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Abstract
With the upcoming success of Internet-Protocol based packet-switched networks, ex-
isting services like traditional voice communication must be migrated or replaced by
alternatives. At the same time, new services are deployed that have been impossible
or at least hardly implementable in circuit-switched technology. That leads to in-
creasing traffic in such networks, especially for specific scenarios that require a huge
number of messages to be exchanged. As a consequence, the probability of a sys-
tem collapse rises if not appropriately counteracted. The 3rd Generation Partnership
Project has selected the Session Initiation Protocol as main signaling protocol for
its Internet-Protocol Multimedia Subsystem. That protocol has some performance
drawbacks that are well-known and at the time of writing, explicit congestion no-
tification mechanisms have been developed by the Internet Engineering Task Force
and the European Telecommunications Standards Institute. The aim of this thesis
is to specify novel implicit congestion detection mechanisms and to analyze their
applicability.
A dedicated simulation environment is developed for this purpose that is able to ver-
ify the performance drawbacks of the Session Initiation Protocol and to act as tool for
further developments. In order to develop counteracting mechanisms, the behavior
of proxy servers of the Session Initiation Protocol is analyzed and documented. The
results of this analysis form the base of two novel implicit congestion detection mech-
anisms that are used as trigger for further actions in a congestion situation. First, the
manipulation of the re-transmission timers of the Session Initiation Protocol enables
the system to handle the upcoming load. Second, incoming requests are rejected,
therefore reducing the load that is sent to the downstream host. By means of sim-
ulations it is shown that the developed mechanisms perform well and are applicable
to the protocol. In addition, the author presents an approach to offload a part of
message processing onto a specialized processor in order to leave the main processor
more time for the remainder. Measurements and application scenarios that verify the
assumptions complete the work.





Zusammenfassung

Der Erfolg von Internet-Protokoll (IP) basierten paketvermittelten Netzen führt dazu,
dass bereits existierende Dienste, wie zum Beispiel traditionelle Sprachkommunika-
tion, angepasst, oder durch neue Alternativen ersetzt werden müssen. Gleichzeitig
werden neue Dienste entwickelt, die mit bisherigen leitungsvermittelten Netzen nicht
oder nur sehr schwer umsetzbar waren. Das führt in weiterer Folge zu ansteigendem
Datenverkehr in solchen Netzen, speziell in besonderen Szenarien, die ein erhöhtes
Datenvolumen benötigen. Als Konsequenz steigt die Wahrscheinlichkeit eines Kol-
laps des ganzen Systems, wenn keine geeigneten Gegenmaßnahmen ergriffen werden.
Das 3rd Generation Partnership Project hat das Session Initiation Protocol (SIP)
als Signalisierungsprotokoll für das IP- Multimedia Subsystem ausgewählt. Dieses
Protokoll hat einige bereits bekannte Nachteile bezüglich Leistungsfähigkeit unter
Hochlast. Die Internet Engineering Task Force und das European Telecommunica-
tions Standards Institute entwickeln bereits explizite Mechanismen, mit deren Hilfe
betroffene Knoten einen anstehenden Datenstau mitteilen können. Das Ziel dieser
Arbeit ist es, implizite Mechanismen zu entwickeln, und deren Anwendbarkeit zu
untersuchen.

Zu diesem Zweck wird eine Simulationsumgebung entwickelt, die die Nachteile des
Protokolls verifizieren kann und auch als Werkzeug für neue Entwicklungen verwendet
wird. Für die Entwicklung der neuen, impliziten Mechanismen wird das Verhalten
von Proxy Servern des Session Initiation Protokolls untersucht und dokumentiert.
Die Ergebnisse dieser Analyse werden benützt um zwei neue Ansätze zur impliziten
Datenstauerkennung zu entwickeln. Diese werden dazu verwendet, um im Falle eines
erkannten Datenstaus entsprechende Gegenmaßnahmen zu ergreifen. Als Gegenmaß-
nahmen präsentiert die Arbeit auf der einen Seite eine dynamische Manipulation der
Timer, die das wiederholte Übertragen von SIP Nachrichten steuern. Diese Änderung
gibt dem System genug Zeit zur Abarbeitung der anstehenden Last. Auf der anderen
Seite wird eine bestimmter Teil der eingehenden Nachrichten abgewiesen, um die
Last am betroffenen System zu reduzieren. Mit Hilfe von Simulationen wird gezeigt,
dass die neuen Mechanismen funktionieren und auf das Protokoll anwendbar sind.



Weiters wird ein Ansatz präsentiert, der einen Teil der Verarbeitung der Nachrichten
auf einen speziellen Prozessor auslagert um dem Hauptprozessor mehr Zeit für den
restlichen Teil zu lassen. Messungen und Anwendungsszenarien schließen die Arbeit
ab.
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1. Introduction

During the last couple of years, the transition from circuit switched technology for
communication networks to packet switched technology based on the Session Ini-
tiation Protocol (SIP) [53] has become a key factor for the future success of the
telecommunications industry as a whole. This transition process has started with
fixed networks and is currently at the point of revolutionizing the mobile network
landscape which, since the upcoming large-scale deployments of Long Term Evolu-
tion (LTE), does no longer provide circuit switched functionality at all. Therefore, all
circuit switched services, particularly voice, must be migrated to the packet switched
world or replaced by packet-switched alternatives. Main candidate for implementing
signaling and control functionality in packet-switched IP networks is SIP which has
been selected by the 3rd Generation Partnership Project (3GPP) [2] as main call
signaling protocol for its IP Multimedia Subsystem (IMS) starting with release 5.

Simultaneously, the packet switched transition drives the deployment of new services,
for instance presence services, in addition to traditional voice communication and will
substantially increase the usage of SIP systems. With growing acceptance of these
new services, the amount of SIP traffic is expected to increase, especially for specific
scenarios causing a huge number of messages (for instance the update of the presence
status at the beginning or end of a business day, or after a power failure). As a
consequence, in such situations the probability of a collapse of the whole system rises
unless counteracted by appropriate configuration of system parameters in the relevant
SIP nodes like proxy servers or user agents.

In general, the performance of SIP as signaling protocol depends amongst other
factors also on the choice of the underlying transport protocol, which can be either
the reliable Transmission Control Protocol (TCP) [48], the unreliable User Datagram
Protocol (UDP) [47], or some other protocol like the Stream Control Transmission
Protocol (SCTP) [58].

When using UDP as transport protocol, SIP is in charge of ensuring that its messages
will be reliably delivered, which is achieved by retransmitting messages in case they
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1.1. Motivation

have been lost. Message retransmission is triggered by specific timers which fire as
soon as the time span until receiving a response exceeds a certain threshold. However,
under heavy load this approach tends to introduce even more load to the system,
because delayed messages may be wrongly interpreted as lost, and, based on this,
retransmissions are triggered. In the worst case, this behavior may further evolve
into a collapse of the whole system, and, once collapsed, it is hard for the system to
recover even if the load starts shrinking substantially [28].
The work of this thesis deeply analyzes this negative effect using simulations and
develops counteraction mechanisms in order to prevent collapse situations. The pre-
sented approaches are verified using measurements on a real system. Two common
application scenarios are discussed that may lead to a congestion collapse. Fur-
thermore the application of the newly developed mechanisms onto those situation is
presented. It is shown that these low-complexity mechanisms add significant stability
to the system and that collapse situations are reliably avoided.

1.1. Motivation

It is well-known that SIP lacks a suitable overload control mechanism and the In-
ternet Engineering Task Force (IETF) as well as the European Telecommunications
Standards Institute (ETSI) currently work on extensions for SIP to cope with this
drawback [51] [17]. However, these extensions specify an explicit congestion notifi-
cation mechanism that sends either dedicated messages using a new protocol or add
a chunk of data to SIP messages in order to signal upstream entities a given over-
load situation. In such a situation, a server that already suffers from overload must
generate that congestion information, and this is counterproductive. Additionally,
the congestion information has to be sent to an upstream host that is responsible
for the current overload situation and this host needs to react upon receiving that
information. Such mechanisms need special implementations on all nodes that have
to advertise their load state and need additional resources on hosts that already are in
high-load situations. This combination is not optimal and there is a need for research
on implicit mechanisms that sense the overload state without explicit knowledge of
internal states or processes of the receiving entity.
Other protocols used for IP-based communication have implicit mechanisms that let
them approximate how much data can be sent to a specific destination. One example
is TCP that uses sequential acknowledgements that have to be awaited to infer on
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1.1. Motivation

network conditions between sender and receiver. By doing so, sender and receiver
always use the optimal amount of resources for the transmission of data. As a result of
extensive research and standard development, many congestion avoidance algorithms
for TCP are available [3].

As far as the underlying transport protocol is concerned, SIP can employ the reliable
TCP as well as the unreliable UDP or other protocols like SCTP. For TCP, either
a connection set-up is necessary for each SIP message to be sent to the proxy or a
TCP connection has to be kept open to all connecting clients. Both of these op-
tions introduce an overhead, hence big operators tend to prefer UDP as transport
protocol, which implies certain consequences. Most importantly, when using TCP,
the transport layer takes care of successful transmission of the messages, whereas in
the case of UDP, SIP itself needs to ensure that messages are delivered successfully
to the destination. In the latter case, this is achieved by means of the SIP retrans-
mission timer E (see [53], section 17.1.2.2). Following the standard, a single request
may be transmitted up to eleven times in total before the transmission attempts
are terminated. This behavior of SIP has been specified in order to cope with the
unreliable nature of Internet traffic. As a side effect, however, retransmissions are
also triggered if messages are not lost, but delayed because of congestion (that is,
delay longer than SIP timer T1). Processing these retransmissions at a server creates
additional congestion, which after all is unnecessary. In a congested system there is
a high probability that requests never reach their destination. Moreover, even if the
request reaches the destination, the response might fail to reach the originating node.
Thus, in the worst case, the system has to handle up to eleven SIP requests and up
to eleven responses without any other effect than using processing power of the nodes
and filling up the links with redundant data.

This thesis proposes a novel mechanism that is able to detect an imminent collapse of
a SIP proxy and that can be used as a trigger for further actions. It develops implicit
mechanisms for SIP that sense the congestion situation of a downstream host by con-
tinuously analyzing implicitly available information. Such information is for example
the difference between the time stamps when a request has been sent and when the
corresponding response has been received, denoted as Round Trip Time (RTT), or
the number of pending SIP transactions. The implicit congestion detection mecha-
nisms are developed by means of a dedicated simulation environment. The simulation
results are validated using the industry-standard SIP message generation tool SIPp
to estimate the applicability of the new mechanisms onto real-world systems.

3
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Finally, two application scenarios that can lead to congestion collapse situations are
presented.

1.2. Main Contribution

The main contribution of this thesis consists of two parts. The first part is the
extension of an already existing event-based simulation tool with SIP modules in
order to analyze the performance of the protocol and to verify new enhancement
strategies. In the second part, the known performance disadvantages of SIP are
verified using the new simulation modules and novel proposals for improvements
are presented. The thesis classifies congestion control into a congestion detection
phase, that is, identification of situations that may possibly lead to congestion, and
a congestion handling phase, that is, applying a strategy upon detection in order
to reduce the input load onto the congested entity. Handling strategies, on their
parts, are partitioned into lossless strategies, that do not reject any incoming requests
but try to overcome a congestion situation by giving the system enough time to
handle the load. If that is not sufficient and the congestion situation remains, a lossy
strategy, that rejects a fraction of the load is applied. These approaches have also
been published by the author in [16], that describe how dynamic manipulation of
the re-transmission timers affects the performance of SIP. In [14], the behavior of
SIP proxies is presented under various load situations and in [15] the delay-based
congestion detection mechanism is shown. [13] demonstrates a congestion detection
mechanism that uses the number of pending transactions.
In order to verify the results that have been gained through simulations, a real SIP
system has been set-up and the new mechanisms have been tested thoroughly. It is
shown that these mechanisms increase the overall stability of the system and as a
result also the number of successful SIP transactions that a congested system can
handle. Each single successful SIP transaction means revenues for an operator of
a SIP system and it is therefore of major interest to keep their number as high as
possible.

1.3. Structure of this Work

The chapters of this thesis are organized as follows. Chapter 2 gives the reader basic
knowledge about the concepts of SIP and performance metrics. This section also
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presents other work that is related to the contents of this thesis. Chapter 3 outlines
the simulation environment that has been used to achieve the results and the con-
cepts for creating simulation models for SIP. Chapter 4 presents strategies to improve
the performance of the protocol in order to cope with the problems. This chapter is
the main contribution of this thesis and proposes two new implicit congestion detec-
tion mechanisms that are able to prevent collapse situations and an analysis of an
offloading strategy that moves a part of the protocol processing to an external pro-
cessor. Application scenarios are presented in order to prove the applicability of the
assumptions. The simulated results are verified using measurements in a laboratory
environment in section 5. Chapter 6 draws conclusions and suggests further research
questions that may be realized in future work.
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2. State of the Art and Related
Work

This section introduces the reader to the concepts of the Session Initiation Protocol
(SIP), that is, the SIP messaging concepts as well as the SIP message format and
SIP transactions. Following, a review of SIP performance metrics utilized in the later
chapters is presented. Finally, this section summarizes related work that has been
done in the area of SIP performance.

2.1. Session Initiation Protocol

The Session Initiation Protocol has been standardized by the IETF within RFC
3261 [53]. SIP is an application-layer signaling protocol for creating, modifying, and
terminating multimedia sessions as well as to deliver information that is usually non-
session-based such as a presence state or an instant message. The sessions can be voice
calls, multimedia distributions, whiteboard applications or any sort of multimedia
communication. This chapter provides basic information about this protocol, starting
with basic concepts, explaining SIP User Agent, Proxy server and the message format
in section 2.1.1. Section 2.1.2 goes into the details of SIP transactions, before section
2.1.3 presents a metric for performance evaluations of SIP. The majority of this section
has also been summarized in the diploma thesis of the author in [11].

2.1.1. Concepts

The functionality of SIP is based on a server-client model: a server running on a host is
waiting for incoming messages, and depending on their content, a multimedia session
is established, or an instant message is received and displayed on the terminal. When
SIP is used to start a session the messages carry information on the details so that
the communication partners can agree on media types. SIP also defines mechanisms
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for authorizing and authenticating users, and a registration function that allows the
users to publish their current location. Proxy servers are used to route SIP messages
from the originator to the destination.

SIP User Agent

A SIP User Agent (UA) is software executed either running on a computer, a mo-
bile device, or an embedded device similar to a plain old telephony service (POTS)
telephone on behalf of a user providing connectivity to SIP services. The SIP UA is
basically divided into a user agent client (UAC) part as well as a user agent server
(UAS) part. The UAC generates requests based on external triggers such as a user
clicking a button, and receiving and processing a response. The UAS on the other
hand receives requests, processes them and generates responses, depending on the
request-specific type and on user input. A valid SIP request according to [53] con-
tains at least a start-line storing the method and the request-URI, and six header
fields that are explained later in this section.
SIP makes use of so-called server and client transactions that involve a UAC and a
UAS. A transaction comprises all messages from the first request sent by the UAC
up to a final response sent from the UAS to the UAC. For this purpose the UA
implements a transaction user (TU) that keeps track of all currently active transac-
tions. The user or the provider configures the SIP UA by means of a user interface.
UA settings are typically stored in a configuration storage that is used by the TU
in order to find for example the outgoing proxy server. The transactions themselves
use the operating system TCP/UDP/IP stack to send the messages to the desired
destination. Typically a UA provides some sort of user interface, either graphical on
a computer or smart phone, or as telephone receiver and buttons on a hard phone.

SIP Proxy

Generally speaking, proxies are elements that route requests to servers and responses
to clients [53]. SIP extends this principle and introduces multiple proxy types with
various functionality, like:

- route requests to the users current location
- implement provider call-routing policies
- authenticate and authorize users for services
- registration to store the current locations of the users

8



2.1. Session Initiation Protocol

The most important proxy type for a provider of SIP based services is the registrar.
A UA can register itself at the registrar such that messages directed to the UA will
find their destination non-depending on the UA’s current point of attachment (IP
address). This has the benefit that a UA willing to send messages to other UAs only
has to know the address of the proxy and not all UAs transport addresses. Moreover,
authentication and authorization are important tasks implemented at a registrar to
prevent misuse of resources.
A proxy server can operate either in stateless or in stateful mode for each request [53].
In stateless mode, a proxy simply forwards each request downstream to a single
SIP node, the so-called next SIP hop. The next hop is determined by a routing
decision based on the SIP request and header values after which the proxy discards
information after the message has been forwarded. In stateful mode, on the other
hand, the proxy server remembers all information on each incoming and sent requests
and corresponding responses, and uses this state information for the processing of
future messages. A stateful proxy is therefore a SIP transaction processing engine
and handles incoming messages with the following stages:

1. Parsing and validation of the request

2. Preprocessing of routing information

3. Determine target of the request

4. Forward the request to the corresponding target(s)

5. Process responses

These steps are performed by any stateful proxy server and can be adopted to model
a SIP proxy for simulation as will be shown in section 3.3. Each message that
arrives at a proxy server must be analyzed for errors and parsed to create an internal
representation of the message. The following section describes the format of SIP
messages and some mandatory header fields.

SIP Message Format

SIP is a text based protocol, very similar to the Hypertext Transfer Protocol (HTTP),
which uses the UTF-8 charset for encoding. A SIP message can either be a request
sent by a user agent client or a response sent by a user agent server. Both messages

9



2.1. Session Initiation Protocol

have a start line, one or more header fields and, following an empty line, an optional
message body.
s ip−message = s ta r t−l i n e

∗message−header
empty−l i n e
[ message−body ]

s t a r t−l i n e = Request−Line / Status−Line

Listing 2.1: BNF Syntax of SIP Messages

Each line has to be terminated by a carriage-return line-feed sequence and the empty
line has to be present even if no message body exists. Most of the syntax of SIP is
identical to HTTP 1.1, however, SIP is not an extension of HTTP.

SIP Request: Requests have a request line as start line, which consists of a method
name, and a request URI followed by the protocol version SIP/2.0:
Request-Line = Method SP Request-URI SP SIP-Version CRLF

RFC 3261 [53] defines six methods:

- REGISTER for registering a contact at the registrar

- INVITE for setting up a session

- ACK for acknowledging the establishment of a session

- CANCEL for canceling a pending request

- BYE for terminating a session

- OPTIONS for querying servers about their capabilities

Multiple extending RFCs (for example RFC 3428 [6], RFC 3903 [44], and RFC 3265
[50]) define several additional methods:

- MESSAGE for instant messaging

- SUBSCRIBE, NOTIFY for event notification

- PUBLISH for event state publication

The request-URI identifies the destination to which the request is being addressed.
To be compliant with RFC 3261 [53], the version field has to be set to SIP/2.0. This
is an example of a valid request line:
INVITE bob@ims1.tuwien.ac.at SIP/2.0

10
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SIP Response: Response messages start with a status line, which consists of the
protocol version followed by a numeric status code and its textual representation.
Status-Line = SIP-Version SP Status-Code SP Reason-Phrase CRLF

The SIP version must be set to SIP/2.0 as in the request messages. The status
code field is a three digit status code which indicates the success or failure of the
corresponding request. The values of this field are categorized in the following way:

- 1xx: Provisional response: indicates that the request was received and is in
process.

- 2xx: Success: the request was successfully received, understood and accepted.
- 3xx: Redirection: further actions are necessary for completing the request.
- 4xx: Client error: the request has bad syntax or cannot be processed at this
server.

- 5xx: Server error: the request is OK, but the server had some internal error.
- 6xx: Global failure: the request cannot be processed at any server.

Values <200 are called provisional responses, ≥200 are called final responses. The
reason phrase intends to be a human readable representation of the status code. RFC
3261 [53] recommends how this reason phrase should look like, but implementations
may choose their own text. This is an example of a valid status line:
SIP/2.0 180 Ringing

SIP Header Fields: SIP header fields follow the start line in both, requests and
responses. RFC 3261 [53] defines mandatory header fields, which have to appear in
each SIP message, and optional ones which are only included when required. SIP
header fields consist of a header field name, a colon, and the header field value:
header = "header-name" COLON header-value *(COMMA header-value)

It is also possible that multiple header fields of the same name appear in the same
message. They can then be combined into one line using a comma.
The six mandatory fields are the most important ones for SIP:

- From: This field specifies the logical sender of a request. It contains a SIP
URI and optionally a display name. Different SIP entities use this field for
selecting some processing rules for a particular request (for example automatic
call rejection). This is an example of a valid From header field:
From: Alice <sip:alice@ims2.tuwien.ac.at>

- To: This field specifies the logical recipient of a request. In most cases this will
be the address-of-record of the desired user or resource. This header field is not
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used for routing a request, it is thought for human reading and thus it is also
capable to hold a display name. This is an example of a valid To header field:
To: Bob <sip:bob@ims1.tuwien.ac.at>

- CSeq: This field is used to match received responses with previously sent re-
quests. It consists of a sequence number and a method name which must match
the method of the corresponding request. The sequence number has to be ex-
pressible within a 32-bit integer and less than 231. This is an example of a valid
CSeq header field:
CSeq: 4833 INVITE

- Call-ID: This field is used to group together a set of messages which belong to
the same SIP dialog, e.g.,:
Call-ID: f81d4fae-7dec-6@128.131.0.1

- Max-Forwards: This field sets the number of hops a message can pass through
its way to its destination. At each SIP hop the number is decreased, when its
value reaches zero before it reaches its final destination, a 483 Too Many Hops
response is sent.

- Via: Each proxy which processes a request adds a Via header field, so at its final
destination, the message route is documented. The corresponding responses are
sent across by reversing the Via header and following the list of nodes in reverse
order. Example:
Via: SIP/2.0/UDP p1.ims1.tuwien.ac.at

SIP Message Body: All SIP messages can contain a message body of any type,
even multipart bodies encoded using MIME. Specific header fields define the message
body type in more detail:

- Content-Type: This field determines the type of the message body. Any defined
MIME type is valid (for example application/sdp)

- Content-Length: Contains the length of the body in bytes
- Content-Disposition: This field extends the traditional MIME types and de-
scribes how the content should be interpreted by the User Agents

If not otherwise specified, the character encoding is UTF-8 for Content-Types of
"Text". As within emails, the message body has to be separated from the header
fields by an empty line.
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In most cases, the Session Description Protocol (SDP) will be used as message body,
because it is suited to describe multimedia sessions.

SIP Sessions

When two users want to communicate with each other, SIP provides the required
signaling mechanisms and negotiates the type of session they want to establish. This
is typically done by means of the Session Description Protocol (SDP [22]).

