
Solving
Shift Design Problems

with
Answer Set Programming

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Michael ABSEHER
Matrikelnummer 0828282

an der
Fakultät für Informatik
der Technischen Universität Wien

Betreuung:
Priv.-Doz. Dr. Stefan WOLTRAN
und
Priv.-Doz. Dr. Nysret MUSLIU

Wien, 31.01.2013
(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Solving
Shift Design Problems

with
Answer Set Programming

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Software Engineering & Internet Computing

by

Michael ABSEHER
Registration Number 0828282

to the
Faculty of Informatics
at the Vienna University of Technology

Advisors:
Priv.-Doz. Dr. Stefan WOLTRAN
and
Priv.-Doz. Dr. Nysret MUSLIU

Vienna, 31.01.2013
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Michael ABSEHER
Walpersbach 198, 2822 Walpersbach

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe,
dass ich die verwendeten Quellen und Hilfsmittel vollständig angegeben
habe und dass ich die Stellen der Arbeit - einschließlich Tabellen, Karten
und Abbildungen -, die anderen Werken oder dem Internet im Wortlaut
oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der
Quelle als Entlehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i

Acknowledgements

I hereby want to thank my two supervisors, Stefan Woltran and Nysret Musliu, for their great
support. Their encouragement as well as their expertise were invaluable for the progress of this
thesis. Furthermore, I want to thank Martin Gebser and Torsten Schaub from the University
of Potsdam for providing me with detailed insights in the world of Answer Set Programming
during my visit in Germany.

At this point, I also want to express my gratitude to all the people from the DBAI group
of the Institute of Information Systems, since it always was a pleasure to attend their lectures,
respectively to work with them. Starting with Katrin Seyr, who invited me to work as a tutor
at the DBAI group, I had the chance to meet a lot of experts at this working group and I could
always feel like being at home. In this context, special thanks to Reinhard Pichler for being a
great lecturer and for always supporting my requests.

I am deeply grateful to my parents for their guidance through all sections of my life and
their patience during the last 24 years and I also want to pay a special tribute to my grandparents
for all their support and encouragement. I will never forget my grandfather who left us after
severe illness while this work was still in progress and I hope that he can be proud of what I have
achieved in memory of him.

Finally, I want to thank my very best friend, Theresa Rasinger, for years full of fun and
unforgettable moments. Without her, this work would not have been possible. Special thanks
also to my friends Gerald, Jürgen, Bernd and Hans for attending many lectures with me, so that
we had a good and successful time in very efficient teams. Last but not least, I want to express
my gratitude to Nicole Wagner and Claudia Walla for their attempts to reduce my stress during
the progress of this thesis.

iii

Abstract

Shift design problems belong to a group of computational hard problems arising from economic
needs for an efficient organization of a company’s workforce. Given the demand of workers
at each point in time, finding the best possible set of shifts and assigning the optimal amount
of employees to each of the selected shifts is one of the most important tasks in the area of
personnel planning.

To generate shift schedules in a comfortable and automated way, sophisticated exact and
heuristic algorithms were developed in the last decades to tackle the various kinds of workforce
scheduling problems. Apart from mathematical programming models, many of these algorithms
are implemented in procedural or object-oriented programming languages. In this work, we will
focus on declarative mechanisms in order to investigate their capabilities for solving real-life
instances of shift design problems.

We propose three modelling approaches for the so-called “Minimum Shift Design Problem”
which are implemented using the paradigm of Answer Set Programming (ASP), a declarative
programming technique often described as the computational embodiment of non-monotonic
reasoning based on the semantics of stable models.

Since ASP is able to investigate the whole search space in a structured way, it always finds
the global optimal solution(s) in theory. In practice, this statement should indeed be treated
with caution, since time is often the limiting factor. For this reason, we present a number of
experiments and benchmarks in order to get an intuition of the performance of different solvers
in combination with our programs.

Our experiments show that ASP performs well in many cases, although we have to admit
that there is still work to do in order to obtain a competitive and robust tool for solving the Shift
Design Problem, since the search space sometimes is too large to be handled efficiently by the
exhaustive approach for search as implemented by ASP. Due to our encouraging results we are
confident that we could provide a solid starting point for further research in the area of logic
programming for solving optimization problems.

v

Kurzfassung

Aufgrund ökonomischer Überlegungen zum optimalen Einsatz des zur Verfügung stehenden
Personals zählen Schichtplanungsprobleme bereits seit Langem zu den wichtigsten Punkte bei
der Organisation vieler Unternehmen. Den Bedarf an benötigter Arbeitskraft immer möglichst
exakt abzudecken kann einen entscheidenden Vorteil gegenüber Mitbewerbern bedeuten, aber
auch für eine Vielzahl von gemeinnützigen Einrichtungen wie beispielsweise Krankenhäuser
kann eine gute Auswahl der möglichen Schichten einen großen Effizienzgewinn bedeuten.

Aufgrund dieser immensen Wichtigkeit im Bereich der Unternehmensorganisation wurde
bereits sehr früh versucht, den Schichtplanungsproblemen mit computergestützten Methoden zu
begegnen um diese automatisiert und komfortabel lösen zu können.

Seitdem wurden zahlreiche exakte und heuristische Methoden entwickelt, um Werkzeuge
für optimale Organisation zu liefern. Abgesehen von mathematischen Modellierungen wurden
die meisten dieser Anwendungen unter Verwendung von prozeduralen sowie objektorientierten
Programmiersprachen entwickelt. In dieser Arbeit werden wir unseren Fokus auf deklarative
Konzepte legen und untersuchen, wie gut sich diese zur Lösung von Schichtplanungsprobleme
einsetzen lassen.

Wir stellen drei Modellierungsansätze vor, welche Antwortmengenprogrammierung (ASP)
als Programmierparadigma nutzen. ASP ist eine deklarativen Programmiertechnik, die oft auch
als die Verkörperung des nicht-monotonen Schließens basierend auf der Semantik von stabilen
Modellen bezeichnet wird. Das Ziel der von uns entwickelten logikorientierten Programme ist
es, das sogenannte “Minimum Shift Design Problem” zu lösen.

Da ASP den kompletten Suchraum in strukturierter Art und Weise durchsucht, wird das
globale Optimum, sofern existent, theoretisch immer gefunden. In der Praxis ist allerdings oft
die Zeit ein limitierender Faktor, weshalb diese Aussage nicht als Garantie verstanden werden
soll, dass es sich hierbei um die perfekte Lösung für unsere Problemstellung handelt. Um eine
wissenschaftlich fundierte Aussage treffen zu können, präsentieren wir in unserer Arbeit eine
Reihe von Experimenten, die es uns ermöglichen, ein Gefühl für die Leistungsfähigkeit unserer
Programme in Kombination mit aktuellen Programmierumgebungen zu bekommen.

Unsere Ergebnisse zeigen, dass ASP in zahlreichen Fällen bereits jetzt vielversprechende
Resultate liefert, es aber vermutlich noch ein weiter Weg ist bis Implementierungen entstehen,
die ähnliche Leistungsfähigkeit aufweisen wie aktuellen Heuristiken. Aufgrund ermutigender
Ergebnisse sind wir allerdings zuversichtlich, dass sich unsere Arbeit als ein solider Startpunkt
für weitere Forschungen erweisen wird.

vii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Aim of the Work . 2
1.3 Results of the Master’s Thesis . 3
1.4 Structure of the Master’s Thesis . 3

2 The Shift Design Problem 5
2.1 Basic Concepts of Workforce Scheduling . 5
2.2 Problem Statement of the Shift Design Problem 9

3 Answer Set Programming (ASP) 11
3.1 Architecture . 11
3.2 Methodology . 13
3.3 Terminology . 13
3.4 Semantics . 15
3.5 Programming Environment . 16
3.6 Differences between clasp and unclasp . 17

4 Related Work 19
4.1 The Shift Design Problem and Related Problems 19
4.2 Applications based on ASP . 21

5 Solving the Shift Design Problem 23
5.1 A Small Example . 24
5.2 Common Knowledge Base . 26
5.3 Exact Solution with Known Optimal Shift Count 30
5.4 Exact Solution with Unknown Optimal Shift Count 47
5.5 Flexible Solution with Unknown Optimal Shift Count 51

6 Evaluation of Empirical Results 61
6.1 Problem Instances . 61
6.2 Experimental Setting . 62
6.3 Computational Results for DataSet1 and DataSet2 64
6.4 Computational Results for DataSet3 and DataSet4 70

ix

6.5 Comparison with Previous Results . 71
6.6 Summary of the Experiments . 75

7 Conclusion and Future Work 77
7.1 Summary . 77
7.2 Future Work . 78

A ASP-Implementations for Shift Design 81
A.1 Program “Exact1” . 81
A.2 Program “Exact2” . 83
A.3 Program “Flexible” . 85

Bibliography 89

x

CHAPTER 1
Introduction

1.1 Motivation

Shift design problems and its related problems are an important part of every day’s life in most
companies. These problems must fulfil hard and soft requirements concerning the management
of employees or the utilization of production machines.

For an example scenario of a shift design problem, one can imagine an organization where
we have to fulfil some requirements so that the number of assigned workers at any point in time
is equal to the staff demand of the organizational unit. Additionally, the number of different
shifts (for instance day and evening shifts with varying starting times and durations) should be
minimal in order to reduce organization effort for constructing staff schedules.

Starting with the original set-covering formulation for the Shift Scheduling Problem [11], a
lot of research has been done in the precincts of this problem and therefore, most of the problems
are relatively well-studied. Despite this fact, computing the most desirable shifts in an automated
way is still an interesting challenge for computer scientists all over the world.

Apart from mathematical programming approaches, like integer programming, many of the
heuristic algorithms presented in the scientific literature are implemented using object-oriented
or procedural programming languages (e.g. [14, 41] or [42]). This means that the programmer
specifies exactly what the program has to do at which point of the process, in general consisting
of a set of interacting procedures. This approach has several drawbacks, since the source code
for these algorithms often contains thousands of lines of code which makes it hard to maintain
and modifications often result in unreasonably high effort.

In this master’s thesis, we focus on solving the so-called Minimum Shift Design Problem
(MSD) [13, 34, 35] by means of Answer Set Programming (ASP) [23]. Briefly speaking, the
goal of MSD is finding the minimal selection of shifts and the corresponding optimal amount of
workers for these shifts so that the deviation from the actual demand is minimized. ASP itself is
a declarative programming technique which is often described as computational embodiment of
non-monotonic reasoning based on the semantics of stable models.

1

We investigate ASP, because we expect that it is possible to overcome the problem of rapidly
decreasing maintainability and therefore using ASP might be worth a try, also in the area of
optimization problems. Declarative techniques do not specify anything about how a given input
has to be processed. Instead, they describe only what the expected result to be delivered in the
presence of the respective input data should look like. These characteristics allow a much more
convenient way of implementing a program and the resulting code can be adapted with very
small effort, which makes the programs highly flexible.

Two prominent examples for declarative languages are for instance SQL, a popular query
language that is used in the majority of current relational database systems and Prolog, a logical
programming language with similarities to ASP. One drawback of declarative languages is the
fact that often it is almost impossible to control the behaviour of the enclosing environment from
within the source code. As an example, one mostly cannot specify the way, how a statement is
processed and therefore, optimization can be a challenging task. Hence, this is an interesting
question to investigate.

1.2 Aim of the Work

The main goals of our work are as follows:

• Modelling of real-world Shift Design Problems using Answer Set Programming

To the best of our knowledge, currently no scientific investigations on implementations of
the Shift Design Problem in ASP are known. Therefore, in this work we will study how
challenging it is to model this problem in ASP. The aim is to present a solid starting point
for other scientists to implement their own declarative programs tackling this and other
workforce scheduling problems.

• Investigation of the performance characteristics of different ASP-environments

In our work, we will compare the performance of two popular ASP environments by
using our modelling approaches. For our experimental evaluation, the formula for the
desirability of a solution is taken from existing literature concerning the Shift Design
Problem in order to provide a high degree of comparability with existing results.

• Comparing our modelling approaches with state-of-the-art algorithms

For our experiments we use existing problem instances that were used previously in the
literature. In this work we will mainly focus on those data sets where the instances can be
solved without deviation, but we also considered instances for which the optimal solution
is not known.

For further comparison with other implementations, all instances that were used for this
work were converted to a declarative input language similar to smodels [39], which is used by
many ASP-environments. The data sets can be downloaded at the following location:

http://www.dbai.tuwien.ac.at/proj/Rota/DataSetASP[1-4].zip

2

1.3 Results of the Master’s Thesis

The results obtained during our work on this thesis are as follows:

• We propose different modelling approaches for the Shift Design Problem using Answer
Set Programming. We start with rather optimistic assumptions and a restricted search
space in the first of our approaches and in the subsequent programs, this basic approach is
extended so that we finally obtain a tool which enables us to deal also with more complex
problem instances where no perfect solution exists, as this is the general case of the Shift
Design Problem.

• Our modelling approaches were evaluated on the basis of benchmark instances inspired by
realistic real-world situations. The results obtained during the experiments show, that ASP
is very reliable for problem instances where a solution without deviation from the staff
demand exists, but with an increasing number of optimization criteria, the performance
often decreases significantly and so this could be a good starting point for further research
and development.

• We found strong evidence that the performance of programs in the paradigm of ASP is
heavily dependent on the actual ASP-environment used for the experiments, which is
caused by the different implementations of the employed components.

• In our work, we explain all our approaches in detail and we also highlight some problems
we came across during the implementation phase of our programs so that these pitfalls
can be avoided in further developments. Additionally, we suggest some points for future
work which shall provide a good starting point for other researchers.

1.4 Structure of the Master’s Thesis

The remainder of this thesis is organized into the following chapters:

In Chapter 2 we will introduce the Shift Design Problem. This chapter of our work shall
make the reader familiar with the basic concepts of workforce scheduling. Furthermore, we
will give a detailed definition of the problem itself to provide a common vocabulary for the
subsequent parts of our work.

In Chapter 3 we present the paradigm of ASP. This is done by first explaining the structural
composition of an ASP-environment and the process steps from the program to the resulting
answer sets. Afterwards we will introduce the basic terminology that is used to name the central
parts of a program in ASP. Finally, the most important elements of the programming language
that is used to implement our approaches will be described by means of practical examples.

In Chapter 4 we give a succinct overview of related work for the (Minimum) Shift Design
Problem. Furthermore, we introduce other areas of application for the paradigm of ASP and we
will have a look at some prominent software products that use ASP.

3

In Chapter 5 we present our three approaches to solve the Shift Design Problem. The first
one requires that the problem instances can be solved without deviation and the assumed optimal
count of shifts must be known already beforehand. The second program is quite similar, but at
this time, the optimal number of shifts is computed automatically. Finally, the third approach
can also deal with instances where a deviation from the requirements cannot be avoided.

In Chapter 6 we show the results that where obtained during the evaluation process. We
start by first presenting the four data sets that were used. Afterwards, the experimental setting is
documented. In the following parts of this chapter, the computational results are discussed and
an analysis of our approaches is provided. The experiments aim at investigating the following
characteristics of our approaches:

• Time needed to reach the best known solution

• Objective value obtained within a time bound

In Chapter 7 we summarize our work and give a perspective and some ideas for potential
future work employing ASP as a powerful technique to solve problems in related areas of the
Shift Design Problem.

4

CHAPTER 2
The Shift Design Problem

The Shift Design Problem is one of the sub-problems of workforce scheduling. The generic
term automatic workforce scheduling in the context of computer science comprises problems
that deal with arranging the workforce of a company or organizational unit in an optimal way
with automated approaches.

In this chapter we will give an introduction to the basic concepts of workforce scheduling
and we will also present a detailed definition of the Shift Design Problem we are going to solve
in this work. In the subsequent explanations we adhere to the definitions and problem statements
given in [34].

2.1 Basic Concepts of Workforce Scheduling

The desired outcome of workforce scheduling, the workforce schedule, can be described as
a structured representation where the assignments of the employees to the available shifts for
a period of time are recorded. In the literature, the term workforce scheduling appears with
different names that can be used interchangeably. Labor shift scheduling, staff scheduling and
rostering are only a small selection out of the large pool of synonyms.

Characteristics

The set of problem statements in the context of workforce scheduling often deals with common
notions. Subsequently we will introduce these terms in order to provide a profound knowledge
base for the reader to allow understanding the further parts of our work.

Although there are several different representations for workforce schedules, we focus on a
definition that is almost perfectly suitable for our modelling approaches in the paradigm of ASP,
but without loss of generality we could also have used a different representations as starting
point for our subsequent implementations.

5

Shifts

Shifts are the central concept we will focus on in our work. Musliu [34] describes the term shift
as period of time where a worker or a group of employees is on duty. Furthermore, a shift is
often defined with a certain starting time and a specific length. Another way to define a shift can
be by providing the ending time instead of the duration. For the following example schedules
we will use the letters ‘M’, ‘D’ and ‘E’ as abbreviation for “morning shift”, “day shift” and
“evening shift”. For example, the morning shift could start at 7 o’clock in the morning and have
a duration of eight hours.

Indeed, in schedules appearing in practice there could be much more complicated structures.
One example are additional breaks that could be necessary because of legal regulations. We will
have a look at such extended problems in Chapter 4 which is presenting the related work.

Employees

As one can imagine, it is necessary for many organizational units to have a certain number of
employees that can be assigned to the shifts in order to fulfil the staffing requirements. This
number of workers is potentially arbitrary and solely depends on the organizational demands on
which the respective problem instance is based. In general workforce scheduling problems it
is possible that workers have different qualifications and therefore it is important to take these
skills into account. Additionally, there are problem statements where different working times of
employees have to be respected. The Shift Design Problem we investigate in this work does not
deal with explicit employees so that we are not able to say which worker is assigned to which of
the generated shifts. Instead, only the number of workers for each shift is part of the generated
solutions.

Planning Period

The planning period or planning horizon describes the period of time between the start and the
end of the schedule. In the following example and also for our evaluations we use one week as
planning period. Other planning periods like schedules for one month are of course also possible,
but the larger the chosen planning horizon is, the harder it gets for complete approaches like ASP
to investigate the whole search space.

For our further explanations it is important to know that we can arrange similar parts of the
planning period in groups without loss of generality. Often the planning horizon is divided into a
number of days where every day consists of the same amount of time slots. Our approaches will
use a distinction between the days of the week and each day is furthermore split into several time
slots of equal length, for instance hours. This allows us to restrict the domain, the number of
different values for a variable, and can lead to a significant improvement in terms of computation
speed because of a more adequate way of defining the rules for our programs. One interesting
natural effect of splitting up the planning horizon is that a shift could start at one day and end on
the following day. In further definitions we will refer to these circumstances as cyclic structure
of the planning period, which should not be confused with the term of cyclic schedules.

6

An Example Schedule

Table 2.1.1 illustrates a sample schedule for a complete week from Monday to Sunday where
five employees are available to be assigned. Each row represents the schedule for exactly one
employee. The columns of the table correspond to the day of the week and the content of the
cells contains the information to which shift an employee is assigned. The symbol ‘-’ in a cell is
used to mark days off duty for the selected worker(s).

Employee Mo Tu We Th Fr Sa Su
1 D D E D D - -
2 - - D D E D M
3 M E D D - - M
4 - E E - M D M
5 D E E - M M -

Table 2.1.1: A week schedule for five employees

When we interpret the information stored in Table 2.1.1 according to the scheme mentioned
above, we can see for instance, that the employee with ID 1 works in the morning shift on
Monday, Tuesday, Thursday and Friday. Additionally, we can state that he works in the evening
shift on Wednesday and does not need to come to work on the weekend.

Workforce schedules can by divided into cyclic and acyclic ones. In cyclic schedules, every
employee has the same skills with respect to the company’s needs. Although there are some
exceptional cases, this assumption is practical in the context of many workforce scheduling
problems. One big advantage of rotating schedules is that for fairness reasons, the working plan
for each person can be rotated within the group of workers. This means that at the beginning
of the next week, the first employee can take the schedule of the second worker, the second
employee can take the schedule of the third worker and so on. The last employee will then take
the schedule of the first worker.

Employee Mo Tu We Th Fr Sa Su
1 - - D D E D M
2 M E D D - - M
3 - E E - M D M
4 D E E - M M -
5 D D E D D - -

Table 2.1.2: Second week for the schedule from Table 2.1.1

7

Table 2.1.2 finally illustrates the second week for our cyclic example schedule. We can
imagine that after five weeks the cycle is finished and a new one will start. In this way, rotating
schedules can be used for instance to avoid complaints of employees which are not happy with
their assigned plan, since every worker will have to use the same schedule in one of the next
weeks.

Additional Constraints

Although it is possible to generate shifts and schedules without relying on constraints, it is very
likely that this approach is not practical. To improve the practical usability, there is a variety
of constraints that are applicable for the group of workforce scheduling problems. The most
important ones will be discussed in subsequent parts of this section.

Temporal Requirements

One of the most important constraints in many workforce scheduling problems is the number of
workers that is required to be present during each of the time slots within the planning period.
In many cases it is not possible to satisfy the demand of workers perfectly, which means that
some deviance is allowed. In the literature constraints with allowed deviation are called soft
constraints. The goal with respect to soft constraints is that the deviation from a perfect solution
is minimized. In the literature this is often described as optimizing a so-called fitness value.

