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Abstract

In this thesis we propose four automatic methods for epileptic seizure prop-
agation analysis in invasive EEG (electrocorticography, ECoG), which allow
to determine the seizure onset zone (SOZ) and the initial seizure spread. In
addition, we compare and discuss these methods.

Epilepsies, defined as disorders with recurrent unprovoked seizures, are
among the most common neuronal diseases. In case of focal epilepsy, seizures
are characterized by abnormal synchronized neuronal discharge in circum-
scribed networks in one hemisphere. About one third of focal epilepsy patients
suffer from drug resistance, and epilepsy surgery has become a valuable treat-
ment option for them. Presurgical evaluation relies on long-term video-EEG
monitoring, but surface electroencephalography (EEG) is often limited by
movement artifacts, suppression of high frequencies and low spatial resolu-
tion. In contrast, invasive subdural strip electrodes (ECoG) allow for a better
identification of the SOZ. As the visual inspection of the ECoG recordings is
a time-demanding and highly subjective task, a computational approach to
epileptic seizure propagation analysis is clinically desired.

Subsequent to chapters on the medical and statistical background we
present four technical methods for epileptic seizure propagation analysis,
which we compare with clinical findings.

First, the detection of ictal high-frequency oscillations (HFOs) allows to
determine the HFO-generating zone and the initial propagation of HFOs. Initial
ictal HFOs typically precede conventional ictal patterns by several seconds,
and the HFO-generating zone is highly correlated with the SOZ.

Second, the application of causality measures in the context of autore-
gressive modeling allows to determine the SOZ. The initial spread of hyper-
synchronous epileptic activity is indicated by arrows, which point away from
the SOZ. For technical reasons, a reduction of the number of channels is needed
for appropriate estimation of the AR model. We propose two different au-
tomatic methods, a channel selection algorithm allowing for classical causal
analysis and an approach based on factor models with a generalized causal
analysis, the so-called influence analysis.

Third, segmentation of the individual channels and classification of the
segments regarding their epileptic character yields the SOZ and the initial
seizure spread. The temporal delay of the start of epileptic activity on differ-
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ent channels is an indicator for seizure propagation. The channels showing
epileptic activity first mark the SOZ.

We successfully test our methods on one therapy-resistant focal epilepsy
patient, and the results derived from their comparison are in very good accor-
dance with the clinical findings. This thesis is concluded with a discussion
about patient-specific issues and performance aspects of the four technical
methods.



Deutsche Kurzfassung

In dieser Dissertation werden vier automatische Methoden zur epileptischen
Ausbreitungsanalyse im invasiven EEG (Elektrocorticographie, ECoG) vorge-
stellt, die die Bestimmung der Anfallsursprungszone (seizure onset zone, SOZ)
und der initialen Anfallsausbreitung erlauben. Darüber hinaus werden diese
Methoden verglichen und diskutiert.

Epilepsien befinden sich unter den häufigsten neuronalen Erkrankungen
und sind durch wiederkehrende, unprovozierte Anfälle gekennzeichnet. Im Fall
von fokaler Epilepsie sind Anfälle durch abnorme, synchronisierte neuronale
Entladungen in umschriebenen Netzwerken in einer Hemisphäre charakteri-
siert. Etwa ein Drittel aller Patienten mit fokaler Epilepsie sind therapierefraktär,
und Epilepsiechirurgie ist zu einer wertvollen Behandlungsmöglichkeit in die-
sen Fällen geworden. Die prächirurgische Diagnostik stützt sich auf Langzeit-
Video-EEG-Monitoring, aber die Oberflächen-Elektroenzephalographie (EEG)
ist oft durch Bewegungsartefakte, Unterdrückung von hohen Frequenzen und
geringer räumlicher Auflösung eingeschränkt. Im Gegensatz erlauben invasive
subdurale Streifenelektroden (ECoG) eine bessere Identifikation der SOZ. Da
die visuelle Befundung der ECoG-Aufnahmen zeitintensiv und stark subjektiv
ist, ist ein computergestützter Ansatz zur epileptischen Ausbreitungsanalyse
klinisch erwünscht.

Nach Kapiteln zum medizinischen und statistischen Hintergrund werden
vier technische Methoden zur epileptischen Ausbreitungsanalyse präsentiert,
die mit der klinischen Befundung verglichen werden.

Erstens erlaubt die Erkennung von iktalen hochfrequenten Schwingungen
(high-frequency oscillations, HFOs) die Identifizierung der HFO-generierenden
Zone und der initialen Ausbreitung der HFOs. Initiale iktale HFOs treten
typischerweise einige Sekunden vor konventionellen iktalen Mustern auf, und
die HFO-generierende Zone ist stark mit der SOZ korreliert.

Zweitens macht die Anwendung von Kausalitätsmaßen im Kontext der
autoregressiven Modellierung die Bestimmung der SOZ möglich. Hierbei wird
die initiale Ausbreitung von hyper-synchroner epileptischer Aktivität durch
Pfeile angezeigt, die von der SOZ wegzeigen. Aus technischen Gründen muss
die Kanalzahl für eine adäquate Schätzung des AR-Modells reduziert werden.
Es werden zwei unterschiedliche automatische Methoden vorgeschlagen: ein
Kanalselektions-Algorithmus, der eine klassische kausale Analyse ermöglicht,
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und ein auf Faktormodellen basierender Ansatz mit einer verallgemeinerten
Kausalanalyse, die sogenannten Einflussanalyse.

Drittens liefern die Segmentierung der individuellen Kanäle und die Klassi-
fikation der Segmente hinsichtlich ihres epileptogenen Charakters die SOZ und
die initiale Anfallsausbreitung. Der zeitliche Versatz des Starts der epileptischen
Aktivität auf den einzelnen Kanälen ist ein Indikator für die Anfallsausbrei-
tung. Die Kanäle, die zuerst epileptische Aktivität aufweisen, markieren die
SOZ.

Die Methoden werden erfolgreich an einem therapierefraktären Patient mit
fokaler Epilepsie getestet, und die aus ihrem Vergleich abgeleiteten Ergebnisse
sind in sehr guter Übereinstimmung mit den klinischen Befunden. Diese
Dissertation schließt mit einer Diskussion von patientenspezifischen Aspekten
und der Leistungsfähigkeit der vier technischen Methoden.
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Ç
àòåì âäðóã êàê áû ÷òî-òî ðàçâåðçëîñü ïðåä íèì: íåîáû÷àéíûé

âíóòðåííèé ñâåò îçàðèë åãî äóøó. Ýòî ìãíîâåíèå ïðîäîëæàëîñü,

ìîæåò áûòü, ïîëñåêóíäû; íî îí, îäíàêî æå, ÿñíî è ñîçíàòåëüíî ïîì-

íèë íà÷àëî, ñàìûé ïåðâûé çâóê ñâîåãî ñòðàøíîãî âîïëÿ, êîòîðûé âû-

ðâàëñÿ èç ãðóäè åãî ñàì ñîáîé è êîòîðûé íèêàêîþ ñèëîé îí íå ìîã áû

îñòàíîâèòü. Çàòåì ñîçíàíèå åãî óãàñëî ìãíîâåííî, è íàñòóïèë ïîëíûé

ìðàê. Ñ íèì ñëó÷èëñÿ ïðèïàäîê ýïèëåïñèè, óæå î÷åíü äàâíî îñòàâèâ-

øåé åãî.

� Ô. Ì. Äîñòîåâñêèé: Èäèîò

N ext moment something appeared to burst open before him: a won-
derful inner light illuminated his soul. This lasted perhaps half a

second, yet he distinctly remembered hearing the beginning of the wail,
the strange, dreadful wail, which burst from his lips of its own accord,
and which no effort of will on his part could suppress. Next moment he
was absolutely unconscious; black darkness blotted out everything. He
had fallen in an epileptic fit.
— The Idiot1 by F. M. Dostoyevsky (1821-1881), one of the most famous
epilepsy patients.

1Part II, chapter V; English translation by Eva Martin
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Chapter 1

Introduction

1.1 Motivation

Advancing medicine and biology through the application of engineering
sciences and technology

— Part of the mission statement of the IEEE EMBS (Engineering in Medicine
and Biology Society)1

In this thesis we are concerned with the automated analysis of epileptic seizures,
the manifestations of one of the most common neurological diseases, epilepsy.
For this purpose we combine technical methods with classical clinical ap-
proaches. This field of research is often referred to as Biomedical Engineering. Its
aim is the use of engineering technology in medicine for the sake of patient’s
cure.

The goal of this thesis is to develop novel technological methods for epileptic
seizure propagation analysis which have the potential for future clinical use.
Therefore, this work is guided by theoretical considerations, but the emphasis
is strictly put on application. In the author’s view, the derivation of theoretical
results and the subsequent validation by simulations is only a prerequisite for
the final step: the test on patient data.

Formal elegance of a technological method is nice to have, but what makes
it »beautiful« in the end is clinical usability. We will see that surprisingly the
mathematically simplest of our methods perform best.

In this thesis we successfully test our methodology on data of one epilepsy
patient. Thus, the material presented in here has to be regarded as a first step
towards clinical usability. A roll-out on a larger group of patients, e.g. at least
five, is the next necessary step, but not within the scope of this thesis. Neither
are in-depth considerations of mathematical theory behind our framework; we
refer to the doctoral thesis of Flamm (2012) for this purpose.

1See the »About EMBS« section on the homepage of the IEEE EMBS, www.embs.org/about-
embs/what-we-do.
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4 CHAPTER 1. INTRODUCTION

1.2 History of epilepsy

PerÈ màn t¨c Éer¨c noÔsvou kaleomènhc Ád>v êqei: oÎdèn tÐ moi dokèei tÀn

�llwn jeiotèrh eÚnai noÔsvwn oÎdà Éerwtèrh, �ll� fÔsvin màn êqei £n kaÈ t�

loip� nousv mata, íjen gÐnetai.

� <Ippokr�thc: PerÈ Éer¨c noÔsvou

It is thus with regard to the disease called Sacred: it appears to me to be
nowise more divine nor more sacred than other diseases, but has a natural
cause from the originates like other affections.

— Hippocrates: On the Sacred Disease, first epileptologic monograph (ca. 400

BC)2

In this section we give a short overview of the historical developments in
social reception, diagnosis and therapy of epilepsies as well as a list of famous
epilepsy patients. This whole section is based on Schneble (2003) where we
refer to for further details.

1.2.1 Historical overview

Hardly any other disease can be traced back so far in history like epilepsy. The
reason for this transparency most probably lies in its high prevalence and the
dramatic clinical symptomatology.

1.2.1.1 Ancient history

Oldest written evidence of epilepsy dates back to the 17th century BC. Ancient
Egyptian hieroglyphics (beginning of the 17th dynasty, 1650-1570 BC) mention
a disease termed »nesejet« which was believed to be divine. The Codex
Hammurabi (17th century BC), §278, assures a warranty clause of 100 days
for slaves suffering from the »benu« disease. Finally, a plate of Babylonian
cuneiform writing (ca. 1050 BC), which is part of a series of plates serving as
an Ancient Babylonian medical textbook, forms an integral chapter on epilepsy.

The Ancient Chinese medicine knows about epilepsy as well, providing
descriptions (Tschou dynasty, 770-221 BC) and classification attempts (Dui
dynasty, 610 AC).

The Old Testament establishes a link between epilepsy and prophecy, com-
pare Feininger (2000). Although a strict technical term for epilepsy is missing,
it provides several evidences including David, Saul and the prophet Bileam
who refers to himself as »falling« (»nôphél«; Numeri, 24, 1-14; 15-16).

The Talmud speaks about epilepsy more often, but mostly with regard to
the social context of the patient.

2Opening of Section 1; English translation by Francis Adams.

Original text and English translation are accessible online via the PERSEUS project at
www.perseus.tufts.edu (»de morbo sacro«).
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The Ancient Greek medicine led to a revolution in epileptology. Hippocrates
(ca. 460-377 BC) published the first epileptologic monograph »On the Sacred
Disease« in which he argues that epilepsy is not divine, but has natural causes
(compare the opening citation of this section). He elaborates this argument
by explaining that »men regard its nature and cause as divine from ignorance
and wonder, because it is not at all like to other diseases. And this notion of its
divinity is kept up by their inability to comprehend it, and the simplicity of
the mode by which it is cured, for men are freed from it by purifications and
incantations.«3 In this text Hippocrates establishes a connection between the
Ancient Greek word »epilambanein« (ἐπιλαμβάνειν = to seize/attack) and the
manifestation of the disease, therefrom the modern term epilepsy.

For the first time in history, Hippocrates considered malfunctions of the
»physis« of the brain, i.e. what characterizes the brain as origin of rational
thinking, as the reason for epilepsy. Although this approach seems to be very
near to modern medicine, the ancient medical concept of humorism developed
by him is not: Hippocrates believed that certain human moods, emotions and
behaviors were caused by body fluids (called »humors«, from the Greek word
χυμός): blood, yellow bile, black bile, and phlegm. According to this school of
thought, seizures are provoked if humors mix in a wrong way, thus disturbing
the equilibrium state in the brain.

As Ancient Roman medicine was heavily built on the Greek one, the
Greek body of thought was incorporated into the Roman epileptology. Aulus
Cornelius Celsus published the first medical text about epilepsy in Latin (»De
medicina libri octo«, ca. 30 BC), using the terms »morbus maior« and »morbus
comitialis«. Claudius Galen (ca. 129-201 AC) extended Hippocrates’ humorism
by mapping the four temperaments (temperare = to mix) to the adjectives
hot/cold/dry/wet. Based on this theory, he provided a classification and
description of epilepsy.

1.2.1.2 Medieval history

As in many other fields of science, the middle ages led to a regression in
epileptology, and the supernatural character of epilepsy became predominant
again. Demons as the cause of epilepsy gave name to the term »morbus
daemonicus«, curable by exorcism. Medieval society referred to the New
Testament as proof for the non-natural character of epilepsy, where it is reported
that Jesus healed a »moonstruck son« (Mt 17, 14ff; Lk 9, 38ff; Mk 9, 17ff). This
argument gave rise to the term »morbus lunaticus«.

3Section 1; English translation by Francis Adams.

Original text and English translation are accessible online via the PERSEUS project at
www.perseus.tufts.edu (»de morbo sacro«).
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1.2.1.3 Modern history

Modern history starts with the period of Renaissance, characterized by a return
to the ancient body of thought. Paracelsus’ (Aureolus Philippus Theophrastus
Bombastus von Hohenheim, 1493-1541) theory that actions in macrocosms
have an analog in the microcosm, i.e. the human body, was applied to epilepsy
as well. He explained the pathogenesis of epilepsy, using the term »morbus
caducus«, by this concordance principle, e.g thunder corresponds to convulsions
of an epilepsy patient. According to this theory, the three principles of the
organism (sulfur, mercury and salt) influenced the pathonogenesis and the
four elements (fire, air, earth, water) defined the severity of epileptic seizures.

It is interesting to note that throughout middle ages and still in Renaissance
epilepsy was believed to be an infectious disease.

In the 17th century Francois de la Boe, also known as Sylvius von Leyden,
claimed that the acidity ratio in the human body was an important indicator in
medicine. In 1674 he published »de morbus infantum« in which he identified
hyper-acid blood components as the cause of epilepsy. Consequently, he
suggested a chemical therapy with alkali. Interestingly, the basis of this idea,
namely the inequality of acids and alkali, still holds in modern medicine,
but the opposite of his argument is true: The alkaline milieu due to e.g.
hyperventilation can provoke seizures.

The 18th and beginning 19th centuries represent the start of modern epilep-
tology. In 1770 Tissot published his »Traité de l’épilepsie« in which he classified
epilepsies into idiopathic - symapathic - essential and introduced a symp-
tomatology into »small« and »big« seizures: a scheme which should influence
epileptology until the 20th century. In 1841, another famous epileptologist,
father West, wrote a letter to the editor of Lancet describing the West syndrome
in his son; an epilepsy syndrome still named after him.

The 19th century meant a break-through in epileptology: Epilepsy was
finally recognized as cerebral disease, which led to the insight that epilepsy
patients need clinical assistance and eventually care.

With natural sciences evolving quicker and quicker in the 19th century,
the second half of this century represented a golden era for epileptology.
Science understood the morphological and functional anatomy of the human
brain and gained patho-physiological insights into the nervous system: In
1870 Gustav Theodor Fritsch and Eduard Hietzing managed to answer the
old question whether seizures can only be generated cortically. In their study
»Über die elektrische Erregbarkeit des Großhirns«, they demonstrated in animal
experiments that the electrical stimulation of cortical areas triggers motor
actions and that endured stimulation can provoke seizures. Only three years
later, in 1873, John Hughlings-Jackson (who can be seen as the father of
modern epileptology) gave a seminal definition of epilepsy in his study »On
the anatomical, physiological, and pathological investigation of epilepsies«.

With the advances in chemistry, systematic epilepsy therapy started: After
the discovery of bromine as element and its extraction from sea water in 1826
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it became an all-round medication in the middle of the century. In the second
half of the century the clinician Charles Locock presumed that it might also
show an anti-epileptic effect – the medicinal therapy of epilepsy was born.

In the 20th century scientific progress still continued to speed up. The
sensational progress in therapy and diagnostic of epilepsy led to the foundation
of the International League Against Epilepsy (ILAE) in Budapest in 1909.

Medicinal therapy was boosted by the discovery of the anti-epileptic effect of
phenobarbital in 1912, as up to that moment only bromine (with a large number
of side effects) was known. Then, step by step, more anti-epileptic agents were
synthesized in a systematic way: introduction of phenytoin in 1938, primidon
in 1952, ethosuximid in 1958, valproic acid as omnipotent anti-epileptic agent in
1962, carbamazepine and other benzodiazepines in 1962. From that moment on
waiting for new anti-epileptic agents should last until the 1990s. Research then
brought a flood of new molecules (vigabatrin, lamotrigin, felbamat, gabapentin,
tiagabin, topiramat, oxcarbazepine, levetiracetam; compare Subsection 2.3.4).

Diagnostic was revolutionized by the invention of the electroencephalogram
(EEG), compare Section 2.2. Hans Berger managed to record brain waves
intra-operatively in 1924 (first doubtless evidence), and his world-famous
publication »Über das Elektrenkephalogramm des Menschen« (Berger 1929)
followed immediately. Modern imaging techniques (CT, MRI, PET, SPECT,
fMRI) then led to a second revolution in the whole field of medicine and are
nowadays an inherent part of modern diagnostics in epileptology, compare
Subsection 2.3.3.

Besides medicinal therapy the surgical treatment came up at the beginning
of the 20th century, compare Subsection 2.3.6. Wilder Penfield (1891-1976),
who worked in Montreal in the 1920/30s, performed the first epilepsy-surgical
intervention: He removed a brain tumor of an adolescent suffering from focal
epilepsy which successfully resulted in seizure remission (Penfield 1934). The
cooperation with the neurophysiologist Herbert Jasper (1906-1999) increased
the post-surgical outcome significantly: Jasper knew how to use Berger’s EEG
for presurgical focus localization, and together they developed the »Montreal
method« based on intra-operative electrocorticographic (ECoG) monitoring.

1.2.2 Famous epilepsy patients

Epilepsy is one of the most common neurological diseases with a prevalence of
0.7% (Hirtz et al. 2007) in the general population. Therefore, many celebrities
as well have been suffering from epilepsy throughout all epochs. Famous
patients with a reliable diagnosis of epilepsy include (Schneble 2003)

Persons of the Holy Bible: Bileam (ca. 1500 BC), Saul (ca. 1000 BC) and the
Holy Paul (ca. 10-67 AC)

Emperors: the Roman emperor Gaius Julius Caesar (100-44 BC), who suffered
from epileptic seizures according to Sueton (»Comitiali quoque morbo
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bis inter res agendas correptus est.«); Napoleon Bonaparte (1769-1821)
and his Austrian adversary Archduke Charles of Austria (1771-1847)

Church representatives: Cardinal Richelieu (1585-1642)

Artists and writers: Gustave Flaubert (1821-1880), Fjodor Michailovich Dos-
tojevskij (1821-1881; epilepsy motives in two of his famous books, »The
Idiot« and »Brothers Karamasov«; compare the introductory quote of this
thesis) and Vincent van Gogh (1853-1890)

Furthermore, indications for epilepsy can be found in literature (auto-biographic
notes and contemporary descriptions) for a wide group of famous people.
However, a definite diagnosis of epilepsy cannot be made in these cases. They
include (Schneble 2003)

Philosophers Socrates, Blaise Pascal and Friedrich Nietzsche

Writers: Dante Alighieri, Francesco Petrarca, Molière, Guy de Maupassant,
Lewis Carrol and Roald Dahl

Musicians: Georg Friedrich Händel and Richard Wagner

Scientists: Paracelsus, Isaac Newton and Hermann von Helmholtz

Statesmen: Alexander the Great, Caligula and Lenin

Church representatives: Hildegard von Bingen, Jeanne d’Arc and Martin
Luther.

1.3 Thesis outline

This thesis is divided into three parts: Introduction, Materials and Methods,
Results and Discussion. This standard structure should guide the reader
through the document in a clear way.

The first part is dedicated to background information on the thesis topic.
It consists of three chapters: The current chapter provides a short historical
overview of epilepsy as well as a general introduction. As this thesis is highly
interdisciplinary, Chapter 2 is devoted to the medical background of epilepsy
and Chapter 3 to the technical background of the employed methodology.

The second part contains the methodological core of this thesis. Chapter 4

provides an overview of quantitative state-of-the-art approaches to epileptic
seizure propagation analysis and outlines the novel framework proposed in
this thesis. The chapter is rounded off by a presentation of the analyzed
ECoG data. The following chapters detail the four technical methods which
are combined in the seizure propagation analysis framework:4 Chapter 5 is

4Each of these four chapters is based on work already published together with co-workers, see the
citation at the beginning of the respective chapter.
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concerned with the automatic detection of high frequency oscillations, Chapters
6 and 7 with a causal analysis of rhythmic epileptiform activity and Chapter
8 with a segmentation and clinically inspired classification of these rhythmic
patterns.

The third part comprises two chapters. Chapter 9 compiles the findings
of the framework for epileptic seizure propagation. Comparing the results of
the individual methodological chapters with complementary medical findings
allows to deduce the potential seizure onset zone as well as the direction of
initial seizure spread. Chapter 10 discusses the particular situation of the
analyzed patient as well as framework-related aspects (limitation to ECoG data,
performance issues). It is concluded by a short outlook.

1.4 Notation

The technical notation employed throughout this thesis follows the one of
the signal processing community (apart from the symbol of the complex unit,
which is denoted by i like in mathematical text books, not by j): Namely, f
symbolizes the non-normalized frequency in Hz and H( f ) a filter frequency
response. Furthermore, we use square brackets [·] to indicate discrete argu-
ments and round brackets (·) for continuous ones; ·T symbolizes transpose,
·∗conjugate, ·H conjugate-transpose and ·̂ estimation. As usually, bold capital
letters denote matrices, bold lowercase ones vectors. For better distinction from
variables, expectation is denoted by E {·} and variance by V {·}. ? denotes
convolution, F {·} the discrete-time Fourier transform (DTFT) and F−1 {·} its
inverse.

Throughout this thesis we will consider real-valued, stationary multivariate
stochastic signals (x[n], n ∈ Z) with time index n, whose realizations represent
ECoG recordings uniformly sampled at a sampling frequency fs. With regard
to the nature of such a signal, we will call each of its K components xk[n], k =

1, . . . , K, a channel. Consequently, we refer to x[n] as multi-channel signal. Its
power spectral density (PSD) is denoted by Sx( f ).

The epilepsy terminology follows the current guideline of the ILAE (In-
ternational League Against Epilepsy) published by Berg et al. (2010). For
electroencephalographic (EEG) expressions we stick to Noachtar et al. (1999)5.

5German-speaking readers might be interested in the translation by Noachtar et al. (2004).
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Chapter 2

Medical Background

We assume that the reader is familiar with basic medical vocabulary, we refer
to Stedman (2005)1 for a medical dictionary.

2.1 Human brain

EÊdènai dà qr� toÌc �njr¸pouc, íti âx oÎdenäc �mØn aÉ �donaÈ gÐnontai kaÈ

aÉ eÎfrosvÔnai kaÈ gèlwtec kaÈ paidiaÈ « ânteÜjen, kaÈ lÜpai kaÈ �nÐai kaÈ

usvfrosvÔnai kaÈ klaujmoÐ.

� <Ippokr�thc: PerÈ Éer¨c noÔsvou

And men ought to know that from nothing else but (from the brain) come
joys, delights, laughter and sports, and sorrows, griefs, despondency, and
lamentations.

— On the Sacred Disease2 by Hippocrates, father of medicine

This section gives a brief overview of anatomy and physiology of the human
brain. Further details can be found in e.g. Kandel et al. (2012).

Note that we will use the English expression rather than the Latin ones
throughout this thesis; however the Latin or Greek terms (if different from the
technical term used in English) are specified in italic between brackets in this
section whenever a structure is mentioned for the first time.

2.1.1 Anatomy

We start with a top-level view on the human head, compare Fig. 2.1.1. The skin
(cutis) is the outermost coating of the human head (caput). It covers the skullcap
(calvaria) which is the upper part of the cranium, the latter surrounding the

1German-speaking readers might be interested in Grossmann (2013).
2Opening of Section 14; English translation by Francis Adams.

Original text and English translation are accessible online via the PERSEUS project at
www.perseus.tufts.edu (»de morbo sacro«).

11
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Figure 2.1.1: Schematic representation of the head in frontal section. Tis-
sues are indicated in the picture by the respective Latin terms. Pictures is taken
from the anatomical atlas by Paulsen and Waschke (2010).

cranial cavity (which contains the brain).3 Below the skullcap we find the
meninges, a system of membranes consisting of three layers which protect the
central nervous system: directly below the skull the dura mater (dura mater
cranialis), as middle layer the arachnoid mater (arachnoidea mater cranialis) and
finally the pia mater (pia mater cranialis). Between the two last we have the sub-
arachnoidal space (spatium subarachnoideum) which is filled with cerebrospinal
fluid, acting as a protective buffer.

The meninges cover the surface of the brain (encephalon), i.e. the cortex,
which consists of gyri and fissures (sulci). The gray matter of the cortex is
built up of neurons and covers the white matter situated below, which mostly
contains glial cells and myelinated axons.

The brain is the most complex organ of the human body, taking approxi-
mately 1000-1400cm3. The schematic representation in Fig. 2.1.2 illustrates its
structure: It is divided into cerebrum (telencephalon), interbrain (diencephalon),
midbrain (mesencephalon), pons, cerebellum and medulla (medulla oblongata)
which structurally continues with the spinal cord (medulla spinalis). This clas-
sification is due to the early development of the brain out of the neural tube,
as indicated in Fig. 2.1.2: cerebrum and interbain originate from the fore-
brain (proencephalon); pons, cerebellum and medulla from the hindbrain
(rhomencephalon).

In the following we will limit ourselves to the anatomy of the cerebrum
whose surface forms the cortex. It consists of two hemispheres (right and
left), separated by the inter-hemispheric fissure (or longitudinal fissure, fissura
longitudinalis). As Fig. 2.1.3 details, each of the two hemispheres is clustered

3The skullcap is made up of the frontal, occipital, right and left parietal, right and left temporal,
sphenoid, and ethmoid bones; therefrom the nomenclature of the lobes.
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Figure 2.1.2: Schematic representation of the brain in median view. Struc-
tures are indicated in the picture by the respective Latin terms. Structures marked
with an asterik form the brain stem (truncus encephali). Pictures is taken from
the anatomical atlas by Paulsen and Waschke (2010).
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Figure 2.1.3: Schematic representation of the cerebrum. (a) superior view,
(b) inferior view, (c) lateral view, (d) medial view. Lobes and their delimiting sulci
are indicated in each of the images by their respective Latin terms. Pictures are
taken from the anatomical atlas by Paulsen and Waschke (2010).
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into four lobes (lobi) which are separated by fissures:

Fontal lobe (lobus frontalis), bordered by the central fissure, the lateral fissure
and the cingulate fissure

Temporal lobe (lobus temporalis), bordered by the lateral fissure and the preoc-
cipital notch (incisura preoccipitalis)

Parietal lobe (lobus parietalis), bordered by the central fissure, the lateral fissure,
the cingulate fissure and the parieto-occipital fissure

Occipital lobe (lobus occipitalis), bordered by the preoccipital notch and the
parieto-occipital fissure

In addition, the limbic lobe (lobus limbicus) and the insular cortex (lobus insularis)
are part of the cerebrum. The insular cortex is covered by the opercula (»little
lids«) of the frontal, parietal and temporal lobes (thus not visible in Fig. 2.1.3,
but in Fig. 2.1.4 (d)).

The primary fissures of the cortex which separate the lobes are

Central fissure (sulcus centralis), located between frontal and parietal lobe; thus
separates the (motoric) precentral gyrus and the (sensitive) postcentral
gyrus.

Lateral fissure (sulcus lateralis), separates frontal, parietal and temporal lobe;
below this fissure the lateral fossa (fossa lateralis) and the insular cortex
are located.

Parietooccipital fissure (sulcus parieto-occipitalis), runs from the interhemi-
spheric fissure along the medial hemispheric surface to the calcarine
fissure; separates parietal and occipital lobe.

Calcarine fissure (sulcus calcarinus) located on the medial hemispheric surface
like the parieto-occipital fissure.

Cingulate fissure (sulcus cinguli) separates the limbic lobe and the frontal and
parietal lobes.

Fig. 2.1.4 shows gyri and fissures of the cortex in greater detail. In thesis we
will be primarily interested in the temporal lobe.

For a better understanding of the anatomy of the cerebrum, consider the
coronal head section in Fig. 2.1.5. Note the characteristically folded shape
of the cortex with its gyri and deep fissures. The image reveals the inner
structure of the cerebrum, including a coronal view on the temporal lobe
(comprising structures (1) - (6)) and the hippocampus (structure (1)). The latter
is particularly important in the surgical treatment of mesial temporal lobe
epilepsy (mTLE), compare Subsection 2.3.6.
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Figure 2.1.4: Gyri and sulci of the cerebrum. (a) superior view, (b) inferior
view, (c) lateral view, (d) lateral view after ablation of the opercula of the frontal,
parietal and temporal lobes. Gyri and sulci are indicated in each of the images
by their respective Latin terms. Pictures are taken from the anatomical atlas by
Paulsen and Waschke (2010).

Figure 2.1.5: Coronal head section revealing inner structures. Numbers
indicate (1) hippocampus, (2) parahippocampal gyrus, (3) fusiform gyrus, (4)
inferior temporal gyrus, (5) middle temporal gyrus, (6) superior temporal gyrus,
(7) lateral fissure, (8) postcentral gyrus, (9) central sulcus, (10) precentral gyrus,
(11) superior frontal gyrus, (12) cingulate gyrus, (13) corpus callosum, (14)
lateral ventricle, (15) thalamus, (16) putamen, (17) temporal (inferior) horn of the
lateral ventricle, (18) red nucleus, (19) substantia nigra, (20) pons, (21) tentorium
cerebelli, (22) ambient cistern. The temporal lobe comprises structures (1) - (6).
Picture is taken from Duvernoy (1998).
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Figure 2.1.6: Schematic representation of neural information transmis-
sion. Electrical transmission through action potentials along the axon and
chemical transmission across the synaptic cleft by neurotransmitters. Picture is
taken from Wikimedia Commons (commons.wikimedia.org)

2.1.2 Physiology

As already mentioned in the last subsection, the brain is primarily built up
of two groups of cells: neurons and glial cells. The latter perform a number
of critical functions, including structural and metabolic support as well as
insulation. Although they were believed not to take part in active neural
information transmission for a long time, this view has changed recently
(Gourine et al. 2010). However, the exact mechanism remain unclear.

On the other hand, the role of neurons in information transmission is
well understood. They belong to a group of specialized cells characterized
by electrical excitability and the presence of synapses. As is well known,
neural signal transmission happens electro-chemically, compare Fig. 2.1.6:
Synaptic, i.e. chemical, signals from other neurons are received by the soma
and dendrites. This excitation results, if above a threshold, in a raised action
potential, compare the model of Hodgkin and Huxley (1952). Hereby, the
excitability of the neuron is influenced by voltage-dependent ion channels (e.g.
Na, K, Ca). The action potential then travels along the axon to its synaptic end
where neurotransmitters are released.

These neurotransmitters open or close ionic channels of the subsequent
neuron. Hereby two main types of transmitters act as antagonists: glutamate
in an excitatory and GABA in an inhibitory way. The signal is thus transmitted
chemically across the postsynaptic cleft and registered by receptors on the
soma or dendrites of the next neuron. These receptors contain ionic channels
themselves or act on other channels via »second messengers«. In either way,
the chemical signal is re-converted into an electric stimulus which can provoke
an action potential again.
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The action potential itself is extremely short in duration (1-2 ms), while
the postsynaptic potentials are considerably slower. Unlike action potentials,
they do not follow the all-or-none law, but superpose each other. Thus, they
generate slowly changing sum potentials with wide range. This subcortically
generated activity propagates to the surface, where it can be measured as
rhythmic activity, e.g. by the EEG (compare Section 2.2).

The exact genesis of this rhythmic activity has not been clarified yet entirely.
In principle there are two distinct mechanisms:

Pulse generator A strong pulse generator initially starts rhythmic activity and
forces other neurons into its rhythm. Hereby one single neuron could
already act as generator.

Feedback processes Several neurons participate in the genesis of rhythmic
activity. Here all neurons of the network contribute equally, and the
rhythmicity is a result of feedback processes.

The function of this rhythmic activity is widely unknown, except of some
particular cases (e.g. gamma activity as support for neuronal coordination,
»feature binding«).

While in physiological conditions the neural firing happens in a controlled
way (leading to distinct synchronized areas), it is out of order in epilepsy
patients during seizures (see Section 2.3). In the initial seconds of an epileptic
seizures the pulse generator hypothesis serves as explanatory model, but in
later stages the neuronal activity seems to be described better by feedback
processes (Dudek et al. 1999).

2.2 Electroencephalography

Wir sehen im Elektrenkephalogramm eine Begleiterscheinung der ständi-
gen Nervenvorgänge, die im Gehirn stattfinden, genau wie das Elektro-
kardiogramm eine Begleiterscheinung der Kontraktionen der einzelnen
Herzabschnitte darstellt.

— Hans Berger: Über das Elektroenkephalogramm des Menschen

In the electroencephalogram we observe an accompanying phenomenon of
permanent nerve processes that take place in the brain, just like the electro-
cardiogram represents an accompanying phenomenon of contractions of
individual heart segments.4

— On the Electroencephalogram of Man by Berger (1929), pioneer in human
electroencephalography

4Own translation.
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This section gives a short introduction to the field of electroencephalography.
For further information we refer to two standard works, Niedermeyer and
Lopes da Silva (1993) and Ebersole and Pedley (2003). Lüders and Noachtar
(1994) is an EEG atlas with many recording examples.

2.2.1 De�nition

The electroencephalography (EEG, from the Greek terms εν = in, κεφαλή = head
and γράφειν = to write) is a clinical diagnostic method for measuring the
electrical activity of the cortex. This is done by recording of potential differences
between electrodes placed on the scalp. Each of the measured potentials is the
superposition of potentials caused by the electrical activity of the individual
neurons located in the neighborhood of the respective electrode, compare
Subsection 2.1.2. Recording of these potential differences over time yields the
oscillating EEG signal. The electroencephalogram (abbreviated to EEG as well) is
the graphical illustration of these oscillations. By convention, negative values
of the potential difference are plotted on the positive ordinate, positive values
on the negative ordinate (which is inverse to our everyday representation).

Nearly 100 years ago the German neurologist Berger (1929) successfully
accomplished the task of recording and displaying human cerebral activity
for the first time. Since then the EEG has been established as a standard
non-invasive and cheap diagnostic tool in neurology, in particular in epilepsy
diagnosis (compare Subsection 2.3.3).

Recorded cerebral activity shows oscillations with varying frequency, de-
pending on anatomy and neurophysiology. The following frequency bands are
typically distinguished:

Delta (δ): < 4 Hz, e.g. in adults in slow-wave sleep (sleep stage N3).

Theta (θ): 4-8 Hz, e.g. a specific form of epileptic discharges, see Subsection
2.3.6.

Alpha (α): 8-13 Hz, e.g. posterior basic rhythm in adults.

Beta (β): 13-30 Hz, e.g. increased frontal beta activity due to benzodiazepine
administration.

Gamma (γ): > 30 Hz, with 2 specific sub-bands: ripple band (80-250 Hz) and
fast ripple band (250-500 Hz), see Subsection 2.3.6.

2.2.2 Recording conventions

In order to achieve comparability and reproducibility of electroencephalograms,
Jasper (1958) proposed the 10-20-system which still represents the recording
standard today. The name refers to the fact that the distances between adjacent
electrodes are either 10% or 20% of the distance from nasion to inion or between
the left and right preaurical points, as shown in Fig. 2.2.1 (a).
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Each electrode position has a letter to identify the lobe and a number to
identify the hemisphere location. The letters F, T, P and O symbolize the
respective lobes, the letter C is used for electrodes placed on the mid-line. Even
numbers are assigned to electrode positions on the right hemisphere, odd ones
to positions on the left hemisphere.

The 10-20-system can be extended to the so-called 10-10-system (Chatrain
et al. 1985), where all adjacent electrodes are separated by 10% of the reference
distances on the skull, compare Fig. 2.2.1 (b). Note that four electrodes (marked
in black color in the picture) have different labels in this system.

The advantage of this extended recording system lies in the increased spa-
tial resolution. On the other hand, the increased effort for properly applying
all electrodes is a drawback. Furthermore, in many applications the reduced
number of EEG channels provided by the 10-20-system is sufficient. Depending
on the context, a practical alternative is usage of the 10-20-system with some
additional positions taken from the 10-10-system. For instance, in case of tem-
poral lobe epilepsy additional usage of electrodes FT9/10 and TP9/10 might
be of interest (as done in long-term video-EEG monitoring at Neurological
Center Rosenhügel, see Subsection 2.3.6).

As the EEG represents potential differences rather than absolute values
(compare Subsection 2.2.1), the electroencephalogram depends on the setup,
i.e. how these differences are calculated. The most natural setup is the reference
setup. Here one specific electrode is designated as common reference, and
all other channels represent the respective potential differences to this elec-
trode. Another possible way of recording is the bipolar setup. Here, differences
are measured subsequently along defined paths between adjacent electrodes.
Depending on the paths, one obtains various bipolar setups, including the
prominent longitudinal bipolar setup (»double banana«: two paths from anterior
to posterior on each hemisphere in banana-shape).

Note that nowadays, as EEG is registered by digital means, the setup plays
a subordinate role in the recording process. This is due to the fact that, once
the EEG has been recorded in reference setup, any other setup configuration
can be calculated: The new channels are obtained by simply subtracting the
desired reference from the actual channels. This allows the definition of the
so-called common average setup, where the mean of all (or a selected set of)
channels acts as virtual reference.

Therefore, digital EEG is simply recorded in reference setup, and the EEG
program then displayed the traces in the appropriate setup on demand. Fig
2.2.2 shows exemplary EEG recordings in different setups: in bipolar setup in
Fig. 2.2.2 (a) and in common average setup in 2.2.2 (b). Data are taken from a
patient undergoing long-term video-EEG monitoring at Neurological center
Rosenhügel in March 2011. The patient suffers from epilepsy with cavernoma
in the right temporal lobe5. Note the prominent spike at electrode FT10 on
the right hemisphere which is clearly visible in both setups. The method of

5See Subsection 2.3.2 for epilepsy classification.
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(a)

(b)

Figure 2.2.1: EEG recording conventions. (a) standard 10-20-system used for
routine EEG recording, (b) enhanced 10-10-system. Electrodes marked in black
color have different labels in the 10-10 system. Pictures is taken from Malmivuo
and Plonsey (1995).

localizing discharges in EEG (electrode FT10 in this example) will be discussed
in the next subsection.

Digital EEG has usually been recorded at a sampling frequency of 128 Hz or
256 Hz. As the hardware (recording boxes, storage systems, processing power
of computers) has become increasingly powerful in the last years, nowadays
higher sampling frequencies such as 1024 Hz are also common. These allow,
for instance, for the recording of oscillations in high-frequency bands (HFOs,
compare Subsection 2.3.5).

2.2.3 Localization of discharges

As motivated in the last section, localization of discharges is needed for the
determination of the position of EEG correlates (lateralization or even exact
electrode position, if possible).
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(a)

(b)

Figure 2.2.2: Exemplary EEG recordings. (a) bipolar longitudinal vs (b)
common average setup. In both cases a spike is clearly visible at electrode FT10 on
the right hemisphere.
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In principle, we can distinguish several levels of localization accuracy:

focal or multi-focal: only applies to invasive EEG (with increased spatial reso-
lution), compare Subsection 2.3.6.

regional: The discharges are limited to one lobe or to a part of one lobe.

multi-regional: The discharges affect 3 or more lobes on both hemispheres.

lateralized: The discharges are limited to one hemisphere, but a better spatial
resolution is not possible.

generalized: Both hemispheres are involved.

In order to localize electroclinical correlates one has to consider the polar-
ity convention and localization rules. In the following we give a very brief
overview:

First, recall that the EEG is recorded by a differential amplifier with two
input channels, say input 1 and input 2. It amplifies the potential difference
input1 - input2. This leads to the following polarity convention:

»up« rule: We obtain a negative signal (displayed on the positive ordinate,
thus »up«) if input 1 is negative or input 2 positive.

»down« rule: In analogy, we obtain a positive signal (displayed on the negative
ordinate, thus »down«) if input 1 is positive or input 2 negative.

Second, the application of this polarity convention to the field potential (as
distributed over the cortex) results in localization rules, which are summarized
in Table 2.2.1. They are dependent on the setup, i.e. differ between bipolar and
reference setup, where in the latter case the reference can be an electrode or a
computed reference (e.g. common average, compare Subsection 2.2.2). The two
important cases commonly encountered are set in bold-face type in Table 2.2.1:
In case of bipolar setup a phase reversal indicates the maximum of the field
potential, in case of reference setup and absence of phase reversal the maximal
amplitude indicates the maximum of the field potential.

Consider the exemplary EEG recordings in Fig. 2.2.2 as an example: The
electroclinical correlate of interest is the spike/sharp wave, an epilepsy-typical
potential which is characterized by a negative field potential. In the following
we examine the (lateral) electrode series Fp2 - F8 - FT10 - T8 - P8 - 02 on the
right hemisphere. As mentioned in Subsection 2.2.2, it combines electrodes
from the 10-20 and the 10-10 system.

The bipolar setup in Fig. 2.2.2 (a) shows a negative phase reversal between
F8-FT10 and FT10-T8, i.e. F8-FT10 and FT10-T8 point to (not from) each other.
The phase reversal is therefore located at electrode FT10, which represents the
maximal (negative) field potential. Thus, the spike/sharp wave is located at
electrode FT10.

