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Abstract

In modern building automation systems a plethora of different networking technologies exists.
Therefore, interoperability between devices using various technologies is a key requirement. The
use of Web Services as a platform- and technological-independent method of communication is
a promising approach to address this challenge. Since IP extensions to available technologies
are more and more established in building automation systems the network infrastructure and
necessary protocols for Web Services communication are already present. However, providing
appropriate concepts to model information that can be accessed in a generic way are still missing.
OPC Unified Architecture (OPC UA) is a powerful and promising standard that aims at solving
this challenge.

This work is dedicated to the development of an approach to map the interworking model of
BACnet to OPC UA. This includes both the data representation of BACnet and the services used
to access and modify this data. This way, an OPC UA information model emerges. Using this
information model, BACnet applications can be represented in OPC UA and, thus, be accessed
by OPC UA clients in a standard and well-defined way.

At the beginning, an introduction into the BACnet standard is given. After an overview of the
protocol architecture, the BACnet application model is described. This is followed by a section
about the object oriented way of representing process data. BACnet services necessary to access
these data and for configuration purposes are illustrated in the last section of this chapter.

The next part of this work is dealing with a state-of-the-art standard in automation systems,
namely OPC Unified Architecture. A brief review of the historical development process of this
standard is given. The next section describes the overall architecture and the different parts of
the OPC UA specification. The capabilities of information models and how they are derived
from built-in elements of OPC UA is shown further on. In order to enable clients to access these
information models, a set of services is defined in OPC UA. An excerpt thereof is presented in
the following.

The main contribution of this work is to show how OPC UA is integrated in a BACnet
network. The mapping of BACnet datapoints to an OPC UA information model constitutes the
main part of this chapter. This includes also the way these datapoints are addressed in OPC UA.
Finally, the mapping of BACnet services to OPC UA services is presented.

In order to prove the feasibility of the ideas developed in this work, an OPC UA server
interfacing a BACnet network has been implemented and put into operation in the context of a
test lab setup. For this purpose, an open source BACnet stack implementation was integrated in
a server built on top of a closed source OPC UA server SDK. An OPC UA client available as
freeware was taken to access process data of a BACnet network via the OPC UA server.
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In the Appendix of this work an introduction to the security mechanisms of OPC UA is
given. Since these mechanisms rely on software certificates, a strategy must be defined how to
manage these certificates, i.e. an organised way of distribution, validation and revocation needs
to be found. In general, there exist different concepts of how to achieve this goal. The Appendix
gives an overview of these concepts and frameworks and discusses their positive and negative
aspects depending on the structure of different environments in which OPC UA applications
shall be embedded.



Kurzfassung

In modernen Gebäudeautomationssystemen existiert eine Vielzahl an verschiedenen Netzwerk-
technologien. Aus diesem Grund ist Interoperabilität zwischen Geräten, die auf verschiedenen
Technologien basieren, eine Schlüsselanforderung. Web Services als plattform- und technolo-
gieunabhängige Form der Kommunikation sind ein vielversprechender Ansatz, an diese Heraus-
forderung heranzugehen. Da sich inzwischen IP-basierte Erweiterungen zu existierenden Tech-
nologien in Gebäudeautomationssystemen mehr und mehr etablieren, sind in vielen Fällen die
Netzwerkinfrastruktur und die notwendigen Protokolle für die Kommunikation über Web Ser-
vices bereits vorhanden. Geeignete Konzepte zur Informationsmodellierung und für den generi-
schen Zugriff auf diese Modelle fehlen jedoch bislang. OPC Unified Architecture (OPC UA) ist
ein mächtiger und vielversprechender Standard, der darauf abzielt, diese Problematik zu lösen.

Das Ziel dieser Arbeit ist es, einen Ansatz zu entwickeln, nach dem das Interworking-Modell
von BACnet auf OPC UA abgebildet werden kann. Dies beinhaltet sowohl die Art und Wei-
se wie Prozessdaten in BACnet repräsentiert werden, als auch die Services, die benötigt wer-
den, um auf diese Daten zuzugreifen und diese zu verändern. Hierbei entsteht ein OPC UA-
Informationsmodell, das dazu benutzt werden kann, BACnet-Anwendungen in OPC UA zu re-
präsentieren. Auf dieses kann ein OPC UA-Client auf standardisierte und wohldefinierte Weise
zugreifen.

