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How high’s the water, Mama?

Five feet high and risin’

How high’s the water, Papa?

It’s five feet high and risin’

Johnny Cash, Five Feet High And Rising
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Kurzfassung

Hochwasserereignisse, wie sie im Jahr 2002 im Donaueinzugsgebiet aufgetreten sind, haben
das Interesse der Öffentlichkeit an möglichst frühzeitigen Hochwasserwarnungen und Vorher-
sagen steigen lassen. In den folgenden Jahren wurden deshalb Vorhersagesysteme für die
meisten Flüsse in Österreich eingerichtet. Ziel dieser Arbeit ist die Evaluierung des Hochwas-
servorhersagesystems für die österreichischen Donauzubringer, das von der TU Wien entwi-
ckelt wurde. Bei der Entwicklung von operationellen Vorhersagesystemen ist es notwendig,
Routinen zu verwenden, die auch mit einem Minimum an online verfügbaren Daten plausi-
ble und genaue Ergebnisse liefern. Das in dieser Arbeit verwendete Modell beschreibt die
Schneeakkumulation und -schmelze, den Bodenfeuchtehaushalt und den Abfluss am Hang
und im Gerinne.

In Kapitel 2 wird der Einfluss von klimatologischen und gebietsspezifischen Eigenschaften
auf die Güte der Modellergebnisse untersucht. Für die Interpretation der Vorhersagen ist ein
Verständnis der Funktionsweise eines hydrologischen Modells in unterschiedlichen hydrolo-
gischen Situationen wichtig. Die Ergebnisse zeigen, dass in feuchten Gebieten bessere Modell-
ergebnisse erzielt werden können als in trockenen Gebieten, und dass simulierte Hochwasser-
scheitel in feuchten Gebieten kleinere Fehler aufweisen als in trockenen Gebieten. Die Güte
der Modellergebnisse wird am stärksten von der Größe des Einzugsgebietes und dem Anteil
von Regen am gesamten Niederschlag beeinflusst.

In Kapitel 3 liegt der Fokus auf dem Schneemodul des hydrologischen Modells. Zur zeitlichen
und räumlichen Validierung der simulierten Schneeprozesse wurden Satellitendaten verwen-
det. Ein Vergleich von Modellergebnissen und den verwendeten MODIS-Satellitendaten zeigt,
dass sie nützliche Zusatzinformation darstellen, wenn die Wolkenbedeckung weniger als 80%
beträgt. Die Schneebedeckung in den Voralpen und in bewaldeten Gebieten wird vom Modell
etwas unterschätzt, in alpinen Bereichen und nicht bewaldeten Gebieten stimmen Modell und
Satellitendaten gut überein.

Hochwasservorhersagen sind grundsätzlich mit Fehlern behaftet, die auf Unsicherheiten der
meteorologischen Prognosen und des hydrologischen Modells zurückzuführen sind. Um diese
Unsicherheiten zu quantifizieren, wurden in Kapitel 4 mehrere gleich wahrscheinliche Nieder-
schlagsvorhersagen, sogenannte Ensembles, als Eingangsdaten in das Modell verwendet. Die
Ergebnisse zeigen, dass die Modellunsicherheit dominant ist, wenn die Prognosefristen kurz
sind und sich die prognostizierten möglichen Niederschläge wenig voneinander unterscheiden.
Bei längeren Prognosefristen wird jedoch die Unsicherheit des Niederschlags dominant. Die
Auswertungen zeigen auch, dass die Vorhersageensembles in allen Fällen ein guter Indikator
für die Prognoseunsicherheiten sind.

Mit dem an der TU Wien entwickelten Modell ist es möglich, nicht nur den wahrschein-
lichsten Wert des zukünftigen Hochwassers in einem Gebiet vorherzusagen, sondern auch
Aussagen über die zu erwartende Streubreite zu treffen. Im Rahmen des Hochwasserrisiko-
managements, wie durch die EU Hochwasserrichtlinie vorgegeben, ist beides eine wertvolle
Information.
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Abstract

Recent flood events, such as the 2002 floods in the Danube catchment, have raised the public
awareness for the need for flood warnings and forecasts. Following these floods, operational
flood forecasting systems were developed for most rivers in Austria. The aim of this study
is the evaluation of the flood forecasting system for the Austrian Danube tributaries, which
was designed at the Vienna University of Technology. When developing operational flood
forecasting systems, it is important to use routines that can be used with a limited amoung
of real time data. The model used in the study describes snowaccumulation and -melt, the
soil moisture accounting and and catchment and stream routing functions.

For the interpretation of runoff forecasts it is vital to understand how the model works in
different hydrological situations. In chapter 2, the model performance is evaluated as a
function of climatological and catchment characteristics. The results indicate that the that
the model performance increases with increasing wetness of the catchment, whereas the
peak errors tend to decrease with increasing wetness. However, the results suggest that the
catchment size and the ratio of rain to total precipitation are the most important controls
on the performance of the runoff model.

The evaluation of the snow routine of the hydrological model is in the focus of chapter 3. To
validate the simulated snow processes on a temporal and spatial scale satellite data were used.
A comparison of the model results and the MODIS-satellite data shows that the satellite data
are a useful additional information if the cloud coverage is less than 80%. Results indicate
that the model tends to underestimate snow cover in prealpine areas and forested areas while
it performs better in alpine catchments and open land.

Flood forecasts are generally associated with errors which can be attributed to uncertainties
in the meteorological forecasts and the hydrologic simulations. To quantifiy the uncertain-
ties, a set of equally probable precipitation forecast (an ensemble) is used as input into the
hydrological model in chapter 4. The results indicate that the hydrologic simulation uncer-
tainty dominates for short lead times and for narrow ensemble spreads. For longer lead times
the uncertainty from the precipitation forecasts dominate. The results also indicate that the
ensembles are a good indicator for the forecast uncertainty.

The flood forecasting system designed at the Vienna University of Technology allows not only
to forecast the most likely flood peak in a catchment, but also to make conclusions about
the expected spread of the forecasts. In the context of integrated flood management, as
demanded by the the flood directive of the European union, this is a valuable information.
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1 Introduction

Floods are among the most frequent and costly natural disasters in terms of human hard-
ship and economic loss. In Austria, flood damages were estimated to be in the order of
€3 billion and €550million for the major flood events of August 2002 and August 2005. Af-
ter these flood events, the public awareness has increased that flood warnings and forecasts
can substantially reduce the damage to property and life.

The purpose of the flood framework directive of the European Union (European Union, 2007)
”is to establish a framework for the assessment and management of flood risks, aiming at the
reduction of the adverse consequences for human health, the environment, cultural heritage
and economic activity associated with floods in the Community.” Flood risk management
plans have to be completed and published by the member states by December 2015. Flood
forecasting is an important component of the flood risk management plan.

However, flood forecasting is a challenge as physical processes that control runoff genera-
tion and flow routing in catchments are complex and highly variable. Moore et al. (2005)
summarized the challenges in flood forecasting as ”Imperfect estimates of rainfall and river
flow are used with mathematical models of river systems that aim, in an approximate way,
to represent the physical processes affecting water movement.” Several assumptions have to
be met to estimate future runoff (Gutknecht, 1988): First, the current hydrological situation
(the ”initial condition”) at the time of forecast has to be known with adequate accuracy.
Secondly, mathematical models are required to estimate future runoff.

The knowledge of the current hydrological situation means that the meteorological and hy-
drological histories prior to the current situation have to be known as adequately as possible.
This is because the runoff estimates highly depend on the state of, for example, the soil mois-
ture and the snow conditions. The sensitivity of runoff simulations on the initial conditions
has been shown by a number of authors (e.g., Zehe and Blöschl, 2004; Komma et al., 2008).
The predictability of a flood event does not depend on the initial conditions alone; it can
also depend on the character and the seasonality of the event. A wide range of process types
that can cause floods including long-rain floods, short-rain floods, flash floods, rain-on-snow
floods, and snowmelt was identified by Merz and Blöschl (2003). The same authors analysed
process indicators such as the timing of the floods, the storm duration, the rainfall depth
and the snowmelt, the catchment state, the runoff response dynamics and the spatial coher-
ence. A rainfall-runoff model used for flood forecasting is ideally able to forecast all different
runoff situations. However, models are always a simplification and approximation of reality
meaning that there is also uncertainty and errors associated with the models. Ewen et al.
(2006) classified the errors in rainfall-runoff modelling into three groups: (1) model structure
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1 Introduction

errors which are associated with the model equations, (2) parameter errors, associated with
parameter values used in the equations and (3) run time errors, associated with rainfall and
other forcing data. This means that the rainfall-runoff models have imperfect structures and
use imperfect data, which the forecaster has to deal with.

If the initial conditions are well-known, future runoff can be estimated using (1) runoff rout-
ing models with observations of runoff, (2) precipitation measurements and (3) precipitation
forecasts in a rainfall-runoff model. An approach to combine the different sources of infor-
mation was adopted in the forecasting system for the Danube tributaries. Using real time
observations of runoff in a routing model yields the most accurate runoff forecasts despite
the uncertainty in the runoff measurements. However, when using runoff routing models the
lead time is limited to the range of the travel time in the stream. Using a rainfall-runoff
model with measurements of precipitation and temperature increases the lead time, but the
accuracy of the forecasts decreases as the meteorological observations are associated with
uncertainty as well. The accuracy of the forecast further decreases when using precipitation
and temperature forecasts in the rainfall-runoff model (e.g., Blöschl, 2008; Komma et al.,
2009).

The study consists of three main parts. In the first part (Chapter 2) the performance of the
model with regard to flood simulation is analysed using different statistical measures such
as the Nash-Sutcliffe model efficiency and peak errors. The understanding of the model
performance is important for both practical and theoretical perspectives. The dependence of
the model performance on the quality and quantity of the data used for the calibration is quite
obvious. However, it is also interesting to see how catchment characteristics such as mean
annual runoff and precipitation or the catchment area can affect the model performance.
An analysis of the snow model is carried out in the second part (Chapter 3) of the study.
Snow model results are compared to snow cover data derived from the MODIS satellites
on a temporal and spatial scale. The third part (Chapter 4) consists of an analysis of
ensemble runoff forecasts, which are used to quantify the uncertainty of forecasts. Sources
of uncertainty include the precipitation forecast uncertainty and the hydrologic simulation
uncertainty, which are quantified by means of a spread-skill analysis.

The analyses are based upon the flood forecasting system for the Danube tributaries in
Austria. They draw on data from 57 catchments covering different hydrological regimes in
Austria and Bavaria. Observed meteorological and hydrological data from 2003-2009 were
to calibrate and validate the rainfall-runoff model; meteorological forecasts were available for
2006-2009 and remote sensing data for 2003-2009.
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2 Climate and catchment controls on the
performance of regional flood simulations

Abstract

Flood runoff is simulated for 57 catchments in Austria and Southern Germany. Catchment
sizes range from 70 to 25600 km2, elevations from 200 to 3800m and mean annual precipita-
tion from 700 to 2000mm. A semi-distributed conceptual water balance model on an hourly
time step is used to examine how model performance (both calibration and validation) is
related to the hydroclimatic characteristics of the catchments. Model performance of runoff
is measured in terms of four indices, the Nash-Sutcliffe model efficiency, the volume error,
the percent absolute peak errors and the error in the timing of the peaks. The simulation re-
sults indicate that the model performance in terms of the Nash-Sutcliffe model efficiency has
a tendency to increase with mean annual precipitation, mean annual runoff, the long-term
ratio of rainfall and total precipitation and catchment size. Peak errors have a tendency to
decrease with mean annual precipitation and mean annual runoff as well as with catchment
size. Catchment size is the most important control on the model performance but also the
ratio rain/precipitation is an important factor. The hydrograph shapes tend to improve with
the spatial scale and magnitude of the precipitation events. Calibration and validation results
are consistent in terms of these controls on model performance.

2.1 Introduction

Understanding the performance of hydrological models is important for a number of reasons.
From a practical perspective, it is essential to know how well streamflow and flood forecasts
will perform. For short lead times, streamflow and flood forecasts are mainly limited by the
hydrological model (Blöschl et al., 2008) as the short term forecasts are highly dependant
on the observed precipitation. From a more theoretical perspective it is also of interest
to understand what the limits of hydrological predictability (Blöschl and Zehe, 2005) are
which may give guidance on selecting model complexity (Sivapalan, 2003; Jakeman and
Hornberger, 1993). It is clear that model performance depends on the type and amount of
data available as well as the model type (Grayson et al., 2002) but there is also evidence in
the literature that the model performance depends on climate and catchment characteristics
although these relationships are less apparent.

3



2 Climate and catchment controls on the performance of regional flood simulations

Many studies have been performed on the catchment scale (e.g., Robinson et al., 1995;
Ogden and Dawdy, 2003; Vivoni et al., 2007; Merz et al., 2009) and a number of modelling
studies found catchment size to be a major control on the performance of a model. The
study of Hellebrand and van den Bos (2008) performed on 18 catchments in Germany ranging
between 8 and 4000 km2 showed that model performance was higher in larger catchments.
Similarly, the results of Das et al. (2008) indicated that model performance is higher for
larger subcatchments as random errors are likely to be cancelled out on larger scales. Oudin
et al. (2008) obtained higher model efficiencies for the larger, ground-water dominated and
highland catchments than the smaller catchments in the South of France and explained the
differences by averaging and storage effects. Merz et al. (2009) found that the long-term
water balance could be modelled more reliably with increasing catchment scale and the
scatter of the model performance between catchments decreased as well. They attributed
both effects to the larger number of climate stations in any one catchment. There is a line
of argument suggesting that part of the hydrological variability averages out as one increases
the catchment scale but there will also be additional variability that needs to be captured as
the catchments become large (Sivapalan, 2003; Skøien and Blöschl, 2006).

Climate is another important control on model performance. Generally, it is well accepted
that catchments in dry climates seem to be more difficult to simulate than catchments
in humid climates (e.g., Xiong and Guo, 2004). Braun and Renner (1992) reported the
catchments in the Swiss lowlands to be more difficult to simulate than the alpine and high-
alpine catchments. The lowland catchments had less mean annual precipitation (1000 to
1230mm/yr) than the Alpine catchments (1490 and 2400mm/yr). Similarly, the results
of Lidén and Harlin (2000) show that the model performance decreased with increasing
catchment dryness for four catchments evaluated in Tanzania, Zimbabwe, Bolivia and Turkey.
This is consistent with the French results of Oudin et al. (2008). One reason for the lower
model performance in arid climates may be the flashier and smaller scale rainfall patterns
(Yatheendradas et al., 2008). Goodrich et al. (1997), however, related the differences in
model performance to the more non-linear character of the rainfall-runoff relationship in arid
than in wetter regimes. Xiong and Guo (2004) state that ”it is nearly impossible to establish
a clear relationship between the humidity/aridity of catchments and the model performance.”
Clearly, in arid regions, runoff tends to become an ephemeral process with threshold character
(and hence non-linear), while for wet climates the rainfall-runoff relationship is more linear.
In this context, Mimikou et al. (1992) have shown in their study that the model efficiency
is increasing with basin humidity in five semi-arid to humid catchments in Greece. In more
general terms, predictability tends to increase as the system states move away from the
threshold states (Zehe et al., 2007), which is the case for increasingly wet climates. This
is also true of wetter years, as compared to drier years, as noted by Gupta et al. (1999).
However, catchments denoted as dry in this paper would not be considered as a dry catchment
in most climate regions around the world but as catchments with moderate rainfall rates.
We used the term for clarity in the context of the Alpine region where most catchments,
in fact, have a mean annual runoff of 600mm/yr or more. We define a dry catchment as
catchment with a mean annual runoff of around 250mm/yr.
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2 Climate and catchment controls on the performance of regional flood simulations

Snow melt is another climate related control. Snow dominated runoff regimes tend to be
easier to model than rainfall dominated regimes for a number of reasons. First, snow data
can be used in model setup and calibration which gives additional information on this part of
the hydrological model (Blöschl and Kirnbauer, 1991, 1992; Parajka et al., 2007). Second,
and equally important, the snow dominated runoff regime tends to have a clear annual
devolution with winter low flows and spring snow melt which is more predictable. Merz et al.
(2009) found that the model performance for a model run on a daily time step significantly
increased with the ratio of snowfall and total precipitation which they attributed to the
stronger seasonality of the runoff regime.

While these studies found interesting controls on the performance of hydrological models,
most of them conducted the simulations on a daily time step and for a relatively small
number of catchments. As Micovic and Quick (2009) noted, the model performance may
strongly depend on the temporal resolution of the model. It is hence of interest to examine
the controls for a higher temporal resolution where routing effects become more important
and the flood peaks are more accurately represented, and to extend the analyses to a larger
number of catchments than is usually done.

The aim of this paper is to analyse the controls on the performance of a hydrological model
with an hourly time resolution that includes channel routing processes. Specifically, we exam-
ine whether the model performance can be related to climatic and hydrological characteristics
of the catchments. We do not only focus on the Nash-Sutcliffe model efficiency, but also
on peak error measures. The rainfall runoff model used is a conceptual hydrological model
(Blöschl et al., 2008) which is applied in a semi-distributed mode to 57 Danube tributaries
in Austria and Germany over a period of seven years.

The organisation of the paper is as follows: Following the description of the study region and
data used in Section 2.2, a short description of the model is given in Section 2.3. Section 2.4
presents the results found in the simulation runs, and in Section 2.5 the results are discussed.
Appendix A gives an overview over the statistical measures used to evalulate the model and
finally, appendix B gives a description of the model used.

2.2 Study region and data

The study region is hydrologically diverse covering large parts of Austria and some parts of
Bavaria (Figure 2.1). The West of the region is Alpine with elevations of up to 3800ma.s.l.
while the North and East consist of prealpine terrain and lowlands with elevations between
200 and 800ma.s.l.

Figure 2.2 (top) shows the mean annual precipitation in the study region ranging from
600mm/yr in the East to almost 2000mm/yr in the West. Figure 2.2 (bottom) shows the
mean annual runoff depths calculated from the discharge data used in the study. The Alpine
catchments generally show much higher runoff depths ranging from around 100mm/yr in
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Figure 2.1: Topography of Austria and parts of Southern Germany. Elevations within the model
region are shown as darker colours. The stream gauges used in the study are indicated by
triangles, the precipitation gauges by circles. Weather radar stations are indicated by red
circles.

the East to almost 1600mm/yr in the West. Both figures indicate that the alpine regions
are much wetter than the lowlands.

The model region consists of 57 gauged catchments with sizes ranging from 70 km2 to
25600 km2 and a total size of 43800 km2. The median size of the catchments is around
400 km2. The small catchments are mostly nested catchments. Land use is mainly agricul-
tural in the lowlands, forested in the medium elevation ranges and alpine vegetation, rocks
and glaciers in the alpine catchments.

The study was carried out with hourly data from the years 2002 to 2009. Model input
data are hourly values of precipitation, air temperature and potential evapotranspiration.
The data for 2002 were used as a warm-up period for the model, 2003 to 2006 was the
calibration period and 2007 to 2009 was the validation period. Meteorological input data were
spatially interpolated by the Central Institute for Meteorology and Geodynamics (ZAMG) in
Vienna using the algorithm implemented in the INCA system (Haiden and Pistotnik, 2009;
Haiden et al., 2010). The INCA system is used operationally for forecasting in Austria, but
can also be used with historical data. The system operates on a horizontal resolution of
1 km and has a vertical resolution of 100-200m. It combines surface station data, remote
sensing data (radar, satellite), forecast fields of the numerical weather prediction model
ALADIN, and high-resolution topographic data (Haiden et al., 2010). Currently, 408 online
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Mean annual precipitation (mm/yr)

Mean annual runoff (mm/yr)

0 25 50 75 100

km

0 500 1000 1500 2000

0 500 1000 1500 2000

Figure 2.2: Top - mean annual precipitation calculated from the precipitation data used in the study
for the years 2003-2009, bottom - mean annual runoff depths calculated from discharge
data for the years 2003-2009

available climate stations are implemented in INCA; 169 of which lie within the model region,
which equals to one climate station every 258 km2. In small catchments, on average 0.35
stations per 100 km2 are available whereas in large catchments on average 0.45 stations are
available per 100 km2. 70% of the stations are below 1000ma.s.l., 24% are between 1000
and 2000ma.s.l. and the remaining 6% are above 2000ma.s.l. with the highest station
at 3100ma.s.l. Station data are interpolated to a 1x1 km grid using distance weighting,
producing a gridded precipitation field that reproduces the observed precipitation values at the
station locations. This grid is then superimposed with data from four weather radar stations
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in Austria, combining the accuracy of the point measurements and the spatial structure of
the radar field. This approach has two advantages: (1) the radar can detect precipitating
cells that do not hit a station and (2) station interpolation can provide a precipitation analysis
in areas not accessible to the radar beam (Haiden et al., 2010). However, there are two error
sources on the precipitation side: First, the gauge deficit which is about 5% in summer and
10-20% in winter and second, the interpolation error which depends on the precipitation
type. For convective storms, errors can be large even though radar is used for detection. For
synoptic events, the errors are around 5-10% or less (Viglione et al., 2010a,b).

The spatial distribution of potential evapotranspiration was estimated from hourly temper-
ature and daily potential sunshine duration by a modified Blaney-Criddle equation (DVWK,
1996). This method has been shown to give plausible results in Austria (Parajka et al.,
2003). The gridded weather data fields were superimposed on the subcatchment boundaries
to estimate hourly catchment average values. For air temperature and potential evapotran-
spiration, elevation was additionally accounted for by dividing all catchments into 500m
elevation zones. To calibrate and verify the model, hourly discharge data from 57 stream
gauges were used. The data were checked for errors and in cases where a plausible correction
could be made they were corrected. Otherwise they were marked as missing data.