The first two of our modelling approaches will treat the fulfillment of temporal requirements
for workers as hard constraint. This means that any deviation is explicitly forbidden and only
perfect solutions are accepted. The third program uses the fulfillment of temporal requirements
as a soft constraint.

Subsequently we give an overview of some additional constraints which are important when
the schedules are created. The number of workers required at each point in time is by the way
the most important constraint we use in our modelling approaches for the Shift Design Problem.

Work and Rest Periods

Legal regulations in many countries specify that each employee has the right to have a specific
number of days off after a period of working days. Therefore a suitable hard constraint for many
workforce scheduling problems could be to limit the number of subsequent working days. Also
it is maybe not desirable for the company leader that workers have too many days off in a row.
In this case, a soft constraint could be used to minimize the probability of such schedules.

Sequences of Shifts

Due to ergonomic reasons it makes sense that some combinations of shifts in the schedule should
be avoided. An example are sequences where a morning shift follows immediately after an
evening shift, so that there is no adequate rest period for the assigned employee(s) between
these consecutive shifts.

8

Average Working Time

To avoid complaints of workers about unfair organization of the schedule and in order to follow
legal regulations, it can be required that the average number of working hours per planning
period is around a specific value, for instance 38 hours. The goal is then to approximate this
expected value as much as possible.

Individual Preferences

When all other constraints are satisfied to an acceptable degree, individual preferences of persons
can be additionally taken into account. One of these preference could be that an employee wants
to work primarily in night shifts. Indeed, this is possible only for non-rotating schedules.

2.2 Problem Statement of the Shift Design Problem

The original definition used in [34, 35] is given below:

Instance:

– n consecutive time intervals [a1, a2), [a2, a3), . . . [an, an+1), all with the same length
slotlength in minutes. Each interval [ai, ai+1) has an adjoined number of employees
that should be present during that interval. Time point a1 represents the begin of the
planning period and time point an represents the end of the planning period.

– y shift types v1, . . . , vy. Each shift type vj has the following adjoined parameters:
vj .min_start, vj .max_start which represent the earliest and latest start of the shift and
vj .min_length, vj .max_length which represent the minimum and maximum length
of the shift.

– An upper limit for the average number of working shifts per week per employee.

Problem:

Generate a set of k shifts s1, . . . , sk. Each shift sl has adjoined parameters sl.start
and sl.length and must belong to one of the shift types. Additionally, each real shift
sp has adjoined parameters sp.wi, ∀i ∈ {1, . . . , C} (C represents number of days in
the planning period) indicating the number of employees in shift sp during the day
i. The aim is to minimize the four components given below:

∗ Sum of the excesses of workers in each time interval during the planning period

∗ Sum of the shortages of workers in each time interval during the planning period

∗ Number of shifts k

∗ Distance of the average number of duties per week in case it is above a certain
threshold.

9

Without loss of generality, we do not take the average number of duties per week into account
in our work. We note, that this approach for reducing the complexity of the problem statement
is also used in the existing literature, since this component of the optimization process is often
considered as less important than the other ones. For instance, in [13] and [14] this criterion
is omitted too. Subsequently, the formal representation of the original problem statement as
defined in [34, 35] is provided:

Formal Definitions:

The generated shift belongs at least to one of the shift types if:

∀l ∈ {1, . . . , k}∃j ∈ {1, . . . , y} |
vj .min_start ≤ sl.start ≤ vj .max_start

vj .min_length ≤ sl.length ≤ vj .max_length

The sum of the shortages and excesses (in minutes) of
workers in each time interval during the planning period is defined as

ShortagesSum =
n∑

d=1

(Indicator(wd −
k∑

p=1
xp,d) ∗ slotlength)

ExcessesSum =
n∑

d=1

((Indicator − 1)(wd −
k∑

p=1
xp,d) ∗ slotlength)

where

Indicator =

{
1 if wd −

∑k
p=1 xp,d is positive

0 otherwise

xp,d =

{
sp.wi if time slot d belongs to the interval of shift sp in the day i

0 otherwise

The average number of working shifts per week per employee (AvD) is defined below:

AvD =
(
∑k

i=1

∑C
j=1 si.wj)∗AverageNumberOfHoursPerWeek∑k

i=1

∑C
j=1 si.wj∗si.length

10

CHAPTER 3
Answer Set Programming (ASP)

In this work we will use the declarative approach of so-called Answer Set Programming (ASP) to
compute solutions for the Shift Design Problem. Lifschitz outlines this programming paradigm
with the following words: Answer set programming (ASP) is a form of declarative programming
oriented towards difficult, primarily NP-hard, search problems. As an outgrowth of research
on the use of nonmonotonic reasoning in knowledge representation, it is particularly useful in
knowledge-intensive applications. [31]

ASP is based on the stable model semantics of logic programming that was proposed by
Gelfond and Lifschitz [23] and the process of finding solutions for a given problem instance in
this paradigm boils down to compute stable models (answer sets). According to Lifschitz [31]
the use of answer set solvers for search was identified as a new programming paradigm in [32]
and [36]. Since then a lot of effort has been invested to improve the solvers in order to increase
computation speed.

In the following sections we will introduce the basic methodology and terminology of ASP
and we will also give an overview of the programming language that is used to implement our
modelling approaches. Furthermore, we show the most important syntactical elements of the
programming language we used by providing an example program. At the end of this chapter,
we highlight differences of the two solvers which were used for our experiments.

3.1 Architecture

Two of the maybe most prominent examples for solver collections are the Potsdam Answer Set
Solving Collection [19], a set of tools for ASP developed at the University of Potsdam as well
as DLV [29], a deductive database system with various extensions developed at the University
of Calabria in cooperation with the Vienna University of Technology. Regardless of which of
those two environments one uses, the expressiveness of the solvers and their internal workflow
that is executed in order to compute stable models is almost the same.

11

Programs in the paradigm of ASP have the significant advantage to be fully declarative and
therefore the ordering of the rules in the program does not matter, which makes them highly
flexible and maintainable while the overall effort for implementation and documentation shrinks
appreciably. This modular and flexible structure of programs in the paradigm of ASP is also
present in the solution process itself, since modern ASP-environments are mostly constructed
according to the following workflow:

Figure 3.1.1: The process of ASP

Figure 3.1.1 shows the complete procedure of how a given problem instance is processed
by the ASP-environment in order to obtain the resulting answer sets. At first, the problem
instance is constructed by the programmer by using the input language of the ASP-environment.
Afterwards the program is grounded. This means that variables within rules are replaced by their
possible instantiations, so that we obtain a propositional (variable-free) program. The outcome
of the grounding step is handled by the solving step in order to obtain a valid solution for the
problem instance. The specific task of the solving step is to find those instantiations of rules so
that all hard constraints can be fulfilled with the result that the generated answer set candidate is
consistent.

12

3.2 Methodology

While there is no general way or specification for the process of interpreting and grounding
arbitrary input programs, the structural approach of how logic programs in the paradigm of ASP
are written is often very similar. This best-practice methodology is known as GCO-scheme [32].
It consists of three consecutive steps:

1. Guess:

In this step of the computation process, the answer set candidates for the given problem
instance are computed. This means that the search space is defined for the subsequent
steps of the process.

2. Check:

The solution candidates generated in the previous step could violate some hard constraints
and therefore they have to be removed. After the checking step, only consistent answer
sets remain and they are delivered to the user or enquiring software component. The next
step of the computation process helps us to deal with cases where we want to optimize
some objective function(s).

3. Optimize:

This optional step allows to specify a measure of desirability for the answer sets that
are obtained after removing invalid solution candidates. This measure is defined via a
objective function so that every answer set is mapped to a natural number. By either
minimizing or maximizing this objective function, the optimal answer set(s) can be found
by the solver.

Sometimes the scheme of computing answer sets is described with different terms like for
instance “Generate/Define/Test” [30], but the underlying workflow and its outcome is always the
same. While this separation into a guessing step and a checking step can be used consequently
in all ASP-environments, there are differences in the way how they deal with optimization.
On the one hand there exist so-called weak constraints [9] as used by DLV and on the other
hand there are weighted optimization statements as they are used in the Potsdam Answer Set
Solving Collection. Although one has to use a different syntax for implementing optimization
with these two alternatives, the semantics are exactly the same in order to provide the desired
functionality for optimization rules. For more detailed information about the process of ASP,
see for instance [29].

3.3 Terminology

By now we have only talked about the abstract word “rule” when we described the parts of a
program in the paradigm of ASP. For the implementation section we will also make use of other
specific terms that are important parts of the common vocabulary in the world of ASP.

13

Atoms and Literals

An atom is an expression p(t1, . . . , tn), where p is a predicate of arity n and t1, . . . , tn is a set
of n terms. A classical literal l is either an atom p (in this case, it is positive), or a negated atom
¬p (in this case, it is negative).

Positive or negative literals as mentioned above are only matched if it is explicitly known
that the respective literal exists in the complete set of known literals, but often it is required to
have some mechanisms to express the need that a literal must not necessarily exist. For these
situations, negation as failure literals of the form not l exist in most input languages. Such
negation as failure literals are only matched in the case that l is not included in the set of known
literals. This means that for instance not l is assumed to hold unless l is derived.

Rules

Rules are the central components of programs in the paradigm of ASP. The position of the
rules within the programs has no influence on the semantics, since ASP is fully declarative.
Our implementations will use exploit this attribute to split the input problem instances from the
production rules, so that no duplicate code is introduced. The general case of a rule is called
disjunctive rule and the corresponding formula looks as follows, where h1 to hn as well as b1 to
bn are literals, n ≥ 0 and m ≥ k ≥ 0:

h1 ∨ · · · ∨ hn ← b1, . . . , bk,not bk+1, . . . ,not bm

The disjunction h1 ∨ · · · ∨ hn is called the head of a rule r. The set of literals b1, . . . , bk is
called the positive body and not bk+1, . . . ,not bm is the negative body of r. A rule is matched
if all the literals in the body are satisfied. New knowledge is then derived, since the head of the
rule r must be true if the body of rule r evaluates to true.

Facts

Facts are rules without body. An empty rule body is always treated like the constant value >
(verum), so that the corresponding formula in the head of the rule has to be satisfied in every
answer set. For convenience reasons, the symbol “←” is often omitted in the programmatic
declaration of facts.

Constraints

If the head of a rule r is empty, by definition the rule is extended with an implicit atom a which
occurs in its positive form in the head and preceded by not in the body of the original rule. For
instance, the rule r given by← b is identical to a← not a, b. Therefore, the program containing
r has no answer sets in case that b is known to hold, because the rule r can never be satisfied
based on the fact that deriving a and not a at the same time is impossible. Therefore rules with
empty head are called (integrity) constraints. Walsh [43] investigates how constraints can be
exploited in order to improve the efficiency of a program not only for ASP, but also for integer
linear programming, propositional satisfiability and pseudo-boolean solving.

14

3.4 Semantics

In this section, we provide an overview of fundamental terms concerning the semantics of stable
models which are important for a deeper understanding of ASP. We start with an introduction
to the theoretical backgrounds of ASP and afterwards, we focus on the actual process of how
answer sets are computed.

Definition 3.4.1 (Language of a Logic Program):
The language LΠ of a logic program Π is defined by the constants, variables, function and
predicate symbols (with their corresponding arities) occurring in Π. If Π contains no constants,
an arbitrary constant c is introduced.

Definition 3.4.2 (Herbrand Universe):
Given a logic program Π, the Herbrand universe of Π, denoted by UΠ, is defined as the set
of all ground (variable-free) terms which are occurring in Π. In case that there are no ground
terms present in the program Π, an arbitrary constant is introduced as single element in UΠ in
order to act as a dummy element for further steps. Informally, the Herbrand universe of a given
first-order language L can be interpreted as the set of all ground terms which can be formed with
the functions and constants in L.

Definition 3.4.3 (Herbrand Base):
The Herbrand base of a logic program Π, denoted by BΠ, is the set of all ground atoms which
can be formed by using the terms in UΠ in combination with the set of predicates defined in the
program Π. In other words, the Herbrand base of a first-order language L is the set of all ground
atoms which can be formed with the functions, constants and predicates in L.

After we have defined the language, the Herbrand universe as well as the Herbrand base of
a logic program, we will now have a look at their application in the context of ASP. In order
to compute answer sets more easily, grounding is used to obtain a variable-free representation
of a given program. Note that this step can have significant impact on the performance of the
program implemented in ASP, depending on the number and domain of the variables, since any
feasible replacement has to be considered.

Definition 3.4.4 (Grounding):
The grounding ground(r) of a rule r ∈ Π is the set of rules obtained by replacing the variables
occurring in r with all elements in UΠ. The grounding of the whole program Π, denoted by
ground(Π), is defined as the set union of the groundings for all rules in Π.

The final outcome of the grounding task is a program with equal semantics as the original
one, but it no longer contains any variables. Afterwards, the following definitions can be used
to compute the actual stable models, respectively the answer sets, for a program in the paradigm
of ASP. The definitions provided below also explain why the step of grounding can be executed
separately from the process of solving the problem instance, as depicted in Figure 3.1.1.

15

Definition 3.4.5 (Herbrand Interpretation):
A Herbrand interpretation I of a logic program Π is a set of atoms from its Herbrand base BΠ.
A rule r ∈ Π is satisfied by I , if h(r) ∩ I 6= ∅ or if the body fulfils the following criteria:

b+(r) \ I 6= ∅ (Not all parts of the positive body of r are element of I .)
b−(r) ∩ I 6= ∅ (Some part of the negative body of r is an element of I .)

Definition 3.4.6 (Herbrand Model and Answer Set):
A Herbrand interpretation I of a logic program Π is a Herbrand model of Π, if it satisfies every
rule in Π. Furthermore, I is called answer set in the case that it is a subset-minimal model of
the so-called Gelfond-Lifschitz reduct of Π with respect to I , defined as follows:

Definition 3.4.7 (Gelfond-Lifschitz Reduct):
The Gelfond-Lifschitz reduct of a logic program Π with respect to a Herbrand interpretation I is
defined as the logic program that is obtained by applying the following replacement:

ΠI = {h(r)← b+(r) | r ∈ Π, b−(r) ∩ I = ∅}

Definition 3.4.8 (Answer Sets of Non-Ground Logic Programs):
An Herbrand model I of a logic program Π is an answer set of Π if I is at the same time also an
answer set of the grounding of the original logic program Π, defined by ground(Π).

3.5 Programming Environment

For the implementation of our modelling approaches, we used the Potsdam Answer Set Solving
Collection as development environment. Especially, we used the grounder gringo [21] to convert
the rules of the program to a format that can be handled by the solvers clasp [22], respectively
unclasp [1]. In this section we will give a short overview of the most important elements of the
language we used to implement our programs and highlight the differences of the two solvers
used during our investigations.

The input language of gringo is similar to the language of lparse [39], but there are some
differences between the two languages. For instance, gringo provides full support for variables
within compound terms and also some additional aggregates which can reduce the effort needed
for the development of new answer set programs. More information about the third release of
the grounder gringo can be found for example in [21]. This software release of the grounder was
also used for our implementations during the evaluation.

The following program acts as an example for a simple logic program in the paradigm of
ASP, implemented using the tools from the Potsdam Answer Set Solving collection. Note that
the character combination :- is used by most ASP-environments as the syntactical analogy to
the symbol ←. Furthermore, the declaration of a rule in the input language of gringo rules is
terminated by a full stop.

16

1 node(1).
2 node(2).
3 node(3).
4 edge(1,2).
5 edge(1,3).
6 edge(2,3).
7 color(r).
8 color(g).
9 color(b).

10 1 { nodecolor(X,C) : color(C) } 1 :- node.

11 :- edge(X,Y), nodecolor(X,C), nodecolor(Y,C).

Program 3.5.1: 3-Colorability

Program 3.5.1 represents one possible ASP-program for the 3-colorability problem. The
goal of is to find a valid assignment of colors to the nodes of a graph where no adjacent nodes
share the same color. In lines 1 to 9 of the program code, we can see the knowledge base of
our program, consisting of facts representing the nodes and edges of the graph as well as the
available colors.

Programs containing rules with disjunction in their head formula have a significantly higher
computational complexity than those programs where no disjunctions occur [16]. Therefore
gringo allows an alternative way to define feasible rules for the guessing step of ASP.

Predicate nodecolor in line 10 is used to choose exactly one color for each node in the
graph, since the lower bound (on the left-hand side of the curly brackets) and upper bound (on
the opposite side) for the selected literals are both set to the value 1. Another way to implement
disjunctions in an efficient way in gringo is to use the same syntax as above, but with square
brackets instead of curly ones. By doing so, one can specify an upper and lower bound for the
aggregated sum of a mathematical formula that is applied to the literals within the brackets. In
line 11, we finally define a constraint which is used to ensure that for no two adjacent nodes the
same color was chosen.

3.6 Differences between clasp and unclasp

The main difference between the solvers clasp [22] and unclasp [1] is the approach how they deal
with optimization criteria. While clasp successively refines upper bounds which are witnessed
by solutions, the unsatisfiability-based approach of unclasp relies on the iterative extraction and
relaxation of (local) inconsistencies in view of too tight bounds for the optimization criteria.
In simplified words, clasp starts with upper bounds while unclasp starts from lower bounds,
causing clasp to generate suboptimal answer sets in order to refine the internal bounds.

17

Given that aforementioned inconsistencies implying the infeasibility of bounds under which
they are encountered, the first solution discovered by unclasp after performing all the necessary
relaxations is guaranteed to be optimal. In the subsequent parts of our work we will see, that
depending on the structure of the programs, both approaches have advantages and disadvantages
for solving the Shift Design Problem.

18

CHAPTER 4
Related Work

In this section we will give an overview of related work in the area of shift scheduling and high-
light some relevant ASP-implementations. Although ASP is a well suited tool for declarative
problem solving in the area of knowledge representation and reasoning, it has not yet attracted
broad attention in other research areas covering optimization problems. Nevertheless, in the
second part of this chapter we will highlight some of the most prominent examples where ASP
was employed to solve complex problems.

4.1 The Shift Design Problem and Related Problems

As mentioned in Chapter 2, the Shift Design Problem is only one example out of the variety of
problems that are related to workforce scheduling. In this section we will have a look at shift
scheduling as well as other related problems and provide references to scientific literature in
order to allow a better understanding of this important group of economically inspired problems.

The Shift Design Problem we consider in this thesis is relatively similar to the so-called
Shift Scheduling Problem. The original set-covering formulation of this problem was introduced
by Dantzig [11]. In this approach, the available shifts are enumerated based on their starting
points in time, their duration and also breaks as well as break windows are taken into account.
Since the exhaustive enumeration of all feasible shifts soon leads to a rapid increase in the size
of the search space, the method proposed by Dantzig becomes less practical when the number
of shifts increases. This is due to the fact that each new instance of a shift goes hand in hand
with introducing a new variable representing the respective shift. To overcome this problem,
Bechthold and Jacobs [6] presented an integer programming formulation of the Shift Scheduling
Problem where breaks are modelled implicitly in order to decrease the computational workload
compared to the original problem statement.

A early experimental evaluation based on a set of real-world problem instances of the Shift
Scheduling Problem is provided by Henderson and Berry [26]. In their work, the performance
of two heuristics for the shift scheduling of telephone operators was investigated.

19

Another model for the Shift Scheduling Problem was developed by Thompson [40]. This
integer programming approach combines the work of Moondra [33] and Bechtold and Jacobs [6]
with the goal that the lengths of the shifts as well as breaks can be modelled implicitly.

Aykin [2] presented an integer programming approach for modelling the Shift Scheduling
Problem with flexible ways to define rest and lunch breaks with multiple break windows that
overcomes some of the limitations of [6] so that also shifts with durations of more than 24 hours
can be modelled. In recent literature, Côté et al. [10] proposed an grammar-based approach for
solving the multi-activity shift scheduling problem, where context-free grammars are used to
generate an integer programming model of the respective problem instance. A detailed compar-
ison of different solution approaches for the Shift Scheduling Problem can be found in [3].

Although there are many similarities between shift scheduling and the (Minimum) Shift
Design Problem, there are some important differences. One of them is the fact that the latter
deals with multiple days in general while shift scheduling is supposed to generate schedules
for a single day. Another distinguishing characteristic is that under-staffing is allowed in the
definition of the Shift Design Problem, while it is forbidden in the original formulation of the
shift scheduling problem. It is assumed that the Shift Design Problem is more difficult than
shift scheduling, since the selection of the shifts must be handled more carefully to obtain an
optimal solution for a given problem instance with multiple days: Scheduling a full week adds
the difficulty of having to reuse shifts on all days of the week in order to minimize the overall
number of shifts used. In addition, the weekly problem is cyclic, so special care must be taken to
connect the end of the schedule to its beginning. [35, p. 4]

The original definition of the Shift Design Problem was presented in [34, 35] and further
investigations on the problem are provided for instance in [18]. In order to improve the quality
of the solutions and computational efficiency, hybrid approaches were developed. Those hybrid
solvers combine two or more heuristics. A hybrid heuristic is used by Di Gaspero et al. [13] to
compute solutions for the (Minimum) Shift Design Problem. Their hybrid approach combines a
greedy heuristic with a local search algorithm. A hybrid approach combining local search and
constraint programming for solving instances of the Shifts and Breaks Design Problem can be
found in [14].