Zu Beginn dieser Arbeit steht eine Einführung in BACnet. Nach einem Überblick über die
Protokollarchitektur wird das BACnet-Applikationsmodell beschrieben. Darauf folgt ein Ab-
schnitt über die BACnet zugrundeliegende, objektorientierte Repräsentation von Prozessdaten.
Die Services in BACnet, die für die Konfiguration der Geräte und für den Zugriff auf die Pro-
zessdaten notwendig sind, werden im letzten Abschnitt dieses Kapitels beleuchtet.

Das folgende Kapitel beschäftigt sich ebenfalls mit dem Stand der Technik in Automations-
systemen, im speziellen mit dem Standard OPC Unified Architecture. Ein kurzer Rückblick in
die geschichtliche Entwicklung dieses Standards leitet dieses Kapitel ein. Dann folgt eine Be-
schreibung der Architektur und der verschiedenen Teile der OPC UA-Spezifikation. Die Mög-
lichkeiten, die neue Informationsmodelle bieten und wie sie von den in OPC UA bereits vor-
handenen Elementen abgeleitet werden können, werden im folgenden gezeigt. Um Clients den
Zugriff auf diese Informationsmodelle zu ermöglichen, ist eine Anzahl von Services in OPC UA
definiert. Ein Auszug daraus wird im nächsten Abschnitt gezeigt.

In dem Teil der Arbeit, der dem eigentlichen Beitrag gewidmet ist, wird gezeigt, wie OPC
UA in ein BACnet-Netzwerk integriert werden kann. Die Abbildung von BACnet-Datenpunkten
auf ein OPC UA Informationsmodell bildet den Hauptteil dieses Kapitels. Diese beinhaltet
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auch den Transfer des BACnet-Adressschemas. Schlussendlich wird noch die Abbildung von
BACnet-Services auf OPC UA-Services gezeigt.

Um die Machbarkeit der hier entwickelten Ideen zu evaluieren, wurde ein OPC UA-Server
implementiert, der mit einem BACnet-Netzwerk interagiert. Zu diesem Zweck wurde ein Open
Source BACnet-Stack in einen OPC UA-Server integriert, der auf einem Closed Source SDK für
OPC UA-Server aufbaut. Ein OPC UA-Client, der als Freeware verfügbar ist, wurde verwendet,
um auf die Prozessdaten aus dem BACnet-Netzwerk über den OPC UA-Server zuzugreifen.

Der Anhang dieser Arbeit beschäftigt sich mit den Securitymechanismen in OPC UA. Da
diese Mechanismen auf Softwarezertifikaten basieren, müssen Strategien gefunden werden, wie
diese Zertifikate in einem Automationsnetzwerk verteilt, validiert und widerrufen werden sollen.
Hierfür sind verschiedene Konzepte bekannt, die in diesem Teil der Arbeit beleuchtet und im
Kontext verschiedener OPC UA Anwendungen miteinander verglichen werden.
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CHAPTER 1
Introduction and Motivation

1.1 Building Automation Systems

Nowadays, Building Automation Systems (BAS) are a well established way to provide automatic
control of indoor conditions in functional buildings [11]. The core domains of BAS are heating,
ventilation and air conditioning (HVAC) as well as lighting applications. The overall aim is to
improve comfort, save energy and hereby reduce costs arising during the lifetime of a building.
Relatively new fields of operation where BAS gain importance are security applications like
access control. Also recently safety critical applications like fire alarm systems are integrated.
Figure 1.1 shows the typical structure and components of a BAS.

In order to physically interact with the environment, sensors and actuators are deployed.
Sensors gather information about the current state of the process under control by, for exam-
ple, metering temperature, humidity, brightness or by detecting the presence of a human being.
Actuators actively influence the condition of the environment under control. To call a few ex-
amples, setting the position of a valve of a heating system, switching and dimming light or by
setting the airflow of a ventilation system are typical actuator functionalities. These applications
are assigned to the field level of a BAS. Access to field level data is provided by standardised
0-10V or 4-20mA interfaces but also via fieldbus technologies like KNX [18], LONWorks [17]
and M-Bus [12].

