
A Simulation Framework for
Task-based Crowdsourcing with

Auctions
DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering/Internet Computing

eingereicht von

Tobias Hammerer
Matrikelnummer 0526269

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Univ. Prof. Mag. Dr. Schahram Dustdar
Mitwirkung: Univ. Ass. Dr. Benjamin Satzger

Wien, 07.05.2012
(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

A Simulation Framework for
Task-based Crowdsourcing with

Auctions
MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering/Internet Computing

by

Tobias Hammerer
Registration Number 0526269

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Univ. Prof. Mag. Dr. Schahram Dustdar
Assistance: Univ. Ass. Dr. Benjamin Satzger

Vienna, 07.05.2012
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Tobias Hammerer
Ramperstorffergasse 27/25, 1050 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit - einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i

Danksagung

Diese Masterarbeit bildet den Abschluss der bisher wohl spannendsten, arbeitsinten-

sivsten und doch schönsten Zeit meines Lebens, meiner Studienzeit. Viele wichtige

Menschen haben mich durch diese ereignisreichen und wunderbaren Jahre begleitet,

welchen ich an dieser Stelle danken möchte.

Der größte Dank gebührt meinen Eltern die mir diese universitäre Ausbildung in erster

Linie ermöglicht haben. Ihr habt mich stets in jeglicher Art und Weise, sei es finanziell

oder moralisch, unterstützt und mich jederzeit bekräftigt in dem was ich tue. Ohne euch

wäre all dies nicht möglich gewesen und dafür möchte ich euch danken.

Des Weiteren möchte ich all meinen Freunden, vor allem dem “Sparverein”, und meinen

Studienkollegen danken die mir den benötigten Ausgleich zum Studium boten und mein

Leben dadurch sicherlich um einiges lustiger und schöner gestaltet haben.

Nicht zuletzt möchte ich mich bei meinen Betreuern Dr. Benjamin Satzger und Prof.

Dr. Schahram Dustdar bedanken die mich bei der inhaltlichen Gestaltung unterstützt

haben. Die Besprechungen waren stets konstruktiv und auf Feedback musste ich nie

lange warten, was nicht als selbstverständlich angesehen werden darf.

ii

Abstract

Crowdsourcing describes a model for distributed online problem solving harnessing the creative
solutions as well as the scalability and availability of the distributed network of individuals. A
popular way of crowdsourcing where one can outsource a task to a crowd and receives a result
in reasonable time is referred to as task-based crowdsourcing (TBCS). A multitude of different
TBCS platforms is currently available. However, they have to cope with certain challenges.
Firstly, they have to address the issue of the varying quality of user-processed tasks and secondly,
they have to find solutions for distributing tasks in a way that all stakeholders get the highest
attainable benefit. For the latter, the use of auctions as a means of task distribution seems to be
an interesting approach, which has not been discussed in related literature yet. Another challenge
in TBCS is the difficulty of testing and evaluating new approaches due to the scarcity of “real”
data for evaluations.

The contribution of this thesis is twofold. Firstly, we address the lack of an appropriate simulati-

on framework for task-based crowdsourcing and come up with a solution. We introduce a highly

configurable, modular and extensible framework which is grounded on an agent-based mode-

ling approach. The framework supports state of the art quality management methods based on

a skill profiling module and various auction mechanisms to simulate task distribution methods.

Secondly, we discuss the suitability of different auction types for various crowdsourcing scena-

rios. By means of the simulation framework, we simulate five different scenarios and compare

three reversed standard auction types (sealed-bid, Dutch, English) and one double auction type

(continuous double auction) with each other. Based on the analysis of quality, task distribution

and payoff we find that among the standard auction types, the sealed-bid auction provides the

most balanced results, whereas in comparison to the double auction market, the latter provides

slightly better results in most categories. We have further analyzed three different quality mana-

gement methods and come to the conclusion that the best quality can be achieved by using an

auction mechanism that matches the task to the best suited worker. The most balanced approach,

however, is to use a qualification policy.

iii

Kurzfassung

Unter Task-Based Crowdsourcing versteht man die Auslagerung einer Aufgabe (Task) an ei-

ne Menge von unbekannten Akteuren (Crowd) unter Zuhilfenahme von Webtechnologien. Die

Crowd bearbeitet die Aufgabe und stellt ein Ergebnis bereit. Plattformen, die dieses Service an-

bieten sehen sich mit verschiedenen Herausforderungen konfrontiert, insbesondere die Berück-

sichtigung von Qualitätsunterschieden der bearbeiteten Tasks sowie die Erzielung des für alle

Beteiltigten höchst möglichen Nutzens durch eine angemessene Aufgabenverteilung. Auktionen

stellen hierbei einen interessanten Ansatz dar, der in der Fachliteratur in diesem Zusammenhang

bisher noch nicht eingehend analysiert wurde. Das Testen und Evaluieren neuer Ansätze kann als

eine weitere Herausforderung identifiziert werden, zumal der Zugang zu “echten” Daten oftmals

mit Schwierigkeiten verbunden ist.

In dieser Masterarbeit wird zunächst ein hochgradig konfigurierbares, modulares und erweiter-

bares Simulations-Framework vorgestellt, welches dem Ansatz der Agenten basierten Modellie-

rung folgt. Das Framework unterstützt dabei aktuelle Qualitätsmanagement-Methoden (basie-

rend auf einem “Skill Profiling” Modul) und verschiedene Auktionsmechanismen (zur Vertei-

lung der Aufgaben). Anschließend wird die Eignung verschiedener Auktionsmechanismen für

diverse Crowdsourcing-Szenarien untersucht. Darüber hinaus werden drei Standard- Auftrags-

auktionen (Reverse Auctions) und eine Double Auction einem Vergleich unterzogen. In Hinblick

auf die Auswertung von Qualität, Taskverteilung und Profit erzielt die Reversed Sealed-Bid Auk-

tion in Summe die besten Resultate. Im Vergleich zu den Standard Auktionsmechanismen, liefert

die Continous Double Auction in den meisten Kategorien etwas bessere Ergebnisse. Zudem wur-

den drei verschiedene Qualitätsmanagement-Methoden einer Analyse unterzogen. Dabei kann

festgehalten werden, dass die Verwendung einer Auktion, die die Aufgaben den qualifiziertesten

Usern zuteilt, die höchsten Qualitätswerte erzielt.

iv

Contents

1 Introduction 1
1.1 Motivation . 4

1.2 Contribution . 6

1.3 Organization . 7

2 State of the Art Review 9
2.1 Auction Theory . 9

2.1.1 Valuations . 10

2.1.2 Standard Auction Types . 11

2.1.3 Reverse Standard Auction Types 13

2.1.4 Double Auction Types . 13

2.2 Crowdsourcing . 14

2.3 Agent-based Modeling . 17

2.3.1 Components of an Agent-based Model 18

3 Related Work 20
3.1 Quality in Crowdsourcing Platforms 20

3.2 Task Matching on Task-based Crowdsourcing Platforms 23

3.3 Advanced Aspects of Crowdsourcing 24

3.3.1 User Management . 24

3.3.2 Applying Game Theory . 26

3.4 Social Computing . 27

3.5 Agent-based Modeling Frameworks 28

3.5.1 NetLogo . 28

v

3.5.2 MASON . 29

4 Methodology 30
4.1 Task-based Crowdsourcing – A Motivating Example 30

4.2 Requirements . 32

4.3 Architecture . 34

4.3.1 Simulating Time using Discrete-Event Simulation 36

4.3.2 Event-based Communication 37

4.4 Defining the Simulation Model . 38

4.5 Population . 39

4.5.1 Tasks and Transactions . 40

4.5.2 Requester Model . 42

4.5.3 Worker Model . 43

4.5.4 Models for Task Valuation . 45

4.5.5 Trading Strategies . 47

4.6 Marketplace . 49

4.6.1 Task Distribution by Means of Auction Mechanisms 50

4.6.2 Quality Management and Skill Recognition 54

4.7 Simulation . 57

5 Implementation 59
5.1 The Underlying JABM Framework . 60

5.2 Design of the Framework . 61

5.3 Creating the Simulation Model . 64

6 Evaluation 69
6.1 Evaluation Design . 69

6.2 Evaluation Scenarios . 71

6.2.1 Scenario 1 - A Large, High-Skilled Crowd 72

6.2.2 Scenario 2 - A Small High-Skilled Crowd 75

6.2.3 Scenario 3 - A Large, Low-Skilled Crowd 78

6.2.4 Scenario 4 - Standard Auction vs. Double Auction 80

vi

6.2.5 Scenario 5 - Quality Management Methods 83

7 Summary and Future Work 87
7.1 Future Work . 88

Appendices 90

A List of Abbreviations 91

B A Sample Configuration File 93

Bibliography 101

vii

List of Figures

1.1 Agents and actions in a task-based crowdsourcing process 3

2.1 Auction types categorized by the number of participants 10

4.1 The task-based crowdsourcing process . 31

4.2 Basic architecture . 35

4.3 Observer design pattern in UML syntax 36

5.1 UML diagram showing the key components of JABM 61

5.2 Framework structure in UML syntax . 62

6.1 Evaluation design of a scenario X containing a series of experiments 70

6.2 Generated worker population according to Scenario 1 72

6.3 Task quality distribution for Scenario 1 . 74

6.4 Generated worker population according to Scenario 2 76

6.5 Task quality distribution for Scenario 2 . 77

6.6 Generated worker population according to Scenario 3 78

6.7 Task quality distribution for Scenario 3 . 80

6.8 Generated worker population according to Scenario 4 81

6.9 Task quality distribution for Scenario 4 . 83

6.10 Generated worker population according to Scenario 5 84

6.11 Task quality distribution for Scenario 5 . 86

viii

List of Tables

2.1 A selection of current crowdsourcing platforms 16

3.1 Terminology of the Amazon Mechanical Turk 21

4.1 Components of the requester model . 43

4.2 Components of the worker model . 45

4.3 Components of the auction model . 55

4.4 Components of the marketplace model . 56

4.5 A list of available reports . 57

6.1 Evaluation results for Scenario 1 . 73

6.2 Evaluation results for Scenario 2 . 76

6.3 Evaluation results for Scenario 3 . 79

6.4 Evaluation results for Scenario 4 . 82

6.5 Evaluation results for Scenario 5 . 85

A.1 List of Abbreviations . 92

ix

List of Listings

5.1 Configuring the simulation environment 64

5.2 Configuring the market simulation . 65

5.3 Configuring the population . 66

5.4 Creating agent lists . 67

5.5 Configuring the market . 68

5.6 Configuring the random generator . 68

B.1 A sample configuration file of a simulation model 93

x

CHAPTER 1
Introduction

Within the last few decades the World Wide Web has rapidly evolved from a network

offering basic communication services to a platform offering a vast number of different

services. In the wake of the dotcom bust, Web 2.0 arose and changed the common un-

derstanding of the Internet. “Network as a Platform” is one central idea of Web 2.0,

meaning that web applications should go further than just providing web accessible

“desktop applications”. They should be built especially for the web, tapping the poten-

tial of this new platform, namely its users. Simply put, a web application should get

better and more interesting, the more people use and contribute to it [50]. Using this in-

sight, the World Wide Web moved into a new phase where various systems – providing

this new functionality – emerged. Users, for example, were now able to connect with

each other and share personal information using services like Facebook, MySpace or

Twitter (to name only a few) [21, 45, 64]. They were able to collaborate and contribute

their knowledge to create new contents whose total value exceeds the sum of values

provided by the single users (as it is the case on Wikipedia [69] for example) [40, 50].

Along with these developments, a new model for distributed on-line problem solving

harnessing the creative solutions as well as the scalability and availability of the dis-

tributed network of individuals was born [11, 67]. This model called crowdsourcing

was first mentioned in [28] by Jeff Howe. It describes a web-based outsourcing strategy

consisting of the idea that tasks being traditionally processed by employees, are now

1

offered to a so called crowd – an unknown but large group of people on the Internet.

By offering various incentives the crowd is encouraged to process the offered tasks. In-

centives may be monetary, intrinsic (e.g. enhancing reputation in a specific community,

acquiring new skills, . . .) or both [5, 29].

There is a multitude of different crowdsourcing platforms available which can be cat-

egorized, according to Vukovic [67], based on the Crowdsourcing Function and the

Crowdsourcing Mode. The crowdsourcing function refers to the type of environment

the task or product is being crowdsourced in. More information and examples regard-

ing this point will be provided in Chapter 2. The crowdsourcing mode may be ei-

ther Contest or Marketplace. Contest-based platforms refer to crowdsourcing systems

where users submit their solutions but only the best solution will win and be rewarded.

Threadless.com [61] constitutes a representative example of this category. Users are

encouraged to design their own T-shirt and submit their design to the website. Then

the online-community is invited to vote for their best design. The design with the most

votes will win the contest, the winner will get a monetary reward and T-shirts with the

winning design will be sold on the website [11].

Contrary to contest-based platforms, tasks submitted to marketplace-based platforms are

advertised as bidding items and therefore can be assigned to single crowd members who

will be rewarded (assuming the tasks are processed successfully). This thesis mainly

focuses on the latter type of crowdsourcing systems which is often referred to as Task-

Based Crowdsourcing. Figure 1.1 (based on [67]) shows the different agents and their

possible actions in a task-based crowdsourcing system which will be explained using

the following example.

The Amazon Mechanical Turk (AMT) [3] is a very prominent representative for task-

based crowdsourcing. Employers on the AMT, so called requesters, are encouraged to

submit tasks, so called human intelligence tasks (HITs), to the system. Those HITs

mostly require minor effort – most of them can be processed in a few seconds up to

a few minutes - but still need human intelligence. As a recent study [32] has shown:

transcription, classification and categorization tasks are the most occurring HITs offered

2

Requester Worker
Crowdsourcing

Platform

submit task, validate
solution, pay for task,
rate worker

bid for task, process
task, charge for task

provide solution assign tasks

Figure 1.1: Agents and actions in a task-based crowdsourcing process

on AMT. The crowd of employees, so called workers, pick up these HITs, complete

them and get a monetary reward (normally a few cents per HIT) if the quality of their

solution is accepted by the requester [32].

Task-based crowdsourcing obviously depends on the crowd, but the crowd also em-

bodies a big challenge for those systems. On the one hand, workers worldwide from

different cultures and time zones can register to those platforms and compete for tasks,

providing highly available workforce. This in turn is an incentive for companies to

outsource tasks to the system. On the other hand, this mix implies varying skills and

performances among workers leading to the possibility that workers might not be qual-

ified for processing a given task. As a consequence, the variation in quality of provided

results is high [2, 54]. Furthermore, studies based on the AMT have shown that, not

only missing skills or low performances have impact on the quality, but also the behav-

ior of malicious workers. They exploit the fact that manually verifying the quality of

the submitted results is hard, and therefore submit low quality solutions [32, 33].

Literature shows various approaches to cope with the issue of varying quality. Agichtein

et al. [2] describe a method for automatically identifying high quality content in so-

cial media based on content, link analysis and user rating. They state that Yahoo! An-

swers [74], a famous question & answer crowdsourcing platform, is one example where

their algorithm could be applied on.

3

As a representative example for task-based crowdsourcing, the AMT provides two

strategies to cope with quality issues. Firstly, requesters may require workers to pass

a qualification test in case special skills are needed for processing a task. Secondly,

requesters have to pay for quality work only (e.g. correct solutions) [4]. As mentioned

earlier, it is hard to manually verify the quality of results. Therefore, many requesters

rely on redundancy by submitting the same task to several workers in order to identify

correct solutions. Ipeirotis et al. [33] state that this method is 1) expensive for workers

and 2) biased by malicious workers. In their paper, they describe an algorithm based on

the work of [14], which is capable of analyzing the quality of workers with respect to

error and bias.

The necessity of creating qualification tests to ensure worker skills is another restriction

of this AMT quality assurance plan. On the one hand, every time a requester is sub-

mitting a new sort of HIT that needs special skills, a new test has to be designed. That

needs valuable time and might be tedious. On the other hand, workers have to attend and

pass various qualification tests before being allowed to work. That in turn may cause

unnecessary overhead for workers and could come in conflict with the aforementioned

principle of highly available workforce on demand. Satzger et al. [54] discuss an auto-

mated crowdsourcing marketplace capable of estimating the skills of its workers based

on a confidence management model. One interesting point in their work is the matching

of tasks to workers. Matching on common systems, like the AMT, is dependent on the

worker who simply selects a task of interest available on the platform. In the approach

provided by [54], task matching is business of the marketplace itself. By means of an

auctioning system, workers are invited to bid for tasks they are interested in. The winner

of the auction is determined based on the worker’s quality rating and the bid price.

1.1 Motivation

The aim of each task-based crowdsourcing system is to satisfy its clients (i.e. requesters

and workers). By means of a large number of active clients over a long period of time,

profit can be gained. Requesters need to obtain high quality results in reasonable time at

4

a reasonable price to be satisfied. On the other hand, workers are interested in gaining

high rewards for completing tasks and they will only stick to the platform as long as

tasks are available [54].

The challenges of task-based crowdsourcing platforms can be summed up as follows:

• Varying Quality: The quality of processed tasks is dependent on the worker’s skill

level and attitude (e.g. malicious workers). Strategies to cope with parts of this

issue are available but prominent platforms like the Amazon Mechanical Turk

only provide limited possibilities to ensure high quality results.

• Task Distribution: A common way of task distribution is that a worker selects

its preferred task among a list of many, knowing the (predefined) price he will

get in case of successful completion. This may have restrictions: Firstly, there is

no guarantee that a task is processed by a well or even a perfectly-suited worker.

Secondly, since prices are predefined both parties might not get the maximum

benefit according to their own task valuation.

Regarding the task distribution, the above mentioned method is justifiable, even prefer-

able for platforms like the AMT where micro-tasks are traded. In case one wants to

trade larger, costlier tasks (e.g. small software projects) other distribution systems may

be interesting. In [54], a new way of task distribution is introduced, using an auction

mechanism that matches tasks to workers based on the workers qualification and its bid

price.

Auctions are a very popular way of trading goods on the Internet, with eBay [18] as

its most prominent representative. However they are neither used in current task-based

crowdsourcing systems, nor have been paid attention to in relevant literature.

As mentioned above, using auctions for task distribution and price negotiation is an in-

teresting new approach in this area. Thus the suitability of different auction mechanisms

in a task-based crowdsourcing environment should be analyzed.

5

One problem we are facing is the difficulty of testing and evaluating new approaches

in crowdsourcing due to the scarcity of “real” data for evaluation. Obtaining data from

an existing crowdsourcing platform might be applicable if one wants to analyze general

facts (e.g. user studies). When it comes to testing new paradigms the most reasonable

way is to create a model of the new approach and run simulations on it.

To the best of our knowledge there is currently no simulation environment focusing on

task-based crowdsourcing available. By means of a modular, highly configurable and

extensible framework, various different crowdsourcing scenarios could be tested and

analyzed.

1.2 Contribution

In this thesis we address the issues mentioned in Section 1.1. Thereby, providing an

analysis of the suitability of different auction mechanisms in task-based crowdsourcing

platforms through a highly configurable, modular and extensible agent-based modeling

framework, especially designed for such platforms. In particular the contribution of this

thesis is twofold:

• A simulation framework suited to the needs of a task-based crowdsourcing envi-

ronment based on the Java Agent-Based Modeling (JABM) toolkit [35] is built.

Key features of this new framework can be identified as follows:

– Highly configurable due to the use of dependency-injection

– Highly extendable due to clear defined interfaces and an open design (e.g.

possibility to implement workers organized in teams processing nested tasks)

– Supportive of skill recognition strategies to cope with quality issues

– Supportive of various auction types for task distribution

– Supportive of various reports for analysis

– Agent-based approach, i.e. each agent follows its own strategies and rules

(e.g. trading, pricing, etc.)

6

• A suitability analysis of four commonly known auction mechanisms1: Sealed Bid

Second Price Auction, English Auction, Dutch Auction, Continuous Double Auc-

tion is provided. The auction mechanisms are used for task distribution in a task-

based crowdsourcing system. Based upon data obtained from several simulation

runs utilizing the aforementioned simulation framework, we discuss advantages

and disadvantages of each auction type in a given context. We analyze the data

based on the following criteria: quality of processed tasks, payoff of the agents

and throughput based on assigned, unassigned and completed tasks as well as

tasks with deadline violations.

1.3 Organization

The remainder of this thesis is structured as follows:

• Chapter 2 details the current state of the art and provides basic knowledge. At first

an basic introduction in auction theory is given. Then, the term crowdsourcing

is defined and a basic overview of current crowdsourcing platforms is provided.

Finally, essentials of agent-based modeling are discussed.

• Chapter 3 provides an overview of related work in the area of task-based crowd-

sourcing (TBCS) and simulation. Different quality management approaches in

TBCS are discussed, task matching methods are detailed and information on ba-

sic strategies to recruit and retain users is given. Lastly, two different agent-based

modeling frameworks are introduced.

• In Chapter 4 the architecture, the theoretical models and the approaches used to

implement the simulation framework are detailed. After information on the sim-

ulation model is provided, models used to define the behavior of agents are dis-

cussed. This chapter further covers information on the design of the marketplace

and simulation specific components.
1Detailed information regarding those auction types will be provided in Section 2.1

7

• Chapter 5 covers the implementation aspects of the simulation framework proto-

type. At first, the underlying agent-based simulation framework (JABM) is out-

lined and the integration in our framework is described. Then, selected compo-

nents are discussed and the implementation of the simulation model is detailed.

• Chapter 6 contains an evaluation of the suitability of different auction types for a

given crowdsourcing scenario. In detail, five different scenarios are simulated and

four different auction types are compared. For each scenario a discussion based

on the simulation results is provided.

• Finally, Chapter 7 provides a conclusion of the thesis and suggestions for further

improvements.

8

CHAPTER 2
State of the Art Review

This chapter reviews the current state of the art in crowdsourcing and discusses basic

concepts of auction theory and agent-based modeling techniques.

2.1 Auction Theory

In this section, an overview of commonly known and widely used auction types is given.

Jap defines an auction as

“[. . .] a market institution with an explicit set of rules determining resource

allocation and prices on the basis of bids from market participants.” [36]

With the set of rules defining the behavior of an auction, various different auction types

can be identified. These auction types may differ in several factors such as the way

the price is determined, the number of items traded in an auction or the number of

participants trading in an auction [39]. On basis of the latter, we can divide auctions

into three categories:

1. Standard (or Demand) auctions: A single seller v offers a good and multiple

buyers c compete for it pushing the price up (see Figure 2.1(a)).