Further examples for papers that contain investigations on local search algorithms in the
broad area of workforce scheduling are [8, 41, 42]. Constraint programming techniques were
used by Lau and Lua [28] to compute schedules for television personnel with respect to the
skills of each crew member. Note that there exists a variety of different related problems and
variants of these problems. For more information, we refer the reader to existing surveys on
workforce scheduling, like [17] and [12].

20

4.2 Applications based on ASP

ASP has been used to solve computational hard problems in many application contexts like
product configuration [38], synthesis of multi-processor systems [27], decision support for space
shuttles [4, 37] and many more. Baral [5] for instance also mentions network management,
social modelling, security engineering, multi-agent systems as well as compiler optimization as
the additional areas of application of ASP, but because of the intuitive syntax and semantics of
this paradigm, this listing is indeed not exhaustive.

For example, one of the main strengths of ASP is in the domain of planning problems. An
introduction of planning can be realized in ASP can be found in [15]. In this paper written
by Dimopoulos et al., the SMODELS-environment [39] was used to implement a framework
for planning. Maybe one of the most famous products is the so-called “USA-Advisor” [4], a
software that was used to help the NASA flight controllers by providing decision support.

As already mentioned in the introduction of our work, real-world staff scheduling problems
are often handled with heuristics that are implemented with procedural programming languages
like C or C++. During our literature research we could not find any scientific implementation to
solve real-world Shift Design Problems by employing ASP.

Although we could not find any comparable programs for designing shifts, there exists a
prominent implementation in ASP for team-building problems: Grasso et al. [24] implemented
an application in the paradigm of ASP with the purpose to support the process of team-building
at the Gioia-Tauro seaport in Italy. The main goal of this program is to assign the right group of
employees according to their skills to every arriving and departing cargo boats in order to load
and unload their cargo as fast as possible.

To complete the chapter about related work, a detailed overview of ASP and its relation
to other programming paradigms is given in [7]. A survey about commercial and also some
free software products based on ASP can be found in [25]. Gebser et al. [20] finally provide a
compact overview of current challenges of ASP and try to give an outlook on future steps that
could be taken in order to promote ASP in areas of application which are relatively unexploited
by declarative languages at the moment.

21

CHAPTER 5
Solving the Shift Design Problem

In this chapter of our work we will elucidate the structure of the implementations fitting to the
three modelling approaches that were selected to be presented in our work. The goal of this part
of the thesis is to discuss the ideas behind the code fragments of our programs in an intuitive
way for the reader.

We will start by giving an introductory example in Section 5.1 that will be used to explain the
rules of our approaches step by step in the remaining parts of this chapter. The problem instance
was constructed in such a way that it is solvable without shortage and excess and moreover, the
example has only one optimal solution, so that the reader can easily convince himself that the
idea behind our programs is correct.

Afterwards, in Section 5.2, we will have a closer look at the common knowledge base for
all three programs. The general term knowledge base in principle denotes the whole set of facts
and constants that act as input values for our modelling approaches. In Section 5.3, we will
then present the complete ASP-representation of the simplest method. In this implementation of
the Shift Design Problem we search for an exact solution and rely on the fact that the optimal
count of different shifts is already known beforehand, so that there is no further optimization
needed and only the satisfiability of the problem instance with a given number of shifts has to
be checked. In the following Section 5.4 we will inspect the extension of the first modelling
approach where the solution still has to be exact, but the optimal shift count is not known in
advance any more. Finally, in Section 5.5 we focus on a flexible representation that enables us
also to solve problem instances where no exact solution exists.

To improve clarity, we will go step-by-step through all parts of our implemented programs
and explain their functionality as well as their impact on the search for the optimal solution in
detail.

23

5.1 A Small Example

On the following two pages of our work, we will present an introductory example for the Shift
Design Problem that will enable us to fully understand the process of finding an optimal solution
with the programs we have implemented.

Since this simple instance was created solely for the purpose of explaining the general idea
behind the respective predicates that form our programs, we have restricted the planning period
to a single day with eight time slots to keep the size of the resulting answer set compact.

Table 5.1.1 defines the allowed starting points in time for three shift types. The second
column of the table holds the zero-based index of the time slot where the selected shift can be
started and the following two columns specify the maximum allowed deviance in full time slots
from the default starting time.

To clarify the information stored in the table, we can pick for instance shift type 2: By
default, it’s planned that the shift starts on the fifth time slot, but an employee is also allowed
to begin one time slot earlier, because the maximum allowed negative deviance is specified with
the value 1. The column for the allowed positive deviance of shift type 2 contains the value 0, so
that we can conclude that an instance of the second shift type must not start later than the time
slot with index 4. With the same approach we can now also specify all possible instances of the
two remaining shift types, but for the sake of brevity we will skip these redundant explanations.

Shift Start Positive Deviance Negative Deviance
1 2 0 0
2 4 0 1
3 6 1 0

Table 5.1.1: Possible shift starts

Until now we don’t know anything about the possible shift durations, so Table 5.1.2 contains
this remaining information needed to completely specify our shift types. This second table can
be interpreted in a similar way than Table 5.1.1 and after combining the information stored in
these two tables we have full knowledge about all possible shifts that are available in our problem
instance.

Shift Length Positive Deviance Negative Deviance
1 3 1 1
2 3 1 1
3 3 1 1

Table 5.1.2: Possible shift lengths

24

The only remaining information we still need to complete our introductory example is the
demand of workers needed at each of the eight timeslots. The trend of requirements is depicted
in Figure 5.1.1. The columns of the grid correlate to the respective time slot and the greyish cells
represent the number of workers that are required at each point in time. For instance we can see
that we need exactly one employee at time slots 0 and the number of workers needed at the time
slot with index 7 is three.

0 1 2 3 4 5 6 7

Figure 5.1.1: Initial situation of introductory example

1 1 1 1

1 1 1 1

1 1 1 1

2 2

2 2

2 2

2 2

3 3

3

3

0 1 2 3 4 5 6 7

Figure 5.1.2: Solution for the introductory example

Figure 5.1.2 shows the one and only optimal solution for our problem instance. The numbers
in the cells as well as the different colors denote the selected shifts that actually contribute to
the coverage of the respective requirements. For instance we can see that we have selected an
instance of shift 3 with one worker starting from the time slot with index 7 and a duration of
four time slots. By means of this sample shift 3 we can also highlight the cyclic structure of
the planning horizon, since the remaining three time slots of duration that cannot be used in the
originating cycle are taken into account in the next one. During the following explanations of
the rules forming our programs we will show how this optimal solution was generated by each
of our programs in more detail.

25

5.2 Common Knowledge Base

In this section, we will present the general structure and meaning of the constants and facts
which are used as input data for all three modelling approaches. This information differs from
problem instance to problem instance, while the code fragments in Section 5.3, Section 5.4 and
Section 5.5 do not need to be modified. To keep the code highly maintainable and flexible, the
input is therefore always strictly separated from the productive program elements and kept in
individual files.

Constant days

1 #const days = <number of days>.

Constant 5.2.1: days

The constant days is used to set the number of days which is used as planning period.
The planning period is always cyclic, this means that the shifts fit seamlessly together after the
specified amount of days. For instance, one can imagine an evening shift starting on Sunday at
10 pm with a duration of eight hours. Clearly, a worker who is assigned to that shift has to stay
until 6am on Monday and cannot go home after just two hours of work, although the week is
over at Sunday midnight.

Constant timeslots_per_day

1 #const timeslots_per_day = <number of timeslots per day>.

Constant 5.2.2: timeslots_per_day

The constant timeslots_per_day defines the precision of the assignments by setting
the timeslots that are available each day of the planning period. Together with the constant
days, the value of timeslots_per_day acts as configuration skeleton for the following
predicates used in the input files.

Additionally, a small modification to this value can have big influence on the program’s
performance when employing Answer Set Programming as solution method, since the number
of answer set candidates that need to be checked is heavily dependent on the number of timeslots
per day.

We will now give an explanation why this value is really important for the performance.
Imagine a shift that has a duration of at least eight hours and the employees are allowed to do
at most one hour of overtime. When timeslots_per_day is set to 24, then every time
slot represents one hour and we have exactly two possibilities to create a valid shift. The first
option is to work eight time slots, respectively hours, and the other one is to do one time slot of
overtime.

26

When we now double the precision to 48 time slots per day, we could also work 30 minutes
longer than required and therefore there is a third possibility to create a valid shift. By again
doubling the amount of available time slots per day, we already obtain five solutions, since the
two 30-minute-slots of overtime can be split into two 15-minute-slots each.

To make the simple example from above more convincing, we can extend it towards flexible
starting times and durations, so that an employee can choose the starting time and the shift
lengths more freely. For instance starting between 7am and 9am with a shift duration between
seven and nine hours. In this case, one can easily assert that the number of possibilities grows
very rapidly. To model this challenge in an appropriate way, we introduce the knowledge of these
flexible shift settings in the two upcoming predicates shift_start and shift_length.

Predicate shift_start

1 shift_start(<type>, <start>,
2 <allowed_positive_deviance>,
3 <allowed_negative_deviance>).

Predicate 5.2.1: shift_start

The predicate shift_start is used to define the start of a respective shift. The type of
the respective shift is hereby defined via the attribute type. In the problem instances used in
our evaluations, the information about the type is represented by the abbreviations m (morning),
d (day), e (evening) and n (night).

The type can also be seen as name for the shift and it plays a central role when merging
shift_start with the following predicate shift_length. The way, how these two very
important input facts work together will be described in a moment.

The actual starting time slot of the shift is set by the argument start. The value has to be
in the range from 0 to timeslots_per_day - 1. The programs expand this information to all
days in the planning period, so the user does not have to specify the same slot again for each day.
Via the last two arguments of the predicate, the program’s operator can define allowed deviances.
A positive (negative) deviance, for instance of value 1, would allow an employee to start his
working time one time slot later (earlier) than specified by the argument start. Like all other
numeric input values in the programs, the two arguments allowed_positive_deviance
and allowed_positive_deviance have to be greater than zero.

To increase the comfort for a user, it is not necessary to define a shift twice, if the variation
would lead to a negative starting time or a value greater or equal to the time slots per day. In this
case, the programs will automatically distinguish between the current day and the adjacent one
and thus ensure correct handling of this issue.

When remembering our introductory example, we can see that we can immediately transfer
Table 5.1.1 to instantiations of the predicate shift_start. The same also holds for the
following input predicates of the knowledge base of our three proposed programs.

27

Predicate shift_length

1 shift_length(<type>, <length>,
2 <allowed_positive_deviance>,
3 <allowed_negative_deviance>).

Predicate 5.2.2: shift_length

After the starting times are set, the predicate shift_length is used to define the duration
of each of the shifts. The type of the shift is set via the argument type, like before. The amount
of time slots that an employee has to work in the respective shift is configured via the value
length. To allow overtime (positive deviance) or leaving work earlier (negative deviance), the
operator can again specify the appropriate value to a non-negative integer of his choice.

Association between shift_start and shift_length

The predicates shift_start and shift_length are strongly connected with each other,
since combined they are used to define the complete information about all possible shifts. The
mentioned predicates allow passing necessary input information about all the different shifting
possibilities to our programs in an easy and intuitive way for an end-user.

Both types of facts are connected via the common argument type, so that the responsible
ASP-environment can put the instantiations of the predicates in the correct context. A reader
now may ask why we do not merge the two predicates into one with an arity of seven that does
not require any consolidation step.

There are two reasons for us to choose this modelling approach. At first, it is best practice in
Answer Set Programming to reduce the arity of predicates. This is caused by the circumstance
that the ASP-paradigm is based on exact matching of a rule’s elements and the more parts there
exist in a rule, the more effort it is for the ASP-environment to check all of them for equality to
the required values.

The second reason for preferring two predicates with smaller arity over one with a higher
number of arguments is the fact that it increases the clarity of the code. Although this is hard to
prove and depends on the reader’s preferences, we are able to focus exactly on the information
we need. So, if we do not need any information about the shift’s start, we can simply build a
rule without the predicate shift_start. The same clearly works vice versa too.

Please keep in mind that the approach of splitting a predicate should be tested intensively
when implementing own ASP-programs, since the impact on performance can be significant and
is strongly dependent on the respective model and also the ASP-environment that is employed
to interpret these programs can modify the recommendations.

In our case, we could not find any influence on the overall performance, since there are only
very few instantiations of the predicates in our examples used for the evaluations. The decision
to stick to the version with two predicates with an arity of four is therefore mainly based on best
practice and the personal preference of the author for a clear and well-structured code.

28

Predicate required

1 required(<timeslot>, <requirement>).

Predicate 5.2.3: required

To complete the knowledge base for our programs, we still need to define the demand of
workers for each time slot in the range between 0 and days ∗ timeslots_per_day, since
otherwise our approaches would be quite pointless. With the predicate required we obtain
exactly the tool we need for this task.

For every time slot, there must be exactly one instantiation of this predicate, where the first
argument timeslot is set to the 0-based index of this time slot and the the second argument
requirement is used to configure the respective demand of workers.

Predicate optimal_shift_count

1 optimal_shift_count(<count>).

Predicate 5.2.4: optimal_shift_count

The pre-calculated optimal count of distinct shifts can be defined via the optional unary
predicate optimal_shift_count. This information is only used by the program where we
search for an exact solution and the optimal count of shifts is already known. The knowledge
represented by this fact accelerates the search for a solution significantly, since we only have to
satisfy the demand with the given number of shifts. We will have a closer look at the program
which relies on this information in the following section.

Resulting representation of the knowledge base

After we have specified all constants and input predicates, we will now have a look at the actual
representation of the knowledge base for our introductory example in terms of a listing of the
resulting facts.

1 #const days = 1.
2 #const timeslots_per_day = 8.

3 shift_start(1, 2, 0, 0).
4 shift_start(2, 4, 0, 1).
5 shift_start(3, 6, 1, 0).

6 shift_length(1, 3, 1, 1).
7 shift_length(2, 3, 1, 1).
8 shift_length(3, 3, 1, 1).

Listing 5.2.1: Definition of shift types

29

1 required(0,1).
2 required(1,1).
3 required(2,4).
4 required(3,3).
5 required(4,5).
6 required(5,5).
7 required(6,2).
8 required(7,3).

9 optimal_shift_count(3).

Listing 5.2.2: Definition of requirements

5.3 Exact Solution with Known Optimal Shift Count

In this section we will present our modelling approach for instances of the Shift Design Problem
where we have full knowledge of the optimal count of distinct shifts and where we search for
exact solutions only. As already mentioned, we should keep in mind that this is a very optimistic
point of view, since the optimal shift count is in general not known before. Regardless of this
limitation, we will use this model as starting point for the explanations of further programs that
do not require the additional information of a pre-calculated shift count and thus are much more
powerful. In this way, the reader can grow accustomed to the syntax and semantics of the code
parts and we can highlight the steps of evolution from the first of our modelling approaches to
the flexible, but quite complex, third one. By using this satisfiability problem as starting point for
our discussion, we can additionally investigate the impact of optimization statements in terms of
performance in chapter 6.

Constant timeslots

1 #const timeslots =
2 days * timeslots_per_day.

Constant 5.3.1: timeslots

The code fragment in the box above defines a new constant named timeslots, which is a
simple alias for the formula days ∗ timeslots_per_day. We introduce this new constant
since the product of the two input values is needed very often in our programs and it makes the
code more readable.

In our introductory example, the formula leads to the calculation 1∗8 = 8, so that the number
of time slots in the planning horizon is specified with the value 8. Most real-world examples
will deal with higher numbers of time slots in all probability. Many of our test instances for the
evaluation use a planning period of seven days and at least 24 time slots per day, resulting in a
huge search space for our programs.

30

Predicate day

1 day(0 .. days - 1).

Predicate 5.3.1: day

The predicate day is used to enumerate all days in the planning period. One special feature
of this rule is the syntax of two points occurring immediately one after another to define an
interval.

In this case, the interval starts with 0 and ends with the value days - 1, where days is the
constant already mentioned before. When the rule is resolved by the grounder, we obtain exactly
the required n facts, where n is equal to the total number of days in our planning period.

The actual instantiations of the unary predicate day always correspond to the 0-based index
of the respective day. This means that day(0) represents the fact for the first day, day(1)
stands for the second day and so on. For our introductory example the set of facts obtained after
grounding is presented in the following box.

1 day(0).

Result 5.3.1: Result of Predicate day for introductory example

Predicate timeslot

1 timeslot(0 .. timeslots - 1).

Predicate 5.3.2: timeslot

As already used shortly before, we again employ the convenient syntactical abbreviation for
the definition of an interval. At this time, we will utilize it to generate the facts for all possible
time slots in the planning period.

Also for this unary predicate we want the index to start with the value 0, which is due to
the circumstance that this allows a more flexible usage in the further parts of our programs. We
will stick to this choice in all following rules, since it also improves the clarity of mathematical
formulae in our upcoming explanations. Result 5.3.2 shows the facts generated by the predicate
timeslot for our introductory example.

1 timeslot(0).
2 timeslot(1).
3 timeslot(2).
4 timeslot(3).
5 timeslot(4).
6 timeslot(5).
7 timeslot(6).
8 timeslot(7).

Result 5.3.2: Result of Predicate timeslot for introductory example

31

Predicate change

1 change(0, Requirement1 - Requirement2) :-
2 required(0, Requirement1),
3 required(timeslots - 1, Requirement2).

4 change(Time, Requirement1 - Requirement2) :-
5 required(Time, Requirement1),
6 required(Time - 1, Requirement2).

Predicate 5.3.3: change

The predicate change consists of two rules that are introduced to contribute to an enormous
performance improvement compared to a naive approach. The task of these rules is to calculate
the changes in demand for each time slot compared to the one right before. This enables us
to introduce additional constraints that can be used to restrict the search space for our first two
programs.

The first three lines are used to compute the change in demand between the last time slot and
the first one, since the planning period is cyclic. In line 2 of Predicate 5.3.3, we check if there is a
requirement for the first time slot and store the actual demand in the variable Requirement1.
In line 3, the same is done for the last time slot, so that we obtain also a value for the second
variable Requirement2. As already mentioned in Chapter 3 dedicated to the introduction to
ASP, the head of a rule evaluates to true, if and only if all literals in the body of the respective
rule are satisfied.

Assuming that an instantiation of the predicate required exists for the time slot 0 as well
as a second one defining the demand at the point in time with index timeslots - 1, we
have successfully computed a result for this rule. We finally receive a new fact that looks like
change(0, <value>), where value is the change in demand between the last and the first
time slot, which is exactly what we intended with this rule.

The second rule starting with line 4 is the more general one, because the two neighbouring
time slots are not fixed any more. Instead, the variable Time is used to replace the constant
values from the first rule and it represents the index of the time slot currently selected. In line 6,
we use the formula Time - 1 to calculate the index of the earlier time slot. Note that we
do not have to take care of negative values, since we have defined the indices of the predicate
required to be non-negative and therefore the associated literal in the body of this second
rule will not evaluate to true. This means that the rule will not fire anyway and we can keep the
code nice and simple.

Result 5.3.3 finally shows us the set of facts obtained during the grounding step of our small
introductory example. We can see that for every time slot t we have successfully calculated the
difference in the amount of required workers between time t and the time slot right before t and
this is exactly what we wanted to achieve with this predicate.

32

1 change(0,-2).
2 change(1, 0).
3 change(2, 3).
4 change(3,-1).
5 change(4, 2).
6 change(5, 0).
7 change(6,-3).
8 change(7, 1).

Result 5.3.3: Result of Predicate change for introductory example

Predicate length

1 length(MinLength .. MaxLength) :-
2 shift_length(_, Length, SlotsAfter, SlotsBefore),
3 MinLength = Length - SlotsBefore,
4 MaxLength = Length + SlotsAfter.

Predicate 5.3.4: length

In the next step of our modelling approach we define a simple unary predicate that allows us
to specify possible shift durations, so that this important information can be used in the body of
other rules.

For every instantiation of shift_length, this rule generates a set of n facts. Each of these
facts is of the form length(<value>), where value is a number out of the interval of length
n between the minimal and the maximal allowed length. We define the minimum (maximum)
duration of a shift as result of decreasing (increasing) the default length of the respective shift by
the allowed negative (positive) deviance. The syntactical representation of these two calculation
instructions can be viewed in the lines 3 and 4 of the code used to define Predicate 5.3.4. We
don’t specify an additional argument for the shift type the duration corresponds to, since this
value is restricted by upcoming predicates anyway and by omitting additional arguments we can
reduce the effort for grounding a little bit.

As we already mentioned, the underscore (_) in line 2 is the syntactical method to inform
the ASP-environment that we are not interested in the first argument’s value of the instances of
the previously defined predicate shift_length. By using this syntactical element, we do not
need to specify an additional variable. This could lead to slightly less computation effort for the
ASP-environment, but the main reason for our choice is that it also makes our code easier to
understand.