2.3 Model

Model structure

Figure 2.3 shows the spatial layout of the model. A total of 57 sub-catchments and 58 routing
modules are accounted for in the model. Each of the catchments is further divided into 500m
elevation zones to account for differences in air temperature and potential evapotranspiration.
The stream gauges used in the model are shown as red points and the confluences with the
main stream of the Danube are shown as yellow points. Table 2.1 gives details about
catchments named in the paper such as area, mean annual precipitation and runoff.

Table 2.1: Stream gauges used in the study. MAP and MAR (2002-2009) is mean annual precipitation
and runoff, respectively. * denotes catchments we consider to be dry.

Number Gauge/catchment area (km2) MAP (mm/a) MAR (mm/a)

1 Rosenheim/Mangfall 1100 1520 770
2 Schärding/Inn 25600 1040 830
3 Haging/Antiesen* 160 1030 440
4 Fraham/Innbach* 360 940 340
5 Wels/Traun 3400 1550 1040
6 Steyr/Enns 5900 1500 1060
7 Molln/Steyrling 130 1700 955
8 Greimpersdorf/Ybbs 1100 1100 840
9 Opponitz/Ybbs 510 1140 1140

10 Krems/Imbach* 300 720 210
11 Cholerakapelle/Schwechat 180 890 250
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Figure 2.3: Model layout. Numbers refer to the gauges and catchments in Table 2.1. Triangles
represent catchments, lines represent routing modules. The size of the triangles indicates
the size of the sub-catchments: the smallest triangles stand for catchments with less than
400 km2, and the largest for areas larger than 1890 km2.

The rainfall runoff model used in this study is a conceptual hydrological model (Blöschl
et al., 2008) which is applied in a semi-distributed mode. The structure is similar to that
of the HBV model (Bergström, 1976) but several modifications were made including an
additional ground water storage, a bypass flow (Blöschl et al., 2008; Komma et al., 2008)
and a modified routing routine (Szolgay, 2004). Fig. 2.4 shows the model scheme for one
500m elevation zone of a catchment.

For each elevation zone, snow processes, soil moisture processes and hill slope scale rout-
ing are simulated on an hourly time step. In the snow routine, snow accumulation and
melt are represented by a simple degree-day concept, involving the degree-day factor D
(mm.°C-1.day-1) and melt temperature Tm (°C). Catch deficit of the precipitation gauges is
corrected by a snow correction factor, CS (-). Precipitation is considered to fall as rain if the
air temperature Ta (°C) is above a threshold temperature Tr (°C), as snow if Ta (°C) is below
a threshold temperature Ts (°C), and as a mix if Ta (°C) is between Tr (°C) and Ts (°C).
Runoff generation and changes in soil moisture storage are represented in the soil moisture
routine with three parameters: the maximum soil moisture storage LS (mm), a parameter
representing the soil moisture state above which evaporation is at its potential rate, termed
the limit for potential evaporation LP (mm), and a parameter in the nonlinear function re-
lating runoff generation to the soil moisture state, termed the nonlinearity parameter β (-).
Runoff routing in the elevation zones is represented by three reservoirs: the upper and lower
zones and a groundwater reservoir. Excess rainfall enters the upper zone reservoir and leaves
this reservoir through three paths: outflow from the reservoir based on a fast storage coef-
ficient k1 (h); percolation to the lower zone with a constant percolation rate cp (mm/day);
and if a threshold of the storage state L1 (mm) is exceeded, through an additional outlet
controlled by a very fast storage coefficient k0 (h). Water leaves the lower zone based on a

9



2 Climate and catchment controls on the performance of regional flood simulations

slow storage coefficient k2 (h). k3 (h) controls the outflow from the groundwater storage.
Additionally, a bypass flow Qby (mm) is introduced to account for precipitation that bypasses
the soil matrix and directly contributes to the storage in the lower soil levels (Blöschl et al.,
2008). Outflow from all reservoirs is then routed by a transfer function which consists of
a linear storage cascade with the parameters N (-; number of reservoirs) and K (h; time
parameter of each reservoir).

Model calibration

(Madsen et al., 2002) have compared different methods of automated and manual calibration
to find that the different methods put emphasis on different aspect of the hydrograph, but
none of the methods were superior with respect to the performance measures. However, we
believe that manual calibration based on hydrological reasoning will yield model parameters
that are more suitable for the extrapolation of extreme conditions so the manual calibration
was used here as modelling floods was the main interest in this study. This is supported by
several studies. E.g., Franchini and Pacciani (1991) have stated that ”it is apparent that
between an automatic calibration procedure and a procedure based on successive rational
attempts, the latter is preferable as it is the only one which makes it possible to use prior
knowledge of the nature of the watershed.” Ivanov et al. (2004) have stated that ”manual
streamflow-based calibration is a stepwise approach that includes analysis of a number of
variables considered at different spatial and temporal scales.” We have applied a similar
method affecting the spatial scale as in Ivanov et al. (2004), where each nested basin was
calibrated first. Parameter values for the nested catchments were then considered to be fixed
and the remaining parts of the catchment were calibrated. The calibration process followed a
number of steps (Blöschl et al., 2008): First, an approximation of the annual water balance
was sought to be achieved. This was done by setting initial parameters for the snow routine,
for the maximum soil moisture storage and for the slow runoff components. In a second step,
the initial model parameters were adjusted in order to reproduce seasonal patterns correctly.
Threshold temperatures were adjusted, as well as parameters influencing the slow and, if
necessary, the groundwater runoff component. The third step included the parameterization
of the fast runoff components and the parameters of the linear storage cascade by looking at
single flood events as well as a fine tuning of the parameters of the snow and soil moisture
routines. The timing of the rising limbs and the peak discharge was sought to be estimated
as correctly as possible, as well as the magnitude of the peak discharge. After each model
run, we visualised the model simulations and evaluated the results using statistical measures
(measures used are given in Appendix A). It showed that the manual calibration had two
main advantages. First, the structure of events in different hydrological situations could
be captured better by using manual calibration. Second, the timing of the rising limbs of
the flood waves could be simulated well. Additionally, the approach has been found to be
efficient as looking at a lot of different flood events helped to gain a deep insight into the
runoff processes throughout the catchments.
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In the calibration process, the snow correction factor CS (-) has been set to a value of 1,
as an elevation-based parameterization for precipitation is implemented in the INCA system
(Haiden, 2009). However, in one elevation zone ranging from 3250 to 3750ma.s.l. the model
results have shown that a snow correction factor of 1 results in a constantly increasing SWE
value for this elevation zone. Therefore, a CS value of 0.8 has been used in this elevation
zone to yield better and more realistic results. Initial model parameters for the calibration
of the snow routine were taken from the literature and were adjusted in several model runs.
Initial values were taken from, e.g., Seibert (1999) who has used threshold temperatures
ranging from -1.5 to 2.5°C and a degree day factor ranging from 1 to 10mm.°C-1.day-1 for
his Monte Carlo based calibration in Sweden. A temperature range from -2.0 to 4.0°C is
reported in Braun (1985) where a mix of rain and snow can occur in lowland and lower-alpine
catchments in Switzerland. Kienzle (2008) proposed threshold temperatures ranging from
Ts= -4°C to Tr =8°C for Canada. Merz et al. (2009) have not calibrated the threshold
temperatures Ts and Tr but have set them to constant values of 0°C and 2°C, respectively,
prior to calibration, in Austrian catchments. We have estimated parameters for Ts in the
range of -1.8 to -0.4°C and for Tr in the range of 0.8 to 1.6°C in our model area. The upper
threshold temperature is well in the range of other studies, and also the lower threshold
temperature is in the range of the studies in which the lower threshold temperature has
been calibrated. Merz and Blöschl (2004) have estimated the remaining parameters of the
snow routine using an automatic algorithm; the upper and lower bounds for the degree day
factor were set to 0 and 5 mm.°C-1.day-1, for the snow correction factor the bounds were
set to 1.0 and 1.5, and the range of the melt temperature was set to -1.0 and 3.0°C. During
rain-on-snow events large melt rates are likely to occur in northern Austria (Sui and Koehler,
2001). This enhanced melting is represented in the model by increasing D (mm.°C-1.day-1)
by a factor of 2 if rain falls on an existing snow pack. We used values for D in the order
of 1.3 to 2.3mm.°C-1.day-1, which is in the range of existing studies, even when considering
the doubling of the factor in the case of rain on snow.

Table 2.2: Hydrologic model parameters

Model parameter Description min in region max in region

D Degree day factor (mm.°C-1.day-1) 1.3 2.3
Ts Threshold temperature (°C) -1.8 -0.4
Tr Threshold temperature (°C) 0.3 1.6
Tm Melt temperature (°C) 0.1 0.9
CS Snow correction factor (-) 0.8 1.0
LS Max. soil moisture (mm) 70 725
LP Limit for pot. evaporation (mm) 9.5 360
β nonlinearity parameter (-) 1.3 4.7
k0 storage coefficient (h) 0.5 200
k1 storage coefficient (h) 10 550
k2 storage coefficient (h) 75 2500
k3 storage coefficient (h) 100 2500
cp constant percolation (mm.day-1) 2.2 24
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Initial values for the model parameters for change in soil moisture and runoff generation
were taken from previous works in the study region (e.g., Merz and Blöschl, 2004; Parajka
et al., 2007; Merz et al., 2009). They have used an automated calibration routine; values
for the maximum soil moisture LS are in the range of 0 to 600mm and the nonlinearity
parameter β is varied in the range of 0 to 20 (-); values for storage parameters are in the
range of 0 to 2 days for k0, 2 to 30 days for k1 and 30 to 250 days for k2 and the percolation
rate cp is varied between 0 and 8 mm.day-1. Parameters controlling the soil moisture were
chosen depending on catchment characteristics (land use, geology) which were analysed
prior to the calibration. E.g., in catchments dominated by open land medium values for the
maximum soil moisture LS were used, in catchments dominated by forests, larger values of
LS were used as it was assumed that the storage capacity is higher in forested areas. In
alpine catchments small values of LS were chosen as the storage capacity was assumed to
be smaller due to rocks and shallow soil. The storage coefficients were chosen depending
on the shape of the catchments. E.g., the fast runoff component of a catchment which is
stretched was assumed to be slower (and hence the storage coefficients larger) compared
to a more compact catchment which was assumed to react quicker (and hence the storage
coefficients being smaller). Table 2.2 gives an overview over the calibrated minimum and
maximum parameters values in the region.

For each catchment, the model performance was evaluated by several statistical measures,
including (1) the Nash and Sutcliffe (1970) coefficient of efficiency nsme, (2) the volume
error V E, (3) peak discharge errors pde, (4) mean absolute peak discharge errors mapde
and (5) mean absolute peak time errors mapte. To identify the dependence of the statistical
measures on various catchment attributes, we used Spearman’s rank correlation coefficient
rs, a non-parametric measure of statistical dependence between two variables. Partial cor-
relation was used to describe the relationship between two variables whilst taking away the
effects of another variable on this relationship. Definitions of the metrics can be found in
Appendix A.

2.4 Results

Examples of different runoff regimes

In order to provide a first insight into the runoff model performance for different hydrological
regimes we present two example catchments. We denote them as climatologically wet and
dry catchments, respectively, but as already mentioned in the introduction, it is realised
that the latter would not be considered as a dry catchment in most climate regimes around
the world. The wet catchment (Opponitz/Ybbs; gauge number 9 in Fig. 2.3) has a mean
annual precipitation of around 1800mm/yr and mean annual runoff of around 1100mm/yr.
The catchment that is denoted as dry here (Cholerakapelle/Schwechat; gauge number 11 in
Fig. 2.3) has a mean annual precipitation of around 890mm/yr and mean annual runoff of
around 250mm/yr.
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Figure 2.5: Calibration (top) and validation (bottom) results for a climatologically wet catchment:
Gauge Opponitz/Ybbs. Mean annual runoff depth is 1100mm/yr, catchment size is
510 km2. Gauge number 9 in Figure 2.3. SWE is the snow water equivalent. Snow depth
measurement for a single representative station (approx. mean catchment elevation) in
the catchment is shown (data only available until September 2007).

Figure 2.5 shows the model results for Opponitz/Ybbs. The area is 510 km2 , elevations range
from 500 to 1800ma.s.l., and 85% of the catchment are covered by forest. The geology
is mainly limestone. The top panels (Figure 2.5a) show the year 2005 (calibration period).
Simulated snow water equivalent (SWE) is plotted as a dotted line; hourly precipitation is
shown as impulses. Overall, the seasonal pattern of runoff is simulated well with an nsme of
0.83, a V E of 0.16 and a mapde of 25.7. The largest observed runoff in 2005 was induced
by snow melt and reached around 350 m3/s in March; in summer the largest runoff was
around 220 m3/s in July and August. The devolution of snow is simulated well; however, in
Figures 2.5 and 2.6 we compare model SWE and observed snow depths. The lower panels
provide results for the year 2007 which is part of the validation period. There is less snow
than in 2005 and the maximum discharge is higher. Again, the seasonal devolution of snow
is simulated well at the beginning of the year; towards the end of the year no snow data
are available. Three major events were recorded, all of which are somewhat overestimated.
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Several storms were recorded over the summer but there is almost no runoff response in the
catchment. The timing of the rising limbs is good. nsme for this year is 0.80, V E is 0.07
and mapde is 36.2.

Figure 2.6 provides the results of a drier catchment in the forelands of the Alps (Cholera-
kapelle/Schwechat). The area is 180 km2, elevations range from 280 to 830ma.s.l. and
77% of the catchment are forested and 21% are meadows. The geology includes Molasse,
Flysch and limestone. This means that the catchment is quite different from the catchment
in Figure 2.5 in terms of climate and geology. The baseflow is at a low level and short
storm events typically cause a quick rise of the runoff which makes the simulations difficult.
Also, the rainfall events are shorter and of higher intensity than in Opponitz and there is less
snow. The short rainfall events cause the runoff to drop to the level of the baseflow within
a short period of time. The simulation results for the calibration period are reasonable, but
some of the peaks are overestimated or underestimated. nsme is 0.79, V E is 0.14 and
mapde is 34.0. The performance of the model in the validation period is lower in terms of
the nsme (0.50), better in terms of the V E (-0.01), but similar in terms of mapde (35.0).
The observed hydrograph does not show a lot of variability, and several short small-scale
storms do not have a lot of influence on the runoff. At the beginning of September a large
scale precipitation event caused fast response. The discharge increased to 110 m3/s , but
the model estimated 165 m3/s . The comparison of the two catchments (Fig. 2.5 and 2.6)
suggests that the flashier runoff pattern in the drier catchment is more difficult to model.
Small precipitation events can lead to unexpected runoff response, and rain-on-snow events
occur in these prealpine areas (Merz and Blöschl, 2003, 2008). Alpine catchments with a
larger elevation range such as Opponitz have a more distinct annual cycle related to snow
melt in spring.

Effect of catchment scale on the model performance

To assess the model performance more comprehensively, the model error measures based on
hourly data of all catchments have been plotted in Fig. 2.7 against catchment area. Addi-
tionally, we have calculated the Spearman’s rank correlation coefficients rs between model
error measures and catchment attributes for the entire period and for winter and summer
seasons (Table 2.3). Overall, the model performs well. The median Nash-Sutcliffe model
efficiencies (nsme) for the calibration and validation periods are 0.69 and 0.67, respectively.
Median nsme in the summer months (June-November) are 0.69 (calibration) and 0.71 (val-
idation), in the winter months (December-May) the values are 0.64 (calibration) and 0.56
(validation). The distribution of the nsme in the validation period is similar to that in the
calibration period. In the validation period, 80% of the nsme values are larger than 0.5 (90%
in the calibration period), 41% are larger than 0.7 (46% in the calibration period) and 7%
are larger than 0.8 (9% in the calibration period). Catchments with high nsme are mostly
large catchments. For the calibration period, 5 out of 57 catchments have an nsme below
0.50. Out of these, four catchments have an area less than 400 km2 . This indicates that
there is a trend of increasing model performance with catchment scale. This is confirmed by
the Spearman’s rank correlation coefficient rs which is 0.43 for catchment area and nsme
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Figure 2.6: Calibration (top) and validation (bottom) results for a dry catchment: Gauge Choler-
akapelle/Schwechat. Mean annual runoff depth is 250mm/yr, catchment size is 181 km2.
Gauge is labelled as number 11 in Figure 2.3. Snow depth measurement for a single rep-
resentative station (approx. mean catchment elevation) in the catchment is shown (data
only available until September 2007).

for the entire period (Table 2.3). The correlation for summer and winter periods is slightly
smaller with 0.37 and 0.38, respectively. Volume errors are in the range of -0.20 to 0.40
for the small and medium sized catchments and in the range of -0.10 to 0.20 for the larger
catchments with no trend of increasing model performance and catchment area. There is
however a small correlation between the absolute volume error and catchment scale as the
errors tend to decrease with catchment scale, especially in the summer period. The mean
absolute peak discharge error (mapde) is clearly decreasing with catchment scale, which
is confirmed with a Spearman’s rank correlation coefficient of -0.60 for the entire period.
Again, the correlation is much stronger in the summer period. The trend for the percent
absolute peak time error (mapte) to decrease with catchment scale is not as distinct as for
mapde. Interestingly, the correlation for mapte is stronger in the winter periods. This may
be due to the fact that flash floods mainly occur in the summer months.
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Figure 2.7: Nash-Sutcliffe model efficiency (nsme), volume error (V E), mean absolute peak discharge
error (mapde) and mean absolute peak time error (mapte) plotted versus catchment area.
The marker sizes indicate the catchment size. The open circles relate to the calibration
period, the full circles to the validation period.

For a more detailed analysis we have chosen the event in June 2009 which was the largest
event in the validation period, not only in terms of runoff but also in precipitation. Statistical
analyses have shown that in the affected area 226% of the normal precipitation in June has
been recorded (BMLFUW, 2009). Specific discharges are shown for ease of comparison.
Results are shown in Figure 2.8 for nine of the 57 catchments for which (1) observed runoff
data were available and (2) which were affected most by the storm. Precipitation ranged
from 70 to 167mm in 5 days (Table 2.4). The flood return periods in the region ranged
from 2 to> 50 years with the largest values at the Ybbs and Traun. The model results
suggest that the response of the catchments to the large scale precipitation in this case
can be simulated well. The event was mainly produced by large scale precipitation caused
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2 Climate and catchment controls on the performance of regional flood simulations

by a low pressure area in Italy. Throughout the catchments along the Northern rim of the
Alps, precipitation started on June 22, raining nearly continuously until June 24. Embedded
in this large scale precipitation were local convective heavy rain storms (BMLFUW, 2009;
Haiden, 2009). Within 12 hours, the water levels at the gauges started to rise. Intensities
increased for a few hours and it continued to rain for another day at low intensities. The
main peaks in all nine catchments are simulated well, also the timing of the rising limbs.
However, the first increase of this event is underestimated at the gauges Wels, Molln, Steyr
and Greimpersdorf. This is likely due to local convective heavy rain storms (BMLFUW, 2009;
Haiden, 2009) close to the outlet of the catchments which have not been captured by the
rain gauges and the radar. The undercatch has two effects: First, areal mean precipitation
is underestimated. Second, the response times of the catchments in this event are shorter
than if uniform precipitation occurred which is not captured well.

Table 2.4: Catchment precipitation totals for the event June 22-26, 2009 shown in Figure 2.8.

Gauge Number in Figure 2.3 Precipitation (mm)

Rosenheim/Mangfall 1 85
Schärding/Inn 2 70
Haging/Antiesen 3 104
Fraham/Innbach 4 98
Wels/Traun 5 130
Molln/Steyrling 7 163
Steyr/Enns 6 109
Greimpersdorf/Ybbs 8 167
Imbach/Krems 10 110

As the model has been designed for flood forecasting, particular interest resides in the per-
formance of simulating flood peaks. For every gauge included in the model flood peaks were
identified. Observed and simulated peak discharges were compared as well as the time from
the beginning of the rising limb to the peak.

In the left panels of Figure 2.9, simulated peaks are plotted against the observed peaks. On
this double logarithmic scale there is good correspondence. However, there is a tendency
in both calibration and validation periods for peak discharges less than 100 m3/s to be
underestimated. On the other hand, peak discharges larger than 100 m3/s are fairly well
estimated with some overestimation for the largest peaks. In the right panels of Figure 2.9
the cumulative distribution functions of the peak discharge errors (pde) are plotted. For the
calibration period, the cdfs of the small and medium sized catchments indicate that 75%
of the peaks are underestimated and 25% are overestimated while in the large catchments
around 60% of the peaks are underestimated. The peak discharge errors are in the range of -
0.9 to 1.5. In the validation period, 70% of the peaks in small catchments are underestimated
which is similar to the calibration period; 50% of the peaks in medium sized catchments and
40% of the peaks in large catchments are underestimated. This means that, when moving
from calibration to validation, there is a shift from underestimation to overestimation with
increasing catchment size. This is mainly due to a slight overestimation during the low flow
periods. As the system states prior to the events are of great importance for the performance
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Figure 2.8: Event hydrographs for the June 2009 event during the validation period. Gr./Ybbs stands
for Greimpersdorf/Ybbs.

of the model during the event, an overestimated baseflow tends to lead to an overestimation
of the peak.

