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Abstract

Multiple-Input Multiple-Output (MIMO) communications is a very promising technology for next-

generation wireless systems that have an increased demand for data rate, quality of service, and

bandwidth efficiency. This thesis deals with multiple polarized antennas for MIMO transmissions, an

important issue for the practical deployment of multiple antenna systems. The MIMO architecture

has the potential to dramatically improve the performance of wireless systems. Much of the focus

of research has been on uni-polarized spatial MIMO configurations, the performance of which, is a

strong function of the inter-element spacing. Thus the current trend of miniaturization, seems to be at

odds with the implementation of spatial configurations in portable hand held devices. In this regard,

dual-polarized and triple-polarized antennas present an attractive alternative for realizing MIMO

architectures in compact devices. Unlike spatial channels, in the presence of polarization diversity,

the sub channels of the MIMO channel matrix are not identically distributed. They differ in terms of

average received power, envelope distributions, and correlation properties.

The main drawback of the MIMO architecture is that the gain in capacity comes at a cost of

increased hardware complexity. Antenna selection is a technique by which we can alleviate this

cost. We emphasize that this strategy is all the more relevant for compact devices, which are often

constrained by complexity, power and cost. Using theoretical analysis and measurement results, this

thesis investigates the performance of antenna selection in dual-polarized and triple-polarized antennas

for MIMO transmissions.

In this thesis we combined the benefits of compact antenna structures with antenna selection,

effectively reducing the size of the complete user device. The reduction is both in the size of antenna

arrays and in the Radio Frequency (RF) domain. The reduction in array size is achieved by using

multi-polarized antenna systems. The reduction of complexity and size in the RF domain is achieved

by using fewer RF chains than the actual number of antenna elements available by implementing

antenna selection techniques. We analyze the performance of N-spoke arrays in terms of channel gains

and compare this with the spatial structures, with and without antenna selection. We address the

practical issue of mutual coupling and derive capacity bounds as a performance measure.

In our thesis we also incorporate many other compact antenna structures having both polarization

and pattern diversity with and without antenna selection. We then compare their performances in

terms of capacity. From two dimensional array structures we move on to three dimensional arrays

namely triple-polarized systems. We use a probabilistic approach to derive the selection gains of such
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systems with antenna selection at both ends. This is further used to calculate the outages of such

systems. Performance of such systems in terms of spatially multiplexed data and Space Time Block

Coding (STBC) data is also analyzed for various channel scenarios. Convex optimization techniques are

applied for calculating the best possible antennas selected to reduce the complexity for multi-polarized

systems.
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Kurzfassung

Mehrfachantennen-Kommunikation (MIMO) ist eine sehr vielversprechende Technologie für die

nächste Generation drahtloser Übertragungssysteme, die eine erhöhte Nachfrage nach Datenrate,

Dienstqualität und Bandbreiten-Effizienz haben. Diese Arbeit beschäftigt sich mit mehrfach po-

larisierten Antennen zur Signalübertragung, ein wichtiges Thema für den praktischen Einsatz von

Mehrfachantennen-Systemen. Die MIMO-Architektur hat das Potenzial, die Leistungsfähigkeit von

Funksystemen deutlich zu verbessern. Ein Schwerpunkt der Forschung hat sich auf uni-polarisierte

räumliche MIMO-Konfigurationen fokussiert, deren Leistungsfähigkeit stark vom Abstand der Einzelele-

mente abhängt. Daher scheint der aktuelle Trend der Miniaturisierung im Widerspruch mit der

Umsetzung in kompakte, tragbare Handgeräte zu stehen. In diesem Zusammenhang stellen dual-

polarisierte und dreifach-polarisierte Antennen eine attraktive Alternative für die Realisierung von

kompakten MIMO-Architekturen dar. Im Gegensatz zu räumlicher Diversität sind die Unterkanäle des

MIMO Kanals bei Polarisationsdiversität nicht identisch verteilt. Sie unterscheiden sich in Bezug auf

die durchschnittliche Empfangsleistung, Verteilungsfunktion der Einhüllenden sowie ihrer Korrelations-

eigenschaften. Der Hauptnachteil der MIMO-Architektur ist, dass die Erhöhung der Kapazität zum

Preis von erhöhter Hardware Komplexität kommt. Antennenauswahl ist eine Technik, mit deren Hilfe

diese Kosten verringert werden können. Wir betonen, dass diese Strategie umso relevanter für kompakte

Geräte ist, die oft durch Komplexität, Leistung und Kosten begrenzt sind. Mit der theoretischen

Analyse untersucht diese Arbeit die Leistung der Antennenauswahl in dual-polarisierte und dreifach-

polarisierten Antennen zur MIMO Übertragung. Unsere Ergebnisse zeigen, dass Antennenauswahl,

wenn sie mit Mehrfach-polarisierten Antennen kombiniert wird, eine effektive Lösung geringer Kom-

plexität darstellt, welche für die Realisierung von MIMO-Architekturen in kompakten Geräten geeignet

ist. In dieser Arbeit werden die Vorteile kompakter Antennen-Strukturen mit Antennen Auswahl

kombiniert, wodurch eine Verringerung der Größe des Endgeräts erreicht wird. Die Größenreduktion

wirkt sowohl im Antennen-Bereich als auch im RF-Schaltungsbereich. Die Größenreduktion der An-

tennenfelder erreicht man durch mehrfach polarisierte Antennen, während die Schaltungsreduktion

dadurch erreicht wird, dass durch Antennenauswahl nun weniger RF-Anteile benötigt werden. Wir

analysieren die Leistungsfähigkeit von so-genannten N-Spoke Antennenanordnungen hinsichtlich der

Kanal-Gewinne und Kapaziät und vergleichen diese mit räumlich verteilten Strukturen, mit und ohne

Antennenauswahl.

In unserer Arbeit betrachten wir ebenso andere kompakte Antennenstrukturen mit Polarisationsef-

fekten jeweils mit und ohne Antennauswahl. Ausgehend von zweidimensionalen Antennenfeldern gehen
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wir auf dreidimensionale Felder mit dreifacher Polarisation über. Zur Herleitung der Auswahlgewinne

solcher Systeme verwenden wir probabilistische Ansätze, die es uns ermöglichen Ausfallwahrschein-

lichkeiten zu berechnen. Ebenso untersuchen wir die Leistungsfähigkeit im Hinblick auf räumlich

gemultiplexte Daten und blockkodierte (STBC) Daten in verschiedenen Kanal-Szenarien. Konvexe

Optimierungstechniken wurden für die optimale Auswahl eingeführt und so die Komplexität in mehrfach

polarisierten Antennanordnungen reduziert.
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Introduction

1.1 Motivation

Communication schemes with multiple antennas at the transmit and/or receive edges are known

to provide remarkable capacity improvements with respect to single-antenna configurations. Due

to limitations in the radio spectrum available for wireless systems, multi-antenna approaches have

been considered as promising techniques to increase the capacity of future wireless systems. In a

multiple-antenna context, the channel capacity can be approached by conducting pre-processing on the

transmit side. Unless reciprocity between the forward and reverse links can be assumed, a feedback

channel is required to convey Channel State Information (CSI) to the transmitter. However, the

amount of information allowed over feedback channels is limited. As a result, perfect and instantaneous

CSI is rarely available at the transmitter, specially in those scenarios with fast fading and/or a high

number of antennas. An effective solution with low feedback requirements is transmit antenna selection.

By selecting the best sub-set of transmit antennas, most of the gain provided by multi-antenna schemes

can be obtained, while only a few bits must be fed back. As for the selection criteria, it is common

practice to select the subset of transmit antennas that maximize some metric at the physical layer.

Within this framework, this PhD dissertation provides a contribution to the study of antenna selection

algorithms from a physical layer perspective. More precisely, by focusing our attention on the geometry

of antenna arrays, we study antenna selection algorithms aimed at maximizing performance at the

physical layer.

1
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Figure 1.1: Block diagram of a MIMO transmission scheme with transmit and receive antenna

selection.

1.2 Antenna Selection

In a Multiple-Input Multiple-Output (MIMO) transmission system, adding complete Radio Frequency

(RF) chains typically result in increased complexity, size and cost. These negative effects can be

drastically reduced by using antenna selection. This is because antenna elements and digital signal

processing is considerably cheaper than introducing complete RF chains. In addition, many of the

benefits of MIMO schemes can still be obtained [1] [2]. Besides, perfect CSI is not required at the

transmitter as the antenna selection information can be computed at the receiver and reported to the

transmitter by means of a low-rate feedback channel.

In Figure 1.1, we show a typical MIMO wireless system with antenna selection capabilities at

both the transmit and the receive sides. The system is equipped with NT transmit and MR receive

antennas, whereas a lower number of RF chains has been considered (lt < NT and lr < MR at the

transmitter and receiver, respectively). In accordance with the selection criterion, the best sub-set of lt
transmit and lr receive antennas is selected. In order to convey the antenna selection command to the

transmitter, a feedback channel is needed but this can be achieved with a low-rate feedback as only(
NT
lt

)
bits are required.

Originally, antenna selection algorithms were born with the purpose of improving link reliability [3]

by exploiting spatial diversity. More precisely, a reduced complexity system with antenna selection can

achieve the same diversity order as the system with all antennas in use. However, as MIMO schemes

gained popularity, antenna selection algorithms began to be adopted in spatial multiplexing schemes

aimed at increasing the system capacity. A brief review of the state of the art is presented below, where

different methodologies are classified according to the context: spatial diversity or spatial multiplexing.

1.2.1 Antenna Selection for Spatial Diversity

Antenna selection was introduced by Jakes as a simple and low-cost solution capable of exploiting

receive diversity in a Single-Input Multiple-Output (SIMO) scheme [4]. In a wireless environment, by

separating the receive antennas far enough 1 the correlation between the channel fades is low. Then, by

selecting the best receive antenna in terms of channel gains, a diversity order equal to the number of

1In older literature it is stated that for mobile terminals surrounded by other objects, quarter-wavelength spacing is

sufficient, whereas for high base station a separation of 10-20 wavelengths is required [5]. In recent literature [6] it has

been demonstrated experimentally that even short distances of 0.1 λ can provide high data throughput. Large antenna

providers like Kathrein have considerably shortened their antenna sizes in the last years.
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receive antennas is obtained. Winters considered a similar procedure in a Multiple-Input Single-Output

(MISO) system to exploit diversity at the transmit side with the help of a feedback channel [7]. In that

work, the antenna selection algorithm was very simple: when the received Signal-to-Noise Ratio (SNR)

was below a specific threshold a command is sent to the transmitter to indicate that the transmit

antenna must be switched.

For the SIMO case, more sophisticated receive antenna selection algorithms based on hybrid

selection/maximal-ratio combining techniques were derived in [8] [9] [10]. The basic idea of those

algorithms was to select the best (in terms of SNR) lr out of MR receive antennas and combine the

received signals by means of a Maximum Ratio Combining (MRC) procedure. By doing so, apart

from exploiting the diversity gain, array gain can also be achieved. The extension to MIMO systems

were presented by Molisch et al. [11] [12] in a scenario where antenna selection was only performed at

the transmitter in combination with a Maximum Ratio Transmission (MRT) strategy. It was shown

that by selecting the best sub-set of transmit antennas, the degradation in system performance is only

minor in comparison with the saving in terms of hardware cost. The obtained results can be easily

generalized to those cases performing antenna selection at the receive side of the MIMO link due to

the reciprocity of the SNR maximization problem. An interesting result was obtained in [13] for those

systems performing MRC at the receiver side and an antenna selection mechanism (with a single active

antenna) at the transmitter. It was shown that the achieved diversity order is equal to MRB, with B

denoting the position taken by the channel gain of the selected antenna when arranging the channel

gains of the different transmitters in an increasing order.

The combination of antenna selection with Orthogonal Space-Time Block Coding (OSTBC) was

studied by Gore and Paulraj in [3]. It was proven that the diversity order obtained through antenna

selection is identical to that of a situation with all the antennas in use. Regarding the degradation

in terms of SNR when antenna selection is carried out at the receiver, it was shown in [14] that it

can be upper bounded by 10log10(MR/lr)dB. In a similar context, both transmit and receive antenna

selection mechanisms in combination with Quasi-Orthogonal Space-Time Block Coding (Q-OSTBC)

schemes were analyzed in [15] [16]. For the case that antenna selection is combined with Space-Time

Trellis Codes (STTC), different results were found: by increasing the total number of receive antennas

MR, the coding gain can be improved but the diversity order remains fixed [17].

1.2.2 Antenna Selection for Spatial Multiplexing

In spatially correlated MIMO fading channels, capacity gains can be lower than expected since spatial

multiplexing gains mainly come from resolving parallel paths in rich scattering MIMO environments.

With this problem in mind, Gore et al. proposed one of the first papers where antenna selection

was adopted in a MIMO context [18]. There, the authors showed that system capacity cannot be

improved by using a number of transmit antennas greater than the rank of the channel matrix. By

considering that, an algorithm was proposed where only antennas satisfying the full rank condition

were selected. As a result, system capacity gains were obtained with respect to the full antenna system,

since transmit power was efficiently distributed. In order to reduce the complexity of the proposed

algorithm (exhaustive search), various sub-optimal algorithms based on the water filling principle [19]

were proposed in [20]. Upper bounds of the achievable capacity with antenna selection were derived

in [11]. In particular, it was shown that capacity results close to those of the full antenna system can

be achieved by selecting the best lr ≥ NT out of MR receive antennas. In [21], a sub-optimal approach

was proposed for both transmit and receive antenna selection. By starting with the full channel matrix,
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those rows (columns) corresponding to the receivers (transmitters) minimizing the capacity loss are

iteratively dropped. As shown in [22] [23], almost the same capacity as with an optimal selection

scheme can be achieved with an incremental version of the mentioned selection algorithm, i.e., by using

a bottom-up selection procedure. In [22] it was also proven that the diversity order achieved with

receive antenna selection is the same as that with the full antenna scheme, where the diversity order

was defined as the slope of the outage rate. Although a sub-optimal approach with decoupled transmit

and receive selection was adopted in [24], similar conclusions in terms of the diversity-multiplexing

trade-off curve [25] were drawn. That is, the same trade-off curve as with all antennas in use can be

obtained with transmit and receive antenna selection. Heath et al., on the other hand, pointed out

that antenna selection approaches based on maximizing the mutual information do not necessarily

minimize the error rate when practical receivers are in use [26]. As an alternative, minimum error

rate algorithms were derived and analyzed in systems with Zero Forcing (ZF) and Minimum Mean

Square Error (MMSE) linear receivers. As for the Zero Forcing (ZF) approach, selection algorithms

were also derived in [27] for the case that only channel statistics (covariance matrix) are known at

the transmitter. A geometrical approach was presented in [28] in order to reduce the computational

complexity.

1.3 Implementation Aspects

In this overview, we concentrate on the more practical aspects that are related to the actual implemen-

tation of antenna selection.

1.3.1 Channel Characteristics and Impact on Selection

Most of the theoretical analyses of antenna selection assume a highly simplified channel model in which

the entries of the channel matrix H are independent, identically distributed complex Gaussian entries.

Such a channel model can occur, for example, if the antenna arrays at transmitter and receiver are

uniform linear arrays, the antenna elements have isotropic patterns, and the multi path components

of the channel arrive from all directions. High theoretical capacities are possible for this channel

model because its inherent heavy multi path allows for the transmission of multiple, independent data

streams that can be spatially separated at the receiver. While such channels provide a good theoretical

benchmark, they rarely occur in practice. The following effects have to be taken into account for

realistic system assessments.

Signal Correlation

If the antenna elements at the transmitter and receiver are closely spaced, and/or the angular spread

of the multi path components is small, then the entries of H are strongly correlated. This effect is

often modeled by means of the so-called Kronecker model [29]. We stress that this model is still a

simplification as it does not reflect the dependence of the receive correlation matrix on the transmit

directions, and vice versa. A more detailed model was recently proposed by [30]. The Kronecker model

is often used for system simulations.
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Mutual Coupling

Mutual coupling can impact the performance of antenna selection systems [31]. The nature of this

impact depends on the type of antenna matching (termination). Many antenna selection systems either

use open-circuit terminations or 50Ω matching.

Unequal Means

If antennas with different patterns and/or polarization are used, the mean received power differs at

the different antenna ports. Naturally, ports with higher power tend to be selected more often in an

antenna selection scheme [32].

1.3.2 Antenna Selection Training

The issue of training for antenna selection has received relatively little attention in the literature.

In order to select the best subset, all the NTMR links corresponding to all possible transmitter and

receive antenna pairs need to be ’sounded’, even though only lt and lr elements at the transmitter and

receiver, respectively, will eventually be used for data transmission. In general, such sounding can be

achieved with a switched approach. For simplicity, let us assume that Rt = NT /lt and Pr = MR/lr are

integers. Then we can divide the available transmit (receive) antenna elements into Rt(Rr) disjoint

sets. The ”switched” antenna sounding now repeats Rt ·Rr times a ”standard” training sequence that

is suitable for an lt × lr MIMO system. During each repetition of the training sequence, the transmit

(receive) RF chains are connected to different sets of antenna elements. Thus, at the end of the Rt ·Rr
repetitions, the complete channel has been sounded.

In case of transmit antenna selection in frequency division duplex systems in which the forward and

reverse links are not identical, the receiver feeds back the optimal subset to the transmitter. Moreover,

in reciprocal time division duplex systems, the transmitter can do this even on its own. The switched

training procedure increases the overhead of a system that employs antenna selection. Moreover, the

training needs to be solved quickly (within the channel’s coherence interval) in order for it to be

useful. In wireless LANs for indoor applications, the channels vary very slowly. This is exploited in

the design of a low overhead MAC-based antenna selection training protocol in the IEEE 802.11n

draft specification [33]. Instead of extending the physical (PHY) layer preamble to include the extra

training fields (repetitions) for the additional antenna elements, antenna selection training is achieved

by transmitting and receiving packets by different antenna subsets. As training information (a single

standard training sequence for an lt × lr MIMO system) is embedded in the MAC header field, the

packets can carry data payloads, which keeps the training overhead to a minimum. The time available

for switching between the antenna subsets is now the guard time between packets, which is of the order

of microseconds. This enables the use of slower, Micro-Electro-Mechanical Systems (MEMS)-based

switches [34] [35], which have extremely low insertion loss. These type of switches also differ in chip

area, operating voltage, carrier frequency and bandwidth, tuning times, etc.

In fast-varying channels, selection can be performed on the basis of channel statistics (e.g., fading

correlations), whose variation is orders of magnitude slower than that of fast fading itself. It was shown

in [36] that such an antenna selection approach is effective in highly correlated channels.
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1.3.3 RF Mismatch

One implementation problem that has largely been ignored in the selection literature is RF imbalance.

RF imbalance occurs because the RF parameters for different connections of antenna elements and RF

chains at the transmitter and the receiver are different [37]. Unless compensated for, different connections

will result in different baseband channel estimates, even though the underlying physical MIMO channel

matrix, H, is the same. An over-the-air calibration process, which involves communication between

the transmitter and the receiver, is therefore required. Training sequences are used to ’calibrate’

each possible connection of antenna elements with an RF chain. This results in connection-specific

calibration coefficients that can be used to compensate for the RF imbalance when receiving data. In

the absence of cross-talk among the RF chains complete compensation is achieved by simply multiplying

the base-band signals at the transmitter and receiver with the corresponding calibration coefficients.

As each possible connection needs to be calibrated, the training overhead is greater. However, this

needs to be performed very infrequently (usually only upon association to the network).

1.3.4 Suboptimal Selection

In addition to RF imbalance, several non-idealities in both hardware and software (signal processing)

exist in a practical implementation. It is important to understand how robust antenna selection is to

them as they can potentially diminish its advantages. For example, the introduction of a selection

switch leads to an insertion loss. In RF preprocessing designs, the phase-shift elements can suffer from

phase and calibration errors. Last, but not least, imperfect channel estimates and feedback that occur

due to noise during channel estimation and in feedback channels, respectively, can lead to the selection

of only sub-optimal subsets and degrade performance.

1.3.5 Bulk Versus Tone Selection in OFDM

For operation in frequency-selective channels, MIMO is often combined with Orthogonal Frequency

Division Multiplexing (OFDM).Orthogonal Frequency Division Multiplexing (OFDM) transmits the

information on many (overlapping but orthogonal) subcarriers so that each subcarrier (tone) sees a

flat-fading channel. Now the channel matrix H depends on the tone. In an MIMO-OFDM system with

antenna selection, the optimum antenna subsets can vary from tone to tone. Thus, two types of antenna

selection are possible: (i) bulk selection, where the selected antenna subset is used for all OFDM

sub-channels, and (ii) per-tone selection, where a different subset can be used for each tone. Naturally,

the second solution requires a much higher complexity: the signals from all antenna elements have to

be converted to/from baseband, and the selection is implemented in baseband. Per-tone selection thus

does not save hardware (when compared to full-complexity systems), but only simplifies the signal

processing and reduces the feedback, as transmit selection can be viewed as (coarse) precoding.

1.3.6 Hardware Aspects

Finally, we consider the effects of the hardware on the performance. In all the previous sections, we

assumed ideal RF switches with the following properties:

• They do not suffer any attenuation or cause additional noise in the receiver.

• They are capable of switching instantaneously.



PDFT
hA

S

Chapter 1. Introduction 7

• They have the same transfer function irrespective of the output and input port.

In practice, these conditions cannot be completely fulfilled.

• The attenuation of typical switches varies between a few tenths of a decibel and several decibels,

depending on the size of the switch, the required throughput power (which makes TX switches

more difficult to build than RX switches), and the switching speed. In the TX switch, the

attenuation must be compensated by using a power amplifier with higher output power. At the

receiver, the attenuation of the switch plays a minor role if the switch is placed after the Low

Noise receiver Amplifier (LNA). However, that implies that MR instead of lr receive amplifiers are

required, eliminating a considerable part of the hardware savings of antenna selection systems.

• Switching times are usually only a minor issue. The switch has to be able to switch between

the training sequence and the actual transmission of the data, without decreasing the spectral

efficiency significantly. In other words, as long as the switching time is significantly smaller than

the duration of the training sequence, it does not have a detrimental effect.

• The transfer function has to be the same from each input-port to each output-port, because

otherwise the transfer function of the switch distorts the equivalent baseband channel transfer

function that forms the basis of all the algorithms. It cannot be considered part of the training

because it is not assured that the switch uses the same input-output path during the training as

it does during the actual data transmission. An upper bound for the admissible switching errors

is the error due to imperfect channel estimation.

1.4 Outline and Research Contributions

The main contribution of this thesis is the study of the performance of antenna selection techniques

applied to compact antenna structures from a geometry and optimization of antenna structure

perspective in single user MIMO systems. The details of the research contributions for each chapter

are presented.

Chapter 2

In this work, receive antenna subset selection schemes are applied to a WiMAX compliant MIMO-OFDM

transmission system. Simulation results in terms of average throughput and Bit Error Ratio (BER)

on an adaptive modulation and coding link are shown. The main results of this chapter have been

published in one conference paper:

• Habib, A., Mehlführer, C., Rupp, M., ”Performance Comparison of Antenna Selection Algorithms

in WiMAX with Link Adaptation”, in Proceedings of Cognitive Radio Oriented Wireless Networks

and Communications, Hannover, June 2009, pp. 1 - 5.

Chapter 3

The main results of this chapter address the study of combined effects of array orientation/rotation and

antenna cross polarization discrimination on the performance of dual-polarized systems with receive

antenna selection. We start our analysis with a 1 out of MR selection and extend it to lr out of MR
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receive antenna selection, for which we derive numerical expressions for the effective channel gains.

