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Abstract

The work confronts a common challenge arising from genome-wide association
studies(GWAS). The ultimate goal of GWAS is to identify the true subset of single-
nucleotide polymorphisms(SNPs), specific locations within an organism’s genome,
strongly influencing a certain characteristic, such as a trait or disease. This prob-
lem has often been tackled by using methods such as hybrid correlation-based
search(hCBS), a modification of a method called stochastic search variable selec-
tion, as well as penalized regression methods namely lasso and ridge regression.
Due to their generality, these methods are not limited to genome analysis; in fact,
they are applicable to a variety of large scale regression problems.
Typical state of the art genome-wide association studies comprise hundreds of
thousands or even millions of SNPs in contrast with a much lower number of
genomes. The above mentioned approaches are capable of dealing with situations
where the number of variables (SNPs) exceeds the number of observations (phe-
notypes); also known as p≫n problems. The work at hand discusses modifications
of the methods mentioned above to improve performance in terms of variable se-
lection and prediction. Furthermore, all methods, as well as their modifications,
are evaluated and compared in settings of highly correlateddatasets, as is common
in genome-wide association studies.
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Kurzfassung

Die vorliegende Arbeit beschäftigt sich mit einer häufigen Problemstellung in ge-
nomweiten Assoziationsstudien (GWAS). Das Ziel dieser Studien ist es sogenann-
te Single-Nucleotid Polymorphismen (SNP), Stellen im Genomen von Organismen
die sich zwischen Individuen unterscheiden, zu entdecken,welche ein bestimmtes
Merkmal bzw. Charakteristik beeinflussen und prägen. DieseMerkmale werden
auch Phänotyp genannt. Die untersuchten Merkmale variieren je nach Interesse
und Forschungsfeld und reichen von gewissen Charakterzügen über das Auftreten
bestimmter Krankheiten bis hin zu evolutionären Aspekten.
Für diese Aufgabenstellung werden oftmals Methoden wie Hybrid-Correlation-
based Search(hCBS), Stochastic Search Variable Selectionoder Penalized-Regression
Methoden wie Lasso oder Ridge Regression verwendet. Diese Methoden können
aufgrund ihrer Generalität nicht nur für Genomanalysen verwendet werden, son-
dern auch für viele andere Large-Scale Regressionsprobleme.
Heutige genomweite Assoziationsstudien beinhalten hunderttausend bis hin zu
Millionen von Single-Nucleotide Polymorphismen im Gegensatz zu einer wesent-
lich geringeren Anzahl an sequenzierten Genomen. Die erwähnten Methoden sind
in der Lage mit dieser Bedingungen umzugehen, wobei die Anzahl an Variablen
(SNPs) die Anzahl der Beobachtungen (Phenotypen) bei weitem übersteigen, auch
bekannt als p≫n Probleme. Die Arbeit behandelt Verbesserungen und Modifika-
tionen der oben erwähnten Methoden um die Variablenselektion sowie die Vorher-
sage ungesehener Phänotypen zu verbessern. Des weiteren werden die Methoden,
sowie die vorgeschlagenen Verbesserungen, anhand von hochkorrelierten Daten-
sätzen, wie sie oft in genomweiten Assoziationsstudien auftreten, verglichen und
evaluiert.
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CHAPTER 1
Introduction

T
HE genome contains the blueprint of life for every organism. Understand-
ing the genome is currently among the prevailing challengesin twenty-
first century science. To understand the functionality and the mecha-

nisms a great number of genome-wide association studies (GWAS) are conducted;
whereby, the goal [17] is to detect variations in the genome and their effects on
certain phenotypes. Phenotypes under consideration rangefrom traits such as
differences in the appearance of individuals to certain characteristics and com-
plex diseases. Genome-wide association studies [48] identify these associations
by comparing individuals with different manifestations ofthe phenotype. For ex-
ample a group of individuals affected by a certain disease incontrast to a group
not affected or observed differences in their phenotype such as height, eye color or
blood groups just to name a few.
To this end [17], the genomes of the individuals are sequenced, using next-generation
sequencing [46], and are studied with respect to their ability to explain the phe-
notype; hence, to find patterns of association between the genetic variations se-
quenced and the phenotype. The most common genetic variations [11] are varia-
tions of single positions in the genome. These single point variations, also called
mutations [34], are changes of a single base pairs and are known as single-nucleotide
polymorphisms (SNPs). SNPs vary between individuals and are mostly respon-
sible for the variations in characteristics and appearanceamong individual. For
example, it is estimated [2,11], that the human genome contains approximately 10
million SNPs.
In most genome-wide association studies [23] many hundred thousands, up to one
million, single-nucleotide polymorphisms are considered. Variations [17] of an
SNP that appear statistically more frequently in a group of individuals with a cer-
tain phenotype are considered to influence this phenotype, hence these variations
are reported to be associated with that phenotype.
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This thesis aims at modifying and improving common methods in the field of
genome-wide association studies. The methods, as well as their modifications,
are compared and evaluated to alleviate the decision of which method to choose in
future studies.

The purpose of this chapter is to introduce the intention andthe idea of the thesis
and to give an overview of the scope and the structure. In Section 1.1 the purpose
of the work is outlined and gives a superficial introduction to the field of research.
Section 1.2 addresses the main problems and challenges arising in genome-wide
association studies; Section 1.3 defines the goals and purposes of the present work
and is followed by a definition of the contribution of the thesis to the research area
in Section 1.4. Finally, Section 1.5 outlines the structureof the remaining chapters.

1.1 Motivation

Within the last few decades, genetics has made great progress, due to advances
in methodology and technology. Recent results and successes [35] in genetics by
genome-wide association studies are a result of a germination period after the first
proposals of genome-wide approaches in the nineteen eighties. Moreover, a great
upsurge [46] is based on the development of high-throughputsequencing tech-
nologies, called next-generation sequencing(NGS), whichallow a great number
of individuals to be sequenced cost-effectively. As a consequence [48], enormous
amounts of data are produced and need to be analyzed, necessitating the develop-
ment [48] of new biostatistical methods.
It is considered [23,35] that not only a single or a few single-nucleotide polymor-
phisms have a large influence on a certain phenotype, but manySNPs with small
effects have a large influence together. Nevertheless, mostof the GWAS [23] are
carried out as single-SNP analysis, testing each SNP one at atime for association
to the phenotype under consideration, due to the computational demands arising
from more sophisticated approaches. However [39], a simultaneous analysis of
multiple SNPs is crucial for the identification of sophisticated and complex asso-
ciations between genetic and phenotypic variations.
Additionally, due to a phenomenon called linkage disequilibrium [34], single-
nucleotide polymorphisms can be partially highly correlated, which impedes the
identification of the phenotype-associated positions in the genome.
GWAS have contributed to the understandings in genetics. For example [17],in
human genetics there are already more than 30 SNPs known to be associated with
the onset of the autoimmune disease Crohn’s disease, around 20 SNPs associated
with type 2 diabetes and more than 40 SNPs associated with the height of individ-
uals. Many more are to be discovered.
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1.2 Problem description

The goal of genome-wide association studies [2] is to identify groups of SNPs that
vary systematically between individuals with certain phenotypes. State of the art
genome-wide association studies [23] comprise hundreds ofthousands, sometimes
millions of SNPs, in order to identify regions containing SNPs that affect the phe-
notype of interest. Due to the large number of SNPs used for state of the art studies,
a fundamental problem [2] is that patterns can simply arise by chance. Therefore,
many genotypes [35] have to be included into the study, to facilitate the identifica-
tion. With increases in dataset size, computational demands rise significantly. As
a consequence, many GWAS are carried out as single-SNP analysis [23], where
each SNP is tested separately for its association to the phenotype, to reduce the
computational burden. Finally, strong associations are interpreted as the SNP hav-
ing an influence on the phenotype. This approach is considered [11] as being too
simple to elucidate the complex architecture of the genome.Li et.al. [39] note that
single-SNP analysis has major drawbacks in identifying allcausal SNPs:

• Most phenotypes are believed to be polygenetic; that is, multiple genes in-
fluence a phenotype. Consequently single-SNP analyses onlydetect a small
proportion of the causal SNPs

• Genes may interact to produce a phenotype, known as epistatic effects [11],
which can not be detected by single-SNP analyses.

However, single-SNP analyses are faster [11] than more sophisticated approaches
and therefore often used for analysis in genome-wide association studies.
As mentioned before, the human genome contains approximately 10 million SNPs.
Depending on the study only a fraction [17] are included in the analysis with the
reason that many SNPs are highly correlated and it is therefore not necessary to
use all single-nucleotide polymorphisms in one study. Thisphenomenon is also
known as the linkage disequilibrium (LD) [34], where a combination of SNPs is
observed either more or less frequently than expected from their random forma-
tion.
This leads to the fact [17] that many single-nucleotide polymorphisms found to
be associated with a phenotype are unlikely to be the real causal variants in the
genome affecting the phenotype. Instead so called proxies or sentinels [17] are un-
veiled. According to Donnelly [17] a natural follow-up strategy is to include many
more of the correlated SNPs from the associated genomic region into fine-mapping
studies, where the causal SNPs ideally show a larger association than correlated
ones.
As a consequence, more sophisticated approaches [11] are needed to simultane-
ously analyze large numbers of SNPs, especially in the presence of high correla-
tion, where the number of SNPs usually far exceeds the numberof phenotypes,
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also known as p≫n problems.
Hybrid correlation based search is designed for the application to highly correlated
datasets especially in the case of p≫n; whereas, Stochastic search variable selec-
tion as well as Bayesian lasso and Bayesian ridge regressionhave already been
applied to GWAS datasets. All methods are able to perform multi-SNP analysis.

1.3 Goal

The goal of the present work is to improve and modify the common method hybrid
correlation-based search (hCBS), in terms of its ability toperform variable selec-
tion and prediction. Furthermore, the second ambition is tocompare and evaluate
hCBS, along with the modifications, in settings of highly correlated datasets with
Penalized regression methods such as Bayesian lasso and Bayesian ridge regres-
sion.
Conclusions drawn shall alleviate the decision of which method to employ in fu-
ture studies.

1.4 Contribution

Genome-wide association studies [17,35] have contributedgreatly to present knowl-
edge in genetics. Nevertheless, there are still many unsolved questions and much
knowledge remains to be unveiled. Therefore, even larger amounts of data need
to be analyzed and the methods applied need to be able to identify weak patterns
between genetic variations and the phenotypes. The work at hand addresses these
challenges; thus, the scientific contribution of this thesis is twofold:

• To improve hybrid correlation-based search in terms of:

– its ability to detect true positive variables; hence, identifying variables
(SNPs) influencing the outcome (phenotype)

– its ability to predict the outcome (phenotype), based on an unseen
dataset; and,

• to conduct a detailed comparison between the methods, with respect to vari-
able selection, prediction, as well as their computationalload.

This thesis considers quantitative trait loci (QTL) were two or more positions in
the genome influence a continuous phenotypes. Other phenotypes such as binary
or ordinal traits are beyond the scope of this thesis.
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1.5 Outline

The thesis is structured into several main chapters; the following Chapter 2 han-
dling related topics and papers for further reading, similar methods and approaches,
as well as comparative works. Subsequently, Chapter 3 explains the biological and
genetic background relevant for understanding the purposeof genome-wide asso-
ciation studies. In Chapter 4, common statistical frameworks and methodologies
such as hierarchical models and Markov chain Monte Carlo methods are discussed
relevant to the methods and the modifications in Chapter 5. The latter includes
the hybrid correlation-based search and its modifications as well as Bayesian lasso
and Bayesian ridge regression. Chapter 6 compares the results obtained by ap-
plying the methods outlined in Chapter 5 to simulated and real datasets. Finally,
Chapter 7 presents a discussion of the methods with respect to their application in
genome-wide association studies.
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CHAPTER 2
Related Work

T
HE chapter contains references for further reading and similar topics ad-
dressed by other works. Stochastic Search Variable Selection (SSVS) is
introduced by George and McCulloch [21] to facilitate the identification

of a subset of variables in a multiple regression problem. The method was encour-
aged by the fact, that model comparisons using Akaike or Bayesian Information
Criterion can be prohibitive whenp is large. To explore the most probable com-
binations of the subset SSVS uses a Gibbs sampler, as explained in Section 4.2.2.
Therefore, a Bayes hierarchical setup is used to model the regression coefficients
βi as having come from a mixture of two Normal distributions. The first Normal
distribution is widespread; whereas, the second normal distribution yields a small
variance and is clustered around zero. In every iteration ofthe Gibbs sampler the
regression coefficients are assigned as either having come from the widespread
normal distribution or else being clustered around zero. The variables assigned to
the widespread distribution are considered to be included in the subset of relevant
variablesXγ . Therefore, the latent variableγ, indicating whether predictorβi is
included by settingγi = 1 and excluded byγi = 0 respectively, is used.
Chipman [12] incorporates relationships between variables allowing to model in-
teractions, polynomial effects, dummy variables for categorical factors and restric-
tions to model sizes into the SSVS again making use of a Gibbs sampler.
George and McCulloch [22] extends SSVS by using conjugate priors and setting
variables not included inγ exactly toγi = 0, thereby improving computational
speed. Moreover, a Metropolis-Hastings algorithm, as explained in Section 4.2.1,
is used instead of the Gibbs sampler.
An extension to the multivariate case was proposed by Brownet.al. [7, 8] using
different priors.
O’Hara et.al. [27] give a detailed overview over various approaches of Bayesian
variable selection including a discussion of which method to prefer as well as their
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implementations. Fridley [20] addresses various approaches for Bayesian model
and Bayesian variable selection including SSVS, Bayesian Model averaging and
reversible jump MCMC on genomic datasets. A comprehensive introduction to
Bayesian variable selection is given by Guanet.al. [23] with focus on large-scale
regression and its specific application in genome-wide association studies. More-
over, novel priors are introduced on hyperparameters such as the subset size and
the variance of included variables. Lianget.al. [41] review various methods and
approaches for analyzing highly correlated datasets. Baragatti and Pommeret [3]
propose a novel method for variable selection in probit regression introducing an
improved g-prior for the regression coefficients to overcome limitations in the case
of p≫n and strong multicollinearity making use of a Metropolis-within-Gibbs
sampler.

SSVS has been applied in a number of papers to genomic datasets. An excerpt of
papers, from the substantial list of works using SSVS, includes Skarmanet.al. [52]
comparing SSVS and a model selection approach using ANOVA and the Akaike
information criterion, Chenet.al. [11] comparing different methods to incorporate
epistatic effects1, Yanget.al. [64] using a two-step approach combining Bayesian
probit regression and SSVS, Srivastavaet.al. [54] applying both the Lasso and
SSVS to identify genes influencing rheumatoid arthritis. First approaches using
SSVS for genomic datasets are made by Yi [66] and Yiet.al. [65] using SSVS
for gene mapping problems with quantitative trait loci and Meuwissenet.al. [47]
making use of linkage disequilibrium in SSVS.