Table 2.5 gives a summary of error statistics with and without seasonal distinction. The
nsme values have a tendency to increase with increasing catchment scale whereas mapde
clearly decreases with increasing catchment scale, both for the calibration and validation
periods. These trends can be observed in the seasonal statistics as well. Interestingly, in
winter the nsme of the small catchments is better for the calibration period compared to the
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Figure 2.9: Scatter plots of Qobs,peak vs. Qsim,peak (left side) and cdf of peak discharge errors (pde)
(right side). Size of markers represents catchment size. Calibration (top), validation
(bottom). The line types in the right panels relate to three groups of catchment sizes
(< 400 km2 , 400 to 1890 km2 , and > 1890 km2 ).

value in summer and mapde is better in winter for small and medium catchments. This can
be attributed to the small flashy events in summer, which are simulated with less accuracy
than the large events. There is no real trend for the volume error. The magnitude of the
peak errors seems to be large. However, they are perfectly in the range of existing studies.
Senarath et al. (2000) have given values for the average absolute peak discharge error in the
range from 32 to 66%; Reed et al. (2004) have shown that the percent absolute peak error
(pape) is typically on the order of 30 to 50% for calibrated models with much larger errors for
the smallest basins. Similarly, Reed et al. (2007) report percent absolute peak errors from 24
to 88% with increasing errors with decreasing catchment size. Modarres (2009) gives values
of 11 to 41% for the medium absolute percentage error of peak discharges.
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2 Climate and catchment controls on the performance of regional flood simulations

Climate effects on model performance

The results shown so far have indicated that the model performance depends on both the
catchment size and the wetness of the catchments. To provide further insights into these
findings, the model performance indices were plotted in Figure 2.10 against the mean annual
precipitation (MAP). While there is a lot of scatter in the diagrams, they also indicate
interesting patterns. The lowest nsme only occur for the driest catchments which are also
among the smallest catchments. The correlation coefficient between nsme and MAP is in
the range of 0.31 for the entire period 2003-2009, with a larger correlation in summer (0.57)
and a lower correlation in winter (0.13) (see Table 2.3). The V E ranges between -0.25 and
0.25 with a few outliers. Correlation coefficients between V E and MAP are small. The
range of V E is somewhat smaller for the catchments with higher mean annual precipitation,
suggesting that the model performance in these catchments is slightly better. The generally
rather large volume errors are due to the fact that the model calibration was guided by an
attempt to simulate the peaks well, as the main purpose of the study was flood forecasting.
Also, hydrologically realistic parameters were given preference over minimizing biases with a
view of representing extreme events well. There is quite a clear tendency for the peak errors
in both terms of maximum discharge (mapde) and time to peak (mapte) to decrease with
mean annual precipitation which is consistent with the other error measures. Interestingly,
correlation coefficients for mapde and mapte are quite different for the winter and summer
periods. For mapte, the correlation coefficients are higher in winter, indicating that the
timing of the peaks can be simulated better in winter. This is no surprise as the flashier
events which are more difficult to simulate are more likely to occur in summer. For mapde,
the correlation coefficients are higher in summer, indicating that the peaks are simulated
somewhat better in summer. For comparison, the performance measures have been plotted
against the mean annual runoff (MAR) in Figure 2.11. The patterns are similar to those in
Figure 2.10, and also the correlation coefficients are similar.

As the smallest catchments also tend to be among the drier catchments and the larger
catchments tend to have more snow, we have calculated the partial correlation coefficient
based on the Spearman’s rank correlation coefficient rs to separate the two effects. Corre-
lation coefficients and partial correlation coefficients variables are summarized in Table 2.6.
Taking away the effects of the climate related variable (MAP, MAR, rain/precip) decreases
the correlation between nsme and area on the order of 20 to 36% whereas taking away the
effects of the area causes a decrease on the order of 30 to 55% of the correlation between
nsme and the climate variable. This indicates that the catchment area has a strong impact
on the correlation coefficients. Similar results are obtained for the remaining correlations
as well. The correlation between mapde and area decreases on the order of 15 to 25%
when taking away the effects of the climate related variable. It shows that the mean annual
precipitation MAP has the least influence on the correlations, whereas the ratio rain/precip
has the largest impact on the correlations. On the contrary, taking away the effects of the
climate related variables on the correlations between |VE| and area and mapte and area has
a larger influence on the correlations; however, for |VE|, area and MAP there is no difference
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Figure 2.10: Nash-Sutcliffe model efficiency (nsme), volume error (V E), mean absolute peak dis-
charge error (mapde) and mean absolute peak time error (mapte) plotted versus mean
annual precipitation. The marker sizes indicate the catchment size. The open circles
relate to the calibration period, the full circles to the validation period.

between the correlations. The influence of the ratio rain/precip has the largest influence on
the correlations between timing error and area.

Figure 2.12 shows the effects of another climate related variable, the ratio of long term liquid
precipitation (rainfall) and total precipitation. The larger the ratio, the more precipitation
falls as rain, so the catchments are dominated by rainfall runoff processes rather than by
snowmelt. Figure 2.12 also indicates that the snow dominated catchments tend to be larger
than the rainfall dominated catchments. This indicates that catchment area is a stronger
control on model performance than are the snow processes per se. However, the nsme
values tend to decrease with increasing long-term ratio of rainfall and precipitation from 55
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Figure 2.11: Nash-Sutcliffe model efficiency (nsme), volume error (V E), mean absolute peak dis-
charge error (mapde) and mean absolute peak time error (mapte) plotted versus mean
annual runoff. The marker sizes indicate the catchment size. The open circles relate to
the calibration period, the full circles to the validation period.

to 90%, with a peak in model performance for a ratio of 75 to 80%. The Spearman’s rank
correlation between nsme and the ratio rain/precip is -0.45 for the entire period, with better
correlation in the summer. However, when taking away the effects of the catchment area on
the correlation as shown in Table 2.6, the correlation decreases to -0.31. In catchments where
55% of the precipitation falls as rain the nsme is on the order of 0.70. These catchments
are the large mountainous catchments in the West of the study region. The model performs
best in catchments where 75 to 80% of the total precipitation is recorded as liquid rain
with nsme values on the order of 0.70 to 0.85. These catchments comprise mainly Alpine
catchments with a mean annual precipitation of more than 1500mm/yr. obviously, there
is a much larger variability in nsme values in rain dominated catchments. In catchments
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2 Climate and catchment controls on the performance of regional flood simulations

where more than 85% of the precipitation is rain (15% snow) nsme is ranging from 0.20
to 0.70 in the calibration period and from 0.06 to 0.70 in the validation period. These
catchments are mostly small catchments situated in the Eastern part of the model region
and along the Northern rim of the Alps where elevation does not change much. Hence, the
large variability in model error measures could be related to the use of the 500m elevation
zones which might be too coarse to simulate runoff in these catchments appropriately. The
results for the volume error are similar with a smaller variability of the error measures in
snow dominated catchments compared to rainfall dominated catchments. The correlation
between the ratio rain/precip and the absolute volume error is significantly larger in summer
with a larger variability in the smaller, rain dominated catchments. The peak discharge errors
mapde show a consistent trend with larger errors in rainfall dominated catchments. This is
confirmed by Spearman’s rs of 0.55 with similar values for both summer and winter periods.
Peak timing errors mapte show a similar behaviour. All this can be attributed to the fact that
flash floods mainly occur in small catchments in summer. Table 2.7 summarizes the model
error measures as a function of the ration rain/precip. Values are given for separated summer
and winter periods and for the entire period, respectively. It shows that in rain dominated
catchments the error measures for the winter period are somewhat better; however, in the
validation period nsme and mapde obtain better values in the summer. In rain and snow
dominated catchments the summer statistics are somewhat better in both calibration and
validation periods; in the snow dominated catchments the winter statistics are better in terms
of nsme and mapde.

Table 2.6: Partial correlation coefficient based on Spearman’s rank correlation coefficient rs from
Table 2.3.

X Y Z rXY rXZ rY Z rXY,Z rXZ,Y

nsme area MAP 0.43 0.31 0.45 0.34 0.14
nsme area MAR 0.43 0.38 0.50 0.33 0.22
nsme area rain/precip 0.43 -0.45 -0.49 0.27 -0.31
|VE| area MAP -0.24 -0.08 0.45 -0.23 0.03
|VE| area MAR -0.24 -0.19 0.50 -0.23 -0.08
|VE| area rain/precip -0.24 0.28 -0.49 -0.12 0.19
mapde area MAP -0.60 -0.4 0.45 -0.51 -0.16
mapde area MAR -0.60 -0.42 0.50 -0.49 -0.13
mapde area rain/precip -0.60 0.55 -0.49 -0.45 0.35
mapte area MAP -0.27 -0.38 0.45 -0.12 -0.31
mapte area MAR -0.27 -0.34 0.50 -0.12 -0.25
mapte area rain/precip -0.27 0.43 -0.49 -0.08 0.38
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Figure 2.12: Nash-Sutcliffe model efficiency (nsme), volume error (V E), mean absolute peak dis-
charge error (mapde) and mean absolute peak time error (mapte) plotted versus the
long-term ratio of rainfall and total precipitation. The marker sizes indicate the catch-
ment size. The open circles relate to the calibration period, the full circles to the
validation period.

2.5 Discussion

When relating the results of this study to the literature it is important to note that we have
used a simulation time step of 1 hour while most other studies on model performance have
used a time step of 1 day. Das et al. (2008) note that the model performance increases
with the aggregation time step which is consistent with averaging effects (Skøien et al.,
2003). It is interesting to see what exactly the effect for the present case study is: The
hourly model results were hence aggregated to daily time steps and nsme was revaluated.
On average, the difference between nsme on the hourly and daily time step is on the order
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2 Climate and catchment controls on the performance of regional flood simulations

of 0.05 with the largest difference in the smallest catchments (about 0.10), meaning that a
nsme of 0.70 (based on hourly data) would be equivalent to a nsme of 0.80 (based on daily
data). The larger differences in small catchments would be expected as these catchments
tend to have flashier response and aggregating to a daily time step averages out some of this
variability (and their errors) causing the nsme to increase. Overall, the performance of the
model found here is similar to the performance reported in other studies (e.g., Parajka et al.,
2007; Das et al., 2008). The small catchments with areas less than 400 km2 have median
nsme around 0.63 (0.68 on a daily time step) for the calibration and validation periods,
and the largest catchments have median nsme around 0.73 (0.76 on a daily time step).
The median nsme model performance of Merz et al. (2009) with a water balance model on
a daily time step was 0.70 and 0.80 for groups of small and large catchments in Austria,
respectively, which is similar to the efficiencies found here. Large peak errors are averaged
out in daily nsme, but only 8% of the peak errors found here were larger than 70% and
25% of the peak errors were larger than 50%. The magnitude of the peak discharge errors
pde is large for a few events with a maximum pde of about 160%. Similar results have been
shown in Reed et al. (2004), who have obtained pde of 30 to 50% for half of the events
analysed, and only 10% of the events had pde larger than 70%. The peak errors found
here are larger in the small catchments with a tendency of underestimation whereas the
absolute peak errors decrease with increasing catchment size. There are three main reasons
for the increasing model performance with catchment scale: (1) the averaging effects as
discussed by Sivapalan (2003) and Skøien and Blöschl (2006), (2) the decreasing variability
in streamflow with increasing catchment scale as discussed by Reed et al. (2004), and (3) the
increasing number of precipitation stations per catchment (0.35 stations per 100 km2 in small
catchments and 0.45 stations per 100 km2 in large catchments) as discussed by Merz et al.
(2009) which allow to better estimate catchment precipitation in the larger catchments.

The climatological wetness of the catchments also seems to be an important control on model
performance. Wetness was evaluated in terms of mean annual precipitation (MAP) and mean
annual runoff (MAR) in this study. The performance increased both with increasing MAP
and MAR. For catchments with MAP of more than 1500mm/yr, nsme was around 0.70 while
for the drier catchments with MAP around 1000 mm/yr the nsme varied significantly and
was on the order of 0.55. Lidén and Harlin (2000) presented similar values. The performance
measure they used is R2

V = nsme− 0.1 · |nme|. For the wet catchments they obtained R2
V

= 0.80, and for the drier catchments their values were around 0.60. However, in the case of
MAP and MAR the influence of the catchment area on the model errors is not negligible as
MAP and MAR are correlated with the catchment area.

The analyses in this paper have shown that snow dominated catchments can be modelled
somewhat better than rain dominated regimes. Catchments following a distinct annual
hydrological cycle with snow accumulation and snow melt phases (and hence a lower ratio of
long term liquid precipitation to total precipitation) tend to have a better model performance
in terms of all the measures examined here. However, the snow dominated catchments in
this study are also among the larger catchments and hence the influence of the catchment
area again has to be considered (see Table 2.6). Merz et al. (2009) found nsme around 0.78
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2 Climate and catchment controls on the performance of regional flood simulations

for a ratio of liquid to total precipitation of 0.5, and around 0.60 for a ratio of 0.9, based
on daily values. In this study, the corresponding numbers are 0.74 and 0.56 (medians in
Table 2.7). Similar differences between snow and rainfall dominated regimes were found by
Braun and Renner (1992) in Switzerland where the snow dominated high-alpine catchments
had nsme around 0.90, while rain dominated lowland catchments had nsme from 0.66 to
0.80.

2.6 Conclusions and outlook

The simulation results indicate that the model performance in terms of all performance indices
tends to increase with catchment size, mean annual precipitation, and mean annual runoff
and the long-term ratio of snowfall and precipitation which is confirmed by the correlation
coefficients. However, the latter are mainly due to the fact that there is a correlation
between catchment size and the climatological indices, indicating that the catchment size
is the most important control on model performance. The calibration and validation results
are consistent in terms of these controls on model performance.

This study is based on observed meteorological data. Additional uncertainty will come in if
rainfall forecasts are used (Blöschl et al., 2008). As the model presented in this study has
been designed as a part of an operational forecasting system the total forecasting performance
and its controls are also of interest. It is planned to examine these in more detail in the
context of ensemble flood forecasting.
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3 Evaluating the snow component of a
flood forecasting model

Abstract

The objective of this study is to evaluate the snow routine of a semi-distributed conceptual
water balance model calibrated to streamflow data alone. The model is used for operational
flood forecasting in 57 catchments in Austria and Southern Germany with elevations ranging
from 200ma.s.l. to 3800ma.s.l. We compared snow water equivalents (SWE) simulated
by the hydrologic model with snow covered area (SCA) derived from a combined product of
MODIS (version 5) Terra and Aqua satellite data for the period 2003-2009 using efficiency
measures and a spatial analysis. In the comparison, thresholds for percent catchment snow
cover and a cut-off water equivalent need to be chosen with care as they affect the snow
model efficiency. Results indicate that the model has a tendency to underestimate snow
cover in prealpine areas and forested areas while it performs better in alpine catchments and
open land. The spatial analysis shows that for 88% of the analysed model area snow cover is
modelled correctly on more than 80% of the days. The space borne snow cover data proved
to be very useful for evaluating the snow model. We therefore suggest that the snow data
will be similarly useful for data assimilation in real time flood forecasting.

3.1 Introduction

Recent flood events in Austria such as the 2002 flood in the Danube basin have raised
the public awareness for the need for flood warnings to reduce damage to property and
life. Following these floods, operational flood forecasting systems have been developed for
most rivers in Austria. These include the Kamp river (Blöschl et al., 2008), the Inn River
(Kirnbauer and Schönlaub, 2006), and the Mur River (Schatzl and Ruch, 2006).

The challenge of operational forecasting systems is the need for simple and robust, yet ac-
curate, routines that can be used with a limited amount of real-time data. The forecasting
is thus particularly difficult in mountainous regions because of the large spatial variability of
hydrologic characteristics and the limited availability of ground based hydrologic data. As
the prediction of streamflow depends on the accuracy of input data and the state variables
of the model, it is important to estimate state variables such as soil moisture and snow water
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3 Evaluating the snow component of a flood forecasting model

equivalent well. Recent studies suggest that remote sensing data may be valuable for validat-
ing the snow component of hydrological models and assimilating them into forecast models.
To evaluate snow models different remote sensing products have been used, especially in
alpine regions where forests do not obstruct the detection of snow. Blöschl and Kirnbauer
(1992) obtained snow cover patterns from aerial photographs and used them to validate
a snow model (Blöschl and Kirnbauer, 1991). From the differences between simulated and
observed patterns they evaluated the effects of radiation and wind transport on the snow dis-
tribution. Blöschl, G. (2002) used SPOT XS satellite data to reduce the biases in simulated
snow water equivalent (SWE). Garen and Marks (2005) found good agreement between the
temporal evolution of simulated and satellite snow covered area (SCA) for three snowmelt
seasons in a basin in Idaho, but they also found that the satellite data underestimated SCA
in forested areas. Koboltschnig et al. (2008) used LANDSAT TM and ASTER L1B data to
compare simulated and snow covered area in a glaciated catchment in the Austrian Alps.
Results showed that the model overestimated the observation by 1-9% in June and July and
by 10-36% in August and September which they contributed to redistribution of snow by
wind or avalanches not included in the model. Schöber et al. (2010) used LANDSAT images
to evaluate SCA simulations in glaciated catchments in Tyrol and showed an average model
underestimation of 17%. Studies in non-alpine areas include Wigmosta et al. (1994), who
used NOAA-AVHRR SCA to validate simulated snow cover patterns in Montana. Roy et al.
(2010) compared MODIS SCA to in-situ snow depth measurements and simulated SCA in
a forested study region in Canada. They developed a direct-insertion approach defining an
empirical threshold for SWE to compensate for discrepancies between modelled SWE and
satellite derived SCA. Zappa (2008) assessed the performance of distributed snow cover sim-
ulations in Switzerland, adopting skill scores based on contingency tables for a quantitative
evaluation of snow cover simulations and comparing NOAA-AVHRR snow cover data to the
model results. He showed that the model captures the observed patterns with high accuracy
and that the scores allow an objective quantification of such agreement. However, the re-
sults of Zappa (2008) reveal that the largest uncertainties are present in the regions of the
transition zones between the valley plains and the upper part of the valley slopes.

MODIS snow cover data (SCA) are appealing for regional scale modelling and validation. The
main advantage of MODIS imagery is the high temporal and spatial resolution and mapping
accuracy. Comparisons of MODIS snow cover data with other satellite products and ground
based snow depth measurements showed mapping accuracy between 90 and 95% in cloud
free conditions, but varying with land cover, snow conditions and snow depth (see e.g., Klein
and Barnett, 2003; Simic et al., 2004; Tekeli et al., 2005; Parajka and Blöschl, 2006; Hall
and Riggs, 2007; Pu et al., 2007; Tong et al., 2009a; Parajka and Blöschl, 2012). The
main limitation, however, is persistent cloud coverage, which can significantly limit MODIS
application for snow cover mapping and its usefulness for assimilation into hydrologic models
(e.g., Rodell and Houser, 2004; Parajka and Blöschl, 2008a; Şorman et al., 2009; Tong
et al., 2009b). Different methods to reduce cloud coverage have been developed (see e.g.,
Parajka and Blöschl, 2008a; Gafurov and Bárdossy, 2009; Tong et al., 2009a; Hall et al.,
2010; Parajka et al., 2010). Parajka and Blöschl (2006) show that MODIS classification
errors are around 15% in the winter months and around 1% in summer; however, this is
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related to the larger spatial extent of clouds in the winter months. On average, Parajka and
Blöschl (2006) have estimated a spatial extent of clouds over Austria of 63% for the years
2000-2005. Recently, MODIS SCA data have been assimilated into hydrological models (see
e.g., Andreadis and Lettenmaier, 2006; Roy et al., 2010; Thirel et al., 2011) and used for
model calibration (see e.g., Déry et al., 2005; Tekeli et al., 2005; Udnæs et al., 2007; Şorman
et al., 2009; Parajka and Blöschl, 2008a; Immerzeel et al., 2009), mostly indicating that using
MODIS data improves the snow simulations more than it does the streamflow simulations.

In most of the basins in the present study springtime streamflow is highly influenced by
the water stored in the snow pack. Especially for flood forecasting it is vital to estimate
the available water storage as accurately as possible. As highlighted in the literature, using
MODIS snow cover data show much promise for model evaluation. However, most studies
evaluated the snow models over a short time period because prevailing cloud cover limited the
available remote sensing data. Thus, the objective of the present study is (1) to investigate
whether MODIS data with a large spatial extent of cloud coverage over a basin can be used
for evaluating a snow model, (2) to examine the evaluation method in terms of the thresholds
used, and (3) to analyse the temporal and spatial performance of the snow component of
an operational flood forecasting model using observed SCA data derived from MODIS. We
use a semi-distributed conceptual hydrological model in a simulation mode with historical
data and MODIS data version 5 (Riggs et al., 2006) from 2003-2009 as an independent data
set.

The paper is organised as follows. The data section 3.2 gives details on the study area
and the ground and satellite data used in the paper. The methods section 3.3 gives a
short description of the calibration of the model and the error measures used to evaluate
the snow model performance. In the results section 3.4 a sensitivity analysis to evaluate
threshold values on the snow model performance is carried out and the errors are analysed
in regard to seasonality and elevation; the model performance is evaluated in space and
time. The final section 3.5 discusses the results and concludes with remarks on potential
future applications of remote sensing snow cover data in operational flood forecasting. In
Appendix B, a description of the model is given.

3.2 Study region and data

The flood forecasting system for the Austrian Danube consists of three parts: (1) a mete-
orological, (2) a hydrological and (3) a hydraulic model part. The meteorological forecasts
include deterministic and ensemble forecasts of precipitation and air temperature for 48 hours
on an hourly time step; the hydrological model estimates deterministic and ensemble stream-
flow forecasts in the Danube tributaries; and the hydraulic model is run with the results from
the hydrological model to estimate streamflow and water level for the Danube River. In this
study we focus on the evaluation of the snow model. For this purpose we ran the hydrological
model with observed meteorological data. The study region includes the tributaries to the
Danube River which cover a large part of Austria and some parts of Bavaria. Hydrological
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conditions are quite diverse. In the Alpine West elevations range up to 3800ma.s.l. while
the North and East consist of prealpine terrain and lowlands with elevations between 200
and 800ma.s.l. (Figure 3.1). Land use is mainly agricultural in the lowlands, forests in
the medium elevation ranges and alpine vegetation, rocks and glaciers in the alpine catch-
ments. The alpine catchments are generally wetter with mean annual precipitation of almost
2000mm/yr in the West compared to 600mm/yr in the East.

