
Monitoring of data-centric
business rules and processes

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Master of Science (M.Sc.)

im Rahmen des Erasmus Mundus Studiums

Computational logic

eingereicht von

Gil Vegliach
Matrikelnummer 1126067

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Prof. Dr. Helmut Veith
Mitwirkung: Dr. Andreas Bauer

Wien, 07.02.2013
(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Monitoring of data-centric
business rules and processes

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Master of Science (M.Sc.)

in

Computational logic

by

Gil Vegliach
Registration Number 1126067

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Prof. Dr. Helmut Veith
External advisor: Dr. Andreas Bauer

Vienna, 07.02.2013
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Gil Vegliach
Viale Ippodromo 2/1, 34139, Trieste

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die ver-
wendeten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen
der Arbeit - einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i

Acknowledgements

I am sincerely and heartily grateful to my Nicta advisor Andreas Bauer and the PhD
student Jan-Christoph Küster for all the ideas, discussions, insight, and research expe-
rience they have imbued me with throughout the writing of my thesis. I would like to
express my gratitude to my TUW advisor Helmut Veith for his availability and his time.
I also wish to thank my family, my girlfriend and all my friends for the support they
provided at Nicta, through my studies and in my personal life.

Gil Vegliach

iii

Abstract

A first-order temporal logic is introduced and argued to be suitable for modelling business
processes and security policies for Android. The monitoring problem in such logic is
introduced and argued to be undecidable under specific and reasonable assumptions
underlying any proper monitor. Although no one can hope for a complete monitoring
algorithm, a construction based on a novel automata model is depicted and its correctness
demonstrated. Concrete examples taking root in the business process and Android
framework are laid out and shown in detail. A digression on the model checking problem
displays the difference of our approach from propositional LTL and other work.

v

Kurzfassung

In dieser Arbeit wird eine temporale Logik erster Ordnung eingeführt und argumentiert,
dass diese als geeignet für die Laufzeitverifikation von Geschäftsprozessen und Android
Sicherheitsrichtlinien ist. Desweiteren wird das “Monitoring Problem” in einer solchen
Logik vorgestellt und dessen Unentscheidbarkeit unter angemessenenen Annahmen, was
ein geeigneter Monitor ist, gezeigt. Obwohl kein vollständiger Algorithmus zur Lösung
dieses Problems existieren kann, wird eine Konstruktion auf einem neuartigen Automa-
ten Modell basierend dargestellt und dessen Richtigkeit bewiesen. Konkrete Beispiele
für Geschäftsprozess- und Android Szenarien werden im Detail erläutert und diskutiert.
Ein Exkurs zum “Model Checking Problem” zeigt den Unterschied unseres Ansatzes zu
propositionalem LTL und andere Arbeiten.

vii

Contents

Introduction 1
Motivation and aim of the work . 1
Structure of the work . 2

1 Monitoring in brief 3
1.1 The idea . 3
1.2 Approach and problem statement . 4
1.3 Related work . 6

2 Notations and definitions 9
2.1 Syntax . 9
2.2 Semantics . 11

3 Properties of LTL∀ 13

4 Spawning automata 17

5 Monitoring in depth 25
5.1 Theoretical results . 25
5.2 Practical monitoring . 28

6 Model checking 33

7 Practical examples 39
7.1 Modelling a policy in the business framework 39
7.2 Monitoring on Android: an example . 41

8 Conclusions 45
8.1 Summary . 45
8.2 Future work . 45

Links 47

Bibliography 49

ix

Introduction

Motivation and aim of the work

The Provably Correct Business Rules and Processes project at Nicta [1, 3, 2] develops
techniques to formally model business rules and processes in order to facilitate automated
reasoning about such artefacts. Unlike related approaches, PCBRP emphasises data in
rules and processes, making it possible not only to express operations on data, but
also to reason about them. The formal foundations are laid upon a first-order CTL∗
logic whose domain values are represented by generic JSON objects (Java Script Object
Notation). Processes, in turn, are modelled as guarded, labelled transition systems whose
states define operations on data objects. Reasoning tasks supported by PCBRP included
model checking of process models against business rules (i.e. FO-CTL∗ specifications),
constructing processes from process fragments (i.e. temporal planning), and theorem
proving. The last is undertaken in combination with a natural language front-end that
allows users to query data using a dialect of structured natural language.

What had been missing was a formalism to monitor runtime assertions on concrete
execution paths of business processes. Such assertions describe business artefacts’ pro-
prieties that processes have to maintain in order to retain compliance, a key issue in
BPM. Techniques implemented before this thesis were meant to be more a design-time
tool; heavily relying on model checking and theorem proving, they were not adapt to
monitoring.

Another source of motivation for this thesis comes from previous work transporting
runtime verification onto the Android platform [13]. Android [7] is an open-source
software-stack for mobile devices, initially developed by Android Inc. and later purchased
by Google in 2005. Made up of utilities, some connecting middleware and an entire
operating system running a linux 2.6 kernel, Android is the open-source alternative
to other glamour platforms based on iOS and Symbian OS. Java applications, or in
jargon “apps”, are distributed through an online marketplace called Google Play [5],
open to everybody previous registration, with the option of placing a small fee per
download or monetize the software through adverts included in the apps. Easiness of
development and a large market share attracted many hackers to code malicious software
(e.g. AndroidOS.FakePlayer [8]), and consequently defensive measures to counter-attack
the spread of malware were explored [19,20,16].

The previous paper [13] showed that LTL is a suitable framework for monitoring

1

on Android, but it fundamentally lacks expressiveness in dealing with properties han-
dling complex data, key point in fine security policies. This thesis extends that work
from the theoretical point of view, developing tools for a new, more powerful, future
implementation.

Structure of the work
The thesis is laid out as follows: in Chapter 1 the general idea is gently introduced,
the methodology explained and compared with other existing works. Chapter 2 sets
basic definitions and notations, syntax and semantics of LTL∀. Chapter 3 proves useful
theoretical properties of LTL∀, leading later to undecidability of monitoring. Chapter 4
depicts a new suitable model of automata and shows its correctness. Chapter 5 finally
deals with the monitoring problem, demonstrates its theoretical insolubility yet devises
a practical algorithm. Chapter 6 reduces LTL∀ model checking to LTL model checking.
Chapter 7 gives practical examples both in the business processes and in the Android
context. Lastly, Chapter 8 wraps up obtained results and discusses future work.

2

CHAPTER 1
Monitoring in brief

This chapter defines the idea of monitoring and sets the context of our work. We will
define our concept of monitoring, its underlying assumptions, and compare related work.

1.1 The idea
Monitoring a system means to watch a system for violations or satisfactions of prede-
termined policies. A system is anything with an observable runtime behaviour, system-
atically channelled in a long series of seen events, or, in jargon, the trace. The trace is
thus evaluated by a monitor, an algorithm encoding the gist of a policy, that, processing
event by event, determines the satisfaction or violation of the policy itself; should neither
of these cases happen, the algorithm keeps running. Policies, initial specifications and
starting block in building of a monitor, are specified in a formal language, a machine
processable and precise idiom capable of expressing temporal patterns such as “some
event cannot happen until some other event” or “this event has never to happen”.

Figure 1.1 illustrates all the elements above-mentioned plus some details pertinent
only to our approach. For example, the monitor exploits an automaton, a newly invented
special kind turned into an algorithm that encapsulates the meaning of a policy. The
system has a logical inner stratum called evaluation, place accessible from the monitor
where all built-in and user-defined functions are evaluated. Included are common arith-
metic operations such as additions and exponentiation, string manipulations such as
concatenation and string-number conversions, and all user defined functions along with
functions’ domains. The monitor can use functions as it likes, but it cannot extract and
store information such as functions’ domains (longer arrow in “reading”, Figure 1.1). The
evaluation had to be placed in the system itself instead of say in the monitor because of
a twofold argument: first, practically speaking it is being performed inside the system,
therefore moving it outside would be just unnecessary and ultimately slower; second,
domains and consequently functions are infinite entities and therefore not suitable to be
inputs of the theoretical monitoring problem, a decision problem.

3

full control

logging

.

.

.

.

. ..

system

trace

???

monitor

reading

app or B.P.

evaluation

Figure 1.1: monitoring

A similar problem concerns the system status: as a monitor need evaluate only some
of infinitely many system functions, it also need consider only some of possibly too
many occurred events. The abstraction letting this happen is, in fact, the trace, whose
events are further split in two mini-events (“trace”, Figure 1.1): the first part is what
our monitor can manipulate fully, shown as a square entering the monitor’s body (“full
control”, Figure 1.1), e.g. the mobile number of a just sent text; the second part is
what our monitor can test for truth but not save or manipulate directly (shorter arrow
in “reading”, Figure 1.1), e.g. the infinite predicate “multiple of 3” and the question “is
this number a multiple of 3?”. Both event’s parts are evaluated using the evaluation, the
monitor being syntactical in its nature and the meaning being given by the system.

The last section of the diagram is the logging of events and building of the trace
(“logging”, Figure 1.1). An example of such a design was already given in the Android
context in [13] and here is presented another one in the business rules framework. How-
ever, this part is interesting mostly from the point of view of the implementation and
only marginally mentioned here: as long as the system provides our monitor with faith-
ful information about an application or business process, our monitor behaves correctly.
Then the question whether the information really models the application’s behaviour
really boils down to the expertise of the designer who structures the logging system.

1.2 Approach and problem statement
This sections describes sketchily our approach and our designing choices, discussion
carried out throughout the whole thesis.

The technique here exploited is that of runtime verification in a suitable first-order
linear temporal logic. Runtime verification is a dynamic verification technique where

4

only one system run is tested against a specification, often during execution and at a
low cost. In this respect, it differs from static techniques, such as theorem proving and
model checking [10], because no prior knowledge of the system nor a down-scaled model
are needed, its general speed is usually higher, although certain mathematical adherence
to policies cannot be guaranteed. Runtime verification is therefore often thought as a
complimentary approach to static verification, used when others are inapplicable because
of size or speed or when an very high level of reliability is desired but not yet achieved,
for example model checking has been used with abstraction to simplify the model.

Linear temporal logic (LTL) has been introduced by Pnueli [30] as a specification
language for reactive and concurrent systems, and become ever since the de facto stan-
dard both in static verification techniques and lightweight runtime formalisms [12]. It
lets users specify temporal patterns of events a system must compel to, or some sort of
recovery action will be triggered, possibly preventing further damage.

It has extensively been studied [27,32,15] although it lacks expressiveness about fine-
grained details of its policies, the ability to state properties among data in formulae, an
ability only a first-order formalism may grant (cf. [12]). One example is [13] where in
the context of Android apps, propositional LTL could not express the simple property
“the phone number of every outgoing SMS has to be in the users contact list”.

This thesis wants to fill this gap fulfilling the following requirements:

• the monitor must be online

• the monitor must has a monotonic semantics

• the monitor must have an as-early-as-possible semantics

• the monitor must be able to handle data (first-order)

• the monitor must fit in the Provably Correct Business Rules and Processes Nicta’s
project

• the monitor must be an extension to previous work set in [13]

The requirements define our concept of a real monitor and we are going to briefly
introduce them. A monitor is online if it is able to process a trace on-the-fly, event by
event; conversely, it is called offline if it need record the whole trace. As both business
processes and Android apps are very dynamical entities, reporting a problem once a run
has been terminated and damage has been caused could be too late for recovery: just
think about products delivered to the wrong address and the relative loss of money, or
a virus which deletes sensitive information from a mobile.

The semantics is said to be monotonic if whenever a value is returned it is never to be
changed, otherwise it is said non-monotonic. There are plenty of respectable examples
of non-monotonic semantics, for example using stationary traces [32] i.e. the last event
is endlessly repeated, or just adapting LTL semantics to finite words [27]: to see the
problem consider a formula ♦p and suppose no p has been seen so far. The monitor
would thus return ⊥ but this value will change into > as soon as a p turns up.

5

The semantics is said as-early-as-possible if the monitor returns > or ⊥ as soon as
it can: for instance if the formula to be monitored is � � ⊥, the value ⊥ is returned at
the first event. We will see that adding this requirement makes the theoretical problem
undecidable, therefore any practical correct implementation cannot fulfil it.

The monitor must also be able to handle data, otherwise many techniques above
mentioned could be used: furthermore data is involved in the other two projects in the
requirements.

1.3 Related work
Born to guide model checkers in Java programs [23], runtime verification has evolved
over the years into its own broad field within the formal methods community. Pioneer
work has been set out by Klaus Havelund1 and Grigore Rosu2 in [24, 26, 27, 32, 23], and
earlier similar approaches had been tested by Vardi and Wolper [35].

This section is a quick review of other approaches along with comparisons to our
work. Each paragraph describes one approach that is relevant to the context and it is
independent from the others.