Ridge regression has first been introduced by Hoerl and Kennard [33] to improve
prediction in the face of multicollinearity. Subsequently, the least absolute shrink-
age and selection operator (Lasso) is introduced by Tibshirani [59] to enable subset
selection and actively exclude variables. Various other penalized regression meth-
ods exists beside ridge regression and lasso for example group lasso [68], the fused
lasso [60] and the elastic net [30].
Park and Casella [49] introduce a Bayesian formulation of the lasso where the
lasso estimate is obtained as a posterior mode of the hierarchical model explored
by Gibbs sampling. Variable selection is guided by the use ofthe interval estimates
obtained from the posterior distribution. Hans [24] extends the Bayesian lasso by
focusing on the prediction and introduces a slightly different model again making
use of Gibbs sampling.
The Bayesian lasso is extended to a more general formulationby Kyunget.al. [37]
to suit other penalized regression methods such as the fusedlasso, group lasso and
the elastic net and a discussion about problem arising from standard errors in a

1Epistasis is the phenomenon were the functionality of a geneand its effects is influenced and
regulated by other genes.
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non-bayesian formulation is given. A slightly different Bayesian elastic net is pro-
posed by Li and Lin [40] as well as by Hans [26] using differentpriors.
Hans [25] also proposes a novel of Bayesian lasso able to actively perform variable
selection making use of a similar approach as in SSVS.

Bayesian penalized regression is applied to genomic datasets by Yi and Xu [67]
along with other Bayesian hierarchical models to identify asubset of quantitative
trait loci. Caiet.al. [9] proposes a fast empirical Bayesian lasso and applies is to
genomic datasets for the identification of multiple quantitative trait loci; whereas,
Clevelandet.al. [13] compares Bayesian lasso to other methods for prediction of
breeding values. A two-step approach is proposed by Liet.al. [39] first reduc-
ing the number of SNPs and subsequently applying Bayesian lasso to identify
associated SNPs. Harriset.al. [28] compare the accuracy of predictions made
by Bayesian lasso and Bayesian ridge regression using different SNP densities.
Finally, Silva et.al. [51] discusses the accuracy of Bayesian lasso to predict the
breeding value with respect to the choice of the shrinkage parameterλ.

9





CHAPTER 3
Genetic Background

T
HE purpose of this chapter is to clarify the main principles of genetics nec-
essary to convey the idea of genome-wide association studies. Therefore,
certain fundamentals of genetics and biochemistry are outlined to aid in

the understanding of the underlying biology of the analysisof genomic data, ob-
tained by sequencing genomes. The genetic information and its relevance to organ-
isms are discussed as well as the reason for the great interest in understanding the
genome in many areas of research. Due to the complexity of thedeoxyribonucleic
acid (DNA) and the genetic information contained therein, adetailed overview
lies beyond the scope of this thesis and can be found in various books, for example
Molekulare Genetik [34] by Rolf Knippers, Statistical Methods in Genetic Epi-
demiology by Duncan c. Thomas [58], especially Chapter 2, aswell as Principles
of Biochemistry [38] by Nelson and Cox.

The outline of this Chapter is as follows:
Section 3.1 gives a superficial explanation of the connection between the genome
and the phenotypes and traits of individuals as well as the effects of changes in the
genome. Subsequently, Section 3.2 explains the biologicaland biochemical back-
ground of the genome; whereas, in Section 3.3, together withSubsection 3.3.1 and
Subsection 3.3.2, the assembly of proteins from the DNA is described. Section 3.4
addresses the reasons for genetic variability in populations coming from reproduc-
tion in Subsection 3.4.1 and mutations in Subsection 3.4.2.The Chapter concludes
with the analysis of genomes and the expectations for discoveries as well as a brief
introduction of single-SNP analysis in Section 3.6.

11



3.1 Introduction

Most characteristics of an organism are determined by its genome [34], which basi-
cally functions as a construction plan. Certain regions in the DNA, better known as
genes, are used as the basis for the assembly of molecules calledproteins which
undertake various tasks in the organism and consequently, are responsible for a
great number of processes in the organism. A change in the construction plan [34],
during cell division reproduction, or another occurrence can lead to a change in the
functionality of proteins, which, as a consequence, can lead to an alteration of an
organism’s traits. Researchers have great interest in determining the influence of
genes on an organism’s characteristics and in unveiling theimpacts of changes in
the DNA.
The following Sections gives a more detailed introduction to this process and out-
lines why the analysis of certain changes in the genome is used in GWAS.

3.2 DNA

The DNA [34] is a long molecule that is the source of genetic information in every
living organism1. DNA is also referred to asgenomeand is mostly used to describe
the entirety of an organism’s hereditary information; i.e., the genetic information
inherited from its ancestors. As can be seen in Figure 3.1, DNA has the form of a
double helix with connections between the two outer boundaries, namedstrands.
These two strands of the double helix are called thebackboneand the connections
are termedbase pairs. Every base pair consists of two connected molecules each
attached to one strand termednucleotide [34]. Four different nucleotides exist
namely Guanine (G), Cytosine (C), Adenosine (A) and Thymine(T). The only
connection possible [38] is between Adenosine and Thymine and Guanine and
Cytosine and vice versa; therefore, the sequence of the nucleotides on the two
strands is said to becomplementary. By knowing the sequence of one strand, the
sequence of the complementary strand can easily be inferred.
The sequence of the base pairs attached to the backbone alongthe DNA encodes
the genetic information and consequently determines the characteristics and traits
of the individual. Accordingly, the genetic sequence in Figure 3.1 is:

TGAGACTCTGAGAC

Thereby giving the complementary strand the following sequence:

ACTCTGAGACTCTG

1Except for some special forms of viruses called RNA-Viruses
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Figure 3.1: A simplified illustration of a short piece of double-stranded DNA -
[from commons.wikimedia.org]

This sequence depicts how the sequence of a genome could look. Nevertheless, as
seen in Table 3.1, real genomes comprise millions of base pairs, the number de-
pending on the species as well as the affiliation to the group of Eukaryotes2 or
Prokaryotes3.

Organism Size of genome
Number of
chromosomes

Estimated number
of genes

Yeast 12 Millions 16 6 240
Common Fruit Fly 97 Millions 6 18 240
Maize/Corn 2 400 Millions 10 30 - 40 000
Mouse 3 000 Millions 20 25 000
Human 3 000 Millions 23 25 000

Table 3.1: The table shows genome sizes, the number of the haploid chromosomes
and the number of estimated genes in various species.

Table 3.1 depicts the haploid genome of the organisms, due tothe fact, that differ-
ent organisms can have a varying number of chromosome sets4.

2Any organisms having a complex cellular structure containing specialized organelles as well
as a nucleus. Eukaryotes include all multicellular organisms, such as animals, plants and fungi.

3Prokaryotes are organisms, whose cells lack a cell nucleus as well as other organelles. Their
DNA is present in the cell without being surrounded by a membrane.

4Most eukaryotic cells contain two sets of their genome (two sets of chromosomes), inherited
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As stated in Section 3.1, the information in the genome is used to assemble macro-
molecule called proteins [34], which in turn undertake a great number of important
tasks in the organism. Nevertheless, most of the information contained in the DNA
is not used for the production of proteins. In fact, as depicted in Figure 3.2, only
genes are used to assemble proteins. In many eukaryotic cells [34] only 5 - 10%
of the DNA contains regions coding a protein. The remaining DNA contains many
repetitive areas with either regulatory effects on the genes or unknown genetic
function and is referred to asnoncoding DNA [34]. New findings [18] indicate
that over 80% of the noncoding DNA serves some biochemical purpose.

Figure 3.2: A gene, a protein encoding region on a chromosome - [from
wikipedia.org]

3.3 Proteins

Proteins [38], large macromolecules present in every cell,are composed of a se-
quence of many amino acids and are responsible for many tasks, such as structure
of the cells, transport of metabolites, which are intermediate substances and prod-

from the parents. A double set of chromosomes is referred to as diploid set and a single set is
said to behaploid, which is depicted in Table 3.1. For example, the human genome consists of
23 chromosomes. This means, the genome is present twice in each cell, one set inherited from the
mother and the second one from the father. This results a total of 46 chromosomes.
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ucts of metabolism5, catalysis of chemical reactions and detection of semiochem-
icals6. The function of proteins [38] is determined mainly by theirshape, which
is in turn determined by the sequence of amino acids of which the proteins are as-
sembled. As discussed in Section 3.3.2 the sequence of aminoacids is, with some
restrictions, encoded in the sequence of base pairs in the DNA.
The necessary steps from the DNA-sequence to the assembled protein can be seen
in Figure 3.3 and are outlined in the following Sections.

Figure 3.3: Overview of the assembly of proteins - [from wikipedia.org]

3.3.1 Transcription

The first step during the assembly of a protein is calledtranscription [34] and
includes duplicating the genetic information from the DNA.
Therefore, the region of the DNA containing the genetic codefor the protein to
be produced, is unfolded and the two strands are separated, which is depicted in
Figure 3.3. The sense strand is then used to copy the information of the gene onto
a temporary transport molecule called ribonucleic acid (RNA), for the transport to
the place in the cell where the actual proteins are then assembled.
During the process of transcription a molecule called DNA-dependent RNA poly-

5Metabolism is referred to as all the necessary chemical reaction to maintain life (growth, cell
division, maintain structures and respond to the environment)

6Semiochemicals are chemical substances carrying information within or between organisms.
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merase, or RNA polymerase for short, binds to the beginning of the gene, by iden-
tifying the start position, also known as thepromoter [34]. Subsequently, the
genetic sequence is copied to a new RNA strand by using the same base pairing
principles as between the two strands of the DNA. However [34], instead of the
nucleotide Thymine (T) the nucleotide Uracil (U) is used. Furthermore, the struc-
ture of the RNA differs slightly from a DNA strand. Note that the sequence present
on the RNA corresponds to that of the antisense DNA strand, which has not been
used to duplicate the genetic information from the DNA. The genetic information
is copied to the RNA until a stop sequence, also known as theterminator [34],
is encountered. The result from the process is calledprecursor-messenger RNA
(Pre-mRNA) [34].
The pre-mRNA, as well as the gene itself, contains coding andnon-coding re-
gions [34], calledexonsand introns. As it can be seen from Figure 3.3.1 the
introns, the non-coding regions, are cut out of the immaturePre-mRNA, during a
procedure calledsplicing7 [34]. The result is then calledmature mRNA or simply
mRNA and is the basis for the assembly of the final protein. As shownin Table
3.1, not only the size of genomes and the number of genes determine the complex-
ity of an organism. A phenomenon calledalternative splicing [58] is responsible
for one gene encoding three to four different mRNAs and resulting in three or four
different proteins. Manny proteins in humans [34] are for example assembled by
alternative splicing, whereby, depending on the protein tobe produced, different
regions of the immature Pre-mRNA are cut out during splicing.

Figure 3.4: Splicing of a immature mRNA molecule by cutting out introns -[from
wikipedia.org]

3.3.2 Translation

During the second main step, calledtranslation [34], the previously assembled
mRNA is translated into the sequence of amino acids, which finally forms the pro-
tein.

7In Prokaryotes usually no splicing takes place
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Figure 3.5: mRNA molecule and its translation into tRNA codons - [from
wikipedia.org]

The translation is carried out on large molecules calledribosomes, which lie out-
side of the nucleus. Since transcription takes place in the nucleus8 where the DNA
is present, the mRNA first has to be channeled outside the nucleus. The mRNA is
then bound to a ribosome and translation begins, as shown in Figure 3.3.
During translation [34], each amino acid is determined by three consecutive nu-
cleotides on the mRNA, called acodon or triplet , as can be seen in Figure 3.5.
Based on the fact that an mRNA transcript contains four different nucleotides
(A,U,C and G),43 = 64 different amino acids can be coded by a nucleotide-
triplet. Nevertheless, only 20 different amino acids [34],which are used for the
assembly of proteins, exist, which leads to the conclusion,that some amino acids
are encoded by more than one triplet of mRNA. Table 3.2 presents thegenetic
code [38], which is the convention on how the triplets are translated into amino
acids, valid for every organism known.

8Prokaryotes do not have a nucleus and consequently the DNA ispresent in the cytoplasm,
which is the substance inside the cell containing and holding all the cell’s internal organelles. The
transcription as well as the translation occurs in the cytoplasm.
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Note that three codons represent the termination of the assembly of the protein.
Whenever they are encountered in the sequence of mRNA, the ribosome stops the
composition of the amino acid sequence. Correspondingly, the codon AUG serves
as an initiation site. Thus, at the first appearance of AUG thetranslation of the
protein is initiated.
In order to place the correct amino acid onto a correspondingtriplet of nucleotides
on the mRNA, another molecule, thetransfer-RNA (tRNA) [38], is needed, as
depicted in Figure 3.3. The tRNA is an adapter molecule, consisting of two main
features. First, each tRNA molecule contains three nucleotides, which are com-
plementary to the sequence encoded in the RNA. Second, the tRNA binds the
corresponding amino acid to the sequence encoded in the tRNA, following the ge-
netic code from Table 3.2. Consequently, a tRNA molecule that binds the amino
acid ’glutamic acid’ contains either the anticodon CUC or CUU and is able to bind
to the mRNA sequence GAG or GAA. For example, as it can be seen in Figure
3.5, this tRNA would bind to the third codon and the ribosome and would add a
glutamic acid to the chain of amino acids˙
During translation each tRNA molecule binds to the appropriate codon on the
mRNA in sequence. The amino acid which is connected to the current tRNA
molecule, is then added to the end of the chain of the amino acids already pro-
cessed. The addition of the amino acid is carried out by ribosomes, as depicted in
Figure 3.3
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1st base 2nd base 3rd base

U C A G

U

UUU
(Phe/F Phenylalanine)

UCU

(Ser/S) Serine

UAU
(Tyr/Y) Tyrosine

UGU
(Cys/C) Cysteine

U
UUC UCC UAC UGC C
UUA

(Leu/L) Leucine

UCA UAA Stop (Ochre) UGA Stop (Opal) A
UUG UCG UAG Stop (Amber) UGG (Trp/W) Tryptophan G

C

CUU CCU

(Pro/P) Proline

CAU
(His/H) Histidine

CGU

(Arg/R) Arginine

U
CUC CCC CAC CGC C
CUA CCA CAA

(Gln/Q) Glutamine
CGA A

CUG CCG CAG CGG G

A

AUU

(Ile/I) Isoleucine

ACU

(Thr/T) Threonine

AAU
(Asn/N) Asparagine

AGU
(Ser/S) Serine

U
AUC ACC AAC AGC C
AUA ACA AAA

(Lys/K) Lysine
AGA

(Arg/R) Arginine
A

AUG[A] (Met/M) Methionine ACG AAG AGG G

G

GUU

(Val/V) Valine

GCU

(Ala/A) Alanine

GAU
(Asp/D) Aspartic acid

GGU

(Gly/G) Glycine

U
GUC GCC GAC GGC C
GUA GCA GAA

(Glu/E) Glutamic acid
GGA A

GUG GCG GAG GGG G

Table 3.2: Genetic Code
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After the chain of amino acids as encoded in the DNA and the mRNA respec-
tively, is completely assembled, the protein folds into a three-dimensional struc-
ture [38], which determines its shape and thus also its functionality.
In sum, proteins are responsible for a great number of important tasks in every cell
and also in the organism as a whole. The functionality, and accordingly its shape,
of a protein is determined by the sequence of amino acids, which is assembled
from the sequence of the mRNA, originally from the DNA.