2. Reverse (or Supply) auctions: The roles of sellers and buyers are reversed, as a

single buyer c offers a business to multiple sellers v who compete with each other

9

http://upload.wikimedia.org/wikipedia/commons/3/34/Purchaseauction.svg

1 von 1 12.04.2012 14:13

(a) Standard Auction

http://upload.wikimedia.org/wikipedia/commons/8/80/Supplyauction.svg

1 von 1 12.04.2012 14:10

(b) Reverse Auction

http://upload.wikimedia.org/wikipedia/commons/4/4c/Doubleauction.svg

1 von 1 12.04.2012 14:14

(c) Double Auction

Figure 2.1: Auction types categorized by the number of participants, taken from [70]

by pushing the price down, in order to sell their workforce and get the business

assigned (see Figure 2.1(b)).

3. Double Auctions: Multiple buyers c submit their bids and multiple sellers v simul-

taneously submit their asks. If a bid exceeds an ask, a transaction is consummated

between the two participants (see Figure 2.1(c)).

2.1.1 Valuations

One key feature of auctions is that bidders and sellers are uncertain about the exact value

of an object being sold. In auction theory this is called asymmetric information. Two

basic valuation models can be distinguished [38, 39]:

1. Private-Value Model: In this model each bidder knows his value of the object

being sold. This information is private to the bidder himself which implies that

no bidder knows the value other bidders attach to the object. Further, knowledge

about the private value of others would not effect the own private value. Accord-

ing to [39], using the private value model is most plausible in case a bidder derives

the value of an object from its consumption or use. For example, a painting may

have different values to different bidders.

2. Pure Common-Value Model: In this model the value of the goods is the same

for everyone (once revealed), but at the time of the auction, this actual value is

10

unknown to the bidders. Each bidder has different information about the actual

value and the information of one bidder would be informative to another bidder

thereby affecting his valuation. A typical example would be the sale of a piece of

land with an unknown amount of oil underground. At auction time, the amount

of oil is unknown and bidders may have different estimates based on geological

tests. The real value of the land, however, is derived from the future sales of the

oil.

2.1.2 Standard Auction Types

In standard auctions, which are also referred to as demand auctions, the bidder submit-

ting the highest price wins the auction. The methodology to obtain bids, however, may

vary. As stated in [39] and [38], four basic auction types that are widely used can be

distinguished:

• English Auction: The English auction is also called ascending-bid or open auc-

tion. In this auction type, a seller determines a reserve price which equals the start

price of this auction. The price is then successively raised either by an auction-

eer (in small increments) or by the buyers themselves (by submitting bids). The

auction runs until only one bidder remains who wins the traded good at the final

price. In this auction type, each bidder is at all times aware of the current highest

bid. One prominent example of an online marketplace using this type of auction

is eBay.com [18].

• Dutch Auction: The Dutch auction is also called descending-bid auction. In this

auction, an auctioneer basically starts at a very high price where presumably no

bidder is interested in buying the traded good. By successively lowering the price,

bidders are encouraged to participate in the auction. The first bidder accepting the

current price wins the good. As in the English auction, each bidder is at all times

aware of the current highest bid.

• Sealed-Bid First-Price: In contrast to the former two auction types, bidders are

not aware of the bids of other participants. Therefore, in this auction each bidder

11

submits a single bid independently of the bids of the other competitors. The bid

with the highest price eventually wins the traded good.

• Sealed-Bid Second-Price: This auction is also referred to as Vickery auction. The

procedure is basically the same as in the sealed-bid first-price auction with the

difference that the winner has to pay the price of the second-highest bid.

Two out of those four auction types are open auctions, namely the English and Dutch

auction, and two are sealed-bid auctions, the first-price and second-price formats. In

game theory, the Dutch auction and the sealed-bid first-price auction are considered

strategically equivalent. This means that the set of strategies available in the Dutch

auction is the same as in the sealed-bid first-price auction [38]. More specifically, to

win a Dutch auction a bidder has to submit the first bid. He must therefore determine

a price (i.e. the private value) at which he places a bid in the auction, provided that

no other bid has been submitted yet. The same strategy of choosing a price can be

applied in the Dutch auction as in both auctions the highest bid wins and the price of the

winning bid constitutes the price the agent has to pay. The fact that the Dutch auction

offers information about current prices is not useful for bidders, as once this information

is available, the Dutch auction has already determined a winner.

Bidders trading in the English or the Ssealed-bid second-price auction also have to

choose the price (i.e. private value) they are willing to pay to obtain goods. In con-

trast to the former two auction types, this private value need not be equal to the price

that winning bidders finally have to pay. In the English auction, it is sufficient to stay in

an auction until one is the last remaining bidder. The winning price therefore equals the

price of the second highest bidder, i.e. the price of the last bidder leaving the auction.

Again, this is the same as in the sealed-bid second-price auction and hence these both

auction types are considered strategically equivalent. However, as stated in [39], this

equivalence is weaker than the one between the sealed-bid first-price auction and the

English auction since the English auction offers information of other bidders dropping

out and thus the remaining bidders may be able to infer something about their privately

known information.

12

2.1.3 Reverse Standard Auction Types

As mentioned above, in reverse auction types, the roles of buyers and sellers are re-

versed. Buyers aim to buy workforce in the auction at a low price and sellers try to

sell their workforce by pushing the price down. The same four standard auction types

described in the previous section can be distinguished. However, slight alterations in

the auction process have to be made:

• For the two sealed-bid auction types, the only alteration to the auction process is

that the lowest bid, in contrast to the highest bid, wins the auction.

• The English auction starts at a high price which is equal to the buyer’s reservation

price. This price is then successively decreased until only one seller remains.

• The Dutch auction starts at a very low price which is equal to the buyers reserva-

tion price. This price is then successively raised until the first bid is submitted.

2.1.4 Double Auction Types

In standard and reverse auctions, one seller (or buyer) accepts bids from multiple buyers

(or sellers) which is why these auction types are also called one-sided. In contrast to that,

double auctions can be categorized as two-sided auctions as multiple buyers and sellers

place their bids in an auction to trade homogeneous goods. Friedman [24] provides a

survey on double auction theory and discusses multiple variants of the Continuous Dou-

ble Auction (CDA). In its basic version, the CDA immediately matches bids of buyers

and sellers on detection of compatible bids, i.e. when the price of a given bid exceeds

the price of a given ask. In contrast to that, the Clearinghouse Auction (CH) type should

also be mentioned as it collects bids over a certain period of time and matches buyers

and sellers at the end of this period.

Further work on double auctions for electronic commerce has been done by Wurman

et al. [73]. Besides analyzing economic incentives, they introduce an efficient 4-heap

algorithm to process incoming bids and calculate allocations. The algorithm uses four

heap structures: two for buy offers (bids), and two for sell offers (asks). Each of them

13

can be further divided into two heaps: one heap containing matched shouts and one

heap containing unmatched shouts.

2.2 Crowdsourcing

The term crowdsourcing was first mentioned by Jeff Howe in 2006 in an issue of the

Wired magazine [28] where he described it as a new web-based outsourcing strategy.

Particularly, he defines crowdsourcing as

“[. . .] the act of taking a task traditionally performed by a designated agent

(such as an employee or a contractor) and outsourcing it by making an open

call to an undefined but large group of people. Crowdsourcing allows the

power of the crowd to accomplish tasks that were once the province of just

a specialized few.” [29]

The main idea of this open call is that there are no restrictions regarding the people

addressed. Everybody may work on a task provided by a crowdsourcing platform. As

a consequence, the crowd consists of people with different interests, skills and cultures.

However, Howe further notes that this crowd primarily consists of professional ama-

teurs who are knowledgeable and educated, committed and networked. Their motiva-

tion of contributing their knowledge and skill set mostly does not come from monetary,

but rather from intrinsic incentives. They contribute as they want to enhance their rep-

utation in a specific community or as they get the possibility to acquire new skills. The

monetary reward is mostly of secondary importance [29].

Basically, two groups of crowdsourcing platforms can be distinguished:

• Contest: In contest-based platforms, a task is assigned to multiple users. Many

users may process this task and submit their solutions to the platform but only the

best solution will win and be rewarded. Even though rewards range from a million

dollars for improving the performance of a video recommender system [46] and

a thousands of dollars for solving a research problem on innocentive.com [31] to

14

a few hundred dollars for developing a software component [63], “real” profes-

sionals typically are not represented in the crowd [5]. Firstly, they are normally

not able to make a living by solely working for such contest-based platforms and

secondly they are simply not willing to put resources and work in something they

probably will not be rewarded for. Hence, the crowd on such platforms mainly

consists of the aforementioned professional amateurs. A game-theoretic approach

to model such contests is provided by DiPalatino and Vojnovic in [15], as they

represent contest-based platforms as all-pay auctions. In an all-pay auction, every

participant has to pay the price he submits to the auction, but only the highest

price wins the auction. In crowdsourcing contests, this price is represented by the

effort the participants put into creating their solutions. A typical representative

for a contest-based crowdsourcing platform is threadless.com [61]. Users are en-

couraged to create and submit T-shirt designs. Among all submissions, the online

community can vote for their favorite and the design obtaining the most votes is

rewarded. T-shirts with the winning design can be bought on the website.

• Marketplace: In marketplace-based platforms, tasks are advertised as bidding

items. Platform users may bid on tasks and start working once they get a task

assigned. In contrast to contest-based platforms, each user processing a task gets

paid (assuming the tasks are processed successfully) and not just the user provid-

ing the best solution. Marketplace-based platforms are often referred to as Task-

based Crowdsourcing (TBCS) platforms. One prominent example for TBCS is

the Amazon Mechanical Turk (AMT). On the AMT, users submit tasks, so called

human intelligence tasks (HIT) to be processed by other users. These HITs re-

quire human intelligence and most of them can be processed in a few seconds up

to a few minutes. As a consequence, the rewards for those HITs range between a

few cents up to a few dollars [32]. A detailed description of a typical task-based

crowdsourcing process is provided in Section 4.1.

Vukovic [67] states that crowdsourcing platforms can be further classified by, what he

calls, a crowdsourcing function. This refers to the part of the product that is being

crowdsourced. Returning to threadless.com, for example, the part of the product life

15

cycle being outsourced is the design process. Therefore, the crowdsourcing function

for this platform is design. In Table 2.1, a selection of current crowdsourcing platforms

categorized by their crowdsourcing function is listed.

Design and Marketing
Threadless sales T-shirts designed by the crowd.
99designs sales designs for logos, websites, mobile apps,

etc.
IStockPhoto trades royalty free pictures made by profes-

sional amateurs.
Research and Innovation
InnoCentive uses open innovation for problem solving
One Billion Minds solves problems in science, technology, design,

business or social innovation.
Collective Intelligence & Prediction
Inkling Markets uses wisdom of the crowd for forecasting.
We Are Hunted lists and predicts music charts.
Yahoo!Answers provides answers to questions.
Human Resources
Amazon Mechanical Turk offers low-cost crowdsourcing of micro tasks.
TopCoder offers competition-based software crowdsourc-

ing.

Table 2.1: A selection of current crowdsourcing platforms

99designs [1] is a crowdsourcing platform selling customized design packages for web-

sites, brochures or flyers to name a few. IStockPhoto [34] sells royalty free pictures,

animations and video clips that may be used for example on websites or in presenta-

tions. Sample platforms that offer outsourcing of the research and innovation process

are InnoCentive [31] and One Billion Minds [49]. InnoCentive is one of the more promi-

nent platforms where scientific problem solving is accomplished in a crowdsourced way

using the open innovation paradigm. According to [13], open innovation means that

companies should use internal and external ideas to advance their technology, as they

cannot afford to rely entirely on their internal research in a world of widely distributed

knowledge. One Billion Minds [49] takes a similar approach and offers solutions to

problems in science, technology or design to name a few. Inkling Markets [30] uses

16

the wisdom of the crowd for forecasts. It tries to help organizations to decrease oper-

ational and strategic risk by the use of prediction markets and opinion polls. We Are

Hunted [68] uses the crowd (and their social networks) to list songs and artists that are

popular and enables forecasts on emerging tracks. Yahoo!Answers [74] allows users to

submit questions which are then answered by the crowd. Finally, TopCoder [63] uses a

contest-based approach to develop software products.

2.3 Agent-based Modeling

Agent-based modeling (ABM) is used to simulate complex systems of interacting indi-

viduals. Individuals in such simulations are called agents, and each agent has its own

behavior responsible for the actions and interactions an agent takes at any given time.

Behavioral rules may range from simple “if-then” rules to complex artificial intelligence

techniques that adapt and alter the agent’s behavior over time. To introduce randomness,

ABM often uses Monte Carlo Methods [9], which rely on repeated random experiments,

to compute results [52]. Bonabeau [10] states that ABM has three benefits compared to

other modeling techniques. Firstly, it captures emerging phenomena. Secondly, it pro-

vides a natural description of a system and lastly, it is flexible. Emerging phenomena,

like behavioral patterns or structures, arise through interactions between agents. “[. . .]

the whole is more than the sum of its parts [. . .]” [10] is how Bonabeau describes these

emerging phenomena. This means that they cannot be reduced to the single parts of a

system as they only occur as a result of interactions. As a consequence, these phenom-

ena may have properties decoupled from the properties that are explicitly programmed

into the model. One may consider a traffic jam as an example. Vehicles are moving

forward, but through their interactions, a resulting traffic jam moves in the opposite di-

rection. ABM describes the behavior of a single agent in a system instead of describing

the behavior of the whole system (for example by the use of differential equations).

Thus it provides a very natural way of describing and simulating complex systems.

17

The area of applications of agent-based modeling is widely spread. Models range from

simulations of stock markets [6] to traffic flows [10] and the prediction of spread of

epidemics [7] and many other phenomenas in social science [19].

2.3.1 Components of an Agent-based Model

According to Macal [42], an agent-based model in its simplest form consists of:

1. A set of agents with defined attributes and behavior.

2. A set of agent relationships for defining possible interactions.

3. The agents’ environment they may interact with in addition to other agents.

He further states that, from a practical modeling standpoint, agents may be described by

the following characteristics:

• Autonomous: The most important characteristic of agents may be the one that

they are considered autonomous. They act and react to situations they observe

on their own and make decisions based on their implemented behavioral rules.

Their behavior may be specified by anything that transforms the agent’s input to

an according output. This can range from simple rules to abstract models (e.g.

neuronal networks, artificial intelligence heuristics, etc.).

• Self-contained: Each agent is self-contained, modular and uniquely identifiable

which allows agents in a system to be recognized by others.

• Stateful: Each agent has a state, described by various attributes. The agent’s state

may determine his behavior and through interactions with other agents this state

may change over time.

• Social: Agents dynamically interact with other agents and their environment. To

enable these interactions agents possess implemented protocols. Examples for

interactions may comprise communication with other agents or movement in the

environment.

18

• Adaptive: As mentioned earlier, agents implement rules defining their behavior.

Some agents may additionally have the ability to learn based on their experiences.

Thus, they may implement rules to change their behavior over time. In addition

to this individual adaption, populations may adapt to their environment through

the process of selection as the number of better suited agents may increase while

the number of worse suited agents may decrease over time.

• Goal-directed: Agents may have goals they pursue, and thus implement function-

ality to compare their results relative to their goals and adapt their behavior, for

further interactions.

• Heterogeneous: In the real world, individuals are different as each individual has

its own behavior and attributes. In ABM, some models may also consider this

diversity and simulate a population consisting of various agents each with its own

behavior.

The environment may be used to define the agent’s relative location to other agents, or

to change the agents state as they interact with the environment.

19

CHAPTER 3
Related Work

This chapter provides a basic overview on related work in the area of task-based crowd-

sourcing (TBCS). At first, methods to cope with varying quality in TBCS environments

are detailed and different approaches for task matching are introduced. Further, ad-

vanced aspects of crowdsourcing are discussed including user management strategies

and game-theoretical approaches. Then, related work in the area of social computing is

introduced. At last, a selection of current agent-based modeling toolkits is discussed.

3.1 Quality in Crowdsourcing Platforms

Although task-based crowdsourcing platforms provide a very popular way for com-

panies to outsource certain tasks, these platforms have their limitations. One challenge

they have to face is the varying quality of user processed tasks. As recent studies [32,33]

on the Amazon Mechanical Turk (AMT) [3] have shown, the variation in quality is high.

According to [33], this variation may have two reasons. Firstly, due to the open call

nature of crowdsourcing platforms, workers worldwide from different cultures and time

zones may provide their workforce on task-based crowdsourcing platforms. This diver-

sity implies varying skills and performances among workers which in turn may cause

a task assignment to an unqualified worker. Secondly, the attitude of workers may in-

fluence the quality of tasks. For example, on the AMT various transcription tasks are

20

Term Description
Requester Embodies the employer on the AMT as he sub-

mits tasks workers have to process.
Worker Embodies the employee on the AMT as he pro-

cesses tasks submitted by requesters.
HIT Abbreviation for human intelligence tasks. The

tasks submitted by requesters and processed by
workers

Table 3.1: Terminology of the Amazon Mechanical Turk

offered. Such tasks mostly consist of a picture containing some text (that cannot be

recognized using computational methods) which workers have to type in a submission

form. Verifying the results of submitted tasks is expensive since one would have to

check each result manually. Malicious workers exploit this fact and may submit the

same result for multiple HITs.

Various methods to cope with quality issues are known in literature. A common method

to ensure quality in a task-based crowdsourcing environment is to estimate the qualifi-

cation of a worker for a certain task. This may be accomplished by different techniques:

The AMT1, for example, provides qualification tests to check certain skills which each

worker has to pass before being allowed to work on a HIT. These tests however comprise

certain disadvantages. Firstly, requesters have to create the tests themselves which takes

valuable time and might be tedious. Secondly, workers have to attend these tests before

being allowed to work which, again, is tedious and might conflict with the crowdsourc-

ing principle of highly available workforce on demand. Lastly, passing a test does not

guarantee high quality as malicious workers may provide bad quality despite passing a

test [33].

Another technique to estimate the qualification of workers for tasks is to estimate the

workers skills and then infer their qualification. Based on the work of Dawid and

Skene [14], Ipeiros et al. [33] provide an algorithm designed for the use on the AMT.
1Table 3.1 provides an overview of the terminology used by the AMT

21

Based on the results of multiple workers, they infer a correct solution and by comparing

the inferred solution to the workers results they are able to draw a conclusion on the

quality of each worker.

Khazankin et al. [37] provide a quality management approach based on Service Level

Agreements (SLA) negotiated between the marketplace and the requesters. In their

approach, the crowdsourcing platform possesses a profile of each registered worker,

containing a description of the worker’s skills and his current availability. The skills

of workers are continuously updated by a profiling component based on the feedback

(of requesters) on processed tasks. On task submission, requesters have to specify skill

requirements and a deadline. In compliance with this provided information and the

negotiated SLAs the platform then assigns a suited worker to the task. The suitability

is calculated based on the worker’s skill profile and his current availability by means

of a scheduling component which has the objective to maximize quality while fulfilling

deadlines.

Satzger et al. [54] tackle the issue of varying quality by introducing an auction mech-

anism to match tasks to workers based on a confidence management model. As Khaz-

ankin et al., they use a profiling component that tracks the skills of workers, but their

profiling mechanism provides additional functionality. Firstly, for each skill in the

worker’s profile, an additional confidence value is provided defining the confidence the

platform has in a given skill. Secondly, the profiling component provides functionality

to bootstrap new skills. Skill values are, again, derived from the feedback a requester

provides for a processed task; each processed task increases the confidence. As in the

previous approach, requesters have to provide information on skill requirements and

deadlines. Once submitted, a task is advertised by means of a modified sealed-bid auc-

tion mechanism. Workers suiting the quality requirements are invited to join the auction

and place bids. Among all placed bids a winner is determined on the basis of the ob-

served skills, the confidence and the bid price. In order to bootstrap new or low skills

“test-tasks” are assigned to workers. These test-tasks are copies of tasks that have al-

ready been assigned to high-skilled workers, which enables the system to infer new

skills by comparing the results of the test-task to the real task.

22

Finally, an automatized method to find high quality content in social media is described

in [2]. Agichtein et al. classify the quality of the content based on the analysis of the

content itself, the user rating and a link analysis between users.

3.2 Task Matching on Task-based Crowdsourcing

Platforms

The task matching process describes the procedure by which a given task is assigned to

a given worker. The simplest form of task matching can be observed on the Amazon

Mechanical Turk. Tasks submitted by requesters are advertised in a list which is visible

to registered workers. The task matching process is initialized and executed by the

worker as he simply selects a task of interest.

An altered and more sophisticated task matching approach is presented by Yuen et

al. [76]. Again, a worker can select a task of interest from a list. The list, however,

is sorted providing best matching tasks first. The matching is calculated on the basis of

the worker’s selection and performance history. According to [76], the advantages of

this approach are twofold. Firstly, the quality of results on the platform can be improved

as workers perform better if they are familiar with a task. Secondly, using this match-

ing method encourages users to work on the platform in the long run, as they remain

motivated if they find suited tasks easily.

In the aforementioned two approaches it is the worker initiating and executing the task

matching process. In contrast to that, the task matching process described in [54] is ini-

tiated by the worker but the execution is accomplished by the crowdsourcing platform.

In the approach of Satzger et al., tasks are advertised to workers as bidding items. In

case a worker is interested in a task he may place a bid in the corresponding auction.

After a defined period of time the auction matches the task to a worker based on the

worker’s bid price, the monitored performance and the confidence in the worker.

23

In [37] the task matching process is initiated and executed by the crowdsourcing plat-

form. Workers solely inform the platform about their availability and in case the plat-

form has a task to process, it assigns this task to the best matching worker. The matching

depends on the monitored performance of a worker and its availability.

The approaches described above are mainly built to match a single task to a single

worker. However, large-scale tasks (consisting of subtasks and workflows) may need

to be assigned to multiple workers. Skopik et al. [57] describe such a scenario where

workers collaborate in context of joint task. In their approach, they monitor the social

interactions in the crowd and assign the tasks based on these interactions.

3.3 Advanced Aspects of Crowdsourcing

This section focuses on two further aspects of crowdsourcing. At first, information on

how to categorize and analyze crowd members is provided. Further, an overview on

recruitment strategies as well as on encouragement and retention schemes is provided.

Lastly, two papers discussing a game-theoretic approach to crowdsourcing are intro-

duced.

3.3.1 User Management

Crowdsourcing platforms are dependent on the crowd and it is therefore important for

platform providers to understand which types of users they attract in order to be able to

recruit new and retain existing users. Doan et al. [16] have analyzed multiple current

crowdsourcing platforms and find that users can be divided in four different categories

based on their roles:

• Slaves: Users providing their workforce to solve simple and small problems are

called slaves. These types of users may be found on the AMT or in the ESP game

[65] where users implicitly collaborate labeling images while playing the game.

• Perspective providers: These users may be found an platforms utilizing the wis-

dom of the crowd [58], i.e. users contribute different perspectives to the platform

24

which in turn combines these perspectives to provide a better solution. One ex-

ample for such a platform is InklingMarkes [30] providing predictions based on

user bets.

• Content providers: Users contributing self-generated content are called content

providers. These users may be found on IStockPhoto [34] or on social media sites

like YouTube [75] or Flickr [22].