These expressions are valid for small values of lr and MR, and approximately valid for higher values

of lr and MR. We compare co-located antenna array structures with their spatial counterpart while

deploying receive antenna selection. To this purpose, the performance in terms of MIMO maximum

mutual information is presented. A simple norm based on instantaneous channels selects the best

antennas. We derive explicit numerical expressions for the effective channel gains. Further a comparison

in terms of power imbalance between antenna elements is presented. We also consider multiple-input

multiple-output systems where antenna elements are closely placed side by side, and examine the

performance of a typical antenna selection strategy in such systems under various scenarios of antenna

spacing and mutual coupling with varying antenna elements. We compare a linear array with an NSpoke

co-located antenna structure which comprises of antennas separated by an angular displacement rather

than spatial. We further improve the performance of such systems by a new selection approach which

terminates the nonselected antenna elements with a short circuit. The main results of this chapter

have been published in two conference papers and one journal paper:

• Habib, A., Mehlführer, C., Rupp, M., ”Receive antenna selection for polarized antennas”, in

Proceedings of 18th International Conference on Systems, Signals and Image Processing (IWSSIP),

Sarajevo, June 2011, pp. 1-6.

• Habib, A., Mehlführer, C., Rupp, M., ”Performance of compact antenna arrays with receive

selection”, in Proceedings of Wireless Advanced (WiAd), London, June 2011, pp. 207-212.

• Habib, A., Rupp, M., ”Antenna Selection in Polarized MIMO Transmissions with Mutual

Coupling”, in Journal of Integrated Computer Aided Engineering, 2012.

Chapter 4

In this chapter we provide another degree of freedom to dual-polarized MIMO transmissions and analyze

the performance of antenna selection for triple-polarized MIMO systems with maximum ratio combining

receivers. We theoretically analyze the impact of cross-polar discrimination on the achieved antenna

selection gain for both dual and triple-polarized MIMO for non line of sight channels. We proceed to

derive the outage probabilities and observe that these systems achieve significant performance gains

for compact configurations with only a nominal increase in complexity.

The main results of this chapter have been presented in one conference paper:

• Habib, A., ”Multiple polarized MIMO with antenna selection”, in Proceedings of 18th IEEE

Symposium on Communications and Vehicular Technology in the Benelux (SCVT), Ghent,

November 2011, pp. 1-8.

Chapter 5

In this chapter consider the use of multiple antenna signaling technologies, specifically Space Time

Block Coding (STBC) and spatial multiplexing (SM) schemes, in MIMO communication systems

employing dual polarized antennas at both ends. In our work, we consider these effects and model a

3× 3 system with triple-polarized antennas for both STBC and SM cases. We also present simulation

results for both multi-antenna signaling techniques together with hybrid approaches under various

Cross Polarization Discrimination (XPD) and correlation scenarios.

The main results of this chapter have been published in one conference paper:
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• Habib, A., ”Performance of Spatial Multiplexing and Transmit Diversity in Multi-Polarized

MIMO Transmissions with Receive Antenna Selection”, in Proceedings of 2nd International

Conference on Aerospace Science and Engineering (ICASE), Islamabad, December 2011.

Chapter 6

We present a low complexity approach to receive antenna selection for capacity maximization, based

on the theory of convex optimization. By relaxing the antenna selection variables from discrete to

continuous, we arrive at a convex optimization problem. We consecutively optimize not only the

selection of the best antennas but also the angular orientation of individual antenna elements in the

array for a so-called true polarization diversity system. We also model such polarized antenna systems

and then apply convex optimization theory for selecting the best possible antennas in terms of capacity

maximization. Channel parameters like transmit and receive correlations, as well as XPD are taken

into consideration while modeling polarized systems. We compare our results with Spatially Separated

(SP) MIMO with and without selection by performing extensive Monte-Carlo simulations. The main

results of this chapter have been presented in two conference papers:

• Habib, A., Krasniqi, B., Rupp, M., ”Antenna selection in polarization diverse MIMO transmissions

with convex optimization”, in Proceedings of 18th IEEE Symposium on Communications and

Vehicular Technology in the Benelux (SCVT), Ghent, November 2011, pp. 1 - 5.

• Habib, A., Krasniqi, B., Rupp, M., ”Convex Optimization for Receive Antenna Selection In Multi-

Polarized MIMO Transmissions”, in Proceedings of 19th International Conference on Systems,

Signals and Image Processing, (IWSSIP), Vienna, April 2012, pp. 269 - 275.
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Antenna Selection in

Multi-carrier Systems

2.1 Introduction

Multiple antenna systems enable, in addition to time, frequency and code domain, another degree of

freedom: the spatial domain. Advanced algorithms are required to exploit all domains in different

scenarios, giving a vast variety of trade-offs. Nonetheless, the spatial domain serves as an additional

degree of freedom but comes at the cost of expensive analogue and digital hardware. This in turn gives

rise to increased power, space and cost requirements. These are important issues, especially in the

design of mobile terminals. Antenna (subset) selection techniques at receiver- and/or transmitter-side

can help to relax the complexity burden of a higher-order Multiple-Input Single-Output (MIMO)

system, while preserving some of its benefits in a MIMO system of lower order. In Frequency Division

Duplex (FDD) systems, a limited feedback is required from the receiver to the transmitter in order to

perform selection of transmit antenna subsets. In Time Division Duplex (TDD) mode the transmitter

might be able to gather the required channel knowledge via its uplink.

In this chapter, we apply receive antenna selection in WiMAX (Worldwide Interoperability for

Microwave Access). WiMAX is a wireless communications standard designed to provide 30 to 40

Mbit/s data rates. It is a part of a fourth generation, or 4G, of wireless-communication technology. For

such systems two types of antenna arrangements are considered. These are a 2× 2 and a 2× 4 system,

with selection of one and two antennas at the receive side, respectively. Also, selection of one receive

antenna in the 2× 4 system is performed. In all cases, Alamouti coding is used at the transmitter.

In a practical system, indices of selected subset are calculated at the receiver. These indices are

sent to the receive switch, that connects the available RF sections to the selected antennas. All the

processing and selection is performed within the receiver architecture. For transmit antenna selection,

indices are also calculated at the receiver but have to be fed back to the transmit switch. This feedback

has to pass through a channel and therefore it is prone to errors. As only the indices of the selected

antennas are to be fed back, few bits are required. In addition to the feedback data for antenna selection,

WiMAX also uses a feedback mechanism to select one out of seven possible Adaptive Modulation

and Coding (AMC) schemes to adjust to the instantaneous channel quality. In this contribution,

10
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comparisons in terms of throughput and uncoded Bit Error Ratio (BER) for various antenna selection

algorithms are presented. Results assuming perfect channel knowledge at the receiver are shown.

2.2 System Model

We consider a MIMO system equipped with NT transmit and MR receive antennas as described in

Figure 1.1. We assume here that the transmitter employs NT RF chains whereas the receiver uses

lr(≤MR) RF chains. The channel is assumed quasi-static fading. As we are simulating a multi-carrier

Orthogonal Frequency Division Multiplexed (OFDM) system, we transmit data through N number

of sub-carriers in the channel. The input-output relationship of a MIMO system using all antenna

elements and applied to a single sub-carrier, is described by

y =

√
γ

NT
HMRNTx + v (2.1)

where y is a received signal vector with dimensions MR, vector x is a transmitted signal vector with

NT dimension, vector v is additive white Gaussian noise with energy 1/2 per complex dimension, γ is

the average Signal-to-Noise Ratio (SNR) at each receive antenna, and HMR,NT is the complete MIMO

channel matrix between the NT th transmit and the MRth receive antenna for a single subcarrier,

HMR,NT =


h1,1 h1,2 · · · h1,NT

h2,1 h1,2 · · · h2,NT
...

...
. . .

...

hMR,1 hMR,2 · · · hMR,NT

 , (2.2)

where the size of HMR,NT is MR×NT . In all the simulations performed, the time-dependent statistical

properties are defined according to a block fading definition [38], with Pedestrian B power delay profile.

This power profile has six well separated taps and was selected for simulations due to its significant

frequency selective nature [39]. Receive antenna selection is performed for every frame, i.e., one block

of data. The sub-channel matrix after applying antenna selection is shown below.

H
(r)
lr,NT

=


hr(1),1 hr(1),2 · · · hr(1),NT

hr(2),1 hr(2),2 · · · hr(2),NT
...

...
. . .

...

hr(lr),1 hr(lr),2 · · · hr(lr),NT

 , (2.3)

where r(·) represents the selected index set of the rows. This set is evaluated in the next sections. The

matrix Hlr,NT is the channel representation after the receive antenna subset selection.

2.3 Antenna Selection Algorithms

Various antenna subset selection algorithms have been reported in literature in the past. Among those,

a few are presented here and applied to the WiMAX system for comparison purpose. For all selection

algorithms, the complexity of signal processing required at the receiver increases with the number of
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antenna elements. The number of possible subset antenna combinations BR required can be calculated

from the following.

BR =

(
MR

lr

)
=

MR!

lr!(MR − lr)!
. (2.4)

All the methods mentioned in the next sections, perform calculations assuming full and perfect

channel knowledge at the receiver. In actual systems the channel matrix can be estimated from the

training sequence contained in every transmitted frame. After acquisition of the channel matrix, rows

of this matrix are selected depending on the selection algorithm. An inherent disadvantage of antenna

(subset) selection is that the Channel State Information (CSI) cannot be obtained at the same time.

Search over all possible subset combinations is required to acquire the full channel knowledge, and to

select the antenna combination which has the highest benefit for the communication link. Furthermore,

this search increases the risk that the selection is performed based on outdated channel knowledge,

particularly when the channel changes very rapidly. This stimulates the need of fast antenna selection

algorithms as mentioned in [22] [23].

The system block diagram with antenna selection is shown in Figure 1.1. The RF chain depicted in

Figure 1.1 at the transmitter, converts the digital baseband symbol streams to analog radio-frequency.

Thus, each RF-chain must have at least one of several components like a mixer, power amplifier, filter,

impedance converters etc. Some of the required analog components do not have to be replicated

necessarily for each RF-path since their functionality can be reused (e.g., local oscillators). The

structure of the receiver RF-path is similar to the reverse structure of the transmitter.

In this chapter functional aspects of the channel, the Alamouti coding and decoding schemes as

well as antenna selection algorithms are taken into consideration. All the remaining parts in the

signal chain (switch, converters, RF) are treated as ideal operating components. This results in many

assumptions. We have assumed here that no distortion is introduced by the analog up- and down-

conversion units and no crosstalk is present between the RF chains. We have also assumed here that

perfect synchronization is present between the transmitter and the receiver at all times. Also, as

perfect CSI is present at the receiver, no channel estimation errors are made. The receive switch,

performing the actual antenna selection, is, assumed to be lossless and consisting of identical, linear

transfer characteristics associated with the respective input-output pairs.

2.3.1 Norm Based Method

The norm based method is the most simple antenna selection algorithm. The method is inspired by

the fact that selection based on maximum norm maximizes the signal to noise ratio and minimizes

the instantaneous probability of error at the receiver [3]. Norm-based selection may be used because

of its low computational complexity. This method calculates the Frobenius norm of all the rows of

the channel matrix HMR,NT and selects only that subset which has maximum norm. The resulting

sub-channel matrix would contain lr out of MR rows of the corresponding channel matrix HMR,NT .

The norm method is given as follows

Fnrnorm =

NT∑
nt=1

||Hnr,nt ||F , (2.5)
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where nr = 1, 2, 3, ....,MR and Hnr,nt is the nrth row of the channel matrix HMR,NT
. The antenna

subset rnorm is calculated below as

rnorm = arg max
r∈R

r(lr)∑
nr=r(1)

Fnr
norm (2.6)

rnorm ∈ R. The entity r(1) represents the first element of the set r. If a selection of one out

of four is performed, r(1) would be one element from R {r(1)} = {1, 2, 3, 4}. If a selection of

two out of four is performed, [r(1), r(2)] would be two elements of the set R {[r(1), r(2)]} =

{[1, 2], [1, 3], [1, 4], [2, 3], [2, 4], [3, 4]}. The selection of rnorm rows is obtained by searching for the

sub-channel matrix which has maximum norm of all the combinations of HMR,NT .

2.3.2 Mutual Information Optimization Method

A method based on instantaneous mutual information is presented here. This method selects the

receive antennas which give the maximum mutual information among all possible subsets. It is worth

mentioning here that the transmitter has no knowledge of the channel so it distributes the power

equally among all antennas and all sub-carriers. Only the receiver has the perfect channel knowledge.

The mutual information of the channel is formulated as follows [40]

C(r) = log2det

(
Ilr +

γ

NT
H

(r)
lr,NT

(H
(r)
lr,NT

)H

)
, (2.7)

where H represents the Hermitian transpose. The antenna subset rmcap is calculated below as

rmcap = argmax
r∈R

C(r). (2.8)

The selection of rmcap rows is calculated by searching for the sub-channel matrix which has maximum

mutual information of all the sub matrices of HMR,NT .

2.3.3 Eigenvalue Based Methods

Two methods are explained here [40] which depend on the smallest eigenvalues of the channel matrix.

These methods can be used for the frequency selective channel using OFDM based symbol transmission.

Therefore, this method is worth mentioning and implementing because it has been proven that the

smallest eigenvalue of (H
(r)
MR,NT

)HH
(r)
MR,NT

has the highest impact on the performance of linear receivers

(Zero Forcing equalizer) [26] for flat fading channels. This is extended to frequency selective channels

as given in [40].

Maximum Minimum Eigenvalue Method (MMEM)

The algorithm based on the maximum of minimum eigenvalues is presented below

rmmem = arg max
r∈R

min
n=1,...N

min
i
λ

(r,n)
i , (2.9)

where λi is the ith eigenvalue of the matrix (H
(r)
lr,NT

)HH
(r)
lr,NT

for nth sub-carrier. The selection of

rmmem rows is performed by searching for the sub-channel matrix which has minimum eigenvalue of all

the subsets of HMR,NT for each subcarrier.
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Maximum Ratio Eigenvalue Method (MREM)

The method described here is motivated by the proposals given in [41] [42]. The algorithm selects

the channel with the maximum ratio between the minimum and the maximum eigenvalue. This ratio

basically is an indicator of the degree of spread of all the eigenvalues of the HMR,NT . Lower spread

means higher ratio and therefore a better conditioned channel and vice versa. The method is expressed

below [40] as

rmrem = arg max
r∈R

minn=1,...N mini λ
(r,n)
i

maxn=1,...N maxi λ
(r,n)
i

, (2.10)

where λi is the ith eigenvalue of the matrix (H
(r)
lr,NT

)HH
(r)
lr,NT

for nth sub-carrier. The selection of

rmrem rows is performed by searching for the sub-channel matrix with maximum ratio of minimum and

maximum eigenvalues of all the subsets of HMR,NT for each subcarrier.

2.3.4 Perfect Antenna Selection

All the methods presented above, are compared with a perfect selection algorithm based on maximizing

the throughput. For each sub-channel matrix, the throughput is simulated and the subset with the

highest throughput is selected. The selection is shown below.

rMTP = arg max
r∈R

(TP)(r). (2.11)

The rMTP rows are selected by searching for the sub-channel matrix which has maximum throughput

of all the sub matrices of HMR,NT . The methods described in the previous sections are only based

on instantaneous channel knowledge, so they can be implemented independently of the equalizer.

The Maximum Ratio Eigenvalue Method (MREM) is more complex than the Maximum Minimum

Eigenvalue Method (MMEM), as two eigenvalues have to be calculated instead of one per subcarrier.

Depending on the channel matrix, it is possible that the eigenvalues are too small and are below the

noise floor. Under these conditions, MMEM and MREM may give poor throughput performance. The

perfect channel selection is only for comparison purpose as practically it is very difficult to implement

such methods.

2.4 Simulation Results

A standard compliant WiMAX simulator [43] was used for all the simulations. In our simulation

we use N = 256 sub-carriers, MR is 2 and 4 for a 2× 2 and 2× 4 system, respectively, while NT is

fixed to 2; lr is either 1 for a 2 × 2 or 1 or 2 for a 2 × 4 system. Comparisons of subset selection

methods in terms of average throughput and uncoded BER are performed. In all our simulations we

use a quasi-static MIMO channel model and assume that the channel remains static during a frame of

transmitted data. From the simulation parameters mentioned, it can be seen that a scenario of rich

scattering environment is considered which is a typical case in wireless systems.

An average of at least a 3dB difference can be seen between a 2× 2 system and all the selected

systems in Figure 2.1(a). Similar to the 2× 2 case, an average of at least 3dB difference can be seen

between a 2× 4 system and all the selected systems in Figure 2.1(b). At SNR values from 12dB to

25dB, the average throughput of all the schemes increases.
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(b) 2 out of 4 selection at Rx.
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(c) 1 out of 4 selection at Rx.

Figure 2.1: Throughput comparison of antenna selection algorithms with two transmit antennas and

two or four antennas at receive side, respectively.
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Figure 2.2: Uncoded bit error ratio comparison of antenna selection algorithms with two transmit

antennas and two or four antennas at receive side, respectively.
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The method based on maximum mutual information behaves well for flat fading channel models.

Therefore, this method is normally taken as an upper bound for comparison with other sub-optimal

methods in flat fading channels. But for the case of frequency selective channels this method does not

give the best throughput and minimum BER. The reason is that for different sub-carriers different

antenna subsets may be optimal. Another reason for the sub-optimal behavior of this method is that

sub-optimal receivers and channel coding is used in simulations. In practical systems, also channel

coding with sub-optimal receivers are used for low complexity system design. Antenna selection through

mutual information optimization may give significant benefits in moderate frequency selective channels.

The complexity of MREM is slightly higher than MMEM, as it requires the calculation of both

maximum and minimum eigenvalues and their ratio per frequency tone n and subset combination r.

An average difference of 1dB is noticed in a 2 × 2 system. For a 2 × 4 system the gain is even less

pronounced. This difference is maximum at throughput values of approximately 12Mbit/s. The reason

in the difference is obvious. MREM provides channels of better condition numbers. Moreover, the

both the eigenvalue methods are very sensitive to channel estimation errors.

The behavior of the norm based method is good for SNRs ranging from 16 to 22dB. It has an

advantage of 2dB at throughput of 12Mbit/s from the eigen value based methods for a 2× 2 system.

From Figures 2.1(a), 2.1(b) and 2.1(c) it is clear that the simple norm based method gives the best

throughput performance. In Figure 2.1(c) this gain is even more pronounced.

In all the throughput comparisons, a reference throughput curve indicating a 2× 1 system without

antenna selection is also included. From the results it can be seen that more or less all the methods

except the MMEM, behave better than a simple 2× 1 system without antenna selection. Similarly for

reference, a 2× 2 system without antenna selection is included in Figure 2.1(b). The same behavior

can be seen in the 2× 4 system as well. In Figure 2.1(c) the gains are more pronounced compared to

the previous figures.

The BER curves are calculated as follows. For each channel realization and antenna subset

combination the BER values for each Adaptive Modulation and Coding (AMC) scheme are calculated.

The best antenna subset is selected according to methods described earlier. The BER performance

behaves somewhat similar to throughput performance. The norm based methods in Figures 2.2(a),

2.2(b) and 2.2(c) achieves the minimum BER compared to all the other methods. The only inconsistent

behavior while comparing Figure 2.1 and Figure 2.2 is the performance of the selection based method

on maximum throughput. The norm based method behaves better in terms of BER performance

compared to maximum throughput based selection. As mentioned earlier the throughput curves in

Figure 2.1 are for coded bits, so they give the best result. But in Figure 2.2 the BER curves are for

uncoded bits. The MREM is not included in Figure 2.1(c) and Figure 2.2(c) for the sake of clarity.

2.5 Conclusions

In this chapter we introduced the application of receive antenna selection on multicarrier systems.

We assumed perfect channel knowledge at the receiver for the calculation of best antenna subsets for

various selection algorithms. We ignored any channel estimation mechanisms at the receiver side [44].

The results can be more realistic if we include various channel estimation techniques for multicarrier

systems [45] [46]. The zero delay in the feedback was considered. In realistic systems the effect of

non-zero delay has to be included which would further effect the calculation of antenna subsets for

various channel conditions [47]. Antenna selection can also be performed at the transmitter for various
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power allocation and rate adaptation techniques [48]. We ignored all these effects to only get the

results for selection algorithms rather than the effects of the system.

After introducing the applications of antenna selection in OFDM based MIMO systems we move

forward to the application to 2D compact antenna structures in the next chapter.
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3
Antenna Selection in 2-D

Polarized MIMO

3.1 Introduction

In the analysis of Multiple-Input Single-Output (MIMO) systems, an array of vertical antennas is

normally considered when the receiver has no space limitations. In compact portable devices, such

as mobile handsets and laptops, if a spatial array of vertical antennas is realized, high correlation

between the closely spaced antenna elements severely effects the performance. Applying dual polarized

antennas at the receiver or at the transmitter proves effective in alleviating performance loss due

to low correlation between the antenna elements. Also there can be a leakage of power from one

antenna to another. This effect is known as antenna Cross Polarization Discrimination (XPD), and

is eminent in both co-located dual-polarized antenna arrays and spatially separated antenna arrays.

The effect of correlation is more dominant in closely spaced antenna arrays and less dominant in

systems with dual-polarized antennas. XPD is due to non-ideal antenna polarization patterns. Because

of this leakage, a simple rotation in the antenna array causes a mismatch in the incoming incident

Electro-Magnetic (EM) wave. The amount of this leakage has an impact on the overall performance of

the system [49]. Multiple Dual Polarized (DP) antennas are strong candidates to be put into practice

in 3GPP Long Term Evolution (LTE) [50] systems. Antenna arrays combined with receive antenna

selection techniques can improve the quality of wireless communication systems through reduction of

fading impact. If a dual-polarized receive antenna is employed, a further benefit is the mitigation of

polarization mismatch caused by the random orientation of portable devices. In this chapter multiple

co-located (fed from the same point) receive antennas are considered. We apply Receive Antenna

Selection (RAS), starting with 1 out of 2 selection and then extend this to 1 out of MR receive

antennas. Finally, the results are generalized for the lr out of MR selection case to study the limits

on performance. The combined effect of array rotation, power imbalance, and lr out of MR receive

antenna selection is studied. Analysis and simulation is performed for flat Rayleigh fading channels.

Accurate expressions and approximate bounds for the effective channel gains are provided for a generic

lr out of MR selection. A simple Maximum Ratio Combiner (MRC) is applied at the receiver for signal

detection. Robustness analysis is presented for a generic lr out of MR receive antenna selection by

19
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finding the CDF of the effective channel gains through simulations. From limiting values of effective

channel gains, a minimum antenna set (lr,MR) is found. We then proceed further to include the effects

of mutual coupling and analyze the performance of multi-polarized antennas for MIMO transmissions

with receive antenna selection. A literature overview from existing work is presented in the following

for dual polarized systems.

3.1.1 Dual Polarized Antenna Modeling

The utilization of multiple polarizations of the electromagnetic wave to extract diversity has been

well known and understood for a long time [51]. The capacity of the dual polarized MIMO channel is

evaluated and compared to the capacity of a single polarized MIMO system. On the same principles

we calculate the mutual information in our work as we assume equal power from the transmitting

antennas. In [52] [53], the potential advantages of employing dual-polarized arrays in multi-antenna

wireless systems for various channels is studied. In [54] [55], a model is proposed to determine the

XPD as a function of the channel condition under different antenna configurations. In this chapter it is

shown that the antenna XPD is not only sensitive to different channel conditions but also to different

receiver orientations.

