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Abstract

After presenting preliminary knowledge in Computability Theory, some ver-
sions and interpretations of the so called Church-Turing thesis will be dis-
cussed. A mathematical definition of hypercomputation will be given. Some
proposed abstract and physical hypermachine models from the literature will
be presented. These will be (mainly) infinite time Turing machines, quantum
computers and relativistic machine models. Basic principles behind these
models and their computational power will be discussed.
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Kurzfassung

Der Darlegung von Grundsätzen der Berechenbarkeitstheorie folgt die Diskus-
sion einiger Versionen und Interpretationen der sogenannten Church-Turing-
These. Anschließend wird eine formale Definition der Hyperberechenbarkeit
gegeben. Daraufhin werden einige abstrakte und physikalische Hypermaschi-
nenmodelle aus der Literatur präsentiert. Diese sind in erster Linie Turing-
maschinen mit unendlicher Zeit, Quantencomputer und relativistische Maschi-
nenmodelle. Grundlegende Prinzipien dieser Modelle und ihre Rechenkraft
werden diskutiert.
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CHAPTER 1
Introduction

From the very early times of human history until today, the mankind had al-
ways had a big enthusiasm in calculation, as a result of his intelligence. From
old star calendars to egyptian pyramids, to the antic greek philosophy, ship
engineering, war machines, space technology, calculation is all along the hu-
man history. But this close interrelation between human mind and its very
essential nature had a change forever, when it was shown in the first half of
the 20th century by the famous results of Turing and Church that there was
a so-called limit to the things that we could actually calculate. This limit
is uttered by Church-Turing thesis. It initiated a new mathematical research
field which is what we call as Computability Theory today.

Computability theory is a research field in mathematics and particularly a
branch of mathematical logic. It emerged due to the famous results of Turing,
Church, Kleene, Goedel and others. The results that Computability theory
had shown are widely accepted since there was no (empirical) counter example.

However in 1990s a new interdisciplinary field, hypercomputation emerged,
by the discussions of some group of scientists and philosophers. As some
creative scenarios against the limits of computation are put by them, this cre-
ated skepticism and challenge against the Church-Turing thesis, which says
there is a limit to computation and this limit is Church-Turing computability.
In chapter 2, we give give a brief introduction to Computability theory and
the class of computable functions, Turing machines and some basic results
are mentioned. Furthermore, we introduce the Oracle Turing machine, a hy-
per computer from the very early days of computability theory and mention
relativization results. It will provide us the basic tools to measure the compu-
tational power of the hypercomputers regardless of the intrinsic properties of
the computational model. These tools are arithmetical hierarchies and Turing
degrees.
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Church-Turing thesis is an unprovable statement, roughly stating that
what we can calculate is the class of computable functions or We can not cal-
culate more than Turing machines On chapter 3, we mention the approaches,
refinements and discussions made about Church-Turing thesis, in a philosophi-
cal manner. On Chapter 4, we try to explain the motivation behind this thesis:
why do we bother with hypercomputation? We also mention a formal defini-
tion.
On chapter 5, we will be mentioning two relevant abstract models of hypercom-
putation. This includes Zeno machines, and Infinite Time Turing machines.
It turns out that Infinite Time Turing machines are in power of deciding ana-
lytical hierarchy We give the formal definition and the basic principles behind
it. We provide an appendix for set theoretical preliminary. On the proceeding
chapter, we question the physical models. These models are based on the
physical theories. We will mention some approaches, where exotic astrophys-
ical objects, such as black holes, are used to create hypercomputers. We will
investigate Schwarzschild metric to give the intuition in which basic sense,
black holes can be useful to create a model of hypercomputation. Afterwards,
we will employ an already a practical model , namely quantum computer,
and why it is a strong candidate for hypercomputer. We will give the circuit
representation of quantum computers and analyze in detail, why it promises
a new generation fast computing paradigm. Necessary knowledge to quantum
circuits are given in Appendix.

On chapter 7, we talk about the possible ways of improving this work.
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CHAPTER 2
Basic Computability Theory

Computable functions are the primary objects of study in computability theory,
and they embody the formalized analogue of the intuitive notion of algorithm.
They are crucial in the sense that, any model of computation which has uni-
versal power (e.g.Turing machines, abacus machines etc.), comes across to the
same class of computable functions. Therefore they are useful to study com-
putability without referring to any concrete model of computation, besides
to examine the computational power of any particular model of computation,
which is to be examined.

The names computable and recursive, are synonyms; former is the rather
new or, more or less contemporary and latter is the earlier naming in the
literature. However they are both still in use in the literature. Thus, we will
use those two names interchangeably, as far as the intended meaning stays
obvious.

2.1 Computable Functions

In this section, we are going to define the class of primitive recursive (PR),
total recursive (R) and partial recursive functions (P).

Definition 1 (Primitive Recursive Functions). Primitive recursive functions
are,

a) the initial functions which are:

– zero function: O(n) = 0 for n ∈ N,

– successor function: S(n) = n+ 1 for n ∈ N,

– projection functions: Ini (�x) = xi where 1 ≤ i ≤ n.
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b)

h(�x) = g(f1(�x), . . . , fn(�x))),

where g and f1 . . . fn are primitive recursive functions. (composition)

c)

h(�x, 0) = g(�x),

h(�x, n+ 1) = f(�x, n, h(�x)),

where f and g are primitive recursive functions. (primitive recursion)

As one may understand from the above definition, primitive recursive func-
tions are closed (by definition) under composition and primitive recursion,
thus all functions which are generated from them are also primitive recursive
functions.

We will write PR to denote the class of primitive recursive functions. Most
of the functions which are used in number theory, algebra, or applied math-
ematics in general are in PR. So they can be derived or represented by the
scheme introduced in the definition. 1 For instance, basic numerical functions
corresponding to usual arithmetical operations such as the addition function
add which could be defined as

add(m, 0) = I11 (m),

add(m,n+ 1) = S(I33 (m,n, add(m,n))).
and multiply can be defined by using add as follows,

multiply(m, 0) = O(m),

multiply(m,n+1) = add(I33 (m,n,multiply(m,n)), I31 (m,n,multiply(m,n))).
Those basic numerical functions are just few of them. One might go on to
define new functions just by applying the given rules to new ones, to gather
any computable function, however there will always be some which are not in
PR. One such function is,

Ack(0, n) = n+ 1,

Ack(m, 0) = Ack(m− 1, 1), for m > 0

Ack(m,n) = Ack(m− 1, Ack(m,n− 1)), for m > 0, n > 0.2

which is called Ackermann function (named after the mathematician Wil-
helm Ackermann). The reason which makes it not computable by means of

1�x stands for (x1, . . . , xn) for arbitrary n.
2Note that Ack(m,n) = Ack

(n)
m−1(Ackm(0)) where Ackk = λx.Ack(k, x).
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primitive recursive functions, is because of its fast growth rate due to its last
line nested recursive structure. One might check that,

Ack(0, 0) = 1

Ack(1, 1) = 3

Ack(2, 2) = 7

Ack(3, 3) = 61

Ack(4, 4) = 22
265536

− 3

which is obviously a very big number. Fortunately, we are able to bring
such functions into our set of computable functions just by adding one new
operation to our scheme, with the cost that they might not be total anymore.
3

Definition 2 (minimization). Let h be a total function, then the function
we get by applying the minimization operator μ on h is defined as

(μh)(�x) = y0

if and only if
h(�x, y0) = 0 and ∀y < y0, h(�x, y0) �= 0.

Note that the minimization operator μ4 , is simply a search operation for
the minimum y (denoted as y0) to have h(�x, y) = 0. Its domain is D(μh) =
{�x | ∃y.h(�x, y) = 0}. So (μh) is undefined for the case where no such y exists.
Hence, it is a partial function.

Definition 3 (Partial recursive functions). The class of partial recursive func-
tions P is the smallest set of functions defined via initial functions, composi-
tion, minimization and primitive recursion.

We name the subclass of total functions in P as total recursive functions,
denoted as R. Note that f is recursive, computable general recursive, total
recursive, total computable or f(x) ↓ (means f is convergent) for any possible
x” are all synonyms, hence they all mean f ∈ R. Besides, f is (strictly) partial
recursive and f(x) ↑ (divergent) for some x which also means f is undefined
for some x, are also all synonyms.

We can extend our notion of computability of functions to the sets as
follows.5

3We say a function f : X −→ Y is total if it is defined for any possible x ∈ X, partial
otherwise. And for any partial function, when we say A is the domain of f , we mean f(a)
is defined if and only if a ∈ A.

4Note that the form that we define μ operator is frequently also called μ0 operator in
the literature.

5We omit to give the recursiveness definition for relations, since it is analogous to the
sets.

5



Definition 4. Let A be any set. A is recursive (primitive recursive) if its
characteristic function

χA =

{
1 if a ∈ A,
0 otherwise .

is recursive (primitive recursive).

According to the definition above, a given set A being recursive, we are
able to decide on a given a whether a ∈ A or a /∈ A. The terms total recursive
and decidable are synonyms.

2.2 Turing Machines

Turing machines are abstract computing machines6, which are able to devise
any algorithm, despite their simplicity in design. It rises as the most popular
standard machine model, which impose computability, thus one uses algorithm
or Turing machine, implying one another in favour of ones own aim, in com-
puter science and mathematics and any other field.

A Turing machine has a tape, divided into unit infinitely many cells, and
a tape head, either reads or writes a symbol, moving one cell to the left or
right. Each cell contains exactly one symbol from the tape alphabet, a finite
set Γ = {S0, S1, . . . , Sn} of symbols. Q = {q0, q1, q2, . . . , qn, qh} is the set of
states where i-th state of the machine is denoted by qi and q0 is called the
initial state whereas qh is called the halting state. It is customary but also
usual that we choose simply two symbols tape alphabet, Γ = {0, 1} where “0”
can also be called as the blank symbol (A tape which is fulfilled with only 0
symbol would be regarded as empty.).

Before giving the formal definition of a Turing machine, let us note that we
will use a formalism (inspired from the one which is used to represent the con-
cept of general machine in [34]), a more general representation of a machine,
which will be useful in order to define any sort of machine (i.e. computing
machine), since Turing machines will not be the only type that we will be
dealing with. We will regard a machine, as 5-tuple (Q,S, δ, I, J) such that

• Q is the set of states.

• S is the storage.

• δ is the transition function, in order to define the interactions between
states and manipulations over the storage.

• I : X → S is the input function where X is the input set.

• J : S → Y is the output function where Y is the output set.

6Named after British mathematician Alan M. Turing.
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Note that all of the above are machine-specific, therefore one can arbi-
trarily define them, in order to express the desired model of machine. Now
let us give the formal definition of a Turing machine, in terms of the given
framework above.

Definition 5 (Turing machine). A Turing machine, TM is a machine, (Q,S, δ, ImJn)
where,

• Q = {qi | 0 ≤ i ≤ n, n ∈ N}∪{qh} is the finite set of states with q0 �= qh,
where q0, qh are the initial state and the halting state, respectively.

• S = {(c, i) ∈ (
ΓZ

)×Z} is the storage where Γ={0,1} is the tape alphabet,
i is the position of the head and c is the current tape content. Then,
c(j) ∈ Γ denotes the current content of the jth cell of the tape, where
j ∈ Z.

• δ : Q×S → Q×S is the transition function, which is a partial function
and d ∈ δ is in one of the following forms:

– (qk, (c, i), ql, (c, i+ 1)) if the tape head is moving right.

– (qk, (c, i), ql, (c, i− 1)) if the tape head is moving left.

– (qk, (c, i), ql, (c
′, i)) if the tape head is writing/reading

where qk is the current state and ql is the next state with qk �= qh and c′

is the new tape content. If c �= c′ then it means the tape head changes
the symbol in c(i) (i.e. c(i) �= c′(i) and c(j) = c′(j) for all j ∈ Z− {i}).

• Im : Nm → S is the input function:
Im(x1, . . . , xm) = (〈0Z−

1x101x2 . . . 01xm0Z
+〉, 0) where (x1, . . . , xm) ∈

Nm.

• Jn : S → Nn is the output function:
Jn(〈ΓZ−

1x101x2 . . . 01xn0ΓZ+〉, c2, i) = (x1 . . . xn) where (x1 . . . xn) ∈ Nn.

Let us clarify the input-output convention. Note that the input and output
sets are defined to be the set of natural numbers: N, as we are interested in
numerical functions. The input function guarantees that at the initial state,
the tape head is over the 0th cell, and the natural numbers are expressed in
unary convention (e.g. number 4 is 1111), and each input is separated by a
“0”. Notice that tape content is represented by the notation 〈0Z−

1x0Z
+〉 where

0Z
−

denotes the infinitely many 0 to the left (similar for the case infinitely
many to the right), and 1x denotes x-many (x ∈ N) consecutive 1 over the
tape. In the case of the output, the tape head is over the leftmost cell of the
output string, which is denoted by i. Now we will introduce a sort of labeling,
which will help us to write a command list for a Turing machine. This will
in turn give us a chance to identify a Turing machine. As the input/output
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function, storage, and arbitrary set of states are standard features of a Turing
machine, we need to focus only on the transition function in order to identify
a Turing machine.

Definition 6. Let S1, S2 be symbols from the tape alphabet (S1, S2 ∈ Γ), then
a command is a sequence of symbols chosen from the list Q∗; Γ∗;L,R (L for
left and R for right), which is in one of the following forms:

1. qkS0S1ql which is interpreted as (qk, (c, i), ql, (c
′, i)),

2. qkS0, Lql which is interpreted as (qk, (c, i), ql, (c, i+ 1)),

3. qkS0Rql which is interpreted as (qk, (c, i), ql, (c, i+ 1)).

Note that the first command is to write the symbol S1 where the tape head
reads S0. The second and the third commands are simply to denote moving
to the left and moving to the right.

Definition 7. A set C of commands is said to be deterministic if for any
qiSjZql, qkSrZ

′qm ∈ C, whenever qiSj = qkSr, we have Zqr = Z ′qm where
Z,Z ′ ∈ {Sn, L,R}, holds.

Now we can give the definition of the Turing machine program.

Definition 8 (Turing machine). A Turing machine (program) T is a non-
empty finite deterministic set of commands.

We write T (x) to denote Turing machine T run on input x ∈ N Note
that the Turing machine (program) definition we gave is for the deterministic
Turing machine since the determinacy condition of the command set enforces
having only one applicable command at any state.

Notice that every Turing machine program identifies a particular Turing
machine, so for the sake of simplicity, from now on, we will use T instead
of TM . Let q ∈ Q and s ∈ S and the superscript α in δα denote α-many
applications of δ. 7 Then,

• δ0(q, s) = (q, s),

• δα+1(q, s) = δ(δα(q, s)),

• δβ(q, s) is undefined for β > α where δα(q, s) = (qh, s).
8

7We omit the superscript when α = 1.
8Notice that s is the final content of the storage, since qh is the halting state.
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Then, the computing time of a Turing machine T on input x is

tT (x) = min{α | ∃s : δα(q0, I(x)) = (qh, s)}.
Recall that s is the final content of the storage since qh is the halting state.

Domain of tT is given by

D(tT ) = {x | x ∈ N, ∃α, s : δα(q0, I(x)) = (qh, s)}.
Therefore every T which halts on input x defines a (T -computable) function.

Definition 9. Let T = (Q,S, δ, I, J). Then the input-output function FuncT
is

FuncT (x) = J ◦ I22 (δtT (x)(q0, I(x))),

and the domain of FuncT is defined as D(FuncT ) = D(tT ).

Now we can give the definition of the Turing-computable functions.

Definition 10. A partial function f : N→ N is Turing-computable if there is
a Turing machine T such that f = FuncT .

The above definition implicitly stipulates that the regarded Turing ma-
chine T does not halt for the input �n whenever f(�n) ↑.

T = {
q01Rq0,
q00Rq1,

}
moves to the end of the first argument.

q10Rqh,
}

halts if there is no second argument.

q11Rq2,
q21Rq2,
q20Lq3,
q310q4,

⎫⎪⎪⎬⎪⎪⎭ moves to the last digit of second argument and erases it.

q41Lq4,
q401q5

}
goes to the ‘0 between two arguments and changes it to ‘1’.

q51Lq5,
q50Rqh,

}
moves to the leftmost 1 and halts

Figure 2.1: Turing machine which computes the function fadd : N2 −→ N:
the addition of two number.

2.3 Universal Turing Machines

Every Turing machine computes a fixed particular partial computable func-
tion. However, we can encode any Turing machine into a string, and this fact
enables us to construct a special Turing machine (Universal Turing machine)

9



which can take the code of any particular Turing machine and its input, as
input and simulates that particular Turing machine running on that input.
Such machines are called Universal Turing machines. In this section, we are
going to introduce such coding technique and give a definition of a universal
Turing machine.

Gödel Numberings

We will construct a coding function G (for Gödel), for coding each Turing ma-
chine by a natural number. So that, we will be to able to construct the Turing
machine from its given code (by prime factorization), just by evaluating G on
that code. Clearly, such function would be one to one. Let us show the coding
of commands. For doing that, we will start with a mapping val for assigning
integers to symbols which might occur in commands

val(L) = 3,
val(R) = 5,
val(qi) = 4i+ 7 for i ∈ N,
val(Si) = 4i+ 9 for i ∈ N.

Definition 11. Let C be any command, consisting of symbols a0, . . . , a3. Then
the Gödel number of C is

G(C) = 2val(a0) × 3val(a1) × 5val(a2) × 7val(a3)

.

Now we are able to encode commands. Consider the command C =
q00Lq1, where 0 is S0, then Gödel number of C would be G(C) = 27 × 39 ×
53 × 713. The following result which follows from elementary number theory.

Corollary 1. For any two given commands E and F , if G(E) = G(F ) then
E = F .

In other words, each command has a unique Gödel number, which will
induce soon the same property for Turing machines.

Let us extend our coding to Turing machine. However since it is set of
commands, we need to order it to get a unique sequence of commands per set.
For that purpose, we may use lexicographic order, ≺lex, 9 for that purpose.

• L ≺lex R,
• R ≺lex qi if i ∈ N,

9Given two partially ordered set A and B, the lexicographical order on A×B is defined
as, (a, b) �lex (a′, b′) if and only if a ≺lex a′ or (a =lex a′ and b ≺lex b′), for a, a′ ∈ A and
b, b′ ∈ B. Note that, if A and B are totally ordered, the result is a total order.
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• qi ≺lex Sj if i, j ∈ N,

• qi ≺lex qj if i, j ∈ N and i < j,

• Si ≺lex Sj if i, j ∈ Nand i < j.

Definition 12. Let T be Turing machine, where its commands form a se-
quence up to ≺lex as C0, C1, . . . , Cn. Then pi is the i-th prime and the Gödel
number of T is,

G(T ) =
n∏
i=0

(pi)
G(Ci) .

The following corollary needs to be true in order to claim that our coding
works well.

Corollary 2. No positive integer is a Gödel number both of a command and
a sequence of commands.

Computing G−1(n) for a Gödel number n with the help of prime factorization
gives us the corresponding Turing machine description. Note that it is a
primitive recursive function10. Now we are close to define a Universal Turing
Machine.

Definition 13. Let e = G(T ′) for some Turing machine T ′, then e is called
the index of T ′, T ′ is called eth Turing machine, denoted by Te. If ϕTe is the
partial function which is computed by Te, it is said to be eth partial computable
function, and is denoted by ϕe.

