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Abstract

The work confronts a common challenge arising from genorit\@ssociation
studies(GWAS). The ultimate goal of GWAS is to identify thea subset of single-
nucleotide polymorphisms(SNPs), specific locations widn organism’s genome,
strongly influencing a certain characteristic, such asiadralisease. This prob-
lem has often been tackled by using methods such as hybridlation-based
search(hCBS), a modification of a method called stochasticch variable selec-
tion, as well as penalized regression methods namely lagsoidge regression.
Due to their generality, these methods are not limited tagenanalysis; in fact,
they are applicable to a variety of large scale regressiohlpms.

Typical state of the art genome-wide association studiespcise hundreds of
thousands or even millions of SNPs in contrast with a muchetomumber of
genomes. The above mentioned approaches are capableiofdeih situations
where the number of variables (SNPs) exceeds the numbersefaiions (phe-
notypes); also known asspn problems. The work at hand discusses modifications
of the methods mentioned above to improve performance ingaf variable se-
lection and prediction. Furthermore, all methods, as wellheir modifications,
are evaluated and compared in settings of highly corredagaksets, as is common
in genome-wide association studies.






Kurzfassung

Die vorliegende Arbeit beschaftigt sich mit einer haufigeodkemstellung in ge-
nomweiten Assoziationsstudien (GWAS). Das Ziel diesedi®tuist es sogenann-
te Single-Nucleotid Polymorphismen (SNP), Stellen im Gean von Organismen
die sich zwischen Individuen unterscheiden, zu entdeckeithe ein bestimmtes
Merkmal bzw. Charakteristik beeinflussen und préagen. DMeekmale werden
auch Phanotyp genannt. Die untersuchten Merkmale variigranach Interesse
und Forschungsfeld und reichen von gewissen Charaktanzilger das Auftreten
bestimmter Krankheiten bis hin zu evolutiondren Aspekten.

Fur diese Aufgabenstellung werden oftmals Methoden wieridyBorrelation-
based Search(hCBS), Stochastic Search Variable Seled@riPenalized-Regression
Methoden wie Lasso oder Ridge Regression verwendet. Dietbdden kénnen
aufgrund ihrer Generalitat nicht nur fir Genomanalysenveadet werden, son-
dern auch fir viele andere Large-Scale Regressionspreblem

Heutige genomweite Assoziationsstudien beinhalten httadsend bis hin zu
Millionen von Single-Nucleotide Polymorphismen im Gegaaszu einer wesent-
lich geringeren Anzahl an sequenzierten Genomen. Die entgétMethoden sind
in der Lage mit dieser Bedingungen umzugehen, wobei die Wrama Variablen
(SNPs) die Anzahl der Beobachtungen (Phenotypen) beimditersteigen, auch
bekannt als p-n Probleme. Die Arbeit behandelt Verbesserungen und Medifik
tionen der oben erwéhnten Methoden um die Variablenselektwie die Vorher-
sage ungesehener Phanotypen zu verbessern. Des weitedamwie Methoden,
sowie die vorgeschlagenen Verbesserungen, anhand vorkboelierten Daten-
satzen, wie sie oft in genomweiten Assoziationsstudietreteh, verglichen und
evaluiert.
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CHAPTER

Introduction

ing the genome is currently among the prevailing challengesventy-

first century science. To understand the functionality drel rnecha-
nisms a great number of genome-wide association studieg\& Afe conducted;
whereby, the goal [17] is to detect variations in the genom their effects on
certain phenotypes. Phenotypes under consideration faogetraits such as
differences in the appearance of individuals to certairraxttaristics and com-
plex diseases. Genome-wide association studies [48]ifigehese associations
by comparing individuals with different manifestationstbé& phenotype. For ex-
ample a group of individuals affected by a certain diseassirtrast to a group
not affected or observed differences in their phenotypé asdeight, eye color or
blood groups just to name a few.
To this end[[17], the genomes of the individuals are sequneeng next-generation
sequencing[[46], and are studied with respect to theirtghii explain the phe-
notype; hence, to find patterns of association between thetigevariations se-
guenced and the phenotype. The most common genetic vasgetid] are varia-
tions of single positions in the genome. These single panftions, also called
mutationsl[[34], are changes of a single base pairs and aveka®single-nucleotide
polymorphisms (SNPs). SNPs vary between individuals ardrarstly respon-
sible for the variations in characteristics and appearameng individual. For
example, it is estimated][2,111], that the human genome tenéoproximately 10
million SNPs.
In most genome-wide association studies [23] many hundredsiands, up to one
million, single-nucleotide polymorphisms are consideragriations [17] of an
SNP that appear statistically more frequently in a groupdividuals with a cer-
tain phenotype are considered to influence this phenotygre;enthese variations
are reported to be associated with that phenotype.

THE genome contains the blueprint of life for every organismdénhstand-




This thesis aims at modifying and improving common methadshe field of
genome-wide association studies. The methods, as wellegsntiodifications,
are compared and evaluated to alleviate the decision otwhithod to choose in
future studies.

The purpose of this chapter is to introduce the intentionthrddea of the thesis
and to give an overview of the scope and the structure. IN@EEil the purpose
of the work is outlined and gives a superficial introductiortte field of research.
Section1.P addresses the main problems and challengesyarisgenome-wide
association studies; Sectionll.3 defines the goals and gesd the present work
and is followed by a definition of the contribution of the tiset® the research area
in Sectior . 1.4. Finally, Sectidn 1.5 outlines the structifrthe remaining chapters.

1.1 Motivation

Within the last few decades, genetics has made great psgias to advances
in methodology and technology. Recent results and suce¢3SEgin genetics by
genome-wide association studies are a result of a germimpériod after the first
proposals of genome-wide approaches in the nineteen esghoreover, a great
upsurge [[46] is based on the development of high-througkpgtiencing tech-
nologies, called next-generation sequencing(NGS), whlldw a great number
of individuals to be sequenced cost-effectively. As a cqusace([48], enormous
amounts of data are produced and need to be analyzed, riatiegshe develop-
ment [48] of new biostatistical methods.

It is considered [23, 35] that not only a single or a few siagleleotide polymor-
phisms have a large influence on a certain phenotype, but BERs with small
effects have a large influence together. Nevertheless, ofidlse GWAS [23] are
carried out as single-SNP analysis, testing each SNP ongraédor association
to the phenotype under consideration, due to the compo#titemands arising
from more sophisticated approaches. Howelver [39], a samatius analysis of
multiple SNPs is crucial for the identification of sophistied and complex asso-
ciations between genetic and phenotypic variations.

Additionally, due to a phenomenon called linkage diseldilim [34], single-
nucleotide polymorphisms can be partially highly corretatwhich impedes the
identification of the phenotype-associated positions énganome.

GWAS have contributed to the understandings in genetics.ekample [17],in
human genetics there are already more than 30 SNPs known to be associated with
the onset of the autoimmune disease Crohn's disease, around 20 S\Ps associated
with type 2 diabetes and more than 40 S\Ps associated with the height of individ-
uals. Many more are to be discovered.



1.2 Problem description

The goal of genome-wide association studies [2] is to ifegtioups of SNPs that
vary systematically between individuals with certain pitgpes. State of the art
genome-wide association studies|[23] comprise hundreti®asands, sometimes
millions of SNPs, in order to identify regions containing B&\that affect the phe-
notype of interest. Due to the large number of SNPs useddte ef the art studies,
a fundamental problem[2] is that patterns can simply arisehance. Therefore,
many genotypes [35] have to be included into the study, tditétte the identifica-
tion. With increases in dataset size, computational desasd significantly. As
a consequence, many GWAS are carried out as single-SNPsang@], where
each SNP is tested separately for its association to theopjypa to reduce the
computational burden. Finally, strong associations aerpneted as the SNP hav-
ing an influence on the phenotype. This approach is considédd as being too
simple to elucidate the complex architecture of the gendrnet.al. [39] note that
single-SNP analysis has major drawbacks in identifyingalisal SNPs:

e Most phenotypes are believed to be polygenetic; that istiphellgenes in-
fluence a phenotype. Consequently single-SNP analysegletdgt a small
proportion of the causal SNPs

e Genes may interact to produce a phenotype, known as episticts [11],
which can not be detected by single-SNP analyses.

However, single-SNP analyses are fadter [11] than moreistigated approaches
and therefore often used for analysis in genome-wide astdmcistudies.

As mentioned before, the human genome contains approxinidienillion SNPs.
Depending on the study only a fraction [17] are included m déinalysis with the
reason that many SNPs are highly correlated and it is therefot necessary to
use all single-nucleotide polymorphisms in one study. Tienomenon is also
known as the linkage disequilibrium (LD) [B4], where a condiion of SNPs is
observed either more or less frequently than expected fhain tandom forma-
tion.

This leads to the fact [17] that many single-nucleotide palyphisms found to
be associated with a phenotype are unlikely to be the reaataariants in the
genome affecting the phenotype. Instead so called proxissrainels([17] are un-
veiled. According to Donnelly [17] a natural follow-up dtegy is to include many
more of the correlated SNPs from the associated genomiarrégfio fine-mapping
studies, where the causal SNPs ideally show a larger aisocthan correlated
ones.

As a consequence, more sophisticated approachés [11] eded¢o simultane-
ously analyze large numbers of SNPs, especially in the pecesef high correla-
tion, where the number of SNPs usually far exceeds the nuwifhehenotypes,



also known as p-n problems.

Hybrid correlation based search is designed for the agjit#o highly correlated
datasets especially in the case pfp; whereas, Stochastic search variable selec-
tion as well as Bayesian lasso and Bayesian ridge regrehsiom already been
applied to GWAS datasets. All methods are able to perforntirBINP analysis.

1.3 Goal

The goal of the present work is to improve and modify the commethod hybrid
correlation-based search (hCBS), in terms of its abilitpédorm variable selec-
tion and prediction. Furthermore, the second ambition tmpare and evaluate
hCBS, along with the modifications, in settings of highlyretated datasets with
Penalized regression methods such as Bayesian lasso aedi@ayidge regres-
sion.

Conclusions drawn shall alleviate the decision of whichhrodtto employ in fu-
ture studies.

1.4 Contribution

Genome-wide association studies|[17,35] have contribgttedtly to present knowl-
edge in genetics. Nevertheless, there are still many uedajuestions and much
knowledge remains to be unveiled. Therefore, even largeuats of data need
to be analyzed and the methods applied need to be able tafyderak patterns
between genetic variations and the phenotypes. The workrat addresses these
challenges; thus, the scientific contribution of this thésitwofold:

e To improve hybrid correlation-based search in terms of:
— its ability to detect true positive variables; hence, iifgirtg variables
(SNPs) influencing the outcome (phenotype)
— its ability to predict the outcome (phenotype), based on aseen

dataset; and,

e to conduct a detailed comparison between the methods, @stiect to vari-
able selection, prediction, as well as their computatidoedi.

This thesis considers quantitative trait loci (QTL) wer@tar more positions in
the genome influence a continuous phenotypes. Other phm®osuch as binary
or ordinal traits are beyond the scope of this thesis.



1.5 Outline

The thesis is structured into several main chapters; thewislg Chaptef 2 han-
dling related topics and papers for further reading, sinmiathods and approaches,
as well as comparative works. Subsequently, Chapter 3iasglze biological and
genetic background relevant for understanding the purpbgenome-wide asso-
ciation studies. In Chaptél 4, common statistical framé&w@nd methodologies
such as hierarchical models and Markov chain Monte Carlhaustare discussed
relevant to the methods and the modifications in Chdgter % latter includes
the hybrid correlation-based search and its modificatisngedl as Bayesian lasso
and Bayesian ridge regression. Chapier 6 compares thasredudined by ap-
plying the methods outlined in Chaptér 5 to simulated antidetasets. Finally,
Chaptei ¥ presents a discussion of the methods with resp#wtit application in
genome-wide association studies.






CHAPTER

Related Work

dressed by other works. Stochastic Search Variable Sehe(ESVS) is

introduced by George and McCullodh [21] to facilitate thentfication
of a subset of variables in a multiple regression problene fMiethod was encour-
aged by the fact, that model comparisons using Akaike or Slagenformation
Criterion can be prohibitive whenis large. To explore the most probable com-
binations of the subset SSVS uses a Gibbs sampler, as eegbliairSection 4.2]2.
Therefore, a Bayes hierarchical setup is used to model tresgion coefficients
B; as having come from a mixture of two Normal distributions.eTist Normal
distribution is widespread; whereas, the second normtildition yields a small
variance and is clustered around zero. In every iteratich®fGibbs sampler the
regression coefficients are assigned as either having camethe widespread
normal distribution or else being clustered around zera Vdriables assigned to
the widespread distribution are considered to be includele subset of relevant
variablesX,. Therefore, the latent variabtg indicating whether predictas; is
included by settingy; = 1 and excluded by;; = 0 respectively, is used.
Chipman [[12] incorporates relationships between varg@hllwing to model in-
teractions, polynomial effects, dummy variables for catagl factors and restric-
tions to model sizes into the SSVS again making use of a Gininpler.
George and McCulloch [22] extends SSVS by using conjugatespand setting
variables not included i exactly toy; = 0, thereby improving computational
speed. Moreover, a Metropolis-Hastings algorithm, asampt in Section 4.211,
is used instead of the Gibbs sampler.
An extension to the multivariate case was proposed by Brevah [7,/8] using
different priors.
O’Haraet.al. [27] give a detailed overview over various approaches ofeBan
variable selection including a discussion of which mettmprefer as well as their

THE chapter contains references for further reading and sinolsics ad-




implementations. Fridley [20] addresses various appeEadhr Bayesian model
and Bayesian variable selection including SSVS, BayesiadéWlaveraging and
reversible jump MCMC on genomic datasets. A comprehensitreduction to
Bayesian variable selection is given by Guehal. [23] with focus on large-scale
regression and its specific application in genome-widedaton studies. More-
over, novel priors are introduced on hyperparameters ssitheasubset size and
the variance of included variables. Liaegyal. [41] review various methods and
approaches for analyzing highly correlated datasets. ga#tieand Pommeret [3]
propose a novel method for variable selection in probitesgjon introducing an
improved g-prior for the regression coefficients to overedimitations in the case
of p>n and strong multicollinearity making use of a Metropolighin-Gibbs
sampler.

SSVS has been applied in a number of papers to genomic datdseexcerpt of
papers, from the substantial list of works using SSVS, ietuSkarmaast.al. [52]
comparing SSVS and a model selection approach using ANOdAtlaa Akaike
information criterion, Chest.al. [11] comparing different methods to incorporate
epistatic eﬁec% Yanget.al. [64] using a two-step approach combining Bayesian
probit regression and SSVS, Srivastatal. [54] applying both the Lasso and
SSVS to identify genes influencing rheumatoid arthritiststFapproaches using
SSVS for genomic datasets are made bylYi [66] andt¥l. [65] using SSVS
for gene mapping problems with quantitative trait loci anduMisseret.al. [47]
making use of linkage disequilibrium in SSVS.

Ridge regression has first been introduced by Hoerl and KdrB8] to improve
prediction in the face of multicollinearity. Subsequenthe least absolute shrink-
age and selection operator (Lasso) is introduced by Tiashis9] to enable subset
selection and actively exclude variables. Various otheapeed regression meth-
ods exists beside ridge regression and lasso for example tassol[68], the fused
lasso [60] and the elastic net [30].