Control functionality, i.e. the execution of control loops on data prepared by the field level is
typically achieved by so called Direct Digital Control (DDC) systems. The output data of these
controllers is fed back to the actuators. Typically a decentralised approach is followed, which
means that for example one DDC is set up for each floor of a building. Setpoints for physical
values like the room temperature can be defined either locally by the residents of the building or
in a centralised way via a backbone network by superior applications. The backbone network
interface of the controllers located in this so called automation level also provides access to
datapoints of the field level. A representative for a network standard applied in this tier of BAS

1



Management level

Field level

Automation level

 

Building 

management 

serverFire alarm system Access control

Office network
Trending

Archieving

Centralised 

monitoring

Control 

tasks

Metering

Setting

Switching

 

DDC

Zone 1

DDC

Refrigeration

DDC

Zone 2

Figure 1.1: Three level model of BAS, adapted from [40]

is the Building Automation and Control Network (BACnet) [20], but also KNXnet/IP1 devices
can be found here.

At the top level of this hierarchy, the management level acts as an interface to Building
Management (BM) and enterprise applications. Centralised access to datapoints, configuration
of the system, visualisation, archiving and trending of process data are typical activities at this
level. Another task of the management level is to provide interoperability between different
systems and technologies used at the lower two tiers of the BAS (cf. Section 1.2). Applications
belonging to the domains of safety and security are also integrated in this tier.

All these three levels together form a commonly agreed model of Building Automation
Systems, the automation pyramid [11, 34]. The pyramid-shaped network topology in Figure 1.1
reflects this model. The automation pyramid separates the different functional aspects of BAS.
At the bottom, there is the field level where interaction with the process under control takes
place. The automation level is placed in the middle, aggregating and processing data delivered
from below. On top of this model, the management level takes control over the infrastructure of
the tiers below. The pyramid shape reflects the hierarchical control flow from the top level to the
bottom level. Data reporting on the other hand takes place in the inverse direction. Equipment
of an underlying tier provides data to the superior one. Another aspect that is illustrated by the
pyramid is the number of devices operating in each level. A high amount of relatively plain
and cheap devices can be found at the field level. The number decreases when going upwards,
whereas the complexity and also costs for a single component rise.

1An IP based version of the KNX standard
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1.2 Interoperability in Building Automation Systems

Especially at the interface between automation level and management level of BAS many differ-
ent technologies join together. Individual vendors of automation equipment implement various
protocol standards, like BACnet and KNXnet/IP as mentioned in the previous section. Since
there is an inherent necessity of interfacing these different technologies by management level
applications, a way must be found to learn them speak the same language. In other words, the
goal is to achieve interoperability.

The classical, but not very convenient way to reach this goal is to integrate technology-
specific interfaces (i.e. drivers communicating with the underlying networks) in the management
level applications. The disadvantages of this approach are a lock-in to distinct technologies and
vendors. Furthermore, little flexibility for future extensions including new network standards
remains.

A more promising way is to define and agree on a general application model covering the
functionality of these underlying systems. Hereby, a unified interface to these networks is in-
troduced. Since IP based networks are not only commonly used at the management level of
today’s BAS but also at lower levels, the most suitable concept of communication is the use of
Web Services (WS) [33]. WS have the advantage that they provide platform- and programming
language independence. Based on the exchange of messages, WS are based on the Service Ori-
ented Architecture (SOA) paradigm. This enables devices to exchange data independently of the
underlying networking technologies.

Within this context, OPC Unified Architecture (OPC UA) is one of the most important stan-
dards supporting WS. While OPC UA is already well-established in industrial automation sys-
tems [27,41], it gains importance within the building automation domain. In addition to the less
used standards, such as oBIX [14] and BACnet/Web Services (BACnet/WS) [20], OPC UA can
be used to provide a generic view to management clients that need global access to the entire
BAS. However, to be able to use OPC UA at the management level interfaces to the underlying
technologies are required.