Definition 14. Let U be a Turing machine and Te be a Turing machine given
with index e and input x ∈ N. If U(e, x) = Te(x) for every e, x then U is called
a universal Turing machine and the function U computes, denoted by ϕU is
called universal function.

Now let us state praised Turing’s Thesis (Church Turing Thesis the Turing
machine adaptation).

Thesis 1 (Turing’s Thesis). Every function which is computable by an effec-
tive procedure is Turing computable.

Without entering philosophical details or discussions regarding Turing’s
Thesis or Church-Turing Thesis which will be of our concern in the next
section, let us try to remark a few points about it. Church-Turing thesis states,
whatever is computable, is also computable by a Turing machine. This also
emphasizes the existence of a so-called equivalence of computational strength
in between some standard models of computation e.g. algorithms, Turing
machines, lambda calculus, register machines. This idea is supported by the

10For the proof, see [7].
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empirical evidence, and in turn tells us that one such computation model can
be taken instead of another, if we are talking of in the sense of computational
power only. Considering that, one can state that the Turing machine coincides
with the concept of algorithmic procedure (or a decision procedure, which is
induced by finitely many rules), in the sense of computability.

Theorem 1. There exists a Universal Turing Machine.

Proof. By Turing Thesis (or Church-Turing thesis).11 Consider the following
algorithm:
Input: (e, x).

1. Construct Te for the given e by calculating G−1(e)

2. Compute Te(x) as output.

By Church-Turing thesis, there exists a Turing machine which computes
this effectively computable recipe. This is the universal Turing machine that
we are looking for.

Definition 15. A universal function ϕ is called a Goedel numbering if for
all f ∈ P, there exists a g ∈ R such that f(e, x) = ϕg(e)(x) for all e, x ∈ N.

2.4 Recursive Enumerability

In a loose sense, enumeration stands as a crucial point in understanding the
boundaries of computability. In the next section, we will give an example to
an incomputable mathematical entity, an incomputable set (or so-called halt-
ing set), which is however computably enumerable.

One might consider π, a computable real 12 which has an infinitely long
representation, with a possibly non-repeating pattern. All one is able to do
is just enumerating the digits one by one. Indeed it refers to a never end-
ing computation process, which yields an infinitely long string. However it is
considered to be a computable number since we have an effective procedure
to compute it. However a natural question would be “Are we able to know
everything about such number since it is a computable number?”. Here, we
refer to its representation. In that sense, an object being computable does
not imply that we can know everything about it. However this topic is rather
philosophical and not be in our main target.

We will go on with the notion of computable enumerability, and its connec-
tion to computability in general. Some chosen basic definitions and properties
which are thought to be useful or necessary will be given.

11Church-Turing thesis is not necessary to prove the theorem. Therefore its existence is
independent of the truth of Church Turing thesis. Interested reader can found the formal
proof in [40] as well as in books [7] and [20]

12This term is first used by Alan Turing in his seminal article.
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Definition 16. A set X is recursively enumerable if there exists a partial
recursive function f such that D(f) = X.

Informally, we say that a set X is recursively enumerable if a partial re-
cursive function is defined for that set X which means X is domain of that
function. Or equally and more intuitively, a set X is recursively enumerable
if and only if we have an effective procedure (a total recursive function) to
list or enumerate its elements. Note that we are only able to confirm if the
element is in the set. The terms semi-recursive, semi-decidable or recursively
enumerable or computably enumerable are all synonyms.

Theorem 2. A set A ⊆ N being recursive implies that A is recursively enu-
merable.

Proof. Since A is recursive, there exists a function f such that

f(�x) =

{
1 if �x ∈ A,
0 if �x �∈ A.

As f is total, we may get a partial recursive function f ′ by modifying f slightly,
which is

f ′(�x) =

{
�x if f(�x) = 1,

undefined if f(�x) = 0.

which means in turn D(f ′(A)) = A, hence A is recursively enumerable.

Theorem 3. A ⊆ N is recursive if A and Ā both are recursively enumerable.

Proof. Idea: Since any a ∈ N is either in A or Ā, and we are able to confirm
the positive answer for both sets. This yields a recursive task, to decide on
A.

2.5 Incomputability

Eventually, we will introduce incomputability which is the most crucial part
of our interest. The term undecidable, is a synonym to incomputable in terms
of classical computability theory, originated from the famous halting problem
which is the question of “Is there a decision procedure to decide whether or
not a Turing machine halts on a given input?” where the answer was shown
to be negative.[40, 2] By Turing’s thesis in turn, what we understand from an
undecidable problem, is a particular decision task where we are sure of there
is no algorithm or decision method to solve it.

We will explain it by giving some examples of undecidable mathematical
objects such as some sets or functions, which are in turn going to yield the
very idea of there is no calculation or decision procedure to solve them.

13



Halting problem

Let us restate the halting problem mentioned, in terms of a set:

K0 = {(i, x) | Turing machine Ti halts on input x} (2.1)

namely the halting set of all Turing machines.

Theorem 4 (Undecidability Theorem). The set K0 is undecidable.

Proof. By Contradiction. Assume that K0 is decidable. Then there exists a
function such that

h(i, x) =

{
1 if Ti(x) halts,

0 otherwise.

Consider the following function defined as

g(i) =

{
0 if h(i, i) = 0,

undefined otherwise.

Since g is a partial recursive function, there exists a Turing machine which
computes it. Let e be the index of this Turing machine. So then g = ϕe
One of the two cases must be true:

• if Te(e) does halt, then g(e) = 0 it implies h(e, e) = 0, but it means Te(e)
does not halt which is a contradiction.

• if Te(e) does not halt, that means h(e, e) = 0 implies that g(e) = 0, but
that means Te(e) halts which is a contradiction again.

Here, the crucial subset of K0, which leads it to be an undecidable set,
namely the index set of the Turing machines which halt in their own code, is
usually denoted as K and defined as,

K = {x | ϕx(x) ↓}. (2.2)

It is obvious that the halting function h which was used above is incomputable.
It might, at first sight, cause a criticism of its not being a very natural example
as one of those, a mathematician who works in analysis might encounter. In
the next section, we are going to give, so to say, a more natural example.
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The Busy Beaver Function

Recall the Ackermann function, which was not primitive recursive because
it was dominating 13 every primitive recursive function (PR). At this time,
we will give a similar example which is a dominating function for the set of
computable functions (P), hence it is incomputable.

The busy beaver or Radó 14 function refers to the greatest number which
can be generated by a (halting) Turing machine given its number of operational
states, which starts working on empty input. Therefore the word busy refers
to maximum operational busyness of an eventually halting Turing machine.
What we understand by operational states of a Turing machine is simply the
set of states except the halting state.

Definition 17. A k-state Turing machine, k ∈ N , is a halting Turing ma-
chine which the number of operational states is k.

Now we can safely state the Busy Beaver function.

Definition 18. The Busy Beaver function, Σ : N→ N, is Σ(n) = max{ϕT (0) |
T ∈ En} where T is a Turing machine and En is the set of all n-state ma-
chines.

The function is numerically well-defined since for any n there are finitely
many n-state Turing machines 15, therefore any such set must have a maxi-
mum element. Before proving its incomputability, let us check the table of the
known values below to have a little idea of its extremely fast growing rate.

n Σ(n) by

1 1 Radó and Lin

2 4 Radó and Lin

3 6

4 13 Brady

5 ≥ 4098 Buntrock and Marxen

6 ≥95,524,079 Marxen

Figure 2.2: First few calculated values of Σ(n).

As it can be seen that the last two values could not be found exactly yet,
it seems that even rather putting an upper bound looks should be impractical.

13Dominating refers to exceeding due to its faster growing speed. Formally let f, g : N →
N, we say f dominates g if for some k ∈ N, k < n implies g(n) ≤ f(n). If S is a set of
functions, we say that f dominates S if f dominates g(n) + 1 for every g ∈ S. This implies
in turn, if f dominates S, then f �∈ S.

14Due to Tibor Radó who originally introduced it in his paper [31].
15Assuming that there is a standard for enumerating the states.
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The engineering technicalities [17], of computing Σ will not be our concern,
however it is obvious that it is a very hard combinatorial problem. We will
proceed in parallel to script in [14]. Let us prove the following lemmas which
will help us to show that Σ is incomputable.

Lemma 1. Σ(1) = 1.

Proof. Operational state number equals one, does not allow loop, the best we
can do is printing with the initial state and then to the halt state

Lemma 2. Σ is strictly increasing.

Proof. We will show that Σ(n+1) > Σ(n) for all n. Choose any n, and assume
we computed Σ(n). We have an n-state Turing machine T with ϕT (0) = Σ(n).
Construct a new machine T ′ by adding a new state to T , which simply adds
a single 1 to ϕT (0). Obviously, Σ(n+1) is at least great as ϕ′

T (0) = Σ(n) + 1,
hence Σ(n+ 1) > Σ(n) holds.

Lemma 3. There is a c such that Σ(n+ c) ≥ 2Σ(n) for all n.

Proof. We will combine two concrete Turing machine model, in order to find
a constant c. First consider Tw which writes specified number (n) of 1s. We
can construct it simply by, reserving n-many states each for writing a new
1 whenever it encounters a zero and to make a shift by right whenever it
encounter a 1, therefore Tw would have n many operational states. Beware
that Tw is rather a scheme or class of Turing machines which tells us there is
a Turing machine for any specified number of writing 1.

Second, consider Td, a 11 state Turing machine which duplicates any given
input (For its details, see Appendix: Computability Theory).

We combine Tw and Td by replacing the halting state of Tw by the starting
state of Td.

Input � Tw � Td � Output
q0

n-state

qn−1

11-state

qn+10

Figure 2.3: The illustration of the combined machine using Tw and Td.

The combined machine Twd is a n+ 11 state machine and for any n, ϕTwd

is at least 2n. Thus, c can be perfectly 11.

Theorem 5. Σ is Turing incomputable.

Proof. By contradiction. Assume that Σ is computable. Then there is a Tur-
ing machine which computes Σ. Let us call it B. Then B has a number of
operational states, call it k. Consider the combination of Tw and two replicas
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of B as in the following form:

Input � Tw � B � B � Output
q0

n-state

qn−1

k-state

qn+k−1

k-state

qn+2k−1

Figure 2.4: The illustration of the combination of a machine, using Tw and
B.

which gives us the observation,

Σ(n+ 2k) ≥ Σ(Σ(n)) (2.3)

for any n. This machine is a n+ 2k machine. As we had already proved that
Σ is strictly increasing, it implies from (1),

n+ 2k ≥ Σ(n) (2.4)

for any n. Let c be as in lemma 3, then we would have,

Σ(m+ c) ≥ 2m (2.5)

for any m. Applying (2) with n = m+ c, we get

m+ c+ 2k ≥ Σ(m+ c) (2.6)

for any m. Using (3) and (4), we have

m+ c+ 2k ≥ 2m (2.7)

for any m. This leads to a contradiction for a value of m > c+ 2k.

We have shown that our more natural example, the busy beaver function
is indeed incomputable, however in fact the halting function is in its very
core. The reason of looking more natural is of any finite string of its values
e.g. Σ(1),Σ(2) . . .Σ(n) for any n is computable. However there is no general
algorithm to solve of its all values i.e. n goes to infinity. Recall that we have
no general procedure for deciding all non-halting Turing machines, in turn
detecting all possible loops.

2.6 Oracle Turing Machines

An Oracle Turing machine (or O-machine) is an abstract machine model which
was first proposed by Turing [39] when he was writing his Phd thesis under the
supervision of Church, in the late 1930s. He considered the idea of machines
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that can perform tasks which any Turing machine cannot. In doing that, the
very first hypercomputer model in the history was introduced. However his
main aim was to generalize computability theory by creating a relativized the-
ory of computation.

In general, Turing introduced a special “Turing” machine which was ex-
tended with an extra entity called oracle or black box in addition to its regular
definition. The term black box is to express the inaccessibility of information
that the extra entity has, regarding its any property, working principles etc.
Furthermore, an oracle does not have to correspond to any physical entity
but just an extra computational resource which we are not interested in its
intrinsic property. It must be noted that the question regarding how an oracle
works or could be physically implemented is out of concern at the moment.
To understand how an O-machine works, the machine might be thought of
as having two parts, namely the oracle part and the Turing machine part.
The oracle part is the first part, which is for sending a query into and gath-
ering an answer from, which are both carried out by its second part, namely
the Turing machine part. That interaction can be formalized, using several
extra special states. It must be noted that the question regarding how an ora-
cle works or could be physically implemented is out of concern at the moment.

Definition 19 (O-machine). An O-machine, TA is a machine (Q,S, δ, ImJn)
A

with oracle A, where,

• A is a set of strings (as in tape convention) which corresponds to a subset
of N.

• Q = {qi | 0 ≤ i ≤ n, n ∈ N} ∪ {qh, q?, qyes, qno, qcopy} is the finite set
of states with q0 �= qh �= q? �= qyes �= qno �= qcopy �= q0, where q0,qh,
q?,qyes,qno,qcopy are the initial state, the halting state, the query state,
the answer states: yes and no, and the copy state, respectively.

• S = {(c, i) ∈ (
ΓZ

)2×Z} is the storage where Γ={0,1} is the tape alpha-
bet, i is the position of the head and c = (c1, c2) is the current storage
content. Then, ct(j) ∈ Γ denotes the current content of the jth cell of
the tape number t, where j ∈ Z and t ∈ {1, 2} (t = 1 is for the work
tape and t = 2 is for the query tape).

• δ : Q×S → Q×S is the transition function, which is a partial function
and d ∈ δ is in one of the following forms:

– (qk, (c, i), ql, (c, i+ 1)) if the tape head is moving right.

– (qk, (c, i), ql, (c, i− 1)) if the tape head is moving left.

– (qk, (c, i), ql, (c
′, i)) if the tape head is reading/writing
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where qk �= qh and c′ is the next tape content.

– (qcopy, (c, i), ql, (c
′, i)) if the tape head is copying the content of c1(i)

to c2(i).

– (q?, (c, i), ql, (c, i)) if the machine is querying “c2 ∈ A?” where
ql ∈ {qyes, qno}. Furthermore, ql = qyes if c2 ∈ A, and ql = qno
otherwise.

• Im : Nm → S is the input function:
Im(x1, . . . , xm) = (〈0Z−

1x101x2 . . . 01xm0Z
+〉, 〈0Z〉, 0) where (x1, . . . , xm) ∈

Nm.

• Jn : S → Nn is the output function:
Jn(〈ΓZ−

1x101x2 . . . 01xn0ΓZ+〉, c2, i) = (x1 . . . xn) where (x1 . . . xn) ∈ Nn.

Notice that the input output convention, is similar to the standard Turing
machine. Distinctively in O-machines, we are using one extra tape, namely
the query tape or the oracle tape, which is empty (fulfilled with zeros) initially.
In order to send a query to the oracle, we are using the query tape. Especially,
by writing the string that we want to query into it. For that purpose, we have
the state qcopy, and we have two tape heads, having the same position (cell
number) on each tape always. 16The copy state, qcopy lets the tape head copy
the content of the current cell of the working tape, to the corresponding cell of
the query tape. By that way, the machine can copy stepwise the string to be
asked, to the oracle tape. And whenever it is required to send a query to the
oracle, the query state q? is handled and it is followed by one of the answer
states (qyes or qno) immediately, according to the intended answer from the
oracle. 17

Theorem 6. There exists an oracle Turing machine which can solve the halt-
ing problem for any Turing machine.

Proof. Assume that the machine has the halting set as oracle, such machine
would obviously solve any Turing-machine halting problem

Notice that, if the oracle is an empty set, then the machine is just a usual
Turing machine. 18 In general, if an oracle has no extra relevant information,
we just have an ordinary Turing machine.

16It can also be thought of as one tape head, working on both tape.
17Note that we only considered one oracled O-machines, as it serves well enough to our

purposes. To handle the case for more than one oracle, one can extend the formalism with
further states e.g. q?n for sending query to the nth oracle.

18If the oracle tests a recursive problem, again, we get Turing computability (only with
a change in complexity).
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2.7 Turing Degrees and the Arithmetical
Hierarchy

In this section, we will introduce two essential concepts, namely Turing de-
gree and arithmetical hierarchy, which will help us in turn to talk about the
computational power of models of hypermachines. Roughly speaking, while
the arithmetical hierarchy serves the purpose to measure definability of sets
of natural numbers, Turing degrees measure the level of uncomputability of
sets of natural numbers. We will catch an interlink between those two, by
presenting Post’s Theorem. Then, we will briefly introduce the second order
extension of the arithmetical hierarchy, so called analytical hierarchy, and its
relation to the arithmetical hierarchy.

Turing Degrees

If one extends the set of (Turing) computable functions with a characteristic
function χA for an oracle set A of an oracle Turing machine TA, one obtains
the set of MA computable functions.

Definition 20. A function f is said to be,

i. partial A-computable if f is TA computable.

ii. A-computable if f is total and TA computable.

One may define Turing reducibility and Turing completeness eventually
via help of the above definition.

Definition 21. i. A set B is A-computable (or Turing reducible to A,
written as B ≤T A) if χB is A-computable.

ii. A set A ⊆ N is called Turing hard for a class of sets X ⊆ P(N), if
X ≤T A for all X ⊆ X . Furthermore, A is called Turing complete for
X if A ∈ X additionally.

Notice that the two close by connected relations ≤m and ≤T do not co-
incide therefore should not be confused. Consider that an expression such,
A ≤T Ā will hold for all A ⊆ N, since asking an oracle will include both the
positive and the negative answer, on the other hand we know that A ≤m Ā
does not hold in general (e.g. take A = K ). However, ≤m implies ≤T , since
for any B and A, if B ≤m A holds, then one can decide on if n ∈ B (for an
n ∈ N) by simply asking the oracle Is f(n) ∈ A?.

Corollary 3. ≤T is reflexive and transitive.

Proof. Follows from definitions.
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The following definition is analogous to the relation between computable
and computably enumerable sets.

Definition 22. A set B is A-computably enumerable if B is the domain of a
partial A-computable function.

This is equal to saying B is A-c.e. (A-computably enumerable), if we can
enumerate the members of B via help of an oracle for A. The following, tells
us an interesting fact about the nature of undecidability.

Corollary 4. There is no oracle Turing machine which solves its own halting
problem.

Proof. The diagonalization method which works for Turing machines in the
original undecidability theorem 4 applies.

No matter which oracle Turing machine one chooses or how much ever one
extends the oracle set, we still can obtain a harder unsolvable problem.

This brings us to define the Turing degree or the degree of unsolvability.

Definition 23. We say that,

i. A ≡T B (read as A is Turing equivalent to B) if A ≤T B and B ≤T A.
ii. the degree of unsolvability or Turing degree for A, is deg(A) =def {X ⊆

N | X ≡T A}
iii. ≤ is an ordering over the collection of degrees, induced by ≤T as follows:

deg(A) ≤ deg(B) if A ≤T B
iv. deg(B) is computably enumerable in deg(A) if B is computably enumer-

able in A

v. A degree is computably enumerable if it contains a computably enumer-
able set.

We will use sometimes the bold lowercase letter to name a degree, e.g. a or
b etc. Now we can define the jump operator by generalizing the undecidable
set K.