Park and Casella [49] introduce a Bayesian formulation efldsso where the
lasso estimate is obtained as a posterior mode of the higcatanodel explored
by Gibbs sampling. Variable selection is guided by the ughemterval estimates
obtained from the posterior distribution. Hahsl|[24] extetite Bayesian lasso by
focusing on the prediction and introduces a slightly déférmodel again making
use of Gibbs sampling.

The Bayesian lasso is extended to a more general formulagidtyunget.al. [37]

to suit other penalized regression methods such as the fassal group lasso and
the elastic net and a discussion about problem arising fiamdard errors in a

!Epistasis is the phenomenon were the functionality of a gemnkits effects is influenced and
regulated by other genes.



non-bayesian formulation is given. A slightly differenty@sian elastic net is pro-
posed by Li and Lin[[40] as well as by Hans [26] using differpriors.

Hans [25] also proposes a novel of Bayesian lasso able tefcperform variable
selection making use of a similar approach as in SSVS.

Bayesian penalized regression is applied to genomic datageYi and Xu [67]
along with other Bayesian hierarchical models to identi§ubset of quantitative
trait loci. Caiet.al. [9] proposes a fast empirical Bayesian lasso and applies is t
genomic datasets for the identification of multiple quaititie trait loci; whereas,
Clevelandet.al. [13] compares Bayesian lasso to other methods for predictio
breeding values. A two-step approach is proposed bgt.hl. [39] first reduc-
ing the number of SNPs and subsequently applying Bayes&so [ identify
associated SNPs. Harré.al. [28] compare the accuracy of predictions made
by Bayesian lasso and Bayesian ridge regression usingatiffSNP densities.
Finally, Silvaet.al. [51] discusses the accuracy of Bayesian lasso to predict the
breeding value with respect to the choice of the shrinkagarpeter\.






CHAPTER

Genetic Background

essary to convey the idea of genome-wide association stu@ierefore,

certain fundamentals of genetics and biochemistry arénegtlto aid in
the understanding of the underlying biology of the analp§igenomic data, ob-
tained by sequencing genomes. The genetic informationtanelévance to organ-
isms are discussed as well as the reason for the great intergslerstanding the
genome in many areas of research. Due to the complexity afabryribonucleic
acid (DNA) and the genetic information contained thereirdetailed overview
lies beyond the scope of this thesis and can be found in \&lioaks, for example
Molekulare Genetik[[34] by Rolf Knippers, Statistical Metls in Genetic Epi-
demiology by Duncan c. Thomads [58], especially Chapter 2yelsas Principles
of Biochemistry [38] by Nelson and Cox.

THE purpose of this chapter is to clarify the main principles efetics nec-

The outline of this Chapter is as follows:

Sectior 3.1l gives a superficial explanation of the connedistween the genome
and the phenotypes and traits of individuals as well as fieetsfof changes in the
genome. Subsequently, Sectionl 3.2 explains the biologita@biochemical back-
ground of the genome; whereas, in Section 3.3, togetherSuiisection 3.3]1 and
Subsectio 3.312, the assembly of proteins from the DNAssdeed. Sectioph 314
addresses the reasons for genetic variability in populattmming from reproduc-
tion in Subsectiof 3.4l 1 and mutations in Subsec¢iion 3¥h2.Chapter concludes
with the analysis of genomes and the expectations for desa@was well as a brief
introduction of single-SNP analysis in Sectlon|3.6.
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3.1 Introduction

Most characteristics of an organism are determined by itsme [34], which basi-
cally functions as a construction plan. Certain regions@DNA, better known as
genes are used as the basis for the assembly of molecules gqatteeins which
undertake various tasks in the organism and consequentlyreaponsible for a
great number of processes in the organism. A change in thetraction plan([34],
during cell division reproduction, or another occurrenan lead to a change in the
functionality of proteins, which, as a consequence, cath {fean alteration of an
organism’s traits. Researchers have great interest imndeti@g the influence of
genes on an organism’s characteristics and in unveilingntpacts of changes in
the DNA.

The following Sections gives a more detailed introductiothis process and out-
lines why the analysis of certain changes in the genome #insBWAS.

3.2 DNA

The DNA [34] is a long molecule that is the source of genetiorimation in every
living organisrﬁ]. DNA s also referred to agenomeand is mostly used to describe
the entirety of an organism’s hereditary information;,itee genetic information
inherited from its ancestors. As can be seen in Figure 3.14 bas the form of a
double helix with connections between the two outer bourdanamedtrands.
These two strands of the double helix are calledaiekboneand the connections
are termecase pairs Every base pair consists of two connected molecules each
attached to one strand termadcleotide [34]. Four different nucleotides exist
namely Guanine (G), Cytosine (C), Adenosine (A) and Thyn{ifie The only
connection possible [38] is between Adenosine and Thymimk Guanine and
Cytosine and vice versa, therefore, the sequence of theatidds on the two
strands is said to beomplementary. By knowing the sequence of one strand, the
sequence of the complementary strand can easily be inferred

The sequence of the base pairs attached to the backboneth#BINA encodes
the genetic information and consequently determines theackeristics and traits
of the individual. Accordingly, the genetic sequence inuf&3.1 is:

TGAGACTCTGAGAC

Thereby giving the complementary strand the following ssmpe:

ACTCTGAGACTCTG

*Except for some special forms of viruses called RNA-Viruses

12



3 = Adenine
3 = Thymine
= = Cytosine

1 = Guanine

:l = Phosphate

backbone

Figure 3.1: A simplified illustration of a short piece of double-straddBNA -
[from [commons.wikimedia.org]

This sequence depicts how the sequence of a genome couldNewkrtheless, as
seen in Tablé_3]1, real genomes comprise millions of bags,ghe number de-
pending on the species as well as the affiliation to the grddﬁudxaryote@ or
Prokaryot&.

. . Number of | Estimated number

Organism Size of genome
chromosomes | of genes

Yeast 12 Millions 16 6 240
Common Fruit Fly| 97 Millions 6 18 240
Maize/Corn 2 400 Millions | 10 30 - 40 000
Mouse 3 000 Millions | 20 25 000
Human 3 000 Millions | 23 25 000

Table 3.1: The table shows genome sizes, the number of the haploid dsames
and the number of estimated genes in various species.

Table[3.1 depicts the haploid genome of the organisms, dilnetfact, that differ-
ent organisms can have a varying number of chromoson@ sets

2Any organisms having a complex cellular structure contgjrspecialized organelles as well
as a nucleus. Eukaryotes include all multicellular orgasissuch as animals, plants and fungi.

3Prokaryotes are organisms, whose cells lack a cell nuckeugel as other organelles. Their
DNA is present in the cell without being surrounded by a memér

“Most eukaryotic cells contain two sets of their genome (tets ®f chromosomes), inherited

13
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As stated in Sectidn 3.1, the information in the genome id ts@ssemble macro-
molecule called proteins [34], which in turn undertake agreimber of important
tasks in the organism. Nevertheless, most of the informatimtained in the DNA
is not used for the production of proteins. In fact, as depiéh Figurd 3.2, only
genes are used to assemble proteins. In many eukaryotic[84]lonly 5 - 10%
of the DNA contains regions coding a protein. The remainiddAzontains many
repetitive areas with either regulatory effects on the gemeunknown genetic
function and is referred to asoncoding DNA [34]. New findings [[18] indicate
that over 80% of the noncoding DNA serves some biochemicgigse.

Figure 3.2: A gene, a protein encoding region on a chromosome - [from
wikipedia.org]

3.3 Proteins

Proteins|[[38], large macromolecules present in every ae#l,composed of a se-
guence of many amino acids and are responsible for many, &sls as structure
of the cells, transport of metabolites, which are interraggsubstances and prod-

from the parents. A double set of chromosomes is referred wipdoid set and a single set is
said to behaploid, which is depicted in Table_3.1. For example, the human genoomsists of
23 chromosomes. This means, the genome is present twicelincedi, one set inherited from the
mother and the second one from the father. This results bofodé chromosomes.
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ucts of metabolisH] catalysis of chemical reactions and detection of semimehe
ical@. The function of proteins [38] is determined mainly by thefirape, which
is in turn determined by the sequence of amino acids of wietptoteins are as-
sembled. As discussed in Section 3.3.2 the sequence of avit®is, with some
restrictions, encoded in the sequence of base pairs in ti#e DN

The necessary steps from the DNA-sequence to the assembtethran be seen
in Figure[3.B and are outlined in the following Sections.

DMNA
200600690

mAMNA Transcription

HHTE

// Mature mRNA

Nuclaus

Transport 1o cyloplasm for
protein synthesis (translation)

Cell membrane

Figure 3.3: Overview of the assembly of proteins - [from wikipedia/org]

3.3.1 Transcription

The first step during the assembly of a protein is cattadiscription [34] and
includes duplicating the genetic information from the DNA.

Therefore, the region of the DNA containing the genetic cfimethe protein to
be produced, is unfolded and the two strands are separateéch ¥8 depicted in
Figure[3.B. The sense strand is then used to copy the infimmaft the gene onto
a temporary transport molecule called ribonucleic acidARNbr the transport to
the place in the cell where the actual proteins are then ddedm

During the process of transcription a molecule called DN#pehdent RNA poly-

*Metabolism is referred to as all the necessary chemicaticeato maintain life (growth, cell
division, maintain structures and respond to the envirartjne
6Semiochemicals are chemical substances carrying infawmaithin or between organisms.
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merase, or RNA polymerase for short, binds to the beginnirigeogene, by iden-
tifying the start position, also known as tipgomoter [34]. Subsequently, the
genetic sequence is copied to a new RNA strand by using the base pairing
principles as between the two strands of the DNA. Howevel, [Bétead of the
nucleotide Thymine (T) the nucleotide Uracil (U) is usedrtRermore, the struc-
ture of the RNA differs slightly from a DNA strand. Note thhetsequence present
on the RNA corresponds to that of the antisense DNA strani;hwias not been
used to duplicate the genetic information from the DNA. Theaegic information
is copied to the RNA until a stop sequence, also known asettminator [34],
is encountered. The result from the process is caglledursor-messenger RNA
(Pre-mRNA) [34].

The pre-mRNA, as well as the gene itself, contains coding resdcoding re-
gions [34], calledexonsandintrons. As it can be seen from Figufe 3.B.1 the
introns, the non-coding regions, are cut out of the immaRmemRNA, during a
procedure calledplicindj [34]. The resultis then calleshature mRNA or simply
MRNA and is the basis for the assembly of the final protein. As shiowlrable
[3.1, not only the size of genomes and the number of geneswatethe complex-
ity of an organism. A phenomenon callatlernative splicing [58] is responsible
for one gene encoding three to four different MRNAs and tegpin three or four
different proteins. Manny proteins in humahsl|[34] are foareple assembled by
alternative splicing, whereby, depending on the proteibg@roduced, different
regions of the immature Pre-mRNA are cut out during splicing

Exon Exon Exon Exon Exon
Intron Intron

Exon Exon

Intron Intron Intron Intron

mRNA :.......1.m.a.-.n-...;.-..;..:.”' .......

Figure 3.4: Splicing of aimmature mRNA molecule by cutting out introrfem
wikipedia.org]

3.3.2 Translation

During the second main step, callgdnslation [34], the previously assembled
MRNA is translated into the sequence of amino acids, whicilfifiorms the pro-
tein.

’In Prokaryotes usually no splicing takes place
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Codon 1

Codon 2

Codon 3

Codon 4

Codon 5

Codon 6

Coden 7

Ribonucleic acid

Figure 3.5 mRNA molecule and its translation into tRNA codons - [from
wikipedia.org]

The translation is carried out on large molecules caliedsomes which lie out-
side of the nucleus. Since transcription takes place in mden where the DNA
is present, the mRNA first has to be channeled outside thewusiclThe mRNA is
then bound to a ribosome and translation begins, as showigumeE3.3.

During translation[[34], each amino acid is determined bgdhconsecutive nu-
cleotides on the mRNA, called @don or triplet, as can be seen in Figure 1B3.5.
Based on the fact that an mRNA transcript contains four wffe nucleotides
(A,U,C and G),43 = 64 different amino acids can be coded by a nucleotide-
triplet. Nevertheless, only 20 different amino acids! [34hich are used for the
assembly of proteins, exist, which leads to the concludiuei, some amino acids
are encoded by more than one triplet of mMRNA. Tdblé 3.2 ptesie genetic
code[38], which is the convention on how the triplets are trateslainto amino
acids, valid for every organism known.

8prokaryotes do not have a nucleus and consequently the Dfesent in the cytoplasm,
which is the substance inside the cell containing and hgldihthe cell’'s internal organelles. The
transcription as well as the translation occurs in the dgsp.
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Note that three codons represent the termination of therdsgeof the protein.
Whenever they are encountered in the sequence of mMRNA ftbgarne stops the
composition of the amino acid sequence. Correspondingdycddon AUG serves
as an initiation site. Thus, at the first appearance of AUGteslation of the
protein is initiated.

In order to place the correct amino acid onto a corresponiipigt of nucleotides
on the mRNA, another molecule, thensfer-RNA (tRNA) [38], is needed, as
depicted in Figuré313. The tRNA is an adapter molecule, isting of two main
features. First, each tRNA molecule contains three nudest which are com-
plementary to the sequence encoded in the RNA. Second, th& tihds the
corresponding amino acid to the sequence encoded in the tRNéwing the ge-
netic code from Table_3.2. Consequently, a tRNA moleculé ireds the amino
acid 'glutamic acid’ contains either the anticodon CUC orl€Cahd is able to bind
to the mRNA sequence GAG or GAA. For example, as it can be seéigure
[3.5, this tRNA would bind to the third codon and the ribosomd would add a
glutamic acid to the chain of amino acids’

During translation each tRNA molecule binds to the appadpricodon on the
MRNA in sequence. The amino acid which is connected to theeicutRNA
molecule, is then added to the end of the chain of the amirsdsadready pro-
cessed. The addition of the amino acid is carried out by dbmes, as depicted in
Figure[3.3
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| 1stbase| 2nd base 3rd base ||
U C A G

Uuu _ UCu UAU . uUGuU _ U

UuC (Phe/F Phenylalaning UCC UAC (Tyr/Y) Tyrosine UGC (Cys/C) Cysteine C

U UUA UCA (Ser/S) Serine | UAA Stop (Ochre) UGA Stop (Opal) A
UuG UCG UAG Stop (Amber) UGG | (Trp/W) Tryptophan G

Cuu CCU CAU _ o CGU U

cucC Leu/l) L _ CCC CAC (HIS/H) Histidine CGC C

C CUA (Leul)Leucine  "ecR (Pro/P) Proline | CAA _ CGA | (Arg/R) Arginine A
CUG CCG CAG (GIn/Q) Glutamine CGG G

AUU ACU AAU _ AGU _ U

AUC (lle/l Isoleucine ACC AAC (Asn/N) Asparagine [TAGC (Ser/S) Serine C

A AUA ACA | (Thr/T) Threonine| AAA _ AGA - A
AUGIA] | (MetUM) Methionine | ACG AAG (Lys/K) Lysine AGG | (Arg/R) Arginine G

GuUU GCU GAU _ | GGU U

GUC GCC GAC (Asp/D) Aspartic acid GGC C

G GUA Val/V) Vali GCA | (Ala/A) Alani GAA .| GGA | (Gly/G) Glyci A
GUG ( a ) aline GCG ( ) anine GAG (GlU/E) Glutamic acid GGG ( y ) ycine G

6T

Table 3.2: Genetic Code



After the chain of amino acids as encoded in the DNA and the AmRSpec-

tively, is completely assembled, the protein folds into me¢hdimensional struc-
ture [38], which determines its shape and thus also its fonality.
In sum, proteins are responsible for a great number of impbtasks in every cell
and also in the organism as a whole. The functionality, acdraingly its shape,
of a protein is determined by the sequence of amino acids;hwisi assembled
from the sequence of the mRNA, originally from the DNA.