Session Description Protocol: The SDP contains all necessary information, in-
cluding IP address, port numbers, codecs for audio and video. However, it is worth
to mention that this encoding of layer 3 and 4 information is a breach of the Open
Systems Interconnection (OSI) model which is the main reason for troubles that SIP
faces when deployed over NAT. It is a simple textual format, an example is shown
below:
v=0
o=Bob 4558285710 4586432945 IN IP4 128 . 1 3 0 . 0 . 1
s=Test IMS Ses s i on
c=IN IP4 128 . 1 3 0 . 0 . 1
t=0 0
m=audio 21534 RTP/AVP 0
a=sendrecv
m=video 21535 RTP/AVP 31
a=sendrecv

Listing 2.2: Example SDP Data

This example is SDP data with the following meaning: It is sent by Bob (o= line)
from the IPv4 Address 128.130.0.1 (c= line), and has the subject "Test IMS Session"
(s= line). Bob wants to receive audio coded with G711 µ-law (corresponds to "0",
first m=line) at port number 21534 and video coded with H.261 (corresponds to "31",
second m= line) at port number 21535. The v= line is the version information, a=
contains optional information about the media. In this case it means that the media
streams are bidirectional. Refer to RFC 4566 [22] for additional information on SDP.
Although SDP is the most common way to describe a multimedia session, SIP does
not depend on it. Any format of describing a session can be used.

Establishment of a Session: SIP uses an offer/answer model. A User Agent Client
sends a request to an User Agent Server which replies with an answer. This means
that the UAC first sends a session invitation with all its possible capabilities (offer).
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Then the UAS checks this information, selects the adequate parts, adds own infor-
mation and capabilities and sends it back (answer). After this procedure, both parts
have the same view of the session and know each other’s transport addresses and are
therefore able to establish a session.

Entities involved in a Session: The most simple SIP session scenario involves only
two User Agents and no Proxy servers. Therefore the UAC has to know the transport
address of the UAS. Alternatively, the UAC can send messages that are directed to
the UAS to its Proxy server which forwards them accordingly. A special form of a
proxy server is a forking proxy (Figure 2.1), which forwards the SIP message to more
than one destination location. This has the purpose that a user can be accessible at
different locations at the same time (for example at a normal PC with a SIP software
running on it and a SIP phone).

Forking Proxy

(1) INVITE

sip:bob@128.131.0.1

sip:bob@ims1.tuwien.ac.at

1 2 3

4 5 6

7 8 9

*
0 #

POWER

SIGNAL

sip:bob@sip−phone.at

(2)
 IN

VIT
E

(2) INVITE

Figure 2.1.: Forking Proxy

A redirect server does not relay a message itself towards its destination, but it tells
the originator of a message to try another location instead (Figure 2.2). This server is
not a proxy server because it does not forward any message towards the terminating
direction.

Message Flows for selected SIP Services

The following section lists examples of SIP messages and how they are relayed be-
tween the different entities if the service requires that. The first example is the SIP
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Redirection Server
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Figure 2.2.: Redirection Server

registration, which is necessary if a UAC shall be reachable using a URI rather than a
plain IP address. Subsequently, the message flow for a session set-up is shown that is
used to exchange session-specific information for a second connection between UAC
and UAS. The third service that is presented in this section is the instant message
service as representative for all other services that use non-invite transactions.

SIP Registration: Assume that Bob wants to register his current contact address
at the registrar of the SIP domain ims1.tuwien.ac.at. This is required in order
to store a generic SIP URI mapping to the current transport address. Figure 2.3
depicts a basic message flow for that example. The first REGISTER message that
Bob’s UAC sends to the registrar is shown in listing 2.3.

UAC REGISTRAR

REGISTER

REGISTER
401 UA

200 OK

Figure 2.3.: Message Flow for SIP Registration
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REGISTER s ip : ims1 . tuwien . ac . at SIP /2 .0
Via : SIP /2 .0/TCP 128 . 1 3 0 . 0 . 1 : 5 0 6 0 ; branch=hgur84f t45
Max−Forwards : 40
To : <s i p : bob@ims1 . tuwien . ac . at>
From : <s i p : bob@128 .131 . 0 . 1 > ; tag=34565
Call−ID : f j g j g i i r i v k l o 0 448758@128 . 1 3 0 . 0 . 1
Cseq : 1 REGISTER
Contact : <s i p : bob@128 .130 .0 .1 >
Content−Length : 0

Listing 2.3: (1) Registration Request without Credentials

The request URI contains the SIP domain with which Bob intends to register. The To
field indicates the address of record (AoR) of Bob, the From field contains the current
location where he is reachable. The server answers with the following response:
SIP /2 .0 401 Unauthorized
Via : SIP /2 .0 TCP 128 . 1 3 1 . 8 9 . 8 9 : 5 0 6 0 ; branch=hgur84f t45
To : <s i p : bob@ims1 . tuwien . ac . at >; tag=58432
From : <s i p : bob@128 .131 . 0 . 1 > ; tag=tag=34565
Call−ID : f j g j g i i r i v k l o 0 448758@ l eukon
Cseq : 1 REGISTER
www−authent i ca t e : d i g e s t realm="ims1 . tuwien . ac . at " , qop="auth" ,

nonce=" ea9c8e88df84 f1cec4341ae6cbe5a359 " ,
opaque="" , s t a l e=FALSE, a lgor i thm=MD5

Content−Length : 0

Listing 2.4: (2) 401 Unauthorized Response

This message contains a new header www-authenticate that includes a nonce value
A nonce is a number used once by which the server challenges the UAC to calculate
a response value as specified in RFC 2617 [20]. As next step, the UAC calculates the
requested response value using its stored username and password and sends to the
registrar by using a subsequent registration request:
REGISTER s ip : ims1 . tuwien . ac . at SIP /2 .0
Via : SIP /2 .0/TCP 128 . 1 3 0 . 0 . 1 : 5 0 6 0 ; branch=hgur84f t45
Max−Forwards : 40
To : <s i p : bob@ims1 . tuwien . ac . at>
From : <s i p : bob@128 .131 . 0 . 1 > ; tag=34565
Call−ID : f j g j g i i r i v k l o 0 448758@128 . 1 3 0 . 0 . 1
Cseq : 2 REGISTER
Contact : <s i p : bob@128 .130 .0 .1 >
Author i zat ion : Digest username="bob" , realm="ims1 . tuwien . ac . at "

nonce=" ea9c8e88df84 f1cec4341ae6cbe5a359 " , opaque="" ,
re sponse="dfe56131d1958046689d83306477ecc "

Content−Length : 0

Listing 2.5: (1) Registration Request with Credentials

The Authorization header contains the response value as computed by the UAC
based on the server challenge and the UAC’s secret password. The registrar checks
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if username and password are correct. If yes, the server sends the following response
to Bob’s UA:
SIP /2 .0 200 OK
Via : SIP /2 .0 TCP 128 . 1 3 1 . 8 9 . 8 9 : 5 0 6 0 ; branch=hgur84f t45
To : <s i p : bob@ims1 . tuwien . ac . at >; tag=58432
From : <s i p : bob@128 .131 . 0 . 1 > ; tag=tag=34565
Call−ID : f j g j g i i r i v k l o 0 448758@ l eukon
Cseq : 2 REGISTER
Contact : <s i p : bob@128 .131 .0 .1 >
Expires : 7200
Content−Length : 0

Listing 2.6: (2) 200 OK Response

After completing this sequence Bob’s UA is registered and the Registrar knows where
to forward SIP requests for Bob incoming to the SIP domain ims1.tuwien.ac.at.

Session Set-Up and Termination: This section presents the message flow of a
voice call that is set up by a user named Alice who wishes to call Bob. The messages
that the involved entities send are shown in figure 2.4. As first message Alice’s UA
sends is an invitation request (1) to its outbound proxy, which looks like shown in
listing 2.7. The proxy forwards the message as follows.
INVITE s ip : bob@ims1 . tuwien . ac . at SIP /2 .0
Via : SIP /2 .0/TCP 128 . 1 3 0 . 1 . 1 : 5 0 6 0 ; branch=884kd8vc
Max−Forwards : 40
From : A l i c e <al ice@ims2 . tuwien . ac . at >; tag=45832 ec
To : Bob <bob@ims1 . tuwien . ac . at>
Call−ID : f k f i r 9 4 9d i f i v k f k i o 4 3@ws
Contact : a l i ce@128 . 1 3 0 . 0 . 2
Cseq : 1 INVITE
Content−Type : app l i c a t i on /sdp
Content−Length : 151

v=0
o=cb 49584878383 485849305 IN IP4 128 . 1 3 0 . 1 . 1
s=−
c=IN IP4 128 . 1 3 0 . 1 . 1
t=0 0
m=audio 20000 RTP/AVP 0
a=rtpmap : 0 PCMU/8000

Listing 2.7: (1) Invitation Request

The proxy looks up the inbound proxy by means of the Domain Name System (DNS)
first (according to RFC 3263 [52]). Then it answers with 100 Trying and forwards the
INVITE to the inbound proxy of Bob (2). Listing 2.8 shows the resulting response
message.
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(1) INVITE
INVITE

INVITE(2) 100 Trying 100 Trying
(3) 180 Ringing180 Ringing

180 Ringing

(4) 200 OK
200 OK

200 OK

(5) ACK ACK
ACK

Ongoing Conversation

(6) BYE
BYE

BYE
(7) 200 OK200 OK200 OK

UAC Proxy 1 UASProxy 2
Alice Bobproxy.ims2.tuwien.ac.at proxy.ims1.tuwien.ac.at

Figure 2.4.: Session Scenario

SIP /2 .0 100 Trying
Via : SIP /2 .0/TCP 128 . 1 3 0 . 1 . 1 : 5 0 6 0 ; branch=884kd8vc
From : A l i c e <al ice@ims2 . tuwien . ac . at >; tag=45832 ec
To : Bob <bob@ims1 . tuwien . ac . at>
Call−ID : f k f i r 9 4 9d i f i v k f k i o 4 3@ws
Cseq : 1 INVITE

Listing 2.8: (2) 100 Trying Response

The inbound proxy of Bob forwards the request to the UA of Bob based on the contact
information of the registration that happened earlier. The UA of Bob answers with
180 Ringing (3):
SIP /2 .0 180 Ringing
Via : SIP /2 .0/TCP 128 . 1 3 0 . 1 . 1 : 5 0 6 0 ; branch=884kd8vc
Via : SIP /2 .0/TCP proxy . ims2 . tuwien . ac . at ; branch=58332d
Via : SIP /2 .0/TCP proxy . ims1 . tuwien . ac . at ; branch=438533
Via : SIP /2 .0/TCP 12 8 . 1 3 1 . 0 . 1 ; branch=gke i c e
From : A l i c e <al ice@ims2 . tuwien . ac . at >; tag=45832 ec
To : Bob <bob@ims1 . tuwien . ac . at>
Call−ID : f k f i r 9 4 9d i f i v k f k i o 4 3@ws
Cseq : 1 INVITE

Listing 2.9: (3) 180 Ringing Response
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When Bob picks up, his UA sends a 200 OK to its outbound proxy which sends the
response back to the inbound proxy of Alice which again forwards the response to
the UA of Alice (4):
SIP /2 .0 200 OK
Via : SIP /2 .0/TCP 128 . 1 3 0 . 1 . 1 : 5 0 6 0 ; branch=884kd8vc
Via : SIP /2 .0/TCP proxy . ims2 . tuwien . ac . at ; branch=58332d
Via : SIP /2 .0/TCP proxy . ims1 . tuwien . ac . at ; branch=438533
Via : SIP /2 .0/TCP 12 8 . 1 3 1 . 0 . 1 ; branch=gke i c e
From : A l i c e <al ice@ims2 . tuwien . ac . at >; tag=45832 ec
To : Bob <bob@ims1 . tuwien . ac . at>
Call−ID : f k f i r 9 4 9d i f i v k f k i o 4 3@ws
Contact : bob@128 . 1 3 0 . 0 . 1
Cseq : 1 INVITE

Listing 2.10: (4) 200 OK Response

The UE of Alice answers with an ACK request, which has no response (5) in order
to acknowledge the reception of the 200 OK:
ACK s ip : bob@ims1 . tuwien . ac . at SIP /2 .0
Via : SIP /2 .0/TCP 128 . 1 3 0 . 1 . 1 : 5 0 6 0 ; branch=884kd8vc
Max−Forwards : 40
From : A l i c e <al ice@ims2 . tuwien . ac . at >; tag=45832 ec
To : Bob <bob@ims1 . tuwien . ac . at>
Call−ID : f k f i r 9 4 9d i f i v k f k i o 4 3@ws
Cseq : 1 ACK

Listing 2.11: (5) ACK Request

Now the signaling of the UAs is complete and they know each others transport ad-
dresses for the media. The UAs are now able to start a multimedia connection
according to the negotiated parameters.
In order to end the conversation, Alice hangs up and that results in Alice’s UA
sending a BYE message to Bob (6):
BYE s ip : bob@128 . 1 3 0 . 0 . 1 SIP /2 .0
Via : SIP /2 .0/TCP 128 . 1 3 0 . 1 . 1 : 5 0 6 0 ; branch=884kd8vc
Max−Forwards : 40
From : A l i c e <al ice@ims2 . tuwien . ac . at >; tag=45832 ec
To : Bob <bob@ims1 . tuwien . ac . at>
Call−ID : f k f i r 9 4 9d i f i v k f k i o 4 3@ws
Cseq : 2 BYE

Listing 2.12: (6) End of the session (BYE)

Bob’s UA ends the media streams and answers with a 200 OK (7):
SIP /2 .0 200 OK
Via : SIP /2 .0/TCP 128 . 1 3 0 . 1 . 1 : 5 0 6 0 ; branch=884kd8vc
Via : SIP /2 .0/TCP proxy . ims2 . tuwien . ac . at ; branch=58332d
Via : SIP /2 .0/TCP proxy . ims1 . tuwien . ac . at ; branch=438533
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Via : SIP /2 .0/TCP 12 8 . 1 3 1 . 0 . 1 ; branch=gke i c e
From : A l i c e <al ice@ims2 . tuwien . ac . at >; tag=45832 ec
To : Bob <bob@ims1 . tuwien . ac . at>
Call−ID : f k f i r 9 4 9d i f i v k f k i o 4 3@ws
Cseq : 2 BYE

Listing 2.13: (4) 200 OK Response to a BYE

The reception of the 200 OK response closes the session.

Instant Messaging: Instant messaging is standardized as extension in RFC 4328 [6]
and defines an additional method for SIP: MESSAGE. This service is similar to the
Short Message Service (SMS) and does not define any explicit association between
messages except that of a user’s own imagination. The destination of the MESSAGE
request is defined by its request-URI that is typically instant message recipient’s
address of record (AoR). Proxy servers that are involved in the routing of that request
have to handle them according to the rules of RFC 3261 [53] and should not send a
provisional response according to RFC 4320 [56]. A UAS that receives a MESSAGE
request has to respond with a final response immediately. Figure 2.5 shows the basic
message flow for that service. The messages are forwarded by the proxies similar as

UAC Proxy 1

MESSAGE

200 OK

UASProxy 2

MESSAGE
MESSAGE

200 OK
200 OK

Alice Bob

Figure 2.5.: Message flow for SIP MESSAGE

the messages of the session set-up presented in the previous section. Therefore only
the initial request sent by the UAC, as well as the first final response that is sent by
the UAS is shown.
MESSAGE s ip : bob@ims1 . tuwien . ac . at SIP /2 .0
Via : SIP /2 .0/TCP uac . ims2 . tuwien . ac . at : 5 0 6 0 ; branch=z9hG4bK123dsghds
Max−Forwards : 40
To : <s i p : bob@ims1 . tuwien . ac . at>
From : <s i p : a l i ce@ims2 . tuwien . ac . at >; tag=34565
Call−ID : f j g j g i i r i v k l o 0 448758@128 . 1 3 0 . 0 . 1
Cseq : 1 MESSAGE
Content−Type : t ex t / p l a i n
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Content−Length : 25

Text can be placed here .

Listing 2.14: (1) MESSAGE Request

This message contains the text “Text can be placed here” and upon reception the
UAS displays this text on its user interface. This message is forwarded by Proxy1
and Proxy 2 to the UAS that answers with the following response:
SIP /2 .0 200 OK
Via : SIP /2 .0 TCP proxy2 . ims1 . tuwien . ac . at : 5 0 6 0 ; branch=z9hG4bK8485jfj
Via : SIP /2 .0 TCP proxy1 . ims2 . tuwien . ac . at : 5 0 6 0 ; branch=z9hG4bK45245g3
Via : SIP /2 .0 TCP uac . ims2 . tuwien . ac . at : 5 0 6 0 ; branch=z9hG4bK123dsghds
To : <s i p : bob@ims1 . tuwien . ac . at >; tag=58432
From : <s i p : a l i ce@ims2 . tuwien . ac . at >; tag=tag=34565
Call−ID : f j g j g i i r i v k l o 0 448758@128 . 1 3 0 . 0 . 1
Cseq : 1 MESSAGE
Content−Length : 0

Listing 2.15: (2) 200 OK Response

The response is forwarded in reverse order (Proxy2 - Proxy1) back to the sender of the
first initial request, that is, the UAC. With reception of the response, the transaction
is complete on the UAC. This service is virtually the most basic form of the non-
INVITE transaction as it consists of a single request message that the receiving UAS
must respond to with a response message. In most cases that response will be a 200
OK.
More basic message flows for SIP can be found in RFC 3665 [35].

2.1.2. Transactions

As already presented by the examples of the previous section, the SIP standard
RFC3261 [53] defines two types of SIP messages: INVITE messages, used for services
requiring direct human interaction (for example voice call) and non-INVITE messages
for services without direct human interaction (for example instant message). Each of
these two message types defines its own client and server transactions. Transactions
never exist as single individual, they are always created as a pair of client- and server
transaction which are virtually bound by IDs and are not created in advance but for a
service to take place. The Transaction User (TU) keeps references to all transactions.
It creates a new client transaction if it wishes to send a new request and passes it the
request to be sent. All SIP entities have to implement a TU except stateless proxies,
which do not use transactions at all. This section shows how SIP messages and

21



2.1. Session Initiation Protocol

transaction correspond to each other and highlights the differences between INVITE
and non-INVITE transactions.

Non-INVITE Transactions

Non-INVITE transactions consist of all SIP messages that do not contain INVITE
in the request line and are used for all services which do not directly require human
interaction. Of course, human interaction is probably necessary for almost all services,
however, the point here is that the complete delivery of a service to some host takes
place without that. For example the delivery of an instant message and displaying
it on a device can be done automatically, whereas the establishment of a voice call
requires the user to pick up the phone when being called.

A large variety of services can be provided by means of non-INVITE messages such
as presence, instant messaging or registering at the registrar. Therefore a SIP infras-
tructure handles more non-INVITE messages than INVITE messages, making the
former ones more interesting for performance research issues. Figures 2.6 and 2.7
depict the server and client state machines for non-INVITE transactions when UDP
is used as underlying transport. The client state machine works as follows: after
sending a message the retransmission timer E is started and if the node does not
receive a response within some time (T1), the message is retransmitted. The retrans-
mission timer value is doubled at any retransmission until it reaches a specific limit
(T2). From this moment onwards, a couple of additional retransmission attempts
are started, after intervals of T2 each, until the overall limit of timer F is reached.
Note that the corresponding standard proposes default values of T1 = 500ms, T2 =
4s and F = 64*T1. As major consequence, a single request may be transmitted up
to eleven times before the transmission attempts are terminated. As soon as a final
response (2xx-6xx) is received, the state of the transaction changes to Completed and
a final timer K is started to detect possible response retransmissions. In this thesis,
we follow RFC4320 [56] and do not send provisional responses to SIP requests. A
non-INVITE server transaction, once created, starts in the state Trying and changes
to Proceeding if the TU signals the receipt of a provisional response (1xx). The re-
ception of a final response (2xx-6xx) leads to a state change to Completed and timer
Timer J is started to detect possible request retransmissions. If a latter is received
in the states Proceeding and Completed, the current response is retransmitted.
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Figure 2.6.: Non-INVITE Client Transaction (cf. [53])
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Figure 2.7.: Non-INVITE Server Transaction (cf. [53])
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INVITE

INVITE messages are intended for services requiring to set up one or more additional
data flows between two hosts for a previously unknown time, that is, a session.
The hosts use SIP in this case to agree on a set of common procedures to exchange
media data such as voice or video. As the name implies, the client has to send an
INVITE message and simultaneously create an INVITE client transaction. The server
on the other hand, has to create a corresponding server transaction for each received
INVITE message. Figures 2.8 and 2.9 depict the server and client transactions. Like
non-INVITE transactions, INVITE transactions consist of several states that change
corresponding to received or sent messages. The main difference in when compared
to non-INVITE transactions is that INVITE transactions implement a three-way
handshake in order to ensure that the response message reaches the originator of the
request. This is required because the response message contains essential information
to set-up a session, being accomplished by sending an ACK message as also shown
in section 2.1.1.

Calling
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Completed
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Figure 2.8.: INVITE Client Transaction (cf. [53])
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2.1.3. Performance Metrics

The previous sections explained the basic concepts of SIP and how messages are han-
dled by the involved hosts. With the increasing deployment of SIP based systems
and therefore an increasing number of users that utilize new services, the chance for
overload on some nodes rises. It is therefore important to continuously track the
current load on all SIP nodes of a telecom operator to be able to detect possibly
dangerous situations on the one hand as well as to apply load reducing procedures if
necessary on the other hand. For this purpose, continuous measurements on respec-
tive hosts are required and thus, measurement metrics need to be defined. The IETF
has created a working group called IP Performance Metrics (IPPM) and developed
a set of metrics that can be applied to the quality, performance and reliability of
Internet data delivery services [32]. The base framework for these metrics is defined
in RFC 2330 [46]. However, this framework is designed for the network layer and
is not suitable for application layer protocols. With further progress, the IETF has
started another working group in order to define metrics for the remaining layers and
named it Performance Metrics for Other Layers (PMOL). This group has standard-
ized its first approach within RFC 6067 [8], but, however, the scope of this document
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is limited to an end-to-end perspective. This perspective does not allow to profile the
performance of intermediate entities in the signaling path because it provides only
an outside view. Still, it is necessary to define the used measurement metric between
two hops in order to detect possible performance problems on a specific intermediate
hop. Additionally it is required that the analysis of measurement results based upon
these metrics permits a clear differentiation between a congested (that is, overloaded)
and a non-congested system.
The Quality of Signaling (QoSg) metrics, defined in [23], [25] and [26] have been
chosen because they fulfill these requirements. The next sections present the metrics
that are essential for the following performance analysis, that are:

- Final Response Delay (fRpD): Time span between sending a request until a
final response is received

- Request Transmits (RT): Total number of requests sent per transaction

- Success Rate (SR): Ratio of number of successful transactions to injected trans-
actions

Final Response Delay

The Final Response Delay (fRpD) is the time between sending the fist request until
the first final response is received [23]. Figure 2.10 depicts its calculation. This metric

fRpD

UAC UAS

Request

Request
200 OK

Proxy

Request

200 OK

Figure 2.10.: Final Response Delay Definition

is important because the delay a server generates is highly dependent on it’s current
load and therefore is possibly a good indicator for the load state of a proxy server.