3.1.2 Dual Polarized MIMO with Rotation

In [56] the impact of the polarization on the performance of the MIMO channel with cross-polarized

antennas has been investigated based on an outdoor macro-cell measurement at 2.53 GHz. A simple

model which can capture the major characteristics of the cross polarized channel has been proposed. It

has been shown that the polarization diversity outperforms the spatial diversity in a Line Of Sight

(LOS) scenario, but shows relatively small gain in a rich scattering scenario.

3.1.3 Antenna Selection for Dual Polarized MIMO

In [57], the performance of antenna selection on dual polarized MIMO channels with linear Minimum

Mean Square Error (MMSE) receiver processing is analyzed. A study on the impact of XPD on the

achieved selection gain is carried out. BER results obtained indicate that antenna selection with

dual-polarized antennas can achieve significant performance gains for compact configurations. In [58],

dual polarized MIMO exploiting the Spatial Channel Model (SCM) [39] is investigated in terms of

performance for a certain environment. Applying this channel model, the channel capacity is estimated

as a function of the XPD and the spatial fading correlation.

3.2 System Model with Rotation and XPD

The rotation of an antenna array can be modeled by multiplying the channel matrix with a rotation

matrix [56]. If we define the amount of energy leakage between the two polarizations of an antenna as

α, the antenna XPD is specified by [49], XPD = 1−α
α where 0 ≤ α ≤ 1. Therefore when

lim
α→0

XPD =∞; lim
α→1

XPD = 0.

All antenna elements considered in this chapter are assumed as simple monopoles. The transmitter

contains a single vertically polarized antenna and the receiver consists of MR antenna elements in an
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N-Spoke configuration [59], as shown in Figure 3.1. The feeding points of all antenna elements are

co-located. In [59], a similar antenna configuration is used to compare polarization diversity to spatial

diversity. We further assume that the antenna elements are isotropically radiating in all directions

with unity gain and there is no angular correlation between them. Note that in a practical system, a

certain amount of correlation exists between the antenna elements, as calculated in [59–61]. In order

to be able to derive analytical expressions for the channel gains, however, we will neglect the angular

correlation here.

3.2.1 General MRC Receiver

The model for a generic 1×MR Single-Input Multiple-Output (SIMO) system with MRC is explained

in the following. Subsequently a model for RAS with MRC will be shown. The channel matrix is

written as

h = [h1, h2, · · · , hMR
]T ,

and the received signal vector by

y = h · x+ v, (3.1)

where x ∈ C and v ∈ CMR with v being a noise vector with i.i.d. and circularly symmetric complex-

valued Gaussian entries with variance 1/2 σ2
v for each real dimension. The detected symbol at the

MRC output is shown as

x̂ = hH · h · x+ hH · v, (3.2)

where (·)H denotes the Hermitian. The received signal for receive antenna selection is then given by

y(Slr ) = h(Slr ) · x+ v(Slr ), (3.3)

where the MRC only combines the received signals from the selected antennas identified by the set

of indices of an ordered set Slr = {n1, n2, · · · , nlr} where ni ∈ [1, 2, · · · ,MR] and n1 < n2 < ... < nlr .

The detected symbol after receive antenna selection is then

x̂(Slr ) = h(Slr )H · h(Slr ) · x+ h(Slr )H · v(Slr ), (3.4)

The gain of full complexity receiver is given by

GMR/MR
= E

[
hH · h

]
, (3.5)

while the gain of receiver with antenna selection is given by

Glr/MR
= E

[
h(Slr )H · h(Slr )

]
. (3.6)

A generic model of the system is shown in Figure 3.1 with all the essential components. We assume

here for simplicity that the channel is known at the receiver and there is a perfect synchronization

between the transmitter and the receiver. Also we do not dwell into the realizations of the switch and

the RF chain. We assume an ideal switch without any insertion losses. We further assume that the

channel does not change during the switching period.
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Figure 3.1: N-Spoke antenna configuration (1 Tx and MR Rx) with receive antenna selection.

3.2.2 SIMO 1×MR with Polarization

The receiver is assumed to be randomly oriented in space. Due to this a polarization mismatch loss

can occur as discussed in [62]. The orientation can be represented in a three dimensional co-ordinate

system, but here, for simplicity we only consider one direction so that the orientation/rotation is

represented by a single angle θp with respect to the vertical antenna element of the array. The effect of

antenna orientation is well discussed in [63] [64]. The averaging is hence performed for all the rotation

angles. We start with the analysis of a single receive antenna case. The channel matrix is multiplied

with an XPD matrix and then with a rotation matrix as shown in [56]. A simple model which can

identify the basic characteristics of the polarized MIMO channel is proposed in this chapter [56]. This

model can describe the cross-polarized channel in realistic scenario better. The power is divided into

each orthogonal component of antenna element as shown in Figure 3.2. Next we show simulations for

Tx

H Pθ
Pθα sin

Pθα cos1−

Rx

Figure 3.2: Orthogonal polarization components of Single-Input Single-Output (SISO) receive antenna.

1×MR SIMO with MRC at the receiver. The channel matrix for 1×MR SIMO is

hMR
=


h1

(√
1− α cos(θp + k1

2π
MR

) +
√
α sin(θp + k1

2π
MR

)
)

h2

(√
1− α cos(θp + k2

2π
MR

) +
√
α sin(θp + k2

2π
MR

)
)

...

hMR

(√
1− α cos(θp + kMR

2π
MR

) +
√
α sin(θp + kMR

2π
MR

)
)

 , (3.7)

where kMR
= n;n = 0, 1, · · · ,MR − 1 are the scaling factors depending on the orientation of a single

antenna, and 0 ≤ α ≤ 1. As we have realized an MRC receiver, we sum the squares of the channel
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coefficients for each row of the channel matrix in Equation (3.7) and take the average over all realizations.

The effective channel gain is then shown by Equation (3.10). In Figure 3.3, a 1 × 3 SIMO antenna

configuration is shown as an example.

Figure 3.3: 1× 3 SIMO antenna configuration.

3.2.3 RAS 1/MR and lr/MR with Polarization

Next we simulate the effect of XPD and rotation on the channel gains of 1/MR RAS. The notation

lr/MR is used to denote receive antenna selection, selecting lr out of MR receive antennas. We start

by selecting lr = 1 out of MR from the channel matrix given by Equation (3.7), with the largest

norm, n̄ ∈ [1, 2, · · · ,MR] being the index of the selected antenna element. The corresponding channel

coefficient h1/MR
becomes a scalar.

h1/MR
=
[
hn
(√

1− α cos (φn) +
√
α sin (φn)

)]
, (3.8)

where φn = θp + kn
2π
MR

. The effective channel gain is expressed in Equation (3.11) and approximate

value in Equation (3.12). A similar matrix hlr/MR
= [h1, h2, · · · , hlr ]

T can be constructed, containing

only the channel coefficients of the lr selected antenna elements, indices of which would be from an

ordered set given by (Slr) = {n; ‖hn‖F > ‖hlr+1‖F } = [n1, n2, · · · , nlr ]. The new channel matrix with

lr/MR selection is then

hlr/MR
=


hn1

(√
1− α cos(φn1) +

√
α sin(φn1)

)
hn2

(√
1− α cos(φn2) +

√
α sin(φn2)

)
...

hnlr
(√

1− α cos(φnlr ) +
√
α sin(φnlr )

)

 , (3.9)

where φnm = θp + knm
2π
MR

.

3.3 Analytical Calculations for Average Values of Channel Gains and
Generalization

To determine the average values analytically over all α′s and over all θ′ps we do the following for 1/2

RAS. As E
∥∥h2

1

∥∥ = E
∥∥h2

2

∥∥ = 1 for Rayleigh fading channels, we deduce the following inequality from
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GMR/MR(θp) =

MR∑
n=1

E

[
|hn|2

(√
1− α cos

(
θp +

(n− 1)2π

MR

)
+
√
α sin

(
θp +

(n− 1)2π

MR

))2
]
. (3.10)

G1/MR(θp) = E
[
max

{
|h1|2

(√
1− α cos (φ1) +

√
α sin (φ1)

)2
, · · · , |hMR |

2 (√1− α cos (φMR) +
√
α sin (φMR)

)2}]
.

(3.11)

G1/MR(θp) ≈ max
{
E
[
|h1|2

] (√
1− α cos (φ1) +

√
α sin (φ1)

)2
, · · · , E

[
|hMR |

2] (√1− α cos (φMR) +
√
α sin (φMR)

)2}
.

(3.12)

where φn = θp + kn
2π
MR

.(√
1− α cos θp +

√
α sin θp

)2
>
(√

1− α cos
(
θp + 2π

3

)
+
√
α sin

(
θp + 2π

3

))2
>
(√

1− α cos
(
θp + 4π

3

)
+
√
α sin

(
θp + 4π

3

))2
.

(3.13)

GMR/MR =
1

2π

2π∫
0

[
MR∑
n=1

E

{
|hn|2

(√
1− α cos

(
θp +

(n− 1)2π

MR

)
+
√
α sin

(
θp +

(n− 1)2π

MR

))2
}]

dθp. (3.14)

G2/MR,α=0 =
2MR

π

∫ π
2MR

0

cos2 (θp) dθp +
MR − 1

π

∫ π
MR−1

0

cos2 (θp) dθp. (3.15)

an approximation of Equation (3.11) given in Equation (3.12):(√
1−α cos θp+

√
α sin θp

)2
>
(√

1−α sin θp+
√
α cos θp

)2
.

Solving the inequality for α = 0 we find that cos2 θp > sin2 θp, which results in the interval 0 < θp <
π
4

and

G1/2,α=0 =
4

π

∫ π
4

0

(
cos2 θp

)
dθp = 0.8183.

Similarly from Equation (3.12) for 1/3 RAS, we obtain the inequality Equation (3.13). Now solving the

inequality in Equation (3.13) for α = 0 we find that cos2 θp > cos2
(
θp + 2π

3

)
> cos2

(
θp + 4π

3

)
which

results in the interval 0 < θp <
π
6 and

G1/3,α=0 =
6

π

∫ π
6

0
cos2 θpdθp = 0.9135.

Equation (3.12) can be solved for other values of α, but the calculations are not shown here for space

limitations.

3.3.1 SIMO 1×MR

For SIMO we have the relation depicted in Equation (3.14). This gives the average effective channel

gains to be

GMR/MR,α=0 =
1

2
MR. (3.16)

We observe that the relation is very simple and only a linear function of MR.

3.3.2 RAS 1/MR

The intervals calculated in the previous section, show that they are multiples of π
2MR

. Hence we obtain

the following relations.

G1/MR,α=0 =
2MR

π

∫ π
2MR

0
cos2 θpdθp =

1

2
+
MR

π
sin

π

2MR
cos

π

2MR
. (3.17)

We recognize that the relation is a function of simple trigonometric identities.
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3.3.3 RAS lr/MR

Now we derive the expression for an lr/MR selection. We derive the result for 2/3 and 2/4 RAS and

then generalize it. The first inequality shown below yields the largest interval corresponding to the

largest channel gain.

cos2 θp > cos2

(
θp +

2π

3

)
> cos2

(
θp +

4π

3

)
,

0 < θp <
π
6 , and the second largest inequality below gives the second largest interval

cos2

(
θp +

2π

3

)
> cos2

(
θp +

4π

3

)
,

0 < θp <
π
2 . Calculating the gains from these intervals and summing them gives

G2/3,α=0 =
6

π

∫ π
6

0
cos2 θpdθp +

2

π

∫ π
2

0
cos2 θpdθp. (3.18)

With the same procedure above we calculate the channel gains for 2/4 selection

G2/4,α=0 =
8

π

∫ π
8

0
cos2 θpdθp +

3

π

∫ π
3

0
cos2 θpdθp. (3.19)

After generalization we reach to Equation (3.15). For values of lr > 2, it is very tedious to solve the

inequalities. These inequalities can be solved numerically through MATLAB or MAPLE software tools

or an approximate solution can be presented, as shown here with the advantage to obtain some explicit

formulations. For approximation we just added the first lr terms of G1/MR
from Equation (3.17), but

with π
n instead of π

2n intervals, as listed below.

G3/MR,α=0 ≈

 MR−1∑
n=MR−3

n

π

∫ π
n

0
cos2 (θp) dθp

 . (3.20)

G4/MR,α=0 ≈

 MR−1∑
n=MR−4

n

π

∫ π
n

0
cos2 (θp) dθp

 . (3.21)

G5/MR,α=0 ≈

 MR−1∑
n=MR−5

n

π

∫ π
n

0
cos2 (θp) dθp

 . (3.22)

Glr/MR,α=0 ≈

 MR−1∑
n=MR−Lr

n

π

∫ π
n

0
cos2 (θp) dθp

 . (3.23)

Monte-Carlo simulations are performed to generate channel coefficients according to Equation (3.7) for

SIMO and Equation (3.8) for selection systems for α = 0 and averaged over rotation angles. Results

from these expressions and comparison with simulation are shown in Figure 3.4. Theoretical results

are shown in dotted and simulations in solid lines. It can be observed that the curves for 1/MR and

MR/MR receive antenna selection serve as lower and upper bound respectively, for the channel gains

of lr/MR RAS.
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Figure 3.4: Channel gains for 1×MR SIMO and lr/MR RAS wrt. SISO.

3.3.4 Limiting Values for lr/MR RAS

Next we derive the limiting values of lr/MR RAS analytically.

lim
MR→∞

Glr/MR
= lim

MR→∞

 MR−1∑
n=MR−lr

n

π

∫ π
n

0
cos2 (θp) dθp

 (3.24)

= lr

(
1 + lim

MR→∞

MR

2π
sin

2π

MR

)
, (3.25)

= lr

(
1 + lim

x→0

1

x
sin(x)

)
, (3.26)

= 2lr, (3.27)

for lr = 1, 2, 3, 4, ....MR. Various values of lr and corresponding actual selection gains in the limit,

are shown in the Table 3.1. The analytical expressions for values lr > 2 as seen from the curves in

Figure 3.4, serve as an upper bound. The difference between the effective channel gains decreases as

lr is increased for a given MR. This happens because of the dependence of mean channel gains on

the average angular separation 2π
MR

between lr selected antennas. As the number of selected antennas

lr is increased the average angular spacing between the selected antennas is decreased, so does the

difference. From Figure 3.4 we observe that the channel gains almost attain their maximum values

Table 3.1: Minimum receive antenna set for lr/MR to achieve the maximum % of gain.

lr Max.Gain Req.MR Ach.Gain Ach.Gain %

1 3.01 2 2.85 95

2 6.02 4 5.72 95

3 7.78 6 7.39 95

4 9.03 8 8.57 95

5 10 10 9.5 95

after a certain number of antenna elements MR. The total number of used antennas can be reduced

without compromising much performance. From the graph, for each lr/MR curve, we can calculate the



PDFT
hA

S

Chapter 3. Antenna Selection in 2-D Polarized MIMO 27

minimum MR which gives almost 100% of the maximum value of the channel gains. The results of

calculating the minimum set is shown in Table 3.1. The first column shows the value of the number of

selected antennas lr. In the second column the maximum value of the channel gains are given from

Equation (3.24). The third column shows the values of MR required to achieve a certain percentage of

the maximum channel gain. The achieved gains and corresponding used percentages, are shown in the

next columns. If we take 95% of the maximum value as an example, the loss in the gains is not much

but we can save a number of antenna elements. From the table it is conlcuded that lr should be at

least half of the total number of receive antennas to achieve almost the maximum performance.
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Figure 3.5: CDF of channel gains with receive antenna selection.
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3.4 Robustness Analysis

The CDF plots shown here provide the measure of robustness against antenna rotation and orientation.

It also reveals the measure of variance of channel gains. In Figure 3.5(a) we show CDF plots for 1/MR

RAS. From the plots we observe that as MR increases, the slopes of the curves increase, and the

corresponding range of the gains decrease and hence robustness against channel variations increases.

As seen from the graphs, variance depends on the available diversity branches MR. Also it can be

observed that the mean of the channel gain is dependent on the number selected antenna lr. The ratio
lr
MR

shows as the inverse of the slope. Therefore as MR increases, the slope increases and hence the

decrease in variance. In Figure 3.5(b) we show the CDF plot for 2/MR RAS. A behavior similar to

1/MR RAS, can be found in this plot ,i.e., the slope increases as MR increases. In Figure 3.5(c) we

show the comparison of CDF plots for various values of lr/10 receive antenna selection.

3.5 Comparison of Compact Antenna Arrays

To overcome the space limitations in MIMO, there are other ways of providing diversity, such as

polarization [49], [51], angle and pattern diversity [65]. Signals from a pair of antennas with orthogonal

polarization are combined together to provide polarization diversity. Extensions to three orthogonally

polarized antenna elements further augment the degrees of freedom for incoming signals and hence

the diversity [66]. Co-located antennas with different radiation patterns can be combined together to

provide pattern diversity. Pattern diversity makes use of directional antennas which are physically

separated by a very short distance. Similarly co-located radiating elements with different angular

spacing can be used to realize angular diversity. One of the main drawbacks of MIMO systems with

arrays of parallel dipoles is their sensitivity to a polarization mismatch [53], due to random orientations

of the device. To reduce this effect, the benefits of polarization and/or pattern diversity can be

exploited [65]. Various channel models have been used in literature for evaluating multiple antenna

systems but for the sake of intuition and to include the effects of antenna geometry, we use the

double-directional analytical channel model as investigated in [67]. The advantage of using such model

is that it incorporates the following:

• Random mobile terminal rotation effects

• Antenna polarization

• Spatial, pattern and polarization diversity of array.

Other than the above characteristics; the representation is intuitive as shown to be the product of

antenna and channel effects. However, in this chapter we modify the model from its original to

include correlation properties between the antenna elements. The values of correlation have been taken

from [61]. In this chapter, models for accurate estimation of correlation for hybrid spatial-angular

MIMO systems are given. The model presented in [61] is valid for Rayleigh fading channels and

isotropic scatterings. We choose a simple model from that work to obtain the correlation values and

include them into our channel model for further analysis. The utilization of multiple polarizations

of the electromagnetic wave to extract diversity is well known and understood for a long time. The

capacity of the dual polarized MIMO channel is evaluated and compared to the capacity of a single

polarized array.
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Figure 3.6: Antenna configurations with four elements.

A channel model for MR receive antennas and a single transmit antenna is given by

H = (PMR×2G2×2X2×1)�
(
R

1/2
MR×MR

UMR×1

)
, (3.28)

where

PMR×2 =


cos(θp + ϕ1) sin(θp + ϕ1)

cos(θp + ϕ2) sin(θp + ϕ2)
...

...

cos(θp + ϕMR
) sin(θp + ϕMR

)

 ,
represents the orientation/rotation of the array and the dual polarized nature of each receive antenna

element. The � operator defines a scalar multiplication [49]. Here, θp is the orientation or rotation of

the array in space and ϕn is the orientation of individual antenna elements respect to each other and

defined in the next section.

G2×2 =

[
GC(φ) GX(φ)

−GX(φ) GC(φ)

]
,

is the gain matrix at azimuth angle φ, GC(φ) is the co-polar gain pattern and GX(φ) is the cross polar

component. This matrix depicts the pattern diversity effect.

X2×1 =
[ √

1− α
√
α
]T
,

represents the XPD matrix defined in [49], [53], [52] where 0 ≤ α ≤ 1 is the amount of power transfered

from one antenna element to another. The antenna XPD is specified earlier. We assume here an

equal antenna XPD loss between each pair of antenna elements. However, the study of a variable

XPD loss could also be an interesting work for the future. Here, UMR×1 is the matrix containing i.i.d.

complex Gaussian fading coefficients and RMR×MR
is the normalized correlation matrix. This matrix

is calculated according to the results taken from [61]. The matrix representing the pattern diversity

is ignored here for simplification as we consider an omni-directional azimuth gain pattern for both

orthogonal components. Therefore here, we only consider the effects of polarization diversity. Hence

the model given in Equation (3.28) can be simplified to

H = (PMR×2X2×1)�
(
R

1/2
MR×MR

UMR×1

)
. (3.29)
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The basic transmission system with receive antenna selection is given in Figure 3.1. The maximum

mutual information is given by

C = log2det

(
I +

γ

NT
HHH

)
, (3.30)

where NT is the number of transmit antennas and γ is the mean signal to noise ratio. The performance

with receive antenna selection is calculated by selecting those rows of channel matrix H which have

the maximum Frobenius norm and then calculating the maximum mutual information. Thus previous

equation with receive antenna selection becomes

CΛ = log2det

(
IΛ +

γ

NT
HΛHH

Λ

)
, (3.31)

where Λ denotes the receive antenna subset.

3.6 Correlation in Antenna Arrays
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Figure 3.7: Correlation functions in Antenna Arrays.

The spatial correlation between two consecutive identical antennas can be found in [61], given as

ςr = sin(zs)/zs, (3.32)

and its power is presented in Figure 3.7(a), where zs = 2πdr/λ and dr is the inter-element distance.

The correlation function between antenna elements separated by an angular displacement is established

by an equivalence between angular and spatial separation. This is called true polarization diversity [59]

and shown below as

ςa = sin(za)/za, (3.33)

where za = 2πθr. For a small number of receiving antennas and under Rayleigh fading scenarios the

angular separation θr can be made equivalent to a spatial separation by

θr = ϕi−j/180◦, (3.34)

where ϕi−j = ϕi − ϕj is the angular difference between two dipoles, and ϕi and ϕj are the orientation

angles of dipoles i and j with respect to vertical axis. The power of angular correlation function is

shown in Figure 3.7(b).
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3.7 Geometrical Considerations of Antenna Array Configurations

The model presented in the previous section was applied to the four configurations as shown in Figure

3.6. Each configuration contains four antenna elements arranged in a different way. The total area

or aspect ratio was kept constant so as to have a fair comparison in terms of performance. Selection

of antenna subsets is performed on the basis of the maximum Frobenius norm of rows of channel

matrices. For the sake of simplicity we ignore the effects of mutual coupling [68] between the ports of

antenna elements. The first array is the most common setting with spatially separated dipole arrays

spaced equally apart with inter-element distance of λ/6, also called Uniform Linear Array. The second

configuration contains a pair of cross dipoles. The centers of the dipoles are separated by a distance of

λ/(2
√

2). This configuration is named as Spatially Separated Dual Polarized (SSDP) arrays. In the

third configuration we have an arrangement of dipoles whose centers or feed points are co-located with

no inter-element distance. All the dipoles are separated with an angular displacement as defined in the

previous section. The configuration is called N-Spoke Dipole Array (DP) here. The last configuration

contains an array of monopoles whose edges are co-located. We have assumed here that the ground

planes for each monopole are somehow separated from each other, named N-Spoke Monopole Array

(MP) here. The correlations are defined again according to the angular displacement rather than spatial.

Dipoles and monopoles mentioned in the last three configurations produce various patterns due to slant

angles hence introducing both pattern and polarization diversity, but here for the sake of simplicity we

assume only polarization diversity. In all of this chapter we consider a single vertical antenna at the

transmit side. Extension to multiple transmit antennas with various transmission strategies can also

be exploited. As an explanation of the construction of the correlation matrix RMR×MR
we take the

example of a spatially separated cross dipole array. The angular separation between each pair of dipoles

is ϕ = 90◦. ϕ1−2 = ϕ1 − ϕ2 = ϕ3−4 = ϕ3 − ϕ4 = 90◦. And d1 = ϕ1−2/180◦ = d2 = ϕ3−4/180◦ = 1/2.