3.4 Genetic variability

As explained in the previous Sections, the genetic infoionan the DNA deter-
mine the phenotypes and traits of each individual throughttAnscription and
translation of the DNA into proteins. The genetic inforrpatis therefore respon-
sible for the variety of organisms and variability betweadividuals of certain
species. The reason for the great diversity in organismiseisatiaption and the
diversification of organisms over time. During reproduat{B4], the transfer of
the genetic information to offspring, the genome is altevelgich is known ase-
combination [34], to ensure adaption and improvement.

The remainder of this Section gives an overview of the preee®f cell division
and outlines the basic principles and causes of mutatiohighvware the basis for
genetic variation.

3.4.1 Reproduction

Each cell passes on its genetic information to the next géioerof cells during
cell divisio@. During which the DNA is duplicated to provide the daughtell ¢
with the genome, which in turn is the basis for the new celloider to perform
cell division, the genetic information, started as DNA, tabe duplicated. In the
first step, the DNA is unwound at certain locations knowwigins [34] in order
to enable special molecules known BBIA polymerase to copy the sequence
of base pairs onto a new DNA strand. As depicted in Figurk 8t btrands are
simultaneously duplicated and each of the two strands selvthe complementary
strand for the the second strand of the new double helix. lliginavo identical
DNA strands are obtained.

In eukaryotic cells two different types of cell division ekiwhich are explained
briefly:

®In Prokaryotes cell division is the formation of daughteit<cand a form of reproduction. In
Eukaryotes the reason for cell division is twofold. On oraess the proliferation of cells during the
embryonic stage and on the other side the replacement ofadiad The latter is for example the
reaction to an injury or an inflammation. Cell division isfgped, when the desired amount of cells
is reached.

20



Figure 3.6: Duplication of the DNA - [from wikipedia.org]

o Mitosis: Mitosis [34] is the process where a cell first duplicategdaome,
followed by the division of the cell, including the nucletise organelles and
the cell membrane into two cells. After separation, eachetio daughter
cells, contains the complete genome. This process occuirsgddevelop-
ment and growth, where the number of cells in the organismeases, or
during the replacements of lost cs An overview can be seen in Figure
[3.4, where the main steps of mitosis are shown.

e Meiosis Meiosis [34] is a specific type of cell division, which is mse
sary for the sexual reproduction in eukaryotes. Most of tepssinvolved
are similar to mitosis; although, instead of two four daegltells are pro-
duced. These four cells contain only a haploid set of chrames, which
means that the chromosomes are duplicated, and only onbrset@somes
is passed to each daughter cell. Furthermore, an impoidaetaof meiosis
is, that the duplicated chromosomes are recombined. Renatidn is the
exchange of regions between the two sets of chromosomedéntorgener-

OMitosis also occurs during regeneration (only a few orgasisre able to regenerate lost parts
and during asexual reproduction (or vegetative reprodaogin plants.
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Figure 3.7: Overview of the most important steps during mitosis - [from
wikipedia.org]

ate a slightly different genetic combination which can bens@ the second
step in Figuré_3]8. Moreover, the distribution of the recorad chromo-
somes are randomly sele@cﬂo form a haploid set of chromosomes. This

is shown in step three and four in Figlre]3.8.
. @ m () - ﬂi
\ A

Interphase ‘ Meiosis I

1
/ .
Homologous Meiosis I I\a] )

Chromosomes

Daughter
Nuclel II

Daughter
MNuclei \

Figure 3.8: Overview of the most important steps during meiosis - [from
wikipedia.org]

3.4.2 Mutations

In Sectio 3.4 the great diversity of existing organismst avalved over time is

mentioned. This adaption and diversification of organissibdsed on random
changes in the DNA. These changes are catiethtions [58] and are inheritable
changes in genetic information. Mutations alter the seqai@i the DNA, either

having no effect, changing the protein encoded by the gaem@egenting the gene
completely from functioning.

1Assuming a human chromosome set of 23 chromosomes, thistiet ~ 8.4x 10° possible
combinations.
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Mutations are rare occurrences; otherwise, the transfeéreofjenetic information
to the offspring would not result in similar offspring. Netleeless, mutations are
the basis for evolution; natural selection is the survivbmanisms, and also
their genes, which are thereby better adapted to their@mvient. However, each
cell has complex mechanisrris [34] for the repair of a damageadtered DNA.
Different versions of a gene are also referred taliﬂe@.

Mutations can be divided into two main groups|[34]:

e Chromosome mutations Chromosome mutations are changes in the num-
ber, shape or structure of chromosomes.

e Gene mutations Gene mutations are alterations of the sequence of base
pairs within a gene or outside the coding regions.

Within the scope of this work, as in GWAS, chromosome mutetido not play
a great role; therefore, more attention is given to gene tioas This type of
changes to the DNA can have various causes, which will beuslsr in the re-
mainder of this Subsection.

During the replication of the DNA, every ten- to every hurditbousandth nu-
cleotide [34] placed on the newly assembled strand, is noiptementary to the
nucleotide on the strand being duplicated. For examplehenetft strand in Fig-
ure[3.6: if the subsequent nucleotide added to the leftdtwaare not a C, then a
mutation would have occurred.

As mentioned above, every cell contains complex mecharismstect and repair
mutations. In this case a substructure of the molecule cafptig the strand de-
tects and removes the falsely positioned nucleotide sodhedat nucleotide can
be attached. This repair mechanism is caleidmatch-repair [38] and it also
plays a role in error detection during recombination in reisio

Not only errors during the replication and recombinatiorthaf DNA can alter the
sequence of the DNA [34]. Due to the fact that DNA is a very ctampand fragile
molecule, metabolic products and external influences ssicadiation, chemicals
or toxins can interact with the DNA and change its structurthe sequence con-
tained. Such events occur hundreds to thousands of timésdegcin every cell
and without an effective repair mechanism frequent, serarations would be
the consequence.

Nevertheless, certain mutations on single positions inDNA occur without
being recognized by the repair mechanisms. The resultsiagie point muta-
tion [34], a permanent mutation, which becomes affixed duringhthe cell divi-
sion. These mutations only take place in certain sequemckiegions of the DNA.
Around three-fourths of the gene mutations are exchangsimgle nucleotides -

12A gene that has the sequence ATCTTA in one population and GAGH another population
are called alleles of the gene. Both encode the same protdithe protein is not identical since the
sequence of amino acids has changed.
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also known assingle-nucleotide polymorphisms (SNP. Depending on the
position of the SNP, the mutation can be:

e Neutral / Silent A neutral or silent mutation is the exchange of a nucleotide
which either lies in the noncoding region of the genome at,liés within
an exon of a gene, does not lead to a change in the translaied anid.
The mutation has no effect.

e MissenseA missense mutation changes an amino acid in the assemlaled pr
tein, but the resulting protein can either be conservativgning it does not
change its functionality, or non-conservative if the pmies of the proteins
are altered, which can lead to a disease or a change of a trait.

e NonsenseThe last possibility for a SNP is to be translated into a stugoa,
which leads to a shortened protein. The protein can be fumaitior not
depending on the sequence of lost amino acids. Usually titeiproses its
functionality.

For example, in the human genome approximately every tmoltisdbase pair is
altered and these mutations are responsible for the diydrsiween individuals.
Consequently, approximatef« 105 SNPs are known in the human genome and
more than 10 million SNPs are estimated|[34]. Many SNPs eeduwiuring evo-
lution and have been present in the population for a long.ti8KPs lying close
together in the DNA are less likely to be separated by recoatimn during meio-
sis, which is a phenomenon callédkage disequilibrium [34],58]. The fact that
proximate SNPs are rarely separated accounts for the higélations present in
the genomic datasets in genome-wide association studies.

SNPs play a key role in the identification of complex traitsl @iseases, which
do not follow the classic rules of inheritance. Therefonsag effort is put into
sequencing and identifying the SNPs responsible for tesitbdiseases.

3.5 Analysis

Analysis of genomic data aims to find variations - mutatioimshe DNA sequence
influencing a certain phenotype. Hentcel[35], the primaryl goe identification
of the ,correct” subset of SNPs showing similar patterndwlie phenotype.

As explained Section 3.4, mutations are an important fantgenetic variability.
The analysis of correspondence between mutations and émgehn phenotypes
reveals new biological connections. According to Thom#&§ §nd Knippers[[34]
single-nucleotide polymorphisms are the most common tfpmuwiations; as a
consequence, SNPs from the whole genome are analyzed iiesstkitbwn as

13This term is used throughout the thesis for consistency.
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genome-wide association studies (GWAS)

According to the National Human Genome Research In@ugenome—wide as-
sociation studies [32] have identified the influence of adod@00 SNPs on vari-
ous phenotypes. Figure 8.9 depicts the 23 human chromosamdess selection of
the strongest associated SNPs on various phenotypes gangin diseases to the
physical appearance and various other characteristics.

For example, according to the guidelines of the NHGRI [32]arae-wide associ-
ation studies need to include more than 100,000 SNPs of tm@hgenome in the
initial phase to be considered meaningful. Balding [2]estahat at least 300,000
SNPs are needed. However, GWASI|[23] sometimes include oliemor greater
SNPs in contrast to the number of individuals sequenced;wlainges from thou-
sands to tens of thousands sequenced. This size of dataseeissary to capture
the genetic variation in the human genome.

The development of high-throughput next-generation segjng [46] and the de-
cline [48] in genome sequencing costs have facilitated toelyction of large
amounts of genomic data.

GWAS often make use of linkage disequilibrium, as explaime&ection 3.4.2,
to reduce the amount of data to be analyzed. Linkage dislequih [34] is the
shared evolutionary history of two SNPs. The closer two SatEsn the genome,
the less likely it is that they are separated during the rdsioation phase in meio-
sis. Hencel[17], proximate SNPs are often highly correlatieerefore, it is usu-
ally enough to include one of the highly correlated SNPs th®study, in order
to identify the genomic region influencing the trait underdst The identification
of the correlated SNP [42, 61], also callpmbxies or sentinels is often sufficient.
Therefore, linkage disequilibrium needs to be somehownaséd [2, 15] in the
complete genomic dataset to assess the power of a studyprbiaisss/[57] is also
known as SNP tagging.

According to Donnelly[[17] one of the major challenges isrestigate the re-
gions where proxies have been identified more accuratelgvieat the true causal
SNPs. These studies [|17/44] 56], also knowrfims-mapping studies involve
many more highly correlated SNPs in the associated regiomrthas a greatel [35]
number of individuals sequenced. The causal SNPs then shughar associ-
ation than the correlated ones, except for perfectly caieel proxies. Ideally,
fine-mapping studies include a great number of correlateBsSHNich that results
narrow down the set of possible causal SNPs.

Prior to the analysis of the genomic dataset some precetipg fave to be car-
ried out. Preliminary analysesl [2] ensure the necessarjtyjohdatasets and aim
at avoiding biases and other systematic errors introdugegobr quality of the

14The National Human Genome Research Institute(NHGRI) lostsnprehensive catalogue of
genome-wide association studies where associations éetyenome and phenotypes are available.
htt p: /7 www. genone. gov/ gwast udi es/

25


http://www.genome.gov/gwastudies/

@ Anerosclerosis in HIV.

@ Arial fibrilation

@ Asion defct hypenacivey dsorder
© Autism

@ Basal cell cancer

© Betcers disease

© Bipolar disarder

@ Biliary alresia

@ siirubin

@ Biter taste response

© Birlh weight

@ Biadder cancer

@ Bleomycin sensitivty

@ Biond or brown hair

© Blood pressure

@ Blue or green eyes

@ BMI, waist circumference

© Bone density

© Breast cancer

@ Butyryicholinesterase levels
@ C-reactive protein

© Caleium levels

@® Cardiac structure/tunction

© Cardiovascular risk factors
@ camitine leveis

© Catotencadtocopherd leveis
@ Carotid atherosclerosis

@ Coffee consumption @ Hepatitis B vaccing response O Meurchiastoma
@ Cognitive function @ Hepatocelular carcinoma © Nicotine dependence
© Conduet disorder © Hirschsprung's disease © Obesity
@ Colorectal cancer © HV-1 control @ Open angle glaucoma
O Comeal thickness @ Hodgkin's lymphoma © Open personality
© Coronary disease Homocysieine levels QO Optic disc parameters
© Cortical thickness @ HPV seropositity Osteoarthitis.
@ Creuizteld: O Osteoporosis
@ cromn's disease @ Iicpathic pulmonary fibrosis Otosclerosis
© Cronn's diseass and celiac disease @ IFN-reisted cytopeni © Gther metabokc traits
@ Cutanecus nevi @ ighleveis @ Qvarian cancer
@ Cystic fivosis severity @ IgE levels @ Pancreatc cancer
© Inflammatery bowel disease @ Pan
@ DHEAs levels @ Insulin-like growth factors © Pagers disease
@ Disbetic retinopathy @ Intracranial aneurysm @ Panic dsorder
@ Diated cardiomyopamy @ His color © Parinsen's disease
@ Druginduced liver injury @ iron status markers O Periogontits
© Druginduced Ever iy wmmcmmses, @ Ischemic siroke @ Peripheral arterial disease
© Endometrial cancer © Juvenile iopathic arthritis © Personaity dimensions
Endometriasis @ Keioid © Phasphatidylcholine levels
© Eosinophi count © Kidney stones © Frosphorus levels
@ Ecsinophilc esophagitis @ LOL cholesterol O Potic sneeze
© Epinbicinnuced leukopenia © Leprosy @ Phytosterol levels.
@ Ercte fshocion o canrvestnest @ Leptin receptor levels O Platelet oount
@ Erythvocyte parameters @ Liver enzymes @ Polycysiic ovary syndrome
© Esophageal cancer @ Longevity © Primary biiary cithosis
© Essential remor @ LP () levels @ Primary sclerosing cholangitis
@ Exfolation glaucoma O LpPLA) actity and mass © PRinteral
@ Eye color traits Lung cancer O Progranuin levels
@ F cel distribution © Magnesum levels © Progressive supranuciear paisy
© Fibrinogen levels @ Major mood disorders Prostate cancer
@ Folate pathway vitamins @ Malaria O Protein levels
@ Foliodar lymphoma @ Male patiem baldness © Psalevels
@ Fuch's comeal dystrophy Mammographic density O Psoriasis
© Freckles and buming @ Matrix (o]
© Galistones © McP-t @ Puimonary funct. COPDH
© Gastrc cancer Melanoma @ CRs interal
@ Gioma © Menarche & menopause © QT interval
© Gyeemic traits @ Meningioma @ Cuantitalive trats
@ Graves disease @ Meningococcal disease © Recombination rate
© Hair color © Metabalic syncrome © Redvs.nonred hair
@ Hair morphology Migrame @ Refractive error
@ Handedness in dyslexia © Moyamoya disease O Renal cell carcinoma
© HDL cholesterol @ Multiple sclerosis Q Renal function
© Heart faure O Myelopreiferatue nespiasrns @ Response i ancepressants
O Heartrate © Myopia fpathological) @ Response to antipsychatic theragy
© Height @ Negiycan levels O Response 1 carbamazeping
© Hemostasis parameters © Marcolepsy O Response to clopidogrel therapy
@ Hepatic steatosis O Nasopharyngeal cancer @ Respanse o hepatis C treat
Hepatitis © Natriuretic peptide levels @ Response o interferon beta therapy

2011 3rd quarter

@ Response bo metaformin
QO Response to stalin thesapy

@ Urinary albumin excrebon
© Urinary metaboltes

Figure 3.9: SNPs identified through GWAS by 06/2011 - Credit: Darry! Lajal

Teri Manolio
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dataset. Moreovef [42], since different next-generatiequencing technologies
do not sequence the exact same set of SNPs, missing valuBslRs need to be
imputed [43] to compile them for example into one large GWAdst The ne-
cessity of imputing missing SNP values [43], instead of a@liding missing data,
originates from the improved statistical significance, éhbanced results in fine-
mapping studies, the meta-analysis from different dagagstmentioned before
and the sporadic missing genotype data from sequencingseridissing SNP
data do not play a great role in single-SNP analyses [2], itr@ore problem-
atic in multiple SNP analyses. However, various methodsagpptoaches exists
for genotype imputations [43, 53], but the discussion liegdmd the scope of the
work.

