression yield

E((Dn,j − 1)s) = s!
Γ
(
j + 1

k

)

Γ
(
s+ j + 1

k

)(n− j)s, (4.35)

leading (for j arbitrary, but fixed) to the following asymptotic expansion of

the (shifted) s-th factorial moments:

E((Dn,j − 1)s) = s!
Γ
(
j + 1

k

)

Γ
(
s+ j + 1

k

)ns +O
(
ns−1

)
.

Now note that the ordinary s-th moments E
(
Ds

n,j

)
of Dn,j can be computed

from the factorial moments E
(

D
j

n,j

)

via a linear combination of the form

E
(
Ds

n,j

)
= E((Dn,j − 1)s) +

s−1∑

i=0

cs,iE
(
(Dn,j − 1)i

)
, (4.36)

with computable constants cs,i. Thus we also have the asymptotic expansion

E
(
Ds

n,j

)
= s!

Γ
(
j + 1

k

)

Γ
(
s+ j + 1

k

)ns +O
(
ns−1

)
.

This shows that

lim
n→∞

E

((
Dn,j

n

)s)

= s!
Γ
(
j + 1

k

)

Γ
(
s + j + 1

k

) ,

i.e. the s-th moments of
Dn,j

n
converge to the s-th moments of a random

variable which is Beta(α, β) distributed with α = 1 and β = j − 1 + 1
k
. The

convergence in distribution claimed in Theorem 4.7.2 now follows directly

from the Theorem of Fréchet and Shohat (Theorem 2.2.1).
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4.7. Descendants� The region for j small: j → ∞ such that j = o (n):

Like in the case for fixed j we use the method of moments: Since j → ∞, we

can apply Lemma 2.2.5 to the factor
Γ(j+ 1

k)
Γ(s+j+ 1

k)
in (4.35). This immediately

yields

E((Dn,j − 1)s) = s!
(n− j)s

js

(

1 +O
(
1

j

))(

1 +O
(

1

n− j

))

= s!

(
n

j

)s(

1 +O
(
1

j

))(

1 +O
(
j

n

))

.

As before, this leads via (4.36) also to an asymptotic expansion for the s-th

moments E
(
Ds

n,j

)
, and we finally obtain

lim
n→∞

E

((
j

n
Dn,j

)s)

= s!.

By using the Theorem of Fréchet and Shohat, this proves the convergence in

distribution of j
n
Dn,j to an Exp(1) distributed random variable.� The central region for j: j → ∞ such that j ∼ ρn, with 0 < ρ < 1:

We use the exact expressions for the probabilities P{Dn,j = m} given in

Theorem 4.7.1, which can be written as

P{Dn,j − 1 = m} =
Γ
(
n−m− 1 + 1

k

)

Γ
(
n + 1

k

)
Γ
(
j + 1

k

)

Γ
(
j − 1 + 1

k

)
Γ(n− j + 1)

Γ(n− j −m+ 1)
.

Since we have n → ∞, j → ∞ and n− j → ∞, we can apply Lemma 2.2.5

three times and get, for each fixed m ∈ N0,

P{Dn,j − 1 = m} =
j(n− j)m

nm+1

(

1 +O
(
1

n

))

=
ρn(n− ρn)m

nm+1

(

1 +O
(
1

n

))

(1 + o (1))

= ρ(1− ρ)m (1 + o (1)) ,

where we have used that in the considered region holds O
(

1
j

)

= O
(
1
n

)
,

O
(

1
n−j

)

= O
(
1
n

)
, and j = ρn + o (ρn) = ρn (1 + o (1)). Hence, the proba-

bility mass function of Dn,j − 1 converges pointwise to the probability mass

function of a Geom(ρ) distributed random variable, which proves the con-

vergence in distribution in this region as stated in Theorem 4.7.2.
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4.7. Descendants� The region for j large: j → ∞ such that j̃ := n− j = o (n):

From Theorem 4.7.1 we directly obtain the result stated in Theorem 4.7.2:

P{Dn,j = 1} =

(
n−2+ 1

k
n−j

)

(
n−1+ 1

k
n−j

) =
j − 1 + 1

k

n− 1 + 1
k

=
n− 1 + 1

k
+ j̃

n− 1 + 1
k

= 1 +O
(
j̃

n

)

.

Family T [o] (ordered increasing k-trees): The computations for this family

are completely analogous to the ones for T [u]. First, one extracts the coefficient of

zn−j from the function UvD
s
v
T [j](z,v)

v
in order to obtain the auxiliary result

E((Dn,j − 1)s) = s!

(
s− 1

k+1
s

)(n−1+ 1
k+1

n−j−s

)

(n−1+ 1
k+1

n−j

) . (4.37)

From this one eventually gets, for j fixed,

E
(
Ds

n,j

)
= s!

(
s− 1

k+1

s

)
Γ
(
j + 1

k+1

)

Γ
(
s+ j + 1

k+1

)ns +O
(
ns−1

)

=
Γ
(
s+ k

k+1

)
Γ
(
j + 1

k+1

)

Γ
(

k
k+1

)
Γ
(
s + j + 1

k+1

)ns +O
(
ns−1

)
,

which, by Theorem 2.2.1, implies the convergence in distribution of
Dn,j

n
to a

Beta( k
k+1

, j − 1 + 2
k+1

) distributed random variable. For the region j → ∞, j =

o (n), one can use (4.37) in order to show that

E
(
Ds

n,j

)
=

Γ
(
s+ k

k+1

)

Γ
(

k
k+1

)

(
n

j

)s(

1 +O
(
1

j

))(

1 +O
(
j

n

))

,

and thus another application of the Theorem of Fréchet and Shohat yields the

convergence in distribution of j
n
Dn,j to a Gamma( k

k+1
, 1) distributed random vari-

able. For the region where j ∼ ρn, 0 < ρ < 1, one uses the exact formula for the

probabilities P{Dn,j − 1 = m} given in Theorem 4.7.1, and derives

P{Dn,j − 1 = m} =

(
m− 1

k+1

m

)
j

k
k+1 (n− j)m

nm+ k
k+1

(

1 +O
(
1

n

))

=

(
m+ k

k+1
− 1

m

)

ρ
k

k+1 (1− ρ)m (1 + o (1)) .

This then proves that Dn,j − 1
(d)−→ Dρ, where Dρ is NegBin( k

k+1
, ρ) distributed.

Finally, for the region where n − j = o (n), one simply uses the formula for

P{Dn,j = 1} in order to show that P{Dn,j = 1} → 1 in this case.
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Family T [d] (d-ary increasing k-trees): The computations for d-ary increasing

k-trees do not significantly differ from the ones for the previous two cases. Again,

we first compute the s-th factorial moments

E((Dn,j − 1)s) = s!

(
s+ 1

kd−1
s

)(n−1+ d
kd−1

n−j−s

)

(n−1+ d
kd−1

n−j

) ,

from which asymptotic expansions for the s-th moments E
(
Ds

n,j

)
can be derived

easily. Then we use the method of moments in order to prove the limit laws for

fixed j, and for j → ∞, j = o (n). For the limiting distribution results in the cases

j ∼ ρn (0 < ρ < 1) and n − j = o (n) one can directly study the formula for the

probabilities P{Dn,j = m} as given in Theorem 4.7.1.

4.7.2.3 Derivation of the results for a randomly selected node

To obtain our results for Dn, i.e. the number of descendants of a randomly selected

node in a random increasing k-tree of size n, as stated in Theorem 4.7.3, we use

Dn
(d)
= Dn,Un, with Un

(d)
= Uniform({1, 2, . . . , n}), and the exact results for Dn,j

given in Theorem 4.7.1.

Family T [u] (unordered increasing k-trees): Clearly, the exact distribution

of Dn can be obtained by summation via

P
{
Dn = m

}
=

1

n

n∑

j=1

P{Dn,j = m} . (4.38)

To get a closed formula we consider an alternative representation for the exact

probabilities of Dn,j (note that we use here the definition z! := Γ(z + 1) also for a

non-integer z):

P{Dn,j = m} =

(
n−m−1+ 1

k
n−m−j+1

)

(
n−1+ 1

k
n−j

) =
(n−m− 1 + 1

k
)!(n− j)!

(n−m− j + 1)!(n− 1 + 1
k
)!

(

j − 1 +
1

k

)

=
(n−m+ 1

k
)!(n− j)!

(n−m− j + 1)!(n− 1 + 1
k
)!
− (n−m− 1 + 1

k
)!(n− j)!

(n−m− j)!(n− 1 + 1
k
)!

=

(
n−j
m−1

)

(
n−1+ 1

k
m−1

) −
(
n−j
m

)

(
n−1+ 1

k
m

) , for n ≥ j ≥ 1 and m ≥ 1.

78



4.7. Descendants

Using this and the standard binomial identity
∑n

j=0

(
j
m

)
=
(
n+1
m+1

)
, with n,m ∈ N0,

(4.38) sums up to

P
{
Dn = m

}
=

1

n

( (
n
m

)

(
n−1+ 1

k
m−1

) −
(

n
m+1

)

(
n−1+ 1

k
m

)

)

, (4.39)

which, after simple manipulations, leads to the exact formula stated in Theo-

rem 4.7.3.

In order to obtain the limiting distribution of Dn, we use (4.39) and apply

Stirling’s formula. We then get, for arbitrary but fixed m ≥ 1:

P
{
Dn = m

}
=

Γ(n) Γ
(
n−m+ 1 + 1

k

)

mΓ
(
n + 1

k

)
Γ(n−m+ 1)

− Γ(n) Γ
(
n−m+ 1

k

)

(m+ 1)Γ
(
n+ 1

k

)
Γ(n−m)

=
n

1
k

(
1 +O

(
1
n

))

mn
1
k

(
1 +O

(
1
n

)) −
n

1
k

(
1 +O

(
1
n

))

(m+ 1)n
1
k

(
1 +O

(
1
n

))

=
1

m(m+ 1)

(

1 +O
(
1

n

))

.

Hence, the probability mass function of Dn converges pointwise to the probability

mass function of a discrete random variable D, with

P
{
D = m

}
=

1

m(m+ 1)
, for m ≥ 1.

This completes the proof of Theorem 4.7.3 for the family T [u].

Family T [o] (ordered increasing k-trees): Here one does not obtain a closed

formula for the probabilities

P
{
Dn = m

}
=

1

n

n∑

j=1

P{Dn,j = m} =

(m−1− 1
k+1

m−1

)

n

n∑

j=1

(n−m−1+ 2
k+1

n−m−j+1

)

(n−1+ 1
k+1

n−j

) . (4.40)

However, in order to characterize the limiting distribution ofDn, it is advantageous

to transform (4.40) into a sum in which the summation boundaries don’t depend

on n. In order to do this, we use the following idea: Consider the expression

(
n+α−m
n−m−j

)

(
n+β
n−j

) =
(n+ α−m)!

(n+ β)!
(n− j)m

(j + β)!

(j + α)!
, (4.41)
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for real α, β, where we assume that −α, −β, and α − β 6∈ N0 (again, we set

z! := Γ(z + 1) also for a non-integer z). Now, write

(n− j)m =

m∑

ℓ=0

aℓ(j + α)ℓ, (4.42)

where the coefficients aℓ should not depend on j. Note that such a representation is

always possible, since (n−j)m is a polynomial in j of degreem, and the polynomials

(j+α)ℓ, ℓ = 0 . . .m, are linearly independent. Given this representation, it follows

that

n∑

j=1

(n− j)m
(j + β)!

(j + α)!
=

n∑

j=1

m∑

ℓ=0

aℓ
(j + β)!

(j + α− l)!
=

m∑

ℓ=0

aℓ(β−α+ l)!

n∑

j=1

(
j + β

β − α + l

)

.

The inner sum of the last expression can then be computed using (4.26), and

hence we have transformed a sum over (4.41) for j = 1 . . . n into a sum in which

the summation boundaries are independent of n.

Now let us make this idea concrete: The constants aℓ in (4.42) can be computed

using the difference calculus (see Appendix C). For this purpose, let ∆j denote

the difference operator with respect to j. By applying, for fixed r ∈ {0, . . . , m},
∆r

j to (4.42) and then setting j = −α, one obtains

r!ar =
[
∆r

j(n− j)m
]

j=−α
=
[
(−1)rmr(n− j − r)m−r

]

j=−α

= (−1)rmr(n + α− r)m−r,

and hence (4.42) reads explicitly as

(n− j)m =

m∑

ℓ=0

(
m

ℓ

)

(−1)ℓ(n+ α− ℓ)m−ℓ(j + α)ℓ.