• Component providers: On some platforms, such as social networks for example,

a user may additionally take the role of a component. Platform providers can then

utilize these components and, for instance, show them ads they get paid for.

It has to be noted that within a single crowdsourcing system one user may play multi-

ple roles. As mentioned above, knowing these roles is important as they may influence

the recruiting strategy. Take InklingMarkets for example where the users in the crowd

take the role of perspective providers. For such platforms, it is important to recruit

diverse users, each able to make independent decisions in order to avoid “group think-

ing” [16, 58]. For the recruiting process, Doan et al. list five major solutions. The first

solution presumes that one has the authority to require users to make contributions (e.g.

a company requires employees to contribute to an internal system). Another solution

is to pay users, as it is done on the AMT. Thirdly, a platform can build on volunteers,

which is the most popular approach as it is free and easy to execute. The drawback

of this solution is the unpredictability of the number of users that can be recruited for

a given platform. The forth solution is demonstrated by the reCAPTCHA project [66]

which uses the crowd to digitize text that could not be recognized by an OCR program.

reCAPTCHA is used to protect websites from malicious bots. In order to leave a com-

ment on a given website, for example, one has to retype two words provided by the

reCAPTCHA form. The system already knows the correct answer of one word; the

second word has to be transcribed by the crowd. Therefore the solution to recruit users

is to let them pay for a service, i.e. their payment for leaving a comment on a website

is a transcription of a word. The last solution listed in [16] is to piggyback on the user-

traces of well-established platforms. One example would be using the user-traces of the

Google [27] search engine to build a spelling correction system.

25

Once users are recruited it is the objective of each platform to retain them and encourage

them to steadily contribute to the platform. According to [16], many encouragement and

retention (E&R) schemes exist, but the most popular are either built on

• instant gratification, providing immediate feedback to the user showing him that

his contribution makes the difference, or

• providing an enjoyable experience like playing a game while contributing (e.g.

ESP game [65]), or

• establishing and showing reputation, fame or trust to other users on the system,

or

• providing competition mechanisms and show, for example, the users with the most

contributions to the community, or

• providing ownership situations and give users the feeling that they own parts of

the system.

3.3.2 Applying Game Theory

Although a game-theoretic discussion of crowdsourcing is not part of this thesis, it

should be mentioned that there are some approaches dealing with this issue. DiPalatino

et al. [15] for example analyze contest-based crowdsourcing platforms using a game

theoretic model. They model contests as all-pay auctions with incomplete information

and analyze the relationship between incentives and user participation levels.

Archak and Sundararajan [5] analyze the optimal design of crowdsourcing contests.

They also use an all-pay auction model with incomplete information to describe the

crowdsourcing contest and provide a rule of thumb to determine the optimal price struc-

ture for a given contest.

26

3.4 Social Computing

Current task-based crowdsourcing platforms mostly support micro-tasks which can be

processed by a single user in little time. However, many “real world” tasks are more

comprehensive, as the consist of sub tasks and dependencies between these subtasks

which can be described by workflows. These large-scale tasks can be processed by

multiple users which may be organized as teams. Current crowdsourcing platforms

have only limited support for automated processing of large-scale tasks and most of

them do not support automated and organized user collaboration.

Schall et al. [55,56] introduce human provided services (HPS) which describe a service

oriented architecture (SOA) based approach for human interactions in business pro-

cesses. In their framework they follow a typical SOA approach which can be described

by the three steps: (i) publish, (ii) search, (iii) interact. At first a service provider pub-

lishes its service to a registry. In the HPS framework this may be either a software-based

service (SBS) or a service provided by an individual (HPS). Then, a requester performs

a search to find a desired service which may again be either a HPS or a SBS. Lastly, the

requester and the service provider interact with each other.

Further work focusing on automated socio-technical interaction models utilizing SOA

approaches is provided by Skopik et al. [57], who discuss crowdcomputing, a social

network based crowdsourcing approach. Dustdar and Bhattacharya [17] introduce a

concept called Social Compute Unit (SCU) which also focuses on unifying human- and

software-based computing.

27

3.5 Agent-based Modeling Frameworks

This section provides a selection of two prominent agent-based modeling frameworks

which are introduced in the following.

3.5.1 NetLogo

NetLogo [47] is an agent-based modeling toolkit designed for both education and re-

search purposes. The framework itself is written in Java, the language to define simula-

tions, however, is based on the functional programming language Logo. The advantage

of this scripting approach is that Logo is easy to learn for novices with little program-

ming knowledge, but still meets the needs of experienced, high powered users. NetLogo

is freeware such that everybody can download it for free and build models without any

restriction. It comes with a vast number of pre-defined models pooled in a model library,

an extensive documentation and many tutorials [62].

In NetLogo, three different types of agents can be distinguished:

• Turtles: Mobile agents are called turtles as they move around in a world interact-

ing with the world or other turtles.

• Patches: The world in which turtles move around consists of a grid of patches.

Patches are also programmable and may possess specified behavior.

• Observer: In each simulation only one observer exists. The observer is basically

responsible for running the simulation and providing reports.

One goal of NetLogo is to generate scientifically reproducible results. In order to so, the

simulation models have to operate deterministically, i.e. a simulation, run multiple times

with the same “seed”, has to provide identical results. NetLogo supports parameter

sweeping to systematically test the behavior of a system across a range of parameter

settings. One further advantage is that various tools to visualize the results are provided

by the framework [62].

28

3.5.2 MASON

The Multi-Agent Simulator Of Neighborhoods (MASON) [43] is a discrete-event sim-

ulation framework developed for large-scale multi-agent simulations. The design phi-

losophy of Mason is to provide a small, fast and easy understandable and modifiable

core which is written in Java. In addition to this core, a separate extensible visualization

mechanism, which is capable of 2D and 3D visualizations, is provided. The frame-

work can be divided into three layers. The utility layer containing “helper” classes

like for example a random number generator, the model layer containing classes for

event scheduling and agent representation, and the visualization layer containing the

aforementioned visualization functionality. The model layer and visualization layer are

fully decoupled so that the model can be treated as a self-contained entity. To create

a customized model, the classes of the model layer may be extended by the use of in-

heritance. Mason provides the possibility to “checkpointing” a simulation at any given

point (by saving its state to disk) and resume it on any other platform. As in NetLogo,

scientifically reproducible results can be created by defining a “seed” [41].

29

CHAPTER 4
Methodology

This chapter details the architecture, the models and the approaches used to implement

the simulation framework. After an introductory example scenario and a definition of

requirements, the basic architecture is discussed. Section 4.4 then provides informa-

tion on the design of the simulation model. Detailed information on the behavior of

agents in the population as well as underlying models is provided in Section 4.5. The

design of the marketplace is presented in Section 4.6 and finally, Section 4.7 discusses

simulation specific components such as the reporting mechanism. This chapter mainly

focuses on conceptual ideas, whereas detailed information concerning the prototypical

implementation is provided in Chapter 5.

4.1 Task-based Crowdsourcing – A Motivating

Example

As a motivating example for our framework, we consider an imaginary crowdsourc-

ing platform (ICP) specialized in software projects. Two different types of clients can

be identified: employers providing tasks for the system, hereinafter referred to as re-

questers, and employees processing the provided tasks, hereinafter referred to as work-

ers. Since the quality of code is important for software development, the marketplace

seeks to guarantee a predefined level of quality to requesters. Hence, the marketplace

30

Marketplace

Requester

1) submit task

2) create auction

Skill Recognition
Module

The Crowd

S

3) invite worker

4) bid

5) determine winner

6) assign task

7) process task

8) submit result
open tasks

results

9) provide result

10) quality feedback

11) payment

SS

12) reward

Worker

Auction

Task

Figure 4.1: The task-based crowdsourcing process

has implemented methods to estimate the skills of each registered worker. Aware of

the skills of all workers, the marketplace allows only qualified workers to compete for

tasks. The marketplace provides an auction mechanism for task distribution and price

negotiation, namely the reversed English auction. This kind of auction type has a given

starting price. Bidders can try to win the auction by undercutting the current lowest bid.

After a certain period of time the auction closes and determines a winner which is the

bidder submitting the lowest bid. Figure 4.1 shows a typical process of crowdsourcing

for the platform described above. At first, a requester submits a new software project

(referred to as task), to the platform. The requester specifies the skills needed (e.g. Java

programming, database engineering, etc.), the importance of each skill, the amount of

money he is willing to pay and the deadline. The marketplace then creates an auction

for this task, inviting only workers to the auction matching the skills specified by the

requester. Since this is an introductory example we assume that the marketplace at this

stage is to some degree aware of the skills of its members and we will not go into detail

regarding skill recognition techniques (see Chapter 3). Workers interested in processing

the task can place their bids in the auction. After a predefined amount of time, the auc-

tion will close, determine a winner and inform the worker about winning the auction.

31

It is now the job of the worker to process the task in time and to submit the result to

the platform. Assuming the task has been processed in time, the marketplace informs

the requester, who in turn provides a rating for the worker based on the quality of the

processed task. In case the quality conforms to the predefined agreement, the requester

transfers a defined amount of money, based on the outcome of the auction and on a

possible fee for using the crowdsourcing platform, to the marketplace. Considering the

requester’s feedback, the marketplace updates the skill profile of the worker and finally

pays the worker for his effort.

Suppose that the ICP operator now wants to test a new form of task distribution, where

for example the outcome of the auction is no longer solely dependent on the price but

on a combination of observed performance, confidence in the worker and the price.

Since this new approach is still in a development phase and has not been tested yet, the

operator is not willing to take any risks by implementing it to the “life system”. Running

tests on a “test system” is mostly not an option as one is dependent on the crowd, and the

crowd might not want to work on test systems. Therefore, one way for the operator is

to run a simulation of the platform. By creating a model of the crowdsourcing platform

and defining the population which uses the platform, the operator is able to run various

simulations to analyze the suitability of new approaches.

4.2 Requirements

Creating a simulation framework for task-based crowdsourcing implies dealing with

certain requirements of such a system. In this thesis, two groups of requirements are

distinguished: basic requirements primarily encompassing non-functional requirements

which effect the architecture of the framework and specific requirements comprising

functional and non-functional requirements [53] that define the features needed for a

task-based crowdsourcing framework. In the following, an overview of the main re-

quirements will be provided.

Basic requirements include configurability and extendibility. In order for a framework

to be versatile, it needs to be configurable. Since configurability is a comprehensive

32

term, we cut it down to the following requirement: simulating various different crowd-

sourcing scenarios should be possible. A scenario is a particular situation on a particular

crowdsourcing system. For example, one scenario would be testing a new way of task

distribution (e.g. a sealed-bid auction) in a task-based crowdsourcing environment us-

ing different populations (e.g. high-skilled vs. low-skilled workers). As one can see, a

scenario contains all the information needed for a simulation; different scenarios may

however contain completely different information. Therefore, we have to find a way to

create and configure different scenarios to be run on the simulation framework.

Extendibility is the second basic requirement. Crowdsourcing platforms and their used

techniques regarding quality management or task distribution evolve quickly. New

methods arise and patterns change. One trend, for example, is that crowdsourced tasks

become more complex and workers join teams to process these tasks [40, 57]. To keep

up with this rapid development, the design of the framework has to be open and ex-

tendable. By the use of clear defined interfaces, it should be possible to implement new

paradigms to the framework or increase the predictive power in the time to come.

Based on the example provided in Section 4.1, specific requirements can be listed as

follows:

• Model-based: To be able to simulate various scenarios, it should be possible to

create a model of any common task-based crowdsourcing system and run simula-

tions on it.

• Population: It should be possible to define a population of agents. Each agent

should possess a set of skills (drawn randomly from a given distribution) and a

specific behavior defined by rules and strategies. Agents should be able to interact

with the marketplace at any given time. Two types of agents can be distinguished:

workers and requesters. Requesters submit tasks to the marketplace and workers

select tasks published on the marketplace.

• Skill recognition: The issue of varying quality in task-based crowdsourcing and

solutions to it has been discussed in Chapter 3. Since common platforms support

33

quality management approaches, it should be possible to define strategies for skill

recognition and quality management for the marketplace in the simulation model.

• Auction mechanisms: A new way for task distribution is to use auctions. It should

therefore be possible to define basic auction mechanisms for task distribution in

the model.

• Reporting system: To be able to analyze data gained in the simulation, a reporting

system is needed. It should be possible to use reports based on the situation one

wants to analyze by simply defining them in the model.

4.3 Architecture

The core functionality of this framework is simulating autonomous agents interacting

with the marketplace. Each agent is driven by its own behavior, described by simple

rules, policies or strategies, which defines the agent’s actions at any given time. A

common approach to model such systems is agent-based modeling (ABM). As stated

in [42], there is no precise definition on what an agent has to fulfill to be considered au-

tonomous. Some authors argue that simple reactive behavior realized by “if-then” rules

is sufficient, others insist that agents have to implement adaptive artificial intelligence

techniques in order to be considered autonomous [10, 12]. Henceforth, the former def-

inition of autonomous agents will be used in this thesis, as agents will implement only

simple rules for decision making. According to [42], an agent-based model consist of

three components:

1. A set of agents each containing defined behavior

2. A set of relationships defining the interactions among agents

3. An environment the agents interact with

In contrast to this, the approach taken in this thesis differs therein, that agents have no

relations with other agents but are allowed to interact with the environment exclusively,

i.e. the crowdsourcing platform.

34

Figure 4.2: Basic architecture

Figure 4.2 gives an abstract overview of the architecture which is based on the ABM

approach described above. The Simulation Controller, representing the main

component of this figure, receives a model as input. On the basis of this model, the

simulation is created and run by the controller. Besides that, it is also responsible for

generating simulation time and broker events between the model’s components for in-

teraction. The Population component contains all the agents participating in the

auction as well as methods for generation and initialization of agents. As the popula-

tion is dependent on the simulation type, an exact specification of this component has

to be provided in the model. As stated in Section 4.2, a flexible reporting mechanism

is another requirement for the framework. The Reporting component is responsible

to address this matter. Existing reports may be reused in several simulations by sim-

ply defining them in the simulation model. Finally, the Marketplace component

contains the modeled behavior of a task-based crowdsourcing platform. Specific behav-

ior such as quality management or task distribution has to be defined in the simulation

model. A detailed description of each component and its sub components is provided in

the reminder of this chapter.
35

Seite 1 von 1

23.03.2012file:///D:/Studium/Diplomarbeit/thesis/visio%20zeichnungen/Observer.svg

Figure 4.3: Observer design pattern in UML syntax, taken from [72]

4.3.1 Simulating Time using Discrete-Event Simulation

As mentioned above, agents may interact with the system at any given period of time.

Therefore, time has to be defined in the simulation. According to [26], two simulation

models for time–based simulations can be distinguished:

1. Continuous Models

2. Discrete-Event Models

Whereas in the first model, the state continuously changes within time, it only changes

at discrete points in time in the second (e.g. if a specific event occurs). We use the

second approach for our framework as the event based character perfectly suites the

design of our framework which uses events for communication between components as

described in the following section.

Components of the simulation, as for instance agents or marketplace, have to be aware

of the current discrete time period we call round. Therefore, they somehow have to

be informed of the current round. A common approach to solve this issue is to use a

design pattern called Observer or Event Listener [25]. Figure 4.3 illustrates

this pattern in Unified Modeling Language (UML) [48] notation. Applying this pattern

to our framework results in the following: every component defined in the model has

36

to register itself with the Simulation Controller. Whenever a new round starts,

the registered components are notified and can thus react to this new state.

4.3.2 Event-based Communication

Configurability is a very basic requirement for a simulation framework. Returning to the

motivating example of the imaginary crowdsourcing platform provided in Section 4.1,

we assume that the ICP provider has created a simulation model of its platform and

wants to set up an experiment in which different populations are compared to each other.

In order to do this, one has to modify the model or create a new one for each simula-

tion. After having analyzed the results of the simulation, the ICP provider comes to the

conclusion that the current task distribution mechanism is not suited for the population

currently using the platform. Therefore, he creates a new series of experiments using

a different task distribution mechanism. Once again, the provider either has to change

the current model or create a new one for each simulation. In object-oriented ABM

frameworks, such as Repast [59], models and agents are implemented as objects and

thus written in source code. Every time the model has to be altered, changes in the code

have to be made. This involves the risk of introducing bugs into the code every time a

new simulation is created and likewise impairing the configurability of the framework.

By means of the Inversion of Control (IoC) principle, which is naturally implemented

through the Dependency Injection (DI) pattern, a separation of source code and model

can be achieved [23]. The basic idea of IoC and DI is that components are only aware

of dependency interfaces at compile time. The concrete implementation is “injected”

to the interface at runtime by a component often called container. This allows high

flexibility, as the wiring of components can be defined in an external file for example.

In order to fully benefit from the DI pattern, a loose coupling between components has

to be ensured. This can be achieved by the use of event-based communication, which is

implemented through the Observer pattern described in the previous section.

37

Applying these approaches affects the design of our framework as follows:

• The components needed for a simulation, such as agents, marketplace, reports,

auction mechanisms and various strategies representing behavior of agents or the

marketplace are implemented as objects.

• The simulation model is represented by an external file containing a declarative

definition of components, their properties and dependencies needed for a specific

simulation.

• The communication between components is based on events. Each component

can register for events of interest and gets informed whenever one of these events

occurs.

To summarize the advantages of this approach, one can state that decoupling the config-

uration of the model from its implementation in combination with event-based commu-

nication allows high configurability. Since components are decoupled and dependencies

are defined in an external file the underlying objects can be “rewired” easily, allowing

us to create new simulation scenarios by reusing already existing components. Further-

more, functionality such as reporting can be clearly separated from the agent model

itself, as reports simply have to listen to events to calculate statistics [52].

4.4 Defining the Simulation Model

In the previous section, we have discussed the framework architecture and stated that

for each simulation a model has to be created. This section will provide detailed infor-

mation regarding the design of the simulation model.

As mentioned earlier, a typical agent-based model consists of a set of agents, their prop-

erties and behavior, a set of relations defining interactions between agents and the en-

vironment agents interact with. Our model, however, is restricted to a set of agents and

an environment they interact with, but additionally provides possibilities to include re-

porting functionality directly into the model. Basically, the model consists of two parts.

38

Firstly, the components and sub components provided by the framework, which de-

fine various kinds of behavior. Since the main components are described by interfaces

the set of components can easily be extended. Secondly, the model file, containing

a declarative definition of all components and sub components. This file “wires” the

components and sub components together and therefore defines the explicit behavior

of the components in the simulation. For example, returning to the imaginary crowd-

sourcing platform ICP, the framework provides the component Marketplace and the

sub components EnglishAuction and SealedBidAuction which describe the

behavior of two different task distribution mechanisms. To simulate a different behavior

of the marketplace, i.e. a different task distribution mechanism, the provider simply has

to change the configuration (“wiring”) in the external file without writing or modifying

any source code. Technically the simulation model can be divided into three parts:

1. The Population defining the agents in the simulation. Various groups of agents

with different behavioral rules and properties can be defined in this part.

2. The Marketplace defining the crowdsourcing system one wants to simulate. Task

distribution mechanisms such as various auction mechanisms, quality manage-

ment methods such as qualification policies and skill recognition strategies can be

defined in this section of the model.

3. The Simulation part defining simulation specific properties such as reporting mech-

anisms, mixing strategies to simulate the arrival of agents on the market and al-

gorithms to generate probability distributions.

4.5 Population

In our model, two different kinds of agents in the population are distinguished. Re-

questers submitting tasks to the market and workers providing workforce to solve these

tasks offered on the market. As we follow an agent-based approach in our framework,

these agents are considered autonomous and they therefore implement their own prop-

erties and behavior which is described by Strategies and Policies. By inter-

39

changing the various available strategies and policies in the model, a diverse population

can be created.

Both types of agents are trading in a market. Requesters act as buyers as they buy work-

force from the market and workers act as sellers since they provide and sell workforce

on the market. Either way, both agent types have to know the value of the task they are

trading in (i.e. how much they are willing to pay or how much they want to be paid). In

literature, various ways to model this valuation behavior are known (see Section 2.1.1).

We chose to implement the private-value model, where each agent knows its own value

for a specific task, but this value is private information to the agents themselves [38].

Again, this behavior is implemented by policies, so called ValuationPolicies.

Agents are autonomous and as in the real world, one of their goals is to gain profit. In

order to do this, they have to place bids in the market. If an agent places a bid in the

market or not depends on various factors such as private value, current market value,

interest in a task, qualification for a task or workload. We model that behavior using

so called TradingStrategies. One further property that both agent types have in

common is an Account in order to pay or get paid for finished tasks. At this point,

one has to mention that many of the assumptions in the following sections regarding the

population and their behavior are based on the work provided in [37] and [54].

4.5.1 Tasks and Transactions

As in every marketplace, traders have to know the objects they are trading, which in our

context are Tasks. A task consists of a duration representing the period of time

a perfectly suited worker will take to process a given task. The duration is drawn ran-

domly from the set {1, 2, . . . , n} where by default n is set to 24. Furthermore, a task has

a predefined expectedResult, representing the result of a perfectly executed task

achieving maximum quality. This result is randomly drawn from a uniform distribution

U(0, 1) in the range [0, 1].

40

As mentioned in the motivating example in Section 4.1, requesters may define the skills

needed to process a task, the importance of each skill and a minimum quality level.

To stick to the motivating example, we assume that one wants to submit a task which

requires writing a program in Java that stores its data to a database by obtaining at least

medium quality. Writing the Java code will constitute about ninety percent of the effort,

designing the database about ten. To model this behavior, two sets are introduced as

follows:

skillQuality =

sq1
...

sqn

 skillWeight =

sw1

...

swn

 (4.1)

Each element si in those sets represents a skill. In the skillQuality set the value of each

element sqi stands for the required minimum quality of a skill si and in the skillWeight

set swi stands for the importance of a skill si. For the latter it holds that

|skillWeight|∑
i=1

swi = 1 (4.2)

whereby the partitions are generated randomly. In case swi ∈ skillWeight = 0, skill

si is not needed to process the task. The number of needed skills is drawn randomly

from a uniform distribution U(0, n) where n is the number of skills supported by the

marketplace, which is by default set to 5. The value of the minimum quality of each skill

is drawn from a Gaussian distributionN (µ, σ) where only values in a predefined interval

[lowerBound, upperBound] are allowed. The default values are: µ = 0.5, σ = 0.25,

lowerBound = 0.1, upperBound = 0.9.

As soon as a requester submits a task to the platform, a Transaction is generated

containing the task and additional information provided by the requester. This informa-

tion involves the price the requester is willing to pay and the deadline. For the deadline

it is assured that it will be after the task’s expected duration.