3.4 Genetic variability

As explained in the previous Sections, the genetic information in the DNA deter-
mine the phenotypes and traits of each individual through the transcription and
translation of the DNA into proteins. The genetic information is therefore respon-
sible for the variety of organisms and variability between individuals of certain
species. The reason for the great diversity in organisms is the adaption and the
diversification of organisms over time. During reproduction [34], the transfer of
the genetic information to offspring, the genome is altered, which is known asre-
combination [34], to ensure adaption and improvement.
The remainder of this Section gives an overview of the processes of cell division
and outlines the basic principles and causes of mutations, which are the basis for
genetic variation.

3.4.1 Reproduction

Each cell passes on its genetic information to the next generation of cells during
cell division9. During which the DNA is duplicated to provide the daughter cell
with the genome, which in turn is the basis for the new cell. Inorder to perform
cell division, the genetic information, started as DNA, hasto be duplicated. In the
first step, the DNA is unwound at certain locations known asorigins [34] in order
to enable special molecules known asDNA polymerase to copy the sequence
of base pairs onto a new DNA strand. As depicted in Figure 3.6 both strands are
simultaneously duplicated and each of the two strands serves as the complementary
strand for the the second strand of the new double helix. Finally, two identical
DNA strands are obtained.
In eukaryotic cells two different types of cell division exist, which are explained
briefly:

9In Prokaryotes cell division is the formation of daughter cells and a form of reproduction. In
Eukaryotes the reason for cell division is twofold. On one side is the proliferation of cells during the
embryonic stage and on the other side the replacement of deadcells. The latter is for example the
reaction to an injury or an inflammation. Cell division is stopped, when the desired amount of cells
is reached.
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Figure 3.6: Duplication of the DNA - [from wikipedia.org]

• Mitosis: Mitosis [34] is the process where a cell first duplicates itsgenome,
followed by the division of the cell, including the nucleus,the organelles and
the cell membrane into two cells. After separation, each of the two daughter
cells, contains the complete genome. This process occurs during develop-
ment and growth, where the number of cells in the organism increases, or
during the replacements of lost cells10. An overview can be seen in Figure
3.7, where the main steps of mitosis are shown.

• Meiosis: Meiosis [34] is a specific type of cell division, which is neces-
sary for the sexual reproduction in eukaryotes. Most of the steps involved
are similar to mitosis; although, instead of two four daughter cells are pro-
duced. These four cells contain only a haploid set of chromosomes, which
means that the chromosomes are duplicated, and only one set chromosomes
is passed to each daughter cell. Furthermore, an important aspect of meiosis
is, that the duplicated chromosomes are recombined. Recombination is the
exchange of regions between the two sets of chromosomes in order to gener-

10Mitosis also occurs during regeneration (only a few organisms are able to regenerate lost parts
and during asexual reproduction (or vegetative reproduction) in plants.
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Figure 3.7: Overview of the most important steps during mitosis - [from
wikipedia.org]

ate a slightly different genetic combination which can be seen in the second
step in Figure 3.8. Moreover, the distribution of the recombined chromo-
somes are randomly selected11 to form a haploid set of chromosomes. This
is shown in step three and four in Figure 3.8.

Figure 3.8: Overview of the most important steps during meiosis - [from
wikipedia.org]

3.4.2 Mutations

In Section 3.4 the great diversity of existing organisms as it evolved over time is
mentioned. This adaption and diversification of organisms is based on random
changes in the DNA. These changes are calledmutations [58] and are inheritable
changes in genetic information. Mutations alter the sequence of the DNA, either
having no effect, changing the protein encoded by the gene, or preventing the gene
completely from functioning.

11Assuming a human chromosome set of 23 chromosomes, this leads to223 ≈ 8.4∗10
6 possible

combinations.
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Mutations are rare occurrences; otherwise, the transfer ofthe genetic information
to the offspring would not result in similar offspring. Nevertheless, mutations are
the basis for evolution; natural selection is the survival of organisms, and also
their genes, which are thereby better adapted to their environment. However, each
cell has complex mechanisms [34] for the repair of a damaged or altered DNA.
Different versions of a gene are also referred to asalleles12.
Mutations can be divided into two main groups [34]:

• Chromosome mutations: Chromosome mutations are changes in the num-
ber, shape or structure of chromosomes.

• Gene mutations: Gene mutations are alterations of the sequence of base
pairs within a gene or outside the coding regions.

Within the scope of this work, as in GWAS, chromosome mutations do not play
a great role; therefore, more attention is given to gene mutations. This type of
changes to the DNA can have various causes, which will be discussed in the re-
mainder of this Subsection.
During the replication of the DNA, every ten- to every hundred-thousandth nu-
cleotide [34] placed on the newly assembled strand, is not complementary to the
nucleotide on the strand being duplicated. For example, on the left strand in Fig-
ure 3.6: if the subsequent nucleotide added to the left strand were not a C, then a
mutation would have occurred.
As mentioned above, every cell contains complex mechanismsto detect and repair
mutations. In this case a substructure of the molecule duplicating the strand de-
tects and removes the falsely positioned nucleotide so the correct nucleotide can
be attached. This repair mechanism is calledmismatch-repair [38] and it also
plays a role in error detection during recombination in meiosis.
Not only errors during the replication and recombination ofthe DNA can alter the
sequence of the DNA [34]. Due to the fact that DNA is a very complex and fragile
molecule, metabolic products and external influences such as radiation, chemicals
or toxins can interact with the DNA and change its structure or the sequence con-
tained. Such events occur hundreds to thousands of times each day in every cell
and without an effective repair mechanism frequent, severemutations would be
the consequence.
Nevertheless, certain mutations on single positions in theDNA occur without
being recognized by the repair mechanisms. The result is asingle point muta-
tion [34], a permanent mutation, which becomes affixed during thenext cell divi-
sion. These mutations only take place in certain sequences and regions of the DNA.
Around three-fourths of the gene mutations are exchanges ofsingle nucleotides -

12A gene that has the sequence ATCTTA in one population and CTCTTA in another population
are called alleles of the gene. Both encode the same protein,but the protein is not identical since the
sequence of amino acids has changed.
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also known assingle-nucleotide polymorphisms (SNPs)13. Depending on the
position of the SNP, the mutation can be:

• Neutral / Silent A neutral or silent mutation is the exchange of a nucleotide
which either lies in the noncoding region of the genome or, ifit lies within
an exon of a gene, does not lead to a change in the translated amino acid.
The mutation has no effect.

• MissenseA missense mutation changes an amino acid in the assembled pro-
tein, but the resulting protein can either be conservative,meaning it does not
change its functionality, or non-conservative if the properties of the proteins
are altered, which can lead to a disease or a change of a trait.

• NonsenseThe last possibility for a SNP is to be translated into a stop codon,
which leads to a shortened protein. The protein can be functional or not
depending on the sequence of lost amino acids. Usually the protein loses its
functionality.

For example, in the human genome approximately every thousandth base pair is
altered and these mutations are responsible for the diversity between individuals.
Consequently, approximately3 ∗ 106 SNPs are known in the human genome and
more than 10 million SNPs are estimated [34]. Many SNPs occurred during evo-
lution and have been present in the population for a long time. SNPs lying close
together in the DNA are less likely to be separated by recombination during meio-
sis, which is a phenomenon calledlinkage disequilibrium [34, 58]. The fact that
proximate SNPs are rarely separated accounts for the high correlations present in
the genomic datasets in genome-wide association studies.
SNPs play a key role in the identification of complex traits and diseases, which
do not follow the classic rules of inheritance. Therefore, great effort is put into
sequencing and identifying the SNPs responsible for traitsand diseases.

3.5 Analysis

Analysis of genomic data aims to find variations - mutations -in the DNA sequence
influencing a certain phenotype. Hence [35], the primary goal is the identification
of the „correct“ subset of SNPs showing similar patterns with the phenotype.
As explained Section 3.4, mutations are an important factorin genetic variability.
The analysis of correspondence between mutations and the change in phenotypes
reveals new biological connections. According to Thomas [58] and Knippers [34]
single-nucleotide polymorphisms are the most common type of mutations; as a
consequence, SNPs from the whole genome are analyzed in studies known as

13This term is used throughout the thesis for consistency.
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genome-wide association studies (GWAS).
According to the National Human Genome Research Institute14, genome-wide as-
sociation studies [32] have identified the influence of around 7000 SNPs on vari-
ous phenotypes. Figure 3.9 depicts the 23 human chromosomesand a selection of
the strongest associated SNPs on various phenotypes ranging from diseases to the
physical appearance and various other characteristics.
For example, according to the guidelines of the NHGRI [32] genome-wide associ-
ation studies need to include more than 100,000 SNPs of the human genome in the
initial phase to be considered meaningful. Balding [2] states that at least 300,000
SNPs are needed. However, GWAS [23] sometimes include one million or greater
SNPs in contrast to the number of individuals sequenced, which ranges from thou-
sands to tens of thousands sequenced. This size of dataset isnecessary to capture
the genetic variation in the human genome.
The development of high-throughput next-generation sequencing [46] and the de-
cline [48] in genome sequencing costs have facilitated the production of large
amounts of genomic data.
GWAS often make use of linkage disequilibrium, as explainedin Section 3.4.2,
to reduce the amount of data to be analyzed. Linkage disequilibrium [34] is the
shared evolutionary history of two SNPs. The closer two SNPsare in the genome,
the less likely it is that they are separated during the recombination phase in meio-
sis. Hence [17], proximate SNPs are often highly correlated; therefore, it is usu-
ally enough to include one of the highly correlated SNPs intothe study, in order
to identify the genomic region influencing the trait under study. The identification
of the correlated SNP [42,61], also calledproxies or sentinels, is often sufficient.
Therefore, linkage disequilibrium needs to be somehow estimated [2, 15] in the
complete genomic dataset to assess the power of a study. Thisprocess [57] is also
known as SNP tagging.
According to Donnelly [17] one of the major challenges is to investigate the re-
gions where proxies have been identified more accurately to reveal the true causal
SNPs. These studies [17, 44, 56], also known asfine-mapping studies, involve
many more highly correlated SNPs in the associated region aswell as a greater [35]
number of individuals sequenced. The causal SNPs then show ahigher associ-
ation than the correlated ones, except for perfectly correlated proxies. Ideally,
fine-mapping studies include a great number of correlated SNPs such that results
narrow down the set of possible causal SNPs.
Prior to the analysis of the genomic dataset some preceding steps have to be car-
ried out. Preliminary analyses [2] ensure the necessary quality of datasets and aim
at avoiding biases and other systematic errors introduced by poor quality of the

14The National Human Genome Research Institute(NHGRI) hostsa comprehensive catalogue of
genome-wide association studies where associations between genome and phenotypes are available.
http://www.genome.gov/gwastudies/
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Figure 3.9: SNPs identified through GWAS by 06/2011 - Credit: Darryl Lejaand
Teri Manolio
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dataset. Moreover [42], since different next-generation sequencing technologies
do not sequence the exact same set of SNPs, missing values forSNPs need to be
imputed [43] to compile them for example into one large GWA study. The ne-
cessity of imputing missing SNP values [43], instead of discarding missing data,
originates from the improved statistical significance, theenhanced results in fine-
mapping studies, the meta-analysis from different datasets as mentioned before
and the sporadic missing genotype data from sequencing errors. Missing SNP
data do not play a great role in single-SNP analyses [2], but are more problem-
atic in multiple SNP analyses. However, various methods andapproaches exists
for genotype imputations [43, 53], but the discussion lies beyond the scope of the
work.

Genomic datasets usually do not contain the nucleotide sequence contained in the
DNA. Instead, assuming a diploid set of chromosomes, the combination of each
nucleotide on both DNA sequences is used. The same nucleotide on the same
location in both sequences is referred to as homozygote [34]; whereas, different
nucleotide are termed heterozygote [34]. Moreover, usually a reference is used
for every SNP value and as a consequence two forms of homozygote SNPs exist.
The first represents both nucleotide are the same as the reference SNPs, whereas,
the second form of homozygte means both nucleotides are different from the ref-
erence. Accordingly heterozygosity refers to one of the twonucleotides being
different from the reference.

In conclusion, the main challenge of genome-wide association studies is to identify
the true single-nucleotide polymorphisms influencing a certain phenotype. The
identification is impeded by high correlations between the SNPs due to linkage
disequilibrium. A second purpose of GWAS [14] arises from the prediction of
phenotypes based on a set of SNPs, which is useful in animal husbandry, for ex-
ample.
Due to the fact [23, 27, 42] that most causal SNPs have a small effect and that the
genome is very large [2], and that patterns and apparent associations can arise by
chance, it is unlikely to identify the true subset of SNPs.

3.6 Single-SNP

Single-SNPs regression is the most frequently used approach in GWAS [11, 23],
which directly tests the association between a single SNP and the phenotype. Ev-
ery SNP is examined separately and a strong association is anindication for its
influence, or the influence of a proximate correlated SNP (perhaps not included
in the analysis), on the phenotype [23]. Single-SNP analyses have the major ad-
vantage of being easily parallelizable and can therefor be applied to large genomic
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datasets. The intention of this approach is often to identify relevant genes con-
taining the associated SNPs and to glean some insight into the biology of the trait
under consideration.
Since the area of application is broad and many studies have applied single-SNP
analysis to genomic context; thus, a great range of statistical methods exist.