Klaus Havelund and Grigore Rosu in [24] (also cf. [25]) monitored Java program
executions through term rewriting rules implemented in Maude, a system and reflective
language for term rewriting and equational logic developed by University of Illinois at
Urbana Campaign [4]. The logic used is future LTL with finite trace semantics in which
the last event is endlessly repeated to fill up an infinite trace. Monitoring is performed
generating events from special instrumented bytecode derived from specifications (Jtrek),
that also define rules to rewrite the LTL formula. The approach is basically what we
called progression in [13] and has the same advantages and disadvantages: in addition,
being propositional in nature, it lacks the ability to express relations among atoms, and
therefore to model complex data terms.

The same two authors kept working in the same framework on a past temporal logic,
still using finite trace semantics and considering only safety properties [27]. They therein
argue that past LTL is “more convenient for specifying certain properties”, since past
LTL is usually more succinct than its future counterpart although they have been shown
expressiveness equivalent by Gabbay [21]; also, for convenience of notation, they specify
special (redundant) monitoring operators taken from [28]. Two monitoring algorithms
are provided, the former being an inline rewriting-based module employing Maude, sim-
ilar to their previous work, the latter being an offline “synthesising software” algorithm,
basically using dynamic programming to remember semantics of all subformulae, event
by event while the trace is processed forwardly. The latter algorithm is exceptionally
fast, O(|ϕ| · |u|) to process the whole trace u and the formula ϕ; however, we want
to point out it is intrinsically different from our approach because it is propositional,
it monitors only safety properties and not monitorable properties, and it suffers from
non-monotonicity (events cannot be added in general to a finite trace without violating

1NASA Ames Research Center
2Department of Computer Science, University of Illinois at Urbana-Champain

6

semantics, e.g. ♦p is ⊥ in a finite trace u without p’s, but in our case it would be just
?, as some p could be seen later).

A work similar to ours is by Hallé and Villemaire [22]. The authors describe a first-
order logic, LTL-FO+, suitable to model message-based workflows, structures where
input and output are messages composed of data elements, such as business processes,
XML-based web service interactions and programming language method calls. Three
concrete examples are given: a holiday location finder, a user-controlled lightpaths sce-
nario [17], a car rental system and related properties specified. Their logic allows quan-
tification over data fields but it is only a subset of ours: in particular it lacks the ability
to handle complex data terms, atoms different from equalities between variables and/or
constants, and evaluation of infinite predicates by a system (what will be calledR-atoms).
The monitoring algorithm described in Section 4 introduces the concept of a watcher, a
finite-state automaton with an outcome, similar to [15], reading event after event and
evaluating the prefix semantics of a formula. The evaluation is split in a now-part and
a next-part, the now-part evaluated by a tableaux procedure called spawn (different
from our usage of spawning automata), and the next-part passed over, remembering all
runs so far visited and accepting in case one run accepts, rejecting if all runs rejects,
otherwise an inconclusive result is returned. Although the many similarities, Hallé and
Villemaire’s approach still suffers from the problems of progression: as the automaton is
not computed in advance, semantic properties of the formulae cannot be used and, for
example, � � ⊥ cannot be told to be unsatisfiable from the beginning, whereas in [15]
the monitor would be only a ⊥-trap. The authors also point out in Section 4.2 that a
discussion on finite trace semantics of LTL-FO+ could be adapted from [14], and here
we would like to carry out such a discussion in detail, since our logic is just a superset
of LTL-FO+.

The main paper our work is based on is by Bauer, Leucker and Schallhart [15].
The authors describe two logics, future propositional LTL and a timed counterpart,
distinguishing runtime verification from model checking and monitoring. The concept of
online monitoring is introduced (a monitor running along with the system and watching
over it), the 3-value semantics LTL3 defined (true, false, inconclusive), an as-early-
as-possible minimal automata-based online monitoring algorithm constructed and its
complexity studied. Our work intends to extend [15] to first order logic setting. An
initial attempt has been tried in [13] where the framework is tested on the Android
platform as an anti-malware mechanism: a minimal logging component injected in the
Android framework generates the trace monitored by a top-stack Java application using
progression as monitoring algorithm. Although a sound proof of concept, progression
cannot use structure in formulae, for instance cannot detect that � � ⊥ is unsatisfiable
before processing three events. Therefore the motivation for trying the automata-based
approach, along with an in-depth study of the logical foundations that clarifies formal
properties such as quantification over the trace linked to finite models and undecidability.

7

CHAPTER 2
Notations and definitions

This chapter sets out basic definitions and notations in full detail. Most of the material
is intended as a reference, steering the reader through the following chapters. Most
of the material is also similar to what already found in the literature (cf. [12]), but the
keen reader would note the differences in the universal quantifier’s syntax and semantics:
such small details will lead to plenty of interesting properties, both from the theoretical
logic aspect and from the rather practical monitoring point of view. Quantification over
a finite event in a trace is indeed a well thought out design choice, as it avoids prob-
lems looping over infinite structures, as well as a theoretical choice aimed at enforcing
important properties.

2.1 Syntax
Definition 1 (Signature). Given a countably infinite set of variables V , a signature Γ
is a triple (C,F,Q), where C is countable set of constant symbols, F is a countable set
of function symbols, and Q is a countable set of relation symbols, union of two disjoint
sets P and R. Variables will be typically denoted by letters x1, x2, . . . or x, y, z,

Relation symbols p ∈ P will be allowed syntactically in quantifiers and atoms, and
semantically interpreted to finite relations, whereas relation symbols r ∈ R will be
allowed syntactically only in atoms, and will not have any restriction on their sematical
interpretation.

Definition 2 (Terms). Let Γ be a signature (C,F,Q), let V be a countably infinite set
of variables and let Σ be the alphabet C ∪ F ∪ {(} ∪ {)} ∪ {, }. The set of terms over Γ
is the smallest subset T of Σ∗ verifying the following conditions:

• C ⊂ T

• V ⊂ T

9

• if f ∈ F , f has arity n, and t1, . . . , tn ∈ T , then f(t1, . . . , tn) ∈ T .

Definition 3 (Formulae). Let Γ be a signature, T be the set of terms over Γ, and Σ be
the alphabet T ∪Q∪ {∧,¬,U,�,∀, (,), :, ., } ∪ {, }. The set of temporal formulae over Γ,
denoted by LTL∀, is the smallest subset F of Σ∗ verifying the following conditions:

• if t1, t2 are terms, then t1 = t2 ∈ F

• if q ∈ Q and t1, . . . , tn ∈ T , then q(t1, . . . , tn) ∈ F

• if ϕ ∈ F , then ¬ϕ ∈ F .

• if ϕ1, ϕ2 ∈ F , then (ϕ1 ∧ ϕ2) ∈ F

• if ϕ ∈ F , p ∈ P and p has arity n, then ∀(x1, . . . , xn) :p. ϕ ∈ F

• if ϕ ∈ F then �ϕ ∈ F

• if ϕ1, ϕ2 ∈ F , then ϕ1Uϕ2 ∈ F .

Syntactic sugar for ∨,⇒,♦,� is defined as follows:

∃x :p. ψ = ¬∀x :p. ¬ψ
ϕ1 ∨ ϕ2 = ¬(¬ϕ1 ∧ ¬ϕ2)
ϕ1 ⇒ ϕ2 = ¬(ϕ1 ∧ ¬ϕ2)

♦ϕ = >Uϕ

�ϕ = ¬(>U¬ϕ)

The notation~· is used for tuples of objects, should they be variables, constants or complex
terms, where the arity is inferred from the context: an example is ∀~x : p. ψ in quantifi-
cation. The logic just defined is denoted by LTL∀, while standard first-order logic is
denoted by FO.

Definition 4 (Free variables, sentences). For a given formula ϕ, an occurrence of a
variable x is bound by a predicate p if there is a subformula of ϕ of the form either ∀x :p. ψ
or ∃x :p. ψ such that the occurrence after the quantifier is exactly the occurrence we are
defining. A unbound occurrence is a free occurrence. Note that a variable name can occur
more than once in a formula, sometimes both bound and free. Nevertheless variables
can be renamed in a way no variable appears twice without affecting the semantics:
it is therefore appropriate to call a variable bound or free rather than its occurrence.
A formula without free variables is a closed formula or sentence. The notation t(~x),
respectively ϕ(~x) indicates a term t whose free variables are among ~x, respectively a
formula ϕ whose free variables are among ~x.

Definition 5 (Ground atoms). A term without variables is a ground term, an atom
without (free) variables is a ground atom. For a given signature Γ, the set of ground
atoms from P is {p(~t) : p ∈ P, p(~t) is ground} and it is denoted by Π. Informally a
ground atom p(t) with p ∈ P is called a P -atom.

10

2.2 Semantics
A formula is just a formal language statement about an entity and a statement, in its
purest nature, has a meaning. Being a formal framework, entities under considerations
are rather simple, sets and their elements, and meaning actually boils down to truth, a
dichotomy between true and false statements. A formula, therefore, expresses either a
true or false assertion about some element of a set, or the set itself.

In our framework time is also considered: properties are true or false not only de-
pending on the picked element and underlying domain, but also depending on the time
when they are considered. Formulae can express complex temporal relations such as
properties lasting for ever or just until some other one becomes true.

The link between bare entities and formulae is given by a (temporal) structure inter-
preting syntactical symbols to elements of a set called domain. The structure takes care
of the temporal part of the formula through a changing part called trace, while static
elements such as functions and constants are under the scope of an evaluation, concept
we are going to define next.

Definition 6 (Evaluation). Let Γ be a signature (C,F,Q). An evaluation E of the
signature Γ is a triple (A, {cE}c∈C , {fE}f∈F) where:

• A is a non-empty countable set called domain

• E assigns each c in C to an element cE of A

• E assigns each f in F to a function fE : An → A, where n is the arity of f

• for each element d ∈ A there is at least a term evaluated to it, i.e. E−1(d) 6= ∅
(surjectivity of evaluation)

The set of all possible tuples from A named from R is {r(~d) : r ∈ R, ~d is a tuple from
A with the same arity as r’s}, and it is denoted by ΨA or just Ψ where the domain is
clear from the context. Informally, an object r(~d), where ~d is a tuple from the domain
and r ∈ R is called an R-atom. An evaluation of a particular signature is called just an
evaluation when the signature is clear from the context.

Definition 7 (Evaluation of terms). A term t(~x) can be recursively evaluated under an
evaluation E at a tuple ~a from A as follows:

• if t(~x) is a constant symbol c, then tE(~a) = cE

• if t(x1, . . . , xn) is a variable symbol xi, then tE(~a) = ai

• if t(~x) is of the form f(t1, . . . , tn), then tE(~a) = fE(tE1 (~a), . . . , tEn(~a))

Definition 8 (Temporal structure). Let Γ be a signature (C,F,Q). A temporal Γ-
structure A is a pair (E , w) where:

• E is an evaluation

11

• w is an infinite word w0w1w2 . . . over subsets of Π ∪Ψ called trace such that:

– wi ∩Π is finite, for all i ≥ 0 (finitely many p’s)
– pAi = {tE : p(t) ∈ wi}, for all i ≥ 0 (rigidity of interpretation on p’s)

With a slight abuse of notation, the elements cE , fE will be denoted respectively by cA, fA,
and the notation rAi will be used for {r(~d) ∈ wi}. A first-order Γ-structure A is a pair
(E , w0). A structure is over an evaluation E when its evaluation is precisely E.

Note the difference here: P -atoms in the trace are just syntactically ground atoms
whereas R-atoms come in already interpreted; nevertheless under the symbol Ai, both
P - and R-atoms depict domain subsets/relations.

Definition 9 (Semantics of a formula). Let A be a temporal Γ-structure, ϕ(~x) be a LTL∀
formula, and ~a a tuple from A. The formula ϕ(~x) is true in A at the point ~a and instant
i with i ≥ 0, denoted by A, i |= ϕ(~a), when the following recursive definition is satisfied:

A, i |= t1(~a) = t2(~a) if tA1 (~a) = tA2 (~a)
A, i |= q(t(~a)) if tA(~a) ∈ qAi

A, i |= ¬ϕ(~a) if A, i 6|= ϕ(~a)
A, i |= ϕ1(~a) ∧ ϕ2(~a) if A, i |= ϕ1(~a) and A, i |= ϕ2(~a)
A, i |= ∀~x :p. ψ(~x,~a) if for all ~d ∈ pAi it holds A, i |= ψ(~d,~a)
A, i |= �ϕ(~a) if A, i+ 1 |= ϕ(~a)
A, i |= ϕ1(~a)Uϕ2(~a) if there is a k with k ≥ i such that A, k |= ϕ2(~a)

and for i ≤ j < k it holds A, j |= ϕ1(~a)

When i = 0 in the above definition the index i is omitted, A |= ϕ(~a) is simply written,
and ϕ(~x) is said to be satisfiable at ~a over the domain A. The structure A is called
also a model of ϕ at ~a. For a fixed evaluation E and a sentence ϕ, a trace w such that
(E , w) |= ϕ is called a satisfying trace and the set of all satisfying traces is denoted by
L(ϕ)E .