The angular correlation coefficients ς = sin(za)/za = 0. As the pairs are separated by a spatial

distance of λ/(2
√

2), the spatial correlation coefficient is given by ς = sin(π/
√

2)/(π/
√

2) = 0.3582.

The total normalized correlation matrix is given by the Kronecker product of two correlation matrices

RSSDP = R
1/2
sp ⊗R

1/2
cp /

∥∥∥R1/2
sp ⊗R

1/2
cp

∥∥∥ with

Rsp =

[
1 0.3582

0.3582 1

]
, (3.35)

and

Rcp =

[
1 0

0 1

]
, (3.36)

where Rcp and Rsp are the correlation matrices for cross dipoles and spatially separated dipoles,

respectively. The complete matrix is given below.

RSSDP =


0.844 0 0.156 0

0 0.844 0 0.156

0.156 0 0.844 0

0 0.156 0 0.844

 , (3.37)
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3.8 Theoretical Analysis and Simulation Results

In order to find the algebraic expressions we analyze effective channel gains on the example of monopoles.

The same procedure can be adopted for other configurations. The theoretical work presented here is

along the sames lines as in [69]. In [69] only one structure of an antenna array was analyzed. The

model for a generic 1×MR SIMO system with MRC was explained in Section 3.2.1. We follow the

same procedure along with the Equations (3.1)-(3.6) and apply them for all types of antenna arrays.

As an example the channel matrix for 1× 4 SIMO, following the model defined in Equation (3.29) is

given by

h4×1 =


h1

(√
1− α cos(φ1) +

√
α sin(φ1)

)
h2

(√
1− α cos(φ2) +

√
α sin(φ2)

)
h3

(√
1− α cos(φ3) +

√
α sin(φ3)

)
h4

(√
1− α cos(φ4) +

√
α sin(φ4)

)
 , (3.38)

where φn = θ+ϕi−j and ϕi−j is defined in Equation (3.34) earlier. The channel coefficients h1, h2, h3, h4

contain the effects of correlation, calculated from Equation (3.32) and Equation (3.33) for various

antenna configurations. As we have realized an MRC receiver, we sum the squares of the channel

coefficients for each row of the channel matrix in Equation (3.38) and take the average over all

realizations. The effective channel gain is then shown by Equation (3.41). We analyze 1/4 and lr/4

RAS with polarization next. We start by selecting lr = 1 out of 4 from the channel matrix given by

Equation (3.38), with the largest norm, n̄ ∈ [1, 2, 3, 4] being the index of the selected antenna element.

The corresponding channel coefficient h1/4 becomes a scalar.

h1/4 =
[
hn
(√

1− α cos (φn) +
√
α sin (φn)

)]
, (3.39)

The effective channel gain is expressed in Equation (3.42) and an approximate value in Equation

(3.43). A similar matrix hlr/4 = [h1, h2, h3, h4]T can be constructed, containing only the channel

coefficients of the lr selected antenna elements, indices of which would be from an ordered set given by

(Slr) = {n; ‖hn‖F > ‖hlr+1‖F } = [n1, n2, · · · , nlr ]. The new channel matrix with lr/4 selection is then

given by

hlr/4 =


hn1

(√
1− α cos(φ1) +

√
α sin(φ1)

)
hn2

(√
1− α cos(φ2) +

√
α sin(φ2)

)
hn3

(√
1− α cos(φ3) +

√
α sin(φ3)

)
hn4

(√
1− α cos(φ3) +

√
α sin(φ4)

)
 , (3.40)

For a monopole configuration, the correlation matrix R = I, because all ςa = 0 from Equation (3.33).

The channel gains are dependent, both on rotation and XPD. Here, for the sake of simplicity we do

average only over rotation while keeping α = 0. The same analysis can be performed for other values of α

and then averaged. Now for 1/4 RAS we do the following. As E
∥∥h2

1

∥∥ = E
∥∥h2

2

∥∥ = E
∥∥h2

3

∥∥ = E
∥∥h2

4

∥∥ = 1

for Rayleigh fading channels, we deduce the following inequality from an approximation of Equation

(3.43). We solve it for α = 0 and obtain cos2 θp > cos2
(
θp + π

2

)
> cos2

(
θp + 2π

2

)
> cos2

(
θp + 3π

2

)
.

This results in the interval 0 < θp <
π
4 so

G1/4,α=0 =
4

π

∫ π
4

0

(
cos2 θp

)
dθp = 0.8183.

Similarly solving for 2/4 RAS we have cos2
(
θp + π

2

)
> cos2

(
θp + 2π

2

)
> cos2

(
θp + 3π

2

)
. We obtain the

interval as π
4 < θp <

π
2 . We have
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GMR/MR(θp) =

MR∑
n=1

E

[
|hn|2

(√
1− α cos

(
θp +

(n− 1)2π

MR

)
+
√
α sin

(
θp +

(n− 1)2π

MR

))2
]
. (3.41)

G1/MR(θp) = E
[
max

{
|h1|2

(√
1− α cos (φ1) +

√
α sin (φ1)

)2
, · · · , |hMR |

2 (√1− α cos (φMR) +
√
α sin (φMR)

)2}]
.

(3.42)

G1/MR(θp) ≈ max
{
E
[
|h1|2

] (√
1− α cos (φ1) +

√
α sin (φ1)

)2
, · · · , E

[
|hMR |

2] (√1− α cos (φMR) +
√
α sin (φMR)

)2}
.

(3.43)

G3/4,α=0 =
4

π

∫ π
4

0

(
cos2 θp

)
dθp +

4

π

∫ π
2

π
4

cos2
(
θp +

π

2

)
dθp +

4

π

∫ π
2

π
4

cos2
(
θp +

3π

2

)
dθp = 1.83. (3.44)

GMR/MR =
2

π

π
2∫

0

[
MR∑
n=1

E

{
|hn|2

(√
1− α cos

(
θp +

(n− 1)2π

MR

)
+
√
α sin

(
θp +

(n− 1)2π

MR

))2
}]

dθp. (3.45)

G2/4,α=0 =
4

π

∫ π
4

0

(
cos2 θp

)
dθp +

4

π

∫ π
2

π
4

cos2
(
θp +

π

2

)
dθp = 1.628.

Calculating in the similar fashion we have for 3/4 RAS shown in Equation (3.44). For full complexity

SIMO we have the relation depicted in Equation (3.45). The theoretical results for the case of monopole

configuration are compared with the simulation in Figure 3.8(a). Analysis with the same method for

other configurations can be easily performed but not shown here due to space limitations.

Simulation results are shown in terms of mutual information, both with and without receive antenna

selection. Here, lr is the number of antennas to be selected and lr is the total number of antennas

available. Also, lr/MR denotes the selection of lr antenna elements out of MR elements. The results

are shown for various performance parameters. The two most important parameters are the XPD

and the rotation. In the figures shown next we display the results from simulations considering these

parameters. In Figure 3.8(b) we show the comparison between the configurations of Figure 3.6. We

show the performance for a full complexity system as well as for receive antenna selection. From the

figure we observe that the configuration with monopole structure has the maximum mutual information

when used in conjunction with selection. Construction of such array is practically very difficult but

due to very less angular correlation, it performs better compared to other structures. For a full

complexity system, the Spatially Separated Dual Polarized (SSDP) configuration performs better.

Although for a Uniform Linear Array (ULA) the mutual information increases while increasing lr but

the performance degrades for values of 3/3 and 4/4 full complexity system. This is due to inter-element

distance becoming less than λ/2. In the Figure 3.9(a) we compare 2/4 selection for various antenna

configurations. Non-Antenna Selection (NAS) in the simulation represents a full complexity system

with no antenna selection. From the figure we observe that the mutual information of a Uniform

Linear Array (ULA) is strongly deteriorated by a decrease in the XPD. The performance of both

monopole and dipole structure is similar. The mutual information decreases for decreasing XPD but

again increases for lower values of XPD. Thus all the structures other than ULA, are robust to power

imbalance between dual polarized antenna elements. In Figure 3.9(b) we compare a 2/4 selection for

various antenna configurations by varying the orientation angle of the structures. We observe from

the figure that again the ULA is effected by the orientation angle and other structures are almost

insensitive to the change in orientation. From the previous two figures we also observe that mutual

information depends both on array orientation as well as XPD. In Figures 3.10(a), 3.10(b), 3.10(c),

3.10(d) we show the mutual information with selection for various configurations and its dependence on
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(b) Comparison of antenna configurations with lr/4 receive antenna selection

at 30 dB SNR and averaged over 90◦ rotation.

Figure 3.8: Performance comparison of antenna configurations.

both XPD and orientation. The variation of mutual information in dipole configuration is very small

when compared to the monopole structure, but its behavior is different. The dipole configuration has

four minimum and maximum contour lines. The monopoles have three maximum and two minimum

contours. The variation along rotation and XPD for SSDP configuration is opposite to monopole

configurations with two maximum and three minimum contour lines. The ULA configuration is badly

effected by higher values of both rotation and XPD. The performance degrades quickly after the values

of α = 0.6 and ψ = 60o. From Figure 3.8(b) we see that the arrangement with monopoles shows the

best performance with antenna selection. This is because the selection process always selects either

Antenna 1 or 3 in case of 1/4 selection, which are highly un-correlated. Its performance is better in

average as compared to dipole configuration because for dipole, always Antenna 1 is selected, which is

always vertical oriented. The performance of the SSDP configuration is better than dipoles because on

average, either Antennas 1 or 3 is selected which are both inclined by 45◦ and also spatially separated.

The ULA performs the worst as all the antenna are selected on average. The same intuitive reasoning

can be applied for the 2/4 and 3/4 selection. The performance is different for full complexity systems

on the average. As an example if we take a three antenna full complexity system, SSDP reveals the

best performance because it is constructed from two orthogonal antennas with an additional spatially

separated and 45◦inclined antenna. The mutual information for monopoles is slightly better than
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(b) Comparison of antenna configurations with 2/4 selection with varying

rotation at 30 dB SNR and α = 0.

Figure 3.9: Performance comparison of antenna configurations with XPD and rotation.

that of a dipole arrangement because all the three antennas are separated 90◦ apart compared to 60◦

separation for a dipole configuration. The ULA performance is degraded due to decreasing spatial

distance and hence an increase in correlation.

3.9 Polarized MIMO Transmissions with Mutual Coupling

In this section we compare two different antenna array configurations, the linear array and N-Spoke by

including the effects of mutual coupling at the receive side. The antenna configurations are depicted

in Figure 3.6. Methods to calculate mutual coupling effects in linear antenna array configurations

and N-Spoke configurations are shown. We also show the effect of inter-element separation on mutual

coupling in side-by-side antenna arrays. Similarly we show the effect of angular separation on the

overall mutual coupling in N-Spoke configurations. We calculate the capacity bounds for systems with

simple receive antenna selection methods. We discuss the simulation results and a comparison with

the theoretical bounds is given. The effect of varying XPD and orientation of antenna arrays on the

performance is given.
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(a) Dipole antenna (DP) with 2/4 selection with varying rotation

and XPD at 30 dB SNR.

(b) Monopole antenna (MP) with 2/4 selection with varying

rotation and XPD at 30 dB SNR.

(c) Spatially Separated Dual Polarized antenna (SSDP) with 2/4

selection with varying rotation and XPD at 30 dB SNR.

(d) Uniform Linear Array antenna (ULA) with 2/4 selection with

varying rotation and XPD at 30 dB SNR.

Figure 3.10: Performance comparison of antenna configurations with combined XPD and rotation.
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3.9.1 MIMO Channel Model with Mutual Coupling

A channel model for MR receive antennas and a single transmit antenna is given by

H = (PMR×2G2×2X2×1)�
(
CMR×MR

R
1/2
MR×MR

UMR×1

)
, (3.46)

where

PMR×2 =


cos(θp + ϕ1) sin(θp + ϕ1)

cos(θp + ϕ2) sin(θp + ϕ2)
...

...

cos(θp + ϕMR
) sin(θp + ϕMR

)

 , (3.47)

represents the orientation/rotation of the array and the dual polarized nature of each receiving antenna

element. The � operator defines an element-wise scalar multiplication [49]. Here, θp is the orientation

or rotation of the array in space and ϕn is the orientation of individual antenna elements with respect

to the vertical oriented antenna element taken as reference.

G2×2 =

[
GC(φ) GX(φ)

−GX(φ) GC(φ)

]
, (3.48)

is the gain matrix at azimuth angle φ, GC(φ) denotes the co-polar gain pattern and GX(φ) is the cross

polar component. This matrix depicts the pattern diversity effect.

X2×1 =
[ √

1− α
√
α
]T
, (3.49)

represents the XPD matrix defined in [49,52,53] where 0 ≤ α ≤ 1 is the fraction of power transfered

from one antenna element to another. The antenna XPD is specified earlier. The matrix UMR×1

contains i.i.d complex Gaussian fading coefficients and RMR×MR
is the normalized correlation matrix.

This matrix is calculated according to the results taken from [61]. The coupling matrix CMR×MR

represents the mutual coupling between closely spaced antenna elements. The details of the construction

of this matrix will be elaborated in Section 3.9.3. The difference in Equation (3.28) and Equation

(3.46) is only this coupling matrix. Matrix G2×2, representing the pattern diversity, is ignored here for

simplification as we consider an omni-directional azimuth gain pattern for both orthogonal components,

thus G2×2 = I. The model given in Equation (3.46) can thus be simplified to

H = (PMR×2X2×1)�
(
CMR×MR

R
1/2
MR×MR

UMR×1

)
. (3.50)

Although the channel model defined above consists of a single transmit antenna and multiple receive

antennas, the inclusion of dual-polarized antennas makes it a MIMO channel with diversity two on the

transmit side, rather than a SIMO channel. We thus refer to it as MIMO throughout the chapter. To

separate the mutual coupling and correlation effect we rewrite Equation (3.50)

H = (PMR×2X2×1)�CR1/2U

= (PMR×2X2×1)�CHnc, (3.51)

Here, we have defined Hnc = R1/2U, where the subscript nc denotes non-mutual coupling. The

elements of the matrix R are taken from Equation (3.52) defined later. We have also removed the

dimensions of the matrices Hnc and C for easier notation. The model presented in the previous section
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Figure 3.11: Antenna configurations with four elements.

was applied to the two configurations shown in Figure 3.11. The aspect ratio was kept the same for

both structures as to have a fair comparison in terms of performance. The first array is the most

common setting with spatially separated dipoles spaced equally apart. In the second configuration

we have an arrangement of dipoles whose centers or feed points are co-located with no inter-element

distance. All the dipoles are separated with an angular displacement. We define Lt and Lr as the

aperture lengths for transmitter and the receiver side. In particular, we are more interested in the

case where the aperture size is fixed to λ/2, which corresponds to the space limitation of the User

Equipment (UE). We denote l as the dipole length, r as the dipole radius, and dr as the side-by-side

distance between the adjacent dipoles at the receiver side. Thus, we have dr = Lr/(MR − 1). For

angular systems we have a fixed aperture size of λ/2 with an angular separation of θr = 180/MR. The

inter-element distance dr largely depends on the radius r of the dipole. This limits the total number of

antennas that can be stacked in given aperture size. From [70] and [71] the practical measure for r is

given to be 0.025λ. Thus, a maximum of nine antenna elements can be stacked in such configurations.

For fair comparison we use nine antenna elements for the N-Spoke configuration as well. The radiation

patterns of all the elements in a side-by-side configuration is constant. In the N-Spoke structure the

dipoles produce different patterns due to slant angles hence introducing both pattern and polarization

diversity, but here for the sake of simplicity we assume only polarization diversity.

3.9.2 Combined Correlation Model

We us he combined spatial-polarization correlation function as given in [72] is a separable function of

space dr and angle θr variables, shown below

ς(dr, θr) = sinc(kdr) cos θr. (3.52)

If we have a side-by-side configuration, ςr = sinc(kdr) and ςa = cos θr for the angular separated

configuration. We use these simple models in order to describe correlation values. Depending upon the

type of structure used, i.e., spatial or angular, we compute the values from Equation (3.52) and use

these values to construct the correlation matrix R in Equation (3.51).
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Figure 3.12: Angular antenna array.

3.9.3 Mutual Coupling for Angularly Spaced Antenna

Let us now return to the mutual coupling matrix C from Equation (3.51). The mutual coupling

effects for a pair of co-located dipole antennas as displayed in Figure 3.12 separated by an angle θr are

presented in [73]. We extend this model of two antennas to MR antenna elements. For spatial systems

we formulate the mutual coupling effects as described in the existing models [74–77] and the references

within. The mutual coupling in an array of co-linear side-by-side wire dipoles can be modeled using

the theory described in [78,79]. Assuming the array is formed by MR wire dipoles, the coupling matrix

can be calculated using the following relationship involving the mutual coupling matrix [75] as,

C = (ZA + ZT)(Zr + ZTIMR
)−1, (3.53)

where ZA is the antenna impedance in isolation, for example, when the wire dipole is λ/2, its value is

ZA = 73 + j42.5Ω [74]. The impedance ZT at each receiver element is chosen as the complex conjugate

of ZA to obtain the impedance match and maximum power transfer. The mutual impedance matrix

Zr is given by

Zr =


ZA + ZT Z12 · · · Z1MR

Z21 ZA + ZT · · · Z2MR

...
...

. . .
...

ZMR1 ZMR2 · · · ZA + ZT

 . (3.54)

Note that this expression provides the circuit representation for mutual coupling in array antennas.

It is valid for single mode antennas. The wire dipoles assumed here fall into this category. For a

side-by-side array configuration of wire dipoles having length l equal to 0.5λ, the expressions for Zmn
can be adapted from [77] and [78]. The mutual impedance matrix Zr is a function of the dipole length

l, the antenna spacing dr, angular spacing θr, and the antenna placement configurations. To calculate

the mutual coupling between antenna structures, separated by an angular displacement we refer to

work in [70, 73]. A layout of two antennas in cross-polarized configuration is shown in Figure 3.12. We

now calculate the mutual coupling of two antenna elements separated by any cross-angle, and then

generalize them to the N-Spoke configuration with MR antennas. In Figure 3.12 the elements A1 and

A2 represent two fine half-wavelength dipole antennas each with length of 2l where l = λ/4 as explained

in [73]. We also assume here that both of these antenna elements are in the same plane. The common
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point of these two antennas is located at the origin of the coordinate system. The angular displacement

is given by θr. From Figure 3.12 we observe two mutually orthogonal electric field components E1 and

E2 at the point P of antenna A2, which are generated by the current flowing into A1. These electric

field components, from the geometry, can be expressed as [73]:

E1 = j30Im

[
x cos θr − l
x sin θr

e−jkR1

R1
+
x cos θr + l

x sin θr

e−jkR2

R2
− 2 cot θr cos kl

e−jkx

x

]
, (3.55)

E2 = j30Im

[
e−jkR1

R1
+
e−jkR2

R2
− 2 cos kl

e−jkx

x

]
, (3.56)

where R1 is the distance between the upper end point of A1 and the P -point, given by R1 =√
(x sin θr)2 + (l − x cos θr)2, and R2 =

√
(x sin θr)2 + (l + x cos θr)2 is the distance between the lower

end point of A1 and the P -point. Here, x is the distance between the center of A2 and the P -point, Im
the maximum current value at A2, k = 2πλ , and λ is the carrier wavelength. The electric field vector E
at the P -point along with X-axis is given by

E = E1 sin θr + E2 cos θr. (3.57)

The current distribution at dipole A2 is given by

I2 = Im sin [k(l − x)] . (3.58)

According to the definition given in [70], the mutual impedance between A1 and A2 can be calculated

as

Z12 =
1

sin2(kl)

∫ l

−l

E
Im

sin [k(l − x)] dx. (3.59)

Since A1 and A2 are two fine half-wavelength dipole antennas, that is, l = λ
4 , we have

Z12 =

∫ l

−l

E
Im

sin [k(l − x)] dx. (3.60)

The above equation is the desired expression of the mutual impedance. For the self impedances of A1

and A2, the expression in [71] is used. The effect of angular displacement θr on the mutual coupling

for a co-located polarized pair of antennas is shown in Figure 3.13(a). We observe that <{Zmn}
for angularly separated systems decreases monotonically with increasing angle, varying from almost

76Ω to −76Ω from maximum to minimum, while the imaginary part remains basically zero. The

effect of spatial displacement dr on the mutual coupling for a pair of spatially separated antennas is

displayed in Figure 3.13(b). For spatially separated systems, <{Zmn} has a different behavior than

the angularly separated system and achieves its minimum at approximately dr = 0.65λ. The ={Zmn}
has a minimum at dr = 0.4λ.

3.10 Receive Antenna Selection with Mutual Coupling

The basic transmission system with receive antenna selection is depicted in Figure 3.1. The performance

of this MIMO system is calculated on the basis of maximum mutual information. Assuming the Channel
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Figure 3.13: Mutual impedance in antenna configurations.

State Information (CSI) is known to the receiver but unknown to the transmitter, and that the transmit

power P is evenly distributed among the antennas, the mutual information [80] for a given channel

realization is given by

C(H) = log2det

(
IMR

+
γ

NT
HH†

)
, (3.61)

where NT is the number of transmit antennas, γ is the average SNR at each receiver branch and P
σ2
n

.

The mutual information is in the units of (bit/s/Hz). The performance with receive antenna selection

is calculated by selecting those lr out of MR receive antennas that maximize the Frobenius norm for a

given channel realization. In other words we select those rows of the channel matrix H which have the

maximum norm and then calculate their mutual information. Thus, the previous equation with receive

antenna selection becomes

C(H̃) = log2det

(
Ilr +

γ

NT
H̃H̃†

)
, (3.62)

where H̃ represents the selected sub matrix. In [31,81–83], receive antenna selection is analyzed for

linear arrays with mutual coupling. As antenna selection algorithms choose the best receive antenna

subset according to the channel condition, it is important to understand how the channel matrix of the

selected antenna subset is formed. If the channel links are independent or correlated and no mutual

coupling effects are present, C is an identity matrix and H = Hnc. In this case, the channel matrix of

the selected antenna subset, H̃, is formed by deleting the rows associated with the unselected receive

antennas from H. This problem becomes significant in the presence of mutual coupling. Now the
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channel matrix of the selected antenna subset can be written as follows,

H̃ =
(
P̃MR×2X̃2×1

)
� C̃H̃nc, (3.63)

where H̃nc now of lower dimension, can be formed in the same way as in the previous case. To obtain C̃,

we need to form Z̃r and C̃. The mutual coupling matrix of the selected antenna subset, C̃, should only

consider the mutual coupling effects among the selected antennas, and is thus formed by deleting the

rows and the columns associated with the unselected antennas from Zr. Similarly, the load impedance

matrix ZT Ilr can be formed by deleting the diagonal elements associated with the unselected antennas

from IMR
. Now the matrix given in Equation (3.53) becomes,

C̃ = (ZA + ZT)(Z̃r + ZTIlr)
−1
, (3.64)

where Ilr is an identity matrix of dimension lr × lr. Although we are not using the antenna ports,

when performing subset selection, their physical presence still introduces some coupling effect. Here we

assume a simple method that ignores the coupling effects of non-selected antennas.