The common average setup in Fig. 2.2.2 (b) does not reveal any phase
reversal, and the maximal amplitude is shown over electrode FT10. Therefore,
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Setup Phase reversal Localization

bipolar no min/max of field potential is located at the end of the
electrode series

bipolar yes min/max of field potential is located at the electrode
of phase reversal

reference no reference electrode is min/max of field potential
if min (i.e. reference properly chosen): channel with
highest amplitude is max of field potential

reference yes reference electrode is neither min nor max of potential
field, thus located within field (i.e. reference not
properly chosen)

Table 2.2.1: Localization rules in EEG for bipolar and reference setup. In
either case, the description of the situation most commonly encountered is set in
bold-face type.

FT10 represents the maximal field potential, the spike/sharp wave is thus
located at FT10.

2.2.4 Artifacts

Artifacts are oscillations in the EEG which are not generated by cortical ac-
tivity. They compromise the quality of the recordings, thus may influence
the judgment of the clinician. In the worst case, this might even lead to
misinterpretation of the EEG correlates.

Artifacts are clustered into two groups, physiological artifacts and technical
artifacts.

Physiological artifacts are caused by the patient. They are characterized by
a typical field and a typical form of the EEG correlates and show spontaneous
onset and offset. Typical physiological artifacts include

blink artifacts caused by the bulb of the eye which generates a dipole (pos-
itive at the cornea). When the lid is closed, the bulb quickly turns up,
therefrom the artifact. Involved electrodes are (at least) Fp1/Fp2.

eye movement artifacts caused by (slower) lateral or vertical eye movements.
Again, the frontal electrodes are involved.

muscle artifacts induced by muscle contractions (chewing, tensing of the
temple muscle due to stress, motor activities during epileptic seizures).
The EEG signal is blurred by oscillations of high frequency, typically in
the β-band.

ECG artifacts caused by the dipole of the beating heart (top of the heart is
positive). In order to facilitate the recognition of the sharp, low-amplitude
artifacts, the ECG is recorded in parallel to the EEG.
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Figure 2.2.3: Typical physiological artifacts. Exemplary EEG recordings in
bipolar longitudinal setup from a postictal phase revealing blink artifacts (frontal
electrodes Fp1 and Fp2) and muscle artifacts (blockwise on all electrodes).

pulsation artifacts caused by electrodes which are placed directly over an
artery. Pulsation leads to a minimal electrode movement which generates
these artifacts. They are again easy to recognize due to the parallel ECG
trace, as they follow the heart beat by 200-300 ms.

glossocinetic artifacts caused by tongue movements as the tongue also consti-
tutes a dipole (front end negative).

galvanic skin artifacts caused by sweating which alters the skin resistance.
This results in a high-amplitude slow drift of the concerned channel.

Fig. 2.2.3 shows EEG recordings obtained during a post-ictal phase in the course
of long-term video-EEG monitoring (see Subsection 2.3.6) at Neurological
Center Rosenhügel. These recordings exhibit two prominent physiological
artifacts, muscle artifacts (present block-wise on all channels) and blink artifacts
(frontal electrodes Fp1 and Fp2 with a decreasing field in posterior direction).

On the other hand, technical artifacts are not directly caused by the patient,
but by the instrumentation itself. Typical representatives of this group include

line interference artifacts caused by electromagnetic induction of the 50 Hz
(in Europe, 60 Hz in the US) line frequency which leads to characteristi-
cally blurred signals. Note that this artifact can be easily filtered out by
setting a notch, i.e. a narrow band-stop, filter at the disturbing frequency.

electrostatic induction artifacts caused by electrostatic induction of instru-
mentation or the persons involved, e.g. by movement of the EEG assistant
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Figure 2.2.4: Typical technical artifacts. Exemplary EEG recordings in bipo-
lar longitudinal setup revealing line interference (all electrodes) and cable artifacts
from loose electrodes (TP9-10).

(amplified by inappropriate clothing). Electrostatic induction artifacts
typically result in sharp (vertical) transients due to the locally induced
potential with a slow decay back to the baseline level.

electrode or cable artifacts caused by the electrode itself (defect, dry or loose
due to e.g. motor movement of the patient) or a broken cable. This type
of artifact is easy to recognize as only the concerned channel alone shows
irregularities (no field potential visible).

Fig. 2.2.4 shows EEG recordings from the same examination as before in Fig.
2.2.3, but during an interictal period. Here they exhibit two prominent technical
artifacts, 50 Hz line interference (present on all channels) and electrode/cable
artifacts (loose electrodes TP9/10).

2.2.5 Invasive EEG

EEG is a cheap and non-invasive diagnostic technique, but suffers from two
main limitations: First, the spatial resolution of surface EEG is limited to a
regional localization (compare Subsection 2.2.3). Second, EEG recordings are
often impaired by artifacts (compare Subsection 2.2.4). In order to increase the
spatial resolution and to reduce artifacts, in particular muscle artifacts, one can
switch to invasive EEG.

In invasive or intracranial electroencephalography, the electrodes are im-
planted under the cranium, therefrom the name. There are basically two types
of invasive EEG:



26 CHAPTER 2. MEDICAL BACKGROUND

Subdural EEG: Subdural strip or grid electrodes are implanted under the dura
mater (compare Fig. 2.1.1), thus directly record cerebral activity from the
cortex. This recording technique is therefor termed electrocorticography
(ECoG).
Usage of strip electrodes only requires a minimally surgical intervention
(insertion of the strip through a hole in the cranium and exact placement
intracranially), but recording of activity is limited to the area along a line.
On the other hand, grid electrodes (e.g. quadratic 8× 8-grids) are able
to record from a large area, but require a craniotomy for implantation.
We refer to Quesney and Niedermeyer (1993) and Arroyo et al. (1993) for
detailed information about ECoG.

Intracerebral EEG: Spenoidal or depth electrodes are pushed into the cere-
brum, thus are able to directly record activity from deeper brain struc-
tures, e.g. the hippocampal region. The advantage of this technique is
the increased spatial resolution of inner cerebral activity. However, the
implantation of such electrodes requires increased preparatory effort in
order to avoid damage of the neural vascular system.

Compare Fig. 2.2.5 for photos of invasive electrodes and equipment manu-
factured by AdTech (used at Neurological Center Rosenhügel). Fig. 2.2.5 (a)
and (b) show subdural electrodes, Fig. 2.2.5 (c) exhibits sphenoidal electrodes
together with steel needles needed for their insertion into the cerebrum. The
invasive recording requires increased hygienic measures: The sterile cables
of the invasive electrodes are connected via a (sterile) connector block to the
standard surface EEG recording system (not sterile), see Fig. 2.2.5 (d).

A prominent application of invasive EEG is presurgical evaluation of
epilepsy patients, compare Subsection 2.3.6. Localization is done in exactly the
same way as in surface EEG (compare Subsection 2.2.3), as the recording tech-
nology itself, i.e. differential amplification, does not differ. Note, however, that
there are no standard recording schemes in case of intracranial EEG, because
each electrode implantation is tailored to the diagnostic needs of the individual
patient.

2.3 Epilepsies

Epilepsy is the name for occasional, sudden, excessive, rapid, and local
discharge of grey matter.

— On the anatomical, physiological, and pathological investigation of epilepsies by
Hughlings-Jackson (1873), father of modern epileptology

This section gives an introduction to epilepsies, based on Baumgartner (2001)
where we refer to for further details. Here we briefly discuss their defini-
tion, classification, diagnosis and therapy. The section is rounded off by an
introduction to epilepsy surgery and a brief discussion of related social aspects.
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(a) (b)

(c) (d)

Figure 2.2.5: Invasive electrodes and equipment. (a) subdural strip electrode
(b) subdural grid electrode (c) sphenoidal electrodes with needles for insertion (d)
connector blocks for attaching the cables of the invasive electrodes to the standard
surface EEG system. Pictures are taken from the homepage of the manufacturer
AdTech, www.adtechmedical.com.

2.3.1 De�nitions

Epileptic seizures represent the clinical manifestation of excessive, hyper-
synchronous neuronal discharges of the cortex. They originate in a
setting of both increased cell excitability and altered inter-neuronal syn-
chronization (Tavee 2010). Clinical symptomatology hereby depends on
the function of the affected neural network and can comprise disorders of
advanced brain functions, limitation of consciousness, abnormal sensory
or psychical perceptions, motor disorders or generalized spasms (see
Subsection 2.3.2). An epileptic seizure is an unspecific reaction of the
brain to various insults or lesions.
The time frame during an epileptic seizure is termed ictal, preceded by
preictal and followed by postictal periods. The two latter are part of the
interictal time frame, i.e. the one between two epileptic seizures.

Epilepsies form a heterogeneous group of neurological disorders which are
characterized by unpredictable, unprovoked and recurrent epileptic
seizures. The diagnosis of epilepsy depends on the persistence of the
cause during interictal periods. Therefore, a single, unprovoked epileptic
seizure does not lead to the diagnosis of epilepsy.
Note that acute symptomatic seizures (acute affection of the central
nervous system, e.g. infections, traumata, cerebrovascular diseases, or
acute systemic impairment, e.g. alcohol, sleep deprivation, medication,
metabolic disorders) do not indicate epilepsy, as in this case an immediate
activator can be identified. Neither do febrile seizures, which are, by
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definition, acute symptomatic seizures, but form their own subgroup due
to their specific characteristics (age, genetic predisposition).
The ICD-10 classification of the WHO for epilepsies is G40.x (where x
stands for the various syndromes, compare Subsection 2.3.2). According
to the WHO, epilepsies are defined by two or more recurrent unprovoked
epileptic seizures.

Status epilepticus (ICD-10 classification G41.x) is not in the scope of this
thesis, but mentioned for the sake of completeness. According to the
German Society for Neurology, the status epilepticus is

– either an epileptic seizure whose duration exceeds the duration of
five minutes

– or a series of epileptic seizures which follow each other so rapidly
that neither a clinical nor electroencephalographic restitution takes
place interictally.

Epilepsies represent one of the most common neurological disorders, with
a prevalence of 0.7% (Hirtz et al. 2007). Incidence shows two peaks, with one
maximum in the first life months (with a strong decline after the first life year,
a stable level in the first 10 years and a second decline in adolescence) and a
second maximum in old age (> 60 years). Adulthood forms a minimum. Note
that only 50% of epilepsies manifest before the age of 20, 25% after the age of
60 (Banerjee and Hauser 1997).

Although epilepsies comprise a wide group of various syndromes (compare
Subsection 2.3.2), the course of disease follows of one of three paths in general:

Complete remission after an initial seizure, on a long-term perspective even
without medication. This positive case is not in the focus of this thesis.

Partial remission is caused by remission and subsequent relapses, often in the
course of discontinuation/reduction of medication. Compare Subsection
2.3.4 for references concerning medicinal therapy.

No remission is characterized by high seizure frequency with only short or
even inexistent remissions in between. Compare Subsection 2.3.6 for an
introduction to epilepsy surgery in case of therapy resistance.

Note that in about 30% of all cases a first seizure is followed by a second,
i.e. develops into an epilepsy (Hauser et al. 1982).6 Compare Schmidt and
Sillanpää (2012) for patterns of remission in the history of treated epilepsy.

2.3.2 Classi�cation

An important aspect in epileptologic classification is the difference between
syndromes and symptoms (Noachtar et al. 1998). The (observed) epileptic seizure

6Therefore, anti-epileptic medication is only advised after a first seizure if MRI or EEG is positive.
Compare Subsection 2.3.4 for drug therapy.
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1. Generalized seizures 2. Focal seizures 3. Unknown

1.1 tonic-clonic

1.2 absence

– typical
– atypical
– absence with special

features (myoclonic
absence, eyelid
myoclonia)

1.3 myoclonic

– myoclonic
– myoclonic atonic
– myoclonic tonic

1.4 clonic

1.5 tonic

1.6 atonic

2.1 without impairment of consciousness
or awareness

– with observable motor or autonomic
components
i.e. »simple partial seizure« in old
nomenclature

– involving subjective sensory or
psychic phenomena only
i.e. »aura« in old nomenclature

2.2 with impairment of consciousness or
awareness
i.e. »complex partial seizure« in old
nomenclature

2.3 evolving to bilateral, convulsive seizure
(involving tonic, clonic, or tonic and
clonic components)
i.e. »secondarily generalized seizure«
in old nomenclature

Table 2.3.1: ILAE classification 2009 of seizures. The two groups of general-
ized and focal seizures are refined according to clinical symptomatology.

itself is the symptom of the disease. The description of the symptom is carried
out by electroclinical analysis (visual inspection of the EEG correlates) and
interpretation of the clinical symptomatology (semiology). The syndrome, on
the other hand, depends on the etiology, i.e. the underlying type of cause. The
diagnosis which syndrome the patient suffers from is a result of the synopsis of
the findings (medical history, seizure semiology, EEG correlates, MRI findings,
genetic data).

A particular symptom may be observed in different syndromes, and a
particular syndrome may provoke different symptoms. Therefore, therapy
recommendation is deduced from the syndrome, not from the symptom(s).

In the following we summarize the ILAE classification 2009 (Berg et al.
2010) which defines the current scientific description of seizures, etiology and
epilepsies.

First, seizures are clustered into three groups according to the electroclinical
findings: generalized seizures, focal seizures and seizures of unknown type.
The classification of generalized and focal seizures is refined based on the
clinical symptomatology, as can be seen from Table 2.3.1.

Note that this classification is based on both the electroclinical findings and
the clinical symptomatology. A classification purely with regard to semiology
was proposed by Noachtar et al. (1998).



30 CHAPTER 2. MEDICAL BACKGROUND

Electroclinical syndromes arranged by age at onset
Neonatal period
Infancy, e.g. West syndrome
Childhood, e.g. Lennox-Gastaut syndrome
Adolescence - Adult, e.g. juvenile myoclonic epilepsy
Less specific age relationship

Distinctive constellations
e.g. mesial temporal lobe epilepsy with hippocampal sclerosis

Epilepsies attributed to and organized by structural-metabolic causes
Malformations of cortical development
Neurocutaneous syndromes
Tumor
Infection
Trauma

Angioma
e.g. perinatal insults, stroke

Epilepsies of unknown cause

Conditions with epileptic seizures that are traditionally not diagnosed as a form
of epilepsy per se

Benign neonatal seizures
Febrile seizures

Table 2.3.2: Summary of the ILAE classification 2009 of epilepsies. Table
is shortened, only some prominent examples are shown.

Second, etiology is grouped into three constellations:

Genetic: The epilepsy is the direct result of a known or presumed genetic
defect. Verifiable by genetic tests (if existent) or by positive family history.

Structural/metabolic: A distinct structural or metabolic condition or disease
causes the epilepsy. Structural lesions include acquired disorders such
as stroke, trauma, infection. Verifiable by diagnostic imaging techniques
(high-resolution MRI).

Unknown cause: The nature of the underlying cause is unknown (at the
moment, but it may turn out to be e.g. a genetic defect)

Third, a summary of the syndrome classification is given in Table 2.3.2. Note
that the classification point »Electroclinical syndromes arranged by age at
onset« does not reflect etiology.

In this thesis we will focus on focal epilepsies, in particular on temporal
lobe epilepsies (TLE) which are characterized by seizures originating from
the temporal lobe. An excellent introduction to TLE can be found in Engel
(1996a). Note, however, that terms like »temporal lobe epilepsy« or »frontal
lobe epilepsy« are not supported by the current ILAE syndrome classification
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(compare Table 2.3.2), as these terms aim at a description of the symptoms. The
syndrome »mesial temporal lobe epilepsy with hippocampal sclerosis« (»mTLE
with HS«) represents an exception, as this is a distinctive constellation.

2.3.3 Diagnosis

The aim of diagnosis is to clarify whether the patient suffers from epilepsy,
and if, to determine the syndrome and its etiology. This is a prerequisite for an
appropriate therapeutic recommendation, compare Subsection 2.3.2.

This procedure involves the differential diagnosis, i.e. the active distinction
of epilepsy from other neurological disorders with similar symptoms. In partic-
ular, epileptic seizures have to be delineated from psychogenic seizures (PNES,
psychogenic non-epileptic seizures), convulsive syncopes and parasomnia.

In case of suspicion of epilepsy, the standard diagnosis involves

Medical history including family history, social anamnesis, seizure anamnesis
(description of seizures by the patient and relatives, seizure frequency),
general anamnesis of diseases, neurological disorders, epilepsy provoking
factors.

Neurological/psychiatric examination in order to derive the neurological sta-
tus and to assess potential cognitive or psychiatric symptoms.

Electrophysiological examination is a key step in the diagnosis, as the EEG
is an important tool in epilepsy diagnosis (Smith 2005):7 The aim of the
20-minute routine recording is to decide whether the patient’s EEG shows
interictal epilepsy-typical discharges (IEDs) or not. Such a prominent
bio-marker (among many others) is the spike / sharp-wave which is
a strong indication of epilepsy. Interictal spikes exhibit a rather good
sensitivity (Walczak et al. 1992), but a very high specificity (Gregory et al.
1993). Therefore, occurrence of one single spike renders the EEG abnor-
mal and confirms the diagnosis of epilepsy. In particular in temporal lobe
epilepsies spikes are good lateralizing indicators (Janszky et al. 2001).
In order to increase the yield of epilepsy-typical potentials during these
20 minutes, so-called provocation methods are applied (photic stimu-
lation with flashing light and hyperventilation). Thus, epilepsy can be
diagnosed well by means of EEG even after the first seizure. However, it
is important to consult the neurologist within 24 hours after the seizure
(King et al. 1998). If the first routine EEG did not yield any results, a
repetition of the examination is meaningful: The diagnostic value of
repeated EEG recordings increases (Salinksy et al. 1987), but repetitions
are only meaningful up to four times (Doppelbauer et al. 1993).

Imaging techniques like e.g. CT and mandatory high-resolution MRI com-
plete the diagnosis, as positive findings allow to deduce a structural

7A good overview of the use of EEG in epilepsy diagnosis is provided by Cascino (1996); Flink
et al. (2002) give a general guideline for clinicians concerning the recording procedure.
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etiology (e.g. by high-resolution MRI). Compare Lai et al. (2010) for
a recent review of neuro-imaging techniques in epilepsy. While high-
resolution MRI is part of the standard diagnosis procedure, the use of
PET, SPECT and fMRI is limited to presurgical evaluation (compare
Subsection 2.3.6).

Advanced diagnosis is performed in the course of long-term video-EEG
monitoring for presurgical evaluation (compare Subsection 2.3.6).

2.3.4 Therapy

This subsection gives a very brief overview of anti-epileptic therapy, we refer
to Panayiotopoulos (2011) for a detailed introduction.

Drug therapy (anti-epileptic drugs, AEDs) is a cornerstone of modern ther-
apy, with around 20 anti-epileptic agents currently in use. Compare the review
articles by Das et al. (2012) and Porter et al. (2012) for their respective biochem-
ical mechanisms and the one by Perucca and Tomson (2011) for indication,
advantages, drawbacks, adverse events and dosage recommendation.

Many anti-epileptic agents tackle the two basic molecular mechanisms
in epilepsy: the decrease of neuronal inhibition mediated by GABAergic
channels (Macdonald 1997) and hyper-excitation due to excessive activation
of the glutamatergic system (Dichter and Wilcox 1997). The mechanisms of
many AEDs are well understood. For instance benzodiazepines like lorazepam,
which is used as acute intravenous antiepileptic medication, causes increased
inhibition via GABA-A receptors (Sieghart and Sperk 2002). On the other hand,
the anti-epileptic agent lastly authorized in the EU, perampanel, acts as an
antagonist of the glutamatergic AMPA receptor (Hanada et al. 2011). Most
AEDs directly inhibit the sodium channels, e.g. carbamazepine. However, the
exact biochemical mechanisms of the modern anti-epileptic agent levetiracetam
have not been fully revealed yet.

Therapeutic approaches are derived from the diagnosis as the indication for
different anti-epileptic agents depends on the respective syndrome. Monother-
apy, i.e. administration of a single drug, stands at the beginning. In case of
failure of the initial mono-therapy an alternative monotherapy is a valuable
option: First, nearly 50% of newly diagnosed patients become seizure-free on
the first anti-epileptic drug, with more than 90% of them at moderate dosing
(Kwan and Brodie 2000, 2001); another 13% become seizure-free in alternative
mono-therapy (Brodie et al. 2012). Second, administration of a single drug
yields high efficacy and allows for minimization of adverse events and drug
interactions, i.e. improved compliance.

In case of failure of monotherapies, combination therapy of two or more
antiepileptic agents (polytherapy) is a subsequent step. The advantages and
drawbacks of rational polytherapy are heavily discussed (French and Faught
2009, Kwan et al. 2011). On the one hand, one hopes on an additive effects of
the individual agents. On the other hand, the efficacy of combinational therapy
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decreases exponentially with each additional anti-epileptic drug (Schiller and
Najjar 2008). Moreover, the combination of several drugs increases the risk of
adverse events.

Alternative options to medicinal therapy include epilepsy surgery (see
Subsection 2.3.6), neuro stimulation (Vonck et al. 2012), in particular deep brain
stimulation (Schulze-Bonhage 2009), and cetogenic diet (Caraballo and Vining
2012, Thammongkol et al. 2012).8

2.3.5 Localizing value of EEG

In the last subsections the goal was to confirm the diagnosis of epilepsy by
means of EEG and to derive a proper medicinal therapy.

Here we are in a different setting: Surface EEG, and to a larger extent
invasive EEG, provides information about origin and propagation of focal
seizures. Now, the aim is not only to detect epilepsy-typical potentials, but to
identify patterns with good localizing value. This information is needed for
presurgical evaluation, compare Subsection 2.3.6.

2.3.5.1 Concept of the cortical zones

Lüders and Awad (1991) defined six cortical zones which play a role in the
presurgical evaluation of candidates for epilepsy surgery, also compare the
review by Rosenow and Lüders (2001).

Symptomatogenic zone is the region of the cortex that produces the ictal
symptoms, if activated by an epileptiform discharge. It is, therefore,
defined by analysis of the clinical signs.

Irritative zone is the region of the cortex that generates interictal epileptic
discharges (IEDs), e.g. spikes, in the EEG. It is localized via EEG.

Seizure onset zone (SOZ) is the region where the clinical seizures originate
from, i.e. where they are actually generated. It is usually the part of
the irritative zone that generates spikes which are strong enough (e.g.
repetitive spikes) for producing subsequent discharges. The SOZ is
localized by surface or invasive EEG.

Epileptogenic lesion is a structural lesion that is causally related to the epilepsy
(structural etiology, see Subsection 2.3.2). Localization is done by func-
tional imaging, e.g. high-resolution MRI.

Functional deficit zone is the region of the cortex which is functionally ab-
normal during interictal periods. This dysfunction can either be a direct
effect of the lesion or be functionally mediated (e.g. abnormal neuronal
transmission). It is defined by neurological examinations, neuropsycho-
logical testing, EEG and radio-nuclear imaging.

8Potentially upcoming alternatives, which are still in an experimental stage in animals, include
focal cooling (Fujii et al. 2012) or optical control of neural activity (Boyden et al. 2005).
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Figure 2.3.1: Illustration of the concept of the epileptogenic focus with its
zones. Epileptic lesion, seizure onset zone, irritative zone and symptamotogenic
zone do not necessarily coincide. Primary epileptogenic zone must be removed for
absence of seizures. Picture is taken from Wieser (2008).

Epileptogenic zone is the region of the cortex which is indispensable for gen-
eration of epileptic seizures. The epileptogenic zone is a theoretical
construct in the context of epilepsy surgery: It may include an actual
epileptogenic zone which generates the seizures before surgery (equiva-
lent or smaller than the SOZ) and a potential epileptogenic zone which
may generate seizures after surgery. Currently there is no diagnostic pos-
sibility for exact determination of the entire epileptogenic zone, because
the existence of a potential epileptogenic zone only becomes apparent
after surgery. The only possible conclusion is that, if the patient is seizure-
free after surgery, the entire epileptogenic zone must have been situated
within the resected area.

Compare Fig. 2.3.1 for a possible localization setting of these zones. In the
illustrated case the epileptogenic lesion, the SOZ, the irritative zone and the
symptomatogenic zone do not coincide. Seizure activity spreads from the SOZ
to the symptomatogenic zone.

For our purposes we will only refer to the concept of the SOZ in this thesis.

2.3.5.2 Ictal rhythmic patterns

Ictal patterns provide a good localization of the SOZ of focal seizures, compare
Foldvary et al. (2001): Rhythmic synchronous ϑ-activity is the most frequent
pattern at onset (in particular in case of TLE), followed by onset activity in
the α-range. Bare et al. (1994) also identified synchronous ϑ-activity as most
frequent ictal onset pattern in simple partial seizures. Moreover, Risinger
et al. (1989) reported a good localizing value of rhythmic ϑ-activity in seizures
originating from the temporal lobe.
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Kanemoto et al. (1997) found two different patterns at onset in TLE patients,
both providing very good lateralization: an increase pattern with increasing
amplitude in the ϑ-range (recruiting ϑ-rhythm again) and an decrease pattern
with decreasing amplitude and frequency (irregular in the range of 2-5 Hz).

Note that the described rhythmic ϑ-activity can be identified both in surface
EEG and subdural recordings. However, the situation is slightly different in
case of depth electrodes, where the morphology of the recorded activity heavily
depends on the individual brain structure.

2.3.5.3 Interictal spikes

As the analysis/detection of spikes is not in the focus of this thesis, we only
mention spikes for reasons of completeness.

Spikes define the irritative zone (see above), and their localizing value
regarding the SOZ has been controversially discussed (Ebersole 1997): While
Blume et al. (1993, 2001) and Janszky et al. (2001) consider spikes to be useful
in this type of analysis, Ray et al. (2007) recently pointed out that scalp spikes
exhibit a poor localizing value. This is due to the propagation of the epileptic
activity, compare e.g. the study by Baumgartner et al. (1995) which reveals
propagation from the mesiobasal to the lateral temporal lobe.

2.3.5.4 High frequency oscillations

High-frequency oscillations (HFOs) represent an emerging research area with
tremendously increasing interest in the last years. They occur in two frequency
bands in the omega band above the standard EEG frequency range, as ripples
(80-250 Hz) and fast ripples (250-500 Hz). Compare the reviews by Richardson
(2011), Jiruska et al. (2010) and Bragin et al. (2010) as well as the one by Worrell
et al. (2012) for recording techniques. HFOs can occur during interictal as well
as ictal periods (Zijlmans et al. 2011). The huge interest in HFOs is due to their
high clinical relevance, as they reveal an excellent localizing value for the SOZ
in both cases.

On the one hand, the correlation of the interictal appearance of HFOs and
the localization of the SOZ has been demonstrated by a number of studies
(Jacobs et al. 2008, 2009, Brazdil et al. 2010) revealing a higher specificity and
sensitivity as spikes. Moreover, HFOs could be bio-markers of the epileptogenic
zone, compare the recent comprehensive review by Jacobs et al. (2012).

On the other hand, ictal HFOs are good markers of the SOZ, in particular
in patients suffering from mTLE with HS (Usui et al. 2011)9. Ictal HFOs appear
some time before conventional EEG onset, in average 8s prior (Khosravani et al.
2009) or 20s prior (Imamura et al. 2011).

HFOs are specific epilepsy-typical discharges due their high frequency and
short duration. Initially they could only be detected by microelectrodes in
9HFOs were detected from unilateral medial temporal structures ipsilateral to HS. HFOs hardly
ever showed contralateral propagation, and in case of bitemporal conventional EEG onset HFOs
were detected on the side of HS.
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intracranial EEG (Fisher et al. 1992, Alarcon et al. 1995). Then Jirsch et al.
(2006) showed that HFOs can be recorded intracranially with commercially
available macroelectrodes. Moreover, their detection has not been possible in
surface EEG for a long time, as the skull acts as a low-pass filter. Surface EEG
of children was an exception due to the thin infantile skull, compare e.g. the
studies by Wu et al. (2008), Inoue et al. (2008) or Kobayashi et al. (2009). Only
recently Andrade-Valenca et al. (2011) were able to detect HFOs in surface EEG
of adults.

Recently, the appearance of ultra-high frequency oscillations above 500 Hz
(Kobayashi et al. 2010) or even 1000 Hz (Usui et al. 2010) was reported in
intracranial EEG.

HFOs often occur together with spikes, but their occurrence is independent
of the one of the spikes. Urrestarazu et al. (2007) distinguish three different
settings: occurrence of HFOs alone, HFOs on top of a spike (the most frequent
case), HFOs being invisibly embedded into a spike (unless filtered). Spikes and
HFOs have different patho-physiological mechanisms, the latter being closer
to seizures. Unlike spikes (Gotman and Koffler 1989), HFOs do not increase
after seizures, but decrease with medication (like seizures), see Zijlmans et al.
(2009b).

We refer to Ozaki and Hashimoto (2011) for the physiology of HFOs, in
particular to Jefferys et al. (2012) for the different physiological mechanisms
of physiological and pathological HFOs. For instance, Wendling et al. (2002)
provided a model explaining the transition from interictal to ictal fast activity
by the impairment of dentritic inhibition.10

2.3.5.5 Ictal slow shifts

Moreover, a new class of biomarkers has become popular recently: ictal slow
shifts. They are characterized by a slow negative baseline shift and correlate
well with the SOZ, compare recent studies by e.g. Rodin and Modur (2008)
and Ren et al. (2011). In order to capture this infraslow activity, appropriate
recording hardware is needed (Vanhatalo et al. 2005).

2.3.6 Epilepsy surgery

About 30% of patients suffer from therapy-resistant epilepsy (Schuele and
Lüders 2008), i.e. persistent seizure freedom cannot be achieved by »adequate
trials of two tolerated and appropriately chosen and used AED schedules
(whether as monotherapies or in combination)« (Kwan et al. 2010). In these
cases a resection of the epileptic tissue (i.e of the epileptogenic zone, compare
Subsection 2.3.5) might render the patient seizure-free.

In this subsection we will briefly discuss the necessary presurgical evalua-
tion, the surgical intervention and the post-surgical outcome, i.e. the quantified
10In general many psychiatric disorders lead to an increase of the γ-activity, in particular epilepsy

(Herrmann and Demiralp 2005). Not only focal seizures reveal high-frequency activity, but also
primarily generalized seizures lead to increased γ-activity (Willoughby et al. 2003).
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success of the surgery. We refer to the two standard works Engel (1996b) and
Lüders (1991) for further information on epilepsy surgery.

2.3.6.1 Presurgical evaluation

Therapy-resistant patients are admitted to the Epilepsy Monitoring Unit (EMU)
of specialized neurological departments for prolonged presurgical evaluation.
At such a center, the examination comprises long-term video-EEG monitoring,
functional imaging and neuropsychological testing.

The goal of long-term video-EEG monitoring is to determine where seizures
start from (detection of the SOZ) and where and how fast they propagate
(determination of the seizure spread). Both dimensions are of clinical relevance:
A clearly prescribed SOZ (located outside functionally indispensable regions)
is a prerequisite for surgical intervention. Seizure spread has an impact on the
post-surgical outcome, see below.

This analysis happens in two phases: First, trained specialists analyze the
surface EEG recordings by visual inspection (non-invasive phase, Baumgartner
and Pirker (2012)). In case of focal seizures, they mainly consider the ictal
rhythmic synchronous activity, but also look at interictal spikes. Compare Sub-
section 2.3.5 for the localizing value of EEG correlates regarding the SOZ. The
video recorded in parallel allows for an analysis of the symptomatology, e.g. of
lateralizing signs like version of the head or the »figure of four« (Rosenow and
Lüders 2001, Rosenow et al. 2001). The semiology allows to draw conclusions
on the symptomatogenic zone. Finally, high-resolution MRI can indicate a
lesion, if existing.

However, surface EEG is not always sufficient for exact localization of the
SOZ, e.g. lateralization can be derived, but no exact localization is possible (see
Subsection 10.2.1 for an example). Moreover, if activity originates from deep
structures like the hippocampus or the inter-hemispheric surface of the frontal
lobe, surface EEG might not reveal any ictal potentials (Hashiguchi et al. 2007).
In particular in case of mTLE, activity might propagate too quickly to both
hemispheres in surface EEG (Lieb et al. 1976).

Thus, in order to increase spatial resolution (Behrens et al. 1994, Zumsteg
and Wieser 2000) invasive EEG can be used in a second step (invasive phase,
Kahane and Spencer (2012)). Subdural stripe/grid electrodes or depth elec-
trodes are implanted according to the preliminary information obtained from
surface EEG, compare Subsection 2.2.5.11 For instance, Pacia and Ebersole
(1997) exposed which patterns in deep brain structures correlate with surface
potentials. However, even with these invasive techniques the SOZ cannot be
localized adequately in about 20% of patients (Pondal-Sordo et al. 2007). Thus,
these patients cannot be offered a surgical therapy and the electrodes have to
be removed without resective surgery.

11Compare Lesser et al. (2010) for a review on subdural electrodes and Pacia and Ebersole (1999)
for indications for the respective type of electrode.
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Despite these cases, several studies have proved that the increased effort
of invasive EEG is justified, as it provides added value for the localization of
the SOZ (see e.g. Guangming et al. (2009) for a recent study in case of TLE).
Intracranial EEG is particularly useful for this purpose if EEG and MRI are not
congruent, compare Pondal-Sordo et al. (2007), Henry et al. (1999) and Engel
et al. (1981).

Finally, intracranial EEG has another advantage: Highly-sampled invasive
EEG gives access to the emerging field of high frequency oscillations, compare
Subsection 2.3.5.

In an ideal case, the synopsis of all findings derived during the presurgi-
cal evaluation yields a conclusive picture of the potential epileptogenic zone
(compare Subsection 2.3.5): long-term video-EEG monitoring (SOZ and symp-
tomatogenic zone, irritative zone defined by interictal spiking), functional
imaging in case of structural or metabolic deficits (epileptogenic lesion) and
neuropsychological testing (functional deficit zone).

2.3.6.2 Surgical intervention

The goal of the surgical intervention is removal of the seizure generating tissue,
i.e. of the epileptogenic zone.

The precision of the surgical intervention has increased enormously since
the first resective intervention by Penfield (1934) due to the technical possi-
bilities both in presurgical diagnosis as well as in surgery itself. Bailey and
Gibbs (1951) carried out the first lobectomy (resection of the temporal lobe in the
reported case), and Wieser and Yasargil (1982) reported the first successful se-
lective amygdala-hippocampectomy, the modern cornerstone of epilepsy surgery
in mTLE with hippocampal sclerosis.

The use of intraoperative ECoG leads to even more target-oriented surgery.
The recorded discharges (focal spiking, focal slowing, ictaform activity) provide
information for the extent of the resection and post-surgical seizure control
(Stefan et al. 2008).

Finally note that a study by Alarcon et al. (1997) underlines the usefulness
of the concept of the epileptogenic zone in epilepsy surgery. It showed that
removal of all »leading regions« (i.e. regions with the first peak in discharge,
most commonly the hippocampus, the parahippocampal gyrus and the su-
perior temporal gyrus) is important for a positive postsurgical outcome (see
below), but resection of all discharging areas is not required.

2.3.6.3 Postsurgical outcome

The post-surgical outcome, i.e. the success of the surgical intervention regarding
seizure frequency, is classified according to Engel (1996b), compare Table 2.3.3.
The ultimate goal of any resection is to reach freedom from seizures at least
under medication (class I), seizure freedom without medication is a plus. An
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Class Characterization

I Free of disabling seizures:
Seizure free or no more than a few early, nondisabling seizures; or seizures upon
drug withdrawal only

II Rare disabling seizures (»almost seizure-free«):
Disabling seizures occur rarely during a period of at least 2 years; disabling
seizures may have been more frequent soon after surgery; nocturnal seizures

III Worthwhile improvement:
Seizure reduction for prolonged periods but less than 2 years

IV No worthwhile improvement:
Some reduction, no reduction, or worsening are possible

Table 2.3.3: Classification of post-surgical outcome according to Engel
(1996b). Surgical outcomes are rated from I (best) to IV (worst).

alternative classification was proposed by the ILAE (Wiesner et al. 2001), which
groups the post-surgical outcome into six classes.

The long-term seizure outcome varies significantly among the different syn-
dromes, compare a recent meta-analysis of individual studies (Téllez-Zenteno
et al. 2005): While temporal lobe resection promises a class I surgical outcome
in 66% of all cases (other individual studies report similar results: Wiebe et al.
(2001) 58%, Clusmann et al. (2002) 71%), occipital and parietal resection only
lead to seizure freedom in 46% of patients. In case of frontal lobe resection the
outcome decreases to 27% success rate.

An important aspect to consider is the potential influence factors the post-
surgical outcome depends on. In case of TLE the outcome is better, if (Schulz
et al. 2000) the patient has focal seizures without contralateral propagation,
100% unilateral IEDs and no asynchronicity between the hemispheres. Other
studies confirm these findings: According to Lee et al. (2006), the postsurgical
outcome of anterior temporal lobectomy in mTLE (mesial temporal sclerosis)
is poor in case of contralateral propagation or bitemporal asynchronicity. Aull-
Watschinger et al. (2008) report unilateral IEDs as highly significant for class I,
and Clusmann et al. (2002) underline the importance of a single and lateralized
focus. Furthermore the outcome is better if a structural lesion is revealed by
MRI (Guldvogl et al. 1994), with best chances in case of tumors (Spencer 1996).

Besides conventional electroclinical correlates HFOs impact the post-surgical
outcome, compare e.g. Jacobs et al. (2010), Wu et al. (2010), Akiyama et al.
(2011): Removal of the HFO-generating tissue leads to good surgical outcome.
Note, however, that the hypothesis does not hold that the more HFOs a tissue
generates, the higher the resulting seizure frequency (Zijlmans et al. 2009a).
Thus, seizure outcome does not depend on which HFO generating area has
been removed, but only on the fact that the entire HFO-generating area has
been resected.12

12Therefore, Jacobs et al. (2010) conclude that HFOs might be potential bio-markers of the epilep-
togenic zone.



40 CHAPTER 2. MEDICAL BACKGROUND

Finally, the speed of seizure propagation also influences the post-surgical
outcome. Lieb et al. (1986) showed in a study based on depth electrodes that
the outcome is positively influenced, if the intracranial propagation from the
epileptogenic hippocampus to the contralateral hippocampus lasted for more
than 50 seconds; short propagation times smaller than 5 seconds contributed
significantly to a poor outcome. Another ECoG-based study (Weinand et al.
1992) showed that an interhemispheric propagation time of at least 8 seconds
was significant for good post-surgical outcome. These findings underline the
clinical relevance of seizure propagation analysis.

2.3.7 Social aspects

As is well known, the notion of health is not limited to the physical dimension:

Health is a state of complete physical, mental and social well-being and
not merely the absence of disease or infirmity.13

In case of epilepsy the mental and social dimensions are particularly impor-
tant (Thorbecke and Pfäfflin 2012). Epilepsy patients have been stigmatized
throughout centuries (compare Section 1.2), and even nowadays they are ex-
posed to social pressure in developing countries like the ones of sub-Saharan
Africa (Baskind and Birbeck 2005). Moreover, depression represents a frequent
comorbidity in chronic epilepsy with approximately one third of patients suf-
fering from major depression (Hermann et al. 2000). Many patients have to
cancel their education or suffer from unemployment due to their restriction of
activities in daily life.

Therefore, increased interest in a quantitative analysis of social aspects
of anti-epileptic therapy has come up in the last years. In order to measure
the patient’s quality of life, Cramer et al. (1996) developed the QOLIE-10

questionnaire which has been extended, e.g. to the NEWQOL by Abetz
et al. (2000). A more comprehensive set of questionnaires for quality of
life measurement is the PESOS (May and Pfäfflin 2001). Part of patient’s
satisfaction is the absence or at least rare incidence of therapy-induced adverse
events. The Liverpool Adverse Event Profile questionnaire proposed by Baker
et al. (1994, 1997) measures the severity of common adverse events of anti-
epileptic medication. Furthermore, Gilliam et al. (2006) worked out the NDDI-
E questionnaire which aims at a rapid detection of depression in epilepsy
patients.

13Preamble to the Constitution of the World Health Organization as adopted by the International
Health Conference, New York, 19-22 June, 1946; signed on 22 July 1946 by the representatives
of 61 States (Official Records of the World Health Organization, no. 2, p. 100) and entered into
force on 7 April 1948.



Chapter 3

Statistical Background

We assume that the reader of this thesis is familiar with the basic notions of
signal processing – we refer to Oppenheim and Schafer (1989) and Mitra (2002)
for theory and applications of signal processing. In case the reader is interested
in a more mathematical introduction to the topic of time series analysis, we
recommend Brockwell and Davis (1991) and Lütkepohl (2007) or Hannan and
Deistler (2012) for an in-depth theoretical view.

For a general background on EEG signal processing we refer to Tong and
Thakor (2009) and Sanei and Chambers (2007). Varsavsky et al. (2011) provide
additional background information on EEG signal processing in the field of
epileptology, including physical models of EEG generation in the cortex.

3.1 Non-parametric spectral estimation

It is convenient to have a word for some representation of a variable
quantity which shall correspond to the ’spectrum’ of a luminous radiation.
I propose the word periodogram [...].

— Schuster (1898): On the Investigation of Hidden Periodicities with Application
to a Supposed 26 Day Period of Meteorological Phenomena, foundations of
non-parametric spectral estimation

Spectral estimation deals with determining the characteristic frequency content
of a signal, i.e. finding predominant frequencies or calculating the signal power
in specific frequency bands. This is an important task in signal processing
and has gained increasing importance in our digitized world. Nowadays its
applications include such different areas as mobile communication, biomedical
engineering or financial analysis.

The aim of this section is to quickly review the concept of non-parametric
spectral estimation and to present one famous method in detail, the Welch
power spectral estimation method. Parametric estimation is discussed in the
context of autoregressive modeling, see Section 3.2.

41
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This section is based on two classical text books of spectral estimation
theory: Marple (1987) and Jenkins and Watts (1968). Hereby, the first provides
an applied introduction from an engineering perspective including the presen-
tation of all formulas in physical units (e.g. frequencies in Hz rather than in
normalized rad), the second presents a mathematical formulation of the topic
with technically rigorous proofs. Furthermore, the reader will find a good sum-
mary (though in German) of the main ideas and methods of non-parametric
spectral estimation in the diploma thesis of Kilga (1993).

This section is limited to a univariate formulation for simplicity reasons.
We refer to Chapters 15 and 16 of Marple (1987) for a multivariate extension of
the spectral estimation methods as well as to The MathWorks, Inc. (2010) for
details on their implementation in Matlab.

Finally note that we use physical frequency units ( f in Hz) instead of
normalized ones (ω in rad). As is well known, they are related by

ω = 2π f T,

where T = f−1
s denotes the inverse of the signal sampling frequency fs. For

a sequence y[n] of finite energy, the pair of discrete-time Fourier transforms
(DTFT) becomes1

Y( f ) = F {y[n]} =T
∞

∑
n=−∞

y[n] e−2iπ f Tn

y[n] = F−1 {Y( f )} =
ˆ 1

2T

− 1
2T

Y( f ) e+2iπ f Tn.

Note that in this section we will refer to Fourier-transformed signals by their
respective capital letters, e.g. Y( f ) = F {y[n]} as above.

3.1.1 Typical issues

Often the question arises whether non-parametric or parametric estimation is
more appropriate. Naturally occurring signals can be classified into one of the
following two types (Mitra 2002):

Noise-like random signals, e.g. unvoiced speech signals like »f« or »s« are
suitable for non-parametric spectral estimation. As an advantage, no
information about an underlying model is needed.