By applying this to (4.41), we get after simple manipulations:

(
n+α−m
n−m−j

)

(
n+β
n−j

) =
m∑

ℓ=0

(
m

ℓ

)

(−1)ℓ

(
j+β

β−α+ℓ

)

(
n+β

β−α+ℓ

) . (4.43)

Now, we sum up (4.43) for j = 1 . . . n, change the summation order and compute

80



4.7. Descendants

the inner sum using (4.26):

n∑

j=1

(
n+α−m
n−m−j

)

(
n+β
n−j

) =

m∑

ℓ=0

(
m

ℓ

)

(−1)ℓ
1

(
n+β

β−α+ℓ

)

n∑

j=1

(
j + β

β − α + ℓ

)

=
m∑

ℓ=0

(
m

ℓ

)

(−1)ℓ
1

(
n+β

β−α+ℓ

)

((
n + 1 + β

β − α + ℓ+ 1

)

−
(

1 + β

β − α + ℓ+ 1

))

=
m∑

ℓ=0

(
m

ℓ

)

(−1)ℓ
n+ β + 1

ℓ+ β − α + 1

− 1
(
n+β
n

)

m∑

ℓ=0

(
m

ℓ

)

(−1)ℓ
β + 1

ℓ+ β − α + 1

(
n+ α− ℓ

n

)

.

The first sum of the last expression can be simplified by using the identity (C.3)

(cf. Appendix C) which is also obtained via the difference calculus. Hence, after

finally shifting m by 1, we obtain the following formula:

n∑

j=1

(
n+α−m+1
n−m−j+1

)

(
n+β
n−j

) =

=
n+ β + 1

m
(
m+β−α

m

) − 1
(
n+β
n

)

m−1∑

ℓ=0

(
m− 1

ℓ

)

(−1)ℓ
β + 1

ℓ+ β − α + 1

(
n+ α− ℓ

n

)

.

(4.44)

A direct application of (4.44) to (4.40) (via α = 2
k+1

− 2, β = 1
k+1

− 1) now shows

after some simple manipulations the exact formula for the distribution of Dn as

stated in Theorem 4.7.3.

Applying Stirling’s formula to this expression for the probabilities P
{
Dn = m

}

shows that, for arbitrary but fixed m ≥ 1, the second part of the formula is

asymptotically negligible, i.e. of order O
(

n−2+ 1
k+1

)

, and hence one gets:

P
{
Dn = m

}
=

k

(k + 1)(m+ k
k+1

)(m− 1
k+1

)

(

1 +O
(
1

n

))

.

Thus the proof of the theorem for the family T [o] is completed.

Family T [d] (d-ary increasing k-trees): In the case of d-ary increasing k-trees,

the distribution of Dn can be computed analogously via

P
{
Dn = m

}
=

1

n

n∑

j=1

P{Dn,j = m} =

(m−1+ 1
kd−1

m−1

)

n

n∑

j=1

(n−m−1+ d−1
kd−1

n−m−j+1

)

(n−1+ d
kd−1

n−j

) . (4.45)
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To this, we apply (4.44) with α = d−1
kd−1

− 2 and β = d
kd−1

− 1, which gives the

formula for the exact distribution of Dn as stated in Theorem 4.7.3.

For the limiting distribution, one again applies Stirling’s formula to the exact

expression for the probabilities P
{
Dn = m

}
, and obtains

P
{
Dn = m

}
=

kd

(kd− 1)(m+ kd
kd−1

)(m+ 1
kd−1

)

(

1 +O
(
1

n

))

.

This completes the proof of Theorem 4.7.3 for the family T [d].

4.8 Degree distribution

4.8.1 Results

In the following, whenever we state results on the family T [d], we assume that not

both k = 2 and d = 1. Since this is a special case in which the distribution of the

out-degree shows a completely different behaviour, we chose to omit it here.

Theorem 4.8.1. The random variable On,j, which counts the out-degree of node

j in a random increasing k-tree of size n, has the following exact distribution:

P{On,j = m} =







(m+ 1
k−1
m )

(n−
k−1
k

n−j )

∑m
ℓ=0(−1)ℓ

(
m
ℓ

)(
n− (k−1)ℓ+2k−1

k
n−j

)
, family T [u],

1

(n−
k

k+1
n−j

)

∑m
ℓ=0(−1)ℓ

(
m
ℓ

)(n− kℓ+2k
k+1

n−j

)
, family T [o],

(m+ d+1
(k−1)d−1

m
)

(n−
(k−1)d−1

kd−1
n−j

)

∑m
ℓ=0(−1)ℓ

(
m
ℓ

)(n− ((k−1)d−1)ℓ+(2k−1)d−1
kd−1

n−j

)
, family T [d],

for 1 ≤ j ≤ n and 0 ≤ m ≤ n− j.

Theorem 4.8.2. The limiting distribution behaviour of On,j is, for n → ∞ and

depending on the growth of j, characterized as follows:� The region for j fixed: The normalized random variable

n− k−1
k On,j, family T [u],

n− k
k+1On,j, family T [o],

n− (k−1)d−1
kd−1 On,j, family T [d],
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respectively, converges in distribution to a random variable Oj, which is fully

characterized by its moments. The s-th moments of Oj are, for s ≥ 0, given

by

E
(
Os

j

)
=







Γ(s+ k
k−1)Γ(j+

1
k)

Γ( k
k−1)Γ(j+

(k−1)s+1
k )

, family T [u],

s!
Γ(j+ 1

k+1)
Γ(j+ ks+1

k+1 )
, family T [o],

Γ(s+ kd
(k−1)d−1)Γ(j+

d
kd−1)

Γ( kd
(k−1)d−1)Γ(j+

((k−1)d−1)s+d
kd−1 )

, family T [d].� The region for j small: j → ∞ such that j = o (n). The normalized random

variable

(
j

n

) k−1
k

On,j, family T [u],

(
j

n

) k
k+1

On,j, family T [o],

(
j

n

) (k−1)d−1
kd−1

On,j, family T [d],

converges weakly to the Gamma(κ, θ) distribution with parameters

κ =







k
k−1

, family T [u],

1, family T [o],
kd

(k−1)d−1
, family T [d],

and θ = 1.

For the family T [o], this limiting distribution is the Exp(1) distribution.� The central region for j: j → ∞ such that j ∼ ρn, with 0 < ρ < 1: The

random variable On,j converges in distribution to a random variable Oρ which

is NegBin(r, p) distributed with parameters

r =







k
k−1

, family T [u],

1, family T [o],
kd

(k−1)d−1
, family T [d],

and p =







ρ
k−1
k , family T [u],

ρ
k

k+1 , family T [o],

ρ
(k−1)d−1

kd−1 , family T [d].

For the family T [o], this is the Geom(ρ
k

k+1 ) distribution.
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4.8. Degree distribution� The region for j large: j → ∞ such that n − j = o (n): It holds that

P{On,j = 0} → 1.

Theorem 4.8.3. The random variable Ōn, which counts the out-degree of a ran-

domly selected inserted node in a random increasing k-tree of size n, has the fol-

lowing exact distribution:

P
{
Ōn = m

}
=







(m+ 1
k−1
m )

n(n−
k−1
k

n )

∑m
ℓ=0

(−1)ℓ(mℓ )
(k−1)ℓ+2k

((
n+ 1

k
n

)
−
(
n− (k−1)ℓ+2k−1

k
n

))

, family T [o],

1

n(n−
k

k+1
n )

∑m
ℓ=0

(−1)ℓ(mℓ )
kℓ+2k+1

((
n+ 1

k+1
n

)
−
(
n− kℓ+2k

k+1
n

))

, family T [o],

(m+ d+1
(k−1)d−1

m
)

n(n−
(k−1)d−1

kd−1
n )

∑m
ℓ=0

(−1)ℓ(mℓ )d
((k−1)d−1)ℓ+2kd−1

·
((

n+ d
kd−1
n

)
−
(
n− ((k−1)d−1)ℓ+(2k−1)d−1

kd−1
n

))

, family T [d],

for 0 ≤ m < n. For n → ∞, Ōn converges in distribution to a discrete random

variable Ō, i.e. Ōn
(d)−→ Ō, with

P
{
Ō = m

}
= pm :=







k(m+ 1
k−1
m )

(k−1)(m+1)(m+2+ 2
k−1

m+1
)
, family T [u],

k+1

k(m+1)(m+2+ 1
k

m+1 )
, family T [o],

(kd−1)(m+ d+1
(k−1)d−1

m
)

((k−1)d−1)(m+1)(
m+2+ 2d+1

(k−1)d−1
m+1

)
, family T [d],

for m ∈ N0. Since

pm ∼







kΓ( 2k
k−1)

Γ( 1
k−1)

m−2− 1
k−1 , family T [u],

(k+1)Γ(2+ 1
k)

k
m−2− 1

k , family T [o],
(kd−1)Γ( 2kd−1

(k−1)d−1)
((k−1)d−1)Γ( kd

(k−1)d−1)
m−2− d

(k−1)d−1 , family T [d],

for m → ∞, this shows that Ōn follows in all three cases asymptotically a power-

law distribution.

Corollary 4.8.4. Let the random variable Cn denote the local clustering coefficient

of a random node in a random increasing k-tree of size n. Then the expected local
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k ck = limn→∞E(Cn)

T [u] T [o] T [d](d = 3) T [d](d = 10)
2 0.739208 . . . 0.793390 . . . 0.714285 . . . 0.732193 . . .
3 0.813194 . . . 0.843184 . . . 0.800402 . . . 0.809535 . . .
10 0.929089 . . . 0.933975 . . . 0.927289 . . . 0.928559 . . .
50 0.982496 . . . 0.982804 . . . 0.982391 . . . 0.982465 . . .
100 0.990800 . . . 0.990885 . . . 0.990771 . . . 0.990791 . . .

Table 4.1: Numerical values for the limit ck of the expected local clustering coef-
ficient E(Cn) for small values of k.

clustering coefficient E(Cn) converges to a constant, i.e. limn→∞ E(Cn) = ck, where

ck =







∑

m≥0

k(m+ 1
k−1
m )

(m+1)(m+k)(m+2+ 2
k−1

m+1
)

(
2− k−2

m+k−1

)
, family T [u],

∑

m≥0
(k+1)(k−1)

k(m+1)(m+k)(m+2+ 1
k

m+1 )

(
2− k−2

m+k−1

)
, family T [o],

∑

m≥0

(kd−1)(k−1)(m+ d+1
(k−1)d−1

m
)

((k−1)d−1)(m+1)(m+k)(
m+2+ 2d+1

(k−1)d−1
m+1

)

(
2− k−2

m+k−1

)
, family T [d],

It further holds that ck → 1, for k → ∞.

4.8.2 Proofs of the results

4.8.2.1 Derivation of the exact distribution

The claimed results can be shown using the same approach as for the distribution

of the number of descendants of the nodes, i.e. by establishing a recurrence for the

number Tn,j,m of increasing k-trees of size n in which node j has out-degree m,

and translating this recurrence into a partial differential equation for a suitable

generating function. However, we choose a different approach in this case, which

rests on the symbolic method (see Section 2.1.1). As always, we consider the three

increasing k-tree families separately.

Family T [u] (unordered increasing k-trees): Let us, as an auxiliary result,

first consider the out-degree of a root node. We denote by On,0 the out-degree

of node 01 in a random unordered increasing k-tree of size n, and by Tn,0,m :=

P{On,0 = m} Tn the number of unordered increasing k-trees of size n in which
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node 01 has out-degree m. Furthermore, we consider the generating function

T [0](z, v) :=
∑

n≥0

∑

m≥0

Tn,0,m
zn

n!
vm. (4.46)

This generating function can be computed using the symbolic method as follows:

Consider the family T [u] and the auxiliary family T̃ [u] (see Section 4.2) which

contains exactly those elements of T [u] in which the root-clique has exactly one

child. As discussed in Section 4.2, one has the system of formal equations

T [u] = Set

(

T̃ [u]
)

,

T̃ [u] = ∆� ∗
(
T [u]

)k
,

where ∆ denotes a (k + 1)-clique consisting of k root-nodes and one child with

label 1. Now note that, whenever an increasing k-tree K of T [u] is constructed

from a set {K1, . . . ,Kℓ} of elements of T̃ [u], the out-degree of node 01 in K is just

given by the sum of the out-degrees of 01 in K1, . . . ,Kℓ (more precisely, by the

sum of the out-degrees of those root-nodes of K1, . . . ,Kℓ, respectively, which are

identified with 01 in the combinatorial construction). In T̃ [u] on the other hand,

the out-degree of node 01 arises from one edge to node 1 in the component ∆, and

from the out-degrees of 01 in those k − 1 factors of
(
T [u]

)k
which are attached to

∆ such that they contain 01 as a root-node.

Hence, if we define the generating function T̃ [0](z, v) for the family T̃ [u] analo-

gously to (4.46), i.e.

T̃ [0](z, v) :=
∑

n≥0

∑

m≥0

T̃n,0,m
zn

n!
vm, (4.47)

where T̃n,0,m denotes the number of objects of size n in T̃ [u], in which node 01
has out-degree m, we obtain, using the symbolic method, the following system of

equations:

T [0](z, v) = exp
(

T̃ [0](z, v)
)

,

T̃ [0]
z (z, v) = v

(
T [0](z, v)

)k−1
T (z).