Depending on the type of measured phenotype the statisticalmethods vary. A
natural and common studies are case-control studies [2], where phenotypes are of
binary nature. Therefore, every SNP is tested for the null hypothesis [2] of no
association to the phenotype, where usually a2x3 matrix is considered containing
the counts of the two homozygote genotypes and the heterozygote genotypes for
control as well as for the case group. Different statisticaltests can then be used to
test for the acceptance or rejection of the null hypothesis for each SNP.
Another type are continuous phenotypes measuring quantitative characteristics.
For this purpose [2] linear regression, where a relationship between mean value of
the trait and genotype is tested against the null hypothesis, as well as analysis of
variance (ANOVA), where the mean of the three genotype groups15 are tested for
equality, are common choices.
For studies analyzing ordinal phenotypes linear models areadapted to logistic re-
gression where the outcome is categorical. Usually [2] the difficulties arising from
non-continuous phenotypes are overcome by transforming the phenotype to a con-
tinuous scale using a logit-transformation. Subsequentlythe three groups of geno-
types are again tested for their influence. The null hypothesis is that all three
groups have no influence.
Usually the p-value is computed to assess the evidence for anassociation between
a SNP and the phenotype assuming that the null hypothesis is true and for ex-
ample [32] only SNPs reported with a p-value below10−5 are considered for the
NHGRI catalogue. Despite their widespread use [56], the frequentist approach has
some limitations, such as the threshold [44] for SNP to be considered as associ-
ated as well as as the size of the study and factors like the minor allele frequency
(MAF)16. This drawback arises from the fact [56] that an associationof a SNP
with a given p-value does not only depend on how unlikely thatp-values is under
H0 but also on how unlikely it is under alternative hypothesisH1. One response
to such issues [56] is to avoid performing tests with low power by for example dis-
carding low-MAF SNPs, which is sometimes inadequate since causal SNPs might
be discarded. Uncertainty introduced by imputed data [43],especially rare SNPs,
can also degrade the power of frequentist tests and can lead to spuriously low p-
values. Another impediment arises from multiple testing [2] and the identification
of false positive detections because every SNP is a priori unlikely to be causally

15The three groups are again the two homozygote and the heterozygote forms of a SNP.
16The minor allele frequency is the frequency of the less common allele of a SNP.
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associated. Therefore strong evidence is needed to overcome the skepticism about
an association. To control the number of falsely rejectedH0 hypotheses [42, 56]
more stringent significance is required as the number of tests increases. This can
sometimes lead to less analyses and tests performed [56] to avoid the additional
multiple testing penalty imposed.

Alternatively Bayesian methods are used with increasing frequency to alleviate
the limitations of p-values but with the drawback of additional modeling assump-
tions and increasing compuatational demands. Bayesian approaches have the ben-
efit [5, 56] of providing a unified approach to data analysis with uncertainties in
the model leading to directly interpretable and comparableresults among SNPs
within and across studies. Additionally biological knowledge, such as the number
of expected true associations, the MAF of every SNP, or the proximity to genes of
interest, as well as other prior information can be incorporated and different ge-
netic models can be considered in a single analysis. Furthermore [44, 56], instead
of specifying a threshold for the p-values, measures like the Bayes factor(BF) or
posterior probabilities are used. The BF considers the ratio between the marginal
likelihoods of the data underH1 and underH0. The result can be interpreted as
that the observed genomic data are by the Bayes Factor more likely underH1 than
underH0; the larger the BF, the stronger is the support forH1. In contrast [56],
the posterior probability can be directly interpreted as probability regardless of in-
fluences like for example the sample size, the number of analyzed SNPs, or the
MAF of every SNP. The posterior probability combines the evidence that a SNP
is associated with the phenotype based on the data as well as the prior knowledge
assumed.
A common used advantage of the Bayesian approach is the averaging over differ-
ent genetic models17.
However, the need to specify prior knowledge can lead to spurious and distorted
results.

An inherent drawback of the frequentist and the Bayesian single-SNP analysis
is [11] that only single-SNP effects are identified and epistatic effects and groups
of associated SNPs are neglected. The approaches outlined in this Section work
well for traits strongly influenced by only a single or a few SNPs but are not able
to reveal the biology of complex traits. More complex Bayesian approaches found
to perform superior [23, 39] even in the case of a few causal SNPs. Nevertheless,
more sophisticated methods are computationally more demanding [48] and are not
yet able to identify the majority of causal SNPs [17]. The thesis contributes to the
improvement of this issue and to identify the more promisingmethod.

17Usually [56] different genetic models represent additive,dominant or recessive genetic effects
and are incorporated for every SNP using different weights.
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CHAPTER 4
Statistical Background

T
HE current chapter outlines common statistical methods relevant for the
analysis using large-scale regression methods applied to genome-wide as-
sociation studies to model the complexity of genomes and to alleviate the

computational burden arising therein. Hierarchical models, describing complex
relationships and processes, together with Markov chain Monte Carlo methods
which facilitate the analysis, are frequently used [10] in GWAS among various
other applications.

Section 4.1 gives an outline of Bayesian hierarchical models and their ability to
model complex contexts. In Section 4.2 the concept of Markovchains is first ex-
plained and second an introduction to Markov chain Monte Carlo methods is given
with respect to practical applications and with focus on theMetropolis-Hastings
algorithm in Subsection 4.2.1 and the Gibbs sampler in Subsection 4.2.2.

4.1 Bayesian Hierarchical Models

Bayesian inference provides the possibility to combine prior beliefs with observed
data to obtain knowledge about underlying stochastic processes as well as its un-
certainty. Bayesian hierarchical models represent the dependencies of random
variables from which inferences is made.
An import characteristic of Bayesian hierarchical models [10] is the ability to
model a great variety of complex processes and interrelationships between stochas-
tic components and to capture the behavior of the processes with respect to the
inherent uncertainty. Bayesian methods are becoming more popular in genome-
wide association studies [2, 4] because of the improving means for tackling the
high computational demands [56] as well as the unified approach of data analysis.
The purpose of the current Section is to outline the ideas of Bayesian statistics
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and inference necessary for the subsequent Sections. More details can be found in
Bishop [5] and Carlinet.al. [10] for example.

Bayesian models provide a unified approach [10] to data analysis and inference
as well as a consistent way to incorporate prior beliefs intothe model. Uncertainty
captured in the model includes both uncertainty in the data as well as in the model
parameters. To achieve this both the observed data as well asany unknown or la-
tent variables are modeled as random variables having a probability distribution.
The main difference to the frequentist approach [5] is that the Bayesian model sum-
marizes the observed data with respect to prior beliefs in the form of posterior
probabilities, instead of making point estimates and estimating the uncertainty
separately. The posterior probability is obtained by

posterior ∝ likelihood x prior . (4.1)

Bayesian hierarchical models yield the attractive featurethat uncertainty is prop-
agated through the complex models, affecting the certaintyof inferred posterior
probabilities.
The central paradigm of Bayesian statistics is the Bayes theorem [5], shown in
Equation 4.2, which converts prior beliefs about the variables in the model into a
posterior distribution by incorporating information contained in the observed data.

p(θ|Y ) =
p(Y |θ)p(θ)

p(Y )
(4.2)

In Equation 4.2θ represents a model parameter andp(θ) is considered to be a
prior belief of the probability of certain values ofθ. p(Y |θ) is thelikelihood func-
tion and expresses the probability of observing a dataset under the parameterθ.
p(Y ) is the probability of the dataset to be observed and is usually obtained by
marginalization. It ensures the left-hand side of Equation4.2 is a valid probabil-
ity distribution integrating or summing to1. The posterior probability [5]p(θ|Y )

summarizes the knowledge obtained from the prior beliefs and the likelihood of
the observed data given the prior beliefs for the parameter.The posterior captures
the uncertainty in the parameter after the data have been observed.
The prior is often governed by another parameter [10], also termedhyperparam-
eter, which is mostly unknown; therefore, a second stage [10] is introduced to
assignhyperprior p(λ) to the parameters of the prior distribution. The Bayes
theorem is then augmented with the hyperprior as depicted inEquation 4.31

p(θ|Y ) =
p(Y |θ)p(θ|λ)p(λ)

∫

p(Y |θ)p(θ|λ)p(λ)dλ
(4.3)

1The same equation holds for the discrete random variables where the integral is substituted by
a summation.
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As a side note, a delicate issue [5] of the Bayesian approach arises from the choice
of priors, because the selection of priors is often based on convenience and subjec-
tive believes. Stephenset.al. [56] note that it is often desirable to avoid subjectivity
in the form of noninformative priors, but that the real problem is the hidden subjec-
tivity and missing clarification of the assumptions. However, this discussion lies
beyond the scope of this thesis.

Due to the complexity of most models [10], the integral in Equation 4.3 is often
not tractable and cannot be solved analytically, which is required for the inference
from the hierarchical model. Special forms of priors calledconjugate priors2 al-
leviate the analytic evaluation. Nevertheless [5,10], intractable integrations remain
and need to be approximated.
Other situations [1] require the optimization of the posterior distribution; this is,
the identification of the optimal values for the parameters.Often exhaustive com-
putation of the posterior distribution is infeasible as it is impossible to compute
and compare all solutions. A more detailed discussion is referred to Chapter 5 and
Chapter 6.
Popular methods [5] exploring the posterior distribution areMarkov chain Monte
Carlo algorithms [62], which obtain samples by directly samplingfrom the dis-
tribution. A major advantage [10] is that, making use of high-speed computing
equipment, high-dimensional distribution can be accurately approximated.

4.2 Markov Chain Monte Carlo

As outlined in the previous Section, Bayesian methods require the computation
of the posterior probability to enable inference of stochastic processes. Computa-
tional challenges [4,10] arise from intractable integrations, especially as occuring
in Bayesian hierarchical models, and from the identification of the best values in
optimization problems.
The most popular computational tools [10] are Markov chain Monte Carlo (MCMC)
methods due to their ability to enable inference even in highdimensional posterior
distributions, and to, for all intents and purposes, break the curse of dimensional-
ity3. MCMC methods do not produce a closed-form solution but instead simulate
draws of samples from the posterior distribution, thereby generating aMarkov
chain.
Although [10] these samples do not contain as much information as a closed form

2Conjugate priors are prior probability distributions thatbelong to the same family of probability
distribution as the posterior probability distribution.

3The „curse of dimensionality“ [5, 10] states that, with increasing dimensions, the amount of
data to be computed, for example the full posterior distribution, grows exponentially with the di-
mensionality.
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solution the estimation that results from sampling can be made arbitrarily accu-
rate by increasing the number of samples drawn from the posterior distribution.
A summation of the posterior distribution is usually sufficient to approximate the
posterior distribution enough to allow reliable inference. As for most situations [5]
the identification of the most probable values is satisfactory.
As a side note, a common criticism [10] of MCMC methods is thatno two infer-
ences will obtain the same approximation since different samples are drawn from
the posterior distribution.

MCMC explores the distribution by simulating random draws from the the tar-
get distributionπ(θ) resulting in a Markov Chainθ0, ..., θt. This exploration is
also called aMarkov process. An important property [62] during the construction
of the Markov chain is that each valueθi for i = 1, ..., t4 only depends on the
preceding state, which can be seen from Equation 4.4.

p(Xt+1 = st+1|X0 = s0, ...,Xt = st) = p(Xt+1 = st+1|Xt = st) (4.4)

This means that the only information necessary for obtaining the next sampleθt+1

from the distributionπ(θ) is the current stateθt. The Markov chain also needs a
transition probability [16]T , as noted in Equation 4.5, which defines the proba-
bility of the transition from a current stateθt to the next stateθt+1 such that the
desired distribution is invariant.

T (θt, θt+1) = T (θt → θt+1) = p(θt+1 = st+1|θt = st) (4.5)

A fundamental theorem of Markov chains states [16] that fromany given starting
point θ0 the Markov chain has a probability ofπ(θt) of being in the stateθt after
sufficiently large number of steps. Hence, the probability of a state only depends
on the probabilityπ(θt) of reachingθt and is independent from the initial value
θ0. This property [5] is calledergodicity and thus the Markov chain is said to have
astationary, or equilibrium , distribution which corresponds to the distribution to
be approximated. Consequently, independent of the initialvalueθ0 the Markov
chain will, after a finite number of steps, sample directly from the equilibrium dis-
tribution. Each Markov chain can only have one equilibrium distribution.
Moreover, besides ergodicity, Markov chains need to have certain other properties
in order to converge to the invariant distributionπ(θ). First [1], the Markov chain
has to beirreducible , which means that from any given stateθt there must be
positive probability to reach all other states possible forθt+1. Hence, each state,
in the case of discrete states, and each value, in the case of continuous states, is
reachable with a certain probability greater than0. Second [1], the Markov chain

4Note that the first sampleθ0 does not depend on any other state but is rather assigned an initial
value.
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needs to beaperiodic such that the chain cannot get trapped in cycles.
Given the properties mentioned [1] the MCMC sampler is a Markov process gen-
erating a Markov chain that has the target distributionπ(θ) as its equilibrium dis-
tribution.

After convergence of the Markov chain to the stationary distribution, which is
addressed later in this section, the samples drawn are used to summarize the pos-
terior distribution and thus allow inference.
The samples obtained can be summed in any way [37]; however, common choices
[10] are the posterior mean in Equation 4.6,

θ̂ = E [θ|Y ] (4.6)

the posterior median in Equation 4.7,

θ̂ =

∫ θ̂

− inf
p(θ|Y )dθ (4.7)

or for example the posterior mode in Equation 4.8.

θ̂ = supθp(θ|Y ) (4.8)

Moreover, the uncertainty captured can be assessed by an estimation of the vari-
ance of the samples. The most probable regions of the distribution [5] can be
identified after a rather small number of samples; however, to approximate the
tails of the distribution a much larger number of samples is required. However, the
accuracy of the estimation does not solely depend on the dimensionality ofθ, but
on the number of samples.

The convergence of the Markov chain to the desired equilibrium distribution [10]
can be ensured for large number of posterior distribution. Nevertheless [10], a
crucial point for the application of MCMC methods is the decision of when it is
acceptable to stop sampling from the equilibrium distribution to obtain a sufficient
approximation of the distribution. This issue is also called convergence diagnosis
and deals with the estimation of the point when the Markov chain directly samples
from the equilibrium function and enough samples have been obtained.
The first samplesθ0 to θBurnIn are referred to as theburn-in period [1], where
the Markov chain has not yet reached stationarity and thus the samples do not rep-
resent direct draws from the target distribution. The length of the burn-in period
is difficult to assess and depends on the pace of the chain moving away from the
initial value as well as the autocorrelation of the chain which will be discussed
shortly.
A common solution [1, 10] is to remove the beginning of the chain and to start
using the subsequent samples. In practice, however, it is difficult to assess the
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Figure 4.1: An example for a Markov chain where the around the first eighthof
the sequence is the burn-in period

best length of the burn-in period because no completely reliable diagnostics [1] for
convergence exists.
An example for the burn-in period can be seen in Figure 4.1. Inthe figure on
the left, the distribution to be approximated is shown as a red curve; whereas,
the greenish bars represent the summarized samples. The right-hand figure shows
the samples of the Markov chain also referred to astrace. It can be easily seen
that the beginning of the chain is the burn-in period where the Markov chain has
not yet converged to the equilibrium distribution. The samples following are then
considered to be direct draws from the target distribution and can be used for the
estimation of the distribution. Obviously, an optimal initial state would be close to
the center of the probability distribution.
Another difficulty arises from the quality of samples obtained. Ideally [1], the
samples drawn by the MCMC methods should be i.i.d samples5. As shown in
Equation 4.4 the samples, since each sample depends on the previous state, are
not independent draws and thus are expected to be positivelycorrelated [10] also
referred to as theautocorrelation. Nevertheless, even though these samples are
correlated it can be shown [62] that the draws are still from the equilibrium distri-
bution and therefore present an unbiased picture of the distribution, if the number
of samples is sufficiently large. The higher the autocorrelation of a Markov chain,
the more samples are required to obtain the same accuracy. For example [62], a
very high autocorrelation can require up to a few hundred times more samples to
obtain the same accuracy as if i.i.d. samples are available.