Signal-plus-noise random signals e.g. seismic signals, EEG signals or similar
ones can well be analyzed by employing parametric spectral estimation
methods. However, this approach exceeds a »pure« estimation and
involves a modeling step of the data, thus requires a-prior-knowledge
about the signal-generating process.

1The pre-multiplication with the inverse sampling frequency T ensures a correct scaling, compare
Section 2.8 of Marple (1987), »The issue of scaling for power determination«.
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Typical issues in spectral estimation involve (compare Chapter 1 of Marple
(1987) for more details):

Resolution is an important property of a spectral estimator denoting its ability
to distinguish distinct frequencies by separate peaks. Although this is
an intuitive definition2 and it somehow depends on a visual analysis of
the output, we consider it to be sufficient for our purposes. Thus, for
the sake of simplicity, we stick to this point of view and give an example
as motivation. When applying an estimator with a high resolution to a
superposition of two sinusoid with the respective frequencies f1 and f2,
we would expect the following behavior: to show a flat line all over the
spectrum except of two distinct peaks at frequencies f1 and f2. Each of
them should be as »sharp«, i.e. as thin and high, as possible so that the
two peaks are clearly circumscribed and do not overlap each other.
Spectral resolution will be of importance throughout this thesis.

Signal detectability comes into play when spectral estimation is used in order
to detect the presence of a signal (compare Section 3.5 on signal detection).
In this case it is not of primary interest to distinguish two frequency peaks,
but rather to assure that the estimation method does reliably indicate a
certain frequency. Again, the evaluation of the result is subject to a visual
analysis and subsequent interpretation of the output graph.

Bias and variance of the spectral estimator are the key statistical properties.
The higher the variance, the »noisier« the graph of the estimated spectrum
appears – the lower the variance, the »smoother« the graph looks. We
always have to choose a trade-off between frequency resolution and
variance for non-parametric estimation methods.
In this section we will be interested in the bias and the variance of the
estimation method. This allows to determine whether the estimator is

– unbiased, i.e. the expectation of the estimator equals the parameter;

– consistent, i.e. the variance of the estimator converges to zero with
increasing sample size and is asymptotically unbiased. This concept
assures that an increasing sample size leads to a preciser estimation.

Stationarity of the first and second moments is a prerequisite for standard
approaches in signal processing. Thus, the methods presented in the
following are suitable for stationary signals. However, as many signals
(such as speech or bio-signals) are highly non-stationary, one of the two
following approaches is often chosen in practical applications.

– The first is to model the signal as short-term stationary, i.e. as a
sequence of stationary regimes separated by abrupt changes (struc-
tural breaks). Here we assumes that sufficiently small segments of
the signal show stationary properties. The idea is to cut the signal

2We refer to Chapters 2 and 5 of Marple (1987) for an exact discussion of resolution.
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into a set of segments, estimate the spectrum in each of them and
then calculate an »average spectrum«. A prominent application of
this idea is the Welch spectral estimation method, see Subsection
3.1.3.

– A complementary approach is to assume that the statistical prop-
erties of the signal change in a continuous, but slow way. The
appropriate methodology to cope with this behavior is adaptive esti-
mation. By sliding along the time axis, the method constantly adapts
its estimation to the new statistical regime. We refer to Priestley
(1965) for the historical foundation of local stationarity as well as to
Dahlhaus (1997) for a discussion of the statistical properties of the
estimators.

3.1.2 Preliminary de�nitions

In the following we consider a univariate stationary signal x[n] of mean zero.
Let r̂x[m] denote the unbiased correlation estimator and řx[m] the biased

correlation estimator. As is well known, they are closely related by

řx[m] =
N − |m|

N
r̂x[m], (3.1.1)

with N the sample size used for estimation.
In the following we assume that the correlation sequence is absolutely

summable, i.e. decreases to zero with increasing lag,

∞

∑
m=0
|rx[m]| < ∞. (3.1.2)

Furthermore let wR
N [n] denote the rectangular window (of length N) and

wcR
N [n] the centered rectangular window. The latter is shifted by N

2 on the time
axis, i.e. we have

wR
N [n] = wcR

N

[
n− N

2

]
. (3.1.3)

We will often need a specific function:

Definition 1 (Dirichlet kernel). The Dirichlet kernel DN( f ), also denoted by
digital sinc3, is given by

DN( f ) = T
sin(Nπ f T)
sin(π f T)

. (3.1.4)

Lemma 1. The DTFT of the centralized rectangular window is the Dirichlet kernel,
i.e.

WcR
N ( f ) = DN( f ).

3Compare: The function sinc is defined by sinc( f ) , sin(πx)
πx .
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Figure 3.1.1: Commonly used windows. (a) Appearance of the rectangular,
Bartlett, Hann and Hamming window in the time domain. (b) Respective gains
in dB in the frequency domain.

Proof. Appendix.

Corollary 1. The DTFT of the rectangular window is given by a phase-shifted
Dirichlet kernel, i.e.

WR
N( f ) = e−iπ f TN DN( f ).

Proof. Appendix.

As it is well known, multiplication in the time domain and convolution in
the frequency domain correspond to each other,

F {w[m] rx[m]} = W( f ) ? Sx( f ), (3.1.5)

where w[m] denotes an arbitrary window of finite energy in the time domain,
W( f ) the DTFT of the window in the frequency domain and Sx( f ) the power
spectral density (PSD) of the signal (see (3.1.6) in Subsection 3.1.3).

As the Dirichlet kernel shows considerable side lobes, the PSD of the
windowed data will be »smeared« due to the convolution of the PSD of the
raw data with the Dirichlet kernel DN( f ). This behavior is termed leakage effect.
Note that the length of the window controls the form of the frequency response.
With increasing size of the window length the main lobe width decreases which
leads to a higher frequency resolution of the spectral estimation. However, the
computational complexity increases at the same time.

In order reduce the leakage effect, one tends to find a trade-off between the
magnitude of the side lobes and the width of the main lobe. For this purpose
various windows have been suggested in literature which taper the data as
smoothly as possible to zero at both ends of the window.4 The variety reaches
from simple triangular windows (the Bartlett window) to more complicated
shapes based on functions of cosines (e.g. Hann window or Hamming window),
compare Fig. 3.1.1 and Table 3.1.1 for their characteristics.
4Therefore, windows are sometimes called tapering functions.
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Window type Peak side-lobe amplitude
(relative)

Approximate width of main
lobe

Rectangular −13 dB 4π
N+1 , 2

T·(N+1) = 8 Hz

Bartlett −25 dB 8π
N , 4

T·N = 16 Hz
Hann −31 dB 8π

N , 4
T·N = 16 Hz

Hamming −41 dB 8π
N , 4

T·N = 16 Hz

Table 3.1.1: Characteristics of commonly used windows. Main characteris-
tics of the rectangular, Bartlett, Hann and Hamming window. Width of main lobe
is given for a sampling frequency of 128 Hz.

3.1.3 Indirect estimation methods

The power spectral density is commonly expressed as the discrete-time Fourier
transform of the autocorrelation sequence5

Sx( f ) = F {rx[m]} = T
∞

∑
m=−∞

rx[m] e−2iπ f Tm. (3.1.6)

One possible PSD estimator is therefore

Definition 2. The correlogram with biased correlation is given by

ŠC
x ( f ) = T

L

∑
m=−L

řx[m] e−2iπ f mT (3.1.7)

with řxx[m] the biased correlation estimator, i.e.

řx[m] =


1
N ∑N−m−1

n=0 x[n + m] x[n]∗ 0 5 m 5 N − 1

1
N ∑

N−|m|−1
n=0 x[n + |m|]∗ x[n] (N − 1) 5 m ≤ 0

As the estimation of the autocorrelation has to be performed as an interme-
diate step, this estimation approach is termed indirect.

We will need the correlogram with biased correlation in the proofs of
lemmata 3 and 4 in the next subsection. Some important properties are
summarized in

Lemma 2. Properties of the correlogram with biased correlation.

1. The correlogram with biased correlation is a biased estimator of the PSD.

2. The correlogram with biased correlation is an asymptotically unbiased estimator
of the PSD.

Proof. Appendix.

5Its existence is assured by assumption (3.1.2).
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Note that the PSD estimate (3.1.7) is the convolution of the true spectrum
with a Dirichlet kernel (compare the proof of lemma 2), thus »smeared« due
to the side lobes. In order to reduce the leakage effect, Blackmann and Tukey
(1958) introduced a weighted version of the correlogram estimate, the Blackman-
Tukey correlogram.

3.1.4 Direct estimation methods

3.1.4.1 Periodogram

A well known PSD-estimator dates back to the end of the 19th century, when
Schuster (1898) analyzed cyclic phenomena in nature.

Definition 3. The periodogram estimator (sample spectrum) is given by

ŜP
x ( f ) =

T
N

∣∣∣∣∣N−1

∑
n=0

x[n] e−2iπ f Tn

∣∣∣∣∣
2

(3.1.8)

Here, the estimation is based directly on the data (without the intermediate
estimation of the autocorrelation), therefrom the term direct. In the following
we will refer to (3.1.8) simply as periodogram.

Note that the periodogram implicitly makes use of windowing: We can
imagine a rectangular window wR

N [n] causing the finite sum in (3.1.8) and
alternatively express the periodogram as

ŜP
x ( f ) =

1
N T

∣∣∣∣∣T ∞

∑
n=−∞

wR
N [n] x[n] e−2iπ f NT

∣∣∣∣∣
2

=
1

N T

∣∣∣F{wR
N [n] x[n]

}∣∣∣2 , (3.1.9)

i.e. as the normalized squared DTFT of the windowed data. This results in
leakage, and therefrom the poor asymptotic properties of the periodogram
(Brockwell and Davis 1991).

Lemma 3. Properties of the periodogram.

1. The periodogram is biased.

2. The periodogram is asymptotically unbiased.

3. The periodogram is inconsistent.

Proof. Appendix.

3.1.4.2 Welch power spectral estimation

The Welch power spectral estimation is a widely used non-parametric method
and one of the most popular ones in signal processing applications, compare
Chapter 5 of Marple (1987).
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The Welch periodogram constitutes a consequent development of the peri-
odogram estimation approach (3.1.8). As detailed in (3.1.9), the periodogram
spectral estimation suffers from strong leakage effects due to implicit usage
of rectangular data windows. In order to overcome this limitation, weighted
modifications, namely the Daniell periodogram (Daniell 1946) and the Bartlett
periodogram (Bartlett 1948, 1950), were brought up. Subsequently Welch
(1967) suggested an enhanced estimation approach which unites many of the
preceding ideas. We want to mention three important aspects of the Welch
periodogram.

Overlapping segments In order to smooth the periodogram, Welch suggested
to use pseudo-ensemble averaging (see Definition 4 below), just as Bartlett
had done. However, in difference to the Bartlett periodogram, segments
may overlap each other.

Windowing In order to reduce the leakage effect due the appearance of side
lobes, the data of each segment are pre-multiplied with a weighting
window. This resembles the approach of the Daniell periodogram.

Computational efficiency Welch provided a computationally efficient proce-
dure for the usage of the FFT in his spectral estimate. Besides its statistical
properties, this gain in processing time made the Welch method so popu-
lar.

We summarize the Welch spectral estimation method in the following

Definition 4. The construction of the Welch periodogram is as follows:

1. Divide the data sequence x[n], n = 1, . . . , N into P (potentially overlap-
ping) segments consisting of D samples with a time shift of S samples
from one segment to another. The weighted pth segment x(p)[n] then
consists of the data samples

x(p)[n] = w[n] x[pS + n], 0 ≤ n ≤ D− 1.

Hereby, each of the P = floor
(

N−D
S+1

)
segments is weighted with an

arbitrary window w[n] of finite energy.

2. A modified sample spectrum is calculated for each segment x(p)[n],

S̃(p)
xx ( f ) =

T
U D

∣∣∣∣∣D−1

∑
n=0

x(p)[n] e−2iπ f Tn

∣∣∣∣∣
2

∀ p, 0 < p ≤ P− 1.

The normalization constant U is the power of the window w[n], i.e.

U =
T
D

D−1

∑
n=0

w[n]2.



3.2. AUTOREGRESSIVE MODELING 49

It ensures that the Welch periodogram is asymptotically unbiased, com-
pare Lemma 4.

3. The Welch averaged periodogram (at each frequency point f ) is given by

ŜW
x ( f ) =

1
P

P−1

∑
p=0

S̃(p)
x ( f ). (3.1.10)

We refer to Welch (1967) and Barbé et al. (2010) for a detailed statistical
analysis and summarize important properties of the Welch periodogram:

Lemma 4. Properties of the Welch periodogram.

1. The Welch periodogram is biased.

2. The Welch periodogram is asymptotically unbiased.

3. The variance of the Welch periodogram is inversely proportional to the number
of segments.

Proof. Appendix.

We want to end this section with two remarks regarding estimation quality.
First, as mentioned in Subsection 3.1.1, we have to choose a trade-off

between the frequency resolution and the variance: The more segments we
allow, the higher the spectral resolution, but the »noisier«, i.e. the more
fluctuating, the Welch estimator becomes.

Second, estimation quality also depends on the data window. For instance,
Welch (1967) suggested to employ the Hann window. However, due to the
excellent properties of the Hamming window in reducing the leakage effect
(relative peak side-lobe amplitude of -41 dB, see Table 3.1.1), we use the
Hamming window in Welch spectral estimation throughout this thesis.

3.2 Autoregressive modeling

The problem of determining the period and the disturbances, in the case of
the sunspot numbers, was attacked in the first instance [...] by finding the
best (least square) linear equation relating ux + ux−2 to ux−1, this giving
the form of difference equation required for a simple harmonic function.

— Yule (1927): On a Method of Investigating Periodicities in Disturbed Series,
with Special Reference to Wolfer’s Sunspot Numbers, foundations of autore-
gressive modeling

A common approach in neuroscience literature (Franaszczuk et al. 1985, Bli-
nowska and Kaminski 2006) is to model EEG recordings as multivariate autore-
gressive processes. This popularity results from the fact that AR spectra show
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sharp peaks, constitute high-resolution spectral estimates (compare Section 7.4
of Marple (1987)) and are obtained with little computational complexity.

Assume that the K-dimensional signal x[n] of interest is stationary with
mean zero. We consider the following class of models:

Definition 5. An AR model of order p is given by

x[n] =
p

∑
s=1

A[s] x[n− s] + ε[n], (3.2.1)

where ε[n] is white noise with regular covariance matrix Σε and the AR
coefficients A[s] are matrices of dimension K× K for each lag s.6 We will refer
to such a model as regular AR(p) model.

Using z to denote both a complex variable and the backward-shift-operator7,
we introduce the polynomial matrix A(z) = IK×K − Ã(z) with the complex
power series Ã(z) = ∑

p
s=1 A[s] zp. This allows to rewrite the AR model (3.2.1)

in compact notation.

Definition 6. The AR(p) model (3.2.1) can be written in polynomial form as

A(z) x[n] = ε[n], (3.2.2)

where we assume the stability condition to hold:

det A(z) 6= 0, |z| ≤ 1. (3.2.3)

As the stability condition (3.2.2) assures the invertibility of the polynomial
matrix A(z), we obtain

x[n] = A(z)−1ε[n] = H(z) ε[n]

as solution of (3.2.1). Evaluation of A(z) at z = exp(2iπ f ) yields the complex-
valued model coefficients A( f ) and the transfer function H( f ) = A( f )−1 in the
frequency domain (Oppenheim and Schafer 1989).

Note that in applications one would choose the following way to calculate
A( f ): Once the AR model has been identified (by solving the Yule-Walker
equations), A( f ) and H( f ) are obtained by Fourier transformation of the model
coefficients, i.e.

A( f ) = IK×K − Ã( f ) = IK×K − FA[s]. (3.2.4)

Here, we employ the discrete-time Fourier transform of the AR model coeffi-
cients as a special case of the z-transform in (3.2.2). We will need representation
(3.2.4) in the context of dependency measures, see Section 3.4.
6Note that in (3.2.1) the coefficient matrix A[0] is the identity. Thus, any further specification of Σε

(for instance, assuming diagonal form) would restrict the process.
7We draw attention to the fact that in electrical engineering z is often inversely defined as forward-
shift-operator.
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The (matrix-valued) power spectral density directly follows:

Sx( f ) = H( f ) SεH( f )H =
1

2π
H( f )ΣεH( f )H , (3.2.5)

where the diagonal elements represent the auto-spectra and the off-diagonal
elements the complex-valued cross-spectra.

3.3 Granger causality

We say that Yt is causing Xt if we are able to better predict Xt using all
available information than if the information apart from Yt had been used.

— Investigating causal relations by econometric models and cross-spectral methods
by Granger (1969), Nobel Memorial Prize in Economic Sciences in 2003

Throughout the last decades there have been long and thorough discussions
how causality can be formalized mathematically. A brief summary of the
concept of causality can be found in Pearl (2000). In this thesis we will limit
ourselves to Granger causality, as introduced in Granger (1969), based on a
suggestion by Wiener (1956).

Note that we only give a short overview of the fundamental ideas of Granger
causality in this section. In case the reader is interested in a more theoretical
introduction, we refer to the doctoral thesis of Flamm (2012).

3.3.1 Conditional Granger Causality

According to the definition of Granger (1969), we say a signal x1 is causing
another signal x2, denoted by x1 → x2, if knowledge of x1’s past significantly
improves the prediction of x2. Therefore, predicting x2 from its own past and
the one of x1 leads to a decrease of the prediction error in this case, compared
to a prediction of x2 from its own past.

For our purposes we consider the multivariate extension of this bivariate
concept according to Eichler (2007), which is often referred to as conditional
Granger causality.

Definition 7 (Conditional Granger Causality in AR-framework). Let x[n] be
AR-modeled according to (3.2.1).

– We say that xi is Granger-non-causal for xj with respect to x, denoted by
xi 9 xj|x, if Aji(z) = 0, i.e. Aji[s] = 0 ∀s.

– We say that xi is Granger-causal for xj with respect to x, denoted by
xi → xj|x, if Aji(z) 6= 0, i.e. Aji[s] 6= 0 for at least one lag s.

This means that in case of Granger causality, i.e. xi → xj|x, xj influences
xi in the AR representation (3.2.1). Thus, knowledge of xi’s past improves the
prediction of xj, in analogy to the original bivariate definition of Granger (1969).
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As we only consider off-diagonal elements (i 6= j) for this kind of analysis, we
can regard A(z) instead of Ã(z).

As in applications the AR coefficients will hardly ever be zero, one has to
test statistically whether they differ from zero significantly. For this purpose,
Eichler (2006a) derives a χ2-test, and Seth (2010) implements an F-test in his
Matlab toolbox for Granger causality analysis.

Note that conditional Granger causality is a meaningful extension to the
bivariate case, as in a bivariate AR model the definition of conditional Granger
causality simply reduces to the bivariate definition of Granger (1969). Again,
the AR coefficients indicate Granger causality or Granger non-causality.

3.3.2 Granger Causality in the frequency domain

The notion of Granger Causality is closely related to the time domain, as it is
based on prediction. Here a concept of Granger Causality in the frequency
domain shall be introduced.

Based on the work of Geweke (1982, 1984), who led the foundations for a
transfer of the concept of Granger causality into the frequency domain, Baccala
and Sameshima (2001) were interested in a »frequency-domain picture« of
this notion. Their motivation originates from neuroscience: Depending on the
patient, different frequency bands reveal different neurological phenomena.
It might therefore be interesting to regard »Granger causality at a certain
frequency« (Baccala and Sameshima 2001).8

According to Subsection 3.3.1, Granger causality can be determined in an
AR framework by looking at the coefficients A[s] or the polynomial coefficient
matrix A(z). Thus, according to (3.2.4), A( f ) = IK×K−FA[s] indicates Granger
causality for off-diagonal elements Aji( f ), i 6= j in the frequency domain.9

If Aji( f ) = 0 ∀ f we conclude that xi[n] does not Granger cause xj[n]; if
Aji( f ) = 0 for a certain f , we follow the approach of Baccala and Sameshima
(2001) and say that »xi[n] does not Granger cause xj[n] at frequency f «. In
order to derive this statement for a frequency band [ f1, f2], we simply consider´ f2

f1

∣∣Aji( f )
∣∣ d f .

3.4 Dependency measures

In discussions of the relations between time series, concepts of dependence
and feedback are frequently invoked.

— Geweke (1982): Measurement of Linear Dependency and Feedback Between
Multiple Time Series, basis of modern dependency measures in neuroscience

8The idea of a frequency-domain description of Granger causality is exploited mathematically in
a recent review by Ding et al. (2006). In particular, Chen et al. (2006) derive a non-parametric
estimation approach to Granger causality in the frequency domain.

9Note that, from a theoretical point of view, we look at A(z) evaluated at z = exp(2iπ f ), compare
Section 3.2.
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The goal of applying dependency measures to the autoregressive framework
(3.2.1) is to gain insights into the inner causal structure of the multivariate
signal, i.e. to derive statements which components influence each other. This
is particularly important in neuroscience, as it allows to conclude which
channels of EEG recordings reveal dependencies, thus indicate couplings
between different brain regions. The results of this analysis can then be
visualized in a graph where the vertices represent the channels and the edges
the dependencies, compare Edwards (2000) for an introduction to graph theory.
We are concerned with two major aspects in this type of graphical analysis:

Directed vs undirected: A dependency can have a notion of directedness or
not. In case a directed measure indicates an influence from e.g. x1 to x2,
we say x1 → x2, and we draw an arrow in the graph from node x1 to node
x2. In case an undirected measure indicates an influence, we say x1 and
x2 are coupled and simply connect vertices x1 and x2 by an (undirected)
edge. In any case, the absence of coupling results in separated, i.e. not
connected, vertices.

Direct vs indirect: A direct dependency measure only indicates couplings
which affect two neighboring nodes, but which are not mediated via a
third node. Assume three nodes x1, x2 and x3. An information flow from
x1 via x3 to x2 would be suppressed in this case. In the opposite case
of indirect dependency measures both direct and indirect couplings are
considered.

In this subsection we discuss prominent frequency-domain dependency
measures regarding the aforementioned properties, based on the multivariate
autoregressive modeling framework (3.2.1). Thus, we will consider a zero-mean,
stationary, K-dimensional signal x[n] throughout this section. We assume that
we have identified the AR model (3.2.1) and know the matrices A( f ), H( f )
and S( f ), compare Section 3.2. Note that it is of primary importance that
this dependency analysis is performed in a fully multivariate way, i.e. that a
multivariate AR model is identified at once, as subsequent bivariate analysis
steps might lead to erroneous dependency results (Kus et al. 2004).

We refer to Flamm et al. (2012) for further theoretical considerations regard-
ing dependency analysis in a multivariate autoregressive modeling framework.

As we stick to a linear framework in this thesis, we do not consider non-
linear methodology like, for example, non-linear causality analysis. Note,
however, that the latter has often been applied successfully to neurophysio-
logical problems, as recently reported by e.g. Chavez et al. (2003), Chen et al.
(2004) and Gourévitch et al. (2006). A good overview of non-linear dependence
measures is provided in Pereda et al. (2005).

3.4.1 Ordinary Coherence

The (ordinary) coherence is, in a way, the most natural coupling measure based
on spectral properties. It quantifies the normalized dependency of two signal
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components at a certain frequency, compare Brockwell and Davis (1991).

Definition 8 (Ordinary Coherence). The Ordinary Coherence (OC) of xi and
xj is given by

C2
i,j( f ) ,

∣∣Sij( f )
∣∣2

Sii( f ) Sjj( f )
, (3.4.1)

where Sij( f ) is the (i, j)-entry of the spectral matrix S( f ).

As can be seen immediately from the Cauchy-Schwarz-inequality, the
Ordinary Coherence (3.4.1) is bounded by 0 and 1, where a value of 0 signifies
absence of coupling and a value of 1 perfect linear dependence at frequency
f . Due to its symmetric definition, it obviously does not involve any notion
of directedness; neither is it able to distinguish between direct and indirect
influences.

3.4.2 Partial Coherence

In order to obtain a direct dependency measure, the Ordinary Coherence is
extended to the Partial Coherence (PC). Its definition is in analogy to the one
of the Ordinary Coherence, but makes use of the so-called partialized spectrum.
The approach of Dahlhaus (2000) and Brillinger (2001) to derive the latter is as
follows:

Let xi[n] and xj[n] be two channels of the multivariate signal x[n]. The other
components are denoted by yi,j[n] = {xk[n], k 6= i, j}. In order to shorten the
notation we will sloppily write y[n], though dependent on i and j.
Using this notation, the following steps are performed:

1. First, consider the residuals εi[n] and εj[n] which are the respective
components, with the influence of all other components removed{

εi[n] , xi[n]− dT
i ∗ y = xi[n]−∑∞

τ=−∞ dT
i [n− τ] y[τ]

εj[n] , xj[n]− dT
j ∗ y = xj[n]−∑∞

τ=−∞ dT
j [n− τ] y[τ]

, (3.4.2)

where di and dj symbolize optimal filters.

2. The partial covariance is then calculated as cov(εi[n], εj[n]), and the
partial cross-spectrum is its Fourier transform

Si,j|y( f ) = F{cov(εi[n + s], εj[n])}. (3.4.3)

The definition of the Partial Coherence immediately follows:

Definition 9 (Partial Coherence). The Partial Coherence (PC) of xi and xj is
given by normalization of the partial spectrum (3.4.3)

R2
i,j|y( f ) ,

∣∣∣Si,j|y( f )
∣∣∣2

Si,i|y( f ) Sj,j|y( f )
. (3.4.4)
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Like the Ordinary Coherence, the Partial Coherence is bounded by 0 and
1, and a value of 0 symbolizes absence of coupling. Confidence intervals for
the Partial Coherence are given in e.g. Winterhalder et al. (2005). Similar to
the Ordinary Coherence, the Partial Coherence does not involve any notion of
directedness due to its symmetric definition.

Note that the Partial Coherence (3.4.4) can be obtained in a quicker way, see
Dahlhaus (2000): Instead of performing the partialization of channels xi and xj,
one can simply invert the ordinary spectrum and re-normalize it appropriately.

The above methodology is purely non-parametric, thus does not fit into
the AR model framework (3.2.1) However, an explicit formula involving A( f ),
H( f ) and S( f ) would be desirable, as the goal is to consider dependency
measures within the framework of autoregressive modeling.

Korzeniewska et al. (2003) provide a simple formula for the calculation of
the Partial Coherence (3.4.4) using S( f ):

Lemma 5 (Computational formula for the Partial Coherence). The partial coher-
ence (PC) in the AR modeling framework (3.2.1) can be computed as

χ2
i,j( f ) =

∣∣Mi,j( f )
∣∣2

Mi,i( f ) Mj,j( f )
, (3.4.5)

where Mi,j( f ) denotes the minor of S( f ) which is obtained by removing row i and
column j from S( f ).

Proof. Appendix.

Note, however, that in practice the results of formula (3.4.5) will slightly
differ from Dahlhaus’ approach (3.4.4). This is due to the fact that a measured
biological signal is not the exact realization of an autoregressive process,
although an AR model might be fitted well to the data. In other words,
Dahlhaus’ approach (3.4.4) yields the Partial Coherence of the ECoG signal
whereas (3.4.5) is the Partial Coherence of the process specified by the AR
model.

3.4.3 Directed Transfer Function

As already mentioned, Ordinary Coherence and Partial Coherence do not
involve any notion of directedness. In order to overcome this limitation,
Kaminski and Blinowska (1991) proposed a measure termed Directed Transfer
Function (DTF). Although its exact mathematical interpretation remains unclear
(see below), it is often used in neuroscience literature (Blinowska 2011).

3.4.3.1 DTF

The Directed Transfer Function is based on the transfer function H( f ), as its
name indicates:
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Definition 10 (Directed Transfer Function). The Directed Transfer Function
(DTF) is defined as

γ2
i,j( f ) ,

∣∣Hij( f )
∣∣2

∑K
m=1 |Him( f )|2

. (3.4.6)

As the normalization in (3.4.6) is performed with respect to all source
channels xm, m = 1, . . . , K, DTF can be interpreted as the ratio of the inflow
from channel xj to xi normalized to all inflows to xi. The inflow from xj to xi
comprises both direct and indirect information flows, compare Eichler (2006b):
The numerator of DTF represents the total inflow, as its expansion as geometric
series yields

H( f ) = A( f )−1 =
(
IK×K − Ã( f )

)−1

=
p

∑
m=0

A( f )m = IK×K + Ã( f ) + Ã( f )2 + ...

For off-diagonal elements, i 6= j, we obtain

Hij( f ) = Ãij( f ) + ∑
w

Ãiw( f ) Ãwi( f ) + ..., (3.4.7)

where Aij( f ) represents the direct inflow from xj to xi and the subsequent
terms all other possible indirect information flows.

DTF is bounded by 0 and 1, as

K

∑
n=1

γ2
i,n( f ) =

K

∑
n=1

|Hin( f )|2

∑K
m=1 |Him( f )|2

= 1.

Low values indicate weak influence from xj to xi, values near 1 high influence; a
value of 0 symbolizes absence of coupling. In order to test statistically whether
DTF differs from zero, confidence intervals have to be considered. However,
exact ones are not available. Kaminski et al. (2001) propose surrogate data
methods for constructing confidence intervals based on numerical simulations
(bootstrapping), and Eichler (2006b) derives an asymptotic confidence interval.

Obviously, DTF (3.4.15) is not a symmetric measure. The authors of DTF
even claim that it indicates directed couplings: As H( f ) is not symmetric, it
contains information on the information transmission from xj to xi. From this
fact they conclude »that off-diagonal elements of H( f ) can be a measure of the
directional flow that we are seeking« (Kaminski et al. 2001).

In a special case DTF is linked to the notion of Granger causality (Kaminski
et al. 2001):

Lemma 6 (DTF and bivariate Granger Causality). The DTF (3.4.15) indicates
Granger causality in the bivariate case: If γ2

ij( f ) = 0 ∀ f , then xj 9 xi.

Proof. Appendix.
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Note that this still holds for multivariate signals x[n] partitioned into two
component signals xI [n] of dimension M and xJ [n] of dimension N with
M + N = K. DTF then indicates Lütkepohl (2007)’s extension of bivariate
Granger causality, as can be seen from a direct generalization of the proof of
theorem 6.

However, this equivalence is not valid in the general multivariate case.
Although Kaminski et al. (2001) claim that the situation »remains unclear«,
counter-examples of Eichler (2006b) prove the opposite, compare the discussion
of DTF below.

For reasons of completeness note that DTF (3.4.6) is a special case of a
measure termed Directed Coherence. The latter is defined as

γ̃2
i,j( f ) ,

σ2
jj

∣∣Hij( f )
∣∣2

∑K
m=1 σ2

jm |Him( f )|2
, (3.4.8)

which thus gives DTF for Σ = IK×K. For further details we refer to Baccala
et al. (1998).

3.4.3.2 Extensions

DTF involves a notion of directedness, but cannot distinguish between direct
and indirect dependencies, see derivation (3.4.7). Korzeniewska et al. (2003)
therefore constructed a measure combining these two desired properties. This
construction is performed in an intuitive way in two steps.

First, consider the following measure.

Definition 11 (Full frequency Directed Transfer Function). The full frequency
Directed Transfer Function (ffDTF) is defined as

η2
i,j( f ) ,

∣∣Hij( f )
∣∣2

´
f ∑K

m=1 |Him( f )|2
. (3.4.9)

Second, the direct Directed Transfer Function (dDTF) is introduced as the
product of the Partial Coherence (3.4.5) and the full frequency Directed Transfer
Function (3.4.9):

Definition 12 (Direct Directed Transfer Function). The direct Directed Transfer
Function (dDTF) is given by

dDTF , PC · ffDTF. (3.4.10)

This construction has the advantage that the Partial Coherence sorts out
indirect couplings and the full frequency Directed Transfer Function contributes
the notion of directedness.

Moreover, Ginter et al. (2001) extended DTF to its time-variant form termed
short-term DTF (sDTF), which has successfully been applied to the analysis of
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Figure 3.4.1: DTF and Granger causality. Dependencies of variables in the
AR system (3.4.11) given by Eichler (2006b) as a counter-example to the claimed
link between DTF and conditional Granger causality.

cognitive tasks (Blinowska et al. 2010). However, it is not applicable in the
context of epileptic seizure propagation, as its calculation requires repetitions
of the same experimental setup (e.g. repeated execution of the same cognitive
task).

3.4.3.3 Discussion

In the following we briefly discuss three aspects of DTF which merit, in our
opinion, some attention.

Causality: Although bivariate DTF indicates Granger causality, this is not
true for conditional Granger causality. Eichler (2006b) gives a simple
counterexample: Consider the multivariate autoregressive system

x1[n] = αx2[n− 1] + βx3[n− 2] + ε1[n]

x2[n] = γx3[n− 1] + ε2[n]

x3[n] = ε3[n]

, (3.4.11)

whose dependency paths are represented in Fig. 3.4.1.
A short calculation shows that the numerator of DTF γ2

1,3( f ) is given by

(β + αγ)2. We distinguish two cases:

– β = 0
As the AR coefficient A13 = 0, x3 does not Granger-cause x1. How-
ever, DTF takes a value different from zero, γ2

1,3( f ) = α2γ2, i.e.
indicates Granger causality.
This contradiction is caused by the indirect influence of x3 via x2 to
x1, also compare (3.4.7).

– β = −αγ 6= 0
In this case, the situation is the exact opposite: DTF equals zero, but
x3 does Granger-cause x1.

Transfer function: Second, consider the following system theoretic interpre-
tation: Based on the autoregressive model (3.2.1), γ2

i,j( f ) describes the
information transfer from the innovations of channel xj, i.e. εj, to channel
xi. However, we are interested in couplings between channels xi and xj,
not between xi and εj.
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Normalization: Finally note that it is not obvious why DTF is normalized to
all signal sources. While Kaminski and Blinowska (1991) state that they
search for a normalization which puts emphasis on the signal structures
sending the signal, one could also normalize to any other structure, e.g.
target channels.

3.4.4 Partial Directed Coherence

Another prominent coupling indicator in neuroscience is the Partial Directed
Coherence (PDC), introduced by Baccala and Sameshima (2001) for providing a
»frequency-domain picture« of Granger causality. As its name already indicates,
it was constructed in order to combine the two properties we are seeking: a
notion of directedness and suppression of indirect information flow.

3.4.4.1 PDC

We follow Baccala and Sameshima (2001)’s construction of PDC step by step in
order to understand to which extent its mathematical properties are rigorous
and to which heuristic.

First, consider an alternative expression of the Partial Coherence (3.4.4).

Definition 13 (Partial Coherence Function). The Partial Coherence Function is
given by

κi,j( f ) ,
aH
·i ( f )Σ−1 a·j( f )√

aH
·i ( f )Σ−1 a·i( f )

√
aH
·j ( f )Σ−1 a·j( f )

, (3.4.12)

where a·i( f ) denotes the ith column of the matrix A( f ).

Lemma 7 (Partial Coherence Function and PC). The Partial Coherence Function
κi,j( f ) is the Partial Coherence (3.4.4).

Proof. Appendix.

Second, consider a factorization of the Partial Coherence:
The Partial Coherence Function is a partialized, but undirected measure.

By factorizing κi,j( f ), the authors claim to overcome this limitation. For this
purpose they define the Partial Directed Coherence Factor (PDCF).

Definition 14 (Partial Directed Coherence Factor). The Partial Directed Coher-
ence Factor (PDCF) is given by

πi,j( f ) ,
Aij( f )√

aH
·j ( f )Σ−1 a·j( f )

, (3.4.13)

where a·i( f ) again denotes the ith column of the matrix A( f ).

This definition yields the desired factorization:
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Figure 3.4.2: Normalization of the PDC. Exemplary 3-dimensional system
with source channel x2. π2

1,2( f ) and π2
3,2( f ) are both normalized with respect to∣∣A1,2( f )2

∣∣+ ∣∣A2,2( f )2
∣∣+ ∣∣A3,2( f )2

∣∣, thus to all outflows from x2.

Lemma 8 (Factorization of the Partical Coherence Function). The Partial Coher-
ence Function can be factored as

κi,j( f ) = πH
·i ( f )Σ−1 π·j( f ), (3.4.14)

where π·i( f ) denotes the ith column of the matrix Π = (πij)i=1,...,K, j=1,...,K.

Proof. Appendix.

Note that obviously the Partial Directed Coherence Factor (3.4.13) is an
asymmetric measure. Baccala and Sameshima (2001) even claim that this
factorization into two components introduces a notion of directedness.

The last step in the construction of PDC is of heuristic nature: In (3.4.13),
Σ affects the denominator of the Partial Directed Coherence Factor. Unfor-
tunately, as Σ describes the instantaneous coupling between the signal com-
ponents, (3.4.13) would indicate mixed effects of both Granger causality and
instantaneous coupling.

In order to overcome this limitation, the authors define the Partial Directed
Coherence as follows:

Definition 15 (Partial Directed Coherence). The Partial Directed Coherence
(PDC) is given by

π2
i,j( f ) ,

∣∣Aij( f )
∣∣2

∑K
n=1

∣∣Anj( f )
∣∣2 . (3.4.15)

which is identical to the Partial Directed Coherence Factor (3.4.13) in the case
of Σ = IK×K.

As the normalization in (3.4.15) is performed with respect to all target
channels, PDC can be interpreted as the ratio of the outflow from channel xj
to xi normalized to all outflows from xj. Emphasis is therefore put on the
neural structure sending the signal, as shown in Fig. 3.4.2. Note that this
normalization is exactly inverse to the one of DTF.

Similar to DTF, PDC is bounded by 0 and 1, as

K

∑
m=1

π2
mj( f ) =

K

∑
m=1

|Ain( f )|2

∑K
n=1

∣∣Anj( f )
∣∣2 = 1.



3.4. DEPENDENCY MEASURES 61

Low values indicate little influence from xj onto xi, and values near 1 high
influence. A value of 0 symbolizes absence of coupling. Again, one has to test
statistically whether PDC differs from zero significantly. Besides an asymptotic
(frequency-dependent) confidence interval derived by Schelter et al. (2005)10,
Takahashi et al. (2007) provide an exact one.

Unlike DTF, PDC is linked to conditional Granger causality (and therefore
to Granger causality in the bivariate case as well):

Lemma 9 (PDC and Conditional Granger Causality). PDC (3.4.15) indicates
Conditional Granger Causality in the multivariate AR model (3.2.1):

π2
i,j( f ) = 0 ∀ f ⇔ xj[n] 9 xi[n].

Proof. Appendix.

Therefore, PDC provides a description of Granger causality in the frequency
domain, what (Baccala and Sameshima 2001) call »frequency-domain picture«,
compare Subsection 3.3.2.

Finally, for the sake of completeness note that PDC is well-defined (Schelter
et al. 2005).

Lemma 10 (Well-definedness of the PDC). If the stability condition (3.2.2) is
satisfied for the autoregressive model (3.2.1), the denominator of PDC does not equal
zero:

K

∑
n=1

∣∣Anj( f )
∣∣2 6= 0.

Thus, PDC is well-defined.

Proof. Appendix.

3.4.4.2 Extensions

Due to the enormous interest in PDC in the neuroscience community various
extensions of its initial definition (3.4.15) have come up in the last years.

First, Baccala et al. (2007) defined generalized PDC (gPDC) in order to
overcome the limitation of PDC that it is not scale-variant, i.e. depends on the
scaling of the individual signal components.

Definition 16 (Generalized Partial Directed Coherence). gPDC is given as

gPDCi,j ,

1
σ2

i

∣∣Aij( f )
∣∣2

∑K
n=1

1
σ2

n

∣∣Anj( f )
∣∣2 ,

10The disadvantage of this confidence interval lies in the fact that it is only valid point-wise: We
therefore expect exceedings of the confidence level even in case of non-significance, compare
Schelter et al. (2005). In order to overcome this limitation Sommerlade, Eichler, Jachan, Henschel,
Timmer and Schelter (2009) proposed a smoothed version of PDC.
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where σ2
i the entry Σii of the error covariance matrix. Note that this re-

normalization preserves the boundedness by 1.

Second, Takahashi et al. (2010) derived an information theoretic form of
PDC establishing a link to mutual information. Finally, PDC has recently been
extended to time-variant forms, compare Sommerlade, Henschel, Wohlmuth,
Jachan, Amtage, Hellwig, Lücking, Timmer and Schelter (2009) and Omidvar-
nia et al. (2012).

3.4.4.3 Discussion

As for DTF, we want to end this subsection on PDC with a short discussion on
its construction and properties.

Directedness: First, Baccala and Sameshima (2001) claim that factorization of
the Partial Coherence Function (3.4.12) into Partial Directed Coherence
Factors (3.4.13) yields a directed measure. Obviously the first is symmet-
ric, i.e. undirected, and the latter is asymmetric. While asymmetry does
not necessarily imply causality, we do know that PDC involves a notion
of directedness due to its link to conditional Granger causality.

Omission of Σ: Second, PDC is obtained from the Partial Directed Coherence
Factor (3.4.13) by omission of Σ in the denominator. In case of Σ = IK×K
the derivation of PDC is accurate.

Normalization: Finally, the normalization with respect to all target channels
is one possible way among many. One could, for instance, also choose all
source structures like DTF does.
In particular, the specific kind of normalization with respect to all target
channels poses problems, compare Schelter et al. (2009): When consider-
ing the coupling between two channels, a third channel not even involved
in the consideration affects the denominator of the PDC and thus changes
the coupling quantification. Compare Fig. 3.4.2 for an illustration. Ob-
viously, analog limitations apply when normalizing with respect to all
source channels as in case of DTF (Graef et al. 2009).

3.4.5 Granger Causality Index

The last coupling indicator we want to present is directly related to Granger
causality, the measure of conditional linear dependence (Geweke 1984).11 In neu-
roscience literature this measure is sometimes referred to as Granger causality
index (GCI), see e.g. Winterhalder et al. (2005).

For the motivation of this coupling indicator we have to recall the basic idea
of Granger causality. So far, we have only considered the characterization of

11This measure is an extension of the measure of linear dependence for the bivariate case, as introduced
in Geweke (1982).
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conditional Granger causality via the AR coefficients, compare subsection 3.3.1.
Here we exploit Granger (1969)’s basic definition saying that knowledge of one
signal’s past significantly improves the prediction of another one. We consider
an extension of to the multivariate case (Eichler 2007): We denote the prediction
error of xj, given all other components, by σ2(xj|x) and the prediction error
of xj, given all other components except of xi, by σ2(xj|x\{xi}).12 In case xi is
Granger-causal for xj, the first prediction error is smaller than the second; in
case of non-causality they take the same value.

To quantify this aspect, we simply construct the log ratio of these two terms,
compare Geweke (1984),

Fxi→xj |x = ln
σ2(xj|x\{xi})

σ2(xj|x)
. (3.4.16)

In case of non-causality it values zero (both regressions yield the same predic-
tion error), otherwise it measures the coupling strength.

We refer to Geweke (1984) for a statistical test. However, in this thesis we
will use the GCCA toolbox described in Seth (2010), which makes use of measure
(3.4.16) for testing the null hypothesisH0 : Aji[s] = 0 ∀s of conditional Granger
non-causality (compare Subsection 3.3.1).