41

4.5.2 Requester Model

In our model, requesters are responsible for generating tasks and offering them to the

marketplace. Every round in the simulation, each requester registered to the platform

is asked to submit tasks. This behavior is modeled using so called Task Supply Poli-

cies. The default SimpleTaskSupplyPolicy provided by the framework forces

the requester to submit one task every round. Once a task is finished requesters have to

validate the result and provide a rating based on the observed quality. In case the task

is not finished in time or the quality is below a defined threshold (by default 0.3), the

requester will stop supplying tasks to the market for a certain amount of time (speci-

fied in the simulation model) and rate the quality of the received result with the value

zero, due to the negative experience. The rating behavior is once again implemented

by RatingPolicies. The default behavior provided by the framework is described

by the SimpleRatingPolicy where the rating is calculated as described in Equa-

tion 4.3.

rating = 1− |expectedResult− workerResult| (4.3)

ExpectedResult and workerResult are both within the range [0, 1]. The former rep-

resents the best result possible; the latter the result processed by the worker. Therefore,

the rating represents the quality achieved by the worker in percent, since the more the

results are equal the more the rating converges to one and the more the results differ the

more the rating converges to zero.

42

Component Description
TaskSupplyPolicy Specifies the task supply behavior and defines

the number of tasks submitted by a requester
each round and the rounds to suspend in case
the requester is not satisfied with the quality.

RatingPolicy Specifies the requester’s rating behavior.
ValuationPolicy Calculates the requester’s private value depend-

ing on various factors.
TradingStrategy Determines if a task should be submitted and

provides a price.
Account Represents an account for monetary transac-

tions with the marketplace.
initialFunds Represents the initial amount of money avail-

able to requester at the beginning of the simula-
tion.

Table 4.1: Components of the requester model

When submitting a task to the system, a requester has to specify a deadline and a price.

By default, the deadline is set to a random value within the range [1.5t, 2t] where t rep-

resents the expected duration of the task as described in the previous section. The price

is within [0, 1] and depends on the ValuationPolicy and the TradingStrategy

defined for the requester in the simulation model. Table 4.1 summarizes the components

used in the requester model.

4.5.3 Worker Model

Workers provide the workforce on the marketplace. By bidding for tasks they are willing

to process and by processing tasks they won in an auction they make profit. Like in the

real world, each worker has a set of skills, denoted by the set

skill =

sp1
...

spn

 (4.4)

43

Each element spi ∈ skill represents the performance p of a skill si where spi is within

a range [0, 1]. In case spi is zero, the worker does not possess the skill si. The number

of skills as well as the type of skills si a worker possesses are uniformly distributed in

U(0, n), where n is the number of skills supported by the marketplace. The values of

spi are drawn randomly from a Gaussian distributionN (µ, σ) where µ and σ have to be

defined in the simulation model.

When invited to join an auction, workers first evaluate if they are interested in processing

the task. This behavior is implemented by using trading strategies which is discussed

separately in Section 4.5.5. At this point, one can state that trading strategies determine

whether a bid is placed or not. In case it is the trading strategy sets the price level. Both

actions are depending on various factors such as workload of the worker, current market

price of the task and the worker’s private value.

In order to support multiple task processing strategies and to determine the completion

time, the worker model contains the TransactionBook component. By means of

this component, one can specify the worker’s task processing ability, e.g. the ability to

process tasks in a row or in parallel or the ability to process time-sensitive tasks first

and postpone others. The default SimpleTransactionBook which is provided by

the framework provides serial task processing only. The time needed to finish a task

depends on the expected duration t (see Section 4.5.1) and the worker’s performance.

The better the worker’s skills are, the more the processing time converges to t, as we

argue that a higher performance enables one to be faster in processing a given task.

With Equation 4.1 and Equation 4.4 the SimpleTransactionBook calculates the

processing time as follows:

processingT ime = t+ (1−
|skillWeight|∑

i=1

spi ∗ swi) ∗ t (4.5)

As one can see, the processing time is within [t, 2t] and only those performances needed

to process a task are taken into account for calculation. The processing time is encapsu-

lated in this component so that the workers are not exactly aware of the time they will

44

need to process a task in advance. Another responsibility of the TransactionBook is

to calculate the worker’s result of the task, and thus determine the quality a worker pro-

vides. As illustrated with the processing time, the result also depends on the worker’s

performance. Equation 4.6 depicts the calculation of the worker’s result used in the

SimpleTransactionBook applying Equation 4.1 and Equation 4.4.

workerResult =

|skillWeight|∑
i=1

xi ∗ swi with xi ∈ X ∼ N (expResult, 1− spi) (4.6)

For each skill needed to process the task, we draw a value of a Gaussian distribution

with the expected result as mean and the worker’s reverse performance for this skill

as variation and multiply it with the skills weight. The sum of these values equals

the worker’s result for the whole task. Therefore, the better a worker’s performance

the more likely the result will be close to the expected result; the more important a

skill is for processing a task, the more it impacts the result. Table 4.2 summarizes the

components used in the worker model.

Component Description
Skills Represents the skills a worker possesses
TransactionBook Manages the workers task processing. Calcu-

lates processing time and task result.
ValuationPolicy Calculates the workers private value depending

on various factors.
TradingStrategy Determines if a bid should be placed and pro-

vides a price depending on various factors.
Account Represents an account for monetary transac-

tions with the marketplace.

Table 4.2: Components of the worker model

4.5.4 Models for Task Valuation

As mentioned earlier, the agent’s behavior regarding task valuation is based upon a

private-value model. By evaluating a task, based on several factors, an agent determines

a price reflecting the personal value, i.e. the amount of money the worker wants to

45

receive at least or the requester is willing to pay. This behavior is implemented using

ValuationPolicies and the factors influencing the privateValue depend on

the policy used. The private value ranges within an interval [0, 1]. By default, the

framework implements four different valuation policies; two for requesters and two for

workers. This is necessary since requesters, for example, will only consider factors such

as effort and required quality, but workers might as well consider their suitability for

processing a given task. Howsoever, only worker valuation policies will be explained

in the following, since they are equal to requester policies, except for considering an

additional factor, namely the suitability for processing a task.

Basically, two different types of valuation polices are provided by the framework:

• Policies determining the private value based on the expected duration, the required

skill quality and the workers suitability for a task.

• Policies determining the private value based on expected duration, skill quality,

suitability and additionally a market price representing the current trading price

of similar tasks in the market.

The rationale is that the higher the effort and the required minimum quality, the higher

is the worker’s private value. Furthermore, workers are aware of their capabilities and

want to make profit by processing as many tasks as possible. Being high skilled means

that one is fast in processing a task and can thus process more tasks in given time than a

low skilled worker. Therefore, high skilled workers calculate lower private value levels

than low skilled workers. Using Equation 4.4 and Equation 4.1 we define:

suitability(w) =

|skillQuality(w)|∑
i=1

sqi
spi
∗ 1

|skillQuality(w)|
(4.7)

and calculate the private value as follows:

privateV alue(t, w) = effort(t) ∗ suitability(w) (4.8)

46

The effort is a random value drawn from a Gaussian distribution N (µ, σ) based

on the required quality of a task and the normalized expected duration, where µ =

Max(reqQuality, expDuration) and σ = Min(reqQuality, expDuration). We can

draw the following conclusion: the higher a worker’s qualification, the lower the suit-

ability factor and the lower the suitability the lower the private value.

The market price based valuation policy calculates the private value similar to Equa-

tion 4.8, with the difference that the current market price is taken into account.

4.5.5 Trading Strategies

In the previous section, we discussed a way to model the agent’s private value which de-

termines the agent’s valuation of a task. However, by only bidding the private value one

cannot make profit. Trading Strategies are implemented to determine whether

a bid should be placed in the market and which price the bid should contain. Requesters,

in contrast to workers, will always submit a task since they can choose the price freely

without restrictions regarding deadlines or load rate. For workers to determine whether

a bid should be placed in an auction the trading strategy may take several factors into

account. Each factor has to be set in the simulation model:

• Deadline: Workers may only bid for a task if they have a realistic chance of

processing it in time. Some workers might show cautious behavior and place bids

only if a certain amount of time is left. Others might show a risky behavior and

place bids despite the fact that there is only little time left. We model this as

follows: for a worker to place a bid there must be at least x ∗ t time left, where x

is typically within the range [1, 2] and t is the expected duration of a task.

• Workload: Workers might place bids based on their load rate. Again, there might

be greedy workers trying to get as many tasks as possible without considering the

current workload, and modest workers placing bids only if their workload is not

too high.

• Current Price: Several auctions allow workers to see the current price. For such

auction types, workers will only place a bid in case the current price is higher than

47

their private value.

• Open Bids: It might take a few rounds for auctions to clear and determine a

winner. Workers can place bids in many auctions without knowing if they will

finally win the specific auction. Bids placed in auctions that are still in progress

are referred to as open bids. The number of allowed open bids determines if a

worker acts aggressively or conservatively. A high number of allowed open bids

may let the worker win several auctions at a time which could result in deadline

violations due to high workload. In contrast, a low number of open bids means

that the worker behaves more conservatively, winning only few auctions.

The level of the bid price depends on the trading strategy used. By default, there are five

different trading strategies provided by the framework:

• The TruthtellingStrategy sets the bid price according to the agent’s pri-

vate value. Using this strategy in an auction based platform might be appropriate

for requesters. Since for them the private value represents the price they at most

want to pay in order to get a task processed, they may use this value as starting

point for an auction as it can be expected that workers will push the price down-

ward. For workers in contrast, using this strategy will not be appropriate, as they

will not be able to gain profit using the private value as bid price.

• The FixedDirectionStrategy bids a specified markup x on the agent’s

current valuation. The bid price is modeled as follows:

bidPrice =

privateV alue+ x, if worker

privateV alue− x, if requester
(4.9)

The markup x is drawn from a uniform distribution U(0,maxMarkup), where

maxMarkup has to be specified in the simulation model. By altering the maxi-

mum markup, the greed of agents can be influenced.

• The BeatTheQuoteStrategy determines the bid price based on the auction’s

current price, the so called quote. Most auction mechanisms provide a quote for

bidders. A very common behavior of bidders is to bid slightly over the quote

48

trying to maximize their profit. This behavior can be observed on eBay [18] for

example. In contrast to auctions on eBay, we provide reverse auctions only which

means that workers using this strategy will bid slightly under the current quote

and requesters slightly over the quote. In case the auction does not provide a

quote, agents will bid slightly over or under their own private value. The bid price

is calculated as follows:

bidPrice = currentQuote ∗ (1± (x ∗maxMarkupRate)) (4.10)

The variable x is randomly drawn from a uniform distribution U(0, 1). The

maxMarkupRate defines the maximum percentage by which the quote is al-

tered and has to be set in the simulation model.

• The LoadBasedStrategy may be used for workers only, since the price is

dependent on the load rate. The rational is that workers with a high current work-

load charge higher prices as they only want to work on further tasks in case they

make high profit. The bid price will be determined as shown in Equation 4.11.

bidPrice = privateV alue ∗ (1 + (load ∗maxMarkupRate)) (4.11)

The load variable is within [0, 1] and represents the workload of a given worker.

The maxMarkupRate represents the maximum percentage by which the private

value is altered and has to be set in the model.

• The LoadBasedBeatTheQuoteStrategy which is a combination of the

two aforementioned strategies, determines the bid price as follows. At first two

prices are calculated: a loadBasedPrice as shown in Equation 4.11 and a qoute-

BasedPrice as shown in Equation 4.10. The bid price is set to the latter but the bid

will only be submitted if loadBasedPrice ≤ qouteBasedPrice holds. In case

there is no quote available, the loadBasedPrice will be set as bid price.

4.6 Marketplace

In our model, the marketplace component is representing a task-based crowdsourcing

platform. Requesters submit tasks to this platform and it is the job of the marketplace to

49

find suited workers and assign tasks to them. As mentioned earlier, keeping its members

satisfied by providing high quality results to requesters and at the same time trying to as-

sign tasks to most of the workers is a big challenge for the system. The model therefore

has to provide methods for simulating different task distribution and quality manage-

ment approaches. Once a task is assigned, processed and returned to the requester, a

rating is provided by the requester. Based on this rating, an update on the skills and

confidence levels of the involved worker is conducted by means of a Skill Recognition

Module. Furthermore, the marketplace has to take care of the payment.

4.6.1 Task Distribution by Means of Auction Mechanisms

As the main focus of this thesis is to evaluate the use of auctions in a TBCS, task dis-

tribution mechanisms supported by the framework are all based on auctions. Since the

design of the framework is very open, implementing other task distribution mechanisms

is possible but out of scope in this thesis. All the auction mechanisms we consider are

reversed auctions, as the roles of buyers and sellers are reversed. In contrast to com-

monly known forward auctions where buyers compete to obtain goods by increasing

their bid prices, in a reverse auction sellers compete to obtain business from the buyer

by decreasing their bid prices [36,71]. By buying workforce from the market, requesters

take on the role of buyers and by selling workforce to the market workers take on the

role of sellers.

Basically, two different auction mechanisms are distinguished in our model: reverse

standard auctions where a single buyer, the requester, submits an ask (i.e. the task)

while many workers compete by placing bids in order to get the task assigned, and

reverse double auctions where workers and requesters are treated symmetrically with

workers placing bids to sell their workforce and requesters placing asks to buy work-

force.

Reverse Standard Auctions

For reverse standard auction types, the marketplace creates a new auction for every task

submitted by a requester. By means of selection strategies, which will be discussed in

50

Section 4.6.2, those workers matching the task’s quality requirements are selected and

invited to participate in the auction. Each auction has an assigned duration, defining

the number of rounds during which workers are allowed to place their bids until the

auction closes and determines a winner. For many auction types, it is essential that

agents are aware of the current auction price to be beat. Hence, each auction implements

a Quote.

The most important component for an auction is the OrderBook, implementing be-

havior to cope with incoming bids and asks. In order to determine a winner the order

book has to match bids and asks depending on the auction type. Usually, the match-

ing is dependent on the price, i.e. in reverse auctions the lowest bid will win. The

LowestPriceOrderBook implements this behavior. For some task-based crowd-

sourcing platforms it might not be sufficient that a winner is solely determined by the

price, since this might provide low quality results. By altering the order book, addi-

tional factors such as observed worker performance and confidence may be taken into

account, facilitating quality dependent task matching. This behavior is implemented by

the WeightedScoreOrderBook which is based on an approach described in [54].

Utilizing the skill recognition mechanism provided by the marketplace, this order book

calculates a score for each bid based on the worker’s observed performance soi of a skill

si, the confidence sci the marketplace has in the worker’s skill si and the worker’s bid

price price. Applying Equation 4.1 and Equation 4.15 we define

wObPfmc =

|oPfmc|∑
i=1

(spi ∗ swi) (4.12)

and

wCnfd =

|cnfd|∑
i=1

(sci ∗ swi) (4.13)

the score is calculated as

score = x ∗ wObPfmc+ y ∗ wCnfd+ z ∗ (1− price). (4.14)

51

Only those skills needed to process a task are taken into account for the calculation of

weighted performance and weighted confidence, since swi = 0 in case a skill is not

needed. Variables x, y, z defining the influence each factor has on the score have to be

set in the simulation model, such that x + y + z = 1. The bidder obtaining the highest

score represents the best match and therefore wins the auction. Submitting the lowest

bid will in many cases result in not winning the auction, thus providing a solid quote

to agents is not possible. This is why this order book should be used for sealed-bid

auctions only.

By default the framework supports three different standard auction types 1:

• SealedBidSecondPriceAuction: On auction creation the requester’s ask

a is submitted to the auction. Then, each worker may submit one bid b to the

auction, whereas only those bids are accepted where b ≤ a holds. Since workers

must not know the bids of other workers, this auction type does not provide a

quote. The winner of the auction is the agent who submitted the bid with the

lowest price. The price the requester has to pay, so called clearing price, amounts

to the value of the second lowest bid.

• DutchAuction: For a Dutch auction, a start price q0 and a increment rate r

have to be defined in the model. On auction creation, the requester’s ask a is

submitted to the auction and the auctions current quote q is set to q0. Each round,

q is incremented by r until q = a. Workers may submit bids b, whereas only those

bids are accepted where b ≤ q holds. The worker submitting the first accepted bid

wins the auction.

• EnglishAuction: On auction creation the requester’s ask a is submitted to the

auction providing the auctions start price. Each round, workers may submit bids

b whereas only those bids are accepted, where b ≤ a holds. The quote q amounts

the price of the lowest accepted bid. After a predefined amount of rounds t, the

auction closes and the worker submitting the bid with the lowest price wins the

auction.
1A detailed discussion is provided in Chapter 2

52

Double Auctions

In double auctions, multiple buyers and sellers may place their shouts (i.e. bids and

asks) simultaneously. For matching shouts, the auction determines a price and informs

buyer and seller about the successful transaction. In order to conduct these kinds of

auctions, a uniform object or good (e.g. one pound of coffee) traded in the auction

market has to be defined.

Tasks created and traded in our framework are based on the assumption that they are all

different. Each task has its own duration and quality requirement and is thus unique. As

a consequence, it is not possible to trade multiple tasks in a double auction. In contrast

to standard auctions where agents are trading tasks, in double auctions we are following

the idea that agents are trading workforce as uniform good on the market in terms of

person hours. To ensure quality, several auction markets, each trading a specific skill si
at a specific quality level (qLevel(si)), are installed on the marketplace. In order to be

allowed to trade in a specific market, workers have to match the given minimum quality

requirements. We define that a worker is allowed to trade in the market if it holds that

soi ≥ qLevel(si), where soi ∈ oPfmc represents the observed performance of a given

skill si provided by the marketplace. In our model, we install two markets for each

skill: one for low quality requirements and one for high quality requirements. These

levels can be set in the simulation model. The framework implements a Continuous

Double Auction, in which the auction never closes and every time a shout arrives, the

market clears the auction by trying to find matching shouts and informing the involved

agents of a successful transaction. Only shouts beating the current quote are accepted.

In double auctions two different quotes can be identified:

• Bid Quote: The bid quote represents the quote that requesters have to beat (i.e.

offer a higher price) in order to buy workforce from the market. Its value is set to

the price of the lowest unmatched bid.

• Ask Quote: The ask quote represents the quote workers have to beat (i.e. offer

a lower price) to sell workforce to the market. Its value is set to the price of the

highest unmatched ask.

53

Since in double auctions, requesters cannot submit a whole task, they have to calculate

the effort in terms of person hours per skill and buy hours in the specific markets. The

requesters trading behavior for such auction types is modeled very simple. We assume

that the amount of hours needed to finish a task equals the expectedDuration. To

calculate the amount of hours for each skill we multiply the expected duration with

each skill’s associated weight. For each hour the requester places an ask in a matching

auction, whereas an auction matches if qLevel(si) ≥ sqi holds. Whereby qLevel(si)

represents the minimum quality of a skill si workers trading in this auction obtain and

sqi ∈ skill represents the minimum quality of a skill si demanded by the requester.

A placed ask stays in the auction for a specified amount of time. In case a matching

bid is found within this period, the ask is removed and a sub task is assigned to the

worker, otherwise the requester is informed that no matching bid was submitted. A sub

task represents a proportioned amount of work, offered by the requester. Each auction

market contains a predefined deadline which defines the period of time a worker has

left to finish a sub task. This deadline is the same for all tasks traded in the auction

and starts once a sub task is assigned to a worker. Two shouts in an auction match in

case the bid price is lower than the ask price. As there may be a lot of shouts in the

market, the current highest ask is matched with the current lowest bid where the price

the requester has to pay equals the price of the worker’s bid. To determine the quality

of the processed task we use the average quality of all sub tasks. It has to be mentioned

that this is a very naive approach, as in the real world quality might also depend on

the number of different workers processing a task and their ability to cooperate. Since

implementing more sophisticated behavior, like defining cooperation levels between

agents, would have gone beyond the scope of this thesis, we chose to implement this

very model.

Table 4.3 summarizes the main properties of the auction component.

4.6.2 Quality Management and Skill Recognition

Providing high quality results to requesters is essential for most TBCS. This framework

follows an approach described in [54] and [37], which is based on skill recognition and

54

Component Description
OrderBook Specifies the auction behavior. Matches shouts

and determines the winner of an auction.
Quote Provides the current auction price to agents.

Might not be used.
duration Defines a period of time in which the auction

accepts bids.

Table 4.3: Components of the auction model

confidence management techniques. For each registered worker a profile is created,

containing the worker’s observed performance and the confidence in this performance.

oPfmc =

so1
...

son

 cnfd =

sc1
...

scn

 (4.15)

Each value soi ∈ oPfmc describes the worker’s observed performance of a skill si and

is within an interval [0, 1]. soi = 0 means that a worker does not possess the skill si and

soi = 1 means that a worker is perfect in using skill si. The same holds for each value

sci ∈ cnfd which describes the confidence the marketplace has in a worker’s specific

skill si. Every time a worker processes a task, the confidence and performance levels

are updated, whereas the confidence level will always increase and the alteration of the

performance level will depend on the rating provided by the requester. This behavior is

implemented using SkillUpdatePolicies. By default, two different policies are

implemented. The UniformSkillUpdatePolicy updating each of the involved

skills uniformly, and the WeightedSkillUpdatePolicy updating the worker’s

skills based on the skill weight defined in the task definition. With Equation 4.3 and

Equation 4.15 we define the performance update as

oPfmc(soi) = soi + pfmcUpdateRate ∗ (rating − soi) (4.16)

and the confidence update as

cnfd(sci) = sci + cnfdUpdateRate ∗ (1− sci) (4.17)

55

where pfmcUpdateRate and cnfdUpdateRate have to be set in the simulation. By

default these values are set to pfmcUpdateRate = 0.2 and cnfdUpdateRate = 0.1.

The initial values of cnfd(sci) are drawn from a Gaussian distribution N (µ, σ) where

µ and σ have to be set in the simulation model. The initial values of oPfmc(soi) are

drawn from a Gaussian distributionN (spi, 1− sci) where spi refers to the worker’s real

performance defined in Equation 4.4.

Based on the values provided by the skill recognition component, only those

workers matching the skill requirements for a specific task are invited to join

an auction. To realize this matching behavior, QualificationPolicies

are implemented by the framework. The framework has by default two dif-

ferent qualification policies implemented: one allowing all registered work-

ers join an auction, the so called AllQualificationPolicy, and the

MinPerformanceQualificationPolicy, allowing only those workers meet-

ing the minimum requirements of a task to join the auction, i.e. ∀sqi ∈ skillQuality :

sqi ≤ soi

Table 4.4 summarizes the main properties of the marketplace component.

Component Description
AuctionType Specifies the auction type used for task distribu-

tion.
WorkerProfiles Contains skill and confidence profiles of work-

ers.
SkillUpdatePolicy Specifies the requesters skill recognition behav-

ior and performs updates on the workers skill
profiles.

QualificationPolicy Specifies the qualification requirements for
workers to be invited to a specific auction. Is
only supported in combination with skill recog-
nition strategies.