0 800 1600 2400 3200

(m a.s.l.)

0 25 50 75 100

km

climate station
runoff gauge
weather radar

Figure 3.1: Topography of Austria and parts of Southern Germany. The stream gauges used in
the study are indicated by triangles, precipitation gauges by white circles, weather radar
stations by red circles. Thin black lines are catchment boundaries, the thick black line
highlights the catchment Obergäu/Lammer used for detailed analyses.

The hydrologic data set used in this study includes hourly streamflow data of 57 gauged
and telemetered catchments with sizes ranging from 70 km2 to 25600 km2 to calibrate and
validate the model. The data set also includes hourly values of precipitation, air temperature
and potential evapotranspiration. Precipitation and temperature measurements for the years
2003 to 2009 were spatially interpolated by the Central Institute for Meteorology and Geody-
namics (ZAMG) in Vienna using the algorithm implemented in the INCA system (Steinheimer
and Haiden, 2007; Haiden and Pistotnik, 2009). The INCA system was developed by the
ZAMG mainly for meteorological forecasting, but it can also be used with historical data.
INCA uses output from surface station observations, radar data and elevation data to gen-
erate gridded weather data. For the precipitation analysis, a combination of interpolated
station data including elevation effects and spatially structured radar is used. The procedure
of combining the different data is given in Haiden et al. (2010). The spatial distribution
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of potential evapotranspiration was estimated from hourly temperature and daily potential
sunshine duration by a modified Blaney-Criddle equation (DVWK, 1996). This method has
been shown to give plausible results in Austria (Parajka et al., 2003). To calibrate and
verify the model on streamflow data, the years 2003-2006 were used as calibration period;
2007-2009 were used as a validation period.

0.00.10.20.30.40.50.60.70.80.91.00                       50                    100

Cloud cover 2003-2009 (%)

0.00.10.20.30.40.50.60.70.80.91.00                       50                    100

Snow covered days 2003-2009 (%)

0 25 50 75 100

km

Figure 3.2: Top: cloud cover for the years 2003 to 2009 in the model region. Average cloud cover
for the months October to May is 50%. Bottom: long term ratio of snow covered days
(SMODIS) to snow covered plus snow free days (LMODIS) for the years 2003 to 2009,
according to MODIS. The thick black line indicates Austria; thin black lines indicate the
model areas. White indicates no data and area outside the model region.
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Once the hydrologic model was calibrated and in operational use, we were interested in how
the model fits to the MODIS data which are an independent source of information as they
were never used for calibration. The MODIS data used for evaluating the snow routine are
based on daily observations acquired by the Terra and Aqua satellites of the NASA Earth
Observation System. We used the approach of Parajka and Blöschl (2008a) to merge the
original Version 5 Terra (MOD10A1) and Aqua (MYD10A1) MODIS products (Hall et al.,
2006, 2007) in space and time on a pixel basis. The MODIS snow cover maps were reclassified
from originally 16 pixel classes to three categories: snow, no snow (land) and clouds. The
snow class was retained as snow. The snow-free land class was retained as no snow (land).
The cloud, missing and erroneous data classes were combined into clouds. However, missing
and erroneous data represent only a small portion of the total data. The remaining 11 original
classes did not occur in the computations of this study. Based on the following assumptions,
four pixels with the size of 500x500m were aggregated to obtain snow cover maps with a
pixel size of 1x1 km: (1) if all four pixels were marked as the same category, the category
of the 1x1 km pixel remained the same, (2) if the number of pixels marked as no snow was
greater than the number of snow pixels, the 1x1 km pixel was classified as no snow, and
(3) if the number of pixels marked as snow was greater or equal than the number of pixels
marked as no snow, the 1x1 km pixel was classified as snow.

The average cloud cover over the study region for the period 2003-2009 (total of 2555
days) is around 50% for the combined Aqua-Terra-MODIS data. Cloud coverage is around
40% in alpine valleys and around 60% over mountainous terrain. Figure 3.2 (top) shows
the spatial distribution of the cloud coverage for the period 2003-2009 in the model region.
Figure 3.2 (bottom) shows the long term ratio of snow covered days (SCD) for 2003-2009.
For every pixel, the ratio of snow covered days (SMODIS) to snow covered plus snow free days
(LMODIS) was determined; days with cloud cover were not considered. As expected, the
ratio of SCD closely follows the elevation in the area: in the Alpine region the percentage
of snow covered days is much higher than in the lowlands in the East and North of the
Alps. Similarly, the Alpine valleys show a smaller percentage of snow covered days than the
higher elevations. The mean snow cover in the model region is 30% for cloud free days for
2003-2009.

3.3 Methods

Model structure and calibration

The rainfall runoff model used in this study is a conceptual hydrological model which is applied
in a semi-distributed mode. The model is operationally used for flood forecasting for the
Austrian Danube tributaries; in this study, however, we use the model in a simulation mode
with historical data. The structure is similar to that of the HBV model (Bergström, 1976).
Detailed information about the model structure is given in Appendix B and in Blöschl et al.
(2008). Parameters were estimated manually and separately for each of the 57 catchments for
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the entire calibration period 2003-2006. First, nested catchments were calibrated. Parameter
values of these basins were then considered to be constant and the remaining parts of the
catchment were calibrated. The calibration process followed a number of steps (Blöschl
et al., 2008). The first step was an approximation of the annual water balance. As snow is a
major component of the water balance in the study area and can influence the soil moisture
state throughout the year, initial parameters for the slow flow components, for the maximum
soil moisture storage and the snow routine were set in this first step. Then, the initial
model parameters were adjusted in order to reproduce seasonal patterns correctly. Threshold
temperatures were adjusted, as well as parameters influencing the slow components. The
last step was to parameterize the fast flow components and the parameters of the linear
storage cascade by looking at single flood events as well as a fine tuning of the parameters
of the snow and soil moisture routines. The main goal of the calibration was to estimate
the timing of the rising limbs and the peak discharge as well as the magnitude of the peak
discharge as correctly as possible. After each model run, we visualised the model simulations
and evaluated the results using statistical measures for the entire calibration period.

Table 3.1: Hydrologic model parameters of the snow routine

Model parameter Description min in region max in region

D Degree day factor (mm.°C-1.day-1) 1.3 2.3
Ts Threshold temperature (°C) -1.8 -0.4
Tr Threshold temperature (°C) 0.8 1.6
Tm Melt temperature (°C) 0.1 0.9
CS Snow correction factor (-) 0.8 1.0

For the calibration of the snow routine, the snow correction factor CS was set to a value
of 1, as an elevation-based correction of precipitation is part of the INCA system (Haiden,
2009). The choice of threshold temperatures was guided by Seibert (1999) who used values
ranging from -1.5 to 2.5°C and a degree day factor ranging from 1 to 10mm.°C-1.day-1 for
his Monte Carlo based calibration in Sweden. Braun (1985) used a temperature range from
-2.0 to 4.0°C in lowland and lower-alpine catchments in Switzerland where a mix of rain
and snow can occur, whereas Kienzle (2008) proposed a wider threshold temperatures range
from Ts= -4°C to Tr =8°C for Canada. Merz et al. (2009) preset values of 0°C and 2°C for
the threshold temperatures Ts and Tr and produced accurate streamflow simulations at the
daily time scale. We estimated parameters for Ts from -1.8 to -0.4°C and for Tr in the range
of 0.8 to 1.6°C in our model area. The threshold temperatures are well in the range of other
studies. The remaining parameters of the snow routine are in the range of the parameters in
Merz and Blöschl (2004), who estimated the parameters with an automatic algorithm. The
melt temperature Tm was set to values in the order of 0.1 to 0.9°C; the degree day factor
D is in the range of 1.3 to 2.3mm.°C-1.day-1 and doubles during rain-on-snow events (Sui
and Koehler, 2001). Table 3.1 gives an overview of the range of the calibrated snow routine
model parameters; additional details on the calibration are given in Nester et al. (2011a).

Figure 3.3 shows the model results for the winter months (October to May) for the gauge
Obergäu/Lammer (catchment highlighted in Figure 3.1). The gauge is shown as a rep-
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resentative example for an Alpine catchment with elevations ranging from 470ma.s.l. to
2400ma.s.l. 10% of the catchment area are below 750ma.s.l., 50% of the area are between
750 and 1250ma.s.l., 30% are between 1250 and 1750ma.s.l. and the remaining 10% of
the catchment area are in elevations higher than 1750ma.s.l. The top panels refer to the
calibration period of the hydrological model and show the winter season 2004-2005. Starting
at the end of October, most of the precipitation is accumulating as snow, and only a small
amount of precipitation is directly contributing to runoff. For comparison of the snow model
results we plotted modelled basin average SWE values and observed snow depths of the only
station in the catchment where snow data were available (elevation 700ma.s.l.). The peaks
in the winter season are simulated well. At the beginning of March, the modelled snow water
equivalent is close to 400mm; snow melt starts at the middle of the month. The timing of
the rise is simulated well but the peak is overestimated. Until mid April, the model is over-
estimating the snow melt induced streamflow but the daily characteristics of the snow melt
is reproduced well. Several storm events increase the runoff rapidly. The lower panels refer
to the validation period of the model, showing the winter season 2006-2007. In this winter,
less snow has been accumulated to a maximum snow water equivalent of around 100 mm.
Several short storms directly contribute to the runoff or in a combination of melt and rain,
e.g., in November and in January. Again, the snow melt starts in the middle of March but in
this year the snow melt period is underestimated by the model. We used different statistical
measures to evaluate the performance of the model including the Nash and Sutcliffe (1970)
coefficient of efficiency (nsme):

nsme = 1−

n∑
i=1

(Qsim,i −Qobs,i)
2

n∑
i=1

(
Qobs,i −Qobs

)2 (3.1)

where Qobs,i and Qsim,i are observed and simulated runoff at hour i, respectively, and Qobs

is the mean observed runoff over the calibration or validation period of n hours. nsme
values can range from ∞ to 1. A perfect match between simulation and observation implies
nsme=1; nsme=0 indicates that the model predictions are as accurate as the mean of
the observed data, and nsme< 0 occurs when the observed mean is a better predictor
than the model. For the entire calibration period (summer and winter) the nsme for the
gauge Obergäu/Lammer is 0.60, for the validation period it is 0.69. For the periods shown
in Figure 3.3, nsme is 0.69 for the winter 2004-2005 and 0.65 for the winter 2006-2007.
Details on the model performance are given in Nester et al. (2011a).

For the evaluation of the snow model, we had to consider that the model results are available
on an hourly time step whereas MODIS data are available on a daily basis. Typically, Aqua
data are acquired around 1 p.m. and Terra data around 11 a.m. over Austrian territory.
Therefore we used the model results at 12 noon for the evaluation. Also the model simulates
uniform SWE within each elevation zone of a catchment, which can be considered either
snow covered or snow free, depending on a threshold value chosen. Threshold values for
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Figure 3.3: Observed and simulated hydrographs for the winter seasons 2004-2005 (calibration period
of the hydrological model, top) and 2006-2007 (validation period of the hydrological
model, bottom) for the gauge Obergäu/Lammer. Snow depth measurements for a single
station (Annaberg, 700 m a.s.l.) in the catchment are shown.

snow depth used in the literature include 2 cm (Tong et al., 2009a), 2.5 cm (Tekeli et al.,
2005), 3.5 cm (Klein and Barnett, 2003) and 4 cm (Roy et al., 2010). As a starting point,
we considered simulated SWE larger than the threshold ξSWE =2.5mm as snow covered.
In Figure 3.4 the same periods as in Figure 3.3 are plotted in order to evaluate the temporal
evolution of the SCA. The top panels show the mean hourly catchment temperature in the
range from -10 to 10°C. The lower panels show basin average SCA derived from both MODIS
and the model results. MODIS SCA values are shown as circles in different sizes, the size of
the markers referring to the different cloud coverage classes. Large circles denote days with
cloud coverage less than 50%, when MODIS data contain a lot of information. Medium sized
circles indicate less information about the snow extent (cloud coverage ranging from 50 to
80%). Small circles relate to cloud coverages ranging from 80 to 95%. Hourly model based

39



3 Evaluating the snow component of a flood forecasting model

SCA values were calculated only from cloud free pixels for consistency of catchment area.
Both figures indicate that the timing of the snow accumulation is accurately simulated. The
modelled SCA values increase at the same time as the MODIS SCA. Similarly, the timing
of the beginning of the snow depletion between simulation and observation matches well.
However, when MODIS indicates snow in October and May, the model is underestimating
SCA. Observed SCA data for the season 2004-2005 (Figure 3.4 top) indicate that the snow
cover in the catchment was more or less constant (but with varying snow depths as shown
in Figure 3.3 top), whereas for the season 2006-2007 (Figure 3.4 bottom) the observed SCA
shows a lot of dynamics in terms of snow melt and accumulation. This is due to the fact
that the snow depths observed are much smaller than in the season 2004-2005, so complete
snow depletion is more likely to occur. The temporal evolution of the SCA from November
to March is simulated well for both the winters shown.

Efficiency and errors for snow covered area

For snow covered area, the evaluation of the results is not straightforward as the model is
based on elevation zones while the MODIS data are raster based. Additionally, the model
simulates the amount (volume) of water stored in the form of snow, whereas MODIS snow
cover data contains information only about the spatial extent of snow (i.e. whether a pixel is
classified as snow, land or missing information). We used the method of Parajka and Blöschl
(2008b) who compared MODIS snow cover data with SWE model simulations in an indirect
way.

The comparison is performed in individual elevation zones of a catchment. Two types of
snow errors are evaluated. The first, termed model overestimation error (SO

E ), counts the
number of days mO when the hydrologic model simulates zone SWE greater than a threshold
but MODIS indicates that snow covered area less then a threshold is present in the zone,
i.e.:

SO
E =

1

m · l
l∑

j=1

mO ∧ (SWE > ξSWE) ∧ (SCA < ξSCA) (3.2)

where SWE is the simulated snow water equivalent in one zone, SCA is the MODIS snow
covered area within this zone, m is the number of days where MODIS images are available
(with cloud cover less than a threshold ξC (%)), l is the number of zones of a particular
catchment, ξSWE (mm) is a threshold that determines when a zone can be essentially
considered snow free in terms of the simulations and ξSCA (%) is a threshold that determines
when a zone can be essentially considered snow free in terms of the MODIS data.

The second error, termed model underestimation error (SU
E ), counts the number of days

mU when the hydrologic model simulates snow less than a threshold in a zone but MODIS
indicates that snow covered area greater than a threshold is present in the zone, i.e.:

SU
E =

1

m · l
l∑

j=1

mU ∧ (SWE < ξSWE) ∧ (SCA > ξSCA) (3.3)
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Figure 3.4: Basin average snow covered area (SCA) for the Lammer catchment, 2004-2005 (top) and
2006-2007 (bottom). MODIS data are shown as circles, model results as solid lines. Size
of circles indicates the cloud coverage over the catchment (large circles - cloud coverage
less than 50%, medium circles - cloud coverage 50-80% and small circles cloud coverage
80-95%).

The percent or fraction of snow covered area, SCA, within each zone was calculated from
the MODIS data as:

SCA =
S

S + L
(3.4)

where S and L represent the number of pixels mapped as snow and land, respectively, for
a given day and a given zone. The reliability and accuracy of the SCA estimation depends
on the spatial extent of clouds occurring in an elevation zone. Only those days of the SCA
images were therefore used for a particular day and elevation zone if the cloud coverage, CC,
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was less than a threshold ξC :

CC =
C

S + L+ C
(3.5)

where C represents the number of pixels mapped as cloud covered and CC is the fractional
cloud cover for a particular day and elevation zone. The thresholds ξSWE (mm), ξSCA (%)
and ξC (%) were chosen on the basis of a sensitivity analysis. The magnitude of the threshold
ξC will affect the number of days for which MODIS images are available. Parajka and Blöschl
(2008b) suggest a threshold of 60% of cloud coverage; Hall et al. (2010)) used a threshold
of 80% to develop the MODIS cloud-gap-filled snow map product. In this study, the whole
range of cloud coverage is analysed. For 50% of the MODIS data, the cloud coverage was
less than 50%, for 20% of the MODIS data cloud coverage was between 50 and 80% and
for 30% of the MODIS data cloud coverage was larger than 80%. Three different ranges
of cloud coverage are chosen: (1) CC< 50%, (2) 50%<CC< 80% and (3) CC> 80% over
a catchment. The thresholds ξSWE and ξSCA are used to compare model simulations and
MODIS snow cover observations to define the snow model errors.

3.4 Results

Summary statistics of snow model performance and choice of thresholds

A sensitivity study was carried out to analyse the impact of different threshold values for
ξSWE and ξSCA on Eqs. 3.2 and 3.3. Figure 3.5 shows the median overestimation (left)
and underestimation (right) errors for a cloud coverage < 50%. For clarity of presentation
the different cloud coverages are not shown. Overestimation errors decrease with increas-
ing ξSWE but increase with increasing ξSCA (Fig. 5 left); underestimation errors decrease
with increasing ξSCA and increase with increasing ξSWE (Figure 3.5 right). The change in
overestimation errors is smaller than the change in underestimation errors. The errors for
snow covered area are less sensitive to the threshold ξSWE than to the threshold ξSCA. The
largest median overestimation errors occur for small thresholds for SWE and large thresholds
for SCA; the largest underestimation errors occur for small thresholds for SCA and large
thresholds for SWE. In order to achieve a compromise between over- and underestimation
errors, we chose a threshold ξSWE =2.5mm as the median values and the percentile differ-
ences (P75% - P25%) for the overestimation errors are of the same order of magnitude for
cloud coverage less than 80% (Figure 3.5 left). The threshold ξSCA = 30% was chosen as the
overestimation errors increase only slightly from ξSCA=25 to 30% compared to the increase
of overestimation errors from ξSCA=30 to 50% (Figure 3.5 left), and the underestimation
errors are clearly smaller for ξSCA=30% compared to ξSCA=25% (Figure 3.5 right).

Table 3.2 summarises the overestimation errors for different thresholds ξSWE and different
cloud coverage at a constant threshold ξSCA=30%. For cloud coverage less than 50%
the SO

E overestimation errors are not very sensitive to the choice of the threshold ξSWE .
The decrease of SO

E with increasing threshold ξSWE is small. Median values range from
1.3% for a threshold ξSWE =0mm and 0.4% for a threshold ξSWE =10mm. The percentile
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Figure 3.5: Sensitivity analysis. Medians of snow overestimation errors (left) and snow underestima-
tion errors (right) for cloud coverage < 50%. Threshold values of ξSWE =2.5mm and
ξSCA =30% were chosen for further analyses.

difference (P75% - P25%) is stable around 0.6% which indicates that the shape of the CDF
does not change much with changing thresholds. For a cloud coverage between 50 and 80%,
the results are slightly more sensitive, with median overestimation errors ranging from 2.0%
(ξSWE =0mm) to 0.5% (ξSWE =10mm). The percentile difference (P75% - P25%) is less
stable from 0.8% to 2.0%. For a cloud extent of more than 80%, the errors are larger,
with medians ranging from 3.3% to 1.0% for thresholds ξSWE =0mm and ξSWE =10mm,
respectively. Percentile differences (P75% - P25%) are in the range of 0.9 to 2.2%. This
shows that the choice of the thresholds ξSWE is getting more important as one moves up
with the threshold for ξC .

Table 3.2: Statistical evaluation of the snow error overestimation CDFs for different ξSWE (mm) and
constant ξSCA =30%. The first value is the median; the second value is the percentile
difference (P75% - P25%) over 57 catchments for the period 2003-2009.

ξSWE (mm) CC< 50% 50%<CC< 80% CC> 80%

0.0 1.3/0.8 2.0/2.0 3.3/2.2
0.1 0.9/0.6 1.6/1.6 2.6/1.9
0.5 0.7/0.6 1.4/0.9 2.2/1.3
1.0 0.5/0.6 1.2/1.1 1.8/1.4
2.5 0.5/0.6 0.8/0.9 1.5/1.2
5.0 0.4/0.7 0.7/0.8 1.2/1.0
10.0 0.4/0.6 0.5/0.8 1.0/0.9

Snow underestimation errors are evaluated for different thresholds of ξSCA but at a constant
threshold ξSWE =2.5 mm. Contrary to the overestimation errors, the underestimation errors
SU
E are more sensitive to the threshold which was expected from the results in Figure 3.5.
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The SU
E underestimation errors are largest for the restrictive threshold ξSCA=0 (the graph

for ξSCA=0 is not shown in Figure 3.5, as the errors are too large). The errors decrease
as the threshold gets less restrictive (increasing ξSCA), as one would expect. For example,
for ξSCA=10% and ξSWE =2.5 mm (line with triangle markers) the SU

E errors are 6.8% for
half the basins, for = 30% and ξSWE =2.5 mm (thick solid line) the SU

E errors are 3.4%.
The percentile difference (P75% - P25%) is not very stable and is larger than that of Parajka
and Blöschl (2008b). In this study, for a threshold ξSCA=15% the percentile difference is
3.8%, compared to 2.4% in Parajka and Blöschl (2008b) and for a threshold ξSCA=30%
the difference in this study is 3.0% compared to 1.1% in the above paper. However, they
used slightly larger cloud coverage (50% vs. 60%), smaller catchments, especially in alpine
areas, and fewer catchments in prealpine areas. Table 3.3 summarises the underestimation
errors for different thresholds ξSCA and different cloud coverages. The results suggest that
the use of a threshold of ξC is necessary, as the amount of information clearly decreases with
the increase of cloud coverage.

Table 3.3: Statistical evaluation of snow error underestimation errors for different ξSCA (%) and cloud
coverage. ξSWE =2.5mm. The first value is the median; the second value is the percentile
difference (P75% - P25%) over 57 catchments for the period 2003-2009.