Therefore, this work presents an approach how OPC UA can be integrated into one of the
most important open BAS standards used at the all different levels of the automation hierarchy,
namely BACnet. This thesis starts with an introduction into BACnet and its application model
(cf. Chapter 2). In the following Chapter 3, the main concepts of OPC UA are described. In
Chapter 4, a method of mapping the BACnet interworking model to an OPC UA information
model is introduced. As a proof-of-concept, a prototype application of an OPC UA server inter-
facing BACnet/IP networks is presented in Chapter 5. The thesis is concluded with an outlook
on ongoing research activities and future work (Chapter 6).
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CHAPTER 2
BACnet

2.1 History and Development

The Building Automation and Control Network (BACnet) is an open communication standard
for building automation systems. It was developed by the American Society of Heating, Refrig-
erating, and Air Conditioning Engineers (ASHRAE) and was standardized in 1995. Continuous
maintenance and development are applied since then. Initially designed for the use at the man-
agement and automation level of the three tier automation hierarchy, nowadays BACnet has
found a use in all kinds of building automation applications. Typical scenarios where BACnet is
applied are control tasks in heating, ventilation and air-conditioning (HVAC) as well as classical
lighting and shading systems. Access control and advanced lighting functionalities are the latest
features of BACnet. The current standard is BACnet 2010 [20]. The ISO 16484-5:2010 [21]
incorporates BACnet 2008.

2.2 Protocol Architecture

BACnet implements the physical, the data link, the network and the application layer of the
ISO/OSI model. The data link layer and the physical layer which are affected by the selection
of a so called network option are independent protocol standards and therefore not part of the
BACnet specification. In the original BACnet standard, five network options describing the
physical and the data link layer are defined:
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• Ethernet
• ARCNET
• Master-Slave/Token Passing (MS/TP)
• Point-To-Point (PTP)
• LonTalk

Since this first version, two additional ones have been defined. A normative annex of the standard
specifies the transmission of BACnet messages over IP (BACnet/IP) as a network option. The
use of ZigBee [15] as a wireless network option for BACnet is specified since BACnet 2010. In
the illustration of the protocol architecture given by Figure 2.1 these options for the physical and
the data link layer can be seen.

The choice of a network option has no influence on the upper two protocol layers. It is even
possible to use other data link/physical layer combinations since BACnet is not limited to these
network options. This allows the combination of multiple network technologies in one BACnet
network and thus, interoperability is provided at the upper protocol layers.

The protocol architecture encompasses also the network-, and the application layer of the
ISO/OSI model. The omission of the transport-, session- and presentation layer results in this
so called collapsed architecture. It was chosen to reduce the packet size and hence due to that
the protocol overhead. This helps to save resources in end devices and allows the use of mass-
produced, cheap processors in embedded BACnet devices.

 
Application 
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Data Link 
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BACnet Layers 
Equivalent 

 

OSI Layers 
 

 
BACnet Application Layer 

 
BACnet Network Layer 

ISO 8802-2 (IEEE 802.2) 
Type 1 

 
MS/TP 

 
PTP 

 

LonTalk BVLL 

 

ISO 8802-3 
(IEEE 802.3) 
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EIA-485 

 
EIA-232 UDP/IP 

 
Figure 2.1: BACnet Collapsed Architecture [20]

The physical and the data link layer are unquestionably necessary in a building automation
network. The network layer in this standard provides routing functionalities such as services for
router discovery which are needed for communication between networks with different data link
layer and physical layer options. This way, a so called BACnet Internetwork is formed.

Among others, two services as an interface to the application layer are provided, the N-
UNITDATA.request and the N-UNITDATA.indication primitives. They represent an
unacknowledged connectionless form of data transfer. The request service is called by the local
application to initiate a data transfer, where the indication service informs the remote application
about the reception of data.

Features usually implemented at the transport layer like flow control, segmentation and se-
quence control are moved to the application layer. This is justified by the very limitedness of
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these services in a protocol based on a connectionless communication model. The session and
the presentation layer are omitted completely since there are very few use cases where a need
for typical services of these layers occurs.