Note the semantics of a sentence does not depend upon the choice of ~a.

12

CHAPTER 3
Properties of LTL∀

This chapter builds tools to show the undecidability of the theoretical monitoring prob-
lem in Chapter 5. The idea is to reduce the satisfying trace existence problem in LTL∀
to finite satisfiability in first-order logic. For definitions and a discussion of first-order
concepts the reader can check [18].

Lemma 10 (Reverse skolemization). For a given first-order logic formula ϕ there is a
constant-symbol-free and function-symbol-free formula ϕ′ that is finitely equisatisfiable
to ϕ.

Proof. Let us construct ϕ′ by the following algorithm:

1. Put ϕ in prenex normal form, call the resulting formula ϕ1

2. If c1, . . . , cn are all the constant symbols occurring in ϕ1, then call ϕ2 the formula
∃x1, . . . , xn.ϕ1, where x1, . . . , xn are new variable names

3. Bottom-up remove function symbols from ϕ2: if ϕ2 is of the formQ~x.Q~z.ψ(~t1(f(~x), ~z),
~t2(~x, ~z)) then set ϕ2 to be Q~x.∃y.Q~z.ψ(~t(y, ~z),~t2(~x, ~z)) ∧ (f(~x) = y), where y is a
new variable symbol. After all changes, call ϕ3 the resulting formula.

4. Substitute all equalities of the form f(~x) = y by pf (~x, y), where pf is a new predi-
cate symbol; conjoin to the resulting formula: ∀~x.∃y.pf (~x, y)∧∀~x.∀y1.∀y2.((pf (~x, y1)∧
pf (~x, y2))⇒ y1 = y2). Call ϕ′ the resulting formula. (This steps makes predicates
pf behave as functions)

It is clear that steps 1,2,4 do not alter finite equisatisfiability, we show that neither does
3. Step 3 substitutes a function term f(~x) by a new existentially quantified variable
y, variable representing the result of the interpreted f evaluated on some tuple of the
domain deriving from the quantifiers binding ~x. The term f(~x) might possibly be nested
down into another term ~t1, hence the notation to maintain full generality. Now, let A

13

be a finite first-order logic structure, so that fA : A × . . . × A → A is a function; then
Q~x.Q~z.ψ(~t1(f(~x), ~z),~t2(~x, ~z)) is therein true if and only if:

for all/there exists d1 ∈ A, . . . , for all/there exists dn ∈ A,
A |= Q~z.ψ(~t1(f(~d), ~z),~t2(~d, ~z))

⇐⇒ for all/there exists d1 ∈ A, . . . , for all/there exists dn ∈ A, there exists d′ ∈ A,
A |= Q~z.ψ(~t1(d′, ~z),~t2(~d, ~z)) ∧ (f(~d) = d′)

⇐⇒ for all/there exists d1 ∈ A, . . . , for all/there exists dn ∈ A,
A |= ∃y.Q~z.ψ(~t1(y, ~z),~t2(~d, ~z)) ∧ (f(~d) = y)

and the last line is true if and only if A |= Q~x.∃y.Q~z.ψ(~t1(y, ~z),~t2(~d, ~z)) ∧ (f(~x) = y).
In every finite structure the two formulae are equivalent and hence finite equisatisfiable.
The thesis follows.

Theorem 11 (FO finite sat is reducible to trace existence). Let Γ be a signature
(C,F, P ∪ Q), E an evaluation of Γ with an infinite domain, and ϕ a first-order logic
formula (from another first-order signature). Then whenever |P | � |ϕ| there is a (con-
structible) formula ψ ∈ LTL∀ such that ϕ is finitely satisfiable in first-order logic if and
only if ψ has a satisfying trace.

Proof. Let us construct the formula ψ by the following algorithm:

1. Reverse skolemization: apply to ϕ the algorithm of Theorem 10 and call the re-
sulting formula ϕ1

2. Substitution of quantifiers: bottom-up replace each subformula of the form ∀x.φ
by ∀x :d. φ and each subformula of the form ∃x.φ by ∃x :d. φ. Call ϕ2 the resulting
formula

3. Restriction of interpretation:

a) for each predicate p of arity n appearing in the so-far-obtained formula, con-
join ∀(x1, . . . , xn) :pi. d(x1) ∧ . . . ∧ d(xn)

b) conjoin ∃x :d. d(x), to guarantee non-emptiness of domain

Call the resulting formula ψ.

It is sufficient to show that ϕ1 is finitely satisfiable if and only if ψ has a satisfying trace.
Suppose that there is a finite model (D, I) for ϕ1. Set the domain for E to be D and note
there are no constant symbols nor function symbols to evaluate. Define the one-world
trace σ to be ⋃

~tE∈pI ,p in ϕ1

p(~t)

 ∪
 ⋃
tE∈D

d(t)

 ∪
 ⋃
~tE∈pI ,p in ϕ1

{d(t1), . . . , d(tn)}

14

It is easily verified that (E , σ) |= ψ: the trace basically contains a copy of the interpre-
tation I, a copy of the domain D disguised as the predicate d, and forces all predicates
from ϕ1 in the predicated d.

Vice versa, suppose there is a one-world trace σ over E satisfying ψ and call A the
structure (E , σ). The model (D, I) for ϕ1 is defined as follows:

• the domain D is set to dA

• the interpretation of predicates is the same: pI = pA

Such a construction is easily seen to be a model.

15

CHAPTER 4
Spawning automata

As we are going to see in the next chapter, the results in Chapter 3 will soon forbid
the construction of general early-as-possible monitors, yet a correct algorithm is still
achievable. The construction begins in this chapter with a new kind of automata paral-
leling [15], an automata based algorithm devising a finite state machine from two Büchi
automata, one from the formula itself and one from its negation. Since the logic is now
more sophisticated, the original Büchi automata model [35, 34] is no longer adequate
and care need be taken to handle domains, term evaluations, infinite relations. Most im-
portantly the different quantifier semantics makes automata dependant on the runtime
trace.

These extensions lead to the idea of spawning automata, new non-deterministic au-
tomata that, instantiating new subautomata at runtime, manage to expand quantifiers
and handle parametrised temporal subformulae on-the-fly. Spawning automata, similarly
to Büchi automata, deal with formulae semantics but still cannot dissect, or look into,
first-order subformulae: instead, they delegate the task to new runtime-parametrised
subautomata, that in turn repeat the process until the lowest layer is reached. The con-
struction is thus stratified according to the so-called “level” of a automaton, basically
the highest number of nested first-order quantifiers in the relative subformula, the low-
est corresponding to a regular propositional Büchi automaton. The structure of (sub-)
automata depends only on the (sub-) formulae, therefore a blueprint of all subautomata
can be built in advance even though the real value of the parameter will be known only
during execution.

The goal of this section is defining spawning automata and proving that they correctly
act as acceptors for LTL∀. The formal theory will be developed step by step, starting
from the abstract definition of these new machines and ending with the concrete con-
struction of an automaton from a LTL∀ formula. The first definition is preliminary and
will be used to define the accepting condition of spawning automata: it is a set of boolean
negation-free formulae whose atoms are generic elements from some set. Although it is
unusual to assign a truth value to bizarre set elements like automata, the construction

17

is well-known in the automata community, see for instance [29].

Definition 12 (Positive boolean formulae). The set of positive boolean formulae over a
set X, denoted by B+(X), is the set of formulae generated by the following grammar:

ϕ ::= a | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | > | ⊥

where a ∈ X and ϕ1 and ϕ2 are positive boolean formulae over X. A formula β ∈ B+(X)
is satisfied by a set Y ⊆ X, denoted by Y |= β, if the truth assignment setting all elements
of Y to true and all elements of X − Y to false satisfies β.

Next we see the main definition of the section, the spawning automaton’s. The defi-
nition follows familiar lines with a supplementary function δ↓, needed for the spawning.

Definition 13 (Büchi spawning automaton). A non-deterministic spawning automaton
A is a 7-uple (Σ, B,B0, δ→, δ↓,F , l) where Σ is an infinite set of symbols called the
alphabet, B is a finite set of states1, B0 is a subset of B called the set of initial states,
δ→ : B × Σ → 2B is the transition relation, δ↓ : B × Σ → B+(A<l) is the spawning
function, where A<l denotes the set of all spawning automata whose levels are less than
l, F is a possibly empty finite set of sets, each called acceptance set, and l is an integer
number greater than or equal to zero called level.

The core of the model is the new recursive accepting condition. The function δ↓ links
together the top-level automaton with his lower-level subautomata, using a boolean con-
dition that forces particular subautomata to accept or reject. The quantifier semantics
can thus be modelled, being nothing more than a short cut for a runtime conjunction
or disjunction. The automaton is non-deterministic, it runs in parallel multiple threads
of computation, accepting when one run only is accepted, but rejecting solely when all
runs are rejected.

Definition 14 (Accepting run). A run ρ of a spawning automaton (Σ, B,B0, δ→, δ↓,F , l)
reading w0w1 . . . ∈ Σω is an infinite sequence of states b0b1 . . ., starting with an initial
state b0 ∈ B0, and such that bi+1 ∈ δ→(bi, wi), for all i ≥ 0. The run ρ is locally
accepting if for all F ∈ F there are infinitely many indices i such that bi ∈ F . The
definition of accepting run is recursive: when the level is 0, the run ρ is accepting if it
is just locally accepting, when the level is greater than 0, the ρ must be locally accepting
and for all i ≥ 0 there must be a set Y ⊆ A<l such that Y |= δ↓(bi, wi) and all automata
A′ ∈ Y must have an accepting run reading wi. When there is an accepting run reading
a word w the word itself is called accepted word (by the automaton).

Now that all tools are ready it is time to build a particular spawning automaton, one
that acts as an acceptor for our new logic. Notation and terminology have been taken
from [15]. Note that the definitions of the subformulae and closure sets differ from the
standard: quantified formulae are not split further in the subformulae set, e.g. ∀x :p. ψ
is treated here as [15] would treat an atomic proposition. The quantified formulae will
be split later in subautomata responsible for the first-order parts of formulae.

1usually indicated by Q but here such a letter is used for relation symbols

18

Definition 15 (Closure set). Let ϕ be a sentence opportunely rewritten with only ¬, ∧,
∀, �, U; such a formula is called elementarily rewritten. The purely temporal subformula
set of ϕ, or simply subformula set, denoted by subf (ϕ), is the smallest set of formulae
X satisfying the following properties:

• ϕ ∈ X

• ?ψ ∈ X implies ψ ∈ X, for ? ∈ {¬,�}

• ψ1 ◦ ψ2 ∈ X implies ψ1, ψ2 ∈ X, for ◦ ∈ {∧,U}.

The closure set of ϕ, denoted by cl(ϕ), is the closure of subf (ϕ) under negation, i.e.
cl(ϕ) = subf (ϕ) ∪ {¬ψ | ψ ∈ subf (ϕ)}.

Definition 16 (Elementary set). Let ϕ be an elementarily rewritten formula. A set
b ⊆ cl(ϕ) is an elementary subset if for all ψ,ψ1 ∧ ψ2, ψ1Uψ2 ∈ cl(ϕ) it holds:

• ψ ∈ b if and only if ¬ψ 6∈ b

• ψ1 ∧ ψ2 ∈ b if and only if ψ1, ψ2 ∈ b

• if > ∈ cl(ϕ), then > ∈ b

• if ψ2 ∈ b, then ψ1Uψ2 ∈ b

• if ψ1Uψ2 ∈ b but ψ2 6∈ b, then ψ1 ∈ b

To handle the first-order part, a fundamental concept to bear in mind is the level of
a formula. This number is simply the number of first-order quantifiers in the deepest
nesting and will be the maximum depth of our automaton. Each δ↓ spawns an automaton
one level lower than its parent, down to 0 where spawning automata become regular
propositional Büchi automata.

Definition 17 (Level of a formula). Let ϕ be an elementarily rewritten formula. The
level of ϕ, denoted by level(ϕ), is the number of first-order quantifiers in the deepest
nesting, or more formally:

level(ϕ) =

0 if ϕ is quantifier-free
1 + level(∀x :p. ψ) if ϕ is of the form ∀x :p. ψ
max(level(ψ1), level(ψ2)) if ϕ is of the form ψ1 ∧ ψ2 or ψ1Uψ2

level(ψ) if ϕ is of the form �ψ or ¬ψ

Finally the construction is presented in the form of a constructive definition, easily
turnable into an algorithm. While most of the definition is similar to [15], note in
particular the definition of δ↓ and how it mimics the definition of the quantifier semantics.