New Selection Algorithm

The selection method presented in the previous section was based on a simple norm based method

and it was assumed that the non-selected antenna elements were terminated with ZT , and even more

that they are physically not present when not selected. However, even if these are terminated they are

still coupling with their neighbors, an effect that needs to be considered as well. In the new selection

algorithm, also based on a simple norm method, we short circuit ZT = 0, the non-selected antenna

elements. The new mutual coupling matrix from Equation (3.53) now looks like,

C̃ = (ZA + ZT)(Zr + ZTQ)−1, (3.65)

where Q is a MR × MR diagonal matrix which is formed with qi,i = 0 for non-selected antenna

combinations and qm,n = 0 for m 6= n. The matrix Q contains lr elements equal to one and the

rest MR
2 − lr elements equal to zero. This matrix is important in calculating the capacity bounds

presented in the next section. For explanation of the structure of various matrices we give an example

of an MR = 4, N-Spoke antenna system. The mutual impedance matrix is given by Equation (3.67).

With a simple norm based selection we take the example of 3/4 selection. Now one of the subsets

(selecting antennas 1 to 3) Z̃r with dimensions of 3× 3 would look like Equation (3.68). The matrix

(Z̃r + ZTIlr) from Equation (3.64) is given by Equation (3.69). For the new selection algorithm we

have the following matrix for Q,

Q =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

 . (3.66)

With this taken into consideration, the matrix Zr + ZTQ in Equation (3.65) takes on the values shown

in Equation (3.70). The main difference in both methods is that we do not delete the non-selected

rows and columns from the matrix Zr in the new selection method, rendering the matrix C̃ to remain

in the dimension, i.e., MR ×MR. In Equation (3.70) we terminated the non-selected antenna ports

with a short circuit.
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Zr =


146 50.44 + 1.82i 0 −50.44− 1.82i

50.44− 1.82i 146 50.44 + 1.82i 0

0 50.44− 1.82i 146 50.44 + 1.82i

−50.44 + 1.82i 0 50.44− 1.82i 146

 . (3.67)

Z̃r =

 146 50.44 + 1.82i 0

50.44− 1.82i 146 50.44 + 1.82i

0 50.44− 1.82i 146

 . (3.68)

Z̃r + ZTIlr =

 219.37− 42.54i 50.44 + 1.82i 0

50.44− 1.82i 219.37− 42.54i 50.44 + 1.82i

0 50.44− 1.82i 219.37− 42.54i

 . (3.69)

Zr + ZTQ =


219.37− 42.54i 50.44 + 1.82i 0 −50.44− 1.82i

50.44− 1.82i 219.37− 42.54i 50.44 + 1.82i 0

0 50.44− 1.82i 219.37− 42.54i 50.44 + 1.82i

−50.44 + 1.82i 0 50.44− 1.82i 146

 . (3.70)

3.11 Analysis of Capacity with Selection

We work along similar lines as in [72] and [84] to establish the capacity lower and upper bounds with

receive antenna selection for the simple norm based method. A different bound is required for modified

receive antenna selection as the structure of impedance matrix is different. We assume lr receive

antennas are selected and the resulting matrices C̃ and H̃nc are full rank matrices. Now using the

singular value decomposition (SVD), we have

C̃ = VrΛrPr, (3.71)

where Vr and Pr are unitary matrices and Λr is the diagonal matrix containing the singular values

of C̃. The channel matrix with selection becomes H̃ = VrΛrPrH̃nc. We define here Ĥnc = PrH̃nc.

Since Pr is a unitary matrix, ĤncĤ
†
nc has the same eigenvalues as H̃ncH̃

†
nc. The mutual information

with receive antenna selection can be written as

C
(
H̃
)

= log2det

(
Ilr +

γ

NT
H̃H̃†

)
(3.72)

= log2det

(
Ilr +

γ

NT
VrΛrĤncĤ

†
ncΛ

†
rV
†
r

)
(3.73)

(a)
= log2det

(
Ilr +

γ

NT
ΛrĤncĤ

†
ncΛ

†
r

)
(3.74)

(b)
= log2det

(
Ilr +

γ

NT
Λ†rΛrĤncĤ

†
nc

)
(3.75)

= log2det (Ilr + ΘΩ1) , (3.76)

since (a) det(I + UAU†) = det(I + A) and (b) det(I + AB) = det(I + BA) for any unitary matrix

U and any square matrix A and B. Here we also define Ω1 = γ
Nt

ĤncĤ
†
nc and Θ = Λ†rΛr, and let{

λ
(i)
Ω1

}
and

{
λ

(i)
Θ

}
denote the sorted eigenvalues of Ω1 and Θ in descending order.
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3.11.1 Upper Bound

Define Ξ as a lr × lr diagonal matrix Ξ = diag
[
λ

(1)
Ω1
, · · · , λ(NT)

Ω1
, 1, · · · , 1

]
. Using Equation (3.76), we

can show that

C
(
H̃
)
≤ log2det (Ilr + ΘΞ) . (3.77)

Similarly we note that equality is obtained for lr = 1. At higher SNR values, the upper bound can be

written as

CUpper =

NT∑
i=1

log2λ
(i)
Ω1

+

lr∑
i=1

log2λ
(i)
Θ . (3.78)

In our case as NT = 2, so that the above equation becomes,

CUpper =
2∑

i=1

log2λ
(i)
Ω1

+

lr∑
i=1

log2λ
(i)
Θ . (3.79)

3.11.2 Lower Bound

The instantaneous capacity in Equation (3.74) can be rewritten as

C
(
H̃
)

= log2det

(
INT

+
γ

NT
Ĥ†ncΘĤnc

)
(3.80)

and further lower bounded by

C
(
H̃
)
> log2det

(
γ

NT
Ĥ†ncΘĤnc

)
. (3.81)

Define Ω2 = γ
NT

Ĥ†ncĤnc and Ω2 has NT nonzero eigenvalues which are the same as in Ω1. Applying

inequality (12) of [84] on Equation (3.81) yields

C
(
H̃
)
> log2

NT∏
i=1

λ
(i)
Ω2

+ log2

lr∏
i=lr−NT+1

λ
(i)
Θ . (3.82)

We then obtain the lower bound as

CLower =

NT∑
i=1

log2λ
(i)
Ω1

+

lr∑
i=1

log2λ
(i)
Θ −

lr−NT∑
i=1

log2λ
(i)
Θ . (3.83)

At higher SNR values,

CUpper = CLower +

lr−NT∑
i=1

log2λ
(i)
Θ . (3.84)

The above equation shows the existence of a gap between upper and lower bounds. This gap is

quantified by a value
∑lr−NT

i=1 log2λ
(i)
Θ , which becomes zero when NT = lr. For NT = 2, Equation (3.83)

becomes,
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CLower =
2∑

i=1

log2λ
(i)
Ω1

+

lr∑
i=1

log2λ
(i)
Θ −

lr−2∑
i=1

log2λ
(i)
Θ . (3.85)

CLower =
2∑

i=1

log2λ
(i)
Ω1

+
2∑

i=1

log2λ
(i)
Θ . (3.86)

We note here the upper bound in Equation (3.78) and lower bound in Equation (3.83) can be

written as a function of two independent and disjoint contributions: one from H̃nc and one from Z̃r,

because Z̃r does not depend on the channel instantiation. Analytical results and expressions for ULA

and N-Spoke configurations with receive antenna selection in terms of channel gains can be found

in [69] and [85]. From the structure of Q in Section 3.10 we observe that the eigenvalues of non-selected

antennas, terminated with (ZT = 0), become more significant for the performance of the system.

Considering this fact we define capacity bounds for the new selection algorithms as follows,

CSCUpper =
2∑

i=1

log2λ
(i)
Ω1

+

MR−lr∑
i=1

log2λ
(i)
Θ (3.87)

CSCLower =
2∑

i=1

log2λ
(i)
Ω1

+ log2λ
(MR−lr)
Θ , (3.88)

where the effect of only MR − lr is taken in the equations.

3.12 Simulation Results and Discussion

The simulation results for both configurations mentioned in the previous sections with both types of

receive antenna selection methods are shown in Figures 3.14(a) and 3.14(b), respectively. The capacity

is calculated by averaging over all channel realizations. For simplicity we compare the performances

of both the configurations at θp = 0◦ and α = 0. We have also plotted the 95% confidence intervals

to show the validity of our data. From Figure 3.14(a) for N-Spoke configuration we see that the

capacity increases slightly till MR = 4, for full complexity systems. For values of MR > 4, the capacity

starts decreasing because the effects of mutual coupling and correlation becomes strong due to smaller

angular spacings. So just by increasing the number of antennas, do not increase the capacity any

further. We also find from Figure 3.14(a) for lr/6 selection that for all values of lr, the new selection

method performs better than simple selection method. In fact for values of lr = 4, 5, the new Antenna

Selection (AS) scheme even outperforms the full complexity system. In a similar fashion for lr/9

selection we observe that the new AS performs better than the simple AS method for all values of lr.

It also outperforms the full complexity system for lr = 7, 8. The performance of the ULA antenna

structures is different from the N-Spoke counterpart. For values of MR > 3, the capacity saturates to

increase any further even by increasing the number of antennas. Even applying the simple norm based

selection method does not help in improving the performance. We however find that the new selection

method boosts the performance for almost all values of lr. By comparing Figures 3.14(a) and 3.14(b)

we observe that for side by side antenna configuration, the new AS scheme provides more gain relative

to the N-Spoke structures even for low values of lr. We illustrate the CDF of the simulations and

the bounds of the capacity for a system with lr receive antenna selection. The Figure 3.15(a) shows
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the comparison at 10 dB SNR and Figure 3.15(b) at 30 dB SNR values. We recognize from the CDF

curves of Figure 3.15(a) and Figure 3.15(b) at small values of lr = 2 for any SNR value, the lower

bounds are tight. The performance is different for upper bounds. We observe that as we increase to

lr = 3 the upper bound becomes more loose. In Figure 3.15(c) we show the comparison of bounds with

simulations for the N-Spoke structure with the new selection method. From the figure we find that

increasing the value of lr, both the bounds get tighter. In these figures we have shown results for only

N-Spoke configurations. The results for ULA configurations are not shown here because they follow

the same trends as for N-Spoke structure. The Figures 3.14(a) and 3.14(b) show the performance

through simulation for array orientation values of θp = 0◦ and XPD values of α = 0. Due to this the

corresponding orientation matrix from Equation (3.47) and XPD matrices from Equation (3.49) have

values,
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Figure 3.14: Capacity Performance in antenna configurations.

PULA
MR×2 =


1 0

1 0
...

...

1 0

 , (3.89)

for ULA configuration as ϕnr is 0 for all antennas.
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Figure 3.15: CDF of N-Spoke configurations with antenna selection.
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Figure 3.16: CDF of antenna configurations for varying rotation and XPD with antenna selection.

PNSp
MR×2 =


cos(ϕ1) sin(ϕ1)

cos(ϕ2) sin(ϕ2)
...

...

cos(ϕNR) sin(ϕNR)

 , (3.90)

X2×1 =
[

1 0
]T
, (3.91)

for both configurations. We also show here an example correlation matrix for a four antenna element

N-Spoke structure shown in Figure 3.11, elements of which are calculated from Equation (3.52). As it

is purely a structure of elements with no spatial distance between the antenna elements so Equation

(3.52) now becomes ςa = cos θr,

R =


1 0.7 0 0.7

0.7 1 0.7 0

0 0.7 1 0.7

0.7 0 0.7 1

 , (3.92)

where θr = π/4, π/2, 3π/4. The effect of rotation and varying XPD values are shown in Fig-

ures 3.16(a), 3.16(b), 3.16(c) and 3.16(d) for N-Spoke and ULA antenna configurations applying

a simple norm based receive antenna selection algorithm. The N-Spoke structure is more robust to the

variations in α and θp for the average capacity values compared to the ULA configuration. The average

capacity values in a ULA configuration almost go to zero for either α = 0 or θp = 900. Effectively it
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means that the performance of ULA configurations is severely degraded with changing orientation and

antenna power imbalance as compared to an N-Spoke structure. We also observe in Figures 3.16(a)

and 3.16(b) that the variation of capacity is less for a simple AS scheme for various values of α and θp.

For a 2/6 system the capacity remains almost at 1.5bit/s/Hz and 1.7bit/s/Hz for 4/9 system. The

new AS scheme is robust to orientation effects at low values of XPD for a 2/6 system and also has a

higher capacity gain. The 4/9 system is more robust to XPD effects and lower values of orientation.

3.13 Conclusions

We examine and investigate the effects of various parameters of antenna arrays and then analyze the

performance with receive antenna selection. We compare an N-Spoke antenna structure with a fixed

compact area to a ULA structure. We find a method to accurately calculate the mutual coupling

effects in the N-Spoke configuration and combine the effects of channel correlations. A conventional

channel norm based strategy is applied to select the best channels and subsequently we propose a

novel selection algorithm to further enhance the performance. To analytically verify our simulations

we presented tight lower bounds and loose upper bounds for capacity calculations. We concluded that

although a complete channel model for characterizing antenna arrays consists of many parameters

but the most important and critical is the mutual coupling effect present in the system. From the

coupling analysis we also found that N-Spoke configurations in spite of having severe mutual coupling

effects compared to side by side structures, they have compact structures due to which it is a promising

structure for future wireless standards when used jointly with smart antenna selection schemes.

The electromagnetic field transmitted from the antenna can be defined by using the complex-valued

Poynting vector E×H∗, where E and H denote electric and magnetic field components, respectively [70].

In close vicinity of the antenna the Poynting vector is complex consisting of major reactive and minor

radiating fields whereas radiating fields dominate in far-field region of D = 2l2/λ, where l is the largest

dimension of antenna, D is the distance between transmitter and receiver and λ the wavelength of

the field. In that region electromagnetic fields decay as 1/D, and they can be defined by using two

orthogonal vector components in spherical coordinates. The spherical electromagnetic wave can be

approximated as a plane wave in the far-field region when received by a receiver antenna. Our work

did not consider poynting vector and its effect on multipolarized MIMO systems. We also did not

consider the effects of radiation pattern of individual antennas. This can also be included to get more

realistic results in our channel model. Comparisons in terms of performance measures like BER and

throughput can be performed and analytical bounds can be calculated.

After analyzing antenna systems which are planar and 2-D in nature we move forward to 3-D

antenna structures in the next chapter.
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Antenna Selection in 3-D

Polarized MIMO

4.1 Introduction

Most of the Multiple-Input Multiple-Output (MIMO) systems require an inter-element spacing of the

order of a wavelength to achieve significant gains in Non Line of Sight (NLOS) channels; even larger

spacing is required for Line of Sight (LOS) channels [86] [53]. In this regard, dual-polarized antennas

have received much attention as a smart option for realizing MIMO architectures in compact devices [52].

Recently, considerations are even carried out using triple-polarized antenna systems to exploit the

additional degree of freedom for wireless communications [87] [88]. Antenna selection, when combined

with multiple-polarized antennas, may be an answer that could enable compact systems to exploit

the benefits of the MIMO architecture with only a minimal increase in complexity. Compact antenna

configurations with antenna selection for MIMO communications have been studied in [69] [57] [85].

However, MIMO channels with polarization diversity cannot be modeled like pure spatial channels,

because such subchannels of the MIMO channel matrix are not identically distributed [89]. They

differ in terms of average received power, Ricean K-factor, Cross Polarization Discrimination (XPD)

and correlation properties [55]. As a result, the performance of antenna selection for these channels

needs to be calculated. The main objective of this chapter is to analyze the performance of Transmit

Receive Antenna Selection (TRAS) and Transmit Antenna Selection (TAS) for MIMO channels in the

presence of polarization diversity. We provide a theoretical treatment for the 2× 2 dual-polarized and

3× 3 triple-polarized Rayleigh MIMO channel [90]. For the mathematical analysis in this chapter, we

proceed on similar lines as in [57].

50
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Figure 4.1: Configurations of multi-polarized systems.

4.2 Dual and Triple-Polarized MIMO

Dual and triple-polarized antennas can be envisaged as an array of two and three co-located antennas

with orthogonal polarizations, respectively. By using a dual or triple-polarized feed, an antenna can

transmit two or three orthogonally polarized waves on the same frequency [87] [88] [67]. Another such

set of antennas can then receive the two or three orthogonally polarized waves and separate them by

means of an electrically identical dual or triple-polarized feed. Consider a system with NT transmit

and MR receive antennas. When all the antennas are vertically polarized, the subchannels of the

MIMO channel matrix H are usually assumed to be identically distributed. However, when antennas

with different polarizations are employed at either ends of the link, the properties of the co-polar

subchannels differ significantly from those of the cross-polar subchannels. Hence for dual-polarized

configurations, the channel matrix can be conveniently written as

HDP =

[
hV V hV H

hHV hHH

]
. (4.1)

The configuration is shown in the Figure 4.1(a). Similarly the channel matrix for triple-polarized

configuration can be written as

HTP =

 hV V hV H hV Z

hHV hHH hHZ

hZV hZH hZZ

 . (4.2)

The transmitted radio signal, as it traverses through the wireless medium, experiences multiple

reflections and scattering, resulting in a coupling of the orthogonal state of polarization. This

phenomenon is referred to as depolarization. XPD for dual-polarized channel is defined as,

XV = E
{∣∣hV V ∣∣2} /E {∣∣hHV ∣∣2} ,

XH = E
{∣∣hHH ∣∣2} /E {∣∣hV H ∣∣2} , (4.3)
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Similarly for triple-polarized channels we have the following XPD definitions as,

XV H = E
{∣∣hV V ∣∣2} /E {∣∣hHV ∣∣2} ,

XHV = E
{∣∣hHH ∣∣2} /E {∣∣hV H ∣∣2} ,

XZV = E
{∣∣hZZ∣∣2} /E {∣∣hV Z∣∣2} ,

XV Z = E
{∣∣hV V ∣∣2} /E {∣∣hZV ∣∣2} ,

XHZ = E
{∣∣hHH ∣∣2} /E {∣∣hZH ∣∣2} ,

XZH = E
{∣∣hZZ∣∣2} /E {∣∣hHZ∣∣2} ,

(4.4)

where hIJ : I, J ∈ {V,H,Z} is an element of the sub-matrix HIJ and E {Z} denotes the expectation

of Z. Typically XPD values are high in channels with limited scattering such as LOS channels and

much lower in NLOS channels. However high XPD values have been observed even in NLOS channels,

in some measurement campaigns [55]. Further, owing to the different propagation characteristics

of horizontally polarized waves and vertically polarized waves, E
{∣∣hV V ∣∣2} > E

{∣∣hHH ∣∣2} = β ≤ 1

and E
{∣∣hV V ∣∣2} > E

{∣∣hZZ∣∣2} = γ ≤ 1. This happens due to the Brewster angle phenomenon for

horizontally polarized transmission [91]. This discrepancy could also arise from the differences in the

antenna patterns of the orthogonally polarized elements [92]. These subchannel power losses translate

into a performance loss for dual-polarized MIMO systems when compared to spatial MIMO [55]. Under

LOS conditions, the co-polar subchannels are Ricean distributed whereas the cross-polar subchannels

are Rayleigh distributed. This is expected due to the fact that the cross-polar subchannel gains result

from depolarization of the transmitted signal. Correlation between the elements of the MIMO channel

is detrimental to its performance. For spatial MIMO, a large inter-element spacing is required to lower

the correlation between the subchannels in some environments [55]. However for dual-polarized MIMO,

the correlation between the elements from different sub matrices is very low even under LOS channel

conditions [55]. Thus, there are significant differences between dual or triple-polarized MIMO channels

compared to spatial MIMO channels. Taking into account these subchannel power losses, the average

squared Frobenius norm of this channel matrix (Equation (4.1)) can be written as [93],

W̄DP = MR
VNT

V + β(MR
HNT

H) +
1

XV
(MR

HNT
V ) +

β

XH
(MR

VNT
H) ≤MRNT . (4.5)

Similarly the average squared Frobenius norm for a triple polarized channel matrix (Equation (4.2))
can be written as,

W̄TP = MR
VNT

V + β(MR
HNT

H) + γ(MR
ZNT

Z) +
1

XVH
(MR

HNT
V ) +

1

XV Z
(MR

ZNT
V ) +

1

XHZ
(MR

ZNT
H) +

1

XZH
(MR

HNT
Z) +

β

XHV
(MR

VNT
H) +

γ

XZV
(MR

VNT
Z) ≤MRNT . (4.6)

The average squared Frobenius norm represents the total energy in the channel. For identically

distributed Rayleigh channels we normalize the channel matrix so that its average squared Frobenius

norm is equal to MRNT [94]. From Equations (4.5) and (4.6) we note that as the XPD increases or as

β decreases, W̄DP and W̄TP diminishes. As a result, the array gain achieved by using dual-polarized or

triple-polarized antennas is smaller when compared to pure spatially separated antennas. Thus MIMO

systems employing polarization diversity suffer Signal-to-Noise Ratio (SNR) and diversity penalties,

when compared to their spatial counterparts.



PDFT
hA

S

Chapter 4. Antenna Selection in 3-D Polarized MIMO 53

4.3 Effect of XPD on Joint Transmit/Receive Selection Gain

Antenna selection refers to the process of selecting the “optimal” lt out of the NT available transmit

antennas and/or the “optimal” lr out of the MR receive antennas. Symbolically we denote this process

as (lr/MR, lt/NT ) selection. We assume here the availability of a perfect low bandwidth feedback

channel for implementing selection at the transmitter. We also assume that the delay of this feedback

signal is minimal. In this section we study the influence of XPD on selection gain achieved by using

antenna selection for both transmit and receive side. To make the analysis as simple as possible, we

first consider a MR ×NT = 2× 2 dual-polarized MIMO channel.

All the subchannels are assumed to be independent complex circularly symmetric Gaussian random

variables. This is an appropriate assumption for the typical NLOS indoor channel. Further, we

make the simplifying assumptions that all the XPD values given in Section 4.2 are equal to X. Also

1 ≤ X ≤ ∞ and γ = β = 1. We start our analysis with joint antenna selection at the transmitter

and receiver, i.e.,(1/2, 1/2), (1/3, 1/3) and (2/3, 2/3) arrangements. We then move to the analysis

of transmit antenna selection, i.e., (2/2, 1/2), (3/3, 1/3) and (3/3, 2/3). We perform this because we

analyze transmit antenna selection in a different way as would be shown subsequently in a separate

section. For (1/2, 1/2) and (1/3, 1/3) selection, the strategy is to select the Single-Input Single-Output

(SISO) subchannel which has the maximum instantaneous power. The instantaneous post processing

SNR for the selected SISO channel (h̃) is given by Y Es/No where the random variable, Y = |h̃|2. For

a circularly symmetric complex Gaussian random variable Z with zero mean and variance σ2, the

Cumulative Distribution Function (CDF) of Z = |h|2 is given by, FZ(z) = (1− e−z/σ2
). Since all the

elements of H are assumed to be mutually independent, the Cummulative Distribution Function (CDF)

of Y can be derived as follows.