The actual instantiation of Predicate length for our example problem instance is provided
in the code listing Result 5.3.4, where we can see for instance that there is no length of zero
or only one time slot, since the minimum length of a shift type is defined with two time slots.
By removing invalid lengths, the predicate restricts the search space for the further steps of the
grounding task.

33

1 length(2).
2 length(3).
3 length(4).

Result 5.3.4: Result of Predicate length for introductory example

Predicate amount

1 amount(0 .. MaxAmount) :-
2 MaxAmount = #max [
3 required(_, Requirement) = Requirement
4].

Predicate 5.3.5: amount

Another very important property of an answer set for the Shift Design Problem is the amount
of workers that are assigned to an explicit instance of a shift. The word ’explicit’ in the sentence
right before is used to highlight that the number of assigned employees is always selected for a
fixed starting time slot and also a firm duration, so there is no deviance allowed at all, since this
would lead to another version of the shift.

To improve clarity of our explanation we will give a short example. Imagine a shift starting
at six o’clock and a default duration of eight hours. We allow at most one hour of overtime. This
results in two explicit shifts with both starting at six o’clock, but one of them has a working time
of eight hours and the other one has a duration of nine hours. The first instantiation could have
an amount of two assigned workers and the second one an amount of six. Although both explicit
shifts were generated from the same template, they are treated as completely independent from
each other. This means that from 6 am to 2 pm, there are eight employees at work in total.

The highest possible number of workers per explicit shift is defined as the maximum demand
in the set of requirements of all available time slots. This is a very relaxed assumption, but it is
clearly valid when we want to minimize excess of employees per time slot.

The code excerpt for the rule which we use to enumerate the interval from 0 to the maximum
requirement is quite intuitive. We employ the aggregate #max to find out the highest number in
a set which consists of all values of demand stored in the instances of the predicate required.
These values are extracted from the mentioned predicate in line 3.

1 amount(0).
2 amount(1).
3 ...
4 amount(5).

Result 5.3.5: Result of Predicate amount for introductory example

34

Result 5.3.5 shows us again the set of facts obtained in the task of grounding our small
example. Since the range of possible values for the number of employees has a significant
impact on the program’s performance, we will now introduce a further predicate that is used to
restrict the actual options for assigning a value for the amount of workers to a explicit shift.

Predicate min_requirement

If no excess is allowed for any time slot in the planning period like in our first two models, the
easiest way to restrict the number of workers starting at a specific point in time is to calculate
the minimum of required employees in a specific lapse of time. For each instantiation of the
predicate shift_start with start s and length l, this span of time can be defined as interval
of time slots that is stretched from time slot s to the point in time with index s + l − 1. Please
keep in mind that our planning period is cyclic, so we have to take care of cases where the result
of the formula s + l − 1 exceeds the total number of available time slots.

Again, our model will perform this task without any further effort for the end-user, but before
we go into detail, we will give a short example of the intention of our idea to make the following
rules more comprehensible.

(a) length: 1 (b) length: 2 (c) length: 3

Figure 5.3.1: The idea behind the predicate min_requirement

Figure 5.3.1 illustrates a small fragment of an sample instance of the Shift Design Problem
consisting of three time slots that are depicted by the columns of our grids. For each of these
time slots, the grayish boxes represent the current demand at the respective point in time. In our
example we act on the assumption that there is exactly one instantiation of shift_start with
a fixed starting time at 6 o’clock, which is synonymous with time slot index 0. Additionally we
presume that the duration of the shift is one hour with an allowed positive deviance of two time
slots, where a time slot corresponds to one hour for simplicity reasons.

Every grid illustrates one of the three options for a possible shift duration, where the cells
filled with color dark gray correspond to the elements we use for the determination of the value
for the minimum requirement, which is represented by the red line.

In the trivial case of the length 1, we can immediately state that the maximum number of
employees who are working from 6am until 7am is two, since a higher value would lead to an
excess of workers at this time span. This upper bound of workers per explicit shift stays the
same for grid (b), since we cannot assign more than two employees to the shift instance from 6
to 8 o’clock without risking excess. For length 3 we are limited to a single worker, since time
slot 2 requires only one employee.

35

When looking at the small example illustrated in Figure 5.3.1, we can see that it really makes
sense to restrict the maximum number of employees starting their work at an specific point in
time with respect to this additional knowledge of the minimum demand defined for the set of the
following time slots.

Another performance improvement is achieved when we only have a look at the relevant
instantiations of explicit shifts. We define these relevant instantiations in such a way, that their
ending time slot has an requirement greater than zero. The attentive reader could argue that this
restriction does not accelerate the task of computation significantly, since the minimum demand
in the case of an instantiation of shift_start, which is assumed to be irrelevant, will be zero
anyway. This calculation is true, since the minimum requirement really is zero in these cases,
but there is also an performance improvement, since the effort for grounding can be reduced
with this restriction.

The predicate responsible for correctly merging the instantiations of the two input facts
shift_start and shift_length into relevant instances of explicit shifts received the
meaningful name possible_shift_start. We will give a detailed description of it in
the next section of our work, but before we move on to this advanced program element, we will
first finish our explanations of the predicate min_requirement by having a closer look at the
code used to define it.

1 min_requirement(Start, Length, Value) :-
2 possible_shift_start(_, Start, Length),
3 EndSlot = Start + Length - 1, EndSlot < timeslots,
4 Value = #min [
5 required(Start .. EndSlot, Requirement)
6 = Requirement
7].

8 min_requirement(Start, Length, Value) :-
9 possible_shift_start(_, Start, Length),

10 EndSlot = Start + Length - 1, EndSlot >= timeslots,
11 Value = #min [
12 required(Start .. timeslots - 1, Requirement)
13 = Requirement,
14 required(0 .. EndSlot - timeslots, Requirement)
15 = Requirement
16].

Predicate 5.3.6: min_requirement

We can see that also Predicate 5.3.6 was split into two separate rules, where the first rule is
used when the end slot of a shift instance is within the bounds of the planning interval and the
second one does the same job for the cases that do not fully fit into this period of time and where
the cyclic assignments come into play.

36

In lines 2 and 9, we use the predicate possible_shift_start to find possible instances
of shifts. The first argument represents the name of the shift, which is not needed by our rules.
The variable Start holds the index of the starting time slot, where its value is already expanded
to the correct day within the planning period and the variable Length is set to a valid shift
duration. With this knowledge we can immediately calculate the ending time slot and check if
it is within the total number of time slots in the line 3 and accordingly in line 10 for the second
rule.

Like in the rule to define the maximum amount of workers, we employ an aggregate to find
out the minimum demand. In our rules, the keyword #min in the lines 4 and 11 is used to find
the minimum requirement in the time span defined by the currently selected instance of a shift.
By the way, the comma in line 13 allows us to join multiple sets, so that the aggregate is executed
for the set union.

1 min_requirement(2,2,3).
2 min_requirement(2,3,3).
3 min_requirement(2,4,3).
4 min_requirement(3,2,3).
5 min_requirement(3,3,3).
6 min_requirement(3,4,2).
7 ...

Result 5.3.6: Result of Predicate min_requirement for introductory example

Result 5.3.6 summarizes the facts obtained from the predicate while grounding our example
of the Shift Design Problem. We can see for instance that for shifts starting at the point in time
with index 2 and a duration of four time slots, the minimum number of required workers within
this period of time was calculated to be three.

Predicate possible_shift_start

As already mentioned before, the predicate possible_shift_startmerges the knowledge
gained from the input facts shift_start and shift_length into a reusable representation
of relevant shift instances, consisting of the name, starting time and duration of the respective
shift.

This predicate is a very important part of many rules in our three programs, because it also
extends the simple input facts to a more specific form where the sample time slots are put into
correlation with the actual day. This means that the starting point in time of a shift is no longer
limited by the constant timeslots_per_day, but by the value of timeslots, since the
rules constituting the predicate are evaluated for every single day.

The model for computing the instances of Predicate 5.3.7 is provided in the following code
box. For our introductory example the predicate leads to 15 facts in total which will be listed at
the end of this subsection. For brevity, we will again only present a subset of the facts.

37

1 possible_shift_start(Shift, Start, Length) :-
2 timeslot(Start), length(Length),
3 shift_start(Shift, Start1, SlotsAfter1, SlotsBefore1),
4 shift_length(Shift, Length1, SlotsAfter2, SlotsBefore2),
5 day(Day), Offset = Day * timeslots_per_day,
6 Start >= Start1 + Offset - SlotsBefore1,
7 Start <= Start1 + Offset + SlotsAfter1,
8 Length >= Length1 - SlotsBefore2,
9 Length <= Length + SlotsAfter2,

10 required(Start + Length - 1, Requirement1),
11 Requirement1 > 0.

12 possible_shift_start(Shift, Start, Length) :-
13 timeslot(Start), length(Length),
14 shift_start(Shift, Start1, SlotsAfter1, SlotsBefore1),
15 shift_length(Shift, Length1, SlotsAfter2, SlotsBefore2),
16 day(Day), Offset = Day * timeslots_per_day,
17 Start >= Start1 + Offset - SlotsBefore1,
18 Start <= Start1 + Offset + SlotsAfter1,
19 Length >= Length1 - SlotsBefore2,
20 Length <= Length + SlotsAfter2,
21 required(Start + Length - timeslots - 1, Requirement1),
22 Requirement1 > 0.

Predicate 5.3.7: possible_shift_start

To appease the reader, the rules look much harder to understand than they actually are, since
lots of the literals are just used to restrict the range of the the variables Start and Length, as
it can be seen in the lines 6-9 and 17-20.

In each of the rules, the last two lines ensure that the ending time slot has a demand of at
least one worker, because otherwise the shift is treated as irrelevant and the respective rule will
not fire, causing the instance to be omitted in the task of grounding. This improves the overall
performance of our programs in case that points in time with no need for attendant employees
exist. To make our explanations complete, we finally want to draw the reader’s attention to the
lines 5 and 16. These two lines are the originating place where the sample time slots of the two
input predicates can be mapped to the indices corresponding to the real points in time within
the planning period. We can also see that the choice of a 0-based indexing scheme is quite
appropriate for our programs, since we can directly calculate the offset without any additional
subtraction.

Following our detailed explanations about Predicate 5.3.7, the reader can find a subset of the
facts generated during the grounding step in the code box on the following page. One can easily
identify that the rule generates all allowed combinations of shift starts and appropriate durations.

38

1 possible_shift_start(1,2,2).
2 possible_shift_start(1,2,3).
3 possible_shift_start(1,2,4).
4 possible_shift_start(2,3,2).
5 possible_shift_start(2,3,3).
6 possible_shift_start(2,3,4).
7 ...

Result 5.3.7: Result of Predicate possible_shift_start for introductory example

Predicate assigned

We should mention, that all predicates described so far result in facts only. This means that
until now everything is determined beforehand and completely resolved during the process of
grounding the rules.

To make things more interesting and especially to empower us to actually solve instances of
the Shift Design Problem, we will now present maybe the most important rule for the first two
implementations where we aim at exact solutions. The task of the following code fragment is to
assign a number of employees to each explicit shift. More precisely the rule looks at each time
slot t and divides the number of workers required at time t into portions that can be assigned to
the shifts that comprise the point in time with index t.

After this short introduction to the ternary predicate assigned lets dig a bit into details of
the code, since this is also helpful to understand why we had to introduce the lots of other rules
mentioned so far:

1 Requirement [
2 assigned(Start, Length, Amount) = Amount :
3 min_requirement(Start, Length, Requirement1) :
4 amount(Amount) : Start <= Time :
5 Start + Length - 1 >= Time :
6 Amount <= Requirement1,
7 assigned(Start, Length, Amount) = Amount :
8 min_requirement(Start, Length, Requirement1) :
9 amount(Amount) : Start + Length -

10 timeslots - 1 >= Time :
11 Amount <= Requirement1
12] Requirement :-
13 required(Time, Requirement).

Predicate 5.3.8: assigned

39

There are three syntactical novelties in the code for Predicate 5.3.8. At first we can see that
the variable Requirement is used twice outside the square brackets. In the input language
of our grounder gringo the left value is interpreted as lower bound and the right one acts as
upper bound for the aggregate that is located between the two integers. The question where the
aggregate can be found in the provided rule brings us to the second syntactical refinement we
make use of in the code fragment. The language allows us to omit keywords in some cases. One
of these special cases are square brackets as well as curly brackets enclosing a set of literals.
The square brackets occurring in our rule head are implicitly connoted with the semantics of the
aggregate #sum. On the other hand, curly brackets without further specification of an aggregate
lead to the same behaviour as the keyword #count does. The third syntactical novelty is that
we move the occurrence of the aggregate we have selected to the head of the rule. By doing
so, we employ the very sophisticated mechanisms of the solver clasp to generate valid partitions
satisfying the provided boundaries.

The superset which is used for this partitioning is the pool of all shifts that enclose the time
slot currently selected via the predicate required. In our case, we can rely on the minimum
requirement as defined before to pre-determine all potential allocations of workers for a shift
and we delegate the work of finding a valid selection for the number of workers for each of these
shifts to the solver.

Please observe that we do not have to refer to the predicate possible_shift_start for
this rule since it is guaranteed that for every relevant shift there exists exactly one instantiation
of min_requirement and so we can obtain the maximum amount directly via the variable
Requirement1 without using any unnecessary additional literals.

Starting from line 7, the reader can see that we have not forgotten the cyclic planning period
and also added a subset of values for the cases that the ending time slot is not in the same cycle
as the starting slot, so that we really receive the results we expect in every possible case. Before
we move on to some additional facts about this important rule, we still should specify the exact
mapping of the predicates in the set to the respective numbers acting as terms in the summation.
In the lines 2 respectively 7 we can see that this is simply the number of workers assigned to
the instance of a shift. When we now recapitulate all the information concerning the rule that
defines the predicate assigned, we can convince ourselves that this rule enables the solver to
partition the number of required workers into portions and assigns these subsets of employees
to instances of shifts. This behaviour is perfectly consistent to what we described in the second
paragraph of our explanations for this predicate.

Everything we have heard about the rule so far seems to be quite promising, but there is still
some explanation needed to fully understand the task of the predicate assigned. One very
important remark is that we cannot ensure totally valid assignments by now, since every explicit
shift is very likely to appear in more than one instantiation of this rule. Assuming that one time
slot corresponds to one hour, a shift starting at 6 o’clock and with a duration of eight hours could
occur in eight instances of the rule, because the duration encloses eight time slots that need to
be evaluated.

40

One arising problem is that the number of employees assigned to the same explicit shift is
not necessarily equal when taking different points in time as origin for this evaluation. It is not
hard to avoid such conflicting assignments and we will tackle this issue by further introducing
Constraint 5.3.1 below. But before we come to the sections where the constraints are defined,
we should mention the other and much harder difficulty of the rule we are currently looking
at. It is the enormous size of the search space, since our programs always aim at finding at
least one global optimum by testing all possible assignments, depending on the setting of the
ASP-environment.

Unlike most other procedural solution approaches the search space is not restricted and so
we obtain the advantage that we can always find a global optimum, if there exists one, but on
the other hand we have to deal with a huge number of possibilities and therefore time becomes
the limiting factor. In chapter 6 we will even see that there are also some instances of the Shift
Design Problems that cannot be solved in reasonable time.

Although we have to cope with these two problems, the code provided by us turned out to
perform very well, since shifts often interlock in such way that it significantly accelerates the
search even in case of a larger search space so that we can kill two birds with one stone. To
complete our explanations, we have again listed the instantiations of this rule for our example
instance below. For the sake of brevity we only present the resolved rule for covering the time
slot with index 0.

1 1#sum[
2 assigned(7,4,0)=0, assigned(7,4,1)=1,
3 assigned(6,4,0)=0, assigned(6,4,1)=1,
4 assigned(7,3,0)=0, assigned(7,3,1)=1,
5 assigned(6,3,0)=0, assigned(6,3,1)=1,
6 assigned(7,2,0)=0, assigned(7,2,1)=1
7]1.
8 ...

Result 5.3.8: Result of Predicate assigned for introductory example

Predicate selected_shift

1 selected_shift(Start, Length) :-
2 possible_shift_start(Shift, Start1, Length), day(Day),
3 assigned(Start1, Length, Amount), timeslot(Start),
4 Start = Start1 - Day * timeslots_per_day,
5 Start < timeslots_per_day, Amount > 0.

Predicate 5.3.9: selected_shift

After we have guessed the number of workers for each shift with Predicate assigned, we
will now introduce a new rule to abstract these explicit time spans in such a way that it becomes
irrelevant to which day the shift belongs.

41

This abstracted view is necessary, since in the Shift Design Problem it does not matter on
which day a shift is selected. We are only interested in the fact, if it is assigned at least once
in the planning period. For instance, if an employee works from 6 am to 2 pm on the first day
it has the same effect as if he would work within the same eight hours on any other day in the
planning period.

In other words the predicate selected_shift boils down the planning period to one
day, so that the starting points of the resulting instantiations are within an interval between 0
and the constant timeslots_per_day. Explicit shifts with at least one worker assigned are
treated as they would also reside on the first day. By doing so, we achieve conformance to the
specification of the Shift Design Problem, where a shift counts as selected one if it is used by
employees in at least one of the days in the planning horizon.

After these introductory words, let’s have a closer look at the code. Starting in the second
line of Rule 5.3.9 we use the predicate possible_shift_start, so that only relevant shifts
are taken into account and the effort for grounding is minimized. Further we rely on the input
facts day and timeslot which are later used to convert the actual starting time of a shift to
a time slot within the first day. The explicit shift we are currently looking at is then selected in
line 3 via the ternary predicate assigned we already explained before quite extensively. By
the way, the index of the point in time where the respective shift begins is stored in the variable
Start1. In the last two lines the actual abstraction is done by mapping the value of Start1
to an index less than timeslots_per_day. In line 5 we additionally ensure that the amount
of assigned workers is greater than zero, so that we are really allowed to refer to this abstracted
shift as a selected one.

If all literals in the rule’s body are satisfied, the grounder creates a new instantiation of the
predicate selected_shift with the abstracted value of the starting time and the unmodified
duration of the original shift. Note that this is the only predicate that is not resolved to a set
of facts in the first two programs, because the actual number of workers cannot be determined
beforehand. This is a quite remarkable attribute of these two approaches, because with them
we can provide two models capable of delegating a lot of the workload to the grounder which
leads to a reduced complexity for the solver. Since grounding is a relatively straightforward
task, we now have reached the first milestone on the way to an efficient model of the Shift
Design Problem. The resulting instances of predicate selected_shift can be viewed in the
corresponding code box.

1 selected_shift(2,2):-assigned(2,2,1).
2 selected_shift(2,2):-assigned(2,2,2).
3 selected_shift(2,2):-assigned(2,2,3).
4 selected_shift(2,3):-assigned(2,3,1).
5 selected_shift(2,3):-assigned(2,3,2).
6 selected_shift(2,3):-assigned(2,3,3).
7 selected_shift(2,4):-assigned(2,4,1).
8 ...

Result 5.3.9: Result of Predicate selected_shift for introductory example

42

We can see that this mapping simply reverses the functionality of Predicate assigned
which is dependent on the respective day of the instance of a shift type. We obtain a new
representation that does not use the information about the actual day any more and therefore it
can be employed easily to compute the number of selected shifts in the understanding in terms
of the Shift Design Problem by our rules that will be presented in the subsequent sections of this
chapter. Although this abstraction increases the effort for grounding, during our evaluations it
turned out that the overall time needed for solving the benchmark instances actually decreases.

Before we can complete our first modelling approach, we still have to remove invalid answer
set candidates and improve the overall performance. We will have a look at this parts of the first
program in the following sections that cover the constraints we make use of.

Constraint: Avoid conflicts

The first cause for an invalid answer set we will have a look at is based on conflicting assignments
as already described while explaining Predicate assigned. Therefore we have to get rid of
answer sets containing the same explicit shift multiple times with a different count of assigned
workers. This task is common to all our programs presented in this thesis and although it is
very important, a solution for this problem can be provided easily. The following code snippet
is actually all we need to avoid these sort of conflicts.

1 :- assigned(Start, Length, Amount1),
2 assigned(Start, Length, Amount2),
3 Amount1 > Amount2.

Constraint 5.3.1: Avoid conflicts

In the box above we can see that the predicate assigned occurs twice in the code piece of
Constraint 5.3.1. This structure is needed because we have to obtain the ability to check, if there
are any ambiguities in the number of workers.

When instantiating the rule, the grounder will generate a constraint for each relevant shift
with starting time s and duration d which checks for these conflicts. Since one literal can be
matched multiple times by the same instance of a shift, in line 3 we further ensure that the rule
only fires in the case that we really have to deal with two different numbers of active workers.
In this context, please note that it does not make any difference if we use >, < or != as symbol
for the arithmetic comparison in line 3 of the code, because the position of a literal in a rule is
irrelevant for the result and so we could interchange the two variables Amount1 and Amount2
without any influence on the outcome.

Summarizing all the information about Constraint 5.3.1, we can convince ourselves that we
have indeed found a constraint which guarantees that the count of employees working for d time
slots starting with index s is unambiguous, since it prohibits different assignments of workers
for the same time span.

43

Constraint: Ensure optimal shift count

1 :- optimal_shift_count(OptimalCount),
2 not OptimalCount { selected_shift(_, _) } OptimalCount.