Request Transmits

The number of requests sent by the user agent client for a single transaction is rep-
resented by the Request Transmits (RT) metric [23]. For a well-configured system
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that is in normal operation all SIP transactions receive a final response message after
sending one request. That is in contrast to a congested system that requires more
time to process requests and if that takes longer than Time E seconds, the client
transaction re-transmits requests according to its state machine until it receives a
response. This metric gives a good estimation on the amount of traffic that is sent
to a proxy server and this is also a good indicator for congestion situations.

Success Rate

A transaction terminates successfully if a final response is received before the time
out occurs. The ratio of successful transactions to all transactions is the Success Rate
(SR) [23]. For performance analysis, measuring this value makes sense only on a
proxy server that handles a large number of requests for many users. It offers an
estimation on the amount of SIP transactions that a proxy server is able to handle.

2.2. Related Work

The SIP standard [53] proposes that a congested proxy sends a response, indicating
that it is currently congested. That response includes a time span that has to be
awaited until further requests may be sent. The authors of [45] show that current SIP
overload controls are inadequate by means of simulations and present several novel
algorithms to control SIP network overload. They demonstrate that their improved
algorithms increase the goodput across several load levels and are robust to packet
loss and delay. Unfortunately, the original SIP standard approach does also not
satisfy the requirements that the IETF defined later for management of overload in
SIP-based systems [51].
The European Telecommunications Standards Institute has specified an architecture
to transport load and congestion state information by means of dedicated messages
in [17]. This document describes the core features of the Next Generation Network
(NGN) Overload Control Architecture (NOCA) and the Generic Overload Control
Application Protocol (GOCAP) that is the architecture, entity behaviors, and pro-
tocol all grouped together. The GOCAP describes how required information is sent
across the network between the single entities using Diameter [5] or SIP. The NOCA
is an architecture that aims to provide feedback based processing load control.
SIP signaling delay is subject of a detailed investigation in [37] which analyzes the
contribution of individual network components of the 3GPP IMS to overall delay. It is
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shown that the processing and queueing delay of SIP messages depends on the current
load of the system, that is, the higher the number of messages to be processed, the
higher is the delay caused by processing. Additional delay may have different causes.
If, for instance, the operator uses an access technology which relies on shared link
usage (for example High Speed Packet Access [1]), delay depends on the current
number of active users in the cell. In addition, specific IP based services used by the
IMS, like for instance the Domain Name System (DNS) [41] and Diameter, as well as
database access can further contribute to delay. All these individual delays sum up
to the total end-to-end delay, that is the time span between sending the message at
the User Agent Client and receiving it at the User Agent Server. Beyond that, for a
SIP transaction to be successful, every request has to be answered with a response,
which itself has to traverse all links and nodes as well, bringing in additional delay.
Hilt and Widjaja discuss in [28] how to model SIP entities for simulation and different
network topologies of SIP servers. As a result, they show that a SIP server collapses
under heavy load and analyze the conditions necessary for recovery. Additionally, it
is demonstrated how the collapse of an edge server affects other servers. The paper
discusses several overload control mechanisms and how transport protocols impact
the performance of SIP. More specifically, it is demonstrated that the recovery from
such a congestion collapse situation needs a considerable amount of reduction of input
load.
Another detailed discussion of SIP server overload is presented in [29] and [62], where
the authors use Markov-modulated Poisson process models and fluid-based Matlab
simulations to show that even low CPU utilization can lead to a collapse. They show
as well how to calculate a stability condition to avoid a system crash.
The authors of [63] present an approach that re-uses the idea of offloading TCP
processing [42] to propose a so-called SIP offload engine that takes over the parsing
of received SIP messages to relieve a system’s main processor from this task. The
benchmarking results show that a gain of throughput can be achieved depending
on the server’s pipelining architecture but also that this approach is not able to
prevent a receive live lock in overloaded servers. Finally, much related work discussing
various performance aspects of SIP-based systems has been published so far. Among
the many papers, it is beneficial to point out [61] and [19] for a discussion of the
performance of VoIP over High Speed Packet Access (HSPA) networks. Furthermore
[18] as well as [36] present a comprehensive performance analysis of HSPA in live
networks and [12] a Quality-of-Service enforcement architecture for NGN services.
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This chapter highlights one part of the main contribution of this thesis, the extension
of the simulation tool IBKsim [60] for SIP. Simulation in general is able to forecast
the behavior of systems, even if they are too complex to be modeled in analytical or
numerical methods. The simulation results however are only as good as the models
that imitate the real-world behavior, but in comparison to analytical or numerical
methods it offers much more flexibility. The following sections present simulation
strategies and the used tool IBKsim. Following is a presentation on the simulation
models for SIP that have been implemented for performance analysis.

3.1. Simulation Concepts

This section gives a basic insight on concepts that have been used for the implemen-
tation and extension of IBKsim. The main topics include event-based simulation and
its components, how random numbers are generated for simulation and a discussion
on logging alternatives.

3.1.1. Event-based Simulation

Event-based simulation imitates the behavior of a system by executing events in a
chronological order, whereby the simulation time hops from one event time point to
the next event time point [54]. Events that have been executed are then removed
from the event list and any event is able to create new ones that are then inserted into
this list. The list must be sorted in chronological order because always the event with
the smallest time must be executed first and new events can be inserted anywhere in
the list. Events in the context of SIP are for example, a user that sends an instant
message, or makes a call to someone and this event triggers multiple following events
such as sending a concrete SIP message that reflects the intention of the user.
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Components

According to [34], discrete event-based simulations have the following common com-
ponents:

Event Scheduler: This component holds the chronologically ordered event list and
executes always the topmost event in the list. It is also the most frequently executed
components of the simulation because it is always called before every event.

Simulation Clock and Time-advancing Mechanism: The simulator used for this
thesis uses the so-called event-driven approach: a global variable that represents the
current simulated time is held by the scheduler. The scheduler increments the time
automatically to the next earliest event and then executes that event. This is in
contradiction to the unit-time approach where the time is incremented by one unit
and then the list is checked if there are any events to be executed.

System State Variables: These variables are global and represent the current state
of the system such as for example the number of jobs in the queue.

Event Routines: These include the actual steps that must be executed in each
single event and can update system state variables or create and schedule new events.
For example, in a SIP system an event can be the creation of a new SIP message or
the arrival of this message at a proxy server.

Input Routines: When starting the simulation, these routines read the configura-
tion of the simulation from a configuration file at the beginning of a simulation.

Report Generator: Generates reports either during the simulation or at the end
and writes them to a file or other output devices.

Initialization Routines: Set the initial state of the system to be simulated, initialize
random-number generators and other operations that are necessary before starting
the actual simulation

Trace Routines: Print out intermediate variables during the simulation and help
debugging the program.
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Dynamic Memory Management: As the number of entities that are required for a
single simulation run is not known in advance, periodic garbage collection is necessary.
Modern programming languages already provide this automatically, however, if not,
the programmer has to take care of this. In the case of IBKsim, that is written in
C++, the programmer has to implement either a garbage collection mechanism, or
has to take care that each object no longer used is deleted immediately.

Main Program: The main program starts at first the input routines, then the ini-
tialization process, starts the actual simulation and finally it calls the output routines.

Summarizing, a discrete event-based simulation consists of a list that stores the events
and the time points when they must be executed, a simulation kernel that takes the
topmost event from the list and executes all events stored in the list in this manner.
An input and an initialization routine take care that the simulation scenario is created
in memory, is initialized correctly and a report generator writes out the results. Figure
3.1 shows the flow of control for the event-driven approach that has been chosen for
IBKsim.

Arrival and Service Time Distribution

The components described in the previous section are common to all event-based
simulations. When simulating a communications network of multiple nodes and links
between these nodes, a message generation process must be implemented in some
nodes to imitate the behavior of users that want to communicate. Due to the fact
that SIP communication is mostly user-triggered, and the behavior of the users can
not be predicted, the simulation uses random models to abstract. For this purpose,
and since creation of true random numbers with enough entropy by computers is a
non-trivial task, so-called pseudo-random numbers are used in this work. Pseudo-
random numbers have the advantage, that one can recreate the sequence of numbers,
when seeded with the same input. This effect is helpful for replicating interesting
behavior of a simulation model. An automatically generated series of numbers is
called pseudo-random if it is not possible to reject the hypothesis of being random
with a given significance level when tested with a statistic test [55].
If for example the influence of a high number of users using their VoIP telephones
to a SIP system has to be simulated, a pseudo-random number generator calculates
the time points when these users want to send an instant message and thus initiate
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sending of a SIP message. If these messages arrive at times t1, t2...., tj, the random
variables τj = tj−tj−1 are called the inter arrival times [34]. It can further be assumed
that all τj form a sequence of independent and identically distributed (IID) random
variables. If the inter arrival times are IID and are exponentially distributed, then
the arrival process is a so-called Poisson arrival process, or in other words (cf. [39]),
the stochastic process {N(t), t ≥ 0} is said to be a Poisson process if:

1. Messages arrive one at a time.

2. The number of arrivals in the time interval (t, t+ s] (N(t+ s)−N(t)) is inde-
pendent of {N(u), 0 ≤ u ≤ t}

3. The distribution of N(t+ s) +N(t) is independent for all t, s ≥ 0

Property one can be assumed valid, as it is highly unlikely that two messages arrive at
exactly the same time. Property two states that the number of arrivals in the interval
(t, t+ s] is independent of the number of arrivals in the earlier time interval [0, t] and
also of the times at which these arrivals occur [39]. Property three assumes that the
arrival rate of messages does not depend on the time of day, and that is not given
for most real-life systems. Though, if the time span that is chosen for performance
analysis is short enough, the arrival rate has been found to be relatively constant
and the Poisson process is a good model for this interval [39]. Therefore, the number
of messages that arrive at a SIP system within a given time span, can generally be
modeled by a Poisson arrival process, which is used for the research of this thesis.
When these messages arrive at a SIP proxy server it has to process them and this is
called the service process. The time that each message is processed within that server
is called the service time and it is common to assume that the service times are also
IID random variables [34]. Most frequently used is the exponential distribution, but
other distributions as Erlang are also possible.
Closing the circle back to event-based simulation, both, the message-generation (ar-
rival) process and the service process generate events. The message-generation pro-
cess takes Poisson-distributed random numbers from a pseudo random-number gen-
erator, considers these values to be time points when a new message has to be sent
and inserts that as events into the event list. That process runs during the whole
simulation time. The service process, though, is modeled differently. The simulator
generates a “start” event when a message arrives at the processor. Following, the
simulator takes a random number from a second pseudo-random number generator
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and takes it as the time when the service process is finished and inserts a “finish”
event into the event list. The next section describes the pseudo random numbers
generation.

3.1.2. Random Number- and Variate-Generation

For simulation it is necessary to generate pseudo-random numbers that are distributed
in various manners. A message arrival process for example can be represented by
Poisson distributed numbers [39] and the service times of a service process by an
exponential distribution. A simulator generates random numbers of a specific distri-
bution in two steps: first a uniformly distributed sequence of random numbers in the
range [0..1] is obtained (random-number generation) and then this sequence is trans-
formed to the desired distribution (random-variate generation). A random-number
generator should have the following properties according to [34]:

- Efficiently computable. As simulation typically needs a large number of random
numbers, the generation should need less processor time.

- Large Period. If the period is too small, this would result in repeated event
sequences.

- Generate independent and uniformly distributed values. Successive numbers
should not correlate as correlation indicates dependence.

In the event-based simulator IBKsim, the Mersenne twister [40] has been imple-
mented. This generator fulfills all of the above criteria. Its speed is according to the
authors comparable to other modern generators and is very efficient. For a particular
choice of parameters, the period of the generator is 219937− 1 and thus large enough.
It generates equidistributed random numbers of up to 32-bit accuracy.
For the random-variate generation, inverse transformation has been chosen for the
IBKsim implementation. It is based upon the following property [9]. If F is a
continuous distribution function on R with inverse F−1 defined by

F−1(u) = inf{x : F (x) = u, 0 < u < 1} (3.1)

and U is a uniform [0, 1] random variable, then F−1(u) has the distribution function F .
And, if X has the distribution function F, then F (x) is uniformly distributed on [0, 1].
Using 3.1, any random variate can be generated provided that its inverse is explicitly
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known. Understanding the exponential distribution is essentially throughout this
thesis, so an example of generating exponentially distributed numbers is given for
clarity purposes. The exponential distribution is defined by its density

f(x) = λ · e−λ·x, x ≥ 0 (3.2)

and distribution
F (x) = 1− e−λ·x (3.3)

functions. Its inverse function calculates as

F−1(U) = −1

λ
log(U) (3.4)

and can efficiently be used to generate exponentially distributed numbers using the
Mersenne uniform random number generator. These random numbers can be used
for example as time points when a new message has to be sent during the simulation.
Multiple instances of different distributed generators can be used independently in
the same simulation. During the simulation run, data is generated by the model
that has to be written to files for later analysis. This is done by the logging module
throughout the whole simulation and described in the following section.

3.1.3. Logging and Analysis of Simulation Data

Logging is an important task of simulation as it creates the output of the scenario
that can later be used for analysis. Depending on the desired result, two methods
can be used, periodic logging or one-time logging. If a single mean value as well as
variance or standard deviation of some parameter is desired, the logger has to collect
the values either periodically or on event basis, to calculate at the end the desired
mean, and write it to a file. In order to keep the simulation effective in terms of mem-
ory usage, values can also be calculated cumulatively instead of keeping everything
in memory until the simulation ends. On the other hand, if the chronological devel-
opment of some value is the desired simulation output, the logger has to write the
values periodically to a file. The latter method however, must be used very carefully,
because the file size may grow significantly depending on the size of the simulation
scenario and the number of nodes that log their parameters.
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Collection and Calculation of Values

In any case, either periodic logging or one-time logging at the end of a simulation,
the desired data needs to be collected. Depending on the type of value the simulation
has to log, it must be reset to zero after each logging cycle correspondingly. That
is, for each parameter to collect, it must be decided in advance (for example within
the implementation of the logging methods) how its value has to be handled during
the simulation run. For example the number of requests received within one logging
interval must be reset to zero after each logging procedure. A second example is a
time value for which all corresponding values have to be collected and then the mean
value has to be computed (for example mean response time of all requests sent during
the whole simulation run). That procedure of resetting values after logging cycles
must be handled carefully as otherwise the simulation results are unusable or wrong.

Logging in Simulation

The simulation environment IBKsim is a discrete event-based simulator, which means,
all tasks that have to be performed are handled within events. That means that also
the logging procedures are executed as events by the simulation kernel. This routine
enables implicit tracking of simulation time and therefore automatic logging at the
desired points in time. One logging event must be created at the beginning of the
simulation run and after executing all log work the next logging event is placed by
the logger objects and executed after some pre-configured time.
After describing the theoretic concepts of event-based simulation, the following sec-
tion explains how they are implemented in IBKsim practically.

3.2. Event-based Simulation Environment

The simulation tool IBKsim evolved out of the tool IKNsim [54] which has been
designed to support studies about mobile agents. It has been used by many PhD
students of the Institute of Broadband Communications at the Vienna University
of Technology and has continuously been extended to be a more general network
simulator. A detailed description goes beyond the scope of this thesis, however, this
section highlights the concepts that have been necessary to implement SIP. Although
it would have been possible to use another existing simulator, IBKsim offered most
flexibility because the source code is fully available. It offers a very slim kernel and
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lots of ready-to-use modules such as queues, servers, or links. In the following sections
the main components of the simulator are described briefly.

3.2.1. Simulation Kernel

The simulation kernel is very slim and consists essentially out of four classes:

simControl dispatches the topmost event from the event list, sets the simulation
time to the events time and executes it.

simQueue implements the event list and the necessary methods for dispatching the
topmost event and adding new events to it with automatic sorting according to
the time when it must be executed.

simEntity is the base class from which all simulation entities (for example a SIP
UAC) derive.

simEvent encapsulates the event and all parameters that are potentially necessary
for its execution.

The dependencies between the classes is shown in figure 3.2. The main class holds
an object of the class simControl that has the init, loop and report methods imple-
mented, and holds a reference to the simQueue object. Throughout the simulation,
that is, the loop method, it requests the topmost simEvent from the simQueue object
and thereby the corresponding simEntity object that implements the handleEvent
method. This method is empty in the simEntity class and therefore virtual and has
to be implemented in each specialized class. Figure 3.2 depicts an example ibkSIPEn-
tity that is part of the SIP implementation. Objects of these classes are created and
initialized upon startup of the init routine of the simulator. The simulation is started
subsequently by invoking the loop method of simControl. Based on the simEntity
class, simple components as queues and servers are already implemented in the sim-
ulator and can be used by more complex simulations like larger networks or specific
protocols.

3.2.2. Network and Protocols

Entities that are necessary for the implementation of specific protocols, like for ex-
ample SIP are derived from the simEntity class. By doing so it is assured that new
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Figure 3.2.: IBKsim Kernel

protocol modules have a common interface with the simulation kernel. An addressing
scheme has been developed and implemented that uniquely identifies each element
in the network. Protocols that are implemented on top can make use of this scheme,
but can also implement their own addressing scheme. This layered structure is a
benefit because it is similar to real-world protocol stacks and allows a flexible choice
of abstraction. SIP, for example could be implemented directly on top of the IBKsim
addressing scheme or, after implementing IP and UDP, on top of that.

3.2.3. Random Number Generator

The random number generator is implemented conferring to the theoretical concepts
presented in section 3.1.2. It is divided into two steps: generating equidistributed
random numbers and transforming these into the desired distribution by means of
reverse transformation.

3.2.4. Logging

Figure 3.3 depicts how the logging procedure is implemented in IBKsim. All objects
that log their values must implement the getLogs method that is called by the logger.
The logger object is created in advance to the simulation and holds a list of all objects
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that are configured to log. Beside other events, the kernel has in its event list the
first and initial log event that is placed there by the logger itself. When the kernel
executes the log (1) event, it calls the getLog method of the logger (2) that loops
through all logObjects in its list by calling their respective getLogs method (3). After
finishing all logging methods, the logger places the next logging event onto the event
list of the kernel (4). In order to get precise simulation output, different logging

Event Loop
Kernel

newRequest
sendRequest
log
....

Event List

logObj1
logObj2
logObj3

Logger
getLogs(){
 logString = value1+value2+...
 return logString;
}

logObj1

1

2, 4
3

Figure 3.3.: Logging Procedure

strategies have to be applied depending on the type of value to log. One example
is the success rate of SIP transactions (see also 2.1.3). The success or failure of a
transaction can be determined as soon as a response is received or a time-out event
occurs. The duration until this happens is unknown in advance and the success or
failure of a specific transaction needs to be assigned to the time point when it was
initially created and therefore the logger has to wait until either a response arrives
or a time-out occurs. At the end of the simulation, the success state can be assigned
to the corresponding time frame and the success rate can be calculated. Logging
the processor utilization on the other hand is more simple: it is only necessary to
measure the time the processor is utilized in the last logging period and divide it by
the duration of the logging period. No collection of values and no post-processing is
necessary for this type of value.
IBKsim logs the the QoSg values (see section 2.1.3) in the way described in the next
sections.
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Final Response Delay

This value can not be calculated until a transaction has been either successful ter-
minated, or not. After a single transaction terminates, the fRpD (section 2.1.3) is
calculated as

δf = tr − ts (3.5)

where δf represents the fRpD, tr is the simulation time when the first final response
has been received by the UAC, and ts is the time when the UAC has sent the first
initial request. It is obvious, that this value can not be calculated until a final
response has been received and therefore the logger has to wait until then. For later
analysis, the value is assigned to ts, that is the fRpD of a specific transaction that has
been started at this time point. At the end of the simulation, the logger has a two
dimensional list containing fRpD values mapped to the chosen ts, that can directly
be plotted or used for calculations. A large number of values are created during the
simulation run, which is unpractical. One way to deal with this efficiently is, to sort
the values into bins, that represent a short time interval. That can be done in the
following way: denote the whole simulation duration as D and the width of one bin
as wb. Then the number of bins nb is

nb =
D

wb
(3.6)

and the time interval [tlower,i, tupper,i) for each bin i, i ≤ nb is given by

tl,0 = t(0) (3.7)

tl,i = tu,i−1 (3.8)

tu,i = tl,i + wb (3.9)

whereas t(0) is the time point when the logging during the simulation starts. Then
each logged fRpD value Df (t) at time t corresponds to bin i, i ≤ nb if

tl,i ≤ t < tu,i (3.10)

The simulator can then calculate statistics for each bin and report these values rather
than all single values. The advantage of this technique is that it uses less disk space
depending on the simulation, while not losing any degree of significant accuracy.
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Success Rate

The calculation of the success rate of transactions follows the same procedure as for
the fRpD. A transaction is successful, if it has received a final response message and
failed if it timed out and did not receive a final response. At the end of a simulation
run, the logger creates bins as described earlier and counts the number of successful
and failed transactions which started (sent their first initial request) within the time
interval the respective bin represents. The success rate λs calculates as

λs =
ns

ns + nf
(3.11)

where ns is the number of successful transactions within the bin and nf is the number
of failed ones.

Total Number of Transmissions

The number of transmissions calculates as

nt = 1 + nr (3.12)

that is the initial request (1) plus nr, the number of retransmissions that have been
sent until the transaction has received a final response. As with the success rate,
these numbers are sorted into bins of width wb.

Processor Utilization

To calculate the processor utilization, the logger needs to track the time the processor
is executing some service during log periods (service time). This time in relation to
the log period equals the utilization and is calculated in two different ways. If the
processor is currently (i.e. whilst logging) executing a service the service time ts
calculates as

ts = tt + (t(c)− t(s)) (3.13)

where tt equals the total time the processor executed a service during the current log
period, t(c) is the current simulation time and t(s) is the start time of the service
the processor is currently executing. If the processor is not executing a service at
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present, the service time equals the total service time:

ts = tt (3.14)

Although, there are various other values that could be logged during a simulation,
the ones described above have shown to be most important for performance analysis
for SIP.
This section has explained the basic concepts of the event-based simulation tool
IBKsim, its kernel structure, and how protocols can be implemented. Further it has
described how the reporting, or logging for three major metrics are implemented.
The next section describes the development of SIP entity models.