4.3.1 Dual Polarized (1/2, 1/2) TRAS

From Equation (4.3) we have E
{∣∣hHV ∣∣2} = 1/XV = 1/X, so

FY (y)(1/2,1/2) = Pr(|hV V |2 < y)2Pr(|hHV |2 < y)2 = (1− e−y)2(1− e−yX)2. (4.7)

The Probability Density Function (PDF), fY (y) = dFY (y)
dy is given by

fY (y)(1/2,1/2) = 2(e−y(1− e−y)(1− e−yX)2 +Xe−yX(1− e−yX)(1− e−y)2). (4.8)

Using the identity,
∫∞

0 xeaxdx = 1/a2, G(X) = E {Y }, which indicates the effective SNR gain achieved

by using antenna selection, can be computed to be,

G(1/2,1/2)(X) =
3(1 +X)

2X
+

2

1 + 2X
+

2

2 +X
− 9

2(1 +X)
. (4.9)

The average SNR gain is a monotonically decreasing function of X as shown in Figure 4.2. The

selection gain is maximum at 3.2 dB when X = 1 and asymptotically diminishes to 1.76 dB. Here we

can also calculate the probability that one of the cross-polar subchannels is selected, as follows,

Pr(1/2,1/2)(X > x) = Pr
{

(h̃ = hV H) ∪ (h̃ = hHV )
}

= 2Pr
{
hV H > hHV

}
Pr
{
hV H > hHH

}
Pr
{
hV H > hV V

}
= 2(1/2)Pr

{
hV H > hHH

}2
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=
1

(1 +X)2
. (4.10)

We observe from the above equation that as the XPD increases the probability of the cross-

polar subchannels being selected, decreases and thus the average SNR gain diminishes. Further,

limX→∞Pr(1/2,1/2)(X > x) = 0, which indicates that in the limiting case, the available degrees of

diversity reduces to two when compared to four for X = 1. Thus a high XPD results in a diversity loss

for dual-polarized MIMO channels when compared to spatial channels.

4.3.2 Triple Polarized (1/3, 1/3) TRAS

From Equations (4.4), following the same procedure as in Section 4.3.1 we have XV H = XHV = XV Z =

XZV = XHZ = XZH = X,

FY (y)(1/3,1/3) = Pr(|hV V |2 < y)Pr(|hHH |2 < y)Pr(|hZZ |2 < y)Pr(|hV H |2 < y)

Pr(|hHV |2 < y)Pr(|hV Z |2 < y)Pr(|hZV |2 < y)Pr(|hHZ |2 < y)

Pr(|hZH |2 < y)

= (1− e−y)3(1− e−yX)6. (4.11)

The (Probability Density Function (PDF)) then reads

fY (y)(1/3,1/3) = 3(e−y(1− e−y)2(1− e−yX)6 + 2Xe−y(1− e−y)3(1− e−yX)5). (4.12)

G(1/3,1/3)(X) = E {Y } is then calculated as in previous section. Also we can calculate the probability

that one of the cross-polar subchannels is selected, as follows,

Pr(1/3,1/3)(X > x) =
1

(1 + 2X)3
. (4.13)

Also, limX→∞Pr(1/3,1/3)(X > x) = 0, which indicates that in the limiting case, we observe that the

available degrees of diversity reduces to three when compared to nine for X = 1. Thus a high XPD

results in a diversity loss for triple-polarized MIMO channels when compared to spatial channels.

4.3.3 Triple Polarized (2/3, 2/3) TRAS

As we have to select two antennas at each end of the channel, we have to sum the powers of the

individual channels or sum of the squares of independent Gaussian random variables. Thus, the

resulting CDF becomes a Chi-squared distribution and not simply an exponential. The complete CDF

of selecting such channels is then given by

FY (y)(2/3,2/3) = (FY (y)1)(FY (y)2)(FY (y)3), (4.14)

where

FY (y)1 = Pr(|hV V |2 + |hHH |2 < y)Pr(|hV V |2 + |hZZ |2 < y)Pr(|hHH |2 + |hZZ |2 < y)

= (1− e−y/2)3, (4.15)

where each term above is a central Chi-Squared distribution with zero means and σ2
1 = σ2

2 = 1.
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FY (y)2 = Pr(|hV V |2 + |hHZ |2 < y)Pr(|hV V |2 + |hZH |2 < y)

Pr(|hZZ |2 + |hV H |2 < y)Pr(|hZZ |2 + |hHV |2 < y)

=

(
1

X − 1
(e−yX −Xe−y +X − 1)

)4

, (4.16)

where each term above is generalized central Chi-Squared distributed with zero means and σ2
1 = 1,

σ2
2 = 1/X [95].

FY (y)3 = Pr(|hV H |2 + |hHZ |2 < y)Pr(|hHV |2 + |hHZ |2 < y)

= (1− e−2yX(2yX + 1))2, (4.17)

where each term is generalized Chi-Squared distributed with zero means and σ2
1 = 1/X, σ2

2 = 1/X [95].

This turns out to be an Erlang distribution. The results are shown in Figure 4.2.

4.4 Outage Analysis with TRAS

In this section, we derive the mutual information for both the antenna structures. We perform

this for systems with antenna selection and without selection. Later, considering the fact that the

mutual information, depending on the channel realizations, is a random variable, we define the outage

probability and then derive the same for both configurations. For the given systems, without antenna

selection the mutual information can be bounded as follows

I ≤ log

(
1 +

γ

NT

∑∣∣hIJ ∣∣2), (4.18)

where γ = Es/N0 and Es is the transmit signal power. We assume here that the power is divided

equally among NT transmit antennas. The information theoretic outage probability defines an event

when the channel mutual information cannot satisfy a certain target rate. This target rate may be

set by some application such as audio, video, or some multimedia application. Mathematically, the

probability of outage can be written as [96]

Pr(R) = Pr(I < R) (4.19)

where R represents the rate requirement set by some particular application. For our scheme, using the

mutual information expression in Equation (4.18) and the outage probability definition in Equation

(4.19), we derive the outage probability for the investigated scheme as follows. Methods to formulate

outage probability for fading channels are given in [97].

Pr(I < R)(1/2,1/2) =

∫ ε

0
fY (y)(1/2,1/2)dy, (4.20)

where ε for (1/2, 1/2) system is given by (2R−1)
γ . For triple-polarized channels we have the following

outage expressions

Pr(I < R)(1/3,1/3) =

∫ ε

0
fY (y)(1/3,1/3)dy (4.21)
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Pr(I < R)(2/3,2/3) =

∫ ε

0
fY (y)(2/3,2/3)dy, (4.22)

where ε for (1/3, 1/3) and (2/3, 2/3) system is given by (2R−1)
γ and 2(2R−1)

γ , respectively. The results

are shown in Figure 4.3(a).
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Figure 4.2: Selection gains for polarized systems with transmit/receive antenna selection.
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(a) Outage probabilities for joint transmit/receive antenna selection in

multi polarized systems at XPD = 2dB and 20dB.
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(b) Outage probabilities for joint transmit/receive antenna selection in

multi polarized systems at SNR = 2 and 20dB for varying XPD.

Figure 4.3: Outage with joint transmit/receive antenna selection.

From Figure 4.3(a) we see that the performance of a (1/3, 1/3) system is effected severely compared

to a (1/2, 1/2) system. This can be explained from Equations (4.10) and (4.13). From the equations
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we see that as XPD increases, the available degrees of freedom for a (1/3, 1/3) system decreases from

nine to three compared to four to two in a (1/2, 1/2) system. We have also shown here the trend of

outage performance with varying XPD at a given SNR for joint transmit/receive antenna selection in

Figure 4.3(b). From the figure we observe that the outage performance of a (2/3, 2/3) system improves

with increasing XPD values at lower SNRs. All the rest of the systems have a degrading performance

for increasing XPD values, both at lower and higher SNRs.

4.5 Effect of XPD on Transmit Selection Gain

Here we try to understand the impact of XPD on the transmit selection gain for (2/2, lt/3) and

(3/3, lt/3) systems. Such configurations could be used in Wireless Local Area Network (WLAN) or

cellular systems where one end of the link is allowed to be more complex than the other. The analysis

is general and is applicable to any Orthogonal Space-Time Block Coding (OSTBC) and can be easily

adapted for receive antenna selection. The selection strategy outlined below, chooses lt out of the NT

available transmit antennas to maximize the Frobenius norm of the channel.

H̃ = argmax
S(H)

{∥∥H∥∥2

F

}
, (4.23)

where H̃ is obtained by eliminating (NT − lt) columns from H. The term S(H) denotes the set of all

possible H̃. Let Yk, k = 1, ..., NT denote the squared Frobenius norm of the NT columns of H. We

derive the performance separately for dual-polarized and triple-polarized systems below.

4.5.1 (2/2, lt/2) TAS

Each column of HDP has two independent but non-identical zero mean circularly symmetric complex

Gaussian random variables with variances 1 and 1/X, respectively. They have the probability density

functions g1(y) = e−y and g2(y) = Xe−yX , respectively. The random variables Yk, k = 1, ..., NT are

i.i.d. with unit variance and their probability density function given by

fY (y)(2/2,2/2) = g1(y) ∗ g2(y) =
Xe−y

X − 1

(
1− e−(X−1)y

)
, (4.24)

where, the operator (∗) denotes the convolution operation. The cumulative distribution function, can

be derived to be

FY (y)(2/2,2/2) =

∫ y

−∞
fY (y)dy =

(
1− e−y

X − 1
(X − e−(X−1)y)

)
. (4.25)

Applying the principles of ordered statistics [3], we generate new random variables Y [k], k = 1, ..., NT

from Yk, k = 1, ..., NT such that

Y[NT ] ≥ Y[NT−1] ≥ ... ≥ Y[k] ≥ ... ≥ Y[2] ≥ y[1], (4.26)

where Y[k] is the kth largest of the NT random variables distributed according to Equation (4.28). Note

that these ordered random variables are no longer statistically independent. The average SNR after

selection can then be computed as,

E {γ} = γ0

(
E
{
Y[NT ]

}
+ E

{
Y[NT−1]

}
+ ...+ E

{
Y[NT−l+1]

})
, (4.27)
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E
{
Y[k]

}
=

NT !

(k − 1)!(NT − k)!

∫ ∞
0

yFY (y)k−1(1− FY (y))NT−kfY (y)dy

=
NT !

(k − 1)!(NT − k)!

k−1∑
r=0

(−1)r

(
k − 1

r

)∫ ∞
0

y(1− FY (y))NT−k+RfY (y)dy

=
NT !

(k − 1)!(NT − k)!

k−1∑
r=0

(−1)r

(
k − 1

r

)
JNT−k+r, (4.29)

where γ0 = ES
ltNo

. The probability density function of of the k-th ordered statistic Y[k] can then be

evaluated as [98],

fk(y) =
NT !

(k − 1)!(NT − k)!
FY (y)k−1(1− FY (y))NT−kfY (y). (4.28)

The average value of k-th order statistic T[k] can be computed to be as Equation (4.29), where

Jm =

∫ ∞
0

y(1− FY (y))mfY (y)dy. (4.30)

After calculating the average SNRs for NT = 2 and for k = 1, 2 from the expressions above, we arrive

at the following results,

E
{
Y[1]

}
= 2J1. (4.31)

E
{
Y[2]

}
= 2(J0 − J1). (4.32)

J0 =
X

X − 1

(
1− 1

X2

)
. (4.33)

J1 =

(
X

X − 1

)2(1

4
− 1

(X + 1)2

)
− X

(X − 1)2

(
1

(X + 1)2
− 1

4X2

)
. (4.34)

4.5.2 (3/3, lt/3) TAS

Each column of HTP has three independent but non-identical zero mean circularly symmetric complex

Gaussian random variables with variances 1, 1/X and 1/X, respectively. They have the probability

density function given by

fY (y) = g1(y) ∗ g2(y) ∗ g3(y)

=

(
X

X − 1

)2

e−yX
(
e−(X−1)y − (X − 1)y − 1

)
. (4.35)

Calculating the value of J0, J1, and J2 we have the following,

J0 =
2− 3X +X3

X(X − 1)2
. (4.36)
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J1 =
5 + 2X(7 +X(6 +X))

8X(1 +X)2
. (4.37)

J2 =
104 +X(836 +X(2606 + 9X(431 + 302X + 92X2 + 8X3)))

81X(2 +X)2(1 + 2X)3
. (4.38)

The average values of ordered SNRs are shown below

E
{
Y[1]

}
= 3J2. (4.39)

E
{
Y[2]

}
= 6(J1 − J2). (4.40)

E
{
Y[3]

}
= 3(J0 − 2J1 + J2). (4.41)

The selection gains in the above Equations (4.39), (4.40) and (4.41) are shown in Figure 4.4.

4.6 Outage Analysis with TAS

In this section we calculate outage probabilities for both dual and triple-polarized MIMO channels with

transmit antenna selection. We first calculate the PDFs of the corresponding ordered statistics and

then integrate them over the respective range of ε. For a (2/2, 2/2) scenario we have from Equation

(4.24),

Pr(I < R)(2/2,2/2) =

∫ ε

0
fY (y)(2/2,2/2)dy

=

∫ ε

0
(e−y) ∗ (Xe−yX)dy

=

∫ ε

0
e−ydy

∫ ε

0
Xe−yXdy, (4.42)

where ε = 2(2R−1)
γ for dual-polarized systems. The rest of the outages are calculated as follows, together

with using ε values using Equation (4.28).

Pr(I < R)(2/2,1/2) =

∫ ε

0
fY (y)(1/2,1/2)dy

=

∫ ε

0
2!FY (y)(2/2,2/2)fY (y)(2/2,2/2)dy, (4.43)

where ε = (2R−1)
γ for dual-polarized systems with one antenna selected at the transmit side. Now from

Equation (4.35) we have,

Pr(I < R)(3/3,3/3) =

∫ ε

0
fY (y)(3/3,3/3)dy

=

∫ ε

0
g1(y) ∗ g2(y) ∗ g3(y)dy

=

∫ ε

0
g1(y)dy

∫ ε

0
g2(y)dy

∫ ε

0
g3(y)dy

=

∫ ε

0
g1(y)dy

∫ ε

0
2g2(y)dy, (4.44)
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where ε = 3(2R−1)
γ for triple polarized systems and g1(y) = (1 − e−y), g2(y) = (1 − e−yX) and

g3(y) = (1− e−yX). Again from Equation (4.28) we have

Pr(I < R)(3/3,1/3) =

∫ ε

0
fY (y)(1/3,1/3)dy

=

∫ ε

0
3!FY (y)(3/3,3/3)fY (y)(3/3,3/3)dy, (4.45)

where ε = (2R−1)
γ for triple polarized systems with one antenna selected at the transmit side. For the

configuration (3/3, 2/3) we proceed as follows. We convolve the second (highest) order and the first

(2nd highest) order statistics. The highest order statistic is calculated from Equation (4.28) as

f2(y)(3/3,2/3) = 3!FY (y)(1− FY (y))fY (y), (4.46)

and the 2nd highest order statistics is found to be as

f1(y)(3/3,2/3) =
3!

2!
(1− FY (y))2fY (y). (4.47)

thus,

Pr(I < R)(3/3,2/3) =

∫ ε

0
f2(y)(3/3,2/3) ∗ f1(y)(3/3,2/3)dy, (4.48)

where ε = 2(2R−1)
γ for triple-polarized systems with two antennas selected at the transmit side. The

analytical results are shown in Figures 4.5(a). Here we have also provided the trends for outage

probabilities with respect to varying XPD values for specific SNRs. From Figure 4.5(a) we see that

the performance of (3/3, 3/3) and (2/2, 2/2) full complexity systems does not improve much while

increasing the SNR. The slopes of the curves are almost the same. Compared to these, the systems

with antenna selection perform better when SNR is increased.
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Figure 4.4: Selection gains for polarized systems with transmit antenna selection.

4.7 Simulation Results and Discussion

In Figures 4.2 and 4.4 we compare both the analytical and simulation results for selection gains. The

simulations completely verify the analytical results presented in the previous sections. Simulations



PDFT
hA

S

Chapter 4. Antenna Selection in 3-D Polarized MIMO 61

0 5 10 15 20

10
−5

10
0

SNR [dB]

O
ut

ag
e 

P
ro

ba
bi

lit
y 

P
[R

]

 

 

(2/2,2/2) 2dB
(3/3,3/3) 2dB
(2/2,1/2) 2dB
(3/3,1/3) 2dB
(3/3,2/3) 2dB
(2/2,2/2) 20dB
(3/3,3/3) 20dB
(2/2,1/2) 20dB
(3/3,1/3) 20dB
(3/3,2/3) 20dB

(a) Outage probabilities for transmit antenna selection in multi polar-

ized systems at XPD = 2dB and 20dB.
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(b) Outage probabilities for transmit antenna selection in multi polarized

systems at 2dB and 20dB SNR for varying XPD.

Figure 4.5: Outage with joint transmit antenna selection.

were carried out in the following way. A complex Gaussian matrix with zero mean and unit variance

was generated for the given number of antennas. This matrix was multiplied with an XPD matrix to

reflect the different variances in the cross-polar components. Selection was performed on the basis of

Equation (4.23). For joint transmit/receive antenna selection, first selection is performed on receive

side of the link. The non-selected rows are deleted from the complete matrix. Now the columns are

selected from the remaining matrix, deleting the non-selected columns. This gives the selected channel.

The process is shown below,

HX = [X]MR×NT � [H]MR×NT . (4.49)

where

[X]2×2 =

[
1 1/X

1/X 1

]
. (4.50)

and

[X]3×3 =

 1 1/X 1/X

1/X 1 1/X

1/X 1/X 1

 . (4.51)

All the X values are taken as identical. From Figure 4.2 we see that although the (2/3, 2/3) system has

the maximum SNR gain, its is effected more by the variations in XPD. The difference in the maximum

and the minimum SNR gain for this system is 3.6dB compared to 1.87dB and 1.41dB for (1/3, 1/3)

and (1/2, 1/2) systems, respectively. This is because of high probability of any of the selected channels
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to be cross-polar. A similar behavior can be observed in Figure 4.4 for transmit antenna selection.

Few differences still can be observed. A (1/2, 1/2) is effected more compared to a (2/2, 1/2) system

in the range of XPD values from 0 to 14dB. Similarly a (1/3, 1/3) system has more performance loss

compared to a (3/3, 1/3) system for a range of XPD values from 0 to 20dB. Comparing a (2/3, 2/3)

and a (3/3, 2/3) system, the trend is a little different. For low XPD values, a (2/3, 2/3) system is

less effected but this trend changes for larger values of XPD. Thus, the limiting cases can be easily

observed from the Figure 4.5(b).

4.8 Conclusions

The analysis in terms of poynting vector as mentioned in the previous chapter can be performed for

triple polarized MIMO systems as well. Also the methods applied to obtain channel gains and capacity

bounds can be obtained for triple polarized systems for various channels. Some novel space time codes

can be devised for enhancing the performance of multipolarized systems.

We simulate and analyze the performance of multi-polarized systems with Spatial Multiplexing (SM)

and Transmit Diversity (TD) techniques using receive antenna selection, in the next chapter.
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5
Performance of SM and Diversity

in Polarized MIMO with RAS

5.1 Introduction

MIMO transmission techniques, such as Space Time Block Coding (STBC) [99], [100] or Spatial

Multiplexing (SM) [101], are known to achieve significant diversity or multiplexing gains. However,

in MIMO systems, correlations may occur between channels due to insufficient antenna spacing and

the scattering properties of the transmission environment. This may lead to significant degradation

in system performance [29]. In order to have an uncorrelated channel between the transmitter and

receiver large antenna spacings are required both at the base-station and the subscriber unit. On the

other hand, due to this space requirement, deploying multiple antennas may not be feasible in all

communication schemes. For this reason, the use of dual-polarized antennas instead of uni-polarized

antennas is a cost and space-effective alternative, where two spatially separated uni-polarized antennas

are replaced by a single dual-polarized antenna. Communication with dual-polarized antennas require

transmitting two independent symbols on the same bandwidth and the same carrier frequency at the

same time by using two orthogonal polarizations. However as pointed out in [52] [53], imperfections of

transmit and/or receive antennas and XPD are the results of the two depolarization mechanisms: the

use of imperfect antenna cross-polar isolation (XPI) and the existence of a Cross-Polar Ratio (XPR)

in the propagation channel. These effects degrade the system performance considerably. In [6], a

system employing one dual-polarized antenna at the transmitter and one dual-polarized antenna at the

receiver is presented and the error performance of 2-antenna SM and STBC transmission schemes are

derived for this virtual MIMO system. Notice that, in [102], a SISO system is enabled with MIMO

capabilities through the use of dual-polarized antennas. In this section, we present the performance

of MIMO systems employing triple-polarized antennas under different correlation parameters and

XPD factors over correlated Rayleigh fading channels. Performance for dual-polarized systems with

antenna selection can be found in [85,103]. In this regard, not only the transmit and receive antenna

correlations and the XPD factor, but also a spatial correlation is included in the system analysis. In

this chapter we evaluate the following four transmission schemes:

63
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1. 2-antenna Alamouti

2. 2-antenna SM

3. 3-antenna STBC

4. 3-antenna SM

The error performance of these schemes are presented with simulation results. We also show the

performance of such systems with the use of receive antenna selection and analyze through simulations

the performance gains. Notice that this range of transmission alternatives over the same physical

system allow an efficient trade-off between the diversity gain and the multiplexing gain that the overall

system can achieve. Even though the results can be generalized to any number of transmit/receive

antennas, throughout the chapter only a 3 × 3 triple-polarized antenna system is considered where

it is shown to have better performance than the 3 × 3 unipolarized antenna systems. The use of

triple-polarized antennas leads the way to achieve diversity and multiplexing gains at a high rate,

when combined with the link adaptation algorithms which are envisioned for next generation wireless

communication systems with MIMO capabilities such as those proposed with the IEEE 802.11n and

802.16e standards, with dual-polarized antenna technology. The channel model in this section is

described earlier in Section 4.2. We add the effects of LOS and NLOS channels here. The channel

matrix can now be decomposed into the sum of an average and a variable component as,

H =

√
K

K + 1
H +

√
1

K + 1
Ȟ, (5.1)

where the elements of H, denoted as hi,j , (ij :∈ {V,H,Z}), represents the fixed components of

the channel matrix and the elements of Ȟ, denoted as ȟi,j , are zero-mean circularly symmetric

complex Gaussian random variables whose variances depend on the propagation environment and the

characteristics of the antennas at both link ends. The fixed and the variable channel components are

assumed to satisfy the following conditions for both dual and triple polarized systems.∣∣∣hV V ∣∣∣2 =
∣∣∣hHH ∣∣∣2 =

∣∣∣hZZ∣∣∣2 = 1∣∣∣hHV ∣∣∣2 =
∣∣∣hV H ∣∣∣2 = αf∣∣∣hV Z∣∣∣2 =
∣∣∣hZV ∣∣∣2 = αf∣∣∣hHZ∣∣∣2 =
∣∣∣hZH ∣∣∣2 = αf

E
{∣∣ȟV V ∣∣2} = E

{∣∣ȟHH ∣∣2} = E
{∣∣ȟZZ∣∣2} = 1

E
{∣∣ȟHV ∣∣2} = E

{∣∣ȟV H ∣∣2} = α

E
{∣∣ȟV Z∣∣2} = E

{∣∣ȟZV ∣∣2} = α

E
{∣∣ȟHZ∣∣2} = E

{∣∣ȟZH ∣∣2} = α,

(5.2)

where 0 < αf < 1 and 0 < α < 1 are the XPD values for fixed and the variable channels respectively.

The Ricean K-factor, which denotes the ratio between the power of LOS and the power of NLOS

components, is defined as,

KV V = KHH = KZZ = K, (5.3)
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KHV = KV H = KHZ = KZH = KV Z = KZV =
αf
α
K. (5.4)

Some experiments [102] [104] have shown that their exists certain amount of correlation between

elements of such channels. We, therefore define the various correlations as follows,

t =
E
{
ȟHH ȟ

∗
V H

}
√
α

=
E
{
ȟHV ȟ

∗
V V

}
√
α

=
E
{
ȟHH ȟ

∗
ZH

}
√
α

=
E
{
ȟHZ ȟ

∗
ZZ

}
√
α

(5.5)

r =
E
{
ȟHH ȟ

∗
HV

}
√
α

=
E
{
ȟV H ȟ

∗
V V

}
√
α

=
E
{
ȟHH ȟ

∗
HZ

}
√
α

=
E
{
ȟZH ȟ

∗
ZZ

}
√
α

, (5.6)

where t is referred to as the transmit correlation coefficient, and r is the receive correlation coefficient.