Table 4.4: Components of the marketplace model

56

4.7 Simulation

This part of the model contains components needed to configure simulation specific

behavior. Firstly, by means of the reporting component, one can define reports to cal-

culate statistics of certain variables of interest. Following the design principle of our

framework, reports themselves are implemented as objects, listen to events brokered by

the SimulationController and have to be defined in the model file in case they

should be used in the simulation. By default the simulation framework has implemented

a variety of reports listed in Table 4.5.

Report Description
Transaction Report Lists various information for each transaction

conducted in the simulation, such as quality re-
quirements, price statistics, deadline and com-
pletion rounds, etc.

Requester Report Lists for every requester trading in the simula-
tion various information such as offered tasks,
assigned tasks, completed tasks, deadline viola-
tions, revenue, payoff, etc.

Worker Report Lists for every worker trading in the simula-
tion various information such as skill levels, ob-
tained ratings, assigned tasks, revenue, payoff,
etc.

Payoff Report Provides a statistical summary on payoffs of re-
questers and workers.

Task Report Provides a statistical summary on the number
of tasks submitted, assigned, unassigned, com-
pleted and the occurred deadline violations.

Quote Report Lists the quotes of double auctions.

Table 4.5: A list of available reports

Secondly, the AgentMixer is responsible for simulating the agents arrival at

the market. By default there is one mixing strategy implemented, namely the

RandomRobinAgentMixer which lets all agents arrive in each round, shuffled in

a random order. By extending or altering the agent mixer, one can simulate different

arrival strategies. To simulate a certain fluctuation of activity for example, one could

57

create randomly generated sub groups of agents arriving on the market in each round.

Finally, implementation specific details such as the definition of a random generator to

generate random distributions used in the model have to be defined in this part of the

model.

58

CHAPTER 5
Implementation

The previous chapter introduced the architecture, the models and the approaches needed

to build a simulation framework for task-based crowdsourcing. This chapter details the

implementation aspects of our prototype implementation. At first, an overview on the

JABM framework, on which our simulation framework is built upon, is given. Then,

the key structure of the framework is discussed. Finally, the implementation of the

simulation model is explained.

This simulation framework has been developed in the Java programming language (ver-

sion 6). Designing the framework, we decided to build it upon an already existing agent-

based modeling (ABM) framework as there are already various available. NetLogo [47],

MASON [43] or Repast [59] are among the more prominent ABM frameworks written

in Java, each with their own advantages and disadvantages. We, however, chose to

use the Java Agent-Based Modelling Toolkit (JABM) [35] due to the following reasons.

Firstly, it is an open-source framework and fully written in Java which allows us to use

it in our framework. Secondly, its light-weight character enables us to easily extend

it to our needs. Thirdly, it uses the Spring framework to cleanly separate the imple-

mented components from the simulation model itself, which conforms to the design of

our framework. Lastly, it is the underlying framework of the open-source Java Auction

Simulator API (JASA) which implements useful components for auction processing that

can be reused and extended in our framework.

59

5.1 The Underlying JABM Framework

The open-source Java Agent-Based Modeling toolkit (JABM) is a light-weight agent

based modeling framework fully written in Java. It uses discrete-event simulation [8]

to model temporal aspects, and by the use of the dependency injection design pattern a

separation of the simulation model and its implementation is achieved [52]. JABM was

originally used in combination with the JASA toolkit to run trading simulations using

various auction mechanisms and is therefore appropriate for market simulations.

According to the basic design principle of JABM, the entities used in the agent-based

model are represented as Plain Old Java Objects (POJOs)1. These POJOs are then con-

figured by means of dependency injection using the Spring framework [60], whereby

the configuration information is contained in a file. This file is, according to the Spring

standard, written in Extensible Markup Language (XML) [20] , and represents the sim-

ulation model. Figure 5.1 shows the key components of the JABM framework.

The SimulationController is the main component of a JABM simulation, con-

taining the Simulation and the Population object. Using the EventScheduler

interface, communication between components is realized as all Agents in the popu-

lation listen to this scheduler and react to events they receive. The Population pro-

vides functionality to create various agents at run-time, utilizing ObjectFactories

provided by the Spring framework. To ensure that all agents are initialized using values

drawn from the same random distribution, the JABM framework provides a Random

Generator, which is declared using singleton scope. By means of the singleton de-

sign pattern [25], the random generator object exists only once in the simulation and this

is why each component using the generator obtains a random value drawn from the same

distribution. The Simulation object in combination with the AgentMixer object

defines how and how often the agents in the population interact with each other. For

example, by using a RepeatedInteractionSimulation in combination with

a RandomRobinAgentMixer, all agents would interact with the simulation a given
1A Plain Old Java Object is basically an object containing a zero argument constructor and getter and

setter methods for each attribute [51]

60

Figure 5.1: UML diagram showing the key components of JABM, taken from [52]

number of times. By declaring Reports, which are already implemented by the JABM

framework, in the model, the modeler may obtain a variety of different statistics or

charts. Furthermore, custom reports can be created by implementing objects which ex-

tend the ReportVariables interface.

5.2 Design of the Framework

The implementation of the simulation framework is based on the architecture provided

in Chapter 4 and influenced by the design of the JABM framework. Further, a few

classes and design principles of the JASA framework have been adapted and reused in

the implementation of our framework. This comprises, for example, the reuse of Shout

objects to represent asks and bids or the use of the FourHeapOrderBook (described

in [73]) to manage shouts in auctions. Figure 5.2 presents the abstract structure of the

61

Figure 5.2: Framework structure in UML syntax

implementation of our simulation framework in UML notation. Objects modeled in

blue are provided by the JABM framework. Since most of the components and their

behavior shown in Figure 5.2 have already been discussed in Chapter 4, they will not be

detailed again in the following.

The base class used to run a simulation is represented by the MarketFacade. Us-

ing the Facade pattern [25], agent-based modeling functionality provided by the JABM

framework is combined with task-based crowdsourcing functionality created by us. By

implementing the EventScheduler interface, the MarketFacade is able to send

events to registered EventListeners. Functionality to broker those events, how-

ever, is implemented by the SimulationController, and the MarketFacade

simply forwards all invocations of methods implemented by the EventScheduler

interface to this controller. Since many objects, such as TradingAgents or Market,

62

obtain references to the MarketFacade on creation, they can utilize the facade to

communicate with other components by using events. For a component to receive

events, it has to implement the EventListener interface. The behavior of Trading

Agents is defined by Policies and Strategies as described in the previous

chapter.

The MarketSimulation class defines the interactions between agents and the mar-

ketplace. As mentioned in Chapter 4, our simulation is based on discrete time simulation

using events to inform components of the current round. Each round simulates a cer-

tain period of time. In our implementation a round can basically be divided into three

phases:

1. Arrival Phase: Whenever a round starts agents are informed and may decide

whether they want to join the market at the current round or not, by register-

ing or unregistering to the market. Requesters at this phase submit tasks to the

system, provided they want to trade in the market at this round. Once this phase

is finished, the actual trading phase starts.

2. Trading Phase: At first, the market creates an Auction for each task submitted

by requesters in the previous phase. Then, for each auction in the market, all

agents trading in the respective auction are informed about the start of the trading

phase and are from now on allowed to place their bids.

3. Clearing Phase: Before a round closes agents stop trading and each auction

checks if the auction period is expired. In case it is, a winner is determined

and the marketplace assigns the requester’s task to a worker and informs both

agents. Likewise, each worker in the simulation checks if he has finished a task

in this round and informs the marketplace which in place informs the requester,

demands a rating and manages the payment.

The Market uses an AuctionFactory to dynamically create auction instances of a

certain auction type which is defined in the simulation model. Each object defining an

63

auction type has to implement the Auction interface. Properties and behavior of the

market and auctions have already been discussed in Chapter 4.

5.3 Creating the Simulation Model

The simulation model connects the implemented components together and therefore

defines the simulation. All properties and references between components are defined in

a declarative form in the simulation model. As in the JABM framework, our model file is

denoted by an XML file whose type description is provided by the Spring standard XML

Schema Definition (XSD) file, spring-beans.xsd. Using Dependency Injection

(DI), the Spring framework initializes and configures the denoted objects. There are two

ways of dependency injection made possible by the Spring framework: constructor-

based DI and setter-based DI. The former is accomplished by the Spring container

invoking a bean’s constructor and providing the dependencies as arguments, and the

latter is accomplished by the Spring container calling the POJOs setter methods, after

invoking a no argument constructor to instantiate the bean.

In the remainder of this section, examples showing the configuration of the main com-

ponents in the simulation model are provided. References in these examples are set us-

ing either the aforementioned constructor-based DI denoted by <constructor-arg

ref=“reference”/> or the setter-based DI denoted by <property name=

“beanName” ref=“beanRef”/>.

Listing 5.1 shows how the basic structure of a simulation experiment is defined.

� �
1 < !−− C o n f i g u r e t h e marke tFacade t o c o n n e c t t h e c o n t r o l l e r w i t h t h e Market−−>
2 <bean i d =" marke tFacade "
3 c l a s s =" a t . ac . t uw ie n . dsg . crowdsim . marke t . Marke tFacade ">
4 < p r o p e r t y name=" c o n t r o l l e r " r e f =" s i m u l a t i o n C o n t r o l l e r " / >
5 < p r o p e r t y name=" marke t " r e f =" marke t " / >
6 < / bean >
7

8 < !−− C o n f i g u r e a s i m u l a t i o n which we w i l l run j u s t t h e once −−>
9 <bean i d =" s i m u l a t i o n C o n t r o l l e r "

10 c l a s s =" n e t . s o u r c e f o r g e . jabm . S p r i n g S i m u l a t i o n C o n t r o l l e r ">

64

11 < p r o p e r t y name=" numSimula t i ons " v a l u e =" 1 " / >
12 < !−− T h i s i s t h e name o f t h e bean r e p r e s e n t i n g t h e s i m u l a t i o n . −−>
13 < p r o p e r t y name=" s imula t ionBeanName ">
14 < i d r e f l o c a l =" m a r k e t S i m u l a t i o n " / >
15 < / p r o p e r t y >
16 < !−− Re po r t o b j e c t s c o l l e c t da ta on t h e s i m u l a t i o n runs . −−>
17 < p r o p e r t y name=" r e p o r t s ">
18 < l i s t >
19 < r e f bean=" workerCSVReport " / >
20 < / l i s t >
21 < / p r o p e r t y >
22 < / bean >� �

Listing 5.1: Configuring the simulation environment

The MarketFacade is the top–level bean wiring the SimulationController

and the crowdsourcing platform represented by the Market together. In the reports

section, various reporting beans, implementing the ReportVariable interface, can

be defined. The simulationBeanName property defines the underlying simulation

type to be used, which in our case is the MarketSimulation. An example con-

figuration of the latter is provided in Listing 5.2. This simulation bean defines how

agents interact and contains the population specifying the agents. Moreover, the

maximumRounds property specifies the number of rounds to be run in the simula-

tion, whereas the agentMixer bean defines which agents interact with the market in

a given round.

� �
1 <bean i d =" m a r k e t S i m u l a t i o n " scope =" p r o t o t y p e "
2 c l a s s =" a t . ac . t uw ie n . dsg . crowdsim . marke t . M a r k e t S i m u l a t i o n ">
3 < p r o p e r t y name=" maximumRounds " v a l u e =" 500 " / >
4 < p r o p e r t y name=" p o p u l a t i o n " r e f =" p o p u l a t i o n " / >
5 < p r o p e r t y name=" a g e n t I n i t i a l i s e r " r e f =" a g e n t I n i t i a l i s e r " / >
6 < p r o p e r t y name=" a g e n t M i x e r " r e f =" randomRobinAgentMixer " / >
7 < p r o p e r t y name=" s i m u l a t i o n C o n t r o l l e r " r e f =" s i m u l a t i o n C o n t r o l l e r " / >
8 < / bean >� �

Listing 5.2: Configuring the market simulation

65

The population is represented by a list of agents, where the list may consist of sub

lists containing different sets of agents as shown in Listing 5.3. Here, one list containing

a set of workers and one list containing a list of requesters is created.

� �
1 < !−− The p o p u l a t i o n c o n s i s t s o f worker s and r e q u e s t e r s −−>
2 <bean i d =" p o p u l a t i o n " scope =" p r o t o t y p e "
3 c l a s s =" n e t . s o u r c e f o r g e . jabm . P o p u l a t i o n ">
4 < p r o p e r t y name=" a g e n t L i s t ">
5 <bean c l a s s =" n e t . s o u r c e f o r g e . jabm . a g e n t . A g e n t L i s t ">
6 < c o n s t r u c t o r −a r g >
7 < l i s t >
8 < r e f bean=" r e q u e s t e r A g e n t L i s t " / >
9 < r e f bean=" w o r k e r A g e n t L i s t " / >

10 < / l i s t >
11 < / c o n s t r u c t o r −a r g >
12 < / bean >
13 < / p r o p e r t y >
14 < p r o p e r t y name=" prng " r e f =" prng " / >
15 < / bean >� �

Listing 5.3: Configuring the population

The creation of workers is shown in Listing 5.4. The first constructor argument spec-

ifies the number of agents to be created for a given agent list. In this example, thou-

sand workers are constructed on simulation start. Each worker is constructed from the

specified prototype bean workerAgent using a ObjectFactory which is provided

by the Spring framework. The prototype bean specifies the class used to represent

the agent and defines its behavior. Besides the already in Chapter 4 discussed prop-

erties representing behavior (i.e. tradingStrategy, valuationPolicy and

transactionBook) the skillConfig property has to be set too. On agent cre-

ation, the skills are initialized using randomly drawn values from a Gaussian distribu-

tion; the configuration for this distribution is provided by the aforementioned skill

Config property.

66

� �
1 < !−− An a g e n t l i s t c o m p r i s i n g 1000 worker s −−>
2 <bean i d =" w o r k e r A g e n t L i s t " c l a s s =" n e t . s o u r c e f o r g e . jabm . a g e n t . A g e n t L i s t ">
3 < c o n s t r u c t o r −a r g r e f =" 1000 " / >
4 < c o n s t r u c t o r −a r g r e f =" w o r k e r A g e n t F a c t o r y " / >
5 < / bean >
6

7 < !−− The f a c t o r y used f o r m a n u f a c t u r i n g t h e worker s −−>
8 <bean i d =" w o r k e r A g e n t F a c t o r y "
9 c l a s s =" org . s p r i n g f r a m e w o r k . beans . f a c t o r y . c o n f i g .

10 O b j e c t F a c t o r y C r e a t i n g F a c t o r y B e a n ">
11 < p r o p e r t y name=" ta rge tBeanName ">
12 < i d r e f l o c a l =" workerAgent " / >
13 < / p r o p e r t y >
14 < / bean >
15

16 < !−− The p r o t o t y p e used t o m a n u f a c t u r e worker s −−>
17 <bean i d =" workerAgent " scope =" p r o t o t y p e "
18 c l a s s =" a t . ac . t uw ie n . dsg . crowdsim . a g e n t . worker . SimpleWorker ">
19 < p r o p e r t y name=" marke tFacade " r e f =" marke tFacade " / >
20 < p r o p e r t y name=" s c h e d u l e r " r e f =" s i m u l a t i o n C o n t r o l l e r " / >
21 < p r o p e r t y name=" v a l u a t i o n P o l i c y " r e f =" m a r k e t O r i e n t e d V a l u a t i o n " / >
22 < p r o p e r t y name=" t r a n s a c t i o n B o o k " r e f =" s i m p l e T r a n s a c t i o n B o o k " / >
23 < p r o p e r t y name=" t r a d i n g S t r a t e g y " r e f =" t r u t h T e l l i n g S t r a t e g y " / >
24 < p r o p e r t y name=" s k i l l C o n f i g " r e f =" e x p e r i e n c e d W o r k e r C o n f i g " / >
25 < p r o p e r t y name=" randomData " r e f =" randomData " / >
26 < / bean >
27

28 < !−− The c o n f i g u r a t i o n f o r e x p e r i e n c e d Workers−−>
29 <bean i d =" e x p e r i e n c e d W o r k e r C o n f i g "
30 c l a s s =" a t . ac . t uw ie n . dsg . crowdsim . a g e n t . worker . S k i l l C o n f i g ">
31 < p r o p e r t y name=" meanPerformance " v a l u e =" 0 . 7 0 " / >
32 < p r o p e r t y name=" d e v i a n c e P e r f o r m a n c e " v a l u e =" 0 . 2 5 " / >
33 < p r o p e r t y name=" meanConf idence " v a l u e =" 0 . 8 " / >
34 < p r o p e r t y name=" d e v i a n c e C o n f i d e n c e " v a l u e =" 0 . 2 5 " / >
35 < / bean >� �

Listing 5.4: Creating agent lists

Listing 5.5 shows the configuration of the Market component. Besides beans defining

skill recognition and quality management behavior, an auctionFactory bean has to

be specified. The auction factory creates and configures an Auction for each task sub-

mitted by the requester using a prototype bean to set auctionType and orderBook.

67

Further, the auctionDuration property defines how many rounds an auction runs

before it closes and determines a winner.

� �
1 < !−− C o n f i g u r e s t h e c r o w d s o u r c i n g p l a t f o r m −−>
2 <bean i d =" marke t "
3 c l a s s =" a t . ac . t uw ie n . dsg . crowdsim . marke t . Market ">
4 < p r o p e r t y name=" marke tFacade " r e f =" marke tFacade " / >
5 < p r o p e r t y name=" a u c t i o n F a c t o r y " r e f =" a u c t i o n F a c t o r y B e a n " / >
6 < p r o p e r t y name=" s k i l l U p d a t e P o l i c y " r e f =" w e i g h t e d S k i l l U p d a t e " / >
7 < p r o p e r t y name=" a u c t i o n Q u a l i f i c a t i o n P o l i c y "
8 r e f =" m i n P e r f o r m a n c e Q u a l i f i c a t i o n " / >
9 < / bean >

10

11 < !−− C o n f i g u r e s and c r e a t e s t h e a u c t i o n t y p e −−>
12 <bean i d =" a u c t i o n F a c t o r y B e a n "
13 c l a s s =" a t . ac . t uw ie n . dsg . crowdsim . marke t . a u c t i o n . A u c t i o n F a c t o r y ">
14 < p r o p e r t y name=" a u c t i o n P r o t o t y p e " r e f =" s e a l e d B i d " / >
15 < p r o p e r t y name=" orde rBookPro toType " r e f =" l o w e s t P r i c e O r d e r B o o k " / >
16 < p r o p e r t y name=" a u c t i o n D u r a t i o n " v a l u e =" 1 " / >
17 < / bean >� �

Listing 5.5: Configuring the market

Finally, Listing 5.6 shows how the random generator is configured. We use the Mersenne

Twister algorithm [44] as it is more powerful than the standard Java Random implemen-

tation.� �
1 < !−− The random da ta o b j e c t used t o g e n e r a t e d i s t r i b u t i o n s −−>
2 <bean i d =" randomData " scope =" s i n g l e t o n "
3 c l a s s =" org . apache . commons . math . random . RandomDataImpl ">
4 < c o n s t r u c t o r −a r g r e f =" randomGenera to r " / >
5 < / bean >
6 < !−− The pseudo−random number g e n e r a t o r a l g o r i t h m −−>
7 <bean i d =" randomGenera to r " scope =" p r o t o t y p e "
8 c l a s s =" org . apache . commons . math . random . Me r senneTw is t e r ">
9 < c o n s t r u c t o r −a r g r e f =" seed " / >

10 < / bean >
11 < !−− The seed t o g e n e r a t e r e p r o d u c a b l e r e s u l t s−−>
12 <bean i d =" seed " scope =" s i n g l e t o n " c l a s s =" j a v a . l a n g . Long ">
13 < c o n s t r u c t o r −a r g v a l u e =" 123 " / >
14 < / bean >� �

Listing 5.6: Configuring the random generator

68

CHAPTER 6
Evaluation

In this chapter, the suitability of different auction types for five different scenarios is

evaluated using the simulation framework described in Chapter 4 and in Chapter 5. At

first, the evaluation design is described. Then, in the first three scenarios (Section 6.2.1

to Section 6.2.3) three standard auction types are evaluated using different populations

in each scenario. In Scenario 4 (Section 6.2.4), a standard auction type is compared

to a double auction type. Lastly, in Scenario 5 (Section 6.2.5), three different quality

management methods are compared by means of a reversed sealed-bid second price

auction.

6.1 Evaluation Design

To evaluate the suitability of different auction mechanisms in a given environment sev-

eral series of experiments are set up. Each experiment series describes a scenario con-

sisting of a certain population of workers and requesters and a crowdsourcing market-

place with defined behavior regarding skill recognition and quality management strate-

gies. In each series the same initial population is used, the auction type is however

altered. Then, the results of the experiments in a series are compared with each other, to

discuss advantages and disadvantages of each auction type used in the series. Figure 6.1

shows an illustration of the experiment design.

69

Figure 6.1: Evaluation design of a scenario X containing a series of experiments

For each experiment the following values are analyzed:

• Submitted Tasks: The number of submitted tasks represents the loading of the

system and therefore indicates the satisfaction of requesters as they only submit

tasks to the system if they are satisfied. Therefore, the more tasks submitted the

better for the platform.

• Assigned Tasks: The number of tasks assigned to workers indicates the qualifi-

cation of workers for submitted tasks on the one hand (as only qualified workers

are allowed to join an auction in our experiments), and the interest of workers to

process the submitted tasks on the other hand (as workers won’t submit bids for

tasks with a too low price). The more tasks assigned the better for the platform.

• Unassigned Tasks: The lower the number of unassigned tasks the better for the

70

crowdsourcing platform, as requesters, ideally, want all their submitted tasks pro-

cessed.

• Completed Tasks: The number of tasks processed by requesters in time. The more

tasks processed the better for the platform.

• Deadline Violations: The number of tasks processed by workers but not submitted

in time. The lower the number of deadline violations the better for the platform.

• Quality: This value represents the average quality of tasks processed by workers.

The higher the quality, the better it is for the system.

• Payoff: This value represents the average profit made by an agent. The payoff of

workers and requesters are analyzed separately. The payoff of workers is calcu-

lated as pw = price − privateV alue as they only make profit if they earn more

money than they actually need to process a task. The payoff of requesters is cal-

culated as pr = privateV alue− price as requesters only make profit if they can

buy workforce at a price level lower than their own valuation. In an ideal system,

requesters and workers will make the same profit.