3.5 Signal detection

Every test of a statistical hypothesis [...], consists in a rule of rejecting the
hypothesis when a specified character, x, of the sample lies within certain
critical limits, and accepting it or remaining in doubt in all other cases.

— On the Problem of the Most Efficient Tests of Statistical Hypotheses by Neyman
and Pearson (1933), statisticians and founding figures of detection theory

The aim of signal detection is to decide whether a specific information is
contained in a measured signal, e.g. in radar applications to decide whether
the echo of an aircraft is present in the measured signal or not.

We assume that the reader is familiar with basic signal processing tech-
niques and statistical concepts. We refer to Kay (1998) for an introduction to
signal detection and to Scharf (1991) for a more theoretical approach to the
topic.

3.5.1 Preliminary de�nitions

In the following we consider a (continuous) N-dimensional random variable x,
which is described by the probability density function pθ(x). The observations
xn, n = 1, . . . , N ∼ pθ(x) form the univariate signal x[n] of length N under
consideration. The goal is to decide from which (finite) parameter set Θi the
parameter θ was drawn, given the observation space X = {(x1, . . . , xN)}.
12Compare the concept of partialization detailed in Subsection 3.4.2.
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For a formalization we consider the following definitions:

Definition 17 (Distinction via number of hypothesis). We distinguish two
partitions of the parameter space:

– In case of Θ = Θ0 ∪ Θ1 with Θ0 ∩ Θ1 = {}, we speak about a binary
hypothesis test: H0 : θ ∈ Θ0 vs. H1 : θ ∈ Θ1.
Here, X = X0 ∪ X1 with X0 ∩ X1 = {}. As is well known, X 0 =

{x : acceptH0/rejectH1} is referred to as acceptance region, X 1 = {x :
rejectH0/acceptH1} as critical (rejection) region.
Furthermore, an index of the the accepted hypothesis is given by the test
function

φ(x) =

{
0 x ∈ X0

1 x ∈ X1

– In case of Θ =
⋃M−1

i=0 Θi and
⋂M−1

i=0 Θi = {} with M > 2 , we speak
about a multiple (M-ary) hypothesis test: H0 : θ ∈ Θ0 vs. ... vs. HM−1 :
θ ∈ ΘM−1.

Definition 18 (Distinction via size of subsets). We distinguish two types of
hypotheses:

– If Θi = {θi} consists of a single element, Hi : θ = θi is called simple
hypothesis.

– If Θi contains more than one element, Hi : θ ∈ Θi is called composite
hypothesis.

In this thesis we will consider binary, composite hypothesis tests. Here,
in case of a scalar parameter θ, an order relation is possible, which allows to
distinguish between two-sided tests (i.e. H0 : θ = θ0 vs. H1 : θ 6= θ0) and
one-sided tests (H0 : θ ≤ θ0 vs. H1 : θ > θ0). Note that in case of vector-
valued parameters θ (as in matched subspace filtering in Subsection 3.5.3), we
have to consider the vector norm for one-sided tests, i.e. H0 : ‖θ‖ ≤ θ0 vs.
H1 : ‖θ‖ > θ0.

We have the following decision scheme for binary tests:

Definition 19 (Possible decisions for binary tests). We distinguish 4 cases:

– H0 is correctly accepted (correct non-detection), if θ ∈ Θ0, x ∈ X0.
The acceptance probability is given by PA = P {φ(x) = 0 | Ho}.

– H1 is erroneously accepted (type I error / false alarm / false positive), if
θ ∈ Θ0, x ∈ X1.
The false alarm probability / size / significance level is given by PFA =

P {φ(x) = 1 | Ho}, sometimes referred to as α.
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Figure 3.5.1: Receiver Operator Characteristics. False alarm probability PFA
and power PD plotted against each other for an imaginary test. Perfect detection
would be achieved in the operating point (PFA, PD) = (0, 1).

– H1 is correctly accepted (correct detection), if θ ∈ Θ1, x ∈ X1.
The detection probability / power is given by PD = P {φ(x) = 1 | H1}, some-
times referred to as β.

– H0 is erroneously accepted (type II error / miss / false negative), if θ ∈
Θ1, x ∈ X0.
The miss probability is given by PM = P {φ(x) = 0 | H1}

Obviously, PA + PFA = 1 and PD + PM = 1. Therefore, a hypothesis
test is fully specified by the false alarm probability PFA and the power PD.
Plotting these two probabilities against each other yields the Receiver Operator
Characteristics (ROC), compare Fig. 3.5.1 for an illustration. An ideal detection
would be characterized by the operating point (PFA, PD) = (0, 1), which is not
achievable in practical applications. Therefore, one has to typically choose a
trade-off between sensitivity (high PD) and specificity (low PFA) by adapting the
test specifications (e.g. threshold) in such a way that the desired operating
point in the ROC is attained.

3.5.2 Simple hypothesis testing

Although we do not address the topic of simple hypothesis testing in this
thesis, we give a very brief overview in this subsection. This is intended as a
basis for composite hypothesis testing discussed in Subsection 3.5.3.

As for simple binary tests Θi = {θi}, we have p(x | Hi) = p(x | θi) for
i = {0, 1}, i.e. the observed data bears information about the parameter and
the hypothesis. This is different in composite hypothesis testing, see Subsection
3.5.3.

We would like to optimize both error probabilities, i.e. minimize PFA and
maximize PD. However, this is not possible at the same time, as changing φ(x)
influences both probabilities. In simple hypothesis testing the Neyman-Pearson
criterion is an alternative.
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Definition 20 (Neyman-Pearson Criterion). Maximization of the power PD(φ)

while keeping the size below a prescribed level α, i.e.

φNP(x) , arg max
φ

PD(φ) subject to PFA(φ) ≤ α. (3.5.1)

The Neyman-Pearson theorem then assures optimality, existence and unique-
ness of an appropriate decision rule, compare Neyman and Pearson (1933). This
case will be extended to composite hypothesis testing in the next subsection.

3.5.3 Composite hypothesis testing

In composite hypothesis tests there are more than one possible distributions
of the observed data under a given hypothesis, as at least one partition of the
parameter space consists of more than one element. Therefore, the mapping
from a specific parameter θ ∈ Θi to an observation x is governed by a distribu-
tion depending on θ, i.e. pθ(x) = p(x; θ). This makes composite hypothesis
testing more difficult in comparison to simple hypothesis testing.

3.5.3.1 Uniformly Most Powerful Tests

In our (non-Bayesian) setting, Neyman-Pearson theory has to be extended. As
can be seen easily13, the false alarm and detection probability of the decision
rule φ(x) are given by

PFA(θ) = E{φ(x); θ}, θ ∈ Θ0

PD(θ) = E{φ(x); θ}, θ ∈ Θ1

and thus depend on θ, as outlined above. Furthermore, we define the size α

and the power β(θ) as

α , sup
θ∈Θ0

PFA(θ)

β(θ) , PD(θ).

Now we consider a generalization of the Neyman-Pearson criterion (3.5.1)
to composite hypothesis testing:

Definition 21 (Uniformly Most Powerful (UMP) Test). A test φ(x) is uniformly
most powerful of size α, if its power is uniformly larger than the power of any
other test of size α, i.e.

E{φ(x); θ} ≥ E{φ′(x); θ), θ ∈ Θ1

13We have (the analog reasoning holds for PD(θ))

PFA(θ) = P{φ(x) = 1; θ ∈ Θ0} =
´

x∈X1
φ(x) pθ(x) dx +

´
x∈X0

φ(x)︸︷︷︸
=0

pθ(x) dx = E{φ(x); θ}.
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for all φ′(x) satisfying α = supθ∈Θ0
E{φ′(x); θ} ≤ α.

Unfortunately it is often difficult to decide whether a UMP test exists for
a specific composite hypothesis test, and if it does, to find the UMP decision
rule.

However, in case of one-sided hypothesis tests with scalar parameters in
the probability density function of the scalar observation, a positive existence
statement can be made.

Theorem 1 (Karlin-Rubin Theorem). If x has monotone likelihood ratio, i.e. L(x) =
p(x; θ1)
p(x; θ0)

is a non-decreasing function of x for all pairs θ1 > θ0, then the level α UMP
test for the problem H0 : θ ≤ θ0 vs. H1 : θ > θ0 is given by

φ(x) =


1 x > γ

η x = γ

0 x < γ

where the randomization η and the threshold γ are chosen such that

E{φ(x); θ0} = P{x > γ; θ0}+ η P{x = γ; θ0} = α.

Proof. Karlin and Rubin (1956).

This theorem can be regarded as an extension of the Neyman-Pearson theo-
rem to composite hypothesis testing and will be needed for the construction of
matched subspace detectors, see below.

3.5.3.2 Invariance

A typical situation where it is impossible to find a UMP decision rule occurs in
case of so-called nuisance parameters. For instance, let the parameter θ consist
of say p components, but only r < p components enter into the hypothesis.
Therefore, it appears reasonable to restrict the test to a decision rule which is
invariant of the p− r + 1 parameters not used and to find the most powerful
invariant test.

Another motivation for invariance is the occurrence of symmetries. As an
example, consider two-dimensional measurements (x, y). If we want to test
H0 : D ≤ D0 vs. H1 : D > D0, with D being the (average) distance from the
origin, it seems natural that a decision rule should not depend on the exact
location of (x, y), but rather on the radius

√
x2 + y2. In this case a circular

invariance would appear reasonable.
For a formalization consider the following definitions:

Definition 22 (Invariance). Consider a family of probability density functions
P = {p(x; θ), θ ∈ Θ} and the binary composite hypothesis test H0 : θ ∈ Θ0
vs. H1 : θ ∈ Θ1. We describe symmetries/invariances by a (in algebraic sense)
group G of transformations g(x).
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Invariance of transformation groups: We say P is invariant to G if, for any
x ∈ X and g ∈ G, p1(x1; θ) of x1 = g(x) can be written as

p1(x1; θ) = p(x1; θ1), for some θ1 = ḡ(θ).

The parameter transformation ḡ is called the induced transformation on
Θ.

Invariance of hypothesis testing problem: If in addition ḡ preserves the di-
chotomy Θ = Θ0 ∪Θ1, i.e.

θ ∈ Θ0 ⇔ ḡ(θ) ∈ Θ0,

θ ∈ Θ1 ⇔ ḡ(θ) ∈ Θ1,

then we say that the hypothesis testing problem is invariant to G.

Invariance of decision rule: If in addition we have, for any x ∈ X and g ∈ G,

φ(g(x)) = φ(x),

we say that the test/decision rule φ(x) is invariant to G.

Most powerful invariant tests are a restriction of uniformly most powerful
tests to invariant decision rules:

Definition 23 (Most powerful invariant test). The level α most powerful invari-
ant test φ(x) is defined by the following conditions:

1. it has size α = supθ∈Θ0
PFA(θ);

2. it is invariant to G, i.e. φ(g(x)) = φ(x);
3. its power is uniformly larger than the power of any other invariant test

of size α, i.e.
E{φ(x); θ} ≥ E{φ′(x); θ), θ ∈ Θ1

for all φ′(x) satisfying φ′(g(x)) = φ′(x) and α = supθ∈Θ0
E{φ′(x); θ} ≤

α.

In order to find most powerful invariant tests, we will need the concept of
maximal invariant statistics.

Definition 24 (Maximal invariant statistic). A statistic T(x) is said to be maxi-
mal invariant if it satisfies

1. T(g(x)) = T(x) for all g ∈ G;
2. T(x1) = T(x2) implies x2 = g(x1) for some g ∈ G.

Thus, a maximal invariant statistic is constant on the orbits of G, i.e. on
{g(x) : g ∈ G}, but takes a different value for each orbit. The following
theorem establishes a link between maximal invariant statistics and invariant
decision rules.
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Theorem 2 (Invariance of decision rule). Let T(x) be a maximal invariant statistic
with respect to the transformation group G.

Then φ(x) is an invariant decision rule iff it depends on x only through T(x), i.e.
φ(x) = φI(x) for all x and some function φI(x), or equivalently

T(x1) = T(x2) ⇒ φ(x1) = φ(x2).

Proof. Appendix.

Thus, summing up, the following approach has to be taken in order to solve
a composite hypothesis problem using invariance principles:

1. Identify a meaningful transformation group G.
2. Check the invariance of the problem with respect to G.
3. Find a maximal invariant statistic T(x).
4. Devise a UMP detector for the problem based on T(x), e.g. by application

of the Karlin-Rubin theorem 1.

3.5.3.3 Matched subspace �lters

Matched subspace detectors are an application of the invariance principle
to composite hypothesis testing, compare the review article by Scharf and
Friedlander (1994).

Consider the linear data model

x = s + v + w, s ∈ S , v ∈ S⊥, w ∼ N (0, σ2I) (3.5.2)

where the involved entities are N × 1 vectors (i.e. signal samples have been
stacked into a vector). We assume that the signal consists of a linear combina-
tion of modes, i.e. s = H θ where H is a known modal matrix of dimension
N× p and θ an unknown parameter vector (mode weights) of dimension p× 1.
Thus, s lies in the subspace S spanned by the columns of H, compare Fig. 3.5.2.
However, we do not know the direction of s within S . Furthermore, v ∈ S⊥
is an unknown influence in the orthogonal subspace to S , and w is additive
noise. Thus, x ∼ N (H θ+ v, σ2I).

The goal is to test whether the signal s ∈ S is present in the measured data
x or not, i.e. H0 : ‖θ‖ = 0 vs. H1 : ‖θ‖ > 0, as illustrated in Fig. 3.5.2. This is
a one-sided composite hypothesis test for which no UMP decision rule exists
(θ and v are both unknown, but the latter is a nuisance parameter). Therefore,
we reduce the problem by application of invariance principles:

1. First, we identify a meaningful transformation group. As the direction
of s ∈ S and v ∈ S⊥ are unknown, it seems natural to demand invari-
ance with respect to rotation within S and a bias in S⊥. This can be
represented by the transformation

g : x1 = g(x) = QSx + z, z ∈ S⊥,
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(a) (b)

Figure 3.5.2: Symmetry of linear data model. In case of (a) H0 : ‖θ‖ = 0
the vector s vanishes, in case of (b) H1 : ‖θ‖ > 0 the vector s = Hθ lies in S .
In both cases the vector v represents an offset in the direction of the orthogonal
subspace S⊥.

where the rotation matrix is QS = UQUT + PS⊥ . Hereby, U is a N × p
matrix whose columns constitute an orthogonal basis of S , Q is an ar-
bitrary p× p orthogonal matrix and PS⊥ = I−UUT is the orthogonal
projection on S⊥. Compare Fig. 3.5.3 (a) for an illustration.
Thus, G = {g : g(x) = QSx + z} as detailed above. This set of affine
transformations obviously satisfies algebraic group properties. In partic-
ular QSx + z = QS (x + z), as z ∈ S⊥, compare Fig. 3.5.3 (a).

2. It can be easily seen that the hypothesis testing problem is invariant with
respect to G, compare the annex.

3. The next step is to find a maximal invariant test statistic T(x). Note
that here the orbits of G are the hyper-cylinders Cr = {x : ‖PSx‖2 =

r, PS⊥x arbitrary}, with PS = UUT denoting the orthogonal projection
on S (compare Fig. 3.5.3 (a) for an illustration). Therefore, a candidate
is T(x) = ‖PSx‖2, and short calculations (compare the annex) show that
this statistic is in fact maximal invariant.
Note that T(x) measures the energy of the signal in the subspace S .

4. In order to find the most powerful invariant test, we therefore restrict
to decision rules φ(x) depending only on T(x) = ‖PSx‖2, according to
theorem 2. As T(x) = xTPSx is the sum of p squares, the quotient

χ2(x) =
xTPSx

σ2 (3.5.3)

is χ2-distributed (non-centrally with p degrees of freedom).14 Conse-
quently, as the χ2-distribution has non-decreasing likelihood ratio, the

14Note that χ2(x) differs from T(x) only by the scalar constant factor σ2, thus theorem 2 still
applies.
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(a) (b)

Figure 3.5.3: Matched subspace filter. Illustration of the invariance properties.
(a) In case of known noise variance σ2 the orbits of the transform group G represent
a hyper-cylinder, (b) in case of unknown noise variance σ2 a hyper-cone.

Karlin-Rubin theorem 1 implies that the most powerful invariant test is

φ(x) = φI(χ
2(x)) =


1 χ2(x) > γ

η χ2(x) = γ,

0 χ2(x) < γ

with η and γ chosen such that E{φ(x); ‖θ‖ = 0} = α.
This decision rule is called matched subspace detector, because x is filtered
by PS , i.e. a filter is matched to the subspace S under consideration.

However, in practical applications the noise variance σ2 is most likely
unknown in model 3.5.2. Therefore, there is no way to compute the statistic
xTPSx

σ2 , consequently there is no UMP test which is invariant to rotation and
orthogonal bias.

The principal approach for deriving a UMP invariant detector is analogous
to the case with known variance, though more technical (Scharf and Lytle 1971).
Therefore, we only give a quick overview, also compare Scharf (1991).

1. Here we ask for invariance with respect to transformations which scale
the measurements and rotate them in the signal subspace S . This can be
represented by the transformation

g : x1 = g(x) = QS cx,

where c is a scaling factor, and the rotation matrix is again QS = UQUT +

PS⊥ . Compare Fig. 3.5.3 (b) for an illustration.
Thus, G = {g : g(x) = QS cx}, which can be shown to satisfy algebraic
group properties.
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2. Again, the problem is invariant to G.

3. A maximal invariant statistic is given by T(x) = xTPHx
xT(I−PH)x . Here, the

orbits of T(x) form hyper-cones, compare Fig. 3.5.3 (b).

4. As before, we restrict to decision rules φ(x) only depending on T(x). A
slight modification of the maximal invariant statistic leads to

F =
xTPHx/σ2 p

xT(I−PH)x/σ2(N−p)
, (3.5.4)

which again differs from T(x) only by a constant scalar factor. Thus,
theorem 2 applies.
Statistic (3.5.4) is a ratio of quadratic forms in projection matrices. There-
fore, it measures the ratio of the energy of x in the subspace S to the
energy of x in the subspace S⊥ (per dimension). Compare Fig. 3.5.3 (b)
for an illustration.
As F is a ratio of independent χ2-distributed random variables (quadratic
forms), it is F-distributed (non-centrally with p and N − p degrees of
freedom). Again, as the F-distribution has monotone likelihood ratio, the
Karlin-Rubin theorem 1 applies. Thus, the most powerful invariant test
is given by

φ(x) = φI(F(x)) =


1 F(x) > γ

η F(x) = γ,

0 F(x) < γ

with η and γ chosen such that E{φ(x); µ = 0} = α.
This decision rule is called CFAR matched subspace detector, because it has
constant false alarm rate independently of σ2. 15

3.6 Factor Models

Factor models in a time series setting may be used to compress information
contained in the data in both the cross-sectional dimension, N say, and in
the time dimension T. In this way it is possible to overcome the »curse
of dimensionality« plaguing traditional multivariate time series modeling
[...].

— Deistler et al. (2010): Generalized Dynamic Factor Models: An Approach via
Singular Autoregressions, recent theoretical considerations on factor models

The use of factor analysis was established by psychologists at the beginning
of the 20th century for explaining common determinants of intelligence (Burt
1909). Factor models in the time series context exploit this idea of common
factors in case of a chronological order of the observations (Geweke 1977). They

15The division by σ2 cancels out in the numerator and denominator of (3.5.4); otherwise the statistic
could not be computed anyway.
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are often used for the analysis and forecasting of high-dimensional signals,
when their single components show similarities or a kind of co-movement.
This modeling approach is in particular popular in EEG recordings (Molenaar
1985, Molenaar and Nesselroade 2001).

We refer to Anderson (2003) for factor analysis and to Bartholomew et al.
(2011) and Loehlin (2004) for an introduction to latent variable models, in
particular factor models.

Let us consider a K-dimensional signal x[n] with components xk[n], k =

1, ..., K which is weakly stationary with mean zero. The basic idea of factor
models is to separate this observed signal into a part representing the co-
movement and a part representing the individual movements (»noise«) of the
data. This idea is summarized in the following:

Definition 25 (Factor Model). In its general form, a factor model is written as

x[n] = χ[n] + η[n], (3.6.1)

with the latent variables χ[n] and the noise η[n].
The K-dimensional latent variables χ[n] are generated by a q-dimensional

process, where q� K. These q driving processes are called factors, therefrom
the term factor model.

This separation into latent variables and noise can be achieved by different
means. In this thesis we will separate the latent variables χ[n] from the noise
by means of Principal Component Analysis (PCA) and derive the static factors
z[n]. See Pearson (1901), Hotelling (1933) and Jackson (2004) for background
information on PCA.

In this thesis we consider a specific class of factor models which we will
need in Chapter 7. Following PCA we model the static factors z[n] as a regular
AR(p) process. This modeling approach is sometimes referred to as a quasi-
static factor model, see Deistler and Zinner (2007) for theoretical considerations.
Here we limit ourselves to a summary of the implementation:

Definition 26. Construction of the quasi-static factor model.

1. In order to separate x[n] = χ[n] + η[n], we apply the PCA: We calculate
the eigenvalue decomposition of the covariance matrix of the observed
signal

Cov{x[n]} = OΓOT

= (O1 O2)

(
Γ1 0
0 Γ2

)(
OT

1
OT

2

)
= O1Γ1OT

1 + O2Γ2OT
2 ,

where Γ = diag(λ1, . . . , λn) contains the ordered eigenvalues λ1 ≥ λ2 ≥
. . . ≥ λn > 0, and O is an orthogonal matrix. O1 contains the first q
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columns of O corresponding to the q largest eigenvalues, respectively O2
the remaining n− q columns.
Let

ẑ[n] = OT
1 x[n]

be the estimator of the q-dimensional (q � K) static factors. Then the
estimator of the K-dimensional latent variables is obtained by

χ̂[n] = O1ẑ[n] = Λẑ[n], (3.6.2)

where Λ is termed factor loading matrix.
As is well known, one could generate other static factors by pre-multiplication
with a regular (in particular orthogonal) matrix U16, i.e.

χ[n] = Λz[n] = ΛU−1︸ ︷︷ ︸
Λ̃

Uz[n]︸ ︷︷ ︸
z̃[n]

= Λ̃z̃[n].

2. We model the static factors z[n] as a regular AR(p) process, compare
Section 3.2. According to the compact notation (3.2.2) we write

A(z) z[n] = ε[n], (3.6.3)

where A[0] = Iq×q and Σε > 0 as in model (3.2.1). Furthermore we
assume the stability condition (3.2.3) to hold.

3. Equations (3.6.2), (3.6.3) and the causal invertibility of A(z) according to
(3.2.3) together yield

χ[n] = Λz[n] = ΛA−1(z) ε[n]. (3.6.4)

In other words the q-dimensional white noise ε[n] generates the K-
dimensional latent variables χ[n].

16However, this will not impair our causality analysis in Chapter 7, see Flamm et al. (2013).
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Chapter 4

Propagation Analysis

Framework

La filosofia è scritta in questo grandissimo libro che continuamente ci sta
aperto innanzi a gli occhi (io dico l’universo), ma non si può intendere se
prima non s’impara a intender la lingua, e conoscer i caratteri, ne’ quali è
scritto. Egli è scritto in lingua matematica, e i caratteri son triangoli, cerchi,
ed altre figure geometriche, senza i quali mezi è impossibile a intenderne
umanamente parola; senza questi è un aggirarsi vanamente per un oscuro
laberinto.

— Galileo Galilei: Il Saggiatore

Philosophy is written in this grand book — I mean the universe — which
stands continually open to our gaze, but it cannot be understood unless
one first learns to comprehend the language and interpret the characters
in which it is written. It is written in the language of mathematics, and
its characters are triangles, circles, and other geometrical figures, without
which it is humanly impossible to understand a single word of it; without
these, one is wandering around in a dark labyrinth.

— The Assayer1 by Galileo Galilei (1564-1642), who played a major role in
the scientific revolution in Renaissance era

4.1 Introduction

In this chapter we discuss the central point of this thesis, a framework for
epileptic seizure propagation analysis.

This section serves as an introduction and is dedicated to the medical and
technical background of propagation analysis. We elaborate our framework in
Section 4.2 and present patient history and recorded data in Section 4.3.

1Chapter 6; English translation by Stillman Drake.
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4.1.1 Medical background

The analysis of seizure propagation in the course of a presurgical evaluation
is a clinically relevant task: Determination of the SOZ is a prerequisite for a
surgical intervention, and the characteristics of the early seizure spread yield
valuable information about the expected post-surgical outcome: As mentioned
in Subsection 2.3.6, a poor postsurgical outcome is highly correlated with
contralateral propagation, see e.g. the surface-EEG study by Schulz et al. (2000).
Furthermore, it is associated with fast propagation, see e.g. the studies based
on depth electrodes by Lieb et al. (1986) or on ECoG by Weinand et al. (1992).

In this thesis we are concerned with the propagation of epileptic activity in
ECoG. While propagation can be easily defined in surface EEG in terms of ipsi-
vs. contralateral due standardized recording schemes (see Subsection 2.2.2),
this analysis is more difficult in intracranial EEG due to the patient-specific
electrode topology. In return the increased spatial resolution allows for more
detailed insights into seizure spread.

Recently two clinical studies based on intracerebral recordings shed light
onto early seizure spread.

First, Götz-Trabert et al. (2008) analyzed the electrographic onset, the initial
propagation of epileptic activity and the delay to the clinical onset. Hereby,
propagated activity was defined as clearly identifiable ictal patterns at electrode
positions of at least 2 cm in distance from its origin, i.e. the SOZ. They found
that in case of mTLE activity initially propagated in basal temporal direction,
with an average delay of 13.7 seconds from electrographic onset to initial
propagation and 26.8 seconds to clinical onset. In neocortical TLE (nTLE)
propagation was faster (average delay to initial propagation of 7.6 seconds,
to clinical onset of 17.7 seconds), and in case of frontal original even faster
(average delay to initial propagation of 3.8 seconds, to clinical onset of 10.6
seconds).

Second, Jenssen et al. (2011) reported that seizure propagation varied
depending on the localization of the SOZ. For instance, one frequent pathway
led from mesial temporal to contralateral mesial temporal structures. Moreover,
the observed ictal onset frequency was higher than the frequency of propagated
activity.

4.1.2 Technical background

While seizure spread is analyzed by visual inspection of the raw EEG recordings
in a clinical environment, we pursue another approach: propagation analysis
based on signal processing techniques. This computer-based methodology
allows to avoid the aforementioned time-consuming manual analysis of ictal
patterns, which is highly subjective and depends on the individual experience
of the examiner.

Considerations to interpret the EEG as a signal with statistical properties
and to apply signal processing techniques date back for more than 80 years
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(Dietsch 1932). The interest in computational methods of EEG recordings
significantly increased with the early rise of modern computers, see e.g. Gasser
(1979). Throughout the last decades neuroscience has evolved as an inter-
disciplinary science branch uniting methodology from informatics, physics,
statistics and medicine. This diversity is reflected by such different approaches
as machine learning (Formisano et al. 2008), structural equation modeling (As-
tolfi, Cincotti, Mattia, Lai, Baccala, de Vico Fallani, Salinari, Ursino, Zavaglia
and Babiloni 2005), hidden Markov models (Cassidy and Brown 2002), dynamic
causal modeling (Friston et al. 2003) or time-variant signal processing (Hesse
et al. 2003).

In this thesis we consider seizure propagation, which comprises the local-
ization of the SOZ and the determination of early seizure spread, given the
exact starting time of the epileptic activity. Note the distinction from three
similar topics in quantitative EEG analysis: The goal of 3D source localization
is the determination of the source of epileptic activity within the brain (i.e.
somewhere between the electrode positions in 3D space), see e.g. the review
papers by Plummer et al. (2008) and Grech et al. (2008). In seizure detection
one aims at the automatic detection of seizures without any a-priori time
information, see e.g. the introduction by Gotman (2003). Finally, the idea of
seizure prediction is to predict a seizure from changes in the preictal state of
the EEG, compare e.g. the review by Mormann et al. (2007).

For our purposes we stick to classical linear methodology involving non-
parametric spectral estimation, autoregressive modeling and matched subspace
filtering (compare Chapter 3).

Recent approaches to epileptic focus detection and initial seizure propaga-
tion analysis of invasive EEG data include the use of time-variant dependency
measures via Kalman filtering (van Mierlo et al. 2011), 3D source localization
with subsequent coupling quantification (Kim et al. 2010), dependency analysis
in the context of classical AR modeling (Ge et al. 2007) or cross-correlation
studies (Mizuno-Matsumoto et al. 1999).

We do not make use of non-linear methodology, although recently Hegde
et al. (2005) and Andrzejak et al. (2006) and very recently Papana and Kugiumtzis
(2012) have successfully applied non-linear approaches to epileptic invasive
EEG. In the last years, however, the trend seems to switch back to linear frame-
works, compare Blinowska (2011): This shift is due to the simplicity of the
well-established linear methods, in particular autoregressive modeling, and
the error-proneness of the non-linear methods requiring phase space embed-
ding (dimension to be chosen without any direct physical interpretation, long
stationary data segments needed). In particular this physical interpretability
makes linear methodology so popular.

In order to identify the SOZ and initial seizure spread we look at the
first few, typically four, seconds of epileptic activity (see the next subsection).
During this period we try to capture the dynamics imposed by the focus,
whereas in later periods any causal information is lost due to the common
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rhythmic behavior resulting out of feedback-processes (Zoldi et al. 2000).
While it is commonly agreed on that there are differences between interictal

and ictal periods (demonstrated e.g. via non-linear methodology by Geng
and Zhou (2010)2 or nuclear medical imaging by Baumgartner et al. (1998)),
the exact mechanisms have not been conclusively revealed yet: Jouny et al.
(2003, 2010) claimed that signal complexity rises before focal seizures, whereas
Mormann et al. (2003) reported the opposite result. Furthermore, according
to Lehnertz and Elger (1995), the signal complexity decreases in the course of
a seizure, in particular in vicinity of the focus. This hypothesis of decreasing
neuronal synchronization is supported by a study in experimental setup (Netoff
and Schiff 2002), showing evidence that synchronicity may disrupt epileptic
activity. In accordance with this argument (but in contrast to Lehnertz and
Elger (1995)), Schindler, Leung, Elger and Lehnertz (2007) and Schindler,
Elger and Lehnertz (2007) claimed that synchronicity increases at the end of a
seizure, which they think of as a cerebral mechanism for seizure termination.
Finally, Warren et al. (2010) reported lower synchronicity between the seizure
generating region and other brain areas, thus a some-how isolated SOZ.

In our point of view, these discrepancies reflect the wide variety of seizure
generating mechanisms in different patients.

Finally note that stationarity issues are not in the scope of this thesis. As-
suming short-term stationarity, we will employ short data windows throughout
this thesis and apply classical methodology for stationary processes within
these short data windows. We refer to the diploma thesis of Graef (2008) for
stationarity analysis and time-variant autoregressive modeling of ECoG. Tests
for stationarity analysis in neuroscience are reviewed in Kipinski et al. (2011).

4.2 Framework

In this section we discuss the central point of this thesis, a framework for
epileptic seizure propagation analysis. In our context, seizure propagation
analysis comprises two aspects: the determination of the early seizure spread
(»Where does the activity propagate to?«), and as a sub-problem the determi-
nation of the seizure onset zone (»Where does this activity originate from?«).
This analysis is based on the localizing value of ictal (and interictal) patterns in
invasive EEG, compare Subsection 2.3.5

In order to analyze seizure propagation, we compare four different ap-
proaches, see Fig. 4.2.1.

First, the detection of ictal HFOs allows to determine the HFO-generating
zone and the initial propagation of HFOs. Initial ictal HFOs typically precede
conventional ictal patterns by several seconds (Khosravani et al. 2009, Imamura
et al. 2011), and the HFO-generating zone is highly correlated with the SOZ
(Usui et al. 2011). This approach is detailed in Chapter 5.

2Compare Fusheng et al. (2000) for an explanatory attempt of the physical interpretability of
Approximate Entropy.
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Figure 4.2.1: Seizure propagation analysis framework detailing approaches
and their respective clinical relevance. The framework is built on four technical
methods and the clinical findings.

Second, the application of causality measures in the context of autore-
gressive modeling allows to determine the SOZ. The initial spread of hyper-
synchronous epileptic activity is indicated by arrows, which point away from
the SOZ. For technical reasons, a reduction of the number of channels is needed
for appropriate estimation of the AR model. We propose two different auto-
matic methods: a channel selection algorithm in Chapter 6 and factor models
in Chapter 7.

Third, segmentation of the individual channels and classification of the
segments regarding their epileptic character yields the SOZ and the seizure
spread. The temporal delay of the start of epileptic activity on different chan-
nels is an indicator for seizure propagation. The channels showing epileptic
activity first mark the SOZ. This approach is pursued in Chapter 8.

Forth, we compare the results of the above methods with the clinical
findings which represent the current gold standard in presurgical evaluation.
Here, visual analysis of interictal and ictal EEG patterns, symptomatology,
diagnostic imaging techniques and neuropsychological tests are considered.
This comparison is performed in Chapter 9 and discussed in Chapter 10.

4.3 Data

4.3.1 Patient history

The ECoG data used in this thesis are taken from a patient (male, 44 years)
who has been suffering from therapy-resistant focal epilepsy since the age
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Figure 4.3.1: MRI scan with electrode positions. Recordings are referenced
to electrode B1 outside the seizure focus.

of twelve. Apart from a short seizure-free period in adolescence there were
no seizure-free intervals in the last years. According to history, seizures last
from 20 to 60 seconds, and seizure frequency shows a wide range between few
seizures per week and several ones per day. Seizures manifest as motionless-
stare with impairment of consciousness and may be followed by tonic-clonic
seizures. During the last months before the reported examination he typically
encountered one to five seizures per day.

A first prolonged video-EEG monitoring in spring 2009 (using surface
electrodes) confirmed the diagnosis of MRI-negative right-hemispheric focal
epilepsy, but a prescribed localization of the epileptic focus was not possible in
this setting, compare Section 10.2.1.

4.3.2 ECoG recordings

Consequently, the patient was admitted for prolonged invasive video-EEG
monitoring in fall 2011. Three subdural strip electrodes with a total of 25

channels were implanted at Vienna General Hospital, University Clinic for
Neurosurgery (see Fig. 4.3.1 for the electrode positions on the cortex). Subse-
quently the patient was transferred to the Epilepsy Monitoring Unit at Neuro-
logical Center Rosenhügel where he underwent a four-day-lasting video-EEG
recording. Recording was performed at a sampling frequency of 1024 Hz using
Micromed SystemPlus Evolution®, and electrode B1 was chosen as reference.

After reduction of anti-epileptic combination therapy (clobazam from 20

to 5 mg/day, lacosamide from 400 to 0 mg/day, oxcarbazepine from 1800 to
300 mg/day) on the 4th day, four seizures were registered. Due to decreasing
data quality we only analyze the first three, see Figs. 4.3.2, 4.3.3 and 4.3.4.
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Figure 4.3.2: Seizure 1, initial 15 seconds displayed. Electrographic onset at
16:12:38 with HFOs followed by paroxysmal fast activity of 30 Hz. Propagation
of rhythmic ϑ-activity starts at 16:12:45.

Each seizure starts with paroxysmal fast activity of 30 Hz, in case of seizures
1 and 2 with antecedent HFOs (Figs. 4.3.2 and 4.3.3). After an intermediate
phase (of average duration of 10 seconds3), we observe propagation of hyper-
synchronous rhythmic activity in the ϑ/α-band. Compare Graef, Pirker, Flamm
and Baumgartner (2013) for an analysis of these seizures.

After recording, the ECoG data were preprocessed in Matlab®: Line inter-
ference was removed using a notch filter at 50 Hz, and a high-pass filter at
1 Hz was applied in order to get rid of physiologically irrelevant low-frequency
contributions. Except of the HFO analysis (see Chapter 5), the signals were
low-pass filtered at 64 Hz in order to avoid aliasing and then downsampled to
128 Hz sampling rate.

Note that only in case of HFO detection we examine the initial electro-
graphic onset, see Chapter 5. In all other approaches the onset of hyper-
synchronous rhythmic ϑ-activity is the relevant one, compare Chapter 6 for
causality analysis, Chapter 7 for the influence analysis and Chapter 8 for the
segmentation method.

4.3.3 Visual inspection

Three clinical experts independently performed a visual inspection of the three
seizures. They analyzed the propagation of high frequency oscillations (HFOs)
as well as conventional ϑ-activity. In both cases they classified the involved
electrodes into initial ones and close follow-up electrodes. The results of this
3This is in good accordance with literature (Walczak et al. 1992).
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Figure 4.3.3: Seizure 2, initial 15 seconds displayed. Electrographic onset at
16:47:88 with HFOs followed by paroxysmal fast activity of 30 Hz. Propagation
of rhythmic ϑ-activity starts at 16:48:06.

Figure 4.3.4: Seizure 3, initial 15 seconds displayed. Electrographic onset
at 17:18:20 with paroxysmal fast activity of 30 Hz. Propagation of rhythmic
ϑ-activity starts at 17:18:32.
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Seizure Investigator Initial Electrodes Close follow-up

1

Expert 1 B8, B7 A11, A5, A6, A7, A12

Expert 2 B8, B7 A11, A5, A6, A7, A12

Expert 3 B8, B7 A5, A7, A11

2

Expert 1 A9 C3

Expert 2 A9 C3, C2

Expert 3 A9 C3

3

Expert 1 - -
Expert 2 - -
Expert 3 - -

(a)

Seizure Investigator Initial Electrodes Close follow-up

1

Expert 1 B8 A10, A11, A12

Expert 2 A11, A12, B8 A9, A10, B7

Expert 4 A10, A11, A12 B8

2

Expert 1 A11, A12 A9, A10

Expert 2 A11, A12 A10

Expert 4 A11, A12 B8

3

Expert 1 A9, A10 A8, A11, A12, B6, B7, B8, C1, C4, C5

Expert 2 A9 A1, A2, A3, C2, C3

Expert 4 A8, A9 A1, C3, C4, C5

(b)

Table 4.3.1: Visual inspection of the ECoG raw data by four experts. (a)
Propagation of HFOs. (b) Propagation of rhythmic ϑ-activity.

analysis are summarized in Table 4.3.1 and will be used for assessment of the
proposed technological methods.
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Chapter 5

HFO Detection

Causa latet, vis est notissima fontis.

— Publius Ovidius Naso: Metamorphoses

The cause is hidden. The effect is visible to all.

— Metamorphoses1 by Ovid (43 BC - 17), Roman poet

This chapter is based on material which has already been published together
with co-workers. We refer to Graef, Flamm, Pirker, Baumgartner, Deistler and
Matz (2013) for the original article.

5.1 Introduction

5.1.1 Background

In this chapter we are concerned with the automatic detection of high-frequency
oscillations (HFOs). The popularity of these low-amplitude and high-frequency
biomarkers lies in their excellent correlation with the SOZ, compare Subsection
2.3.5.

We employ a methodology initially proposed by Graef, Flamm, Pirker,
Baumgartner, Deistler and Matz (2013) for the automatic detection of ictal
HFOs in order to determine the initial seizure spread. This method is based on
matched subspace filtering, compare Section 3.5 for an introduction to signal
detection theory.

The automatic detection of HFOs based on classical signal detection method-
ology has received growing attention in the last years. We refer to the master
thesis by Chander (2007) for an introduction to computational HFO detection
approaches.

1Book 3; English translation by Anthony S. Kline.

Latin text accessible online at www.intratext.com/IXT/LAT0537.
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Publication Data Band-pass Statistics Threshold Suppression

Staba et al.
(2002)

Conventional
depth
electrodes;
interictal

100-500 Hz RMS mean +
5 SD

6 ms

Smart et al.
(2005)

Intracranial
electrodes

60-100 Hz Teager
energy

? ?

Nelson et al.
(2006)

Micowire
depth
electrodes;
interictal +
ictal
(animal)

? Teager
energy

? ?

Gardner et al.
(2007)

Conventional
depth +
subdural
electrodes;
interictal

30-85 Hz
(subsequent
pre-emp.
step)

Line length 97.5%
percentile

80 ms

Worrell et al.
(2008)

Conventional
+ microwire
depth
electrodes;
interictal

80-1000 Hz
(subsequent
pre-emp.
step)

Line length 95.0%
percentile

80 ms

Crépon et al.
(2010)

Conventional
depth +
subdural
electrodes;
interictal

180-400 Hz Envelope
via Hilbert
transform

mean +
5 SD

?

Table 5.1.1: Overview of basic HFO detection approaches. Subsequent to
band-pass filtering in the frequency band of interest statistics measuring the power
contents in this band are considered. Continuous threshold exceedings during a
suppression period result in an HFO detection.

The methods initially proposed are rather simple and straight-forward in
nature. They all follow the same approach, compare the overview in Table
5.1.1.

The common idea is the following: Subsequent to band-pass filtering in the
frequency band of interest (e.g. ripples, fast ripples) one tries to measure the
power content in this band. For this purpose, various statistics have been used,
e.g. RMS2 (Staba et al. 2002), Teager energy3 (Smart et al. 2005), Line length4

(Gardner et al. 2007) or the signal envelope based on the Hilbert transform
(Crépon et al. 2010). An HFO detection is registered whenever such a statistic
continuously exceeds a threshold (derived from a reference period) during

2The root mean square (abbreviated RMS), also known as the quadratic mean, is a statistical measure
of the magnitude of the (finite-energy) signal x[n], RMS =

√
∑n x[n]2.

3See Kaiser (1990) for its initial definition.
4See Esteller et al. (2001) for its initial definition.
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a suppression period. While this duration is mostly manually imposed, its
automatic determination supports a stable measurement of the HFO rate
(Zelmann et al. 2009).

Additionally, in order to compensate for the spectral roll-off of EEG data,
pre-emphasis steps have been proposed in some of these approaches, e.g. pre-
whitening in Worrell et al. (2008). These methods have been applied to such
different data as interictal and ictal recordings from microwire depth electrodes
and conventional intracranial electrodes (depth as well as subdural electrodes),
compare Table 5.1.1. Furthermore, wavelet analysis of evoked potentials in the
HFO frequency range has been performed (van ’t Klooster et al. 2011).

As the simple approaches listed in Table 5.1.1 are sensitive, but not highly
specific, increasingly complicated multi-step approaches have been proposed
in order to avoid false-positive detections. Very recently a number of them has
been published, compare e.g. Zelmann et al. (2012) based on Zelmann et al.
(2010), Blanco et al. (2010), Blanco et al. (2011) and von Ellenrieder et al. (2012).

5.1.2 Contribution

The visual inspection of ECoG data for HFO analysis is a time-demanding,
highly subjective task which depends heavily on the individual experience
of the investigator. Therefore, we pursue a complementary computational
approach based on classical signal detection methodology initially proposed in
Graef, Flamm, Pirker, Baumgartner, Deistler and Matz (2013), compare Section
3.5.

While the studies mentioned in Subsection 5.1.1 focus on the automatic
detection of HFOs in interictal invasive EEG (or in databases including both
ictal and interictal phases), we limit ourselves to the analysis of ictal ECoG
recordings. In contrast to the aforementioned approaches, we are not interested
in the generation of statistics of HFO rates, but want to track the spread of
initial HFOs. Channels showing first HFOs indicate the SOZ (of conventional
ictal activity). For this analysis, seizure onset time, i.e onset of HFOs according
to Section 4.3, is provided by clinicians.