Genomic datasets usually do not contain the nucleotideesegucontained in the
DNA. Instead, assuming a diploid set of chromosomes, thebamation of each
nucleotide on both DNA sequences is used. The same nudeotidhe same
location in both sequences is referred to as homozy@oie V@4éreas, different
nucleotide are termed heterozygaote![34]. Moreover, ugualteference is used
for every SNP value and as a consequence two forms of homtz&iPs exist.
The first represents both nucleotide are the same as themeéeENPs, whereas,
the second form of homozygte means both nucleotides aerdliff from the ref-
erence. Accordingly heterozygosity refers to one of the twoleotides being
different from the reference.

In conclusion, the main challenge of genome-wide associatiudies is to identify
the true single-nucleotide polymorphisms influencing aaierphenotype. The
identification is impeded by high correlations between thPS due to linkage
disequilibrium. A second purpose of GWAS [14] arises frora tirediction of

phenotypes based on a set of SNPs, which is useful in aninshiindry, for ex-

ample.

Due to the factl[23, 27, 42] that most causal SNPs have a sffedt @and that the
genome is very large [2], and that patterns and apparentiaisos can arise by
chance, it is unlikely to identify the true subset of SNPs.

3.6 Single-SNP

Single-SNPs regression is the most frequently used apprioaGWAS [11]23],
which directly tests the association between a single SNRl@phenotype. Ev-
ery SNP is examined separately and a strong associationirdemation for its
influence, or the influence of a proximate correlated SNPh@es not included
in the analysis), on the phenotype [23]. Single-SNP analysee the major ad-
vantage of being easily parallelizable and can therefoppéet to large genomic
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datasets. The intention of this approach is often to idgméfevant genes con-
taining the associated SNPs and to glean some insight iatbitthogy of the trait

under consideration.

Since the area of application is broad and many studies hleed single-SNP

analysis to genomic context; thus, a great range of stalstiethods exist.

Depending on the type of measured phenotype the statistiegthods vary. A
natural and common studies are case-control studies [#remphenotypes are of
binary nature. Therefore, every SNP is tested for the nytlotiyesis [[2] of no
association to the phenotype, where usuallxamatrix is considered containing
the counts of the two homozygote genotypes and the hetesteyggnotypes for
control as well as for the case group. Different statistieats can then be used to
test for the acceptance or rejection of the null hypothesigéch SNP.

Another type are continuous phenotypes measuring quéwgiteharacteristics.
For this purpose |2] linear regression, where a relatignbbiween mean value of
the trait and genotype is tested against the null hypothasisvell as analysis of
variance (ANOVA), where the mean of the three genotype e tested for
equality, are common choices.

For studies analyzing ordinal phenotypes linear modelsdapted to logistic re-
gression where the outcome is categorical. Usually [2] tfiewlties arising from
non-continuous phenotypes are overcome by transformiamghbnotype to a con-
tinuous scale using a logit-transformation. Subsequéehéythree groups of geno-
types are again tested for their influence. The null hypdhissthat all three
groups have no influence.

Usually the p-value is computed to assess the evidence fassotiation between
a SNP and the phenotype assuming that the null hypothesiadsahd for ex-
ample [32] only SNPs reported with a p-value beltdv® are considered for the
NHGRI catalogue. Despite their widespread use [56], theueatist approach has
some limitations, such as the threshald|[44] for SNP to besiciemed as associ-
ated as well as as the size of the study and factors like therraltele frequency
(MAF). This drawback arises from the fact [56] that an associatiba SNP
with a given p-value does not only depend on how unlikely graalues is under
Hy but also on how unlikely it is under alternative hypothelis One response
to such issues [56] is to avoid performing tests with low polaefor example dis-
carding low-MAF SNPs, which is sometimes inadequate siacsa SNPs might
be discarded. Uncertainty introduced by imputed data [d@}ecially rare SNPs,
can also degrade the power of frequentist tests and candesmltiously low p-
values. Another impediment arises from multiple testirjgajad the identification
of false positive detections because every SNP is a pridikaln to be causally

5The three groups are again the two homozygote and the hetertezforms of a SNP.
15The minor allele frequency is the frequency of the less comaitele of a SNP.
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associated. Therefore strong evidence is needed to overttanskepticism about
an association. To control the number of falsely rejedigchypotheses [42, 56]
more stringent significance is required as the number of testeases. This can
sometimes lead to less analyses and tests perfoiméd [56bia #he additional
multiple testing penalty imposed.

Alternatively Bayesian methods are used with increasieguency to alleviate
the limitations of p-values but with the drawback of addiabmodeling assump-
tions and increasing compuatational demands. Bayesianagpes have the ben-
efit [5,[56] of providing a unified approach to data analysithwincertainties in
the model leading to directly interpretable and comparaétilts among SNPs
within and across studies. Additionally biological knodgg, such as the number
of expected true associations, the MAF of every SNP, or tbeimity to genes of
interest, as well as other prior information can be incoapent and different ge-
netic models can be considered in a single analysis. Fuontirer[44,56], instead
of specifying a threshold for the p-values, measures likéBtyes factor(BF) or
posterior probabilities are used. The BF considers the ratio between the marginal
likelihoods of the data undeif; and underH,. The result can be interpreted as
that the observed genomic data are by the Bayes Factor rkehg linderH; than
under Hy; the larger the BF, the stronger is the supportffr. In contrast([56],
the posterior probability can be directly interpreted asbpbility regardless of in-
fluences like for example the sample size, the number of aedlNPs, or the
MAF of every SNP. The posterior probability combines thedewice that a SNP
is associated with the phenotype based on the data as whi gsior knowledge
assumed.

A common used advantage of the Bayesian approach is thegavgiaver differ-
ent genetic mod@.

However, the need to specify prior knowledge can lead toispsirand distorted
results.

An inherent drawback of the frequentist and the BayesiaglesiBNP analysis
is [11] that only single-SNP effects are identified and episteffects and groups
of associated SNPs are neglected. The approaches outtirtbi iSection work

well for traits strongly influenced by only a single or a few EdNbut are not able
to reveal the biology of complex traits. More complex Bagesapproaches found
to perform superior [23, 39] even in the case of a few caus&<SNNevertheless,
more sophisticated methods are computationally more ddimgud&] and are not

yet able to identify the majority of causal SNPs|[17]. Thesteeontributes to the
improvement of this issue and to identify the more promisimeghod.

Usually [56] different genetic models represent additd@ninant or recessive genetic effects
and are incorporated for every SNP using different weights.
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CHAPTER

Statistical Background

analysis using large-scale regression methods applieghionge-wide as-

sociation studies to model the complexity of genomes antigviate the
computational burden arising therein. Hierarchical meddescribing complex
relationships and processes, together with Markov chaimt®&arlo methods
which facilitate the analysis, are frequently used [10] WA&S among various
other applications.

THE current chapter outlines common statistical methods aelkefor the

Section’ 4.1l gives an outline of Bayesian hierarchical nodeld their ability to
model complex contexts. In Sectibn¥4.2 the concept of Madtmins is first ex-
plained and second an introduction to Markov chain Montéddaethods is given
with respect to practical applications and with focus onMetropolis-Hastings
algorithm in Subsection 4.2.1 and the Gibbs sampler in Suioséd.2.2.

4.1 Bayesian Hierarchical Models

Bayesian inference provides the possibility to combinergreliefs with observed
data to obtain knowledge about underlying stochastic msE®as well as its un-
certainty. Bayesian hierarchical models represent them#gmcies of random
variables from which inferences is made.

An import characteristic of Bayesian hierarchical moddl§][is the ability to
model a great variety of complex processes and interraktips between stochas-
tic components and to capture the behavior of the procesibgagpect to the
inherent uncertainty. Bayesian methods are becoming mupalar in genome-
wide association studiesl!|2, 4] because of the improvingnmdar tackling the
high computational demands |56] as well as the unified aghrofdata analysis.
The purpose of the current Section is to outline the ideasayfeBian statistics
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and inference necessary for the subsequent Sections. Mtaisccan be found in
Bishop [5] and Carliret.al. [10] for example.

Bayesian models provide a unified approdch [10] to data aisagnd inference
as well as a consistent way to incorporate prior beliefstintomodel. Uncertainty
captured in the model includes both uncertainty in the dataell as in the model
parameters. To achieve this both the observed data as wallyasnknown or la-
tent variables are modeled as random variables having alpilia distribution.
The main difference to the frequentist approach [5] is thaBayesian model sum-
marizes the observed data with respect to prior beliefs énfdihm of posterior
probabilities, instead of making point estimates and estimating the teiogy
separately. The posterior probability is obtained by

posterior o likelihood x prior . (4.1)

Bayesian hierarchical models yield the attractive feathad uncertainty is prop-
agated through the complex models, affecting the certaihinferred posterior
probabilities.

The central paradigm of Bayesian statistics is the Bayeasrdine [5], shown in
EquatiorC4.R2, which converts prior beliefs about the vdeialin the model into a
posterior distribution by incorporating information caimted in the observed data.

p(Y[0)p(0)
p(Y)

In Equation[4.P9 represents a model parameter ainié) is considered to be a
prior belief of the probability of certain values &f p(Y'|0) is thelikelihood func-
tion and expresses the probability of observing a dataset uhdgoarameteé.
p(Y) is the probability of the dataset to be observed and is ysodifained by
marginalization. It ensures the left-hand side of Equdfidhis a valid probabil-
ity distribution integrating or summing tb. The posterior probability [Sp(6|Y")
summarizes the knowledge obtained from the prior belietsthe likelihood of
the observed data given the prior beliefs for the parameétes. posterior captures
the uncertainty in the parameter after the data have beemas
The prior is often governed by another parameter [10], alemédhyperparam-
eter, which is mostly unknown; therefore, a second stagé [10htioduced to
assignhyperprior p()) to the parameters of the prior distribution. The Bayes
theorem is then augmented with the hyperprior as depictédjiratio
p(Y10)p(6]A)p(A)

POY) = @ dn 4.3)

1The same equation holds for the discrete random variablesaithe integral is substituted by
a summation.

p(O]Y) = 4.2)
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As a side note, a delicate isslé [5] of the Bayesian appra@dsdrom the choice
of priors, because the selection of priors is often basedomenience and subjec-
tive believes. Stephems.al. [56] note that it is often desirable to avoid subjectivity
in the form of noninformative priors, but that the real pelis the hidden subjec-
tivity and missing clarification of the assumptions. Howevhis discussion lies
beyond the scope of this thesis.

Due to the complexity of most models [10], the integral in Bipn[4.3 is often
not tractable and cannot be solved analytically, whichdgiired for the inference
from the hierarchical model. Special forms of priors calbemjugate priors@ al-
leviate the analytic evaluation. Nevertheless [5, 10taictable integrations remain
and need to be approximated.

Other situations[]1] require the optimization of the pastedistribution; this is,
the identification of the optimal values for the paramet@fen exhaustive com-
putation of the posterior distribution is infeasible assitimpossible to compute
and compare all solutions. A more detailed discussion erred to Chapter5 and
Chaptef 6.

Popular methods [5] exploring the posterior distributio@Markov chain Monte
Carlo algorithms [62], which obtain samples by directly samplfrgm the dis-
tribution. A major advantage [10] is that, making use of higeed computing
equipment, high-dimensional distribution can be acclyapproximated.

4.2 Markov Chain Monte Carlo

As outlined in the previous Section, Bayesian methods redhie computation
of the posterior probability to enable inference of stotibgsrocesses. Computa-
tional challenges [4,10] arise from intractable integnasi, especially as occuring
in Bayesian hierarchical models, and from the identificatib the best values in
optimization problems.

The most popular computational todls [10] are Markov chaonké Carlo (MCMC)
methods due to their ability to enable inference even in Higkensional posterior
distributions, and to, for all intents and purposes, bréakdurse of dimensional-
ity@. MCMC methods do not produce a closed-form solution bueetsimulate
draws of samples from the posterior distribution, therebpagating aviarkov
chain.

Although [10] these samples do not contain as much infolonads a closed form

2Conjugate priors are prior probability distributions thatong to the same family of probability
distribution as the posterior probability distribution.

*The ,curse of dimensionality(]5,10] states that, with ieasing dimensions, the amount of
data to be computed, for example the full posterior distidny grows exponentially with the di-
mensionality.
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solution the estimation that results from sampling can bderarbitrarily accu-
rate by increasing the number of samples drawn from the poswistribution.
A summation of the posterior distribution is usually suffiti to approximate the
posterior distribution enough to allow reliable inferenées for most situations [5]
the identification of the most probable values is satisfgcto

As a side note, a common criticisim_[10] of MCMC methods is thatwo infer-
ences will obtain the same approximation since differentgas are drawn from
the posterior distribution.

MCMC explores the distribution by simulating random drawaf the the tar-
get distributionr(#) resulting in a Markov Chai’, ..., #*. This exploration is
also called aMarkov process An important property [62] during the construction
of the Markov chain is that each valé for i = 1, ..., #3 only depends on the
preceding state, which can be seen from Equation 4.4.

P(Xet1 = se411 X0 = S0, .., Xt = 5¢) = p(Xpp1 = s¢41]|Xp = 5¢) (4.4)

This means that the only information necessary for obtgittie next samplé‘*!
from the distributionr(6) is the current staté’. The Markov chain also needs a
transition probability [15]7", as noted in Equation 4.5, which defines the proba-
bility of the transition from a current stat¥ to the next staté’*! such that the
desired distribution is invariant.

T(0',6") =T(0" — 6"") = p(F = s'*1|6" = &) (4.5)

A fundamental theorem of Markov chains stafed [16] that feem given starting
point #° the Markov chain has a probability af6?) of being in the staté® after
sufficiently large number of steps. Hence, the probabilftg state only depends
on the probabilityr(6?) of reachingf! and is independent from the initial value
6°. This property([5] is calle@rgodicity and thus the Markov chain is said to have
astationary, orequilibrium , distribution which corresponds to the distribution to
be approximated. Consequently, independent of the initiale ° the Markov
chain will, after a finite number of steps, sample directbnirthe equilibrium dis-
tribution. Each Markov chain can only have one equilibriuistribution.