ξSCA (%) CC< 50% 50%<CC< 80% CC> 80%

0 12.5/7.5 19.5/11.2 14.1/9.6
5 8.4/5.3 15.5/9.9 13.1/8.7
10 6.8/4.4 13.1/8.7 12.5/7.4
15 5.7/3.8 10.7/7.0 11.5/6.8
25 4.1/3.2 7.2/5.8 9.5/5.7
30 3.4/3.0 6.4/5.5 8.9/5.0
50 2.0/1.6 3.1/3.3 5.9/3.8

Figure 3.6 shows the seasonal distribution of the median overestimation errors SO
E and the

median underestimation errors SU
E for the thresholds ξSWE =2.5mm and ξSCA=30%. As

expected, overestimation errors are small with the largest values in the range of 0.2% in the
months February to April. Underestimation errors do have a clear seasonal cycle with peaks
in March and April and October. For a SCA threshold ξSCA=30% the largest error is around
0.8% in November. These results confirm Figure 3.4, where we showed an underestimation
of snow by the model in the accumulation and depletion phases. With increasing cloud cover,
the overestimation errors increase slightly whereas the increase in underestimation errors is
more obvious. Interestingly, a threshold value ξSCA=30% leads to underestimation errors
in the summer months for cloud coverage larger than 50%. This indicates that some areas
are marked as snow covered in MODIS whereas the model simulated no snow. Parajka and
Blöschl (2006) found that the difference may be due to the cloud mask used in the snow
mapping algorithm, where MODIS misclassified clouds as snow in summer months. Parajka
et al. (2010) compared MODIS maps with grid maps of mean daily air temperatures in
Austria and found a maximum of 1.4% of the pixels classified as snow in July and 3.2% of
the pixels classified as snow in May when the mean air temperature was higher than 10°C.
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We find similar values in prealpine regions in this study, with 1.6% of the pixels classified as
snow in July and 5.8% of the pixels classified as snow in May.
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Figure 3.6: Seasonal distribution of snow overestimation SO
E (solid lines) and underestimation SU

E

(dashed lines) errors. Median values 2003-2009 for thresholds ξSWE =2.5mm and
ξSCA =30%.

Further insight into the snow model results is provided by Figure 3.7. For each catchment, the
overestimation errors SO

E and underestimation errors SU
E are analysed as a function of mean

catchment elevation for the period 2003-2009. We show only the errors for the thresholds
ξSWE =2.5mm and ξSCA=30%. Open circles indicate overestimation errors and dark circles
indicate underestimation errors. For a cloud cover less than 50%, the overestimation errors
are in the range of 0 to 2%, whereas the underestimation errors are larger with values ranging
from 1 to 11%. With increasing cloud cover, the overestimation errors increase only slightly
whereas the underestimation errors increase rapidly. Interestingly, the biggest differences
between over- and underestimation errors can be observed for a mean catchment elevation
smaller than 1000ma.s.l. For mean elevations larger than 1000ma.s.l., the difference is
much smaller, indicating that the performance of the snow model is much better for higher
altitudes. Zappa (2008) showed similar results in his study for Switzerland. There are several
reasons for larger underestimation errors. First, the poorer performance of the snow model
in the lower catchments can be attributed to the use of 500m elevation zones. There are a
number of catchments in prealpine areas with only one elevation zone, resulting in a snow
covered area of either 0 (snow free) or 100% (snow covered), whereas in MODIS a more
precise distinction of snow cover is possible. A second reason for the underestimation errors
is misclassification of clouds as snow during summer months, as stated above. Another
possibility for larger underestimation errors is that the majority of the errors occur during the
melt periods. Therefore, areas that experience frequent melt during the winter may tend to
have poorer performance statistics than areas that have a consistent snowpack for several
months.
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Figure 3.7: Snow overestimation SO
E (open circles) and underestimation SU

E errors (dark circles)
as a function of elevation. The period is 2003-2009, thresholds ξSWE =2.5mm and
ξSCA =30%. Both snow overestimation and underestimation errors increase as the cloud
coverage increases.

Spatial analysis of snow model performance

The spatial validation of the snow routine was carried out on a pixel by pixel basis. The
threshold ξSWE is used for the distinction of snow cover in this analysis; a threshold for
cloud cover ξC is not needed as only pixels that are not cloud covered in the MODIS data
are accounted for; and the threshold ξSCA is not needed as the validation is carried out on
the pixel scale and not on the catchment scale.

Figure 3.8 shows the spatial validation of the snow routine carried out on a pixel basis. As
an example for a day with almost no cloud coverage, the extent of the snow cover is shown
for February 3, 2008, according to MODIS data (top) and model results (bottom). No data
and clouds are indicated by white areas, snow is shown as grey and snow free areas are
shown as green. MODIS data indicate that the mountainous regions are snow covered: the
Alps are covered with snow with the exception of some valleys; also in the Northern part of
Austria the higher elevation pixels are snow covered. For determining snow cover from the
model results, a threshold ξSWE =2.5mm was used. The results show a similar extent of the
snow cover as the MODIS data: 81.5% of the pixels are correctly classified as snow covered
and snow free, respectively, with Alpine valleys and prealpine lowlands not covered by snow.
12.3% of the pixels are underestimated by the model, 4.7% of the pixels are overestimated
by the model and 1.5% of the pixels do not contain data.

Figure 3.8 shows an example of a single day. To gain insight into the performance of the snow
model for the entire evaluation period 2003-2009, we compared all available MODIS snow
cover maps with the model results. We used two different measures. First, we compared
the difference of days with simulated and observed snow cover on a pixel basis. Second,
we calculated the hit rate H between MODIS and model results for snow covered days and
snow free days.
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Figure 3.8: Example pattern in the snow melt phase (3 February 2008). Top refers to MODIS data,
bottom to model. White indicates cloud covered (no data available), green: snow free,
grey: snow covered. Only model SWE larger than a threshold ξSWE =2.5mm were
considered as snow.

For every pixel the bias was calculated as

bias =

(
SMODEL

SMODEL + LMODEL
− SMODIS

SMODIS + LMODIS

)
· 100 (3.6)

where SMODEL and LMODEL refer to the number of days with snow cover and no snow,
respectively, according to the model; and SMODIS and LMODIS refer to the number of days
with snow cover and no snow, respectively, according to MODIS. Only days marked as cloud
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free in MODIS were considered. For the distinction of SMODEL and LMODEL, the threshold
ξSWE =2.5mm was used. For simplicity, we used the terms positive bias when more days
are snow covered in the model than MODIS and negative bias when fewer days are snow
covered in the model than MODIS.

-0.35
0

0.35+ 35%

- 35%

0 25 50 75 100

km

Figure 3.9: bias of the model results relative to MODIS data for the period 2003-2009. Red indicates
negative bias (fewer days are snow covered in the model than MODIS), blue indicates
positive bias. Only model SWE larger than 2.5mm was considered as snow.

The spatial distribution of the bias (Figure 3.9) shows that in the prealpine parts MODIS
indicates snow cover on more days than the model results whereas in alpine regions the model
tends to indicate snow cover on more days than MODIS. On average, the negative bias is
on the order of 15% of the cloud free days. The negative bias is even larger in parts of a
prealpine catchment in the middle of the model area. There may be two reasons for this.
First, the model structure for this catchment comprises a single elevation zone. Therefore,
the temperature is assumed to be the same throughout the whole catchment, resulting in
uniform snow water equivalent across the catchment. The topography, however, does vary
by about 400m within this catchment, so local differences in temperatures are possible.
Second, the area underestimated by the model is covered by both coniferous and deciduous
forests according to a land cover map (European Environmental Agency, 2000) which can
cause problems in MODIS snow detection. For example, Simic et al. (2004) showed that
MODIS products give realistic snow cover maps for an average of 93% of the days, with
lower percentages for evergreen forests where MODIS has a tendency to overestimate snow.
Hall et al. (2002) showed that MODIS has a tendency to underestimate snow in a forested
area. The influence of land cover is analysed in more detail in Figure 3.10. Error cumulative
distribution functions (CDFs) with values derived from Figure 3.9 show hardly any difference
for positive bias between forested and open land (left) whereas there is a clear difference
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for negative bias between forests and open land (right) with larger values for forests. This
may be related to the model structure. We estimated parameters based on the land use and
geology, but the use of a semi-distributed model requires mean parameters for each elevation
zone. The use of a distributed model with hydrological response units could perhaps improve
the snow model, but further analysis would be required to verify this.
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Figure 3.10: CDFs of positive and negative biases (%) for forests and open land, pixel values. Land
use taken from Corine. Threshold ξSWE =2.5mm.

Figure 3.11 shows the performance of the snow model for the winter seasons (October-May)
of the years 2003-2009 for all cloud free days. The overall degree of agreement between
MODIS and the model results is represented by the hit rate H (Wilks, 1995):

H =
a+ d

a+ b+ c+ d
(3.7)

with a, b, c, and d defined as in Table 3.4.

Table 3.4: Definitions for Eq. 3.7

MODIS snow MODIS no snow

model snow a b
model no snow c d

Results show that the overall accuracy of the snow model is good with 98% of the model
area having a hit rate H larger than 70% for the winter seasons of 2003-2009. 88% of the
model area has a hit rate H larger 80% and 1.5% of the model area has have a hit rate H
between 60 to 70%. The highest hit rates occur in the high elevations in the western part of
Austria, which is not surprising as the snow model simulates snow in high elevations quite
accurately and MODIS indicates snow cover in these areas. In the low parts of the model
area, the hit rate H is also high (around 90%). This can be attributed to the fact that the
model simulates no snow and the MODIS data confirm this. The medium elevation ranges
show a smaller hit rate (around 70-80%), which is related to forest cover in these areas.
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Figure 3.11: Hit rate H of snow simulations for the winter season (October-May) in the period 2003-
2009. Days with clouds are not considered. Threshold ξSWE =2.5mm.

3.5 Discussion and conclusions

We have evaluated the snow model component of a conceptual semi-distributed hydrologic
model run on an hourly time step. The model is used operationally for flood forecasting,
but for this study we used it in a simulation mode with historical data. Parameters of the
hydrologic model have been calibrated for 57 catchments manually in a three step routine.
The annual water balance is approximated in a first step, seasonal patterns of streamflow
were sought to be modelled correctly in a second step. The third step included the parame-
terization of the fast flow components to correctly estimate the timing of the rising limbs and
the peaks. This approach assured to account for different hydrological situations throughout
the catchments.

A comparison of the temporal evolution of the snow covered area (SCA) derived from MODIS
data and SCA estimated from model results indicates good agreement between observed
and simulated SCA values when cloud coverage is less than 80%. The timing of the snow
accumulation and depletion periods is simulated well. However, discrepancies between model
and MODIS are observed at the beginning and end of each snow season, but, as Klein and
Barnett (2003) noted, ”This is perhaps not surprising as at these times, when snow would
be expected to be thinnest and most patchy.”

We further evaluated the performance of the snow model using various error measures (Para-
jka and Blöschl, 2008b). Simulated snow water equivalents (SWE) and snow covered area
estimated from a combination of MODIS (version 5) Terra and Aqua snow cover maps (Para-
jka and Blöschl, 2008a) were compared for each day on the catchment scale. The selection
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of the cloud threshold ξC was found to be the most important factor for the evaluation of
the snow model. Previous studies have used different thresholds for cloud coverage. E.g.,
Şorman et al. (2009) used a threshold of 20% to calibrate a hydrologic model on streamflow
and SCA data, Hall et al. (2010) used MODIS data with cloud coverage up to 80% for
the development of a cloud-gap-filled MODIS daily snow-cover product. Rodell and Houser
(2004) used MODIS data when only 6% of the MODIS maps were cloud free. Results
indicate that the errors are similar for CC < 50% and for 50%<CC< 80%, but there are
clear differences for CC> 80%. Therefore, we propose to use a threshold value ξC =80%.
The remaining threshold values were selected based upon a sensitivity study. It showed that
results are less sensitive to the threshold for SWE than they are to the threshold for SCA.
Based on the sensitivity study we selected threshold values ξSWE =2.5mm and ξSCA=30%
for the error analysis. We believe that the chosen thresholds can be also used as in regions
with similar physiographic characteristics. The value chosen for ξSWE is within the range
of threshold values in the literature (i.e., Tong et al., 2009a; Roy et al., 2010); whereas
the value chosen for ξSCA is slightly larger than the threshold used in Parajka and Blöschl
(2008b). Results indicate that snow underestimation errors are larger than snow overesti-
mation errors and that the thresholds have to be chosen with care as they have a large
impact on the snow model efficiency. Interestingly, overestimation errors are not as sensitive
to the threshold for cloud coverage ξC as are underestimation errors, and the seasonal error
distribution shows that the model tends to underestimate snow in the summer months. This
may be due to misclassification of clouds as snow in the MODIS data (Parajka and Blöschl,
2006). Parajka and Blöschl (2006) state, ”This misclassification occurs frequently, but tends
to affect only a small area”. The error distribution as a function of elevation shows that
larger underestimation errors occur in prealpine regions.

We also compared the spatial extent of simulated SCA and MODIS SCA data on a pixel basis
taking into account only cloud-free pixels. Generally, the snow model performance can be
classified as good for the winter periods from 2003-2009. 88% of the model area is correctly
classified as snow covered or snow free on more than 80% of the days. This value is similar to
Strasser and Mauser (2001) who have shown an accuracy of 84% in their study in Northern
Germany and Zappa (2008) who has shown an accuracy of 87% in a study in Switzerland.
However, there are some discrepancies between simulated and observed SCA. The spatial
evaluation indicates that at very high altitudes, the model tends to simulate snow on more
days than what MODIS observes. This is in line with Koboltschnig et al. (2008). They
contributed this to the fact that ridges and steep slopes at high altitudes are snow covered
in the simulation whereas snow is expected to be blown away or redistributed by avalanches.
In the transition zones from lowland to alpine areas, the model tends to underestimate the
quantitiy of snow covered days. Two reasons may contribute to this; elevation changes not
accounted for in the model structure; and underestimation of snow cover in forested areas.
Analyses indicate that 500m elevation zones may not be detailed enough to estimate SWE in
the transition zones accurately. In this context Zappa (2008) noted that the disagreement in
the transition zones may be due to uncertainties in observed precipitation, local and regional
temperature gradients and in the model parameters. The underestimation of the remote
sensing SCA in forested areas has already been shown in Simic et al. (2004) and the MODIS
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product summary page (MODIS, 2010) states that ”the maximum expected errors are 15
percent for forests, 10 percent for mixed agriculture and forest, and 5 percent for other
land covers.” The performance of the snow model in the transition zones could perhaps be
improved using a spatially distributed model and a process based analysis of snow distribution
patterns as proposed by Sturm and Wagner (2010). To confirm this, further analyses are
required.

Overall, the comparison of simulated and observed snow covered area facilitated useful in-
sights into the model performance as a function of space and time as well as others factors.
Because of the usefulness in model evaluation we would expect the snow cover data to be
equally useful for data assimilation in a real time mode. This will be examined in future
studies.
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4 Flood forecast errors and ensemble
spread - a case study

Abstract

Flood forecasts are generally associated with errors, which can be attributed to uncertainties
in the meteorological forecasts and the hydrologic simulations, and ensemble spreads are
usually considered capable of representing them. To quantify these two components of the
total forecast errors and to compare these to ensemble spreads, a four year data set of
operational flood forecasts with lead times up to 48 hours is evaluated for 43 catchments in
Austria and Germany. Catchment sizes range from 70 to 25600 km2, elevations from 200
to 3800m and mean annual precipitation from 700 to 2000mm. A combination of ECMWF
and ALADIN ensemble forecasts are used as input in a semi-distributed conceptual water
balance model on an hourly time step. The results indicate that, for short lead times, the
ratio of hydrologic simulation error to precipitation forecast error is 1.2 to 2.7 with increasing
catchment size from 100 to 10000 km2. For long lead times the ratio of hydrologic simulation
error to precipitation forecast error decreases from 1.1 to 0.9 with increasing catchment size.
Clear scaling relationships of the forecast error components with catchment area are found. A
similar scaling is also found for ensemble spreads, which are shown to represent quantitatively
the total forecast error when forecasting floods.

4.1 Introduction

One of the main challenges in flood forecasting and warning is to extend forecast lead times
beyond the catchment response time as the forecasts will then rely on rainfall predictions
(Blöschl, 2008). This is of particular concern in small and medium sized catchments where
the catchment response times are short and more time is required for flood response ac-
tions.

As the forecast lead time increases the forecast errors tend to increase. For flood response ac-
tions it is therefore essential to get an indication of the magnitudes of the forecast errors to be
expected at any point in time (Montanari, 2007). There are two main sources of uncertainty
that contribute to the flood forecast errors: precipitation forecast errors and hydrological
simulation errors (Krzysztofowicz, 2001). The precipitation forecast errors represent the dif-
ferences between predicted and observed (and interpolated) precipitation. Because of the
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non-linearity of the atmospheric system the errors tend to increase drastically with the fore-
cast lead time. The common approach to quantifying the precipitation forecast uncertainty
are ensemble simulations where a numerical weather prediction (NWP) model is run for a
number of cases with slightly different initial conditions. The cases evolve along different
trajectories which produce a range of precipitation forecasts (Buizza, 2003; Grimit and Mass,
2007). The different cases or ensemble members of precipitation are used as inputs into a
hydrological model to produce a range of flood forecasts (Demeritt et al., 2007). The spread
of the ensemble members in terms of flood discharge is then used as a measure of forecast
uncertainty due to uncertain precipitation forecasts (e.g., Pappenberger et al., 2005). These
types of ensemble forecasts have been performed for short range (around 48 hours) (e.g.,
Komma et al., 2007; Thirel et al., 2008), and medium-range (up to 15 days) forecasts (e.g.,
Gouweleeuw et al., 2005; Roulin and Vannitsem, 2005; Roulin, 2007; Verbunt et al., 2007;
Thielen et al., 2009; Hopson and Webster, 2010). A review of ensemble flood forecasting
systems and the additional value of using ensembles is given in Cloke and Pappenberger
(2009). Most of these studies assume that the precipitation forecast uncertainty is the main
source of uncertainty impacting on the flood forecasts.

Hydrological simulation errors have been the subject of numerous studies in hydrology (see
e.g., Montanari and Brath, 2004; Montanari et al., 2009). The hydrological simulation errors
represent the differences between predicted and observed runoff using observed (and inter-
polated) precipitation. The errors are usually classified into input errors, model parameter
errors and model structure errors. There are a range of methods of quantifying the first
two types of errors including Monte Carlo simulations and analytical approaches (Montanari
et al., 2009). A typical representative of a method of estimating the simulation error is
Montanari and Grossi (2008) who infer the probability distribution of the error through a
multiple regression with current forecasted discharges, past forecast error and past rainfall.
Krzysztofowicz and Kelly (2000) presented Bayesian theory and a meta-Gaussian model for
estimating the hydrological simulation error. A few studies have combined the precipita-
tion forecast uncertainty and hydrological simulation uncertainty. Krzysztofowicz (2001), for
example, presented an analytic-numerical of combining the two uncertainties resulting in a
probability of forecast river stages that is a mixture of two distributions related to occurrence
and non-occurrence of precipitation. However, most ensemble flood forecast systems focus
on the precipitation forecast uncertainty alone.

In practice, the ensemble spread of the flood forecasts is often interpreted as an index of
forecast errors rather than as a quantitative estimate of the errors. However, it is also of
interest to understand how well the ensemble spread matches the actual forecast errors.
Ensemble forecasts of precipitation are generally used based on the assumptions that the
members of the ensemble are equally likely and the ensemble spread captures the precip-
itation forecast uncertainty. However, this is often not the case. For example, Schaake
et al. (2004) analyzed precipitation ensemble forecasts of the US National Centers for En-
vironmental Prediction (NCEP) over the period 1997-1999 over the US. They found that
the ensembles were biased and the spread was insufficient to capture measured precipita-
tion. They proposed different methods for pre-processing the precipitation forecasts in order
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to remove bias and adjust the ensemble spread. Similarly, Scherrer et al. (2004) analyzed
ensemble predictions of European Centre for Medium-Range Weather Forecasts (ECMWF)
against precipitation observed at a rain gauge in Switzerland and found significant bias which
they corrected with a neural network method. Buizza et al. (2005) compared the ensemble
spreads of the methodologies used at the European Centre for Medium-Range Weather Fore-
casts (ECMWF), the Meteorological Service of Canada (MSC), and the US National Centers
for Environmental Prediction (NCEP) for a 3-month period in 2002. Again, for all systems,
the spread of ensemble forecasts was insufficient to capture reality, suggesting that postpro-
cessing of the ensemble estimates is needed. Similar conclusions were arrived at by Hamill
et al. (2008) for the ECMWF and the Global Forecast System (GFS) analyzing a longer
time period but post-processing methods do not always improve the ensemble forecasts of
precipitation (Schmeits and Kok, 2010).