Note that the visual inspection did not reveal any fast ripples, thus this
study is limited to the ripple band.

5.2 Method

In this chapter, preprocessing of the ECoG data differs from the one detailed
in Section 4.3, in particular from the downsampling step to 128 Hz. As we
are interested in frequencies above the Nyquist frequency of 64 Hz, signals
were low-pass filtered at 256 Hz in order to avoid aliasing and then only
downsampled to 512 Hz sampling rate. All other preprocessing steps, e.g.
notch filtering of line interference, are performed as listed in Section 4.3.
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5.2.1 Matched subspace �lter

We employ classical methods of signal detection to detect HFOs in the ripple
band, compare Subsection 5.1.1. However, a major problem of the HFO
detection approaches listed in Table 5.1.1 is the low specificity, i.e. these
methods are likely to classify sharp transients as HFOs. We will discuss this
phenomenon in Subsection 5.3.1.

In order to avoid this behavior, we make use of matched subspace filtering,
namely an implementation of the CFAR (constant false alarm rate) matched
subspace filter (3.5.4) according to Scharf (1991). The main idea of this detector
is to compare the power of the signal content in the ripple band to the power
of the residual signal, compare Subsection 3.5.3.

As a motivation, we start with a special case. Let s = H θ ∈ S be a linear
combination of say p pure sinuoidal signals in the ripple band (with a certain
frequency resolution defined by ∆ f = floor((250− 80)/p)),

s[n] =
p

∑
i=1

θi hi[n]

= θ1 sin(2πnT 80) + θ2 sin(2πnT (80 + ∆ f )) + . . . + θp sin(2πnT 250).

In this case, the N × p modal matrix is

H =

 sin(2πT 80) . . . sin(2πT 250)
...

. . .
...

sin(2πNT 80) . . . sin(2πNT 250)

 ,

and S ⊂ RN is the column space of H, i.e. a hyper-plane. Furthermore, the
projection matrix onto the subspace S is

PS = H(HTH)−1HT , (5.2.1)

and the quadratic form xTPSx in (3.5.4) measures the power contribution of
the part of the signal corresponding to the subspace S .

Although this modeling approach is easy to interpret5, it has major dis-
advantages. First, the linear combination of p sinusoidal signals only allows
to capture activity at a finite number of sharp frequencies, not of the whole
frequency band. However, neuronal activity is unlikely to be concentrated at
constant, isolated frequencies, but rather is smeared in a whole frequency band.
Second, if we aim at an increase of the frequency resolution in the regression,
we have to decrease ∆ f . However, this blows up the dimension of the modal
matrix H and leads to numerical problems of the inversion in (5.2.1) due to the
bad conditioning of H.

Thus, in order to obtain the signal contribution in the ripple band, we prefer

5As in Subsection 5.1.1, we have a linear combination of modes (the sinusoidal signals), and‖θ‖ > 0
indicates a contribution of s to x, i.e. the presence of ripples.
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to filter the ECoG data rather than to regress them on sinusoidal signals. For
this purpose, we proceed as follows:

We consider an idealized band-pass filter with transfer function

H( f ) =

{
1 f ∈ [80, 250]

0 f /∈ [80, 250]
. (5.2.2)

Now, S is the signal subspace (of infinite dimension) of stationary signals
band-limited to the ripple band [80, 250], as indicated by (5.2.2). Consequently,
we have an infinite weighting sequence θi, i ∈ Z. The filtering operation (5.2.2)
is the orthogonal projection operator onto S , as can be seen immediately from
the spectral representation of a stationary process (Brockwell and Davis 1991).

Thus, we consider the projection operator PS = H( f ) in this setting, and
the quadratic form xT PSx in (3.5.4) measures the power contribution of the
part of the signal corresponding to the signal subspace S . Note that we now
consider the power contribution of the entire ripple band, not just activity at
isolated frequencies.

Therefore, we proceed as follows for each channel xk[n], k = 1, . . . , N:
We initially perform a pre-emphasis step. We apply a high-pass filter at

13 Hz (upper bound of the α-band) to the signal xk[n] in order to compensate
for the strong spectral roll-off of ECoG data. We denote the spectrally equal-
ized signal by x̃k[n]. The choice of this high-pass filter will be discussed in
Subsection 5.3.1.

Second, we apply a band-pass filter in the frequency range of 75-250 Hz
to obtain x̃R

k [n]. This extended band allows to reliably capture HFOs with a
frequency at the lower end of the ripple band (80 Hz or slightly below).

Third, we calculate the power ratio for the CFAR matched subspace filter
(3.5.4). In this application, we follow a common approach in engineering
(Randall and Tech 1987), in particular in HFO analysis (Crépon et al. 2010), for
determining the power in a frequency band by means of Hilbert transformation.
We calculate the statistic (3.5.4) as

T2[n] =

∣∣H{x̃R
k }[n]

∣∣2∣∣H{x̃k − x̃R
k }[n]

∣∣2 , (5.2.3)

where H{x}[n] = x[n] + i x̌[n] denotes the (complex-valued) analytic signal,
which is obtained by Hilbert transformation x̌ of the signal x at time-point
n (Gabor 1946). Note that we consider a definition of the Hilbert transform
for stationary signals according to Lindgren (2012), rather than the classic one
for finite-energy signals:6 Let H{x}[n] be half of the spectral representation
of a stationary process, i.e. twice the spectral representation integral for

6In signal processing, the Hilbert transform is commonly defined for finite-energy functions f (t)
as the Cauchy principal value of the convolution of f with 1/(πt), as first analyzed by Hilbert
(1912). In this case, the assumption of f ∈ Lp, 1 ≤ p < ∞, assures the existence of the convolution
integral, compare Riesz (1928) and Titchmarsh (1962).
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positive frequencies. Then the Hilbert transform of the stationary process
(x[n], n ∈ Z) is the process (x̌[n], n ∈ Z) in H{x}[n] = x[n] + i x̌[n] and is the
result of a linear filter on x[n] with frequency response H( f ) = −sgn( f ) i.7

As is well known (Ville 1948), the absolute value of the (complex) analytic
signal, |H{x}[n]|, represents the envelope of x at time-point n, and the squared
envelope, |H{x}[n]|2, indicates the power of the signal x. Thus, the numerator
in (5.2.3) represents the power in the ripple band, the denominator the power
of the residual signal.

Finally, we detect the presence of HFOs if T[n] > γ. The threshold γ

is determined from a reference period prior to the ictal activity. In order
to suppress false-positives due to sharp transients, we demand T[n] > γ

continuously for at least 50 ms, which corresponds to 4 cycles of an 80 Hz
oscillation. This number of consecutive oscillations is often required in HFO
literature, see e.g. Zijlmans et al. (2011).

5.2.2 Signal model

In order to demonstrate the effectiveness of the proposed algorithm, we test it
on simulated data in Subsection 5.3.1.

For this purpose we fit an AR-8 model to channel A12 in a 20-second lasting
period 30 seconds prior to seizure 1. Based on these parameter estimates, we
simulate 5 seconds of an AR-8 signal s[n].8 The test signal then contains
superposed HFOs during 0.5 seconds, i.e.

x[n] =


s[n] n = 1 . . . 2 fs,

s[n] + a sin
(

2πn f
fs

)
n = 2 fs + 1 . . . 2.5 fs,

s[n] n = 2.5 fs + 1 . . . 5 fs.

(5.2.4)

The variance of the white noise in the AR simulation step was set to σ2 = 5,
which resulted in a small HFO-to-background SNR of −2.7 dB.

In order to facilitate the comparison with ECoG data, a sampling frequency
fs of 512 Hz is used for simulation. We set the frequency to f = 85 and the
amplitude to a = 12 to obtain simulated ripples, compare plot (a) of Fig. 5.3.1.

5.3 Results

5.3.1 Signal model

In order to assess our methodology, we apply the HFO detection algorithm to
the test signal (5.2.4).

7Note that this definition preserves the properties of the classic definition of the Hilbert transform
for finite-energy signals, e.g. phase shift of π/2 due to the design of the frequency response and
representation of the positive half of the spectrum by the analytic signal.

8AR estimation and subsequent simulation of this model were done with the help of the Matlab®
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Figure 5.3.1: HFO detection: simulation results. (a) Simulated test signal,
(b) spectrogram, (c) statistic T[n] and threshold γ, (d) HFO detection sequence.
Simulated HFOs are detected.
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Figure 5.3.2: HFO detection: results for seizure 1, initial 10 seconds of
channel B8. (a) ECoG data, (b) spectrogram, (c) statistic T[n] and threshold γ,
(d) HFO detection sequence. HFOs are detected.

In this artificial setting, the threshold γ is calculated as the 90%-percentile
of T[n] from the simulated AR signal s[n].

Fig. 5.3.1 details the results: The simulated HFOs are correctly detected
in the time interval 2.0-2.5 s, see the HFO detection sequence in plot (d).
During this period the statistic T[n] takes large values, as can be seen from plot
(c). Sporadic short threshold exceedings of T[n] are successfully suppressed

package arfit (methods arfit and arsim) developed by Schneider and Neumaier (2001).
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Figure 5.3.3: HFO propagation. (a) Seizure 1, (b) seizure 2. Automatically
detected HFO activity is highlighted in red. Onset of HFO activity according to
the visual analysis of three clinical experts is indicated.

(avoiding false-positives).
Note that for better visualization a spectrogram is shown in plot (b). It

clearly reveals the presence of the simulated HFOs in the time interval 2.0-2.5 s.

5.3.2 HFO propagation

We apply the proposed methodology to the first two seizures. In each case,
the threshold γ was determined as the 90%-percentile of the statistic T[n] from
a 120-second reference period starting three minutes prior to the respective
seizure.

Let us first have a look at detailed detection results of channel B8 in seizure
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Seizure Examiner
Initial HFOs Conventional ϑ-activity
initial follow-up initial follow-up

1

Algorithm B8, B7 A11, A5 - -
Expert 1 B8, B7 A11, A5, A6, A7, A12 B8 A10, A11, A12

Expert 2 B8, B7 A11, A5, A6, A7, A12 A11, A12, B8 A9, A10, B7

Expert 3/4 B8, B7 A5, A7, A11 A10, A11, A12 B8

2

Algorithm A9 - - -
Expert 1 A9 C3 A11, A12 A9, A10

Expert 2 A9 C3, C2 A11, A12 A10

Expert 3/4 A9 C3 A11, A12 B8

Table 5.3.1: HFO propagation. Results of the HFO detection algorithm in
first two seizures and comparison to visual inspection of HFO- and conventional
ϑ-activity.

1. For this purpose, we consider Fig. 5.3.2 which is built up in analogy to Fig.
5.3.1 from Subsection 5.3.1. Again, plot (a) shows the raw ECoG data and plot
(b) the corresponding spectrogram. In the depicted time scale (10 s shown in
Fig. 5.3.2), HFO activity is difficult to detect in the raw data by visual analysis.
However, it can be easily recognized in the spectrogram around 16:12:38.500.
As expected, the statistic T[n] takes large values at that time, compare plot (c).
Furthermore, sporadic short threshold exceedings of T[n] throughout the ten
seconds are successfully suppressed. This specific behavior will be subject to
further discussion in Subsection 5.4.1.

In Fig. 5.3.3 we present the results for the HFO propagation analysis of the
full channel set in both seizures. Detected HFOs, i.e. signals in periods with
a non-zero HFO detection sequence in Fig. 5.3.2 (d), are highlighted in red.
We distinguish between initial, close follow-up (within 250 ms) and later HFO
activity. As a benchmark, three clinical experts independently analyzed the
two seizures by visual inspection and marked the first occurrence of HFOs on
each channel.

According to the algorithm, initial HFOs are found on channels B8 and B7

in case of seizure 1, see plot (a). A quick propagation (~ 125 ms) takes place
to channels A11 and A5. Later HFOs are detected on electrodes A and C. In
seizure 2 our algorithm detects initial HFOs on channel A9, compare plot (b).
Here, we do not observe any close follow-up HFO activity on other channels.
These findings correlate well with the visual analysis of the clinical experts, see
Fig. 5.3.3.

Table 5.3.1 summarizes the findings of our algorithm and the visual in-
spection for initial and close follow-up activity. According to the automated
analysis, the HFO generating zone comprises the parieto-occopital area be-
tween electrodes B7 and A9 (compare Fig. 5.4.3 in Subsection 5.4.2). The
correlation between the onset of HFOs and ϑ-activity (listed in the column on
the right) will be discussed in Subsection 5.4.2.
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5.4 Discussion

5.4.1 Matched subspace �lter

In this subsection we briefly want to discuss two details of the HFO detection
algorithm outlined in Subsection 5.2.1, the matched subspace filtering approach
and the pre-emphasis step.

First, an advantage of the proposed algorithm based on matched subspace
filtering lies in its reduction of false-positive detections.

As mentioned in Subsection 5.1.1, the simple approaches listed in Table
5.1.1 have the disadvantage of a low specificity due to false-positive detections
in case of sharp transients. The reason for this behavior lies in the band-
pass filtering step: Very sharp transients are similar in morphology to Dirac
impulses, and the impulse response of the FIR band-pass filter is the set of filter
coefficients (Oppenheim and Schafer 1989). Consequently, even in case of little
or no energy in the ripple band of the raw ECoG data, the band-pass-filtered
signal contains energy in the entire frequency band of the FIR filter. Thus, the
statistic T[n] behaves as if HFOs were present.

Consider Fig. 5.4.1 for an illustrative example. It details the results for an
implementation of the RMS-based algorithm proposed by Staba et al. (2002).9

As in Subsection 5.3.2, plot (a) depicts 10 seconds of ECoG data. Note the very
sharp transients in the last two seconds (16:12:46 to 16:12:48). These transients
provoke considerable threshold exceedings, which last for longer than the
imposed suppression duration, compare plot (c). This results in numerous
false-positive HFO detections, compare the detection sequence in plot (d).

These band-pass filtering artifacts motivate the use of matched subspace
filtering: By normalizing the power in the ripple band to the power of the
residual signal one aims at diminishing the energy induced by filtering. Fig.
5.3.2 in Subsection 5.3.1 confirms this hypothesis: Threshold exceedings due
to sharp transients are either completely suppressed or reduced in duration,
compare plot (c). In the latter case these short exceedings are successfully
suppressed by the imposed suppression duration of 50 ms, compare plot (d).

Second, we want to provide a justification for the design of the high-
pass filter in the pre-emphasis step. As mentioned in Subsection 5.2.1, the
strong spectral roll-off of EEG data requires a pre-emphasis step. A spectral
equilibration is often performed by a high-pass filter with a frequency response
smoothly increasing over the entire frequency range: For instance, in EEG
analysis this may be achieved by pre-whitening (Worrell et al. 2008), in speech
processing one typically designs high-pass filters with frequency responses
proportional to the inverse of the spectrum (Picone 1993).

In contrast, we choose a high-pass filter which strictly eliminates frequency
contributions below 13 Hz and lets pass all others. The advantage of this
approach lies in filtering out strong-power contributions in the physiological

9Compare Table 5.1.1 for the implementation details.
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Figure 5.4.1: HFO detection via RMS in seizure 1, initial 10 seconds of
channel B8. (a) ECoG data, (b) spectrogram, (c) statistic T[n] and threshold γ,
(d) HFO detection sequence. HFOs are detected, but false-positives appear due to
sharp transients.

frequency bands (δ, ϑ, α) we are not interested in in this context. Therefore,
these low-frequency bands do not influence ratio (5.2.3), and statistic T[n]
measures low-power HFO activity with higher precision.

5.4.2 HFO propagation

In Subsection 5.3.1 we showed that our proposed methodology is capable of
detecting HFOs in simulated data while suppressing sporadic false alarms.
The application of this methodology to invasive EEG recordings (Subsection
5.3.2) yields promising results as well.

In both seizures our method correctly identifies the electrodes with initial
HFO activity, B7 and B8 in seizure 1, A9 in seizure 2 (see Table 5.3.1). These
findings match the visual analysis of all three experts.

In case of follow-up HFO activity, our algorithm also yields good results: In
seizure 1 we successfully mark close HFO follow-up activity on electrodes A11

and A5. Later HFO activity on other electrodes (A7, A9, C2, C3) is correctly
identified, but detection is delayed up to 250 ms, compare Fig. 4.3.2. In seizure
2 the experts flag electrodes C2 and C3 as follow-up, whereas our algorithm
marks late HFO propagation on C3 with a latency of 500 ms.

The area of initial HFO activity (B7, B8 and A9) correlates well with the
SOZ determined by visual inspection of conventional ϑ-activity, compare Table
5.3.1. Fig 5.4.2 shows that the time interval between the occurrence of ictal
HFOs and the onset of conventional ϑ-activity is 7 s (seizure 1) and 8 s (seizure
2), which is in good accordance with literature (compare Subsection 2.3.5).
Note the the long-lasting HFO activity on channel A9, which is part of the SOZ.
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Figure 5.4.2: HFO propagation in seizure 1, initial 20 seconds. Area of
initial ictal HFOs and onset area of conventional ϑ-activity are well correlated
(B8, A12).

Figure 5.4.3: SOZ according to HFO detection on MRI scan with elec-
trodes positions. Electrodes revealing initial ictal HFO activity are marked in
white (seizure 1: B7, B8; seizure 2: A9). The supposed seizure onset zone is
outlined.
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We speculate that such prolonged ictal HFO activity could provide evidence
for localizing the SOZ.10

Based on the results of our HFO analysis we infer that the SOZ comprises
the parieto-occipital area between electrodes B7 and A9, see Fig. 5.4.3 for a
visualization.

5.4.3 Concluding remarks

In this chapter we proposed a novel method based on matched subspace
filtering for the detection of HFOs in the ripple band. This pilot study shows
promising first results in tracking of ictal HFO propagation as an indicator
for the SOZ. Therefore, we are confident that our method has the potential
for an objectivation in the presurgical clinical examination of therapy-resistant
patients.

Next necessary steps include the application to a broader data basis and a
subsequent statistical analysis (e.g. detection rate/false positives, mean latency
in detection) for better understanding of the performance of our method.

10To our knowledge, this potential correlation has not been examined yet.
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Chapter 6

Causality Analysis

Felix qui potuit rerum cognoscere causas.

— Publius Vergilius Maro: Georgica

He who’s been able to learn the causes of things is happy.

— Georgics1 by Virgil (70 - 19 BC), Roman poet

This chapter is based on material which has already been published together
with co-workers. We refer to Graef, Hartmann, Flamm, Baumgartner, Deistler
and Kluge (2013) for the original article.

6.1 Introduction

6.1.1 Background

In this chapter we want to visualize coupling effects of the multivariate ECoG
signal in order to localize the SOZ. For this purpose, we calculate dependency
measures and depict them in a graph, whose vertices represent the components
of the signal, and edges indicate dependencies different from zero. This
approach yields an intuitive graphical representation of coupling effects in
multivariate signals (Dahlhaus 2000, Dahlhaus and Eichler 2003, Eichler 2006a).

A wide variety of different dependency measures for neurophysiological
data has been published, see Section 3.4. Two important directed coupling indi-
cators are the Directed Transfer Function (DTF) and the Partial Directed Coherence
(PDC), both distinguishing between source and target by indicating a direction
of the dependency. DTF and PDC are based on a common linear approach
to EEG analysis, i.e. multivariate autoregressive modeling, compare Section
3.2. In case of DTF and PDC, the parametric estimation of the spectrum is the
basis for the measurement of linear couplings in the frequency domain, which

1Book 4, verse 290; English translation by A. S. Kline.

Latin text accessible online at virgil.org.
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reveal relations between electrodes. These inter-dependencies are interpreted
as indications for epileptic synchronous activity.

DTF was proposed by Kaminski and Blinowska (1991) for quantifying de-
pendencies in neural signals (see Subsection 3.4.3). However, when Franaszczuk
et al. (1994), Franaszczuk and Bergery (1998) and Ge et al. (2007) used DTF
for epileptic seizure analysis, a manual selection of narrow frequency bands
always had to be performed in order to achieve satisfying results. Wilke et al.
(2008) proposed a time-variant version of DTF for epileptic EEG analysis, which
shows promising first results. Recently Kim et al. (2010) combined the usage of
DTF with a spatio-temporal source localization algorithm in order to analyze
the propagation of epileptic activity in ECoG signals.

PDC was proposed by Baccala and Sameshima (2001) and has been re-
ceiving growing attention since then, including extensions and theoretical
considerations of its properties (see Subsection 3.4.4). It has often been applied
to the analysis of neural interactions, compare e.g. Sameshima and Baccala
(1999) and Astolfi, Cincotti, Babiloni, Carducci, Basilisco, Rossini, Salinari,
Mattia, Cerutti, Dayan, Ding, Ni, He and Babiloni (2005).

6.1.2 Contribution

Our aim is to analyze synchronization effects in multichannel ECoG data of
epileptic patients and to identify these coupling effects with a high degree of
automation: Unlike the methods mentioned above, we neither want to manually
preselect ECoG input channels nor explicitly consider specific frequency bands.
For this purpose we make use of a methodology initially proposed in Graef,
Hartmann, Flamm, Baumgartner, Deistler and Kluge (2013):

In order to avoid numerical problems in the AR model estimation due to
the high number of ECoG channels, we employ an automatic channel selection
procedure prior to computing dependency measures. This idea is detailed in
Subsection 6.2.3.

Furthermore we follow a novel approach to the identification of syn-
chronous activity: Contrary to a spectral analysis, as it is performed by
DTF or PDC, we consider a time domain approach. In order to assure a
(neuro)physiological interpretation of our methodology, we search for a cou-
pling indicator with a clear physical interpretability. For this purpose we use
a dependency measure termed EIPR (extrinsic-to-intrinsic-power-ratio) initially
defined by Hartmann et al. (2008), which is discussed in Subsection 6.2.4.

6.2 Method

6.2.1 Autoregressive model

Our methodology is based on autoregressive modeling, compare Section 3.2.
The AR(p) model (3.2.1) is decomposed component-wise into the separated
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contributions of all channels: We define the partial contribution µk,l [n] as

µk,l [n] ,
p

∑
s=1

Ak,l [s] xl [n− s] (6.2.1)

with Ak,l [s] the (k,l)-element of the coefficient matrix A[s] in (3.2.1).2 This
allows to write the AR(p) model (3.2.1) for each channel xk[n], k = 1, . . . , K as

xk[n] = µk,k[n] + ∑
l 6=k

µk,l [n] + εk[n].

In order to shrink the regression model, we only consider partial contribu-
tion terms µk,l [n] which significantly differ from zero. The explicit choice of
regressors yields a model of the form

xk[n] = µk,k[n] + ∑
l∈Lk

µk,l [n] + ε̃k[n], k = 1, .., K. (6.2.2)

Here, Lk is an extrinsic channel set, which can be a subset of {1, . . . , K}\{k},
allowing for a reduction of the number of parameters of the AR model. A
strategy for such a reduction is proposed in Subsection 6.2.3.

Thus, each µk,l [n] in equation (6.2.2) reflects the contribution from (the past
of) the respective channel xl [n] to channel xk[n]. As we differentiate between
the channel xk[n] and the other xl [n], l 6= k, in equation (6.2.2), we introduce
the following specification: For k = l, we call µk,k[n] the intrinsic contribution;
for k 6= l, µk,l [n] is the partial extrinsic contribution. As the term ∑l∈Lk

µk,l [n] in
equation (6.2.2) is the sum of all partial extrinsic contributions, it symbolizes
the total amount of inflow to the channel xk[n] and is therefore denoted by
total extrinsic contribution.

6.2.2 Solution of the normal equations

Under the assumption of stationarity, the solution of the ordinary-least-squares
(OLS) normal equations within the data window yields the estimated model
coefficients Ak,l [s], compare Graef (2008). Second-order-statistics needed for
their solution have to be estimated from the data. For this reason it is important
that the length of the data window is chosen neither too short nor too long.
An appropriate choice has to establish a good trade-off between estimation
errors due to instationarity (bias) and inaccuracy due to a too small number of
samples (variance).

In particular in case of neural data such as ECoG recordings their apparently
highly instationary character (compare Figs. 4.3.2, 4.3.3 and 4.3.4) requires the
use of short data windows.

2A more general definition of the partial contribution term (6.2.1), as proposed by Hartmann et al.
(2008), would allow a more flexible lag usage, e.g. permitting non-causal modeling.
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For each channel k = 1, ..., K:

Initial extrinsic channel set: Lk ← {}

Initial extension pool: Ek ← {1, ..., K}\{k}

Calculate AIC(Lk)

∀c ∈ Ek : calculate AIC(c) with extrinsic channel
set Lc ← Lk ∪ {c}

Optimum extension: find best additional
channel copt ← arg minc AIC(c)

If AIC(Lcopt ) < AIC(Lk):

Extend extrinsic channel set: Lk ← Lk ∪ {copt}

Reduce extension pool: Ek ← Ek\{copt}

Update cost function: AIC(Lk)← AIC(Lcopt )

while AIC(Lcopt ) < AIC(Lk)

Figure 6.2.1: Automatic channel selection algorithm. The bottom-up con-
struction of the extrinsic channel set Lk is given in pseudo code.

6.2.3 Dynamic input channel selection

The estimation of the model coefficients Ak,l [s] in the normal equations poses
numerical problems, as we deal with a large number of ECoG channels which
are highly correlated both in time as well as in the cross-sectional dimension.
In order to avoid this situation, the idea is therefore to automatically reduce
the number of channels in a subset containing all information important for
the regression.

For this reason we introduced the extrinsic channel set Lk in equation (6.2.2),
which defines – per channel xk[n] – the xl [n] relevant for the autoregressive
model. The advantage arising from this approach is that we do not have to
choose Lk = {1, . . . , K}\{k} (as it would be the case in the AR model (3.2.1)),
but can shrink it to a reduced set of channels. We only consider the channels
{xk, xl : l ∈ Lk}, and this selection assures that the estimation of the model
coefficients yields numerically stable results: The correlation matrix of the small
subsystem is well conditioned and can be inverted without further numerical
problems.

We propose an iterative procedure for an automatic selection of an extrinsic
channel set Lk for each xk, which is described in pseudo code in Fig. 6.2.1.

The main idea is to iteratively add channels in a bottom-up fashion until
an information criterion is minimized. Here we make use of the well-known
Akaike information criterion (AIC)3 which is defined in this context as (Penm and

3Note that in Graef, Hartmann, Flamm, Baumgartner, Deistler and Kluge (2013) we use the
Bayesian information criterion (BIC) introduced by Schwarz (1978).
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Terrell 1982)

AIC(Lk) , ln Serr(Lk ∪ {k}) +
2M
Nwin

, (6.2.3)

where

Serr ,
Nwin

∑
n=1

(ε̃k[n])
2

is the residual sum of squares and

M ,

(
K

∑
s=1

δs(Lk) + 1

)
· p

with

δs(Lk) ,

{
1 s ∈ Lk

0 s /∈ Lk
.

Hence M = (dim Lk + 1) · p is the total number of parameters to be estimated.
Using this criterion our algorithm works as follows: We start with an empty

extrinsic channel set Lk. Then we add the channel xl [n], l 6= k of the (K− 1)
other ones which is best in the sense that it leads to the smallest AIC value
(6.2.3). In the next step we again select the »best« out of the remaining ones
and so forth till we cannot decrease the value of expression (6.2.3) any more by
adding channels. This (local) minimum determines the extrinsic channel set
Lk to be used for coefficient estimation. Coefficients Ak,l [s] of channels xl [n]
which were not selected by this iterative procedure are set to zero.

We expect the algorithm to select extrinsic channels which contribute signif-
icantly to the explanation of the respective intrinsic channel. We will illustrate
this behavior in Subsection 6.3.2 in detail.

Note that the bottom-up approach of our proposed algorithm is similar to
the An algorithm published by An and Gu (1989), which is however limited to a
regression model without any temporal lags.

6.2.4 Partial extrinsic power

The goal of the proposed method is to identify directed dependencies of
the multivariate signal x[n], which are expected to indicate synchronization
and coupling effects of brain regions during epileptic seizures. For similar
problems, numerous alternative measures based on a spectral analysis have
been proposed in literature, as mentioned in Subsection 6.1.1. However, instead
of regarding spectral properties of the AR model (6.2.2), we propose to directly
consider the partial contribution term (6.2.1) in order to gain information on
the influence of channel xl [n] to channel xk[n]:

The variance of the partial contribution term µk,l [n] can be written as4,

4Compare Graef (2008) for a detailed derivation.
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using (6.2.1),

V
{

µk,l [n]
}

= E
{

µk,l [n] µk,l [n]
}

=
p

∑
s=1

p

∑
s′=1

Ak,l [s] rxl [s− s′] Ak,l [s′], (6.2.4)

where rxl [s] = E {xl [n + s] xl [n]} is the autocorrelation function of channel
xl [n].

The partial contribution term µk,l [n] represents the directed influence of
channel xl onto xk by construction, see model (6.2.2). Its variance is a natural
measure of the strength of the influence from xl onto xk. For k = l, we speak
about the intrinsic power, for k 6= l about the partial extrinsic power.

Note that although the sum of all partial extrinsic contributions µk,l [n] gives
the total extrinsic contribution (i.e. the inflow from all channels xl [n] onto
channel xk[n], k 6= l), the sum of all partial extrinsic power terms V

{
µk,l
}

does not equal the total extrinsic power V
{

∑l∈Lk
µk,l [n]

}
, unless all cross-

correlations are zero.

Considering the variance (6.2.4) of the respective partial contribution term
for all channel combinations k, l = 1, ..., K, we expect to obtain an indication
for the directed coupling of each channel xl [n] onto each channel xk[n] in scalar
form.

6.2.5 Extrinsic-to-intrinsic-power-ratio (EIPR)

A problem with the variance (6.2.4) of the partial contribution term is its scale-
dependence. It is desirable to normalize this measure appropriately such that
it is independent of the signal power.

It is not obvious how to perform this normalization. One could, for example,
normalize with respect to all target channels, as done by the Partial Directed
Coherence (PDC) defined in (3.4.15). However, this approach renders the
measure dependent of all channels involved in the regression (Schelter et al.
2009). This will be detailed in the next subsection.

This motivates our search for an alternative normalization which is not
affected by this kind of limitation. We use the extrinsic-to-intrinsic-power-ratio
(EIPR)

η2
k,l ,

V
{

µk,l [n]
}

V
{

µk,k[n]
} , (6.2.5)

which was initially defined by Hartmann et al. (2008). We assume that the
variance of the intrinsic contribution term in the denominator in (6.2.5) is
bounded below by a positive constant5. This assumption was justified in a
study of ECoG recordings (Graef 2008).

5The case of V {µk,k [n]} = 0 would imply that the past of xk does not contribute to the explanation
of xk in the present, i.e. the chosen xl (alone) explain xk optimally. This is highly unlikely in
ECoG data, which was empirically shown in Graef (2008).



6.2. METHOD 107

EIPR defined in this way quantifies (directed) coupling effects of channel
pairs (xk, xl), taking large values for large partial extrinsic variance and small
intrinsic variance. This is the case when channel xl contributes significant
information to the explanation of channel xk. On the other hand, EIPR shows
only small values for weak influence of xl to xk.

6.2.6 Comparison of EIPR and PDC

As mentioned in Subsection 3.4.4, PDC provides a »frequency-domain picture
for Granger causality descriptions« (Baccala and Sameshima 2001): in particular
π2

k,l( f ) = 0 ∀ f is equivalent to the statement that channel xl [n] does not
Granger-cause channel xk[n] (compare Subsection 3.3.2 for Granger analysis in
the frequency domain).

One important difference between EIPR and PDC lies in their respective
normalization. As discussed in Subsection 3.4.4, PDC is normalized with
respect to all target channels which renders the measure dependent of all
channels involved in the regression (Schelter et al. 2009). Normalizing with
respect to all source channels rather than to all target channels, as proposed by
Schelter et al. (2009), causes similar problems.

A particular situation where a normalization either to all source or all
target channels involved may lead to misleading interpretations is as follows:
Imagine any arbitrary three-dimensional autoregressive model reflecting the
dependencies depicted by Fig. 6.2.2 (b). When we study π2

1,2( f ) indicating the
directed coupling between x2 and x1, PDC is influenced by x3, as

π2
1,2( f ) =

|A1,2( f )|2

|A1,2( f )|2 + |A2,2( f )|2 + |A3,2( f )|2
.

Thus, in case of ECoG signals, our observation of brain activity between
two examined electrodes of interest is influenced by the measurement of a
third electrode, which depend on its exact position on the cortex. Therefore,
the analysis is impaired by the position of the third electrode, which we cannot
adapt to our needs (as it is implanted).

EIPR avoids this problem, as its denominator is only based on the statistics
of the intrinsic (currently regarded) channel (Graef et al. 2009).

Furthermore, it is interesting to note that the variance (6.2.4) of the partial
contribution term is closely linked to PDC. Let us write this variance (6.2.4) as
integral,

V
{

µk,l [n]
}
=

ˆ
f

Sµk,l ( f )d f , (6.2.6)

where Sµk,l ( f ) denotes the spectral density of the partial contribution term
µk,l [n]. By transforming the partial contribution term (6.2.1) into the frequency
domain, i.e.

Mk,l( f ) = Ak,l( f ) Xl( f ),
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x3x1

x2

A1,2
A3,2
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x2

x3

x4

(b)(a)

Figure 6.2.2: Dependence graphs of AR models. (a) illustrates a normaliza-
tion problem of the PDC as discussed in Subsection 6.2.5, A3,2 affects π2

1,2. (b)
shows the dependence structure of signal model (6.2.11) used for the assessment
of EIPR.

we obtain its spectral density

Sµk,l ( f ) =
∣∣Ak,l( f )

∣∣2 Sxl ( f ). (6.2.7)

Substituting expression (6.2.7) into the spectral representation (6.2.6), we
obtain the representation

V
{

µk,l [n]
}
=

ˆ
f

∣∣∣Ãk,l( f )
∣∣∣2 Sxl ( f ) d f , k 6= l (6.2.8)

of the variance of the partial contribution term µk,l [n] (see (6.2.4) for its defini-
tion).

Hence, under the assumption that Sxl ( f ) > 0 the left-hand side of (6.2.8) is
zero if and only if PDC π2

k,l( f ) = 0, k 6= l for all frequencies f . Thus, under
this assumption xl → xk|x is equivalent to V

{
µk,l [n]

}
> 0. In particular EIPR

vanishes for Granger non-causality (xl 9 xk|x).

Let us finally compare PDC and EIPR in the spectral domain, which under-
lines the reflections regarding normalization. When expressing EIPR (6.2.5) by
the spectral densities of the partial contribution terms and using expression
(6.2.7), we obtain

η2
k,l =

´
f

∣∣Ak,l( f )
∣∣2 Sxl ( f ) d f´

f

∣∣Ak,k( f )
∣∣2 Sxk ( f ) d f

=

´
f Sµk,l ( f ) d f´
f Sµk,k ( f ) d f

. (6.2.9)

If we represent PDC (3.4.15) by means of expression (6.2.7), we obtain

π2
k,l( f ) =

∣∣Ak,l( f )
∣∣2 Sxl ( f )

∑K
n=1

∣∣An,l( f )
∣∣2 Sxl ( f )

=
Sµk,l ( f )

∑K
n=1 Sµn,l ( f )

. (6.2.10)

6.2.7 Signal model

As a test case for EIPR and the channel selection algorithm, we consider a
simulation based on an example proposed by Winterhalder et al. (2005). This
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is an autoregressive system of order p = 5
x1[n] = 0.8 x1[n− 1] + 0.65 x2[n− 4] + ε1[n]

x2[n] = 0.6 x2[n− 1] + 0.6 x4[n− 5] + ε2[n]

x3[n] = 0.5 x3[n− 3]− 0.6 x1[n− 1] + 0.4 x2[n− 4] + ε3[n]

x4[n] = 1.2 x4[n− 1]− 0.7 x4[n− 2] + ε4[n]

(6.2.11)

with the covariance matrix of the noise set to identity. We simulate 100

seconds assuming a sampling frequency of fs = 128 Hz for consistency with
the ECoG data. Note that in this artificial case we process the stationary 5-
dimensional signal in one single data window of length Nwin = 12800. The
imposed dependency paths of the AR model (6.2.11) are shown in Fig. 6.2.2
(b). This structure was successfully retrieved by application of PDC; compare
Winterhalder et al. (2005).

As it is unlikely in applications that one observes values of EIPR exactly
matching zero, one has to statistically test whether values of EIPR are signif-
icantly different from zero. As no exact distribution of EIPR is available yet,
we make use of bootstrapping in order to numerically derive a significance
threshold. The idea of the so-called surrogate data method6 is to resample the
original data independently for each channel xk[n] for N = 100 times, thus
destroying the inter-channel dependence structure. This repetition gives empir-
ical distributions of each EIPR under the null-hypothesis H0 of non-causality.
Here we use the LOOM (leave-one-out) method introduced by Schlögl and Supp
(2006) for the re-sampling process and subsequent statistical t-test, as it yields
reliable results in causal analysis (see Florin et al. (2011) for a comparative
study).

In the following let us denote resampled EIPR values by η̃2
k,l (N realizations,

index N omitted for reasons of simplicity) and the EIPR value to be tested by
η2

k,l .
Under the assumption that the EIPR values η̃2

k,l (based on the resampled
data) are normally distributed under H0 (with their mean very close to zero),
we can employ the well-known t-test by considering the test statistics

T =

√
N
(

η̃2
k,l − η2

k,l

)
σ̂(η̃2

k,l)
∼ tN−1;α. (6.2.12)

Here, the bar · denotes the empirical mean and σ̂(·) the empirical standard
deviation of the EIPR values η̃2

k,l based on the re-sampled data. tN−1;α is the
quantile of the Student distribution with N − 1 = 99 degrees of freedom and
α = 1− 0.99 = 0.01.

UnderH0, η̃2
k,l represents the average (resampled) EIPR value in case of non-

causality (expected to be very close to zero), and η2
k,l needs to be significantly

6Compare Maiwald et al. (2008) for a systematic discussion and Kaminski et al. (2001) for an
application to DTF.
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larger to indicate causality. Thus, we consider7

{
H0 : non-causality

H1 : causality.

In this test setting we reject H0 if η2
k,l > η̃2

k,l , i.e. if T < tN−1; α. In other
words, the given EIPR η2

k,l indicates causality if it exceeds the threshold

η2
k,l > −tN−1;α

σ̂(η̃2
k,l)√
N

+ η̃2
k,l . (6.2.13)

6.3 Results

6.3.1 Signal model

In order to show the ability of our method to detect dependencies we first apply
EIPR to the autoregressive model (6.2.11)8. Here we disable the automatic
channel selection algorithm described in Subsection 6.2.3 in order to assure
that the entire coupling information contained in the multi-channel signal is
used.

We compare our findings to the result of PDC as reported by Winterhalder
et al. (2005). For each channel xl and xk with k 6= l, Winterhalder et al. (2005)
show a frequency plot of PDC π2

k,l( f ). These frequency plots are arranged in
a K× K-matrix plot, where the columns indicate the source channels and the
rows the target channels (compare Fig. 6.4.1 in Subsection 6.4.1). Thus, the
(k,l)-subplot quantifies the influence from xl to xk. If π2

k,l( f ) = 0 ∀ f , one can
conclude that there is no direct dependency from xl to xk. However, as it is
unlikely in applications that one observes values of PDC exactly matching zero
for all frequencies, one has to use a statistical test. Thus, Schelter et al. (2005)
derived an asymptotic frequency-dependent confidence interval: For each
frequency f , PDC values below the respective threshold indicate the absence
of any direct coupling, compare Subsection 3.4.4.

In contrast to PDC, EIPR condenses the coupling information from xl to xk
in one scalar value. Therefore, the coupling information (EIPR and significance
threshold (6.2.13)) can be represented in a table: In complete analogy to PDC,
the (k,l)-element of the table quantifies the influence from xl to xk, and the
columns indicate the source channels, the rows the targets.

As detailed in Table 6.3.1, which is constructed in this way, our measure
correctly identifies the imposed dependencies illustrated in Fig. 6.2.2 (b): The
ones which are induced by the signal model (6.2.11) are set in bold-face type.

7Note that we employ a one-sided test (H1: η2
k,l > η̃2

k,l rather than η2
k,l 6= η̃2

k,l) as EIPR values are
bigger than zero by definition.

8Simulation of this model was done with the help of the Matlab® package arfit developed by
Schneider and Neumaier (2001). In order to avoid initial transient effects, we generate 13800

samples and discard the first 1000.
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η2
k,l x1 x2 x3 x4

x1 1.00000 0.18039 (0.05877) 0.00005 (0.00126) 0.00001 (0.00194)
x2 0.00066 (0.00141) 1.00000 0.00064 (0.00090) 0.75701 (0.24812)
x3 2.09681 (0.12395) 0.26936 (0.04652) 1.00000 0.00003 (0.00133)
x4 0.00019 (0.00031) 0.00008 (0.00017) 0.00014 (0.00025) 1.00000

Table 6.3.1: Values of EIPR for signal model (6.2.11). Imposed dependencies
(bold values) are correctly recognized, 99%-significance thresholds are indicated
in italic between brackets.

Similar to PDC, we do not expect to observe EIPR values exactly matching zero
in case of non-causality. We rather have to decide whether EIPR η2

k,l significantly
differs from zero by exceeding 99% significance thresholds (detailed in italic
between brackets behind the respective EIPR values in Table 6.3.1).

6.3.2 Analysis of the channel selection algorithm

In a next step we analyze the dynamical channel selection algorithm by apply-
ing it to the autoregressive model (6.2.11) without subsequent calculation of
EIPR. As stated in Subsection 6.2.3, we expect our algorithm to select the extrin-
sic channels which contribute significantly to the explanation of the respective
intrinsic channel. The simple structure of signal model (6.2.11) allows to verify
this design: In this artificial case, the imposed signal model dependencies (see
Fig. 6.2.2 (b)) exhaustively define the important extrinsic channels for each
intrinsic one. Unlike in the case of ECoG recordings, we do not have any
additional weak dependencies here which we want to single out for numerical
reasons.

Table 6.3.2 illustrates the results of this simulation. As expected, the algo-
rithm builds up the extrinsic channels sets in accordance with the imposed
dependencies:

First, consider channel x1, which is only influenced by x2. The algorithm
sets L1 = {x2}, as in the first step the AIC value of the extended regression
using channels x1 and x2 is minimal. In the second step, a further increase
of the number of regressors does not lead to a decrease of the information
criterion any more, and the algorithm stops returning L1 = {x2}.

Next, consider channel x2. Similarly to the previous case, it is only influ-
enced by one channel, namely x4, and we obtain L2 = {x4}.

The situation is different in case of channel x3 which is influenced by x1 as
well as by x2. In a first step, the algorithm selects the channel with the strongest
influence (AR coefficient of -0.6, see model (6.2.11)), x1. In a second step, x2 is
chosen (AR coefficient of 0.4). In a third step, the information criterion cannot
be reduced, and the algorithm stops returning L3 = {x1, x2}.