3.3. Model Creation for SIP based Networks

The simulation tool IBKsim has been extended with SIP modules, which provide
functionality similar to a regular SIP client and proxy, as well as modules for queue-
ing inside SIP proxies, which are used by a proxy module to simulate processing
and database access. The modules for SIP clients consist of a stateful UA which
implements a UAC that generates new messages according to a Poisson process and
a UAS that responds to received messages. The proxy module implements a trans-
action stateful proxy according to RFC3261 [53]. The user agent and proxy modules
hold a list of corresponding client and server transactions that belong to them. SIP
message processing, including the not exhaustive list of: creation of new messages,
sending over a link, receiving, processing, queueing, responding and transaction timer
handling is implemented according to event-based simulation. This means that a sim-
ulation kernel executes events that have been created by the various entities involved
in the SIP simulation.
Sections 3.3.1 and 3.3.2 explain the simulation models of UA and proxy in more
detail, section 3.3.3 the simulation of links, before section 3.3.4 explains briefly SIP
transactions. Finally, section 3.3.5 shows representative SIP services that are later
used for performance analysis.

3.3.1. User Agent

A UA is the entity that sends or receives messages on behalf of the user in order to
either set-up a multimedia call or to transmit non session-based information such as
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an instant message. It can either play the role of a UAC and generate new requests
or UAS and answer to received request messages or both, according to [53]. This is
obviously also valid for simulated UAs, but, for simplicity reasons, several UAs can
be aggregated into one (in order to keep the simulation scenario small).

User Agent Client

A high number of independent clients that create new messages at a low rate can be
modeled as Poisson process (see also section 3.1.1). A single instance of a simulated
client can therefore represent a high number of clients in a real environment and if
these clients all together send messages at an aggregated rate λ, a single instance of
the simulated client can be used to generate new messages at the same rate λ. Inter-
arrival times are distributed negative exponentially according to a Poisson process
[43]. The simulator uses a pseudo random number generator to produce uniformly
distributed numbers and applies reverse probability integral transformation ( [38] and
section 3.1.2) to calculate negative exponential distributed random numbers (equation
3.15):

tu = −1

λ
· log(u) (3.15)

The variable u hereby represents a number generated by a uniform distributed random
number generator in the range (0..1] and tu is the time interval between the newly
generated messages. New messages in terms of SIP means SIP requests that the
simulation generates at a specific rate. Depending on the service which has to be
analyzed (for example instant message or presence), the client generates different
types of messages (for example MESSAGE or NOTIFY) as well as a distinct number
of messages which are necessary for the specific service (see section 2.1.1). Within
the implementation for the SIP extension for IBKsim, a transaction manager (TM)
has been implemented that handles all newly generated messages and all incoming
messages as depicted in figure 3.4. For each request that the TM receives, it looks up
in the list of client transactions if there already exists a corresponding one. In case it
finds one, it assigns the request to it or, otherwise creates a new client transaction.
For each response that arrives at the TM and has a corresponding client transaction
the TM assigns that response to the corresponding client transaction. If the response
does not have a corresponding client transaction, the message is discarded. The client
transactions then have to process the messages according to the client state machine
and thus are responsible for all re-transmissions and all other timer events.
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Figure 3.4.: User Agent Client Transaction Manager

User Agent Server

The UAS simulation receives requests and responds to them according to their con-
tent. In terms of SIP, the UAS is the entity that receives information or service
requests and displays it to the user. In terms of simulation and for performance
analysis, it saves logging information if required, and responds to the received re-
quests. As for the UAC, a high number of UAS in a real system are aggregated into
a single one for the simulation. Figure 3.5 depicts the transaction manager of the
UAS. Incoming requests are assigned to a server transaction (ST) if it already exists,
or a new ST is created, which processes the request accordingly. If the transaction
manager receives a response it retrieves the corresponding ST from the ST database
(ST-DB).

These client and server transaction managers ensure that the messages are treated
according to RFC3261 [53] and the implementations of client and server transactions
correspond to the respective state machine.
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3.3.2. Proxy

SIP [53] differentiates between stateful and stateless proxy servers. Stateful proxy
servers create a server transaction for each received request and a client transac-
tion for each request to forward. As a result they themselves are responsible for
re-transmissions. Stateless proxy servers on the other hand do not create server and
client transactions at all, but simply forward received messages towards their destina-
tion. This means that stateless servers are not able to fork requests or to distinguish
between original requests and retransmissions. This thesis focuses on performance
evaluations for stateful servers, since stateless servers are basically simple forwarders
with not much potential for performance improvements. However, stateful servers can
further be broken down to call stateful servers, which keep state for a dialog from the
initial INVITE request until the final BYE request, and transaction stateful servers
that keep state of transactions but not of dialogs. It is inherent that call stateful
servers are also always transaction stateful. The models created for this thesis base
on models developed by [57] and are explained in the following sections.
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Scheduling in SIP Proxies

Simple models of a proxy server (for example section 3.3.1 of [57] and depicted in
figure 3.6) assume that each message, independent of type and content, will be queued
in a First-Come-First-Served (FCFS) queue. After waiting some time (until earlier
arrived messages are processed) they are processed by the processor. A more realistic

FCFS Queue
P

incoming external messages outgoing

Figure 3.6.: First-Come-First-Served Model

model of a proxy server has to take into account, that the processing of a message
can be divided into two parts: parsing and routing. For parsing, the text based
SIP messages are syntactically analyzed, broken down into parts, and converted into
internal representations as first step. Second, the newly created internal message
representations have to be analyzed to infer on their later processing. For a SIP proxy
server this means that it has to determine the messages destination and forward them
towards there, which is known as routing. For a UAS it means extracting the content
of the message, probably displaying something to the user and creating and sending
responses. Each of the two parts of processing a SIP message in a proxy server uses
a specific part of processing time. According to [57] it is assumed that parsing of a
message always takes approximately the same amount of processing time, independent
of its type and content. The simulation model distinguishes requests and responses
and assumes further (according to [28]) that a response needs less processing time
than a request. These assumptions lead to the proxy simulation model depicted in
figure 3.7. Within this model, each message type refers to one of the four specific
queues which are served by the processor P, according to priority scheduling (that
means that a message from the FCFS queue with the highest priority is always taken
first and forwarded to the processor; if there are no messages in the first queue left,
a message with the next lower priority is taken, and so on). The following priorities
are given to the message types:

1. Incoming (unparsed) external messages

2. Self-created re-transmissions
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3. Parsed responses

4. Parsed requests

Note that the author deliberately assumes that message reception and parsing is of
highest priority, as it leads to the creation of the basic internal message representa-
tions in the memory. This model is based on an interrupt-driven system and therefore
the network interface card triggers an interrupt upon reception of a message. That
means further, the normal operation (that is SIP routing in terms of the simulation
model) is interrupted as often as a new SIP message is received. After creating these
structures, each message is again queued for routing until it is processed (routed).
Within the routing process, the simulator creates transactions for each new request
and they set timers which possibly create retransmissions of requests which will then
be sorted into the re-transmission queue.
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Figure 3.7.: Request/Response distinguishing Model

Advanced Simulation Model

The simulation model for the proxy is depicted in detail in figure 3.8. Basically,
it distinguishes a queueing Model (upper part) and a transaction manager (lower
part) as main components. The queues for self-created retransmissions and already
parsed requests and responses are following in terms of decreasing priority. Upon the
processing of a message, the SIP-specific transaction manager creates or deals with
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Figure 3.8.: Advanced Proxy Simulation Model

the corresponding state machine and returns the message into the queuing model for
a second time, either as a re-transmission, request or response message. According
to [28], a response needs less processing time than a request. In our model, the
processor P simulates both parsing and routing by applying a certain processing
delay to each message. The sum of these processing times eventually represents the
output of the simulation model.
By partitioning the model this way, it is possible to change parameters of each part
independently. SIP parameters, for example re-transmission timers can be altered
but the processing of messages happens in the same manner. Another example is the
ratio of processing time that is needed for parsing and routing that can be modified
independent of the SIP implementation in the simulator.
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3.3.3. Link

The type of link between SIP entities plays a major role when evaluating overall
performance. Observe as example the difference between a narrow-band wireless
connection in comparison to a wide-band Digital Subscriber Line (DSL). This thesis
abstracts from link-specific properties and therefore uses stochastic distributions to
simulate loss and delay. The result is a more precise output that is not influenced by
specific behavior of a lower layer. The link implementation uses two independent ran-
dom number generators to calculate the delay and loss probability for each individual
packet. The generator for the loss uses a uniform distribution in the range [0..1] and
discards a packet if the generated number ng is larger than the pre-configured loss
rate nc:

l = 0 : ng ≤ nc

l = 1 : ng > nc
(3.16)

The number l corresponds in the implementation to a Boolean value that is directly
used to discard a packet. Because the generated numbers are uniformly distributed,
that procedure leads to an overall loss rate of nc, which has been configured during
the set-up of the simulation scenario.
In order to focus on the effects of processing delay rather than specific link behavior,
the values that the generator for delay delivers are deterministic, that is, no link delay
variation is generated and the values are constant.

3.3.4. SIP Messages and Transactions

Having surveyed the topmost components of SIP communications, this section turns
into a more detailed view on SIP transactions, which are the basic building blocks of
SIP-based communication. Any entity sending a SIP request (except stateless prox-
ies) creates a transaction for each request sent or received. Generally two basic types
can be distinguished: non-INVITE transactions where no direct human interaction is
necessary (for example delivering an instant message) and INVITE transactions where
direct human interaction is normally required (for example a voice call). Human in-
teraction always introduces some delay in comparison to direct machine-to-machine
communication. For example when the phone rings a response message is not sent
until the user picks up the phone. For this reason the distinction into non-INVITE
and INVITE transaction has been created and additionally a separate transaction
state machine for each of the two.
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A transaction always consists of an initial request and one or more responses to
this request, including provisional and final responses [53]. As SIP transactions are
used for communication, they consist always of a client part which is responsible for
sending requests and receiving responses and a server part which receives requests
and sends responses to these requests. An UA always implements both and therefore
can send new requests on the one hand (client part, e.g., make a call) and receive
requests (server part, e.g., receive an instant message) on the other hand. Proxies
(except stateless proxies) that forward a received request create a separate server
transaction which handles requests from the originator of the initial request and a
client transaction which sends the request to the next downstream host. Figure 3.9
shows an example where the UAC executes a client transaction that sends a request
to its proxy that has a corresponding server transaction. The proxy always executes
a client transaction that forwards the request to the UAS’s server transaction.

UAC
CT

Proxy

ST CT
UAS

ST

Request

Response

Request

Response

Figure 3.9.: Transaction Relationships (cf. [53])

This thesis focuses on non-INVITE transactions and assumes that the number of such
messages is much higher in a provider’s network because a large variety of services (for
example instant messaging, presence, registration) use them in contrast to INVITE
transactions that are currently only used by one service (voice and video call). Hence
non-INVITE transactions are more attractive for performance analysis than INVITE
transactions.

State Machines

As introduced in section 2.1.2, transactions are handled completely by state machines.
[53] describes four different types of transactions and thus also four different state
machines. As non-INVITE transactions are used by many more services, they are
more suitable for performance evaluations and the only ones considered for this thesis.
Figure 3.10 depicts how a new request is sent and how the components interact. When
the simulation triggers sending of a new request, a newRequest event is dispatched
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Figure 3.10.: Simulation environment: sending new request

from the event list by the kernel (1). That invokes the newRequest method of the UA
(2), which creates a new client state machine and handles the data of a newly created
request to it (3). The state machine then has to create a “send” event and submit it to
the event list (4). Events for SIP timers are also submitted at the same time. Later,
the simulation kernel dispatches the sending event and calls the respective method
of the link object which transmits the message to the next SIP entity.

3.3.5. SIP Services

The value of SIP is created by a vast number of possible services which can be applied
using SIP and it is therefore interesting for simulation and performance evaluation
to analyze these contrary to simple protocol performance. The following sections
describe the concepts of the services which have been chosen for this thesis and their
simulation implementation.

Instant Message

Instant messaging, also known as Short Message Service (SMS) is certainly the most
successful service realized in current GSM and UMTS networks as SMS and it will
likely remain important for future mobile networks. It is therefore interesting to
analyze its performance by means of simulation.
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This service is realized by the SIP MESSAGE request, shown in figure 3.11. The
instant message to deliver to a UAS is contained within the body of the request,
the response acknowledges the reception of the request. Optionally, one or multiple
re-transmissions can happen, according to the non-INVITE state machine. For per-

UAC UAS

MESSAGE

MESSAGE
200 OK

Figure 3.11.: Message Service

formance evaluation the simulation logs the fRpD and the SR of transactions (i.e.
transactions that receive a final response). The instant message service uses one
MESSAGE request to deliver one instant message and could also be used as back-
ground traffic to test other services or to analyze the performance of proxies during
occurrence of a high number of messages during special events (e.g., new year or
television voting events).
To simulate this service an aggregated UAC as sending part and an aggregated UAS
as receiver is necessary.

Registration

A client registers itself at a registrar in order to become reachable via its generic SIP
URI. The registrar usually includes a authentication with a challenge-response algo-
rithm that is depicted in figure 3.12. Within the first “401 Unauthorized” response,

UAC REGISTRAR

REGISTER

REGISTER
401 UA

200 OK

Figure 3.12.: Register

the registrar includes a “nonce” (number used once) value that is used by the UAC to
encrypt its credentials. The encrypted credentials are sent with the second Register
message to the registrar which answers with a 200 OK response if the credentials are
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correct. This response includes an expires header to inform the client when it must
re-register latest to keep the mapping active.
Relevant for performance analysis point of view is a scenario, where some part of the
network fails (e.g., part of the access network or an edge proxy) and after recovery
all affected UAs try to register themselves at the registrar within a short time span.
Interesting measures are also the fRpd as well as the number of successful registra-
tions. A registration is successful if the corresponding client transaction has received
a 200 OK response.

Presence

The SIP presence service is based on the event notification framework extension for
SIP [50] and is extended by an event state publication mechanism [44]. The purpose
of this service is to distribute information about the state of a user to his buddy list.
One example is the line-state of a user’s phone such that other users know if a call is
possible before they place it.
To provide a presence service using SIP two options can be used:

- point-to-point

- server-based

For point-to-point presence all UAs address their presence messages directly to the
other users’ UAs like standardized within [50]. Figure 3.13 shows a message flow
for one UA (watcher) that watches the state of three other UAs (presentities). The

Watcher Presentity 1

SUBSCRIBE

200 OK

Presentity 2 Presentity 3

SUBSCRIBE
SUBSCRIBE

200 OK
200 OK

NOTIFY
NOTIFY

NOTIFY
200 OK

200 OK
200 OK

...

Figure 3.13.: Presence Service

implementation of the presence service using this technique creates much traffic if
presentities are watched by multiple watchers.
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To simulate this service, watcher and presentity have to be created using the UAC/UAS
implementations described earlier and multiple instances of them must communicate
through a proxy server. A relevant performance metric for this scenario is the number
of watchers that manage to retrieve the state of the presentities in their buddy list
(number of active subscriptions) over a highly loaded system.
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4. Performance Improvement
Strategies

It is well known that SIP lacks a suitable congestion protection mechanism [45] as
the standard proposes only a response code that informs that the proxy is currently
congested and additionally allows to add a “Retry After” header, which defines a time
interval in which no further requests should be sent. Unfortunately, this solution does
not work in several scenarios [51]. Therefore the standardization currently specifies
extensions for SIP to transport congestion state information through the SIP network.
However, the congestion notification is realized either explicitly by sending dedicated
messages [17] or by adding a chunk of data to SIP messages [21] that describes the
current congestion state.

The following sections present a new mechanism that is based on information that is
present implicitly and already available in each SIP protocol stack. This mechanism
can be divided into two parts: congestion detection and congestion handling. Con-
gestion detection collects information such as the delay between sending a request
and receiving the corresponding response or the number of newly sent requests in the
past second in order to detect a possible congestion situation. Congestion handling
takes the information of the detection part and applies some method to reduce the
outgoing load that caused that congestion. In the case of SIP, congestion handling
can be applied either in a lossless or a lossy mode. The lossless mode is done for
example by increasing the timer that is responsible for retransmitting a request and
therefore giving the congested proxy server enough time to process the backlog, by
reducing a huge and unnecessary load, created by retransmissions. No new incoming
requests have to be rejected by this mode and thus the revenue for the operator is not
decreased. In many cases this method may be sufficient and the congestion situation
disappears. In the case it does not disappear, the nominal SIP load exceeds the node’s
or network’s capacity and lossy modes can be applied to solve the congestion. These
reduce the outgoing load by rejecting a part of new incoming requests. However, as
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this method rejects service requests sent by customers, the operator’s revenue suffers
from it. These two methods enhance the performance of a SIP proxy server either
by applying minor changes to the protocol or by adding implicit sensing mechanisms
to detect an already present congestion and handle it accordingly. However, these
methods do not change the implementation of the SIP proxy server itself. Optimizing
that may enhance the performance even more. A promising approach is to improve
the parsing part of a SIP proxy server, the module responsible for reading incoming
SIP messages and creating internal data structures that are later used to analyze
the message. As SIP is a text-based protocol, the processing requirements of this
part is not negligible [63] and offloading it to some external processor can improve
the performance significantly. This is for example also done for TCP where process-
ing intensive operations such as checksum calculations are offloaded to the network
interface card [7].
The current section is organized as follows. Section 4.1 verifies current known perfor-
mance drawbacks of SIP. Section 4.2 describes methods to detect possible congestion
situations implicitly, and section 4.3 how congestion situations can be handled. Sec-
tion 4.4 presents an idea on offloading some parts of processing of incoming SIP
requests to an external processor. Finally, section 4.5 gives some application scenar-
ios.
It must be mentioned here that the results of this section are published within the
papers [16], [14], [15] and [13].

4.1. SIP Performance Drawbacks Verification

In order to develop performance improvements for SIP, the performance of the current
standard has to be analyzed and documented. To this end, we resort to a dedicated
discrete event-based simulator, the so-called IBKsim [60] implemented at the Vienna
University of Technology for Linux in C++. In order to obtain the results presented
in the following sections, the current version of IBKsim has been complemented with
an implementation of SIP UAC and UAS non-INVITE transaction state machines as
well as a model of a transaction stateful proxy server as described section 3.3. The
following section 4.1.1 analyzes problems that occur because of SIP’s standardized re-
transmission algorithm when a system comes into high-load and overload situations,
before section 4.1.2 gives a more detailed analysis of the behavior of SIP nodes in
various load situations.
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4.1.1. Drawbacks of SIP Retransmissions

This section explains which problems can be caused by the retransmission algorithm
of SIP [53] in certain high-load situations. As mentioned, SIP differentiates mainly
between two transaction types: INVITE transactions and non-INVITE transactions.
INVITE transactions are used to create sessions, where the initial request carries a
session description for agreeing on a set of compatible media types. Non-INVITE
transactions, on the other hand, carry information that is usually not session-based,
such as a registration message or an instant message. In both cases, special network
nodes, the so-called SIP proxy servers, enable the message routing, know the users
current location, and authenticate and authorize users for specific services.

As far as the underlying transport protocol is concerned, SIP can employ the reliable
TCP as well as the unreliable UDP. In the latter case, SIP achieves reliable message
transmission by means of re-transmission of messages, which is controlled by the
retransmission timer E. Following the standard, a single request may be transmitted
up to eleven times before the transmission attempts are terminated. The authors of
SIP have specified this behavior in order to cope with the unreliable nature of Internet
traffic. As a side effect, however, retransmissions are also triggered if messages are not
lost, but delayed because of congestion (final response delay longer than SIP timer
T1). Processing these retransmissions at a server creates additional congestion. As we
will demonstrate later, in a congested system there is a high probability that requests
never reach the destination. Moreover, even if the request reaches the destination,
the response might fail to reach the originating node. Thus, in the worst case, the
system has to handle up to eleven SIP requests and up to eleven responses without
any other effect than using processing power of the nodes and flooding the links with
redundant data.

The following section describe a plausible scenario that leads to congestion and in
the worst case to a congestion collapse.

Scenario

An elementary scenario has been chosen to demonstrate SIP congestion behavior.
Many user agents are aggregated into a single one for simplicity reasons, and one
proxy server handles all messages for these clients (see figure 4.1). The server has
been configured to be able to handle up to 100 SIP transactions per second. Hence,
the time required by the server to handle one SIP message is negative exponentially

57



4.1. SIP Performance Drawbacks Verification

ProxyUAC UAS

link link

Figure 4.1.: Simulation Scenario

distributed with a mean of 0.01 seconds. The link between the nodes and the proxy
server is characterized by 0.3 ms delay and a packet loss rate of 0% in order to focus
on the effects of processing delay rather than link loss. A background arrival rate of
80 SIP requests per second simulates a processor utilization on the proxy server of
about 80%. At t = 50, 40 additional SIP requests per second for 10 seconds duration
simulate a short rate peak that causes congestion in the system. The simulation run
logs the following values on a per-second granularity:

- Processor utilization at the proxy server (0 to 1)

- Success Rate (SR) of SIP transactions at the UAC

- Number of Request Transmissions (RT) for all transactions, including unsuc-
cessful transactions at the UAC

- Final Response Delay (fRpD) at the UAC

- Pending Transactions (PT) at the UAC

A client transaction is denoted as pending as long as no final response has been
received, that is, as long as the corresponding state machine (depicted in figure 2.6)
is in the state Trying. The simulation run lasts for 1000 (simulation-)seconds.

Problem Description

Figure 4.2 shows the number of new transactions as well as the number of re-
transmissions for 400 simulated seconds. At t=50, an overloading peak of 120 new
transactions per second is introduced for a duration of 10 s. This short peak leads
to a situation where many user agents re-transmit their requests according to the
SIP standard because no response is received in time and they assume the messages
lost. This leads to a huge increase of the load that is injected to the proxy server.
After reducing the arrival rate to a value below the capacity limit of the proxy server
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the user agents still re-transmit many requests, introducing unnecessary load to the
system. Such a situation is also called congestion collapse and is for example also
illustrated in [28]. A SIP system’s congestion collapse is a severe situation because
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the involved entities cannot recover by themselves and a considerable amount of in-
put reduction is necessary in order to recover. As the goal of this thesis is to develop
performance improvements for SIP it is essential that a measurement metric is able to
indicate such effects. The following sections introduce the QoSg values Success Rate
(SR), Request Transmits (RT) and Final Response Delay (fRpD) and the processor
utilization of the proxy server and the number of Pending Transactions (PT).

Success Rate

Figure 4.3 shows the success rate (SR) for the above configuration. Following the
short peak, the system runs into a congestion collapse, and only a few transactions
are handled successfully. The rest times out.