5Independently and identically distributed samples are samples all drawn from the same proba-
bility distribution and do not influence one another.
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A common approach to deal with autocorrelation is tothin [1] the Markov chain;
that is, only using everyith sample from the chain, thereby reducing the corre-
lation between the samples until it becomes insignificant. However, a common
criticism [10] is that thinning is not favourable since it increases the variance of
the estimation. Instead, using all samples [10] is a more preferable approach along
with the estimation of theeffective sample size (ESS)which is usually much
smaller [5] than the total number of samples. Equation 4.10 shows the estimation
of the ESS whereρk(θ) refers to the autocorrelation at a distancek.

ESS =
N

κ(θ)
(4.9)

κ(θ) = 1 + 2

inf
∑

k=1

ρk(θ)

The issue of the effective sample size is closely related with the issue of when the
Markov chain has reached the equilibrium distribution as well as when a sufficient
number of samples has been collected.
Figure 4.2 depicts the difference between the approximations using samples sizes
of 1000, 5000, 10000, and25000 from the upper left to the bottom right figure.
As the number of samples increases, the approximation becomes more and more
accurate. Note from the right bottom plot that the tail has been explored by the
Markov chain which has not happened in the Markov chain with the lower number
of samples.
Various approaches exist to estimate the convergence of thechain for example the
Geweke test[62] which compares the mean of the first 10% of the chain with the
mean of the last 50% of the chain and compares for their equality using a hypoth-
esis test, or theRaftery-Lewis test [62].
The most popular approach for diagnosis on the MCMC samples [19] is theGelman-
Rubin diagnostic R̂, also known aspotential scale reduction factor[10]. It es-
timates the equality of the variation within the sequence ofsamples [10], usually
obtained by running many parallel Markov chains. IdeallyR̂ should be 1 as the
number of samples converges to∞.
An important fact of Markov chains is that as long as all requirements, such as er-
godicity and aperiodicity, are fulfilled, the Markov chain always converges to the
equilibrium distribution and the samples can be used for approximation. However,
the time until convergence and the pace of the chain exploring the equilibrium
distribution are the crucial factors for an efficient approximation.

4.2.1 Metropolis-Hastings-Algorithm

Among the most frequently used MCMC methods [1] is theMetropolis-Hastings
algorithm. The algorithm was first introduced by Metropolis, Rosenbluth, Rosen-
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Figure 4.2: Approximation of an arbitrary distribution by a Markov chain using
samples sizes of 1000, 5000, 10000, 25000

bluth, Teller and Teller [45] and was generalized by Hastings [31]. As outlined in
the previous section, MCMC methods build a Markov chain by generating sam-
ples from the equilibrium distribution. The Metropolis-Hastings algorithm is a
rejection algorithm [10] as it circumvents the problem of sampling directly from
the distribution by generating new samples given the current state ofθ. It subse-
quently accepts or rejects the newly proposed sample with a certain probability.
The Metropolis-Hastings algorithm offers more flexibility[10] in contrast to other
MCMC methods due to the variety of proposal distributions; however, only a care-
ful choice yields a quickly converging chain.
Therefore, a Markov transition kernel [22] also calledproposal density[10], pro-
posal, or candidate-generating distribution [62] q(θ∗|θt), as defined in Equation
4.5, is used to generate a new candidate sample.
Subsequently the proposed sample is either accepted or rejected with the proba-
bility [1] given by Equation 4.10. If the sample is rejected [5], then the previous
sample is used as the current state, leading to multiple copies of samples.

αMH = min

{

1,
q(θt|θ∗)π(θ∗)

q(θ∗|θt)π(θt)

}

(4.10)

As can be seen in Equation4.10 the proposed sampleθ∗, having a higher proba-
bility than the current sample is always accepted; whereas,in the case of the new
sample, is accepted withαMH . The complete Metropolis algorithm is shown by
Algorithm 4.1.
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Algorithm 4.1: Metropolis-Hastings algorithm

Result: Markov chain of length N generated by Metropolis algorithm

1 θ0 = Initial Value
2 for i = 1 : N do
3 θ∗ = q(θ∗|θt)
4 u = U[0,1]

5 αMH = min
{

1, q(θ
t|θ∗)π(θ∗)

q(θ∗|θt)π(θt)

}

6 if u < αMH then
// Accept proposed sample

7 θt+1 = θ∗

8 else
// Reject proposed sample

9 θt+1 = θt

10 end
11 end

A common variation [5] to the Metropolis-Hastings algorithm is theMetropo-
lis algorithm . It is used [22] if the proposal distribution is symmetric; hence,
q(θ∗|θt) = q(θt|θ∗). For example, in the case of a normally distributed proposal
distribution. The acceptance probability simplifies to Equation 4.11.

αM = min

{

1,
π(θ∗)

(π(θt)

}

(4.11)

The crucial point for efficient approximation by the Metropolis-Hastings algo-
rithm6 is the specified proposal distribution [5]q(θ∗|θt), which is chosen to be
easy to generate candidate samplesθ∗ from. The proposal distribution is an im-
portant tuning parameter [62] and strongly influences the speed of convergence to
the equilibrium distribution as well as the quality of approximation with a limited
number of samples.
An example is shown in Figure 4.4 where three choices of proposal distributions
are compared. For each column, 7,000 samples are computed using a normal dis-
tribution as the proposal distribution.
The column on the left is computed using a narrow proposal distribution q(θ∗) ∼

N (θi|0.1). Note that the samples are strongly centered around the modeof the
target distribution and the chain baby-steps around the center. Note that the chain
has an acceptance ratio7 of around0.985. Although only a few samples are not

6This also accounts for the Metropolis algorithm as well as for other variations of the
Metropolis-Hastings algorithm.

7The acceptance ratio is the proportion of samples accepted in contrast to the total number of
samples.
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used, the chain only explores the most probable regions and problems can arise
from distant peaks not explored sufficiently. A too-narrow proposal distribution
can also get trapped in local peaks such that stationarity seems to be reached. Fur-
thermore, it also leads to a high autocorrelation in the Markov chain, slowing down
convergence.
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Figure 4.3: Difference between a poorly mixing (left Figure) and a well mixing
Markov chain (right Figure).

In Figure 4.4, the middle column shows an overly wide proposal distribution
q(θ∗) ∼ N (θi|15), generating proposal samples far off from the current state
which are likely to lie far from the distribution’s center [10]. This leads to a
high number of rejections (in this particular example the acceptance rate was only
around0.13, thus87% of the samples are discarded) which in turn leads again to
high autocorrelation. The chain is said to bepoorly mixing . The difference be-
tween a poorly mixing and awell mixing Markov chain is shown in Figure 4.3.
Note that the figure on the left shows long flat periods where the samples are re-
jected. A well mixing chain [62] looks similar to white noise.
The third column in Figure 4.4 shows a well mixing chain usinga proposal distri-
bution q(θ∗) ∼ N (θi|4). In this case the acceptance ratio is around0.4 which is
considered to be favourable [10].
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Figure 4.4: Various choices of the proposal distribution for a Metropolis-Hastings algorithm
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4.2.2 Gibbs-Sampling

Besides Metropolis-Hastings the Gibbs sampler is a widely applicable [5] and
common MCMC method which can be regarded as a special case [62] of the
Metropolis-Hastings algorithm, having an acceptance ratio of 1. Here, no proposal
distribution has to be tuned to obtain a well mixing Markov chain. All samples
are used and none are rejected, thus saving computation time. The Gibbs sam-
pler is used [29] when it is difficult to sample from the full joint distribution, but
feasible to sample from the conditional distributions of every variableθi. There-
fore [62], in contrast to the Metropolis-Hastings algorithm, the Gibbs sampler uses
an univariate conditional distribution for each variable,where all variables but one
are assigned fixed values, as the proposal distribution as shown in Equation 4.12.
Thus [62], in every iteration allθi for i = 1, ..., p are sampled from their univari-
ate conditional distribution rather than to generateθ from the full joint distribu-
tion. This process is repeatedN times until the Markov chain converges and the
samples, after the burn-in period is removed, are used to approximate the target
distribution.

p(θi|θ1, ...θi−1, θi+1, ..., θp) (4.12)

The complete procedure for the Gibbs sampler is shown by Algorithm 4.2.
It is assumed [10] that in practice all conditional distributions uniquely determine
the target distribution. However [10], if the conditional distribution is not conju-
gate and thus not available in closed form it is favourable toemploy a Metropolis-
Hastings algorithm.

Algorithm 4.2: Gibbs sampling algorithm

Result: Markov chain of length N generated by Gibbs sampler

1 θ0 = Initial Value
2 for i = 1 : N do
3 Sampleθi+1

1 ∼ p(θ1|θ
i
2, ..., θ

i
p)

4 Sampleθi+1
2 ∼ p(θ2|θ

i+1
1 , θi3, ..., θ

i
p)

5 .
6 .
7 .
8 Sampleθi+1

j ∼ p(θj |θ
i+1
1 , ..., θi+1

j−1, θ
i
j+1..., θ

i
p)

9 .
10 .
11 .
12 Sampleθi+1

p−1 ∼ p(θp−1|θ
i+1
1 , ..., θi+1

p−2, θ
i
p)

13 Sampleθi+1
p ∼ p(θp|θ

i+1
1 , ..., θi+1

p−1)

14 end
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Figure 4.5 shows an example of an applied Gibbs sampler wherea bivariate Nor-
mal distribution

N ∼ (

[

5

5

]

,

[

1 0.5

0.5 1

]

)

is to be approximated. The conditional distributions are given by Equations 4.13
and 4.14. The Gibbs sampler is run for 2,000 iterations.

p(xi+1|yi) ∼ N (µ1 + ρ(yi − µ2),
√

1− ρ2) (4.13)

p(yi+1|xi+1) ∼ N (µ1 + ρ(xi+1 − µ2),
√

1− ρ2) (4.14)

Figure 4.5: Result from a Gibbs sampler after 2000 iterations on a bivariate Nor-
mal distribution
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CHAPTER 5
Methods

A
S outlined in Chapter 3 only a small number of single-nucleotide polymor-
phisms are considered to influence a phenotype. The purpose of analysis,
as explained in Section 3.5, is to identify the true subset ofSNPs influ-

encing the phenotype on one hand and on the other hand to predict phenotypes
based on a dataset using the identified subset. The former point [22] naturally
arises from genomic datasets where SNPs with no or only a negligible influence
on the phenotype can be excluded from the set of relevant variables. However [23],
identification of the single best model is very unlikely to besuccessful because of
small associations between SNPs and phenotypes and datasets with more predic-
tors than observations p≫n. Additionally [36], the datasets, as explained in more
detail in Section 3.4.2, are often highly correlated.
The thesis considers two common methodologies, namely stochastic search vari-
able selection (SSVS) and Bayesian penalized regression. Both methods are ap-
plied to genome-wide association studies; for SSVS see for example Guanet.al.
[23], Chenet.al. [11], Srivastavaet.al. [54] or Yi et.al. [66]. Bayesian penalized
regression is used for example by Liet.al. [39], Silva et.al. [51], using Bayesian
Lasso for the prediction of unseen traits, or Yiet.al. [67]. Methods considered in
this chapter are able to circumvent the restrictions arising from single-SNP regres-
sion as outlined in Section 3.6, by considering the completedataset and thereby
combinations of SNPs for their association. Moreover, because of the Bayesian
representation [37] easily-interpretable results in combination with valid standard
errors are obtained and methods are able to partially model the complexity of the
genome and its influences on traits and phenotypes.

The purpose of this chapter is to introduce and outline the methodology considered
within this thesis and to propose modifications to the methods under consideration.
Section 5.1 gives a general introduction to the regression problem as it is assumed
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in most of the work about genome-wide association studies. Section 5.2 introduces
hybrid correlation-based search with its two parts, stochastic search variable selec-
tion in Subsection 5.2.1 and correlation-based search in Subsection 5.2.2; whereas,
the modifications are discussed in Subsection 5.2.3. Subsequently, Section 5.3 ex-
plains Bayesian penalized regression with Bayesian lasso in Subsection 5.3.1 and
Bayesian ridge regression is discussed in Subsection 5.3.2.

5.1 General Regression Model

In this chapter details of the methods examined are presented. In case of hy-
brid correlation-based search and Bayesian penalized regression a multivariate lin-
ear regression model is considered consisting ofn observations andp predictors,
which is the natural choice [2] for this purpose and is common[23, 27, 36, 37, 49]
among related work. The linear contribution of every causalSNP [2, 63, 69] is
widely adopted.
Hastieet.al. [29] mentioned that linear models are a reasonable approachin situa-
tions with a small number of training cases and data with low patterns of associa-
tions.

Y = α+X∗′β + ǫ (5.1)

Let X = {X1,X2, ...,Xp}
′ denote the standardized predictor variables, annxp

matrix. In the scope of GWAS predictor variables are usuallysingle-nucleotide
polymorphisms, where every predictor represents one SNP from the genomic dataset.
The combination of the two alleles from a genetic location onthe chromosomes1

determines the value of a predictor, as explained in Section3.6.
Equation 5.1 depicts the assumed linear model where a subsetof all SNPs con-
tributes and influences the measured outcome (the phenotype). X∗ is a small sub-
set ofX with X∗ = {X1,X2, ...,Xp∗}, wherep∗ ≪ p, associated to the outcome
Y . Hence,Y is a linear combination of the predictors inX∗. Note that there are
2p different combinations ofX∗. According to O’Hara [27], in a Bayesian frame-
work the selection of the ’best’ subset is often determined in a variable-specific
form where every variable is either included or excluded from the subset. More
details are discussed in the remainder of this section.
The strength of the influence of every genetic location (SNPs) on the phenotype is
represented by its regression coefficientβi, henceβ = {β1, β2, ..., βp}

′. The pur-
pose of variable selection [22] (selecting strongly associated genomic locations)
is to identify the group of variables with small regression coefficients, where it
would be preferable to ignore them and instead to include variables inX∗ having
a regression coefficient different than0.

1Assuming a diploid set of chromosomes, therefore every chromosome is present in every cell
twice.
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The last term in Equation 5.1 isǫ and depicts the independent error term, also
known as noise.
It is assumed, as typical for GWAS, that the number of predictors is larger than the
number of observations, therefore p≫n.

5.2 Hybrid Correlation-based Search

The hybrid correlation-based search (hCBS) [36] is an iterative stochastic search
method comprising two parts. The first part follows the stochastic search variable
selection [7, 8, 21, 22]; while, the second part is a newly proposed method named
correlation-based Search (CBS). Both methods are used in the hybrid correlation-
based search method, where in every iteration either the stochastic search variable
selection or the correlation-based search method is used. The method is designed
to identify a subsetXγ to approximate Equation 5.1 by Equation 5.2; hence, to
approximate the ’best’ modelX∗. To this end it is given a set of predictor variables
X = X1, ...,Xp and an outcome variableY depending onX, as defined in Section
5.1.γ indicates which variables are included in the current subset by settingγi = 1

if the variableXi is included in the subset andγi = 0 if not. The purpose of this
is explained later in this Section.