(4.48)

We insert the first of these equations into the second one and use the known

formula (4.8) for T (z), which then yields

T̃ [0]
z (z, v) =

v

(1− kz)
1
k

exp
(

(k − 1)T̃ [0]
z (z, v)

)

, T̃ [0](0, v) = 0,
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where the given boundary value follows directly from the construction of T̃ [u]. This

ordinary differential equation can of course be solved by separation of variables:

From ∫

exp
(

(1− k)T̃ [0]
)

dT̃ [0] =

∫
vdz

(1− kz)
1
k

,

one gets

exp
(

(1− k)T̃ [0]
)

=
v

(1− kz)
1
k
−1

+ C(v),

where C(v) is an arbitrary function. Using the initial condition T̃ [0](0, v) = 0, one

gets C(v) = 1− v, and after simple manipulations this yields

T̃ [0](z, v) =
1

k − 1
log

(

1

1− v + v(1− kz)
k−1
k

)

.

By inserting this solution into the first equation of (4.48), we obtain

T [0](z, v) =

(

1

1− v + v(1− kz)
k−1
k

) 1
k−1

. (4.49)

We now use this auxiliary result in order to determine a formula for the numbers

Tn,j,m := P{On,j = m} Tn of unordered increasing k-trees of size n in which the

inserted node j has out-degree m. It turns out that the following generating

function is suitable for this problem:

T [j](z, v) :=
∑

n≥j

∑

m≥0

Tn,j,m
zn−j

(n− j)!
vm. (4.50)

We derive T [j](z, v) for a fixed j by a combinatorial argument: Note that each

unordered increasing k-tree T of size n ≥ j can in a unique way be constructed by

the following procedure:� Choose one of the Tj unordered increasing k-trees B of size j (one may think

of B as the increasing k-tree of size j on which T is “based”).� Choose kj+1 elementsK1, . . . , Kkj+1 of T [u] which will be rooted at the kj+1

k-cliques of B (one might think of K1, . . . , Kkj+1 being “glued“ onto the k-

cliques of B, i.e. their root cliques are identified each with one k-clique of

B). Of course, in order to obtain an element of size n of T [u], the respective

sizes of K1, . . . , Kkj+1 have to sum up to n − j, and an order-preserving
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relabelling is necessary such that exactly the labels {j + 1, . . . , n} are used

by the inserted nodes of K1, . . . , Kkj+1. Note that the nodes in B are not

relabelled in this process.

In this construction, exactly k of the elements K1, . . . , Kkj+1 contribute to the

out-degree of node j, namely those which are rooted at one of the k-cliques which

consist of node j and k−1 of j’s parents. Hence, by an application of the symbolic

method, this shows:

T [j](z, v) = Tj(T (z))
k(j−1)+1(T [0](z, v))k.

From (4.8) and (4.49), we thus get

T [j](z, v) =
Tj

(1− kz)j−1+ 1
k

(

1

1− v + v(1− kz)
k−1
k

) k
k−1

. (4.51)

The probabilities P{On,j = m} can now be computed from (4.51). First, one ex-

tracts

Tn,j,m

(n− j)!
= [zn−jvm]T [j](z, v)

= kn−j [zn−j ]






Tj

(1− z)j−1+ 1
k

[vm]




1

1− v
(

1− (1− z)
k−1
k

)





k
k−1






= kn−jTj

(
m+ k

k−1
− 1

m

)

[zn−j ]

(

1− (1− z)
k−1
k

)m

(1− z)j−1+ 1
k

= kn−jTj

(
m+ 1

k−1

m

) m∑

ℓ=0

(−1)ℓ
(
m

ℓ

)

[zn−j ]
1

(1− z)j−1− (k−1)ℓ−1
k

= kn−jTj

(
m+ 1

k−1

m

) m∑

ℓ=0

(−1)ℓ
(
m

ℓ

)(
n− (k−1)ℓ+2k−1

k

n− j

)

.

Then, using the relation P{On,j = m} =
Tn,j,m

Tn
and formula (4.1) for Tn, one obtains

for the family T [u] the formula for the probabilities P{On,j = m} which is stated

in Theorem 4.8.1.

Family T [o] (ordered increasing k-trees): Like in the previous case, we first

consider the out-degree of the root node 01. We let Tn,0,m := P{On,0 = m}Tn
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denote the number of ordered increasing k-trees of size n in which node 01 has

out-degree m, and define the generating function T [0](z, v) as in (4.46). Again,

we also consider the auxiliary family T̃ [o] which consists of all ordered increasing

k-trees in which the root clique has exactly one child, and we define the generating

function T̃ [0](z, v) for the numbers T̃n,0,m of objects of size n in T̃ [o] in which node

01 has out-degree m by (4.47). The families T [o] and T̃ [o] satisfy

T [o] = Seq

(

T̃ [o]
)

,

T̃ [o] = ∆� ∗
(
T [o]
)k

,

where again ∆ denotes a (k + 1)-clique consisting of k root-nodes and one child

with label 1.

The out-degrees of 01 in T [o] and T̃ [o] are related exactly like in the unordered

case: Whenever an increasing k-tree K of T [o] is constructed from a sequence

(K1, . . . ,Kℓ) of elements of T̃ [o], the out-degree of node 01 in K is just given by

the sum of the out-degrees of 01 in K1, . . . ,Kℓ. In T̃ [o] on the other hand, the

out-degree of node 01 is one (coming from the component ∆) plus the sum of out-

degrees of 01 in those k − 1 factors of
(
T [o]
)k

which are attached to ∆ such that

they contain 01 as a root-node. These considerations lead to the following system

of equations for the generating functions T [0](z, v) and T̃ [0](z, v):

T [0](z, v) =
1

1− T̃ [0](z, v)
,

T̃ [0]
z (z, v) = v

(
T [0](z, v)

)k−1
T (z).

(4.52)

By inserting the first of these equations into the second one and using formula

(4.8) for T (z), we get the ordinary differential equation

T̃ [0]
z (z, v) =

v

(1− (k + 1)z)
1

k+1

(
1

1− T̃ [0](z, v)

)k−1

, T̃ [0](0, v) = 0.

By separation of variables we obtain

∫ (

(1− T̃ [0]
)k−1

dT̃ [0] =

∫
v

(1− (k + 1)z)
1

k+1

dz,

which leads to (

1− T̃ [0]
)k

= v(1− (k + 1)z)
k

k+1 + C(v),
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where C(v) is an arbitrary function. From the boundary condition T̃ [0](0, v) = 0

one gets C(v) = 1− v, and hence

T̃ [0](z, v) = 1−
(

1− v + v(1− (k + 1)z)
k

k+1

) 1
k
.

Inserting this into the first equation of (4.52), we thus finally obtain

T [0](z, v) =

(

1

1− v + v(1− (k + 1)z)
k

k+1

) 1
k

.

Like in the previous case, we use this auxiliary result in order to determine the

generating function T [j](z, v) defined by (4.51), where in this case Tn,j,m denotes

the number of ordered increasing k-trees of size n in which node j has out-degree

m. Again, this can be done by a combinatorial argument:

Each ordered increasing k-tree T of size n ≥ j can uniquely be constructed in

the following way:� Choose one of the Tj ordered increasing k-trees B of size j.� Choose (k+1)j+1 elements K1, . . . , Kkj+1 of T [o] whose respective sizes sum

up to n − j. Relabel their inserted nodes in an order-preserving way such

that exactly the labels {j + 1, . . . , n} are used, and identify their root cliques

with the k-cliques of B, each at one of the (k + 1)j + 1 possible positions.

In this construction, exactly k of the elements K1, . . . , K(k+1)j+1 contribute to the

out-degree of node j, namely those which are rooted at one of the k-cliques which

consist of node j and k − 1 of j’s parents. This implies

T [j](z, v) = Tj(T (z))
(k+1)j+1−k(T [0](z, v))k,

and hence, by using the known formulæ for Tj , T
[0](z, v) and T (z),

T [j](z, v) =
Tj

(1− (k + 1)z)j−1+ 2
k+1

(

1− v + v(1− (k + 1)z)
k

k+1

) .
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From this we compute

Tn,j,m

(n− j)!
= [zn−jvm]T [j](z, v) = Tj [z

n−j ]

(

1− (1− (k + 1)z)
k

k+1

)m

(1− (k + 1)z)j−1+ 2
k+1

= Tj

m∑

ℓ=0

(−1)ℓ
(
m

ℓ

)

[zn−j ]
1

(1− (k + 1)z)j−1+ 2
k+1

− kℓ
k+1

= Tj(k + 1)n−j

m∑

ℓ=0

(−1)ℓ
(
m

ℓ

)(
n− kℓ+2k

k+1

n− j

)

,

and hence the claimed formula for the probabilities P{On,j = m} follows directly

from the relation P{On,j = m} =
Tn,j,m

Tn
and the known formula (4.1) for Tj.

Family T [d] (d-ary increasing k-trees): Since this case is very similar to the

previous two cases, we only sketch it briefly. Again, we first consider the out-degree

of node 01, and define the numbers Tn,0,m and the generating function T [0](z, v)

accordingly. Furthermore, we make use of the auxiliary family T̃ [d] as defined in

Section 4.2 and the corresponding generating function T̃ [0](z, v). From the formal

equations

T [d] = ({�} ∪̇ T̃ [d])d,

T̃ [d] = ∆� ∗
(
T [d]

)k
,

one obtains, by considering how the out-degree of node 01 is compound in the

combinatorial construction of T [d] and T̃ [d], the following system of equations for

T [0](z, v) and T̃ [0](z, v):

T [0](z, v) =
(

1 + T̃ [0](z, v)
)d

,

T̃ [0]
z (z, v) = v

(
T [0](z, v)

)k−1
T (z).

(4.53)

From this and the known formula (4.8) for T (z) one gets the differential equation

T̃ [0]
z (z, v) =

v
(

1 + T̃ [0](z, v)
)(k−1)d

(1− (kd− 1)z)
d

kd−1

, T̃ [0](0, v) = 0,

which has (under the assumption that k 6= 2 or d 6= 1) the solution

T̃ [0](z, v) =

(

1

1− v + v(1− (kd− 1)z)
(k−1)d−1

kd−1

) 1
(k−1)d−1

− 1.
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By inserting this into the first equation of (4.53), one thus obtains

T [0](z, v) =

(

1

1− v + v(1− (kd− 1)z)
(k−1)d−1

kd−1

) d
(k−1)d−1

. (4.54)

Now, we consider the numbers Tn,j,m of d-ary increasing k-trees of size n in which

node j has out-degree m, and define T [j](z, v) like in (4.51). Again, we can find

a formula for T [j](z, v) by a combinatorial argument: Note that each d-ary in-

creasing k-tree T of size n ≥ j can in a unique way be obtained by the following

construction:� Choose one of the Tj d-ary increasing k-trees B of size j.� Choose k elements K1, . . . , Kk of T [d] and (j − 1)(kd − 1) + d − 1 elements

K ′
1, . . . , K

′
(j−1)(kd−1)+d−1 of {�} ∪ T̃ [d] (� denoting an increasing k-tree of

size 0) whose sizes sum up to n − j, and relabel their inserted nodes in an

order-preserving way such that exactly the labels {j + 1, . . . , n} are used.

Identify the root cliques of K1, . . . , Kk each with one of the k-cliques of B

which contain node j, and attach K ′
1, . . . , K

′
(j−1)(kd−1)+d−1 each to one of the

free ”slots” of the other k-cliques in B.

In this construction, exactly the elements K1, . . . , Kk contribute to the out-degree

of node j, and hence one obtains

T [j](z, v) = Tj(1 + T̃ (z))(j−1)(kd−1)+d−1
(
T [0](z, v)

)k
.

Thus, using formula (4.1) for Tn, (4.54) for T
[0](z, v) and (4.3.1) for T̃ (z), we find

T [j](z, v) =
Tj

(1− (kd− 1)z)j−1+ d−1
kd−1

(

1

1− v + v(1− (kd− 1)z)
(k−1)d−1

kd−1

) kd
(k−1)d−1

.

From this, the probabilities P{On,j = m} can be computed like in the previous two

cases simply via

P{On,j = m} =
Tn,j,m

Tn
=

(n− j)!

Tn
[zn−jvm]T [j](z, v).

4.8.2.2 Derivation of the limiting distributions results

We derive the limiting behaviour of On,j claimed in Theorem 4.8.2 directly from

the exact results obtained in Section 4.8.2.1. We concentrate on the derivations

for the family T [u]. The computations for the remaining cases are quite similar,

thus we will only sketch them.
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Family T [u] (unordered increasing k-trees):� The region for j fixed:

We use the method of moments in order to show the claimed convergence

result for n− k−1
k On,j: Clearly, the probability generating function of On,j,

pn,j(v) :=
∑

m≥0

P{On,j = m} vm,

is given by

pn,j(v) =
(n− j)!