6.2 Evaluation Scenarios

This section provides evaluations of different scenarios using different populations. The

experiments are set up using the simulation framework described in Chapter 4 and Chap-

ter 5. Each of the following simulations will run for 500 rounds. The default mar-

ketplace behavior is described by the MinPerformanceQualificationPolicy

and the WeightedSkillUpdatePolicy. The marketplace therefore only invites

those workers to auctions who meet the defined quality requirements of a task as de-

scribed in Chapter 4. The skill update rates are set to pfmcUpdateRate = 0.2 and

cnfdUpdateRate = 0.1. To provide an initial configuration of the skill recognition

module, we draw confidence values from the Gaussian distribution N (0.8, 0.25) and

calculate the observed performance values as described in Chapter 4 to simulate proper

knowledge of the workers’ skills. Unless stated otherwise, the marketplace supports five

71

Klasse pfmc Skill 1 pfmc Skill 2 pfmc Skill 3 pfmc Skill 4

0,2 6 11 6 3

0,4 42 31 20 35

0,6 80 80 89 66

0,8 106 112 113 89

1 64 80 79 92

0 202 186 193 215

0

20

40

60

80

100

120

0,2 0,4 0,6 0,8 1

pfmc Skill 1

pfmc Skill 2

pfmc Skill 3

pfmc Skill 4

pfmc Skill 5

86

88

90

92

94

96

98

100

102

104

106

1 2 3 4 5

Number Of Skills

(a) Worker Performance

Klasse pfmc Skill 1 pfmc Skill 2 pfmc Skill 3 pfmc Skill 4

0,2 6 11 6 3

0,4 42 31 20 35

0,6 80 80 89 66

0,8 106 112 113 89

1 64 80 79 92

0 202 186 193 215

0

20

40

60

80

100

120

0,2 0,4 0,6 0,8 1

pfmc Skill 1

pfmc Skill 2

pfmc Skill 3

pfmc Skill 4

pfmc Skill 5

86

88

90

92

94

96

98

100

102

104

106

1 2 3 4 5

Number Of Skills

(b) Skill Distribution

Figure 6.2: Generated worker population according to Scenario 1

different skills. A sample simulation model containing the configuration of an experi-

ment in Scenario 1 is provided in Listing B.1 in Appendix B.

6.2.1 Scenario 1 - A Large, High-Skilled Crowd

In this scenario we simulate a large, high-skilled crowd and compare three standard

reverse auction types with each other: Reversed Sealed-Bid Second-Price Auction, Re-

versed English Auction and Reversed Dutch Auction1.

The population consists of 20 requesters and 500 workers which simulates a high

worker/requester ratio, i.e. a relatively large crowd of workers. Requesters im-

plement a marketOrientedValuationPolicy for private value generation

and a BeatTheQuoteTradingStrategy defining the requesters trading be-

havior. They submit one task per round containing up to five randomly generated

required skills within range [0.1, 0.9]. The Gaussian distribution to set the workers

skills is set to N (0.7, 0.25), with each worker possessing up to five skills. The

generated worker population is shown in Figure 6.2. The workers private val-

ues are generated using the marketOrientedValuationPolicy and their

trading strategy is set to the LoadBasedBeatTheQuoteTradingStrategy.

The configuration of the latter is as follows: quoteMaxMarkupRate = 0.05,

loadMaxMarkupRate = 0.5, maxLoadRate = 1. Each of the three auctions
1Theory of these auction types is discussed in Chapter 2; Implementation aspects in Chapter 4

72

implements the LowestPriceOrderBook, letting the worker with the lowest bid

win the auction.

Table 6.1 shows the results of the simulation. In terms of task distribution, the results

Sealed-Bid English Dutch
Submitted Tasks 3561 2611 3695
Assigned Tasks 3399 2505 3552
(%) 95.45% 95.94% 96.13%
Unassigned Tasks 162 106 143
(%) 4.55% 4.06% 3.87%
Completed Tasks 3253 2237 3374
(%) 91.35% 85.68% 91.31%
Deadline Violations 146 268 196
(%) 4.10% 10.26% 4.82%
Average Quality 0.8442 0.7907 0.8266
Payoff Worker 122.98 66.78 98.12
Average 0.0362 0.0267 0.0278
Payoff Requester 644.64 402.93 658.74
Average 0.1981 0.1801 0.1952

Table 6.1: Evaluation results for Scenario 1

of the reversed sealed-bid second-price auction show no significant difference. In both

auction types a total number of about 3600 tasks is submitted and about 95% of the sub-

mitted tasks are assigned to workers; 91% of the submitted tasks are completed. Using

the Dutch auction, there are slightly more assigned tasks than by using the sealed-bid

auction, although slightly more deadline violations occur using the former. Proportion-

ally, significantly more deadline violations occur within the English auction compared

to the other auction types. This impacts the total number of submitted task which is

significantly lower (∼ 40%) compared to the sealed-bid auction and the Dutch auction.

The high number of deadline violations may be explained by the workers’ trading be-

havior and the auction design: sealed-bid auctions clear after one round, and Dutch

auctions are cleared as soon as a valid bid is placed, thus tasks in those auction types

are assigned to workers within a relatively short period of time. English auctions, in

contrast, accept bids for a defined (longer) period of time and as a consequence the pe-

73

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

0 0,2 0,4 0,6 0,8 1

English

Sealed bid

Dutch

Figure 6.3: Task quality distribution for Scenario 1

riod of time between bid placement and task assignment is longer than in the other two

auction types. As workers with greedy behavior place bids in many different auctions

each round (provided that their workload is not too high), they might win more tasks

than they could process, which in turn leads to deadline violations.

The quality of assigned tasks processed in the sealed-bid auction is slightly higher than

in the Dutch auction, which in turn is only slightly higher than in the English auction.

The English auction obtains the lowest quality results which may be attributed to the

higher number of deadline violations (which are rated with zero). A histogram of the

quality distribution is provided in Figure 6.3.

The average payoff of workers is significantly higher (∼ 40%) for the sealed-bid auc-

tion than for the English and the Dutch auction (the latter both achieving nearly equal

values). This may be explained by the fact that for the English and the Dutch auction the

current market prices are visible to agents, leading to massive undercutting due to the

high number of workers and thus to relatively little profit. Furthermore, in the sealed-

bid auction, the clearing price is set to the price of the secend lowest bid, which also

lets workers make higher profits. The average payoff of requesters is, compared to the

74

average payoff of workers, significantly higher (about six times as much). This may be

explained by the fact that the high worker/requester ratio forces workers to bid closer

to their own private values to win a task, therby enabling requesters to make a higher

profit. What has to be considered is that on certain task-based crowdsourcing platforms

requesters have to pay for the services provided by the system which in turn would

lower the total profit. Based on the results we can state, that the sealed-bid auction pro-

vides the highest average payoff for requesters followed by the Dutch auction providing

nearly equal values. The English auction provides about 10% less payoff for requesters

compared to the sealed-bid auction.

In summary it can be stated that for a large, high-skilled crowd, the results provided

by the reversed sealed-bid second price auction are almost similar compared to the re-

sults provided by the reversed Dutch auction, with the former tending to provide better

results. The reversed English auction provides the worst results of the three examined

auction types.

6.2.2 Scenario 2 - A Small High-Skilled Crowd

In this scenario we simulate a small, high skilled crowd and compare three standard

reverse auction types with each other: Reversed Sealed-Bid Second-Price Auction, Re-

versed English Auction and Reversed Dutch Auction.

The population consists of 20 requesters and 150 workers which simulates a low work-

er/requester ratio, i.e. a relatively small crowd of workers. The agent configuration is

equal to the configuration described in Scenario 1 and each of the three auctions used

for the simulation implements the LowestPriceOrderbook as well. The popula-

tion used for the experiments is shown in Figure 6.4.

In Table 6.2, the results of each experiment are listed. As in Scenario 1, the reversed

sealed-bid auction and the Dutch auction achieve similar results in terms of task distri-

bution with the latter obtaining a slightly higher number of submitted tasks, and pro-

portionally a slightly higher number of assigned and completed tasks. The English

75

Klasse pfmc Skill 1 pfmc Skill 2 pfmc Skill 3 pfmc Skill 4

0 58 43 53 56

0,2 5 11 8 5

0,4 9 10 10 9

0,6 13 15 10 19

0,8 39 31 45 32

1 26 40 24 29

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5

Number of Skills

0

5

10

15

20

25

30

35

40

45

50

0,2 0,4 0,6 0,8 1

pfmc Skill 1

pfmc Skill 2

pfmc Skill 3

pfmc Skill 4

pfmc Skill 5

(a) Worker Performance

Klasse pfmc Skill 1 pfmc Skill 2 pfmc Skill 3 pfmc Skill 4

0 58 43 53 56

0,2 5 11 8 5

0,4 9 10 10 9

0,6 13 15 10 19

0,8 39 31 45 32

1 26 40 24 29

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5

Number of Skills

0

5

10

15

20

25

30

35

40

45

50

0,2 0,4 0,6 0,8 1

pfmc Skill 1

pfmc Skill 2

pfmc Skill 3

pfmc Skill 4

pfmc Skill 5

(b) Skill Distribution

Figure 6.4: Generated worker population according to Scenario 2

Sealed-Bid English Dutch
Submitted Tasks 1881 1495 1991
Assigned Tasks 1572 1247 1686
(%) 83.57% 83.41% 84.68%
Unassigned Tasks 309 248 305
(%) 16.43% 16.59% 15.32%
Completed Tasks 1486 1071 1579
(%) 79.00% 71.64% 79.31%
Deadline Violations 86 176 107
(%) 4.57% 11.77% 5.37%
Average Quality 0.8241 0.7565 0.8038
Payoff Worker 63.97 42.83 53.86
Average 0.0406 0.0383 0.0319
Payoff Requester 255.40 171.13 288.94
Average 0.1718 0.1597 0.1829

Table 6.2: Evaluation results for Scenario 2

auction, again, achieves the lowest number of submitted tasks (∼ 25% less compared

to the sealed-bid auction) and proportionally the highest number of deadline violations;

11.77% compared to 5.42% (Dutch) and 4.63% (sealed-bid). The reason for the signif-

icantly lower number of submitted tasks in the English auction can be explained by the

higher number of deadline violations as requesters submit fewer tasks in case their al-

ready submitted tasks are not finished in time. The higher number of deadline violations

may be explained by the workers’ trading behavior and the auction design, as already

described in Scenario 1 (see Section 6.2.1). The relatively high number of unassigned

tasks, compared to Scenario 1, may be explained by the small crowd as workers do not

76

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

0 0,2 0,4 0,6 0,8 1

English

Sealed bid

Dutch

Figure 6.5: Task quality distribution for Scenario 2

compete for certain tasks due to their high workload.

The achieved average quality per assigned task is the highest in the sealed-bid auction

(0.82) followed by the Dutch auction (0.80) and the English auction (0.75). The low

average quality in the English auction can, again, be attributed to the high number of

deadline violations as shown in Figure 6.5.

Regarding the average worker payoff, one can state that, compared to Scenario 1, higher

values are achieved in each experiment. This can be explained by the smaller crowd,

which leads to less competition, and therefore to higher profits for workers. Work-

ers in the reversed sealed-bid auction obtain the highest average payoff (0.0406). In-

terestingly, workers in the English auction obtain almost equal average payoff values

(0.0383), compared to workers in the sealed-bid auction which may also be attributed

to the small crowd. Workers competing in the Dutch auction make the lowest average

payoff (0.0319). In contrast to workers, requesters trading in Dutch auctions make the

highest payoff (0.1829) followed by requesters trading in sealed-bid auctions (0.1718)

and English auctions (0.1597).

77

Klasse pfmc Skill 1 pfmc Skill 2 pfmc Skill 3 pfmc Skill 4 pfmc Skill 5

0 198 201 196 200 215

0,2 97 76 89 80 67

0,4 87 98 118 99 103

0,6 79 77 67 81 74

0,8 36 40 22 33 33

1 3 8 8 7 8

0

20

40

60

80

100

120

140

0,2 0,4 0,6 0,8 1

pfmc Skill 1

pfmc Skill 2

pfmc Skill 3

pfmc Skill 4

pfmc Skill 5

0

20

40

60

80

100

120

140

1 2 3 4 5

Number of Skills

(a) Worker Performance

Klasse pfmc Skill 1 pfmc Skill 2 pfmc Skill 3 pfmc Skill 4 pfmc Skill 5

0 198 201 196 200 215

0,2 97 76 89 80 67

0,4 87 98 118 99 103

0,6 79 77 67 81 74

0,8 36 40 22 33 33

1 3 8 8 7 8

0

20

40

60

80

100

120

140

0,2 0,4 0,6 0,8 1

pfmc Skill 1

pfmc Skill 2

pfmc Skill 3

pfmc Skill 4

pfmc Skill 5

0

20

40

60

80

100

120

140

1 2 3 4 5

Number of Skills

(b) Skill Distribution

Figure 6.6: Generated worker population according to Scenario 3

In summary, it can be stated that for small high-skilled crowds the results achieved

by the reversed sealed-bid second price auction are similar to the results achieved by

the reversed Dutch auction, with the former tending to provide slightly better results.

Results of the English auction, except for the average worker payoff, provide the worst

results. Compared to Scenario 1, there are fewer assigned tasks and lower average

requester payoffs, but higher average worker payoffs.

6.2.3 Scenario 3 - A Large, Low-Skilled Crowd

In this scenario, simulate a large, low-skilled crowd and compare three standard reverse

auction types with each other: Reversed Sealed-Bid Second-Price Auction, Reversed

English Auction and Reversed Dutch Auction.

The population consists of 20 requesters and 500 workers which simulates a high work-

er/requester ratio, i.e. a relatively large crowd of workers. The behavior of requesters

and workers is configured as described in Scenario 1. The Gaussian distribution to set

the workers skills is set to N (0.3, 0.25), with each worker possessing up to five skills.

The generated worker population is shown in Figure 6.6. As in the last two scenarios,

all three auction types implement the LowestPriceOrderbook, letting the worker

submitting the lowest price win the auction.

78

Sealed-Bid English Dutch
Submitted Tasks 1286 1126 1325
Assigned Tasks 900 806 961
(%) 69.98% 71.58% 72.53%
Unassigned Tasks 386 320 364
(%) 30.02% 28.42% 27.47%
Completed Tasks 864 699 900
(%) 67.17% 62.08% 67.92%
Deadline Violations 36 107 61
(%) 2.79% 9.50% 4.60%
Average Quality 0.7662 0.7016 0.7482
Payoff Worker 28.51 24.75 25.63
Average 0.0317 0.0307 0.0266
Payoff Requester 114.71 79.83 109.08
Average 0.1328 0.1142 0.1212

Table 6.3: Evaluation results for Scenario 3

Table 6.3 shows the simulation results for Scenario 3. The results of this scenario con-

form with the observations made in Scenario 1 and Scenario 2 since, again, all three

auctions obtain similar results with the reversed sealed-bid auction tending to achieve

the best results and the English auction tending to achieve the worst. In detail, one can

see that compared to the previous two scenarios, the percentage of unassigned tasks

is significantly higher as there are much more low-skilled and thus unqualified work-

ers. As a result, the total number of submitted tasks is lower compared to Scenario

1 and Scenario 2. Proportionally, in the Dutch auction the most tasks are assigned to

workers (72.53%) followed by the English auction (71.57%) and the sealed-bid auction

(69.98%). In terms of deadline violations, the sealed-bid auction provides the best re-

sults followed by the Dutch auction (4.60%) and the English auction (9.50%). The high

number of deadline violations in the English auction can, once again, be attributed to

the workers’ behavior and the auction design (see Scenario 1).

79

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

0 0,2 0,4 0,6 0,8 1

English

Sealed bid

Dutch

Figure 6.7: Task quality distribution for Scenario 3

The average quality of assigned tasks, is also slightly lower compared to Scenario 1

and Scenario 2, with the sealed-bid auction obtaining the best results and the English

auction obtaining the worst. As Figure 6.7 shows, this can be explained due to the higher

number of deadline violations, as they are rated with zero.

In terms of average payoff, workers using the sealed-bid auction (0.0316) and the En-

glish auction (0.0307), once again, make the most profit obtaining similar values and

workers using the Dutch auction obtain the worst results (0.0266). The payoff of re-

questers is the highest in the sealed-bid auction, followed by the Dutch auction and the

English auction.

6.2.4 Scenario 4 - Standard Auction vs. Double Auction

In this scenario, we simulate a large, high-skilled crowd and compare the reverse sealed-

bid auction to a continuous double auction.

80

0

20

40

60

80

100

120

140

160

0,2 0,4 0,6 0,8 1

pfmc Skill 1

pfmc Skill 2

(a) Worker Performance

Klasse pfmc Skill 1 pfmc Skill 2 0

0 107 134 0,2

0,2 11 7 0,4

0,4 45 45 0,6

0,6 96 99 0,8

0,8 139 129 1

1 102 86

und größer 0 0 Nr an Skills Number of Skills

1 241

2 259

3 0

4 0

5 0

500

0

20

40

60

80

100

120

140

160

0 0,2 0,4 0,6 0,8 1

pfmc Skill 1

pfmc Skill 2

230

235

240

245

250

255

260

265

1 2

Number of Skills

(b) Skill Distribution

Figure 6.8: Generated worker population according to Scenario 4

For the double auction experiment, we create two double auction marketplaces for each

skill supported by the marketplace; one for medium quality (0.6) and one for high qual-

ity (0.8). Since objects traded in double auctions have to be homogeneous (see Chap-

ter 2), and we basically trade skills, double auctions are not suited to support many

skills. Thus, we restrict the marketplace to support two skills only in this scenario. The-

ory and implementation details regarding double auctions are described in Section 4.6.1.

The population for these experiments consists of 20 requesters and 500 workers. Re-

questers implement the SkillEffortAwareValuationPolicy for private value

generation and a BeatTheQuoteTradingStrategy to define the trading behav-

ior. Each round, a requester generates a task (with skills within range [0.1, 0.8]), splits

it into sub tasks and buys workforce in respective auction markets (according to the

quality requirement of the sub task). The detailed behavior for requesters trading in

double auction markets is described in Section 4.6.1. Workers possess up to two skills

with values randomly drawn from the Gaussian distribution N (0.7, 0.25). The used

worker population is shown in Figure 6.8. The private values of workers are gener-

ated using the SkillEffortAwareValuationPolicy and their trading behavior

is defined by the LoadBasedBeatTheQuoteTradingStrategy (Configuration:

quoteMaxMarkupRate = 0.05, loadMaxMarkupRate = 0.5,maxLoadRate = 1).

Table 6.4 shows the results of both experiments.

81

Sealed-Bid Continuous Double
Submitted Tasks 5085 3137
Assigned Tasks 5083 2733
(%) 99.96% 87.12%
Unassigned Tasks 2 404
(%) 0.04% 12.88%
Completed Tasks 4867 2941
(%) 95.71% 87.12%
Deadline Violations 216 0
(%) 4.25% 0.00%
Average Quality 0.8317 0.8455
Payoff Worker 141.16 446.71
Average 0.0278 0.0615
Payoff Requester 1063.44 446
Average 0.2185 0.1634

Table 6.4: Evaluation results for Scenario 4

In terms of task distribution, requesters in the sealed-bid auction submit a significantly

higher number of tasks than the requesters in the double auction. This may be inferred

from the fact that in the double auction about 14% of submitted tasks are not assigned

to a worker, letting the requesters submit fewer tasks. The high number of unassigned

tasks may be attributed to the requesters trading behavior, as they place asks in auctions

that are based on the current quote. This behavior may lead to asks with too low prices

for which no matching bid can be found, i.e. no worker wants to work for that little

money. If trading in double auctions, requesters split a task and assign it to multiple

workers which entails that, in our simulation, all tasks are processed in time.

The quality of processed tasks traded in double auctions is slightly better than the qual-

ity of tasks traded in sealed-bid auctions (0.8455 compared to 0.8316), which may be

inferred from the slightly different qualification methods used in both auctions. Suppose

a requester wants a task with 0.7 minimum quality processed. In the sealed-bid auction,

a worker providing 0.7 quality is allowed to process the task whereas in the double

auction the requester has to trade workforce in the auction market trading at least 0.8

minimum quality. This “quality gap” may provide slightly better results for the double

82

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

0 0,2 0,4 0,6 0,8 1

Sealed bid

Continuous Double

Figure 6.9: Task quality distribution for Scenario 4

auction. The distribution of quality is shown in Figure 6.9.

In terms of payoff, one can state that workers trading in double auctions make an sig-

nificantly higher average payoff than workers trading in sealed-bid auctions; 0.0278 in

sealed-bid auctions to 0.0615 in double auctions. Requesters, in contrast, make about

25% less payoff when trading in double auctions. This may be explained by the parti-

tioning of the marketplace, as tasks have to be submitted in markets that provide higher

quality than required. In such markets, the prices are typically higher and hence workers

make higher profits.

6.2.5 Scenario 5 - Quality Management Methods

In this scenario, we simulate a large, low-skilled crowd and compare three different

quality management methods with each other, using the reversed sealed-bid second-

price auction for task distribution. The three different quality management methods

are:

1. No Quality Management: In the first experiment, we use no quality management

at all.

83

Klasse pfmc Skill 1 pfmc Skill 2 pfmc Skill 3 pfmc Skill 4 pfmc Skill 5

0 198 201 196 200 215

0,2 41 38 42 47 34

0,4 80 72 89 80 91

0,6 93 101 83 78 90

0,8 66 65 72 75 53

1 22 23 18 20 17

Nr an Skills Number of Skills

1 99

2 115

3 83

4 103

5 100

500

0

20

40

60

80

100

120

0,2 0,4 0,6 0,8 1

pfmc Skill 1

pfmc Skill 2

pfmc Skill 3

pfmc Skill 4

pfmc Skill 5

0

20

40

60

80

100

120

140

1 2 3 4 5

Number of Skills

(a) Worker Performance

Klasse pfmc Skill 1 pfmc Skill 2 pfmc Skill 3 pfmc Skill 4 pfmc Skill 5

0 198 201 196 200 215

0,2 41 38 42 47 34

0,4 80 72 89 80 91

0,6 93 101 83 78 90

0,8 66 65 72 75 53

1 22 23 18 20 17

Nr an Skills Number of Skills

1 99

2 115

3 83

4 103

5 100

500

0

20

40

60

80

100

120

0,2 0,4 0,6 0,8 1

pfmc Skill 1

pfmc Skill 2

pfmc Skill 3

pfmc Skill 4

pfmc Skill 5

0

20

40

60

80

100

120

140

1 2 3 4 5

Number of Skills

(b) Skill Distribution

Figure 6.10: Generated worker population according to Scenario 5

2. Qualification Policy: In the second experiment, we use the platform’s skill recog-

nition functionality in combination with a MinPerformanceQualification

Policy. Using this quality management method, only those workers are invited

to join auctions, whose system profile information matches the skills required for

the task.

3. Order Book: In the third experiment, we use the platform’s skill recognition func-

tionality in combination with the WeightedScoreOrderBook and the qual-

ification policy mentioned in point 2. Using this strategy, only qualified workers

are invited to join an auction and the worker with the best suitability wins the

auction. Detailed information regarding the WeightedScoreOrderBook is

provided in Section 4.6.1. The OrderBook component is configured as follows:

x = 0.6; y = 0.3; z = 0.1.