Finally, we obtain an empty extrinsic channel set for x4, as the regression
based on x4 alone minimizes AIC.
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xk Step Initial
regression:
Channels, AIC

Extended
regression:
Additional
channel, AIC

Step result

x1

1

{x1}:
0.8079

x2: -0.0253
choose x2

L1 = {x2}
x3: 0.7774

x4: 0.7491

2

{x1, x2}:
-0.0253

x3: -0.0247 STOP
L1 = {x2}x4: -0.0246

x2

1

{x2}:
0.6196

x1: 0.6182

choose x4

L2 = {x4}
x3: 0.6186

x4: 0.0055

2

{x2, x4}:
0.0055

x1: 0.0060 STOP
L2 = {x4}x3: 0.0060

x3

1

{x3}:
1.1617

x1: 0.3708
choose x1

L3 = {x1}
x2: 0.5860

x4: 1.1371

2

{x3, x1}:
0.3708

x2: -0.0075 choose x2

L3 = {x1, x2}x4: 0.3395

3 {x3, x1, x2}:
-0.0075

x4: -0.0068 STOP
L3 = {x1, x2}

x4 1

{x4}:
0.0113

x1: 0.0117

STOP
L4 = {}

x2: 0.0119

x3: 0.0117

Table 6.3.2: Step-wise behavior of the channel selection algorithm for
signal model (6.2.11). Channels with imposed dependencies are selected. Minima
of the AIC values of each step are set in bold-face type for better traceability.

6.3.3 Seizure onset zone localization

We apply our proposed methodology, i.e. regression with dynamically selected
channels and subsequent calculation of EIPR, to ECoG recordings in order to
localize the SOZ. Its identification is based on the analysis of the dependency
measure calculated in the initial seconds of the seizure, given the exact seizure
onset time (compare Section 4.3).

Data are processed within windows of four seconds, as this value turned
out to provide a good trade-off for the estimation quality of the correlation
matrix between estimation errors due to instationarity and inaccuracy due to a
too small number of samples.

We choose an autoregressive model order of p = 8. This allows for the
modeling of a spectrum with four peaks, e.g. a prominent peak modeling the
rhythmic ictal activity in the ϑ-band and three additional peaks in the other
physiological frequency bands (δ, α, β). This choice is in good accordance with
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Seizure Investigator Initial Electrodes

1

Algorithm A7, A10, A11, C2, C5
Expert 1 B8

Expert 2 A11, A12, B8

Expert 3 A10, A11, A12

2

Algorithm A10
Expert 1 A11, A12

Expert 2 A11, A12

Expert 3 A11, A12

3

Algorithm A10
Expert 1 A9, A10

Expert 2 A9

Expert 3 A8, A9

Table 6.3.3: SOZ according to causality analysis. Results in three seizures
compared to visual inspection by clinicians.

simulations yielding the optimal model order (Graef 2008).
Furthermore we choose a significance threshold of 0.5, and EIPR values

below this cut-off value are discarded. This choice assures that only the
strongest couplings are displayed and will be discussed in Subsection 6.4.3.

Fig. 6.3.1 illustrates the results for the three analyzed seizures. Plots (a) - (c)
show the MR scan of the patient’s head together with the electrode positions
and results of the EIPR analysis for the respective seizure. An arrow from
electrode xl to electrode xk indicates that η2

k,l exceeds the imposed threshold,
i.e. indicates strong directed coupling from xl to xk. Thus, the arrow maps
of Fig. 6.3.1 highlight the areas of increased coupling activity. In all three
seizures arrows point away from the parieto-occipital region, in particular from
electrode A10. Therefore, this electrode is associated with an area of strong
directed dependencies.

In addition to a visual analysis of EIPR arrows (Fig. 6.3.1) one can look at
condensed information: The out-degree per channel, defined as the number of
arrows pointing away from the channel, is a measure of the directed coupling
activity of the respective electrode.9 Fig. 6.3.2 shows a histogram of out-degrees
per channel for each seizure. In seizure 1 (plot (a)), channels A7, A10, A11, C2

and C5 have the highest number of outgoing arrows, in seizures 2 and 3 (plots
(b) and (c)) channel A10. Table 6.3.3 summarizes these findings and compares
them to the visual analysis of the three clinical experts.

These observations suggest that the SOZ comprises the electrode A10, which
is in good accordance with the visual analysis of the clinicians. In Subsection
7.4.2 we will discuss this result and related neurophysiological aspects in more
detail.

9We will follow this reasoning in Chapter 7 as well.
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(a) Seizure 1. Data window: 16:12:45 - 16:12:49

(b) Seizure 2. Data window: 16:48:05 - 16:48:09

(c) Seizure 3. Data window: 17:18:31 - 17:18:35

Figure 6.3.1: Arrow maps based on EIPR. Results for the initial four seconds
of (a) seizure 1, (b) seizure 2, (c) seizure 3. An arrow between two electrodes
indicates an EIPR value above the threshold, i.e. strong directed coupling between
respective electrodes.
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(a) Seizure 1. Data window: 16:12:45 - 16:12:49
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(b) Seizure 2. Data window: 16:48:05 - 16:48:09
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(c) Seizure 3. Data window: 17:18:31 - 17:18:35

Figure 6.3.2: Out-degrees of arrow maps based on EIPR. Results for the
initial four seconds of (a) seizure 1, (b) seizure 2, (c) seizure 3. Highest values of
out-degrees marked in red.
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6.4 Discussion

6.4.1 EIPR as coupling indicator

In this chapter we introduce a novel approach to the quantification of directed
couplings. The proposed dependency measure EIPR indicates Granger causal-
ity (as does the Partial Directed Coherence), but has the advantage of a clear
physical interpretation as a power ratio, compare expression (6.2.5). As men-
tioned in Subsection 6.2.5, its normalization assures that the measured coupling
strength between two channels is not influenced by others. This behavior is in
contrast to the one of PDC (Graef et al. 2009) whose confidence level depends
on all neighborhood channels in order to compensate for the normalization
effect (Schelter et al. 2005).

Due to its construction EIPR successfully validates the signal model (6.2.11).
It retrieves the imposed dependencies (compare Table 6.3.1), as does PDC
(compare Fig. 6.4.1). In both cases the couplings x1 → x3 (position (3,1) in the
scalar matrix / matrix plot) and x4 → x2 (position (2,4) in the scalar matrix /
matrix plot) are predominantly indicated.

Here we want to discuss three additional aspects regarding the comparison
of EIPR and PDC:

First, we observe an interesting behavior of EIPR: The statistically significant
values in Table 6.3.1 exceed the non-significant ones by a factor of 100. Even
at a first glance at such an EIPR table (without comparing the EIPR values
to their respective significance thresholds) we would obtain an idea about
the underlying dependence structure. Note that the PDC matrix-plot in Fig.
6.4.1 creates a similar impression, but in case of EIPR the tendency to separate
significant from non-significant values is stronger. This is a result of the
normalization discussed above.

Second, the EIPR values in Table 6.3.1 range between 0 and 2, PDC is
normalized between 0 and 1. The reason for the scatter of the EIPR values is
the following: The variance of the extrinsic contribution term in the numerator
of EIPR represents the power of the extrinsic contribution, which is the integral
of the corresponding power spectral density over all frequencies (compare
expression (6.2.9)). In the numerator of PDC the same integrand shows up,
but for a single frequency (compare expression (6.2.10)). Therefore, EIPR takes
large values for couplings where PDC is increased over a wide frequency
range, compare Fig. 6.4.1. In particular this is the case for the two couplings
mentioned above, x1 → x3 and x4 → x2. Vice versa, PDC vanishing over a
large frequency band results in very small EIPR values (e.g. coupling x3 → x1).

Third, an advantage of EIPR is its compact representation in form of a
matrix of (physically meaningful) scalar values as in Table 6.3.1. This allows for
a simultaneous comparison of the individual EIPR values with their respective
significance thresholds even in case of large scale differences. In contrast, a
PDC matrix representation has the drawback of being difficult to interpret. One
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Figure 6.4.1: PDC matrix plot of the signal model (6.2.11), confer (Winter-
halder et al. 2005). The plots on the diagonal show the spectra of the respective
channels (x-axis: frequency in Hz, y-axis: spectrum in dB scale). A subplot
on position (k, l), k 6= l (x-axis: frequency in Hz, y-axis: PDC) visualizes the
influence of xl to xk measured by π2

k,l( f ). The imposed dependencies are correctly
identified.

has to consider the respective subplot and compare PDC to the significance
threshold for all frequency points. However, as mentioned in (Schelter et al.
2005), this point-wise comparison is not straight-forward. Consider for example
the significant couplings x2 → x3 and the non-significant ones x3 → x4 for
both measures. Comparing the EIPR values η2

3,2 and η2
4,3 with their respective

significance thresholds is easily performed in Table 6.3.1. In case of the PDC
matrix plot in Fig. 6.4.1 this simple evaluation is not possible. Small PDC
values and significance thresholds are not easily visible due the large scale
differences. In order to allow for a clear visualization of the PDC values and
their thresholds in each subplot (simultaneously visible), each subplot would
have to be scaled differently. Compare Fig. 6.4.2 for an illustration, where the
scaling of the two subplots of couplings x2 → x3 and x3 → x4 is performed in
this way. Here, the PDC values and significance thresholds of both couplings
are visible, at the price of a scale difference of factor 100. This would render
the comparison of the PDC values between different subplots in a matrix plot
such as Fig. 6.4.1 difficult.

We want to conclude this part of the discussion with two comments on the
interpretation of EIPR.

EIPR is not normalized between 0 and 1, which is a drawback in comparison
to PDC. In particular this impairs the comparison between different systems,
as equal EIPR values might not indicate the same coupling strength in distinct
multi-channel signals.

On the other hand, EIPR allows for an interpretation similar to the signal-
to-noise ratio (SNR): Given a signal x[n] = u[n] + z[n] consisting of meaningful
information u[n] and background noise z[n], the SNR is commonly defined
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Figure 6.4.2: Zoom into two subplots of the PDC matrix-plot in Fig. 6.4.1
(x-axis: frequency in Hz, y-axis: PDC). (a) zoom of the subplot on position (3,2)
indicating the dependence x2 → x3, (b) zoom of the subplot on position (4,3)
indicating the dependence x3 → x4. PDC values are illustrated by solid lines,
significance thresholds by dotted lines. For each plot a different zoom factor is
necessary to allow for a simultaneous visualization of PDC values and significance
thresholds. A direct comparison between the different plots is difficult.

(Oppenheim and Schafer 1989) on the logarithmic dB scale as

SNR , 10 lg
(

V {u[n]}
V {z[n]}

)
.

Thus, EIPR can be intuitively interpreted: The extrinsic contribution takes the
roles of the information we are interested in, and the intrinsic contribution
is seen as background noise. This interpretation underlines the influence of
the extrinsic information for quantifying the coupling strength, which is in
particular important in the dependence analysis of epileptic ECoG recordings.
We will discuss this setting in Subsection 6.4.3.

6.4.2 Behavior of the channel selection algorithm

As demonstrated in Subsection 6.3.2, the dynamic channel selection algorithm
behaves as expected in simulations, by selecting channels influencing the oth-
ers and by discarding other channels. Applied to the signal model (6.2.11), it
builds up the respective extrinsic channel sets in accordance with the depen-
dencies imposed. Moreover, it is capable of prioritizing extrinsic channels with
strongest influence, compare Table 6.3.2.

This behavior strengthens our conjecture that the algorithm performs well
in ECoG data: Here we encounter many influences with few important ones
(representing epileptic activity): The order according to which the extrinsic
channel set is built up is important, as the proposed forward-selection proce-
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dure does not search through the whole parameter space. Due to the simulation
results discussed above we are confident that the algorithm’s focus on strongest
influence selects the important channels first, thus including the channels of
interest in the extrinsic channel set. This assures that EIPR can be calculated
and visualized between highly coupled channels in the subsequent step.

6.4.3 Seizure onset zone localization

In this chapter we assume that the area of highest EIPR values in the initial
seconds after seizure onset indicates the SOZ. Our reasoning is the following:
As mentioned in Subsection 2.3.5, in case of focal epilepsy the pathological
synchronous activity starts at a small localized brain area. Departing from
the SOZ it spreads to its immediate vicinity recruiting more and more parts
of the neural network. This leads to a hyper-synchronous behavior of the
observed channels. One could imagine a »focus« located in the SOZ driving
the surrounding channels by imposing its oscillatory frequency in the course
of the recruiting process. This could be interpreted as a kind of information
transfer: Imagine one electrode in the focus, say x1, influencing the behavior of
the surrounding electrodes, say x2 and x3, in the initial phase of the seizure.
Then, sticking to this image of information transfer, we expect the extrinsic
contributions from x1 to x2 and x3 to show high values and the intrinsic
contribution terms of x2 and x3 to be small. This results in high EIPR values
η2

2,1 and η2
3,1, we observe increased directed coupling activity symbolized by

arrows. By limiting our representation to the highest EIPR values within each
analysis (significance threshold set to 0.5), we focus on these pathological
synchronizations and do not regard others (e.g. weak physiological ones).

Consequently, we expect arrows pointing away from the areas of increased
synchronizational activity, in particular from the SOZ, and electrodes of these
focus areas to have a high out-degree of EIPR arrows. In order to derive
the SOZ, we consider Fig. 6.3.1 for the arrow maps and Fig. 6.3.2 for the
corresponding out-degrees of each electrode in the following.

The overall results of our methodology are in good accordance with the
SOZ as indicated by the clinicians (Table 6.3.3): In all three seizures electrode
A10 is among the channels with strongest coupling activity. While the out-
degree histogram is not conclusive in case of seizure 1 (Fig. 6.3.2 (a)), the
corresponding arrow map (Fig. 6.3.1 (a)) clearly reveals activity departing from
electrode A10 (as well as A11 and A12, both located in the parieto-occipital
region). The high out-degrees of electrodes C2 and C5, as shown in Fig. 6.3.2
(a), are a result of EIPR arrows within the C-electrodes (C2 → C3, C2 → C4,
C5 → C2, C5 → C4). We assume that strip C captures strong synchronous
activity from the hippocampal region located in deeper brain structures below
this strip, compare Fig. 2.1.5. Obviously this excessive activity leads to feedback
mechanisms which results in the observed dependencies on the cortex.10

10In Chapter 7 we observe the same phenomenon by application of influence analysis, see the
discussion in Subsection 7.4.2.
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Figure 6.4.3: SOZ according to causality analysis on MRI scan with
electrodes positions. Electrodes revealing initial epileptic activity are marked in
white (seizure 1: A7, A10, A11, C2, C5; seizures 2 and 3: A10). The supposed
seizure onset zone is outlined.

Moreover, synchronous activity departing from A10 can be prominently
observed in seizures 2 and 3, see Fig. 6.3.1 (b) - (c). In these cases the out-degree
histogram shows conclusive results, compare Fig. 6.3.2 (b) - (c). Taking all these
considerations into account, we conclude that the SOZ comprises electrode
A10 (marked in Fig. 6.4.3).

6.4.4 Concluding remarks

In this chapter we employed a novel dependency measure which is capable
of reliably measuring coupling effects in multivariate signals as well as an
automatic channel selection algorithm. In particular we are able to identify
synchronization effects in ictal multichannel ECoG recordings which allows us
to draw conclusions on the localization of the SOZ. We want to conclude this
discussion with two side-remarks detailing alternatives:

First, the order of the autoregression is kept constant. As a potential
drawback, this might lead to under- or over-fitting of the AR model and
consequent erroneous dependencies. In order to avoid this situation one could
consider a regression model with order changing over time, see e.g. Prado
et al. (2001). In this case the model would better reflect the changing spectral
properties of the EEG, but at the price of a higher computational effort: As
a function of the data-driven model order a dynamic window length (which
is currently fixed) would have to be defined such that a sufficiently reliable
estimation of the necessary AR parameters is possible.

Second, we use a dynamic channel selection algorithm (see Fig. 6.2.1) to
overcome the estimation issues due to the high correlation in the cross-sectional
dimension. Another approach which might be appropriate for this task is
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penalized regression, e.g. LASSO as introduced by Tibshirani (1996). Only
recently, Chiang et al. (2009) successfully applied this approach to neural data,
calculated PDC and visualized the indicated brain connectivity of participants
taking part in a virtual-reality experiment.

Concluding, we believe that the aspects discussed in this section strengthen
our hypothesis of EIPR being a useful measure for the characterization of neuro-
physiological dependencies. Therefore, we think that our methodology has the
potential to assist clinicians in the presurgical evaluation of epilepsy patients
by objectivating the visual ECoG examination: Tracking the synchronization
effects over time might indicate the SOZ as well as the initial propagation of
the epileptic activity.
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Chapter 7

In�uence Analysis

Die Ereignisse der Zukunft können wir nicht aus den gegenwärtigen
erschließen. Der Glaube an den Kausalnexus ist der Aberglaube.

— Ludwig Wittgenstein: Logisch philosophische Abhandlung

We cannot infer the events of the future from those of the present. Belief in
the causal nexus is superstition.

— Tractatus Logico-Philosophicus1 by Ludwig Wittgenstein (1889-1951), Aus-
trian philosopher and pioneer of analytic philosophy

This chapter is based on material which has already been published together
with co-workers. We refer to Flamm et al. (2013) for the original article.

7.1 Introduction

7.1.1 Background

In this chapter we are concerned with the detection of Granger causality in
multivariate signals whose components show strong co-movement, i.e. high
correlation between the component-series. Following the idea of Chapter 6,
we represent these directed dependence relations by arrows in a graph, whose
vertices are formed by the channels of the multivariate signal.

As initially proposed by Flamm et al. (2013), we apply a novel methodology
for the causal analysis of high-dimensional co-moving data, termed influence
analysis. It combines factor models (compare Section 3.6) and Granger causality
analysis (compare Section 3.3).

While Granger (1969) analyzed the causality between two time series, this
concept has been generalized to conditional Granger causality, compare Sub-
section 3.3.1. Conditional Granger causality, based on autoregressive modeling

1Sentence 5.1361; English translation by Pears/McGuinness.

Original text and English translation accessible online at people.umass.edu/phil335-klement-
2/tlp/tlp.html.

123
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(compare Section 3.2), is particularly popular in the analysis of neurological
signals. For recent applications in neuroscience see e.g. Guo et al. (2008), Liao
et al. (2010), Sommerlade et al. (2012) and Flamm et al. (2012).

In practice we often encounter high-dimensional signals with strong co-
movement, e.g. in EEG analysis. The naive approach to a Granger causal
analysis in this context would be to fit a K-dimensional AR model to the
K-dimensional signal x[n]. We typically encounter two problems:

First, Granger causality analysis is usually considered in the case of regular
AR systems, i.e. where the error covariance matrix Σ is regular (compare
Section 3.2). As EEG data are highly correlated and show strong co-movement,
regular AR models lead to a poor estimation and misleading results of the
subsequent causality analysis. A visual analysis of ECoG data quickly confirms
this co-movement, compare Figs. 4.3.2, 4.3.3 and 4.3.4.

Second, fitting of a K-dimensional AR(p) model requires the estimation of
K2 p parameters. In order to obtain reliable estimators for large cross-sectional
dimension K, a large sample size is required. However, as EEG data show a
highly non-stationary behavior (again, compare Figs. 4.3.2, 4.3.3 and 4.3.4),
such large sample sizes impair the estimation quality. Again, this leads to poor
results of the causality analysis.

7.1.2 Granger causality for factor models

In order to avoid these problems we consider factor models, which are a use-
ful tool for EEG analysis (Molenaar 1985, Molenaar and Nesselroade 2001),
compare Section 3.6. Naturally the question arises, which causalities can be
reasonably analyzed in this context. In this chapter we assume that the depen-
dence of the latent variables χ[n] properly reflects the causal structure of the
observations x[n]. This assumption seems meaningful despite the separation
(3.6.1) into noise and latent variables, as will be discussed in Subsection 7.4.1.2

The first idea for a causal analysis in the factor model scenario would be to
consider relations of the form

χi
?→ χj|χV , (7.1.1)

where χ are the latent variables according to Definition 26 in Section 3.6, and
the conditioning set is V = {1, . . . , K}. However, the usage of the exhaustive
set V leads to problems, see Flamm et al. (2013) for technical details. Therefore,
we restrict the conditioning set to a sub-set of V: Instead of V we use channel
selections I ⊂ V, #I = q < n, and we consider relations of the form

χi
?→ χj|χI i, j ∈ I. (7.1.2)

The channel selection I has to be chosen appropriately, such that relations of
the type (7.1.2) yield reasonable results. This will be discussed briefly in the
2This assumption is not necessarily satisfied, see Anderson and Deistler (1984).
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following3 (compare Section 3.6 for the notation):
For a channel selection I ⊃ i, j we consider the corresponding sub-system

of (3.6.4)
χI [n] = ΛI z[n] = ΛI A−1(z) ε[n], (7.1.3)

where ΛI is the square sub-matrix of Λ corresponding to the selected compo-
nents χI .

In order to yield reasonable causal relations of the form (7.1.2), we only
consider channel selections I where the corresponding ΛI is regular. We call
such I admissible.

By rewriting (7.1.3) as an AR representation we obtain

ΛI A(z)Λ−1
I︸ ︷︷ ︸

Ă(z)

χI [n] = ΛI ε[n]︸ ︷︷ ︸
ε̆[n]

(7.1.4)

with det(ΛI) 6= 0. Note that we pre-multiply (7.1.4) with ΛI in order to
obtain the leading coefficient of the left-hand side polynomial as the identity,
Ă[0] = Iq×q.

The Granger causality relations of this representation (7.1.4) can now easily
be checked according to definition (7) of conditional Granger causality, compare
Subsection 3.3.1. In this context, according to (7.1.4), the criterion takes the
form

χi 9 χj|χI ⇐⇒ Ăji(z) = 0 i, j ∈ I; i 6= j. (7.1.5)

Note, however, that the causality relations do depend on the channel
selection I, compare Flamm et al. (2013).

7.2 Method

7.2.1 Proposed methodology

Our methodology consists of three steps. First, we use PCA to separate the
observations into the latent variables (explaining the co-movement) and the
noise. As mentioned in Subsection 7.1.2, we assume that the causal structure
of the observations is reflected in the causality structure of the latent variables.

Second, for fixed channel indices i and j we analyze the conditional Granger

causality relation χi
?→ χj|χI , given a fixed channel selection I ⊃ i, j.

Third, we perform this analysis for all admissible channel selections Ĩ ⊃ i, j
and derive a heuristic statement for the influence from χi to χj, condensing the
information of all sub-systems.

In detail we proceed as follows:
First, we perform a PCA on the observations x[n] in order to obtain the

factor loading matrix Λ and the static factors z[n]. The dimension of the

3A detailed derivation can be found in Flamm et al. (2013). For a more theoretical perspective we
refer to Flamm (2012).
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static factors q is determined via a Scree plot (Cattell 1966). In this graphical
method the principal components are sorted according to their explanation of
the total variance of the data in descending order. Typically, a bending point
can be observed in this graphical representation, which divides the principal
components into important and unimportant ones, compare Fig. 7.3.1.

Now let the channel indices i, j and the channel selection I be fixed. The
straight-forward application of the approach described in Subsection 7.1.2
yields two problems:

While in theory we can easily distinguish regular and singular matrices
ΛI in equation (7.1.4) by considering the determinant, the estimator Λ̂I will
typically yield det(Λ̂I) 6= 0. The causality relations drawn from systems with
very small values of |det(Λ̂I)| are not meaningful, which is due to the fact that
Ă(z) in (7.1.4) cannot be computed reliably due to the bad conditioning of Λ̂I .
As the term |det(Λ̂I)| is a measure for the similarity of the selected channels,
we only consider channel selections I with |det(Λ̂I)| exceeding a threshold τ.
This threshold is chosen empirically in order to yield reasonable results.

A similar challenge arises in the estimation of ˆ̆Aji(z). In theory Ăji[s] = 0 ∀s
signifies that χi is Granger non-causal for χj, recall criterion (7.1.5). However,

in estimation we typically have ˆ̆Aji[s] 6= 0, so we have to statistically test

whether the polynomial coefficients ˆ̆Aji[s] (for all lags s) are significantly jointly
different from zero.

For this purpose we use an F-test (H0 : Ăji[s] = 0 ∀s), which is im-
plemented in the GCCA toolbox and described in Seth (2010). We consider
the p-value of the test as a measure for Granger causality: Rejection of H0
(p < 0.014) signifies Granger causality, acceptance means non-causality.

In order to sum up, for each channel selection I (for fixed channel indices
i, j) we obtain two values: |det(Λ̂I)| as a similarity measure of the channels in
I and the p-value as an indicator for the causality from χi to χj.

As a global influence statement from χi to χj is our goal, we want to con-
dense the different conditional causality statements based on distinct channel
selections I into a single one. For this purpose we propose an intuitive rule:
If all statements for distinct channel selections match, we conclude a global
influence statement.

In other words: if χi → χj|χI for all I with |det(Λ̂I)| > τ, we say that χi
influences χj. On the other hand, if χi 9 χj|χI for all I with |det(Λ̂I)| > τ, we
say that χi does not influence χj. In case of non-conclusive Granger causality
statements we do not derive any global influence statement.

Finally, as the causality structures of the observations and the latent vari-
ables are assumed to be equal according to Subsection 7.1.2, we say xi influences
xj if χi influences χj. The analogous reasoning holds in case of non-influence.

4Note that in Flamm et al. (2013) we use p < 0.03. A smaller p-value in this application puts
the focus on the highly significant causality relations and leads to fewer directed dependence
relations, i.e. clearer arrow maps.
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Figure 7.2.1: Visualization of the influence analysis. Analysis for all causal-
ity relations χi → χj|χI for distinct channel selections I ⊃ i, j. In each plot a
point shows the p-value (as a measure of causality) and |det(Λ̂I)| (as a mea-
sure of channel similarity) for the respective channel selection I. Points with
|det(Λ̂I)| > τ only are considered in the analysis (numerical reasons). (a) All
relevant points have an associated p-value < 0.01, i.e. indicate causality (for
each respective I). We conclude that xi influences xj. (b) All relevant points
have an associated p-value > 0.01, i.e. indicate non-causality (for each respective
I). We conclude that xi does not influence xj. (c) For different I, causality as
well as non-causality statements are indicated. We do not conclude any influence
statement.

For a better understanding we want to visualize the described methodology:
For fixed channel indices i, j we plot a point for each distinct channel selection
I ⊃ i, j into the plane spanned by |det(Λ̂I)| on the x-axis and the p-value
on the y-axis. This procedure yields graphs such as shown in Fig. 7.2.1. In
such a plot we only consider points with |det(Λ̂I)| > τ, which are located
to the right of the dashed vertical threshold line. Points to the left of this
determinant threshold line are ignored, because the corresponding p-values
are not meaningful due to numerical instabilities.

A point situated below the dotted line represents a p-value < 0.01 and
therefore indicates Granger causality. Consequently, a point lying above the
dotted line indicates Granger non-causality.

Fig. 7.2.1, where each plot is constructed as described above, illustrates the
three cases we distinguish:

In plot (a) all relevant points are situated below the dotted line, i.e. each
point individually indicates causality (H0 of non-causality rejected due to
p < 0.01), thus we have global influence.

We observe the opposite situation in plot (b), where all relevant points are
above the dotted line, i.e. each point individually indicates non-causality, so
we speak of global non-influence.

Plot (c) illustrates a situation where distinct channel selections lead to
Granger causality as well as Granger non-causality statements. In this case, we
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refrain from concluding on global influence.

7.2.2 Signal model

In order to assess the proposed methodology we apply it to simulated data
where we know the imposed dependence structure. Consider the following
signal model

x[n] = Λz[n] + η[n] (7.2.1)

A(z) z[n] = ε[n].

First we simulate the 3-dimensional static factors z[n] as an AR(2) process with

A(z) =

1− 0.2z 0 0
−0.3z2 1− 0.5z 0
−0.7z2 0 1− 0.5z


and the covariance matrix of the noise set to identity.5 For the construction of
x[n] we choose the factor loading matrix

Λ =



1 0 0
0 1 0
0 0 1
1 0 0
0 1 0
0 0 1
1 0 0
0 1 0
0 0 1


and the variance of the noise

Cov(η[n]) = diag(0.15, 0.15, 0.61, 1.37, 0.61, 0.15, 1.37, 1.37, 0.61).

The Granger causality structure of the simulated 3-dimensional static factors
(z1∗ , z2∗ , z3∗)

T is depicted in Fig. 7.2.2 (a), the resulting influence structure of
the 9-dimensional co-moving system (x1, . . . , x9)

T in Fig. 7.2.2 (b). Note that
the simple design of Λ yields the clear graph in plot (b).

7.3 Results

7.3.1 Signal model

We apply our methodology to the simulated data from the signal model (7.2.1).

5Simulation is done using the function arsim of the Matlab package arfit, described in Schneider
and Neumaier (2001).
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Figure 7.2.2: Illustration of the dependence structure of signal model
(7.2.1). (a) Granger causality structure of the simulated static factors (arrows
indicate conditional Granger causality). (b) Influence structure of the simulated
observations (arrows indicate influence).
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Figure 7.3.1: Scree plot of the Principal Component Analysis of the simu-
lated data from signal model (7.2.1). Three factors explain the majority of the
variance.

For the initial calculation of the PCA, we determine the number of static
factors q by considering the Scree plot, see Fig. 7.3.1. This figure shows the
percentage of the explained variance per factor. We observe that three factors
explain the majority of the variance, thus we choose q = 3. Furthermore, by
application of BIC (Schwarz 1978) we obtain an AR-model order of p = 2
(matching the imposed model order).

Proceeding according to our methodology, for fixed source channel index
i and target channel index j we obtain causality relations for all channel
selections I ⊃ i, j. They are represented as points in a graph as described in
Subsection 7.1.2. Compare Fig. 7.2.1 for the idea. Hereby points with p-values
> 0.4 are displayed with p-value = 0.4, because this does not change the results
of the analysis (highly non-significant anyway) and facilitates the visualization.

In Fig. 7.3.2 all these plots are arranged in a 9× 9 matrix plot, where the
columns indicate the source channels xi and the rows the target channels xj.
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Figure 7.3.2: Results of the influence analysis of signal model (7.2.1) in
matrix plot form. Columns indicate the source channels xi and the rows the
target channels xj, the (j, i)-subplot quantifies the influence from xi to xj. Only
points to the right of the dashed threshold line are considered due to numerical
reasons (admissible points). If all admissible points are located under the dotted
line we say xi influences xj, compare the interpretation in Fig. 7.2.1. This analysis
yields the influence structure illustrated in Fig. 7.2.2 (b).

Clearly, the (j, i)-subplot quantifies the influence from xi to xj. Obviously,
diagonal elements are not displayed.

Let us consider the interpretation of three selected subplots in Fig. 7.3.2 in
detail:

In subplot (3,1) all points to the right of the determinant threshold line are
located below the dotted line, and therefore represent p-values smaller than
0.01 (i.e. the null hypothesis of non-causality is rejected). This means that
for all admissible channel selections I, we have χ1 → χ3|χI . Thus, we say x1
influences x3.

In subplot (3,2) all points to the right of the determinant threshold line are
located above the dotted line. Thus, we say x2 does not influence x3.

In subplot (4,1) all points are located to the left of the determinant threshold
line, therefore we do not draw any conclusions. The reason for this behavior is
that x1 and x4 are both generated by z1∗ and therefore are highly correlated.

Thus, we have shown that we successfully retrieve the imposed dependence
structure of (7.2.1) by interpreting each of the subplots in the described way.
Channel x1 influences channels x2, x3, x5, x6, x8, x9, so do channels x4 and x7.
This is illustrated in Fig. 7.2.2 (b) where each influence relation is symbolized
by an arrow.
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Figure 7.3.3: Results of the influence analysis of seizure 1. Six selected
channels in matrix plot form (submatrix of the full 24× 24 matrix). Compare Fig.
7.3.2.

7.3.2 Seizure onset zone localization

We apply the proposed method to the three seizures described in Section 4.3.
We process a 4-second segment from the initial phase of each seizure in order
to locate the SOZ, compare Figs. 4.3.2, 4.3.3 and 4.3.4.

The number of static factors is determined by a Scree plot as before in
Subsection 7.3.1. In order to achieve an explained variance greater than 80%,
we choose q = 5.

In accordance with the survey paper Tseng et al. (1995), we choose the
AR model order for the Granger causal analysis p = 8. This allows for the
modeling of four spectral peaks, e.g. a prominent peak modeling the rhythmic
ictal activity in the ϑ-band and three additional peaks in the other physiological
frequency bands (δ, α, β).6

Furthermore, we choose τ = 0.05 in order to discard points of the causality
analysis which yield unreasonable results due to numerical problems caused
by channel similarity.

In analogy to the analysis of the signal model (7.2.1) in Subsection 7.3.1 we
obtain a 24× 24 matrix plot for each of the three seizures. For better visibility,
Fig. 7.3.3 shows only a 6× 6 sub-matrix of the matrix plot of seizure 1. Here
we briefly want to discuss 4 subplots of Fig. 7.3.3, i.e. of seizure 1, in detail:

Subplot (2,3) describes the causality relations from B8 to A12. All points to
the right of the determinant threshold are located below the dotted line, thus
we say channel B8 influences channel A12.

In subplot (5,3) all points located to the right of the determinant threshold
are above the dotted line. Therefore, B8 does not influence C5.

An interesting case occurs in subplot (3,2). We have admissible points above

6Compare Chapter 6, where we identically choose the AR model order following this line of
thought.
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Seizure Investigator Initial Electrodes

1

Algorithm A10, A12
Expert 1 B8

Expert 2 A11, A12, B8

Expert 4 A10, A11, A12

2

Algorithm A5, A6
Expert 1 A11, A12

Expert 2 A11, A12

Expert 4 A11, A12

3

Algorithm A6
Expert 1 A9, A10

Expert 2 A9

Expert 4 A8, A9

Table 7.3.1: SOZ according to influence analysis. Results in three seizures
compared to visual inspection by clinicians.

and below the dotted line. In this case we refrain from any influence statement.

Finally in subplot (4,2) all points are located to the left of the determinant
threshold. We do not draw any conclusion in this case, as there are no
admissible channel selections.

By interpreting each subplot in the 24× 24 matrix of seizure 1 in this way,
we obtain all influence relations. In particular we are interested in the (source,
target) channel pairs, where the source does influence the target channel.

Fig. 7.3.4 illustrates the results for the three analyzed seizures. Plots (a) - (c)
show the MR scan of the patient’s head together with the electrode positions
and results of the influence analysis for the respective seizure. An arrow from
electrode xl to electrode xk indicates influence. Thus, the arrow maps of Fig.
6.3.1 highlight the areas of increased coupling activity: in all three seizures the
parieto-occiptial region and in seizures 2 and 3 (plots (b) and (c)) the temporal
region covered by electrode strip C.

In analogy to Chapter 6, we additionally consider the out-degree per
channel as a condensed measure of influence. Fig. 7.3.5 shows a histogram
of out-degrees per channel for each seizure. In seizure 1 (plot (a)), channels
A10 and A12 have the highest number of outgoing arrows, in seizure 2 (plot
(b)) channels A5 and A6 and in seizure 3 (plot (c)) channel A6. Table 6.3.3
summarizes these findings and compares them to the visual analysis of the
three clinical experts.

These observations suggest that the SOZ comprises temporo-parieto-occipital
region between electrodes A12 and A5, which is in good accordance with the
visual analysis of the clinicians. In Subsection 7.4.2 we will discuss this result
and related neurophysiological aspects in more detail.
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(a) Seizure 1. Data window: 16:12:45 - 16:12:49

(b) Seizure 2. Data window: 16:48:05 - 16:48:09

(c) Seizure 3. Data window: 17:18:31 - 17:18:35

Figure 7.3.4: Arrow maps based on influence analysis. Results for the initial
four seconds of (a) seizure 1, (b) seizure 2, (c) seizure 3. An arrow between two
electrodes indicates an influence statement.
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(a) Seizure 1. Data window: 16:12:45 - 16:12:49
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(b) Seizure 2. Data window: 16:48:05 - 16:48:09
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(c) Seizure 3. Data window: 17:18:31 - 17:18:35

Figure 7.3.5: Out-degrees of arrow maps based on EIPR. Results for the
initial four seconds of (a) seizure 1, (b) seizure 2, (c) seizure 3. Highest values of
out-degrees marked in red.
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7.4 Discussion

7.4.1 In�uence analysis

A key assumption of the employed method is that the latent variables reflect
the causality structure of the observations. In other words, that we can infer the
dependencies between the channels from the latent variables, and that the noise
is assumed not to contain any causality information. Although this is a strong
assumption, it seems reasonable to us: This assumption is very similar to the
one that the causal dependencies are reflected by distinct, high-amplitude wave
forms in the signal, e.g. high amplitudes in ictal ECoG recordings. We believe
that in particular in neurophysiological applications this is meaningful, as we
expect these high-amplitude oscillations to carry substantial information about
the causality structure of the generating cortical mechanisms.

A naturally arising question is whether and to which extent the definition of
influence is meaningful. In our opinion it is a workable procedure for causality
analysis in high-dimensional co-moving systems: Intuitively one expects a
certain kind of dependence if χi is causal for χj for all (admissible) channel
selections. The opposite case, i.e. no dependence despite causality statements
for all (admissible) channel selections, would be somehow surprising.

A potential weakness of the influence definition is the fact that in practical
applications one is often confronted with the case where no influence statement
can be inferred. Compare subplot (3,2) in Fig. 7.3.3, where causality as well as
non-causality relations are symbolized. In such cases we recommend a more
precise investigation which particular channel selections yield causality and
which do not (Flamm et al. 2013). Due to the existence of such undecidable
cases we avoid the term causality and refer to the derived dependence statement
as influence.

Finally we briefly want to discuss some technical aspects of the employed
method, compare Flamm et al. (2013) for further details. As mentioned in
Subsection 7.2.1, influence analysis methodology consists of three steps: PCA,
Granger causality analysis for fixed channel selection I and derivation of an
influence statement. This modular design allows for an easy adaptation of each
single step, i.e. alternative methods could be used in each step independently
of the others.

First, the usage of sparse PCA would enforce additional zeros in the factor
loading matrix Λ. Thurstone (1947) suggested five criteria for a simple structure
and d’Aspremont et al. (2007) gave a direct formulation for sparse PCA.

Second, two central indicators are used in the Granger causality analysis
for a fixed channel selection: |det(Λ̂I)| as a measure of channel similarity (as
mentioned above) and the p-value of an F-test as an indicator for Granger
causality. The latter is employed due to its well-established theory. Note that in
neuroscience literature various other directed dependency measures are used,
compare Section 3.4.

Third, influence statements are derived according to an intuitive rule: If
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χi → χj|χI for all admissible I, we say that xi influences xj. However, one could
imagine other rules depending on specific applications. For instance, only the
channel selection with the largest |det(Λ̂I)| could be taken into account for
the influence statement. Another possible rule for influence statements might
be based on the comparison of the number of points above and below the
dotted line, e.g. the majority or a certain percentage. This would reduce the
cases where no influence statement can be derived based on the current rule,
compare e.g. subplot (3,2) in Fig. 7.3.3.

7.4.2 Seizure onset zone localization

In this chapter we assume that the area of increased coupling activity in the
initial seconds after seizure onset, indicated by influence statements, indicates
the SOZ. Our reasoning is the following:

In case of focal epilepsy, the pathological synchronous activity (characteriz-
ing the epileptic seizure) starts at a circumscribed brain area. From there, ictal
activity spreads to its immediate vicinity recruiting more and more parts of the
neural network, compare Subsection 2.3.5. This leads to distinct co-movement
of the observations. One could imagine a »focus« located in the SOZ driving
the surrounding channels by imposing its oscillatory frequency in the course
of the recruiting process. This could be interpreted as a kind of information
transfer or causal interaction: The electrodes in the focus influence the behavior
of the surrounding electrodes in the initial phase of the seizure. Therefore, we
expect to obtain indications for the SOZ by applying a Granger-causal analysis
to factor models within the initial seconds of the seizure.

In the first seizure (Fig. 7.3.5 (a)), the electrodes identified by our algorithm
(A10, A12) are comprised in the set of initial electrodes specified by the clinical
experts (Table 8.3.1). In this case, our findings correlate very well with the
visual inspection which strengthens the argumentation above. Interestingly,
in seizures 2 and 3 the algorithmic analysis points out electrodes A5 and A6

(Figs. 7.3.5 (a) and (b), respectively), thus suggests a more anterior region as
SOZ. This localization differs from the visual analysis (Table 8.3.1), indicating
electrodes A11 and A12 in seizure 2 and electrodes A8 to A10 in seizure 3.
Note, however, that this trend to more anterior parts is confirmed by the visual
analysis. In seizure 3 the SOZ identified by clinical experts is localized in a
more anterior region than in seizure 1 (A8-A10), though at a slightly more
posterior position (ca. 3cm) than according to our analysis.

In the course of the recruiting process we obviously expect feedback mech-
anisms between the channels (besides unidirectional dependence). This can
be observed in Fig. 7.3.4 (a), consider e.g. channels B6 ↔ A12. However, in
the SOZ the departing arrows predominate, i.e. we have channels with a high
out-degree.

This situation is reflected in the out-degree histogram in Fig. 7.3.5. First,
consider plot (a) for seizure 1. Channels with the highest out-degrees coincide
with the SOZ, and with increasing distance to the SOZ the respective out-degree
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Figure 7.4.1: SOZ according to influence analysis on MRI scan with elec-
trodes positions. Electrodes revealing initial epileptic activity are marked in
white (seizure 1: A10, A12; seizure 2: A5, A6; seizure 3: A6). The supposed SOZ
is outlined.

decreases. Channel A8 with an out-degree of zero is an exception, as we cannot
infer any influence statement for this source channel (only non-admissible
channel selections for all target channels).

Next, consider plots (b) and (c) for seizures 2 and 3. Here, we observe the
same situation of decreasing out-degrees as before in seizure 1 (additionally,
we cannot infer any influence statements for channel A8 again). The electrodes
of strip C represent an exception, as we have large influence from the electrodes
of strip C. This might be due to the fact that this electrode strip captures highly
synchronized activity from the hippocampal region.7

7.4.3 Concluding remarks

In this chapter we employed a causal analysis of high-dimensional co-moving
data termed influence analysis, connecting the topics of Granger causality and
factor models. Influence analysis allows for an investigation of the dependence
structure of highly correlated data in neuroscience such as EEG. We would like
to conclude this discussion with three remarks:

First, the determination of q, i.e. the dimension of the static factors, is
very important for the simulated data as well as the ECoG recordings and
potentially has great influence on the analysis. In both applications we chose
q based on Scree plots in a reasonable way. A systematic way of choosing q,
depending on the data (e.g. in preictal periods, at the beginning of the seizure
and in later phases), has to be established in future work.

Second, a major problem of the presented causal analysis of the ECoG data

7Compare Chapter 6, where we also observe this behavior, although applying a different causality
analysis method (see the discussion in Subsection 6.4.3).
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is stationarity. As can be seen in Figs. 4.3.2, 4.3.3 and 4.3.4, the analyzed ECoG
data do not seem to be stationary. During the main phase of the epileptic
seizure the channels show distinct rhythmic behavior, which is stationary in
nature. However, we are interested in the beginning of the epileptic seizure,
where the rhythmic activity starts to spread. Due to this evolution our period
of interest is non-stationary. There are two main approaches to cope with the
problem of causal analysis of non-stationary data: The first is to use non-linear
methods (Marinazzo et al. 2011), the second is to employ the shortest possible
time window for the analysis. We focus on the second approach and use a
short time window.