Constraint 5.3.2: Ensure optimal shift count

After we have successfully avoided conflicts by introducing Constraint 5.3.1, we will now
present the constraint that actually empowers us to find solutions for the Shift Design Problem
with known optimal shift count.

The basic functionality of Constraint 5.3.2 is to drop all answer sets where the count of
selected shifts is not equal to the value of the input fact optimal_shift_count. This
important value is obtained in line 1 and stored in the variable OptimalCount. In the second
line we finally define the literal that matches all answer sets where the total count of selected
shifts is different from OptimalCount so that the rule becomes complete.

Constraint: Ensure correct handling of demand changes

By now our first program is able to do all the things we expect from it and the performance
turned out to be quite good on many problem instances, but often this is not enough. Depending
on the structure of the problem’s actual configuration the time for computing a satisfying answer
can become very long. So we tried hard to find some constraint that speeds up the search for a
solution significantly without really increasing the effort for the grounder.

Keeping this second requirement in mind is very important, because clearly it does not pay
off well, if we save five seconds in computation time when the task of grounding takes the same
amount of time longer on the other hand or the amount of main memory needed to store the
problem’s representation is too high to be handled efficiently. We finally found an approach
providing exactly these attributes. Now let’s have a look at the details of the implementation:

1 :- change(Time, Change),
2 not Change [
3 assigned(Time, _, Amount) = Amount :
4 amount(Amount),
5 assigned(Start, Length, Amount) = -Amount :
6 amount(Amount) :
7 Start + Length == Time,
8 assigned(Start, Length, Amount) = -Amount :
9 amount(Amount) :

10 Start + Length - timeslots == Time
11] Change.

Constraint 5.3.3: Ensure correct handling of demand changes

44

The total acceleration effect obtained from employing Constraint 5.3.3 is really impressive,
since the constraint restricts the number of possible choices dynamically with every assigned
value. Its functionality is actually really easy to explain, because all it does is to ensure that the
changes in demand we have already computed via the predicate change are also observable
when looking the assignments of workers to explicit shifts.

Assuming that the demand at the point in time with index t compared to the one right before
is increased by one, then the difference between the number of employees starting their work at
time slot t and those who end their work at this time has to be 1 too, since otherwise there would
be either a shortage or an excess in the number of assigned workers.

This empowers us to explain why the performance is increased so enormously. Imagine that
we need one more worker at time t and further assume that two employees finish their work at
this point in time. So we can immediately infer that three workers have to begin their shifts at
time slot t. With a growing number of assigned shifts our rule restricts the number of possible
choices even more so that the interlocking of these shifts leads to a significant acceleration of
the computations.

In line 1 we can see that Constraint 5.3.3 is applied once for every point in time within the
planning period, since we already know from before that there is exactly one instantiation of the
predicate change for every time slot. The second literal is an aggregate computing the total
sum over all workers starting or ending their work at the respective point in time.

The number of employees who begin their shift is counted positively for this sum in line 3
and the number of those persons who finish their work is subtracted in the following lines 5 and
8, so that the result of the aggregation represents the actual change in the number of assigned
workers for this time slot. Note that the code fragment presented in the lines 8 to 10 takes care
of the cyclic planning period while the almost identical code located at the three lines prior to
this section is used to handle those shifts where the cyclic structure of the planning interval is
not relevant.

The explanations regarding Constraint 5.3.3 given so far can be consolidated by stating that
we were able to provide a consistent rule that is matched by all answer sets violating the con-
straint requiring the actual change concerning the number of assigned workers to be equal to the
variation we expect from the problem configuration, so that these undesirable answer sets can
be avoided successfully. To the best of our knowledge, the main memory usage is negligible
compared to the obtained increase in performance.

Resulting Answer Set for the Example Instance

At this point we have successfully defined all facts, predicates and rules that are necessary for
implementing our first modelling approach. Solution 5.3 finally shows the resulting answer set
after executing the completed program with the introductory example as input problem instance.
Please note that all facts that already have been discussed in the previous sections are excluded
in the following listing for the sake of brevity, although they are clearly part of the answer set.

45

1 assigned(2,4,3). selected_shift(2,4).
2 assigned(4,4,2). selected_shift(4,4).
3 assigned(7,4,1). selected_shift(7,4).

Solution 5.3: Answer set for introductory example

We can immediately see that the output corresponds to the predicted optimal solution, since
we use exactly three shifts with length 4. The indices of the time slots which act as starting points
in time are defined by the first argument of the predicates assigned and selected_shift
and the number of employees assigned to each of the shifts according to the third argument of
predicate assigned are 3, 2 and 1. During our benchmark tests (see chapter 6) we deal with
much larger problem instances and the program delivers correct results also in situations with
multiple days and a high amount of time slots per planning period.

46

5.4 Exact Solution with Unknown Optimal Shift Count

In this section we will now focus on the modelling approach that is designed to find answer sets
where the amount of required workers is covered perfectly and the count of different shifts is
minimal. This allows to be more flexible compared to our first program, since we don’t have to
know the optimal number of shifts beforehand.

Another advantage of this second approach is that the actual test for minimality is done
directly in the context of the solver so that no further external scripts or programs are needed.
To clarify this statement, imagine that we want to achieve a similar behaviour by using the first
of our approaches. Algorithm 5.4.1 below illustrates one possibility to reach this goal.

Input : An instance of the Shift Design Problem in ASP-syntax I .
Output: The minimum count of shifts needed to solve the problem without any deviance,

or the error value -1 in case that I cannot be solved without shortage or excess.

MaxShiftCount← 0;1

foreach ShiftType t ∈ GetShiftTypes(I) do2

MaxShiftCount← MaxShiftCount + GetNegativeDeviance(t);3

MaxShiftCount← MaxShiftCount + GetPositiveDeviance(t);4

MaxShiftCount← MaxShiftCount + 1;5

end6

for c← 0 to MaxShiftCount do7

// Call ASP-environment with first approach and problem instance I:8

// Predicate optimal_shift_count is set to value c.9

if CallASP(I , c) != NULL then10

// Problem instance is satisfiable.11

return c;12

end13

end14

return −1;15

Algorithm 5.4.1: Sample Algorithm 1

Although the algorithm provided by us looks quite simple, it has at least one really big
disadvantage compared to the implementation that is capable to calculate the minimum directly:
In the worst case where no zero-deviation solution exists we have to execute the program of
our first approach for all possible numbers of different shifts to guarantee that no solution can
be found which satisfies our conditions that neither shortage nor excess are allowed. In the
algorithm this is represented in line 10, where the function CallASP is used to launch the
grounder with the respective problem instance and the resulting variable-free set of rules is
passed on to the solver by this function. It is assumed that the function performs successful if
there exists at least one answer set in the understanding of our first approach for instance I .

47

Invoking CallASP repeatedly causes the problem that the whole grounding task has to be
started again for each call of line 10 and also the solver cannot benefit from previously finished
reasoning tasks, since it also has to be restarted every time. It should be clear that such ineffective
processing is completely undesirable and therefore in practical application scenarios we will
always try to find some way so that the expensive grounding task only has to be done once for
a problem instance. Therefore we decided to adapt our first modelling approach in such way
that it can directly compute the optimal count of shifts that is necessary to solve a given instance
of the Shift Design Problem without deviance from the respective requirements. By doing so,
we obtain an universally usable tool that can be implemented in almost all ASP-environments,
although the syntax might be slightly different.

An additional strength of our second approach is that all grounded instantiations of rules can
be kept in memory over the complete processing time of our program, since the newly introduced
#minimize-statement always stays the same, regardless of the actual optimal number of shifts.
In order to achieve the properties we expect, we have to remove Constraint 5.3.2 that is used in
our first approach to remove all answer set candidates where the number of selected shifts is
different to the specified optimal count and replace it with a proper statement reflecting our need
for minimizing those shifts. We use Optimization 5.4.1 to implement this criterion. All other
rules remain unchanged and are identical to those in the first approach, therefore we omit them
in this section deliberately to avoid redundant explanations.

An alternative approach would be to use some incremental ASP-environment, like iclingo [19].
An incremental implementation of an ASP-environment integrates grounder as well as solver
into one single program. If the environment is capable of handling incremental programs, the
author of such programs can define and use special variables that are automatically incremented
if the problem instance cannot be solved with the smaller value. In this way the risk that invariant
parts of the input programs have to be grounded repeatedly is minimized as much as possible.
For our example problem instance we could exploit incremental ASP by letting the environment
choose Predicate optimal_shift_count so that Algorithm 5.4.1 is not needed any more.
Indeed this would be a pure ASP-solution for the Shift Design Problem with the restriction that
only zero-deviation answer sets are allowed. Apart from the fact that in these days there are just
a few incremental ASP solvers available, the main problem of reusing the first of our approaches
is that still a lot of valuable information could be lost with every incremental step since allowing
an additional shift can change the whole set of answer set candidates in the worst case.

Optimization: Minimize shift count

1 #minimize { selected_shift(_, _) }.

Optimization 5.4.1: Minimize shift count

As mentioned before, Optimization 5.4.1 replaces Constraint 5.3.2 and is responsible for
finding the optimal solution for a given problem instance. It is important to keep in mind that an
optimization criterion does not prevent the solver from delivering suboptimal answer sets, since
the semantics of optimization statements explicitly allow such deviations from the optimum.

48

We already know that the curly brackets denote that the count of matched instances from the
set of literals defined between opening and closing bracket is taken as reference value for the
optimization rule.

1 #minimize {
2 selected_shift(2,2), selected_shift(2,3),
3 selected_shift(2,4), selected_shift(3,2),
4 selected_shift(3,3), selected_shift(3,4),
5 ...
6 }.

Result 5.4.1: Result of Optimization 5.4.1 for introductory example

In the box for Result 5.4.1 we can see a fragment of the variable-free representation of the
corresponding optimization rule after grounding. One of the solver’s most important tasks when
processing this rule is to learn new constraints to improve performance for further computation
steps on the way to the optimal solution(s) of a given instance of the Shift Design Problem.

It’s exactly the process of learning new constraints that makes the second approach more
practical compared to the use of the first approach in context of incremental ASP, since for every
incremental step, Constraint 5.3.2 will most probably have to be evaluated again and in some
cases learned constraints with a positive effect on the overall computation speed might get lost.
In contrast, the ASP-environment can learn new constraints more effectively in cases where an
optimization statement is used.

Resulting Answer Set for the Example Instance

After we have finished implementing all necessary modifications we can see how easy it actually
is to change the semantics of programs in the paradigm of ASP: We changed a few lines of
code and the behaviour is totally different, since we do not need to know anything about the
number of shifts in our problem instance and we can delegate the whole workload to the solver
so that user’s comfort increases drastically. Of course we could achieve the same with procedural
programming languages, but here the effort will likely be much higher. One can imagine that
this advantage of declarative programming will also improve maintainability of the code.

Solutions 5.4.1 and 5.4.2 show two possible answer sets for our introductory example that
our second modelling approach could generate. Again we omitted all the facts that are present
in every answer set for the sake of brevity.

1 assigned(2,2,3). selected_shift(2,2).
2 assigned(4,2,4). selected_shift(4,2).
3 assigned(4,4,1). selected_shift(4,4).
4 assigned(6,2,1). selected_shift(6,2).
5 assigned(7,4,1). selected_shift(7,4).

Solution 5.4.1: One possible answer sets for introductory example

49

1 assigned(2,4,3). selected_shift(2,4).
2 assigned(4,4,2). selected_shift(4,4).
3 assigned(7,4,1). selected_shift(7,4).

Solution 5.4.2: Optimal answer set for introductory example

The first answer set depicted in Solution 5.4.1 is obviously not optimal, because five explicit
shifts have been selected to cover the demand of workers given by our introductory example.
The second answer set shown in Solution 5.4.2 is much better and identical to our well known
optimal solution that was also found by our first approach.

Depending on the structure of the problem instance, there can be a lot of steps between the
first answer set that is found and an optimal one, but since we do not restrict the search space
more than absolutely necessary, we are confident that we always find an optimal solution under
the following three assumptions:

• The ASP-environment works as intended

• Sufficient computational resources are available

• A zero-deviation solution exists for the given problem instance

Clearly, the first point in the list above is very likely a base assumption for most programs,
because in situations where the underlying infrastructure operates not as expected, almost no
software product will execute properly. The second assumption is necessary since the size of a
Shift Design Problem is potentially unbounded and with increasing problem size executing the
program consumes more and more resources, like processing time and main memory due to the
fact that in a pure ASP-environment we always have to take the whole search space into account
so that the optimal solution cannot be missed.

Even if our first two assumptions are fulfilled, we still face the problem that in general it is
very unlikely that a solution without shortage and excess can be found for the variety of instances
of the Shift Design Problem which occur in practice. Therefore we will extend our approach in
the next section of our work so that also those instances can be solved where no such perfect
solution exists.

50

5.5 Flexible Solution with Unknown Optimal Shift Count

In the previous parts of this chapter we already presented two ASP-implementations which allow
us to find zero-deviation answer sets for instances of the Shift Design Problem where such a
solution exists. Since the majority of the problems occurring in practice will most probably
require some shortage or excess to be solvable. To give a motivating example for the topic
of the general Shift Design Problem, let us have a look at a slightly modified version of our
introductory example which was presented some sections before:

X

0 1 2 3 4 5 6 7

Figure 5.5.1: Initial situation of modified introductory example

The highlighted cell with the letter ‘X’ inside depicts the facts that an additional employee is
required at the time slot with index 5. In comparison, in the original example only five workers
are needed at this point in time. This little change in the demand of workers causes our previously
presented approaches to fail, since the new problem instance cannot be solved without shortage
or excess any more. An informal explanation for this statement can be given in the following
way: We know from before that the version with a demand of five employees at the time slot with
index 5 can be solved without shortage and excess. Therefore the new version with an additional
worker needed at this time slot cannot be solved without deviance from the actual requirements
as long as this is the only modification, since each employee has to work for at least two and
at most four consecutive time slots. All shifts in our previous sample solution were defined
with the maximum length of four time slots so that we have to add at least one additional shift
with a working time of two or more time slots. Without proof, we state that adding additional or
removing existing instances of the defined shift types also does not help in solving this challenge,
since the shape of the distribution of the new requirements in combination with the small set of
available shift types does not allow to find a perfect solution for the modified example instance.

With respect to our newly constructed example we realize that our first two approaches
could be insufficient for practical usage. To circumvent their limitations, we will present a third
approach that theoretically can solve also the general Shift Design Problem where shortage and
excess are allowed.

51

Before we start with the implementation details of our third program, the reader can have a
look at the one and only optimal solution for our new problem instance in Figure 5.5.2 which
was generated under the assumption that shortage, excess as well as the number of shifts are
weighted equally. With a different priority setting it is likely that there are other answer sets
considered as optimal ones. In our further explanations we will stick to the usage of equal
weights for the key terms shortage, excess and shift count.

1 1 1 1

1 1 1 1

1 1 1 1

2 2

2 2

2 2

2 2

3 3

3

3

X

0 1 2 3 4 5 6 7

Figure 5.5.2: Solution for the modified introductory example

Initial Situation

In our approaches presented so far, we have introduced a number of constraints so that problem
instances where no zero-deviation solution exists are dropped. Since we explicitly allow such
imperfect solutions in the new program that will be described in this section, we have to remove
those rigorous constraints and change some predicates in order to obtain suitable answer sets
for general instances of the Shift Design Problem. To be more precise, only the following rules
from the first two modelling approaches will be reused in our third program, while the complete
knowledge base of input parameters remains totally unchanged:

• Constant timeslots (5.3.1)

• Predicates day (5.3.1) and timeslot (5.3.2)

• Predicates length (5.3.4) and amount (5.3.5)

• Predicate selected_shift (5.3.9)

Although it seems like a lot code that was used in our previous approaches is useless for the
third implementation, that is actually not true, since for most of the predicates that were already
discussed in the sections before, minor changes are sufficient to make them well suited for the
usage in the depicted program for allowing imperfect solutions.

52

New Constants for Allowed Deviance

In practice there is a high probability that the management staff wants to avoid some completely
undesirable schedules, like time slots where too few or too many employees are at work. To
quantify what too few respectively too many means, we introduce two new constants.

1 #const ucover_tolerance = <maximum negative deviance>.

Constant 5.5.1: ucover_tolerance

1 #const ocover_tolerance = <maximum positive deviance>.

Constant 5.5.2: ocover_tolerance

The value of the constant ucover_tolerance defines the maximum negative deviance
from the particular demand of workers for each possible time slot and the same holds vice versa
for ocover_tolerance and the positive deviance.

An example for the impact of Constant 5.5.1 on finding a solution is illustrated in Figure
5.5.3 where ucover_tolerance was set to 1 while ocover_tolerance is specified with
the value 0. In order to keep the size of the search space for our program at a reasonable level,
we will use this configuration of the constants for our further explanations.

0 1 2 3 4 5 6 7

Figure 5.5.3: Relaxed initial situation of modified introductory example

The cells of the grid in Figure 5.5.3 that are marked with a cross represent those parts of
the requirements which do not need to be covered necessarily. We can see that the solution for
our original example matches this relaxed problem instance almost perfectly. In our case with
the given configuration, the solutions for the original introductory example and for the modified
one are identical. By comparing Figure 5.1.2 and Figure 5.5.2 we can convince ourselves of this
fact.

53

Predicate max_requirement

When we reminisce about the idea of our first two approaches, we observe that a predicate
called min_requirement has been used to restrict the search space significantly because
it definitely makes no sense to send more employees to work than necessary in cases where
imperfect solutions should not be taken into account. Since this is desired explicitly in the third
implementation, we have to find another way to tame the growing search space.

Predicate 5.5.1 is the tool of our choice for achieving this goal. Obviously it is almost
identical to Predicate 5.3.6 min_requirement apart from the fact that the keyword #min is
now replaced with #max to calculate the maximum instead of the minimum, therefore we will
not go into details too much at this point to avoid redundant explanations. The idea behind this
predicate is that it is pointless in the context of the problem statement to have for instance five
workers starting at the point in time with index x and a duration of d time slots, if at most three
are needed in the time period limited by the points in time with indices x and x + d− 1.

Unfortunately, Predicate 5.5.1 limits the search space obviously much worse compared to
choosing the minimum as reference value like in our previous programs and so the performance
decreases significantly in comparison to our first two modelling approaches as we will see later
in chapter 6, where the results of our experimental analysis are presented. Although the impact of
this new predicate on the overall performance is quite undesirable, the rule is needed to guarantee
that every possible answer set candidate that could lead to a solution can be considered during
the processing of the other rules.

1 max_requirement(Start, Length, Value) :-
2 possible_shift_start(_, Start, Length),
3 EndSlot = Start + Length - 1, EndSlot < timeslots,
4 Value = #max [
5 required(Start .. EndSlot, Requirement)
6 = Requirement
7].

8 max_requirement(Start, Length, Value) :-
9 possible_shift_start(_, Start, Length),

10 EndSlot = Start + Length - 1, EndSlot >= timeslots,
11 Value = #max [
12 required(Start .. timeslots - 1, Requirement)
13 = Requirement,
14 required(0 .. EndSlot - timeslots, Requirement)
15 = Requirement
16].

Predicate 5.5.1: max_requirement

54

Result 5.5.1 for the predicate with name max_requirement shows some instantiations
that have been obtained during the grounding process on the left-hand side. The comments on
the right-hand side of the same code box were added for explanatory purposes and illustrate
the facts that would have been generated by using the predicate min_requirement from the
previous approaches so that the reader can compare the results of both predicates and get an
intuition about the consequential impact on the size of the search space.

1 max_requirement(2,2,4). % min_requirement(2,2,3).
2 max_requirement(2,3,5). % min_requirement(2,3,3).
3 max_requirement(2,4,6). % min_requirement(2,4,3).
4 max_requirement(3,2,5). % min_requirement(3,2,3).
5 max_requirement(3,3,6). % min_requirement(3,3,3).
6 max_requirement(3,4,6). % min_requirement(3,4,2).
7 ...

Result 5.5.1: Result of Predicate max_requirement for introductory example

Predicate possible_shift_start

1 possible_shift_start(Shift, Start, Length) :-
2 timeslot(Start), length(Length),
3 shift_start(Shift, Start1, SlotsAfter1, SlotsBefore1),
4 shift_length(Shift, Length1, SlotsAfter2, SlotsBefore2),
5 day(Day), Offset = Day * timeslots_per_day,
6 Start >= Start1 + Offset - SlotsBefore1,
7 Start <= Start1 + Offset + SlotsAfter1,
8 Length >= Length1 - SlotsBefore2,
9 Length <= Length + SlotsAfter2.

Predicate 5.5.2: possible_shift_start

Predicate 5.5.2 is again pretty much the same as the previously defined Predicate 5.3.7, but in
situations where we also want to accept imperfect solutions we are no longer allowed to ignore
instances of shift types that have no demand for workers at the last time slot of the respective
shift. While we needed two rules to form the old predicate possible_shift_start, we
only need one rule in the new version of the predicate, since we solely have to provide a mapping
for the starting time slots without any need to check the ending time slots that could already
reside in the next planning cycle. It is exactly this case distinction that is no longer necessary
which allows us to reduce the number of rules composing the new specification of the predicate
possible_shift_start.