Y = αγ +X
′

γβγ + ǫ (5.2)

The noise term in Equation 5.1 and Equation 5.2 is defined as Normal distri-
bution ǫ ∼ N (0, σ2). α is a normal distributionN (α0, hσ

2); whereα0 andh are
hyperparameters. The variance of the noise termσ2 is assigned an inverse gamma
distribution as shown in Equation 5.3.

σ2 ∼ IG(
v

2
,
vλ

2
) (5.3)

Furthermore, a conjugate prior for the regression coefficients βγ is used, as
shown in Equation 5.4, given the current subsetγ andσ2. ForHγ an independent
prior cIpγ is used, since it is computationally favourable [36].

βγ |γ, σ
2 ∼ N (β0, σ

2Hγ) (5.4)

Givenσ2, α is a normal distribution withN (α0, hσ
2) with hyperparametersα0

andh. The posterior distribution [36] can by calculated by usingthe specified
priors and gathering the information about the most probable subsets.

p(γ|X,Y ) ∝ g(γ) = (5.5)

= |In +XγHγX
′

γ |
− 1

2 |Qγ |
− v+n

2 p(γ)

where Qγ = vλ+ Y
′
(In −XγK

−1
γ X

′

γ)Y

and Kγ = X
′

γXγ +H−1
γ
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Since the posterior distribution has to be evaluated for2p different models in
order to find theγ with the largest posterior distributionp(γ|X,Y ), computation
becomes infeasible with larger values ofp.
In hybrid correlation-based search the vectorγ can be used to obtain the most-oft
included variables in the subset. Sinceγi = 1 for every variable included in each
iteration the variable selection can be performed simply bycomputing the ratio of
a variable being included to the number of iterations of the Markov chain. The
result obtained is calledmean posterior inclusion probability and is addressed
in Chapter 6.
The remainder of this chapter includes definitions of stochastic search variable
selection in Subsection 5.2.1 and the correlation-based search in Subsection 5.2.2.

5.2.1 Stochastic Search Variable Selection

Stochastic search variables selection randomly explores afraction of the possible
models ofγ to identify the model with the largest posterior probability p(γ|X,Y ).
As previously outlined [23,36], SSVS does not incorporate any information about
the relationships between variables for the generation of anew subsetγ. At any
iteration of the Markov Chain, SSVS alters the subset, from the preceding itera-
tion. Therefore, a new vectorγ∗ is created from the currentγ by either adding
or removing a randomly chosen predictor from the current subset with probability
φ. With probability1 − φ, one predictor that is currently included in the subset is
being exchanged for a randomly chosen predictor that is currently excluded. This
leads [36] to the following proposal distribution

q(γ∗|γ) =







φ
p
, if |pγ − pγ∗ | = 1
1−φ

pγ(p−pγ)
, if |pγ − pγ∗ | = 0

(5.6)

George and McCulloch [21] introduce a widely adopted prior for γ taking the form
of an independent Bernoulli distribution as depicted in Equation 5.7, wherepγ
denotes the number of variables currently selected into thesubset;pγ =

∑p
i=1 γi.

p(γ) = ωpγ(1− ω)(p−pγ) (5.7)

ω is considered as a prior assumption [6–8, 21, 27] of the size of the subset,
more specifically the ratio of variable included into the selected subset to the total
number of variables. In the majority of GWAS [17] the number of expected SNPs
associated and therefore relevant has shown to be rather small, henceω is set to a
small value.

5.2.2 Correlation-based Search

Correlation-based search uses a similar approach to stochastic search variable se-
lection, except that correlation-based search does not consider every variable as
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independent. As outlined in Section 3.4.2, genomic data show high correlations.
Not considering correlation during variable selection [36] can result in the inclu-
sion of highly correlated variables at the cost of variablesbeing ignored, which are
part of the true underlying subset.
SSVS [36] is modified to incorporate information about relationship between vari-
ables for the proposal of new subsetsγ. While SSVS chooses the variables for the
inclusion/exclusion step as well as the swap step randomly,CBS considers cor-
relation between variables in every iteration of the MarkovChain to propose the
altered subsetγ. Therefore, only variables having a low correlation are added to
the current subset; whereas, highly correlated variables are excluded from the cur-
rent subset.
LetΥX denote the correlation matrix of predictorsX with entriesΥXij

= ρij . Lγ

representing the predictors currently included in the subset, henceLγ = {i : γi =

1, i = 1, ..., p} and respectivelyEγ denote the set of predictors excluded.
During the addition step an indexi′ ∈ Lγ is randomly chosen, and subsequently
the predictorxj′ , wherej′ satisfies {j ∈ Eγ : |ρi′j′ | = min|ρi′j|}, is included
in the subset. The deletion move is similar, thereforexj′ satisfying{j ∈ Eγ :

|ρi′j′ | = max|ρi′j|} is excluded. The swap move is simply a combination of an
addition and a removal step. Due to these changes, components ofγ are no longer
independent Bernoulli variables and therefore the prior ismodified in Equation
5.8.

p(γ) =

(

p

pγ

)−1 1

pγ
(5.8)

Consequently [36], as denoted in Equation 5.9, the proposaldistributionq(γ∗|γ)
is altered as well, since the proposal of new subset is no longer symmetrical.

p(γ∗|γ) =







φ
2pγ

, if |pγ − pγ∗ | = 1
1−φ
pγ

, if |pγ − pγ∗ | = 0
(5.9)

5.2.3 Modifications

This section outlines the modifications and improvements made to the hybrid
correlation-based search method to improve variable selection and prediction.

5.2.3.1 Variable Selection

Correlation-based search considers only the most correlated variables during the
alterations of the subsetγ. As explained in the previous section, Section 5.2.2,
CBS considers variables whith a very high correlation to another variable in the
subset during exclusion of a variable. Nevertheless, the correlation structure within
the DNA [23] tends to be ’local’. Typically, every SNP is highly correlated with a
small number SNPs in their surroundings and correlation [23, 34] decreases with
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distance along the DNA. For example in fine-mapping studies,where many highly
correlated variables in a genomic region are examined, onlyconsidering the high-
est correlated variable can be adverse and disregards slightly less correlated vari-
ables.
Therefore, a modification to CBS is proposed in order to improve the mixing of
highly correlated variables. As in Section 5.2.2Eγ is the set of predictors currently
excluded from the subset and correspondingly,Lγ is the subset of predictors in-
cluded. During the deletion moves as well as the deletion part of the swap move
not only the highest correlated variables are considered, instead other predictors
are given a chance to be chosen as well depending on their correlation. Again a
predictori

′
∈ Lγ is chosen randomly. Thereupon a discrete probability distribu-

tion is constructed where each bucket represents a predictor in the subsetj ∈ Lγ\i
′

having a probability as shown in Equation 5.10 for being excluded.

p(j) =
ρi′ j

∑Lγ\i
′

m=1 ρi′m

(5.10)

The modification leads to a reduced number of false positive detections as exam-
ined in Chapter 6.

Interestingly, various other strategies for the inclusionand exclusion steps have
been considered, but led to an increased number of false positive detections. For
example, considering the highest correlated variablexj′ during the inclusion step
j ∈ Eγ : |ρi′j′ | = max|ρi′j |} and excluding the least correlated variablexj′ sat-
isfying {j ∈ Lγ : |ρi′j′ | = min|ρi′j |} from the current subsetγ, showed inferior
results. This was unexpected, since it is reasonable that correlated variables be-
ing associated should be kept in the subset and not associated correlated variables
should be rejected.
Another strategy examined is to consider not only the least correlated variable
during the inclusion steps, but, analogous to the modification in Equation 5.12,
assigning other slightly correlated variables a probability to be selected as well as
shown in Equation 5.12

p(j) =
ρi′ j

∑Eγ
m=1 ρi′m

(5.11)

wherej ∈ Eγ andi′ ∈ Lγ is randomly chosen

However, as mentioned, these strategies led to an increasednumber of false posi-
tive detections and did also not contribute to increase the posterior inclusion prob-
ability.
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5.2.3.2 Prediction

Prediction of phenotypes based on new or unseen datasets is another purpose of
genome-wide association studies. The estimation of the true regression coefficients
is the basis for prediction; that is, to understand the true underlying biological in-
fluence of SNPs on a certain trait. All regression coefficients are obtained by com-
puting the regression coefficients for the subsetγ in each iteration of the Markov
Chain. Finally, after the convergence of the Markov Chain [37] the samples are
summarized to obtain, for example, the posterior mean, which is then used as the
regression coefficient for the selected variables. SSVS [6]estimates the regression
coefficients in every iteration using a least-squares estimate; whereas, other SSVS
variations do not estimate regression coefficients at all [23].
However, by using ridge regression estimates in each iteration to obtain the regres-
sion coefficients for the current subsetXγ more accurate samples are obtained.
Ridge regression [29] imposes a penalty term on the squared sum of the magni-
tude of the regression coefficients as shown in Equation 5.12and improves the
estimation ofβ in the presence of multicollinearity.

β̂Ridge
γ = argmin

β
((Y −Xγβ)

′(Ŷ −Xγβ) + λ

p∗
∑

i=1

|βi|
2) (5.12)

To obtain the optimal regression coefficientsβγ of the current subset, the
penalty termλ has to be evaluated first. Two common methods are examined
in terms of the computation demands and their accuracy for estimatingλ:
The first approach to obtain the regression coefficientsβ is evaluated, whereλ is
obtained for each subset by a direct approach [50]. Therefore, Gaussian priors for
β andǫ are assumed.λ can be obtained from Equation 5.14.

λDirect =
p∗σ̂2

β′
γLS

X ′
γXγβγLS

(5.13)

σ̂2 =
||y −XβγLS

||2

n− p∗

The second method examined is termed generalized cross-validation [29]. It pro-
vides an approximation to the leave-one out cross-validation, a method to validate
different choices of the shrinkage parameterλ. Leave-one out cross-validation [29]
uses one dataset to validate the regression coefficients obtained by fitting the model
to the remaining datasets of the training set. This is repeated until every dataset has
been used once for validation. Generalized-cross validation provides an estimate
with which to compare the different values ofλ. The optimal amount of shrinkage
for the current subsetγ can be computed using generalized cross-validation as in
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Equation 5.14.

GCV (f̂γ) =
1

pγ

pγ
∑

i=1





Y − (X ′
γXγ + λ)−1X ′

γY

1− trace(Sγ )
pγ





2

(5.14)

Whereas, theSγ is defined as in Equation 5.16

ŷ = Sγy (5.15)

Sγ = Xγ(X
′
γXγ + λ)−1X ′

γ (5.16)

Sγ is also known as the hat matrix [29].
Since the error function is quadratic, the best choice ofλ can be evaluated by
finding the minimum of the quadratic function. For this purpose the MATLAB
functionfminsearch is used.

Both methods showed very similar results, but the direct approach in Equation
5.14 is computationally more favourable and hence better suited to be computed
in every iteration step. An evaluation of the direct method is referred to Chapter 6

5.3 Bayesian Penalized Regression

Penalized regression methods are a common approach [29] andare applicable to a
wide range of regression problems as outlined in Section 5.1. Penalized regression
methods considered in the work at hand are estimations of theregression coeffi-
cients where constraints are imposed on their magnitude andare similar to the least
squares estimates, but yield some important properties.
The estimation of the regression coefficients obtained by least squares [29] are un-
biased estimators and have the smallest variance of all unbiased estimators. Nev-
ertheless, a severe problem [5,29] of the least squares approach is the tendency of
large magnitudes of the estimated regression coefficients;hence, these estimations
are sensitive to the datasets. Another problem arises from datasets [37] where the
number of variables is larger than the number of observations, which is common in
genome-wide association studies (as outlined in the introduction in Chapter 5), as
well as the presence of high correlations among the variables. Nevertheless, biased
estimators exist [29] yielding a smaller mean squared errorthan the unbiased least
squares estimation and are suitable for the application to large-scale regression
problems, known as regularized regression or penalized regression. Two common
methods [29] areridge regressionand lasso, among others. These two methods
are outlined and subsequently their Bayesian equivalents are explained.
Initially, ridge regression is introduced by Hoerlet.al. [33] to overcome the dif-
ficulties arising from multicollinearity. Ridge regression restricts the sum of the
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quadratic magnitudes of the regression coefficients. Therefore, the residual sum of
squares (RSS) is minimized subject to the constraint

∑p
i=1 |βi|

2 ≤ t, also known
asL2 norm. The constraint, usually denoted asλ, as in Equation 5.18, represents
the amount of shrinkage imposed. The constraint on the coefficients [29] alleviates
the problem arising from high correlations between the variables, where the regres-
sion coefficients can become very large. Hence, ridge regression has the property
of improving prediction in the face of multicollinearity; nevertheless [29,37], it is
not able to perform subset selection by effectively settingregression coefficients
to 0.
In contrast to ridge regression, Tibshirani [59] introduced a different penalty on
the magnitude of the regression coefficient, by exchanging theL2 - term by the
non-differentiable constraint expressed by theL1 norm

∑p
i=1 |βi| ≤ t. Hence the

lasso estimator is given by the following equation

β̂Lasso = argmin
β

((Ŷ −Xβ)′(Ŷ −Xβ) + λ

p
∑

i=1

|βi|) (5.17)

and correspondingly the ridge regression estimator is given by Equation 5.18

β̂Ridge = argmin
β

((Ŷ −Xβ)′(Ŷ −Xβ) + λ

p
∑

i=1

|βi|
2) (5.18)

The lasso yields the property of performing continuous shrinkage and simultane-
ous variable selection. Due to the penalty-term in Equation5.17 the solution to
obtain estimates for the regression coefficient does not longer exist in closed form.
In the presence of multicollinearity [30,40] the lasso tends to select one among the
correlated variables and shrinks the remaining highly correlated variables towards
0. The lasso has the property that it can only selectn variables at maximum in
settings of p≫n.
Yuan [68] and Park and Casella [49] state that penalized regression methods have
the drawback of not providing valid standard errors and do not provide [56] prob-
abilities to measure level of certainty in the resulting model.
A fully Bayesian treatment of the lasso is introduced by Parkand Casella [49] pro-
viding interval estimates of all parameters, thereby supporting variable selection.
Kyung et al. [37] adapts the Bayesian treatment for lasso to fit a more general
model of the lasso in order to represent other penalized regression methods such
as ridge regression, Fused lasso, Grouped lasso and ElasticNet. A Gibbs sampler
is used in all of the models to explore the posterior distributions. The mean of the
samples from the posterior distribution [37] is then used asestimate.