Definition 24. 1. Let ϕA denote the Goedel numbering, relativized to a
set A. If KA =def {x | ϕAx (x) ↓}, then KA is said to be the jump of A
and denoted by A′.19

2. The i+ 1th jump of A is defined by, Ai+1 =def (Ai)′.

3. The jump a′ of a = deg(A) is defined by, a′ =def deg(A
′).

19Note that KB = K for all computable B.
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4. Then, n+ 1th jump an+1 of a is defined by, an+1 =def (an)′.

The following lemma reveals the relation between the jump operation and
≤m.

Lemma 4. A set B is A-c.e. if and only if B ≤m A′.

Proof. ⇒ B = D(ϕAi ) for some i and D(ϕAi ) ≤m KA = A′ since KA is
m-complete in A-c.e. sets.

⇐ B ≤m A′ ⇐⇒ (x ∈ B ⇐⇒ f(x) ∈ A′ = KA ) ⇐⇒ f(x) ∈
dom(φA) ⇐⇒ x ∈ dom(φA ◦ f) where φA(x) = x if ϕx(x) ↓ and
undefined otherwise. Thus, B is A-c.e.

Lemma 4 implies, A ≤m A′, since A′ is A-c.e..

Theorem 7. For a degree a, there exists an increasing chain of degrees, in
the form of a < a′ < a′′ < . . .ai < ai+1 . . ., where ai+1 is c.e. (computably
enumerable) in ai.

Proof. We have to show [i.] ai+1 is c.e. in ai, [ii.] ai ≤ ai+1 and [iii.] ai+1 �≤ ai

i. Let ai = deg(A), then the jump of ai, ai+1 = {y | ϕAy (y) ↓} by definition

24. Then define φA(y) = y if ϕAy (y) ↓ and undefined otherwise. As φA

is A-p.c. and ai+1 = D(φA), ai+1 is c.e. in ai.

ii. Follows from definition 23, and also by lemma 4 (Recall that ≤m implies
≤T ).

iii. Let us assume that ai+1 ≤ ai and try to get a contradiction. If ai+1 ≤ ai,
then KA ≤T A for ai+1 = deg(KA) and ai = deg(A), by definition 24
and i. But KA is not A-computable, and by definition 23, we get the
contradiction.

Notice that a set is c.e. if and only if it is c.e. in some computable set. So a
degree a is c.e. if and only if it is c.e. in 0. It is intuitive to denote the degree
of an ordinary Turing machine, by deg(∅) since its oracle can be thought of
as empty set. Obviously, this is the degree of any computable set. We will
denote it by 0. Then using the jump operator, one gets 0′ which is the degree
of K. The chain of degrees we would get, by applying the jump operator,
which looks like 0 < 0′ < 0′′ < . . .0i < 0i+1 . . ., has a special name which is
called Turing hierarchy. We will use it to define arithmetical hierarchy and
then set up a link with computability in between.
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Arithmetical Hierarchy

One can use the arithmetical hierarchy to classify the degree of unsolvability
of decision problems, by linking them to some certain class of sets of natu-
ral numbers. Let us give the set theoretic representation of the arithmetical
hierarchy.

Definition 25. The arithmetical hierarchy consists of the classes Σ0
n , Π0

n and
Δ0
n for n ≥ 0, which are defined as follows:

1. Σ0
0 = Π0

0 = Δ0
0 is the class of all computable sets.

2. Σ0
n+1 is the class of all such sets A that A ∈ Σ0

n+1 if there exists a
B ∈ Π0

n s.t.

A = {x | (∃y)(x, y) ∈ B}.

3. Π0
n+1 is the class of all such sets A that A ∈ Π0

n+1 if there exists a
B ∈ Σ0

n s.t.

A = {x | (∀y)(x, y) ∈ B}.

4. Δ0
n+1 = Σ0

n+1 ∩Π0
n+1.

Notice that computably enumerable sets are those in Σ0
1, e.g. K0. In

general, Σ0
n+1 is the class of sets that are A-computably enumerable for some

set A ∈ Σ0
n. The following properties hold for the arithmetical hierarchy (of

sets of natural numbers):

• Σ0
n and Π0

n are closed under finite unions and intersections of their re-
spective elements.

• A set is Σ0
n iff its complement is Π0

n.

• Δ0
n ⊂ Σ0

n and Δ0
n ⊂ Π0

n, for n ≥ 1.

• Σ0
n ⊂ Σ0

n+1 and Π0
n ⊂ Π0

n+1, for all n and Σ0
n ∪Π0

n ⊂ Δ0
n+1, for n ≥ 1.

Due to the last two property, the word hierarchy is involved, and it does
not collapse. Notice that one can also describe a set A as arithmetical if
A ∈ ⋃

n≥0Σ
0
n ∪ Π0

n. Considering the property regarding complements above,

Π0
1 is known as co-computably enumerable (or corecursively enumerable).
One can also give a representation by assigning the degree of unsolvability

to the measurements of definability of certain sets of natural numbers. In
doing so, sets, to be classified, are defined by logical formulas in the language
of first order arithmetic. The language of first order arithmetic, consists of
predicate symbols =,<, the constant symbol 0̄, a unary function symbol (for
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the successor function) S̄ and binary function symbols +̄ and ∗̄.
20

Definition 26. i. A is Σ0
n-complete if A ∈ Σ0

n and X ≤m A for every
X ∈ Σ0

n.

ii. Π0
n and Δ0

n completeness are defined similarly.

We have to define relativized arithmetical hierarchy before linking arith-
metical hierarchy to Turing degrees.

Definition 27. ΣA0 = ΠA0 = ΔA
0 is the class of all A-computable sets. And

for n ≥ 0,

1. ΣAn+1 is the class of all such sets X that X ∈ ΣAn+1 if there exists a
Y ∈ ΠAn s.t.

X = {x | (∃y)(x, y) ∈ Y }.
2. ΠAn+1 is the class of all such sets X that X ∈ ΠAn+1 if there exists a

Y ∈ ΣAn s.t.
X = {x | (∀y)(x, y) ∈ Y }.

3. ΔA
n+1 = ΣAn+1 ∩ΠAn+1.

Properties of hierarchy regarding union, complement and subset are anal-
ogous. The following theorem reveals a connection between Turing degrees
and the arithmetical hierarchy.

Theorem 8 (Post’s theorem). For any A ⊆ N and n ≥ 0,

i. A ∈ Σ0
n+1 ⇐⇒ A is c.e. in 0n.

ii. 0n+1 is Σ0
n+1-complete.

Proof. i. By induction on n. For induction base n = 0.

⇒ A ∈ Σ0
1 if there exists B ∈ Π0

0 (B is computable) s.t. A = {x |
(∃y)(x, y) ∈ B}. Consider the following function,

φ(x) =

{
1 if (∃y)χB(x, y),

undefined otherwise.

20The logical formula representation of the arithmetical hierarchy for Σ0
n can be given as

follows (the rest is straightforward):

A ∈ Σ0
n if there is a formula φ[z] : ∃x1∀x2 . . . Qxnψ s.t. K ∈ A ⇐⇒ N |= φ(K̄),

where Q ∈ {∃, ∀} and N is the standard model of arithmetic, with the domain N, such
that < is interpreted as less than, 0̄ is interpreted as 0, 1 is expressed by S̄(0̄), 2 is by
S̄(S̄(0̄)),. . . etc. In addition, for all n ≥ 1, we define n̄ := S(n)(0̄) where S(0)(0̄) := 0̄,
S(n+1)(0̄) := S̄(S(n)(0̄)).
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⇐ A is c.e. ⇐⇒ A = ran(f) for some computable f ⇐⇒ (∃y)f(y) =
x ⇐⇒ (∃y)(y, x) ∈ f and f ∈ Π0

0 since f is computable ⇐⇒ A
is Σ0

1.

For the induction hypothesis, suppose that n > 0 and X ∈ Σ0
n ⇐⇒ X

is c.e. in 0n−1 for all n.

⇐ Suppose that A ∈ Σ0
n+1, then there is a B ∈ Π0

n such that x ∈
A ⇐⇒ (∃y)B(x, y) ⇐⇒ A ∈ ΣB1 by definition 27. Note that
A ∈ ΣB1 ⇐⇒ A ∈ ΣB̄1 . It follows that A ∈ ΣB̄1 where B̄ ∈ Σ0

n.
(Since B was in Π0

n). So by inductive hypothesis, B̄ is c.e. in 0n−1,
and hence by lemma 4 we get B̄ ≤m 0(n−1)′ = 0n. It follows that
A ∈ Σ0n

1 , therefore it is c.e. in 0n

⇒ Assume that A is c.e. in 0n, We get by induction hypothesis 0n ∈
Σ0
n, since 0n is c.e. in 0n−1, and 0n ∈ Σ0

n. x ∈ A ⇐⇒ x ∈ D(ϕ0n
x )

iff ∃s∃y1 . . . yk, z1, . . . , zl such that we can decide x ∈ D(ϕ0n
i,s) using

oracle answers: y1 . . . yk ∈ 0n ∧ z1 . . . zl ∈ 0̄n where y1 . . . yk ∈
0n ∈ Σ0

n and z1 . . . zl ∈ 0̄n ∈ Π0
n Quantifier manipulation leads to

A ∈ Σ0
n+1.

21 implies that A ∈ Σ0
n+1.

ii From i and lemma 4, it follows that A ∈ Σ0
n+1 ⇐⇒ A is 0(n+1)c.e.

⇐⇒ A ≤m 0(n+1). Together with 0(n+1) ∈ Σ0
n+1, it implies that 0(n+1)

is Σ0
n+1-complete.

The analytical hierarchy will not be in the scope of our concern. Never-
theless, let us mention few things about it before closing this section.
The analytical hierarchy is a second-order equivalent of the arithmetic one.
Therefore, quantifiers range over function variables. The analytical hierarchy
is denoted by replacing superscript 0 by 1 in the notation of arithmetical hier-
archy, i.e. Σ1

n. Furthermore, basic properties regarding hierarchy, are straight
forward as it was in arithmetical hierarchy (e.g. φ is Σ1

n+1 iff ¬φ is Π1
n+1, and

Σ1
n ⊂ Σ1

n+1).
Δ1

1 is known as the class of hyperarithmetic sets, in the literature. The
following fact tells us analytical sets are of higher level of unsolvability, due
to definability.

Fact 1. The arithmetical sets are properly included in Δ1
1.

Interested reader can check its proof in [26].

21 s stands for the boundary of the number of steps of computation (As in Kleene predi-
cate.). The proof is taken from [3]
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CHAPTER 3
On The Church-Turing Thesis

and the Nature of
Computation

All the ideas behind the term hypercomputation, begin with a famous state-
ment of mathematics which is known as the Church-Turing Thesis (will be
called as the Thesis in sequel) today, and it is stated as follows

Thesis 2. Every effectively calculable function is a computable function.

The Thesis is indeed based on an empirically robust concept of Theory of
Computation today, namely all classes of lambda definable functions, Turing
computable functions and partial computable functions are the same, as it is
widely accepted today. However, the part in the statement, effectively calcu-
lable is not purely formal, therefore it is considered intrinsically unprovable
since the conceptual impossibility of a possible mathematical proof relating an
intuitive argument to a mathematically defined one. Thus it caused ambiguity
and doubt at some level. As the time went by, not only so many discussions
over its meaning have been made so far but also many variants of it took place
in the literature by trying to replace it by more proper versions given by re-
searchers belonging to different disciplines (mathematics, philosophy, physics).
Thus to understand the Thesis and to consider its relevant variants and ex-
tensions, is in the center of understanding the field of hypercomputation, and
carrying out further discussions based on it, since every particular model of
hypercomputation is based on a particular Thesis variant or Thesis itself.

In this part, we will be touching on some rather philosophical aspects
of computation and Church-Turing Thesis. It will be opening with a brief
historical introduction and afterwards moving on with some concepts like ef-
fectiveness, Thesis (abbreviation for Church-Turing Thesis) and some of the
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its relevant variants. In doing so, we will also mention some quotes of the
pioneers sometimes, in order to shed some light from a different angle on the
ideas under discussion.

3.1 A Brief History

In 1930s, one of the most important problems was David Hilbert’s Entschei-
dungsproblem, which was asking if there exists a method or algorithm to
decide validity of formulas in First Order Logic (FOL). As Church stated
Entscheidungsproblem proof-theoretically as follows:

By the Entscheidungsproblem of a system of symbolic logic is here
understood the problem to find an effective method by which, given
any expression Q in the notation of the system, it can be deter-
mined whether or not Q is provable in the system.

Symbolic logic refers to FOL and the importance of the Entscheidungsproblem
arose from the need of being sure of the correctness of mathematical proofs
with no doubts. Hence, a formal system were to use for that purpose; to
express axioms of mathematics in a formal system and to provide formal
proofs for theorems derived from those axioms in that formal system. First
order logic was such a formal system available and the validity of formulas in
FOL was coinciding with the truth of mathematical statements in that sense.

The first negative answer to that question was given by Alonzo Church in
1936, by introducing the λ-definable functions. A very short time after Church,
Turing, independently from Church’s work, has given a parallel answer to that
question by introducing his own assertion, a class of numbers called computable
numbers which is effectively computable with his abstract machine (Turing
machine) he introduced.
But what should we understand by a method which is effective? As it is stated
on a famous article about the Thesis [4]:

Definition 28 (Effective Procedure). A method, or procedure, M , for achiev-
ing some desired result is called effective or mechanical just in case

1. M is set out in terms of a finite number of exact instructions (each
instruction being expressed by means of a finite number of symbols),

2. M will, if carried out without error, always produce the desired result in
a finite number of steps,

3. M can (in practice or in principle) be carried out by a human being
unaided by any machinery save paper and pencil,
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4. M demands no insight or ingenuity on the part of the human being
carrying it out.

As it is obvious from the context, the term mechanical and effective are
used as synonym. For an effective method, we can give the example of sat-
isfiability testing for propositional logic or a naive computer program which
solves a given sudoku problem. Early before the Thesis takes its last form,
Turing and Church had expressed it individually in their own ways. It was
stated by Turing in an unpublished paper[Turing 1948]1,

LCMs can do anything that could be described as ‘rule of thumb’
or ‘purely mechanical’.

which is known for Turing’s Thesis. Here the abbreviation LCM stands for
logical computing machine which was denoted particularly as Turing Machine
as it is known today. He argued his thesis in his paper with the concept,
the computability of a Turing Machine which corresponds to any mechanical
method which is used to get the value of a mathematical function, could also be
computed by Turing Machine. To him a Turing Machine as its computational
power was an equal of a human mind i.e. a clerk which has enough paper
(space) and time, with having no insight other than being capable of carrying
out the mechanical processes which he has to.
Church had defined it in a different way,

A function of positive integers is effectively calculable only if re-
cursive.

which is weaker than Turing’s, according to its concern on recursive functions
of only positive integers. The vague term ‘effective calculability’ corresponds
to the term ‘computability’ of what Turing showed in his famous paper [40].

In a recent paper Alonzo Church has introduced an idea of ‘effec-
tive calculability’, which is equivalent to my ‘computability’, but
is very differently defined. Church also reaches similar conclusions
about the Entscheidungsproblem. The proof of equivalence be-
tween ‘computability’ and ‘effective calculability’ is outlined in an
appendix to the present paper.

Following Turings own statement given above, further statements of agree-
ment on equality of Church’s and Turing’s theses occurred in literature. Never-
theless, we will take the definition of Church-Turing Thesis in Turing’s version
as it is formulated below:

Thesis 3 (Church-Turing (revisited)). Every function which would be nat-
urally regarded as computable can be computed by a Turing machine.

1It is published in 1968, 14 years after his death.
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Here the word ‘naturally’ can be replaced simply by ‘normally’ or ‘obvi-
ously’, without disturbing the meaning in a loose sense. Technically speaking,
this does not seem to violate what we do understand from the class of func-
tions which can be calculated ‘effectively’ or ‘mechanically’, since effectively
computable functions are those which can be considered as ‘naturally regarded
as computable’ or ‘naturally computable’ in short. But conversely, it is not so
obvious that all the ‘naturally computable’ functions are ‘mechanical’ (more
probably, it was more certain when we consider the discussions which going
on at the time the Thesis had been asserted).

Nevertheless what Thesis means by ‘computable’ is still somewhat vague
or too general by means of any bound or any type of system, say, if it is calcu-
lated by human, or an abstract computing concept, or a machine in a general
sense. Thus, it is quite natural to state that the Thesis can also have implicit
assertions concerning the current physical theories. The versions of the Thesis
which will be mentioned in the following section, vary regarding some extra
specifications and restrictions. As there are many in the literature, we will
filter some of them which are believed to have less relevance in connection to
any type of hypercomputation.

3.2 Some Other Theses

Now we will mention some other theses which are related to the Thesis in
their origin and emerged as a result of some modifications made. The expla-
nations to be made will exclude their direct link to the particular model of
hypercomputation for the moment.

Thesis M

Gandy, in his article [13], tries to give a more convenient version of the Thesis,
which is:

Thesis 4 (Thesis M for ‘mechanism’). What can be calculated by a machine
is Turing-machine computable.

In doing so, he defines principles2 which are assumed to being satisfied by
any mechanical device whenever the device will have the computational power
of a Turing-machine. In doing so, his aim was to bring more concrete notion
to the discussion of arguments of his thesis than the arguments of the original
one (Thesis). However, we will not mention them here, because there is a
counterexample given for them3. Nevertheless, this is no refutation of Thesis

2Gandy’s four principles, namely, form of description(I),limitation of hierarchy (II),
unique reassembly (III) and local causation(IV) (see [13] or [36]).

3Fourth Principle is falsified by Newtonian devices, as he said himself:“ I am sorry that
Principle IV does not apply to machines obeying Newtonian mechanics.”
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M, nor enough to trivialize its relevance by means of further discussions in
which hypercomputation will take place.

Since the word machine is used, some amount of physical reality is in-
volved4 rather than just conceptual ones e.g. Turing-machines, register ma-
chines. Thus he had to clarify what he refers to by using it. He states that he
will consider only deterministic discrete mechanical devices, so then we may
re-state it in his intended version which will make stricter sense by means of
his argumentation.

Definition 29 (Gandy’s Thesis). What can be calculated by a discrete deter-
ministic mechanical device is Turing-machine computable.

Even though Thesis M and Gandy’s usually coincide in literature (since
they both are introduced by Robin Gandy), it is reasonable to make distinction
among them. In particular, Gandy’s Thesis is a more special version of Thesis
M, because the latter encompasses analog machines which will not be the
concern of this work.

Weak Church-Turing Thesis

Informally speaking, in computational complexity the class of decision prob-
lems which are solvable by a Turing machine whose running time grows poly-
nomially in the length of the input, is called P . The problems which are in
this class are usually referred to as feasible, or tractable. Straightforwardly, a
problem is said to be intractable, if it is known to be not tractable e.g. run-
ning time requires hyper-polynomial number of steps. The following thesis,
also called Karp-Cook thesis is a narrower variation the Church-Turing Thesis,
emphasizing what is feasible to computable?.

Thesis 5 (Weak Church-Turing Thesis). Tractable problems are those that
are in the class P (polynomial).

In other words it stipulates there can be no intractable problem which can
be solved in polynomial time.