Moreover, besides ergodicity, Markov chains need to havaiceother properties
in order to converge to the invariant distributie9). First [1], the Markov chain
has to berreducible, which means that from any given statethere must be
positive probability to reach all other states possiblefor'. Hence, each state,
in the case of discrete states, and each value, in the casmtfiwus states, is
reachable with a certain probability greater titarSecondl[1], the Markov chain

“Note that the first samp#’ does not depend on any other state but is rather assigneitiah in
value.
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needs to baperiodic such that the chain cannot get trapped in cycles.

Given the properties mentioned [1] the MCMC sampler is a Marrocess gen-
erating a Markov chain that has the target distributigfl) as its equilibrium dis-
tribution.

After convergence of the Markov chain to the stationaryritigtion, which is
addressed later in this section, the samples drawn are aseonmarize the pos-
terior distribution and thus allow inference.

The samples obtained can be summed in any Wway [37]; howesamon choices
[10] are the posterior mean in Equation]4.6,

0 =E|Y] (4.6)

the posterior median in Equatibn %.7,

6 = / ’ p(0]Y)do 4.7)

— inf

or for example the posterior mode in Equation 4.8.
6 = supp(d|Y) (4.8)

Moreover, the uncertainty captured can be assessed byiaratigh of the vari-
ance of the samples. The most probable regions of the distib[5] can be
identified after a rather small number of samples; howewegpproximate the
tails of the distribution a much larger number of samplegdgiired. However, the
accuracy of the estimation does not solely depend on therdiimeality of6, but
on the number of samples.

The convergence of the Markov chain to the desired equilibrdistribution [10]
can be ensured for large number of posterior distributiorevextheless[ [10], a
crucial point for the application of MCMC methods is the démn of when it is
acceptable to stop sampling from the equilibrium distidouto obtain a sufficient
approximation of the distribution. This issue is also ahltenvergence diagnosis
and deals with the estimation of the point when the Markowrctaectly samples
from the equilibrium function and enough samples have bétaired.

The first sampleg® to Oz, are referred to as thieurn-in period [1], where
the Markov chain has not yet reached stationarity and threisamples do not rep-
resent direct draws from the target distribution. The lbrgjtthe burn-in period
is difficult to assess and depends on the pace of the chaimmaway from the
initial value as well as the autocorrelation of the chain chhwill be discussed
shortly.

A common solution[[l1, 10] is to remove the beginning of theichand to start
using the subsequent samples. In practice, however, iffisulli to assess the
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Figure 4.1: An example for a Markov chain where the around the first eigiith
the sequence is the burn-in period

best length of the burn-in period because no completelgibieidiagnostics [1] for
convergence exists.

An example for the burn-in period can be seen in Fiduré 4.1thénfigure on
the left, the distribution to be approximated is shown aschaerve; whereas,
the greenish bars represent the summarized samples. Tidnaigd figure shows
the samples of the Markov chain also referred tdrase. It can be easily seen
that the beginning of the chain is the burn-in period wheesNtarkov chain has
not yet converged to the equilibrium distribution. The séagollowing are then
considered to be direct draws from the target distributind @an be used for the
estimation of the distribution. Obviously, an optimal iaitstate would be close to
the center of the probability distribution.

Another difficulty arises from the quality of samples obtin Ideally [1], the
samples drawn by the MCMC methods should be i.i.d savﬁpl@es shown in
Equation[4.4 the samples, since each sample depends onetheugsr state, are
not independent draws and thus are expected to be positiveiglated([[10] also

referred to as thautocorrelation. Nevertheless, even though these samples are

correlated it can be shown [62] that the draws are still fromequilibrium distri-
bution and therefore present an unbiased picture of thekiison, if the number
of samples is sufficiently large. The higher the autocoti@ieof a Markov chain,
the more samples are required to obtain the same accuracex&mple([62], a
very high autocorrelation can require up to a few hundreasimore samples to
obtain the same accuracy as if i.i.d. samples are available.

®Independently and identically distributed samples arepbesrall drawn from the same proba-
bility distribution and do not influence one another.

36



A common approach to deal with autocorrelation ishim [1] the Markov chain;
that is, only using every** sample from the chain, thereby reducing the corre-
lation between the samples until it becomes insignificanbweél/er, a common
criticism [10] is that thinning is not favourable since icieases the variance of
the estimation. Instead, using all samples [10] is a morke@ble approach along
with the estimation of theffective sample size (ESSyhich is usually much
smaller [5] than the total number of samples. Equdiion]4ttivs the estimation
of the ESS whergy(6) refers to the autocorrelation at a distarice
N
ESS = m 4.9
inf

K(0) =1+2) pi(6)
k=1

The issue of the effective sample size is closely related thig issue of when the
Markov chain has reached the equilibrium distribution a asewhen a sufficient
number of samples has been collected.

Figure[4.2 depicts the difference between the approximsatising samples sizes
of 1000, 5000, 10000, and25000 from the upper left to the bottom right figure.
As the number of samples increases, the approximation besomore and more
accurate. Note from the right bottom plot that the tail hasrbexplored by the
Markov chain which has not happened in the Markov chain viighower number
of samples.

Various approaches exist to estimate the convergence cohtiia for example the
Geweke tesfl62] which compares the mean of the first 10% of the chain viiéh t
mean of the last 50% of the chain and compares for their @gueding a hypoth-
esis test, or thRaftery-Lewis test[62].

The most popular approach for diagnosis on the MCMC sanipfisq theGelman-
Rubin diagnostic R, also known apotential scale reduction factor[10]. It es-
timates the equality of the variation within the sequencsarfiples[[10], usually
obtained by running many parallel Markov chains. Idedfyshould be 1 as the
number of samples convergesdo

An important fact of Markov chains is that as long as all regimients, such as er-
godicity and aperiodicity, are fulfilled, the Markov chailvays converges to the
equilibrium distribution and the samples can be used for@apmation. However,
the time until convergence and the pace of the chain exgjdthie equilibrium
distribution are the crucial factors for an efficient appnoation.

4.2.1 Metropolis-Hastings-Algorithm

Among the most frequently used MCMC methaods [1] is Mhetropolis-Hastings
algorithm. The algorithm was first introduced by MetroppRosenbluth, Rosen-
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Figure 4.2: Approximation of an arbitrary distribution by a Markov chaising
samples sizes of 1000, 5000, 10000, 25000

bluth, Teller and Teller [45] and was generalized by Hasti[&l]. As outlined in
the previous section, MCMC methods build a Markov chain byegating sam-
ples from the equilibrium distribution. The Metropolis-$tgags algorithm is a
rejection algorithm[[10] as it circumvents the problem ofngding directly from
the distribution by generating new samples given the custate off. It subse-
guently accepts or rejects the newly proposed sample wittrtain probability.
The Metropolis-Hastings algorithm offers more flexibilfii0] in contrast to other
MCMC methods due to the variety of proposal distributiormyver, only a care-
ful choice yields a quickly converging chain.

Therefore, a Markov transition kernel [22] also calfgdposal density[10], pro-
posal or candidate-generating distribution[62] ¢(6*|0"), as defined in Equation
[4.3, is used to generate a new candidate sample.

Subsequently the proposed sample is either accepted otewjeith the proba-
bility [L] given by Equatior 4.10. If the sample is rejectés], [then the previous
sample is used as the current state, leading to multipleesagisamples.

L @)
cvin =min {1, 26 7 | (@19

As can be seen in Equatlon4l10 the proposed saftiplbaving a higher proba-
bility than the current sample is always accepted; whelieabge case of the new
sample, is accepted with; . The complete Metropolis algorithm is shown by
Algorithm[4.].
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Algorithm 4.1: Metropolis-Hastings algorithm

Result Markov chain of length N generated by Metropolis algorithm
1 6% = Initial Value
2fori=1:Ndo

3 | 0 = q07l6")
4 u = u[(],l]
, 0t16*)7 (6

5 aMH:mm{l,W}
6 if u< aprg then

/1 Accept proposed sanple
7 g+l = o
8 else

/'l Reject proposed sanple
9 g+ = gt
10 end
11 end

A common variation[[5] to the Metropolis-Hastings algonittis the Metropo-

lis algorithm. It is used [22] if the proposal distribution is symmetricerite,
q(0%|6) = q(6%|6*). For example, in the case of a normally distributed proposal
distribution. The acceptance probability simplifies to Etipn[4.11.

o :min{l, (7;((962)} (4.11)
The crucial point for efficient approximation by the MetrtipeHastings algo-
rithn@ is the specified proposal distribution| [§{6*|6?), which is chosen to be
easy to generate candidate samgtesrom. The proposal distribution is an im-
portant tuning parameter [62] and strongly influences tleedmf convergence to
the equilibrium distribution as well as the quality of apgroation with a limited
number of samples.

An example is shown in Figufe 4.4 where three choices of malpdistributions
are compared. For each column, 7,000 samples are compuitgdausormal dis-
tribution as the proposal distribution.

The column on the left is computed using a narrow proposaiiloligion ¢(6*) ~
N(6%0.1). Note that the samples are strongly centered around the ofctie
target distribution and the chain baby-steps around th&eceNote that the chain
has an acceptance rﬂiof around0.985. Although only a few samples are not

®This also accounts for the Metropolis algorithm as well as dther variations of the
Metropolis-Hastings algorithm.

"The acceptance ratio is the proportion of samples acceptedritrast to the total number of
samples.
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used, the chain only explores the most probable regions eotilgms can arise
from distant peaks not explored sufficiently. A too-narrompgmsal distribution
can also get trapped in local peaks such that stationaimnsd¢o be reached. Fur-
thermore, it also leads to a high autocorrelation in the Madbhain, slowing down
convergence.

Mixing of Markov chains
T 7 T

1,—\_4_U_}_\__'
0 i i i i 0

0 100 200 300 400 500 0 100 200 300 400 500
Iterations

Figure 4.3: Difference between a poorly mixing (left Figure) and a welkimg
Markov chain (right Figure).

In Figure[4.4, the middle column shows an overly wide propabstribution
q(6%) ~ N(6|15), generating proposal samples far off from the current state
which are likely to lie far from the distribution’s centerqL This leads to a
high number of rejections (in this particular example thesptance rate was only
around0.13, thus87% of the samples are discarded) which in turn leads again to
high autocorrelation. The chain is said to fp@orly mixing. The difference be-
tween a poorly mixing and aell mixing Markov chain is shown in Figurie 4.3.
Note that the figure on the left shows long flat periods wheeestimples are re-
jected. A well mixing chain[[62] looks similar to white noise

The third column in Figure_ 414 shows a well mixing chain usangroposal distri-
bution ¢(6*) ~ N (#%|4). In this case the acceptance ratio is aroQndwhich is
considered to be favourable [10].
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4.2.2 Gibbs-Sampling

Besides Metropolis-Hastings the Gibbs sampler is a widelylieable [5] and
common MCMC method which can be regarded as a special ca}of@Be
Metropolis-Hastings algorithm, having an acceptance w@tiL. Here, no proposal
distribution has to be tuned to obtain a well mixing Markowaith All samples
are used and none are rejected, thus saving computation fitme Gibbs sam-
pler is used([29] when it is difficult to sample from the fuligo distribution, but
feasible to sample from the conditional distributions oémwvariabled;. There-
fore [62], in contrast to the Metropolis-Hastings algamiththe Gibbs sampler uses
an univariate conditional distribution for each variabldere all variables but one
are assigned fixed values, as the proposal distribution@srstm Equatior 4.12.
Thus [62], in every iteration al; for : = 1, ..., p are sampled from their univari-
ate conditional distribution rather than to generétiegom the full joint distribu-
tion. This process is repeatéd times until the Markov chain converges and the
samples, after the burn-in period is removed, are used tmzippate the target
distribution.

p(@iwl,...92‘_1,92‘_,_1,...,9])) (4.12)

The complete procedure for the Gibbs sampler is shown byrilgo([4.2.

It is assumed [10] that in practice all conditional disttibans uniquely determine
the target distribution. However [10], if the conditionastdibution is not conju-
gate and thus not available in closed form it is favourablenigploy a Metropolis-
Hastings algorithm.

Algorithm 4.2: Gibbs sampling algorithm

Result Markov chain of length N generated by Gibbs sampler
1 6% = Initial Value
2fori=1:Ndo

s | sampled;™ ~ p(6:63,....6;)

4 | Sampledst ~ p(62]077", 65, ..., 00)

5

6

7 .

8 | Sampledit ~ p(6,(01t", ... 001,60, ..., 60)
9

10

11 .

12 Samplee;;ill ~ p(ep_¥ye§+1, 07, 67)
13 | Samplegit! ~ p(6,67, ..., 60t))

14 end
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Figure[4.5 shows an example of an applied Gibbs sampler véhbivariate Nor-

mal distribution
5 1 0.5
NN(H’[M 1])

is to be approximated. The conditional distributions akegiby Equations 4.13
and4.14. The Gibbs sampler is run for 2,000 iterations.

Py ~ N (1 + p(y' — p2), /1 — p?) (4.13)
p(y Tz ) ~ N + p(a™h = ), /1 — p?) (4.14)

Figure 4.5: Result from a Gibbs sampler after 2000 iterations on a tat@mor-
mal distribution

43






CHAPTER

Methods

phisms are considered to influence a phenotype. The purpasealysis,

as explained in Sectidn 3.5, is to identify the true subs&NPs influ-
encing the phenotype on one hand and on the other hand tacippdinotypes
based on a dataset using the identified subset. The formet [&2] naturally
arises from genomic datasets where SNPs with no or only agitaglinfluence
on the phenotype can be excluded from the set of relevarahlad. Howevel [23],
identification of the single best model is very unlikely tosuecessful because of
small associations between SNPs and phenotypes and datagetore predic-
tors than observationsspn. Additionally [3€], the datasets, as explained in more
detail in Section 3.412, are often highly correlated.
The thesis considers two common methodologies, namelyastic search vari-
able selection (SSVS) and Bayesian penalized regressioth Bethods are ap-
plied to genome-wide association studies; for SSVS seexample Guaret.al.
[23], Chenet.al. [11], Srivastaveet.al. [54] or Yi et.al. [66]. Bayesian penalized
regression is used for example bydtial. [39], Silvaet.al. [51], using Bayesian
Lasso for the prediction of unseen traits, ore¥il. [67]. Methods considered in
this chapter are able to circumvent the restrictions agifiom single-SNP regres-
sion as outlined in Sectidn 3.6, by considering the completaset and thereby
combinations of SNPs for their association. Moreover, bseaof the Bayesian
representatiori [37] easily-interpretable results in cioiaiton with valid standard
errors are obtained and methods are able to partially mbdetamplexity of the
genome and its influences on traits and phenotypes.

Q soutlined in Chaptdr]3 only a small number of single-nuct®folymor-

The purpose of this chapter is to introduce and outline thihou®logy considered
within this thesis and to propose modifications to the methodler consideration.
Sectiorf 5.1 gives a general introduction to the regressioblem as it is assumed
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in most of the work about genome-wide association studiesti®{5.2 introduces

hybrid correlation-based search with its two parts, stetbaearch variable selec-
tion in Subsection 5.2l 1 and correlation-based searchlis&uiort 5.212; whereas,
the modifications are discussed in Subsedtion b.2.3. Subsdy, Section 513 ex-

plains Bayesian penalized regression with Bayesian lasSabsection 5.3/1 and
Bayesian ridge regression is discussed in Subsdctiond 5.3.2

5.1 General Regression Model

In this chapter details of the methods examined are predenie case of hy-
brid correlation-based search and Bayesian penalizedssign a multivariate lin-
ear regression model is considered consisting observations angd predictors,
which is the natural choicé|[2] for this purpose and is comi#&})27[ 36, 317, 49]
among related work. The linear contribution of every calddP [2]63], 69] is
widely adopted.