Recall that we assumed that α > 0, which ensures viability of the above definitions. Experiments have

shown that the correlation between the diagonal elements of the channel matrix ȟHH and ȟV V , ȟHH
and ȟZZ , ȟV V and ȟZZ and the off-diagonal elements ȟHV and ȟV H , ȟHZ and ȟZH , ȟV Z and ȟZV is

typically very small. For the sake of simplicity, throughout the chapter, we therefore assume them to

be equal to zero. Measured values of XPD, K-factor, and correlation coefficients can be found in [104].

5.2 Data Model

For dual-polarized systems we simply send the symbols x1, x2 at full rate Alamouti code on the two

transmit antennas. For various transmission schemes mentioned in previously we use the following 1/2-

rate and 3/4-rate complex G3 space time code as given in [105] at the three antennas of triple-polarized

antenna system.

XDP
2 =

[
x1 −x∗2
x2 x∗1

]
. (5.7)

The data model for 1/2-rate G3 coding we send the symbols x1 · · ·x4 on three antennas over complex

signal constellations and is given as follows,

XTP
3 =

x1 −x2 −x3 −x4 x∗1 −x∗2 −x∗3 −x∗4
x2 x1 −x4 −x3 x∗2 x∗1 x∗4 −x∗3
x3 −x4 x1 x2 x∗3 −x∗4 x∗1 x∗2

 . (5.8)

The data model for 3/4-rate G3 coding we send the symbols x1 · · ·x3 on three antennas over complex

signal constellations and is given as follows,

XTP
3 =

 x1 x∗2 x∗3 0

−x2 x∗1 0 −x∗3
−x3 0 x∗1 x∗2

 . (5.9)

These symbols are mapped to the horizontal and vertical polarizations of the dual-polarized antennas

and to another horizontal antenna for triple-polarized antenna system. Maximum-ratio combining is

employed at the receiver in order to obtain the decision metrics [105]. Due to the orthogonality of the

transmit matrices given in Equations (5.7),(5.8) and (5.9), the Maximum Likelihood (ML) detection

involves a simple linear operation in the receiver and can be used to detect the transmit symbols

x1 · · ·x4, assuming that the channel is static during consecutive symbol periods. For example the

channel should be static for two symbol periods in Equation (5.7). Eight for Equation (5.8) and three
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for Equation (5.9). The orthogonality characteristic of X is based on the orthogonal designs. The

data model for pure spatial multiplexing schemes that maximize the spectral efficiency are shown

below both for dual and triple-polarized antenna systems. Well-known schemes proposed with this

focus are the Bell laboratories layered space-time (BLAST) schemes, such as the vertical-BLAST

(VBLAST) and diagonal-BLAST [101]. In the VBLAST scheme, all the antennas are used to multiplex

different symbols in each symbol period. In this scheme each different multiplexed symbol is defined as

a layer. For instance, in the case of three transmit antennas we have three layers. In this section we

use Maximum Likelihood (ML) receivers for both the transmission schemes. The transmitted signals

at any time instant, considering two or three transmit antennas, can be organized in the equivalent

space-time coding matrices,

XDP
2 =

[
x1

x2

]
, (5.10)

XTP
3 =

 x1

x2

x3

 . (5.11)

5.3 Antenna Subset Selection for Capacity Maximization

We consider a Multiple-Input Single-Output (MIMO) system equipped with NT transmit and MR

receive antennas. We suppose that the transmitter employs NT RF chains whereas the receiver uses

lr (≤ MR) RF chains. The channel is assumed quasi-static fading. The performance of this MIMO

system is calculated on the basis of maximum mutual information. Assuming the Channel State

Information (CSI) is known to the receiver but unknown to the transmitter, and that the transmit

power P is evenly distributed among the antennas, the instantaneous capacity [22] for a given channel

realization is given by

C(H) = log2det

(
IMR

+
γ

NT
HH†

)
(bits/s/Hz), (5.12)

where NT is the number of transmit antennas, γ is the average SNR at each receiver branch and P
σ2
n

.

The performance with receive antenna selection is calculated by selecting those lr out of MR receive

antennas that maximize the Frobenius norm for a given channel realization. In other words we select

those rows of the channel matrix H which have the maximum norm and then calculate their mutual

information. Thus, the previous equation with receive antenna selection becomes

C(H̃) = log2det

(
Ilr +

γ

NT
H̃H̃†

)
, (5.13)

where H̃ represents the selected sub matrix.

5.4 Simulation Results and Discussion

In this section, we provide simulation results demonstrating the performance of SM and the Alamouti

scheme for varying channel scenarios. We simulated a system with one dual-polarized transmit and one

dual-polarized receive antenna. Similarly we simulated a system with one triple-polarized transmit and
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one triple-polarized receive antenna. In order to keep the data rates in both systems (SM and STBC)

the same, the data symbols for SM were drawn from a 4-QAM constellation, whereas the data symbols

for the Alamouti scheme were drawn from a 16-QAM constellation for dual polarized system. For

triple-polarized ML decoding with perfect channel knowledge was performed. All simulation results

were obtained by averaging over 1× 105 independent Monte Carlo trials.

5.4.1 Simulation Example 1:

The first simulation example serves to demonstrate BER for SM. For t = 0.5, r = 0.3, α = 0.4, and

αf = 0.3, the Figure 5.1(a) shows the BER obtained using Monte Carlo simulations. At higher K

values dual-polarized system behaves better compared to lower K values. This trend is opposite in

triple-polarized antenna systems. Selection in triple-polarized systems does not give a very significant

performance improvement compared to dual-polarized system without selection.

5.4.2 Simulation Example 2:

This simulation example shows the potential benefit of dual-polarized and triple-polarized antennas at

high K-factor for systems employing SM. For high K-factor, the BER is governed primarily by the

characteristics of the fixed component H. In Figure 5.1(b), we plot the BER as a function of αf for

t = 0.5, r = 0.3, α = 0.4, K = 10 and SNR of 15dB. We note here that αf = 1 corresponds to the case

of two and three physical uni-polarized antennas, the plot reveals that system performance improves

by over an order of magnitude with the use of dual-polarized antennas or triple-polarized antennas. At

K = 0, all the systems are decreasing functions of BER. This behavior is different for high K values.

The BER is maximum at αf = 0.5. Antenna selection does not help in improving the performance

much.

5.4.3 Simulation Example 3:

This example serves to demonstrate that provides bit error rate for the Alamouti scheme for dual-

polarized system and half rate G3 code for triple-polarized system. For t = 0.7, r = 0.1, α = 0.2, and

αf = 0.6, Figure 5.1(c) shows the bite error rate obtained using Monte Carlo simulations. We see that

the performance of a triple-polarized system with two antenna selected at the receiver performs better

than the corresponding dual-polarized antenna systems with all antenna elements.

5.4.4 Simulation Example 4:

In this simulation the effect of K-factor on the coding schemes is investigated. We consider the channel

with α = αf . We know that at high K-factor, H is responsible for the performance,, whereas Ȟ

dominates at low K-factor. Figure 5.1(d) the BER for Alamouti and G3 codes as a function of K

for t = 0.5, r = 0.3, α = αf = 0.6 for an SNR of 17dB. From the figure we see that triple-polarized

system with single antenna selected at the receiver has slightly better performance than full complexity

dual-polarized system. The performance boosts further if another antenna is selected.
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(a) Bit error ratio for spatial multiplexing as a function of SNR
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(b) Bit error ratio for spatial multiplexing as a function of αf .
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(c) Bit error ratio for the Alamouti and 1/2-rate G3 scheme as a

function of SNR for varying K-factor.
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(d) Bit error ratio for the Alamouti and 1/2-rate G3 scheme as

a function of K-factor.

Figure 5.1: Error performance of SM and TD MIMO with antenna selection.



PDFT
hA

S

Chapter 5. Performance of SM and Diversity in Polarized MIMO with RAS 69

5.5 Conclusions

We considered the use of multiple antenna signaling technologies, specifically Space Time Block Coding

(STBC) and spatial multiplexing (SM) schemes, in MIMO communication systems employing dual

polarized antennas at both ends. In our work, we consider these effects and model a 3× 3 system with

triple-polarized antennas for both STBC and SM cases. We also present simulation results for both

multi-antenna signaling techniques together with hybrid approaches under various Cross Polarization

Discrimination (XPD) and correlation scenarios. The results show a significant performance gain by

joint utilization of space, time and polarization diversity in comparison to uni-polarized systems with

the same number of antennas.

Selection methods applied in all the previous chapters increase in complexity as the number if antenna

elements grow. In the next chapter we analyze systems with various channel parameters, in terms of

convex optimization theory, to reduce computational complexity.
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6
Antenna Selection with Convex

Optimization

6.1 Introduction

An exhaustive search over all possible antennas for maximum output Signal to Noise Ratio (SNR) is

proposed in [26], when the system uses linear receivers. Since exhaustive search is computationally

expensive for large Multiple-Input Multiple-Output (MIMO) systems, several sub-optimal algorithms

with lower complexity are derived at the expense of performance. A selection algorithm based on

accurate approximation of the conditional error probability of quasi-static MIMO systems is derived

in [106]. In [107], the authors formulate the receive antenna selection problem as a combinatorial

optimization problem and relax it to a convex optimization problem. They employ an interior point

algorithm, i.e., a barrier method, to solve a relaxed convex problem. However, they treat only the

case of capacity maximization. An alternative approach to receive antenna selection for capacity

maximization that offers near optimal performance at a complexity, significantly lower than the schemes

in [22] but marginally greater than the schemes in [108], is described in [109]. In [110, 111] a new

approach to antenna selection is proposed, based on the minimization of the union bound, which is

the sum of the all Pairwise Error Probabilities (PEPs). In this chapter we apply convex optimization

techniques on 2D and 3D antenna arrays to optimize the performance in terms of capacity. Our

approach is based on formulating the selection problem as a combinatorial optimization problem and

relaxing it to obtain a problem with a concave objective function and convex constraints. We follow

the lines of [107] [109], and extend it to systems with both spatial and angular correlation, so-called

True Polarization Diversity (TPD) [59–61] arrays. We optimize the performance of systems with such

arrays of antennas which are both spatially separated and also inclined at a certain angle. A model for

combined spatial and angular correlation functions is also given in [72], but we adhere to the work from

Valenzuela [59–61]. We apply a simple norm based antenna selection method to a Polarization Diverse

(PD) array for both 2D and 3D arrays in this chapter. Applications of receive antenna selection on

polarized arrays can be found in [69] [85].

70
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6.2 System Model

We consider a MIMO system with NT transmit and MR receive antennas. The channel is assumed

to have frequency-flat Rayleigh fading with Additive White Gaussian Noise (AWGN) at the receiver.

The received signal can thus be represented as

x(k) =
√
EsHs(k) + n(k), (6.1)

where MR × 1 vector x(k) = [x1(k), . . . , xMR
(k)]T represents the kth sample of the signals collected at

the MR receive antennas, sampled at symbol rate. The NT × 1 vector s(k) = [s1(k), . . . , sNT (k)]T is

the kth sample of the signal transmitted from the NT transmit antennas. The symbol Es denotes the

average energy per receive antenna and per channel use, n(k) = [n1(k), . . . , nMR
(k)]T describes the

noise of an AWGN channel with energy N0/2 per complex dimension and H is the MR ×NT channel

matrix, where Hp,q(p = 1, . . . ,MR, q = 1, . . . , NT ) is a scalar channel between the pth receive antenna

and qth transmit antenna. The entries of H are assumed to be Zero-Mean Circularly Symmetric

Complex Gaussian (ZMCSCG), such that the covariance matrix of any two columns of H is a scaled

identity matrix. Perfect Channel State Information (CSI) is assumed at the receiver while performing

antenna subset selection. No CSI is available at the transmitter. The correlation models are taken

from the work of [59–61, 72]. The array is with an aperture size of Lr = λ/2, the antennas in the

array are randomly oriented in space and also separated by the spatial separation of dr. Thus, we

have dr = Lr/(MR − 1). The inter element distance in a Uniform Linear Array (ULA) configuration

depends on the radius. This limits the total number of antennas that can be stacked in a given area

constraint. From [70] and [71], a practical measure for r is given to be 0.025λ. Thus, a maximum of

nine antenna elements can be stacked in such configurations. The angles are represented by θr. The

radiation patterns of all the elements in a ULA configuration are constant. But in an array of polarized

antenna elements, different patterns exist due to the slant angles, hence introducing both, pattern and

polarization diversity. Here, for the sake of simplicity we assume only polarization diversity and discard

the effects produced by pattern diversity. The investigations of [60,72,112] describe the correlation

models for structures with both angular as well as spatial diversity. We work on the modified model

given in [72], which also is in agreement to the model presented in [60]. The spatial correlation between

two consecutive identical antennas can be found in [61]. The combined spatial-polarization correlation

function as given in [72] is a separable function of space dr and angle θr variables, shown below

ς(dr, θr) = sinc(kdr) cos θr. (6.2)

If we have a ULA configuration, ςr = sinc(kdr) and ςa = cos θr for the angular separated configuration.

We use these simple models in order to describe correlation values. It should be noted that effects

of mutual coupling are ignored here for the sake of simplicity. We have shown a six element True

Polarization Diversity (TPD) antenna array in Figure 6.1.

6.3 Capacity Maximization for RAS

We focus here on receive antenna selection for capacity maximization. The capacity of the MIMO

system is given by the well known formula

C(H) = maxtrace(Rss)≤Klog2det

(
INT

+
γ

NT
RssH

HH

)
, (6.3)
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2rL
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rd

Figure 6.1: True polarization diversity antenna array with MR = 6 antenna elements.

where trace(Rss) is the power of the transmitted symbols, K denotes an upper bound for power which

here we have taken to be equal to one. It is also defined as the maximally allowed transmit power.

Applying these conditions maximizes the capacity given by,

C(H) = log2det

(
INT

+
γ

NT
RssH

HH

)
, (6.4)

where γ = Es/N0, Rss = E
(
s(k)s(k)H

)
is the covariance matrix of the transmitted signals with

trace(Rss) = 1. The determinant is denoted by det(·) and INT represents the NT ×NT identity matrix.

However, when only lr < MR receive antennas are used, the capacity becomes a function of the

antennas chosen. If we represent the indices of the selected antennas by r = [r1, . . . , rlr ], the effective

channel matrix is H with those rows only corresponding to these indices. Denoting the resulting

M
′
R ×NT matrix by Hr, the channel capacity with antenna selection is given by

Cr(Hr) = log2det

(
INT

+
γ

NT
RssH

H
r Hr

)
. (6.5)

In the absence of CSI at the transmitter, Rss is chosen as INT . Our goal is to chose the index set r

such that the capacity in Equation (6.5) is maximized. A closed form characterization of the optimal

solution is difficult. We propose a possible selection scheme in the next section.

6.4 Optimization Algorithm for Antenna Selection in 2-D arrays

We formulate the problem of receive antenna selection as a constrained convex optimization problem [113]

that can be solved efficiently using numerical methods such as interior-point algorithms [114]. Similar

to [109], the ∆i(i = 1, . . . ,MR) is defined such that,

∆i =

{
1, ith receive antenna selected

0, otherwise.
(6.6)

By definition, ∆i = 1 if ri ∈ r, and 0 else. Now, consider an MR ×MR diagonal matrix ∆ that has ∆i

as its diagonal entries. Thus, the MIMO channel capacity with antenna selection can be re-written as

Cr(∆) = log2det

(
INT

+
γ

NT
HH∆H

)
= log2det

(
IMR

+
γ

NT
∆HHH

)
. (6.7)
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in previous notation, H̃ = ∆H. The second euality in Equation (6.7) follows from the matrix identity

det(Im + AB) = det(In + BA).

The capacity expression given by Cr(∆) is concave in ∆. The proof follows from the following facts:

The function f(X) = log2det(X) is concave in the entries of X if X is a positive definite matrix, and

the concavity of a function is preserved under an affine transformation [113]. We transform Equation

(6.7) into another form that includes the correlation matrices,

Cr(∆) = log2det

(
IMR

+
γ

NT
∆R

1/2
R HR

1/2
T R

H/2
T HHR

H/2
R

)
, (6.8)

where R
1/2
T and R

1/2
R are the normalized correlation matrices at the transmit and receive side. We

assume that antennas at the transmit side are well separated to avoid any correlation. The matrix

R
1/2
T would then be an identity matrix and can be ignored in the above equation. After applying

rotation and simplification, Equation (6.8) can be written as,

Cr(∆) = log2det

(
IMR

+
γ

NT
R

H/2
R ∆R

1/2
R HHH

)
. (6.9)

We split the correlation matrix R
1/2
R into two parts: the spatial separation and the polarization of

individual antenna elements and obtain,

Cr(∆) = log2det

(
IMR

+
γ

NT
R

H/2
S ·RH/2

P ∆R
1/2
P ·R1/2

S HHH

)
, (6.10)

where R
1/2
S is the normalized correlation matrix due to the spatial separation and R

1/2
P is the additional

correlation matrix due the polarization of antenna elements. The elements of these matrices are found

from Equation (6.2). The variables ∆i are binary valued (0 or 1) integer variables, thereby rendering

the selection problem NP-hard. We seek a simplification by relaxing the binary integer constraints and

allowing ∆i ∈ [0, 1]. To make things easily tractable we divide the optimization problem into two parts.

We first calculate the optimum R
1/2
P and then find the optimum ∆ as a separate optimization problem.

Thus, the problem of receive antenna subset selection for capacity maximization is approximated by

the constrained convex relaxation plus rounding schemes:

maximize log2det

(
IMR

+
γ

NT
R

H/2
S ·RH/2

P R
1/2
P ·R1/2

S HHH

)
(6.11a)

subject to

rp(m,m) = 1, m = 1, . . . ,MR (6.11b)

|rp(m,n)| ≤ 1, m, n = 1, . . . ,MR;m 6= n (6.11c)

R
1/2
S ·R1/2

P ≤ [1]MR×MR
, (6.11d)

where [1]MR×MR
is a matrix of all the elements equal to one. We now suppose that R

1/2
PD = R

1/2
S ·R1/2

P ,

where R
1/2
P is the optimum correlation matrix. We use this matrix R

1/2
P obtained from Equation

(6.11d), to obtain the optimum ∆,

maximize log2det

(
IMR

+
γ

NT
R

H/2
PD ∆R

1/2
PDHHH

)
(6.12a)
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subject to

0 ≤ ∆i ≤ 1, i = 1, . . . ,MR (6.12b)

trace(∆) =

MR∑
i=1

∆i = lr. (6.12c)

The objective function in Equation (6.11a) is concave because the correlation matrices defined by R
1/2
P

and R
1/2
S are positive definite and hermitian. Since the constraints Equations (6.11b)-(6.11d) are linear

and affine, the whole optimization algorithm Equation (6.11) is concave and can be solved efficiently

using disciplined convex programming [115]. Similarly, the constraints Equation (6.12b)-(6.12c) are

linear and affine, so the optimization problem Equation (6.12) is concave and can be solved using

disciplined convex programming [115]. Also the diagonal matrix ∆ is positive semi-definite. From

the optimum values of R
1/2
P found, we can proceed to obtain the optimum angles of polarization or

orientation. From the (possibly) fractional solution obtained by solving the above problem, the lr
largest ∆i’s are chosen and the corresponding indices represent the receive antennas to be selected.

The optimum capacity in Equation (6.5) is then calculated by using only the selected subset r, which

is found through Equations (6.11) and (6.12). The ergodic capacity after selection now reads,

C(∆̃) = log2det

(
Ilr +

γ

NT
R̃

H/2
PD ∆̃R̃

1/2
PDH̃H̃H

)
, (6.13)

where (̃·) denotes a matrix, whose rows correspond to the indices given by the set r. In summary we

try to compute the optimum angles θr’s, which optimize the ergodic capacity with receive antenna

selection. Practically this system is only realizable, if all the antenna elements in an array can be

independently rotated around their axes. Physically realizing such system is not easy, but methods to

emulate the rotating effect through the use of parasitic elements has been investigated in [116].

6.5 Results for 2-D Arrays

In this section, we evaluate the performance of the proposed antenna selection algorithm via Monte-

Carlo simulations [115]. We solve the optimization algorithm using the MATLAB based tool for convex

optimization called CVX [115]. We use ergodic capacity as a metric for performance evaluation, which

is obtained by averaging over results, obtained from 1000 independent realizations of the channel

matrix H. For each realization, the entries of the channel matrix are uncorrelated ZMCSCG random

variables. We take the example of real valued correlation matrices calculated from Equation (6.2). In

Figure 6.2(a) we show the results for lr/6 selection. In Figure 6.2(b) we show the results for capacity

against lr for values of NT . In Figure 6.2(a) and 6.2(b) we also show the simulation results for systems

with only vertical oriented antenna elements i.e, only separated spatially (ULA). We see clearly that

the performance of these systems is substantially less than the systems which contain both spatial and

angular separation. The optimization problem similar to Equation (6.14) for only spatially separated

systems is given by,

maximize log2det

(
IMR

+
γ

NT
R

H/2
S ∆R

1/2
S HHH

)
(6.14a)

subject to

0 ≤ ∆i ≤ 1, i = 1, . . . ,MR (6.14b)
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trace(∆) =

MR∑
i=1

∆i = lr. (6.14c)

The above stated optimization problem is now simpler because of only one matrix ∆ to be optimized

with two constraints. As an example for a Polarization Diverse (PD) system, we show in Equation

(6.15), the diagonal matrix ∆ for a 2/6 selection. We see that trace(∆) =
∑MR

i=1 ∆i = 2. We take the

two largest elements of the vector trace(∆) and calculate the ergodic capacity with the respective

indices (r = 2, 3) of the rows of the channel matrix H. Now we show an optimum correlation matrix in

Equation (6.17) R
1/2
P for a given R

1/2
S , calculated for the optimum ∆, as an example. The ∆̃ matrix

formed after selection, is given in Equation (6.16). We use the same indices (r = 2, 3) again to select

the rows and columns of correlation matrix R
1/2
P . The selected correlation matrix is shown in Equation

(6.18). From this matrix the corresponding angles are θr = 0, 71◦. We show more examples of selection

systems with the corresponding optimum angles in Table 6.1 at 20dB SNR.

∆ =



0.3957 0 0 0 0 0

0 1 0 0 0 0

0 0 0.3847 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0.2196


. (6.15)

∆̃ =

[
1 0

0 0.3957

]
. (6.16)

R
1/2
P =



1.000 0.189 0.174 0.033 0.000 0.229

0.189 1.000 0.000 0.139 0.297 0.951

0.174 0.000 1.000 0.081 0.050 0.210

0.033 0.139 0.081 1.000 0.000 0.000

0.000 0.297 0.050 0.000 1.000 0.143

0.229 0.951 0.210 0.000 0.143 1.000


. (6.17)

R̃
1/2
P =

[
1.000 0.189

0.189 1.000

]
. (6.18)

Table 6.1: Optimum Angles with lr/9 Selection at 20dB SNR for MR = 1, · · · , 5

lr Indices (r) Angles (θ◦r)

1 7 0

2 2,6 0,62

3 3,7,9 0,56,76

4 2,5,7,9 0,73,78,90

5 1,4,5,6,7 0,55,90,65,70
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Figure 6.2: Ergodic capacity for antenna configurations.