The Church-Turing Principle

In his paper [9], Deutsch argues that there is an implicit physical assertion
in the Thesis, and he modifies the Thesis in a sense for the aim what is
to make this assertion explicit. He proposes an interpretation intended to
be more convenient than the Thesis itself. He named it as Church Turing
Principle (it is called Church Turing Deutsch principle by others) instead and
asserted the new statement as calling it physical or stronger Church Turing

4In that sense, it is important to stress that Thesis M does have an account of being a
physical interpretation of the Thesis.
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thesis in [9].5 But we will call it Church-Turing Principle. The reader should
not be concerned with the details relating to the working principles (inner
machinery) of the quantum computer for now. It will be explained in further
sections reserved to quantum computer as a model of weak hypercomputer.

Definition 30 (Church-Turing Principle). Every finitely realizable physical
system can be perfectly simulated by a universal model computing machine
operating by finite means.

According to Deutsch, Quantum theory (which is discrete) is compati-
ble with the Church Turing Principle (CTP) and since classical physics is
continuous and universal Turing machines are discrete, CTP would be falsi-
fied. Thus, he tries to convince that the quantum generalization of the class
of Turing machines (borrowing the terminology Deutsch is using) namely the
universal quantum computer Q, is capable of perfectly simulating every finitely
realizable physical system.

A finitely realizable physical system refers to any physical object which
experimentation is possible. A physical system S is perfectly simulated by a
computing machine M if there is a program π(S) for M which turns M into a
black box which is functionally (input-output relation) indistinguishable from
S.

Furthermore, he states in [9] that, a computing machine is said to be
operating by finite means if

i) At any time only a finite subsystem is in process in the computation,

ii) the process depends only on the state of a finite subsystem,

iii) the rule that specifies the process performed can be represented by finite
means.

According to Deutsch, his reformulation of Church Turing thesis is more ac-
curate in the sense of, whilst the original Thesis has implicit physical im-
plications, it does not say anything about the physical issues regarding the
computable. CTP, on the other hand, refers exclusively to objective concepts
such as measurement, preparation and physical system since it is based on the
very idea of any computational process takes place in the physical universe,
therefore computation has to obey the laws of physics. In that sense, it re-
places the terminology like would naturally be regarded as computable, which
does not fit well into the existing structure of physics, with in principle be
computed by a real physical system.

5Calling the original Church-Turing thesis as a principle is more common among physi-
cist, since it resembles principles of Physics and also physicists are more interested in physical
implications of it. Deutsch explains it, by giving concrete examples of similarity i.e. Third
Law of Thermodynamics. See also [38].
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Although Deutsch has defended his point of view using quantum mechan-
ics only, the statement itself is general by means of physical systems, therefore
it has to be independent of any particular physical system. Thus one can nat-
urally ask, given any physical theory whether or not the CTP is true in that
particular theory? This in turn means, is it possible to construct a univer-
sal computing device that can simulate an arbitrary finitely realizable physical
system, also within the theory chosen? Although Deutsch concluded that clas-
sical physics (Newtonian) would falsify CTP, Fredkin and Toffoli [12] showed
that their billiard ball model of computation (using Newtonian physics) which
is indeed equal to the computational power of Turing machines which is widely
regarded as the universal computing power, and furthermore, the work of
Pour-El and Richards [30] showed that Turing machines can simulate all of
Newtonian-physics. Today we know that Newtonian physics is wrong, never-
theless CTP not just for Computability theory but also has so many possible
interesting consequences in physics and mind philosophy6 which those topics
however will not be in the scope of our concern.

3.3 Hypercomputation

In prequel, we had already several times pronounced and roughly described
what is hypercomputation. It was either hypothetical or a possibly physical
machine, or even a physical process which exhibits a behaivour of computing
a non-Turing computable function. As you might remember, we had already
given a model of hypercomputer, despite the fact that we had not drawn a
mathematically rigourous schematics. In this section, we will try to bring a
more concrete notion to hypercomputation, by giving formal definition.

Apart from that we will try to convince the reader that why we bother
ourselves by hypercomputation?, is a question, which has indeed a worthy
answer. Let us start from that part.

6Take human brain as finitely realizable system, which in turn CTP would tell us, human
mind is Turing computable which is the corner stone of Computationalism.
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CHAPTER 4
Why do we bother with

Hypercomputation?

Hypercomputation is a young interdisciplinary field that is focused on the
investigation whether computing beyond the Church-Turing limit is possible.
This includes various both mathematical and physical methods for the com-
putation of non-Turing-computable functions. Aside from the possibility of
physical existence of hypercomputation, this research field can be taken as a
hypothetical research field since computability theory which Turing initiated
by [40, 39], deals with computable (or relatively computable) problems and
analyzes how much computational resources are required to solve them, up to
some standard Turing machine models, as we had seen in previous chapters.
Therefore the inner machinery of whatever model of computation causing
the regarded computing strength remains unrevealed. However, hypercom-
putation tries to propose unconventional models of computation along with
describing their inner machinery (in some detail) which may offer solution
strategies for non-computable problems as well as helping to better under-
stand the nature of some problems in mathematics, computer science, [28]
e.g. P �= NP for infinite time Turing machines [5, 8].
The following quote has been stated by Rosen [33], Kreisel [21] and Davis [7].

“. . . how can we ever exclude the possibility of our being presented,
some day (perhaps by some extraterrestrial visitors), with a (per-
haps extremely complex) device or oracle that computes a non-
computable function?”

This rather rightful thinking has very basic motivation of science basically.
Particularly, it can be a major concern for physics such that whether our
universe might inherit (Turing) incomputable physical activity, regardless of
we can recognize or not. The close connection between the physical systems
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and computability was already mentioned in [9]. This brings to our minds,
the question of ”How can one acknowledge hypercomputation?” This will lead
us to bring the formal definition of hypercomputation in an approach, that
assuming we do not have any knowledge about any intrinsic property of its
inner machinery. Therefore it is called black box approach. This section will
follow, mainly using the reference [23]

4.1 A Formal Definition

Let B be a subset of X1×. . .×Xm. The i-th projection of B (for i = 1, . . . ,m),
written as Bi, is defined by:
Bi = {x | x ∈ Xi, (∃y ∈ X1× . . .×Xi−1)(∃z ∈ Xi+1× . . .×Xm)(y, x, z) ∈ B}.
For any x ∈ Nm we define, | x |= max{xi | i ∈ {1, . . . ,m}} Now the following
definition might be regarded as a behavioral definition of hypercomputation.

Definition 31. Let X,Y be sets and N be the set of natural numbers. A
subset B of X × Y × N is called a black box if B1 = X. Furthermore, X is
called the input set and Y the output set.

Notice that we have mapped every possible input-output to a unique nat-
ural number, and B1 = X is total, therefore an output always exists.

Definition 32. Let B be a black box. We define
fB = {(x, y) | (∃z)(x, y, z) ∈ B}, tB = {(x, z) | (∃y)(x, y, z) ∈ B}. fB is

called the input-output relation of B and tB the computing time of B. If fB
and tB are functions then B is called deterministic.

Now we can define the concept of hypercomputer.

Definition 33 (hypercomputer). A hypercomputer is a black box B where fB
is not Turing-computable.

Now the next aim is to define a machine, which will only violate the weak
Church-Turing thesis (or Karp-Cook) thesis.

Let C be a class of computable monotone functions N −→ N containing
the polynomials (overN with non-negative coefficients). Then C is called a
bound class.

Definition 34 (Weak hypercomputer). A weak hypercomputer is a black box
B with the following property: There exists a bound class C such that

• tM (x) > g(|x|) almost everywhere for all g ∈ C and for all Turing
machines M with fM = fb.

• There exists an h ∈ C such that tB(x) ≤ h(|x|) for all x ∈ B1.
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Due to its definition, a weak hypercomputer works faster than any Turing
machine. Consider the following scenario,

• fB is an EXPTIME-complete problem, therefore there exists no poly-
nomial p and no Turing machine M computing fB with tM (x) ≤ p(|x|)
for all x ∈ X , but tB(x) ≤ p(|x|) for all x ∈ X and for a polynomial p.
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CHAPTER 5
Abstract Models of

Hypermachines

In this section, we will be introducing several abstract model of hypercom-
puter. Our notation will be machine specific.

5.1 Zeno Machines

Among the approaches of hypermachines, Zeno Machines (also known as Ac-
celerated Turing Machines) are the one of the most frequently discussed. It is
originally abstract model. It has been raised first by Hermann Weyl in 1927,
regarding the idea of a Turing Machine model which has the capability of
executing an infinite amount (countably) of execution steps in finite amount
of time. In doing so, the shared idea is to execute every algorithmic successor
step in exponentially lesser amount of time of the predecessor step.

Definition 35 (Zeno Machine). A Zeno Machine (ZM) is a TM, except that
it takes n−iunits of time to execute its i-th step, where n ∈ N − {0, 1} and
i ∈ N.

For instance, for n = 2, it will take for the first step 1 unit of time, 1/2
for the second step, 1/4 for the third, 1/8 etc. Therefore, since for i ∈ N ,∑j

i∈N 2−i < 2, the machine will already be performed finitely required number
of steps. However to perform infinitely many step will take exactly 2 units of
time (i.e.

∑
i∈N 2−i = 2).

The reader may realize here that ZM is not a TM, based on its definition
above, it has an exceptional property in which it differs from a TM.

In many variational scheme to this model, it has been suggested to solve
the halting problem by performing the following super-task on it.
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begin
write 1 to the first cell of the tape (output)
i← 1
while i > 0 do

run given TM m for given input n for i steps
if m halts then

write 0 to the first cell of the tape
i← i+ 1

end if
end while
end

Figure 5.1: Algorithm for Zeno Machine

After time unit 2 (the upper bound of the execution time required for the
above instructions), ZM will have 0 in the first cell of the tape if the given
TM m halts on input n, 1 otherwise. Even though it was an abstract model,
there are some works based on it in literature which are also physical. They
called relativistic models, due to using principles regarding general relativity
in physics. We will be introducing them on further sections.

Objections

ZM was controversial. There is some sort of objections making ZM contro-
versial in literature, based on flaws regarding its logical correctness and also
physical realizability.

As a logical objection, assume that there is a ZM , which constantly adds
independent symbols on every next cell in tape only in one direction, regardless
of content of the tape. According to the proposal of ZM , it must be stopped
after some amount of time, by completing infinitely (countably) many oper-
ations, however such a machine in the scenario above, would not complete
its task. Since the concept of time is rare, it is questionable in the end of a
certain time point if the machine would stop, or caught in the middle of a
loop. Hence the one who is deciding the halting problem is not the machine
itself, but the meta-entity, observer etc.

For the physical realization, there are objections to the relativistic real-
ization [24] which is explained in the above section. A popular argument is
that since the operation speed of ZM grows exponentially, on the length of
given input, it might require that speed which is faster than Speed of Light in
a conflict with Special Relativity. On the other hand, even if it would be pos-
sible, it would require infinite amount of energy which is an another physical
problem.
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5.2 Infinite Time Turing Machines

As silicon world introduces us to much faster products of computing devices
without any permanent bound of speed every new day, it is quite natural for
theoreticians to ask a rather philosophical question: what could we compute
if we had an infinitely fast computer? One answer to this question due to
mathematics in the last decade, opened a new research topic, which is called
infinite time Turing machines, and also created an abstract model of hyper-
computation.1 In this section, we will follow the main article [15].

Preliminaries

The idea is simply to extend the finitary behavior of ordinary Turing ma-
chines in terms of transfinite ordinal running time, therefore the machine may
perform an infinite number (defined by the taken transfinite ordinal) of com-
putation steps to achieve its task, or what we might call as supertask in many
cases. We will present the machine which is explained in [15] in terms of our
general machine concept.

First, let us explain briefly how the machine works, then we will give the
formal definition. The infinite time Turing machine or ITTM has finitely
many states just like an ordinary Turing machine has (indicated by Q), how-
ever it is extended with a special state called the limit state, qlim which denotes
that the ITTM is in the limit stage. By the word stage, we mean the moment
or step that the computation is currently in. For instance 0th stage denotes
the time point that the ITTM is initialized but not started to execution yet
and 1st stage corresponds to the moment when the first applicable element of
the transition function is executed etc. Then by limit stage we mean a stage
α where α is a transfinite ordinal. We will use the word ‘machine’ sometimes
when it is obvious from the context that we talk about ITTM .

Just like an ordinary semi-finite Turing machine, ITTM has a tape head
moving back and forth to read and write tape symbols. For the convenience
of the results which we will mention, the ITTM we are interested in, will
have three dimensional tape in which the names of the dimensions are input,
scratch and output respectively, each being like an ordinary Turing machine
tape i.e. left ended and infinite to the right. For the sake of simplicity, we
will call those three dimensions, as input tape, scratch tape and output tape
respectively. Since there is only one head for all three tapes, tape head’s posi-
tion for each tape at any stage of computation will be the same (same natural
number denoting its position). We assume that the tape head is able to read
or write to all three tapes simultaneously. Let us give the formal definition.

1Jeffrey Kidder defined infinite time Turing machines initially in 1989 and worked with
Joel David Hamkins, when they both were graduate students.
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Definition 36 (Infinite Time Turing Machine). An Infinite Time Turing ma-
chine or ITTM is a machine, (Q,S, δ, Im, Jn) where

• Q = {qi | 0 ≤ i ≤ n, n ∈ N} ∪ {qlim, qh} is the finite set of states with
q0 �= qlim �= qh �= q0 where qlim, qh, q0 are the limit state, the final state
and the starting state, respectively.

• S = {(c, i) | (c, i) ∈ (
ΓN

)3×N} is the storage where Γ is the tape alphabet,
i is the position of the head and c = (c1, c2, c3) is the current content of
the storage. Then, c(j) ∈ Γ3 is (c1(j), c2(j), c3(j)) where ct(j) denotes
the current content of jth cell of the tth tape for t ∈ {1, 2, 3}. The content
of the storage at stage α for ordinal α is denoted by cα = (cα1 , c

α
2 , c

α
3 ).

• δ : Q× S → Q× S is the transition function is a partial function where
any d ∈ δ is in one of the following forms:

– (qk, (c, i), ql, (c, i+1)) is interpreted as moving right where ql �= qlim,

– (qk, (c, i), ql, (c, i−̇1)) is interpreted as moving left where qk �= qlim,
2

– (qk, (c, i), ql, (c
′, j)) is interpreted as writing where the following

conditions must hold:

∗ if qk �= qlim and ql �= qlim then i=j, and c �= c′ implies ct(i) �=
c′t(i).

∗ if qk (ql) is qlim, then i (j) is 0 and c (c′) is determined by the
composition of each ct (c

′
t) where t ∈ {1, 2, 3}:

· ct(x) = cαt (x) for a successor ordinal α, if cαt (x) = cβt (x)
for all β > α, x ∈ N (analogous for c′t(x)).

· ct(x) = cβt (x) = 1 = sup{cαt (x) | α < β} where β is a
limit ordinal, if there are infinitely many γ < β such that
cαt (x) �= cα+γt (x) holds. (similarly for c′t).

• Im : Rm → S is the input function:
Im(x1 . . . xm) = (c, 0) where ∀m−1

k=0 ∀∞j=1c1(m · j − (m− 1 + k)) = xk+1(j)

for x1...m ∈ 2ω is the binary infinite string representation of the corre-
sponding real and xi(n)

is the nth digit of binary string xi.

• Jn : S → Rn is the output function:

Jn

(
(c1, c2, 〈0x1(1)x2(1) . . . xn(1)

x1(2)x2(2) . . . xn(2)
. . . x1(j) . . . xn(j)

. . .〉), i)
)

= (x1 . . . xn) where xn(j)
∈ Γ, j ∈ N+.

2Note that 0−̇1 = 0.
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Input tape: 01101101100. . .

Scratch tape : 00000000000. . .

Output tape: 00000000000. . .

Figure 5.2: Infinite time Turing machine with the tape head on the first cell.

Our tape alphabet Γ will be {0, 1}.We assume all tapes are filled with
zero in the beginning. One should notice from the definitions of input-output
functions that the ITTM computable functions are defined on the Cantor
space (2ω) and therefore on ‘reals’, R. This stands as a direct consequence of
machines ability to manipulate infinitely long strings as input, specially when
the machine is in special state qlim. One might observe from the definition of
input and output functions such that the tape (input/output) convention is
based on placing infinitely long binary strings on interleaving cells. Finitely
represented numbers, or numbers belonging to a proper subset of R in general
e.g. natural numbers can be represented by padding infinitely many zeros
after the number’s unary representation, in parallel to a slight modification of
the original input output functions. In particular one might restrict himself
to a proper subset.3 It should be noted that we have reserved the very first
cell apart from the input/output, in favor of using this cell as a flag in limit
stages. One can surely increase the number of reserved flag cells, up to the
desired purpose.

The machine is initially set to the start state which is q0 where the tape
head is set to the first cell (the leftmost cell). In the diagram below, it is
shown that the tape head of the machine is on the left most cell.

As the definition of transition function says, the limit state can neither
be the starting state nor the halting state and in the limit state, the head is
plugged off from where it currently is, and placed to the top of the first cell
and the content c of the tape t is changed according to the following rules:

• If the content of the cell x converges (eventually stabilizes to 1 or 0),
then the value of the cell remains the same in the limit stage,( ct(x) in
the definition).

• Else it alternates unboundedly often, then the limit cell value is set to
1.

3 For natural numbers, one can modify the input/output functions as follows:
Im : Nm → S is the input function: Im(x1 . . . xm) → (c, 0) where ∀m−1

k=0 ∀xk+1

j=1 c1(m · j− (m−
1 + k)) = 1. Jn : S → Nn is the output function: Jn ((c1, c2, 01

x101x2 . . . 01xn0ω), i)) →
(x1 . . . xn) Note that output function is in ordinary Turing machine convention e.g. having
a zero between each arguments.
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The latter is equivalent to taking the limit superior of the values of the cell.
By this, as we reach limit ordinal stage β, we can also express the successor
steps β + 1, β + 2 following β, or even a new limit ordinal stage β + ω. We
had already defined cα, the content of the storage at stage α for limit ordinal
α. It can also be defined for q ∈ Q in parallel to c,

• q0 = q0,

• qα = qi for qi ∈ Q where α is a successor ordinal,

• qα = qlim where α is a limit ordinal,

• qα is undefined if qβ = qh for β < α.

We may also define it for transition function. Let q ∈ Q and s ∈ S and
superscript α in δα(q, s) denote α many application of δ or its value at the
stage α. We omit the superscript when it is equal to 1. Then

• δ0(q, s) = (q, s),

• δα+1(q, s) = δ(δα(q, s)),

• δβ(q, s) = (q′, s′) if β is a limit ordinal where q′ = qβ = qlim and s′ =
sβ = (c′, 0),

• δα(q, s) is undefined if δβ(q, s) = (qh, s
′) for β < α.

Above, c′ is in turn equals cβ = (cβ1 , c
β
2 , c

β
3 ), denoting the content of all three

tapes at the stage β which is determined according to the rules mentioned
above and also transition function part (writing case) in the machine defini-
tion.

We say that a computation process halts on configuration (q, s) if there
exists an ordinal α (or Ord(α)) such that δα(q, s) = (q′, s′) where q′ = qh. If
at any stage, machine halts (i.e. entering the halting state ), the output of the
computation is the value of the output function on input of what was currently
written on the output tape, when the machine is in state qh. From now on,
we restrict ourselves on single argument on both input/output functions, for
the sake of brevity.