Since neither the Bayesian lasso nor the Bayesian ridge regression is able to ef-
fectively set the regression coefficients of irrelevant variables exactly to0 a subse-
quent variable selection is performed [40] by using thecredible interval criterion .
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A variable is excluded if the credible interval of the regression coefficientβi covers
0. Consequently, a variable is considered relevant if0 lies outside of the credible
interval. More details are presented in Chapter 6. A common choice is a95%
credible interval [40] and will mostly be used in Chapter 6. Li et.al. [39] suggests
that a95% invervall leads to significant selections; however, using athe95% in-
vervall can lead to many exluded variables. Liet.al. [40] suggests that using a50%
interval can lead to better variable selection. More details are again discussed in
Chapter 6.

5.3.1 Bayesian Lasso

In the first proposal of lasso, Tibshirani [59] noted that thepenalty term in Equa-
tion 5.18 could be obtainedas Bayes posterior mode of an independent double
exponential prior for the βs. According to Park and Casella [49] the Bayesian
lasso appears to be a compromise between the lasso and ridge regression in terms
of the regularization path. The following hierarchical model is adopted from Park
and Casella [49] as well as from Kyunget al. [37] and defines the hierarchical
model. Conveniently, the shrinkage parameterλ is also assigned a hyperprior [37]
and thus it is not necessary to estimate the appropriate amount of shrinkage by for
example cross-validation or generalized cross-validation.

y|α,X, β, σ2 ∼ Nn(α1n +Xβ, σ2In) (5.19)

β|σ2, τ21 , τ
2
2 , ..., τ

2
p ∼ Np(0p, σ

2Dτ ) (5.20)

Dτ = diag(τ21 , τ
2
2 , ..., τ

2
p )

σ2, τ21 , τ
2
2 , ..., τ

2
p dσ

2 ∼

p
∏

j=1

λ2

2
e

−λ2τ2j
2 dτ2 (5.21)

After integrating outτ21 , τ
2
2 , ..., τ

2
p , β has the desired form of a conditional Laplace

prior as suggested by Park and Casella [49]

p(β|σ2) =

p
∏

j=1

λ

2σ
e−

λ|βj
σ (5.22)

The non-informative scale-invariant marginal priorp(σ2) = 1
σ2 is used as a prior

for σ2. Shrinkage parameterλ, which is usually estimated, is assigned a hyper-
prior. Therefore, in the Bayesian treatment a gamma prior onλ2, as denoted in
Equation 5.24 is considered and included in the Gibbs sampler. The full condi-
tional distribution ofλ2 is a Gamma with shape and rate

λ2 ∼ Gamma(p+ r,

p
∑

j=1

τ2j

2 + δ
(5.23)

where λ2 0, r > 0, δ > 0
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The hierarchical model is put into a Gibbs sampler to obtain samples from the
posterior distributions.

5.3.2 Bayesian Ridge Regression

The same hierarchical setup as defined in Section 5.3.1 is used to represent the
Bayesian ridge regression, as well as some other methods [49] through the modi-
fication of the priors onτ21 , ..., τ

2
p andσ2. According to Park and Casella [49] the

hierarchical Lasso is adapted for Ridge Regression by giving all τ2j ’s a degenera-
tive distribution at the same constant value.
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CHAPTER 6
Results

The purpose of this Chapter is to apply the methods outlined in Chapter 5 to simu-
lated and real datasets in order to assess the quality of results obtained in terms of
their ability to identify relevant SNPs as well as to predictphenotypes.

For the purpose of evaluation two simulated datasets are considered, forming the
basis for comparison and inference of which method is superior. The simulated
datasets mimic certain properties of small datasets in genome-wide association
studies mainly in terms of their correlation structure. Furthermore, the methods
are applied to real datasets. Unfortunately, at the time of writing no real GWAS-
dataset was available for evaluation purposes.
This thesis originates in collaboration on the FWF-funded project Genome wide
association study for functional longevity and related traits of dairy cows1, how-
ever, the data were not granted for use outside the project’sscope. Furthermore,
due to the strict data protection policies no publically available genome data suit-
able for this work were found. Most datasets such as the datasets used for the
GenABEL tutorial or the demonstration dataset for GEMMA software serve the
purpose of demonstrating features of the software and couldnot be used for this
Chapter in a meaningful way.
Thus, to assess the quality of the methods as applied to a realdataset the prostate
cancer dataset [55], present in various other works [29, 30,37, 40], is used. More
details are discussed in Section 6.3 and Section 6.4.
Preliminary analysis [2], as addressed for example by Thomas [58] or by Beau-
montet.al. [4], is not part of this Chapter, since it would greatly exceed the scope
of the thesis.
For the remainder of the Chapter the modifications to hybrid correlation-based

1
https://forschung.boku.ac.at/fis/suchen.projekt_uebersicht?sprache_in=en&menue_id_in=300&id_in=8359
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search discussed in Section 5.2.3 are referred to as hCBS* for convenience.

The computational results presented in Section 6.1, 6.2 and6.4 have been achieved
using the computational resources provided by the Vienna Scientific Cluster (VSC).

The Chapter presents the results from the analysis of a block-wise correlated dataset
in Section 6.1, a pair-wise correlated dataset in Section 6.2 as well as the applica-
tion of the methods to a real dataset in Section 6.3 and the same dataset extended
to a p≫n dataset in Section 6.4. The Chapter concludes with a discussion of the
computational demands in Section 6.5.

6.1 Block-wise correlation

The first dataset used yields a block-wise correlation structure and mimics a block
of proximate correlated SNPs influencing the phenotype besides another block
of correlated variables having no influence. A similar dataset has been used by
Kwon et.al. [36]. The dataset containsp = 5, 000 SNPs (variables) andn = 500

phenotypes (observations) to demonstrate a small GWAS dataset.
The phenotypes are generated from a univariate normal distribution with mean
µ = 0 and standard deviationσ = 1. For randomly generating the predictors the
following correlation matrixΥX is used.

ΥX =

(

Υ11 Υ12

Υ21 Υ22

)

(6.1)

In 6.1 Υ11 is a 10x10 matrix, corresponding to the correlation of the predic-
tors associated to the phenotype.Υ12 andΥ21 denote the correlation between
predictors associated with the outcome and the remaining predictors. Conse-
quentlyΥ22 represents a990x990 block. For this simulation studyΥ11 = 0.85,
Υ12 = Υ21 = 0.45 andΥ22 = 0.55 is used; furthermoreβi = 0.5 for i = 1, ..., 10

andβi = 0 for i = 11, ..., 5, 000 are the regression coefficients.

To obtain meaningful results 25 datasets are generated using the same structure.
Subsequently, hCBS*, hCBS, SSVS, Bayesian lasso, and Bayesian ridge regres-
sion are applied to these datasets. All datasets are normalized and standardized
∑n

i=1 xij = 0,
∑n

i=1 yi = 0 and
∑n

i=1 x
2
ij = 1 for j = 1, ..., p.

In the case of hCBS*, hCBS and SSVS hyperparameters need to bespecified and
are chosen to give a result with as many true positive detections as possible and
minimal amount of false positive detections. To make the results comparable, the
same hyperparameters are used for hCBS, hCBS* and SSVS:ω = 10

5,000 , reflecting
the prior belief of truly associated variables in the dataset, v = 3 andλ = 1 and
Hγ = cIp with c = 1 is used. The proportion of hCBS, or hCBS*, to SSVS moves
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Figure 6.1: True and false positive detections

is set to0.9, the same as used by Kwonet.al. [36]. 0.5 is used as a coin-flip to
either use a swap or inclusion/exclusion move.
For SSVS the mixing between hCBS and SSVS is set to0 to result in only SSVS
moves in each iteration.
HCBS, hCBS* and SSVS are run for1, 000, 000 iterations. Of these,5, 000 itera-
tions are discarded as burn-in period as explained in Section 4.2.
Bayesian lasso and Bayesian ridge regression are run for15, 000 iterations with
1, 000 iterations are removed from the chain.

Figure 6.1 shows the results using a threshold of0.5 for the posterior inclusion
probability in the case of hCBS, hCBS* and SSVS, as well as fora 95% credible
interval in case of Bayesian lasso and Bayesian ridge regression.
All methods except for SSVS are able to identify all relevantvariables.
Bayesian lasso and Bayesian ridge regression both perform very well and identify
all relevant variables with no false positive detections. hCBS* also performs well
by identifying all relevant variables in contrast to only0.8 false positive detections
on average, while hCBS identifies10 true positive variables and1.6 non-associated
variables. Thus, hCBS* reduces the number of false positivedetections in compar-
ison to hCBS. SSVS identifies on average9.33 out of the10 associated variables
and also yields the lowest number of false positives in comparison to hCBS and
hCBS*.
Figure 6.2 shows the regression coefficients obtained by Bayesian lasso along with
the95% confidence intervalls, which are used for variable selection. Figure 6.3 de-
picts the same obtained by Bayesian ridge regression.
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Figure 6.2: Regression coefficients
with varying credible interval crite-
rion for variable selection obtained by
Bayesian lasso

Figure 6.3: Regression coefficients
with varying credible interval crite-
rion for variable selection obtained by
Bayesian ridge regression

By using the regression coefficients from the selected variables to predict unseen
datasets hCBS and hCBS* have a similar mean squared error (MSE) of 1.074 and
1.0753; whereas, SSVS has a MSE of1.0904. Bayesian lasso and Bayesian ridge
regression have a MSE of1.1534 and1.1364, respectively; thus producing slightly
higher prediction errors.
Relaxing the variable selection criteria to0.4 in the case of SSVS-based methods
and to a90% credible interval criterion leads to false positive rate of1.7 and3.7
for hCBS* and hCBS, respectively. For the remaining methodsthe number of false
positive detections remains unchanged.
If the variable selection criterion for Bayesian penalizedregression is again low-
ered to50% then427 and677 false positives are selected, leading to the conclusion
that, in this example, a50% credible interval criterion is not restrictive enough to
be used for variable selection purposes.

As mentioned above the computations were carried out on the Vienna Scientific
Cluster using one eight-core node for each method and dataset. Computation of
hCBS* and SSVS took on average 160 minutes and hCBS took slightly more than
167 minutes.15, 000 iterations of Bayesian lasso and Bayesian ridge regression
took significantly longer. The former terminated after 17.75 hours and the latter
required 22.14 hours on average.

In sum, all methods performed well with Bayesian lasso and Bayesian ridge re-
gression slightly outperforming SSVS-based methods in terms of false positive de-
tections, but requiring a significantly longer computational time. However, hCBS,
hCBS* and SSVS predict unseen datasets more accurately as reflected in a lower
MSE than the Bayesian penalized regression methods.
A more detailed discussion about the computational demandsis referred to Section
6.5.
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are

Figure 6.4: True and false positive detections in a pair-wise correlated dataset

6.2 Pair-wise correlation

The second simulated dataset consists of high pair-wise correlation between the
variables, mimicking the correlation present in the genomedecreasing with dis-
tance. Again,p = 5, 000 SNPs andn = 500 phenotypes are used to simulate a
small GWAS dataset. The phenotypes are again draws from a univariate normal
distribution with meanµ = 0 and standard deviationσ = 1.
The correlation structureρij is shown in Equation 6.2. Similar simulated datasets
are used by Liet.al. [40] and Hastieet.al. [30].

ρij = 0.9|i−j| (6.2)

HCBS, hCBS* and SSVS are run withω = 10
5,000 , specifying the hyperparameter

for the number of expected true positive variables,v = 3 andλ = 1 andHγ = cIp

with c = 0.05, which can be seen as a penalty term to facilitate inclusion of vari-
ables.1, 000, 000 iterations are carried out. Convergence diagnosis indicated that
sufficient samples have been collected.
The Bayesian penalized regression methods are run for15, 000 iterations until con-
vergence is approximately reached.
Again, 25 datasets were generated and computed to obtain average results.

Figure 6.4 summarizes the average number of true and false positive detections.
All methods are able to detect a fair amount of true positive variables. Bayesian
ridge regression performed best in terms of true positive detections, but also yields
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hCBS 1.191

hCBS* 1.233

SSVS 1.139

Lasso 1.1185

RR 1.1011

Table 6.1: Mean squared error predicting unseen datasets

the largest number of false positive detections. Bayesian lasso detects9.78 true
positive variables on average; hCBS*, hCBS and SSVS give similar results, but
only hCBS* detects no false positive variables.
SSVS performed better than hCBS and hCBS* in terms of true positive detections,
which is a rather unexpected result, since the correlation in the dataset is up to0.9.
HCBS* and Bayesian lasso are the only methods not including any false positives.
Figure 6.5 and 6.6 show the regression coefficients as well asthe 95%, the90%
and the50%-confidence interval which is used as credible interval for variable se-
lection.

Figure 6.5: Regression coefficients
and confidence intervals obtained by
Bayesian lasso

Figure 6.6: Regression coefficients
and confidence intervals obtained by
Bayesian ridge regression

Table 6.1 shows the average prediction errors over the remaining 24 datasets ob-
tained by the different methods. As shown in the table, all methods perform rather
well with a similar prediction error. Obviously, the selected variables by each
method influence the MSE.

Computational demands are similar as in Section 6.1. HCBS, hCBS* and SSVS
required less than 167 minutes, Bayesian lasso terminated after on average 20.8
hours and Bayesian ridge regression took on average 22.1 hours.

Summarizing the findings, both Bayesian penalized regression methods perform
better than the SSVS-based methods in terms of true positivedetections. How-
ever, Bayesian ridge regression yields the most false positive detections; whereas,
Bayesian lasso include no false positives in contrast to9.76 true positives. HCBS,
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hCBS* and SSVS identify a similar number of true positives, but only hCBS*
includes no false positives.

6.3 Prostate cancer dataset

As previously mentioned, the prostate cancer dataset comesfrom a study per-
formed by Stameyet.al. [55] which examines the associations between the level of
a prostate-specific antigenlpsa and eight different clinical measures in men prior
to a radical prostatectomy2. The dataset contains measurements from 97 men.
The eight different measurements are:

• lcavol: logarithmic cancer volume

• lweight: logarithmic prostate weight

• age: age of the patient

• lbph: logarithmic amount of benign prostatic hyperplasia

• svi: seminal vesicle invasion

• lcp: logarithmic capsular penetration

• gleason: Gleason score

• pgg45: percentage of Gleason scores 4 or 5

As done by Hastieet.al. [29] the dataset is randomly split into a training set of size
67 and a validation set of size 30 to assess the mean squared prediction error and
to compare variable selection performed by the different methods. The dataset is
normalized

∑n
i=1 xij = 0,

∑n
i=1 yi = 0 and

∑n
i=1 x

2
ij = 1 for j = 1, ..., p to

remove any effects arising from different scales.
In the case of the hCBS, hCBS* and SSVSω = 1

2 , the prior expectation of the
number of relevant variables, is chosen since it is unknown and0.5 is an impartial
choice. Other hyperparameters such asv = 3 andλ = 1, as well asHγ = cIp

with c = 1 as an independent prior, are chosen to ensure a proper acceptance ratio
of the Metropolis/Metropolis-Hastings algorithm.
35, 000 iterations are carried out and in the case of the penalized regression meth-
ods10, 000 iterations are carried out.