Finally, choosing the correct AR model order is not straight-forward. The
problem is that already filtering in the preprocessing step of the data could
affect the AR-model order and subsequently the Granger-causal analysis of
the data (Barnett and Seth 2011). However, we chose an AR-model of constant
order p = 8, which is in good accordance with simulation yielding the optimal
model order of ictal ECoG data (Graef 2008).

Concluding, our methodology correctly identifies the dependence structure
of the signal model (7.2.1) and yields promising results for the analyzed ECoG
data. Therefore, we think that our methodology might have the potential to
assist clinicians in the presurgical evaluation by objectivating their visual ECoG
examination.



Chapter 8

Segmentation

Omnis ars naturae imitatio est; itaque quod de universo dicebam ad haec
transfer quae ab homine facienda sunt.

— Lucius Annaeus Seneca: Epistulae morales ad Lucilium

All art is but imitation of nature; therefore, let me apply these statements
of general principles to the things which have to be made by man.

— Moral letters to Lucilius1 by Seneca the Younger (ca. 4 BC - 65), Roman
philosopher and statesman

This chapter is based on material which has already been published together
with co-workers. We refer to Graef, Flamm, Hartmann, Pirker, Deistler, Kluge
and Baumgartner (2013) for the original article.

8.1 Introduction

8.1.1 Background

In this chapter we are concerned with the analysis of early seizure spread based
on the spatio-temporal tracking of ictal rhythmic ϑ-activity. For this purpose we
employ a methodology proposed by Graef, Flamm, Hartmann, Pirker, Deistler,
Kluge and Baumgartner (2013), which consists of a segmentation step and of a
subsequent, clinically inspired classification step.

Like many other bio-signals, EEG recordings are highly instationary. As
this violates the commonly used assumption of stationarity, one has to model
the non-stationary character explicitly in order to allow for appropriate signal
processing. Segmentation of the signal into stationary fragments is a possi-
ble solution: After definition of the segment boundaries, estimation can be
performed within each segment by means of well-known techniques.

1Letter LXV: On the first cause, paragraph 3; English translation by Richard Mott Gummere.

Latin text accesible online at www.intratext.com/IXT/LAT0230.
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The straight-forward implementation is a sliding window of fixed length,
wherein the signal is assumed to be stationary. Due to the inherent simplicity of
this implementation, in particular regarding the coding effort, this approach is
very popular in EEG processing.2 However, one has to find a trade-off between
window length and estimation precision in this case, as the continuously
moving window ignores the signal properties: The longer the window, the
higher the risk of temporally smeared statistics; the shorter the window, the
poorer the estimation quality due to a too low number of signal samples.
Therefore, one is interested in a more sophisticated segmentation which should
ideally take account of the underlying signal characteristics.

A prominent approach is to consider the temporal evolution of appropri-
ate statistics. Whenever such a statistic exceeds an imposed threshold, one
assumes a significant change in the signal characteristics and defines a bound-
ary. The definition of such statistics heavily depends on the application. As
Table 8.1.1 details, various statistics have been proposed for segmentation.3

A prominent method is based on the spectral properties of the signal, the
so-called spectral error measure segmentation (SEM, Bodenstein and Praetorius
(1977), Praetorius et al. (1977)) with modifications Bodenstein et al. (1985) and
a bivariate extension Gath et al. (1992).

Segmentation based on the temporal evolution of statistics can be accom-
plished according to three different strategies (Keogh et al. 2004): top-down,
bottom-up and sliding window (compare Table 8.1.1). The top-down strat-
egy starts with the entire data window, breaks it up into non-overlapping
segments and repeats this procedure for each segment iteratively, until the
segmentation is so fine that no significant statistical changes can be found
any more. The bottom-up strategy operates in the inverse way. It initially
defines a fine grid of potential segment boundaries and iteratively joins parts
with the same statistical properties until joining is no longer possible due to a
lack of significant statistical changes. The sliding window strategy compares
the statistical properties of two adjacent windows and defines a boundary in
case of a significant difference between them. This comparison can happen
in different forms (Chu 1995): a fixed reference window and a sliding test
window of the same size (used in this chapter, compare Subsection 8.2.1), a
growing reference window and an adjacent test window of fixed size, a global
fixed reference window and a growing test window, or a growing reference
windows and an adjacent shrinking test window.

Another approach for segmenting is the minimization of a cost function,
whereby the segmentation and the estimation happen in parallel in an iterative
way. An exemplary list of algorithms of this class includes Lavielle (1998),
the SLEX algorithm in its bivariate (Ombao et al. 2001) and multivariate form
(Ombao et al. 2005) and the Auto-PARM-algorithm (Davis et al. 2006).

2For instance, this approach is pursued in Chapters 6 and 7.
3Note that recently the idea of the so-called 2nd-stage-tracking (Varsavsky and Mareels 2006, 2007)
came up: not the statistic itself reflects the underlying signal appropriately, but its changes.
Following this line of though, the variation of the differentiated statistics has to be considered.
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Characterization Statistics
(»feature«)

Top-down
approach

Bottom-up
approach

Sliding-
window
approach

Direct physical
interpretability

Spectral content Adak (1998),
Carré and
Fernandez-
Maloigne
(1998)

Bodenstein and
Praetorius
(1977),
Praetorius et al.
(1977),
Bodenstein et al.
(1985), Gath
et al. (1992),
Lavielle (1993)

Mean Fukuda et al.
(2004)

Teager energy
according to
Kaiser (1990)

Wu and
Gotman (1998),
Agarwal and
Gotman (1999)

Line length Esteller et al.
(2001)

No direct
physical
interpretability

Kolmogorov-
Smirnov
statistics

Brodsky et al.
(1999)

Kaplan et al.
(2001), Kaplan
et al. (2005)

Itakura distance Kong et al.
(1995), Kong
et al. (1997)

AIC
minimization

Inouye et al.
(1995)

Classical
non-linear
methodology,
difficult to
interpret

Statistical
dimension

Celka and
Colditz (2002)

Non-linear
correlation
coefficient

Terrien et al.
(2008)

Phase synchro-
nization

Terrien et al.
(2008)

Table 8.1.1: Overview of segmentation strategies. Statistics commonly used
for segmentation.
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We finally mention alternative EEG segmentation approaches including
such different methods as hidden Markov models (Cassidy and Brown (2002),
Penny and Roberts (1999)) or adaptive estimation with parameter changes
defining the boundaries, e.g the »forgetting« factor in Ursulean and Lazar
(2007), the errors in Lopatka et al. (2005), or the coefficients themselves in
Ohlsson et al. (2010).

8.1.2 Contribution

In this chapter we apply a physiologically motivated computational approach,
which is based on the propagation of rhythmic ϑ-activity (Graef, Flamm, Hart-
mann, Pirker, Deistler, Kluge and Baumgartner 2013): We use a segmentation
method based on the relative frequency contributions of ictal ECoG data, as
outlined by Graef et al. (2012) (see Subsection 8.2.1). Based on this segmentation
we classify each segment with respect to its epileptic character (see Subsection
8.2.3). The temporal delay of the start of epileptic activity on different channels
is an indicator for seizure propagation, thus revealing the SOZ (see Subsection
8.2.4).

8.2 Method

Our proposed methodology consists of two consecutive steps, the segmentation
of the ECoG data (see Subsection 8.2.1) and the subsequent classification of the
resulting segments regarding their epileptic character (see Subsection 8.2.3).
Segmentation and classification are applied channel-wise. We will demonstrate
segmentation and classification for a single channel xk[n] in the following.

For the segmentation step (see Subsection 8.2.1) we will calculate a sequence
of power spectral densities, for the classification step (see Subsection 8.2.3) we
use a rhythmicity analysis.

8.2.1 Segmentation

We initially compute sequences of power spectral densities varying over time
by using a sliding window of length Twin, where the window is moved by Tres

seconds. For each window the corresponding spectrum is indexed with the
center point of the window. Thus, we obtain a sequence of power spectral
densities S( f )[m] with window index m (new temporal resolution 1/Tres Hz).
Power spectral densities are estimated using the non-parametric Welch method
(128-point FFT), compare Subsection 3.1.4.

We use the following neurophysiologically meaningful frequency bands:
δlow (1.0-1.5 Hz), δup (2.0-3.5 Hz), ϑ (4.0-8.5 Hz), α (9.0-13.5 Hz), β (14.0-
30.0 Hz). For each time step m, we calculate the power within these bands, e.g.
Pα[m] =

´ 13.5
9.0 S( f )[m] d f , as well as the total power of all these bands, denoted

by P[m]. The split of the δ-band into a lower and upper part was done in order
to separate low-frequency artifacts from physiological activity.
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Our segmentation method is based on the temporal evolution of statistics
by using a sliding-window approach (compare Subsection 8.1.1). As initially
proposed in Graef et al. (2012), we consider the temporal changes of the relative
power contribution of the individual physiological frequency bands. These
changes are reflected by a a novel statistic termed Band Power Measure (BPM[m])
defined as

BPM[m] =

(
Pδlow[m]

P[m]
− Pδlow[m∗]

P[m∗]

)2

+ . . . +
(Pβ[m]

P[m]
−

Pβ[m∗]
P[m∗]

)2

. (8.2.1)

The sliding-window algorithm employed is as follows: We choose an initial
reference point m∗ (preictally), and for increasing m > m∗ we calculate BPM[m].
If the Band Power Measure exceeds a given threshold th, i.e. BPM[m] > th, we
start a new segment by updating the reference point m∗ = m + 1 and continue
the calculation for increasing m until the end of the dataset. The set of reference
points obtained by this algorithm yields the boundary points for our segments,
i.e. each resulting segment is limited by two subsequent reference points.

The definition of BPM is physiologically motivated: According to Foldvary
et al. (2001) ictal EEG (as well as ECoG) in temporal lobe epilepsy patients is
often characterized by its distinct rhythmic ϑ- or δ-activity. Due to its definition,
BPM ignores small contribution shifts within a frequency band, but is sensitive
to frequency shifts from one frequency band into another.4 We expect a new
segment at the beginning of distinct ϑ-activity, i.e. in particular at the beginning
of ictal periods.

8.2.2 Periodic waveform analysis

In the second step we decide whether a segment represents epileptic activity,
as will be detailed in Subsection 8.2.3.

This quantification is heavily based on a methodology of rhythmicity mea-
surement termed periodic waveform analysis (PWA), compare Hartmann et al.
(2011). In brief, the PWA consists of three steps:

First, the total harmonic energy at time point n

Eτ [n] , ∑
k>0

∣∣∣∣∣ 1√
τ

∞

∑
n′=−∞

x[n′]ψ[n′ − n] exp(−2iπ
kn′

τ
)

∣∣∣∣∣
2

(8.2.2)

is calculated for all cycle durations τ with τmin ≤ τ ≤ τmax, where ψ is a
window of bounded energy centered around 0 of length α/τ.

For fixed n, a maximization of (8.2.2) yields the dominant cycle duration
τ̂ = arg maxτ Eτ . For our calculations we will use the coupled frequency fPWI,
which is the inverse of the dominant cycle duration.

4Note that this behavior is in contrast to the SEM-based segmentation in Bodenstein and Praetorius
(1977), which regards power shifts at arbitrary frequencies, independently of the physiological
bands.
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Figure 8.2.1: PWI and coupled frequency in initial 10 seconds of seizure 1,
channel A12. (a) ECoG data, (b) PWI, (c) fPWI. Note the unstable dominant
frequency in case of low PWI and its convergence to the predominant frequency
with increasing rhythmicity.

Second, the signal energy corresponding to a cycle duration τ is given by

Nτ [n] ,
1√
τ

∞

∑
n′=−∞

(
x[n′]ψ[n′ − n]

)2 . (8.2.3)

Finally, for dominant cycle duration τ̂ (or coupled frequency fPWI), the
Periodic Waveform Index (PWI) is defined as

PWI[n] ,
Eτ̂ [n]
Nτ̂ [n]

, (8.2.4)

which quantifies the rhythmic character of a signal. By construction, PWI
equals one for perfectly rhythmic signals and is near zero for totally arhythmic
ones like white noise.

Thus, we obtain a pair (PWI, fPWI) for each time step, which indicates the
rhythmic character of the signal as well as the dominant frequency.

Note that PWI calculations are performed independently of the estimation
of the power spectral sequence. For technical reasons (the iterative maximiza-
tion of (8.2.2) is time consuming) the output of the PWI framework is limited
to half the temporal resolution of the power spectral sequence in this study.

In Fig. 8.2.1 we see the characteristic behavior of PWI and its coupled
frequency, which will be exploited in Subsection 8.2.3: In ictal phases the
signal becomes rhythmic, which is reflected by a high PWI value and a stable
coupled frequency. Compare Fig. 8.2.1 from 16:12:45 onward, when PWI
increases and the coupled frequency converges to the predominant frequency
in the ϑ-band. In interictal phases we observe a low PWI, and the coupled
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frequency oscillates in an unstable manner, which is a result of the numerical
maximization of (8.2.2).

8.2.3 Segment classi�cation

The core aspect of the methodology in this chapter is the characterization of
epileptic activity, which is clinically motivated. The classification of segments
regarding their epileptic character is based on the behavior of PWI and its
coupled frequency, as shown in Fig. 8.2.1. It follows a two-step approach by
imitating the way how epileptologists (at Neurological Center Rosenhügel)
perform the visual analysis of early seizure spread:

1. Initial classification.
In the initial step of visual analysis clinicians search for periods with distinct
epileptic activity. Thus, we also first concentrate on segments showing
clear epileptic activity. We classify segments as epileptic (»step-1-positive«)
which exhibit a rhythmic character, a stable coupled frequency in the δ/ϑ/α-
bands (or super-harmonics with a base frequency in this range) and high
amplitudes. Furthermore, in order to avoid false-positives, we suppress
a classification as step-1-positive if rhythmic low-frequency artifacts are
present (maximal contribution in the δlow-band).

2. Subsequent classification of segments preceding the epileptiform ones.
In the second step clinicians search for initial epileptiform discharges in
the ECoG. They start from the period of clear epileptic activity (step 1)
and scan the preceding electrophysiological activity until they discover the
first discharge with a morphological pattern similar to the subsequent clear
epileptic activity. Again, our algorithm imitates the clinical procedure and
classifies segments preceding step1-positive segments. These preceding
segments typically exhibit a rhythmic character and a similar morphology
(to the subsequent step1-positive segment, i.e the same spectral properties),
but low amplitudes and an unstable coupled frequency. This classification
(»step-2-positive«) may be applied to segments immediately preceding
step1-positive segments (the segment itself must not be step1-positive).

3. Subsequent classification of segments succeeding the epileptiform ones.
Finally, note that in the course of a seizure the predominant frequency might
change, or activity in other frequency bands (e.g. typically β-activity in
tonic-clonic seizures) could superpose the initial one. Segments showing
this behavior have not been marked as epileptic so far, as they typically
show high rhythmicity and large amplitudes, but not necessarily a stable
coupled frequency. Therefore, we classify segments with high PWI and large
amplitudes as epileptic in this step. This classification (»step-3-positive«)
applies to each segment immediately succeeding a step1-positive segment
(the segment itself must neither be step1- nor step-2-positive).

The rule sets of these three steps (4 rules for step 1, 2 rules for step 2,
2 rules for step 3) as well as their implementation are summarized in Table
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Step Rule Criterion Implementation

Initial classi-
fication of
segments
with
distinct
epileptic
activity

#1 Rhythmicity: high PWI median(PWI in segment) > median(ref.
PWI) + MAD(ref. PWI)

#2 Stable coupled
frequency

IQR(freq. in segment) < 7 Hz

#3 Dominant frequency
physiologically
meaningful (i.e. δ/ϑ/α)
OR
dominant frequency is
first harmonic of a
fundamental frequency
in δ/ϑ/α-range

median( fPWI in segment) < 13 Hz

OR
{median( fPWI in segment) < 26 Hz AND
1st PSD peak = median( fPWI in segment)

+/- 1Hz AND
2nd PSD peak = median( fPWI in

segment)/2 +/- 0.5 Hz}

#4 High amplitudes median(signal envelope in segment) > 90%
percentile(ref. signal envelope)

Classification
of
precedent
segments

#5 Rhythmicity: high PWI median(PWI in segment) > median(ref.
PWI) + MAD(ref. PWI)

#6 Spectral properties
similar to the
subsequent segment
marked in step 1 (i.e.
spectral peak in same
band OR max. rel.
power contribution in
same band)

mode(freq. band with spectral peak in
segment) = mode(freq. band with spectral
peak in subsequent step 1-positive segment)
OR
mode(freq. band with max. rel. contr. in
segment) = mode(freq. band with max. rel.
contr. in subsequent step 1-positive
segment)

Classification
of
subsequent
segments

#7 Rhythmicity: high PWI median(PWI in segment) > median(ref.
PWI) + MAD(ref. PWI)

#8 High amplitudes median(signal envelope in segment) > 90%
percentile(ref. signal envelope)

Table 8.2.1: Segment classification. 3 subsequent steps with respective rule
sets detailing criteria and implementation. Thresholds are calculated from a
20 min-lasting preictal reference period.

8.2.1. As detailed, thresholds are calculated from a 20 min-lasting preictal
reference period prior to the first seizure.5 Thresholds without any direct
neurophysiological interpretation have been determined empirically. If all
criteria of the respective step are satisfied (step 1: 4; step 2: 2; step 3: 2), we
classify a segment as epileptic.

Note that robust statistics are used in order to compensate for the insta-
tionary character of the bio-signals: median instead of mean, mean absolute

5Unlike in Chapter 5, the reference period for the analysis of all three seizures lies before onset of
the first seizure, not before onset of the respective seizure. This assures that the reference values
obtained from the 20 min period are not biased by postictal phenomena (e.g. curve suppression),
as the three seizures follow each other in a 30 min interval.
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deviation (MAD) instead of standard deviation, inter-quartile range (IQR).

8.2.4 SOZ localization and seizure propagation

In order to draw conclusions on the initial seizure spread we apply the segmen-
tation of Subsection 8.2.1 and the subsequent classification of Subsection 8.2.3
channel-wise. The temporal delay of the start of epileptic activity on different
channels reflects seizure propagation. The first channels showing epileptic
activity indicate the SOZ.

8.2.5 Signal model

In order to to illustrate our method of tracking initial seizure propagation,
we consider the segmentation of simulated data in Subsection 8.3.1. For this
purpose we construct a 10s-lasting test signal (x1, x2, x3)

T with a sampling
frequency of 128 Hz (for better comparison with ECoG data),

x1[n] = a1 sin
(

2πn
128

f1

)
+ a2 sin

(
2πn
128

f2

)
+ ε1[n]

x2[n] = a3 sin
(

2πn
128

f3

)
+ a4 sin

(
2πn
128

f4

)
+ ε2[n], (8.2.5)

x3[n] = a5 sin
(

2πn
128

f5

)
+ a6 sin

(
2πn
128

f6

)
+ ε3[n]

where (ε1, ε2, ε3) ∼ N (0, 0.04) is Gaussian white noise. In order to simulate an
epileptic seizure and its propagation, the amplitudes a1, . . . , a6 and frequencies
f1, . . . , f6 follow the temporal scheme

x1 : phase A (0-5 s): a1 = 50, f1 = 15 Hz; a2 = 10, f2 = 3 Hz
phase B (5-10 s): a1 = 50, f1 = 8 Hz; a2 = 20, f2 = 20 Hz

x2 : phase A (0-2 s): a3 = 50, f3 = 15 Hz; a4 = 10, f4 = 3 Hz
phase C (2-10 s): a3 = 80, f3 = 10 Hz; a4 = 30, f4 = 20 Hz

x3 : phase A (0-3 s): a5 = 50, f5 = 15 Hz; a6 = 10, f6 = 3 Hz
phase B (3-7 s): a5 = 50, f5 = 8 Hz; a6 = 20, f6 = 20 Hz
phase C (7-10 s): a5 = 80, f5 = 10 Hz; a6 = 30, f6 = 20 Hz

Hereby, phase A represents preictal activity in the β-band and phases B and
C ictal activity in the ϑ- and α-bands, respectively. For more realistic simulation
results, the dominant activity ( f1, f3, f5) in preictal phase A is superposed with
low-amplitude δ-activity ( f2, e.g. artifacts) and in ictal phases B and C with
low-amplitude β-activity ( f4, f6, e.g. muscle activity). Compare Fig. 8.3.1 (a)
for an illustration.
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Figure 8.3.1: Segmentation of simulated data (8.2.5). (a) Simulated channels
1- 3, phase A (preictal) marked in blue, phases B and C (both ictal) in black. (b)
Relative contributions of the physiological frequency bands of channel 3, (c) Band
Power Measure and imposed threshold (dotted) of channel 3. Segment boundaries
are indicated by vertical lines in all three graphs. Segmentation corresponds to the
imposed temporal structure of the simulated signal and illustrates the tracking of
initial seizure propagation (channel 2: onset, channels 3 and 1: follow-up).

8.3 Results

As we are interested in the initial spread of the rhythmic activity, we investigate
the first 20 seconds of each of the three seizures, compare Figs. 4.3.2, 4.3.3 and
4.3.4. We start at the time indicated by the clinicians, i.e at onset of paroxysmal
fast activity (30 Hz) or high-frequency oscillations (78 Hz) in the particular
case of seizures 1 and 2. Rhythmic ϑ-activity starts approximately 10 seconds
later. Note that the detection of the initial fast activity is not in the focus of this
study.6

8.3.1 Segmentation of simulated data

First we apply the BPM segmentation to the simulated test signal (8.2.5). Fig.
8.3.1 displays the three simulated channels on top (plot (a)). In each channel,
phase A (simulation of preictal activity) is marked in blue and phases B and
C (simulation of ictal activity) in black. Details for channel 3 are given in the
subplots below: the temporal evolution of the relative frequency contributions
in plot (b) and the corresponding BPM statistics (8.2.1) in plot (c). Segment

6See Chapter 5 for HFO detection.
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boundaries are marked in all three graphs to simplify their comparison. The
imposed threshold is indicated by a dotted line in plot (c). For consistency
with the segmentation results of ECoG data, we use the threshold th = 0.07.

The segmentation obtained by the BPM algorithm matches the structural
change of the signal very well. The BPM statistic reacts immediately to changes
in the frequency content, and segment boundaries are set at the time point
following a threshold exceeding. The resulting segmentation of the three-
dimensional test signal exactly reflects the imposed temporal structure of the
three phases, compare Fig. 8.3.1 (a).

These results illustrate the idea of tracking initial seizure propagation, as
outlined in Subsection 8.2.4. We observe the first segment representing ictal
activity on channel 2, followed by channels 3 and 1. In this artificial case we
conclude that channel 2 indicates the onset of epileptic activity, and initial
seizure spread propagates to channel 3 a second later, followed by channel 1

with a delay of two seconds.

8.3.2 Segmentation of ECoG data

We apply the proposed methodology with the following set of parameters:
Twin = 1.5 s, Tres =

1
16 s for high temporal resolution and reactive segmentation.

The initial reference point m∗ is set at 0.75 s to avoid initial transient effects due
to preprocessing steps. Furthermore we employ an empirically determined
threshold th = 0.07, which turned out to represent a good trade-off between
segment length and segmentation reactivity for ECoG data, compare Graef
et al. (2012).

Fig. 8.3.2 displays the segmentation of an exemplary channel, A12, of
seizure 1 in detail. In analogy to the segmentation of the test signal, the
ECoG data are shown on top in plot (a). For a better comprehension the
temporal evolution of the relative frequency contributions is detailed in the
middle (plot (b)) and the corresponding BPM statistics at the bottom (plot (c)).
Again, segment boundaries are marked in all three graphs to simplify their
comparison, and the imposed threshold is indicated by a dotted line.

In this example a significant change of the BPM statistics can be observed
because of frequency shifts from one physiological band into another. Further-
more the segments coincide well with phases of ϑ-activity (16:12:45 - 16:12:48).

8.3.3 Classi�cation of ECoG segments

We exemplarily show the mechanism of segment classification for channel A12

of seizure 1 (first 10 seconds). For this purpose Fig. 8.3.3 displays the step 1

segment classification based on rules #1 - #4, compare Table 8.2.1. This figure
shows the temporal evolution of the statistics for these four criteria: Again, the
ECoG data are shown in plot (a). Bold lines in plots (b) - (e) signify a fulfilled
criterion. For a segment to be step 1-positive, criteria #1 - #4 have to be fulfilled.
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Figure 8.3.2: Segmentation of channel A12, seizure 1. (a) ECoG data, (b)
Relative contributions of the physiological frequency bands, (c) Band Power
Measure and imposed threshold (dotted). Segment boundaries are indicated by
vertical lines in all three graphs.
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Figure 8.3.3: Segment classification of channel A12, seizure 1 according to
step 1. (a) ECoG data with indicated segment boundaries, (b) rule #1: median of
PWI in segment, (c) rule #2: IQR of fPWI in segment, (d) rule #3: median of fPWI
in segment, (e) median of signal envelope in segment. Thresholds are indicated by
horizontal dashed lines. Bold lines of statistics #1 - #4 signify fulfilled respective
criterion within segment. A segment is classified as step 1-positive, if all 4 rules
are fulfilled, only the last segment is classified.
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Seizure Investigator Initial Electrodes Close follow-up

1

Algorithm B8 A10, A11, A12
Expert 1 B8 A10, A11, A12

Expert 2 A11, A12, B8 A9, A10, B7

Expert 3 A10, A11, A12 B8

2

Algorithm A11 A12, B7
Expert 1 A11, A12 A9, A10

Expert 2 A11, A12 A10

Expert 3 A11, A12 B8

3

Algorithm A7 A1, A9, A10, C4, C5
Expert 1 A9, A10 A8, A11, A12, B6, B7,

B8, C1, C4, C5

Expert 2 A9 A1, A2, A3, C2, C3

Expert 3 A8, A9 A1, C3, C4, C5

Table 8.3.1: SOZ and initial propagation according to segmentation
method. Results in three seizures compared to visual inspection by clinicians.

In this example only the last segment is classified as epileptic (correspond-
ing ECoG data highlighted in black). Note that this segment represents the start
of the rhythmic epileptic activity on this channel. In preceding segments at least
one of the four criteria correctly circumvents a step 1-positive classification.

8.3.4 Onset zone analysis

We apply the proposed segmentation and classification procedure to the first
20 seconds of each of the three seizures. For a better visualization of the results
we only present a five-second zoom in Fig. 8.3.4. Step 1-positive segments
are marked in black, step 2-positive segments in yellow and step 3-positive
segments in magenta. Onset times according to the three clinical experts, who
individually analyzed the raw ECoG data, are indicated above the respective
channels.

Table 8.3.1 summarizes our findings as well as the visual analysis. Ac-
cording to our algorithm, the rhythmic epileptic activity starts on channel B8

(follow-up: A10, A11, A12) in seizure 1, on A11 (follow-up: A12, B7) in seizure
2 and on A7 (follow-up: A1, A9, A10, C4, C5) in seizure 3. As can be seen
from Fig. 8.3.4, our results correlate well with the visual analysis of the clinical
experts.

Based on these findings (analysis of initial electrodes) we infer that the SOZ
comprises the temporo-parieto-occipital area between electrodes B8 and A7.
We will discuss a refinement of the SOZ to the area of electrodes A11 to B8 in
Subsection 8.4.3, compare the MRI scan in Fig. 8.3.5 for a visualization of the
electrode positions.
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Figure 8.3.4: SOZ and initial spread of epileptic activity. (a) Seizure 1, (b)
seizure 2, (c) seizure 3. Onset according to clinical experts marked on respective
channels. Segment boundaries are indicated by vertical red lines. Segments
with distinct epileptic activity (step 1-classification) are marked in black, step
2-classification in yellow, step 3-classification in magenta.
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Figure 8.3.5: SOZ according to segmentation method on MRI scan with
electrodes positions. Electrodes revealing initial ictal HFO activity are marked
in white (seizure 1: B7, B8; seizure 2: A9). The supposed SOZ is outlined.

8.4 Discussion

8.4.1 Segmentation

In Subsection 8.3.2 we showed that the BPM-based segmentation is an ap-
propriate method for the segmentation of ictal ECoG data. Here we want to
discuss two additional aspects for seizure 1, the behavior of the segmentation
algorithm in interictal and ictal periods and the influence of the threshold on
the segment length.

First, consider the behavior of the segmentation algorithm in interictal and
ictal periods. Fig. 8.3.2 underlines the advantages of the construction of the
BPM statistics: Prior to the rhythmic ϑ-activity (starting at ca. 16:12:45) we
observe quickly interchanging frequency contributions, see plot (b). This results
in a BPM statistics with high variations and frequent threshold exceeding, see
plot (c). Therefore, our algorithm yields short segments in this period. On the
other hand, during the rhythmic activity, only small power shifts occur within
the physiological frequency bands. Thus, the frequency contribution of the
respective bands show a constant behavior, namely the ϑ-band on a high level,
which results in longer segments.

Fig. 8.4.1 shows a comparison of segment lengths preictally and ictally
for seizure 1. For this analysis, we consider one minute prior to the onset of
rhythmic ϑ-activity (at 16:12:45) and the initial minute of this rhythmic activity.
As Fig. 8.4.1 reveals, segment lengths are longer in the ictal period (plot (b))
than in the preictal one (plot (a)).

This impression is confirmed by a statistical analysis: The mean vectors
of segment length differ significantly between the preictal and ictal period
(defined as above), as an F-test at a significance level of 0.99 confirms. In detail,
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Figure 8.4.1: Segmentation behavior preictally and ictally. Analysis for
seizure 1. (a) 1 min preictal (16:11:45 - 16:12:45), (b) 1 min ictal rhythmic
ϑ-activity (16:12:45 - 16:13:45). Segments are longer in the ictal rhythmic period
than in the preictal one.

the F-test is constructed as follows:
Let µi = (µA1, . . . , µC5)

T
i with i = 1 symbolizing preictal and i = 2 ictal and

e.g. µA1 denoting the mean segment length of channel A1 in the respective
period i as depicted in Fig. 8.4.1. We test H0 : µ1 = µ2 vs. H1 : µ1 6= µ2. H0 is
rejected if the test statistic exceeds the quantile (Anderson 2003),

N1 + N2 − K− 1
(N1 + N2 − 2)K

T2 > F(K, N1 + N2 − K− 1; 1− α). (8.4.1)

Hereby N1 and N2 denote the respective sample size and T2 = N1 N2
N1+N2

(x̄1 −
x̄2)

TŜ−1(x̄1 − x̄2), where x̄i denotes the respective empirical mean and Ŝ the
pooled empirical covariance matrix7. F is the quantile of the F-distribution. For
α = 0.01 we have 5.7 > 2.7, i.e. we reject H0. In other words, segment lengths
differ significantly between the ictal rhythmic ϑ-activity of seizure 1 and the
preceding period.

Second, we briefly want to discuss the choice of the threshold. As Fig.
8.4.2 details in the form of box plots, segment lengths grow with increasing
threshold both preictally (plot (a)) and ictally (plot (b)).8 Due to the low
threshold th = 0.07 we obtain a reactive segmentation behavior and short
segments. This choice turned out to deliver accurate results for the analysis of
seizure propagation, as will be discussed in Subsection 8.4.3. In particular the
influence of the initial reference point m∗ is almost negligible in this setting.

7The pooled empirical covariance matrix is Ŝ = 1
N1+N2−2

[
(N1 − 1)Ŝ1 + (N2 − 1)Ŝ2

]
, with Ŝi the

estimated covariance matrix of the respective sample.
8Intervals defined as before: 1 min prior to the onset of rhythmic ϑ-activity (at 16:12:45) and 1 min
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Figure 8.4.2: Influence of threshold on segment length. Analysis for seizure
1 in form of box plots. (a) 1 min preictal (16:11:45 - 16:12:45), (b) 1 min ictal
rhythmic ϑ-activity (16:12:45 - 16:13:45). Segment length grows with increasing
threshold in both cases.

8.4.2 Classi�cation

As mentioned in Subsection 8.2.3, the classification step of our methodology is
clinically inspired. It imitates the visual ECoG analysis performed by clinicians
at the Neurological Center Rosenhügel. Therefore, we think that the proposed
algorithm (first: distinct epileptic activity; second: initial epileptic activity) is
reasonable. Note that high rhythmicity is a necessary criterion in all three clas-
sification steps in order to avoid false-positives (e.g. high-amplitude artifacts
with arhythmic character must not be classified as epileptic).

In the authors’ opinion the proposed rule set reflects the statistical properties
of epileptic activity well, compare the illustration in Fig. 8.3.3. However,
possible ameliorations are conceivable: For instance, improved classification
rules could additionally consider the entropy as measure of rhythmicity (van
Putten et al. 2005) or classify the waveforms in the time domain (Fürbaß et al.
2012).

8.4.3 Seizure propagation

In this pilot study we assume the initial spread of ϑ-activity to be a valid
indicator (among others) for seizure propagation in focal epilepsy, in particular
for the determination of the SOZ (Foldvary et al. 2001). Our results are in
good accordance with the clinical findings (see Table 8.3.1), which supports
our assumption.

As the visual analysis reveals, data quality declines in the course of the

of this rhythmic activity.
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seizures (compare Fig. 8.3.4). This is reflected by the visual analysis of the
three clinical experts: In seizures 1 and 2 the latency between the indicated
start of epileptic activity (by each of the three experts) on each channel lies
between 500 ms and 1 s (indications of expert 1 leading, followed by experts 2

and/or 3). In seizure 3 these latency times increase up to 2 s which is due to
the decreased data quality (on some channels it is difficult to determine the
onset of epileptic activity visually).

Consequently, the quality of our findings is better in seizures 1 and 2 than in
seizure 3 as well. In the first two seizures the epileptic starting points indicated
by our algorithm (on each channel) match the visual analysis better than in
the third seizure, see Fig. 8.3.4. This is also reflected in the analysis of initial
electrodes as summarized in Table 8.3.1.

Due to the decreasing data quality in seizure 3 we propose to put more
emphasis on the first two seizures in the SOZ analysis. This would restrict the
SOZ to the parieto-occipital region of electrodes B8, A12 and A11, which is
the posterior part of the area discussed in Subsection 8.3.4 and marked in Fig.
8.3.5.

A validation of the determined SOZ, in particular of the restricted one,
could be achieved by means of post-surgical outcome as detailed in Subsection
2.3.6. However, the surgical intervention in the patient is still pending at the
moment of publication, compare Chapter 10.

We finally want to mention that the combination of a simple segmentation
method and a clinically motivated classification step delivers results which are
consistent and well correlated with clinical findings. In the authors’ opinion
this is due to the close relation between the method and neurophysiology.

8.4.4 Concluding remarks

In this chapter we proposed a novel method for early seizure propagation
analysis based on segmentation and subsequent classification of ictal ECoG
data. The methodology allows to determine the initial seizure spread (in
particular the SOZ) and yields results which are well correlated with the visual
analysis of clinicians. It therefore has the potential for an objectivation in the
presurgical clinical evaluation of therapy-resistant patients.

However, this requires further research: Next steps include the application
to a broader data basis (at least 5 patients undergoing invasive long-term
monitoring) and the evaluation of the algorithm’s performance (sensitivity
vs. specificity, mean latency time of detected epileptic activity). Post-surgical
outcome of these patients would serve as an additional performance indicator.
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Chapter 9

Framework results

Qr� dà tän mèllonta ærjÀc progign¸svkein toÌc periesvomènouc kaÈ toÌc

�pojanoumènouc, ísvoisvÐ te �n mèllù plèonac �mèrac paramènein tä noÔsvhma

kaÈ ísvoisvin �n âl�svsvouc, t� svhmeØa âkmanj�nonta p�nta dÔnasvjai krÐnein,

logizìmenon t�c dun�miac aÎtèwn präc �ll lac, ¹svper diagègraptai perÐ

te tÀn �llwn kaÈ tÀn oÖrwn kaÈ tÀn ptuèlwn, ítan åmoÜ pÜìn te �nab svsvù

kaÈ qol n.

� <Ippokr�thc: Prognwsvtikìn

He who would correctly beforehand those that will recover, and those that
will die, and in what cases the disease will be protracted for many days,
and in what cases for a shorter time, must be able to form a judgment from
having made himself acquainted with all the symptoms, and estimating
their powers in comparison with one another, as has been described, with
regard to the others, and the urine and sputa, as when the patient coughs
up pus and bile together.

— Hippocrates, The Book of Prognostics1

9.1 Introduction

In this chapter we are concerned with the evaluation of the framework for
epileptic seizure propagation analysis proposed in Chapter 4. For this purpose
we compile the results of the individual methods from Chapters 5 (HFO
propagation), 6 (Causality analysis), 7 (Influence Analysis), 8 (Segmentation)
and compare them to the visual analysis by clinical experts from Section 4.3.

The seizure analysis (see Section 9.3) will be supplemented by complemen-
tary clinical findings (see Section 9.2). This holistic approach allows us to
deduce indications for the SOZ and early seizure spread (see Section 9.4).

1Opening of part 25; English translation by Francis Adams.

Original text and English translation are accessible online via the PERSEUS project at
www.perseus.tufts.edu (»prognosticon«).
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9.2 Previous clinical �ndings

First, we consider supplementary clinical findings which were available at the
time of the invasive long-term video-EEG monitoring in 2011.2 The anamnestic
report comprises findings of the following five diagnostic methods:

MRI: Two MRI scans were performed, the first in May 2005 and the second in
March 2007 at DiagnoseZentrumUrania, Vienna (3 T). Both scans were
without pathological findings.

PET: The results of two PET scans are available. A first PET scan was acquired
at Wilhelminenspital Vienna in June 2009 (202 MBq F-18-FDG) and re-
vealed an increased glucose metabolism in the left gyrus frontalis inferior.
However, a second PET scan at Vienna General Hospital 2 months af-
ter the invasive video-EEG monitoring, i.e. in January 2012 (708 MBq
C-11-methinione, 266 MBq F-18-FDG), was without clear pathological
findings.

Neuropsychological testing: The patient underwent neuropsychological tests
at Neurological Center Rosenhügel, Vienna, in October 2009 and in
November 2011. Results were as follows: right-handed patient with an
average general intellectual level (IQ: 94), deficits in selective attention,
divergent thinking (phonematic verbal fluency) and in the memory span
of the short term and working memory (visual and verbal).

fMRI: A functional MRI scan was done at Vienna General Hospital in Septem-
ber 2009 in order to determine language lateralization (Desmond et al.
1995). It revealed a left-lateralized response specific to speech by language-
associated activation of Broca’s and Wernicke’s areas.

Surface EEG: Prior to the invasive long-term video-EEG monitoring the pa-
tient underwent a surface EEG monitoring at Neurological Center Rosen-
hügel in April 2009. At that time, three seizures were recorded, but
no exact localization of the SOZ could be derived from the ictal EEG
(compare the discussion in Subsection 10.2.1). The interictal EEG revealed
series of spikes (duration of one to two seconds) with a maximum at
P8, postictally regional spikes with a maximum at FT10 and T8 and
right-hemispheric slowing.
Symptomatology of the three seizures was as follows: pausing, version
of the head to the left (contralateral sign), cloni of the left corner of the
mouth (contralateral sign), »figure of four« sign with extension of the
left and flexion of the right upper extremity (extension as contralateral,
flexion as ipsilateral sign) and asymmetric termination of the seizure
with cloni of the right upper extremity (ipsilateral sign).
Postictal testing did not reveal any paresis or aphasia.

2Compare Subsection 2.3.3 for the diagnosis in epilepsy patients.
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These findings point to an MRI-negative right-hemispheric focal epilepsy, al-
though the surface EEG itself does not allow for a lateralization. The reasoning
is as follows: First, we observe intermittent (postictal) right-hemispheric slow-
ing. Second, the clinical symptomatology (ipsi- and contralateral signs, see e.g.
Rosenow and Lüders (2001)) indicates a right-hemispheric onset. Finally, the
postictal lack of aphasia suggests that the dominant language hemisphere (left
according to fMRI) is not initially involved in the seizures.

In contrast, the findings of the neuropsychological tests are not conclusive.
Impaired phonematic verbal fluency and deficits in the short term and working
memory would imply a frontal functional deficit zone3, the deficits in the visual
memory a right temporal deficit zone. However, during or shortly before both
of the test sessions the patient suffered from seizures which might lead to a
bias of the test results.

Note that the diagnostic imaging (MRI for localization of a lesion, PET for
additional information regarding the SOZ) did not provide any additional
information.

9.3 Analysis of seizures

As was pointed out in the last section, surface EEG recordings from 2009

provide an insufficient localizing value. In order to confirm the preliminary
diagnosis of right-hemispheric focal epilepsy and exactly localize the SOZ, the
patient underwent an invasive long-term video-EEG monitoring in November
2011. We refer to Section 4.3 for the complete anamnesis.

Here we are concerned with the analysis of the invasively recorded seizures
in 2011, compare Figs. 4.3.2, 4.3.3 and 4.3.4 for the recordings.

First, we consider the ictal ECoG. The results of the seizure propagation
analysis are summarized in Table 9.3.1. It details the initial electrodes and
follow-up electrodes as determined by each of the four technical methods (HFO
detection according to Chapter 5, causality analysis according to Chapter 6,
influence analysis according to Chapter 7, segmentation according to Chapter
8) as well as by visual inspection of HFOs and rhythmic ϑ-activity.4

Second, we additionally examine the interictal ECoG. It reveals frequent
paroxysmal fast activity at electrodes A5 to A12, B8 and C1 to C5. Furthermore
spikes with a maximum at A3 and independently spikes with a maximum at
A9, A11 and C4 can be observed.

Table 9.3.2 condenses these findings. It lists the respective SOZ and early
seizure spread as determined by each of the four technical methods and by the
visual analysis. These results suggest a temporo-parieto-occipital SOZ on the
right hemisphere with an early seizure spread in frontal (strip A) and mesial
(strip C) direction, compare Fig. 9.3.1 for a visualization based on the patient’s
MRI scan. In this graphical representation, each of the four inferred SOZs is

3Compare Subsection 2.3.5 for the concept of the cortical zones.
4For a better comparison, the results of the visual inspection are reproduced from Table 4.3.1.
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Method SOZ Early seizure spread

Technical methods

HFO detection A9, B7 - B8 A4, A11

Causality analysis A10 -
Influence analysis A5 - A12 -
Segmentation A11 - A12, B8 A1, A9 - A10, B7, C4 - C5

Medical report (visual inspection) Temporal caudal (A9 - A12) A strip, B7, C strip

Table 9.3.2: Seizure propagation according to seizure analysis. SOZ and
early seizure spread according to the 4 technical methods and the visual inspection.

Figure 9.3.1: SOZ according to seizure analysis. Respective SOZ according
to each of the 4 technical methods and the visual inspection is indicated. SOZ
of technical methods is indicated by ovals in color; HFO detection: magenta,
Causality analysis: green, Influence analysis: red, Segmentation: blue. Electrodes
belonging to the area indicated in the medical report are marked in black.

highlighted in different color, electrodes belonging to the area indicated by the
medical report are marked in black. As can be seen from this representation,
the different technical results are in good accordance with each other as well
as with the visual inspection. In particular we observe a distinct overlap of the
five indications in the temporo-parieto-occipital region, compare the discussion
in Subsection 10.2.2.