Definition 37. The computing time of a machineM = (Q,S, δ, I, J) on input
x is

tM (x) = min{α | Ord(α) ∧ ∃s.δα(q0, I(x)) = (qh, s)}
where s is the final content of the storage, since qh is the halting state.

The domain of (tM ) is defined as follows

D(tM ) = {x | x ∈ R, ∃α, s : (Ord(α) ∧ δα(q0, I(x)) = (qh, s)}
We take qβ and sβ as undefined whenever tM (x) < β. Therefore, every ITTM
which halts on input x defines a function ITTM -computable function.
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Definition 38. Let M = (Q,S, δ, I, J), the input/output function FuncM of
M is

FuncM (x) = J ◦ I22δtM (x)(q0, I(x)).

The domain of FuncM is defined as,

D(FuncM ) = D(tM ).

It is noteworthy to state that we are assuming every ITTM is represented
by a unique natural number, moreover every natural number represents an
ITTM .4 Let us give some general definitions.

Definition 39. Let M be an ITTM . We say that;

• A partial function f : R −→ R is ITTM -computable if there is an M
such that f = FuncM .

• A set of reals A is infinite time decidable if its characteristic function
χA is ITTM -computable.

• The set A is infinite time semi-decidable if D(FuncM ) = A for an M .

• A set is A is α-decidable if its characteristic function χA = FuncαM ,
where FuncαM (x) = J ◦ I22δtM (x)(q0, I(x)) if tM (x) ≤ α, undefined oth-
erwise.

The first three definitions are in parallel to the ordinary Turing machine
case. However the last one help us to classify computable sets regarding
the length of the computations required, in terms of computation steps. For
instance, restricting ourselves to finite input and time, the class of functions
f : 2<ω −→ 2<ω would be ω-computable whenever it is computable by an
ordinary Turing machine.

Now we will show that focusing ourselves in only countable infinite time
computations will be enough.

Definition 40 (Snapshot). Let M = (Q,S, δ, I, J) be an infinite time Turing
machine, α be an ordinal. Than a snapshot of M at stage α is the tuple
〈δ, x, δα(q0, I(x))〉.

Note that snapshot contains all the information regarding, transition func-
tion (program)5, input, and tape contents and head position (the value of
δα(q0, I(x))) at stage α for that input and transition function.

Theorem 9. Every halting infinite time computation is countable.

4Giving a code to each machine is the same as in the case of ordinary Turing machines.
5Note that what we mean by a ITTM program is just an ordered transition function.
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Proof. Assume that an ITTM with transition function δ on input x runs for
uncountably many steps without halting. We will show that computation will
not halt at all. Take the snapshot of a limit ordinal ω1 stage of its computation,
〈δ, x, δω1(q0, I(x))〉.This information can be coded into a real. Let y ∈ R be
the real code of this snapshot. We will argue that this snapshot actually must
have been repeated earlier at a countable stage, and the computation will
continue to repeat itself forever.

As δω1(q0, I(x)) = (qω1 , (c, i)) where i = 0 follows from qω1 = qlim. If
the jth cell of ck’th tape, cω1

k (j) = 0 where k ∈ {1, 2, 3}, then there exists
a countable stage α < ω1 in which for all γ such that α < γ < ω1, c

γ
k=

0 holds (by the definition of δ). However if cω1
k (j) = 1 then either there

exists a countable stage β < ω1 which is similar to the above case for zero or
sup{cβk(j) | β < ω1} = 1 where ck(j)

<ω1 alternates unboundedly often. Since
the length of the tape is denumerable and N is cofinal6 in R, we can find a
countable stage α0 by taking a countable supremum such that by the stage
α0, every eventually stabilizing cell is just stabilized and the only cells which
keep changing unboundedly often are those which change cofinally often. So
there must be sequence of countable ordinals α0 < α1 < α2 . . . such that all
cells which change after αn, changes at least once by the stage αn+1

7. Let ξ =
supn αn. ξ is a limit stage, therefore δξ(q0, I(x)) = (qξ, (c′, i′)) and qξ = qlim,
hence i′ = 0. Let y′ be the real which codes this snapshot. The cells which
have stabilized before ω1, have stabilized before ξ and the cells alternated
unboundedly often before ω1 have alternated unboundedly often. Therefore
the snapshots 〈δ, x, δω1(q0, I(x))〉 and 〈δ, x, δξ(q0, I(x))〉 are the same, so are
y and y′. Thus, the computation has just repeated itself. Limit stages where
the snapshots repeats unboundedly often will yield the very same snapshot,
thus such computation processes are infinite loops indeed.8

Power of the Infinite Time Turing Machines

Theorem 10. Infinite time Turing machines are hypermachines.

Proof. Consider a well known undecidable problem, namely deciding truth of
any first order arithmetic statement. We will argue that it is infinite time

6Let A be a set and let ≤ be a binary relation on A. Then a subset B of A is said to be
cofinal if for every a ∈ A, there exists some b ∈ B such that a ∈ b. The cofinality cf(A) of a
partially ordered set A is the least of the cardinalities of the cofinal subsets of A. Similarly,
the cofinality of an ordinal α is the smallest ordinal β which is the order type of a cofinal
subset of α.

7Note that αn+1 is not necessarily the successor ordinal of αn
8Note that it is possible that a snapshot of a computation might repeat itself twice even

though it is not in an infinite loop, and it might halt after ω many steps. However, if the
computation is in an infinite loop, snapshot of the two consecutive limit ordinal stage will
be exactly the same. In addition, between these two stages none of the cell which were 0 at
the first limit will ever switch back to 1 while diverged ones keeps altering back and forth.
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decidable. A given arithmetical statement ∀nϕ(n, x) , the machine is able to
check the truth of ϕ(n, x)9 for all possible values of n ∈ N.

The argument used in the proof of the last theorem states that arithmetical
statements are indeed infinite time decidable. However, the power of the
Infinite Time Turing machines even exceeds the arithmetical hierarchy.

Theorem 11. Any Π1
1 (Σ1

1) set is ITTM -decidable.

In order to show this result, we will need to introduce some preliminary
work with the following well known result.

The relation �⊆ A×A where Ord(A) = ω, can be coded by a real x ∈ R
such that

(〈n, k〉)th bit of x =

{
1 if n � k holds,

0 otherwise.

where 〈., .〉 is a bijective pairing function, n, k ∈ A, and WO be the set of
reals such that real x ∈ WO if x corresponds to a well-ordering �. We need
the following fact which is a well-known result.

Fact 2. WO is Π1
1-complete.

By this fact10, since any Π1
1 set is Turing reducible to WO, and any reduc-

ing computable function f should also be computable by ITTM , all we have
to show is that WO is ITTM -decidable.

Theorem 12 (Counting-Through theorem). WO is ITTM -decidable.

Proof. We will describe informally the idea of (hyper) algorithm [15] which
for a given real x , decides whether x ∈WO or x �∈WO. Assume that we are
given x. We use the first cell of all three tapes as flag.

1. Check whether x codes a linear ordering (reflexive, transitive, and anti-
symmetry), e.g. for reflexivity, check for every element a of A whether x
says a � a holds. Transitivity and antisymmetry is analogous. Return
NO if it fails. 11

2. Guess/Search for the next least element of the ordering and write it to
the scratch tape and replace it, every time a new one is found. Turn
the flag cell of the scratch tape to 1 and then 0 whenever we find a new
one. Return NO if the flag cell retains 1 (the machine finds a smaller
one infinitely many time, therefore there is no least element and x does
not code a well order).

9That can be coded by a real, using the Goedelization.
10See [37] or p. 136 of [18].
11NO can be taken as 0 to the output tape and 1 as YES.
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3. When the least element is found (which is the one witnessed in the
scratch tape), delete every of its occurrence from the input tape. In
doing so, turn the flag cell of the input tape to 1 and then 0 every time
a limit stage is reached.

4. Check weather the input tape is empty, Return YES, otherwise repeat
2 and 3.

As searching the least element and deleting its occurrences from the input
tape will yield a new x which is a subset of original x, this will make us
checking its every subset to be well ordered and the input tape becomes empty
gradually, which is the intersection of all subset is what we wanted.

Note that we distinguish limit stages which are limits of limits (compound
limits) as both the input and the scratch tape flag cells retains being 1.

That Π1
1 is infinite-time decidable follows by Fact 2, and the decidability

of Σ1
1 , being the complement set, therefore f also decides Σ1

1. This proves 12.
Obviously, this is the naive procedure, just to expose the computability re-

sult we needed. However, one can get an optimized version. If we just erase one
element each round, and search for the next while erasing the previous, then
for an order type α, the algorithm would take approximately ω+ (ω×α) + ω
many steps. The first ω is for checking linear order, and can also be com-
bined with the first search for minimal element (and thus can be eliminated).
Searching and erasing would take ω×α, which takes ω steps for each individ-
ual element of the order. The final ω many steps is what it takes to recognize
that we are done. So with this procedure, it would take (ω × α) + ω many
steps.

Before proceeding let us define the recursive ordinals as it was defined in
[32].

Definition 41. An ordinal α is a recursive ordinal if there exists a relation
R such that:

1. R is a well-ordering (of some set of integers);

2. R is recursive;

3. and the well-ordering given by R is order isomorphic to α.

By the help of recursive ordinals, we can extend the set of decidable sets
further up the analytical hierarchy.

Definition 42. Let β be a recursive ordinal coded by some recursive relation
E on ω. Then A is said to be β − Π1

1 whenever for each α ≤ β there is a set
Aα with Aβ = ∅ such that,

{(k, x) | x ∈ A|k|} ∈ Π1
1 (5.1)
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|k| denotes the order type of k w.r.t. E and

A =

{
x | ∃α < β

(
odd(α) ∧ (x ∈

⋂
γ<α

Aγ \Aα)
)}

(5.2)

where odd(α) if and only if α is of the form α+2n+1 and even(α) if ¬odd(α),
for α is a limit ordinal or zero and n ∈ N.

That class of sets extends beyond Π1
1 obviously, however one can still

extend it by allowing more complicated relations of E.

Definition 43. We say that x ∈ R is writable if there exists an ITTM such
that δα(q0, I(0)) = (qh, s) where α is the length of the computation, and s is
of the form ((c1, c2, x), i).

Informally speaking, we expect a real x to be writable if there exists an
infinite time Turing machine with input 0, halts with x is written on the
output tape.

Definition 44. An ordinal α is writable if there is a writable real which codes
it.

Theorem 13. if β is a writable ordinal, then every β −Π1
1 set is decidable.

Proof. Assume that A is β − Π1
1 where β is writable ordinal. Consider an

algorithm such that, first fills up some part of the scratch tape with E encoding
β, which is used in turn as an input for an Π1

1 algorithm (recall theorem 3
which says Π1

1 is decidable) in order to constructs the set {(n, x) | x ∈ A|n|}
(by making a list of the numbers n with the property that the input x is in
A|n|. Finally, by counting through (using the same fashion in Theorem 4) the
relation coding β, the algorithm searches for an odd ordinal α < β such that
x ∈ ⋂

γ<αAγ \Aα.

In the sequel, we will try to put a limit on the complexity of ITTM -
decidable sets. Recall that a snapshot of an infinite time Turing machine is
complete description (transition function, input , all current tape contents
and the head of the position) of its computation, on the corresponding stage,
which is determined by machines transition function. We will call that a
transfinite snapshot sequence accords with the transition function δ if every
successive snapshot is obtained by the computation according to the previous
snapshot, and the limit snapshots are obtained from the earlier ones. We say
that a snapshot according the transition function is settled if the last snapshot
belongs to a halting state or repeats and earlier snapshot.

Theorem 14. G be the graph of a ITTM -computable function, then G ∈ Δ1
2.

Therefore, every decidable set and semi-decidable set is Δ1
2.
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Proof. Suppose f(x) = y be a function where f = FuncM for some M . Let �
be a well-ordering relation defined over snapshots where the following (possibly
transfinite) sequent

〈δ, x, δα(q0, I(x))〉 � 〈δ, x, δα+1(q0, I(x))〉 . . . � 〈δ, x, δβ(q0, I(x))〉, (5.3)

corresponds to the computation process of FuncM (x) then there exists a se-
quence of corresponding reals

rα < rα+1 . . . < rβ , (5.4)

coding the snapshots, (S,�) being order-isomorphic to (R,<) where R ⊆
R and S is the set of snapshots.(Recall that every halting computation is
countable.) Now observe that FuncM (x) = y iff there is a real z coding
the well-ordered real sequence according to M on input x with output y.
Therefore by ∃z∀x∃yFuncM (x) = y, graph of f is Σ1

2. Recall that every
supertask computation either halts or repeats itself in countably many steps
(which is rα = rβ for some α). Therefore we only need to consider settled
sequences such that FuncM (x) = y iff every real z′ coding a well-ordered
real sequence according to M on input x shows that output as y, which is
∀z′∃y∀xFuncM (x) = y in turn means graph of f is also Π1

2, implies that
Δ1

2.
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CHAPTER 6
Physical Hypermachines

In this section, we will deal with two (possible) physical models of hypercom-
putation. The first model will be based on relativity theory. We will investigate
few scenarios, which will help us to understand ”how the gravitational force
can be used to manipulate time to let us to compute more than normally we
can”. And the second model, namely the quantum circuits, will be taken as a
candidate for weak hypercomputation, as it might (possibly) help us to solve
an intractable problem in polynomial time.

6.1 Relativistic Models

Introduction

Recall that the theory of Infinite Time Turing machines that we mentioned in
previous section, was of no concern regarding the practical usability. In this
section, we will mention some approaches which can be regarded as physical
counterpart of Infinite Time Turing machines.

Notice that the understanding of the concept of time which classical com-
putability theory or complexity theory has, is nothing counterintuitive to our
daily understanding of time. Furthermore the understanding of simultane-
ous and infinite (amount of time) in those fields is also intuitive. What we
are interested in such fields is not the unit of time which we may choose
and eventually may or may not correspond to the real time measurement
units (i.e. minute or year) but rather an understanding regarding time deal-
ing only with what comes first, what comes next and what takes longer (by
means of the implicit time unit). Therefore Church-Turing thesis implies this
sort of understanding of time, however time (as well as space) is relative and
can be manipulated by gravity according to the theory of General Relativ-
ity of Einstein, a widely accepted mathematical theory of physics which is
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also confirmed by various experimental evidence. Therefore the question of Is
hypercomputation physically possible? is naturally regarded as a question of
physics, hence the answer should consider the related accepted physical theo-
ries as granted.

The approaches which we will mention in this section, are thought exper-
iments 1 sharing at least one common point; all of them use time dilation
implied by relativity theories (special and general), in order to dilate the time
big enough at a particular point of space, relative to another point, so to say
to infinite such that carrying out a supertask becomes possible at one point,
according to the other point. Thus we call them relativistic models. We refer
the reader to [16] for basic knowledge on the theory of General Relativity.

Performing Supertasks in Spacetimes

Itamar Pitowsky was the first who sets up thought experiments (in [29]) to
show how we can perform supertasks in spacetime. Let us introduce his sce-
nario.

Let us assume that we have no restriction on space, and that our only
concern is of time. Suppose that a mathematician, Alice wants to give an
answer to Whether or not, π’s decimal expansion has seven consecutive 7s?,
so-called Wittgenstein’s problem. Obviously answering such a mathemati-
cal problem might require a supertask to perform. 2 While Alice leaves her
students to calculate the decimal expansion of π on earth, she gets in a tech-
nologically highly advanced satellite orbiting around earth, such that it has
the capacity of staying in a fixed orbit while boosting its tangential velocity
V (t) = c(1− e−2t)1/2 where t is the Earth’s time scale, c is the speed of light.
This is a set-up regarding special relativity. We calculate the time dilation in
special relativity by the formula,

Δt′ = γΔt (6.1)

where Δ′ (proper time) is the time interval between two events happening
at the same place, measured by the inertially moving observer, Δt is the
measured time interval of the other observer and γ = 1/

√
1− ν/c2 is called

the Lorentz factor where ν is the relative velocity of the moving observer to
the other, c is the speed of light. If we substitute ν by V (t) in the Lorentz
factor and name it as τ , then τ is the satellite’s local time scale, and then the
infinitesimal time interval dτ would be e−tdt. From this,

dτ = e−tdt (6.2)

1Since we are not technologically advanced enough to check the given scenarios experi-
mentally.

2If somehow we were lucky that we observe such a string of seven consecutive 7 without
performing a supertask, we can simply replace it by a question regarding observing a string
which includes seventyseven consecutive 7 which might convince one requiring a supertask.
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we can take integration on both side, we get

τ =

∫ ∞

0
e−tdt = 1 (6.3)

which means that one second passing in satellites time scale does correspond
to eternal time in earth’s time scale. Therefore Alice has enough time to learn
the answer.3 As her students remained on earth to calculate π and send her
the answer by signaling (photon), if they encounter seven consecutive 7. 4

Therefore, Alice have to wait just a second once the satellite reaches the re-
quired speed, and if she gets no signal she will stop the satellite and detach
herself knowing that answer is no, or she will get a signal in one second. Note
that Pitowsky sets up two things nicely in the scenario such that first V (t) < c
which is appropriate that nothing is faster than the speed of light up to general
relativity and second the integration of the formula gives you a simple result.

Pitowsky thought that his story was impossible because such an operation
might need an infinite amount of space. Even though Einstein’s Field Equa-
tions do not imply that the material universe must be finite, most physicists
believe that it must be finite. 5 However that is not true for the supertask
we have presented, since it is known that it is possible to compute just the
nth digit of many transcendentals in almost linear time and logarithmic space
(see [6]). 6

We might have some objections to Pitowsky’s argument from real world,
as one of them might be a natural astrophysical argument such that earth last
not forever as even stars wouldn’t. Not this one, but two objections against
Pitowsky’s argument has been raised by John Earman in [10]. First, since the
acceleration of the satellite is enormous (simply by taking the derivation of the
V (t) up to dt, which is et/

√
1− e−2t) such that any human being who would

be exposed to an enormous gravitational force would be crushed. Therefore
it is possible that Alice might never know the answer. And before mentioning
the second, let us give the formal definition Earman gave in [11] for what we
call Pitowsky Spacetime.

Definition 45. A pair (M, g), where M is a connected four-dimensional
Hausdorff C∞ manifold and g is a Lorentz metric, is a Pitowsky spacetime if
there are future-directed timelike half-curves γ1, γ2 ∈ M such that

∫
γ1
dτ =

∞,
∫
γ2
dτ <∞ and γ1 ⊂ I−(γ2).

3It is one second since c is given in km/s.
4Wemay imply simply by her students, her students and their students and their students

etc. through the eternity.
5Since even the most dense objects which is observed so far; black holes, have finite

masses (A super-massive black hole has 105 to 109 times mass of Sun).
6 Pitowsky was not wrong in thinking so because his paper dates back to 1990, the

argument he had used as supertask was testing of Fermats Last Theorem since truth was
not known until 1995, a revealing proof was given by Andrew Wiles.
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I−(γ2) is called chronological past which is the collection of all past events
of γ2. Half-curve means that there is a certain point of past event where there
is no event before that event, along the curve. γ2 corresponds to Alice and γ1
corresponds to her students.