In our new as well as in our older version of the introductory example, there does not occur
any time slot where no employee is required to be present, thus the resulting facts generated by
Predicate 5.5.2 in the grounding step are the same as for Predicate 5.3.7 for our sample instance:

55

1 possible_shift_start(1,2,2).
2 possible_shift_start(1,2,3).
3 possible_shift_start(1,2,4).
4 possible_shift_start(2,3,2).
5 possible_shift_start(2,3,3).
6 possible_shift_start(2,3,4).
7 ...

Result 5.5.2: Result of Predicate possible_shift_start for introductory example

Please note that in situations where also points in time exist which have a demand of workers
equal to zero, the result will very likely differ and that it is really important for further processing
steps to introduce this modified version of the predicate possible_shift_start in order
to achieve correct results.

Predicate assigned

Also in our third modelling approach for the Shift Design Problem, the predicate assigned
is a central part in the code since it implements the guessing step of the program. To provide
correct results on the one hand and to avoid excessive effort for grounding on the other hand, we
completely restructured the rule that was used in our first attempts and developed a version that
is more suitable for the general Shift Design Problem.

1 1 {
2 assigned(Start, Length, Amount) :
3 amount(Amount) : Amount <= MaxAmount
4 } 1 :-
5 max_requirement(Start, Length, MaxAmount).

Predicate 5.5.3: assigned

We will now explain its basic functionality in more detail. Line 5 of Predicate 5.5.3 illustrates
that we solely rely on the previously defined predicate for calculating the maximum requirements
in the context of an explicit shift to build the body of the rule, since almost every information we
need is stored in the associated instances of the literal. The remaining information is provided by
the rule amount (see Predicate 5.3.5) so that we are actually able to assign a number of workers
to each explicit shift that is available in the input problem instance. In line 2 of Predicate 5.5.3,
we restrict the amount of employees per shift in such a way that it has to be less than or equal to
the maximum requirement, so that only relevant values are taken into account.

For the head of the new rule we employ the #count-aggregate to select one of the elements
from the set of possible assignments. We use the value 1 as lower and upper bound in the lines 1
and 4 of the definition of Predicate 5.5.3 in order to achieve this behaviour.

56

A convenient side-effect of the modified rule is that there is no risk of introducing annoying
ambiguities any more. Constraint 5.3.1 is no longer needed and thus, the grounding effort can be
reduced. Finally, the listing presented in Result 5.5.3 gives an idea of the resulting rules that are
generated for our introductory example in the grounding step of our third modelling approach.

1 1#count{
2 assigned(2,2,4),
3 assigned(2,2,3),
4 assigned(2,2,2),
5 assigned(2,2,1),
6 assigned(2,2,0)
7 }1.
8 ...

Result 5.5.3: Result of Predicate assigned for introductory example

Predicate timeslot_cover_value

1 timeslot_cover_value(Time, Value) :-
2 required(Time, Requirement),
3 Value = [
4 assigned(Start, Length, Amount) = Amount :
5 Start <= Time : Start + Length - 1 >= Time,
6 assigned(Start, Length, Amount) = Amount :
7 Time <= Start + Length - timeslots - 1
8],
9 Value >= Requirement - ucover_tolerance,

10 Value <= Requirement + ocover_tolerance.

Predicate 5.5.4: timeslot_cover_value

In order to provide some tool that can be employed to penalize shortage and excess, we make
use of Predicate 5.5.4 which calculates the total number of workers that are present at a specified
time slot. To minimize the effort for the grounder as much as possible, we do not allow results
where the limits introduced by Constant 5.5.1 and Constant 5.5.2 are exceeded.

The actual transformation of this idea into code depicted above represents this restriction in
lines 9 and 10. The important variable Value which holds the number of workers is calculated
in a similar manner than already discussed in the section dedicated to the version of the predicate
assigned used in the first two approaches (see Predicate 5.3.8), thus we avoid redundant
explanations for this part of the rule.

Due to the fact that this rule is evaluated for every time slot in the planning period, we can
immediately conclude that those time slots which do not have a corresponding instantiation of
the predicate timeslot_cover_value violate the restrictions that were defined by using
the constants ucover_tolerance, respectively ocover_tolerance.

57

Constraint: Remove Answer Set Candidates with Excessive Deviation

To remove all answer set candidates with the undesired attribute of having excessive deviation
from the defined requirements, by means of Constraint 5.5.1 we define a new rule that removes
all answer set candidates where there exists at least one time slot that has no associated instance
of predicate timeslot_cover_value.

1 :- required(Time, _),
2 0 { timeslot_cover_value(Time, _) } 0.

Constraint 5.5.1: Remove answer set candidates with excessive deviance

Line 1 ensures that the rule is evaluated for every time slot where a requirement has been
defined. The second line of code presented above matches all those time slots where exactly zero
instances of predicate timeslot_cover_value can be found within the inspected answer
set candidate. With this knowledge we can convince ourselves that the rule actually meets our
intention. As we can see, Constraint 5.5.1 is indeed the only constraint that is used in the context
of the third modelling approach, since our implementation of the general Shift Design Problem
with given maximum deviation limits does not need any further restrictions.

Optimization

After we have successfully removed all answer set candidates which do no correspond to the
specified restrictions, we still have to find the optimal answer set(s) to solve the general Shift
Design Problem. Obviously, the optimal solution(s) can only be found in situations where some
objective measure for the quality of answer sets is defined. With the following three optimization
statements we empower the end-user of our third modelling approach to configure this measure
flexibly with almost no effort.

Optimization: Minimize Shift Count

In our first optimization criterion we define the fitness value of an answer set with respect to the
number of shifts used. In Optimization 5.5.1 this fitness value is defined in the following way:
Each instantiation of predicate selected_shift is counted as value 1 with the weight 1 and
then the overall sum is taken as fitness value. This means, that Optimization 5.5.1 would lead
to the result ‘3@1’ for the optimal answer set of our introductory example, since there are three
selected shifts.

Of course, the end-user can also choose completely different values for the weight or the
formula that is taken as addend. The effects of these changes will be discussed later on in this
section.

1 #minimize [selected_shift(_, _) = 1 @ 1].

Optimization 5.5.1: Minimize shift count

58

Optimization: Minimize Overall Deviation

The overall goal of the Shift Design Problem also includes that the absolute deviation from
the requirements is minimized. In our introductory example we have specified that we use
equal weights for all optimization criteria, but this does not necessarily hold for every end-user’s
needs and so we decided to split up this optimization into two rules: One criterion is used for
minimizing the shortage and the other one takes care of time slots where to many workers are
present.

In Optimization 5.5.2 we can see a more complex use of the formula that can be used as
addend in line 2. By definition, the term shortage describes the fact that the number a of available
workers at some point in time is smaller the the number r of employees required at this time slot,
therefore the difference between a and r is negative. This difference is used as addend for the
fitness value and the weight is again set to value 1. Since all addends are negative, we have to
use the keyword #maximize so that 0 is indeed the optimal value and not the worst. Indeed,
we could also have swapped the parts of the formula so that the addends remain positive, but
it does not make any difference in terms of performance and so we could present an additional
keyword of the input language for the grounder gringo.

1 #maximize [
2 timeslot_cover_value(Time, Value) =
3 (Value - Requirement) @ 1 :
4 required(Time, Requirement) :
5 Value - Requirement < 0
6].

Optimization 5.5.2: Minimize shortage

Optimization 5.5.3 works in almost the same way as the rule for minimizing the overall
shortage, apart from the fact that here the addends are always positive and therefore the keyword
#minimize is the right choice for this rule.

1 #minimize [
2 timeslot_cover_value(Time, Value) =
3 (Value - Requirement) @ 1 :
4 required(Time, Requirement) :
5 Value - Requirement > 0
6].

Optimization 5.5.3: Minimize excess

The overall fitness value for an answer set is computed by adding all fitness values, where
an arbitrary value of higher weight is always more desirable than every value of smaller weight.
Under the assumption that we want to minimize each part of the overall fitness value, an answer
set with fitness ‘5@1, 1@2’ is treated as better than one with fitness ‘1@1, 2@2’, since ‘1@2’
is smaller than ‘2@2’.

59

Possible Modifications

One possible practical adjustment would be to double the value of the addends for an occurring
shortage. In this case a shortage is twice as important for the fitness value as an excess. Another
idea to refine the results that are generated by the the third program is to set the weights of the
rules for minimizing shortage and excess to a higher value. By doing so, the count of shifts is
irrelevant as soon as one answer set approximates the demand better than the current optimal
solution.

Resulting Answer Set for the Example Instance

After we have also finished presenting the last modelling approach, in Solution 5.5 we finally
provide the optimal answer set for our introductory example that was generated by using our
program. As before we omit all predicates that are contained in the every answer set for the sake
of brevity.

1 assigned(2,4,3). selected_shift(2,4).
2 assigned(4,4,2). selected_shift(4,4).
3 assigned(7,4,1). selected_shift(7,4).

Solution 5.5: Optimal answer set for introductory example

The fitness value of this answer set under the given configuration is ‘4@1’, since we have
a shortage of one worker at the point in time with index 5 and we use three shifts in total. The
mathematical representation of this statement looks like follows:

ShiftsFitness + ShortageFitness + ExcessFitness
=

3@1 + 1@1 + 0@1
=

4@1

60

CHAPTER 6
Evaluation of Empirical Results

In this chapter we present the empirical results obtained by our modelling approaches. We will
first introduce the different sets of problem instances we use for our experiments and afterwards
we will give an overview of the software and hardware environment we employed during the
evaluation. In the subsequent section we are going to present the results of our experiments
and provide a comparison between the solvers clasp and unclasp from the Potsdam Answer Set
Solving Collection. Afterwards we will have a look at previous results obtained by Di Gaspero
et al. in [13]. Finally, we will conclude this chapter by recapitulating the outcomes of our
experiments.

6.1 Problem Instances

The benchmark we used for this work consists of four different sets of problem instances
for the Shift Design Problem. Subsequently, we will briefly explain the basic structure and
the most important characteristics of each of these four sets. For interested readers and for
potential comparative analyses, all benchmark sets are publicly available under the address
http://www.dbai.tuwien.ac.at/proj/Rota/benchmarks.html. The data sets
were first described in [34,35]. Di Gaspero et al. [14] used the same instances for the evaluation
of hybrid approaches for the Shift Design Problem. During our research, all problem instances
were converted to an ASP-compatible format in the input language of gringo [21] and they are
available under the following address:

http://www.dbai.tuwien.ac.at/proj/Rota/DataSetASP[1-4].zip

DataSet1

The first data set contains 200 instances of the Shift Design Problem. The problem instances of
DataSet1 can be solved without any deviation, since they were generated by first constructing a
feasible assignment of workers to a selected number of shifts (also called the seed solution) and
then the resulting values were used as requirements for the respective instance.

61

DataSet2

The second data set contains 30 instances which are quite similar to those of the first data set,
but here the seed solution was constructed in such a way, that instances 1 to 10 should need at
least 12 shifts to be solved exactly. The instances 11 to 20 feature 16 shifts and the remaining
ten instances were constructed with a seed solution that uses 20 shifts. Di Gaspero et al. [13]
note, that their heuristic could also find better results for solving the problem instance in some
cases. For our computational evaluation, we will therefore use their results as starting point for
the comparison. This second data set was originally constructed with the intention to study the
relation between the number of shifts in the best known solutions and the computation time of
the programs.

DataSet3

Di Gaspero et al. [13] highlight that in cases where an exact solution exists, the behaviour of
heuristics could be biased in comparison to the general case where no solution without deviation
exists. To allow observations about the behaviour of solvers for the Shift Design Problem in
the presence of instances which cannot be solved exactly, the third data set was constructed. It
contains 30 instances that were constructed in the same way as the two previous data sets, but at
this time, invalid shifts were added during the construction process. These invalid shifts cannot
be selected during the computation of the optimal solution, so that it is unlikely that an instance
of the third data set can be solved without deviation. The instances 1 to 10 were constructed
with a seed of 12 shifts (valid and invalid ones) and also the remaining instances were generated
using the same scheme concerning the number of shifts as in the second data set.

DataSet4

The fourth set contains three advanced problem instances, where the first one is a real-world
example that can be used to compare the performance of the programs between finding the
optimal solution for real-world problems and solving randomly generated instances. The second
instance is almost identical to the fifth one in DataSet3, but the length of a timeslot is halfed. In
this way, the second instance can be used to investigate the impact of increasing the granularity
of the segmentation of the planning horizon. The same holds for the third instance, but here the
requirements are doubled instead of the number of time slots.

6.2 Experimental Setting

The experiments in this work were designed to evaluate the following performance parameters
of our modelling approaches for the Shift Design Problem presented in the previous chapter:

1. Time needed to reach the best known solution

2. Objective value obtained within the execution time

62

For computing the objective value of the second parameter we use the same formulation as
starting point as it was used by Di Gaspero in [13] to ensure that our results are comparable. The
formula used by Di Gaspero et al. to calculate the fitness value of a given solution consists of
three components, namely F1 (excess), F2 (shortage) and F3 (number of shifts). The first two
components are computed by multiplying the total number of workers in excess/shortage with
the length of a single time slot in minutes. The value of F3 is multiplied with the length of a time
slot in minutes, so that the penalty of each shift is equivalent to one worker in excess/shortage
for one time slot.

One goal of this work is to investigate, how suitable the programming paradigm of ASP is
for solving the Shift Design Problem. Therefore we will compare the solutions generated by our
modelling approaches for DataSet1 and DataSet3 with the results that were obtained in [13].

The following two tables describe the most important parts of the system configuration that
was used to run our experiments. Although the processor of our testing system was capable of
multi-threading, we used the single-threaded versions of the grounder and the solvers in order to
simplify comparative evaluations, since most of the state-of-the-art ASP-environments use only
one thread at a time.

Processor: Intel Xeon E5345 @ 2.33GHz
CPU-Cores: 8

Main Memory: 48 GB

Table 6.2.1: Hardware Configuration

Operating System: opensuse 11.4 (64bit)
Grounder: gringo 3.0.4 (single-threaded)
Solver 1: clasp 2.1.0 (single-threaded)
Solver 2: unclasp 0.1.0 (single-threaded)

Table 6.2.2: Software Configuration

In our experiments, the grounder gringo [21] as well as the solvers clasp [22] and unclasp [1]
were executed without changing any of the program parameters. The only exception is the
solver unclasp in combination with our first modelling approach. Since the first one of our
three programs does not use any optimization statements, to avoid problems we have to use
the parameter opt-uncore=no due to the fact that unclasp expects at least one optimization
criterion by default.

In the following sections of our work, we will use the names “Exact1” and “Exact2” and
“Flexible” for our three modelling approaches. Since an inherent expectation of the first two of
them is that a zero-deviation solution for a given problem instance exists, we use only the first
two data sets for the experimental evaluation of these modelling approaches.

63

6.3 Computational Results for DataSet1 and DataSet2

In this section we will present the results that were obtained during our benchmarks. The goal
of the first experiment was to investigate the performance of our implementations in terms of
the time needed to compute the best known solution for the problem instances of DataSet1 and
DataSet2. Due to the huge number of tests, we only run one trial per instance and program,
therefore the obtained results should only be takes as indicatory.

In Table 6.3.1 we present the overall time (including the time needed for the grounding task)
needed by our programs to compute the best known solution (given in the second column) for
the first 30 problem instances of DataSet1. The columns of the tables represent the combination
of the modelling approach and the solver used to obtain the respective results. The dashes
which can be found in some of the cells are used to highlight those experiments, where the best
known solution could not be found within a given time limit. For the two programs where no
deviation from the workforce requirements is allowed, namely Exact1 and Exact2, we granted
an execution time of one hour. For the modelling approach Flexible with a certain amount of
deviation allowed, we have limited the permitted execution time for each of the experiments
to 30 minutes. The decision to use a more restrictive time limit for the program Flexible is
caused by the assumption that in practical cases, different combinations of maximum positive
and negative deviation will be tested and therefore the time limit for each of the tests will be
likely smaller than the limit that is used for the those approaches, where only one test run is
needed to cover all possibilities. We reuse this configuration for all of our experiments.

The benchmark values in the last two columns of Table 6.3.1 were obtained by using 0
as maximum allowed positive/negative deviation in the number of workers per time slot. This
means that we still only allow exact solutions, since this can be assumed to be the general starting
point for using the third program.

Immediately we can see, that the performance in terms of computation time of the flexible
approach is much worse compared to the first two programs in most cases. We assume that this
is caused by the lack of constraints, since our three implementations are quite similar when in
all of them only exact solutions are allowed. The main difference between our second modelling
approach and the third one is the fact, that the latter uses three optimization criteria instead of
only one in the first case and the number of integrity constraints within the programs is reduced.
These circumstances lead to the handicap, that the efficiency of investigating the search space
decreases. Additionally, the two optimization criteria, which are used to minimize shortage and
excess in the third approach, significantly increase the complexity.

This point of view with respect to the differences of the three approaches allows us to give
an explanation, why the third program is sometimes remarkably faster in solving some of the
problem instances, like 6, 15 and 30. In these cases, additional experiments on the first two
data sets, which are omitted for brevity, showed that grounding is the harder part for these
instances while solving can be done quite fast. The accelerating effect of the additional rules,
like Constraint 5.3.1 and Constraint 5.3.3, cannot be exploited in these situations, since the effort
for grounding the above mentioned rules is higher than the amount of time saved due to their
characteristics.

64

Instance Best Exact1 Exact2 Flexible
clasp unclasp clasp unclasp clasp unclasp

1 480 2.71 2.84 2.72 2.83 3.75 3.61
2 300 22.21 23.48 22.50 22.48 — 988.01
3 600 2.54 2.61 2.57 2.61 141.62 180.78
4 450 35.78 35.78 86.97 26.75 — —
5 480 3.15 3.17 3.15 3.17 9.57 2.66
6 420 2.44 2.53 2.44 2.55 1.93 0.89
7 270 19.79 20.27 19.77 20.57 — —
8 150 130.15 159.56 154.01 158.99 — —
9 150 152.32 130.62 129.74 132.36 — —
10 330 23.35 23.80 23.88 23.19 — —
11 30 110.86 113.20 111.02 114.42 14.01 14.20
12 90 99.21 101.39 98.53 100.65 — 183.94
13 105 135.24 139.54 135.55 139.55 — —
14 195 212.04 2149.95 2320.62 — — —
15 180 2.39 2.40 2.40 2.40 0.21 0.23
16 225 241.37 568.48 251.17 169.23 — —
17 540 — 73.77 — 27.79 — —
18 720 3.61 3.66 3.61 3.84 — —
19 180 117.29 121.20 118.72 126.12 — —
20 540 3.25 3.45 3.25 3.36 4.00 1.36
21 120 146.64 146.93 144.82 151.48 — —
22 75 72.31 74.02 72.10 73.39 101.05 161.72
23 150 163.12 181.13 299.63 167.85 — —
24 480 3.20 3.27 3.21 3.36 6.87 3.34
25 480 27.51 40.11 52.11 26.38 — —
26 600 3.55 3.58 3.71 3.93 — 698.61
27 480 3.37 3.65 3.36 3.66 73.50 193.06
28 270 20.78 21.07 20.78 21.39 — —
29 360 22.20 22.65 22.55 23.10 — —
30 75 141.78 146.20 140.80 143.89 23.23 14.05

Table 6.3.1: Times (in seconds) to reach the best known solution for DataSet1

Our experiments show that especially for instances where a zero-deviation solution exists,
the results obtained using ASP are quite encouraging, since our specialized programs Exact1
and Exact2 almost always find the optimal solution for the given problem instances within the
allowed execution time of one hour.

Subsequently, Figure 6.3.1 depicts the percentage of the first 30 instances from the first data
set where the best known solution could be reached in relation to the allowed execution time
of the programs. In all following figures, the dashed line illustrates the results obtained by the
solver unclasp and the continuous line is used to present the results for clasp.

65

Execution Time

In
st

an
ce

s

0 5 10 15 20 25 30 35 40 45 50 55 60

0%
20

%
40

%
60

%
80

%
10

0%

(a) Exact1

Execution Time

In
st

an
ce

s

0 5 10 15 20 25 30 35 40 45 50 55 60

0%
20

%
40

%
60

%
80

%
10

0%

(b) Exact2

Execution Time

In
st

an
ce

s

0 5 10 15 20 25 30

0%
10

%
20

%
30

%
40

%
50

%

(c) Flexible

Figure 6.3.1: Solved instances per execution time (in minutes) for first 30 instances of DataSet1

Results for clasp are illustrated by the continuous line and the dashed line represents unclasp.

66

In Figure 6.3.1 we can observe that clasp performs slightly better in the first 35 minutes for
Exact1 on the one hand. On the other hand, unclasp is able to find all of the best known solutions
within the time limit of one hour, while clasp cannot find the optimal solution for one problem
instance. For our program Exact2, unclasp is superior, although both solvers cannot find the best
known solution for one of the instances. For the flexible modelling approach, unclasp seems to
provide better results at the first glance, but both solvers have problems to tame the enormous
search space, so that more than 50% of the instances cannot be solved within the time limit of
30 minutes.