Tn

[zn−j ]T [j](z, v),

where T [j](z, v) is the generating function of the numbers Tn,j,m as defined

in (4.50). Hence, we can obtain the s-th factorial moments E
(
Os

n,j

)
via

E
(
Os

n,j

)
=

(n− j)!

Tn
[zn−j ]UvD

s
vT

[j](z, v).

Thus, by using formula (4.51) for T [j](z, v), we find

E
(
O

s
n,j

)
=

=
(n− j)! Tj

Tn

[zn−j ]
1

(1− kz)j−1+ 1
k

UvD
s
v

(

1

1− v + v(1− kz)
k−1
k

) k
k−1

=
(n− j)! Tj

Tn
[zn−j ]

s!
(
s+ 1

k−1
s

)

(1− kz)j−1+ 1
k

(

1− (1− kz)
k−1
k

)s

(1− kz)1+
k−1
k

s

=
(n− j)! Tj k

n−j

Tn

[zn−j ]
s∑

ℓ=0

(−1)ℓ
(
s

ℓ

)
s!
(
s+ 1

k−1
s

)

(1− z)j+
(k−1)s+1

k
− k−1

k
ℓ

=
s!
(
s+ 1

k−1
s

)

(
n− k−1

k
n−j

)

s∑

ℓ=0

(−1)ℓ
(
s

ℓ

)(
n+ (k−1)(s−ℓ−1)

k

n− j

)

.

(4.55)

For n → ∞ one further gets, by writing
(
n+

(k−1)(s−ℓ−1)
k

n−j

)
and

(
n− k−1

k
n−j

)
as a
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quotient of Gamma functions and using Lemma 2.2.5,

E
(
Os

n,j

)
=

= s!

(
s + 1

k−1

s

) s∑

ℓ=0

(−1)ℓ
(
s

ℓ

)Γ
(

n + (k−1)(s−ℓ)+1
k

)

Γ
(
j + 1

k

)

Γ
(
n + 1

k

)
Γ
(

j + (k−1)(s−ℓ)+1
k

)

= s!

(
s + 1

k−1

s

) s∑

ℓ=0

(−1)ℓ
(
s

ℓ

)

n
(k−1)(s−ℓ)

k
Γ
(
j + 1

k

)

Γ
(

j + (k−1)(s−ℓ)+1
k

)

(

1 +O
(
1

n

))

= s!

(
s + 1

k−1

s

)

n
(k−1)s

k
Γ
(
j + 1

k

)

Γ
(

j + (k−1)s+1
k

)

(

1 +O
(

1

n
k−1
k

))

.

(4.56)

Now, using the relation (2.6) between the ordinary and factorial moments,

we get from (4.56) also the asymptotic expansion

E
(
Os

n,j

)
= s!

(
s+ 1

k−1

s

)

n
(k−1)s

k
Γ
(
j + 1

k

)

Γ
(

j + (k−1)s+1
k

)

(

1 +O
(

1

n
k−1
k

))

.

Hence, the moments of n− k−1
k On,j converge to the moments of a random

variable Oj, i.e. limn→∞ E

((

n− k−1
k On,j

)s)

= E
(
Os

j

)
, where

E
(
Os

j

)
= s!

(
s+ 1

k−1

s

)
Γ
(
j + 1

k

)

Γ
(

j + (k−1)s+1
k

) =
Γ
(
s+ k

k−1

)
Γ
(
j + 1

k

)

Γ
(

k
k−1

)
Γ
(

j + (k−1)s+1
k

) .

Simple growth estimates for these moments show that the moment gener-

ating function
∑

s≥0 E
(
Os

j

)
ts

s!
has a positive radius of convergence, and by

Lemma 2.2.2 we conclude that the sequence of moments (E
(
Os

j

)
)s∈N uniquely

determines the distribution of Oj. Thus an application of the Theorem of

Fréchet and Shohat (Theorem 2.2.1) proves the convergence in distribution

of n− k−1
k On,j to Oj.� The region for j small: j → ∞ such that j = o (n):

As in the case for fixed j we use the method of moments: We first write
(
n+

(k−1)(s−ℓ−1)
k

n−j

)
and

(
n− k−1

k
n−j

)
in the last expression of (4.55) as quotients of
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Gamma functions, and then apply Lemma 2.2.5 twice,

E
(
Os

n,j

)
= s!

(
s+ 1

k−1

s

) s∑

ℓ=0

(−1)ℓ
(
s

ℓ

)Γ
(
j + 1

k

)
Γ
(

n+ (k−1)(s−ℓ)+1
k

)

Γ
(
n + 1

k

)
Γ
(

j + (k−1)(s−ℓ)+1
k

)

= s!

(
s+ 1

k−1

s

) s∑

ℓ=0

(−1)ℓ
(
s

ℓ

)
n

(k−1)(s−ℓ)
k

(
1 +O

(
1
n

))

j
(k−1)(s−ℓ)

k

(

1 +O
(

1
j

))

= s!

(
s+ 1

k−1

s

)(
n

j

)k−1
k

s(

1 +O
(
1

j

))(

1 +O
((

j

n

)k−1
k

))

.

From this we get, again using the relation (2.6) between factorial and ordi-

nary moments, also the asymptotic expansion

E
(
Os

n,j

)
= s!

(
s+ 1

k−1

s

)(
n

j

)k−1
k

s(

1 +O
(
1

j

))(

1 +O
((

j

n

)k−1
k

))

.

Hence, it follows that

lim
n,j→∞
j=o(n)

E

(((
j

n

)k−1
k

On,j

)s)

= s!

(
s+ 1

k−1

s

)

=
Γ
(
s+ k

k−1

)

Γ
(

k
k−1

) ,

i.e. for each s ∈ N the s-th moment of
(
j
n

)k−1
k On,j converges to the s-th

moment of a Gamma(k−1
k
, 1) distributed random variable. Since the Gamma

distribution is uniquely determined by its sequence of moments, the claimed

convergence result thus follows directly from Theorem 2.2.1.� The central region for j: j → ∞ such that j ∼ ρn, with 0 < ρ < 1:

We use the exact expressions for the probabilities P{On,j = m} given in The-

orem 4.8.1, which can be written as

P{On,j = m} =

=

(
m+ 1

k−1

m

) m∑

ℓ=0

(−1)ℓ
(
m

ℓ

)Γ
(

n + 1− (k−1)ℓ+2k−1
k

)

Γ
(
j + 1− k−1

k

)

Γ
(
n + 1− k−1

k

)
Γ
(

j + 1− (k−1)ℓ+2k−1
k

) .
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Since we have n → ∞ and j → ∞ we can apply Lemma 2.2.5 twice and then

get, for arbitrary but fixed m ∈ N0,

P{On,j = m} =

(
m+ 1

k−1

m

) m∑

ℓ=0

(−1)ℓ
(
m

ℓ

)(
j

n

) (k−1)ℓ
k

+1(

1 +O
(
1

n

))

=

(
m+ 1

k−1

m

) m∑

ℓ=0

(−1)ℓ
(
m

ℓ

)

ρ
(k−1)ℓ

k
+1 (1 + o (1))

=

(
m+ k

k−1
− 1

m

)

ρ
(

1− ρ
k−1
k

)m

(1 + o (1)) ,

where we have used the fact that j = ρn (1 + o (1)). Hence, for n → ∞ and

j → ∞ such that j ∼ ρn the probabilities P{On,j = m} converge to the prob-

abilities P{Oρ = m}, where Oρ is a random variable which is NegBin(r, p)

distributed with parameters r = k
k−1

and p = ρ
k−1
k , which proves the conver-

gence in distribution of On,j to Oρ as claimed in Theorem 4.8.2.� The region for j large: j → ∞ such that j̃ := n− j = o (n):

From the exact formula for P{On,j = 0} in Theorem 4.8.1 we immediately

obtain the result stated in Theorem 4.8.2:

P{On,j = 0} =

(
n−1− k−1

k
n−j

)

(
n− k−1

k
n−j

) =
j − k−1

k

n− k−1
k

= 1− j̃

n− k−1
k

= 1 + o (1) .

Family T [o] (ordered increasing k-trees): The computations for this family

are completely analogous to the ones for T [u]. First, one extracts the coefficient of

zn−j from the function UvD
s
vT

[j](z, v) in order to obtain the auxiliary result

E
(
Os

n,j

)
=

s!
(n− k

k+1

n−j

)

s∑

ℓ=0

(−1)ℓ
(
s

ℓ

)(
n+ k(s−ℓ−1)

k+1

n− j

)

. (4.57)

From this one eventually gets, for j fixed,

E
(
Os

n,j

)
= s!

Γ
(
j + 1

k+1

)

Γ
(
j + ks+1

k+1

)n
k

k+1
s

(

1 +O
(

1

n
k

k+1

))

,
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which, by Theorem 2.2.1, implies the convergence in distribution of n− k
k+1On,j to

a random variable Oj whose distribution is uniquely determined by the moments

E
(
Os

n,j

)
= s!

Γ
(
j + 1

k+1

)

Γ
(
j + ks+1

k+1

) .

For j → ∞ such that j = o (n), one gets from (4.57)

lim
n,j→∞
j=o(n)

E

(((
j

n

) k
k+1

On,j

)s)

= s!,

i.e. the s-th moments of
(
j
n

) k
k+1 On,j converge to the s-th moments of an Exp(1)

distributed random variable. Thus the convergence in distribution claimed in

Theorem 4.8.2 follows again from the Theorem of Fréchet and Shohat.

For the region where j ∼ ρn, 0 < ρ < 1, one studies the exact expressions for

the probabilities P{On,j = m} and derives

lim
n,j→∞
j∼ρn

P{On,j = m} = ρ
k

k+1

(

1− ρ
k

k+1

)m

,

which proves the convergence in distribution of On,j to a Geom(ρ
k

k+1 ) distributed

random variable in this case.

Finally, for n → ∞ and n − j = o (n), one simply uses the exact formula for

P{On,j = 0} in order to show that P{On,j = 0} → 1.

Family T [d] (d-ary increasing k-trees): The convergence results given in The-

orem 4.8.2 can be proven for this family completely analogously to the previous two

cases. First, one considers the derivatives of T [j](z, v) with respect to v evaluated

at v = 1 in order to get the auxiliary result

E
(
O

s
n,j

)
=

s!
(
s+ d+1

(k−1)d−1
s

)

(n− (k−1)d−1
kd−1

n−j

)

s∑

ℓ=0

(−1)ℓ
(
s

ℓ

)(
n+ ((k−1)d−1)(s−ℓ−1)

kd−1

n− j

)

.

From this one derives, for the regions where j is fixed or j → ∞, j = o (n),

asymptotic formulæ for the moments E
(
Os

n,j

)
in order to apply the method of

moments. For the regions where j ∼ ρn, 0 < ρ < 1, and n − j = o (n), one

studies directly the exact formula for the probabilities P{On,j = m} as given in

Theorem 4.8.1.
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4.8.2.3 Derivation of the results for a randomly selected node

To obtain our results for Ōn, i.e. the out-degree of a randomly selected inserted

node in a random increasing k-tree of size n, as stated in Theorem 4.8.3, we use

Ōn
(d)
= On,Un, with Un

(d)
= Uniform({1, 2, . . . , n}), and the exact results for On,j

given in Theorem 4.8.1.

Family T [u] (unordered increasing k-trees): We compute

P
{
Ōn = m

}
=

1

n

n∑

j=1

P{On,j = m}

=

(
m+ 1

k−1
m

)

n

m∑

ℓ=0

(−1)ℓ
(
m

ℓ

) n∑

j=1

(
n− (k−1)ℓ+2k−1

k
n−j

)

(
n− k−1

k
n−j

)

=

(
m+ 1

k−1
m

)

n

m∑

ℓ=0

(−1)ℓ
(
m
ℓ

)

( n− k−1
k

(k−1)ℓ
k

+1

)

n∑

j=1

(
j − k−1

k
(k−1)ℓ

k
+ 1

)

=

(
m+ 1

k−1
m

)

n

m∑

ℓ=0

(−1)ℓ
(
m
ℓ

)

( n− k−1
k

(k−1)ℓ
k

+1

)

((
n+ 1

k
(k−1)ℓ

k
+ 2

)

−
( 1

k
(k−1)ℓ

k
+ 2

))

,

where we have used (4.26) in order to carry out the summation over j in the last

step. From this one gets by simple manipulations the formula for the probabilities

P
{
Ōn = m

}
which is stated in Theorem 4.8.3. For n → ∞ one further gets, by an

application of Stirling’s formula,

P
{
Ōn = m

}
=

(
m+ 1

k−1

m

) m∑

ℓ=0

(−1)ℓ
(
m

ℓ

)
1

(k−1)ℓ
k

+ 2

(

1 +O
(
1

n

))

=
k
(
m+ 1

k−1
m

)

(k − 1)(m+ 1)
(m+2+ 2

k−1
m+1

)

(

1 +O
(
1

n

))

,

where we have used (C.3) to compute the sum. Hence Ōn converges in distribution

to a random variable Ō with

P
{
Ō = m

}
=

k
(
m+ 1

k−1
m

)

(k − 1)(m+ 1)
(m+2+ 2

k−1
m+1

) ,

for m ∈ N0. By another application of Stirling’s formula, one finally gets that

P
{
Ō = m

}
∼

kΓ
(

2k
k−1

)

Γ
(

1
k−1

) m−(2+ 1
k−1

), for m → ∞,
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4.8. Degree distribution

which shows that Ō follows asymptotically a power-law distribution with parame-

ter 2 + 1
k−1

. We remark that this is in accordance with the result of Gao [Gao09].