Definition 18 (Aϕ). Let Γ be a signature, E an evaluation of Γ and ϕ an elementarily
rewritten formula. The symbol Aϕ inductively indicates the 7-uple (Σ, B,B0, δ→, δ↓,F , l)
where:

19

• Σ = 2Π∪Ψ

• B is the set of elementary sets of ϕ

• B0 = {b ∈ B | ϕ ∈ b}

• l = level(ϕ)

• δ→: if the conditions

– for all q(t) ∈ cl(ϕ), q(t) ∈ b if and only if (E , σ) |= q(t)
– for all t1 = t2 ∈ cl(ϕ), tE1 = tE2

does not hold both at the same time, then δ→(b, σ) = ∅; otherwise δ→(b, σ) is the
set of sets b′ ∈ B that satisfy the following two conditions:

– for all �ψ ∈ cl(ϕ), it holds �ψ ∈ b if and only if ψ ∈ b′

– for all ψ1Uψ2 ∈ cl(ϕ), it holds ψ1Uψ2 ∈ b if and only if ψ2 ∈ b, or ψ1 ∈ b
and ψ1Uψ2 ∈ b′

• δ↓: if l = 0, then δ↓(b, σ) = >, otherwise δ↓(b, σ) is recursively: ∧
∀x:p.ψ∈b

 ∧
p(t)∈σ

Aψ(tE)

 ∧
 ∧
¬∀x:p.ψ∈b

 ∨
p(t)∈σ

A¬ψ(tE)

where the first inner conjunction is meant to be > if there is no p(t) ∈ σ, whereas
the disjunction is meant to be ⊥ under the same condition.

• F = {Fψ1Uψ2 | ψ1Uψ2 ∈ cl(ϕ)} where Fψ1Uψ2 = {b ∈ B | ψ1Uψ2 ∈ b⇒ ψ2 ∈ b}

The language accepted by Aϕ, denoted by L(Aϕ)E or simply by L(Aϕ), is the subset of
Σω consisting of words accepted by Aϕ.

The following theorem crowns our work with an expected though technical theorem.
The proof is a double induction argument following [15], with adjustment on indices.
The claims and the structure have been highlighted typographically and linguistically,
making it easier to read albeit adding some redundancy and length.

Theorem 19 (Spawning automata are acceptors). Let Γ be a signature, ϕ be an ele-
mentarily rewritten formula, and E an evaluation of Γ. Then L(Aϕ)E = L(ϕ)E .

Proof. “⊆”: We need to prove that for all formulae ϕ, whenever Aϕ accepts a word w,
then this word itself satisfies ϕ over E . The proof is by induction on level(ϕ), our claim
is:

for all ϕ ∈ LTL∀. for all b0b1 . . . accepting run of Aϕ reading w.
for all ψ ∈ cl(ϕ). for all i ≥ 0. ψ ∈ bi ⇐⇒ (E , wi) |= ψ

20

Note that the thesis follows because ϕ ∈ cl(ϕ), and since w0 = w, it holds (E , w) |= ϕ.
level(ϕ) = 0: let b0b1 . . . be an accepting run of Aϕ reading w, we need to prove a

statement on all formulae in cl(ϕ). We will proceed by structural induction on those
formulae, observing that all formulae in cl(ϕ) are quantifier-free and thus it is not nec-
essary to prove the quantifier’s case. The base case runs similarly as in [10], with some
adjustments on indexes.
• Equality: by definition of δ→.
• Atoms: for an arbitrary i ≥ 0 and q(t) ∈ cl(ϕ):

q(t) ∈ bi ⇐⇒ (E , wi) |= q(t) by definition of δ→
⇐⇒ (E , wi) |= q(t)

• Negation: for an arbitrary index i ≥ 0, it holds:

¬ψ′ ∈ bi ⇐⇒ ψ′ /∈ bi by definition of elementary set
⇐⇒ (E , wi) 6|= ψ′ by (inner) induction hypotheses
⇐⇒ (E , wi) |= ¬ψ′

• Conjunction: for an arbitrary index i ≥ 0, it holds:

ψ1 ∧ ψ2 ∈ bi ⇐⇒ ψ1, ψ2 ∈ bi by definition of elementary set
⇐⇒ (E , wi) |= ψ1 and (E , wi) |= ψ2 by (inner) induction hypothesis
⇐⇒ (E , wi) |= ψ1 ∧ ψ2

• Next: for an arbitrary index i ≥ 0, it holds:

�ψ′ ∈ bi ⇐⇒ ψ′ ∈ bi+1 by definition of δ→
⇐⇒ (E , wi+1) |= ψ′ by (inner) induction hypothesis on index i+ 1
⇐⇒ (E , wi) |= �ψ′

Note in this case the induction hypothesis is applied on a different index from the
beginning: this and similarly until operator’s case are the reasons for the strengthened
induction claim on an arbitrary index (wrt. [10]).
• Until: for an arbitrary index i ≥ 0, the proof is split into an “only-if” and an “if”

part.
“⇒”: suppose ψ1Uψ2 ∈ bi, we will show (E , wi) |= ψ1Uψ2. First we show that there

is an index j ≥ i such that (E , wj) |= ψ2. In fact, suppose the contrary, for all j ≥ i it
holds (E , wj) 6|= ψ2; then by (inner) induction hypothesis it follows that for all j ≥ i it
holds ψ2 /∈ bj . Because ψ1Uψ2 ∈ bi and ψ2 appears in no state after bi, it must be that
ψ1Uψ2 ∈ bj (and ψ1 ∈ bj) for all j ≥ i, by δ→ definition. On the other hand, b0b1 . . . is
an accepting run, therefore there exist infinitely many j ≥ i such that bj ∈ Fφ1Uψ2 or
equivalently φ1Uψ2 /∈ bj ∨ ψ2 ∈ bj . This is a contradiction, therefore there is a j ≥ i
such that (E , wj) |= ψ2: let ̄ denote the minimal of such j’s.

21

We still need to show that for all k : i ≤ k < ̄ it holds (E , wk) |= ψ1. From the
minimality of ̄ and induction hypothesis follows ψ2 /∈ bi. As ψ1Uψ2 ∈ bi it is deducted
that ψ1 ∈ bi and ψ1Uψ2 ∈ bi+1. Repeating the same reasoning, we obtain ψ1 ∈ bk (and
ψ1Uψ2 ∈ bk) for all k : i ≤ k < ̄. The thesis follows from (inner) induction hypothesis

“⇐”: suppose (E , wi) |= ψ1Uψ2, we will show ψ1Uψ2 ∈ bi. From the hypotheses
there is a j ≥ i such that (E , wj) |= ψ2 and for all k : i ≤ k < j (if any) it holds
(E , wk) |= ψ1. From induction hypothesis we immediately derive ψ2 ∈ bj and ψ1 ∈ bk.
From definition of elementary set it follows ψ1Uψ2 ∈ bj and if j = i we are done.
Otherwise, with an inductive argument on j− 1, j− 2, . . . , i, by definition of δ→ we infer
ψ1Uψ2 ∈ bj−1, ψ1Uψ2 ∈ bj−2, . . . , ψ1Uψ2 ∈ bi.

The proof is now at the (outer) inductive case.
level(ϕ) = l > 0: we suppose our claim holds for all formulae whose levels are

less than l. Fixed an arbitrary accepting run b0b1 . . . of Aϕ, we prove the claim on all
ψ ∈ cl(ϕ) by structural induction of those formulae. Note how in proofs above the level
of such formulae has never been used: in fact the level is needed only when removing
quantifiers and there is none at level 0. The level is going to be used in the inner
induction quantifier case. The cases for equalities, atoms, negation, conjunction, next
and until are exactly the same and are not repeated here.
• Equality, atoms, negation, conjunction, next, until: for an arbitrary i ≥ 0, same as

above.
• Universal quantifier: our claims becomes

for all i ≥ 0. ∀x :p. ψ′ ∈ bi ⇐⇒ (E , wi) |= ∀x :p. ψ′

Note we are in the inner level of the induction proof. Let i ≥ 0 be an arbitrary index,
the proof is split in an “only-if” and an “if” part.

“⇒”: suppose ∀x :p. ψ′ ∈ bi, we must show (E , wi) |= ∀x :p. ψ′, equivalent to for all
t : p(t) ∈ wi, it holds (E , wi) |= ψ′(tE). If there is no such t the claim holds vacuously,
otherwise there are t1, . . . , tk such t’s and the spawning function δ↓(bi, wi) contains the
conjunctive clause Aψ′(tE1) ∧ . . . ∧ Aψ′(tE

k
). As b0b1 . . . is an accepting run of Aϕ, there

exists a Yi satisfying δ↓(bi, wi) such that all A ∈ Yi have an accepting run b′ib
′
i+1 . . .

reading wi. Therefore, as level(ψ′(tEj)) < l, applying the (outer) induction hypothesis
to Aψ′(tEj) and b′ib′i+1 . . ., we obtain:

for all φ ∈ cl(ψ′(tEj)). for all l ≥ 0. φ ∈ b′i+l ⇐⇒ (E , wi+l) |= φ

For φ = ψ′(tEj) and l = 0 we derive (E , wi) |= ψ′(tEj). The same argument can be applied
on all j : 1 ≤ j ≤ k and therefore the thesis.

“⇐”: suppose (E , wi) |= ∀x :p. ψ′, we will show ∀x :p. ψ′ ∈ bi. To reach a contradic-
tion, suppose ∀x :p. ψ′ /∈ bi, then ¬∀x :p. ψ′ ∈ bi by definition of elementary set. If there
is no t : p(t) ∈ wi then the disjunction clause in δ↓(bi, wi) is ⊥ and b0b1 . . . cannot be an
accepting run of Aϕ (at index i). Therefore there are t1, . . . , tk such that p(tj) ∈ wi for
j : 1 ≤ j ≤ k, and the disjunctive clause of δ↓(bi, wi) is A¬ψ′(tE1) ∨ . . .∨A¬ψ′(tE

k
). Because

b0b1 . . . is an accepting run of Aϕ, there exists a set Yi that satisfies δ↓(bi, wi) and all

22

the automata in Yi accept wi. Therefore there is a ̄ : 1 ≤ ̄ ≤ k such that A¬ψ′(tĒ) has
accepting run b′ib

′
i+1 . . . reading wi. Because level(¬ψ′(tĒ)) < l, applying our (outer)

induction hypothesis to A¬ψ′(tĒ) and b′i, we obtain:

for all φ ∈ cl(¬ψ′(tĒ)). for all l ≥ 0. φ ∈ b′i+l ⇐⇒ wi+l |= φ

For φ = ¬ψ′(tĒ) and l = 0, we derive (E , wi) |= ¬ψ′(tĒ), a contradiction with our initial
hypotheses.

“⊇”: we need to prove that every model (E , w) of a formula ϕ is accepted by its
constructed automaton Aϕ. The proof is by induction on level(ϕ), the induction claim
being:

for all ϕ ∈ LTL∀. for all w ∈ Σω : (E , w) |= ϕ.

(for all i ≥ 0. bi := {ψ ∈ cl(ϕ) : (E , wi) |= ψ})
⇒ b0 b1 . . . is an accepting run of Aϕ reading w

Note the induction claim implies the thesis.
level(ϕ) = 0: let w be a word, note as the level is 0 the accepting conditions are only

the local acceptance condition. We show b0b1 . . . is an accepting run reading w.
• b0b1 . . . is a well defined run reading w: From LTL∀ semantics first all bi are

elementary sets of ϕ and hence belong to Aϕ, second ϕ ∈ b0, and third bi+1 ∈ δ→(bi, wi).
• b0b1 . . . is accepting: we show for all ψ1Uψ2 ∈ cl(ϕ) there exist infinitely many

i ≥ 0 such that bi ∈ Fψ1Uψ2 . For an arbitrary ψ1Uψ2 ∈ cl(ϕ), suppose to reach a
contradiction that only finitely many i ≥ 0 are such that bi ∈ Fψ1Uψ2 . Then there is a
k ≥ 0 such that for all j ≥ k it holds bj /∈ Fψ1Uψ2 and therefore ψ1Uψ2 ∈ bj and ψ2 /∈ bj ,
by definition of Fψ1Uψ2 . In particular, from ψ1Uψ2 ∈ bk and by construction of ρk, there
must be some l ≥ k such that (E , wl) |= ψ2 and thus ψ2 ∈ bl with l ≥ k, contradiction.
Therefore b0b1 . . . is accepting.

level(ϕ) = l > 0: we suppose our claim holds for all formulae with level strictly less
than l. Fixed a word w and constructed b0b1 . . ., we need to show b0b1 . . . is an accepting
run reading w. In this case the accepting conditions comprehend an ulterior condition
on the spawning automata on which the induction hypothesis is going to be used. Note
as before the sets bi are elementary, they are connected by δ→, and ϕ ∈ b0. Also, the
locally acceptance condition is proved in the exact same way as before thus only the new
spawning acceptance condition is proven.