Hastieet.al. [29] mentioned that linear models are a reasonable appiioagitua-
tions with a small number of training cases and data with lattgons of associa-
tions.

Y=a+X"B+e (5.1)

Let X = {X;, X>, ..., X,,} denote the standardized predictor variablespap
matrix. In the scope of GWAS predictor variables are ususithgle-nucleotide
polymorphisms, where every predictor represents one Sitlie genomic dataset.
The combination of the two alleles from a genetic locatiorttm chromosom
determines the value of a predictor, as explained in SeBiién

Equation[5.1l depicts the assumed linear model where a sabsétSNPs con-
tributes and influences the measured outcome (the phenot¥pdas a small sub-
set of X with X* = {X, X5, ..., X,» }, wherep* < p, associated to the outcome
Y. HenceY is a linear combination of the predictors ¥*. Note that there are
2P different combinations o *. According to O’Haral[2]7], in a Bayesian frame-
work the selection of the 'best’ subset is often determimed variable-specific
form where every variable is either included or excludednfrihe subset. More
details are discussed in the remainder of this section.

The strength of the influence of every genetic location (9Rghe phenotype is
represented by its regression coefficiénthences = {31, 52, ..., B, }'. The pur-
pose of variable selection [22] (selecting strongly assteci genomic locations)
is to identify the group of variables with small regressiarefficients, where it
would be preferable to ignore them and instead to includevias in X, having

a regression coefficient different than

tAssuming a diploid set of chromosomes, therefore everyrohsmme is present in every cell
twice.

46



The last term in Equation 5.1 isand depicts the independent error term, also
known as noise.

It is assumed, as typical for GWAS, that the number of predicis larger than the
number of observations, thereforgs-p.

5.2 Hybrid Correlation-based Search

The hybrid correlation-based search (hCEBS) [36] is antiterastochastic search
method comprising two parts. The first part follows the s&stic search variable
selection|[[7], 8, 21, 22]; while, the second part is a newlhppeed method named
correlation-based Search (CBS). Both methods are useé imythrid correlation-
based search method, where in every iteration either tlobastic search variable
selection or the correlation-based search method is udseiniethod is designed
to identify a subsefX, to approximate Equatidn 5.1 by Equation]5.2; hence, to
approximate the 'best’ mode&l *. To this end it is given a set of predictor variables
X = Xjy,..., X, and an outcome variable depending orX, as defined in Section
B.1. v indicates which variables are included in the current subgeettingy; = 1

if the variableX; is included in the subset and = 0 if not. The purpose of this
is explained later in this Section.

Y = o+ X, By + ¢ (5.2)
The noise term in Equatidn 5.1 and Equafion 5.2 is defined amaldistri-
butione ~ N(0,0?). « is a normal distributionV (o, ho?); whereag andh are
hyperparameters. The variance of the noise tetris assigned an inverse gamma
distribution as shown in Equation®.3.

9 v VA
~7IG(=,— 5.3
! ~TG(5 ) (5.3)
Furthermore, a conjugate prior for the regression coeffisig, is used, as
shown in Equatiofi 514, given the current subgendo?. For H.,, an independent

prior cI,, is used, since it is computationally favourablel[36].
67’77 02 ~ N(/BO7 O'QHW) (54)

Giveno?, « is a normal distribution with\'(ag, ho?) with hyperparameters;
and h. The posterior distribution [36] can by calculated by usthg specified
priors and gathering the information about the most prababbsets.

p(VIX,Y) xg(v) = (5.5)
= | + X, HYX, | 721Q0 172" p(7)
where Q, =vA+Y (I, - X,K;'X)Y
and K,=X X,+H*
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Since the posterior distribution has to be evaluate®fadifferent models in
order to find they with the largest posterior distributigny|X,Y"), computation
becomes infeasible with larger valuespof
In hybrid correlation-based search the veetaran be used to obtain the most-oft
included variables in the subset. Singe= 1 for every variable included in each
iteration the variable selection can be performed simplgdoyputing the ratio of
a variable being included to the number of iterations of therldv chain. The
result obtained is callethean posterior inclusion probability and is addressed
in Chaptef®.

The remainder of this chapter includes definitions of stettbasearch variable
selection in Subsectidn 5.2.1 and the correlation-basatisén Subsection 5.2.2.

5.2.1 Stochastic Search Variable Selection

Stochastic search variables selection randomly explofescton of the possible
models ofy to identify the model with the largest posterior probabifi{ | X, Y).

As previously outlined [23, 36], SSVS does not incorporatg iaformation about
the relationships between variables for the generationrava subsety. At any
iteration of the Markov Chain, SSVS alters the subset, frobepgreceding itera-
tion. Therefore, a new vector* is created from the current by either adding

or removing a randomly chosen predictor from the currenssttyith probability

¢. With probability 1 — ¢, one predictor that is currently included in the subset is
being exchanged for a randomly chosen predictor that i€ntlyrexcluded. This
leads[[36] to the following proposal distribution

2 if|py — pye| =1
« » 11Dy p’y*|
A =971 . 0
Pw(p*pw) ,! ‘pv o pv*’ B

George and McCulloch [21] introduce a widely adopted priwrftaking the form
of an independent Bernoulli distribution as depicted in &opn[5.7, wherep,
denotes the number of variables currently selected intsubsetp, = 7 _, ;.

(5.6)

p(7) = WP (1 — w)@P) (5.7)

w is considered as a prior assumption [6=8[21, 27] of the dizbeosubset,
more specifically the ratio of variable included into theesé&td subset to the total
number of variables. In the majority of GWAS [17] the numbé&expected SNPs
associated and therefore relevant has shown to be rathdiy berecew is set to a
small value.

5.2.2 Correlation-based Search

Correlation-based search uses a similar approach to stickaarch variable se-
lection, except that correlation-based search does naidemevery variable as
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independent. As outlined in Sectibn 314.2, genomic datavdfigh correlations.
Not considering correlation during variable selection][8&n result in the inclu-
sion of highly correlated variables at the cost of variableisg ignored, which are
part of the true underlying subset.

SSVS[36] is modified to incorporate information about rielaghip between vari-
ables for the proposal of new subsetsVhile SSVS chooses the variables for the
inclusion/exclusion step as well as the swap step randoGBS considers cor-
relation between variables in every iteration of the Markthain to propose the
altered subset. Therefore, only variables having a low correlation areeatlth
the current subset; whereas, highly correlated varialvkesxcluded from the cur-
rent subset.

Let T x denote the correlation matrix of predicto¥swith entriesY x,; = p;;. £
representing the predictors currently included in the sytieencel., = {i : v; =

1,7 =1,...,p} and respectivelf,, denote the set of predictors excluded.

During the addition step an indek € L, is randomly chosen, and subsequently
the predictorz;,, wherej’ satisfies § € &, : |py ;7| = min|py;|}, is included

in the subset. The deletion move is similar, therefoyesatisfying{j < &, :
|pirjr| = max|py;|} is excluded. The swap move is simply a combination of an
addition and a removal step. Due to these changes, comgoofenare no longer
independent Bernoulli variables and therefore the prian@lified in Equation

5.8.
p\ 1
p(w)z( ) S 5.8)
D~ D~

Consequently [36], as denoted in Equatfion 5.9, the proghsiaibutiong(~v*|v)
is altered as well, since the proposal of new subset is nelosgnmetrical.

=1
=0

¢ .
2py if |p'y — Dy

o (5.9)
2L if|py — pye

p(Y'ly) =

5.2.3 Modifications

This section outlines the modifications and improvementslan@® the hybrid
correlation-based search method to improve variable ts@heand prediction.

5.2.3.1 Variable Selection

Correlation-based search considers only the most coeteladriables during the
alterations of the subset As explained in the previous section, Secfion 5.2.2,
CBS considers variables whith a very high correlation totlagovariable in the
subset during exclusion of a variable. Nevertheless, threlation structure within
the DNA [23] tends to be 'local’. Typically, every SNP is higtcorrelated with a
small number SNPs in their surroundings and correlatiofi3dBdecreases with
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distance along the DNA. For example in fine-mapping studigre many highly
correlated variables in a genomic region are examined, @mgidering the high-
est correlated variable can be adverse and disregarddlysligés correlated vari-
ables.
Therefore, a modification to CBS is proposed in order to imerthe mixing of
highly correlated variables. As in Section 5]Z.2is the set of predictors currently
excluded from the subset and correspondingly,is the subset of predictors in-
cluded. During the deletion moves as well as the deletiohgfahe swap move
not only the highest correlated variables are considerexsiead other predictors
are given a chance to be chosen as well depending on theglation. Again a
predictori € L., is chosen randomly. Thereupon a discrete probability idistr
tion is constructed where each bucket represents a predidte subsej € ﬁv\z"
having a probability as shown in Equation 5.10 for being edtet.

PU) = —it— (5.10)

Zmll pi’m

The modification leads to a reduced number of false posittediions as exam-
ined in Chaptel]6.

Interestingly, various other strategies for the inclustomd exclusion steps have
been considered, but led to an increased number of falséveodetections. For
example, considering the highest correlated variapleduring the inclusion step
J € &t |pirjy| = max|py;|} and excluding the least correlated variablg sat-
isfying {j € L, : |pij/| = min|p;;|} from the current subset, showed inferior
results. This was unexpected, since it is reasonable tmetlated variables be-
ing associated should be kept in the subset and not assbc@atelated variables
should be rejected.
Another strategy examined is to consider not only the leastetated variable
during the inclusion steps, but, analogous to the moditioain Equatior{ 5.12,
assigning other slightly correlated variables a probighit be selected as well as
shown in Equatiof 5.12

PO = (5.11)

D m=1 Pi'm
wherej € £, andi’ € L., is randomly chosen

However, as mentioned, these strategies led to an increaseder of false posi-
tive detections and did also not contribute to increase disgéepior inclusion prob-
ability.
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5.2.3.2 Prediction

Prediction of phenotypes based on new or unseen datasetstieea purpose of
genome-wide association studies. The estimation of tleertigression coefficients
is the basis for prediction; that is, to understand the tneetying biological in-
fluence of SNPs on a certain trait. All regression coefficgeme obtained by com-
puting the regression coefficients for the subs@t each iteration of the Markov
Chain. Finally, after the convergence of the Markov Chairj fBie samples are
summarized to obtain, for example, the posterior mean, lwisithen used as the
regression coefficient for the selected variables. SSV84tinates the regression
coefficients in every iteration using a least-squares estinwhereas, other SSVS
variations do not estimate regression coefficients at 8llL [2

However, by using ridge regression estimates in eachiibertd obtain the regres-
sion coefficients for the current subsEt, more accurate samples are obtained.
Ridge regressiori_[29] imposes a penalty term on the squamedo$ the magni-
tude of the regression coefficients as shown in Equafion] &ntRimproves the
estimation off in the presence of multicollinearity.

*

p
Bfidge =arg mﬁin((Y — X,B) (Y — X, 8) + A Z 16il) (5.12)
i=1

To obtain the optimal regression coefficiertts of the current subset, the
penalty term)\ has to be evaluated first. Two common methods are examined
in terms of the computation demands and their accuracy fonasng \:

The first approach to obtain the regression coefficignits evaluated, whera is
obtained for each subset by a direct approach [50]. Thexe@aussian priors for
B ande are assumed\ can be obtained from Equatién 5114.

* 2
Do
ADirect = ————————— (5.13)
ITec ’IYLSX%Xfyﬁﬁ/LS
. - X 2
5o o =X
n—p

The second method examined is termed generalized cragsti@h [29]. It pro-
vides an approximation to the leave-one out cross-vatidat method to validate
different choices of the shrinkage parameteLeave-one out cross-validatian [29]
uses one dataset to validate the regression coefficiergmebtby fitting the model

to the remaining datasets of the training set. This is reygeattil every dataset has
been used once for validation. Generalized-cross vatidgirovides an estimate
with which to compare the different values f The optimal amount of shrinkage
for the current subset can be computed using generalized cross-validation as in
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Equatior5.11.

1o |V = (XX, + M) IXY

GCV(J?’Y) ~ . Z trace(Sy) (5.14)
Pris I-=
Whereas, thé, is defined as in Equation 5116
9 =25y (5.15)
Sy =X\ (X[ Xy + 27X (5.16)

S, is also known as the hat matrix [29].
Since the error function is quadratic, the best choice\ @fan be evaluated by
finding the minimum of the quadratic function. For this pispdhe MATLAB
functionf m nsear ch is used.

Both methods showed very similar results, but the direct@gh in Equation
is computationally more favourable and hence bettiéedsto be computed
in every iteration step. An evaluation of the direct meth®deiferred to Chaptét 6

5.3 Bayesian Penalized Regression

Penalized regression methods are a common approach [28amgplicable to a
wide range of regression problems as outlined in SeEfidnPehalized regression
methods considered in the work at hand are estimations aketjression coeffi-
cients where constraints are imposed on their magnitudamsimilar to the least
squares estimates, but yield some important properties.

The estimation of the regression coefficients obtained &stlsquares [29] are un-
biased estimators and have the smallest variance of alhsetiestimators. Nev-
ertheless, a severe problem([5, 29] of the least squaresagpis the tendency of
large magnitudes of the estimated regression coefficibatg;e, these estimations
are sensitive to the datasets. Another problem arises fedasets [37] where the
number of variables is larger than the number of observatiwhich is common in
genome-wide association studies (as outlined in the iottboh in Chaptelr5), as
well as the presence of high correlations among the vadablevertheless, biased
estimators exist [29] yielding a smaller mean squared ¢niam the unbiased least
squares estimation and are suitable for the applicatiomrgelscale regression
problems, known as regularized regression or penalizeggsgpn. Two common
methods[[29] areidge regressionandlassq among others. These two methods
are outlined and subsequently their Bayesian equivaleatexglained.

Initially, ridge regression is introduced by Hoetlal. [33] to overcome the dif-
ficulties arising from multicollinearity. Ridge regressioestricts the sum of the
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guadratic magnitudes of the regression coefficients. Thirethe residual sum of
squares (RSS) is minimized subject to the constraifit , |3;|> < ¢, also known
as L, norm. The constraint, usually denoted)asas in Equation 5.18, represents
the amount of shrinkage imposed. The constraint on the caeffs [29] alleviates
the problem arising from high correlations between thealdés, where the regres-
sion coefficients can become very large. Hence, ridge reigredias the property
of improving prediction in the face of multicollinearityemertheless [29, 37], it is
not able to perform subset selection by effectively settemyession coefficients
to O.