Family T [o] (ordered increasing k-trees) and Family T [d] (d-ary increasing

k-trees): The computations for these two families are completely analogous,

hence we skip them.

4.8.2.4 Proof of Corollary 4.8.4

The crucial observation for analyzing the clustering coefficient in k-trees is the

following:

Lemma 4.8.5. For any k-tree T the local clustering coefficient CT (u) of a node u

only depends on the degree d(u) of u: For d(u) ≥ k ≥ 2, one has

CT (u) =
2(k − 1)

d(u)
− (k − 1)(k − 2)

d(u)(d(u)− 1)
. (4.58)

Proof. To show this we will, according to Definition (4.10), count the number

M(u) of edges between neighbours of u: Consider a node u in a k-tree. Then it

always holds that d(u) ≥ k − 1. If d(u) = k − 1 then the k-tree can only consist

of a single k-clique, and thus all k − 1 neighbours of u are connected with each

other, which implies M(u) =
(
k−1
2

)
. In order to determine M(u) when d(u) ≥ k

we observe that in any k-tree holds that when increasing the degree of a node u

by 1 then the number of edges between neighbours of u increases exactly by k−1.

This holds since a new node w adjacent to u generates a k-clique, such that w is

also adjacent to k−1 neighbours of u. Thus M(u) =
(
k−1
2

)
+(k−1)(d(u)−k+1),

for d(u) ≥ k − 1.

This shows that the clustering coefficient of every node u in any k-tree T is

given by CT (u) =
(k−1

2 )+(k−1)(d(u)−k+1)

(d(u)2 )
, which is equivalent to formula (4.58).

Due to the above lemma, the random variable Cn which denotes the local

clustering coefficient of a random node in a random increasing k-tree of size n

satisfies

Cn
(d)
=

2(k − 1)

Õn

− (k − 1)(k − 2)

Õn(Õn − 1)
,

where Õn denotes the degree of a randomly selected node (amongst the root nodes

and the inserted nodes) in a random increasing k-tree of size n. Of course, if we
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4.8. Degree distribution

denote by Bn the event that the chosen node is an inserted node, it holds that

P

{

Õn = m
}

= P

{

Õn = m | Bn

}

P{Bn}+ P

{

Õn = m | Bc
n

}

P{Bc
n}

= P
{
Ōn + k = m

}
P{Bn}+ P

{

Õn = m | Bc
n

}

P{Bc
n} ,

for m ≥ k. Due to the fact that limn→∞ P{Bn} = 1 and Ōn
(d)−→ Ō, this shows

that Õn
(d)−→ Ō + k. Consequently, since the function f(m) = 2(k−1)

m
− (k−1)(k−2)

m(m−1)
is

uniformly bounded for m ≥ k, it immediately follows that

lim
n→∞

E(Cn) = lim
n→∞

E

(

f(Õn)
)

= ck := E
(
f(Ō + k)

)
=
∑

m≥0

P
{
Ō = m

}
f(m+ k).

(4.59)

Using the result on the distribution of Ō (see Theorem 4.8.3) in each of the cases

T [u], T [o] and T [d], respectively, this leads to the expressions for ck given in Corol-

lary 4.8.4.

Finally, it is easy to see that ck → 1 as k → ∞: Since in (4.59) all summands

P
{
Ō = m

}
f(m+ k) are positive, we certainly have

lim
k→∞

ck ≥ lim
k→∞

M∑

m=0

P
{
Ō = m

}
f(m+ k),

for all M ∈ N. Furthermore, for fixed m one clearly has

lim
k→∞

P
{
Ō = m

}
f(m+ k) =

1

(m+ 1)(m+ 2)
,

in all three cases, which implies

lim
k→∞

ck ≥ lim
M→∞

M∑

m=0

1

(m+ 1)(m+ 2)
= 1.

One the other hand, one trivially has ck ≤ 1, and hence ck → 1.
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CHAPTER 5
Local minima in trees

5.1 Introduction

Given a tree T which is labelled with distinct integers, a local minimum in T

is a node v (as usual, we always identify each node with its label), which has

the property that each neighbour (i.e. adjacent node) w of v satisfies w > v (see

Figure 5.1 for an example). Analogously, a node v in T is a local maximum if

every neighbour w of v satisfies w < v. Of course, these definitions make sense for

arbitrary trees, however, we will in this chapter restrict our attention to rooted

ones. Moreover, as usual, we will assume that each tree T is labelled exactly with

the integers {1, . . . , |T |}, where |T | denotes the number of nodes of T .

For the special case of permutations (which can of course be interpreted as

“linear” labelled rooted trees), the number of local minima (and maxima) has

Figure 5.1: A tree with 3 local minima (marked gray).
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already been studied extensively (in this context, local minima are mostly referred

to as “troughs”, and local maxima as “peaks”): In a series of papers published

between 1879 and 1896 (described in [Net01]), André considered the number Pn,s

of permutations of length n which consist of exactly s monotone runs (e.g., the

permutation (3, 1, 4, 7, 6, 5, 2) consists of the monotone runs (3, 1), (1, 4, 7), and

(7, 6, 5, 2)), and derived a recurrence formula for these numbers. This is of course

closely related to counting permutations by their local minima and maxima, since

Pn,s equals the number of permutations of length n which have a total number of

s+1 local minima and maxima. In random permutations, the total number of local

minima and maxima is asymptotically normally distributed, which was asserted

by David and Barton [DB62, Chapter 10] (although without detailed proof).

Carlitz [Car74] considered only the number of local maxima in permutations,

and derived a generating function for the numbers M(n, k) of permutations of

length n with exactly k local maxima. Stigler [Sti86] studied the number of local

maxima from the probabilistic point of view, and argued that this number can be

used to estimate the correlation of serial data. Warren and Seneta [WS96] and

Esseen [Ess84] later independently showed that the number of local maxima (and

thus also the number of local minima) in random permutations of length n is for

n → ∞ asymptotically normally distributed with expectation and variance both

of order n.

Studying the number of local minima (or maxima) also in trees seems to be a

very natural extension of the above work. Thus, we will in this chapter consider

the number of local minima in the two tree families of unordered and ordered trees

(cf. Section 3.2.1), respectively. In particular, we consider the random variable

Mn, which counts the number of local minima in a random tree of size n, where

we always assume that each tree of size n of the respective tree family is chosen

with the same probability. For both tree families we show that, in analogy to the

corresponding result for permutations, Mn is for n → ∞ asymptotically normally

distributed with expectation and variance both of order n. However, we do not only

obtain limiting distribution results, but can also characterize the exact probability

distribution of Mn for fixed n. Note that studying Mn is equivalent to studying the

number M̃n of local maxima in a random tree of size n: One clearly has M̃n
(d)
= Mn,

since the relabelling j 7→ n+ 1− j maps each tree with m local minima to a tree

with m local maxima and vice versa.

Apart from our probabilistic considerations, we will also show that there are

interesting connections between the numbers Tn,m of trees of size n with m local
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5.2. Results

minima and certain other combinatorial quantities involving the same tree families,

namely the number Ln,m of unordered trees of size n withm leaves, and the number

Fn of up-down alternating trees of size n in the respective tree family.

5.2 Results

5.2.1 Unordered trees

Theorem 5.2.1. For unordered trees, the random variable Mn which counts the

number of local minima of a random tree of size n has the following exact distri-

bution:

P{Mn = m} =
1

nn−1

(
n

m

) n−m∑

j=0

(−1)n−m−j

(
n−m

j

)

jn−1,

for 1 ≤ m ≤ n.

Corollary 5.2.2. The number Tn,m of unordered trees with n nodes and m local

minima is equal to the number Ln,m of unordered trees with n nodes and m leaves.

Corollary 5.2.3. For unordered trees, the random variable Mn which counts the

number of local minima of a random tree of size n is asymptotically normally

distributed: There holds

µn := E(Mn) ∼
n

e
, σ2

n := V(Mn) ∼
(
1

e
− 2

e2

)

n,

and
Mn − µn

σn

(d)−→ N (0, 1).

5.2.2 Ordered trees

Theorem 5.2.4. For ordered trees, the random variable Mn which counts the

number of local minima of a random tree of size n equals in distribution a sum of

independent Bernoulli distributed random variables: There holds

Mn
(d)
= M (1)

n ⊕M (2)
n ⊕ · · · ⊕M (n)

n ,

where M
(k)
n is Bernoulli( n−k

n+k−2
)-distributed for 1 ≤ k ≤ n. Moreover, the random

variables M
(k)
n satisfyM

(k)
n

(d)
= 11(M(k)

n ), where M(k)
n denotes the event that the node

with label k in a tree of size n is a local minimum and 11(M(k)
n ) is the indicator

variable of this event.
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Theorem 5.2.5. For ordered trees, the random variable Mn which counts the

number of local minima of a random tree of size n is asymptotically normally

distributed: There holds

µn := E(Mn) ∼ (−1 + 2 log 2)n, σ2
n := V(Mn) ∼ (−4 + 6 log 2)n,

and
Mn − µn

σn

(d)−→ N (0, 1).

5.3 Proofs of the results

In our proofs, Tn will always denote the number of trees of size n in the respective

tree family, i.e.

Tn =

{

nn−1, unordered trees,

(n− 1)!
(
2(n−1)
n−1

)
, ordered trees,

which is well-known. By Tn,m we denote the number of trees of size n with ex-

actly m local minima in the respective tree family. Moreover, we define the cor-

responding exponential generating functions T (z) =
∑

n≥1 Tn
zn

n!
and T (z, v) =

∑

n≥1

∑

m≥0 Tn,m
zn

n!
vm. We also consider the polynomials Tn(v) :=

∑

m≥0 Tn,mv
m,

which contain the whole information of the distribution of the number Mn of local

minima in a random tree of size n: The probability generating function pn(v) of

Mn is clearly given by 1
Tn
Tn(v).

5.3.1 Unordered trees

5.3.1.1 Exact distribution

In order to prove our results, we use the tree decomposition according to the node

with the largest label n which is shown in Figure 5.2: Each tree of size n in which

node n has r children is decomposed into the subtrees T1, . . . , Tr which are rooted

at the children of n, and (if n is not the root of T ) a tree T0, which is the part of

T lying “above” n, i.e. the part containing the root of T .

Clearly, for n > 1, the node with the largest label n cannot be a local minimum.

Moreover, each node which lies in some component Tj is a local minimum in Tj iff

it is a local minimum in T . Hence, the given decomposition leads to the following
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Figure 5.2: Decomposition of unordered trees with respect to the node with the
largest label.

recursion for the polynomials Tn(v) =
∑

m≥0 Tn,mv
m:

Tn(v) =
∑

r≥0

∑

n0,n1,...,nr≥1,
n0+...+nr=n−1

(
n− 1

n0, . . . , nr

)

n0Tn0(v)
Tn1(v) · · ·Tnr(v)

r!

+
∑

r≥1

∑

n1,...,nr≥1,
n1+...+nr=n−1

(
n− 1

n1, . . . , nr

)
Tn1(v) · · ·Tnr(v)

r!
, n ≥ 2,

T1(v) = v.

(5.1)

Here, the factors
(

n−1
n0,...,nr

)
and

(
n−1

n1,...,nr

)
count all possible ways to distribute the

labels {1, . . . , n− 1} among the components T0, . . . , Tr and T1, . . . , Tr, respectively,

the factor 1
r!
is needed because we are considering unordered trees (i.e. permuting

T1, . . . , Tr leads to the same tree), and the additional factor n0 in the first sum

accounts for the fact that node n can be attached as a child to any of the n0 nodes

in T0. Multiplying (5.1) by zn−1

(n−1)!
and summing up for n ≥ 1, one obtains the

following differential equation for T (z, v):

Tz(z, v) = zeT (z,v)Tz(z, v) + eT (z,v) + v − 1, T (0, v) = 0,

where the given boundary value follows directly from the definition of T (z, v). This

is an exact differential equation whose solution is easily seen to be given by the

functional equation

T (z, v) = z
(
eT (z,v) + v − 1

)
. (5.2)
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In order to extract coefficients from this equation, we use Langrange’s inversion

formula (cf. Theorem 2.1.3). One gets, for n ≥ 1,

[zn]T (z, v) =
1

n
[T n−1](eT + v − 1)n =

1

n
[T n−1]

n∑

j=0

(
n

j

)

ejT (v − 1)n−j

=
n∑

j=0

(
n

j

)
jn−1

n!
(v − 1)n−j,

and further, for 1 ≤ m ≤ n,

Tn,m = n![znvm]T (z, v) = [vm]
n∑

j=0

(
n

j

)

jn−1(v − 1)n−j

=
n−m∑

j=0

(−1)n−m−j

(
n

j

)(
n− j

m

)

jn−1 =

(
n

m

) n−m∑

j=0

(−1)n−m−j

(
n−m

j

)

jn−1.