Total Number of Transmissions per Transaction

Figure 4.4 depicts the transmission count per transaction until the UAC receives the
first final response. It demonstrates that the system is flooded by retransmissions
and that after about 70 seconds, all requests are sent multiple times. This figure
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highlights the huge amount of redundant messages that are sent to the proxy server,
compared to normal operation where all requests are just sent a single time.
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Figure 4.3.: Success Rate (red crosses) and Offered Load (blue line)
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Figure 4.4.: Transmissions per Transaction (red dots) and Offered Load (blue line)

Final Response Delay

Figure 4.5 shows the final Response Delay (fRpD) in seconds in a scatter plot, where
each dot corresponds to a single transaction. Observe that the fRpD increases up to
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the maximum time of 31.5 seconds. Due to the static re-transmission timer configu-
ration of the UAC, the dots merge to lines and each of these lines corresponds to a
single re-transmission instance. This means that the lowest line belongs to transac-
tions that have received a response to the first transmission, the second lowest line to
transactions that have received a response to the first retransmission and so on. This
supports the assumption that re-transmissions are unnecessary in situations where a
proxy server is congested.
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Figure 4.5.: Final Response Delay (red dots) and Offered Load (blue line)

Proxy Processor Utilization

Figure 4.6 shows the processor utilization. The processor of the proxy throughout
remains at 100% utilization after the injected peak load. It is obvious that the proxy
server is processing re-transmissions and therefore not able to handle all incoming
messages.

Collapse Analysis

To analyze the collapse in more detail the same scenario has been simulated with
multiple different initial seed values in order to gain statistically proper results. The
expectation is that the system has the same behavior for each run: a fast collapse
after injecting a short congesting peak load. The simulation has been replicated 500
times and the distribution of the success rate after the system is in a steady state
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Figure 4.6.: Processor Utilization (top red line) and Offered Load (bottom blue line)
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Figure 4.7.: Success Rate Distribution

(simulation time: 600-700 s) has been calculated. Figure 4.7 presents the distribution
of the success rate. Observe that the success rate for all 500 runs is between 0 and 0.35,
that is, the collapse happened on all simulation runs. This verifies the assumption
that a collapse for the simulated system is unavoidable.

The previous section has shown that the re-transmission algorithm for SIP using UDP
can be a problem if a system is under heavy load. It creates a huge load of redundant
messages and the system can not recover by itself. The next section analyzes the
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behavior of SIP systems in more detail and describes the characteristics of a proxy
in various load situations.

4.1.2. SIP Node Load Characteristics

This section analyzes the characteristics that SIP nodes exhibit when they get faced
with varying load. For this reason the same system has been simulated three times.
First almost idle with only a few transactions per second (10 tps) so that the buffers
are always empty. Second with high load that is just below the capacity limit (90
tps), and third with capacity exceeding load (120 tps). It is shown that the QoSg
metrics fRpD and RT reflect exactly the load situation a proxy server is currently in
and that the resulting information is a viable input for a congestion detection and
avoidance system. Parts of the following sections have been previously published
in [14].

Idle System

Figure 4.8 depicts the final Response Delay of a simulation over 400 s. It is visible
that the value stays consistently lower than 100 ms during the entire simulation
period. Figure 4.9 shows the density and distribution of the same values. The
plots illustrate that the majority of transactions (about 90%) are processed within
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Figure 4.8.: Final Response Delay - Idle System
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approximately 15 ms, caused by processing at the proxy. About 10% of the requests
or responses arrive at the proxy whilst the proxy currently processes another request,
therefore being subject to additional queuing delay. This effect results in the long
tail of the cumulative distribution function reaching values up to 40 ms. Figure
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Figure 4.9.: Final Response Delay Distribution - Idle System

4.10 demonstrates that only one single transmission is necessary for each transaction.
This maps to the figures of the fRpD metric and demonstrates that the system is not
congested.

Highly Loaded System

If the traffic rate is increased towards high load, the fRpD metric exhibits additional
variation effects that are observable in figure 4.11. Figure 4.12 depicts the distribution
of the data of figure 4.11, illustrating that the high load leads to a significant change
in the delay distribution. This behavior originates from the queueing mechanisms
that have to manage high load inside the proxy server; the inter-arrival times are not
discrete but poisson distributed and therefore the queues in the server are not always
empty. This leads to more requests that have to wait until the processor is free and
able to handle the request. About 90% of the transactions have their final response
within 150 ms and the remaining 10% have a maximum of 350 ms. As the value of
the fRpD keeps consistenldy below 500 ms, no request has to be retransmitted and
therefore the RT metric does not show any difference to figure 4.10.
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Figure 4.10.: Request Transmissions - Idle System
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Figure 4.11.: Final Response Delay - High Load - No Congestion
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Figure 4.12.: Final Response Delay Distribution - High Load - No Congestion

Overloaded System

Figure 4.13 shows the measured fRpD for a system that has been offered more load
than its capacity allows. At the beginning, the fRpD keeps low, but as soon as
the systems buffers are filled, messages are dropped and therefore re-transmitted.
Starting with t = 120 s all transactions are re-transmitted 11 times. This creates
a huge load and the proxy server is only able to parse the messages, but has no
free resources to route and forward the requests. Due to this reason, no requests
are successful from this time onwards and no fRpD values are calculated anymore.
Figure 4.14 shows for each transaction the number of requests that have been sent
until a final response has ben received. It depicts that starting with t = 120 s all
requests have to be sent the maximum number of 11 times.

These simulations indicate that the fRpD and RT metrics reflect the load state of a
proxy server and the metrics therefore meet the prerequisites for congestion detection.
This means that these metrics are viable candidates to be used for implicit conges-
tion detection. Because SIP client transactions make use of timers to re-transmit
requests in order to ensure reliable transmission, the effort of recording these values
is acceptable.
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Figure 4.13.: final Response Delay - Congestion
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Figure 4.14.: Transmissions per Transaction - Congestion
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4.2. Implicit Load and Congestion Detection

This section shows that an imminent collapse can be detected in advance by con-
tinuous measurements of implicitly measurable or computable values. These values
can then be used to reduce the injected load to a downstream proxy, eventually
avoiding a collapse. Because of the lack of a suitable overload control mechanism of
SIP itself, the SIP Overload Control Working Group (SOC WG) of the IETF and
the ETSI are both currently working on models and design considerations for SIP
overload control mechanisms. Their focus is mainly on explicit overload control [21].
However the SOC WG mentions implicit overload control in [27]. They state that
“the idea of implicit overload control is that senders should try to sense overload of a
downstream neighbor even if there is no explicit overload control feedback. It avoids
an overloaded server, which has become unable to generate overload control feedback,
from being overwhelmed with requests” [27]. The huge advantage of implicit overload
control is therefore that a system is able to detect overload of a downstream server
non regarding of its support of any explicit mechanism. However, the SOC WG does
not investigate on the sensing method and therefore this area needs further compre-
hensive research. The first step is essentially to analyze and document SIP server
behavior in different load situations. This has been done and demonstrated in [14] as
well as in section 4.1. This information can be used in live SIP proxies to match the
current behavior of a downstream server with the documented pattern and therefore
infer on its load situation.

4.2.1. Simulation Scenario

The simulation uses the models of User Agent and Proxy that have been described in
sections 3.3.1 and 3.3.2. Since the focus of this section is to describe mechanisms that
can detect an imminent congestion or collapse, the same simple simulation scenario
as described in section 4.1 has been used. It basically consists of an aggregated
User Agent Client, an aggregated User Agent Server, and a Proxy in between and
is depicted in figure 4.15. The server has been configured to handle up to 100 SIP
transactions per second and the links between the nodes are characterized by 0.3 ms
delay and zero packet loss rate. If such a system comes into a short overload situation,
many user agents have to re-transmit their requests, because the proxy server is not
able to forward them accordingly. This leads to a huge increase of the incoming load.
Reducing the arrival rate of new requests to the value prior to the the overload is not
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ProxyUAC UAS

link link

Figure 4.15.: Simulation Scenario

sufficient to recover from the collapse. This is mainly described in section 4.1.

The following section 4.2.2 describes a mechanism that uses the QoSg metric fRpD
[25] as sensor and section 4.2.3 introduces a new technique that calculates an anomaly
indicator for better congestion detection.

4.2.2. Delay-based Congestion Detection

This section introduces an algorithm for congestion detection (CD) based on the fRpD
metric that has been defined in [25]. The fRpD is the time span between sending a
SIP request until a final SIP response is received by the UAC.

The first simulation creates a specific number of new requests per second, starting
from one up to 100 requests per second and logs the fRpD for all transactions. Then
the distribution of the values is calculated to analyze it for the various load situations.
Figure 4.16 depicts the distribution of the fRpD values of the simulated system in
different load situations; the system is configured with a capacity of 100 tps and
each simulation run lasts for 400 (simulation-) seconds. It is apparent, the higher
the injected load, the longer takes the processing of requests. This is a well-known
behavior and is caused by the queueing inside the proxy server and the Poisson
arrival process of new SIP requests. When using UDP, there is no possibility to
detect whether a message got lost and a retransmission is triggered by specific timers
whose characteristics are described in chapter 2.1. However, under heavy load this
approach introduces even more load to the system, because delayed messages may be
wrongly interpreted as lost, and based on this, retransmissions are triggered. In the
worst case, this behavior may further evolve into a collapse of the whole system and,
once collapsed it is hard for the system to recover, even if the load starts shrinking
(this fact is discussed in more detail for instance in [28]).

Therefore, the author proposes an algorithm which takes the fRpD values of the last

69



4.2. Implicit Load and Congestion Detection

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n

final Response Delay [s]

0.95

80 tps
90 tps
95 tps

Figure 4.16.: Final Response Delay Distribution for multiple Load Settings

m seconds and calculates their 95% percentile1. A percentile value is used in order
to cope with crashing clients and with runaway values. Due to the fact that the SIP
standard requires a message to be re-transmitted after T1 (0.5 s) and that a system
which is not overloaded does not need re-transmissions (or at least only a few) it
can be assumed that a system is in low-load if 95% of all transactions are completed
within T1. Figure 4.17 depicts the 95% percentile against the injected load and shows
that the value increases only moderately at low-load. The fRpD rises with increasing
load until it exceeds the 0.5 s label that is defined as low-load limit. Beyond this
value the curve increases more steeply. Obviously the simulated system has that
limit at 95 tps. The new algorithm which the author proposes basically consists of
two parts, a measurement part that continuously measures the fRpD values of all
outgoing requests and a calculation and decision part that takes the measured values
every w seconds, and calculates a trigger value to decide if a situation may lead to
performance problems. That trigger value is the 95% percentile of the measured fRpD
values of the last m seconds. If it is above the limit of t, then a congestion is assumed.
The principle of the algorithm is shown in figure 4.18 whereas P95 means the 95%
percentile and the parameter values have been set to m = 5, w = 1 and t = 0.5.
A system configured with these values re-calculates its performance values for the

1that means that 95% of all transactions need this value or below to complete successfully
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Figure 4.17.: 95% percentile of fRpD depending on Load
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Figure 4.18.: Delay-based Congestion Detection Algorithm
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last 5 s on a per-second basis. Different values may result in better performance but
an empirical simulation study has shown that the above stated dimensions lead to a
stable, non-oscillating system.

If a P95 value above t is detected, the mechanism returns “true” to the congestion
handling module that is then able to reduce the outgoing load accordingly.

4.2.3. Pending-Transaction-based Detection

This section presents a new mechanism to detect an imminent collapse implicitly.
This mechanism, depicted in figure 4.19, collects data that is present in any proxy

Start

measure
use PT and λ 

values of last m 
seconds

calculate κ

σκ > σ0 ?
yes

no

return "true"

suspend for w 
seconds

return "false"

perform 
sequential 
analysis

Figure 4.19.: Pending-Transaction-based Congestion Detection Algorithm
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server, calculates statistics and based on that it decides if a collapse is imminent
or not. It uses the metric Pending Transactions (PT) that observes the number
of transactions that did not receive a response yet and the number of newly sent
requests, denoted as λ. Then it calculates an anomaly indicator denoted as κ every
second (or more often as configured) that is described later in this section. This value
changes considerably for a collapse situation in comparison to a normal situation and
a sliding statistical test can be used as detection trigger. The algorithm has been
published in [15] and [24].

Data collection and Anomaly Indicator Calculation

In [24] it is demonstrated that the number of PT in a lightly loaded system correlates
with the injected load and the fRpD.

P̄ = λ̄ ·Df · c1 + c2 (4.1)

Whereas P̄ represents the mean number of pending transactions, λ̄ the mean arrival
rate, Df the fRpD, and c1 and c2 system dependent empirical constant correcting
factors. Figure 4.20 depicts that correlation by means of simulation results of multiple
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Figure 4.20.: Number of Pending Transactions depending on the injected Load

load situations on a logarithmic scale. The dependency between the load and the
number of pending transactions is linear in the ergodic state (load equal to 1..92).
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Above (load > 92), the number of pending transactions shows a severe increase,
that is, the correlation is no more linear. For the non-overloaded state, it can be
assumed that the fRpD is independent of the injected load. For simplicity reasons it
is also assumed that Df is close to constant, so that the delay variation is very small.
Following that, it can be stated that the number of PT correlates linearly with the
injected load.

c3 = Df · c1 (4.2)

P̄ = λ̄ · c3 + c2 (4.3)

As the exact value of the variables c1 and c2 that combine these values is unknown,
and as these values are system dependent, the first derivations of them with respect
to time is calculated as:

dP̄

dt
=
dλ̄ · c3
dt

(4.4)

That means that changes of the load situation within a given time frame directly
correlate with changes of the number of pending transactions; yielding

κ =
P̄ ′

λ̄′
= c3 (4.5)

is constant, because the correlation of the load and the number of pending transac-
tions is linear. The new factor κ is introduced and called anomaly indicator as it is
intended to indicate abnormal situations like shown in section 4.1.1. If the system
is overloaded, that is, more transactions are sent to a proxy server as its capacity
allows, the fRpD is no more independent of the injected load because the queues
in the servers get full and some requests must probably be retransmitted. It can
therefore be stated that κ is no more constant because the number of pending trans-
actions increases dramatically. To proof this assumption multiple load situations on
a two-proxy system have been simulated that logged the load and PT values. An
overloading peak has been injected at t = 50 s that creates congestion and a collapse
like already presented in section 4.1.1. As infinitely small time frames can not be
logged, the values must be discretised for the simulation.

dP̄

dt
=

∆P̄

∆t
(4.6)

dλ̄

dt
=

∆λ̄

∆t
(4.7)
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The simulation calculates ∆P̄ and ∆λ̄ each simulated second as well as the absolute
value of κ. Figure 4.21 shows that |κ| varies for our system between 0 and 2 if it is in
a non-overloaded state (t = 0..50). That variation is explainable due to fluctuations
in the fRpD that come from Poisson-distributed inter-arrival times of new requests.
After introducing an overloading peak at t = 50 s, κ increases significantly and can
therefore perfectly be used as indicator for congestion in downstream components
without specific knowledge of their capacity limits. The heavy fluctuations that
appear during the collapse are explainable due to non-constant inter-arrival times of
new requests. However, as only the first increase of κ is interesting for a congestion
detection system, that fluctuation is not studied further.

The following section analyzes the anomaly indicator for various load situations.
Main aim is to get a statistical basis for statistical tests to determine the current load
situation in a downstream component.

 0

 20

 40

 60

 80

 100

 120

 140

 0  50  100  150  200  250  300  350  400

A
no

m
al

y 
In

di
ca

to
r 

κ

Time [s]

Figure 4.21.: Anomaly Indicator

Data Analysis for Statistical Tests

This section presents the distribution of the κ values for situations when the down-
stream component is not overloaded as well as for overloaded situations. This has to
be done in order for the statistical test that is used later to be able to distinguish
between normal and possibly dangerous situations.
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For this purpose a two-proxy system has been simulated (see figure 4.22) where proxy
1 has 10 times more processing capacity than proxy 2 in order to overload proxy 2 and
to allow proxy 1 to detect that. First the κ values of the system have been analyzed

Proxy 1UAC UAS

link link

Proxy 2

link

Figure 4.22.: Simulation Scenario for Data Analysis

with a load that uses 80% of the capacity of proxy 2. Second the load is increased
above the capacity of proxy 2 (100 tps) to determine the difference.
Figure 4.23 shows the κ values of the non-congested system. The data collection
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Figure 4.23.: Anomaly Indicator κ in Non-Congested System State

starts at t = 10 s in order to allow the system to come into a steady state and beyond
that point the value stays within the interval [−5, 4], has a mean value of µ = 0.056

and a standard deviation of σ = 0.962. The requirement of a normally distributed
population of the sequential analysis test that is used later in this section necessitates
a statistical test that proves normal distribution. Figure 4.24 shows the distribution
of the collected values as well as a normal distribution curve using the previously
calculated mean and standard deviation values. The calculated normal distribution
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Figure 4.24.: κ Distribution in Non-Congested System State

curve does not fit perfectly to the simulated values, but the assumption that the
values are normal distributed can not be rejected. A Kolmogorov-Smirnov-Test has
been applied with the null hypothesis H0 “κ values are normally distributed” (4.8)
against H1 “κ values are not normally distributed” (4.9).

H0 : F o(κ) = F e(κ) (4.8)

H1 : F o(κ) 6= F e(κ) (4.9)

The distribution of simulated (observed) values is hereby denoted as F o(κ) and of
calculated (expected) values as F e(κ). For this test, the κ values have been sorted
into 16 bins and are listed in table 4.1. The test requires to find the largest abso-
lute difference between the simulated and calculated cumulative distribution func-
tions. The observation yields to a value of 0.294. The table of critical values for the
Kolmogorov-Smirnov-Test A.2 lists a value of 0.2947 for a significance level of 0.05.
The observed maximum value is smaller than the critical value and that means that
the null hypothesis cannot be rejected and the values can be assumed to be normally
distributed.

For the overloaded situation, the load has been increased at t = 150 to 120 transac-
tions per second. During the overload situation, the number of pending transactions
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Table 4.1.: Observed and Expected absolute Differences of Simulated and Calculated
Cumulative Distribution Functions of a Non-Congested System

i κi F o(κi) F e(κi) |F e(κi)− F o(κi)| |F e(κi)− F o(κi−1)|
1 -5.0 0.003 0.000 0.003 0.000
2 -4.0 0.006 0.000 0.006 0.003
3 -3.0 0.017 0.000 0.017 0.006
4 -2.5 0.026 0.002 0.024 0.015
5 -2.0 0.037 0.010 0.027 0.016
6 -1.5 0.040 0.036 0.004 0.001
7 -1.0 0.074 0.102 0.028 0.062
8 -0.5 0.132 0.228 0.096 0.154
9 0.0 0.328 0.414 0.086 0.282
10 0.5 0.748 0.622 0.126 0.294
11 1.0 0.937 0.799 0.138 0.051
12 1.5 0.948 0.914 0.034 0.023
13 2.0 0.974 0.971 0.003 0.023
14 2.5 0.983 0.992 0.009 0.018
15 3.0 0.991 0.998 0.007 0.015
16 4.0 1.000 1.000 0.000 0.009

increases significantly up to a certain value that is limited by the current load times
the transaction timeout timer F (default: 64 · T1 = 32s). In the present simula-
tion scenario, this value is equal to 120trans.

s
· 32s = 3840 transactions. Figure 4.25

shows the number of pending transactions against time and that the value increases
starting with t = 150 until t = 220. As the test has to detect the collapse process
as early as possible (that is, before the maximum number of pending transactions is
reached) the distribution of the anomaly indicator value κ has to be calculated only
during the period t = 150..220 because it is different from the distribution when the
number of pending transactions has reached is maximum value. In figure 4.26 the κ
values are shown during the period t = 150..200. The variance of the value increases
significantly in comparison to the non-congested state whereas the mean value ap-
proximately stays within the same dimension. The characteristic values amount to
µ = −2.407 and σ = 20.392. Figure 4.27 shows the distribution of κ for the interval
t = 150..200 and a normal distribution curve using the calculated values for a con-
gested system. The curves for the simulated and calculated values lead also to the
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Figure 4.25.: Number of Pending Transactions during Overload
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Figure 4.26.: Anomaly Indicator κ in Congested System State during t = 150..200
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Figure 4.27.: κ Distribution in Congested System State

assumption of a normal distributed κ and a Kolmogorov-Smirnov-Test has been done
for these values as well whose results follow. The values for the congested system
are between -41..61 and have been sorted into 42 bins whose cumulative values are
shown in table 4.2 (the table has been cropped and only shows the values between
-7 and 9.5 as the maximum appears at κ = −4.5; the full table is in appendix A in
table A.2).

As the number of bins is larger than 40, the critical value is calculated as

z =
1.22√
n

=
1.22√

42
= 0.188 (4.10)

The observed maximum value of 0.112 is smaller than the critical value and this
means that the null hypothesis cannot be rejected and the values can be assumed to
be normally distributed.

This section has shown that the κ value is normal distributed in the two interesting
load situations and that the variance increases significantly in an overload situation.
That leads to the following section which explains how a sequential analysis test is
applied so that a congestion situation can be detected.
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4.2. Implicit Load and Congestion Detection

Table 4.2.: Observed and Expected absolute Differences of Simulated and Calculated
Cumulative Distribution Functions of the Anomaly Indicator κ of a Con-
gested System (cropped)

i κi F o(κi) F e(κi) |F e(κi)− F o(κi)| |F e(κi)− F o(κi−1)|
20 -7.0 0.490 0.411 0.079 0.058
21 -6.5 0.510 0.420 0.090 0.070
22 -6.0 0.531 0.430 0.101 0.080
23 -4.5 0.571 0.459 0.112 0.072
24 -3.0 0.592 0.488 0.104 0.083
25 2.0 0.612 0.586 0.026 0.006
26 3.5 0.633 0.614 0.019 0.002
27 5.0 0.653 0.642 0.011 0.009
28 6.0 0.694 0.660 0.034 0.007
29 8.0 0.714 0.695 0.019 0.001
30 9.5 0.735 0.720 0.015 0.006

Sliding Sequential Analysis for κ

The previous sections have shown that the κ values of a non-congested and a con-
gested system differ significantly from each other. The idea behind this section is to
use the sequential analysis test developed by A. Wald and described in [59] to differ-
entiate between a normal and an overload situation. This test represents a method
of statistical inference whose characteristic feature is that the number of observations
required by the procedure is not determined in advance of the experiment [59]. These
criteria suit a collapse detection system perfectly as in general the point in time of
collapse is not known and so the number of necessary observations of the value κ for
a statistical test is unknown in advance.

The characteristics of the value κ for various load situations have already been pre-
sented in the previous section and it appears that the mean values of a congested and
non-congested system are approximately in the same order of magnitude whereas the
standard deviations differ significantly. Because of that, the test presented in chapter
8 of [59] is appropriate for the present case. It has been developed for testing that
the standard deviation of a normal distribution does not exceed a given value. If the
κ values are tested continuously with this procedure, the test should detect overload
situations.
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4.2. Implicit Load and Congestion Detection

The sequential test procedure works as follows. The smaller the standard deviation
σκ of κ, the lower the probability that the system is in a congested state. Thus,
according to [59] a value σ′κ can be defined as a limit such that the system is considered
as congested if σκ > σ′κ and as not congested if σκ 5 σ′κ. This can be formulated as
hypothesis H0 that the system is not congested:

H0 : σκ 5 σ′κ (4.11)

and hypothesis H1 that the system is congested:

H1 : σκ > σ′κ (4.12)

The test procedure defines a sampling plan for testing the hypothesis that the system
is not congested.