The biases and uncertainties of precipitation forecasts may amplify when cascaded through
the hydrological system. Komma et al. (2007) showed that for their flood forecasts the
variability of the precipitation ensemble was amplified for lead times longer than the response
time of the catchment. They used a combination of ECMWF and ALADIN ensemble forecasts
as input into a distributed hydrologic model in a 620 km2 catchment in Austria. For a
lead time of 48 hours, for example, an uncertainty range of 70% in terms of precipitation
translated into an uncertainty range of 200% in terms of runoff. In the context of flood
forecasts is therefore important to assess the precipitation uncertainty in terms of the effect on
runoff rather than in terms of comparing forecast precipitation against observed precipitation.
Johnell et al. (2007) used ECMWF ensemble forecasts to estimate runoff ensemble forecasts
using the HBV model for 45 catchments in Sweden with areas ranging from 6 to 6110 km2

(mean catchment size 647 km2). They defined the ensemble spread as the range between the
upper and the lower quartile of the runoff ensemble forecasts and compared it to the mean
absolute error of the median runoff ensemble forecast. They classified the forecasts into five
classes representing ”very small” to ”very large” ensemble spread with each class containing
20% of the forecasts. The mean average forecast error increased from 2% for the class of
very small ensembles to 18% for the class of very large ensembles on forecast day 1, and from
10% for very small ensembles to 75% for very large ensembles on forecast day 9. Errors for
the forecast days 5 to 7 were similar, indicating that the EPS forecast has its main strength
in the second part of the forecast period. Jaun and Ahrens (2009) estimated the runoff
ensembles using downscaled ECMWF ensemble forecasts as input into the PREVAH model
for 23 Swiss catchments with areas ranging from 610 to 34550 km2 (mean 6000 km2). They
defined the ensemble spread as the half interquartile runoff ensemble range and compared it
to the forecast error obtained by comparing the median runoff ensemble forecast error with
OBS and REF, respectively. They found a tendency towards underestimation in the forecast
spread when evaluating against OBS with positive forecast errors 1.5 to 5 times and negative
forecast errors 1.5 to 100 times larger than the ensemble spread. When comparing against
REF, the underestimation in the ensemble spread was smaller with factors around 1.5 to
2 for both positive and negative forecast errors. However, additional uncertainties during
unstable weather situations were found to be captured by larger ensemble spreads during
flood peaks.
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A comparison with OBS and REF also allows separating the contributions of the precip-
itation forecast errors and the hydrological simulation errors to the total forecast errors.
Understanding the relative contributions can assist in the future development of ensemble
flood forecasting systems. Olsson and Lindström (2008) compared ensemble runoff forecasts
in 45 Swedish catchments using forecasted ECMWF precipitation with observed runoff and a
reference runoff simulation using observed precipitation. They found that 26% of the runoff
forecasts were within the interquartile range of the ensemble spread when comparing the
forecasts to the simulations. This means that the precipitation ensembles are too narrow as
the figure should be 50%. However, only 14% of the forecasts were within the interquartile
range of the ensemble spread when comparing the forecasts to observed runoff highlighting
the contribution of the simulation error not accounted for in the runoff ensembles. They
concluded that the contributions of the precipitation forecasts and the hydrologic simulations
to the total error were of similar magnitudes but, for the rising limbs (i.e., the targets of
flood forecasting systems), the precipitation forecast errors dominated. A similar analysis of
separating the contributions of the precipitation forecast errors and the hydrologic simula-
tion errors was performed by Addor et al. (2011) who analyzed ensemble runoff forecasts in
a 336 km2 catchment in Switzerland based on precipitation ensemble forecast of a regional
climate model (COSMO-LEPS). They found around 14% of the forecasts were within the
interquartile range of the ensemble spread when comparing forecasts to observed runoff, but
close to 50% of the forecasts were within the interquartile range of the ensemble spread when
comparing the forecasts to simulations. Zappa et al. (2011) superposed different sources of
uncertainty in a flood forecasting system. They used COSMO-LEPS forecasts and the hydro-
logical model PREVAH for a 186 km2 catchment in Switzerland. The uncertainty from the
meteorological forecasts was represented by the uncertainty of the COSMO-LEPS ensem-
bles propagated through the hydrologic model. The hydrologic model uncertainty was taken
into account using a Monte Carlo simulation in which seven parameters of the hydrologic
model (relevant for surface runoff generation) were randomly changed. The average runoff
ensemble spread for the seven events analyzed was 130 m3/s when PREVAH was coupled
with LEPS. When additionally taking the hydrological uncertainty into account the ensemble
spread obtained was around 150 m3/s , meaning that the total uncertainty increased about
15%.

The two main objectives of this study are (1) to quantify the contributions of precipitation
forecast errors and hydrologic simulation errors to the total forecast error, particularly during
flood events, and (2) to evaluate the capability of the runoff ensemble forecasts to repre-
sent the total runoff forecast errors as a function of lead time. We use a conceptual semi
distributed hydrological model (Blöschl et al., 2008) coupled to meteorological inputs (deter-
ministic and ensemble forecasts) based on a combination of ECMWF and ALADIN forecasts
(Haiden et al., 2010). Around 4 years of forecasts and runoff data at hourly time scale for 43
catchments with areas ranging from 70 to 25600 km2 in Austria and Germany are analyzed.
Such an extended data base allows us to identify scaling properties (with catchment area
and lead time) of the total forecast error, of its two components (precipitation forecast and
hydrologic simulation errors) and of the runoff ensemble forecasts.
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4.2 Study region, data and meteorological forecast inputs

In this study we evaluate the hydrologic forecasts of the flood forecasting system for the
Austrian Danube that is currently in operational use and has been developed by the Technical
University of Vienna in 2003-2005. The system consists of (1) a meteorological, (2) a
hydrologic and (3) a hydraulic model part. The meteorological forecasts include deterministic
and ensemble forecasts of precipitation and deterministic forecasts of air temperature for a
lead time of 48 hours on an hourly time step; the output of the hydrologic model includes
deterministic and ensemble runoff forecasts in the Danube tributaries which are used to run
a hydraulic model to estimate runoff and water level for the Danube River.
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Figure 4.1: Topography of Austria and parts of Southern Germany. The stream gauges used in the
study are indicated by triangles, precipitation gauges by white circles, weather radar sta-
tions by red circles. Thin black lines are catchment boundaries, the thick black lines
highlight the catchments Gmunden/Traun, Greimpersdorf/Ybbs, Haid/Naarn and Lilien-
feld/Traisen, used for detailed analyses.

The region is hydrologically diverse covering large parts of Austria and parts of Bavaria
(Figure 4.1). The West of the region is Alpine with elevations of up to 3800ma.s.l. while
the North and East consist of prealpine terrain and lowlands with elevations between 200
and 800ma.s.l. Mean annual precipitation is between 600mm/yr in the East and almost
2000mm/yr in the West. The Alpine catchments generally show much higher runoff depths
with 1600mm/yr, compared to around 100mm/yr in the East. Runoff from 43 catchments
with sizes ranging from 70 to 25600 km2 (median size around 400 km2) in the study region
are used for the evaluation. The small catchments are mostly nested catchments. Land use
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is mainly agricultural in the lowlands, forested in the medium elevation ranges and alpine
vegetation, rocks and glaciers in the alpine catchments. For the calibration of the model,
meteorological and hydrologic data from 2002-2009 were used. For details we refer to Nester
et al. (2011a). In this paper, the analyses of the forecasts are based on a data set consisting
of four years of meteorological forecasts (2006-2009). Around 35000 time steps are analyzed
in each catchment. Results are presented for all catchments as well as, in more detail, for
four catchments of different size (300 to 1390 km2) in diverse hydrologic regions (wet and
relatively dry). Catchment characteristics and model performance in terms of the Nash-
Sutcliffe model efficiency (nsme) and the volume error (V E), which is used as a measure
of bias, of these four catchments for the calibration and validation periods (2003-2006 and
2007-2009, respectively) are summarized in Table 4.1.

Table 4.1: Stream gauges used for detailed analyses. MAP and MAR (2002-2009) is mean annual
precipitation and runoff in (mm/yr), respectively. nsme stands for Nash-Sutcliffe model
efficiency, V E stands for volume error; values are for calibration period/validation period
(from (Nester et al., 2011a)

Gauge/catchment area (km2) MAP MAP nsme V E

Haid/Naarn 306 915 380 0.75/0.65 0.19/0.19
Lilienfeld/Traisen 333 1440 860 0.84/0.69 -0.12/-0.09
Greimpersdorf/Ybbs 1116 1480 840 0.86/0.80 -0.02/0.02
Gmunden/Traun 1390 1810 1425 0.76/0.78 -0.01/-0.11

The meteorological data and forecasts were provided by the Central Institute for Meteorology
and Geodynamics (ZAMG) in Vienna and are discussed in detail in Haiden et al. (2011).

Observed precipitation fields: For each time step, rain gauge data were spatially interpo-
lated on a 1 km grid and combined with radar data as a weighted mean. Currently,
408 online available climate stations are implemented in INCA; 169 of which lie within
the model region, which equals to one climate station every 258 km2. In small catch-
ments, on average 0.35 stations per 100 km2 are available whereas in large catchments
on average 0.45 stations are available per 100 km2. 70% of the stations are below
1000ma.s.l., 24% are between 1000 and 2000ma.s.l. and the remaining 6% are
above 2000ma.s.l. with the highest station at 3100ma.s.l. The weights were derived
from a comparison of monthly totals of radar and rain gauge data at the rain gauge
locations. In areas where the visibility of the radar is low the radar weights are small
while in areas with high radar visibility the weights are close to 1.

Precipitation forecasts: Deterministic precipitation forecasts are generated over a lead time
of 48 hours consisting of two components. The first component, termed nowcasts,
is obtained by extrapolating the interpolated precipitation field using motion vectors
(Steinheimer and Haiden, 2007). The second component consists of the forecasts of
the ALADIN and ECMWF numerical weather prediction (NWP) models. The two
components are combined as a weighted mean. To allow for a smooth transition
between nowcasts and NWP results, the weights are varied as a function of lead time
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from full weight to the nowcasts during the first 2 hours, full weight to the NWP
forecasts from 6 hours, and a linear transition in between.

Ensemble forecasts of precipitation: The ensemble forecasts of precipitation consist of
three components. The first and second components are the nowcasts based on the
motion vectors and the deterministic precipitation forecast of the ALADIN model from
ZAMG, as for the precipitation forecast. On top of that, to account for small scale
spatial uncertainty, the ALADIN forecast are spatially shifted in both the x and y direc-
tions to produce 25 pseudo-ensembles. The third component consists of 50 ensemble
forecasts from the ECMWF model. The 50 ECMWF ensembles are randomly com-
bined with one of the ALADIN pseudo-ensemble members and with the nowcasts. No
uncertainty is assigned to the nowcasts, meaning that up to a lead time of 2 hours
all ensemble members are identical (zero spread) and the spread increases at longer
lead times (Komma et al., 2007). A verification of INCA precipitation forecasts with
a lead time of 12 hours showed that in the first 6 hours the precipitation amount is
underestimated, whereas in the second half of the forecast period the precipitation
amount is overestimated which can be attributed to the increasing influence of the
NWP models for longer lead times (Haiden et al., 2011).

Temperature forecasts: Temperature forecasts are based on a combination of interpolated
station data and ALADIN forecasts. No temperature ensembles are generated as their
effect on the flood forecasting uncertainty is deemed to be small.

We used catchment mean values of precipitation as input into the hydrologic model; for
the temperature data elevation was additionally accounted for when averaging over the
catchments. All forecast are generated at an hourly time interval.

For the analysis, hourly discharge data from 43 stream gauges were used. The data were
checked for errors and in cases where a plausible correction could be made they were cor-
rected. Otherwise they were marked as missing data.

4.3 Forecast model setup and evaluation methods

Forecast model setup

The rainfall-runoff model used in this paper is a typical conceptual hydrologic model (Blöschl
et al., 2008; Komma et al., 2008). The model runs on an hourly time step and includes a
snow routine, a soil moisture routine and a flow routing routine (Szolgay, 2004). Details
about calibration and performance of the model are given in Nester et al. (2011a,b). Two
real-time updating procedures are implemented to increase the accuracy of the forecasts.
The first procedure is based on Ensemble Kalman filtering and is used to assimilate runoff
data to update the catchment soil moisture (Komma et al., 2008). The second procedure is
an additive error model that exploits the autocorrelation of the forecast error and involves an
exponential decay of the correction (Komma et al., 2007). The flood forecasting system has
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been in operational use for the Danube since 2006 and is operated by the state governments
of Lower Austria and Upper Austria.

In this study, we emulate the real-time mode of flood forecasting in the Austrian Danube
tributaries. We therefore use the same updating procedures as the operational system. For
each forecasting time step t0 the model is driven by observed precipitation and air tempera-
ture. Observed runoff for the same time step is used for the updating. The runoff forecasts
are driven by (a) deterministic precipitation forecasts (and air temperature forecast) and (b)
50 ensemble members of the ensemble precipitation forecast. The latter give an uncertainty
distribution of the runoff forecasts over the lead time. In line with other forecasting systems,
the uncertainty in the precipitation forecasts was considered as the only source of runoff
forecast uncertainty.

Examples of ensemble runoff forecasts for the catchment Greimpersdorf are given in Figure 4.2
for an event in June 2009. This event was the largest observed event in the study period
with a return period of 35 years which was due to local convective storms embedded in a
large scale precipitation field. The forecast calculated on June 22, 2009 at 3 a.m. is shown in
the top part of Figure 4.2. The runoff at the time of the forecast was around 30 m3/s. The
ensemble forecasts give a total precipitation between 60 and 100 mm in 48 hours while the
observed precipitation was 136mm. The underestimation is due to heavy convective storms
not captured by the precipitation forecasts. This leads to a significant underestimation of
runoff over much of the lead time and to missing the sudden rise in the hydrograph at time
15 hours. However, at the end of the 48 hour lead time, the runoff of the deterministic
forecast run is almost at the level of the observed runoff, as are some ensemble members. 24
hours later (Figure 4.2, bottom), the cumulative ensemble forecasts of precipitation range
between 84 and 121mm with an observed precipitation of 116mm. While the fine scale
structure of the event is not fully captured, the overall shape of the hydrograph is captured
very well. In this case, the ensemble runs give a very good indication of the forecast errors to
be expected. The example illustrates that the performance of the flood forecasts will likely
differ between events and can change within a single event. In some cases the ensembles
will be representative of the errors but in others they will not.

Forecast evaluation methods

For a first overview of the performance of the ensemble runoff forecasts we used the Brier
Score (BS) measure (Brier, 1950)

BS =
1

N

N∑
1

(p(t*)− o(t*))2 (4.1)

where p is the forecast probability from the ensemble forecast for time t* of exceeding a
threshold discharge, o is a binary value depending on whether the observed discharge at the
time step t* exceeds the threshold discharge (o = 1) or does not (o = 0), and N is the
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Figure 4.2: Example for ensemble forecasts at the gauge Greimpersdorf/Ybbs (1116 km2) Return
period is T=35 years. (a) forecast time t0 is June 22, 2009, 3 a.m.; (b) t0 is June 23,
2009, 3 a.m. Top panels - cumulative precipitation, bottom panels - runoff. Red lines are
the observations; black lines are the deterministic forecasts; thin blue lines are ensemble
forecasts; 80% confidence intervals are indicated in light blue.
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total number of forecasts analyzed. BS ranges from 0 to 1. BS = 0 indicates a perfect
forecast as the probability of the ensemble forecast matches exactly the frequency of the
runoff observations exceeding a certain threshold. The Brier Skill Score (BSS) measures
the improvement of a probabilistic forecast relative to a reference forecast BSref

BSS = 1− BSf

BSref
(4.2)

The range of the BSS is −∞ to 1, with the best score equal to 1. Positive scores indicate
an improvement over the reference forecast. To compare our results with other studies
(e.g., Rousset-Regimbeau et al., 2007; Thirel et al., 2008), we used the 50th and the 90th
percentile derived from observed runoff data as a reference forecast to calculate the BSS.

For a more detailed evaluation of the ensemble runoff forecasts, we used a spread-skill analysis
(e.g., Scherrer et al., 2004; Lalaurette et al., 2005). Figure 4.3 gives the definitions of the
terms used. t0 denotes the time the forecast is made and t* refers to the time of the predicted
runoff. We examined forecasts lead times (t* − t0) of 1, 3, 6, 12, 24 and 48 hours. As a
measure of the ensemble spread we used the standard deviation σ̂ε (t*) of the runoff of the
ensemble members for each point in time t*. As a measure of skill we defined the forecast
error ε (t*) as the difference between the observed runoff and the deterministic forecast.

In order to distinguish between different forecast situations, we stratify the analysis of forecast
errors in classes of ensemble spreads. Small ensemble spreads are more likely to occur when
the runoff is constant or falling while large ensemble spreads are more likely to occur when
runoff is growing. Since floods are of interest here, the analysis of forecast errors associated
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to large ensemble spreads will be emphasized in the following. We grouped the forecast time
steps t* (for each lead time separately) into 10 classes according to the ensemble spread
σ̂ε (t*) of that time step. For example, class 1 represents 10% of the time steps with the
smallest ensemble spread and class 10 represents 10% of the time steps with the largest
ensemble spread. Each class had the same number of time steps of n. For each class j we
aggregated the ensemble spread σ̂ε (t*) over n time steps:

¯̂σε,j =
1

2
· (max σ̂ε,j −min σ̂ε,j) (4.3)

Similarly, we calculated the standard deviation σε,j of the forecast error ε (t*) over the same
time steps:

σε,j =

√√√√ 1

n− 1
·

n∑
i=1

(ε(t*)− ε̄) (4.4)

with ε̄ as the mean forecast error over the n time steps. If the ensemble forecasts fully
portray the forecast errors, ¯̂σε = σε,j for all classes j. Any deviations from the full match
indicates biases in the ensemble forecasts. It is worth noting that, differently from the BSS
measure, σε,j and ¯̂σε do not account for biases of the forecast estimation. By comparing σε,j
and ¯̂σε we aim to assess if the runoff ensemble forecasts and the total runoff forecast errors
have the same spread and therefore the first can be deemed representative of the second.

The other main objective of the paper is to quantify the contributions of precipitation forecast
errors and hydrologic simulation errors to the total forecast error. We analyzed the errors for
two cases of runoff forecasts:

(a) In the first case we used forecasts of deterministic precipitation as an input to the runoff
model.

(b) In the second case we used observed (and interpolated) precipitation data.

These two cases allow us to examine the precipitation forecast errors separately from the hy-
drological simulation errors. Because of the non-linearity of the runoff processes we consider
it more appropriate to test the precipitation forecast errors via their effect on runoff rather
than directly by comparing them against rain gauge data. This also allows us to compare the
precipitation forecast errors directly with the hydrological simulation errors. This has been
done looking in particular to the large of ensemble spread classes, since floods are of interest
here.
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4.4 Results

Forecast performance by means of the Brier Skill Score

An overall view of the performance of the ensemble runoff forecasts, irrespective of discharge
and ensemble spread, is given through the diagrams in Figure 4.4, which show the Brier
skill score BSS for all catchments analyzed as a function of lead time. The left panel gives
the BSS for a 50% percentile of runoff as reference forecast, this panel therefore relates to
medium and low runoff. The right panel gives the BSS for a 90% percentile, i.e., it relates
to high flows. For both percentiles the BSS decreases with increasing lead time. Clearly,
as the lead time increases, the skill of the ensemble forecasts to match the forecast errors
decreases. Overall, the skill for medium runoff (50% percentile) is higher than for high runoff
(90% percentile). For most of the catchments the 50% BSS ranges between 0.8 and 0.1
at a lead time of 48 hours while the 90% BSS ranges between 0.6 and 0.0. For high flows
it is more difficult for the ensemble forecasts to match the forecast errors than for medium
flows.

There are a small number of catchments (e.g., Greimpersdorf indicated by the black dashed
line) where the BSS rapidly decreases after the first hour and increases after 12 hours
(Figure 4.4, left). This is because low and medium flows in these catchments are influenced
by regulations of hydropower plants which have a half-daily cycle not represented in the
hydrologic model. For high flows the influence of the regulations is less apparent (Figure 4.4,
right). While it would be easily possible to model these cycles provided the information is
available from the hydropower operators it is not relevant for the flood forecast which are
the purpose of this study.
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Figure 4.4: Brier Skill Score BSS as a function of lead time, computed using observed river flow as
reference for a runoff exceeding the 50%-percentile (left) and the 90%-percentile (right).
The focus in the left figure is on predicting low and medium runoff, the focus in the right
is on predicting high runoff. Thick lines refer to the catchments of Table 4.1, thin lines
refer to the other catchments.
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Spread-skill analysis

As discussed in Section 4.3, the spread-skill analysis provides more detailed insight into the
performance of the ensemble forecasts and the contributions of the various error sources. The
midpoint of each class of ensemble spread ¯̂σε and the corresponding spread of the forecast
error σε are shown as a function of lead time for the four example catchments of Table 4.1.
For ease of comparison, both the ensemble spread and forecast errors were scaled by the
mean annual runoff of each catchment. All time steps for every lead time were assigned
into one of 10 classes of equal size according to the ensemble spread ¯̂σε. Class 1 represents
10% of the time steps with the smallest ensemble spread and class 10 represents 10% of
the time steps with the largest ensemble spread. Large ensemble spreads are more likely to
occur when the runoff is rising, whereas small ensemble spreads can be expected when the
runoff is receding or at a constant low flow level. Then we calculated the midpoint of the
ensemble spreads for each class and the standard deviation of the forecast errors for each
class according to Equations 4.3 and 4.4.

Figure 4.5 shows the results for the lead times 12 hours (light grey squares), 24 hours (dark
grey triangles) and 48 hours (black circles) hours. If the ensemble standard deviation and
the forecast error standard deviation match, the points are close to the 1:1-line. On average,
the standard deviation of the forecast error is 2-3 times bigger than the ensemble standard
deviation. For short lead times, in particular the ensemble spread is small. This is because
the ensemble spread is related to the precipitation forecasts while for lead times shorter than
the catchment response time the runoff mainly depends on observed precipitation (Komma
et al., 2007). For lead times of 48 hours the errors are twice and up to five times larger than
the ensembles. Several reasons contribute to this. First, parts of the errors can be explained
by the fact that we used real-time data and we only corrected obvious errors whereas runoff
variations on the order of a few m3/s were not corrected. Second, short events with fast
discharge increase the catchments Haid and Lilienfeld are underestimated by the forecasts.
Third, the runoff at the gauge Gmunden is influenced by the retention effects of a lake in the
catchments. Interestingly the shapes of the forecast errors and the ensembles are remarkably
similar. In Haid both the forecast errors and the ensemble spread increases significantly for
lead times beyond 24 hours. In Lilienfeld both remain constant. The similarity of the shapes
suggests that the ensembles do capture the important characteristics of the errors.