Since P{Mn = m} = Tn,m

Tn
= Tn,m

nn−1 , one thus gets the formula for the probabilities

P{Mn = m} which is stated in Theorem 5.2.1.

5.3.1.2 The relation to the number of leaves

If we denote by Ln,m the number of unordered trees of size n with exactly m leaf

nodes (nodes with out-degree 0) and consider the generating function L(z, v) =
∑

n≥1

∑

m≥0 Ln,m
zn

n!
vm then it is easy to obtain (via the symbolic method) that

L(z, v) is given by the functional equation (5.2) (of course, this is well-known, cf.,

e.g., [DG99], where this is shown in a much more general context). This proves

that Tn,m = Ln,m, as stated in Corollary 5.2.2. In the following, we present a

bijective proof of this Corollary, which actually shows an even stronger result.

Bijective proof of Corollary 5.2.2: Let Cn be the set of unordered trees with

n nodes. We present a bijective mapping φn : Cn → Cn which maps each tree with

m local minima to a tree with m leaves. However, it will be convenient to consider

not only the set Cn of unordered trees of size n which are well-labelled (i.e. labelled

with the integers {1, . . . , n}), instead we consider the set C̄n of all weakly labelled

unordered trees of size n, i.e. unordered trees in which the nodes are labelled by

arbitrary distinct integers. We then present a bijective mapping φ̄n : C̄n → C̄n with

the property that each tree with m local minima is mapped to a tree with the same

set of labels and m leaves. Thus, the required bijection φn will then simply be the

restriction of φ̄n to Cn.
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We define the bijections φ̄n inductively. Of course, for n = 1 the bijection is

trivial: Each tree of C̄1 consists only of one node, which is both a local minimum

and a leaf, and thus we simply let φ̄1 be the identity on C̄1. So let n > 1 and

assume that we have already defined the bijections φ̄j, 1 ≤ j < n. We define φ̄n(T )

for each T ∈ C̄n by the following procedure, where we denote by m the number of

local minima in T , by R the label of T ’s root, and by L the largest label in T :

1) First, re-root T at the node labelled with L. Since this node cannot be a

local minimum, the m local minima now lie in the subtrees rooted at the

children of L.

2) For 1 ≤ j < n, apply φ̄j to every subtree rooted at a child of L which is of

size j. Since the total number of local minima in these subtrees is m, the

total number of leaves after this step will be m.

3) Swap the labels L and R (i.e. put label R back to the root). The resulting

tree is φ̄n(T ).

One easily checks that φ̄n is bijective, since by the induction hypothesis the map-

pings φ̄j, 1 ≤ j < n are. Moreover, also by the induction hypothesis, the mappings

φ̄j, 1 ≤ j < n preserve the used set of labels, and thus so does φ̄n. Hence, the

restriction of φ̄n to Cn is a bijection φn : Cn → Cn which maps each tree with

m local minima to a tree with m leaves. This concludes the bijective proof of

Corollary 5.2.2. For small values of n, the bijections φn are depicted in Figure 5.3.

We note that the bijection above actually proves an even stronger result: Given

a tree T ∈ Cn, let us denote the number of nodes in T with out-degree j (i.e. with

j children) by d+j (T ) (in particular, d+0 (T ) denotes the number of leaves of T ).

Moreover, let us write lj(T ) for the number of nodes in T whose label is larger than

the labels of exactly j of their neighbours (in particular, l0(T ) gives the number

of local minima of T ). Then there holds that for arbitrary but fixed j,m ∈ N, the

above bijection φ̄n maps each tree T ∈ Cn with lj(T ) = m to a tree φ̄n(T ) with

d+j (φ̄n(T )) = m. This fact is trivially true for n = 1, and for n > 1 it follows by

induction, since only one of the following two cases can occur:� Case 1: The number of neighbours of the node with largest label L in T

is different from j. Then, if lj(T ) = m, all of the m nodes whose label

is larger than the labels of exactly j of their neighbours lie in one of the

subtrees rooted at a child of L after step 1) of the construction of φ̄n. By the

induction hypothesis, these subtrees will after step 2) contain a total number

107



5.3. Proofs of the results

n = 1

n = 2

n = 3

n = 4

Figure 5.3: Application of φn to Cn (n = 1, 2, 3) and of φ4 to two trees of C4. Local
minima are marked gray, the resulting leaves are emphasized by boxes.
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of m nodes with out-degree j. Moreover, the out-degree of node L (or R,

respectively, after step 3)) is different from j. Hence d+j (φ̄n(T )) = m.� Case 2: The node with the largest label L in T has exactly j neighbours.

Then node L is one of those lj(T ) nodes whose label is larger than the labels

of exactly j of their neighbours. Hence, if lj(T ) = m, then only m − 1

nodes with the same property lie in the subtrees rooted at the children of

L, and after step 2) in the construction of φ̄n, these subtrees will contain a

total number of m− 1 nodes of out-degree j. In addition, node L itself (R,

respectively, after step 3)) has out-degree j, and thus also in this case we see

that d+j (φ̄n(T )) = m.

Let us call the sequence (d+0 (T ), . . . , d
+
n−1(T )) the out-degree profile of T , and

(l0(T ), . . . , ln−1(T )) the label relation profile. Then the above considerations lead

to the following corollary:

Corollary 5.3.1. For arbitrary n ∈ N and m0, . . . , mn−1 ∈ N0, the number of

unordered trees of size n with out-degree profile (m0, . . . , mn−1) is equal to the

number of unordered trees of size n with label relation profile (m0, . . . , mn−1).

5.3.1.3 Limiting distribution

In [DG99], it was shown (in a much more general context), that the number Zn

of leaves in a random unordered labelled tree of size n is asymptotically normally

distributed with mean value µn := E(Zn) ∼ n
e
and variance σ2

n := V(Zn) ∼
(1
e
− 2

e2
)n. From this and the relation between the number Tn,m of unordered trees

with m local minima and the number Ln,m of unordered trees with m leaves, one

immediately gets Corollary 5.2.3.

5.3.2 Ordered trees

5.3.2.1 Derivation of the exact distribution

Again, we use the tree decomposition according to the node with the largest label

n. However, in the case of ordered trees, this decomposition is even simpler than

in the unordered case (see Figure 5.4): If the total degree of node n in T is r,

then removing n from T gives an ordered forest (T1, . . . , Tr) of r trees. The local

minima of T then all lie in these trees Tj , and thus this decomposition leads to the
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Figure 5.4: Decomposition of ordered trees with respect to the node with the
largest label.

following recurrence for the polynomials Tn(v) =
∑

m≥0 Tn,mv
m:

Tn(v) =
∑

r≥1

∑

n1,...,nr≥1,
n1+...+nr=n−1

(
n− 1

n1, . . . , nr

)

2n1Tn1(v)Tn2(v) · · ·Tnr(v), n ≥ 2,

T1(v) = v.

(5.3)

Here, the factor 2n1 counts the different possible ways to connect node n to T1: If

T1 has size n1, then there are 2n1−1 possible positions at which n can be attached

as a child of one of the nodes of the ordered tree T1, and moreover one has the

possibility to attach the root of T1 to node n as its leftmost child.

Multiplying (5.3) by zn−1

(n−1)!
and summing up for n ≥ 1 leads to the following

differential equation for the generating function T (z, v):

Tz(z, v) =
2zTz(z, v)

1− T (z, v)
+ v, T (0, v) = 0. (5.4)

We will solve this differential equation implicitly by finding functions F (z, T ) and

C(v) which satisfy F (z, T (z, v)) = C(v). In order to do this, we first write (5.4)

as

(T + 2z − 1)Tz + v(1− T ) = 0, (5.5)

where T := T (z, v). This differential equation is not exact, but we can find an

integrating factor µ: Using the ansatz µ = µ(T ), one gets the differential equation

2µ(T ) =
∂(µ(T )(T + 2z − 1))

∂z
=

∂(µ(T )v(1− T ))

∂T
= µT (T )v(1− T )− vµ(T ),
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for µ(T ), for which one solution is given by µ(T ) = (1 − T )−1− 2
v . By multiplying

(5.5) by µ(T ), we now obtain the exact differential equation

(2z(1− T )−1− 2
v − (1− T )−

2
v )Tz + v(1− T )−

2
v = 0.

A potential function of this differential equation is straightforward to obtain and

is given by

F (z, T ) = zv(1 − T )−
2
v + v

(1− T )1−
2
v

v − 2
.

Hence, the general solution of (5.5) is given implicitly by

C(v) = F (z, T (z, v)) = zv(1− T (z, v))−
2
v + v

(1− T (z, v))1−
2
v

v − 2
,

where C(v) is an arbitrary function. In order to solve (5.4), we now use the

boundary condition T (0, v) = 0, which leads to

C(v) =
v

v − 2
.

Rearranging the terms a bit, we obtain that the solution of (5.4) is implicitly given

by the functional equation

z =
1− T (z, v)− (1− T (z, v))

2
v

2− v
. (5.6)

In order to extract the polynomials Tn(v) = n![zn]T (z, v) from this equation,

we apply Lagrange’s inversion formula (cf. Theorem 2.1.3). First, we write (5.6)

in the following form:

z =
T (z, v)

(2−v)T (z,v)

1−T (z,v)−(1−T (z,v))
2
v

.

Note that, when expanding the denominator in the right hand side of this equation

into a series of T , the constant term in this expansion does not vanish. Thus we

can indeed apply Lagrange’s inversion formula and obtain

[zn]T (z, v) =
1

n
[T n−1]

(

(2− v)T

1− T − (1− T )
2
v

)n

=
(2− v)n

n
[T−1]

1
(

1− T − (1− T )
2
v

)n .
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We now use Cauchy’s integration formula and get

[zn]T (z, v) =
(2− v)n

n

1

2πi

∮
dT

(

1− T − (1− T )
2
v

)n

=
(2− v)n

n

1

2πi

∮
1

(1− T )n
1

(

1− (1− T )
2−v
v

)ndT,

where the integration is taken in counter-clockwise direction along a simple closed

curve around the origin. In order to continue, we use the substitution

G = 1− (1− T )
2−v
v ,

which gives

1− T = (1−G)
v

2−v and dT =
v

2− v
(1−G)−

2(1−v)
2−v dG,

and thus

[zn]T (z, v) =
v(2− v)n−1

n

1

2πi

∮
(1−G)−

vn
2−v

− 2(1−v)
2−v

Gn
dG

=
v(2− v)n−1

n
[Gn−1]

1

(1−G)
vn+2(1−v)

2−v

.

Hence, one gets

[zn]T (z, v) =
v(2− v)n−1

n

(
n− 1 + v(n−1)

2−v

n− 1

)

and

Tn(v) = n![zn]T (z, v) = v(2− v)n−1
n−1∏

k=1

(

k +
v(n− 1)

2− v

)

= v
n−1∏

k=1

((n− k − 1)v + 2k) .

It follows that the probability generating function pn(v) =
1
Tn
Tn(v) of the random

variable Mn, which counts the number of local minima in a random ordered tree

of size n, is given by

pn(v) =
v

(n− 1)!
(
2(n−1)
n−1

)

n−1∏

k=1

((n− k − 1)v + 2k) =
v
∏n

k=2((n− k)v + 2(k − 1))

(2n− 2)(2n− 3) · · ·n

=
n∏

k=1

(
n− k

n + k − 2
v +

2(k − 1)

n+ k − 2

)

.
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If we let, for 1 ≤ k ≤ n, M
(k)
n be a Bernoulli( n−k

n+k−2
)-distributed random variable,

then the k-th factor in pn(v) is the probability generating function of M
(k)
n , and

hence Mn
(d)
= M

(1)
n ⊕M

(2)
n ⊕· · ·⊕M

(n)
n , that is, Mn equals in distribution the direct

sum of these random variables. This proves the first part of Theorem 5.2.4.

We now show that M
(k)
n

(d)
= 11(M(k)

n ), where M(k)
n denotes the event that the

node with label k in a tree of size n is a local minimum and 11(M(k)
n ) is the indicator

variable of this event, i.e. we prove that P

{

M(k)
n

}

= n−k
n+k−2

. We compute this

probability by case distinction, i.e. we use the decomposition

P
{
M(k)

n

}
=

n−1∑

m=1

P
{
M(k)

n | k has total degree m
}
P{k has total degree m} . (5.7)

Here, one clearly has

P
{
M(k)

n | k has total degree m
}
=

(
n−k
m

)

(
n−1
m

) , (5.8)

which is simply seen by considering the possible choices for the labels of the neigh-

bours of node k which make k a local minimum. Moreover, one has

P{k has total degree m} =
Dn,k,m

Tn

,

where Dn,k,m denotes the number of ordered trees of size n in which the node

with label k has total degree m. This number is of course independent of the

label k, and it is thus sufficient to compute the numbers Dn,n,m. For the function

D(z, v) :=
∑

n≥1

∑

m≥1 Dn,n,m
zn

n!
vm one gets, again by using the decomposition

shown in Figure 5.4,
Dz(z, v)

z
=

2vT ′(z)

1− vT (z)
.