We show for all i ≥ 0 there is a Yi satisfying δ↓(bi, wi) such that all A ∈ δ↓(bi, wi)
are accepting wi. Define the following sets:

Y ∀i =
{
{ Aψ(tE) | ∀x :p. ψ ∈ bi, p(t) ∈ wi } if there are ∀x :p. ψ ∈ bi and p(t) ∈ wi

∅ otherwise

Y ∃i =
{
∅ if there is no ¬∀x :p. ψ ∈ bi

{ A¬ψ(tE) | ¬∀x :p. ψ ∈ bi, p(t) ∈ wi, (E , wi) 6|= ψ(tE)} otherwise

23

These sets are well defined, in particular regarding Y ∃i the conditions embrace all the
possible cases (completeness): indeed if there are ¬∀x : p. ψ ∈ bi then by construction
(E , wi) |= ¬∀x :p. ψ thus there are p(t) ∈ wi with (E , wi) 6|= ψ(tE). Let Yi be Y ∀i ∪Y ∃i : by
construction it satisfies δ↓(bi, wi), we still need to show every automaton therein included
is accepting wi.2 Now, for Aφ ∈ Yi we have either φ = ψ(tE) for some ∀x :p. ψ ∈ bi and
p(t) ∈ wi, or φ = ¬ψ(tE) for some ¬∀x : p. ψ ∈ bi and p(t) ∈ wi with (E , wi) 6|= ψ(tE).
Either way, it follows (E , wi) |= φ. Since level(Aφ) < l we can apply our induction
hypothesis and construct an accepting run b0b1 . . . reading wi: the thesis follows.

2Note that in Y ∃i all the possible t’s are taken in the second case of the definition: one would have
sufficed to respect the semantics of the existential quantifier.

24

CHAPTER 5
Monitoring in depth

Monitoring is both a theoretical and practical problem. In the first section we are going
to derive results on the theoretical side, proving that the so-called prefix problem is gen-
erally undecidable. The impossibility to solve the prefix problem denies the construction
of a complete monotonic monitor, albeit a correct yet incomplete implementation is still
possible: this is the aim of the second section.

5.1 Theoretical results
In Chapter 1 we set our intent to build an online, monotonic, as-early-as-possible, first-
order monitor that further fits in previous projects. This section begins with the formal
description of the problem and finishes with a negative result stating such a monitor is
impossible.

First our monitor has to be online, or processing events while the system is still run-
ning. In other words it cannot store the trace and then use some finite trace semantics
to evaluate a formula and it cannot be too slow to drag down the whole system. Trans-
lated in complexity theory terms, our monitoring algorithm must have a low complexity
when reading and processing an event, but it might have a higher complexity during the
generation of the monitor.

Another argument against finite trace semantics is the second requirement, the mono-
tonicity: if finite trace semantics were to be used, the output value could change once
set: for the formula ♦p(1) is evaluated to ⊥ as long as p(1) has not been seen, but
magically turns to be > after a p(1) event. In such a case the meaning of > and ⊥ is
lost: reporting ⊥, say, does not mean that a violation has occurred any more, but it
might be that just not enough time has elapsed. Monotonicity leads to the so-called
prefix semantics, based on definitions of good and bad prefixes:

Definition 20 (Good and bad prefix). Let Γ be a signature, let E be an evaluation of Γ,
let Σ be 2Π∪Ψ, and let ϕ be a formula. The set of good prefixes of ϕ, denoted by goodE(ϕ)

25

is the set {u ∈ Σ∗ | for all w ∈ Σω, (E , uw) |= ϕ}. Similarly the set of bad prefixes of ϕ,
denoted by badE(ϕ) is the set {u ∈ Σ∗ | for all w ∈ Σω, (E , uw) 6|= ϕ}. In the rest of this
chapter the symbol Σ will be used to denote 2Π∪Ψ.

Definition 21 (Prefix semantics). Let Γ be a signature, let E be an evaluation of Γ,
and let Σ be 2Π∪Ψ. The prefix semantics is a function [· |= ·]E3 : Σ∗ × LTL∀ → {⊥,>, ?}
defined as follows (cf. [15], [· |= ·]3 is therein called LTL3 semantics):

[u |= ϕ]E3 =

> if for all w ∈ Σω, (E , uw) |= ϕ

⊥ if for all w ∈ Σω, (E , uw) 6|= ϕ

? otherwise

The prefix semantics function is a cautious 3-value semantics offering as much in-
formation as possible about the truth of a formula after a finite prefix yet without any
possibility of future change. It results into a monotonic logic.

The third requirement asks for an as-early-as-possible monitor, meaning it must
detect minimal prefixes: since each bad (resp. good) prefix can be extended only to bad
(resp. good) prefixes it follows there is always a minimal subprefix. The requirement,
apparently innocent, will be the cause of undecidability of the prefix problem, reducible
to trace existence, reducible in turn to finite satisfiability in first-order logic, undecidable
by Trakhtenbrot theorem.

The other two requirements are implicitly fulfilled. We now state formally two equiv-
alent variants of the prefix problem:

Prefix problem 1 Prefix problem 2
Given: ϕ ∈ LTL∀, u ∈ Σ∗, Given: ϕ ∈ LTL∀, u ∈ Σ∗,
Question: u ∈ goodE(ϕ)? (resp. u ∈ badE(ϕ)?) Question: compute [u |= ϕ]E3

The attentive reader might already have noticed that not every formula has a good
or bad prefix: for consider �♦p(1), asking for p(1) to occur infinitely often. No finite
prefix will ever fulfil this condition, fate decided only by infinite tails: any monitor then
has to resign and output ‘?’ endlessly. We want to avoid these formulae indeed and only
start a monitor in case of a monitorable formula.

Historically [32], monitorable formulae were those whose set of models is a safety or
co-safety property: informally a subset of infinite words P is a safety property if each
word not in the subset has a bad prefix. We report here, adapted, the formal definition
given in Section 3.3.2 of [10], which the reader should refer to for a brief discussion of
safety properties in the model checking scenario:

Definition 22 (Safety property). Given an atomic propositions set AP , a subset P of
infinite words over 2AP is called a safety property if for all words w ∈ (2AP)ω \ P there
exists a finite prefix u such that

P ∩
{
w′ | u is a finite prefix of w′

}
= ∅

26

Safety and co-safety properties are glamour properties in the formal methods com-
munity although our framework, wanting also to be as general as it could be, consider
the strictly broader class defined in [15,31]:

Definition 23 (Ugly prefix, monitorable formula). Let L be a language of infinite words
over Σ. A finite word u is called an ugly prefix for L if it cannot be extended to a finite
good or bad prefix. A formula ϕ is non-monitorable if L(ϕ) has an ugly prefix, otherwise
ϕ is called monitorable.

A (counter-)example for the strict containment is shown in Lemma 3.8 of [15]; the
paper also discusses monitorable properties in general and the problem of determining
whether a formula is monitorable, although the complexity is not known to date. All
the work has been done in a propositional context and our is an attempt to extend it
to first-order. A first difference is that first-order monitors depend on the underlying
evaluation E : for consider ∃x : p. ∃y : p. x 6= y. An evaluation whose the domain is any
singleton set will always lead to ⊥, whereas in case of more-than-2-elements domains the
formula could be evaluated to >.

Finally we link the prefix problem, or theoretical monitoring, to the trace existence
problem studied in the previous section.

Theorem 24 (Equivalence of monitoring and trace existence). Let Γ be a signature
(C,F, P ∪Q), let E be an evaluation of Γ. Then the satisfying trace problem is reducible
to the monitoring problem. Vice versa, if |P | < ∞ then the monitoring problem is
reducible to the satisfying trace problem. All the problems are meant to be over the same
fixed evaluation E.

Proof. Let us first reduce satisfying trace existence to monitoring. Let ϕ be a formula
and consider any σ ∈ Σ∗ of length 1. Then ϕ has a satisfying trace over E if and only if
[σ |= �ϕ]E3 6= ⊥.

Vice versa, we reduce monitoring to satisfying trace existence. Let u be a finite word
w0, . . . , wn ∈ Σ∗ and ϕ ∈ LTL∀ a formula, the goal is to compute [u |= ϕ]E3 by satisfying
trace existence. First, we define a formula ψu whose models exactly coincide with u on
their first part. Let

ψw0 =
∧

p∈P,p(t)∈w0

p(t) ∧
∧
p∈P

(∀x :p.
∨

p(t)∈w0

x = t)

where the disjunction is meant to be > if there is no p-atom, for any p ∈ P .1
A model of ψw0 is precisely a structure whose first world agrees with w0 on its

P -atoms. Similarly define ψw1 , . . . , ψwn and let

ψ = ψw0 ∧ �ψw1 ∧ � � ψw2 ∧ . . . ∧ �nψwn

We solve the satisfying trace existence problem for ϕ+ = ψ ∧ϕ and ϕ− = ψ ∧¬ϕ. From
their semantics they cannot have both a satisfying trace at the same time: if both have

1Note the necessity of finiteness in the signature: without it the formula would be infinite

27

one, then there are two traces w+, w− ∈ Σω agreeing with u such that (E , w+) |= ϕ and
(E , w−) |= ¬ϕ.2 In this case [u |= ϕ]E3 =?. Now say ϕ+ has a satisfying trace but ϕ− does
not: then for all the traces w ∈ Σω agreeing with u it holds (E , w) 6|= ¬ϕ, or equivalently
(E , w) |= ϕ. That is, for all w′ ∈ Σω it holds (E , uw′) |= ϕ and [u |= ϕ]E3 = >.
The other case where ϕ+ is unsatisfiable and ϕ− is satisfiable is similar and leads to
[u |= ϕ]E3 = ⊥.

Combining Theorem 11 and 24 the main theoretical result of the thesis is reached, the
undecidability of monitoring. The assumption of a large |P | is derived from Theorem 11:
having a large number of predicates in the signature is common practice in any logic,
where it is usually countable infinite (cf. [18]), and from the practical side it enhances
design flexibility and expressivity. A precise count is outside the scope of this thesis,
but roughly it is at least the sum of the number of predicate symbols and the number
of function symbols in the first-order formula encoding a Turing Machine “deciding” the
halting problem.

Corollary 25. Monitoring in LTL∀ is undecidable, if the number of predicates in P is
large.

5.2 Practical monitoring

In the previous section we showed that an online, monotonic, as-early-as-possible first
order monitor is impossible. The aim of this section is that a correct monitor is still
constructible if we relax the as-early-as-possible constraint: our monitor is not forced
anymore to report minimal prefixes but once it outputs ‘>’ or ‘⊥’, it is the real value
indeed. Theoretically speaking, our monitor could output ‘?’ forever and retain cor-
rectness, but we will see in practice this is rarely the case. Moreover it outperforms
previous techniques on some structured formulae (see progression in [13] and compare
with Section 2 of Chapter 7).

The idea takes root in [15], using a Büchi-like automata as in [35, 34]: two non-
deterministic Büchi automata, one for ϕ and one for ¬ϕ, are run in parallel. If ¬ϕ’s
automaton, say, stops because no run could advance, ϕ’s automaton always will be
accepting and thus ϕ be true: in this case a monitor for ϕ can return ‘>’, and vice versa.

Differently from [15] our automata cannot be turned into DFA’s because of their
spawned component. In fact, in order to implement a quantifier semantics dependable
on the running trace, the automaton cannot be expanded completely beforehand, but
needs to spawn appropriate subautomata depending on the considered world: for exam-
ple, a universal quantifier is expanded in a conjunction of subautomata but the number
of conjuncts is the cardinality of the interpreted predicate quantified upon, and the inter-
pretation indeed depends on a particular world in the trace. The monitor then is built
on the automata model, recursively spawning submonitors (instead of subautomata):

2agreeing with u means that the first n+ 1 worlds of w+ and w− are precisely u

28

here we define the new δ↓(b, σ): ∧
∀x:p.ψ∈b

 ∧
p(t)∈σ

ME,ψ(tE)

 ∧
 ∧
¬∀x:p.ψ∈b

 ∨
p(t)∈σ

ME,¬ψ(tE)

Note this is identical to automata’s where submonitors ME,ψ replace subautomata Aψ;
when the evaluation is clear from the context a (sub)monitor is indicated by Mϕ. The
notation Mϕ(u) indicates the output of the algorithm Mϕ after having read u, world by
world.

The following algorithm in pseudo-code implements the above mentioned idea: each
monitor is split in two parts, each one representing two non-deterministic automata,
respectively for ϕ and for ¬ϕ. The two run in parallel, exploiting buffers buffϕ and
buff¬ϕ to remember potentially accepting runs, i.e. runs that in principle could turn
into accepting ones in the future. In particular no stopped or refusing run is stored. A
run is made of pairs, each indicating a state and the correspondent spawned function δ↓:
the submonitors therein present will keep running until the spawned function is true or
the entire run is removed from the buffer because it has stopped or become false. During
each iteration of the algorithm (lines 2–24), a world is read, all runs in the buffers are
advanced and hence the world is passed over to submonitors. After the recursion stack
has emptied, the base case being a propositional monitor, the monitor checks buffers for
emptiness symbolising definitely refusing automata. In case no automata has already
refuted, the monitoring goes on and ‘?’ is returned.