The second objection is based on the ”fact” that Alice eventually will know
the answer. However if the answer is negative, it means she will not get any
signal. There is no definite moment point of when she will get the message
(according to the definition above, since

∫
γ2
dτ < ∞ does not determine a

certain point over the curve), hence the absence of a signal does not necessarily
mean for her to believe that the message will not be sent. Therefore she might
think that it has not arrived yet. To avoid such objections, David Malament
and Mark Hogarth defined an alternative space time structure which differs
slightly.

Definition 46. A pair (M, g), where M is a connected four-dimensional
Hausdorff C∞ manifold and g is a Lorentz metric, is a Malament-Hogarth
spacetime if there are future-directed timelike half-curve γ1 ∈ M and a point
p ∈M such that

∫
γ1
dτ =∞ and γ1 ⊂ I−(p).

As one may notice that, there is no reference to γ2 in that definition,
therefore no direct reference to our mathematician Alice. However there is
a future directed timelike curve γ2 from a point q ∈ I−(p) to p such that∫
γ2(q,p)

dt < ∞, where q can be interpreted as the event which the signal is

sent (therefore q lies in the casual future of the past endpoint of γ1), and p is
the point where the receiver must get the signal. Hence fictional Alice would
know that she has to have the signal at p, if it has been sent already, therefore
she would know that no signal means the answer (of the supertask problem )
is negative.

In [11], Earman notes that , this setting is satisfactory to effectively decide
on membership of a recursively enumerable but non-recursive set of integers.
The reason why Malament-Hogarth spacetime allows supertask lies under the
following technical result. We refer reader to [16]. As we will not define global
hyperbolicity formally, we will not enter the full technical details of the result,
thus we take it as a granted fact. It might be useful however to give an
intuition such that one might keep in mind in a simple sense as a spacetime
being globally hyperbolic means each event is timelike related. In a not globally
hyperbolic spacetime, this feature does not necessarily hold, therefore events
may not related to each other by cause and effect.

Fact 3. A Malament-Hogarth spacetime is not globally hyperbolic.

As we do not give the original proof, we refer reader to [11]. However, one
simple argument is that if a spacetime (M, g) is globally hyperbolic and p, q are
timelike related, then there exists a longest timelike curve connecting them.
However by definition, there is a p such that γ1 ⊂ I−(p) and

∫
γ1
dτ = ∞,
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Figure 6.1: An example of demonstration for Malament-Hogarth spacetime.

∫
γ2(q,p)

dt <∞ can be longer than any finite candidate chosen between q to p,
which would yield a contradiction.

Now let us give a hypercomputer construction, that Shagrir and Pitowsky
presented in [27]. Let the machine H be a pair Ta and Tb of two communicat-
ing computers via Morse-like alphabet signaled by photons. Ta is allowed to
move only over the curve γ1 and Tb’ is placed initially on the future directed
timelike curve which goes from the point q over γ1 to p. It takes, Ta to go
along all γ1 infinite time, while Tb goes from q to p in a finite time, say, 1 day.
H works as follows. Computer Tb is a universal computing machine such that
computes the Turing computable function f(n) is defined as what nth Turing
machine outputs as it halts on input n, undefined otherwise. Now h(n) be the
halting function defined as 0 if f(n) is undefined, 1 otherwise. Obviously, H
computes h, as Tb’sall infinite path travel along γ1 while computing f(n) will
be under Ta ’s past once it reaches p (i.e. γ1 ⊂ I−(p)).

Naturally there are objections against the feasibility of the system. First Tb
requires infinite memory, which in turn makes H physically impossible. One
response is there are space-times (e.g. Reissner-Nordstroem) which allows
spatial infinity [16], which is an instance of Malament-Hogarth spacetime. A
second response is Turing machines themselves are using infinite tape. There-
fore, excluding infinite storage is a misleading argument against computing
halting function by means of classical computability theory. Another rather
philosophical objection was on the nature of computation such that a Tb com-
ponent of H as never halting, can not be classified as a machine computing
computational task, which also can be applied to Infinite-Time Turing ma-
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chines. However that is not serious since there is a system component Ta)
which allows to decide the halting function, (or limit state in Infinite-Time
Turing machines). A rather meaningful objection is against H’s being a com-
puting device in the sense that, in such a case one can not stop Tb working
on f(n) being undefined and thus the system or H is not re -usable. This be-
haviour might exhibit a point of view that a particular machine H might not
be regarded as in strength of computing h, however it still computes something
that an ordinary Turing machine can not. Which is our original definition of
hypermachine is based on.

Black hole computation

Black holes as being one of the most mysterious yet the most popular object of
popular science books, perhaps it is not a big surprise that we encounter those
exotic objects in the field of hypercomputation. In this section we will give a
brief understanding of the nature of black holes as it will become easy for one
to imagine thought experiments allowing hypercomputation eventually. Then
we will discuss some alternatives on using black holes gravitational power on
computing incomputable functions. As generally well known, black holes are
the most dense objects with huge masses which curves the spacetime around
them in extreme, such that even light the fastest traveling object in universe
(according to Einstein’s relativity) can not escape from their enormous gravi-
tational power. Therefore we do not see them and name them as Black holes.
A natural question might be how much velocity an object might need to totally
escape from another objects gravitational force?. The answer is the formula
which determines escape velocity7 :

νe =

√
2GM

r
(6.4)

where G is the universal gravitational constant, M is the mass of the body
which is the center of the gravity and r is the distance from the center of the
gravity. Black holes are of no exception, by the formula we wrote above we
can derive8 a formula which tells us what is the radius (independent of mass)
that a body needs to that even light cannot escape:

r =
2Gm

c2
(6.5)

This formula tells us what should be the radius of a body of given mass, such
that technically it turns out to be a black hole. One may find it by the formula
such that one has to squeeze it to a radius of 3km for a body which is equal

7This applies to spherically symmetric objects and derives by the idea of the kinetic
energy should be equal to gravitational force (Newtonian) in order to escape: 1

2
m(νe)

2 =
GMm

r
.

8By pulling r.
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to Sun’s mass and 9 × 10−3m for the Earth to get a black hole. 9 This is
the intuition behind how a matter should be dense in order to become a black
hole and bend the spacetime in a way that it exhibits absurd nature to our
understanding.

The gravitational force that black holes exhibit are nothing special but just
a result of the general law(s) that Einstein’s theories imply. Roughly stating
the basic idea: mass tells spacetime how to curve and spacetime tells mass
(matter) how to move.10 The mathematical toy that allow us to make accurate
conclusions and meaningful assertions about the nature and geometry of the
space and time (in big scale), is nothing but a particular solution of Einstein’s
Field Equations [16], which is called metric (due to the convention and naming
is an element of the fields topology and differential geometry). Here we give a
solution which is called the Schwarzschild metric; a general solution for outer
part11 of any symmetrically distributed spherical mass, admitting the simplest
(non-rotating, non-charged) black hole model, namely the Schwarzschild black
hole. The Schwarzschild metric is given as follows,

dτ2 =
(
1− rs

r

) dt2
c2

−
(
1− rs

r

)−1 dr2

c2
− r2(dθ2 + sin2 θdϕ2)

c2
(6.6)

where τ is the proper time (the time measured by the moving observer) rs =
2GM
c2

is called the Schwarzschild radius withM is the mass of (any) black hole
(that we calculated previously as r), where, c is the speed of light in meters per
second, t is the time coordinate in seconds according to our reference of frame
(assumed to be stationary at infinity), r is the radial coordinate in meters (the
distance from the black hole’s mass for positive values), θ is the colatitude in
radians, and ϕ is the longitude in radians.

We will only make a simple case analysis over the Schwarzschild metric,
which in turn will tell us more about the behavior of a black hole or namely
a Schwarzschild black hole. First, the term (dθ2 + sin2 θdϕ2) is the metric for
unit sphere, which is used to deal with the angular position of the observer.
It will not be of our concern. For the sake of simplicity, let us name it Ω and
furthermore take c = 1. The whole metric will look like as follows.

dτ2 =
(
1− rs

r

)
dt2 −

(
1− rs

r

)−1
dr2 − r2(d2Ω) (6.7)

The term
(
1−rs
r

)
dt2 stands for time (since it stands for the change in t; consists

of dt2) where as
(
1− rs

r

)−1
dr2 is its space analog. Notice that they have

opposite signatures.12 So whenever dτ2 becomes positive, we say that what our

9Values taken are for Sun’s mass= 1.9891× 1030kg and Earth’s mass= 5.9722× 1024kg
according to Nasa’s website: http://nssdc.gsfc.nasa.gov/planetary/factsheet/.

10This quote is due to the American physicist John Archibald Wheele.
11By outer part, we mean the region which is left beyond the surface.
12Note that this is due to the spacetime signature. For details see [16] and [19].
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metric measures (spacetime interval13) is timelike and if negative, we say that
it is spacelike. Importance of this concept lies behind knowing that one can
communicate only in timelike intervals (due to the speed of light limitation),
which means change in distance in any time unit should be smaller than the
distance measured by the light travel per the same time unit (e.g. a light year
which is the distance a light photon takes in one year).
Let us make case analysis for critical cases. One of them is r > rs in turn
means rs = 2GM → r (rs/r goes to 0). Two cases is possible:

• either M → 0 which means our black hole has no mass (i.e. completely
evaporated or disappeared) therefore no gravitational effect14

• or r → ∞ which means that the object is infinitely far (whatever that
means) from the mass of the black hole, such that again no gravitational
force applies.

The other critical case is when r < rs where object is inside the event horizon
which causes (1 − rs/r) < 0, therefore dr term becomes positive, and dt
term becomes negative, which means the interval is totally spacelike, and
hence one cannot communicate or travel, this brings us to basic principle of
black holes which is one crosses the event horizon cannot get out. An object
which falls through the event horizon ends up its journey in singularity where
theoretically speaking, density becomes infinite (end of time). Another and
the final critical case is that r → rs (from up), which means that the object
gets close to the event horizon such that rs/r → 1 has two consequences:

• dr term gets big,

• dt term gets small, which is interpreted as time dilation.

Therefore we say that all intervals become gradually spacelike, and ends up
with as there was no timelike interval anymore such that one cannot commu-
nicate or travel (as in previous case). Just as a matter of interpretation, it is
said that space and time replaces one another. This is called space and time
reversal.

13Spacetime interval is the measure of distance between two events, in terms of time and
space.

14The metric becomes the one for flat like.
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Figure 6.2: The observer and the computer on Schwarzschild blackhole,
according to Kruskal coordinate system.

The figure above is an abstraction of Kruskal coordinate system for the
Schwarzschild black hole, where so-called hyperbolae represents time-like curves,
so an object which stands still in space moves along the hyperbola in upward
direction (which is the direction of time future-directed). x-axis is r-like how-
ever it does not correspond to r itself. This is due to such Kruskal coordinate
system has its own metric, however one can prove that the Schwarzschild met-
ric can be reduced to the Kruskal metric, where the Schwarzschild metric is
represented in terms of the Kruskal metric (see [16]). Therefore one can say
that the geometric behavior is similar. The event horizon is denoted by the
inclined straight line which has the angle 45◦ degree with the x−axis. This
corresponds symbolically to the speed of light (according to the origin; the
intersection of x and t). One might notice that with its lower counterpart
(45◦ in reverse direction from the x-axis) covers the region which is called the
known past.
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The analysis of the Schwarzschild metric regarding the (Schwarzschild)
black hole, might already have created some intuition, in reader, of how to
build a physical process or set up which allows hypercomputation, (at least) in
terms of a thought experiment. Consider the following scenario.

Assume that we have two communicating parties, one which makes the
ordinary computation, say, a computer initialized to perform a supertask and
sends a signal (in forms of photon(s)) to the other party if itself finds an an-
swer15, and the other, an observer (e.g. a human or a photon detector device)
which will observe the computer, and finally will come up with the answer
yes or no (in the absence of a signal) to the question regarding supertask. At
that point, it must be clear that we are only interested in one-way communi-
cation, as observation is a matter of photon detection. We assume that the
computer, is located in a constant far distance from the black hole 16, thus,
the gravitational effect which is exerted over the computer, will be negligible.
The observer have to be located somewhere near to (or over) the event hori-
zon in order to exhibit time dilation, necessary enough for the computer to
perform the supertask, namely infinite. In another words, as the distance be-
tween the observer and the event horizon decreases, the clock (hypothetical)
of the observer will run slower (compared to the one, which is of the com-
puter), hence we look for somewhere, which makes the clock of the observer
totally frozen relative to the clock of the computer. And there is exactly the
point r = 2GM which is over the event horizon (recall dt term becomes zero
and hence the time is relatively frozen). Following is the illustration of the
described scenario.
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Figure 6.3: The scenario which the observer is over the event horizon.

15This regards to the answer which is classically computable part.
16As solar system orbits around the super-massive black hole which is the center of Milky

Way Galaxy.
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There are two problems of feasibility one has to deal with this approach
of Schwarzschild black hole. First the enormous tidal forces emerge as one
reaches the event horizon, would crush any being or device we could build
today i.e. spaceship which the observer would planted in. Orbiting over event
horizon is equally impossible even if we presume that we have such an ad-
vanced technology to build such spaceships with enough throttle power to
hover over the event horizon, since it would require to move faster than light
(check [16]) which is forbidden as the theory of relativity stipulates. Tidal
forces of the event horizon can be avoided as one chooses a sufficiently big
black hole, however, the biggest black hole observed so far, is even not big
enough to avoid tidal forces as it is needed. One possibility to overcome this
issue, is to use a small scale detection mechanism (e.g. a quantum circuit).
The second, is the singularity. As the observer crosses the event horizon (
presumably endured against the tidal forces of event horizon), has no other
way but gets dragged into the singularity (the center of the black hole) with
the speed greater than or equal to the speed of light. Hence, it is not guar-
anteed that the observer will ever get the message which the computer sends,
as there is no chance to survive (by means of not to lose its identity) once it
reaches to the singularity.

To achieve a thought experiment which allows hypercomputation with-
out such consequences, as it is employed in another black hole model in [24],
what is called the Kerr black hole.17 that any accelerating observer cannot
keep its position static no matter how much acceleration it has, such that it
moves along the rotating axis. As it should be clear from the context that,
this black hole model comes as a result of another spacetime which is defined;
Kerr spacetime, which in turn means another exact solution of Einstein’s field
equations; the Kerr solution.

We will explain why this model works, by introducing the different charac-
ter of Kerr black hole. However, we will not mention the Kerr metric formally,
since the very idea is just a variation of Schwarzschild metric along with the
depth of the extra technical details are irrelevant to our main focus which is
hypercomputation. We refer the interested reader to [24].

The Kerr black hole is a rotating black hole. Considering most of the
observed celestial bodies rotate, astrophysicists believe that the Kerr solution
reflects the reality more likely, compared to the Schwarzschild solution. As a
consequence of its rotation, the Kerr black hole has two event horizon instead
of one (as it was in the Schwarzschild black hole), which are the outer event
horizon and the inner event horizon. The outer event horizon just behaves as
the event horizon of the Schwarzschild black hole, i.e. it flips the time to the
space. Besides, due to the black holes rotation, it also denotes the boundary
that any accelerating observer cannot keep its position static no matter how
much acceleration it has, such that it moves along the rotating axis. However,

17Named after New Zealander mathematician and astronomer Roy Kerr.
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the inner event horizon flips space to time back, such that one becomes able
to move again in a timelike curve, through the singularity. The singularity is
also different in the Kerr black hole, which forms no more of a point shape,
but rather a ring shape. This is a subtle point in choosing the Kerr black
hole for realizing a supertask, such that observer might be able to avoid the
singularity by determining its route and angle of its fall (since it will be in a
time like spacetime geometry inside the inner event horizon).18 This creates
a counter argument against the inevitable final crush of the falling observer
by the singularity in the Schwarzschild black hole This also implies that the
observer to get the signal sent from the computer before it hits singularity.

The region remains between the inner and the outer event horizons, is
called the ergosphere. Quite expectedly, one cannot leave ergosphere by cross-
ing the outer event horizon back. The circumference of the outer event horizon
and inner event horizon decreases as the angular momentum of rotation in-
creases. That is the reason that a black hole has been chosen to be massive and
slowly rotating in [24], so to speak, to save the falling observer from enormous
tidal forces. The following figure is taken by [24], is a schematic representation
of the falling of the observer in the Kerr black hole.

Figure 6.4: The route of an observer falling into a Kerr black hole.

In the three dimensional diagram above, z is the axis of rotation, P is the
free falling observer, e and b are the points where observer enters the outer

18Technical details are in [24].
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and the inner event horizons of the black hole, respectively.

6.2 A possible physical case for Weak
Hypercomputation

In this section, we will push a well known computational model, so called (clas-
sical) quantum computation, as a serious challenge to Weak Church Turing
thesis.

Shor’s Order-Finding Algorithm

In this section, we will consider a problem which is yet believed to be in-
tractable classically ; however a tractable solution exists in quantum compu-
tation literature. The order-finding problem may be defined as the following:

Definition 47 (order-finding problem). Suppose that a and N are positive
integers, with a < N and having no common prime factors. The least positive
integer r satisfying ar = 1(modN), is said to be the ‘order’ of ‘a modulo N ’,
and the order-finding problem is to find the order for a given a and N .

It is believed that there is no algorithm solving the order-finding problem
which is polynomial in the size of problem specification O(n), where n is the
number of bits needed to encode N completely.

It is well-known that quantum computers are indeed quantum circuits and
it is also known that for any chosen Turing machine, there exists a quantum
computer which it corresponds [9].

To show that todays quantum computers are indeed relevant candidates for
weak hypercompuation, we will show that the order-finding problem (a likely
intractable problem) can be solved (polynomially) using phase estimation (See
Appendix: Quantum Computing) combined with some extra arrangements.
Therefore, the circuit is a weak-hypercomputer if the order-finding problem
is classically intractable. The key idea is to apply phase estimation to the
following unitary operation.

Ua,N |x〉 = |ax〉 (modN) (6.8)

where x ∈ {0, 1}n .19

What might be the eigenstate of Ua,N |x〉? 20 For sure there can be in
many forms; however, considering the following one might give us a little
insight on finding the order r using phase-estimation:

19Note that without considering the case N ≤ x < 2n our definition of the operation
would be inconvenient, so in that case, for simplicity Ua,N |x〉 will be taken as x.