Two values σκ,0 and σκ,1 (whereas σκ,0 < σ′κ and σκ,1 > σ′κ) are specified to classify the
system state. For the simulated system, the previously gathered standard deviation
values for a non-congested and a congested system can be used as σκ,0 and σκ,1

respectively. If the system state is classified as congested if σκ 5 σκ,0 this is considered
an error of the first kind and if the system is classified as non-congested if σκ = σκ,1

this is considered as an error of the second kind. The probability of an error of the
first kind is denoted as α and should not exceed a small value whenever σκ 5 σκ,0

and the probability of an error of the second kind is denoted as β and should not
exceed a small value whenever σκ = σκ,1. For each iteration of the sequential test
(denoted by integer number m), the acceptance number

am =
2 log β

1−α
1

σ2
κ,0
− 1

σ2
κ,1

+m ·
log

σ2
κ,1

σ2
κ,0

1
σ2
κ,0
− 1

σ2
κ,1

,∀m ≥ 1 (4.13)

and the rejection number

rm =
2 log 1−β

α
1

σ2
κ,0
− 1

σ2
κ,1

+m ·
log

σ2
κ,1

σ2
κ,0

1
σ2
κ,0
− 1

σ2
κ,1

,∀m ≥ 1 (4.14)

is calculated. At each iteration step the sum

ξm =
m∑
i=1

(κi − µ)2 (4.15)
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has to be calculated and the inspection is continued as long as am < ξm < rm. As
soon as ξm 5 am the iteration is terminated and the system declared as non-congested
and if ξm = rm the iteration is terminated and the system declared as congested.
This calculation has to be done as frequently as possible to provide a fast response
time if a severe situation happens. However, exceedingly frequent calculations may
use many resources and therefore a tradeoff of response time and resource consump-
tion must be found. As a starting point, the simulation calculates these values every
100 ms, that is, 10 observations per second.
It is worth noting that the error of the first kind is less critical than an error of the
second kind as it is generally more critical if a congestion is not detected (because a
congestion situation can result in more severe situations as presented in section 4.1)
as if a normal situation is wrongly interpreted as congestion. Because of this, the
probability of an error of the first kind α has been set to 0.1 and β, the probability
of an error of the second kind to 0.05.
In order to prove these assumptions, the sequential test has been implemented in the
simulator IBKsim and the same two-proxy system as shown in the beginning of this
section has been used. As result the simulator saves the simulation time to a file
when it possibly detects a congestion. First a non-overloaded system with constant
load is analyzed and second a system that is firstly not congested and after some
time an overloading peak is introduced. The simulations last 2000 seconds and the
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Figure 4.28.: Results of the Sequential Analysis Test for Non-Congested System

injected load for the first simulation is approximately 80% of the capacity of the
second, weaker proxy. The calculations of κ and the sequential test start at t = 150

s and that leads to (2000 s− 150 s) ∗ 10
s

= 18500 calculations. The resulting file lists
229 lines, however, the second proxy server was never overloaded due to the injected
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Figure 4.29.: Results of the Sequential Analysis Test for Congested System

load and so it is obvious that all of these lines are false alarms, that are about 1.2%
of all calculations. Figure 4.28 depicts the test results by means of impulses, whereas
each impulse corresponds to a single detection. The second simulation introduces
overload of approximately 120% of the proxy’s capacity at t = 150 s. Figure 4.29
depicts the results of the test for this situation and it appears that it responds at the
time when the overload situation starts.

Analysis of the mechanism

Because of the false alarms in a non-congested situation presented in the last section,
it is now of interest how the number of false alarms depends on the load. In order to
analyze this, various load situations have been simulated starting from 1 transaction
per second up to 100 and the number of alarms has been logged. Because of the
processing capacity of 100 transactions per second of proxy 2 and poisson distributed
arrival times of new transactions, a total system capacity limit of 92 transactions per
second has already been identified (see also figure 4.20). That means that any alarms
given by the sequential analysis test is a false alarm if the injected load is below that
limit. Again, the simulation duration for each load situation is 2000 seconds and
the logging starts at t = 100 s. Figure 4.30 shows the number of alarms (% of total
calculations) against injected load. Below the capacity limit of proxy 2 the number of
alarms stays below the previously defined 5% error threshold level. We conclude, the
proportion of false alarms is acceptable and the proposed method works as expected.

Thereafter, several methods can be applied to reduce the outgoing load such that
the overloaded system can recover from its collapse. These methods are presented
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Figure 4.30.: Number of Alarms (% of Total Number of Calculations) against injected
Load

in the following sections. One method is to increase the re-transmission timer for
newly arriving requests to give the overloaded system sufficient time to process them,
as presented in section 4.3.2 or in [16]. Another approach is to limit the number of
pending transactions to a certain value and to reject additional requests as presented
in section 4.3.3, as well as in [15] and [24].

4.3. Congestion Handling

The previous section has shown that implicit detection is possible either by means of
measuring a delay that occurs when sending a new request until a response has been
received or by calculating an anomaly indicator that uses the number of outgoing
new- and the number of pending requests. The presented mechanisms provide the
information that a congestion situation is currently imminent or not and can act
subsequently as a trigger for the following congestion handling mechanisms. As SIP
systems generally generate revenues for an operator, it is of major interest to accept
as many requests as possible. Therefore, a so-called lossless mode to reduce load in
a congestion situation is always preferable because it tries to cope with congestion
without rejecting requests. If that is not sufficient, a lossy mode has to be applied,
where some requests have to be rejected in order to prevent a congestion collapse.
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The following section 4.3.1 shows the simulation model that has been used for this
research. Section 4.3.2 presents a lossless mode that analyzes and proposes settings
for various configurations of SIP re-transmission timers. Section 4.3.3 presents the
results of applying a rate-limiter by means of restricting the maximum number of
allowed pending transactions, a lossy mode.

4.3.1. Simulation Scenario

The simulation uses again the same models of user agent and proxy that have been
described in sections 3.3.1 and 3.3.2. The scenario basically consists of an aggregated
UAC, an aggregated UAS, and two proxies in between as depicted in figure 4.43.
Proxy 1 has ten times more processing capacity than proxy 2 and therefore the
second proxy is a bottleneck which has to be detected by the first.

Proxy 1UAC UAS

link link

Proxy 2

link

Figure 4.31.: Simulation Scenario

4.3.2. Adaptive Timer Manipulation

This section presents a detailed impact analysis of SIP timers onto the functionality
of a system and its capabilities to recover from overload situations. The results of
the simulations demonstrate that message retransmissions originating from a minor
short-term overload can force a system into a deterministic congestion collapse when
using the timer T1 settings as recommended by RFC 3261 [53]. A recovery from this
severe system overload situation is highly difficult or impossible, even if the system
load is reduced substantially afterwards [28]. Performance evaluations of various
parameters show that an increase of T1’s value significantly enhances the stability,
robustness and the ability of the system to handle overload. The resulting increase
of response times is relatively small, while overall system responsiveness can even
improve in some cases.
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4.3. Congestion Handling

Analysis of Multiple Timer Configurations

The following sections show the results of evaluations of the system’s success rate, the
total number of transmissions per transaction that is necessary for all transactions
including unsuccessful ones, the resulting fRpD as well as the processor utilization.
The retransmission timer T1 has been set to the default value recommended in RFC
3261 [53] and then the same scenario has been simulated with a timer T1 value equal
to 1 s. A background arrival rate of 80 messages per second is introduced when
starting the simulation. At t = 50 s, the arrival rate is increased to 120 messages per
second for a duration of 10 s. That causes congestion in the system as the arrival
rate clearly exceeds the capacity of proxy 2 of 100 messages per second.

Success Rate

Figure 4.32(a) shows the success rate for T1 equal to 0.5 s. After the short peak,
the system runs into a congestion collapse, and only a few transactions are handled
successfully. For a T1 value of 1 s depicted in figure 4.32(b), the proxy can process
all requests.
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Figure 4.32.: Success Rate (red crosses) and Offered Load (blue line)

Total Number of Transmissions per Transaction

Figure 4.33 shows the number of transmissions for each transaction that has been
sent until the UAC receives the first response. It illustrates that for a T1 value of
0.5 s, the system is flooded by retransmissions and that after about 70 seconds, all
requests are sent multiple times. Increasing T1 to 1 s changes this behavior to a
regular high-load situation as with this setting the system as a whole has more time
to process the requests before they get re-transmitted. During the peak load and
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some time afterwards a few requests have to be retransmitted. However, after the
peak has disappeared, all requests are processed within the first transmission and no
re-transmissions are necessary anymore, so that the system returns to a stable state.
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(a) T1 = 0.5 s
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(b) T1 = 1s

Figure 4.33.: Total Number of Transmissions per Transaction (red dots) and Offered
Load (blue line)

Final Response Delay

Figure 4.34 shows the final response delay in seconds in a scatter plot, where each
dot corresponds to a single transaction. It can be observed that for T1 = 0.5 s,
the fRpD increases up to the maximum time of 31.5 seconds. Due to the static re-
transmission timer configuration of the UAC, the dots merge to lines and each of
the lines corresponds to a single re-transmission instance. That means the lowest
line belongs to transactions that have received a response to the first transmission
of the initial request, the second lowest line to transactions that have received a
response to the second transmission and so on. This supports the assumption that
re-transmissions are unnecessary in situations where a proxy server is congested. For
T1 equal to 1 s, the fRpD increases during the appearance of the peak but decreases
afterwards and consistently stays at the previous level.

Proxy Processor Utilization

Figure 4.35 shows the processor utilization of the proxy server. It can be observed
that for T1 equal to 0.5 s, the processor of the proxy remains at 100% utilization after
the injected peak load throughout. Increasing T1 to 1 s yields a processor utilization
that decreases afterwards and consistently stays at the previous level.
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Figure 4.34.: Final Response Delay (red dots) and Offered Load (blue line)
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Figure 4.35.: Processor Utilization (red crosses) and Offered Load (blue line)

Collapse Analysis

To analyze the collapse in more detail, the same scenario has been simulated with
multiple different initial seed values and the system is expected to have the same
behavior for each run: a fast collapse after injecting a short congesting peak load.
Five hundred runs have been simulated and the distribution of the success rate after
the system is in a steady state (simulation time: 600-700 s) has been analyzed. Figure
4.36 presents the distribution of the success rate. It can be observed that for T1 =
0.5 s the success rate for all 500 runs is between 0 and 0.35, that is, in none of the
simulation runs the system could fully recover from the load peak. This verifies the
assumption that a collapse for this simulated system is unavoidable with a T1 setting
of 0.5 s. For a T1 setting equal to 1 s, none of the systems has collapsed within
700 seconds of simulation time and the distribution function shows a single peak at
SR=1.
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Figure 4.36.: Success Rate Distribution
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Figure 4.37.: Success Rate Distribution for multiple T1 settings

Adaptive Timer Manipulation

Summarizing the results presented so far, it can be concluded that increasing T1 from
0.5 s to 1 s results in more stability as none of the simulation runs has collapsed.
In [16], we have derived a more precise value of T1 achieving this effect. Figure 4.37
shows the distribution of the success rate for multiple T1 settings. It can be observed
that for a T1 of 0.5 s all runs are fully collapsed after the simulated 700 s, whereas,
increasing T1 decreases the probability that a single run collapses.

However,too large values of T1 affect negatively the fRpD of messages lost on the link.
For this reason we suggest to dynamically increase T1 after detecting an imminent
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Figure 4.38.: Success Rate when changing T1 after 50 s (red crosses) and T1 Setting
(green line)

collapse. We show that the level of increasing T1 such that the system fully recovers
highly depends on the already reached diminution of the success rate. This is also
illustrated to some detail in [16].

Figure 4.38 depicts the case of increasing the value of T1 after 50 s, showing success
rates as a scatter plot as well as the value of T1 as step function. Note that we
observed that our previously demonstrated system (we have randomly chosen one
out of our 5000 different runs) did not collapse if T1 is set to 660 ms. From figure
4.38(a), we conclude that a T1 value of 660 ms is no longer sufficient as soon as the
collapsing process has already started. Instead, a much higher T1 value (e.g. 900 ms
as shown in figure 4.38(b)) is required for the recovery.

The situation gets even worse if the T1 increase is delayed further. Figure 4.39
depicts the situation where T1 is kept at 500 ms during the first 100 s. In this case,
increasing T1 to 900 ms turns out to be insufficient now, only a T1 value of 1200 ms
leads to a satisfying result. Finally, from figure 4.39(b) we observe that in this case,
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Figure 4.39.: Success Rate when changing T1 after 100 s (red crosses) and T1 Setting
(green line)
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the convergence to full recovery takes much longer than with figure 4.38(b) (and is in
fact only reached beyond the 800 s simulation time used in our figures throughout).

Extension: Signaling Timer Modifications

As shown in the previous section, increasing the timer T1 adequately may prevent
the entire system from collapse during overload situations. Of course, from there
we may not conclude that this timer should be set to an arbitrarily large value, as
on the other hand, low values of T1 are necessary for keeping the overall fRpD low
in the case of link loss. In order to address this trade-off properly, we propose the
introduction of an additional SIP-parameter in the Via-header in order to signal the
currently optimal value of T1.
In a recent IETF draft on SIP overload control [21], Gurbani et al. introduce pa-
rameters that enable an overloaded server to signal its current state and a desired
reduction of incoming requests to the upstream neighbor. To this end, five additional
parameters to the Via header of SIP-responses are proposed as summarized in listing
4.1:

oc = "oc" [EQUAL 0−100]
oc−v a l i d i t y = " oc_va l id i ty " [EQUAL delta−ms ]
oc−accept = "oc_accept"
oc−port = "oc_port"
oc−seq = (1∗DIGIT) / (1∗DIGIT " . " 1∗DIGIT)

Listing 4.1: Proposed Via Header Extensions

Here, oc (acronym for ”overload control“) defines the desired traffic reduction over a
timespan defined by oc-validity (in ms). The third parameter oc_accept indicates
the downstream neighbour that this SIP instance is accepting and understanding
overload control messages in the presented form. The optional parameter oc_port

specifies an upstream neighbour to apply the overload control only for subsequent
requests sent to the specified port. oc_seq defines (optionally) a sequence number
associated with the oc parameter.
As the proposed parameters are only referring to inter-server-communication, based
on our simulation results we therefore suggest to add the following two new param-
eters (listing 4.2). oc-t1 signals the modified T1 and oc-t1-validity corresponds
to the validity timespan, over which this new T1 is valid.
oc−t1 = "oc_t1" [EQUAL new−T1 ]
oc−t1−v a l i d i t y = " oc_t1_val id ity " [EQUAL del ta−ms ]

Listing 4.2: Extensions to modify T1
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Note that T1 is reset to its system-wide default value (usually 500 ms) as soon as the
end of this validity timespan is reached. Moreover, we propose to extend the scope
of these parameters beyond the original request-dropping oc-signalling in order to be
able to modify also the behavior of the user agent clients. With this technique, we can
reduce the load created on a border node without perceptible reducing the quality
of the services from user perspective. We furthermore argue that in the case that
the upstream neighbor is another SIP-proxy, modifying T1 (by adding the oc-t1-
parameter) first and dropping messages with the oc parameter only if the modified
T1 is not solving the overload situation is in general preferable to request dropping
only as proposed originally in [21].

As an instructive example, a 200 OK-response of the high-loaded node reg.atl.com
answering a REGISTER request which uses the proposed extensions is presented in
the following listing 4.3:

reg . a t l . com −> proxy . a t l . com

SIP /2 .0 200 OK
Via : SIP /2 .0/UDP proxy . a t l . com : 5 0 6 0 ;

branch=z9hG4bKnvzhgd4 ;
oc−t1 =1000;
oc−t1−v a l i d i t y =60000

Via : SIP /2 .0/UDP a l i c e s p c . a t l . com : 5 0 6 0 ;
branch=z9hG4bKnashds7 ;
r e c e i v ed =192 .0 .2 .4

To : A l i c e <s i p : a l i c e@a t l . com>; tag=249334
From : A l i c e <s i p : a l i c e@a t l . com>; tag=45a4e33
Call−ID : 843817637684230 @998sdasdh09
CSeq : 1826 REGISTER
Contact : <s i p : a l i ce@192 .0 .2 .4 >
Expires : 180

Listing 4.3: 200 OK-Response with T1 Modification Headers

In the response in listing 4.3, the overload control information is added to the topmost
Via-header (as proposed in [21]). The oc-t1 is set to 1000 and the oc-t1-validity
is set to 60000. These values result in a modification of the T1-timer of the
proxy.atl.com-host to 1 second for a duration of 60 seconds for all requests sent to
the overloaded host reg.atl.com.

Summarizing, we conclude that the integration of the presented additional parameters
into the proposed overload-control-draft [21] provides a viable, cheap and efficient
solution for the manipulation of the SIP retransmission timer.
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4.3. Congestion Handling

4.3.3. Rate-Limiting

This section introduces a lossy mode method in order to reduce the outgoing load.
For this purpose a limiter module that restricts the number of pending outgoing
transactions2 has been developed. That module limits the outgoing load by respond-
ing with 503 Service Unavailable to requests that must be dropped in order to avoid
the collapse. In order to detect an overload situation, the delay-based congestion
detection (presented in section 4.2.2) has been used.

A basic load of 80 tps is offered to this system and after 50 s additional load (+40 tps)
is injected that leads to a congestion collapse at the second proxy. The goodput of this
simulation is depicted in figure 4.40. It appears that the value increases temporarily
but as soon as the buffers at the proxy server are full, the system collapses and the
goodput decreases down to about 15 msg/s (blue dots). On the other hand, the pink
dotted curve shows the same results but with activated CD system. The number of
successfully processed messages stays high and the system does not collapse. Finally,
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Figure 4.40.: Goodput with and without Congestion Detection

figure 4.41 shows the distribution of the fRpD across the whole simulation time.
Without CD, the system collapses and the fRpD is distributed across all possible
values 0..32 and a 95% percentile of 28.7 seconds. That leads to one or more re-
transmissions of nearly all transactions that cause additional load which after all is

2a transaction is pending when a request has been sent but no response has been received yet
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unnecessary. With CD, 95% of the transactions are handled within 0.355 s3 and only
a few need to be re-transmitted. In the next step the mechanism has been analyzed
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Figure 4.41.: Final Response Delay Distribution with and without Congestion De-
tection

for all load situations including overload. The focus for that is on steady state to get
feedback on the quality of the algorithm in long-lasting situations. Figure 4.42 shows
the goodput of the system without and with the implementation depending on the
injected load. It appears that the system without CD is no longer able to handle the
upcoming load of requests and collapses starting from 85 msg/s. Enabling CD allows
a constant goodput up to the capacity limit and in overload situations as well.
These results demonstrate that limiting the number of pending transactions is a
viable way to cope with a detected congestion. It allows to limit the outgoing load to
a value that the next downstream host is able to handle and thus prevents congestion
reliably.

4.4. Offloading

The previous sections have shown that congestion can be detected implicitly by an-
alyzing information such as the final response delay or the number of pending trans-
actions and how to cope with such situations in order to keep the throughput high

3this calculation does not differentiate between successful and rejected transactions
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Figure 4.42.: Goodput against Injected Load

and the fraction of rejected requests low. However, these mechanism do not change
anything of the implementation of SIP in the application software of the proxy server
and it is interesting how optimizations in that area alter the behavior in conges-
tion situations. One approach is for example, offloading some parts of SIP message
processing inside the proxy server, especially parsing, to some specialized hardware
or software. Another option is to profile the proxy server, to analyze where which
modules consume most of the processing time and to optimize that specific part.
Offloading has been a controversial issue in the last decade, especially if it comes to
TCP offloading [4]. The central idea behind it is to relieve the processor from protocol
stack processing, and even encryption has been discussed, because it is an expensive
feature in terms of computational effort [42]. But, as TCP is a highly complex
protocol, and because of various other reasons [42], TCP offloading is implemented
only rarely.
However, in the case of SIP, offloading of some protocol processing parts could be
beneficial. SIP has been designed as a text-based protocol which enhances human
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readability, but is detrimental in terms of processing efficiency. In [63], the authors
have profiled the processing of two popular SIP proxy implementations, SER [33]
and JSIP [49] and found that parsing takes up to 40 % of CPU time. They also
implemented and tested a SIP Offload Engine (SOE) that transforms SIP messages
into a binary format in a front-end and passes these binary encoded messages to the
stack. Due to their research, these changes improve throughput by 100% and reduce
the response time in overload situations.

This section uses this concept to verify if that approach changes anything to the
earlier presented overload and congestion situations and potentially if SIP offloading
can support in avoiding a congestion collapse.

4.4.1. Simulation Scenario

The simulation uses the same models of user agent and proxy that have been de-
scribed in sections 3.3.1 and 3.3.2. The same simulation scenario as described in
previous section 4.2.3 has been used, and is only described here in brief. It consists
of an aggregated user agent client, an aggregated user agent server, and two proxies
in between and is depicted in figure 4.43. Proxy 1 has ten times more processing

Proxy 1UAC UAS

link link

Proxy 2

link

Figure 4.43.: Simulation Scenario

capacity than proxy 2 and therefore the second proxy is a bottleneck. To simulate
the SIP offload engine the percentage of processor time that the parsing part needs
is decreased, because the parsing of binary messages is more effective. According
to [63], the amount of that reduction is 36 % for SER and 64 % for JSIP. Previously
the model used in this thesis assumed that 20 % of CPU time is used for parsing and
the following sections test the effects of decreasing that amount by these values (12.8
% and 7.2 % respectively).
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4.4.2. Results

The same load patterns as used in section 4.1.1 are also used in this section. The sys-
tem is started with 80 new transactions per second that are sent to the proxies, and
after 50 s, an overloading peak of 120 new transactions is introduced for a duration
of 10 s. That leads in the system tested in section 4.1.1 to a congestion collapse that
can heavily recover by itself. Figure 4.44 shows the success rate with implemented
SOE for both improvement factors. All transactions are handled successfully within
the simulated time. Figure 4.45 shows the fRpD for the same scenario and that it in-
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Figure 4.44.: Success Rate with SOE Improvement (red crosses) and Offered Load
(blue line)

creases slightly for the duration of the overloading peak but decreases to its previous
level afterwards. In figure 4.46 the total number of transmissions per transaction is
shown and it is obvious that during the overloading peak the number increases for
all transactions but drops to one transmission afterwards.
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Figure 4.45.: Final Response Delay with SOE Improvement (red dots) and Offered
Load (blue line)
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Figure 4.46.: Total Number of Transmissions per Transaction with SOE Improvement
(red dots) and Offered Load (blue line)
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Figure 4.47.: Success Rate with SOE and prolonged peak (red crosses) and Offered
Load (blue line)

The figures show that improving the efficiency of parsing significantly changes the
behavior of the SIP proxy as it never reaches a congestion collapse for the simulated
scenario and thus leads to considerable stability enhancement. However, increasing
the background load to 90 new transactions per second and prolonging the peak to
100 seconds (instead of 10 seconds) as well as increasing the peak load to 150 new
transactions per second again leads to a congestion collapse from which the system
cannot recover by itself. Figure 4.47 shows the success rate of that simulation. While
the peak load is active, the success rate decreases down to zero (that means also that
all transactions are transmitted the maximum number of 11 times) and as soon as the
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load returns to its previous level of 90 new transactions per second the SR increases
to about 0.6. This means that still many transactions are re-transmitted 11 times
even if the load is below the capacity limit of the proxy server.
It can be concluded that SOE is indeed able to increase the performance of a SIP
system and to decrease the probability of a congestion collapse, but in more extreme
situations better methods for overload protection are necessary. That finding is also
in accordance with the results of [63].