Execution Time

In
st

an
ce

s

0 5 10 15 20 25 30 35 40 45 50 55 60

0%
20

%
40

%
60

%
80

%
10

0%

(a) Exact1

Execution Time

In
st

an
ce

s

0 5 10 15 20 25 30 35 40 45 50 55 60

0%
20

%
40

%
60

%
80

%
10

0%

(b) Exact2

Figure 6.3.2: Solved instances per execution time (in minutes) for complete DataSet1

Results for clasp are illustrated by the continuous line and the dashed line represents unclasp.

To confirm our statement about the encouraging characteristics of the first two modelling
approaches, Figure 6.3.2 finally depicts the experimental outcomes in terms of the percentage
of solved instances for the complete first data set in combination with the two aforementioned
programs.

67

DataSet1 consists of 200 problem instances which can be solved without deviation and by
using the whole set, we expect a more representative analysis of the logic programs Exact1
and Exact2. At this time, we decided to omit the benchmarks for the third approach, since we
know in advance that further improvements for its implementation are necessary to allow a fair
comparison between the two solvers.

Instance Best Exact1 Exact2 Flexible
clasp unclasp clasp unclasp clasp unclasp

1 720 3.46 3.70 3.52 3.57 871.53 202.67
2 720 3.56 3.69 3.64 3.61 — —
3 360 23.81 24.07 26.39 23.46 — —
4 360 22.11 22.54 22.27 22.42 — 1790.58
5 720 3.53 3.67 3.67 3.58 — 1285.70
6 360 22.57 23.65 22.51 22.78 — —
7 720 3.65 3.91 3.70 3.72 — —
8 180 165.42 165.44 263.03 156.28 — —
9 360 22.60 23.31 22.66 22.51 — —
10 660 3.84 4.18 3.97 3.86 — —
11 480 126.16 274.68 689.62 25.09 — —
12 900 3.96 4.16 4.90 4.16 — —
13 900 4.36 4.68 4.99 5.71 — —
14 840 3.68 3.92 4.05 3.91 — —
15 480 27.99 299.31 399.88 26.24 — —
16 240 195.10 179.00 176.23 169.93 — —
17 960 3.70 3.89 3.85 3.78 — —
18 840 3.87 4.14 4.81 4.72 — —
19 240 257.59 332.71 1092.72 213.50 — —
20 960 3.85 4.02 4.00 3.89 — —
21 600 70.72 96.69 142.89 28.03 — —
22 1080 4.06 4.61 5.16 5.18 — —
23 300 — — — 259.45 — —
24 600 136.38 73.15 324.96 33.13 — —
25 600 65.10 37.74 384.02 29.47 — —
26 1020 4.02 4.01 4.79 4.33 — —
27 300 — — — 1895.29 — —
28 300 — — — 181.34 — —
29 1140 3.91 4.45 4.77 4.23 — —
30 1020 5.19 13.95 7.11 5.56 — —

Table 6.3.2: Times (in seconds) to reach the best known solution for DataSet2

Table 6.3.2 illustrates the solution times for the second set of instances. Again, we can see
that the first two programs are significantly faster for instances which can be solved without
deviation in the majority of the cases, which conforms to the observations from the experiments
of the first data set.

68

Execution Time

In
st

an
ce

s

0 5 10 15 20 25 30 35 40 45 50 55 60

0%
20

%
40

%
60

%
80

%
10

0%

(a) Exact1

Execution Time

In
st

an
ce

s

0 5 10 15 20 25 30 35 40 45 50 55 60

0%
20

%
40

%
60

%
80

%
10

0%

(b) Exact2

Execution Time

In
st

an
ce

s

0 5 10 15 20 25 30

0%
2.

5%
5%

7.
5%

10
%

12
.5

%

(c) Flexible

Figure 6.3.3: Solved instances per execution time (in minutes) for complete DataSet2

Results for clasp are illustrated by the continuous line and the dashed line represents unclasp.

69

For the second data set, illustrated in Figure 6.3.3, the difference in terms of the percentage
of solved instances within a given time bound between the solvers clasp and unclasp is a bit
more distinctive. We can see that the increased complexity in terms of a higher count of shifts
is a source of hardness for clasp, while unclasp can again solve all instances with the program
Exact2. For the first of our ASP implementations, the performance of the two solvers in terms
of computation time is again similar, since we had to disable the promising uncore-algorithm,
as mentioned before. Unfortunately, clasp fails to compute the best known solution for 29 out
of 30 instances with our program Flexible and unclasp is only slightly better with three solved
instances in total.

An additional interesting finding of our experiments is the fact, that the solver unclasp is
often faster and finds more solutions within the time limits than clasp for the second one of our
modelling approaches. However, when having a look at the program Exact1, the solver clasp
appears to be performing a bit better. We will have a look at this behaviour also in the summary
at the end of this chapter.

Unfortunately, the third program cannot find the best known solution within the time limits
for most of the instances of DataSet2. We assume that the main problem of the program Flexible
is that due to the lack of implemented constraints, the heuristics within the solvers do not have
enough information to efficiently control the search procedure by learning new constraints and
exploiting the implied knowledge base.

6.4 Computational Results for DataSet3 and DataSet4

In this section we will analyze some instances of DataSet3 and DataSet4 where the time bound
for the solvers was set to 30 minutes and we present the best fitness value that could be obtained
by our program Flexible on these problem instances with an maximum negative deviation of
seven workers per time slot. Furthermore, we investigated the differences of the two solvers
clasp and unclasp with respect to the outcome of our experimental evaluation.

DataSet3 DataSet3 DataSet3 DataSet4
Excess Instance 4 Instance 14 Instance 24 Instance 2

0 — — — —
1 — — — 38010
2 27330 — — 32130
3 25200 30000 35400 32880
4 30630 31740 33180 32610
5 29100 33180 36300 34830
6 38370 33780 35760 33450
7 38760 35520 37080 37170

Table 6.4.1: Objective value obtained within 30 minutes for selected instances

70

Table 6.4.1 shows the fitness values of the solutions for the instances 4, 14 and 24 from the
third data set and of instance 2 from the fourth data set. They were obtained by using the third
modelling approach in combination with the solver clasp and the maximum allowed shortage
per time slot was set to 7. The best fitness value that could be found by our programs for each of
the instances is highlighted in boldface. Unfortunately, unclasp could not find any answer sets
within 30 minutes for any instance within DataSet3 and DataSet4 with the program Flexible.

We have chosen these four instances mentioned above as they provide a good starting point
for further investigations, since one can see that in some cases, the best fitness value found by
clasp is achieved with a slightly relaxed limit of allowed excess. During our further research,
analyses of the generated output of the solvers have shown that this is caused by the fact, that
the optimization process clearly cannot be started until the first answer set is found.

This also explains why unclasp cannot find any solution within 30 minutes, since the built-in
heuristics of this solver start with a very restrictive initial value for the internal bounds of the
optimization criteria (e.g. 0 for #minimize-statements) and then try to adapt these bounds
until the first answer set is found, while clasp starts from a relatively high initial objective value
and afterwards it tempts to decrease this value until the optimum is reached.

For the instances of the Shift Design Problem in DataSet3 and DataSet4, clasp produces
more answer sets. Especially with relaxed limits, the solver can compute the first answer set
faster and this explains, why sometimes the better results are obtained with these slightly relaxed
values for the maximum allowed deviation. The restrictive initial bounds of unclasp in general
provide more promising characteristics for the first two data sets, as we could see in the section
before.

In the following sections of this chapter we will have a look at the overall performance
characteristics of our programs by using existing results as starting point for a comparison in
order to find out, how competitive our implementations are.

6.5 Comparison with Previous Results

After investigating the results obtained by our programs in detail, in this section we will compare
them with experiments presented previously in the literature. To be more exact, we use results
provided by Di Gaspero et al. [13] for the comparative evaluation. Di Gaspero et al. investigated
the performance of their solvers for the Shift Design Problem with the first and the third data set
which were also used in our work.

We note that the differences in the execution times of our programs implemented using ASP
and their heuristics should be treated with caution, since a different system configuration was
used for the experiments in [13]. Nevertheless, a comparison allows us to study the strengths
and weaknesses of our approaches in terms of the solution quality.

71

In [13, 35], the following implementations were investigated:

• LS (Local Search):

A local-search procedure with multiple neighbourhood relations.

• GrMCMF (Greedy MCMF):

A greedy heuristic using a polynomial min-COST max-FLOW subroutine.

• GrMCMF+LS (Greedy MCMF + Local Search):

A hybrid approach, where the solutions generated by GrMCMF are used as starting points
for local search. By starting the local search procedure with an adequate initial solution,
the risk to get stuck in neighbourhoods with a solution quality far away from the opti-
mum decreases significantly. During their research, Di Gaspero et al. [13] identified this
approach to be superior to LS and GrMCMF as standalone applications.

For our comparative evaluation, we consider the results described in [13] and provide an
overview of two experiments. At first, we compare the time needed to reach the best known
solution for instances of the first data set. In the second experiment, we will have a look at the
third data set in order to check the quality of the generated results when no solution without
deviation from the actual staff demand exists. In the first case, we use the program Exact2 for
comparison with the existing solvers, since it performed best during our experiments. In the
second case, we have to use the program Flexible as this is the only program developed by us
which can deal with non-exact solutions.

Table 6.5.1 illustrates the results that were obtained by Di Gaspero et al. [13] by applying
their heuristics to the first 30 problem instances of DataSet1 in comparison with our second
modelling approach. The test results taken from the previous experiments in [13] are average
execution times over ten trials, while we used only one attempt. We stick to one trial since during
development it turned out that the standard deviation of the time needed to find the optimal
solution is negligible when the default parameters of the solvers are used. Again, the dash in
some cells of the table denotes the fact that the optimal solution could not be found in any of the
trials.

Apparently, the performance of the current versions of our modelling approaches for the
Shift Design Problem is often worse when compared to the results that have been obtained
in [13] using heuristic-based approaches. At this point, we should remind that the programs
in the paradigm of ASP still are primarily a tool for exhaustive search. The fact that these
programs have to investigate the whole search space clearly leads to a deterioration in terms of
performance, but this understanding should not make us forget the fact that for practical cases
the method is not robust enough at the moment. Especially when the number of time slots raises
above a certain level, the solution time is no longer competitive.

72

Instance Best GrMCMF LS GrMCMF+LS Exact2
[13] [13] [13] clasp unclasp

1 480 0.07 5.87 1.06 2.72 2.83
2 300 — 16.41 40.22 22.50 22.48
3 600 0.11 8.96 1.64 2.57 2.61
4 450 — 305.37 108.29 86.97 26.75
5 480 0.20 5.03 1.75 3.15 3.17
6 420 0.06 2.62 0.62 2.44 2.55
7 270 1.13 10.25 6.95 19.77 20.57
8 150 — 18.98 10.64 154.01 158.99
9 150 3.53 11.85 8.85 129.74 132.36
10 330 — 66.05 84.11 23.88 23.19
11 30 0.21 1.79 0.85 111.02 114.42
12 90 0.25 6.10 3.84 98.53 100.65
13 105 0.35 7.20 3.82 135.55 139.55
14 195 — 561.99 60.97 2320.62 —
15 180 0.04 0.89 0.40 2.40 2.40
16 225 — 198.50 151.78 251.17 169.23
17 540 — 380.72 288.42 — 27.79
18 720 1.71 7.72 7.32 3.61 3.84
19 180 — 38.33 31.12 118.72 126.12
20 540 0.11 15.24 1.69 3.25 3.36
21 120 0.28 6.19 2.18 144.82 151.48
22 75 0.65 3.67 3.80 72.10 73.39
23 150 6.19 19.16 22.15 299.63 167.85
24 480 0.11 2.85 1.44 3.21 3.36
25 480 — 503.40 — 52.11 26.38
26 600 1.50 9.59 9.20 3.71 3.93
27 480 0.07 4.02 2.34 3.36 3.66
28 270 2.24 9.25 3.81 20.78 21.39
29 360 — 20.59 10.00 22.55 23.10
30 75 0.26 2.78 1.95 140.80 143.89

Table 6.5.1: Times (in seconds) to reach the best known solution for 30 instances of DataSet1

Another important outcome of the first experiment is, that although the execution times of
our second approach are often not competitive with previous literature, some instances (e.g. 4,
10 and especially 25) can be solved with ASP very well. Therefore, we assume that ASP-based
implementations for the Shift Design Problem have a high potential to be investigated in more
detail in future work.

73

Instance GrMCMF LS GrMCMF+LS Flexible
[13] [13] [13] clasp unclasp

1 2445.00 9916.35 2386.80 — —
2 7672.59 9582.00 7691.40 30390 —
3 9582.14 12367.50 9597.00 26490 —
4 6634.40 8956.50 6681.60 25200 —
5 10053.75 10311.60 9996.00 23100 —
6 2082.17 4712.25 2076.75 10740 —
7 6075.00 12251.70 6087.00 — —
8 9023.46 10512.60 8860.50 27930 —
9 6039.18 11640.60 6036.90 — —
10 2968.95 4067.10 3002.40 13770 —
11 5511.43 7888.20 5490.90 34710 —
12 4231.96 11410.05 4171.20 — —
13 4669.50 10427.55 4662.00 — —
14 9616.55 10130.40 9660.60 25680 —
15 11448.90 13563.60 11445.00 34980 —
16 10785.00 11180.40 10734.00 22020 —
17 4746.56 11735.40 4729.05 — —
18 6769.41 9516.60 6692.40 23700 —
19 5183.16 10825.20 5157.45 — —
20 9153.90 12481.80 9174.90 33720 —
21 6072.86 14102.55 6053.55 — —
22 12932.31 16418.70 12870.30 39300 —
23 8384.24 9788.40 8390.40 24840 —
24 10545.00 11413.20 10417.80 29520 —
25 13204.80 14038.80 13252.20 33540 —
26 13152.73 17326.50 13117.80 — —
27 10084.94 10866.60 10081.20 — —
28 10641.21 11543.40 10603.80 26760 —
29 6799.41 12075.30 6690.00 23910 —
30 13770.68 14808.60 13723.80 32700 —

Table 6.5.2: Comparison of solution costs for the complete DataSet3

In Table 6.5.2, we present the best fitness value that could be obtained by using our modelling
approach Flexible. Although a direct comparison is not representative as in [13] only one second
of execution time was permitted while we used a time limit of 30 minutes, the table shows that
our third approach is not yet giving good results for practical instances of the Shift Design
Problem.

74

The data in Table 6.5.2 which was taken from [13] are average fitness values over 100 trials.
Our results, which are shown in the last two columns of the table, represent the minimum fitness
value over 64 test runs which were organized in such a way that the program Flexible was called
once with every possible combination out of ocover_limit and ucover_limit, both with
an integer domain from 0 to 7. Each of our trials was granted a maximum execution time of 30
minutes.

Unfortunately, unclasp could not compute any answer sets for the given problem instances,
since the first answer set found is assumed to be the global optimum and it is unlikely that it can
be computed within 30 minutes of execution time. The results generated using clasp which are
presented in the table are the best fitness values obtained over all 64 trials per instances.

6.6 Summary of the Experiments

As in almost any declarative language, the process of interpreting the obtained results is hardened
significantly, since the solvers are a kind of “black box”. This means that we were limited to
interpreting the debug output (obtained with the parameter verbose) in order to find out, what
happens inside the solvers on the way to the optimal solution. In cooperation with the University
of Potsdam, the place of development of the solvers used in this work, we concluded that the
main source of hardness for our programs are the nested aggregation rules in combination with
the optimization statements. The term “nested aggregation” is used by us to describe the fact
that for determining the fitness value, at first the difference between the number of assigned
workers and the requirements has to be calculated for each time slot and afterwards, the sum of
the absolute values of these differences has to be computed. Furthermore, at the moment the
solvers cannot infer that, for instance, selecting three workers for a time slot x automatically
implies selecting two workers for time slot x. This can prevent the internal heuristics from
working at highest efficiency. That the investigation of the performance of solvers in relation
to the provided instances is a hard task is also admitted by Di Gaspero et al.: In conclusion, a
characterization of the instances in terms of their features is not a simple issue for MSD1 and it
needs additional analysis on the instances in order to obtain a precise picture. [13, p. 27]

In our experimental evaluation, unclasp shows increased robustness against changes in the
structure of the problem instances for the first two modelling approaches, while clasp is superior
in most cases when the flexible program with allowed deviation is used (and indeed, the allowed
positive/negative deviation is greater than zero). According to the intuition we have obtained
during our experiments, especially this third approach needs additional attention in potential
further refinement iterations in order to improve its performance and robustness attributes.

In conclusion, unclasp seems to provide best performance when optimization is needed and
the corresponding criteria are based on simple predicates. The term “simple predicate” is used
by us to address those predicates, where no nested aggregation is used. In most other cases,
clasp is often performing at least equally well, as we could see during our experiments.

1Minimum Shift Design

75

CHAPTER 7
Conclusion and Future Work

7.1 Summary

Due to the increasing globalization and a potentially difficult market situation, an effective and
efficient organization of a company’s workforce is becoming more and more important. This
does not only hold for rapidly expanding multi-national corporations, but also for non-profit
organizations, like hospitals, it can be crucial to use a well-structured and adequate schedule for
the different groups of employees.

In our work, we investigated declarative logic programs for solving the Minimum Shift
Design Problem, an important problem from the broad area of workforce scheduling. For this
purpose, we proposed three modelling approaches, implemented in the paradigm of Answer
Set Programming. Furthermore, existing benchmark instances were used for the experimental
evaluation to allow a high degree of comparability with previous work.

In detail, the following parts were covered by this thesis:

• Modelling of real-world problems using Answer Set Programming

• Investigation of the performance characteristics of different solvers

• Comparing our modelling approaches with state-of-the-art algorithms

The first two of our approaches rely on the assumption that a perfect solution without any
deviation from the actual requirements is possible. Since this is not the case in general instances
of the Shift Design Problem, our third program is able to deal with those instances. For our work
we used a set of tools from the Potsdam Answer Set Solving Collection as software environment
to execute our programs.

77

During our experiments, both solvers (clasp and unclasp) we used were able to compute the
optimal solution for almost all problem instances that have a solution without deviation from the
requirements with the first two of our modelling approaches within one hour of execution time
and many of them could be solved within the first five minutes.

Despite the fact that many parts of our third program are based on the two implementations
mentioned beforehand, the time needed to find a solution with this approach is often much worse
than expected. We assume that the significant degradation in terms of performance is caused by
the higher number of optimization criteria in combination with a smaller amount of integrity
constraints, which drastically increases the complexity, respectively the size of the search space
that has to be investigated. This assumption was confirmed during our experimental evaluation
when we compared our our modelling approaches. Nevertheless, these findings indicate that the
performance of our third approach implemented in ASP is currently not competitive to previous
work in literature.

Although we cannot solve the general case of the Shift Design Problem satisfactorily at
the moment, we note that the solution methodology proposed in our first two programs could
be very useful for further development in future work. In conclusion, ASP as a declarative
programming language has been shown to be a elegant and highly maintainable approach for
solving the Shift Design Problem, but we have to admit that there is still work to do in order to
obtain a competitive and robust solver. Some ideas for improved implementations are provided
in the following section.

7.2 Future Work

Solving the practical case of the Shift Design Problem, where deviation from the staff demand
is allowed, still remains a challenge for ASP. Subsequently, we provide a small subset out of the
variety of possible extensions and improvements for our approaches which can be considered
for future work:

Refine model for general problem instances: The third approach has significant problems
to handle larger real-world instances. Therefore a more adequate approach, built without relying
too much on the first two programs, could be worth a try.

Increase scalability and robustness: At the moment, minimal changes to the requirements
can lead to significant differences in the execution time needed to find the optimal solution. For
instance, currently there is no direct way for the solvers to infer that selecting three workers
implies selecting two workers. A more adequate model could help to overcome this problem.

Combine ASP with heuristics: After a desirable quality of the solution has been obtained
via heuristics, like local search, ASP could be used to enumerate a set of schedules with equal
fitness values like the original solution, since this behaviour can be implemented very easily in
the paradigm of ASP.

78

The aforementioned idea of combining ASP with heuristics could be implemented by first
computing the fitness value of the initial solution generated by an existing solver for the Shift
Design Problem and afterwards, a logic program could be used to generate answer sets with
equal or even better characteristics by setting appropriate constraints.

Another idea is to generate the domain of possible values for the number of workers using
heuristics and then the exhaustive search strategy of ASP could be employed to find a global
optimum with the given configuration.

Ultimately, this could lead to a new generation of hybrid solvers for the Shift Design Problem
which combine the advantages of heuristics, such as the high robustness when facing huge search
spaces, with the benefits of ASP, as there is for instance the capability to perform exhaustive
search in an efficient and highly maintainable way.

79

APPENDIX A
ASP-Implementations for Shift Design

A.1 Program “Exact1”

1 #const timeslots =
2 days * timeslots_per_day.

3 day(0 .. days - 1).
4 timeslot(0 .. timeslots - 1).

5 change(0, Requirement1 - Requirement2) :-
6 required(0, Requirement1),
7 required(timeslots - 1, Requirement2).
8 change(Time, Requirement1 - Requirement2) :-
9 required(Time, Requirement1),

10 required(Time - 1, Requirement2).