29

Input : last emitted event σ
Output : approximation of [uσ |= ϕ]E3 , where u is the word read so far
Static variables : buffϕ, buff¬ϕ (if level(ϕ) > 0)
Initialisation : buffϕ ← { [(b,>)] | b ∈ Bϕ

0 } (if level(ϕ) > 0)
if level(ϕ) = 0 then1

return [uσ |= ϕ]E3 from a propositional monitor2
end3
buffϕ ← {[h1, . . . , hn, (b, δ↓(b, σ)), (b′,>)] | [h1, . . . , hn, (b,>)] ∈ buffϕ, b′ ∈4
δ→(b, σ)}, similar for buff¬ϕ
for [h1, . . . , hn, hn+1] ∈ buffϕ do5

for i← n downto 1 do6
(b, obl)← hi7
Send σ to all submonitors-variables in obl, wait for verdicts8
Skip all returned ?’s, replace other values in corresponding variables9
if obl ≡ ⊥ then10

remove [h1, . . . , hn+1] from buffϕ (resp. buff¬ϕ)11
end12
if obl ≡ > then13

remove hi14
end15

end16

end17
if buffϕ = ∅ then18

return ⊥19
end20
if buff¬ϕ = ∅ then21

return >22
end23
return ?24

Algorithm 5.1: Monitoring algorithm ME,ϕ

Theorem 26 (Correctness of monitor). Let Γ be a finite signature, E an evaluation over
Γ, ϕ a sentence, and u a finite word. If ME,ϕ(u) = >, then u ∈ goodE(ϕ). Similarly if
ME,ϕ(u) = ⊥, then u ∈ badE(ϕ).

Proof. The proof is by induction on level(ϕ) using the claim proved in Theorem 19, that
here is restated:

for all ϕ ∈ LTL∀. for all b0b1 . . . accepting run of Aϕ reading w.
for all ψ ∈ cl(ϕ). for all i ≥ 0. ψ ∈ bi ⇐⇒ (E , wi) |= ψ

level(ϕ) = 0: the thesis follows from the correctness of a propositional monitor, see [14].

30

level(ϕ) > 0: let k be |u|. To reach a contradiction, suppose ME,ϕ(u) = > while u
is not a good prefix, i.e. there is a word w ∈ Σω such that (E , vw) |= ¬ϕ. We will show
that [(b0, δ↓(b0, u0)), . . . , (bk−1, δ↓(bk−1, uk−1))] belongs to buff¬ϕ after having read u,
eventually with some pairs removed: in this way buff¬ϕ could not have been empty and
> returned.

First, since (E , vw) |= ¬ϕ, the automaton A¬ϕ has an accepting run b0b1 . . . bk−1ρ
reading uw, and therefore, step after step, the monitor builds the correct run at line 4,
having a structurally equal δ→. Second such run is never removed from the buffer at
line 11: suppose the contrary, then in some cycle l there was a δ↓(bj , uj) evaluated to ⊥,
with 0 ≤ j ≤ l < k. If

δ↓(bj , uj) =

 ∧
∀x:p.ψ∈bj

 ∧
p(t)∈uj

ME,ψ(tE)

 ∧
 ∧
¬∀x:p.ψ∈bj

 ∨
p(t)∈uj

ME,¬ψ(tE)

 .
then at least one conjunct is evaluated to ⊥, say it is ME,ψ(tE)(uj , . . . , ul) from “second∧
”; the case where all monitors from the “

∨
” are evaluated to ⊥ is similar. Because

level(ψ(tE)) < level(ϕ), from the induction hypothesis it follows that for all infinite
word w′ it holds (E , uj . . . ulw′) |= ¬ψ(tE), and therefore (E , uj . . . ulw′) |= ¬∀x : p. ψ.
But b0b1 . . . bk−1ρ is and accepting run in A¬ϕ reading uw, therefore from the above
mentioned claim and ∀x : p. ψ ∈ bj , it follows (E , (uw)j) |= ∀x : p. ψ, where (uw)j =
uj . . . uk−1w. The contradiction arises when w′ is taken to be ul+1 . . . uk−1w.

The other statement is proven similarly.

31

CHAPTER 6
Model checking

This chapter deals with model checking, a static verification technique ensuring valid-
ity of relevant system properties up to mathematical rigour [10]. The entire system
and the properties are first abstracted and formalised, then specific algorithms are run,
extensively exploring the whole state space for violations, brute-force that guarantees
mathematical correctness in case of success or that finds an explicit counterexample in
case of failure.

Model checking in the propositional case is well understood, both in LTL and in CTL,
a branching temporal logic similar to LTL but that allows quantifiers over paths. Our
work is an attempt to extend the problem of model checking to first-order temporal logic
and show its relevance with monitoring. The chosen logic is here LTL∀ for consistency
reason with the monitoring problem.

Definition 27 (First-order Kripke structure). A (first-order) Kripke structure K is a
6-uple (S, s0,→, L,Γ, E) where:

• S is a finite set of states

• s0 is a special initial state in S

• Γ is an infinitely countable signature

• E is a computable evaluation (A, {cE}, {fE}) of Γ, i.e. the domain A has a com-
putable representation, evaluating terms is computable, and evaluated function are
computable themselves

• → is a binary left-total transition relation over S

• L : S → 2Π∪Ψ is the labelling function such that the sets L(s) ∩ Ψ are computable
for all s ∈ S, i.e. they have some algorithmic finite representation.

33

A run in the Kripke structure is an infinite sequence of states s0s1s2 . . . in which each
si belongs to S and s0 is really the initial state; it generates a trace L(s0)L(s1)L(s2) . . .,
hence we will use the same notation for both, run and trace, the reader being able to
distinguish them from the context. The language of the Kripke structure L(K) is the set
of all possible runs in K. For any given formula ϕ, the notation K |= ϕ means each
generated trace in K is a model for ϕ, or equivalently L(K) ⊆ L(ϕ). The expression
“first-order” will be omitted where it is clear from the context.

The requirements on the evaluation and on the labelling function let us have objects
expressing infinite information through finite algorithms and thus they can be input of
decision problems. Note the difference with the monitoring scenario: in that case the
system was thought as an external environment that could be queried for evaluation of
terms and predicate semantics, here the system itself is modelled and thus input into a
Turing machine. The requirement on Γ is similar, we want some flexibility on names but
not too much to result in an machine-unmanageable object. The idea is taken from [11]
weakened to just computable representation instead of automatic ones. We define now
the model checking problem:

Model checking problem
Given: K Kripke structure, ϕ formula,
Question: K |= ϕ?

From our definitions it follows that the model checking problem is well-defined. The
next Lemma shows a bit unexpectedly that domain and functions could be trimmed
down to finite objects. The point in defining the model checking problem on computable
Kripke structures instead of finite ones is the more general nature of the approach and
intrinsically a property of our logic, especially of our quantifier semantics.

Lemma 28 (Reduction to finite Kripke structures). Let K be a Kripke structure and ϕ
a formula. Then there is a Kripke structure K′ such that

• the domain of the evaluation in K′ is finite (|A′| <∞)

• the image of the labelling function in K′ is finite (|L′(s′)| <∞, for all s′ ∈ S′)

• K |= ϕ if and only if K′ |= ϕ

Proof. Suppose, without loss of generality, that all the variables occurring in the formula
have different names; the new Kripke structure K′ is the 6-uple (S, s0,→, L′,Γ, E ′) where
E ′ and L′ are a new evaluation and a new labelling function we are about to define. Let
E ′ be the triple (A′, {cE ′ , }, {fE ′}), the domain A′ is the union of all sets A′t, constructed
recursively, bottom-up, as follows: for each term t in ϕ,

• if t is a constant c, then A′c = {cE}

• if t is a variable x bound to p, then A′x = {p(t) | s ∈ S, p(t) ∈ L(s) ∩Π}

34

• if t is a term f(t1, . . . , tn) starting with a function symbol, then A′f(t1,...,tn) =
fE(Dt1 , . . . , Dtn) is the (finite) image of fE over the appropriate domain.

where E is the evaluation of the old Kripke structure K. The evaluation of constants is
the same while the evaluation of functions is restricted and co-restricted to A′. The new
labelling function is defined by the following equations: for each state s ∈ S,

L′(s) = (L(s) ∩Π) ∪ {r(~d) | r(~d) ∈ L(s), ~d is from A′}.

The semantics of the formula has not changed: for each run ρ in K and each corre-
sponding run ρ′ in K′, it holds (E , ρ) |= ϕ if and only if (E ′, ρ′) |= ϕ. Before stating the
induction claim, let us set some terminology and notations: the tuple of domain elements
~d agrees with the tuple of variables ~x in the formula ψ(~x) if whenever a component xi
is bound to a predicate p, then the corresponding di belongs to A′xi , for all i. Also A

indicates (E , ρ) and Ai indicates (E , ρi), and similar notations hold for A′ and A′i. The
induction claim is:

for all ψ(~x) ∈ subf(ϕ), for all i ≥ 0, for all ~d agreeing with ~x,
(E , ρ), i |= ψ(~d) ⇐⇒ (E ′, ρ′), i |= ψ(~d)

• Atoms: let ψ(~x) be an atom q(t(~x)), choose an index i ≥ 0 and a tuple ~d agreeing
with ~x:

(E , ρ), i |= q(t(~d)) ⇐⇒ tE(~d) ∈ qAi

⇐⇒ tE
′(~d) ∈ qAi ∩A′ = qA′i

where the left arrow in the last equivalence is trivial whereas the right arrow follows
because ~d agrees with ~x and thus tE ′(~d) is a well-defined element1 of A′. The last
statement is equivalent to (E ′, ρ′), i |= q(t(~d)).

• Quantified subformulae: if ψ is a quantified formula ∀x : p. φ, fixed i ≥ 0 and a
tuple ~d agreeing with ~x:

(E , ρ), i |= ∀x :p. φ(~d) ⇐⇒ for all p(t) ∈ wi, (E , ρ), i |= φ(~d, tE)

If ~d agrees with ~x, then (~d, tE) agrees with (~x, x) and the induction hypothesis can
be applied; moreover tE = tE

′ because it is a ground term.

for all t ∈ wi, (E , ρ), i |= φ(~d, tE) ⇐⇒ for all t ∈ wi, (E ′, ρ′), i |= φ(~d, tE ′)
⇐⇒ (E ′, ρ′), i |= ∀x :p. φ(~d)

All the other cases are just routine, they are reported briefly.
1possibly a tuple of elements; the notations ~tE

′
(~d) and rAi ∩ (A′× . . .×A′) are avoided here because

very heavy

35

• Negation:

(E , ρ), i |= ¬φ(~d) ⇐⇒ (E , ρ), i 6|= φ(~d)
⇐⇒ (E ′, ρ′), i 6|= φ(~d)
⇐⇒ (E ′, ρ′), i |= ¬φ(~d)

• Conjunction:

(E , ρ), i |= (φ1 ∧ φ2)(~d) ⇐⇒ (E , ρ), i |= φ1(~d) and (E , ρ) |= φ2(~d)
⇐⇒ (E ′, ρ′) |= φ1(~d) and (E ′, ρ′) |= φ2(~d)
⇐⇒ (E ′, ρ′) |= (φ1 ∧ φ2)(~d)

• Next operator:

(E , ρ), i |= �φ(~d) ⇐⇒ (E , ρ), i+ 1 |= φ(~d)
⇐⇒ (E ′, ρ′), i+ 1 |= φ(~d)
⇐⇒ (E ′, ρ′), i |= �φ(~d)

• Until operator:

(E , ρ), i |= (φ1Uφ2)(~d) ⇐⇒ there exists j ≥ i, (E , ρ), j |= φ2(~d)
and for all k : i ≤ k < j, (E , ρ), k |= φ1(~d)

⇐⇒ there exists j ≥ i, (E ′, ρ′), j |= φ2(~d)
and for all k : i ≤ k < j, (E ′, ρ′), k |= φ1(~d)

⇐⇒ (E ′, ρ′), i |= (φ1Uφ2)(~d)

The previous result is even more striking compared to the monitoring problem: in
fact, it is reasonable to ask that a similar result also holds for the monitoring scenario,
since in LTL the two run in parallel. This is not the case: differently from LTL where the
number of events allowed in a trace is finite, both in model checking and monitoring—
2|AP |, where AP are the atomic propositions in the observed formula—in LTL∀ infinitely
many different events could be observed in a trace during monitoring but not in model
checking, the former requiring just an infinite domain, the latter because traces come
from a labelling function over finitely many states and are thus to repeat in infinite runs.
An example of an infinite trace in monitoring is {p(1)}{p(2)}{p(3)} . . . where the domain
is countably infinite and the signature requires only a symbol p. A reasonable question
is whether there is any formula for which that trace is a satisfying trace that cannot
be tweaked in a satisfying trace where the number of events therein occurring is finite:
this corresponds to ask for the ultimately periodic model property in LTL [33]. If no

36

such formula existed, traces with infinitely many events would be irrelevant and all this
discussion void. However such a formula does exist, e.g. �(∃x :p.> ∧ ∀y :p. � �¬p(y)),
therefore differentiating both LTL∀ from LTL, and the model checking problem (easier)
from the monitoring problem (harder).