The population consists of 20 requesters and 500 workers which simulates a high work-

er/requester ratio, i.e. a relatively large crowd of workers. The behavior of requesters

and workers is configured as described in Scenario 1. The Gaussian distribution used

to generate the workers’ skills is set toN (0.3, 0.25), with each worker possessing up to

five skills. The generated worker population is shown in Figure 6.10.

Table 6.5 contains the results of the three experiments. In the first experiment (No QM),

each submitted task is assigned to a worker due to the large crowd and the absence of a

pre-selection of workers. In contrast to this, in the “Policy experiment” only 70% and in

84

No QM Policy Order Book
Submitted Tasks 3080 1302 1166
Assigned Tasks 3080 912 777
(%) 100.00% 70.05% 66.64%
Unassigned Tasks 0 390 389
(%) 0.00% 29.95% 33.36%
Completed Tasks 2760 878 735
(%) 89.61% 67.43% 63.04%
Deadline Violations 320 34 42
(%) 10.39% 2.61% 3.60%
Average Quality 0.6588 0.7789 0.7732
Payoff Worker 48.09 28.91 28.61
Average 0.0156 0.0317 0.0368
Payoff Requester 684.82 116.51 56.14
Average 0.2481 0.1227 0.0763

Table 6.5: Evaluation results for Scenario 5

the “Order Book experiment” only 67% of the submitted tasks are assigned to workers.

The pre-selection, however, has a positive impact on the number of tasks with deadline

violations, as there occur significantly fewer violations in the Policy experiment (2.6%)

and the Order Book experiment (3.6 %) compared to the No QM experiment(10.4%).

The slightly higher percentage of deadline violations in the Order Book approach, com-

pared to the Policy approach, may be explained by the fact that the “best” workers win

many auctions which in turn leads to a (too) high workload and therefore to deadline

violations.

In terms of quality, the Policy approach and the Order Book approach achieve similar

results, which are significantly better than the results achieved in the No QM approach;

0.7789 and 0.7732 compared to 0.6588. As Figure 6.11 shows, the Order Book approach

provides slightly better results than the Policy approach, in case a task is completed, but

the aforementioned higher number of deadline violations lowers the average quality

level.

Because of the high number of workers and the resulting competition the experiment

without quality management achieves the highest average payoff for requesters (0.2481)

85

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

0 0,2 0,4 0,6 0,8 1

No QM

 Policy

Order Book

Figure 6.11: Task quality distribution for Scenario 5

and the lowest payoff for workers (0.0156). Using the Order Book approach, workers

make the highest payoff (0.0368) and as a consequence requesters make the lowest

(0.076). This can be attributed to the fact that the winner is determined by the observed

performance, the confidence in this performance and the price, thus not the cheapest

worker but the best suited wins an auction. Requesters in the Policy approach make

about twice as much profit (0.1326) as in the Order Book approach, and workers make

about 15% less (0.0317).

In summary it can be stated that using no quality management results in the use of

cheap workforce with the quality of results being correspondingly low. In contrast, a

quality management approach that determines an auction winner based on the suitability

provides the best quality results and the highest payoff for workers. The requesters,

however, make the lowest profit in this approach. Using worker pre-selection provides

quality results similar to the suitability approach, with requesters making about twice as

much profit.

86

CHAPTER 7
Summary and Future Work

Crowdsourcing has become a popular outsourcing strategy for companies lately. Espe-

cially task-based crowdsourcing has become the focus of attention, as highly available

workforce can be flexibly allocated at a generally low cost. Currently available task-

based crowdsourcing platforms, however, have to face primarily two different chal-

lenges. Firstly, they have to cope with the varying quality of processed tasks, and sec-

ondly, they have to provide adequate methods for assigning tasks to workers. For the

latter, one approach is to use auction mechanisms as means of task distribution. The

suitability of different auction mechanisms in task based crowdsourcing, however, has

not been discussed in related literature yet. Another challenge in task-based crowd-

sourcing is the difficulty of testing and evaluating new approaches due to the scarcity of

“real” data for evaluations.

In this thesis we have addressed the lack of an appropriate simulation framework for

task-based crowdsourcing platforms and have come up with a solution. We have de-

veloped a highly configurable, modular and extensible framework which is based on

an agent-based modeling approach. This framework supports different quality man-

agement and task distribution mechanisms to simulate the behavior of common crowd-

sourcing platforms. More precisely, a skill recognition strategy to cope with quality

requirements and various auction types for task distribution has already been imple-

87

mented by the framework. Further, by means of a population component the user to can

define a certain crowd which interacts with the marketplace.

By means of this simulation framework, several experiments have been run, to ana-

lyze the suitability of different auction types for given scenarios. We have compared

three reversed standard auction types (sealed-bid second-price, Dutch, English) and one

double auction type (continuous double auction) with each other and have discussed

the results. The evaluation presented in Chapter 6 has shown that, independent of the

crowd, among the standard auction types the reversed sealed-bid second-price auction

provides the most balanced and, in our opinion, the best results in terms of quality, task

distribution and payoff. However, the Dutch auction provides similar results which are

just slightly worse compared to the sealed-bid auction. Based on the evaluation of the

continuous double auction compared to the reversed sealed-bid second-price auction,

it can be concluded that a double auction market may have its advantages in terms of

worker payoff, number of deadline violations and quality. In terms of requester payoff

and assigned tasks, the sealed-bid auction, however, achieves better results. Further-

more, three different quality management methods have been analyzed leading to the

conclusion that the use of an auction mechanism that matches tasks to the best suited

worker achieves the best quality results and the highest payoff for workers but as a con-

sequence, requesters make the lowest payoff. The most balanced approach is to use a

qualification policy (i.e. inviting only suited workers to an auction), as the quality re-

sults are similar and the results regarding requester payoff and assigned tasks are better,

compared to the auction-based matching approach.

7.1 Future Work

The prototype implementation of the simulation framework has already implemented

various components defining marketplace and agent behavior. Even though it is fully

functioning in its current state the following improvements may be made in the future:

• The implemented strategies defining the agents trading behavior are based on a

relatively simple model in which agents react on a current state, limiting the pre-

88

dictive power of the framework. By implementing more powerful models using

artificial intelligence approaches, the predictive power may be increased.

• Visualizations of simulated results are a common feature of agent-based model-

ing frameworks. Currently there is, however, no support of visualizations in our

framework but as the JABM framework provides basic visualization functionality

it should be no problem to implement this feature in the future.

• As approaches to process large-scale tasks (consisting of work flows and subtasks)

by means of social network-based collaboration are discussed in recent literature,

it might be useful to implement functionality to simulate these new approaches.

89

Appendices

90

APPENDIX A
List of Abbreviations

ABM Agent-based Modeling

AMT Amazon Mechanical Turk

API Application Programming Interface

CDA Continuous Double Auction

CH Clearinghouse Auction

DI Dependency Injection

E&R Encouragement and Retention

HIT Human Intelligence Task

HPS Human Provided Services

ICP Imaginary Crowdsourcing Platform

IoC Inversion of Control

JABM Java Agent-Based Modeling

JASA Java Auction Simulator API

OCR Optical Character Recognition

POJO Plain Old Java Object

QM Quality Management

SBS Software-Based Services

Continued on Next Page . . .

91

SCU Social Compute Unit

SLA Service Level Agreement

SOA Service Oriented Architecture

TBCS Task-based Crowdsourcing

UML Unified Modeling Language

XML Extensible Markup Language

XSD XML Schema Definition

Table A.1: List of Abbreviations

92

APPENDIX B
A Sample Configuration File

� �
1 <? xml v e r s i o n =" 1 . 0 " e n c o d i n g ="UTF−8" ?>

2 < beans xmlns=" h t t p : / /www. s p r i n g f r a m e w o r k . o rg / schema / beans "

3 x m l n s : x s i =" h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema−i n s t a n c e "

4 x s i : s c h e m a L o c a t i o n =" h t t p : / /www. s p r i n g f r a m e w o r k . o rg / schema / beans

5 h t t p : / /www. s p r i n g f r a m e w o r k . o rg / schema / beans / s p r i n g−beans . xsd ">

6

7 <bean i d =" marke tFacade " c l a s s =" a t . ac . t u wie n . dsg . crowdsim . marke t . Marke tFacade ">

8 < p r o p e r t y name=" c o n t r o l l e r " r e f =" s i m u l a t i o n C o n t r o l l e r " / >

9 < p r o p e r t y name=" marke t " r e f =" marke t " / >

10 < / bean >

11

12 <bean i d =" n r O f R e q u e s t e r s T y p 1 " c l a s s =" j a v a . l a n g . I n t e g e r ">

13 < c o n s t r u c t o r−a r g v a l u e =" 20 " / >

14 < / bean >

15 <bean i d =" nrOfWorkersTyp1 " c l a s s =" j a v a . l a n g . I n t e g e r ">

16 < c o n s t r u c t o r−a r g v a l u e =" 500 " / >

17 < / bean >

18 <bean i d =" s i m u l a t i o n C o n t r o l l e r "

19 c l a s s =" n e t . s o u r c e f o r g e . jabm . S p r i n g S i m u l a t i o n C o n t r o l l e r ">

20 < p r o p e r t y name=" numSimula t i ons " v a l u e =" 1 " / >

21 < p r o p e r t y name=" s imula t ionBeanName ">

22 < i d r e f l o c a l =" m a r k e t S i m u l a t i o n " / >

23 < / p r o p e r t y >

24 < p r o p e r t y name=" r e p o r t s ">

25 < l i s t >

26 < r e f bean=" workerCSVReport " / >

27 < r e f bean=" w o r k e r S i m u l a t i o n F i n i s h e d C S V R e p o r t " / >

28 < r e f bean=" w o r k e r R e p o r t V a r i a b l e s " / >

29 < r e f bean=" r e q u e s t e r S i m u l a t i o n F i n i s h e d C S V R e p o r t " / >

93

30 < r e f bean=" r e q u e s t e r R e p o r t V a r i a b l e s " / >

31 < r e f bean=" t r a n s a c t i o n C S V R e p o r t " / >

32 < r e f bean=" t r a n s a c t i o n R e p o r t V a r i a b l e s " / >

33 < / l i s t >

34 < / p r o p e r t y >

35 < / bean >

36

37 <bean i d =" m a r k e t S i m u l a t i o n " scope =" p r o t o t y p e "

38 c l a s s =" a t . ac . t u wie n . dsg . crowdsim . marke t . M a r k e t S i m u l a t i o n ">

39 < p r o p e r t y name=" maximumRounds " v a l u e =" 500 " / >

40 < p r o p e r t y name=" p o p u l a t i o n " r e f =" p o p u l a t i o n " / >

41 < p r o p e r t y name=" a g e n t I n i t i a l i s e r " r e f =" a g e n t I n i t i a l i s e r " / >

42 < p r o p e r t y name=" a g e n t M i x e r " r e f =" randomRobinAgentMixer " / >

43 < p r o p e r t y name=" s i m u l a t i o n C o n t r o l l e r " r e f =" s i m u l a t i o n C o n t r o l l e r " / >

44 < / bean >

45

46 <bean i d =" randomRobinAgentMixer "

47 c l a s s =" n e t . s o u r c e f o r g e . jabm . mixing . RandomRobinAgentMixer ">

48 < p r o p e r t y name=" prng " r e f =" prng " / >

49 < / bean >

50

51 <bean i d =" p o p u l a t i o n " scope =" p r o t o t y p e "

52 c l a s s =" n e t . s o u r c e f o r g e . jabm . P o p u l a t i o n ">

53 < p r o p e r t y name=" a g e n t L i s t ">

54 <bean c l a s s =" n e t . s o u r c e f o r g e . jabm . a g e n t . A g e n t L i s t ">

55 < c o n s t r u c t o r−a r g >

56 < l i s t >

57 < r e f bean=" r e q u e s t e r A g e n t L i s t 1 " / >

58 < r e f bean=" w o r k e r A g e n t L i s t 1 " / >

59 < / l i s t >

60 < / c o n s t r u c t o r−a r g >

61 < / bean >

62 < / p r o p e r t y >

63 < p r o p e r t y name=" prng " r e f =" prng " / >

64 < / bean >

65

66 <bean i d =" r e q u e s t e r A g e n t L i s t 1 " c l a s s =" n e t . s o u r c e f o r g e . jabm . a g e n t . A g e n t L i s t ">

67 < c o n s t r u c t o r−a r g r e f =" n r O f R e q u e s t e r s T y p 1 " / >

68 < c o n s t r u c t o r−a r g r e f =" r e q u e s t e r A g e n t F a c t o r y 1 " / >

69 < / bean >

70

71 <bean i d =" r e q u e s t e r A g e n t F a c t o r y 1 "

72 c l a s s =" org . s p r i n g f r a m e w o r k . beans . f a c t o r y . c o n f i g .

73 O b j e c t F a c t o r y C r e a t i n g F a c t o r y B e a n ">

74 < p r o p e r t y name=" ta rge tBeanName ">

75 < i d r e f l o c a l =" s i m p l e R e q u e s t e r A g e n t 1 " / >

76 < / p r o p e r t y >

94

77 < / bean >

78

79 <bean i d =" a b s t r a c t R e q u e s t e r " a b s t r a c t =" t r u e " scope =" p r o t o t y p e "

80 c l a s s =" a t . ac . t uw ie n . dsg . crowdsim . a g e n t . r e q u e s t e r . A b s t r a c t R e q u e s t e r ">

81 < p r o p e r t y name=" marke tFacade " r e f =" marke tFacade " / >

82 < p r o p e r t y name=" s c h e d u l e r " r e f =" s i m u l a t i o n C o n t r o l l e r " / >

83 < p r o p e r t y name=" v a l u a t i o n P o l i c y " r e f =" m a r k e t O r i e n t e d V a l u a t i o n P o l i c y R Q " / >

84 < p r o p e r t y name=" s u p p l y P o l i c y " r e f =" s i m p l e T a s k S u p p l y P o l i c y " / >

85 < p r o p e r t y name=" r a t i n g P o l i c y " r e f =" s i m p l e R a t i n g P o l i c y " / >

86 < p r o p e r t y name=" t a s k F a c t o r y " r e f =" s i m p l e T a s k F a c t o r y " / >

87 < / bean >

88

89 <bean i d =" s i m p l e R e q u e s t e r A g e n t 1 " scope =" p r o t o t y p e " p a r e n t =" a b s t r a c t R e q u e s t e r "

90 c l a s s =" a t . ac . t u wie n . dsg . crowdsim . a g e n t . r e q u e s t e r . S i m p l e R e q u e s t e r ">

91 < p r o p e r t y name=" t r a d i n g S t r a t e g y " r e f =" bea tTheQou teReques t e rTS " / >

92 < / bean >

93

94 <bean i d =" m a r k e t O r i e n t e d V a l u a t i o n P o l i c y R Q "

95 c l a s s =" a t . ac . t uw ie n . dsg . crowdsim . a g e n t . p r i c i n g . M a r k e t O r i e n t e d V a l u a t i o n R Q ">

96 < p r o p e r t y name=" randomData " r e f =" randomData " / >

97 < / bean >

98

99 <bean i d =" s i m p l e T a s k S u p p l y P o l i c y " scope =" p r o t o t y p e "

100 c l a s s =" a t . ac . t uw ie n . dsg . crowdsim . a g e n t . p o l i c y . S impleTaskSupp ly ">

101 < / bean >

102

103 <bean i d =" bea tTheQou teReques t e rTS " scope =" p r o t o t y p e "

104 p a r e n t =" s t r a t e g y "

105 c l a s s =" a t . ac . t uw ie n . dsg . crowdsim . a g e n t . s t r a t e g y . t r a d i n g . r e q u e s t e r .

106 Bea tTheQuoteReques te rTS ">

107 < p r o p e r t y name=" randomData " r e f =" randomData " / >

108 < p r o p e r t y name=" m a x B e t P e r c e n t a g e O v e r P r i v a t e V a l u e " v a l u e =" 0 " / >

109 < p r o p e r t y name=" maxQuo te Inc rea se " v a l u e =" 0 . 0 5 " / >

110 < / bean >

111

112 <bean i d =" s i m p l e R a t i n g P o l i c y "

113 c l a s s =" a t . ac . t uw ie n . dsg . crowdsim . a g e n t . p o l i c y . S i m p l e R a t i n g P o l i c y " / >

114

115 <bean i d =" s i m p l e T a s k F a c t o r y "

116 c l a s s =" a t . ac . t uw ie n . dsg . crowdsim . a g e n t . t a s k . f a c t o r y . S i m p l e T a s k F a c t o r y ">

117 < p r o p e r t y name=" randomData " r e f =" randomData " / >

118 < / bean >

119

120 <bean i d =" w o r k e r A g e n t L i s t 1 " c l a s s =" n e t . s o u r c e f o r g e . jabm . a g e n t . A g e n t L i s t ">

121 < c o n s t r u c t o r−a r g r e f =" nrOfWorkersTyp1 " / >

122 < c o n s t r u c t o r−a r g r e f =" w o r k e r A g e n t F a c t o r y 1 " / >

123 < / bean >

95

124

125 <bean i d =" w o r k e r A g e n t F a c t o r y 1 "

126 c l a s s =" org . s p r i n g f r a m e w o r k . beans . f a c t o r y . c o n f i g .

127 O b j e c t F a c t o r y C r e a t i n g F a c t o r y B e a n ">

128 < p r o p e r t y name=" ta rge tBeanName ">

129 < i d r e f l o c a l =" workerAgent1 " / >

130 < / p r o p e r t y >

131 < / bean >

132

133 <bean i d =" a b s t r a c t W o r k e r " scope =" p r o t o t y p e " a b s t r a c t =" t r u e "

134 c l a s s =" a t . ac . t uw ie n . dsg . crowdsim . a g e n t . worker . A b s t r a c t W o r k e r ">

135 < p r o p e r t y name=" marke tFacade " r e f =" marke tFacade " / >

136 < p r o p e r t y name=" s c h e d u l e r " r e f =" s i m u l a t i o n C o n t r o l l e r " / >

137 < p r o p e r t y name=" v a l u a t i o n P o l i c y " r e f =" m a r k e t O r i e n t e d V a l u a t i o n " / >

138 < p r o p e r t y name=" randomData " r e f =" randomData " / >

139 < p r o p e r t y name=" t r a n s a c t i o n B o o k " r e f =" s i m p l e T r a n s a c t i o n B o o k " / >

140 < / bean >

141

142 <bean i d =" w o r k e r A g e n t L i s t 1 " c l a s s =" n e t . s o u r c e f o r g e . jabm . a g e n t . A g e n t L i s t ">

143 < c o n s t r u c t o r−a r g r e f =" nrOfWorkersTyp1 " / >

144 < c o n s t r u c t o r−a r g r e f =" w o r k e r A g e n t F a c t o r y 1 " / >

145 < / bean >

146

147 <bean i d =" w o r k e r A g e n t F a c t o r y 1 "

148 c l a s s =" org . s p r i n g f r a m e w o r k . beans . f a c t o r y . c o n f i g .

149 O b j e c t F a c t o r y C r e a t i n g F a c t o r y B e a n ">

150 < p r o p e r t y name=" ta rge tBeanName ">

151 < i d r e f l o c a l =" workerAgent1 " / >

152 < / p r o p e r t y >

153 < / bean >

154

155 <bean i d =" workerAgent1 " scope =" p r o t o t y p e " p a r e n t =" a b s t r a c t W o r k e r "

156 c l a s s =" a t . ac . t uw ie n . dsg . crowdsim . a g e n t . worker . SimpleWorker ">

157 < p r o p e r t y name=" t r a d i n g S t r a t e g y " r e f =" l o a d B a s e d B e a t T h e Q u o t e T r a d i n g S t r a t e g y " / >

158 < p r o p e r t y name=" s k i l l C o n f i g " r e f =" e x p e r i e n c e d W o r k e r C o n f i g " / >

159 < / bean >

160

161 <bean i d =" e x p e r i e n c e d W o r k e r C o n f i g " c l a s s =" a t . ac . t u wi en . dsg . crowdsim . a g e n t . worker .

162 S k i l l C o n f i g ">

163 < p r o p e r t y name=" meanPerformance " v a l u e =" 0 . 7 0 " / >

164 < p r o p e r t y name=" d e v i a n c e P e r f o r m a n c e " v a l u e =" 0 . 2 5 " / >

165 < p r o p e r t y name=" meanConf idence " v a l u e =" 0 . 8 " / >

166 < p r o p e r t y name=" d e v i a n c e C o n f i d e n c e " v a l u e =" 0 . 2 5 " / >

167 < / bean >

168

169 <bean i d =" s i m p l e T r a n s a c t i o n B o o k " scope =" p r o t o t y p e "

170 c l a s s =" a t . ac . t uw ie n . dsg . crowdsim . a g e n t . worker . t r a n s a c t i o n .

96

171 S i m p l e T r a n s a c t i o n B o o k ">

172 < p r o p e r t y name=" randomData " r e f =" randomData " / >

173 < / bean >

174

175 <bean i d =" m a r k e t O r i e n t e d V a l u a t i o n "

176 c l a s s =" a t . ac . t uw ie n . dsg . crowdsim . a g e n t . p o l i c y . M a r k e t P r i c e V a l u a t i o n P o l i c y "

177 scope =" p r o t o t y p e ">

178 < p r o p e r t y name=" randomData " r e f =" randomData " / >

179 < / bean >

180

181 <bean i d =" marke t "

182 c l a s s =" a t . ac . t uw ie n . dsg . crowdsim . marke t . Market ">

183 < p r o p e r t y name=" marke tFacade " r e f =" marke tFacade " / >

184 < p r o p e r t y name=" a u c t i o n F a c t o r y " r e f =" a u c t i o n F a c t o r y B e a n " / >

185 < p r o p e r t y name=" s k i l l U p d a t e P o l i c y " r e f =" w e i g h t e d S k i l l U p d a t e " / >

186 < p r o p e r t y name=" a u c t i o n Q u a l i f i c a t i o n P o l i c y "

187 r e f =" m i n P e r f o r m a n c e Q u a l i f i c a t i o n " / >

188 < / bean >

189

190 <bean i d =" m i n P e r f o r m a n c e Q u a l i f i c a t i o n "

191 c l a s s =" a t . ac . t uw ie n . dsg . crowdsim . a g e n t . p o l i c y .

192 M i n P e r f o r m a n c e Q u a l i f i c a t i o n P o l i c y " / >

193

194 <bean i d =" a l l Q u a l i f i c a t i o n P o l i c y "

195 c l a s s =" a t . ac . t uw ie n . dsg . crowdsim . a g e n t . p o l i c y .