From this equation we can, for n ≥ 2 and m ≥ 1, extract the numbers Dn,n,m in

the following way: First, one has

Dn,n,m

(n− 1)!
= [zn−1vm]Dz(z, v) = [zn−2vm]

Dz(z, v)

z
= (n− 1)[zn−1vm]

∫ z

0

Dζ(ζ, v)

ζ
dζ

= (n− 1)[zn−1vm]

∫ z

0

2vT ′(ζ)

1− vT (ζ)
dζ = 2(n− 1)[zn−1vm] log

(
1

1− vT (z)

)

= 2(n− 1)[zn−1]
T (z)m

m
,
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and by an application of Lagrange’s inversion formula (remember that T (z) =
z

1−T (z)
, cf. equation (3.3)), one further obtains

Dn,n,m

(n− 1)!
= 2(n− 1)[T n−2]

1

n− 1
Tm−1 1

(1− T )n−1

= 2[T n−m−1]
1

(1− T )n−1
= 2

(
2n−m− 3

n− 2

)

.

(5.9)

Now, by using (5.8) and (5.9) in (5.7), the probabilities P
{

M(k)
n

}

can be computed

as follows:

P
{
M(k)

n

}
=

n−1∑

m=1

(
n−k
m

)

(
n−1
m

)
Dn,n,m

Tn
=

n−k∑

m=1

(
n−k
m

)

(
n−1
m

)
2(n− 1)!

(
2n−m−3

n−2

)

(n− 1)!
(
2n−2
n−1

)

=
1

(
2n−3
n+k−3

)

n−k∑

m=1

(
2n−m− 3

n + k − 3

)

=

(
2n−3
n+k−2

)

(
2n−3
n+k−3

) =
n− k

n + k − 2
.

Hence, we have shown that Mn
(d)
= M

(1)
n ⊕M

(2)
n ⊕· · ·⊕M

(n)
n , where M

(k)
n

(d)
= 11(M(k)

n )

and M(k)
n denotes the event that the node with label k is a local minimum. This

concludes the proof of Theorem 5.2.4.

Remark: Naturally, one has Mn = 11(M(1)
n )+11(M(2)

n )+ . . .+11(M(n)
n ). The fact

that Mn
(d)
= M

(1)
n ⊕M

(2)
n ⊕ · · · ⊕M

(n)
n suggests that the events M(k)

n may actually

be independent, i.e. that one has Mn = 11(M(1)
n )⊕ 11(M(2)

n )⊕ . . .⊕ 11(M(n)
n ). We

strongly believe that this is the case (it can also be verified computationally for

small values of n), but unfortunately we were not able to prove this for general n.

5.3.2.2 Derivation of the limiting distribution result

We derive the limiting distribution result for Mn directly from the exact results:

Since Mn
(d)
= M

(1)
n ⊕M

(2)
n ⊕ · · · ⊕M

(n)
n , one has

µn := E(Mn) =

n∑

k=1

E
(
M (k)

n

)
=

m∑

k=1

n− k

n+ k − 2
.

Thus, using the fact that, for n → ∞,

∣
∣
∣
∣

n− k

n+ k − 2
− n− k

n+ k

∣
∣
∣
∣
→ 0,
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5.4. Relation to up-down alternating trees

uniformly for 1 ≤ k ≤ n, one gets

lim
n→∞

E(Mn)

n
= lim

n→∞

1

n

n∑

k=1

n− k

n+ k − 2
= lim

n→∞

1

n

n∑

k=1

n− k

n+ k
= lim

n→∞

1

n

n∑

k=1

1− k
n

1 + k
n

=

∫ 1

0

1− x

1 + x
dx = −1 + 2 log 2.

Similarly, one gets that the variance σ2
n := V(Mn) satisfies

lim
n→∞

V(Mn)

n
= lim

n→∞

1

n

n∑

k=1

V
(
M (k)

n

)
= lim

n→∞

1

n

n∑

k=1

n− k

n + k − 2

(

1− n− k

n+ k − 2

)

= lim
n→∞

1

n

n∑

k=1

n− k

n+ k

(

1− n− k

n+ k

)

= lim
n→∞

1

n

n∑

k=1

1− k
n

1 + k
n

(

1− 1− k
n

1 + k
n

)

=

∫ 1

0

1− x

1 + x

(

1− 1− x

1 + x

)

dx = −4 + 6 log 2.

In order to prove Theorem 5.2.5, we consider the cumulants κi(M
∗
n), i ∈ N,

of the centered and normalized random variable M∗
n := Mn−µn

σn
. The first two

cumulants are of course simply given, for all n ∈ N, by κ1(M
∗
n) = E(M∗

n) = 0,

and κ2(M
∗
n) = V(M∗

n) = 1. For m ≥ 3 we use the following observation: Clearly,

it holds that for each fixed m the m-th cumulant of a Bernoulli(p)-distributed

random variable Xp, which can be computed by

κm(Xp) = [tm] log
(
E
(
etXp

))
= [tm] log

(
1 + p(et − 1)

)
,

is a polynomial in p. Especially, κm(Xp) is uniformly bounded for 0 ≤ p ≤ 1.

Thus, using the fact that Mn
(d)
= M

(1)
n ⊕M

(2)
n ⊕ · · · ⊕M

(n)
n , we get

lim
n→∞

κm(M
∗
n) = lim

n→∞

κm(Mn)

σm
n

= lim
n→∞

∑n
k=1 κm

(

M
(k)
n

)

σm
n

= lim
n→∞

O(n)

σm
n

= 0,

for each fixed m ≥ 3, since σm
n ≫ n in this case.

Hence, we see that the cumulants of the centralized and normalized random

variable M∗
n converge to the cumulants of the standard normal distribution, which

proves the convergence in distribution as claimed in Theorem 5.2.5.

5.4 Relation to up-down alternating trees

Up-down alternating trees are rooted labelled trees in which the labels v1, v2, v3, . . .

on each path starting at the root satisfy v1 < v2 > v3 < v4 > . . .. The number Fn of
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5.4. Relation to up-down alternating trees

such trees of size n has been studied by Postnikov (for unordered trees, cf. [Pos97]),

by Chauve, Dulucq and Rechnitzer (for ordered trees, cf. [CDR01]), and by Kuba

and Panholzer (for more general tree families, cf. [KP10]). In particular, it has

been shown that the exponential generating function F (z) :=
∑

n≥1 Fn
zn

n!
of these

numbers satisfies

z =
2F (z)

1 + eF (z)
, (5.10)

for unordered trees, and

z = (1− F (z)) log

(
1

1− F (z)

)

, (5.11)

for ordered trees. By comparing (5.10) with (5.2), and (5.11) with the limit of

(5.6) for v → 2, one obtains in both cases the relation

F (z) = T (
z

2
, 2).

In other words, one has

Fn =
∑

m≥0

Tn,m2
m−n, (5.12)

and thus the number of up-down alternating (ordered or unordered) trees can be

obtained from the distribution of the number of local minima. In the following, we

give a combinatorial proof of this fact, and show that this holds analogously for

many other tree families. The following theorem states that (5.12) even holds for

every tree family which simply consists of all labelled copies of a fixed unlabelled

ordered tree:

Theorem 5.4.1. Let t be an arbitrary unlabelled ordered tree of size n. Denote

by f(t) the number of labelled copies of t which are up-down alternating, and by

gm(t) the number of labelled copies of t with m local minima. Then there holds

2nf(t) =
∑

m≥0

2mgm(t). (5.13)

Proof. We prove this result by presenting a bijection between two tree families

Ft, Gt of size 2nf(t) and
∑

m≥0 2
mgm(t), respectively: We let Ft be the family of

bicoloured up-down alternating copies of t, i.e. each tree of Ft is a copy of t in which

the nodes are labelled with {1, . . . , n} in an up-down alternating fashion, and in

addition each node has one of two possible colors (say, white or gray). Clearly,

there are exactly 2nf(t) trees of this kind. The family Gt on the other hand is
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5.4. Relation to up-down alternating trees

constructed by taking all bicoloured labelled copies of t with the only restriction

that in this family only the nodes which are local minima are allowed to be gray.

Hence, Gt contains
∑

m≥0 2
mgm(t) elements.

We now prove that there is a bijection φt : Gt → Ft. However, it will be

convenient to consider not only the sets Ft and Gt in which all trees are labelled

with {1, . . . , n}, instead we consider the sets F̄t and Ḡt which are constructed in the

same way as Ft and Gt from t, but allowing any arbitrary set of distinct integers as

node labels (in particular, F̄t and Ḡt are infinite, but this will cause no problems).

We then present a bijection φ̄t : Ḡt → F̄t with the property that every element of

Ḡt is mapped to an element of F̄t with the same set of labels. Hence, the required

bijection φt will then simply be the restriction of φ̄t to Gt.

We construct the bijection φ̄t by induction on the size n of t. Of course, the

case n = 1 is trivial, because F̄t = Ḡt in this case and we simply let φ̄t be the

identity. So let n > 1 and assume that we have already constructed the bijections

φ̄t′ for all ordered trees t′ of sizes smaller than n. We then define φ̄t(t̄) for every tree

t of size n and every bicoloured labelled copy t̄ ∈ Ḡt by the following procedure:

1) Let L be the largest label in t̄. By the construction of Ḡt, L surely is a white

node, since it cannot be a local minimum. Removing L from t̄ yields an

“ordered forest” (t̄0, . . . , t̄r) of r+1 trees, where t̄0 contains the root of t (or

is empty, if L is the root of t) and t̄1, . . . , t̄r are the subtrees rooted at the

first, second,. . ., r-th child of L (r = 0 is possible if L has no children). For

0 ≤ j ≤ r, t̄j is contained in a family Ḡtj , where tj is an unlabelled ordered

tree of size smaller than n, and hence we can apply φ̄tj to t̄j in order to

obtain an element of F̄tj . This yields an ordered forest of r + 1 bicoloured

up-down alternating trees (φ̄t0(t̄0), . . . , φ̄tr(t̄r)).

2) We now have to distinguish two cases:

a) If the depth of L in t̄ (i.e. the number of edges in the path from the root

of t̄ to node L) is odd, we can simply “glue” the up-down alternating

trees (φ̄t0(t̄0), . . . , φ̄tr(t̄r)) back together using node L. That is, the trees

φ̄t1(t̄1), . . . , φ̄tr(t̄r) are connected to L in exactly this linear order, and

if L had a parent node v in t̄ (i.e. φ̄t0(t̄0) is non-empty), then L again

becomes a child of v (at the same position as in t̄). The resulting tree

will then be an element of F̄t. In order to mark that this first case has

occurred, we now color node L gray, and we let the resulting tree be

φ̄t(t̄).
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b) If, on the other hand, the depth of L in t̄ is even, we can not simply

glue the trees together in order to obtain an element of F̄t like in the

first case. Instead, we do the following:

i. Replace φ̄t0(t̄0) by φ̄t0(t̄0)
′, which results from φ̄t0(t̄0) by swapping

the largest label with the smallest one, the largest but one with the

smallest but one, and so on (the colors of each node are swapped

together with the labels). φ̄t0(t̄0)
′ is then clearly a bicoloured down-

up alternating tree. Then, by glueing (φ̄t0(t̄0)
′, φ̄t1(t̄1), . . . , φ̄tr(t̄r))

together like in a) we get a bicoloured down-up alternating tree.

ii. Now, again by swapping the largest label with the smallest one, the

largest but one with the smallest but one, and so on, we obtain an

element of F̄t, which we let be φ̄t(t̄). Node L remains white in this

case.

Since, by the induction hypothesis, the mappings φ̄tj , 0 ≤ j ≤ r are injective, so is

φ̄t. Moreover, since the the mappings φ̄tj are surjective and both cases (“white”

or “gray”) for the node with the largest label of any element of F̄t are covered

by step 2), the mapping φ̄t is also surjective. Furthermore, also by the induction

hypothesis, each of the mappings φ̄tj in step 1) preserves the used set of labels,

and hence so does φ̄t. Thus, as required, the restriction of φ̄t to Gt is a bijection

φt : Gt → Ft. This concludes the proof of Theorem 5.4.1.

For some small trees t, the bijections φt are depicted in Figure 5.5.

Corollary 5.4.2. Let T be an arbitrary labelled family of simply generated trees,

and denote by Fn the total weight of up-down alternating trees of size n in T .