9.4 Overall �ndings

In the final step we derive a common SOZ and the direction of initial seizure
spread. As suggested by the framework for epileptic seizure propagation
analysis in Chapter 4, we consolidate the results of the seizure analysis (tech-
nical methods as well as visual inspection according to Section 9.3) and the
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Figure 9.4.1: Seizure propagation according to framework. SOZ comprises
the temporo-parieto-occiptial area of electrodes A9-12, initial seizure spread in
frontal (A strip) and mesial direction (C strip).

supplementary clinical findings (see Section 9.2).
Based on these findings we conclude on an MRI-negative right-hemispheric

focal epilepsy with a temporo-parieto-occipital SOZ involving electrodes A9-
A12, B8. These five electrodes represent the area with substantial overlap of the
five different indicated SOZs in Fig. 9.3.1. Furthermore, early seizure spread
propagates in frontal (strip A) and mesial (strip C) directions. Compare Fig.
9.4.1 for an illustration of early seizure propagation.

These findings, in particular the SOZ, require validation by post-surgical
follow-up (seizure freedom according to Engel (1996b), see Table 2.3.3), as will
be discussed in Section 10.1.



Chapter 10

Discussion and Outlook

Le but de la discussion ne doit pas être la victoire, mais l’amélioration.

— Joseph Joubert: Pensées

The aim of discussion should not be victory, but progress.

— Thoughts1 by Joseph Joubert (1754-1824), French moralist

10.1 Patient

We want to start the discussion of the framework results with aspects related
to the patient analyzed in this study.

The patient was admitted in the case of suspected MRI-negative right-
hemispheric focal epilepsy for invasive video-EEG monitoring in November
2011. The neurophysiologists expected initial ictal activity in the temporal
region, and the subdural electrodes were implanted accordingly at the General
Hospital of Vienna, University Clinic of Neurosurgery (see Fig. 4.3.1). There-
fore, while the entire temporal region (anterior and posterior) of the patient’s
brain was appropriately covered by subdural strip electrodes, the occipital
region of the patient’s brain was not.

Surprisingly, the invasive video-EEG monitoring revealed initial ictal ac-
tivity in the temporo-parieto-occipital area of electrodes A9-A12, not in the
anterior temporal region. Due to the low coverage of the occipital region it
was impossible to decide whether electrodes A9-A12 indicated the SOZ, or
whether they recorded propagated activity from a posterior origin in fact. In
the latter case, the SOZ would be located somewhere in the occipital, not in
the temporal lobe.

In order to answer this question and to locate the SOZ reliably, the patient
was re-admitted for intracerebral long-term video-EEG monitoring in May 2012.
For this purpose, nine depth electrodes with a total of 72 contact points were

1Own translation.
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Depth electrode Contact points Onset time Affected contacts points

A 10 08:42:32 A7-A10

B 12 08:42:35 B1-B3

C 10 08:42:33 C7-C10

D 4 08:42:31 D2-D4

E 6 08:42:33 E1-E6

F 6 08:42:32 F3-F6

G 6 08:42:31 G1-G6

H 8 08:42:38 H3-H4

I 10 08:42:32 I2-I6

Table 10.1.1: Seizure onset in intracerebral recordings in exemplary
seizure 5. Onset of ictal activity on different depth electrodes happens with
minimal delay only.

implanted at the General Hospital of Vienna, University Clinic of Neurosurgery.
Fig. 10.1.1 shows two MRI scans with the electrode positions. As can be seen
from these scans, all relevant brain structures of the entire right hemisphere
are covered by electrode positions.

Recording was done at a sampling frequency of 1024 Hz (as for the ECoG
monitoring in November 2011), and recordings were referenced to contact
point B12 (most anterior) in order to avoid referencing to any region showing
initial ictal activity. The numbering of the respective electrode contact points
starts at the electrode end in the inner brain structures, i.e. the contact point
with the highest number is near the brain surface.

During the recording period of one week, the patient suffered from five
seizures. Unfortunately, the depth electrode recordings of these seizures did
not allow for a localization of the SOZ. In each of the five seizures, ictal activity
starts nearly simultaneously in the entire right hemisphere except of the frontal
region. Fig. 10.1.2 shows the depth electrode recordings for seizure 5, and Table
10.1.1 summarizes the ictal onset times on the respective electrodes according
to the visual inspection. At 08:42:31 we observe an onset of ictal activity on
electrodes D and G, i.e. in occipital and temporal brain structures (compare
Fig. 10.1.1, plot (b)). One second later, at 08:42:32, ictal activity starts at contact
points A7-A10 (posterior end of depth electrode A) and on electrodes F and
I, i.e. again in both occipital and temporal brain structures. Moreover, onset
on electrode C (located between electrodes D and F, see 10.1.1, plot (b)) is
only observed another second later at 08:42:33. This observation is somehow
contradictory to any anatomically reasonable propagation pattern.2

As the patient was suffering from an increased seizure frequency and
subjective low quality of life (compare Subsection 2.3.7), a surgical intervention
still seemed desirable. Thus, as another attempt to SOZ determination, the

2Note that we do not observe any activity in the frontal lobe which corresponds at least to the
situation expected: Only contact points B1-B3 (inner locations near electrode H and the amygdala)
of the anterior electrode B are affected.



10.1. PATIENT 167

Figure 10.1.1: Depth electrode positions. MRI scans in (a) coronal view, (b)
axial view. Scan orientation is indicated: R - right, L - left, P - posterior, A -
anterior, I - inferior, S - superior. Targets of electrodes are as follows: A (green)
- posterior insula, B (violet) - anterior insula, C (violet) - cingulum, D (violet) -
occipital, E (blue) - T2 posterior, F (red) - T1 retro-insular, G (orange) - parietal
operculum, H (red) - amygdala temporal, I (green) - hippocampal head.
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(a)

(b)

Figure 10.1.2: Intracerebral EEG. Initial 10 seconds of exemplary seizure 5 in
bipolar setup. (a) depth electrodes A - F, (b) depth electrodes G - I.
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patient underwent an ictal SPECT at the General Hospital of Vienna, University
Clinic of Nuclear Medicine, in January 2013. However, diagnostic imaging
only revealed expended ictal activity within the right hemisphere, no further
refinement was possible.

Therefore, a surgical intervention is still pending at the moment of pub-
lication of this thesis. The decision becomes more complicated by the fact
that a resection in the occipital region has a direct impact on the visual cortex
and might lead to (partial) loss of sight. This risk and the potential chance of
seizure freedom have to be carefully weighed against each other by both the
patient and the involved clinicians.

10.2 Framework

This section is dedicated to the discussion of the seizure propagation framework
itself. We will consider two aspects, the limitation of the methodology to
invasive data in Subsection 10.2.1 and the quality of our findings in Subsection
10.2.2.

10.2.1 Limitation to ECoG data

From a practical point of view, the analysis of surface EEG has a number of
advantages over invasive techniques: surface EEG recordings are easy and
cheap to perform and sterility is not required due to the non-invasive character
of the examination, compare Subsection 2.2.1. Consequently, the patient’s risks
are significantly reduced (no surgical intervention for electrode implantation
requiring specialized know-how, no risk of infections). However, the proposed
methodology for the exact localization of the SOZ is limited to invasive EEG
(in particular ECoG in this study) for three reasons.

First, the quality of surface EEG recordings is often impaired by artifacts,
compare Subsection 2.2.4. In the context of a presurgical examination such
artifacts make the visual inspection of the recordings difficult or even render
an analysis impossible. For instance, in the tonic-clonic phase of a seizure
muscle artifacts typically blur the picture. In the worst case, electrodes become
loose during motor seizures, and data cannot be acquired reliably any longer.

In particular automated EEG-analysis techniques require recordings with no
or only few artifacts. As a prominent example, ocular artifacts severely disturb
algorithms due to their large amplitude. Therefore, various technical methods
for automatic removal of artifacts have been proposed in literature, with
increasing complexity in the last years. They can be divided into regression-
based and component-based approaches on a coarse level (Wallstrom et al.
2004), see Table 10.2.1 for an overview of various approaches for eye and
muscle artifact correction.

However, the application of such artifact-removal algorithms is not straight-
forward and might lead to induced filtering artifacts. As an example, consider
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Artifact Approach Method References

Eye

Regression-
based

Adaptive filtering He et al. (2004), Puthusserypady and
Ratnarajah (2006)

Regression Schlögl et al. (2007)

Component-
based

ICA

Vigario (1997), Jung et al. (1998), Jung
et al. (2000), Delorme et al. (2007),
Mantini et al. (2007);
temporally constrained: James and
Gibson (2003);
Bayesian classification: LeVan et al.
(2006);
time-variant: Boudet et al. (2007);
blind source separation: Joyce et al.
(2004), Hallez et al. (2009);
FASTER algorithm: Nolan et al. (2010)

PCA Liu and Yao (2006)

Muscle Spectrum-
based

Regression Gasser et al. (2005)

Table 10.2.1: Recent automatic artifact removal approaches. Overview of
methods for eye and muscle artifact correction in EEG.

Fig. 10.2.1. Here, we exemplarily apply the methodology of Schlögl et al. (2007)
to the first seizure recorded in the course of the video-EEG monitoring in 2009.
Plot (a) depicts the original surface EEG recordings in reference setup, plot
(b) the corrected data. In both visualizations, the fronto-polar channels Fp1

and Fp2 are highlighted in red for better orientation. In plot (a), the potential
induced by the eye movement does not only impair the fronto-polar channels,
but also the frontal and temporo-parietal ones (which we are interested in). In
plot (b), these artifacts are removed by the algorithm. However, while channels
F7, TP9 and TP10 are appropriately corrected, channel P7 is impaired by the
correction.

Therefore, we refrain from the analysis of automatically corrected surface
EEG recordings and stick to invasive data, which are not impaired by ocular
(and mostly muscle) artifacts.

Second, in Chapter 5 we analyze the initial propagation of ictal HFOs
as a highly specific bio-marker of the SOZ. Due to the character of HFOs
(high-frequency and low-amplitude) these EEG correlates are mostly filtered
by the cranium, compare Subsection 2.3.5. Therefore, it is difficult to perform
HFO propagation analysis in surface EEG recordings, independently of the
methodology (visual analysis or automatic detection). Although HFOs have
been detected in surface EEG recordings of children (Wu et al. 2008, Inoue
et al. 2008, Kobayashi et al. 2009) and very recently in adults (Andrade-Valenca
et al. 2011), we assume that these studies represent rare cases under favorable
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Figure 10.2.1: EOG artifact correction. Exemplary surface EEG recordings in
reference setup from the long-term video-EEG monitoring in April 2009 (seizure
1). Seizure onset on the right hemisphere at 21:50:26. (a) original data, and (b)
correct data, fronto-polar channels Fp1 and Fp2 highlighted in red. Channels F7,
TP9 and TP10 are appropriately corrected, but P7 is impaired by correction.
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Figure 10.2.2: Low spatial resolution of surface EEG. Exemplary surface
EEG recordings in bipolar longitudinal setup from the long-term video-EEG
monitoring in April 2009 (seizure 3). Seizure onset on the whole right hemisphere
at 17:00:41 and generalization at 17:00:47 (both events indicated by vertical
orange lines).

circumstances. As we aim at an HFO analysis during presurgical work-up in
as many patients as possible, we see the need to stay with invasive recordings.

Finally, the major argument for usage of invasive data is spatial resolution.
First of all, invasive EEG allows for a localization of the SOZ on a higher level
(focal vs. regional) by definition, see Subsection 2.2.5. Furthermore, surface
EEG sometimes even does not allow for the localization of the SOZ on a
regional level due to rapid spread of ictal activity. As an example, consider the
surface EEG recordings from 2009. They only allowed for determination of the
seizure onset on a hemispheric level, as mentioned previously in Section 9.2.
Fig. 10.2.2 shows seizure 3 of these recordings in bipolar longitudinal setup.
According to the visual inspection performed by clinicians, onset took place
on the whole right hemisphere at 17:00:41 (marked in orange), followed by
secondary generalization at 17:00:47 (marked in orange). Note that for better
visibility the recordings are low-pass filtered at 15 Hz in order to suppress
muscle artifacts3.

10.2.2 Performance

In Chapter 9 we showed that the findings derived from the framework for
epileptic seizure propagation analysis correlate well with the medical report
based on visual inspection. Overall, we have a conclusive result on seizure

3Compare the discussion about artifact suppression above.
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initiation and propagation in the analyzed patient (see Fig. 9.4.1). However,
the individual performance of the respective technical methods shows a con-
siderable variation, compare Table 9.3.1. Hereby, the quality of our findings
depends on the character of the method:

On the one hand, it is remarkable that the methods which are closest
to neurophysiology in design deliver results which are best in accordance
with the visual inspection. In particular, the segmentation method proposed
in Chapter 8 is strongly inspired by clinical reasoning and therefore yields
excellent results. Moreover, the automatic detection of ictal HFOs proposed in
Chapter 5 performs very well due to its close relation to neurophysiological
frequency bands (in the pre-emphasis as well as in the detection step).

On the other hand, the performance of the causality-based methods (causal-
ity analysis in Chapter 6, influence analysis in Chapter 7) is varying. While
the underlying idea of tracking hyper-synchronous activity is physiologically
inspired, the methodology itself is purely theoretical in nature. The concept of
Granger causality and the derived concept of influence are based on mathe-
matical assumptions in a theoretical setting, which are not necessarily satisfied
in application to ECoG data.4 Moreover, Granger causality is only one possible
way of defining the concept of causality in a formal way (Pearl 2000) and
might not be the optimal modeling for ictal dependencies in ECoG. Finally, the
employed methods do not explicitly differentiate between ictal synchronous
activity and physiological couplings and feedback processes, compare the dis-
cussion in Subsection 6.4.3. This discrepancy between theory and application
leads to the observed variation in quality of our findings reported in Chapters
6 and 7.

A general problem of any kind of quantitative as well as visual EEG analysis
is coverage. While cortical activity in only measured at certain points defined
by the electrodes, the majority of the neurophysiological processes is not
accessible to the analysis. In particular, subdural strip electrodes only track
neuronal activity on the surface of the brain. However, the focus of a seizure
is usually located in deeper brain regions or is not directly covered by an
electrode. Therefore, the employed quantitative methodology as well as the
visual analysis can only indicate a circumscribed area where the epileptic
activity is noticed first. However, this is not necessarily the SOZ. This is a
fundamental issue in case of the analyzed patient, compare the discussion in
Section 10.1.

In order to circumvent this limitation, efforts have been made in the last
years to increase the number of electrodes. Ostenveld and Praamstra (2001)
proposed a new positioning system in surface EEG which defines the positions
of 128 electrodes on the skull (even up to 345 positions supported). This
so-called high-density EEG has become important in 3D source localization, as
numerous studies have proved an increased localization of the epileptic focus
in this setting (Lantz et al. 2003, Michel et al. 2004).

4Compare Section 3.3 for the theoretical background of Granger causality.
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In invasive EEG, the use of depth electrodes is a resort. Their individ-
ual positioning allows to capture intracerebral activity, but the implantation
demands a laborious planing in order to avoid vascular damage. Cortical
recording is an option with less effort. Here, subdural grid electrodes provide
a much better coverage than subdural strip electrodes, compare Fig. 2.2.5 (a)
and (b). However, their implantation requires a larger craniotomy due to their
spacious layout with an increased risk of severe complications, e.g. bleeding or
infections (Van Gompel et al. 2008).

We want to end this discussion with a general remark on performance
issues of signal processing methods in ECoG analysis.

Throughout this thesis we employ well-known techniques which are estab-
lished in signal processing, e.g. signal detection (Chapter 5) or non-parametric
spectral estimation (Chapter 8). Despite their wide popularity in applications
like radar analysis or telecommunications the performance of the algorithms
in ECoG analysis is variable and requires further tuning prior to a roll-out to a
larger patient group. Here we briefly want to discuss possible reasons for this
discrepancy.

In classical engineering applications we have an excellent modeling of the
underlying physics at hand. Take mobile telecommunications as an example. In
this case, the characteristics of both sender and receiver are specified by design,
only the information transmission in between has to be modeled. This step
is based on physics of electromagnetic wave transmission which is described
very well by the Maxwell equations (Jackson 1998). In order to further increase
the algorithm performance, electro-engineers have the possibility to send test
signals for parameter calibration.

The situation is different in case of quantitative approaches in neurophys-
iology, where each patient is individual. In any kind of quantitative EEG
analysis, one aims at modeling at a macroscopic level. As the system char-
acteristics itself are not known at that level, we can only measure outputs of
this black-box model and employ data-driven approaches. On a microscopic
level, however, the bio-chemical mechanisms are well understood (Kandel
et al. 2012), and neuronal modeling approaches have been successful for more
than 50 years (Hodgkin and Huxley 1952). We therefor lack a continuous
description from microscopic to macroscopic level for successful signal pro-
cessing in ECoG. There has been increasing interest in multi-scale modeling with
significant progress recently (Demongeot et al. 2003). In particular, Eliasmith
et al. (2012) successfully simulated a 2.5-million neuron model very recently.
Note, however, that this enormous complexity is still far away from the one of
the human brain.

10.3 Outlook

In this thesis we proposed a novel framework for epileptic seizure propaga-
tion analysis in ECoG recordings of therapy-resistant patients suffering from
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focal epilepsy. The findings derived from our methodology are in very good
accordance with the clinical findings based on visual inspection of the raw
data. Therefore, we are confident that this framework has the potential to
determine the SOZ and the initial seizure spread in the course of a presurgical
examination, thus supporting clinicians by objectivating their findings.

However, further research has to be conducted for this purpose.
First, the specific results of this thesis need to be evaluated by a post-surgical

follow-up of the patient. A post-surgical outcome of Engel class I would serve
as confirmation of our findings.

Second, the technical methods of the framework have to be refined, as
discussed in the respective chapters. Furthermore, slight adaptations of the
methodology might allow for an application to intracerebral recordings.

Finally, the framework has to be validated by application to a larger number
of patients. This important step involves an extensive post-surgical follow-
up of the patients (post-operative controls 4 months, 1 year, 2 years and 5

years after the intervention). Seizure controls together with an analysis of
post-surgical MRI scans and neuropsychological tests allow for a thorough
statistical assessment of the performance of the framework as well as of the
individual methods. In particular this step will help to understand under
which circumstances (e.g. syndrome, seizure type, propagation speed) the
proposed methodology yields reliable results.
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Appendix A

Proofs for the statistical

background

A.1 Non-parametric spectral estimation

A.1.1 Preliminary de�nitions

In this subsection we will prove the discrete-time Fourier transforms (DTFT) of
the centered and non-centered rectangular window.

First, we prove Lemma 1.

Proof. DTFT of the centered rectangular window.
Immediate by using the definition of the DTFT, i.e.

DN( f ) = F
{

wcR
N [n]

}
= T

∞

∑
n=−∞

wcR
N [n] e−2iπ f Tn

= T

N
2

∑
n=− N

2

e−2iπ f Tn

= T
1− e−iπ f TN

1− e−iπ f T

= T
sin(Nπ f T)
sin(π f T)

.

This allows us to derive the result of Corrolary 1.

Proof. DTFT of the rectangular window.
The DTFT allows for time-shifting, i.e.

F {x[n− nd]} = e−2iπ f Tnd F {x[n]} ,
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for integer-valued time shifts nd. Now, by taking this fact as well as relation
(3.1.3) into account, we have

WR
N( f ) = F

{
wR

N [n]
}

= F

{
wcR

N

[
n− N

2

]}
= e−2iπ f T N

2 F
{

wcR
N [n]

}
= e−iπ f TN DN( f ).

A.1.2 Indirect estimation methods

In this subsection we will prove Lemma 2. For this purpose, we first define
the centered Bartlett window, which represents the easiest way of tapering the
data symmetrically at both ends of the segment.

Definition 27. The centered Bartlett (triangular) window is defined by

wcB
N [n] =

{
2|n|
N 0 ≤ |n| ≤ N

2

0 else.
(A.1.1)

This definition at hand, we consider the proof of Lemma 2.

Proof. Properties of the correlogram with biased correlation.

1. Biased estimator.
Relation (3.1.1) and the linearity of the expectation yield

E
{

ŠC
x ( f )

}
= T

L

∑
m=−L

E {řx[m]} e−2iπ f Tm

= T
L

∑
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(
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)
rx[m] e−2iπ f Tm
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∞
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(
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)
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2L [m] rx[m] e−2iπ f Tm

= F
{

rx[m]wcB
2L[m]

}
= Sx( f ) ?

1
L

D2
2L

(
f
2

)
,

as the DTFT of the centered Bartlett window (A.1.1) is the Fejer kernel
(compare Subsection 5.6 of Marple (1987))

WcB
N ( f ) =

2
N

D2
N

(
f
2

)
.

Hereby, DN( f ) denotes the Dirichlet kernel as defined in (3.1.4). We
conclude that the PSD estimator is biased.
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2. Asymptotically unbiased estimator.
This follows immediately from step 1. For N → ∞ the Dirichlet kernel
approaches the Dirac delta1, and thus

lim
N→∞

E
{

ŠC
x ( f )

}
= lim

N→∞
Sx( f ) ?

1
L

D2
2L

(
f
2

)
= Sx( f ).

A.1.3 Direct estimation methods

A.1.3.1 Periodogram

Here we are concerned with the proof of the properties of the periodogram
given in Lemma 3.

First we establish an alternative expression of the periodogram.

Lemma 11 (Alternative representation of the periodogram). The periodogram
(3.1.8) equals the correlogram with biased correlation estimate (3.1.7), i.e.

ŜP
x ( f ) = ŠC

x ( f ). (A.1.2)

Proof. Alternative representation of the periodogram.
Compare Subsection 10.1 of Brockwell and Davis (1991) for the idea of the

following proof. The periodogram is

ŜP
x ( f ) =

T
N

∣∣∣∣∣N−1

∑
n=0

x[n] e−2iπ f Tn

∣∣∣∣∣
2

=
T
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(
N−1
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x[n] e−2iπ f Tn

)(
N−1

∑
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x[n′]∗e+2iπ f Tn′
)

=
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N

N−1

∑
n=0

N−1

∑
n′=0

x[n] x[n′]∗e−2iπ f T(n−n′).

Substituting m = n− n′, we have to split up the obtained sum into a part of
positive and into one of negative lag m.

For m > 0 we have

ŜP
x ( f ) =

T
N ∑
|m|<N−1

N−1

∑
n=m

x[n] x[n−m]∗e−2iπ f Tm

= T ∑
|m|<N−1

e−2iπ f Tm 1
N
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x[n + m] x[n]∗

1For reasons of simplicity, we sloppily treat the Dirac delta as function and avoid the explicit
consideration of convergence in the sense of distributions (generalized functions). We refer to
Friedlander and Joshi (1999) for an introduction to the theory of distributions.
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= T ∑
|m|<N−1

e−2iπ f Tm řx[m],

where řx[m] the biased autocorrelation estimator.
For m < 0 we similarly obtain

ŜP
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These two cases taken together yield the desired identity

ŜP
x ( f ) = T ∑

|m|<N−1
řx[m] e−2iπ f Tm = ŠC

x ( f ).

The alternative representation of the periodogram (A.1.2) allows us to prove
its properties (Lemma 3):

Proof. Properties of the periodogram.

1. Biased estimator.
According to Lemma 11, the periodogram equals the correlogram with
biased estimator. Its expectation is thus, in complete analogy to the proof
of Lemma 2,
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As in the proof of Lemma 2, wcR
2N [n] denotes the centered rectangular

window and wcB
2N [n] the centered Bartlett window whose DTFT is the

Fejer kernel. This implies that the periodogram is a biased estimator of
the power spectral density.

2. Asymptotically unbiased estimator.
This follows immediately from step 1 with the same reasoning as in the
proof of Lemma 2: For N → ∞ the Dirichlet kernel approaches the Dirac
delta2, and thus

lim
N→∞

E
{

ŜP
x ( f )

}
= lim

N→∞
Sx( f ) ?

2
2N − 1

D2
2N−1

(
f
2

)
= Sx( f ).

3. Inconsistent estimator.
We proceed in two steps:

– First, we first assume x[n] to be (zero-mean) white Gaussian with
variance V {x[n]} = σ2. Under this assumption the power spectral
density of the white noise x[n] takes the simple form

Sx( f ) = F {rx[m]} = T
∞

∑
m=−∞

rx[m] e−2iπ f Tm

= T σ2 + T ∑
m 6=0

rx[m] e−2iπ f Tm

= T σ2.

Furthermore its fourth order statistical moment reduces to

E {x[k] x[l] x[m] x[n]} =


σ4 (k = l) and (m = n)

or (k = m) and (l = n)

or (k = n) and (l = m)

0 else.

Now let us investigate the properties of the periodogram under the
assumption of Gaussian white noise. Its expectation then equals

E
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}
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= T σ2.

Using the fourth order statistical moment derived above, we can

2Again, we do not explicitly indicate convergence in the sense of distributions.
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express its autocorrelation as E
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Collecting all these results, the variance of the periodogram is
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Clearly, this expression does not converge to zero with increasing N,
but remains in the order of the squared spectral power density. This
implies that in case of a white Gaussian signal the periodogram is
inconsistent.

– In case of non-white signals a similar argumentation is possible, see
Jenkins and Watts (1968) for technical details. This completes the
proof that the periodogram is an inconsistent estimator of the power
spectral density.

A.1.3.2 Welch method

Here, we are concerned with the proof of the properties of the Welch peri-
odogram (Lemma 4).

Again, first we establish an alternative expression of the Welch periodogram
which we will then need. Note that the following proof is in complete analogy
to the one of the relation of the periodogram to the correlogram with biased
correlation estimator (Lemma 11), but slightly more technically demanding.

Lemma 12 (Alternative representation of the Welch periodogram). The Welch
periodogram (3.1.10) can be expressed as

ŜW
x ( f ) =

1
U
· 1

P

P−1

∑
p=1

ŠC (p)
wx ( f ), (A.1.3)

where ŠC (p)
wx ( f ) denotes the correlogram with biased estimate of the windowed data

samples belonging to the pth segment x(p)[n] = w[n] x[pS + n].
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Proof. Alternative representation of the Welch periodogram.
First, we expand the Welch periodogram as

ŜW
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Second, we substitute m = n− n′ and split up the obtained sum into a part
of positive and into one of negative lag m:
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where ř(p)
wx [m] denotes the biased autocorrelation estimator based on samples

of the pth segment x(p)[n] = w[n] x[pS + n].
For m < 0 we similarly obtain ŜW
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This leads to the identical sum of autocorrelation estimators in both cases,
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which now involves ř(p)
wx [m], i.e. the biased autocorrelation estimator based

on samples of the pth segment x(p)[n] = w[n] x[pS + n]. Thus, we obtain the
desired identity

ŜW
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wx ( f ).

The alternative representation of the Welch periodogram (A.1.3) allows us
to prove its properties (Lemma 4).

Proof. Properties of the Welch periodogram.

1. Biased estimator.
First we derive the expectation of the biased autocorrelation of the win-
dowed data ř(p)

wx [m]. Exploiting the linearity of the expectation and the
fact that the window w[n] is a deterministic signal, we can express it as

E
{

ř(p)
wx [m]

}
= E

{
1
D

D−m−1

∑
n=0

w[n + m] x[pS + n + m] x[pS + n]w[n]

}

=
1
D

D−m−1

∑
n=0

w[n + m]E {x[pS + n + m] x[pS + n]} w[n]

= r(p)
x [m]

1
D

D−m−1

∑
n=0

w[n + m]w[n]

= r(p)
x [m] řw[m]. (A.1.4)

The expectation of the Welch periodogram (3.1.8) is thus, according to
(A.1.3) and (A.1.4),

E
{

ŜW
x ( f )

}
= E

{
1
U
· 1

P

P−1

∑
p=1

P̌C (p)
wx ( f )

}

=
T
U

1
P

P−1

∑
p=0

D−1

∑
m=−(D−1)

E
{

ř(p)
wx [m]

}
e−2iπ f mT

=
T
U

1
P

P−1

∑
p=0

D−1

∑
m=−(D−1)

r(p)
x [m] řw[m] e−2iπ f Tm.

As the window w[n] is a signal of finite length 2D− 1, its autocorrelation
estimate řw[m] only has 2D− 1 non-zero lags, thus řw[m] = 0 for m >
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D− 1. This allows us to extend the above sum to

E
{

ŜW
x ( f )

}
=

T
U

1
P

P−1

∑
p=0

∞

∑
m=−∞

r(p)
x [m] řw[m] e−2iπ f Tm

=
1
U

1
P

P−1

∑
p=0

F
{

r(p)
x [m] řw[m]

}
=

1
U

1
P

P−1

∑
p=0

S(p)
x ( f ) ? ŠC

w( f ),

where, according to definition (3.1.7), ŠC
w( f ) denotes the correlogram

with biased correlation estimate of the window w[n].
Exploiting the distributive law for the convolution, we have

E
{

ŜW
x ( f )

}
=

1
U

(
1
P

P−1

∑
p=0

S(p)
x ( f )

)
︸ ︷︷ ︸

Sx( f )

? ŠC
w( f ).

As the correlogram with biased correlation estimate equals the peri-
odogram according to (A.1.2), we finally obtain

E
{

ŜW
x ( f )

}
=

1
U

Sx( f ) ? ŜP
w( f )

= Sx( f ) ?
T

D U
|W( f )|2 ,

where W( f ) = F {w[n]} is the Fourier transform of the window w[n].
This implies that the Welch periodogram is a biased estimator of the
power spectral density.

2. Asymptotically unbiased estimator.
First note that the definition of U ensures the correct scaling: We have

U =
T
D

D−1

∑
n=0

w[n]2 =

ˆ 1
2T

− 1
2T

T
D
|W( f )|2 d f ,

which implies
T

D U

ˆ 1
2T

− 1
2T

|W( f )|2 = 1.

Therefore, for N → ∞, the scaled impulse response of the window
approaches the Dirac delta3, and thus

lim
N→∞

E
{

ŜW
x ( f )

}
= lim

N→∞
Sx( f ) ?

T
D U
|W( f )|2 = Sx( f ).

3Again, we do not explicitly indicate convergence in the sense of distributions.
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3. Inversely proportional relation of estimator variance and segment num-
ber.
As this proof is of technical nature, we only outline its idea (Welch 1967).
Assuming segment independence (although a non-zero overlap will lead
to dependence between adjacent segments), it can be shown that

V
{

ŜW
x ( f )

}
∝

S2
x( f )
P

.

We refer to Welch (1967) for further details.

A.2 Granger causality

We refer to Eichler (2007) for a proof of the characterization of conditional
Granger causality via AR coefficients.

A.3 Dependency measures

A.3.1 Partial Coherence

We prove formula (3.4.5) in two steps, whereupon the first is formulated as
a lemma. This lemma claims a well-known relation, compare e.g. Brillinger
(2001).

Lemma 13. The partial cross-spectral density (3.4.3) can be obtained by calculating

Si,j|y( f ) = Sij( f )− Siy( f ) S−1
yy ( f ) Syj( f ), (A.3.1)

where Sij( f ) is the (i,j)-entry of the spectral matrix S( f ), and the terms Siy( f ),
Syy( f ) and Syj( f ) are the respective block matrices of S( f ).

Proof. Partialization of cross-spectral density.
We consider the partial cross-spectral density Si,j|y( f ) given in (3.4.3). Ac-

cording to (3.4.2) we have

Si,j|y( f ) = FE
{

εi[n + s]εT
j [n]

}
= FE

{(
xi[n + s]− dT

i ∗ y[n + s]
) (

xj[n]− dT
j ∗ y[n]

)T
}

= FE
{

xi[n + s] xj[n]
}
− FE

{
xi[n + s]

(
yT [n] ∗ dj

)}
−FE

{
(di ∗ y[n + s]) xj[n]

}
+ FE

{(
dT

i ∗ y[n + s]
) (

yT [n] ∗ dj

)}
.
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With Di( f ) = Fdi[τ] and Dj( f ) = Fdj[τ] we have

Si,j|y( f ) = Sij( f )− Siy( f )Dj( f )

−DT
i ( f ) Syj( f ) + DT

i ( f ) Syy( f )Dj( f ). (A.3.2)

According to the Wiener filter formula, the filters can be expressed as{
DT

i ( f ) = Siy( f ) S−1
yy ( f )

DT
j ( f ) = ST

yj( f ) S−1
yy ( f )

.

Plugging this representation into (A.3.2) gives

Si,j|y( f ) = Sij( f )− Siy( f )
(

Syj( f )T S−1
yy ( f )

)T

−Siy( f ) S−1
yy ( f ) Syj( f ) + Siy( f ) S−1

yy ( f ) Syy( f ) S−1
yy ( f ) Syj( f )

= Sij( f )− Siy( f ) S−1
yy ( f ) Syj( f ),

which is the desired result.

This allows us to prove the computational formula of the partial coherence
(3.4.5).

Proof. Computational formula of PC.
First note that, due to relation (A.3.1), we only have to prove that the

numerator of the computational formula (3.4.5) gives the right-hand-side of
equation (A.3.1).

Therefore, let i = 1 and j = 2 without loss of generality. In order to calculate
M1,2( f ), we remove row 1 and column 2 of S( f ) and obtain

S21( f ) S23( f ) S24( f ) · · ·
S31( f ) S33( f ) S34( f ) · · ·
S41( f ) S43( f ) S44( f ) · · ·

...
...

...
. . .

 =

(
S21( f ) S2y( f )
Sy1( f ) Syy( f )

)

Its determinant is, according to linear algebra,

det
(

S21( f ) S2y( f )
Sy1( f ) Syy( f )

)
=
∣∣∣S21( f )− S2y( f ) S−1

yy ( f ) Sy1( f )
∣∣∣ · ∣∣Syy( f )

∣∣ .

The factor
∣∣Syy( f )2

∣∣is present in both the numerator and the denominator of
(3.4.5) and thus cancels out, which completes the proof.

A.3.2 Directed Transfer Function

Here we prove the relation of DTF and bivariate Granger causality (Lemma 6).
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Proof. Link to Granger causality in the bivariate case.
Let x[n] = (x1[n], x2[n])T a stationary bivariate signal modeled within the

autoregressive framework (3.2.1). Thus, the matrices A( f ) and H( f ) ∈ C2×2.
In order to test on zero, it is sufficient to consider the numerator of DTF

(3.4.6),
∣∣Hij( f )

∣∣2. The latter is, according to lemma of matrix inversion,

∣∣Hij( f )
∣∣2 =

∣∣∣[A( f )]ij
∣∣∣2 =

∣∣Aij( f )
∣∣2

|A( f )|2
, i 6= j.

Thus, γ2
ij( f ) = 0 ∀ f is equivalent to Aij( f ) = 0 ∀ f , which completes the

proof.

Note that this proof can be generalized, if x[n] of dimension K consists
of two component signals xI [n] (dimension M) and xJ [n] (dimension N) with
M + N = K, as the matrix inversion lemma also applies to block-wise inversion.

A.3.3 Partial Directed Coherence

We start with the construction of PDC.
First, consider the proof of Lemma 7.

Proof. Partial Coherence Function and PC.
According to Dahlhaus (2000), the partialized spectrum can be obtained by

considering the re-normalized inverse spectrum. The inverse spectrum is

S−1( f ) =
(

HΣHH
)−1

= H−HΣ−1H−1

= AHΣ−1A,

and the (i,j)-element of this expression is[
S−1( f )

]
ij
= aH

·i ( f )Σ−1 a·j( f ). (A.3.3)

The Partial Coherence (3.4.4) is thus given by

R2
i,j|y( f ) =

aH
·i ( f )Σ−1 a·j( f )√

aH
·i ( f )Σ−1 a·i( f )

√
aH
·j ( f )Σ−1 a·j( f )

= κi,j( f ) , (A.3.4)

as the re-normalization factor of (A.3.3) cancels out in the numerator and the
denominator.

Second, consider the proof of Lemma 8

Proof. Factorization of the Partial Coherence Function.
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First, for simplicity reasons, let us consider a special case. For a bivariate
system, we have

Π =
(

π·1 π·2
)
=


A11( f )√

aH
·1( f )Σ−1 a·1( f )

A12( f )√
aH
·2( f )Σ−1 a·2( f )

A21( f )√
aH
·1( f )Σ−1 a·1( f )

A22( f )√
aH
·2( f )Σ−1 a·2( f )

 .

Let i = 1, j = 2 without loss of generality. Obviously,

πH
·1( f )Σ−1 π·2( f ) =

=


A11( f )√

aH
·1( f )Σ−1 a·1( f )

A21( f )√
aH
·1( f )Σ−1 a·1( f )


H

Σ−1


A12( f )√

aH
·2( f )Σ−1 a·2( f )

A22( f )√
aH
·2( f )Σ−1 a·2( f )


=

1√
aH
·1( f )Σ−1 a·1( f )

(
A∗11 A∗21

)
Σ−1

(
A12
A22

)
1√

aH
·2( f )Σ−1 a·2( f )

=
aH
·1( f )Σ−1 a·2( f )√

aH
·1( f )Σ−1 a·1( f )

√
aH
·2( f )Σ−1 a·2( f )

= κ1,2( f ).

The proof for the general case K > 2 is in complete analogy.

An important property of PDC is its ability to indicate conditional Granger
causality, i.e. causality in the multivariate case (unlike DTF).

Proof. Link to Conditional Granger Causality.
Immediate, according to Definition 7, also compare Subsection 3.3.2.

Finally, we prove that PDC is well-defined under reasonable conditions.

Proof. Well-definedness of PDC.
Under the stability condition (3.2.2), the eigenvalues λi of the polynomial

matrix A(z) = 1K×K −A[1] z− ...−A[p] zp, z ∈ C, are all different from zero.
Consequently, A( f )HA( f ) > 0.

Let ej ,
(

0 . . . 0 1 0 . . . 0
)T

the jth base vector with a single 1

on position j and ‖·‖ the Euclidean norm.
With this notation, the denominator of the PDC is

K

∑
n=1

∣∣Anj( f )
∣∣2 =

∥∥A( f ) ej
∥∥2

=
(
A( f ) ej

)H (A( f ) ej
)

= ej A( f )HA( f )︸ ︷︷ ︸
>0

ej > 0.
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The strictly positive denominator thus assures the well-definedness of
PDC.

A.4 Signal detection

First, we prove Theorem 2.

Proof. Invariance of decision rule. We proof both directions:

– First, let us proof that φ(x) = φI(T(x)) is sufficient for φ to be invariant,
i.e. φ(g(x)) = φ(x).
Assume that φ(g(x)) = φI(T(x)). Then

φ(g(x)) = φI(g(T(x)))

= φI(T(x)) (T(x) is maximal invariant, property 1)

= φ(x).

Thus, φ(g(x)) = φ(x), which is the desired result.

– Alternatively, let us prove the equivalent condition that the implication
T(x1) = T(x2) ⇒ φ(x1) = φ(x2) is sufficient for φ to be invariant.
Assume that the implication T(x1) = T(x2) ⇒ φ(x1) = φ(x2) holds. As
T(x) is maximal invariant, we let x2 = g(x1). Then the assumption yields
φ(x1) = φ(g(x1)), which is the desired result.

– Finally, we prove the opposite implication, i.e. that the implication
T(x1) = T(x2) ⇒ φ(x1) = φ(x2) is necessary for φ to be invariant.
Assume that φ(g(x)) = φ(x). As T(x) is maximal invariant (property 2),
we have the implication T(x1) = T(x2) ⇒ x2 = g(x1). Therefrom, and
by the assumption, we have

φ(x2) = φ(g(x1)) = φ(x1).

Thus, the implication T(x1) = T(x2) ⇒ φ(x1) = φ(x2) holds, which is
the desired result.

Finally, we detail the derivation of the matched subspace filter (3.5.3).
For this purpose we start with the proof that the hypothesis testing problem

is invariant.

Proof. Problem invariance with respect to G = {g : g(x) = QSx + z, z ∈ S⊥}.

– We have to show the invariance of the transformation group, i.e. that
p1(x1, θ) = p(x1, θ1) for x1 = g(x).
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First note that, as QSHθ ∈ S ,

QSHθ = PS QSHθ

= H(HTH)−1HT QSHθ

= H H#QSHθ

= H θ1,

where H# denotes the Moore-Penrose pseudo-inverse of H, and θ1 =

H#QsHθ.
Therefore, we have

g(x)=QSx + z = QSs + QSv + QSw + z

= QSHθ+ v + z + QSw

= Hθ1 + v1 + QSw

with v1 = v + z. As QSw ∼ N (0, σ2I) due to the orthogonality of QS ,
we have g(x) ∼ N (Hθ1 + v1, σ2I).
Thus, recalling that x ∼ N (Hθ1 +v1, σ2I), we have shown that p1(x1, θ) =

p(x1, θ) with the induced transformation ḡ

(θ1, v1) = ḡ(θ, v) = (H#QSHθ, v + z).

– In addition we have to show that ḡ preserves the dichotomy Θ = Θ0 ∪Θ1,
i.e. that the two conditions hold:

θ ∈ Θ0 ⇔ ḡ(θ) ∈ Θ0,

θ ∈ Θ1 ⇔ ḡ(θ) ∈ Θ1.

We have

‖θ‖2 = 0 ⇔ ‖θ1‖2 = 0,

‖θ‖2 > 0 ⇔ ‖θ1‖2 > 0,

which completes the proof that the hypothesis testing problem is invariant
with respect to g(x).

Second, we prove that the considered statistic of the matched subspace filter
(3.5.3) is maximal invariant.

Proof. Maximality of the invariance statistic T(x) = ‖PSx‖2.

– First, we have to prove that T(g(x)) = T(x) for all g ∈ G (property 1).
Thus, we develop, by taking into account the properties of orthogonal
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projections,

T(g(x)) = ‖PS (QSx + z)‖2 =
∥∥∥PSUQUTx + PSPS⊥x

∥∥∥2

= xTUQTUTPT
SPSUQUTx

= xTUQTQUTx = xTUUTx = xTPSx

= xTP2
Sx = PSx = T(x),

which is the desired result.

– Next, we have to prove that the implication T(x1) = T(x2) ⇒ x2 = g(x1)

holds for some g ∈ G (property 2).
For i = {1, 2}, let xi = xSi + xS

⊥
i , where xSi = PSxi and xS

⊥
i = PS⊥xi.

With this notation we have, by taking into account the properties of
orthogonal projections,

T(x1) = T(x2) ⇒ ‖PSx1‖2 = ‖PSx2‖2

⇒
∥∥∥PSxS1 + PSxS

⊥
1

∥∥∥2
=
∥∥∥PSxS2 + PSxS

⊥
2

∥∥∥2

⇒
∥∥∥xS1

∥∥∥2
=
∥∥∥xS2

∥∥∥2

⇒ xS2 = QSxS1
⇒ x2 = QSxS1 + xS

⊥
2 = QSx1 −QSxS

⊥
1 + xS

⊥
2

⇒ x2 = QSx1 − xS
⊥

1 + xS
⊥

2 = QSx1 + z,

with z ∈ S⊥. Thus, the initial assumption implies x2 = g(x1), which is
the desired result.
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