In contrast to ridge regression, Tibshirani[59] introddiGe different penalty on
the magnitude of the regression coefficient, by exchandieg.t - term by the
non-differentiable constraint expressed by thenorm>"?_, |3;| < t. Hence the
lasso estimator is given by the following equation

p
BLasso — CL’I“nggn((Y_XB)/(Y—Xﬁ) +)\Z|Bz|) (5-17)
=1

and correspondingly the ridge regression estimator isxgyeEquatiori 5.18

p
BRidge :argmﬂin((Y—Xﬁ)/(Y—Xﬁ) +)‘;|ﬁz|2) (518)

The lasso yields the property of performing continuousrdtagie and simultane-
ous variable selection. Due to the penalty-term in Equdidy the solution to
obtain estimates for the regression coefficient does ngeloexist in closed form.
In the presence of multicollinearity [30,40] the lasso ®twselect one among the
correlated variables and shrinks the remaining highlyetated variables towards
0. The lasso has the property that it can only selegfiriables at maximum in
settings of p>n.

Yuan [68] and Park and Casella [49] state that penalizedssgn methods have
the drawback of not providing valid standard errors and dgnavide [56] prob-
abilities to measure level of certainty in the resulting mlod

A fully Bayesian treatment of the lasso is introduced by Ratt Casella [49] pro-
viding interval estimates of all parameters, thereby sujpmp variable selection.
Kyung et al. [37] adapts the Bayesian treatment for lasso to fit a morergene
model of the lasso in order to represent other penalizecgsegm methods such
as ridge regression, Fused lasso, Grouped lasso and Bastié Gibbs sampler
is used in all of the models to explore the posterior distiims. The mean of the
samples from the posterior distribution [37] is then usedsignate.

Since neither the Bayesian lasso nor the Bayesian ridgegsign is able to ef-

fectively set the regression coefficients of irrelevanialales exactly t@® a subse-
guent variable selection is performéd|[40] by usingdtexlible interval criterion .
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A variable is excluded if the credible interval of the regiea coefficients; covers
0. Consequently, a variable is considered relevaftliés outside of the credible
interval. More details are presented in Chapler 6. A comntmice is a95%
credible interval[[40] and will mostly be used in Chagter 6etal. [39] suggests
that a95% invervall leads to significant selections; however, usirtheed5% in-
vervall can lead to many exluded variableset.al. [40] suggests that usingsa%
interval can lead to better variable selection. More detaib again discussed in
Chaptef 6.

5.3.1 Bayesian Lasso

In the first proposal of lasso, Tibshirani [59] noted that ple@alty term in Equa-
tion [5.18 could be obtaineds Bayes posterior mode of an independent double
exponential prior for the 8s. According to Park and Casella_[49] the Bayesian
lasso appears to be a compromise between the lasso andegtgegion in terms
of the regularization path. The following hierarchical nabs adopted from Park
and Casella [49] as well as from Kyureg al. [37]] and defines the hierarchical
model. Conveniently, the shrinkage parametés also assigned a hyperprior [37]
and thus it is not necessary to estimate the appropriate mrobshrinkage by for
example cross-validation or generalized cross-validatio

yla, X, B, 0% ~ Nyp(al, + XB,0°1,) (5.19)
ﬁ|02,7'12,7'22,...,7'§ ~ N, (0, 0%D;) (5.20)
D, = diag(t,73, ..., 2)

p 2 —A22

o? 7'1,7'2,. ., pda NH—e

tdr? (5.21)

After integrating out, 73, ..., 77, 3 has the desired form of a conditional Laplace
prior as suggested by Park and Casella [49]

28y

p
p(Blo?) = H 21 (5.22)

The non-informative scale-invariant marginal prige?) = 1 is used as a prior
for 02. Shrinkage parameteY, which is usually estlmated is assigned a hyper-
prior. Therefore, in the Bayesian treatment a gamma priok®ras denoted in
Equation[5.24 is considered and included in the Gibbs samjblee full condi-
tional distribution of\? is a Gamma with shape and rate

2

A% ~ Gammdp + r, Z (5.23)

249

where X2 0,r >0,5>0
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The hierarchical model is put into a Gibbs sampler to obtaim@es from the
posterior distributions.

5.3.2 Bayesian Ridge Regression

The same hierarchical setup as defined in Se¢tion]5.3.1 & tosepresent the
Bayesian ridge regression, as well as some other methopighfé@igh the modi-
fication of the priors on?, ..., 72 ando®. According to Park and Casella ]49] the
hierarchical Lasso is adapted for Ridge Regression byg;ialhrjz’s a degenera-
tive distribution at the same constant value.
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CHAPTER

Results

The purpose of this Chapter is to apply the methods outlin€ghiaptef b to simu-
lated and real datasets in order to assess the quality dfsedtained in terms of
their ability to identify relevant SNPs as well as to predibenotypes.

For the purpose of evaluation two simulated datasets argidened, forming the
basis for comparison and inference of which method is sapefihe simulated
datasets mimic certain properties of small datasets ingengide association
studies mainly in terms of their correlation structure. tRermore, the methods
are applied to real datasets. Unfortunately, at the timerdgfing no real GWAS-
dataset was available for evaluation purposes.

This thesis originates in collaboration on the FWF-fundegjqet Genome wide
association study for functional longevity and related traits of dairy cows@, how-
ever, the data were not granted for use outside the projgobpe. Furthermore,
due to the strict data protection policies no publicallyide genome data suit-
able for this work were found. Most datasets such as the @atased for the
GenABEL tutorial or the demonstration dataset for GEMMAg@ire serve the
purpose of demonstrating features of the software and awatidbe used for this
Chapter in a meaningful way.

Thus, to assess the quality of the methods as applied to datzdet the prostate
cancer dataset [55], present in various other warks [283010], is used. More
details are discussed in Sectlon]6.3 and Settidn 6.4.

Preliminary analysis [2], as addressed for example by Tisofs&] or by Beau-
montet.al. [4], is not part of this Chapter, since it would greatly extdlee scope
of the thesis.

For the remainder of the Chapter the modifications to hybddetation-based

1
https://torschung. boku. ac. at/fi1 s/ suchen. proj ekt uebersi cht ?sprache | n=en&renue 1d 1 n=300& d 1 n=8359
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search discussed in Section 512.3 are referred to as hCB8dfivenience.

The computational results presented in Sedtion 6.1, 6.Bahkave been achieved
using the computational resources provided by the Vienmengfic Cluster (VSC).

The Chapter presents the results from the analysis of atligk correlated dataset
in Sectior[ 6.11, a pair-wise correlated dataset in Seiidas well as the applica-
tion of the methods to a real dataset in Section 6.3 and the sataset extended
to a p>n dataset in Sectidn_6.4. The Chapter concludes with a diszusf the
computational demands in Sect{on]6.5.

6.1 Block-wise correlation

The first dataset used yields a block-wise correlation sirecand mimics a block
of proximate correlated SNPs influencing the phenotypedieesanother block
of correlated variables having no influence. A similar detdss been used by
Kwon et.al. [36]. The dataset contains= 5,000 SNPs (variables) and = 500
phenotypes (observations) to demonstrate a small GWASetata

The phenotypes are generated from a univariate normalbdistm with mean

1 = 0 and standard deviatiotn = 1. For randomly generating the predictors the
following correlation matrixXY x is used.

Tii Tio
Ty = 6.1
X (Tzl T22> ©.1

In 6.1 Yy, is a 10210 matrix, corresponding to the correlation of the predic-
tors associated to the phenotyp#.;, and T9; denote the correlation between
predictors associated with the outcome and the remainiedigiors. Conse-
quently Yoo represents 8902990 block. For this simulation study{; = 0.85,
T2 = To; = 0.45 and Y9y = 0.55 is used; furthermorg; = 0.5fori =1,...,10
andg; = 0fori =11,...,5,000 are the regression coefficients.

To obtain meaningful results 25 datasets are generated tlgnsame structure.
Subsequently, hCBS*, hCBS, SSVS, Bayesian lasso, and Bayedge regres-
sion are applied to these datasets. All datasets are naedadind standardized
S mig =0, yi=0and) L xf = 1forj =1,..,p.

In the case of hCBS*, hCBS and SSVS hyperparameters needsioekbdied and
are chosen to give a result with as many true positive detextas possible and
minimal amount of false positive detections. To make theltexomparable, the
same hyperparameters are used for hCBS, hCBS* and SS% reflecting

the prior belief of truly associated variables in the datase= 3 and\ = 1 and

H. = cl, with ¢ = 1 is used. The proportion of hCBS, or hCBS*, to SSVS moves
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Figure 6.1: True and false positive detections

is set t00.9, the same as used by Kweahal. [36]. 0.5 is used as a coin-flip to
either use a swap or inclusion/exclusion move.

For SSVS the mixing between hCBS and SSVS is séttmresult in only SSVS
moves in each iteration.

HCBS, hCBS* and SSVS are run for000, 000 iterations. Of these, 000 itera-
tions are discarded as burn-in period as explained in S€éiih

Bayesian lasso and Bayesian ridge regression are rurbfe00 iterations with
1,000 iterations are removed from the chain.

Figure[6.1 shows the results using a threshold.6ffor the posterior inclusion
probability in the case of hCBS, hCBS* and SSVS, as well agfiii% credible
interval in case of Bayesian lasso and Bayesian ridge reigres

All methods except for SSVS are able to identify all relevaariables.

Bayesian lasso and Bayesian ridge regression both perferynaell and identify
all relevant variables with no false positive detectionSBI$S* also performs well
by identifying all relevant variables in contrast to only false positive detections
on average, while hCBS identifi@8 true positive variables arid6 non-associated
variables. Thus, hCBS* reduces the number of false posittections in compar-
ison to hCBS. SSVS identifies on averayg3 out of the10 associated variables
and also yields the lowest number of false positives in caispa to hCBS and
hCBS*.

Figurel6.2 shows the regression coefficients obtained bg&ag lasso along with
the95% confidence intervalls, which are used for variable selactibgurd 6.8 de-
picts the same obtained by Bayesian ridge regression.
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Figure 6.2: Regression coefficients Figure 6.3: Regression coefficients
with varying credible interval crite- with varying credible interval crite-
rion for variable selection obtained by rion for variable selection obtained by
Bayesian lasso Bayesian ridge regression

By using the regression coefficients from the selected bsato predict unseen
datasets hCBS and hCBS* have a similar mean squared errdg)(bf3.074 and
1.0753; whereas, SSVS has a MSE100904. Bayesian lasso and Bayesian ridge
regression have a MSE ©f1534 and1.1364, respectively; thus producing slightly
higher prediction errors.

Relaxing the variable selection criteria@al in the case of SSVS-based methods
and to a90% credible interval criterion leads to false positive ratel Gf and 3.7

for hCBS* and hCBS, respectively. For the remaining mettibdswumber of false
positive detections remains unchanged.

If the variable selection criterion for Bayesian penalizedression is again low-
ered to50% then427 and677 false positives are selected, leading to the conclusion
that, in this example, 80% credible interval criterion is not restrictive enough to
be used for variable selection purposes.

As mentioned above the computations were carried out on iensl Scientific
Cluster using one eight-core node for each method and dat@senputation of
hCBS* and SSVS took on average 160 minutes and hCBS tooklgligiore than

167 minutes.15, 000 iterations of Bayesian lasso and Bayesian ridge regression
took significantly longer. The former terminated after B7hburs and the latter
required 22.14 hours on average.

In sum, all methods performed well with Bayesian lasso angeBian ridge re-
gression slightly outperforming SSVS-based methods ingenf false positive de-
tections, but requiring a significantly longer computasibtime. However, hCBS,
hCBS* and SSVS predict unseen datasets more accuratelflexted in a lower
MSE than the Bayesian penalized regression methods.

A more detailed discussion about the computational demiamdferred to Section
6.5.
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Figure 6.4: True and false positive detections in a pair-wise corrdldetaset

6.2 Pair-wise correlation

The second simulated dataset consists of high pair-wiselatipn between the
variables, mimicking the correlation present in the genaeereasing with dis-
tance. Againp = 5,000 SNPs andh = 500 phenotypes are used to simulate a
small GWAS dataset. The phenotypes are again draws fromvariate normal
distribution with mean. = 0 and standard deviatian = 1.

The correlation structurg;; is shown in Equation 612. Similar simulated datasets
are used by Leét.al. [40] and Hastiest.al. [30].

pi; = 0.9/ (6.2)

HCBS, hCBS* and SSVS are run with = =55 000, specifying the hyperparameter
for the number of expected true positive varlable&, 3and\ = landH, = cl,
with ¢ = 0.05, which can be seen as a penalty term to facilitate inclusforag-
ables.1, 000, 000 iterations are carried out. Convergence diagnosis inelicttat
sufficient samples have been collected.

The Bayesian penalized regression methods are rurbfo00 iterations until con-
vergence is approximately reached.

Again, 25 datasets were generated and computed to obtaegaveesults.

Figure[6.4 summarizes the average number of true and falvpodetections.

All methods are able to detect a fair amount of true positi@gables. Bayesian
ridge regression performed best in terms of true positiveaiiens, but also yields
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hCBS 1.191
hCBS* | 1.233
SSVS 1.139
Lasso | 1.1185
RR 1.1011

Table 6.1: Mean squared error predicting unseen datasets

the largest number of false positive detections. Bayesiagd detect$.78 true
positive variables on average; hCBS*, hCBS and SSVS givéaimesults, but
only hCBS* detects no false positive variables.

SSVS performed better than hCBS and hCBS* in terms of trugip®sletections,
which is a rather unexpected result, since the correlatidhd dataset is up @9.
HCBS* and Bayesian lasso are the only methods not includigdalse positives.
Figure[6.5 and 616 show the regression coefficients as welles®%, the 90%
and the50%-confidence interval which is used as credible interval forable se-
lection.

Figure 6.5: Regression coefficients Figure 6.6: Regression coefficients
and confidence intervals obtained by and confidence intervals obtained by
Bayesian lasso Bayesian ridge regression

Table[6.1 shows the average prediction errors over the néngaR4 datasets ob-
tained by the different methods. As shown in the table, athods perform rather
well with a similar prediction error. Obviously, the seledtvariables by each
method influence the MSE.

Computational demands are similar as in Sedfioh 6.1. HCB83t and SSVS
required less than 167 minutes, Bayesian lasso termindiiexdasm average 20.8
hours and Bayesian ridge regression took on average 22r$.hou

Summarizing the findings, both Bayesian penalized regregsiethods perform
better than the SSVS-based methods in terms of true posiétections. How-
ever, Bayesian ridge regression yields the most falseiposietections; whereas,
Bayesian lasso include no false positives in contrast@é true positives. HCBS,
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hCBS* and SSVS identify a similar number of true positivest bnly hCBS*
includes no false positives.

6.3 Prostate cancer dataset

As previously mentioned, the prostate cancer dataset chrmesa study per-
formed by Stamewgt.al. [55] which examines the associations between the level of
a prostate-specific antigémpsa and eight different clinical measures in men prior
to a radical prostatecto?EyThe dataset contains measurements from 97 men.
The eight different measurements are:

e | cavol : logarithmic cancer volume

| wei ght : logarithmic prostate weight

age: age of the patient

| bph: logarithmic amount of benign prostatic hyperplasia

e SVi : seminal vesicle invasion

| cp: logarithmic capsular penetration

gl eason: Gleason score

pgg45: percentage of Gleason scores 4 or 5

As done by Hastiet.al. [29] the dataset is randomly split into a training set of size
67 and a validation set of size 30 to assess the mean squadidtion error and
to compare variable selection performed by the differenthiods. The dataset is
normalized) ;" | ;5 = 0, Y7y = Oand) ) zf;, = 1forj = 1,..,pto
remove any effects arising from different scales.