After these considerations the next result is less surprising.

Theorem 29 (Reduction to LTL model checking). The model checking problem in LTL∀
is reducible to the model checking problem in LTL.

Proof. We will show that for each first-order Kripke structure K′ and formula ϕ′ there
are a LTL Kripke structure K and a formula ϕ such that K′ |= ϕ′ if and only if K |= ϕ.
Without loss of generality, let K′ be a LTL∀ Kripke structure (S′, s′0,→′, L′,Γ, E) whose
domain and labelling function’s image are finite, and let ϕ be a formula. The LTL
formula ϕ′ is constructed as follows:

• rename variables in ϕ′ so they have all different names, number states in K′

• ϕ← ϕ′

• while ϕ contains an expression of the form φ′ ← Q~x :p. ψ(~x) do

– define: φ← >
– for each s′j ∈ S′ do

∗ T ← {~tE | p(~t) ∈ L′(s′j) ∩Π}
∗ if (Q = ∀) then
φ← φ ∧ (s(j)⇒

∧
~d∈T ψ(~d))

else
φ← φ ∧ (s(j)⇒

∨
~d∈T ψ(~d))

– substitute φ′ by φ in ϕ

• replace each atom q(~d) by q~d (including s(j) by sj)

The propositional Kripke structure K = (S, s0, R, L,AP) is defined as follows:

• S = S′, s0 = s′0, R =→′

• AP = {q~d | q ∈ Q
′, ~d from the domain of E}

• L(sj) = {sj} ∪ {q~d | q(~d) ∈ L′(s′j)}

First, the algorithm terminates because ϕ′ has a finite number of quantifiers, and ϕ
is a well-defined LTL formula, it contains only temporal and boolean connectives and
propositional atoms: the original ϕ′ is a sentence, thus when we reach the replacement
step all the atoms q(~t) are ground, because their variables were bound by some quanti-
fiers. Also, K is a well-defined LTL Kripke structure.

37

Second, the semantics is preserved: let K be the first-order Kripke structure obtained
from K′ modifying the labelling function to L(si) = {s(i)}∪L′(si), and let ϕ be the LTL∀
formula obtained from ϕ′ after one iteration of the while loop. Runs ρ′ in K′ correspond
to runs ρ in K and vice versa. Now we claim:

for all run ρ′ ∈ K′, for all i ≥ 0, ρ′, i |= φ′ if and only if ρ, i |= φ,

where φ′ is the selected expression in the while loop and φ is built from φ′. Note that
this implies K′ |= ϕ′ ⇐⇒ K |= ϕ. For the proof, suppose φ′ = ∀~x :p. ψ(~x), then:

(E , ρ′), i |= ∀~x :p. ψ(~x) ⇐⇒ for all ~d ∈ pA′i , (E , ρ′), i |= ψ(~d) (6.1)
⇐⇒ (E , ρ′), i |= ψ(~d1) ∧ . . . ∧ ψ(~dn) (6.2)
⇐⇒ (E , ρ), i |= ψ(~d1) ∧ . . . ∧ ψ(~dn) (6.3)
⇐⇒ (E , ρ), i |= s(j)⇒ (ψ(~d1) ∧ . . . ∧ ψ(~dn) (6.4)
⇐⇒ (E , ρ), i |= φ (6.5)

because

1. definition, where Ai = (E , ρ′i)

2. pA′i = {~d1, . . . , ~dn}

3. K differs from K by just one predicate symbol s

4. sj is the i-th state in ρ, thus s(j) is there true

5. s(j) is the only s-predicate true at ρi

To see why K |= ϕ ⇐⇒ K |= ϕ just observe that the last for loop substitutes ground
atoms by equivalent boolean atoms, both in the formula and in the Kripke structure,
thus preserving the semantics.

38

CHAPTER 7
Practical examples

This chapter outlines two concrete examples: the first is a modelling exercise in the
PCBRP framework, the second is a detailed monitoring example on the Android plat-
form.

7.1 Modelling a policy in the business framework

As already explained in the introduction, the PCBRP project studies techniques to
verify and reason about complex data flowing in business processes and governed by
business rules. The technical report [3] investigates the model checking problem in two
flavours, when a concrete initial database is provided, and when properties are to be
checked for all possible databases (both argued not to be even semi-decidable). The
system model does not need to be specified because process fragments are automatically
combined according to first-order temporal logic rules. Data is in form of JSON objects
and queries (policies) are also CTL∗(FO) formulae.

For more detail we invite the reader to have a look at [3], our concern here is to
describe how LTL∀ monitoring could be applied to the purchase order example of Sec-
tion 2 of such report: some information system handles incoming orders, decides to
decline them or to further process them, taking care of the packaging, shipping and issu-
ing of invoices. The system, in [3] originally composed of process fragments, is not shown
here as it is a black box from monitor’s perspective. Stock and orders are presented in
a two part JSON database, the leftmost part being the concrete data, the rightmost
containing type definitions:

{ "order" : [1], DB = { order: List[Integer],
"gold" : true, gold: Bool,
"stock" : [{ "ident" : "Mouse", stock: List[Stock],

"price" : 10, status: Status }
"available" : 0 },

39

{ "ident" : "Monitor", Stock = { ident: String,
"price" : 200, price: Integer,
"available" : 2 }, available: Integer }

{ "ident" : "Computer",
"price" : 1000, Status = { open: List[Integer],
"available" : 4 }], value: Integer,

"status" : ["open" : [], shipping: Integer,
"value" : 0, paid: Bool,
"shipping" : 0, shipped: Bool,
"paid" : false, final: Bool }
"shipped" : false,
"final" : false] }

The database is updated by the underlying business process and likely to change
event after event. The best place for its dynamical nature is the trace, of which we
provide two alternative formalizations.

The first approach deploys one hidden object, representing the whole database in
a single P -predicate DB, the only element to appear in the trace. An example is
{DB(db1)}{DB(db1)}{DB(db2)}, where different subscripts indicate that changes to the
database have taken place. The only way to access database elements is by ad hoc
accessors, functions applicable to the hidden objects dbi, that return the desired field
values. Since functions interpretation is rigid through time, the necessity to change
database object in the trace is now clear, or no update could be possible. In our ex-
ample the accessors for the DB predicate are order, gold, stock, and status and similar
ones exist for Status and Stock. Accessors can be nested, for instance the expression
shipped(status(db)) is valid, and it returns false in the example. The constraint of hav-
ing a single DB object per world pertains to the design phase, but it could be checked
against the policy �(∀x :DB. ∀y :DB. x = y). This methods masks the database to the
monitor, that relies heavily on the system evaluation for accessing concrete data values:
on some hand the desirable OOP principle of data hiding is respected, but on the other
hand the technique does not exploit the expressiveness of LTL∀.

The second approach, closely related to relational algebra, is in some sense the
opposite, it expresses each complex JSON object as a P -predicate with a special id
field (primary key) plus a field for each key-value pair. The database objects becomes
DB(id, order, gold, stock, status) and similar predicates exist for the status and the stock.
Arrays are modelled as lists constructed by a functional constructor cons: for instance
the list [1, 2, 3] is just shorthand notation for cons(1, cons(2, cons(3, emptyList))). Ag-
gregation, such as each database object has a status object, here is a design issue, but
it could possibly be checked against the policy:

�(∃dbId, o, g, s, status :DB. ∃statusId, v, shg, p, shd, f :Status. status = statusId).

Everything seen so far occurs in the trace, the following JSON database is the first world:

40

DB(db1, [1], true, [stock1, stock2, stock3], status1)
Status(status1, [], 0, 0, false, false, false)
Stock(stock1, "Mouse", 10, 0)
Stock(stock2, "Monitor", 200, 2)
Stock(stock3, "Computer", 1000, 4)

This method bears the advantage to be more transparent but it requires more space.
Let us focus now on the policy to be monitored: as stated in [3], “crucial for [this]

(our) example is the list of open items, under status, which has to be empty to be able
to ship a purchase order. If it is not, constituents of the order are missing and need to
be ordered until the list is empty”. This is easily transported into our notations: in the
first case we have

(∃db :DB. shipped(status(db)) = false)U(∃db :DB. open(status(db)) = [])

and in the second case we have

(∃dbId, order , gold, stock, statusId1 :DB.
∃statusId2 , open, value, shipping, paid, shipped,final :Status.

statusId1 = statusId2 ∧ shipped = false)U
(∃dbId, order , gold, stock, statusId1 :DB.
∃statusId2 , open, value, shipping, paid, shipped,final :Status.

statusId1 = statusId2 ∧ open = []).

Both notations have pros and cons, but the real choice here is between succinctness and
transparency.

7.2 Monitoring on Android: an example

This section takes on from the discussion in [13], showing a practically applicable example
of first-order monitoring on the Android platform. Suppose that some application could
establish connections to the outside world through telephony, a GPS system and various
TCP/IP ports, scenario shared by most of the apps on Google Play [5]. The goal is to
monitor such application and forbid it to use all connections but telephony. The policy
is a simple safety property and looks like this:

�(¬gps(on) ∧ (∀x :openPort. ¬isTransmitting(x))

where gps and openPort are unary P -predicates, and isTransmitting is a unaryR-predicate.
The idea is to report violations whether either GPS is turned on or some transmitting
port is, whereas an open inactive port is no harm.

There are two ways to model a lack of GPS connections: following the open world
assumption, no gps atoms in the trace means that the status of the positioning system
is unknown, therefore a new atom gps(off) must be added to the trace. Depending on

41

the design, this could be enough to guarantee that the two atoms mutually exclude each
other, or alternatively an axiom could be appended to the formula:

�((∃x :gps. >) ∧ (∀x :gps. ∀y :gps. x = y) ∧ (∀x :gps. x = on ∨ x = off)
∧(∀x :gps. x = on ⇐⇒ x 6= off)) ∧ (on 6= off)

The second way is the closed world assumption, basically meaning a missing atom is a
false atom. Following this view, we will consider gps(on) to be a propositional predicate
gps and rewrite the formula as:

�(¬gps ∧ (∀x :openPort. ¬isTransmitting(x))

Monitoring this formula is perfectly possible, but so far our algorithm does not bear
any clear advantage over other techniques: we want now to add some tautological prop-
erty that will simplify monitoring. This is counter-intuitive especially with respect to
progression where a longer formula usually results in a higher workload.

Suppose now that, from knowledge of the system, the following property is true:

�(browser⇒ ♦(∃x :openPort. isTransmitting(x)))

The formula asserts that an active browser will open a transmitting port sooner or later,
where browser is a propositional atom like gps, that can be active or inactive. Conjoining
the formulae together and merging the globally operators, we obtain a new formula ϕ:

�((¬gps ∧ (∀x :openPort. ¬isTransmitting(x))∧
(browser⇒ ♦(∃x :openPort. isTransmitting(x))))

The keen reader would note that each prefix containing a browser atom is necessarily a
bad prefix: in fact, that would imply that (∃x :openPort. isTransmitting(x)) will become
true eventually, while at the same time it must be false globally, because its negation
is always true. Let us see a comparison of progression and our algorithm on the trace
∅∅{browser}∅. Call ψ the subformula ∀x :openPort. ¬isTransmitting(x), then progression
goes:

prog(ϕ, ∅) = ϕ ∧ prog(¬gps ∧ ψ ∧ (browser⇒ (♦¬ψ)), ∅)
= ϕ ∧ > ∧ prog(ψ, ∅) ∧ (⊥ ⇒ prog(♦¬ψ, ∅))
= ϕ ∧ > ∧ > ∧ >
≡ ϕ

prog(ϕ, ∅) = . . . = ϕ

42

prog(ϕ, {browser}) = ϕ ∧ > ∧ prog(ψ, {browser}) ∧ (> ⇒ prog(♦¬ψ, {browser}))
≡ ϕ ∧ prog(ψ, {browser}) ∧ prog(♦¬ψ, {browser})
= ϕ ∧ prog(ψ, {browser}) ∧ (prog(¬ψ, {browser}) ∨ (♦¬ψ))
= ϕ ∧ prog(ψ, {browser}) ∧ (¬prog(ψ, {browser}) ∨ (♦¬ψ))
= ϕ ∧ > ∧ (¬> ∨ (♦¬ψ))
≡ ϕ ∧ ♦¬ψ

prog(ϕ ∧ ♦¬ψ, ∅) = ϕ ∧ prog(♦¬ψ, ∅)
= ϕ ∧ (¬prog(ψ, ∅) ∨ ♦¬ψ)
= ϕ ∧ (¬> ∨ ♦¬ψ)
≡ ϕ ∧ ♦¬ψ

Progression basically evaluates what can be evaluated at the moment and returns
what has to be evaluated in the next state. After the event {browser} has been read,
progression is unable to detect that a bad prefix has been reached because it can-
not combine semantically �(. . . ∧ ∀x : openPort. ¬isTransmitting(x)) and (> ⇒ ♦¬∀x :
openPort. ¬isTransmitting(x)).