196 A l l Q u a l i f y A u c t i o n Q u a l i f i c a t i o n P o l i c y " / >

197

198 <bean i d =" w e i g h t e d S k i l l U p d a t e "

199 c l a s s =" a t . ac . t uw ie n . dsg . crowdsim . a g e n t . p o l i c y . W e i g h t e d S k i l l U p d a t e P o l i c y ">

200 < p r o p e r t y name="OBS_PERF_UPDATE_RATE" v a l u e =" 0 . 2 " / >

201 < p r o p e r t y name="CONF_UPDATE_RATE" v a l u e =" 0 . 1 " / >

202 < / bean >

203

204 <bean i d =" u n i f o r m S k i l l U p d a t e "

205 c l a s s =" a t . ac . t uw ie n . dsg . crowdsim . a g e n t . p o l i c y . U n i f o r m S k i l l U p d a t e P o l i c y ">

206 < p r o p e r t y name="OBS_PERF_UPDATE_RATE" v a l u e =" 0 . 2 " / >

207 < p r o p e r t y name="CONF_UPDATE_RATE" v a l u e =" 0 . 1 " / >

208 < / bean >

209

210 <bean i d =" a u c t i o n F a c t o r y B e a n "

211 c l a s s =" a t . ac . t uw ie n . dsg . crowdsim . marke t . a u c t i o n . A u c t i o n F a c t o r y ">

212 < p r o p e r t y name=" a u c t i o n P r o t o t y p e " r e f =" s e a l e d B i d " / >

213 < p r o p e r t y name=" orde rBookPro toType " r e f =" l o w e s t P r i c e O r d e r B o o k " / >

214 < p r o p e r t y name=" a u c t i o n D u r a t i o n " v a l u e =" 1 " / >

215 < p r o p e r t y name=" seed " r e f =" seed " / >

216 < / bean >

217

97

218 <bean i d =" l o w e s t P r i c e O r d e r B o o k " scope =" p r o t o t y p e "

219 c l a s s =" a t . ac . t uw ie n . dsg . crowdsim . marke t . a u c t i o n . o r d e r b o o k .

220 Lowes tPr i ceOrde rBook " / >

221

222 <bean i d =" s e a l e d B i d " scope =" p r o t o t y p e "

223 c l a s s =" a t . ac . t uw ie n . dsg . crowdsim . marke t . a u c t i o n . S e a l e d B i d S e c o n d P r i c e A u c t i o n " / >

224

225

226 <bean i d =" a g e n t I n i t i a l i s e r "

227 c l a s s =" n e t . s o u r c e f o r g e . jabm . i n i t . B a s i c A g e n t I n i t i a l i s e r ">

228 < / bean >

229

230 <bean i d =" prng " scope =" s i n g l e t o n "

231 c l a s s =" c e r n . j e t . random . e n g i n e . MersenneTwis t e r64 ">

232 < c o n s t r u c t o r−a r g r e f =" seed " / >

233 < / bean >

234

235 <bean i d =" randomData " scope =" s i n g l e t o n "

236 c l a s s =" org . apache . commons . math . random . RandomDataImpl ">

237 < c o n s t r u c t o r−a r g r e f =" randomGenera to r " / >

238 < / bean >

239 <bean i d =" randomGenera to r " scope =" p r o t o t y p e "

240 c l a s s =" org . apache . commons . math . random . M er senneT wis t e r ">

241 < c o n s t r u c t o r−a r g r e f =" seed " / >

242 < / bean >

243

244 <bean i d =" seed " scope =" s i n g l e t o n " c l a s s =" j a v a . l a n g . Long ">

245 < c o n s t r u c t o r−a r g v a l u e =" 123 " / >

246 < / bean >

247

248 <bean i d =" s t r a t e g y " scope =" p r o t o t y p e "

249 c l a s s =" n e t . s o u r c e f o r g e . jabm . s t r a t e g y . A b s t r a c t S t r a t e g y " a b s t r a c t =" t r u e ">

250 < p r o p e r t y name=" s c h e d u l e r " r e f =" s i m u l a t i o n C o n t r o l l e r " / >

251 < p r o p e r t y name=" d e a d l i n e M u l t i p l i e r " v a l u e =" 1 . 3 " / >

252 < / bean >

253

254 <bean i d =" l o a d B a s e d B e a t T h e Q u o t e T r a d i n g S t r a t e g y "

255 c l a s s =" a t . ac . t uw ie n . dsg . crowdsim . a g e n t . s t r a t e g y .

256 t r a d i n g . worker . L o a d B a s e d B e a t T h e Q u o t e T r a d i n g S t r a t e g y "

257 p a r e n t =" s t r a t e g y ">

258 < p r o p e r t y name=" maxQuoteDecrease " v a l u e =" 0 . 0 5 " / >

259 < p r o p e r t y name=" maxMarg in InPe rcen t " v a l u e =" 0 . 5 " / >

260 < p r o p e r t y name=" randomData " r e f =" randomData " / >

261 < p r o p e r t y name=" nrOfMaxOpenBids " v a l u e =" 100 " / >

262 < p r o p e r t y name=" maxLoadRate " v a l u e =" 1 " / >

263 < / bean >

264

98

265 <bean i d =" workerCSVReport " scope =" s i n g l e t o n "

266 c l a s s =" a t . ac . t uw ie n . dsg . crowdsim . r e p o r t . CSVMasterReport ">

267 < p r o p e r t y name=" r e p o r t V a r i a b l e s ">

268 <bean c l a s s =" a t . ac . t u wie n . dsg . crowdsim . r e p o r t . t a s k R e p o r t V a r i a b l e s .

269 CSVRepor tVar i ab l e s ">

270 < p r o p e r t y name=" numColumns " v a l u e =" 30 " / >

271 < p r o p e r t y name=" f i l e N a m e P r e f i x " v a l u e =" d a t a / s e a l e d B i d 1 _ w o r k e r " / >

272 < p r o p e r t y name=" r e p o r t V a r i a b l e s " r e f =" w o r k e r R e p o r t V a r i a b l e s " / >

273 < / bean >

274 < / p r o p e r t y >

275 < / bean >

276

277 <bean i d =" w o r k e r S i m u l a t i o n F i n i s h e d C S V R e p o r t " scope =" s i n g l e t o n "

278 c l a s s =" n e t . s o u r c e f o r g e . jabm . r e p o r t . S i m u l a t i o n F i n i s h e d R e p o r t ">

279 < p r o p e r t y name=" r e p o r t V a r i a b l e s ">

280 <bean c l a s s =" a t . ac . t u wie n . dsg . crowdsim . r e p o r t . t a s k R e p o r t V a r i a b l e s .

281 CSVRepor tVar i ab l e s ">

282 < p r o p e r t y name=" numColumns " v a l u e =" 30 " / >

283 < p r o p e r t y name=" f i l e N a m e P r e f i x "

284 v a l u e =" d a t a / s e a l e d B i d 1 _ w o r k e r S i m u l a t i o n F i n i s h e d R e p o r t " / >

285 < p r o p e r t y name=" r e p o r t V a r i a b l e s " r e f =" w o r k e r R e p o r t V a r i a b l e s " / >

286 < / bean >

287 < / p r o p e r t y >

288 < / bean >

289

290 <bean i d =" w o r k e r R e p o r t V a r i a b l e s "

291 c l a s s =" a t . ac . t uw ie n . dsg . crowdsim . r e p o r t . t a s k R e p o r t V a r i a b l e s . W o r k e r R e p o r t V a r i a b l e ">

292 < c o n s t r u c t o r−a r g r e f =" marke tFacade " / >

293 < / bean >

294

295 <bean i d =" r e q u e s t e r S i m u l a t i o n F i n i s h e d C S V R e p o r t " scope =" s i n g l e t o n "

296 c l a s s =" n e t . s o u r c e f o r g e . jabm . r e p o r t . S i m u l a t i o n F i n i s h e d R e p o r t ">

297 < p r o p e r t y name=" r e p o r t V a r i a b l e s ">

298 <bean c l a s s =" a t . ac . t u wie n . dsg . crowdsim . r e p o r t . t a s k R e p o r t V a r i a b l e s .

299 CSVRepor tVar i ab l e s ">

300 < p r o p e r t y name=" numColumns " v a l u e =" 13 " / >

301 < p r o p e r t y name=" f i l e N a m e P r e f i x "

302 v a l u e =" d a t a / s e a l e d B i d 1 _ r e q u e s t e r S i m u l a t i o n F i n i s h e d R e p o r t " / >

303 < p r o p e r t y name=" r e p o r t V a r i a b l e s " r e f =" r e q u e s t e r R e p o r t V a r i a b l e s " / >

304 < / bean >

305 < / p r o p e r t y >

306 < / bean >

307

308 <bean i d =" r e q u e s t e r R e p o r t V a r i a b l e s "

309 c l a s s =" a t . ac . t uw ie n . dsg . crowdsim . r e p o r t . t a s k R e p o r t V a r i a b l e s .

310 R e q u e s t e r R e p o r t V a r i a b l e s ">

311 < c o n s t r u c t o r−a r g r e f =" marke tFacade " / >

99

312 < / bean >

313

314 <bean i d =" t r a n s a c t i o n C S V R e p o r t " scope =" s i n g l e t o n "

315 c l a s s =" n e t . s o u r c e f o r g e . jabm . r e p o r t . S i m u l a t i o n F i n i s h e d R e p o r t ">

316 < p r o p e r t y name=" r e p o r t V a r i a b l e s ">

317 <bean c l a s s =" a t . ac . t u wie n . dsg . crowdsim . r e p o r t . t a s k R e p o r t V a r i a b l e s .

318 CSVRepor tVar i ab l e s ">

319 < p r o p e r t y name=" numColumns " v a l u e =" 33 " / >

320 < p r o p e r t y name=" f i l e N a m e P r e f i x "

321 v a l u e =" d a t a / s e a l e d B i d 1 _ t r a n s a c t i o n R e p o r t " / >

322 < p r o p e r t y name=" r e p o r t V a r i a b l e s " r e f =" t r a n s a c t i o n R e p o r t V a r i a b l e s " / >

323 < / bean >

324 < / p r o p e r t y >

325 < / bean >

326

327 <bean i d =" t r a n s a c t i o n R e p o r t V a r i a b l e s " scope =" s i n g l e t o n "

328 c l a s s =" a t . ac . t uw ie n . dsg . crowdsim . r e p o r t . t a s k R e p o r t V a r i a b l e s .

329 T r a n s a c t i o n R e p o r t V a r i a b l e s " / >

330 < / beans >� �
Listing B.1: A sample configuration file of a simulation model

Bibliography

[1] 99designs. http://99designs.com/. last accessed: April 2012.

[2] Eugene Agichtein, Carlos Castillo, Debora Donato, Aristides Gionis, and Gilad
Mishne. Finding high-quality content in social media. In Proceedings of the inter-
national conference on Web search and web data mining, pages 183–194. ACM,
2008.

[3] Amazon Mechanical Turk. www.mturk.com. last accessed: March 2012.

[4] Amazon Mechanical Turk FAQ. http://aws.amazon.com/mturk/. last accessed:
March 2012.

[5] Nikolay Archak and Arun Sundararajan. Optimal design of crowdsourcing con-
tests. In ICIS 2009 Proceedings, volume 200, pages 0–16, Phoenix, 2009.

[6] Brian W Arthur, Steven N Durlauf, and David A Lane. The economy as an evolv-
ing complex system II. In SFI Studies in the Sciences of Complexity. Addison-
Wesley: Reading, 1997.

[7] Raul Bagni and Roberto Berchi. A comparison of simulation models applied to
epidemics. Journal of Artificial Societies and Social Simulation, 5(3), 2002.

[8] Jerry Banks, John Carson, Barry L. Nelson, and David Nicol. Discrete event sys-
tem simulation. Prentice Hall, 1984.

[9] Kurt Binder. Monte-Carlo Methods. In George L Trigg, editor, Mathematical
Tools for Physicists, pages 249–281. John Wiley & Sons, 2006.

[10] Eric Bonabeau. Agent-based modeling: methods and techniques for simulating
human systems. Proceedings of the National Academy of Sciences of the United
States of America, 99 Suppl 3:7280–7, May 2002.

[11] Daren C. Brabham. Crowdsourcing as a Model for Problem Solving: An Intro-
duction and Cases. Convergence: The International Journal of Research into New
Media Technologies, 14(1):75–90, February 2008.

101

[12] John L. Casti. Would-be worlds: How simulation is changing the frontiers of
science. John Wiley & Sons, 1st edition, 1998.

[13] Henry W. Chesbrough. Open innovation: The new imperative for creating and
profiting from technology. Harward Business School Press, 2003.

[14] A. P. Dawid and A. M. Skene. Maximum likelihood estimation of observer error-
rates using the EM algorithm. Journal of the Royal Statistical Society. Series C
(Applied Statistics), 28(1):20–28, 1979.

[15] Dominic DiPalantino and Milan Vojnovic. Crowdsourcing and all-pay auctions.
In Proceedings of the 10th ACM conference, pages 119–128. ACM, 2009.

[16] Anhai Doan, Raghu Ramakrishnan, and Alon Y. Halevy. Crowdsourcing systems
on the World-Wide Web. Communications of the ACM, 54(4):86, April 2011.

[17] Schahram Dustdar and Kamal Bhattacharya. The Social Compute Unit. IEEE
Internet Computing, 15(3):64–69, May 2011.

[18] EBay. http://www.ebay.com/. last accessed: March 2012.

[19] Joshua M. Epstein. Agent-based computational models and generative social sci-
ence. Complexity, 4(5):41–60, May 1999.

[20] Extensible Markup Language (XML). http://www.w3.org/XML/. last accessed:
April 2012.

[21] Facebook. www.facebook.com. last accessed: March 2011.

[22] Flickr. http://www.flickr.com/. last accessed: April 2012.

[23] Martin Fowler. Inversion of control containers and the dependency injection pat-
tern. http://www.martinfowler.com/articles/injection.html (last accessed: April
2012), 2004.

[24] Daniel Friedman and John Rust. The double auction market institution: A survey.
The Double Auction Market: Institutions, Theories, and Evidence, pages 3–25,
1993.

[25] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design pat-
terns: elements of reusable object-oriented software. Addison-Wesley, 1995.

[26] Jose M. Garrido. Object-oriented discrete-event simulation with java: A practical
introduction. Kluwer Academic Publishers, 2001.

[27] Google. https://www.google.at/. last accessed: April 2012.

[28] Jeff Howe. The rise of crowdsourcing. Wired magazine, 14(14):1–5, 2006.

[29] Jeff Howe. Crowdsourcing: How the power of the crowd is driving the future of
business. Century, 2008.

[30] InklingMarkets. http://inklingmarkets.com/. last accessed: April 2012.

[31] InnoCentive. http://www.innocentive.com/. last accessed: April 2012.

[32] Panagiotis G. Ipeirotis. Analyzing the Amazon Mechanical Turk marketplace.
XRDS:Crossroads, The ACM Magazine for Students, Forthcoming, 17(2):16–21,
2010.

[33] Panagiotis G. Ipeirotis, Foster Provost, and Jing Wang. Quality management on
Amazon Mechanical Turk. In Proceedings of the ACM SIGKDD Workshop on
Human Computation - HCOMP ’10, HCOMP ’10, pages 64–67, New York, New
York, USA, 2010. ACM Press.

[34] IStockPhoto. www.istockphoto.com/. last accessed: April 2012.

[35] JABM Framework. http://sourceforge.net/apps/phpwebsite/jabm/index.php. last
accessed: March 2011.

[36] S. D. Jap. Online Reverse Auctions: Issues, Themes, and Prospects for the Future.
Journal of the Academy of Marketing Science, 30(4):506–525, October 2002.

[37] Roman Khazankin, Harald Psaier, Daniel Schall, and Schahram Dustdar. QoS-
based Task Scheduling in Crowdsourcing Environments. In G. Kappl, Z. Maa-
mar, and H. Motahari Nezad, editors, Service-Oriented Computing 9th Interna-
tional Conference, ICSOC 2011, pages 297–311. Springer-Verlag Berlin Heidel-
berg, 2011.

[38] Paul Klemperer. Auction theory: A guide to the literature. Journal of economic
surveys, 13(3):227–286, 1999.

[39] Vijay Krishna. Auction theory. Academic Press, 1st edition, 2002.

[40] Gioacchino La Vecchia and Antonio Cisternino. Collaborative workforce, business
process crowdsourcing as an alternative of BPO. In ICWE’10 Proceedings of the
10th international conference on Current trends in web engineering, pages 425–
430. Springer-Verlag Berlin Heidelberg, 2010.

[41] Sean Luke, Claudio Cioffi-Revilla, Liviu Panait, Keith Sullivan, and Gabriel
Balan. MASON: A Multiagent Simulation Environment. SIMULATION,
81(7):517–527, July 2005.

[42] Charles M Macal and Michael J. North. Tutorial on agent-based modeling and
simulation. In Proceedings of the 37th conference on Winter simulation, WSC ’05,
pages 2–15. Winter Simulation Conference, September 2005.

[43] MASON - Multi Agent Simulator. http://cs.gmu.edu/˜eclab/projects/mason/. last
accessed: April 2012.

[44] Makoto Matsumoto and Takuji Nishimura. Mersenne twister: a 623-dimensionally
equidistributed uniform pseudo-random number generator. ACM Transactions on
Modeling and Computer Simulation, 8(1):3–30, January 1998.

[45] MySpace. www.myspace.com. last accessed: March 2011.

[46] Netflix Price. http://www.netflixprize.com/. last accessed: April 2012.

[47] NetLogo. http://ccl.northwestern.edu/netlogo/. last accessed: April 2012.

[48] Object Management Group. Unifed Modeling Language (UML).
http://www.uml.org/. last accessed: March 2012.

[49] One Billion Minds. http://www.onebillionminds.com/. last accessed: April 2012.

[50] Tim O’Reilly and John Battelle. Web squared: Web 2.0 five years on. Web 2.0
Summit, 2009.

[51] R Parsons, MacKenzie J, and Fowler M. Plain Old Java Object. URL
http://martinfowler.com/bliki/POJO.html. last accessed: April 2012.

[52] Steve Phelps. Applying dependency injection to agent-based modeling: the JABM
toolkit. ACM Transactions on Computer Simulation and Modeling, pages 1–20,
2011.

[53] Suzanne Robertson and James Robertson. Mastering the requirements process.
Addison-Wesley, 2nd edition, 2006.

[54] Benjamin Satzger, Harald Psaier, Daniel Schall, and Schahram Dustdar. Stimulat-
ing skill evolution in market-based crowdsourcing. In S Rinderle-Ma, F Toumani,
and K Wolf, editors, Business Process Management Proceedings of the 9th Inter-
national Conference, BPM 2011, pages 66–82, Clermont-Ferrand, France, 2011.
Springer.

[55] Daniel Schall, Schahram Dustdar, and M. Brian Blake. Programming Human and
Software-Based Web Services. Computer, 43(7):82–85, July 2010.

[56] Daniel Schall, Hong-Linh Truong, and Schahram Dustdar. Unifying Human
and Software Services in Web-Scale Collaborations. IEEE Internet Computing,
12(3):62–68, May 2008.

[57] Florian Skopik, Daniel Schall, Harald Psaier, Martin Treiber, and Schahram Dust-
dar. Towards Social Crowd Environments Using Service-Oriented Architectures.
it - Information Technology, 53(3):108–116, May 2011.

[58] James Surowiecki. The Wisdom of Crowds. Anchor, 2005.

[59] The Repast Framework. http://repast.sourceforge.net/. last accessed: March 2012.

[60] The Spring Framework. http://www.springsource.org. last accessed: April 2012.

[61] Threadless. http://www.threadless.com. last accessed: March 2012.

[62] Seth Tisue and Uri Wilensky. NetLogo : A Simple Environment for Modeling
Complexity. In International Conference on Complex Systems, pages 1–10, 2004.

[63] Top Coder. www.topcoder.com/. last accessed: April 2012.

[64] Twitter. www.twitter.com. last accessed: March 2011.

[65] Luis von Ahn and Laura Dabbish. Labeling images with a computer game. In
Proceedings of the 2004 conference on Human factors in computing systems -
CHI ’04, pages 319–326, New York, New York, USA, 2004. ACM Press.

[66] Luis von Ahn, Benjamin Maurer, Colin McMillen, David Abraham, and Manuel
Blum. reCAPTCHA: human-based character recognition via Web security mea-
sures. Science (New York, N.Y.), 321(5895):1465–8, September 2008.

[67] Maja Vukovic. Crowdsourcing for Enterprises. In 2009 Congress on Services - I,
pages 686–692. IEEE, July 2009.

[68] WeAreHunted. http://wearehunted.com/. last accessed: April 2012.

[69] Wikipedia. http://www.wikipedia.org/. last accessed: March 2011.

[70] Wikipedia - Auctions. http://en.wikipedia.org/wiki/Auction. last accessed: April
2012.

[71] Wikipedia Definition of Reverse Auctions.
http://en.wikipedia.org/wiki/Reverse_auction. last accessed: March 2012.

[72] Wikipedia Observer Pattern. http://en.wikipedia.org/wiki/File:Observer.svg. last
accessed: March 2012.

[73] Peter R Wurman, William E Walsh, and Michael P Wellman. Flexible double
auctions for electronic commerce: Theory and implementation. Decision Support
Systems, 24(1):17–27, 1998.

[74] Yahoo! Answers. http://answers.yahoo.com/. last accessed: March 2012.

[75] YouTube. http://www.youtube.com/. last accessed: April 2012.

[76] Man-Ching Yuen, Irwin King, and Kwong-Sak Leung. Task Matching in Crowd-
sourcing. In 2011 International Conference on Internet of Things and 4th Inter-
national Conference on Cyber, Physical and Social Computing, pages 409–412.
IEEE, October 2011.

	Introduction
	Motivation
	Contribution
	Organization

	State of the Art Review
	Auction Theory
	Valuations
	Standard Auction Types
	Reverse Standard Auction Types
	Double Auction Types

	Crowdsourcing
	Agent-based Modeling
	Components of an Agent-based Model

	Related Work
	Quality in Crowdsourcing Platforms
	Task Matching on Task-based Crowdsourcing Platforms
	Advanced Aspects of Crowdsourcing
	User Management
	Applying Game Theory

	Social Computing
	Agent-based Modeling Frameworks
	NetLogo
	MASON

	Methodology
	Task-based Crowdsourcing – A Motivating Example
	Requirements
	Architecture
	Simulating Time using Discrete-Event Simulation
	Event-based Communication

	Defining the Simulation Model
	Population
	Tasks and Transactions
	Requester Model
	Worker Model
	Models for Task Valuation
	Trading Strategies

	Marketplace
	Task Distribution by Means of Auction Mechanisms
	Quality Management and Skill Recognition

	Simulation

	Implementation
	The Underlying JABM Framework
	Design of the Framework
	Creating the Simulation Model

	Evaluation
	Evaluation Design
	Evaluation Scenarios
	Scenario 1 - A Large, High-Skilled Crowd
	Scenario 2 - A Small High-Skilled Crowd
	Scenario 3 - A Large, Low-Skilled Crowd
	Scenario 4 - Standard Auction vs. Double Auction
	Scenario 5 - Quality Management Methods

	Summary and Future Work
	Future Work

	Appendices
	List of Abbreviations
	A Sample Configuration File
	Bibliography