In the case of the hCBS, hCBS* and SSM¥S= % the prior expectation of the
number of relevant variables, is chosen since it is unknawe&s is an impartial
choice. Other hyperparameters suchvas 3 and\ = 1, as well asH,, = cI,
with ¢ = 1 as an independent prior, are chosen to ensure a proper accepatio
of the Metropolis/Metropolis-Hastings algorithm.

35,000 iterations are carried out and in the case of the penalizp@éssion meth-
0ds 10, 000 iterations are carried out.

The computation took around 46 seconds for the hCBS methudislamhtly less
than 60 seconds for the hCBS* method. The increased conguutithe stems
from the calculation of the shrinkage coefficientas outlined in Sectioh 5.2.3.

2A radical prostatectomy is a surgery for removing all paftthe prostate gland.
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Methods Selected variables MSE | MPIP
hCBS | cavol ,lI wei ght | bph | 0.7472| 0.7916
hCBS* | | cavol,| wei ght,| bph | 0.7477| 0.7814
SSVS | vacol ,l wei ght 0.6952| 0.8867
Lasso | cavol ,| wei ght 0.7476 -
RR | cavol ,l wei ght 0.7765 -

Table 6.2: Selected variables by the different methods

Bayesian lasso took less than 9 seconds, whereas Bayeadjgnreigression took
less that 6 secor@s

HCBS has a mean acceptance rate.¢f, SSVS ha$.19; whereas the acceptance
ratio of hCBS* is0.38, all indicating a well-mixing chain, although the accepian
ratio of SSVS is at the lower end. The samples are checkedfrecgence after
the computation. The scale reduction factor is belod2 and the Geweke tests
passed for all variables; hence, strong evidence in favooiofergence is obtained.

Table[6.2 shows the variables selected by the different edsthBoth hCBS and
hCBS* selected the three out of eight variables with a pastérclusion probabil-

ity higher than0.5 which is a reasonable choicde [23] to use as a threshold. SSVS
selected two out of the eight variables namletyavol andl wei ght .

The penalized regression methods selected two out of egihg @95% credible
interval [40] as explained in Sectign 5.3. When applyingpéo credible interval

the same two variables are selected again.

| cavol andl wei ght are identified as strongly influencing the respohpsa

by Hastieet.al. [29]. All methods applied to the dataset by dtial. [40] and the
methods performing variable selection in Hasiel. [30] identified | cavol ,

| wei ght andl bph, besides others depending on the method. The same three
variables are also identified by hCBS and hCBS*.

If the threshold for the posterior inclusion probabilitysst to0.4 hCBS* addi-
tionally includesgl eason as well, which also has been identified as significant
by three of the four methods by Et.al. [40].

To assess the MSE for each method the coefficients of theblesiaelected are
applied to the test dataset and are shown in Table 6.2. #titegéy, the MSEs of
hCBS, hCBS* and Bayesian lasso are very similar; whereaM®ie of SSVS is

lower and the MSE of ridge regression is slightly higher ttizat of other meth-
ods.

The last column shows the mean posterior inclusion proibabWPIP) for hCBS,

3The computation was carried out in MATLAB on an ASUS N61Jwebaok deploying an Intel
i5 M450 Quad-Core and 6GB RAM running Windows 7. Computatiore was averaged over 10
computations for each method.
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Figure 6.7: Posterior inclusion probability of the selected variables

hCBS* and SSVS and depicts the ratio of the times a variahbilecladed in the
subset to the total number of iterations. The inclusion abdky of the selected
variables is shown in Figufe .7.

6.4 Extended prostate cancer dataset

Due to the absence of an available GWAS datasets at the timeitifig the
prostate cancer dataset is transformed intosaplataset to assess the quality of
results on a real dataset. The same dataset as in Seclian&ad; additionally,
white-noise variables are added to bring the total numbg0@variables with 67
measurements in the training set. The additional prediaoe highly correlated
having an average correlation coefficienOdf5.

The same approach is used by Hans [25]. This yields the aatyartf compara-
bility to the original dataset.

Again the training set has a size of 67 and the remaining 3@unements are used
to assess the quality of prediction and variable selection.

For hCBS and hCBS* the expected ratio of associated vadabket tav = 0.02,

to maintain the ratio used in the example in Secfiion 6.3. Eneaining hyperpa-
rameters are set to = 3 and\ = 1 as well asH, = cl, with ¢ = 0.5 as an
independent prior, again, to ensure a proper acceptarioe HIEEBS and hCBS*
are run for250, 000 iterations with5, 000 burn-in samples. In the case of Bayesian
lasso and Bayesian ridge regress20n000 iterations are carried out where the first
1,000 samples are removed as a burn-in period. All results arekelefor con-
vergence and the maximufscore wad .0022 for variablegl eason in hCBS.
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Methods | Selected variables MSE | MPIP
hCBS | cavol, |weight, age,| 0.73 0.68
| bph, gl eason, 53
hCBS* | cavol, Iweight, |bph,| 0.69 0.73
svi, | cp, pgg4s, 37

SSVS | cavol 0.73 0.99
Lasso | cavol 0.85 -
RR | cavol 0.94 -

Table 6.3: Selected variables by the different methods
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Figure 6.8: Posterior inclusion probability of the selected variables

Table[6.83 shows the variables selected by the different mdsthwhich are above
0.5 for the posterior inclusion probability in the case of hCBEBS* and SSVS
and selected by 8% credible interval criterion in the case of Bayesian lassb an
Bayesian ridge regression. HCBS selects 5 out of the 8 reables and identifies
the same variables as in the original dataketalvol , | wei ght , | bph) along
with age andgl eason. age is only identified by Bayesian lasso in &ti.al. [40]
and is also not considered relevant by hCBS*, Bayesian lasddBayesian ridge
regressiongl eason, is only identified by the methods applied bysdtial. [40]
and considered as insignificant by Hagtiel. [29] and Hastest.al. [30].

HCBS* includes, besides the same variables included inid®€6t3,svi, | cp
andpgg45; one more variable than hCBSvi is identified as relevant by Kyung
et.al. [37], Hans [26] and Hastiet.al. [29] and all methods except for Elastic Net
in [30]. | cp andpgg45 are identified by Hastiet.al. [30]. HCBS and hCBS*
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lasso

additionally include one white-noise variable.

Figure[6.8 shows the posterior inclusion probabilities ha# selected variables,
which represents the confidence of the variables selected.

Bayesian lasso and Bayesian ridge regression only ideintgBvol as relevant
and consider all other variables as insignificant. The seleof| cavol agrees
with previous studies using various methods] asavol is always identified as
relevant. To depict the variable selection in Bayesianolddgure[6.9 shows the
regression coefficients of the first 20 variables along wit96%, 90% and50%
confidence intervals used for variable selection. The esipa coefficients with
the confidence intervals for Bayesian ridge regressionpgti in Figuré 6.70.
The mean squared errors using the selected variables arshade/n in Tablé€ 613
using the training dataset for evaluating the predictioorerHCBS, hCBS* and
SSVS show similar MSEs; whereas Bayesian lasso and Bayadignregression
show slightly larger MSEs. HCBS* yields the lowest predintierror.

Table[6.4 shows the results when the variable selectioariaifor Bayesian pe-
nalized regression methods are relaxed 80% credible interval criterion. Both
methods includé wei ght if a 90%-confidence interval is used and additionally
includel bph,svi ,gl eason ,pgg45 and three white-noise variables i5a%-
confidence interval is applied as suggested bytlal. [40]. The difference be-
tween the95%, the90% and the50%-credible interval criterion is shown in Figure
for Bayesian lasso and for Bayesian ridge regressiorigaré{6.10. If the
variable selection criteria are relaxedtd for hCBS, hCBS* and SSVS no other
variables are additionally included.
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Methods | Selected variables MSE

Lass@qy, | | cavol , 1 wei ght 0.7994
Lassgqy, | | cavol , | weight, |bph, | 0.6686
svi, gl eason, pgg45, 132,

142,168
RRyo%, | cavol ,| wei ght 0.8865
RRs50% | cavol, Iweight, [|bph, | 0.7069
svi, gl eason, pgg45, 132,
142,168

Table 6.4: Selected variables by the different methods

The computation was carried out on the VSC on an 8-core nodeafth method.
hCBS took 169 seconds and hCBS* 143 seconds to completzs¢h600 itera-
tions; whereas Bayesian lasso took 84 seconds and Bayédignregression 42
seconds both computiny), 000 iterations.

6.5 Computational Analysis

The purpose of this Section is to assess the computationftinal the methods
using datasets of various sizes, each having ten variabkeciated to the out-
come.

A direct comparison is rather difficult, since the main feataf the SSVS-based
methods is to perform variable selection during computasio that only a sub-
set of the variablep, < p is used in every iteration; whereas, Bayesian lasso
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Figure 6.11: Required time for analyzing dataset of various sizes

and Bayesian ridge regression compute all variables iryétegation and perform
variable selection subsequent to the computation. As aecuesice the perfor-
mance of SSVS-based methods depends on the number of telaviables. Since
in typical GWAS [23] only a few SNPs influence the phenotypkedatasets have
ten associated variables and consequently the hyperpamamer SSVS, hCBS,
and hCBS* is set tm.

Moreover, since samples in the Metropolis-Hastings-atlyor are generated and
then either accepted or rejected, identical samples aliedied in chain, leading to
an increased autocorrelation. As a consequence, more esiang needed to give
meaningful results.

For those reasons the comparison is based on the time reédairene iteration

and is averaged over 500 iterations and 5 repeats per method.

From the results shown in Figure 6111, it can be seen, thatagh®utation time
of SSVS-based methods scale with increases in the numbeeabpypes or more
generally with an increase in the number of observationste Nuat the y-scale
is logarithmic. In contrast Bayesian penalized regressiethods scale with the
number of SNPs or in general with the number of variabless $téms from the
fact, that in every iteration each variable has to be samg@#gdrately which is the
most time consuming calculation.

As the number of SNPs increases in a GWA study Bayesian pgedalegression
methods will require excessive computational time anduess.

Bayesian penalized regression methods require on average&onds per itera-
tion for a dataset of size 5,000x5,000. In contrast SSV&dasethods take 1.7
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seconds. If the data set consists of 500 phenotypes inst&000, then Bayesian
penalized regression methods still require around 5.5nelscavhereas, computa-
tion time of SSVS-based methods decreases to 0.004 seconds.

Since SSVS-based methods are able to compute datasetstinleshan Bayesian

lasso and Bayesian ridge regression they are computdtidoetter suited for the
application in large GWA studies.
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CHAPTER

Discussion

7.1 Discussion

This thesis discusses modifications to the hybrid cormiatiased search method
and gives a comparison to Bayesian penalized regressidmodgesuch as lasso
and ridge regression both on real and simulated datasetssifrtulated datasets
are partly highly correlated to mimic the structure of re&l/&S datasets.

Results show that the modification to the variable selegforgedure of correlation-
based search explained in Section 5.2.3 leads to a reducebendalse positive
detections in both datasets. In the example computed inoB&il hCBS* also
identifies all relevant variables. Although, the numberraétpositive detections
in the simulated dataset in Sectionl6.2 is slightly lowenthg hCBS, setting the
hyperparametefl,, to a lower value results in an improved true/false positater
On the contrary, using ridge regression, as introduced ati@g5.2.3, to estimate
the regression coefficients in every iteration does not teathproved prediction
results, which is reflected in a slightly higher MSE when thee variables are
selected, as discussed in the previous Chapter.

Bayesian lasso and Bayesian ridge regression perform wédrins of variable
selection on both simulated datasets, identifying allvaahé variables. Bayesian
lasso detects no false positives in either dataset, whije&an ridge regression in-
cludes no false positives in the first dataset as discusseeatior{ 6.11, but a rather
high number of non-associated variables in the pair-wiseetaied dataset shown

in Sectior 6.2. Note that the regression coefficients in kottulated datasets are
set to the same value 0f5; thus, each associated variable has the same influence.
Bayesian lasso and Bayesian ridge regression also perfumparably to SSVS-
based methods all preforming well when predictions are mMfadenseen datasets.
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In the real datasets in Sectibn16.3 and Sedtioh 6.4, whereatti@bles have dif-
ferent influences, Bayesian penalized regression methaidisitbentify only the
variables having the strongest influence. In contrast, hd8é&htifies the most
variables previously found by other studies. SSVS perforinéerior than hCBS
and hCBS* in both real dataset examples.

A difficulty arising from the use of hCBS, hCBS* or SSVS is theesification
of the hyperparameters since the choice influences varsabetion. Although
the mixing of the Markov chain can be regarded as guidelimehjperparemter
specification, guesses for the optimal values are mostlyeiadiowever, if the
hyperparameters are set to arbitrary values SSVS-basdubdsetire still able to
detect a fair amount of relevant variables. For example,nthe dataset used
in Section6.P is computed using different hyperparametach asv = 1 and
A = 20, resulting in a broad distribution for the residual erramidn Equation
B, and: = 1 then hCBS identifies.7, hCBS* identifiess.8 and SSVS identifies
6.2 associated variables. All methods detect less true pesitiwit are still able to
at least identify a fair amount.

Computing a00x5, 000 dataset using either Bayesian lasso or Bayesian ridge re-
gression requires long computation times as discussedctin8g5.5, which leads
to excessive computational demands when real GWAS dat@set®mputed with
ten to hundreds of thousand SNPs to be analyzed.

Computational times of Bayesian penalized regression adstiscale with the
number of SNPs; whereas, computational time of SSVS-basdbatis mostly
scale with the number of phenotypes. Computin@g00, 000 iterations using
hCBS, hCBS* and SSVS takes noticeably less time than conmgpu, 000 it-
erations of Bayesian penalized regression methods whetataset is p>n. Note
that only ten of the variables influence the outcome and tieeage number of
variables in the subset of SSVS-based methods varied frortotthirty. If there
are more variables included in the subset is higher or iktlaee more genomes in
the dataset the computation time of SSVS-based method=ages significantly.
However, since it is mostly considered that only a small neindd SNPs influence
a phenotype and the number of genomes is rather low compaurta thumber
of SNPs, hCBS, hCBS* and SSVS are better suited for the ajalic with very
large datasets as is often the case with GWAS.

All methods considered in this thesis are able to perfornmabe selection with
a reasonable amount of true positive detections and a lowbauwf false posi-
tive detections. SSVS-based methods outperform Bayesnaliped regression
methods in terms of computability of largespn datasets, still resulting in useful
results and Bayesian penalized regression are superi@B8&hhCBS* and SSVS
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in terms of more true positive detections. All methods ate slomake reasonably
accurate predictions using the selected variables.

A feasible way to tackle the computational challenges mgish GWAS, which
is left to be addressed in future work, would be to considev@gtep strategy
where the initial selection of SNPs is performed by hCBSthgsiyperparameters
that are not to restrictive to variable inclusion (espégiaétting the hyperparam-
eter for 4., to a low value sinced, basically regulates the penalty of variable
inclusions). A second step would involve computing the oedluset of SNPs us-
ing either Bayesian lasso or Bayesian ridge regressionmiiaiapproach is used
by Li et.al. [39] first reducing the initial set of SNPs by applying a swed prin-
ciple component analysis and subsequently computing thaining SNPs using
Bayesian lasso. A related approach, to the methods coesdiderthis work, is
proposed by Hans [25] where the variable selection abilit8®VS is combined
with Bayesian lasso to compute each subset.
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