20Recall that |φ〉 is an eigenstate for a unitary operator U if U |φ〉 = v |φ〉.
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|ψj〉 = 1√
r

r−1∑
k=0

e−2πijk/r
∣∣∣akmodN〉

(6.9)

We can show that |ψj〉 where 0 ≤ j < r are eigenstates of the operator Ua,N
as follows 21,

Ua,N |ψj〉 =
1√
r

r−1∑
k=0

e−2πijk/r
∣∣∣aka modN〉

(6.10)

=
1√
r

r−1∑
k=0

e−2πijk/r
∣∣∣ak+1modN

〉
(6.11)

=
1√
r

⎛⎝e0 ∣∣a1modN〉
+ . . .+ e−2πij(r−1)/r |armodN〉︸ ︷︷ ︸

1

⎞⎠(6.12)
=

e2πij/r√
r

(
e−2πij/r

∣∣a1modN〉
+ . . .+ e−2πijr/r |1〉

)
(6.13)

= e2πij/r |ψj〉 (6.14)

In order to be able to apply phase-estimation, we need both to find a way
to prepare an eigenstate in form of |ψj〉 which will correspond to an eigenstate
in the phase estimation circuit, and to implement Ua,N which will correspond
to the controlled gate. For the former, note that such an eigenstate will be
enough, since it doesn’t change even if we had to apply the phase estimation
procedure several times. Recall that our main aim was to find the order r, and
it looks like we need to know r first to prepare the state |ψj〉, unfortunately.
Here is a very tricky observation which allows us to proceed,

1√
r

r−1∑
j=0

|ψj〉 = |1〉 . (6.15)

Why is that so?(Exercise 5.13 of [25]) It actually follows from the basic inner
fact which is

r−1∑
j=0

e−2πijk/r =

{
0, if k �= 0

r, otherwise
(6.16)

Therefore it becomes,

21Following derivation is just a complete extraction of the shortcut statement 5.38-39 in
[25].
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1√
r

r−1∑
j=0

|ψj〉 =
1√
r

r−1∑
j=0

1√
r

r−1∑
k=0

e−2πijk/r
∣∣∣akmodN〉

=
1

r

r−1∑
j=0

r−1∑
k=0

e−2πijk/r
∣∣∣ak modN〉

(6.17)

=
1

r
r
∣∣a0 modN〉

= |1〉

Hence, this - running phase estimation on |1〉- gives us the ability to run
the phase estimation (assuming we have Ua,n) as if we had used any randomly
selected |ψj〉 from {|ψ0〉 . . . |ψr−1〉} in it. So that with the measurement, the
output we will get in the first register of our circuit will be k/r which corre-
sponds to the estimated phase.

|j〉 / H⊗n • FT−1

��

��� k/r

|1〉 / Ua,N |1〉

(6.18)

Before coming up with the answer regarding the question of How can we
pull out r from k/r?, let us deal with another problem which has higher
priority which is: to implement Ua,N .
We would like to have such a transform as below:

|z〉 |x〉 → |z〉 |azx(modN)〉
= |z〉

∣∣∣az120 × . . .× azn2
n−1

x(modN)
〉

= |z〉U20

a1,N . . . U
2n−1

an,N |x〉 (6.19)

= |z〉Ua,N |x〉
(6.20)

where |z〉 is the state for the first-register bits (n-many), and controlled U2j−1

aj ,N

is the gate corresponds to j-th bit of |z〉. As it can be seen, Ua,N might be
formulated as taking the modular exponentiation of the content of the second
register. This operation can be done by a quantum circuit with O(n3) in the
size of resource n. Please see the appendix (quantum computation) for further
details.
Let us turn back to the problem of getting r from k/r. We know that it is an
approximation and if we were able to compute the nearest rational number,
by reducing it to a irreducible extent, we might get r. Hopefully, there is an
algorithm which does the job, so-called the continued fraction algorithm.
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The Continued Fraction Algorithm

We will explain the algorithm informally. In order to write x ∈ R in continued
fraction form we first split it in the form of

x = a0 + y0 (6.21)

where a0 ∈ Z+ and y0 ∈ [0, 1) and then inverting y0 part as a fraction (if

y0 �= 0), which in turn becomes x = a0 +
1

a1 +
1

y1

where a1 + y1 =
1

y0
. So

we repeat the same process for every new non-zero22 y we get (which is the
sequence y1 . . . yn for n many operations) and get x which is in the form of:

x = a0 +
1

a1 +
1

. . . +

...

an−1 +
1

yn

(6.22)

where an−1 ∈ Z+, yn ∈ (0, 1]. If this is the supremum, then it means yn+1 is
zero, so we stop and yn becomes our an. In brief, what we need to get the
supremum of the continued fraction for x ∈ R is the following two rules:

i) x = a0 + y0,

ii) yi =
1

ai+1 + yi+1
where a0 . . . ai+1 ∈ Z+ and y0 . . . yi+1 ∈ [0, 1).

The finite sequence [a0, . . . , an]
23 obtained by using the procedure explained

above is called nth convergent of the continued fraction. Associating the real
number x to the nth convergent (for desired possible n), is called continued
fraction algorithm. About the complexity of the process; real x = k/r as a
fraction of k and r, each being n-bits integer, it would take O(n) steps to split
and invert, each requiring of O(n2) many gates to carry out the arithmetic
operations, would make O(n3) in total.
Regarding the

Quantum Order Finding Procedure

1. |0〉 |1〉
22We stop as our new y becomes 0, not surprisingly.
23It is trivial to show it since (numerator in yi) > (numerator in yi+1) which is strictly

decreasing.
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2. =⇒ 1√
2n

∑2n−1
j=0 |j〉 |1〉 (creating superposition: O(n))

3. =⇒ 1√
2n

∑2n−1
j=0 |j〉 ∣∣ajmodN〉 ≈ 1√

r2n

∑r−1
j=0

∑2n−1
k=0 e−2πijk/r |j〉 |ψk〉

(applying Ua,N : O(n3))

4. =⇒ 1√
r

∑r−1
k=0 |̃k/r〉 |ψk〉 (applying inverse transform to the first register:

O(n2))

5. =⇒ k̃/r (measuring first register O(n))

6. =⇒ r (applying continued fraction algorithm : O(n3))

Thus the running complexity of the whole algorithm is polynomial in the
size of O(n).
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CHAPTER 7
Possible Improvements

In this thesis, we tried to investigate few models of hypercomputation to some
degree. While some of the models were completely from the mathematical
domain, and some others were purely from theoretical physics. It would be a
nice improvement to be able to present all of them in the perspective of the
same general framework. Nevertheless, there were two physical models which
escaped from that purpose; quantum computers and relativistic models.

• Black hole computation: it would be interesting to represent the inter-
action of the observer and the computer as the whole computer system.
What one has to do (probably) is, to extend the general machine frame-
work via relative time concept. The machine has to be defined from the
angle of the observer. Assuming that computer sends signals per time
unit (according to computers reference of frame), observer can calculate
his distance to the event horizon, and the time difference with the com-
puter, using the metric. Note that such working success of such model
would be exempted from a particular model of black hole.

It could also be interesting to mention the stronger models of relativistic
machines: SAD machines, and to investigate their computational power. It
would be good to show, whether they can decide analytical predicates, or if
not, why can it not simulate an Infinite Time Turing machine. And to see in
which level current physical theories allow us to build such theoretical phys-
ical models. In general, another improvement which can be done, would be
to investigate interrelation between purely mathematical models and physical
models, under computability point of view. This would reveal some possi-
ble answers to the question which models of hypercomputation might be more
general than the other?, or which model can simulate the other under which
circumstances?
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It would be good to mention some applications of the infinite time Turing
machines to set theory and higher recursion theory, establishing they are not
just toy models, but intuitive tools help us to continue mathematical research.

This text is by no means a complete reference for background information
on any of the subject represented, rather is a specific information or brief
introduction including necessary information to understand the related parts
belonging to the body of main work.
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APPENDIX A
Quantum Computation

A quantum computer is a physical system based on quantum mechanics, ac-
cepting quantum states as inputs which are to represent a superposition of dif-
ferent possible states and outputs a superposition of another set of states which
is evolved subsequently by unitary transformations or so-called computation.
Transformations may affect each element of a superposition simultaneously,
exposing dramatically efficient computational power on solving some problems
which are believed to be intractable in classical computation paradigms [35].

It must be noted that, by the term quantum computer we refer to some
class of quantum circuits or family of quantum circuits built by quantum logic
gates.

Before start to explain quantum computers, let us introduce the Hilbert
space (finite dimensional) the mathematical universe where a quantum com-
puter works.

A.1 Qubits

Single Qubit

The quantum bit or qubit is the fundamental concept where the quantum com-
putation and quantum information theory are based on, is just the quantum
mechanical dual or counter part for the classical concept ‘bit’ wherein the
classical computation and information theory are based upon.

In contrast to its classical counter part which might have either the value 0
or 1, a qubit can be in states |0〉, |1〉 or another one; the continuum in between
which is called superposition which can be expressed as a linear combination
of states |0〉 and |1〉 as follows,

|ψ〉 = α0|0〉+ α1|1〉, (A.1)
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where α0, α1 are complex number amplitudes for |0〉 and |1〉. “| 〉” is called
the Dirac notation. The state of a qubit is a vector in a two-dimensional
vector space,

|ψ〉 =
(
α0

α1

)
, (A.2)

and the states |0〉 and |1〉 are known as computational basis states which form
an othonormal basis for this vector space.

Examining qubit and a classical bit is either of a noteworthy difference.
In classical computation (or computers) a bit might be determined if it has
either 0 or 1; however, in quantum computation we might not be able to
determine (or measure) qubits state totally, which is when we measure it is 0
with probability |α0|2 and 1 with probability |α1|2 that is by probability sum,
normalization condition (for single qubit) is expressed as |α0|2+ |α1|2 = 1. So
it should be noted that the quantum bit is in superposition until it is observed.
That means there are some parts of information which is not accessible to
measurement regarding basic principles of quantum mechanics which is not
the main concern of this text.

Multiple Qubits

In case of n multiple qubits, the number of computational basis of states and
amplitudes increases to 2n. For example, in case of two qubits, computational
basis states are |00〉, |01〉, |10〉, |11〉 (by writing each two digits in single dirac
paranthesis e.g. |01〉 instead of |0〉|1〉) Therefore a two qubits system state is
expressed as follows,

|Ψ〉 = α00|00〉+ α01|01〉+ α10|10〉+ α11|11〉 =

⎛⎜⎜⎝
α00

α01

α10

α11

⎞⎟⎟⎠ , (A.3)

where Ψ is for the two (or multiple) qubit state symbol and α00, α01, α10, α11

are the complex number coefficients or amplitudes.
In fact the expression |0〉 |1〉 just refers to |0〉⊗ |1〉 ; we omit ⊗, the Kronecker
product for simplicity in notation. We next give the definition of Kronecker
product :

Definition 48 (Kronecker Product). Let A be an m× n matrix and B be an
p×q matrix, then Kronecker product of A and B is defined as the (mp)× (nq)
matrix
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A⊗B =

⎛⎜⎜⎜⎝
a11B a12B . . . a1nB
a21B a22B . . . a2nB

. . . . . .
. . .

...
am1B am2B . . . amnB

⎞⎟⎟⎟⎠ . (A.4)

For arbitrarily many qubits system, say n-ary, the state vector can be
written as a summation formula,

|Ψ〉 =
∑

x∈{0,1}n
αx|x〉, (A.5)

and the normalization condition (which is probabilistic sum equal to one) can
also be generalized as ∑

x∈{0,1}n
|αx|2 = 1, (A.6)

A.2 Qubit Gates

As the classical computers have circuits which are constructed by logic gates,
analogously quantum circuits have quantum logic gates, in order to manipulate
information. In this section, we will see some basic ones and their properties.

Single Qubit Gates

As it can be understood by its name, a single qubit gate is a logic gate manip-
ulating information on a single qubit. Let us start with the one that we know
from classical computation; the single qubit gate NOT. Rather than taking
just the opposite of a qubit as |0〉 to |1〉 or vice versa, as a classical NOT
would behave, quantum NOT gate takes linearly inverse of a qubit state:

α |0〉+ β |1〉 → α |1〉+ β |0〉 (A.7)

or the other way around. It is important to point out that, just as the quantum
states, the quantum gates are also represented by matrices. Specially, a single
qubit gate can be represented by a 2 by 2 matrix. So here is the matrix
representation for NOT:

X =

(
0 1
1 0

)
. (A.8)

So it does the operation on quantum qubit α |0〉+ β |1〉 which is

(
α
β

)
as

X

(
α
β

)
=

(
β
α

)
. (A.9)
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The only constraint is that matrix which represents the gate should be
unitary. We say that U is unitary if UU † = I holds where I is the identity
matrix and U † is the adjoint of U (complex conjugated and transposed). The
following

I =

(
1 0
0 1

)
(A.10)

is the 2 by 2 identity matrix. Note that X is indeed unitary.
Let us continue with another single qubit gate

Z =

(
1 0
0 −1

)
(A.11)

which leaves the |0〉’s as they are, but changes the signs of |1〉 to |−1〉. The
following matrix

Y =

(
0 −i
i 0

)
(A.12)

together with X and Z are called Pauli matrices. The set of all elements in
complex space of 2 by 2 matrices can be represented as a linear combination
of Pauli matrices.

Another important quantum gate which will be used is Hadamard gate
defined as follows

H = 1/
√
2

(
1 1
1 −1

)
. (A.13)

In quantum circuits, an Hadamard gate is used to transform a qubit basis
states |0〉 and |1〉 to two superposition states with equal weight of the compu-
tational basis states |0〉 and |1〉.

α |0〉+ β |1〉 H α |0〉+|1〉√
2

+ β |0〉−|1〉√
2

(A.14)

Using its definition one can also confirm that, applying it twice in succes-
sion would set the qubit back into its initial state.

α |0〉+|1〉√
2

+ β |0〉−|1〉√
2

H α |0〉+ β |1〉 (A.15)

Multiple Qubit Gates

In addition to single qubit gates, there are some others which are multiple
qubit gates, however the ones that we know from classical circuits like NAND,
NOR, XOR, OR are not multiple qubit gates. Since their matrix representa-
tions are not unitary (because they are not invertible) there are cases where
we cannot know, for a given output, which input was originally accepted. This
means some information is deleted, and cannot be recovered. The necessity of
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preservation of information leads to a very important concept in computation
(in general) and a feature of quantum computation which is called reversibil-
ity. Therefore regarding quantum computation, we have universal computa-
tion power [9], besides some extra beneficiary consequences.1 In general, we
say that if a computation can be performed reversibly, it can be done by a
quantum circuit which involves only the gates which have a unitary matrix
representation. There is such a multiple qubit gate which is called CNOT or
controlled -NOT gate:

|A〉 • |A〉
|B〉 |B ⊕A〉

(A.16)

which two input qubits known as the control and the target qubit (from top to
bottom in the diagram). One can describe it as target qubit does not change
if the control qubit is set to |0〉, flipped if it is set to |1〉. ⊕ is XOR; And its
matrix representation is UCnot:

UCnot =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎠ . (A.17)

Here we will give another important concept which is called universality.
Any finite set of gates are said to be universal in the sense that any possible
unitary operation can be expressed as a composition2 of gates from that set.
CNOT and single qubit gates are such a set.
Another gate we will need is so-called SWAP gate, which swaps two qubits
simply, here we give the matrix representation :

SWAP =

⎛⎜⎜⎝
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞⎟⎟⎠ . (A.18)

A.3 Quantum Circuits

Actually, we had already given an example of a quantum circuit, namely the
CNOT circuit in the previous section. There are few more things which should
be known. First, the circuits are read in a fashion from left to the right, so
that inputs are on the left side and outputs are on the right. Second, we had

1Landau’s principle: no energy dissipation requirement in reversible computations
2We imply an approximation instead of ideal representation, since the set of all possible

gates are uncountable whereas the gate sequence from any finite set can only be countable.
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already mentioned the restriction that we do not want any content or com-
bination which causes the circuit to be irreversible. This implies, loops are
not allowed, say, feedback interaction between some different parts so that we
assume, our circuit should be acyclic.

Let us introduce one more quantum circuit element, which is the measure-
ment instrument. We will explain it without going into so much detail. We
had already mentioned a little bit of the measuring the states like α |0〉+β |1〉,
yielding 0 and 1 with probabilities |α|2 and |β|2 respectively. There can be

superpositioned states such as α|0〉+β|1〉√
2

and α|0〉−β|1〉√
2

satisfying the normaliza-

tion condition (|α|2+ |β|2 =1) so that

α |0〉+ β |1〉 = (α+ β)√
2

α |0〉+ β |1〉√
2

+
(α− β)√

2

α |0〉 − β |1〉√
2

, (A.19)

in this case the probability of measuring former state with probability
∣∣∣α+β2 ∣∣∣2

and latter with probability
∣∣∣α−β2 ∣∣∣2 is expected. In the example below, we see

the measuring instrument symbol in the circuit before the output ψ:

|0〉 /n •
��

��� ψ

|u〉 / K |u〉

(A.20)

and the symbol /n expressing that there are n many qubits of |0〉 and / at the
bottom, expresses there are indefinitely many of |u〉.

A.4 Quantum Fourier Transform

The Fourier transform is an operation widely used in applied mathematics and
engineering. In a bright manner, besides its key importance in many quantum
algorithms, it also lays behind the well-known speed-ups in algorithms on
particular problems, regarding computational complexity.

A specific type of Fourier transform is the discrete Fourier transform,
which is extensively used in Fourier analysis in mathematics. Basically, it
takes a fix sized, say N , complex vector (a sequence of complex numbers),
x0,...,xN−1 as input, and outputs another complex vector y0, ..., yN−1 with
the same size. The transformed vector (output) is defined as

yk ≡ 1√
N

N−1∑
j=0

xje
2πijk
N (A.21)

where xj ∈ C, i is
√−1.

The quantum Fourier transform is nothing but the same information, in-
cluding arrangements regarding to quantum specific convention. The n-qubit
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fourier transform is defined as follows,

QFT |j〉 = 1√
N

N−1∑
k=0

e
2πijk
N |k〉 (A.22)

Quantum Fourier transform can be implemented by quantum gates, which
means that the transform is a unitary operation.

In the sequel, we will show quantum circuit design for the transformation.
In order to do that, it will be useful to initiate N as 2n since |0〉, ..., |2n − 1〉
is the computational basis for n-qubit quantum computer. Also, it will be
convenient to adopt the state to be transformed in binary representation i.e.
|j0, .., jn〉 instead of |j〉 By some algebraic derivation from [25], which is shown
below,

1√
2n

2n−1∑
k=0

e
2πijk
2n |k〉 (A.23)

=
1√
2n

1∑
k1=0

. . .
1∑

kn=0

e2πij(Σ
n
l=1kl2

−l)|k1 . . . kn〉 (A.24)

=
1√
2n

1∑
k1=0

. . .
1∑

kn=0

n⊗
l=1

e2πijkl2
−l |kl〉 (A.25)

=
1√
2n

n⊗
l=1

⎛⎝ 1∑
kl

e2πijkl2
−l |kl〉

⎞⎠ (A.26)

=
1√
2n

n⊗
l=1

(
|0〉+ e2πij2

−l |1〉
)

(A.27)

=

(|0〉+ e2πi0.jn |1〉) (|0〉+ e2πi0.jn−1jn |1〉) . . . (|0〉+ e2πi0.j1j2...jn |1〉)√
2n

we get the tensor product representation of the transformation (QFT),

QFT |j1, . . . , jn〉 =(|0〉+ e2πi0.jn |1〉) (|0〉+ e2πi0.jn−1jn |1〉) . . . (|0〉+ e2πi0.j1j2...jn |1〉)√
2n

(A.28)

which is highly useful to understand the idea behind the design of the circuit.
In the following, we give the quantum circuit for quantum Fourier trans-

form, on purpose to clarify the calculation of its computational complexity
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|j1〉 H R2 . . . Rn−1 Rn |0〉 + e2πi0.j1...jn |1〉

|j2〉 • . . . H . . . Rn−2 Rn−1 . . . |0〉 + e2πi0.j2...jn |1〉
.
.
.

.

.

.

|jn−1〉 • • . . . H R2 |0〉 + e2πi0.jn−1jn |1〉

|jn〉 • • . . . • H |0〉 + e2πi0.jn |1〉

Figure A.1: The quantum circuit which performs Fourier transform.