11 length(MinLength .. MaxLength) :-
12 shift_length(_, Length, SlotsAfter, SlotsBefore),
13 MinLength = Length - SlotsBefore,
14 MaxLength = Length + SlotsAfter.

15 amount(0 .. MaxAmount) :-
16 MaxAmount = #max [required(_, Requirement) = Requirement].

17 min_requirement(Start, Length, Value) :-
18 possible_shift_start(_, Start, Length),
19 EndSlot = Start + Length - 1, EndSlot < timeslots,
20 Value = #min [
21 required(Start .. EndSlot, Requirement) = Requirement
22].

Program “Exact1”: Part 1

81

23 min_requirement(Start, Length, Value) :-
24 possible_shift_start(_, Start, Length),
25 EndSlot = Start + Length - 1, EndSlot >= timeslots,
26 Value = #min [
27 required(Start .. timeslots - 1, Requirement)
28 = Requirement,
29 required(0 .. EndSlot - timeslots, Requirement)
30 = Requirement
31].

32 possible_shift_start(Shift, Start, Length) :-
33 timeslot(Start), length(Length),
34 shift_start(Shift, Start1, SlotsAfter1, SlotsBefore1),
35 shift_length(Shift, Length1, SlotsAfter2, SlotsBefore2),
36 day(Day), Offset = Day * timeslots_per_day,
37 Start >= Start1 + Offset - SlotsBefore1,
38 Start <= Start1 + Offset + SlotsAfter1,
39 Length >= Length1 - SlotsBefore2,
40 Length <= Length + SlotsAfter2,
41 required(Start + Length - 1, Requirement1),
42 Requirement1 > 0.

43 possible_shift_start(Shift, Start, Length) :-
44 timeslot(Start), length(Length),
45 shift_start(Shift, Start1, SlotsAfter1, SlotsBefore1),
46 shift_length(Shift, Length1, SlotsAfter2, SlotsBefore2),
47 day(Day), Offset = Day * timeslots_per_day,
48 Start >= Start1 + Offset - SlotsBefore1,
49 Start <= Start1 + Offset + SlotsAfter1,
50 Length >= Length1 - SlotsBefore2,
51 Length <= Length + SlotsAfter2,
52 required(Start + Length - timeslots - 1, Requirement1),
53 Requirement1 > 0.

54 Requirement [
55 assigned(Start, Length, Amount) = Amount :
56 min_requirement(Start, Length, Requirement1) :
57 amount(Amount) :
58 Start <= Time : Start + Length - 1 >= Time :
59 Amount <= Requirement1,
60 assigned(Start, Length, Amount) = Amount :
61 min_requirement(Start, Length, Requirement1) :
62 amount(Amount) :
63 Start + Length - timeslots - 1 >= Time :
64 Amount <= Requirement1
65] Requirement :- required(Time, Requirement).

Program “Exact1”: Part 2

82

66 selected_shift(Start, Length) :-
67 possible_shift_start(Shift, Start1, Length), day(Day),
68 assigned(Start1, Length, Amount), timeslot(Start),
69 Start = Start1 - Day * timeslots_per_day,
70 Start < timeslots_per_day, Amount > 0.

71 :- assigned(Start, Length, Amount1),
72 assigned(Start, Length, Amount2),
73 Amount1 > Amount2.

74 :- change(Time, Change),
75 not Change [
76 assigned(Time, _, Amount) = Amount :
77 amount(Amount),
78 assigned(Start, Length, Amount) = -Amount :
79 amount(Amount) : Start + Length == Time,
80 assigned(Start, Length, Amount) = -Amount :
81 amount(Amount) : Start + Length - timeslots == Time
82] Change.

83 :- optimal_shift_count(OptimalCount),
84 not OptimalCount { selected_shift(_, _) } OptimalCount.

Program “Exact1”: Part 3

A.2 Program “Exact2”

1 #const timeslots =
2 days * timeslots_per_day.

3 day(0 .. days - 1).
4 timeslot(0 .. timeslots - 1).

5 change(0, Requirement1 - Requirement2) :-
6 required(0, Requirement1),
7 required(timeslots - 1, Requirement2).
8 change(Time, Requirement1 - Requirement2) :-
9 required(Time, Requirement1),

10 required(Time - 1, Requirement2).

11 length(MinLength .. MaxLength) :-
12 shift_length(_, Length, SlotsAfter, SlotsBefore),
13 MinLength = Length - SlotsBefore,
14 MaxLength = Length + SlotsAfter.

Program “Exact2”: Part 1

83

15 amount(0 .. MaxAmount) :-
16 MaxAmount = #max [required(_, Requirement) = Requirement].

17 min_requirement(Start, Length, Value) :-
18 possible_shift_start(_, Start, Length),
19 EndSlot = Start + Length - 1, EndSlot < timeslots,
20 Value = #min [
21 required(Start .. EndSlot, Requirement) = Requirement
22].

23 min_requirement(Start, Length, Value) :-
24 possible_shift_start(_, Start, Length),
25 EndSlot = Start + Length - 1, EndSlot >= timeslots,
26 Value = #min [
27 required(Start .. timeslots - 1, Requirement)
28 = Requirement,
29 required(0 .. EndSlot - timeslots, Requirement)
30 = Requirement
31].

32 possible_shift_start(Shift, Start, Length) :-
33 timeslot(Start), length(Length),
34 shift_start(Shift, Start1, SlotsAfter1, SlotsBefore1),
35 shift_length(Shift, Length1, SlotsAfter2, SlotsBefore2),
36 day(Day), Offset = Day * timeslots_per_day,
37 Start >= Start1 + Offset - SlotsBefore1,
38 Start <= Start1 + Offset + SlotsAfter1,
39 Length >= Length1 - SlotsBefore2,
40 Length <= Length + SlotsAfter2,
41 required(Start + Length - 1, Requirement1),
42 Requirement1 > 0.

43 possible_shift_start(Shift, Start, Length) :-
44 timeslot(Start), length(Length),
45 shift_start(Shift, Start1, SlotsAfter1, SlotsBefore1),
46 shift_length(Shift, Length1, SlotsAfter2, SlotsBefore2),
47 day(Day), Offset = Day * timeslots_per_day,
48 Start >= Start1 + Offset - SlotsBefore1,
49 Start <= Start1 + Offset + SlotsAfter1,
50 Length >= Length1 - SlotsBefore2,
51 Length <= Length + SlotsAfter2,
52 required(Start + Length - timeslots - 1, Requirement1),
53 Requirement1 > 0.

Program “Exact2”: Part 2

84

54 Requirement [
55 assigned(Start, Length, Amount) = Amount :
56 min_requirement(Start, Length, Requirement1) :
57 amount(Amount) :
58 Start <= Time : Start + Length - 1 >= Time :
59 Amount <= Requirement1,
60 assigned(Start, Length, Amount) = Amount :
61 min_requirement(Start, Length, Requirement1) :
62 amount(Amount) :
63 Start + Length - timeslots - 1 >= Time :
64 Amount <= Requirement1
65] Requirement :- required(Time, Requirement).

66 selected_shift(Start, Length) :-
67 possible_shift_start(Shift, Start1, Length), day(Day),
68 assigned(Start1, Length, Amount), timeslot(Start),
69 Start = Start1 - Day * timeslots_per_day,
70 Start < timeslots_per_day, Amount > 0.

71 :- assigned(Start, Length, Amount1),
72 assigned(Start, Length, Amount2),
73 Amount1 > Amount2.

74 :- change(Time, Change),
75 not Change [
76 assigned(Time, _, Amount) = Amount :
77 amount(Amount),
78 assigned(Start, Length, Amount) = -Amount :
79 amount(Amount) : Start + Length == Time,
80 assigned(Start, Length, Amount) = -Amount :
81 amount(Amount) : Start + Length - timeslots == Time
82] Change.

83 #minimize { selected_shift(_, _) }.

Program “Exact2”: Part 3

A.3 Program “Flexible”

1 #const timeslots =
2 days * timeslots_per_day.

3 day(0 .. days - 1).
4 timeslot(0 .. timeslots - 1).

Program “Flexible”: Part 1

85

5 length(MinLength .. MaxLength) :-
6 shift_length(_, Length, SlotsAfter, SlotsBefore),
7 MinLength = Length - SlotsBefore,
8 MaxLength = Length + SlotsAfter.

9 max_requirement(Start, Length, Value) :-
10 possible_shift_start(_, Start, Length),
11 EndSlot = Start + Length - 1, EndSlot < timeslots,
12 Value = #max [
13 required(Start .. EndSlot, Requirement) = Requirement
14].

15 max_requirement(Start, Length, Value) :-
16 possible_shift_start(_, Start, Length),
17 EndSlot = Start + Length - 1, EndSlot >= timeslots,
18 Value = #max [
19 required(Start .. timeslots - 1, Requirement)
20 = Requirement,
21 required(0 .. EndSlot - timeslots, Requirement)
22 = Requirement
23].

24 possible_shift_start(Shift, Start, Length) :-
25 timeslot(Start), length(Length),
26 shift_start(Shift, Start1, SlotsAfter1, SlotsBefore1),
27 shift_length(Shift, Length1, SlotsAfter2, SlotsBefore2),
28 day(Day), Offset = Day * timeslots_per_day,
29 Start >= Start1 + Offset - SlotsBefore1,
30 Start <= Start1 + Offset + SlotsAfter1,
31 Length >= Length1 - SlotsBefore2,
32 Length <= Length + SlotsAfter2.

33 amount(0 .. MaxAmount) :-
34 MaxAmount = #max [required(_, Requirement) = Requirement].

35 1 {
36 assigned(Start, Length, Amount) :
37 amount(Amount) : Amount <= MaxAmount
38 } 1 :-
39 max_requirement(Start, Length, MaxAmount).

40 selected_shift(Start, Length) :-
41 possible_shift_start(Shift, Start1, Length), day(Day),
42 assigned(Start1, Length, Amount), timeslot(Start),
43 Start = Start1 - Day * timeslots_per_day,
44 Start < timeslots_per_day, Amount > 0.

Program “Flexible”: Part 2

86

45 timeslot_cover_value(Time, Value) :-
46 required(Time, Requirement),
47 Value = [assigned(Start, Length, Amount) = Amount :
48 Start <= Time : Start + Length - 1 >= Time,
49 assigned(Start, Length, Amount) = Amount :
50 Time <= Start + Length - timeslots - 1],
51 Value >= Requirement - ucover_tolerance,
52 Value <= Requirement + ocover_tolerance.

53 :- required(Time, _),
54 0 { timeslot_cover_value(Time, _) } 0.

55 #maximize [
56 timeslot_cover_value(Time, Value)
57 = (Value - Requirement) @ 1 :
58 required(Time, Requirement) :
59 Value - Requirement < 0
60].

61 #minimize [
62 timeslot_cover_value(Time, Value)
63 = (Value - Requirement) @ 1 :
64 required(Time, Requirement) :
65 Value - Requirement > 0
66].

67 #minimize [selected_shift(_, _) = 1 @ 1].

Program “Flexible”: Part 3

87

Bibliography

[1] B. Andres, B. Kaufmann, O. Mattheis, and T. Schaub. Unsatisfiability-based optimization
in clasp. In A. Dovier and V. Santos Costa, editors, Technical Communications of the
Twenty-eighth International Conference on Logic Programming (ICLP’12), volume 17,
pages 212–221. Leibniz International Proceedings in Informatics (LIPIcs), 2012.

[2] T. Aykin. Optimal shift scheduling with multiple break windows. Management Science,
42(4), 1996.

[3] T. Aykin. A comparative evaluation of modeling approaches to the labor shift scheduling
problem. European Journal of Operational Research, 125(2):381–397, 2000.

[4] M. Balduccini, M. Gelfond, R. Watson, and M. Nogueira. The USA-Advisor: A Case
Study in Answer Set Planning. In T. Eiter, W. Faber, and M. Truszczyński, editors, Logic
Programming and Nonmotonic Reasoning, volume 2173 of Lecture Notes in Computer
Science, pages 439–442. Springer, 2001.

[5] C. Baral. Knowledge Representation, Reasoning, and Declarative Problem Solving. Cam-
bridge University Press, New York, United States, 2003.

[6] S.E. Bechtold and L.E. Jacobs. Implicit modeling of flexible break assignments in optimal
shift scheduling. Management Science, 36(11):1339–1351, 1990.

[7] G. Brewka, T. Eiter, and M. Truszczyński. Answer set programming at a glance. Commun.
ACM, 54(12):92–103, December 2011.

[8] M.J. Brusco and L.W. Jacobs. A simulated annealing approach to the cyclic staff-
scheduling problem. Naval Research Logistics (NRL), 40(1):69–84, 1993.

[9] F. Buccafurri, N. Leone, and P. Rullo. Strong and weak constraints in disjunctive datalog.
In J. Dix, U. Furbach, and A. Nerode, editors, Logic Programming And Nonmonotonic
Reasoning, volume 1265 of Lecture Notes in Computer Science, pages 2–17. Springer,
1997.

[10] M. Côté, B. Gendron, and L. Rousseau. Grammar-based integer programming models for
multiactivity shift scheduling. Management Science, 57(1):151–163, 2011.

89

[11] G.B. Dantzig. A comment on Eddie’s “traffic delays at toll booths”. Operations Research,
2(3):339–341, 1954.

[12] J. Van den Bergh, J. Beliën, P. De Bruecker, E. Demeulemeester, and L. De Boeck.
Personnel scheduling: A literature review. European Journal of Operational Research,
226(3):367–385, 2013.

[13] L. Di Gaspero, J. Gärtner, G. Kortsarz, N. Musliu, A. Schaerf, and W. Slany. The minimum
shift design problem. Annals of Operations Research, 155:79–105, 2007.

[14] L. Di Gaspero, J. Gärtner, N. Musliu, A. Schaerf, W. Schafhauser, and W. Slany. A hybrid
LS-CP solver for the shifts and breaks design problem. In Hybrid Metaheuristics, volume
6373 of Lecture Notes in Computer Science, pages 46–61. Springer, 2010.

[15] Y. Dimopoulos, B. Nebel, and J. Koehler. Encoding planning problems in nonmonotonic
logic programs. In S. Steel and R. Alami, editors, Recent Advances in AI Planning, volume
1348 of Lecture Notes in Computer Science, pages 169–181. Springer, 1997.

[16] T. Eiter and G. Gottlob. On the computational cost of disjunctive logic programming:
Propositional case. Annals of Mathematics and Artificial Intelligence, 15:289–323, 1995.

[17] A.T. Ernst, H. Jiang, M. Krishnamoorthy, and D. Sier. Staff scheduling and rostering: A
review of applications, methods and models. European Journal of Operational Research,
153(1):3–27, 2004.

[18] J. Gärtner, N. Musliu, and W. Slany. Rota: a research project on algorithms for workforce
scheduling and shift design optimization. AI Communications, 14(2):83–92, April 2001.

[19] M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and M. Schneider.
Potassco: The Potsdam answer set solving collection. AI Communications, 24(2):105–
124, 2011.

[20] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. Challenges in answer set solving.
In M. Balduccini and T.C. Son, editors, Logic Programming, Knowledge Representation,
and Nonmonotonic Reasoning, volume 6565 of Lecture Notes in Computer Science, pages
74–90. Springer, 2011.

[21] M. Gebser, R. Kaminski, A. König, and T. Schaub. Advances in gringo series 3. In
J. Delgrande and W. Faber, editors, Logic Programming and Nonmonotonic Reasoning,
volume 6645 of Lecture Notes in Artificial Intelligence, pages 345–351. Springer, 2011.

[22] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. Conflict-driven answer set solving.
In Proceedings of the Twentieth International Joint Conference on Artificial Intelligence
(IJCAI’07), pages 386–392. AAAI Press/The MIT Press, 2007.

[23] M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic Programming. In
Robert A. Kowalski and Kenneth Bowen, editors, Proceedings of the Fifth International
Conference on Logic Programming, pages 1070–1080, Cambridge, Massachusetts, United
States, 1988. The MIT Press.

90

[24] G. Grasso, S. Iiritano, N. Leone, V. Lio, F. Ricca, and F. Scalise. An ASP-Based System
for Team-Building in the Gioia-Tauro Seaport. In M. Carro and R. Peña, editors, Practical
Aspects of Declarative Languages, volume 5937 of Lecture Notes in Computer Science,
pages 40–42. Springer, 2010.

[25] G. Grasso, S. Iiritano, N. Leone, and F. Ricca. Some DLV Applications for Knowledge
Management. In E. Erdem, F. Lin, and T. Schaub, editors, Logic Programming and Non-
monotonic Reasoning, volume 5753 of Lecture Notes in Computer Science, pages 591–597.
Springer, 2009.

[26] W.B. Henderson and W.L. Berry. Heuristic methods for telephone operator shift schedul-
ing: An experimental analysis. Management Science, 22(12):1372–1380, 1976.

[27] H. Ishebabi, P. Mahr, C. Bobda, M. Gebser, and T. Schaub. Answer set versus integer linear
programming for automatic synthesis of multiprocessor systems from real-time parallel
programs. International Journal of Reconfigurable Computing, 2009:6:1–6:11, 2009.

[28] H.C. Lau and S.C. Lua. Efficient multi-skill crew rostering via constrained sets. In Pro-
ceedings of the Second ILOG Solver and Scheduler Users Conference, pages 383–396,
1997.

[29] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scarcello. The dlv
system for knowledge representation and reasoning. ACM Transactions on Computational
Logic, 7(3):499–562, July 2006.

[30] V. Lifschitz. Answer set programming and plan generation. Artificial Intelligence, 138(1–
2):39–54, 2002.

[31] V. Lifschitz. What is answer set programming? In D. Fox and C.P. Gomes, editors,
Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence (AAAI 2008),
pages 1594–1597. AAAI Press, 2008.

[32] V.W. Marek and M. Truszczyński. Stable Models and an Alternative Logic Programming
Paradigm. In K. Apt, V.W. Marek, M. Truszczyński, and D.S. Warren, editors, The Logic
Programming Paradigm – A 25-Year Perspective, pages 375–398. Springer, 1999.

[33] S.L. Moondra. An LP model for work force scheduling for banks. Bank Research,
7(4):299–301, 1976.

[34] N. Musliu. Intelligent Search Methods for Workforce Scheduling: New Ideas and Practical
Applications. PhD thesis, Technische Universität Wien, 2001.

[35] N. Musliu, A. Schaerf, and W. Slany. Local search for shift design. European Journal of
Operational Research, 153(1):51–64, 2004.

[36] I. Niemelä. Logic programs with stable model semantics as a constraint programming
paradigm. Annals of Mathematics and Artificial Intelligence, 25:241–273, 1999.

91

[37] M. Nogueira, M. Balduccini, M. Gelfond, R. Watson, and M. Barry. An a-prolog decision
support system for the space shuttle. In Practical Aspects of Declarative Languages, PADL
’01, pages 169–183, London, United Kingdom, 2001. Springer.

[38] T. Soininen and I. Niemelä. Developing a declarative rule language for applications in
product configuration. In Practical Aspects of Declarative Languages, PADL ’99, pages
305–319, London, United Kingdom, 1998. Springer.

[39] T. Syrjänen and I. Niemelä. The smodels system. In T. Eiter, W. Faber, and
M. Truszczyński, editors, Logic Programming and Nonmotonic Reasoning, volume 2173
of Lecture Notes in Computer Science, pages 434–438. Springer, 2001.

[40] G.M. Thompson. Improved implicit optimal modeling of the labor shift scheduling prob-
lem. Management Science, 41(4):595–607, 1995.

[41] G.M. Thompson. A simulated-annealing heuristic for shift scheduling using non-
continuously available employees. Computers & Operations Research, 23(3):275–288,
1996.

[42] E. Tsang and C. Voudouris. Fast local search and guided local search and their appli-
cation to british telecom’s workforce scheduling problem. Operations Research Letters,
20(3):119–127, 1997.

[43] T. Walsh. Exploiting constraints. In Inductive Logic Programming, volume 7207 of Lecture
Notes in Computer Science, pages 7–13. Springer, 2012.

92

	Introduction
	Motivation
	Aim of the Work
	Results of the Master's Thesis
	Structure of the Master's Thesis
	The Shift Design Problem
	Basic Concepts of Workforce Scheduling
	Problem Statement of the Shift Design Problem
	Answer Set Programming (ASP)
	Architecture
	Methodology
	Terminology
	Semantics
	Programming Environment
	Differences between clasp and unclasp
	Related Work
	The Shift Design Problem and Related Problems
	Applications based on ASP
	Solving the Shift Design Problem
	A Small Example
	Common Knowledge Base
	Exact Solution with Known Optimal Shift Count
	Exact Solution with Unknown Optimal Shift Count
	Flexible Solution with Unknown Optimal Shift Count

	Evaluation of Empirical Results
	Problem Instances
	Experimental Setting
	Computational Results for DataSet1 and DataSet2
	Computational Results for DataSet3 and DataSet4
	Comparison with Previous Results

	Summary of the Experiments
	Conclusion and Future Work
	Summary
	Future Work
	ASP-Implementations for Shift Design
	Program ``Exact1''
	Program ``Exact2''
	Program ``Flexible''

	Bibliography