6.6 Convex Optimization for RAS in 3-D Polarized MIMO Transmissions

Exhaustive search based on maximum output SNR is proposed in [26], when the system uses linear

receivers. Since exhaustive search is computationally expensive for large MIMO systems, several

sub-optimal algorithms with lower complexity are derived at the expense of performance. A selection

algorithm based on accurate approximation of the conditional error probability of quasi-static MIMO

systems is derived in [106]. In [107], the authors formulate the receive antenna selection problem as a

combinatorial optimization problem and relax it to a convex optimization problem. They employ an

interior point algorithm based on the barrier method, to solve a relaxed convex problem. However,

they treat only the case of capacity maximization. An alternative approach to receive antenna selection

for capacity maximization that offers near optimal performance at a complexity, significantly lower

than the schemes in [22] but marginally greater than the schemes in [108], is described in [109].

Our approach is based on formulating the selection problem as a combinatorial optimization problem
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and relaxing it to obtain a problem with a concave objective function and convex constraints. We

follow the lines of [107] [109], and apply this to the system of arrays with Dual-Polarized (DP) and

Triple-Polarized (TP) antenna structures. Application of receive antenna selection on polarized array

can be found in [69] [85]. We first model the Dual Polarized (DP) and Triple Polarized (TP) systems

with respect to many channel characteristics, e.g, K-factor, channel correlations and XPD. A good

investigation on the modeling of DP MIMO channels in [49]. In [103] the author models TP systems

and presents the performance in terms of outage probabilities. We then compare the results with

the Spatially Separated-Single Polarized (SS-SP) systems with the same channel characteristics. We

extend our DP and TP systems to Spatially-Separated Dual-Polarized (SS-DP) and Triple Polarized

(SS-TP) systems. These systems are a combination of both spatial and polarization domain.

6.7 Channel Model for 2-D and 3-D MIMO

The channel is modeled as a Ricean fading channel, i.e, the channel matrix can be composed of a fixed

(possibly line-of-sight) part and a random (fast fading) part according to Equation (5.1) described in

the previous chapter.

For a DP system, the channel matrix is described in V and H polarizations, i.e., its elements

represent the input-output relation from V to V , V to H, H to H, and H to V polarized waves [49] [52],

HDP =

[
ȟV V ȟV H

ȟHV ȟHH

]
, (6.19)

and that for 3× 3 triple-polarized channels represented as [117] [90],

HTP =

 ȟV V ȟV H ȟV Z

ȟHV ȟHH ȟHZ

ȟZV ȟZH ȟZZ

 , (6.20)

A 4 × 4 MIMO channel with two spatially separated DP antennas on each side can for example be

written as,

H =


ȟ1V,1V ȟ1V,1H ȟ1V,2V ȟ1V,2H

ȟ1H,1V ȟ1H,1H ȟ1H,2V ȟ1H,2H

ȟ2V,1V ȟ2V,1H ȟ2V,2V ȟ2V,2H

ȟ2H,1V ȟ2H,1H ȟ2H,2V ȟ2H,2H

 =

[
H11 H12

H21 H22

]
, (6.21)

where the scalar channel between the ith transmit antenna and the jth receive antenna is denoted by

ȟjV,iV for the vertical component and ȟjH,iH for the horizontal component. The cross-components are

denoted by ȟjV,iH and ȟjH,iV , respectively. The channel XPD’s are mentioned in the previous chapters.

We have used the following normalizations,

E
{∣∣ȟV V ∣∣2} = E

{∣∣ȟHH ∣∣2} = 1− α (6.22)

E
{∣∣ȟHV ∣∣2} = E

{∣∣ȟV H ∣∣2} = α. (6.23)

Similarly for TP array we have some additional normalizations as follows,
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E
{∣∣ȟV V ∣∣2} = E

{∣∣ȟHH ∣∣2} = E
{∣∣ȟZZ∣∣2} = 1− (α1 + α2). (6.24)

E
{∣∣ȟV H ∣∣2} = E

{∣∣ȟZV ∣∣2} = E
{∣∣ȟHZ∣∣2} = α1 (6.25)

E
{∣∣ȟHV ∣∣2} = E

{∣∣ȟV Z∣∣2} = E
{∣∣ȟZH ∣∣2} = α2. (6.26)

The above normalizations are motivated by power or energy conservation arguments. That is, the

channel cannot introduce more energy to the transmitted signal and with this normalization the power

is conserved by subtracting from the co-polarized component the corresponding amount of power α

that has leaked into the cross-polarized component. This normalization is of great importance when

comparing DP to SP systems. The XPD for TP channel can then be represented by,

XPD =
1− (α1 + α2)

α1 + α2
, 0 < (α1 + α2) ≤ 1, (6.27)

Similarly, we define the channel XPD for the fixed part of the DP channel as,

XPDf =
1− αf
αf

, 0 < αf ≤ 1. (6.28)

with the following normalizations ∣∣h̄V V ∣∣2 =
∣∣h̄HH ∣∣2 = 1− αf . (6.29)∣∣h̄HV ∣∣2 =
∣∣h̄V H ∣∣2 = αf . (6.30)

Similarly for triple polarized array we have some additional normalizations as follows,∣∣h̄V V ∣∣2 =
∣∣h̄HH ∣∣2 =

∣∣h̄ZZ∣∣2 = 1− (α1f + α2f ). (6.31)

∣∣h̄V H ∣∣2 =
∣∣h̄ZV ∣∣2 =

∣∣h̄HZ∣∣2 = α1f (6.32)∣∣h̄HV ∣∣2 =
∣∣h̄V Z∣∣2 =

∣∣h̄ZH ∣∣2 = α2f . (6.33)

(6.34)

The channel XPD for the fixed part of the TP channel is given by,

XPDf =
1− (α1f + α2f )

α1f + α2f
, 0 < (α1f + α2f ) ≤ 1. (6.35)

6.7.1 Channel Correlations in Multipolarized MIMO

The elements of the Spatially Separated-Single Polarized (SS-SP) MIMO channel matrix will be

correlated, when the channel is not rich enough, i.e., when there is not enough scattering to decorrelate

the elements of the channel matrix and/or when the antenna spacing is too small. We define the

transmit, ts, and receive, rs, spatial and co-polarized correlation coefficients as,

ts =
E
{
ȟiV,iV ȟ

∗
iV,jV

}
1− α

=
E
{
ȟiH,jH ȟ

∗
iH,iH

}
1− α

, i 6= j, (6.36)
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rs =
E
{
h̃iV,iV ȟ

∗
jV,iV

}
1− α

=
E
{
ȟiH,jH ȟ

∗
iH,iH

}
1− α

, i 6= j. (6.37)

Similarly, we define the transmit, tp, and receive, rp, polarization correlation coefficients as,

tp =
E
{
ȟiV,iV ȟ

∗
iV,iH

}
√
α(1− α)

=
E
{
ȟiH,iV ȟ

∗
iH,iH

}
√
α(1− α)

, (6.38)

rp =
E
{
ȟiV,iV ȟ

∗
iH,iV

}
√
α(1− α)

=
E
{
ȟiV,iH ȟ

∗
iH,iH

}
√
α(1− α)

. (6.39)

For example, the measurements reported in [89] showed that the average envelope correlations (worst

case) were all less than 0.2, and, in fact, all of the reported measurements in [118] showed that

tp ≈ rp ≈ 0. The correlations between elements of TP structures can be shown in a straight forward

manner as above.

6.7.2 Complete Channel Model

The combined channel including all the parameters is described here. A 2× 2 dual-polarized MIMO

channel is expressed as follows,

H̃DP = ΣDP �
(
C1/2
rp W2×2C

1/2
tp

)
, (6.40)

ΣDP =

[ √
1− α

√
α√

α
√

1− α

]
, (6.41)

Crp =

[
1 rp
r∗p 1

]
; Ctp =

[
1 tp
t∗p 1

]
, (6.42)

are the polarization leakage, receive and transmit correlation matrices and W is a complex-valued

Gaussian matrix with i.i.d entries from NC(0, 1). A 3× 3 triple-polarized MIMO channel is expressed

as follows,

H̃TP = ΣTP �
(
C1/2
rp W3×3C

1/2
tp

)
, (6.43)

where

ΣTP =


√

1− β √
α1

√
α2√

α2
√

1− β √
α1√

α1
√
α2

√
1− β

 , (6.44)

where β = (α1 + α2) and the condition for “symmetry” is that 0 ≤ β ≤ 1.

Crp =

 1 rp rp
r∗p 1 rp
r∗p r∗p 1

 ; Ctp =

 1 tp tp
t∗p 1 tp
t∗p t∗p 1

 , (6.45)

are the polarization leakage, receive and transmit correlation matrices. Here we assume that the

correlation values for each pair of polarization, in a TP structure are equal. Extension to arrays of
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multiple Spatially Separated Dual Polarized (SS-DP) and Spatially Separated Triple Polarized (SS-TP)

antenna arrays are straight forward and shown below as,

H̃DP = 1MR/2×NT /2 ⊗ΣDP �
(
C1/2
r WMR×NTC

1/2
t

)
, (6.46)

where MR and NT are the number of receive and transmit antennas respectively. They should always

be multiples of two for the DP case.

H̃TP = 1MR/3×NT /3 ⊗ΣTP �
(
C1/2
r WMR×NTC

1/2
t

)
, (6.47)

where MR and NT should always be multiples of three for the TP case. The Cr = Crs ⊗Crp and

Ct = Cts ⊗Ctp are the receive correlation and transmit correlation matrices of the MR ×MR MIMO

channel with MR spatially separated dual-polarized and triple-polarized antennas on each side. The

matrix 1MR/2×NT /2 and 1MR/3×NT /3 are representing matrices of all elements to be one, respectively.

The spatial correlation matrices are given, for example for a 2× 2 SS system, as follows,

Crs =

[
1 rs
r∗s 1

]
; Cts =

[
1 ts
t∗s 1

]
. (6.48)

6.8 Optimization Algorithm for Antenna Selection in 3-D Arrays

Receive antenna selection for capacity maximization is described in previous sections. A closed form

characterization of the optimal solution is difficult. We propose a possible selection method here. We

formulate the problem of receive antenna selection as a constrained convex optimization problem [113]

that can be solved efficiently using numerical methods such as interior-point algorithms [119]. Similar

to [109], the ∆i(i = 1, . . . ,MR) is defined as in Equation (6.6). By definition, ∆i = 1 if ri ∈ r, and 0

else. Now, consider an MR ×MR diagonal matrix ∆ that has ∆i as its diagonal entries. Thus, the

achievable MIMO channel capacity with antenna selection is given by Equation (6.7). The capacity

expression given by Cr(∆) is concave in ∆. The proof follows from the following facts: The function

f(X) = log2det(X) is concave in the entries of X if X is a positive definite matrix, and the concavity

of a function is preserved under an affine transformation [113]. The variables ∆i are binary valued

(0 or 1) integer variables, thereby rendering the selection problem NP-hard. We seek a simplification by

relaxing the binary integer constraints and allowing ∆i ∈ [0, 1]. Thus, the problem of receive antenna

subset selection for capacity maximization is approximated by the constrained convex relaxation plus

rounding schemes.

maximize log2det

(
IMR

+
γ

NT
∆HHH

)
(6.49a)

subject to

0 ≤ ∆i ≤ 1, i = 1, . . . , (6.49b)

trace(∆) =

MR∑
i=1

∆i = lr. (6.49c)

where H is given by Equation (6.40) for DP and Equation (6.43) for TP antenna systems.
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6.9 Results for 3-D Arrays

In this section we evaluate the capacity for different channel scenarios depending on parameters like

correlation, XPD and K-factor. For all Ricean fading examples the fixed 2× 2 channel components are

given by to,

H̄DP =

[ √
1− αf

√
αf√

αf
√

1− αf

]
. (6.50)

Similarly for the triple-polarized case we have,

H̄TP =


√

1− βf
√
α1f

√
α2f√

α2f

√
1− βf

√
α1f√

α1f
√
α2f

√
1− βf

 , (6.51)

where βf = (α1f + α2f ). A nominal value of XPDf =
1−βf
βf

= 15dB is chosen for simulations [49]. For

the SS-SP systems, we have the following matrices with fixed channel (see Equation (5.1)).

H̄2SS−SP =

[ √
1− αf

√
1− αf√

1− αf
√

1− αf

]
. (6.52)

Similarly for three SS-SP case we have,

H̄3SS−SP =


√

1− αf
√

1− αf
√

1− αf√
1− αf

√
1− αf

√
1− αf√

1− αf
√

1− αf
√

1− αf

 . (6.53)

Throughout all simulations we used typical correlation values tp = rp = 0.3 and ts = rs = 0.5 [118] [89].

We compute ergodic capacity by averaging over 100 instantaneous capacity values, varying the matrix

W ∈ NC(0, 1) as i.i.d complex-valued Gaussian. We compare Antenna Selection (AS) methods by

selecting lr out of MR antennas against Non Antenna Selection (NAS) by utilizing all lr = MR antennas.

As selection method we apply Equation (6.49).

6.9.1 Effect of SNR on Capacity in Rayleigh Channels

From Figure 6.3(a) we observe that with the given channel parameters, the performance of 2SS-DP

and 3SS-SP systems is almost the same for all lr. The 3SS-TP systems has a better performance with

selection for values of lr > 4 as compared to 2SS-DP. We also observe in the figure that all the systems

with antenna selection perform better compared to non Non Antenna Selection (NAS) systems. The

3SS-TP system has the best overall performance.

6.9.2 Effect of XPD on Capacity in Rayleigh Channels

In Figure 6.3(b), we show the impact of the XPD parameter on the ergodic capacity of the polarized

systems with and without selection. We use the case of lr = 6 as an example for both DP and TP

systems. For a fair comparison of DP and TP systems we used XPDf = 15dB for both systems. In

the simulations we used βf = (α1f + α2f ). We assumed α1f = α2f in our simulations (see Equation

(6.27)). The same condition is applied for the varying XPD from Equation (6.44) and the condition

of symmetry is taken as β = (α1 + α2). Again α1 = α2 is assumed for simulations (see Equation
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Figure 6.3: Capacity of multi-polarized configurations for various channel parameters.
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(6.35)). We observe that with the given channel parameters, SS-SP systems are not effected by the

α values. We observe that 3SS-TP without selection has the best performance. A selection within

3SS-TP systems is far better than a selection within 2SS-DP.

6.9.3 Effect of Ricean K-factor on Capacity

In Figure 6.3(d) we show the performance in terms of Ricean K-factor. We observe that the performance

gets worse when the LOS component K increases. We also observe that DP systems with or without

antenna selection are effected more by the K-factor compared to TP systems. We also extract from the

figure that TP systems with selection perform a lot better than all other systems except full complexity

TP systems.

6.9.4 Comparison of CO and CM Selection Methods

In Figure 6.3(c) we compared the CO antenna selection method to the well known Capacity Max-

imization (CM) method based on exhaustive search for the maximum capacity of the selected sub-

channels [1] [26]. For CM the average was taken over 105 channel realizations for the matrix W. We

observe that the CO method performs almost close to CM method for spatially separated systems. In

DP systems, at larger values of lr, the CO method has almost the same performance as CM method.

Although in TP systems the CM method is always better than CO method at all values of lr, for the

given channel conditions.

6.10 Conclusions

In this chapter we investigated a model for dual and triple polarized MIMO channels. We used convex

optimization to optimize the performance of such systems for maximizing ergodic capacity. We used the

relaxation of a binary integer constraint to have a convex optimization algorithm and solved it, using

disciplined convex programming. The optimization algorithm finds the best antennas for selection.

We also compared the results with an array consisting of spatially separated single polarized array

of linear elements. We found that by using an optimization algorithm, the performance of multiple

polarized systems can be significantly enhanced. For certain channel conditions we see that triple

polarized systems increase the performance significantly compared to spatially separated systems. We

also observe that applying selection at the receiver only boosts the performance in NLOS channels

compared to LOS channels. A comparison with the exhaustive search method of capacity maximization

for selection shows that convex optimization based search method performs better for polarized MIMO

systems with antenna selection. In this chapter we modified simple antenna selection problem into

convex optimization problem while using mutual information as the cost function. We did not consider

other cost functions like BER minimization [111] or throughput maximization for optimization. Also

we could consider other constraints like power and rate for maximizing or minimizing certain cost

function. Based on such optimization, optimal receiver architectures can be devised for multipolarized

systems with antenna selection [107].
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Conclusions and Future Work

In this PhD dissertation we have explored and justified the use of antenna selection mechanisms in

single user MIMO wireless scenarios from a geometric point of view for antenna array structures. We

first explored and investigated various antenna configurations and then applied antenna selection on

such systems. We analyzed theoretically the performances in terms of capacity. We also compared

the results with conventional linear arrays. While considering various configurations of arrays we

emphasized on the parameters such as correlation and mutual coupling and devised novel selection

algorithms for such systems. We also exploited convex optimization methods to further reduce the

computational complexity on various antenna configurations. We also experimentally investigated the

gains achieved by multipolarized systems through a few channel measurement campaigns. Various

selection algorithms were also applied on multicarrier systems and performances were simulated.

84
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7.1 Conclusion

After motivating this PhD thesis and giving an overview of the state of the art, in the introductory

chapter we apply simple antenna selection algorithms on frequency selective channels. In broadband

systems such as WiMAX (IEEE 802.16-2004), the overall channel under consideration is typically

frequency selective, and flat only over the subcarrier bandwidths. We applied receive antenna subset

selection schemes to a WiMAX compliant MIMO-OFDM transmission system. Simulation results in

terms of average throughput and Bit Error Ratio (BER) on an adaptive modulation and coding link

were shown. We found that the optimal selection for maximum throughput, does not give the best

results in terms of BER performance. We concluded that the minimum BER method is not the right

choice for antenna selection. We also showed through our simulations that the simple, low complex

norm based selection algorithm, provided good results, close to optimal selection in frequency selective

channels.

We analyzed the combined effects of array orientation/rotation and antenna cross polarization

discrimination on the performance of two dimensional dual-polarized systems with receive antenna

selection. We started our analysis by selecting only one receive antenna out of multiple antennas

selection and extend it to multiple selected receive antennas. We derived numerical expressions

for the effective channel gains for all such systems. We found these expressions for small values of

antenna elements, and approximately valid for higher values. We concluded from our analysis that the

maximum effective channel gain can be attained if the number of selected antennas are at least half of

the total antennas available. We then compared co-located antenna array structures with their spatial

counterpart while deploying receive antenna selection. To this purpose, the performance in terms of

MIMO maximum mutual information was presented. We derived some explicit numerical expressions

for the effective channel gains. Further a comparison in terms of power imbalance between antenna

elements was presented. We concluded that angularly separated compact antenna arrays with a few

simple monopoles, if used with antenna selection can provide a better performance compared to a

conventional Uniform Linear Array (ULA). We also showed that co-located structures are robust to

power imbalance and orientation variations compared to a ULA. We then examined the performance

of a typical antenna selection strategy in such systems and under various scenarios of antenna spacing

and mutual coupling with varying antenna elements. We compared a linear array with an NSpoke

co-located antenna structure. We further improved the performance of such systems by a new selection

approach which terminates the non-selected antenna elements with a short circuit. We observed that

this methodology, improved the performance considerably. We presented analytical bounds for capacity

with receive antenna selection. We found that NSpoke structures perform better than side-by-side

systems with receive antenna selection with few number of antennas even in the presence of strong

mutual coupling effects.

From 2-D antenna structures we moved forward to 3-D structures. We investigated orthogonal

multipolarized antenna structures. We theoretically analyze the impact of cross-polar discrimination

on the achieved antenna selection gain for both dual and triple-polarized MIMO for non line of sight

channels. We proceeded to derive the outage probabilities and observe that these systems achieve

significant performance gains for compact configurations with only a nominal increase in complexity.

We observed that at higher cross polarization discrimination and lower transmit signal to noise ratio, the

outage performance for a dual-polarized system is almost the same as triple-polarized system with joint

transmit/receive antenna selection. With selection at only one end of the link, we also observed that

the triple-polarized system performs better than dual-polarized counterpart at higher values of transmit
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SNRs. We then considered the use of multiple antenna signaling technologies, specifically Space Time

Block Coding (STBC) and Spatial Multiplexing (SM) schemes, on such 3D multipolarized antenna

arrays. We consider the effects of correlation and XPD on the performance. We presented simulation

results for both multi-antenna signaling techniques. The results show a significant performance gain

by joint utilization of space, time and polarization diversity in comparison to uni-polarized systems

with the same number of antennas. We observed that dual and triple polarized systems have different

performances at various channel scenarios. Antenna selection performs better for systems with space

time coding and boosts the performance more in triple-polarized MIMO compared to its dual-polarized

counterpart.

The computational complexity increases with the number of selected antennas and the total

number of antennas. We presented a low complexity approach to receive antenna selection for capacity

maximization, based on the theory of convex optimization. By relaxing the antenna selection variables

from discrete to continuous, we arrived at a convex optimization problem. We showed via extensive

Monte-Carlo simulations that the proposed algorithm provides performance very close to that of

optimal selection based on exhaustive search. We consecutively optimize not only the selection of

the best antennas but also the angular orientation of individual antenna elements in the array for a

so-called true polarization diversity system. We then used the same convex techniques and applied on

3-D polarized systems. We also included channel parameters like transmit and receive correlations,

XPD. We compared our results with the Spatially Separated (SP) MIMO with and without selection by

performing extensive Monte-Carlo simulations. We found that by using convex optimization algorithm,

the performance of multiple polarized systems can be significantly enhanced. For certain channel

conditions we observed that triple polarized systems increase the performance significantly compared

to dual-polarized and spatially separated systems. We observed that applying selection at the receiver

only boosts the performance in Non Line of Sight (NLOS) channels compared to Line of Sight (LOS)

channels.

7.2 Future Work

The work presented in this PhD dissertation can be extended as follows:

• To take into account more realistic channels, possibly considering users fading statistics.

• To apply antenna joint antenna selection with various pre-coding techniques.

• To perform practical antenna selection system design with realistic switching.

• To extend physical layer design to cross-layer perspective.

• To apply selection schemes on Planar and conformal arrays with beam synthesis.

• To perform selection techniques on Cooperative MIMO with network coding.

As for the specific problems addressed in each chapter, some interesting topics to be addressed are the

following

• In Chapter 2, various selection algorithms can be applied on OFDM based LTE physical layer

simulator. The performance can be compared by incorporating various antenna structures. The

performance can also be calculated in terms of complexity and receiver architecture.
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• In Chapter 3, a possible extension would be the analytical evaluation of the proposed approach by

deriving performance bounds in terms of capacity, through put and BER. Joint transmit/receive

antenna selection can be applied as well. Impairments in the feedback channel should be

considered in order to derive a more robust joint antenna selection procedure. To consider more

types of antenna arrays specially conformal antenna array structures considering all the coupling

effects.

• In Chapter 4, extension could be towards analytically calculating capacity bounds with all

the impairments with antenna selection for multipolarized systems. Channel measurements for

various channel conditions with a practical antenna selection system, can also be a pert of future

work. Various receiver can be designed for such multipolarized system as well. The effects of

mutual coupling can be included and bounds can be calculated for selection systems.

• In Chapter 5, various performance bounds can be calculated for SM and diversity techniques for

multi-polarized systems and some optimum receiver structures can be devised.

• In Chapter 6, possibly the work could be extended into designing performance constraints for

optimization problem based on bit error and throughput.
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