In the catchment Haid (top panel left), the ensemble spread does not capture the forecast
errors in the first nine classes. The ensemble spread is around 10 times smaller than the
forecast errors whereas in the class with the largest ensemble forecasts the spread is larger
than the forecast error by a factor of 2.0-2.5. The forecast errors almost double in this class
when increasing the lead time from 24 to 48 hours. The catchments Greimpersdorf and
Gmunden show a similar behavior. The ensemble spread in the first 9 classes is up to 5 times
smaller than the forecast errors. With increasing ensemble spread this factor decreases and
the values are much closer to the 1:1-line, indicating that the ensemble spread is almost able
to capture the forecast errors when the spread is large.

65



4 Flood forecast errors and ensemble spread - a case study

0.0

1.0

2.0

3.0

4.0

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

Haid/Naarn

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0 0.5 1.0 1.5 2.0 2.5

Greimpersdorf/Ybbs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.0 0.1 0.2 0.3 0.4 0.5

Gmunden/Traun

to
ta

l
fo

re
c
a

s
t

e
rr

o
rs

/
M

Q
�

�

ensemble spread �
�
/ MQ^

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0 0.5 1.0 1.5 2.0 2.5

Lilienfeld/Traisen

lead time
12

24

48

ensemble spread �
�
/ MQ^

to
ta

l
fo

re
c
a

s
t

e
rr

o
rs

/
M

Q
�

�

Figure 4.5: Ensemble spread ¯̂σε vs. standard deviation of total forecast errors σε, both scaled by
mean runoff (MQ). Ensemble spread is plotted at the midpoint of the classes. Light grey
squares indicate a lead time of 12 hours, dark grey triangles 24 hours and black circles 48
hours. The thin line is the 1:1-line.

Figure 4.6 shows the CDFs of the Spearman’s rank correlation coefficient rs between the
ensemble standard deviation ¯̂σε and the standard deviation of the total forecast error σε for
all 43 catchments analyzed for different lead times. It shows that for a lead time of 12 hours
75% of the Spearman’s rank correlation coefficients rs are larger than 0.88, for a lead time
of 24 hours 75% of the values are larger than 0.95 and for a lead time 48 hours 75% of the
values are larger than 0.92. This indicates that although the ensemble spreads are too narrow
to capture the total forecast errors they still are a good indicator of the forecast error.
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Figure 4.6: CDFs of the Spearman rank correlation coefficient rs between ensemble spread ¯̂σε and
total forecast error σε for all 43 catchments analyzed. Light grey squares indicate a lead
time of 12 hours, dark grey triangles 24 hours and black circles 48 hours. Each point
indicates the Spearman rank correlation coefficient rs of a single catchment.

Contributions to the forecast error

Figure 4.5 shows the total forecast errors where no distinction between the individual error
sources is made. It is now of interest to examine the contributions of the precipitation
forecasts and the hydrologic simulations to the total forecast errors. We analyzed the errors
for two cases of runoff forecasts: (a) In the first case we used forecasts of deterministic
precipitation as input in the runoff model as in Figures 4.5 and 4.6. (b) In the second case
we used observed (and interpolated) precipitation data. In the second case, the precipitation
forecast error is absent and the entire error is what we term hydrological simulation error.
This error is due to precipitation measurement and interpolation, and the structure and the
parameters of the runoff model (Table 4.3). The first case also includes error components
from the parameters and the structure of the atmospheric model and the initial conditions.

Table 4.2: Contributions to the hydrologic simulation error and precipitation forecast error

Hydrologic simulation error Precipitation forecast error

Parameters of runoff model Parameters of atmospheric model
Structure of runoff model Structure of atmospheric model
Precipitation measurement Initial conditions
Precipitation interpolation
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For each time step we calculated the differences between observed runoff and the two cases
of runoff forecasts. Using the same 10 classes of ensemble spread, we calculated the standard
deviation of the hydrological simulation error, σhysim. Assuming that the precipitation fore-
cast errors and the hydrological simulation errors are independent, the variances are additive
and the precipitation forecast error standard deviation σpfor can be calculated as

σpforec =
√

σ2
total − σ2

hydsim (4.5)

The main reason for not directly comparing precipitation forecasts with precipitation mea-
surements was that the time scales relevant for the comparison depend on the catchment
response. For example, in a catchment with a fast response, one would have to compare, say,
precipitation forecast with a 6 hour aggregation level, while for slowly responding catchments
the aggregation level would have to be 24 hours or more. Also, the non-linearity of the runoff
processes does not allow a direct comparison of rainfall errors (unit mm) with runoff errors
(unit m3/s ). We therefore consider it more appropriate to back-calculate the contribution
of the precipitation forecasts from Equation 4.5.

Figure 4.7 shows the contributions to the total forecast errors for the four catchments. For
clarity, only the results for the lead time of 48 hours are shown. For small ensemble spreads
the entire error is made up of hydrological simulation error. For larger ensemble spreads, the
contribution of the precipitation forecast error increases and for the largest ensemble class, it
is larger than the hydrologic simulation error. This is the class of major interest because the
large ensemble spreads typically occur during the rising limbs of events, which could reveal to
be the flood events that we want to forecast, while the small ensemble spreads typically occur
during recessions or constant runoff periods. There are some apparent differences between
the catchments. In the smaller catchments (Haid and Lilienfeld) the hydrologic simulation
error is larger than the precipitation forecast errors for all but the largest ensemble class.
For Haid the precipitation forecast errors for of the largest ensemble class is about twice
the hydrological simulation error, while for Lilienfeld they are similar. This is because Haid
is drier than Lilienfeld (380mm mean annual runoff as opposed to 860mm in Lilienfeld),
so one would expect larger hydrologic simulation errors (Nester et al., 2011a). The errors
in Greimpersdorf are similar to the errors in Lilienfeld. Both catchments have similar mean
annual runoff depths and mean annual precipitation, however, Greimpersdorf is 3.5 times the
size of Lilienfeld. The precipitation forecast errors are somewhat larger in Greimpersdorf,
which can be attributed to the smaller number of precipitation stations per 100 km2 in the
catchments (1.2 in Lilienfeld and 0.4 in Greimpersdorf). The runoff in Gmunden is influenced
by the retention effects of a lake, which is not explicitly modeled. However, the lake retention
affects mainly low runoff situations, and flood peaks are not affected. This explains that
for the small classes of ensemble spread the precipitation forecast error is zero, and the
hydrologic simulation error makes up 100% of the total forecast error.

To assess the error contributions for all catchments, the forecast errors scaled with mean
catchment runoff have been plotted against catchment size in Figure 4.8 for different lead
times. As the main interest in this study is on the forecasting of floods the values of the
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Figure 4.7: Contributions to the forecast error for a lead time of 48 hours for four catchments. Total
forecast errors, σε, are indicated by solid lines (same as line with black circles in Fig. 4.5),
hydrologic simulation errors σhysim are indicated by dashed lines and precipitation errors
σpfor by dash-dotted lines. Ensemble spread is plotted at the midpoint of the classes.
The thin line is the 1:1-line.

top ensemble spread (largest 10%) are shown. Light grey squares indicate a lead time of 12
hours, dark grey triangles represent a lead time of 24 hours and black circles stand for a lead
time of 48 hours. A linear regression was fitted to the errors of the individual catchments in
the logarithmic domain:

σε = α ·Aβ + ς (4.6)
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Figure 4.8: Errors scaled by mean catchment runoff vs. catchment area for the top class (largest
10%) of ensemble spreads for 43 catchments. From left to right: Total forecast errors
σε, hydrologic simulation errors, σhysim, and precipitation forecast errors, σpfor. The
regression lines relate to different forecast lead times according to the grey scale. (*) the
hydrologic simulation error includes precipitation measurement and interpolation errors.

where α and β are coefficients, A is the catchment area and ς is the error of the regression.
The grey shades of the regression lines in Figure 4.8 match those of the symbols for different
lead times. All errors decrease very clearly with catchment area, although the rate of decrease
differs with the error component and the lead time (Table). The precipitation forecast errors
(right panel in Figure 4.8) decrease with catchment area. The precipitation forecast errors
also decrease with decreasing lead time (from 48 to 12 hours). As the lead times get close to
the catchment response time, any errors of forecasted precipitation will no longer affect the
runoff forecasts. This is particularly the case for the large catchments where the response
times are longer than in the small catchments. Because of this the 12 hour precipitation
forecast errors in the large catchments are very small and therefore the dependence on area
is stronger (β= -0.695) than for 48 hours (β= -0.433). The hydrological simulation errors
(middle panel in Figure 4.8) also decrease with catchment area due to the aggregation effects.
However, there is much less dependence on the lead time. There is some dependence which is
related to the updating of the model. Komma et al. (2008) showed that updating procedures
can reduce the error in particular for short lead times. Without updating the model states
one would not expect any dependence as these are strictly simulations. The decrease in the
errors from 48 to 12 hours (e.g. 1.18 to 1.02 for catchment areas of 1000 km2) points to
the value of the updating procedure for cases when the ensemble spread is large (top 10% of
ensemble spreads). For the catchment areas of 10000 km2 the relative effect of the updating
is about twice as big (0.40 to 0.31 for catchment areas of 1000 km2) which is related to the
longer response times and therefore longer autocorrelation in the hydrographs of the large
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catchments. The total forecast errors (left panel in Figure 4.8) are the combined results of
the two error components. There is again a strong dependence on catchment area and a
moderate dependence on the forecast lead time.

It is now of interest to compare the error components as a function of catchment scale
and lead time. For the 48 hour lead time the precipitation forecast errors and hydrological
simulation errors are of similar magnitudes. As the lead time decreases, the hydrological
simulation errors change little while the precipitation forecast errors do, in particular in the
large catchments. Obviously, for very short lead times the precipitation forecast errors would
be zero. It is important to note, however, that this analysis is for those 10% of the time
steps with the largest ensemble spreads, i.e. for a total of 36 days per year which not
only includes floods. If individual large events were examined, and in particular the rising
limbs, the relative magnitudes of the two error sources may change with the precipitation
forecast errors becoming much more important than the hydrological simulation errors (see
e.g., Blöschl et al., 2008).
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Figure 4.9: Ensemble spread ¯̂σε scaled by mean catchment runoff vs. catchment area for the top
class (largest 10%) of ensemble spreads for 43 catchments.

Figure 4.9 shows a similar analysis as Figure 4.8, however with the ensemble spread plot-
ted against the catchment area. Table gives the associated slopes and magnitudes of the
ensemble spread along with those of the total forecast, the hydrologic simulation and the
precipitation forecast errors. Overall, the scaling characteristics of the ensemble spreads are
very similar as those of the forecast errors. The decrease with catchment area is very similar.
The slope of the dependency between ensemble spread and area also increases with decreas-
ing lead time, similar to that of the forecast error, although it is somewhat steeper for the
shortest lead time. Similarly the magnitudes of the ensemble spread and the total forecast
errors compare well for all lead times and catchment areas with a tendency of underestimates
for shorter lead times an larger catchment areas.
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4 Flood forecast errors and ensemble spread - a case study

Figure 4.10 summarizes the spread-skill relationship for a lead time of 48 hours for all analyzed
catchments with a runoff record longer than 2.5 years. Only the time steps corresponding to
the top 10% of the ensemble spreads are represented. The left panel of Figure 4.10 shows
the relation between ensemble spread and total forecast error, the right panel shows the
relation between ensemble spread and precipitation forecast error, estimated according to
Equation 4.5. The size of the circles indicates the catchment area. The thin line indicates
the 1:1-line.
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Figure 4.10: Ensemble spread ¯̂σε, scaled by mean runoff vs. total forecast errors σε, scaled by mean
runoff for the top 10% of the ensemble spreads and different classes of runoff (indicated
by the grayscale of the circles). Right: Ensemble spread ¯̂σε, scaled by mean runoff vs.
precipitation forecast errors σpfor, scaled by mean runoff for the top 10% of the ensemble
spreads and different classes of runoff. Only the lead time of 48 hours is represented.
The size of the circles indicates the size of the catchments.

From Figure 4.10 (left panel) it becomes apparent that on average the total forecast errors
and the ensemble spreads are of similar magnitude for all catchments as the points are close
to the 1:1-line. For small catchments the ensemble spread is on average larger than the total
forecast error by a factor of 1.4, and for large catchments the factor is 0.9. In Figure 4.10
(right panel), the points are somewhat farther from the 1:1-line, especially for the small
catchments where the ensemble spread is bigger than the precipitation forecast error by an
average factor of 2.3. For the large catchments, the factor is 1.3. This indicates that on
average, the ensemble spread is representing the precipitation forecast errors and the total
forecast errors for the top 10% of the ensemble spreads, meaning that the model uncertainty
has not to be considered for the case of large ensemble spreads.
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4.5 Discussion and conclusion

In this study we perform an error analysis on the forecasts of an operational flood forecasting
system for the Danube tributaries in Austria and Germany. Regarding the overall performance
of the flood forecasting system, for a lead time of 24 hours we obtain mean Brier Skill Scores
BSS of 0.40 and, for a lead time of 48 hours, the mean value was 0.25 when using the 90%
percentile of runoff as reference forecast. These values are consistent with performances of
other forecasting systems reported in literature. Addor et al. (2011) showed similar BSS
values in the range of 0.30-0.50 for a lead time of one day and 0.10-0.30 for a lead time of 2
days, when evaluating the PREVAH model with COSMO-LEPS ensembles run on an hourly
time step. Rousset-Regimbeau et al. (2007) and Thirel et al. (2008) evaluated ensemble
runoff forecasts for 900 French catchments with areas ranging from 240 to 112000 km2.
They used ECMWF forecasts as input into a coupled land surface and hydrogeological model.
Rousset-Regimbeau et al. (2007) analyzed ensemble forecasts with a lead time up to 10 days
and found BSS in the range of 0.4 to 1.0 for one-day runoff forecasts and in the range
of 0.3 to 1 for five-day forecasts using the 90% percentile of runoff as reference forecast.
Thirel et al. (2008) focused on short range forecasts up to 2 days. They reported mean BSS
of 0.90 for the first day of the forecast and 0.85 for the second day of the forecast. The
larger BSS values in the studies of Rousset-Regimbeau et al. (2007) and Thirel et al. (2008)
can be attributed to the larger time step of the model (1 day) which increases the model
performance due to averaging effects (e.g., Skøien et al., 2003).

However, the objective of this study is not to evaluate the overall performance of the flood
forecast but (1) to quantify the contributions of precipitation forecast errors and hydrologic
simulation errors to the total forecast error, particularly during flood events, and (2) to
evaluate the capability of the runoff ensemble forecasts to represent the total runoff forecast
errors as a function of lead time.

In order to quantify the contributions of precipitation forecast errors and hydrologic simulation
errors to the total forecast error we compare estimated runoff obtained by using forecasted
precipitation and observed precipitation as input into the hydrologic model. To distinguish
between different forecast situations, we stratify the analysis of forecast errors in classes
of ensemble spreads. Analyses revealed that for small ensemble spreads, which indicate a
small meteorological uncertainty and are more likely to occur when the runoff is constant
or falling, the hydrologic simulation error accounts for almost 100% of the total errors.
With increasing ensemble spread the uncertainty from meteorology increases and is the
main source of uncertainty for large ensemble spreads, which are more likely to occur when
runoff is growing and therefore in situations of flood prognosis. For the largest 10% of
the ensemble spreads in the four focus catchments, the contributions of the precipitation
forecast errors account for 60-85% of the error variance, whereas the hydrologic simulation
errors account for 15-40% of the error variance. Olsson and Lindström (2008) found that
for all phases of runoff the contributions of the meteorological and hydrologic simulation
errors are similar, and only for the rising limb the uncertainty in the meteorological forecasts
dominated. However, Olsson and Lindström (2008) used a daily time step which reduces the
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anthropogenic variability introduced by the operation of reservoirs and lakes which are not
taken into account in this study.

For short lead times, the hydrologic simulation error is the main source of uncertainty. For
a lead time of 12 hours, the ratio of the hydrologic simulation error and the precipitation
forecast error increases from 1.2 to 2.7 with the catchment size increasing from 100 to
10000 km2. For long lead times, the precipitation forecast error is dominant. For lead times
of 48 hours, the ratio of hydrologic simulation error to precipitation forecast error decreases
from 1.1 to 0.9 with increasing catchment size. This is due to two reasons: (1) for short lead
times the uncertainty in the precipitation forecasts is small as no uncertainty is attributed
to the meteorological ensemble in the first two hours (Komma et al., 2007) and (2) the
response time of the catchments is longer than the lead time of the forecasts, meaning that
it takes the input variability from the meteorological ensemble forecasts longer to reach the
basin outlet than the lead time of the forecast (Renner et al., 2009).

All errors decrease clearly with increasing catchment area and decreasing lead time. The
decrease of precipitation forecast errors with catchment area can be attributed to averaging
effects as discussed by Sivapalan (2003) and Skøien and Blöschl (2006). The precipitation
forecast error scales with β= -0.695 for a lead time of 12 hours, and β= -0.433 for a lead time
of 48 hours. The smaller errors for short lead times and large catchments can be attributed
to the fact that runoff in large catchments does not depend much on the future precipitation
at short lead times, but on the observed precipitation. The runoff in small catchments, which
have shorter response times, are more dependent on the future precipitation, even at short
lead times. In fact, a lead time of 12 hours can be deemed large in a small catchment,
characterised by a small response time. For the 48 hour lead time, the runoff in large
catchments is affected more by the future precipitation, which is reflected in the smaller
scaling factor, because 48 h can be deemed as short in comparison to large response times.
The hydrologic simulation error also decreases with catchment area, but the dependence
on the lead time is smaller (β= -0.522 for 12 hour lead time and β= -0.471 for 48 hour
lead time). This is because, as showed in Komma et al. (2008), updating procedures can
reduce the error of forecasts in particular for short lead times and large catchments. Komma
et al. (2008) analyzed rising limbs and showed errors 12% smaller compared to forecasts
without updating for a lead time of 12 hours. The total forecast errors as a combination of
the two components show again a strong dependence on catchment area and a moderate
dependence on the forecast lead time (β= -0.555 and -0.458 for lead times of 12 and 48
hours, respectively). Having the variability of forecast errors decreasing with catchment size
is partly due to the fact that the variability of streamflow is lower in large catchments. In
fact the coefficient of variation of the entire runoff hydrographs scales with -0.254 with
catchment area for the 43 catchments in this study. This slope is much lower than to the
one of a random field (scaling factor -0.5) because of the spatial and temporal correlation
of rainfall and runoff production over the catchments (Viglione et al., 2010a,b). Similar
values are found by Merz and Blöschl (2003) who focused on the evaluation of mean annual
flood and further distinguished different runoff situations. They found CVs in the range
of -0.205 for snowmelt induced floods and -0.413 for flash floods, which are less spatially
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and temporally organized (Viglione et al., 2010b). Since the scaling factors for the forecast
errors are higher (in absolute value), we can conclude that the performance of the forecasting
system increases with catchment size.

The second objective of this study is to evaluate the capability of the runoff ensemble
forecasts to represent the total forecast error as a function of lead time. Ensemble forecasts
have been considered a suitable tool for quantifying and communicating the uncertainties of
forecasts (see e.g., Hlavcova et al., 2006; Demeritt et al., 2007), as the spread of the ensemble
members can be used as a measure of forecast uncertainty (Buizza, 2003). In the studies of
Johnell et al. (2007), which is based on ECMWF ensemble forecasts and Jaun and Ahrens
(2009), which is based on downscaled ECMWF ensemble forecasts, forecast errors increased
with increasing ensemble spread and with increasing runoff for all catchments. Johnell et al.
(2007) showed an increase of the mean absolute error of the ensemble median with increasing
ensemble spread class from 5 to 30%, averaged over all catchments which is smaller than
the mean absolute error of the deterministic forecasts in this study. For a lead time of 48
hours, we have estimated values in the order of 8 to 40% for the large catchments, and
values in the order of 15 to 140% for small catchments. The larger errors can be attributed
to the facts that we use an hourly time step and Johnell et al. (2007) used a daily time step
for estimating runoff. Komma et al. (2007) analyzed the forecasts of 5 flood events in a
600 km2 catchment in Austria and found mean normalized absolute errors of about 40% when
evaluating the entire events at a lead time of 48 hours, which is somewhat lower than the
values in this study for medium catchments. In the study of Komma et al. (2007) the number
of precipitation stations per 100 km2 is 1.28, while in this study it is on average 35 stations per
100 km2 are available in small catchments and 0.45 stations per 100 km2 in large catchments.
An increasing number of precipitation stations per catchment as discussed by Merz et al.
(2009) allows better estimates of catchment precipitation, which further reduces the forecast
errors in larger catchments. Jaun and Ahrens (2009) who evaluated daily forecasts for 23
catchments in Switzerland show ensemble spreads and forecast errors of similar magnitude
for large ensemble spreads. For small ensemble spreads positive forecast errors were 1.5 to
5 times larger than the (small) ensemble spread, and with increasing ensemble spread the
factor between error and spread decreased to a value of 0.9 for large ensemble spreads. For
negative forecast errors, the factor was larger in the range of 1.5 to 100 for small ensemble
spreads and decreased to a factor of 1.3 for large ensemble spreads. Jaun and Ahrens (2009)
concluded that the uncertainty is covered by the ensemble with appropriate spread. For small
ensemble spreads we observe total forecast errors which are larger than the ensemble spread
by a factor in the range of 10 to 100 for all lead times. For large ensemble spreads the total
forecast errors and the ensemble spreads are much closer to the 1:1-line. On average, for a
lead time of 48 hours the ensemble spread is larger than the total forecast error by a factor of
1.4 for small catchments, and for large catchments the factor is 0.9. This indicates that the
ensemble spread is representative of the total forecast errors in situations with large ensemble
spreads, which are of particular interest for flood forecasting, but there is still potential to
improve the spread-skill relationship also for small ensemble spreads (see e.g., Schaake et al.,
2004; Olsson and Lindström, 2008). Even if the ensemble spread does not always capture
the magnitude of the forecast error, there is a clear correlation between the two, as shown by
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calculating the Spearman’s rank correlation, meaning that the ensemble spread can always
be used as an index of forecast errors.