2.3 Application Model

The application model of BACnet describes the relation of the application program to the ap-
plication layer and the application layer to the underlying layers. As illustrated in Figure 2.2, it
defines the Application Process as the part of the application which processes the information
and handles the exchange of data between two peer applications. The application process in turn
is divided into two parts: the Application Program and the Application Entity which is already
part of the application layer. The former as well as the Application Program Interface (API)
lying between the Application Program and the Application Entity are not specified in the stan-
dard. The BACnet User Element which forms one part of the Application Entity implements the
service procedure portion of each application service. The service procedure portion manages
the transaction context between communicating devices including the assignment of request and
response messages to specific devices, retry mechanisms and the mapping of the activity of a de-
vice into BACnet objects (cf. Section 2.4). The other part of the Application Entiy is the BACnet
Application Service Entity (ASE). It represents a collection of five classes of services: Alarm and
Event, File Access, Object Access, Remote Device Management, and Virtual Terminal which are
responsible for different kinds of information exchange between the application processes. A
selection of these services is described in Section 2.5 in more detail.

2.4 Data Representation

To allow remote devices to access process data, a “network-visible” representation of the stored
data has been specified by BACnet. This representation follows an object-oriented approach
known from the likewise called class of programming languages. Up to now, 30 different BACnet
ObjectTypes are defined within the current BACnet standard. They differ in the composition of
their so called BACnet Properties which can be seen as datapoints i.e., the logical representation
of process data originating from the technical process under control. Figure 2.4 gives an example
of such an object type definition. Each property has a unique identifier called Property Identifier,
a designated Property Datatype, and a Conformance Code attribute. Data types can be primitives
like bits, characters, strings and numbers in several formats or complex in order to combine more
than one datum in a single property. The conformance code defines the access permissions of
a property and specifies whether a property must be present in a distinct BACnet object or not.
Valid values are Readable(R), Writable(W) and Optionally present(O).

Vendors of BACnet devices are free to define their own proprietary object types (referred
to as nonstandard object types) – even the definition of proprietary property types is possi-
ble. However, there are three mandatory properties that must be defined for each BACnet ob-
ject: Object_Identifier, Object_Name and Object_Type. The former two prop-
erties must be unique within a BACnet device. Since a BACnet object is always assigned to
exactly one device (a BACnet object is never distributed across more than one device), the
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Figure 2.2: Model of a BACnet Application Process [20]

Object_Identifier or Object_Name property are used to uniquely identify a BACnet
object within a device. The Object_Type property is actually an enumerated value which
defines the kind of object.

Most BACnet object types available are generic ones like the BACnet Binary Output
Object type and the BACnet Analog Input Object type. An extract of the definition
of the former is shown in Figure 2.3. It is within the responsibility of the application program
to map the control data of a dedicated application to certain BACnet objects. However, there
are also efforts underway to standardise more application-specific object types in BACnet. For
example, in Addendum i to BACnet 2010, the BACnet Lighting Output Object [23],
a basic BACnet object for lighting has been defined. In the former Addendum j which is now
part of BACnet 2010, object types for specific use in access control applications were specified.
Figure 2.4 shows parts of the definition of the BACnet Lighting Output Object.

The Present_Value property usually holds a distinct physical value of the underly-
ing process, for instance the actual state of the light. Concerning input or output objects, the
Present_Value represents the signal values of the physical I/O ports of a BACnet controller.
Other ones like the Resolution or the Output_Type provide additional meta information
about the datapoint or the process under control.

Every BACnet device holds exactly one particular object called Device Object. An
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Property Identifier Property Datatype Conformance Code

Object_Identifier BACnetObjectIdentifier R

Object_Name CharacterString R

Object_Type BACnetObjectType R

Present_Value BACnetBinaryPV W

Description CharacterString O

Device_Type CharacterString O

Status_Flags BACnetStatusFlags R

Event_State BACnetEventState R

Reliability BACnetReliability O

Figure 2.3: BACnet Binary Output Object [20]

Property Identifier Property Datatype Conformance Code

Object_Identifier BACnetObjectIdentifier R

Object_Name CharacterString R

Object_Type BACnetObjectType R

Present_Value REAL W

Progress_Value REAL R

Resolution REAL O

Binary_Present_Value BACnetBinaryPV O

Output_Type BACnetLightingOutputType R

Lighting_Command BACnetLightingCommand W

Figure 2.4: BACnet Lighting Output Object [23]

extract of the definition of this object type can be seen in Figure 2.5. The Device Object
provides basic information about the BACnet device. In addition, its Object_Identifier
and Object_Name must be unique within the whole BACnet (inter-)network. So they can
be used to identify the BACnet device within the network. The Object_List property is an
array of Object_Identifiers declaring the collection of BACnet objects instantiated in
the device. Other properties represent the externally visible characteristics of the device like
vendor information, firmware and protocol version, and local time and date.