4.5. Application Scenarios

The previous section has shown that congestion can appear in high-load situations
and that appropriate countermeasures can improve the goodput and the time to
complete recovery. This section presents real-world scenarios that may lead to such
negative effects and how the previously introduced congestion detection mechanisms
affect the overall situation. The examinations of this section use short-time period
effects as source of high load that can appear in several situations:

- partial infrastructure outage

- “call-now” lotteries

- public holidays, especially New Year’s Eve

- begin, midday and end of working days

During or after these events many user agents try to send messages to other user
agents or servers, therefore causing overload in scenarios demonstrated below. As first
scenario, the standard presence service has been chosen because it creates already a
huge number of messages in normal operation, leading to a flood of messages if many
users update the presence state of their buddy list within a short time period. The
second scenario is the registration service that requires by design two consecutive
requests to be sent to a registrar server. This may also lead to a huge amount of
messages if many users register their UAs in a short time period.

4.5.1. Presence

The presence service distributes information about the state of a user to a list of
buddies. For this purpose it uses the event notification framework extension for
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Proxy 1Watcher Presentity

link link

Proxy 2

link

Figure 4.48.: Simulation Scenario for Presence Service

SIP [50] and the event state publication mechanism, defined in [44]. To demonstrate
the performance problem of this service in a worst-case scenario, the point-to-point
presence has been chosen, which sends presence messages directly to other user agents
(see also section 3.3.5).

Simulation Scenario

The scenario used for this simulation, depicted in figure 4.48, has two proxy servers
where proxy 2 plays the role of a bottleneck and a watcher that subscribes to the
presence state of the presentity. The watcher and the presentity represent a vari-
able number of users and each watcher has to subscribe to the presence state of its
presentities. The presentities notify all subscribed watchers on any presence status
update.

For performance evaluations an estimation of the number of messages that the watcher
and the presentity exchange is presented as follows. The number of messages ex-
changed between watchers and presentities per day depends on the number of users
nu, the number of buddies in the user’s buddy lists nb and the number of presence
updates a day np. This causes n = nu ·nb ·np messages a day for updating the presence
state (hereby neglecting messages for maintaining the subscriptions). The authors
of [30] assume that a domain has 40.000 watchers that have 4 presentities in their
buddy list and the presentities change their state 3 times per hour. Then the total
number of messages n that are sent due to state changes amounts to 11.520.000 per
day or 133 per second. However, new services that use the SIP presence extension
such as location could cause more presence state updates. This estimation shows that
the presence service is ineffective if used in the way standardized by [50] and [44].
Anyhow, these values are exaggerated to be directly used by simulations because the
same effects can be shown with lower amounts. Because of huge resource requirements
of large simulation scenarios, the author has chosen to simulate a smaller amount of
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messages and SIP nodes.
However, the following examinations of the presence service use a mandatory re-
subscription to the presence state because of a partly infrastructure failure of an
operator. Due to that failure situation, a part of the clients have to re-subscribe to
the presence state of the users in their buddy list as soon as the failed part of the
infrastructure is re-started and they therefore create the following messages.

- One SUBSCRIBE message to each presentity in the list

- One NOTIFY message sent from each presentity to subscribed watchers

To stay consistent with the values chosen in sections 4.1.1, the following assump-
tions have been made for the simulations of this section. The processing capacity
of proxy 2 is set to 100 transactions per second and background traffic generates 80
transactions per second. To create an overloading situation like in section 4.1.1, the
number of watchers that have to re-subscribe is set to 50 with 4 presentities each.
All watchers send the new subscription within 10 seconds after re-start of the failed
part. This leads to 200 SUBSCRIBE messages that are sent within 10 seconds or
20 per second plus one NOTIFY for each SUBSCRIBE that has reached the presen-
tity, totaling 40 additional messages per second. Thirty seconds after the simulation
starts, the watchers start to subscribe to the presentities and 250 seconds after the
presentities have received a subscription message, they change their presence state.
If a watcher does not receive a notification within 90 seconds after initial sending of
the subscription message, it re-sends the subscription request.

System without Protection

This section presents the behavior of the previously described setting for a SIP system
that has no protection against congestion. At the beginning, the watchers start an
initial subscription to the presence state of the presentities during a period of 10
seconds. Subsequently, the presentities send notifications to their watchers whenever
they change their presence state.
Figure 4.49 shows the number of active subscriptions against time for that system.
A subscription is considered as active as soon as the watcher receives a NOTIFY
message. After the start of the presence service the number of active subscriptions
increases until all 200 subscriptions are active. The processor utilization of Proxy
2 is shown in figure 4.50 and stays at about 0.8 before the presence service starts
because of the background load. As soon as the presence service starts, the processor
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Figure 4.49.: Number of Active Subscriptions for a System without Protection
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Figure 4.50.: Proxy 2 Processor Utilization for a System without Protection

103



4.5. Application Scenarios

utilization increases to 100 % and stays at this value even though the sending of
new subscriptions ends with t = 40 s. The value does not decrease back to the
previous level because the system has run into a congestion collapse. Therefore, all
transactions are re-transmitted because they do not receive a final response within
500 ms even though the overloading peak already disappeared4.
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Figure 4.51.: Success Rate for Background Traffic for a System without Protection

Figure 4.51 shows the success rate for the background traffic that decreases immedi-
ately after the start of the presence service and that reflects perfectly the congestion
collapse situation. At t = 280 s the success rate decreases further because the presen-
tities change their presence state and notify their watchers. This creates additional
traffic that further increases the load on proxy 2. Totally, 33.3% of all requests sent
during the overload situation (t > 30 s) have been successful, that means, have
received a 200 OK response.
Figure 4.52 shows the total number of transmissions per transaction, illustrating that
during the re-subscription of the watchers all transactions are sent multiple times.
This creates a huge unnecessary load on the proxy server that leads to a congestion
collapse, the system being unable to recover by itself from this situation.
Summarizing, this system suffers from a congestion collapse because a partly failure
of the infrastructure has resulted in a re-subscription of the presence state of the

4compare section 4.1.1
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Figure 4.52.: Total Number of Transmissions per Transaction for a System without
Protection

watchers. The system is not able to recover from this state and further load caused
by status updates worsens the situation.

Delay-Based Detection

The previous section has shown that a system without congestion detection suffers
from unnecessary load and runs into a congestion collapse caused by presence sub-
scriptions. This section shows that implicit congestion detection as presented in
section 4.2.2 avoids unnecessary load and leads to immediate recovery from overload.
The number of active subscriptions, shown in figure 4.53 increases in three steps.
The first step represents subscriptions that receive a notification within the first 10
seconds. However, due to rejects that occur because of overload, that is not the
case for all. The second step are subscriptions that have not been successful in
the first try and therefore re-send the initial subscription, whereas the third step
corresponds to subscriptions that have been rejected in the second try. Eventually
all 200 subscriptions are active.
The resource-usage of the delay-based detection system is lower than for the system
without any protection, as shown in figure 4.54 that depicts the processor utilization.
As soon as the presence service starts (simulation time > 30 s), the values increase
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Figure 4.53.: Number of Active Subscriptions for Delay-based Detection
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Figure 4.54.: Proxy 2 Processor Utilization for Delay-based Detection
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up to the maximum and decrease to the previous level immediately after the initial
subscription messages have been sent.

For the background traffic the situation is considerably enhanced as the success rate
shown in figure 4.55 stays consistently at 100 %. Note that a transaction is considered

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250  300  350  400

S
uc

ce
ss

 R
at

e

Time [s]

Figure 4.55.: Success Rate for Background Traffic for Delay-based Detection

to be successful if it has received a final response, that means a 200 OK response
as well as all other response codes except 1xx. Because a part of the incoming mes-
sages have to be rejected because of overload, Proxy 1 sends 503 Service Unavailable
responses to that part. A UAC that receives a 503 response to a request completes
indeed the transaction, but the service request is not fulfilled in this case. For that
reason the ratio of successful service requests (that is, transactions that received a 200
OK) to unsuccessful service requests (that is, transactions that received a 503 Service
Unavailable) has been calculated. For this system using delay-based detection this
ratio amounts to 99.1% (compared to 33.3% for the system without any protection).

The total number of transmissions per transaction is shown in figure 4.56. Only a few
transactions need to be re-transmitted, which is a major enhancement in comparison
to the system without any protection. Less unnecessary load is created and a conges-
tion collapse is avoided. The system remains fully functional and nearly all service
requests are handled positively, that is, all requested presence state subscriptions are
active and 99.1% of the background traffic is handled.
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Figure 4.56.: Total Number of Transmissions per Transaction for Delay-based Detec-
tion

Pending-Transaction-based Detection

The application of the anomaly indicator onto the presence-service shows that pending-
transaction-based detection can avoid a congestion collapse too, and that the system
immediately recovers from this overload situation. Figure 4.57 shows again the num-
ber of active subscriptions that increases in two steps up to the number of 200 sub-
scriptions. After 130 seconds, 100% of all possible subscriptions are active, which
is faster than the delay-based system, that needs 100 seconds more. The processor
utilization (figure 4.58) increases up to the maximum during the initial subscription
but decreases immediately afterwards to the value caused by the background load.
The success rate of background traffic stays at 100% throughout the whole simulation
duration and 97.8% of all transactions receive a 200 OK response. The total num-
ber of transmissions per transaction shows a similar shape than for the system with
delay-based detection. Only a few transactions need to be re-transmitted. Summa-
rizing, the activation of the pending-transaction-based detection avoids a congestion
collapse and significantly reduces unnecessary traffic.
At a glance, enabling any of the two presented implicit congestion detection mech-
anisms enhance the overall situation in a system that is flooded by a huge load of
messages and reduces the number of redundant re-transmissions. The delay-based
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Figure 4.57.: Number of active Subscriptions for Pending-Transaction-based Detec-
tion
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Figure 4.58.: Proxy 2 Processor Utilization for Pending-Transaction-based Detection
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Figure 4.59.: Success Rate for Background Traffic for Pending-Transaction-based De-
tection

detection on one hand requires more time until all subscriptions are active but han-
dles slightly more background traffic. The pending-transaction-based detection on
the other hand, allows overall a faster subscription with the drawback of a slightly
lower success rate than the delay-based mechanism.

4.5.2. Register

The SIP registration is necessary if a UA shall be reachable using a generic URI
(for example sip:egger@tuwien.ac.at) rather than a plain IP address (see also section
2.1.1). Typically, a SIP registrar challenges the UAC for credentials after receiving a
registration request by sending the nonce, a unique number that is only used once.
The UAC uses this number to encrypt the credentials and sends a second registration
request to the registrar that contains this encrypted response. If the credentials
are correct, the registrar sends a 200 OK message back to the UAC that contains
a time that denotes when that registration expires. The UAC has to re-register
within that time in order to keep the registration active. These consecutive requests
may create an overloading peak that repeats every time when the clients refresh
their registration. This bulk re-registration overload is analyzed in this section. An
application specific optimization that avoids this re-register synchronization can be
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achieved by randomization of expiration time. Because an operator can not trust that
the user’s clients support random expiration time, the registrar must send a expiration
time to the client that lies between a pre-set minimum and the client-requested value
or a pre-set maximum.
The following sections present the number of active registrations throughout the
simulation time. A registration is considered active after the client has received a 200
OK message to the second registration request (the one including credentials) and
within the agreed registration interval.

Simulation Scenario

The registration scenario consists of a UAC that represents several users, two proxies,
where proxy 2 plays as in the previous section the role of a bottleneck and a Registrar
that stores the registrations of the UACs (Figure 4.61). Again, a background load of
80 transactions per second is generated and proxy2 has a processing capacity of 100
transactions per second. To simulate the same load pattern as previously, the UAC
represents 200 clients that register themselves within 10 seconds 30 seconds after the
simulation started. This results in additional 40 transactions per second, that are 20
initial registration messages per second and 20 registration messages per second that
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Figure 4.60.: Total Number of Transmissions per Transaction for Pending-
Transaction-based Detection
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Proxy 1UAC Registrar

link link

Proxy 2

link

Figure 4.61.: Simulation Scenario for Registration Service

contain credentials. In order to present the effects of re-registration, the expiration
time is set statically to 300 seconds5. If a registration is unsuccessful either because no
response has been received or if expired, the UAC retries after 10 seconds. The total
simulation time is expanded to 1000 seconds in order to present multiple expirations
and re-registrations. The registrar is configurable to send a random expiration time
to the client, that is distributed uniformly over a pre-set minimum of 5 seconds and a
maximum of 300 seconds. The minimum value of 5 seconds has been chosen because
the SIP standard [53] defines a Timer K for the Non-Invite state machine. This
timer has been designed to let the client state machine wait for potential response
re-transmissions and after this timer expires, the state machine can be deleted. In
order to save resources on the machine running the SIP client it is required to wait
until the previous state machine is destroyed before creating a new one.

System without Protection

This section illustrates the behavior of a system without any protection that suffers
from a high number of clients that register within a short period. A static expiration
time is configured for the scenario before the registrar uses a random expiration time.

Static Expiration Time

The number of active registrations, shown in figure 4.62 increases to the maximum of
200, but the additional traffic is enough to bring the system into a congestion collapse.
At t = 330 s, the clients start to re-register because the expiration time is reached.
Due to the occurrence of the congestion collapse situation no attempts succeed and
eventually no registrations are active. The system remains in the congestion collapse
situation and is not able to recover by itself. At t = 810 s, a few clients manage to

5A major austrian operator uses this value in a commercial SIP deployment
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Figure 4.62.: Number of Active Registrations for a System with Static Expiration
Time and without Protection

activate their registrations, but 300 seconds later they expire because the congestion
situation is still present.

Random Expiration Time

Randomization of the expiration time appears to relieve the system partly because
the re-registration attempts do not appear as a single bulk but uniformly distributed
over a specific time frame. Simulating the same scenario but including randomized
expiration times gives the results depicted in figure 4.63. The graph does not show
any improvement because the collapse is already caused by the initial registration
requests and a randomization of the expiration time simply results in earlier expiry
of some registrations and is thus no enhancement in such a situation.

Delay-Based Detection

The same scenario has been simulated with activated delay-based congestion de-
tection. The number of active registrations is plotted in figure 4.64. The value in-
creases up to the maximum of 200 possible active registrations and stays at this value
throughout the entire simulation time. The system does not fall into a congestion
collapse and all transactions are handled successfully. An expiration time randomiza-
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Figure 4.63.: Number of Active Registrations for a System without Protection and
Randomized Expiration Time
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Figure 4.64.: Number of Active Registrations for Delay-based Detection

tion does not enhance the performance because all registrations are already active.
Concluding, the activation of delay-based detection prohibits a congestion collapse
and enables the system to handle more clients.
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Figure 4.65.: Number of Active Registrations for Pending-Transaction-based Detec-
tion

Pending-Transaction-based Detection

In this section the pending-transaction-based detection mechanism has been tested
for the registration service. Figure 4.65 shows that the number of active registrations
increases up to the maximum of 200 and stays at this value throughout the entire
simulation duration. Additional expiration time randomization does not yield any
improvements as all possible registrations are continuously active. For the pending-
transaction-based detection the same conclusion as for the delay-based detection can
be drawn. The system does not fall into a congestion collapse and the system can
handle all clients as required.

4.6. Summary and Strategy Recommendations

This section has shown that the new simulation environment that has been built for
this thesis is able to reproduce known performance drawbacks of SIP. It has demon-
strated that a congested SIP system leads to multiple redundant re-transmissions of
requests and that results in additional load on that system. Two approaches have
been developed. The first one, a delay-based congestion detection mechanism, which
tracks the fRpD of all SIP transactions that occur within a certain interval and uses
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the 95% percentile of these values as trigger for subsequent actions. If the percentile
is above 500 ms, a system is considered to be congested, because it is assumed that
a non-congested system does not require any re-transmissions. The second approach
uses the number of pending transactions and the number of sent requests and calcu-
lates a so-called Anomaly Indicator that is as well used as trigger for counteractions.
This value is calculated as the quotient of the first derivation with respect to time
of these numbers. Counteractions are partitioned into so-called lossless modes and
lossy modes. Lossless modes try to give the system sufficient time to handle the
upcoming load without rejecting any requests. Lossy modes reject a part of the in-
coming requests in order to reduce the load on a congested system. It has further
been shown that offloading cannot completely prevent a congestion collapse because
it just shifts the point of load where the system flips into collapse. Scenarios for com-
mon applications have shown that overload in SIP systems can evolve out of typical
usage.
From the results of this chapter can be concluded that it is worth to implement an
implicit congestion detection mechanism. They are resource-saving and particularly
do not require any implementation on systems that are closed source and thus im-
mutable. However, in case of huge traffic and delay variations, implicit congestion
detection mechanisms might operate unreliably. In these scenarios we recommend to
use it as a trigger for lossless congestion handling and avoid lossy operation.
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5. Measurement-based Verification

The last sections have shown that an improvement of the SIP signaling performance
can be achieved by means of different methods. Measurements of implicitly avail-
able values and appropriate adaption of the outgoing rate of new transactions or of
re-transmission timers can result in a major improvement. However, these results
have been gained through simulation of the protocol and are therefore highly depen-
dent of the simulation scenario configuration and the quality of the used simulation
models. These configurations and models have been built to the best of the author’s
knowledge and belief, but in order to enhance the quality of the results, the simu-
lated mechanisms have been implemented in a physical hardware SIP proxy server
and thoroughly tested. The following sections show the set-up of the scenario for the
measurements and the congestion detection mechanisms that uses the final Response
Delay as well as the newly developed anomaly indicator as a trigger. Main goal of
this section is therefore to reproduce the simulation results that have been presented
in section 4.2 in a real world system.

5.1. Measurement Set-Up

For the measurements a Java-based SIP proxy has been used that has been imple-
mented at the Institute of Telecommunications at the Vienna University of Tech-
nology. This proxy has been chosen because it is designed for easy integration of
new overload detection mechanisms, either explicit or implicit and because of freely
available source code. It has modules implemented for explicit overload signaling
standardized by the IETF in [21] and an implicit mechanism published in [24]. The
implementation is not designed for commercial deployment but rather as a prototype,
which facilitates easy integration of various congestion detection methods.
The scenario used for the following measurements follow the simulation scenarios
presented in earlier sections. Detection of congestion in a downstream proxy is the
goal and therefore a two-proxy scenario where the second proxy plays the role of a
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Figure 5.1.: Measurement Set-Up

bottleneck and congested entity has been chosen. Figure 5.1 shows an overview of the
measurement set-up. The UAC message-generation is done on a Intel Core2 Quad
using the industry-standard tool SIPp [31]. This tool generates new SIP messages at
a configurable rate on a best-effort basis with no configurable arrival process. That
issue is shortly discussed in section 5.3.1. SIPp complies to the SIP standard and
implements the required state machines for INVITE and non-INVITE transactions.
Proxy 1 acts as outbound proxy for the UAC, runs on an Intel Core2 Duo and
executes the congestion detection mechanisms. Proxy 2 is the inbound proxy of
the UAS and the bottleneck as its CPU can easily be outperformed by both the
UAC’s and proxy 1’s CPUs. The SIPp UAS runs on an identical machine like the
SIPp UAC and has therefore well enough processing capacity to outperform proxy
2. This set-up ensures that proxy 2 acts as bottleneck which has to be detected and
handled accordingly to the implemented detection and control mechanism by proxy
1. All machines are connected by Gbit Ethernet interfaces and network in order to
have sufficient transmission capacity and to focus on effects that appear because of
congestion in the overloaded proxy. In order to remove any transient effects when
starting and stopping the measurement, the first 60 seconds as well as the last 60
seconds are omitted for all statistical evaluations.

5.2. Measurement Results

This section presents foremost the measured behavior of an unprotected system and
then the improvements that are gained by means of the previously developed implicit
congestion detection and handling mechanisms.
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5.2.1. Unprotected System

This section describes how an unprotected system reacts to overload. First, a constant
load of a specific rate is generated and the behavior is documented in the following
section, before the transient behavior is described for a short peak load scenario.

Constant Load

The UAC generates loads from 600 transactions per second (tps) up to 800 tps and
the final Response Delay (fRpD) is measured as well as the success rate and the total
number of transmissions per transaction. Figure 5.2 shows the progress of the fRpD
for a load of 600 tps over a period of 300 s. This load does not overload Proxy2.
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Figure 5.2.: fRpD Progress for 600 tps

The fRpD stays consistently below 500 ms (average 23.7 ms) and no request has to
be re-transmitted. The periodic peaks are caused by the garbage collector of the
Java implementation of the proxy server1. Increasing the load towards the processing
capacity changes the characteristics of the fRpD as shown in figure 5.3 for a load of
744 tps. The peaks that are caused by the Java garbage collection increase because
the process has to handle more data. This results in several re-transmissions that are,
however, harmless for the system. Completely different is the behavior in an overload

1This behavior described to some detail in section 5.3.2
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Figure 5.3.: fRpD Progress for 744 tps
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Figure 5.4.: fRpD Progress for 850 tps

situation (850 tps); many requests have to be re-transmitted and that results in a
fRpD plot that is shown in figure 5.4.
Here the fRpD values are widely distributed and the re-transmissions are clearly
visible through the grouping of some values into layers. The behavior that is docu-
mented here is completely consistent with the simulated results presented in section
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5.2. Measurement Results

4.1.1. Summarizing, the goodput, calculated as the number of successful requests
(that is, requests that received a 200 OK response) per second against the injected
load is plotted in figure 5.5. The goodput increases linearly with the injected load up
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Figure 5.5.: Goodput against Injected Load: no Congestion Detection

to a number of 749 tps. Above this value, the goodput decreases because the proxy
server has reached its processing limit and many requests have to be re-transmitted.
These re-transmissions need additional processing time and therefore decrease the
remaining CPU time for new requests as well as the overall goodput.