The computation took around 46 seconds for the hCBS methods and slightly less
than 60 seconds for the hCBS* method. The increased computation time stems
from the calculation of the shrinkage coefficientλ as outlined in Section 5.2.3.

2A radical prostatectomy is a surgery for removing all parts of the prostate gland.
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Methods Selected variables MSE MPIP
hCBS lcavol, lweight, lbph 0.7472 0.7916
hCBS* lcavol, lweight, lbph 0.7477 0.7814
SSVS lvacol, lweight 0.6952 0.8867
Lasso lcavol, lweight 0.7476 -
RR lcavol, lweight 0.7765 -

Table 6.2: Selected variables by the different methods

Bayesian lasso took less than 9 seconds, whereas Bayesian ridge regression took
less that 6 seconds3.
HCBS has a mean acceptance rate of0.41, SSVS has0.19; whereas the acceptance
ratio of hCBS* is0.38, all indicating a well-mixing chain, although the acceptance
ratio of SSVS is at the lower end. The samples are checked for convergence after
the computation. The scale reduction factor is below1.02 and the Geweke tests
passed for all variables; hence, strong evidence in favor ofconvergence is obtained.

Table 6.2 shows the variables selected by the different methods. Both hCBS and
hCBS* selected the three out of eight variables with a posterior inclusion probabil-
ity higher than0.5 which is a reasonable choice [23] to use as a threshold. SSVS
selected two out of the eight variables namelylcavol andlweight.
The penalized regression methods selected two out of eight using a95% credible
interval [40] as explained in Section 5.3. When applying a90% credible interval
the same two variables are selected again.
lcavol andlweight are identified as strongly influencing the responselpsa

by Hastieet.al. [29]. All methods applied to the dataset by Liet.al. [40] and the
methods performing variable selection in Hastieet.al. [30] identified lcavol,
lweight andlbph, besides others depending on the method. The same three
variables are also identified by hCBS and hCBS*.
If the threshold for the posterior inclusion probability isset to0.4 hCBS* addi-
tionally includesgleason as well, which also has been identified as significant
by three of the four methods by Liet.al. [40].

To assess the MSE for each method the coefficients of the variables selected are
applied to the test dataset and are shown in Table 6.2. Interestingly, the MSEs of
hCBS, hCBS* and Bayesian lasso are very similar; whereas theMSE of SSVS is
lower and the MSE of ridge regression is slightly higher thanthat of other meth-
ods.
The last column shows the mean posterior inclusion probability (MPIP) for hCBS,

3The computation was carried out in MATLAB on an ASUS N61Jv notebook deploying an Intel
i5 M450 Quad-Core and 6GB RAM running Windows 7. Computationtime was averaged over 10
computations for each method.
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Figure 6.7: Posterior inclusion probability of the selected variables

hCBS* and SSVS and depicts the ratio of the times a variable isincluded in the
subset to the total number of iterations. The inclusion probability of the selected
variables is shown in Figure 6.7.

6.4 Extended prostate cancer dataset

Due to the absence of an available GWAS datasets at the time ofwriting the
prostate cancer dataset is transformed into a p≫n dataset to assess the quality of
results on a real dataset. The same dataset as in Section 6.3 is used; additionally,
white-noise variables are added to bring the total number to200 variables with 67
measurements in the training set. The additional predictors are highly correlated
having an average correlation coefficient of0.95.
The same approach is used by Hans [25]. This yields the advantage of compara-
bility to the original dataset.
Again the training set has a size of 67 and the remaining 30 measurements are used
to assess the quality of prediction and variable selection.
For hCBS and hCBS* the expected ratio of associated variables is set toω = 0.02,
to maintain the ratio used in the example in Section 6.3. The remaining hyperpa-
rameters are set tov = 3 andλ = 1 as well asHγ = cIp with c = 0.5 as an
independent prior, again, to ensure a proper acceptance ratio. HCBS and hCBS*
are run for250, 000 iterations with5, 000 burn-in samples. In the case of Bayesian
lasso and Bayesian ridge regression20, 000 iterations are carried out where the first
1, 000 samples are removed as a burn-in period. All results are checked for con-
vergence and the maximum̂R-score was1.0022 for variablegleason in hCBS.
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Methods Selected variables MSE MPIP
hCBS lcavol, lweight, age,

lbph, gleason, 53
0.73 0.68

hCBS* lcavol, lweight, lbph,
svi, lcp, pgg45, 37

0.69 0.73

SSVS lcavol 0.73 0.99
Lasso lcavol 0.85 -
RR lcavol 0.94 -

Table 6.3: Selected variables by the different methods
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Figure 6.8: Posterior inclusion probability of the selected variables

Table 6.3 shows the variables selected by the different methods, which are above
0.5 for the posterior inclusion probability in the case of hCBS,hCBS* and SSVS
and selected by a95% credible interval criterion in the case of Bayesian lasso and
Bayesian ridge regression. HCBS selects 5 out of the 8 real variables and identifies
the same variables as in the original dataset (lcavol, lweight, lbph) along
with age andgleason. age is only identified by Bayesian lasso in Liet.al. [40]
and is also not considered relevant by hCBS*, Bayesian lassoand Bayesian ridge
regression.gleason, is only identified by the methods applied by Liet.al. [40]
and considered as insignificant by Hastieet.al. [29] and Hasteet.al. [30].
HCBS* includes, besides the same variables included in Section 6.3,svi, lcp
andpgg45; one more variable than hCBS.svi is identified as relevant by Kyung
et.al. [37], Hans [26] and Hastieet.al. [29] and all methods except for Elastic Net
in [30]. lcp andpgg45 are identified by Hastieet.al. [30]. HCBS and hCBS*
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Figure 6.9: Regression coefficients and confidence intervals obtained by Bayesian
lasso

additionally include one white-noise variable.
Figure 6.8 shows the posterior inclusion probabilities of the selected variables,
which represents the confidence of the variables selected.
Bayesian lasso and Bayesian ridge regression only identifylcavol as relevant
and consider all other variables as insignificant. The selection of lcavol agrees
with previous studies using various methods, aslcavol is always identified as
relevant. To depict the variable selection in Bayesian lasso Figure 6.9 shows the
regression coefficients of the first 20 variables along with the95%, 90% and50%
confidence intervals used for variable selection. The regression coefficients with
the confidence intervals for Bayesian ridge regression is depicted in Figure 6.10.
The mean squared errors using the selected variables are also shown in Table 6.3
using the training dataset for evaluating the prediction error. HCBS, hCBS* and
SSVS show similar MSEs; whereas Bayesian lasso and Bayesianridge regression
show slightly larger MSEs. HCBS* yields the lowest prediction error.

Table 6.4 shows the results when the variable selection criteria for Bayesian pe-
nalized regression methods are relaxed to a90% credible interval criterion. Both
methods includelweight if a 90%-confidence interval is used and additionally
includelbph,svi,gleason ,pgg45 and three white-noise variables if a50%-
confidence interval is applied as suggested by Liet.al. [40]. The difference be-
tween the95%, the90% and the50%-credible interval criterion is shown in Figure
6.9 for Bayesian lasso and for Bayesian ridge regression in Figure 6.10. If the
variable selection criteria are relaxed to0.4 for hCBS, hCBS* and SSVS no other
variables are additionally included.
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Figure 6.10: Regression coefficients and confidence intervals obtained by
Bayesian ridge regression

Methods Selected variables MSE
Lasso90% lcavol, lweight 0.7994
Lasso50% lcavol, lweight, lbph,

svi, gleason, pgg45, 132,
142,168

0.6686

RR90% lcavol, lweight 0.8865
RR50% lcavol, lweight, lbph,

svi, gleason, pgg45, 132,
142,168

0.7069

Table 6.4: Selected variables by the different methods

The computation was carried out on the VSC on an 8-core node for each method.
hCBS took 169 seconds and hCBS* 143 seconds to complete the250, 000 itera-
tions; whereas Bayesian lasso took 84 seconds and Bayesian ridge regression 42
seconds both computing20, 000 iterations.

6.5 Computational Analysis

The purpose of this Section is to assess the computation timefor all the methods
using datasets of various sizes, each having ten variables associated to the out-
come.
A direct comparison is rather difficult, since the main feature of the SSVS-based
methods is to perform variable selection during computation so that only a sub-
set of the variablespγ ≤ p is used in every iteration; whereas, Bayesian lasso
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Figure 6.11: Required time for analyzing dataset of various sizes

and Bayesian ridge regression compute all variables in every iteration and perform
variable selection subsequent to the computation. As a consequence the perfor-
mance of SSVS-based methods depends on the number of relevant variables. Since
in typical GWAS [23] only a few SNPs influence the phenotype, all datasets have
ten associated variables and consequently the hyperparameterω for SSVS, hCBS,
and hCBS* is set to 10

#variables
.

Moreover, since samples in the Metropolis-Hastings-algorithm are generated and
then either accepted or rejected, identical samples are included in chain, leading to
an increased autocorrelation. As a consequence, more samples are needed to give
meaningful results.
For those reasons the comparison is based on the time required for one iteration
and is averaged over 500 iterations and 5 repeats per method.

From the results shown in Figure 6.11, it can be seen, that thecomputation time
of SSVS-based methods scale with increases in the number of phenotypes or more
generally with an increase in the number of observations. Note that the y-scale
is logarithmic. In contrast Bayesian penalized regressionmethods scale with the
number of SNPs or in general with the number of variables. This stems from the
fact, that in every iteration each variable has to be sampledseparately which is the
most time consuming calculation.
As the number of SNPs increases in a GWA study Bayesian penalized regression
methods will require excessive computational time and resources.
Bayesian penalized regression methods require on average 5.5 seconds per itera-
tion for a dataset of size 5,000x5,000. In contrast SSVS-based methods take 1.7
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seconds. If the data set consists of 500 phenotypes instead of 5,000, then Bayesian
penalized regression methods still require around 5.5 seconds; whereas, computa-
tion time of SSVS-based methods decreases to 0.004 seconds.

Since SSVS-based methods are able to compute datasets in less time than Bayesian
lasso and Bayesian ridge regression they are computationally better suited for the
application in large GWA studies.
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CHAPTER 7
Discussion

7.1 Discussion

This thesis discusses modifications to the hybrid correlation-based search method
and gives a comparison to Bayesian penalized regression methods such as lasso
and ridge regression both on real and simulated datasets. The simulated datasets
are partly highly correlated to mimic the structure of real GWAS datasets.

Results show that the modification to the variable selectionprocedure of correlation-
based search explained in Section 5.2.3 leads to a reduced number false positive
detections in both datasets. In the example computed in Section 6.1 hCBS* also
identifies all relevant variables. Although, the number of true positive detections
in the simulated dataset in Section 6.2 is slightly lower than by hCBS, setting the
hyperparameterHγ to a lower value results in an improved true/false positive ratio.
On the contrary, using ridge regression, as introduced in Section 5.2.3, to estimate
the regression coefficients in every iteration does not leadto improved prediction
results, which is reflected in a slightly higher MSE when the same variables are
selected, as discussed in the previous Chapter.

Bayesian lasso and Bayesian ridge regression perform well in terms of variable
selection on both simulated datasets, identifying all relevant variables. Bayesian
lasso detects no false positives in either dataset, while Bayesian ridge regression in-
cludes no false positives in the first dataset as discussed inSection 6.1, but a rather
high number of non-associated variables in the pair-wise correlated dataset shown
in Section 6.2. Note that the regression coefficients in bothsimulated datasets are
set to the same value of0.5; thus, each associated variable has the same influence.
Bayesian lasso and Bayesian ridge regression also perform comparably to SSVS-
based methods all preforming well when predictions are madefor unseen datasets.

71



In the real datasets in Section 6.3 and Section 6.4, where thevariables have dif-
ferent influences, Bayesian penalized regression methods both identify only the
variables having the strongest influence. In contrast, hCBS* identifies the most
variables previously found by other studies. SSVS performed inferior than hCBS
and hCBS* in both real dataset examples.

A difficulty arising from the use of hCBS, hCBS* or SSVS is the specification
of the hyperparameters since the choice influences variableselection. Although
the mixing of the Markov chain can be regarded as guideline for hyperparemter
specification, guesses for the optimal values are mostly vague. However, if the
hyperparameters are set to arbitrary values SSVS-based methods are still able to
detect a fair amount of relevant variables. For example, when the dataset used
in Section 6.2 is computed using different hyperparameterssuch asv = 1 and
λ = 20, resulting in a broad distribution for the residual error term in Equation
5.1, andc = 1 then hCBS identifies5.7, hCBS* identifies5.8 and SSVS identifies
6.2 associated variables. All methods detect less true positives, but are still able to
at least identify a fair amount.

Computing a500x5, 000 dataset using either Bayesian lasso or Bayesian ridge re-
gression requires long computation times as discussed in Section 6.5, which leads
to excessive computational demands when real GWAS datasetsare computed with
ten to hundreds of thousand SNPs to be analyzed.
Computational times of Bayesian penalized regression methods scale with the
number of SNPs; whereas, computational time of SSVS-based methods mostly
scale with the number of phenotypes. Computing1, 000, 000 iterations using
hCBS, hCBS* and SSVS takes noticeably less time than computing 15, 000 it-
erations of Bayesian penalized regression methods when thedataset is p≫n. Note
that only ten of the variables influence the outcome and the average number of
variables in the subset of SSVS-based methods varied from ten to thirty. If there
are more variables included in the subset is higher or if there are more genomes in
the dataset the computation time of SSVS-based methods increases significantly.
However, since it is mostly considered that only a small number of SNPs influence
a phenotype and the number of genomes is rather low compared to the number
of SNPs, hCBS, hCBS* and SSVS are better suited for the application with very
large datasets as is often the case with GWAS.

All methods considered in this thesis are able to perform variable selection with
a reasonable amount of true positive detections and a low number of false posi-
tive detections. SSVS-based methods outperform Bayesian penalized regression
methods in terms of computability of large p≫n datasets, still resulting in useful
results and Bayesian penalized regression are superior to hCBS, hCBS* and SSVS

72



in terms of more true positive detections. All methods are able to make reasonably
accurate predictions using the selected variables.

A feasible way to tackle the computational challenges arising in GWAS, which
is left to be addressed in future work, would be to consider a two-step strategy
where the initial selection of SNPs is performed by hCBS* using hyperparameters
that are not to restrictive to variable inclusion (especially setting the hyperparam-
eter forHγ to a low value sinceHγ basically regulates the penalty of variable
inclusions). A second step would involve computing the reduced set of SNPs us-
ing either Bayesian lasso or Bayesian ridge regression. A similar approach is used
by Li et.al. [39] first reducing the initial set of SNPs by applying a supervised prin-
ciple component analysis and subsequently computing the remaining SNPs using
Bayesian lasso. A related approach, to the methods considered in this work, is
proposed by Hans [25] where the variable selection ability of SSVS is combined
with Bayesian lasso to compute each subset.
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