Moreover, let Gn,m be the total weight of trees in T which are of size n and contain

exactly m local minima. Then there holds

2nFn =
∑

m≥0

2mGn,m. (5.14)

Hence, (5.14) especially holds if Fn denotes the number of up-down alternating

unordered, cyclic or d-ary trees of size n, and Gn,m the number of unordered,

cyclic or d-ary trees, respectively, of size n with m local minima.

Proof. Since the weight w(t) of any tree t ∈ T does not depend on the labelling of

the nodes, one has Fn =
∑

t∈Un
w(t)f(t), and Gn,m =

∑

t∈Un
w(t)gm(t), where Un

denotes the set of unlabelled ordered trees of size n and f(t) and gm(t) are defined
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n = 1

n = 2

n = 3

n = 7

Figure 5.5: Application of φt to Gt for t of size n = 1 and n = 2 and some examples
for sizes n = 3 and n = 7.
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as in Theorem 5.4.1. For each t ∈ Un, we can use equation (5.13), and we thus

obtain

2nFn =
∑

t∈Un

w(t)2nf(t) =
∑

t∈Un

w(t)
∑

m≥0

2mgm(t) =
∑

m≥0

2m
∑

t∈Un

w(t)gm(t)

=
∑

m≥0

2mGn,m.
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APPENDIX A
Probability distributions

When studying the limiting behaviour of the random variables which we considered

in this thesis, we encountered several common probability distributions, but also

some more “exotic” ones like the Airy distribution. For reference we collect the

definitions of these distributions in the form in which we used them (note that, e.g.,

for Gamma distribution and negative binomial distribution, also slightly differing

formulations are used in the literature).

A.1 Gamma distribution, exponential

distribution

The Gamma distribution with parameters κ > 0 and θ > 0 (for short, Gamma(κ, θ)

distribution) is the probability distribution of a random variableX with probability

density function

fX(x) = xκ−1 e−x/θ

θκ Γ(κ)
, x ≥ 0.

The moments of a Gamma(κ, θ) distributed random variable X are given by

E(Xs) = θs
Γ(s+ κ)

Γ(κ)
, s ∈ N,

and the Gamma(κ, θ) distribution is uniquely determined by these moments. In

the special case κ = 1 the Gamma distribution is called Exponential distribution

with parameter θ̃ := 1/θ, which we write as Exp(θ̃).
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A.2 Beta distribution

A random variable X is Beta distributed with parameters α > 0 and β > 0 (for

short, Beta(α, β) distributed), iff it has the probability density function

fX(x) =
xα−1(1− x)β−1

∫ 1

0
uα−1(1− u)β−1 du

, x ∈ (0, 1).

The moments of X are then given by

E(Xs) =
Γ(α+ β) Γ(α + s)

Γ(α+ β + s) Γ(α)
, s ∈ N,

and these moments uniquely determine the Beta(α, β) distribution.

A.3 Negative binomial distribution, geometric

distribution

A discrete random variable X is negative binomial distributed with parameters

r > 0 and p ∈ (0, 1) (for short, NegBin(r, p) distributed), iff its probability mass

function is given by

P{X = m} =

(
m+ r − 1

m

)

pr(1− p)m, m ∈ N0.

In the special case r = 1, this distribution is called Geometric distribution with

parameter p, which we write as Geom(p).

A.4 Normal distribution

A random variable X is normally distributed with mean µ and standard deviation

σ (for short, N (µ, σ) distributed) iff it has the probability density function

fX(x) =
1

σ
√
2π

e−
(x−µ)2

2σ2 .

The cumulants κr(X) of a normally distributed random variable are given by

κ1(X) = E(X) = µ, κ2(X) = V(X) = σ2, and κr(X) = 0, for r ≥ 3, and these

cumulants uniquely determine the N (µ, σ)-distribution. The distribution function

of the standard normal distribution N (0, 1) is denoted by Φ(x).
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A.5 Rayleigh distribution

The Rayleigh distribution with parameter σ > 0 is the distribution of a random

variable X with probability density function

fX(x) =
x

σ2
e−

x2

2σ2 , x > 0. (A.1)

This distribution appears frequently when studying combinatorial objects, see,

e.g., [FS09]. When applying the method of moments in order to establish some of

our results, we use the following basic fact about the Rayleigh distribution:

Lemma A.5.1. The Rayleigh distribution is uniquely determined by its sequence

of r-th moments (µr)r≥1, which are given as follows:

µr := E(Xr
σ) = σr 2

r
2 Γ
(r

2
+ 1
)

. (A.2)

A.6 Airy distribution

The Airy distribution is the probability distribution of a random variable X with

r-th moments

µr := E(Xr) = − Γ
(
−1

2

)

Γ
(
3r−1
2

)Cr, (A.3)

where the constants Cr can inductively be defined by

2Cr = (3r − 4)rCr−1 +
r−1∑

j=1

(
r

j

)

CjCr−j, r ≥ 2, C1 =
1

2
. (A.4)

The Airy distribution occurs as a limiting distribution in enumerative studies

of many combinatorial objects, such as the area below lattice paths [Lou84], the

area of staircase polygons [SRT10], sums of parking functions [KY03], and the

costs of linear probing hashing algorithms [FPV98]. The following well-known

result about the Airy distribution proves useful (see, e.g., [FL01], where one can

find more details about the Airy distribution and some equivalent definitions).

Lemma A.6.1. The Airy distribution is uniquely determined by its sequence of

moments (µr)r≥1.
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APPENDIX B
The method of characteristics

The method of characteristics (cf., e.g., [Tay96]) is a technique for solving linear

partial differential equations (linear PDEs). Since we use this method in our

derivations, we shortly explain it here.

We only consider the simplest case of a homogeneous linear first order PDE for

a function f(x, y) of two variables, which is of the form

u1(x, y)fx(x, y) + u2(x, y)fy(x, y) + u3(x, y)f(x, y) = 0. (B.1)

The method of characteristics rests on the idea of transforming this equation to an

ordinary differential equation along so-called characteristic curves. In order to find

these characteristic curves, one considers the system of characteristic equations,

ẋ = u1(x, y),

ẏ = u2(x, y),
(B.2)

where x = x(t) and y = y(t) are considered as functions of a new parameter t.

Now assume that ζ(x, y) is a first integral of (B.2), i.e. ζ(x(t), y(t)) is constant

along each solution (x(t), y(t)) of (B.2). If we choose for each point (x0, y0) of

the (x, y)-plane a solution (x(t), y(t)) of (B.2) which passes through (x0, y0), i.e.

(x0, y0) = (x(t0), y(t0)) for some t0, then it follows that

ζx(x0, y0)u1(x0, y0) + ζy(x0, y0)u2(x0, y0) = ζx(x0, y0)ẋ(t0) + ζy(x0, y0)ẏ(t0) = 0,

and hence

ζx(x, y)u1(x, y) + ζy(x, y)u2(x, y) ≡ 0. (B.3)
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Appendix B. The method of characteristics

Now, if we consider a coordinate transform ζ = ζ(x, y), η = η(x, y) (where we

require that this transform is invertible, i.e. x = x(ζ, η), y = y(ζ, η), and contin-

uously differentiable), equation (B.1) is transformed into the following PDE for

F (ζ, η) := f(x(ζ, η), y(ζ, η)):

0 = u1fx + u2fy + u3f

= u1(Fζζx + Fηηx) + u2(Fζζy + Fηηy) + u3F,

where u1 = u1(x(ζ, η), y(ζ, η)), fx = fx(x(ζ, η), y(ζ, η)), and so on. Due to equa-

tion (B.3), the terms containing Fζ in this PDE cancel, and hence one obtains an

ordinary differential equation for F (ζ, η) with respect to η. Solving this equation

and transforming the result back to (x, y)-space thus yields the solution of (B.1).

In practice, one obtains the required first integral ζ(x, y) of (B.2) by considering

the phase differential equation

dx

dy
=

u1(x, y)

u2(x, y)
. (B.4)

Given the general solution x(y) = f(y, c) of (B.4) which depends on a parameter

c, one then solves for c, i.e. c = ζ(x, y).
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APPENDIX C
Difference calculus

Difference calculus (cf., e.g., [GKP94]) is based on the properties of the difference

operator defined by

∆f(x) = f(x+ 1)− f(x).

We collect some of these properties.� One of the most important properties of ∆ is the fact that for the m-th

falling factorials xm := x(x− 1) · · · (x−m+1) the following equation holds:

∆xm = mxm−1, for m ∈ N. (C.1)� More generally, one easily gets by induction that ∆rxm = mrxm−r, for r ∈
N0.� ∆ commutes with the α-shift operator Eα (α ∈ R), defined by Eαf(x) =

f(x+ α), i.e. one has the operator equation

∆Eα = Eα∆, for α ∈ R.

As an example, we have ∆r(x+α)m = ∆rEαx
m = Eα∆

rxm = mr(x+α)m−r.

An important field of application for difference calculus is the derivation of

summation formulæ for certain sums involving factors of the form (−1)ℓ
(
m
ℓ

)
. This

is due to the fact that

∆mf(x) = (−1)m
m∑

ℓ=0

(−1)ℓ
(
m

ℓ

)

f(x+ ℓ), for m ∈ N0. (C.2)
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Appendix C. Difference calculus

Note that equation (C.2) can just be proven by induction onm, but a more elegant

proof is the following [GKP94]:

Consider the shift operator E := E1, defined by Ef(x) = f(x+1). Clearly, one

has the operator equation ∆ = E − I, where I denotes the identity operator. By

using the standard binomial theorem for (E− I)m, it follows that

∆mf(x) = (E− I)mf(x) =
m∑

ℓ=0

(
m

ℓ

)

(−1)m−ℓEℓf(x),

which proves (C.2).

As an example application of (C.2), we prove a summation formula which we

use in our studies (note that this example is taken directly from [GKP94]): We

define the negative-exponent falling factorials x−m by

x−m =
1

(x+ 1)(x+ 2) · · · (x+m)
, m ∈ N.

One easily checks that with this definition equation (C.1) holds for all m ∈ Z.

Hence, by setting f(x) = 1
x
= (x− 1)−1, equation (C.2) shows that

m∑

ℓ=0

(
m

ℓ

)

(−1)ℓ
1

ℓ+ x
= (−1)m∆m(x− 1)−1 = (−1)m(−1)m(x− 1)−m−1

=
m!

x(x+ 1) · · · (x+m)
=

1

(m+ 1)
(
m+x
m+1

) ,

(C.3)

for m ∈ N0 and x 6∈ {−m, . . . , 0}.
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Notation

N the set of natural numbers (without 0):

N = {1, 2, 3, . . .}

N0 the set of natural numbers including 0:

N0 = N ∪ {0}

Z the set of integers:

Z = {. . . ,−2,−1, 0, 1, 2, . . .}

n! factorial of n (n ∈ N0):

0! = 1, n! = n · (n− 1)! = n(n− 1) · · ·1, n ∈ N

αk k-th falling factorial of α (α ∈ R, k ∈ N0):

α0 = 1, αk = α · (α− 1)k−1 = α(α− 1) · · · (α− k + 1), k ∈ N

αk k-th rising factorial of α (α ∈ R, k ∈ N0):

α0 = 1, αk = α · (α+ 1)k−1 = α(α+ 1) · · · (α+ k − 1), k ∈ N

Γ(x) gamma function

(
α
β

)
binomial coefficient (α, β ∈ R):
(
n
k

)
= n!

k!(n−k)!
(n, k ∈ N0, k ≤ n);

(
α
k

)
= αk

k!
(α ∈ R, k ∈ N0);

in general:
(
α
β

)
= limt→0

Γ(α+t+1)
Γ(β+1)Γ(α−β+t+1)

Arg(z) argument of z:

Arg(z) = φ for z = |z|eiφ, φ ∈ (−π, π]
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Notation

[
n
k

]
(unsigned) Stirling numbers of the first kind

{
n
k

}
Stirling numbers of the second kind

|T | size of the combinatorial object T

∗ combinatorial product of labelled objects

∪̇ disjoint union

� placeholder for an object of size 0

[zn] operator which extracts the coefficient of zn from a power series:

A(z) =
∑

n∈N0
anz

n ⇒ [zn]A(z) = an

Dx differential operator with respect to x:

Dx = ∂
∂x

Nx operator which evaluates at x = 0:

Nx(.) = (.)|x=0

Ux operator which evaluates at x = 1:

Ux(.) = (.)|x=1

Z operator which multiplies with z:

Z(.) = z · (.)

∆ difference operator:

∆f(x) = f(x+ 1)− f(x)

E(X) expected value of X

V(X) variance of X

κr(X) r-th cumulant of X

X ⊕ Y sum of independent random variables
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Notation

11(A) indicator variable of event A

P{A} probability of event A

Ac complement of event A

P{A | B} conditional probability of event A, given event B

Xn
(d)−→ X convergence in distribution of (Xn)n∈N to X

X
(d)
= Y equality in distribution of X and Y

Φ(x) distribution function of the standard normal distribution
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