Peak Load

This section describes a more dynamic scenario. Starting, a constant non-overloading
rate of 700 tps is generated and after 30 seconds, an overloading peak of additional 200
tps is injected. Figure 5.6 shows the fRpD of this scenario. The peak load is injected
starting from t = 30 s until t = 90 s and during that time, the fRpD rises and shows
the same behavior as documented for overload situations in the previous section.
After the load decreases back to its previous level of 700 tps, many requests must
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Figure 5.6.: fRpD Progress (red crosses) for 700 tps Background Load and 900 tps
Peak Load (blue line): No Congestion Detection
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Figure 5.7.: Total Number of Request Transmissions per Transaction (red crosses)
for 700 tps Background Load and 900 tps Peak Load (blue line): No
Congestion Detection

still be re-transmitted and the system needs additional 55 s until it has fully recovered.
This is also demonstrated in figure 5.7 that shows the total number of transmissions
per transaction. During the peak load and 55 s after the peak has disappeared,
many requests are re-transmitted what creates additional load that is unnecessary
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Figure 5.8.: Success Rate (red crosses) for 700 tps Background Load and 900 tps
Peak Load (blue line): No Congestion Detection

after all on a system that is already overloaded. The success rate, depicted in figure
5.8 shrinks to nearly 80% during the peak and also indicates that the system needs
approximately 55 s until it has fully recovered.
Previous sections have shown that an unprotected system is prone to congestion and
that re-transmissions cause additional load on an already overloaded system. This
leads to a shrinking goodput with increasing load and unprotected systems need a
long time to recover, even if a peak appears only for a short time. During that
recovery time, many requests still time out and do thus not generate revenues for
the system’s operator. The following sections show how the congestion detection
mechanisms developed throughout this thesis and tested by means of simulations
perform in a physical environment.

5.2.2. Delay-based Detection

Section 4.2.2 has shown that the fRpD is dependent on the injected load; the higher
the load, the longer it takes processing the requests. For evaluation of the fRpD
values, rates of 10 tps up to 1000 tps in steps of 1 tps have been measured. Each
measurement runs for 600 s to have sufficient transactions for statistical analysis, the
first and last 60 seconds are omitted. Figure 5.9 shows the distribution of the fRpD
of all messages for rates of 600, 700 and 730 tps and that similar as for the simulation
the delay increases with increasing load. As the delay-based detection mechanism de-
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Figure 5.9.: Distribution of fRpD for the Measurement of various Load Amounts
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Figure 5.10.: 95% Percentile of fRpD Depending on Load

veloped in section 4.2.2 uses the 95% percentile of the fRpD for congestion detection,
this value is calculated for the measurements as well. Figure 5.10 shows the 95% per-
centile of the fRpD for the range of 600..750 tps. The fRpD increases with increasing
load similar to the simulation results, but in a different scale and behavior. Because
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of the nearly deterministic arrival process of the used message generator SIPp, the
processing capacity of the proxy server appears as a steep increase of the fRpD at a
rate of 733 msg/s.2 This value is slightly lower than the value of 749 tps detected
in the previous section because some requests are successful after re-transmission.
However, the goal of this delay-based detection mechanism is to prevent unnecessary
re-transmissions and therefore the desired limit is found where the 95% percentile is
just below 0.5 s. This section starts with analyzing the behavior of the delay-based
mechanism using a constant load and later shows the peak load scenario as for the
unprotected system.

Constant Load

The rise of the delay with the injected load is a pre-requisite that a delay-based con-
gestion detection mechanism can be applied because the delay increases significantly
when the processing capacity is reached. As next step, the delay-based congestion
detection mechanism has been implemented as described in section 4.2.2. The system
measures the fRpD values continuously and takes the values of the past 5 seconds
for the calculation of the 95% percentile. Again, measurements for rates of 50 up to
1000 tps have been started and the goodput has been calculated.
Figure 5.11 (solid red line) shows the goodput against injected load for this mea-
surement. The values increase with increasing load. The dashed line shows the
same curve for an unprotected system as presented previously. In overload situations
(loads above 733 tps), the goodput of the CD system clearly exceeds the unprotected
system. This figure shows that the system with delay-based congestion detection
performs better in overload situations, since it maintains the goodput close to the
system’s processing capacity.

Peak Load

As for the system without protection, a constant non-overloading rate of 700 tps is
generated and after 30 seconds, an overloading peak of additional 200 tps is injected.
The delay-based congestion detection mechanism indicates the behavior shown by
means of the fRpD progress in figure 5.12. The fRpD increases for some transactions
during the peak load, but decreases rapidly after the peak disappears. The total

2the capacity is defined as the point where the 95 % percentile of the fRpD is just below 0.5 s, in
order to prevent a congestion collapse because of too many re-transmissions
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Figure 5.11.: Goodput against Injected Load: Delay-based Congestion Detection
Compared to Unprotected System
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Figure 5.12.: fRpD Progress (red crosses) for 700 tps Background Load and 900 tps
Peak Load (blue line): Delay-based Congestion Detection
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number of transmissions per transaction points out that some transactions are re-
transmitted during the peak period and that afterwards the characteristics return to
normal, that is, nearly all transactions succeed after a single transmission. Figure
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Figure 5.13.: Total Number of Request Transmissions per Transaction (red crosses)
for 700 tps Background Load and 900 tps Peak Load (blue line): Delay-
based Congestion Detection

5.14 shows the success rate for the delay-based congestion detection that decreases
only slightly and is up at 100 % immediately after the peak has disappeared.
Summarizing, the delay-based congestion detection mechanism does not completely
prevent any re-transmissions during an overloading peak but does significantly reduce
the time that the system requires until it has completely recovered. Additionally, the
success rate during the overload situation is higher than without any protection.

5.2.3. Pending-Transaction-based Detection

This section presents the measurement results of the implementation of the pending-
transaction-based congestion detection mechanism presented in section 4.2.3. That
section has shown that an anomaly indicator, calculated from the number of cur-
rently pending transactions and the current load can indicate a congestion situation.
The same algorithm as for the simulation has been implemented for the real-world
measurements. The anomaly indicator κ is calculated as the quotient of the deriva-
tions of the load and the number of pending transactions with respect to time. The
proxy calculates these values once per second and figure 5.15 shows the progress of
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Figure 5.14.: Success Rate (red crosses) for 700 tps Background Load and 900 tps
Peak Load (blue line): Delay-based Congestion Detection
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Figure 5.15.: Anomaly Indicator κ in Non-congested System State

the anomaly indicator κ for a non-congested system that is loaded by 300 tps. The
value fluctuates between −1 and 10 with some peaks that occur due to the Java
garbage collector3. Characteristic values amount to µ = 0.589 and σ = 6.780, that is,
within a similar order of magnitude as the simulations. The next measurement starts

3see section 5.3.2
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Figure 5.16.: Anomaly Indicator κ in congested System State

with a basic load of 700 tps and injects additional 200 tps after 60 seconds. The
progress of the measured anomaly indicator value is shown in figure 5.16. κ increases
significantly when the overload is injected to characteristic values of µ = 100.067 and
σ = 83.097. This is different to the simulation where the mean value stayed within the
same range as for the non-congested state but the standard deviation has increased.
The significant change of the mean value of the measured κ value implies that the
sequential test that has been applied for the simulations (Testing that the standard
deviation of a normal distribution does not exceed a given value) is not applicable
for the measurement. Abraham Wald describes in [59] various sequential tests and
the test testing that the mean of a normal distribution with known standard deviation
does not fall a given value is appropriate and has been used and implemented for the
measurements (see chapter 7 in [59]).

Constant Load

The measurement applies the same scenarios as the previous section for rates of 100
to 1000 tps and as result, the goodput against the injected load is shown in figure
5.17. The values increase with increasing load and stay at the maximum processing
capacity of approximately 733 tps also in overload situations as the solid red line in
figure 5.17 shows. The dashed line shows again the behavior of the system without
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Figure 5.17.: Goodput against Injected Load: Pending-Transaction-based Conges-
tion Detection

congestion detection. In non-overload situations the unprotected system performs
slightly better because of the Java garbage collector that leads to some peaks in the
anomaly detector κ as shown in figure 5.15 and therefore some requests are rejected
mistakenly (considered to be false positives). Figure 5.18 shows the percentage of
rejections of requests because of the Java garbage collector depending on the injected
load and that this value stays below 2% what is acceptable because a limit of 10%
has been defined for errors of the first kind.

Peak Load

Again, SIPp generates a background load of 700 tps and after 30 seconds of operation
an overloading peak of additional 200 tps and 30 seconds duration. Figure 5.19 shows
the fRpD values measured for this set-up. The values stay low almost permanently,
only a small number of transactions last longer. Only a few requests need to be
re-transmitted (see figure 5.20) and thus the overloaded system is not flooded by
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Figure 5.18.: Mistakenly Rejected Requests against Injected Load: Pending-
Transaction-based Congestion Detection

 0

 5

 10

 15

 20

 25

 30

 0  50  100  150  200  250  300
 0

 200

 400

 600

 800

 1000

fin
al

 R
es

po
ns

e 
D

el
ay

 [s
]

O
ffe

re
d 

Lo
ad

 [t
ps

]

Time [s]

Figure 5.19.: fRpD Progress for 700 tps Background Load and 900 tps Peak Load:
Pending-Transaction-based Congestion Detection
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Figure 5.20.: Total Number of Request Transmissions per Transaction for 700 tps
Background Load and 900 tps Peak Load: Pending-Transaction-based
Congestion Detection
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Figure 5.21.: Success Rate for 700 tps Background Load and 900 tps Peak Load:
Pending-Transaction-based Congestion Detection

re-transmissions throughout the entire measurement duration. Similar is the plot of
the success rate, shown in figure 5.21, only few measurements show a success rate
below 100%.
Recapitulating, the pending-transaction-based congestion detection is able to recog-
nize overload situations and to react adequately, leading to a fast recovery after the
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overload has disappeared.
Summarizing, the measurements in real systems confirm the simulative results in that
both approaches, the delay-based as well as the pending-transaction-based approach
lead to a better overall performance of an overloaded SIP system. Figure 5.22 shows
a goodput comparison of both approaches. However, it is impossible to derive a
recommendation from this graph as both curves show a very similar shape.
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Figure 5.22.: Goodput against Injected Load: Comparison of Pending-Transaction-
based and Delay-based Congestion Detection
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5.3. Limiting Factors

A series of factors limit the representativeness of performance measurements for the
real system. This section discusses these shortcomings. First discussed is the unde-
fined arrival process of SIPp and second the influence of the Java garbage collector
to the delay.

5.3.1. SIPp arrival Process

SIPp generates new messages at a configured rate on a best-effort basis and runs
single-threaded. This means that there is no guarantee that a specific rate can be
reached. Moreover, the arrival process is undefined. The solid red curve in figure
5.23 shows the distribution of measured inter-arrival times for a rate of 300 tps over
a duration of 60 seconds. Because of the non-deterministic behavior of a standard
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Figure 5.23.: Measurement Set-Up

Linux kernel, there is no guarantee that a specific process can use the CPU at a
specified time. Therefore SIPp can not generate messages on a deterministic basis
and also no specific inter-arrival distribution can be guaranteed. However, as the
distribution range is small in comparison to the measured fRpD values4, the arrival
rate is considered to be nearly deterministic.

4inter-arrival time range: 3 ms, fRD average for 300 tps: 20 ms
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Nevertheless an experiment to attempt to implement a Poisson arrival process in
SIPp has been started. The blue dotted curve in figure 5.23 shows the distribution
of the inter-arrival times of this implementation. The plot shows a steep increase to
approximately 0.4 at low values, that is, nearly 40% of all messages are sent directly
after each other and that does not correspond to a Poisson distribution (black dashed
curve). For this reason and because SIPp is a standard industry tool that is used
oftenly for performance checks, the author decided to use the original implementation
of SIPp for the measurements.

5.3.2. Java Garbage Collector

During analysis of the measurement, especially of the fRpD values, peaks were rec-
ognizable that have been inexplicable at first sight. After deep examination, and
because these peaks appear periodically, one thought has been that the Java garbage
collector (GC) is responsible for that. Java allows to log the time stamps that state
when the garbage collector has been activated and the amount of time it needed.
Figure 5.24 shows these time stamps and the duration of the garbage collection. The
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Figure 5.24.: Time stamps of Java garbage collection

GC becomes active in this configuration every 10 to 40 seconds, depending on the
load of incoming SIP messages and thus on the amount of data that has to be handled
by the proxy server. The process of garbage collection takes nearly 100 ms each and
that is significant in comparison to average non-overload delay values of 23 ms and
therefore visible in the fRpD measurements.
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6. Summary and Conclusions

The current transition from circuit switched to packet switched telecommunication
systems goes along with the rapidly increasing importance of SIP as signalling pro-
tocol. The most revolutionizing step is the large-scale deployment of LTE that does
no longer provide circuit switched functionality at all. Thus, all currently available
circuit switched services must be replaced by packet switched alternatives and the
3GPP has chosen SIP as main signaling protocol for the IMS. It is expected that
this transitioning process also drives the deployment of new services, which will sub-
stantially increase the usage of SIP based systems. The increasing usage increases
consequentially the amount of SIP traffic, and in high-load situations the probabil-
ity of a congestion collapse of the whole system rises. The IETF and the ETSI are
currently in the process of defining mechanisms to counteract overload situations.
These mechanisms either define extensions for SIP that add extra data fields to SIP
messages or specify an entirely new protocol in order to explicitly signal overload
to upstream components. However, these approaches use resources on already over-
loaded hosts and that is in conflict with the goal to reduce load on that system.
Implicit approaches are mechanisms that attempt to sense the load situation of a
downstream component by continuously analyzing implicitly available values such as
round-trip delay and are therefore better suited for this task.

In order to analyze implicit overload handling a new event-based simulation envi-
ronment for SIP has been developed. Current known performance drawbacks of the
protocol have been verified. One of these disadvantages is the re-transmission algo-
rithm that may cause a huge flood of messages when a system comes into high-load
and overload situations. SIP retransmits messages using static timers in order to cope
with the unreliability of internet traffic. However, retransmissions are also triggered
if messages are not lost, but delayed because of congestion. If the load on a system
is already on a high level, all messages that have to be processed by that system are
delayed. This causes a flood of redundant messages on an already excessively loaded
system, eventually leading to a congestion collapse.
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In order to counteract such situations, two novel implicit mechanisms have been
developed. Both approaches add significantly to the stability of a system and prevent
it from a potential collapse. The first approach assumes that no re-transmissions are
necessary in a system that is not congested. It measures the final Response Delay
of all transactions on an intermediate proxy server for a specific time and calculates
their 95% percentile. If this is above 500 ms it assumes that the system is congested,
because if the final Response Delay is above this values, re-transmissions are sent.
The second approach is slightly more complex. It assumes that in a non-congested
system the number of pending transactions directly correlates with the outgoing load
and that the final Response Delay is more or less constant. The quotient of the first
derivations of these values with respect to time must be more or less constant if this
assumption is true. This value has been called anomaly indicator. The application
of a statistical test called sequential analysis to continuously calculated anomaly
indicator values has shown that it can reliably detect congestions.

The process of overload handling has been divided into two parts, congestion de-
tection and congestion handling. Congestion detection is the continuous analysis of
performance values in order to classify a system into non-congested or congested
state. Performance values that have been used in this thesis are the QoSg defined
metric final Response Delay and the number of pending transactions in combination
with the number of sent requests. Congestion handling is the application of coun-
teractions onto a system that has been classified as congested. These counteractions
are divided into lossless-modes that increase the time a system has to handle the
offered load without rejecting any requests, and lossy-modes that reject a part of
the incoming requests. As lossless mode this thesis demonstrates that the adaptive
manipulation of SIP re-transmission timers can act as tool for prevention of a con-
gestion collapse caused by short-term overload. But, however, if the overload is more
extensive, this approach can be insufficient. Rate-limiting is presented as lossy-mode
which reduces the load on a congested downstream entity by rejecting a certain part
of the incoming requests. In order to prove that the developed mechanisms do not
only work in a simulated environment, they have been implemented in a SIP proxy
and their potential has been analyzed. The measurements have verified that implicit
congestion detection is possible for SIP. Application scenarios have been presented
that represent examples for realistic overload-generating situations to show that the
simulation scenarios map to real-world examples.

Implicit mechanisms as demonstrated in this thesis introduce only little overhead
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and are able to react fast. However, it may be difficult to control situations when
overload has huge variations caused by many entities throughout the network. Ad-
ditionally it is important to mention that delay variations caused by various SIP
message destinations may impede correct congestion detection using implicit mech-
anisms. Implicit overload controls represent a heuristic which by definition can not
provide deterministic results. Finally, it is up to the operator of a network to choose
its approach.
Important future research in this area, is the study of dynamic adaptation of the
correction factors in order to enable the developed mechanisms to react upon more
dynamic scenarios. As source for that extension, already existing long-term mea-
surements of a mobile operator need to be used. The application of measured values
enables to create more realistic, real-world oriented simulation scenarios. Therefore,
the developed implicit congestion detection mechanisms can be adapted to fit also
in more dynamic conditions. Furthermore, already existing implicit congestion de-
tection mechanisms, like for example the various types developed for TCP, could be
adapted in order to enhance the SIP performance.
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A. Tables

Table A.1.: Observed and Expected absolute Differences of Simulated and Calculated
Cumulative Distribution Functions of the Anomaly Indicator κ of a Con-
gested System

i αi F o(αi) F e(αi) |F e(αi)− F o(αi)| |F e(αi)− F o(αi−1)|
1 -41.0 0.041 0.029 0.012 0.029
2 -35.5 0.061 0.052 0.009 0.011
3 -31.0 0.082 0.080 0.002 0.019
4 -24.5 0.102 0.139 0.037 0.057
5 -21.5 0.122 0.175 0.053 0.073
6 -21.0 0.143 0.181 0.038 0.059
7 -18.5 0.163 0.215 0.052 0.072
8 -18.0 0.184 0.222 0.038 0.059
9 -17.0 0.204 0.237 0.033 0.053
10 -16.5 0.245 0.245 0.000 0.041
11 -14.5 0.265 0.277 0.012 0.032
12 -13.5 0.286 0.293 0.007 0.028
13 -13.0 0.306 0.302 0.004 0.016
14 -12.0 0.327 0.319 0.008 0.013
15 -11.0 0.347 0.337 0.010 0.010
16 -10.0 0.388 0.355 0.033 0.008
17 -9.5 0.408 0.364 0.044 0.024
18 -9.0 0.449 0.373 0.076 0.035
19 -8.5 0.469 0.383 0.086 0.066
Continued on next page
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i αi F o(αi) F e(αi) |F e(αi)− F o(αi)| |F e(αi)− F o(αi−1)|
20 -7.0 0.490 0.411 0.079 0.058
21 -6.5 0.510 0.420 0.090 0.070
22 -6.0 0.531 0.430 0.101 0.080
23 -4.5 0.571 0.459 0.112 0.072
24 -3.0 0.592 0.488 0.104 0.083
25 2.0 0.612 0.586 0.026 0.006
26 3.5 0.633 0.614 0.019 0.002
27 5.0 0.653 0.642 0.011 0.009
28 6.0 0.694 0.660 0.034 0.007
29 8.0 0.714 0.695 0.019 0.001
30 9.5 0.735 0.720 0.015 0.006
31 10.0 0.755 0.729 0.026 0.006
32 11.0 0.776 0.745 0.031 0.010
33 12.0 0.816 0.760 0.056 0.016
34 13.5 0.837 0.782 0.055 0.034
35 14.0 0.857 0.789 0.068 0.048
36 14.5 0.878 0.796 0.082 0.061
37 16.0 0.898 0.817 0.081 0.061
38 23.5 0.918 0.898 0.020 0.000
39 34.0 0.939 0.963 0.024 0.045
40 36.0 0.959 0.970 0.011 0.031
41 42.0 0.980 0.985 0.005 0.026
42 61.0 1.000 0.999 0.001 0.019
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Table A.2.: Critical Values for the Kolmogorov-Smirnov-Test [10]

α

n 0.1 0.05 0.025 0.01 0.005
1 0.9000 0.9500 0.9750 0.9900 0.9950
2 0.6838 0.7764 0.8419 0.9000 0.9293
3 0.5648 0.6360 0.7076 0.7846 0.8290
4 0.4927 0.5652 0.6239 0.6889 0.7342
5 0.4470 0.5094 0.5633 0.6272 0.6685
6 0.4104 0.4680 0.5193 0.5774 0.6166
7 0.3815 0.4361 0.4834 0.5384 0.5758
8 0.3583 0.4096 0.4543 0.5065 0.5418
9 0.3391 0.3875 0.4300 0.4796 0.5133
10 0.3226 0.3687 0.4092 0.4566 0.4889
11 0.3083 0.3524 0.3912 0.4367 0.4677
12 0.2958 0.3382 0.3754 0.4192 0.4490
13 0.2847 0.3255 0.3614 0.4036 0.4325
14 0.2748 0.3142 0.3489 0.3897 0.4176
15 0.2659 0.3040 0.3376 0.3771 0.4042
Continued on next page
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α

n 0.1 0.05 0.025 0.01 0.005
16 0.2578 0.2947 0.3273 0.3657 0.3920
17 0.2504 0.2863 0.3180 0.3553 0.3809
18 0.2436 0.2785 0.3094 0.3457 0.3706
19 0.2373 0.2714 0.3014 0.3369 0.3612
20 0.2316 0.2647 0.2941 0.3287 0.3524
21 0.2262 0.2586 0.2872 0.3210 0.3443
22 0.2212 0.2528 0.2809 0.3139 0.3367
23 0.2165 0.2475 0.2749 0.3073 0.3295
24 0.2120 0.2424 0.2693 0.3010 0.3229
25 0.2079 0.2377 0.2640 0.2952 0.3166
26 0.2040 0.2332 0.2591 0.2896 0.3106
27 0.2003 0.2290 0.2544 0.2844 0.3050
28 0.1968 0.2250 0.2499 0.2794 0.2997
29 0.1935 0.2212 0.2457 0.2747 0.2947
30 0.1903 0.2176 0.2417 0.2702 0.2899
31 0.1873 0.2141 0.2379 0.2660 0.2853
32 0.1844 0.2108 0.2342 0.2619 0.2809
33 0.1817 0.2077 0.2308 0.2580 0.2768
34 0.1791 0.2047 0.2274 0.2543 0.2728
35 0.1766 0.2018 0.2242 0.2507 0.2690
36 0.1742 0.1991 0.2212 0.2473 0.2653
37 0.1719 0.1965 0.2183 0.2440 0.2618
38 0.1697 0.1939 0.2154 0.2409 0.2584
39 0.1675 0.1915 0.2127 0.2379 0.2552
40 0.1655 0.1891 0.2101 0.2349 0.252

Approx. for n > 40 1.07√
n

1.22√
n

1.36√
n

1.52√
n

1.63√
n
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