The figure above, is taken from [25]. It is noteworthy to realize the similarity
between the circuit output and the tensor product representation. 3

Now lets check how the circuit works closely. We apply the Hadamard
gate to the qubit to bring it into a uniform superposition state; namely when
a Hadamard gate is applied to any input qubit |ji〉 with 1 ≤ i ≤ n, it takes
the form

|0〉+ e2πi0.ji |1〉√
2

, (A.29)

because e2πi0.ji equals to −1 when ji is 1, and 0 otherwise4 Another instrument
which we use in the circuit is the controlled-gate R,

Rn ≡
(

1 0

0 e
2πi
2n

)
, (A.30)

which transforms its input from

|0〉+ e2πi0.ji |1〉√
2

,

to
|0〉+ e2πi0.jiji+1 |1〉√

2

which is just to add an extra binary fraction bit to the phase of the coefficient
of |1〉 /√2. So for particular input with multiple R gates, the process becomes
as follows

|0〉+e2πi0.j1...jn |1〉√
2

R1
. . . Rk

|0〉+e2πi0.j1...jn...jn+k |1〉√
2

(A.31)

which looks generalized version of any single wire from main circuit without
the Hadamard gate.

Computational Complexity of Quantum Fourier Transform

It is not hard to evaluate the computational complexity of a quantum circuit.
Indeed, it is enough to count the number of operations –gates, which is used.

3Note that the swap operators for reverse ordering and normalization factors by 1√
2
, on

outputs are omitted for the sake of simplicity.
4Recall that ji are in binary form, so is the fraction 0.ji e.g. 0.j = 1/2 for j = 1.
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Now let us take a look at the quantum circuit which is given in previous sub-
section.

For the first qubit, a Hadamard gate and n− 1 R gate: n
For the second qubit, a Hadamard gate and n− 2 R gate: n− 1

...
...

...
For the nth qubit, a Hadamard gate: 1

In that way, we get n(n+1)/2 many gates. We would need extra n/2 gates at
most for swapping n qubits, thus the number of gates throughout the whole
circuit would be n(n+2)/2 which is asymptotically O(n2); the computational
complexity of the whole transform.

A.5 Quantum Phase Estimation

Phase estimation is an application area for quantum Fourier transform, which
is by no means important to core computer science but to physics. Never-
theless, it is needed for understanding working principles of some quantum
algorithms e.g. order finding or factoring.

We need to clarify first what is to be understood by the word phase, in
the intended context.5 Assuming that we have unitary operator U with the
eigenvector |u〉 and the eigenvalue eiψ, where 0 ≤ ψ ≤ 2π. ψ is the phase
here and the goal is to find it (estimation with the best accuracy of nbit). 6

We have shown the quantum circuit which operates phase estimation in the
diagram below.

|0〉 / H⊗n • FT−1

��

��� ψ

|u〉 / U j |u〉

Figure A.2: Quantum circuit for phase estimation.

We use two qubit registers (groups of qubits). First register (n-qubits)
is at state |0〉 as input and will become ψ as output state, so the number
n is determined by the need of how many qubits we do require to represent
ψ. The second register is for |u〉. |u〉 is the control register, so to say, as
remains unchanged between input and output states. It can be considered to
be completed in three (hypothetical) stages:

5That is important for involving non-physics backgrounded researchers into the discus-
sion.

6In assumption that we are able to prepare the state |u〉 and availability of a black box

being able to carry out operations of controlled-U2j .
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i) applying the Hadamard gate (n-many) to the first register.

ii) applying controlled-U (c-U) operations on the second register

iii) taking the inverse Fourier transform on the first register.

Now lets check the first two stages closer. In doing that, one must clarify
the action taking place by applying c-U2j operations on the second register.
When a single such operation on a state |0〉+|1〉√

2
|u〉 is applied, it does7

|0〉+ |1〉√
2

|u〉 c−U2j−−−−→ |0〉+ |1〉√
2

U2j |u〉

=
|0〉 |u〉+ |1〉 ei2jψ |u〉√

2

=
|0〉+ ei2

jψ |1〉√
2

|u〉 (A.32)

So the overall output of the circuit would be,

(
|0〉+ ei(2

n−1ψ) |1〉
)(

|0〉+ ei(2
n−2ψ) |1〉

)
. . .

(
|0〉+ ei(2

0ψ) |1〉
)

√
2n

|u〉

=
1√
2n

2n−1∑
j=0

eijψ |j〉 |u〉 (A.33)

An issue that we have to deal with, is changing the representation of ψ.
Specifying ψ̃ in the definition of phase ψ (concerning the design of the circuit
in close scale), where the relation is ψ = 2πψ̃ and where ψ̃ provides mod 2π
representation in n-bit binary fractions i.e. ψ̃ = 0.j1j2..jn.

8 In the sequel, we
will use ψ instead of ψ̃ for simplicity reasons. So the modified version of the
previous equation is,

(
|0〉+ e2πi(2

n−1ψ) |1〉
)(

|0〉+ e2πi(2
n−2ψ) |1〉

)
. . .

(
|0〉+ e2πi(2

0ψ) |1〉
)

√
2n

|u〉

=
1√
2n

2n−1∑
j=0

e2πijψ |j〉 |u〉 .(A.34)

In the figure below, you will see the sub-circuit showing first two stages in
more detail,

7Recall that |u〉 is an eigenvector of U .
8Interested reader might check further details from [1].
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|0〉 H . . . • |0〉+e2πi(2n−1ψ)|1〉√
2

...
...

|0〉 H • . . . |0〉+e2πi(21ψ)√
2

|0〉 H • . . . |0〉+e2πi(20ψ)√
2

|u〉 / U20 U21 . . . U2n−1 |u〉

Figure A.3: The first two stage of the quantum phase estimation in detail.

The last stage of the phase estimation is based on taking the inverse quan-
tum Fourier transform and measurement. It is given by,

QFT−1 1√
2n

2n−1∑
j=0

e2πijψ |j〉 |u〉 =
∣∣∣ψ̃〉 |u〉 (A.35)

The explanation for the above equation is quite simple; one might look out at
the original quantum Fourier transform definition and see it is formulated in
just reverse direction. One important question which can be raised is Why is
this possible?. Recall that all the operations we perform in quantum circuits
are reversible, so are the ones we use to perform QFT .

In addition,
∣∣∣ψ̃〉 stands for the pre-measured state which is expected to be

close to ψ at best accuracy. It should be noted that we have just considered
the best case which is, ψ was specified by n bits which is not have to be so
always, however regarding the justification for it as being a good accuracy will
not be our main focus, since as we are interested in computational complexity
and the circuit design remains the same but interested reader can find the jus-
tification in (p. 156-158) [1] and (p.223 -224) [25]. Recalling the reversibility
of the unitary operations, this can be done simply by reversing the quantum
circuit for the quantum Fourier transform. So the complexity remains the
same which is O(n2).
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APPENDIX B
Computability theory

B.1 Input duplicator Turing machine

Td = {q00Rqh, q01Rq1, q11Rq2, q10Rq2, q201q2, q21Rq3, q301q3,
q31Lq4, q40Lq5, q41Lq4, q51Lq5, q50Rq6, q610q6, q60Rq7, q71Rq8,
q70Rq10, q80Rq9, q81Rq8, q91Rq9, q90Lq1, q101Rq10, q100Lqh}.

Td simply writes two 1s to right to the reserved area (2 cell after the
right most 1 initially) for each 1 it deletes from the left most.
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APPENDIX C
Ordinal and Cardinal

Arithmetic

We will give basic definitions of ordinals, cardinals and their arithmetics to-
gether with some side remarks. We will also give some basic results e.g.
theorems sometimes without proof. We start by defining well-ordering.

Definition 49. a) A total ordering (non-strict) is a pair 〈A,R〉 where the
binary relation R totally orders the set A, if the following holds for all
x, y, z ∈ A :

i. (xRy ∧ yRz) =⇒ xRz (transitivity)

ii. (xRy ∧ yRx) =⇒ x = y (antisymmetry)

iii. (xRy ∨ yRx) (totality)

b) 〈A,R〉 is a well-ordering if 〈A,R〉 is a total ordering and every nonempty
subset of A has an R-least element.

Definition 50. A set x is transitive if and only if every element of x is a
subset of x.

Example 1. {∅, {∅}, {{∅}}} is a transitive set whereas {{b}} is not.

Definition 51. If X is a set, P(X) = {Y | Y ⊆ X} is said to be power set
of X and P is said to be power set operator.1.

1Note that in ZF, for every set there is a power set, which is defined by power set axiom
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C.1 Ordinals

Now we will define ordinals (the members of the class Ord) and introduce
some of their basic properties.

Definition 52. x is an ordinal if and only if x is transitive and well-ordered
by ∈2

Definition 53. < is a total ordering of the class OrdLet α and β be any two
ordinals, α < β iff α ∈ β.

We use finite ordinals to denote natural numbers. As we use natural
numbers to count finite sets, assuming that AC 3 to be true, ordinals can be
used to count every set. We will use symbol < to denote strict and ≤ to
denote the total ordering relation in the sequel.

Definition 54. Let α be an ordinal and S be the successor operation, then
S(α) = α ∪ {α}.

In axiomatic set theory (e.g. in ZF),everything is defined using ordinal
numbers, even natural numbers.

0 := ∅,
1 := S(0) = {0} ∪ 0 = {0} = {∅}
2 := S(1) = {1} ∪ 1 = {0, 1} = {∅, {∅}}
3 := S(2) = {2} ∪ 2 = {0, 1, 2} = {∅, {∅}, {∅, {∅}}}
...
ω := {0, 1, 2, 3, . . .}.

Lemma 5. For any ordinal α and β, α < S(α) and β < S(α) iff β ≤ α.

Proof. Take any ordinal α, α ∈ α ∪ {α} implies α < α ∪ {α}, which implies
α < S(α) in turn (by Definition 54).
Take any ordinals α and β. β < S(α) iff β ∈ α ∪ {α} iff β can be at most α
iff β ≤ α.

Definition 55. α is a successor ordinal iff there is an ordinal β such that
α = S(β). α is a limit ordinal iff α �= 0 and α is not a successor ordinal. In
addition α = sup{β | β < α}4 if α is a limit ordinal.

From this definition it should be understood that, β has no predecessor. So
if an ordinal is known to have no predecessor, than it is either a limit ordinal

2Note that ∈ is membership relation.
3AC for Axiom of Choice is known to be equivalent of Well-Ordering theorem which

states: Every set can be well-ordered.
4Sup is least upper bound (supremum).

86



or 0.
Note that above it is already seen that the ordinal which corresponds to

the set of natural numbers, is denoted by ω. It is the least limit ordinal, since
any ordinal α < ω is a finite ordinal and thus a successor ordinal. Now we
define the ordinal arithmetics.

Addition

Definition 56. For any ordinals α, β, γ, ξ,

i. α+ (β + γ) = (α+ β) + γ.

ii. α+ 0 = α.

iii. α+ 1 = S(α).

iv. α+ S(β) = S(α+ β).

v. α+ β = sup{α+ ξ | ξ < β}, if β is a limit ordinal.

Recall that ordinals are well-ordered sets, so their arithmetic respects well-
ordering. However some of the properties that we have in standard addition
(addition of natural numbers) are no longer valid. Commutativity is one of
them. Consider, ω + 1 :
ω + 1 is a successor ordinal (S(ω) = ω + 1),

ω + 1 �= ω = 1 + ω

by 56.iii and 56.v respectively

Multiplication

Definition 57. For any ordinal α, β, γ, ξ,

i. α · (β · γ) = (α · β) · γ.
ii. α · 0 = 0.

iii. α · 1 = α.

iv. α · S(β) = α · β + α .

v. α · β = sup{α · ξ | ξ < β} if β is a limit ordinal.

vi. α · (β + γ) = α · β + α · γ
Again some properties we got used to do not hold for multiplication. One

of them is commutativity. Consider ω · 2 = ω + ω which can be read as
‘two times ω’ if it helps. On the other hand 2 · ω is ‘ω times two’ which is
2 + 2 + 2 . . . = ω. Thus ω · 2 �= 2 · ω.
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Exponentiation

Definition 58. For any ordinal α, successor ordinal β and limit ordinal ζ

i. α0 = 1.

ii. αβ = αβ−1 · α.
iii. αζ = sup{αβ | β < ζ}.

C.2 Cardinals

Cardinal numbers are used to determine the size of a set. Normally, the
cardinality of a set is said to be the number of its elements. One may denote
the cardinality of a set A by |A| or card(A). One uses 1-1 functions to compare
the cardinalities of two sets. In particular, |A| ≤ |B| if there exists a 1-1
function from A into B.

Definition 59. Cardinality of a set A, denoted by |A| is defined as

|A| = min{α|α is an ordinal and A ∼b α}

where A ∼b B if there exist a bijection from A to B.

In that sense, we can say that cardinality is the equivalence class under bi-
jection. |A| = |B| holds if |A| ≤ |B| and |B| ≤ |A| hold (Cantor-Bernstein
Theorem). In parallel, |A| < |B| is defined as |A| ≤ |B| and |A| �= |B|.

We call the cardinals which are used to denote the size of finite sets as
finite cardinals, and infinite sets as infinite cardinals or transfinite cardinals.
We will assume that AC holds.5 So it implies that every natural number is
a cardinal number (finite cardinal), and ω is a cardinal. However not every
ordinal is a cardinal as it is expected so, for example ω + 1 is not a cardinal,
because cardinality of such a set is ω i.e. recall that ω + 1 �= ω for ordinal ω.
In brief, there exists no set whose cardinality is ω + 1. Let us give the formal
definition of a cardinal number.

Definition 60. An ordinal α is a cardinal iff α=|α|.
We can express cardinality of a set which is equal to the above definition

as: For every well ordered set A,

|A| = min{α | |A| = |α|}.

This is the reason behind how the cardinal arithmetic will be different then
ordinal arithmetic.

5So the cardinals we will be talking about, are the cardinals in ZFC.
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Every transfinite cardinal is a limit ordinal. Transfinite cardinals are de-
noted by ℵ’s (alephs). The least transfinite cardinal is ℵ0 (corresponds to
ordinal ω) which is the cardinality of N (natural numbers) (also Z -integers
also Q -rational numbers). ℵ1 which is a higher cardinality is the cardinality
of R -real numbers or continuum. A set A is countable if |A| < ℵ0 or |A| = ℵ0,
and is called uncountable if it is not countable. ℵ1 is the least uncountable
cardinal.

Cardinal Arithmetic

Definition 61. Let A and B be two sets, then

i) |A|+ |B| = |A× {0} ∪B × {1}|.
ii) A ·B = |A×B|,
iii) AB = {f : f is a function ∧D(f) = B ∧ ran(f) ⊂ A}6.
One can show that + and · is associative, commutative and distributive.

Consider that taking A×{0}∪B×{1} instead of A∪B in i), is just a trick in
order to make two sets disjoint if they are not, obviously this does not effect
the result if they were already disjoint.

Recall that AB is the set of all functions from B to A. So iii) is just
straightforward compared to ordinal exponentiation. Consider ordinal expo-
nentiation of 2ω = sup{2ξ | ξ < ω} =

⋃
ξ<ω 2

ξ=ω.7 However for cardinal
numbers 2 and ω, 2ω is just itself (by definition) which is bigger than ω by
means of cardinals.

Lemma 6. For every set A, |P(A)| = 2|A|.

Proof. We have to show that there exists a bijective function between P(A)
and 2A. For every B ⊂ A, let χB be defined as

χB(x) =

{
0 if x ∈ B,
1 if x ∈ B̄.

Then take f : P(A) −→ {0, 1}A defined as f(B) = χB for each such B. So
every subset of A is assigned to a binary string in length of |A|. f is 1-1 and
onto.

Theorem 15 (Cantor). Let X be any set, then |X| < |P(X)|.
6In axiomatic set theory, AB exists since, AB ⊂ P(A × B) which exists by the Power

Set Axiom (i.e. ∀x∃y∀(z ⊂ x → z ∈ y)) [22].
72ω would not be an well-ordered set if it would be defined as set of mappings from

ω to 2: Take fn to be an infinite string n many 0’s followed by infinite 1’s, where f0 is
the maximal element. This set has no minimal element, however is a subset of the set
{f : f is a function from ω to {0,1}}, implies superset is not well-ordered too.
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Proof. (By Contradiction). It is enough to show that given any set X, no
surjective function f from X to P(X) be defined, which means there is at
least one subset of X which is not an element of the image of X under f .
Assume that there is such an f . Consider the following set:

Y = {x ∈ X | x �∈ f(x)}.

Obviously, Y is a subset of X, now we have two possibilities for any x:

i) x ∈ f(x); means x �∈ Y , therefore f(x) �= Y .

ii) x �∈ f(x); means x ∈ Y , hence f(x) �= Y .

It follows that for any x, f(x) �= Y means f is not surjective. Contradiction.

The technique which has been used above is called diagonalization. Now
we will give some properties of cardinal arithmetic without proving them.8

We will use κ, λ and μ to range over cardinals.

1. 0κ = 0 if κ > 0.

2. κ0 = 1, 1κ = 1.

3. (κ · λ)μ = κμ · λμ.
4. κλ+μ = κλ · κμ.
5.

(
κλ

)μ
= κλ·μ.

6. If κ ≤ λ, then κμ ≤ λμ.

7. If 0 < λ ≤ μ, then κλ ≤ κμ.

8. If κ and λ are transfinite cardinals then κ+ λ = κ · λ = max{κ, λ}
Lemma 7. For every cardinal α and set A of cardinals,

i) There exists a cardinal β such that α < β.

ii) supA is a cardinal.

i). Follows from Cantor’s theorem and Power set Axiom. ii). Let κ = supA.
Let us assume that there is a bijective f to β < κ. Let us take α such that
β < α ≤ κ, then |α| = |{f(ξ) : ξ < α}| ≤ |β|. Contradiction.

From the above result, we can give an increasing enumeration of transfinite
cardinal numbers indexed by ordinals. We will use it to define successor
cardinals and limit cardinals as last of this section.

8Some of their proofs are absolutely not trivial.
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• ℵ0 = ω0 = ω.

• ℵα+1 = ωα+1.

• ℵα = ωα = sup{ωγ | γ < α} if α is a limit ordinal.

ω’s are said to be order type.

Definition 62. A cardinal ℵα is a successor cardinal iff α is a successor
ordinal (α is in the form of α′ + 1 for an ordinal α′) and an limit cardinal iff
α is a limit ordinal.

We can just mention, the famous historical statement regarding the cardi-
nalities in brief. Cantor asked if there was an infinite cardinality between ℵ0
and 2ℵ0 . As he couldn’t settle the existence of such infinite cardinality, after
long times of searching, he conjectured that 2ℵ0 , which was known to be the
cardinality of reals, is the next cardinality after ℵ0, hence it is called as ℵ1. He
could neither prove nor refute it. This famous assertion is called continuum
hypothesis (CH). It can be stated as follows.

Definition 63 (Continuum Hypothesis). ℵ1 = 2ℵ0.

As it conjectures, the next larger cardinality of set of natural numbers is
the one emerged whilst one applies the power set operation.This corresponds
to cardinality of reals. One might generalize this statement by asserting it for
all infinite cardinalities, and gets generalized continuum hypothesis (GCH).

Definition 64 (Generalized Continuum Hypothesis). ℵα+1 = 2ℵα.

It has been shown after by Cohen and Gödel that CH is independent from
ZFC.
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