As for the ensemble spread the scaling factor is large in absolute values for short lead times (-
0.754 for 12 hours), for the same reason, i.e., the runoff in large catchments does not depend
much on the future precipitation at short lead times, but on the observed precipitation. We
believe that this kind of scaling analysis of the forecast errors should be performed in other
case studies as well, e.g., in other climates and using different models. Comparing different
studies is needed for understanding, which is the idea underlying the so called comparative
hydrology, in which simple indices are used for quantifying similarities of processes and models
across scales (McDonnell and Woods, 2004; Blöschl, 2006).
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The aim of this study was to evaluate the performance of the hydrological model used for
operational flood forecasting in the Danube tributaries. The model is an important part of
the flood forecasting system for the Danube River. The forecasting chain consists of mete-
orological forecasts, hydrological forecasts and hydraulic forecasts. Meteorological forecasts
comprise deterministic and ensemble forecasts of precipitation and deterministic forecasts of
air temperature for a lead time of 48 hours on an hourly time step. These forecasts are
used to drive the hydrological model to estimate future deterministic and ensemble runoff in
the tributaries. Runoff and water level in the Danube River are estimated using the runoff
estimates from the tributaries. For the development of the hydrological model, meteoro-
logical and hydrological data were used from the years 2003-2009. The model area covers
57 catchments with sizes ranging from 70 to 25600 km2 in Austria and Bavaria. For the
evaluation of the snow model, remote sensing data were used from the years 2003-2009. For
the evaluation of the runoff forecasts, meteorological forecasts from 2006-2009 were used.

The aim of the first part of the study (chapter 2) was to analyse of the controls of cli-
matic and hydrological catchment characteristics on the performance of flood simulations.
A semi-distributed conceptual hydrological model was calibrated manually on runoff using
observed meteorological data on an hourly time step. Manual calibration based on hydrologi-
cal reasoning yields model parameters that are more suitable for the extrapolation of extreme
conditions which was one of the main interests in this study. The model performance was
evaluated using four different statistical measures: (1) the Nash-Sutcliffe model efficiency,
(2) the volume error which was used as a measure for the bias, (3) peak discharge errors and
(4) peak timing errors. The first two error measures give insight into the overall performance
of the model, as the entire range of runoff from low flow conditions to floods is considered.
In contrast, the latter two measures assess the ability of the model to simulate flood peaks.
The analyses for each statisical measures show that the performance of the model increases
with increasing catchment scale.

The Nash-Sutcliffe model efficiencies show a clear tendency to increase with catchment scale
which is reflected in the Spearman’s rank correlation coefficient (rs=0.43). The mean
absolute peak discharge errors clearly decreases with catchment scale (rs= -0.60). There
are differences in the performance of the model depending on the season. In the summer,
the Spearman’s rank correlation coefficient between the mean peak discharge error and the
catchment area is rs= -0.58, whereas in winter rs= -0.37. The tendency of the peak time
errors to decrease with catchment scale is somewhat weaker, and there is no real trend for
the volume error. The better model performance in large catchments can be attributed to
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(1) averaging effects, (2) the decreasing variability in streamflow with increasing catchment
scale and (3) the increasing number of precipitation stations per catchment (0.35 stations
per 100 km2 in small catchments and 0.45 stations per 100 km2 in large catchments) which
allow better estimation of catchment precipitation in the larger catchments.

The analyses further revealed that climatological catchment characteristics impact the model
performance. Climatological catchment characteristics taken into account include the mean
annual precipitation (MAP), mean annual runoff (MAR) and the ratio of rain in total precip-
itation. Similar results are obtained when comparing the model performance measures with
MAP and MAR. The model performance increased with increasing catchment wetness. The
model performance is somewhat better in snow dominated catchments than in rain domi-
nated regimes. This is because catchments that follow a distinct annual hydrological cycle
with snow accumulation and snow melt phases tend to be more easily simulated.

When looking at the climatological indices, it has to be kept in mind that there is a strong
correlation between MAP, MAR, the ratio of rain to total precipitation and the catchment
area. The model performance in terms of all performance indices tends to increase with
catchment size, mean annual precipitation, and mean annual runoff and the long-term ratio
of snowfall and precipitation. This is confirmed by the correlation coefficients; however, the
latter are mainly due to the fact that there is correlation between catchment size and the
climatological indices, indicating that the catchment size is the most important control on
model performance.

In most of the basins in the study region springtime streamflow is influenced by the water
stored in the snow pack during the winter period. For flood forecasting it is especially
important to estimate the available water storage as accurately as possible. In the second
part of the study (chapter 3) the focus of the analyses is on the snow model. The performance
of the snow module is evaluated on a temporal and spatial scale and with statistical measures
by comparing the simulated snow covered area (SCA) with an independent observed SCA set
derived from MODIS satellite data. The accuracy of snow detection by the MODIS satellites
depends on land cover, snow conditions and snow depth. The comparison of simulated
and observed SCA is not straightforward for two reasons: (1) the satellite data are based
on pixel values which represent the land cover (snow, no snow, no data), i.e., qualitative
values and (2) the simulated snow is based on values of snow water equivalent (SWE) for
elevation zones, i.e., quantitative values. To compare the two data sets, thresholds values
were defined based on a sensitivity study. A threshold value of ξSCA=30% was selected for
SCA. This means that a catchment is considered as snow covered if 30% of the area is snow
covered according to MODIS. A threshold value of ξSWE =2.5 mm was chosen for SWE.
This means that if SWE is bigger that 2.5 mm, the elevation zone is snow covered according
to the simulation. The most important factor for the evaluation of the snow model is the
threshold value for cloud coverage, as with increasing cloud cover the information in the
MODIS data decreases. A threshold value of ξC =80% was selected for cloud coverage.

The space borne snow cover data proved to be very useful for evaluating the snow model,
which was found to simulate the snow well. The temporal comparison of SCA derived from
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MODIS data and SCA estimated from model results indicates good agreement between
observed and simulated SCA. The timing of the snow accumulation and depletion periods
is simulated well. Discrepancies between model and MODIS are observed at the beginning
and end of each snow season which are the times when snow conditions and depth are
difficult to map by means of the satellites. A spatial evaluation of simulated SCA and
MODIS SCA data on a pixel basis taking into account only cloud-free pixels shows good
performance of the snow model for the winter periods from 2003-2009. 88% of the model
area is correctly classified as snow covered or snow free on more than 80% of the days. The
model overestimates the snow cover for ridges and steep slopes at high altitudes, where snow
can be blown away or redistributed by avalanches. The model tends to underestimate the
snow cover in the transition zones from lowland to alpine areas, which may be due to two
reasons: there is an elevation change which is not accounted for in the model structure and
the remote sensing product is underestimating SCA in forested areas.

Flood forecasts are generally associated with errors, which can be attributed to uncertainties
in meteorological forecasts and hydrologic simulations. In the third part of the study (chap-
ter 4) the focus of the analyses is on the relationship between flood forecast errors and the
ensemble spread. So called ensemble forecasts consist of a set of equally likely precipitation
fields to describe possible future conditions of rainfall. The spread of the ensembles is used
to account for the forecast uncertainty. The comparison of forecast errors and ensemble
spread shows, that the total forecast error is larger than the ensemble spread by a factor of
10 to 100 for all lead times, when the ensemble spread is small. For large ensemble spreads,
the spread and the errors are of similar magnitude. On average, for a lead time of 48 hours
the ensemble spread is larger than the total forecast error by a factor of 1.4 for small catch-
ments, and for large catchments the factor is 0.9. This indicates that the ensemble spread
is representative of the total forecast errors in situations with large ensemble spreads, which
are of particular interest for flood forecasting. However, there remains potential to improve
the spread-skill relationship also for small ensemble spreads. Even if the ensemble spread
does not always capture the magnitude of the forecast error, the Spearman’s rank correlation
coefficient shows a clear correlation between the two, meaning that the ensemble spread can
always be used as an index of forecast errors.

Using observed meteorological data as input in the hydrologic model allows separation of the
contribution of each of the uncertainties in the meteorological forecasts and the hydrologic
simulations to the total forecast error. Due to the extended data base, scaling properties
with catchment area and lead time can be identified. For short lead times and small ensem-
ble spreads, the contribution of the hydrologic simulation error to the total forecast error
is dominating. For long lead times and large ensemble spreads, the contributions of the
precipitation forecast error is more important. For the identification of scaling properties
only the largest 10% of the ensemble spreads are considered as these are more likely to occur
when runoff is increasing and therefore are the main interest when forecasting floods. There
is a clear scaling relationship of the forecast error components with catchment area. All
errors decrease clearly with increasing catchment area and decreasing lead time which can
be attributed to averaging effects. For short lead times, the precipitation forcast errors in
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small catchments are large, in large catchments the precipitation forecast errors are small.
This can be attributed to the fact that runoff in large catchments does depend more on
observed precipitation than on the future precipitation at short lead times. Runoff in small
catchments (which have shorter response times) are more dependent on future precipitation,
even at short lead times. The hydrologic simulation error also decreases with catchment area,
but the dependence on the lead time is smaller. The total forecast error as a combination
of the two error components show a strong dependence on catchment area and a moderate
dependence on the forecast lead time. A similar scaling behaviour can be also observed for
the ensemble spreads, which are shown to represent quantitatively the total forecast error
when forecasting floods.

There will always be potential to improve flood simulations and forecasts, not only in small
catchments where the accuracy of the runoff simulation is reasonable, but also in the large
catchments by (1) taking into account anthropogenic effects like retention effects of lakes
and daily runoff fluctuations due to hydroelectric power plants, (2) assimilating snow cover
data, and (3) extending the ensemble spread for runoff forecasting. The analyses of the
operational flood forecasting system for the Danube tributaries show that the hydrological
model is able to reproduce runoff in different hydrological situations well. In the context of
the flood framework directive of the European Union, the flood forecasting system for the
Danube tributaries is an important component of the flood risk management to reduce the
consequences for human health, the environment, cultural heritage and economic activity
associated with floods.
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Statistical measures used to evaluate the model performance include the Nash and Sutcliffe
(1970) coefficient of efficiency (nsme):

nsme = 1−

n∑
i=1

(Qsim,i −Qobs,i)
2

n∑
i=1

(
Qobs,i −Qobs

)2 (A.1)

where Qobs,i and Qsim,i are observed and simulated runoff at hour i, respectively, and Qobs

is the mean observed runoff over the calibration or validation period of n hours. nsme values
can range from ∞ to 1. A perfect match between simulation and observation implies nsme
= 1; nsme = 0 indicates that the model predictions are as accurate as the mean of the
observed data, and nsme< 0 occurs when the observed mean is a better predictor than the
model.

As a measure of bias the volume error, V E, was used:

V E =

n∑
i=1

Qsim,i −
n∑

i=1
Qobs,i

n∑
i=1

Qobs,i

(A.2)

The value can be positive or negative, with a V E of an unbiased model being 0. Values
larger and smaller than 0 imply over- and underestimation, respectively.

Peak discharge errors were estimated as

pde =
Qsim,peak −Qobs,peak

Qobs,peak
(A.3)

where Qobs,peak and Qsim,peak are the observed and simulated peak discharges, respectively.
Based on the peak discharge errors, the mean absolute peak discharge errors mapde (%)
were calculated as

mapde =
1

m
·

m∑
i=1

|pdei| · 100 (A.4)
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where m is the total number of peaks analysed for the calibration (or validation) period of
the catchment.

Analogue to the peak discharge error, peak time errors were estimated as

pte =
t0−peak,sim − t0−peak,obs

t0−peak,obs
(A.5)

where t0−peak,obs and t0−peak,sim are the observed and simulated duration of the rising limb,
respectively. Based on the peak time errors, the mean absolute peak time errors mapte (%)
were calculated as

mapte =
1

m
·

m∑
i=1

|ptei| · 100 (A.6)

where m is the total number of peaks analysed for the calibration (or validation) period of
the catchment.

Spearman’s rank correlation coefficient rs is calculated as

rs = 1−
6 ·

n∑
i=1

d2i

n · (n2 − 1)
(A.7)

with
di = rk(xi)− rk(yi) (A.8)

with rk(xi) as the rank of xi, where the highest value has rank 1 and the lowest value has
rank n. Spearman’s rs can vary between -1 and 1, where -1 represents a completely negative
correlation and 1 represents a completely positive correlation. Completely uncorrelated pairs
of data have a Spearman’s rs of 0. The partial correlation coefficient is calculated as

rxy,z =
rxy − rxz · ryz√

(1− r2xz) ·
(
1− r2yz

) (A.9)

with rXY , rXZ and rY Z as Spearman’s rank correlation coefficient between variables X and
Y , X and Z, and Y and Z, respectively, and rXY,Z as the partial correlation of X and Y
adjusted for Z. For rXY,Z = 0 and rXY �= 0 the correlation is highly influenced by Z, for
rXY,Z = rXY the third variable Z has no influence on the correlation of X and Y .
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A Snow routine

Snow accumulation and snow melt are represented by a simple degree day concept. The
precipitation input P into each catchment is split into rain Pr and snowfall Ps based on the
air temperature Ta:

Pr = P , if Ta ≥ Tr (B.1)

Pr = P · (Ta − Ts)

(Tr − Ts)
and PS = P − PR, if Ts < Ta < Tr (B.2)

Pr = 0, if Ta < Ts (B.3)

with Ts and Tr as the lower and upper threshold temperatures, respectively. The correction
factor CS of snow catch deficit is set to 1 as snow is corrected in the INCA system (Haiden
and Pistotnik, 2009; Haiden et al., 2010). Snow melt starts at air temperatures above a
threshold Tm:

M = (Ta − Tm) ·D, if Ta > Tm and SWE > 0 (B.4)

M = 0, otherwise (B.5)

where M is the amount of melt water per time step, D is a melt factor and SWE is the
snow water equivalent. During rain-on-snow events large melt rates are likely to occur in
northern Austria (Sui and Koehler, 2001). This enhanced melting is represented in the model
by increasing D by a factor of 2 if rain falls on an existing snow pack. Changes in the snow
water equivalent from time step i− 1 to i are then:

SWEi = SWEi−1 + (CS · Ps −M) ·Δt (B.6)

where t is the time step of 1 hour.
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B Soil moisture accounting

For the soil moisture accounting routine the sum of rain and melt, Pr +M , is split into a
component dS that increases the soil moisture of a top layer, SS , and a component Qp that
contributes to runoff. The components are split as a function of SS :

Qp =

(
SS

LS

)β

· (Pr +M) (B.7)

where Ls is the maximum soil moisture storage (Bergström, 1976); β controls the charac-
teristics of runoff generation and is termed the non-linearity parameter. If the top soil layer
is saturated, i.e., SS = LS , all rainfall and snowmelt contribute to runoff and dS is 0. If the
top soil layer is not saturated, i.e., SS < LS , rainfall and snowmelt contribute to runoff as
well as to increasing SS through dS > 0:

dS = Pr +M −Qp −Qby, if Pr +M −Qp −Qby > 0 (B.8)

dS = 0, otherwise (B.9)

Additionally, bypass flow Qby is accounted for. Analysis of the runoff data indicated that in
some catchments flow that bypasses the soil matrix and directly contributes to the storage
of the lower soil zone is important for intermediate soil moisture states SS . For ξ1 · Ls <
Ss < ξ2 · Ls (with ξ1 = 0.4, ξ2 = 0.9) bypass flow was assumed to occur as

Qby = αby · (Pr +M) , if αby · (Pr +M) < Lby, and Qby = Lby, otherwise (B.10)

while no bypass flow was assumed to occur for dry and very wet soils. Changes in the soil
moisture of the top soil layer SS from time step i− 1 to i are accounted for by

SS,i = SS,i−1 + (dS − EA) ·Δt, SS,i > 0 (B.11)

The only process that decreases SS is evaporation EA which is calculated from potential
evaporation, EP , by a piecewise linear function of the soil moisture of the top layer:

EA = EP ·
(
SS

LP

)
, if SS < LP (B.12)

EA = EP , otherwise (B.13)

where LP is a parameter termed the limit for potential evaporation.
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C Catchment routing

Elevation zone scale routing is represented by three reservoirs. The fraction Qp of rain and
snowmelt that contributes to runoff enters the upper zone reservoir and leaves this reservoir
through three paths: percolation to the lower and groundwater zones with a given percolation
rate cp, outflow from the reservoir with a fast storage coefficient of k1, and, if a threshold
L1 of the storage state is exceeded, through an additional outlet with a very fast storage
coefficient of k0. The analysis of observed discharge data suggested that k1 and k2 should
be related to SS . A linear relationship was assumed:

k1 = k1 ∗ ·
(
1 +

δ1 · SS

LS

)
(B.14)

with k1∗ being a storage coefficient and δ1 a free parameter. An analogous relationship for
k2 was used. The percolation rate cp changes with soil moisture and was related to the
storage of the top soil SS by

cp =

(
SS

LS

)γ

· Lcp (B.15)

with Lcp as the maximum percolation rate. Both Lcp and γ are free parameters. The
percolation rate cp is split into two components by a fraction αp which flow into the lower zone
reservoir and the groundwater reservoir. Bypass flow Qby is also split into two components
by a fraction αp and is added to the lower zone reservoir and the groundwater reservoir.
Q0 represents the fast surface or near surface runoff. Q1 is a somewhat slower component
representing interflow. Q2 is the contribution to total runoff from the lower zone. Q3 is
the slowest component representing groundwater flow. For those catchments where part of
the discharge is in the deep subsurface and not captured by the stream gauge, the slowest
groundwater component is reduced by a factor f3 < 1 to account for deep percolation. Total
runoff from an elevation zone then consists of the following components:

Qt = Q0 +Q1 +Q2 +Q3 · f3 (B.16)

For every elevation zone there are a total of 21 parameters. The snow model parameters are
Ts, Tr, Tm, D, CS ; the soil moisture accounting parameters are LS , β, αby, Lby, LP ; and
the elevation zone scale routing parameters are k0, k1, δ1, k2, δ2, k3, L1, Lcp, γ, αp, f3.

The outflow from the reservoirs, Qt, representing a single elevation zone of a catchment is
convoluted by a transfer function which represents the runoff routing in the streams within a
catchment. As a transfer function, a linear storage cascade with the parameters N (number
of reservoirs) and K (time parameter of each reservoir) is used. The convolution is performed
in the state space notation in a similar way as stream routing. The sum of this convoluted
runoff over each direct catchment is used as the lateral inflow to the stream routing model
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of each river reach. There are two within-catchment routing parameters for each catchment,
N , K.

D Stream routing

A linear storage cascade in the state space notation of Szolgay (2004) is used here. If one
assumes that the input vector U to each reservoir is constant within a time interval (i, i−1)
of duration Δt,

Si = F i,i−1 · Si−1 +Gi,i−1 ·U i,i−1 (B.17)

Qi = H i · Si (B.18)

where S and Q are the (nr · 1) state vectors of reservoir storages and outflow with nr being
the number of reservoirs. The number of reservoirs nr is constant for every reach, as is the
time parameter kr. H is an (nr ·nr) matrix that contains the inverse of the time parameter
kr in the diagonal

H =

⎡
⎢⎢⎣

1/kr 0 ... 0
0 1/kr ... 0
... ... ... ...
0 0 ... 1/kr

⎤
⎥⎥⎦ · I (B.19)

where I is the identity matrix. The transition matrices F and G (dimension nr · nr) are
defined as:

F (ι, ζ) = e
−Δt/kr · Δtι−ζ

(ι− ζ)!kι−ζr

(B.20)

G (ι, ζ) = kr − e
−Δt/kr ·

ι−ζ∑
v=0

Δtv

v!kv−1r
(B.21)

for ι greater than or equal to ζ, and F = 0, G = 0 for ι less than ζ, where ι and ζ relate to
the rows and columns of the matrices, respectively. The duration Δt of the time interval is

1 hour. Inflow U
(1)
i,i−1 to each reach is the outflow from the upstream reach. Lateral inflow

from the direct catchments is added to the downstream node.
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This appendix gives an overview of the gauges used in the study. Each table includes
the gauge ID of the Hydrographical Service, the names of the gauges, the rivers and the
countries and the area of the catchments. Further information includes are mean annual
precipitation (mm) as estimated from the available precipitation data, mean annual runoff
(mm) as estimated from the available runoff data, the largest runoff (m3/s) observed in
the period 2002-2009, the mean observed runoff (m3/s) in the period 2002-2009 and the
Nash-Sutcliffe model effiencies (nsme) for the calibration and validation periods.

The areas of the catchments are ranging from 69 to 25600 km2, with a median catchment size
of 444 km2 and a medium catchment area of 1960 km2. Table C.1 includes the catchments
with areas below the median catchment area, table C.2 the catchments with areas between
the median and the medium catchment area, and table C.3 the catchments with areas larger
than the medium catchment area.
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Blöschl, G. and Zehe, E. (2005). On hydrological predictability. Invited commentary. Hydrol.
Process., 19(19):3923–3929. doi:10.1002/hyp.6075.
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92



References

Braun, L. N. and Renner, C. B. (1992). Application of a conceptual runoff model in different
physiographic regions of Switzerland/Application d’un modèle conceptual d’écoulement
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