Now let us see our automata-based approach: to simplify the exposition, the two
Büchi automata are generated by Oddoux’s and Gastin’s web tool [6], keenly decreasing
the overall size by three kinds of simplifications: on-the-fly, a posteriori, and strongly
connected components. Since the tool works with propositional formulae, we use �(¬g∧
p ∧ (b ⇒ ♦¬p)) and its negation because propositional skeletons are the same of their
first-order counterparts1. In principle, altering the underlying automata model could
breach correctness, yet our example still properly builds potentially accepting runs in
the buffers by δ→ and maintains semantics of first-order spawned formulae by δ↓, thus
retaining correctness as well (cf. proof of Theorem 26). In fact, the advancing function
δ→ is taken from a correct albeit simplified automaton, and the spawning function δ↓ is
always > as no open ports are present in the given trace. If there were a non-transmitting
open port in some world, say 8080, then the spawned submonitor M¬isTransmitting(8080)
would still return > at the same world. The reader should not think that our approach
always boils down to propositional monitoring: if a transmitting open port were seen,
then any correct implementation of our monitoring algorithm would return ⊥ straight
away, whereas a propositional monitor could not even express the relation between an
open and a transmitting port.

Init: buffϕ ← {[(s0,>)]}, buff¬ϕ ← {[(s′0,>)]}

{∅}: after line 4, buffϕ ← {[(s0, p), (s0,>)]}, buff¬ϕ ← {[(s′0, p), (s′0,>)]}

after line 24, buffϕ ← {[(s0,>)]}, buff¬ϕ ← {[(s′0,>)]}

{∅}: as above
1p stays for ψ

43

s0

¬g ∧ p ∧ ¬b

Figure 7.1: automaton for ϕ

s′0

s′1 s′2

>

¬p ∨ g
p ∧ b

p >

Figure 7.2: automaton for ¬ϕ

{b}: after line 4, buffϕ ← ∅, buff¬ϕ ← {[(s′0, p), (s′1,>)], [(s′0, p), (s′0,>)]}

after line 24, buffϕ ← ∅, buff¬ϕ ← {[(s′1,>)], [(s′0,>)]}

After the third event {b}, representing the world of an activated browser {browser}, the
algorithm correctly returns ⊥ with no need to keep processing further.

44

CHAPTER 8
Conclusions

8.1 Summary
This thesis discusses the monitoring problem for applications to the PCBRP project
and on the Android platform. After a theoretical digression devising a new suitable
first-order temporal logic, the prefix problem was discussed and argued to be the real
monitoring problem, the only one satisfying our reasonable assumptions. Next its the-
oretical insolubility was shown although a practically interesting algorithm tails in the
following chapter. The algorithm outperforms previous techniques on some formulae as
shown in the examples section. Finally the related model checking was reduced to the
propositional case and its intrinsic difference to the monitoring problem commented.

Satisfiability/Trace exist. Prefix problem Model checking
LTL PSpace-complete PSpace-complete PSpace-complete
LTL∀ undecidable undecidable ExpSpace-membership,

PSpace-hard

Table 8.1: complexity results

8.2 Future work
There are two main directions for further research: first, a decidable fragment of LTL∀
will lead to a decidable prefix problem for which an as-early-as-possible monitor could
be found; second, a thorough study on which class of formulae our monitor performs
best will deepen our understanding of the algorithm with possible further optimisations.

Both points have already been undergoing some research. For the decidable fragment,
there are some naïve answers, e.g. restricting everything to unary ground predicates

45

makes everything propositional, yet no final word has been put. Andréka, Neméti and
Van Benthem’s ideas on the guarded fragment [9] looked particularly suitable, but deep
differences in the logics blighted our efforts: modal logic formulae translated to first-
order logic become formulae with an open variable, meaningfully different from the closed
sentences of our approach. The technique was nonetheless interesting per se, filtering
the whole set of models down to some smaller candidate set and then brute-forcing it.

Another attempted technique was taken from [11], where automatic structures al-
lowed quantification even over infinite domains. Although promising, our reduction is
from finite satisfiability, basically encoding a Turing Machine solving the Halting prob-
lem in a single-world trace, therefore the same reduction is applicable, and the problem
still undecidable, as long as the domain can provide new elements representing the used
portion of the infinite tape, should they be generated by some regular automaton or not.

Any successful attempt would make the one-world-trace fragment decidable first, but
without trimming down too much to fall back on propositional LTL. After, the result
would be lifted to first-order. To date, the problem in our framework is open, up to
author’s knowledge.

The second point, a deeper understanding of the automata-based algorithm, has
started, although the research is still in a preliminary stage. Concrete implementation
code in Scala has been written in Nicta and tested against real formulae. The code
is proprietary and still under development so we cannot share the details here, but
encouraging results were shown on some formulae (on other ones the speed was similar
to progression), particularly formulae for which semantics information may lead to an
early stop of the monitor, whereas syntactical means are insufficient; an example was
provided in Section 2 of Chapter 7. Particularly interesting and relating to performance
speed is also the question of trace dependency: which formulae generate a monitor
who has to remember long parts of the trace during computation? Indeed, monitors
that are as-independent-as-possible are the most desirable: for instance, consider how a
monitor ♦p can throw away event after event, as long as it waits for p. The definition of
trace dependency has not been formalised yet, although the author sketched some first
attempts still lacking independence from the model of computation (Turing machines).

46

Links

[1] PCBRP official website: http://ssrg.nicta.com.au/projects/PCBRP/

[2] Nicta official website: http://nicta.com.au

[3] PCBRP technical paper: http://ssrg.nicta.com.au/projects/PCBRP/papers/
PCBRP-technical-paper.pdf

[4] Maude official website: http://maude.cs.uiuc.edu/overview.html

[5] Google Play website, apps section: http://play.google.com/store/apps

[6] LTL 2 BA, fast translation from LTL formulae to Büchi automata, by Denis Odd-
oux and Paul Gastin. Online tool: http://www.lsv.ens-cachan.fr/~gastin/
ltl2ba/index.php

[7] Android official website: http://www.android.com

[8] Symantec security report on AndroidOS.FakePlayer: http://www.symantec.com/
security_response/writeup.jsp?docid=2010-081100-1646-99

47

http://ssrg.nicta.com.au/projects/PCBRP/
http://nicta.com.au
http://ssrg.nicta.com.au/projects/PCBRP/papers/PCBRP-technical-paper.pdf
http://ssrg.nicta.com.au/projects/PCBRP/papers/PCBRP-technical-paper.pdf
http://maude.cs.uiuc.edu/overview.html
http://play.google.com/store/apps
http://www.lsv.ens-cachan.fr/~gastin/ltl2ba/index.php
http://www.lsv.ens-cachan.fr/~gastin/ltl2ba/index.php
http://www.android.com
http://www.symantec.com/security_response/writeup.jsp?docid=2010-081100-1646-99
http://www.symantec.com/security_response/writeup.jsp?docid=2010-081100-1646-99

Bibliography

[9] H. Andréka, I. Németi, and J. van Bentham. Modal Languages and Bounded Frag-
ments of Predicate Logic. Journal of Philosophical Logic, 27:217–274, 1998.

[10] Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press,
2008.

[11] David Basin, Felix Klaedtke, Samuel Müller, and Birgit Pfitzmann. Runtime mon-
itoring of metric first-order temporal properties. In Proceedings of the 28th IARCS
Annual Conference on Foundations of Software Technology and Theoretical Com-
puter Science (FSTTCS’08), volume 2 of Leibniz International Proceedings in In-
formatics (LIPIcs), pages 49–60. Schloss Dagstuhl - Leibniz Center for Informatics,
2008.

[12] Andreas Bauer, Rajeev Gore, and Alwen Tiu. A first-order policy language for
history-based transaction monitoring. In M. Leucker and C. Morgan, editors, Pro-
ceedings of the 6th International Colloquium on Theoretical Aspects of Computing
(ICTAC), volume 5684 of Lecture Notes in Computer Science, pages 96–111, Berlin,
Heidelberg, August 2009. Springer-Verlag.

[13] Andreas Bauer, Jan-Christoph Küster, and Gil Vegliach. Runtime verification meets
Android security. In Proceedings of the 4th NASA Formal Methods Symposium
(NFM), volume 7226 of LNCS, pages 174–180. Springer, 2012.

[14] Andreas Bauer, Martin Leucker, and Christian Schallhart. The good, the bad, and
the ugly, but how ugly is ugly? In RV, pages 126–138, 2007.

[15] Andreas Bauer, Martin Leucker, and Christian Schallhart. Runtime verification
for LTL and TLTL. ACM Transactions on Software Engineering and Methodology,
20(4):14, 2011.

[16] Abhijit Bose, Xin Hu, Kang G. Shin, and Taejoon Park. Behavioral detection of
malware on mobile handsets. In MobiSys, pages 225–238, 2008.

[17] Raouf Boutaba, Wojciech M. Golab, and Youssef Iraqi. Lightpaths on demand: a
web-services-based management system. Comm. Mag., 42(7):101–107, July 2004.

49

[18] René Cori and Daniel Lascar. Logique mathématique. Cours et exercices. I: Calcul
propositionnel, algèbres de Boole, calcul des prédicats. Préface de J.-L. Krivine.
AXIOMES. Paris: Masson. xv, 385 p. , 1993.

[19] William Enck, Peter Gilbert, Byung gon Chun, Landon P. Cox, Jaeyeon Jung,
Patrick McDaniel, and Anmol Sheth. Taintdroid: An information-flow tracking
system for realtime privacy monitoring on smartphones. In OSDI, pages 393–407,
2010.

[20] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David Wagner.
Android permissions demystified. In ACM Conference on Computer and Commu-
nications Security, pages 627–638, 2011.

[21] Dov M. Gabbay. The declarative past and imperative future: Executable temporal
logic for interactive systems. In Temporal Logic in Specification, pages 409–448,
1987.

[22] Sylvain Hallé and Roger Villemaire. Runtime monitoring of message-based work-
flows with data. In EDOC, pages 63–72, 2008.

[23] Klaus Havelund. Using runtime analysis to guide model checking of java programs.
In SPIN, pages 245–264, 2000.

[24] Klaus Havelund and Grigore Rosu. Monitoring programs using rewriting. In ASE,
pages 135–143, 2001.

[25] Klaus Havelund and Grigore Rosu. Testing linear temporal logic formulae on finite
execution traces. Technical report, 2001.

[26] Klaus Havelund and Grigore Rosu. Synthesizing monitors for safety properties. In
TACAS, pages 342–356, 2002.

[27] Klaus Havelund and Grigore Rosu. Efficient monitoring of safety properties. STTT,
6(2):158–173, 2004.

[28] Insup Lee, Sampath Kannan, Moonjoo Kim, Oleg Sokolsky, and Mahesh
Viswanathan. Runtime assurance based on formal specifications. In PDPTA, pages
279–287, 1999.

[29] Christof Löding and Wolfgang Thomas. Alternating automata and logics over infi-
nite words. In IFIP TCS, pages 521–535, 2000.

[30] Amir Pnueli. The temporal logic of programs. In FOCS, pages 46–57, 1977.

[31] Amir Pnueli and Aleksandr Zaks. Psl model checking and run-time verification via
testers. In FM, pages 573–586, 2006.

[32] Grigore Rosu and Klaus Havelund. Rewriting-based techniques for runtime verifi-
cation. Automated Software Engineering, 12(2):151–197, 2005.

50

[33] A. Prasad Sistla and Edmund M. Clarke. The complexity of propositional linear
temporal logics. J. ACM, 32(3):733–749, 1985.

[34] Moshe Y. Vardi. An automata-theoretic approach to linear temporal logic. In Banff
Higher Order Workshop, pages 238–266, 1995.

[35] Moshe Y. Vardi and Pierre Wolper. An automata-theoretic approach to automatic
program verification (preliminary report). In LICS, pages 332–344, 1986.

51

	Introduction
	Motivation and aim of the work
	Structure of the work

	Monitoring in brief
	The idea
	Approach and problem statement
	Related work

	Notations and definitions
	Syntax
	Semantics

	Properties of LTL
	Spawning automata
	Monitoring in depth
	Theoretical results
	Practical monitoring

	Model checking
	Practical examples
	Modelling a policy in the business framework
	Monitoring on Android: an example

	Conclusions
	Summary
	Future work

	Links
	Bibliography