2.5 Services

Services in BACnet are based on the client-server communication model. Typically, BACnet
controllers interact with technical processes directly by their I/O ports or indirectly via under-
lying field devices. These controllers hold objects representing physical values of the processes
and they act as servers. User control units or management workstations where values are set,
process data are visualised and archived act as BACnet clients.
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Property Identifier Property Datatype Conformance Code

Object_Identifier BACnetObjectIdentifier R

Object_Name CharacterString R

Object_Type BACnetObjectType R

Vendor_Name CharacterString R

Vendor_Identifier Unsigned16 R

Model_Name CharacterString R

Firmware_Revision CharacterString R

Application_Software_Version CharacterString R

Object_List BACnetARRAY[N]of BACnetObjectIdentifier R

Figure 2.5: BACnet Device Object [20]

Generally spoken, there are Confirmed Application Services and Unconfirmed Application
Services in BACnet. A device receiving a confirmed service request, needs to transmit a response
to the sender. If an unconfirmed service is received, no response is required.

The complete set of service classes defined in BACnet consists of the following:

• Object Access Services
• Alarm and Event Services
• File Access Services
• Remote Device Management Services
• Virtual Terminal Services

However, in this section only the three most relevant classes of services with respect to this
work are introduced. The description of these service classes is not complete but focused on the
most relevant aspects.

Object Access Services

Two important representatives of the object access service class are the confirmed ReadProp-
erty and the WriteProperty services for getting and setting the value of a property.

The ReadProperty service takes the Object_Identifier, the Property_Iden-
tifier and optionally the Property_Array_Index of the property that has to be read as
arguments. If the property is an array and only one specific item is of interest, the element posi-
tion can be passed to the service by the Property_Array_Index argument. If succeeded,
the service response of a ReadProperty contains the input arguments of the request and the
value of the property to be read. Table 2.1 shows the parameters of the request, the indication,
the response and the confirmation service primitives. The symbology used in this table has the
following meaning:
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Parameter Name Request Indication Response Confirmation
Argument M M(=)

Object Identifier M M(=)
Property Identifier M M(=)
Property Array Index U U(=)

Result(+) S S(=)
Object Identifier M M(=)
Property Identifier M M(=)
Property Array Index U U(=)
Property Value M M(=)

Result(-) S S(=)
Error Type M M(=)

Table 2.1: Structure of ReadProperty service primitives [20]

• M: The parameter is Mandatory for the primitive
• U: The parameter is a User option and may not be provided
• C: The parameter is Conditional upon other parameters
• S: The parameter is a Selection from a collection of two or more possible parameters

One of these codes (M, U, C, S) followed by a “=” means that the parameter is semantically
equivalent to the parameter to its left in the table. This convention also applies for the Tables
2.2, 2.3 and 2.4.

The WriteProperty service, on the other hand, takes the Object_Identifier, the
Property_Identifier, the Property_Array_Index and the Property_Value of
the property that has to be written as arguments. The corresponding write Priority is also
passed. The reason why BACnet supports a priority mechanism is that a conflict regarding
the value of a commandable property which is accessed by multiple applications needs to be
resolved. This is achieved by introducing Priority_Array properties with fields indexed
from 1 to 16. For each commandable property of a BACnet object there exists one Pri-
ority_Array. Index 1 represents the highest priority and index 16 the lowest. The array
fields may contain a distinct value or NULL. When a WriteProperty service accesses a
commandable property, the Property_Value parameter is written to the field with the index
corresponding to the Priority parameter, whereas the remaining fields are preserved. The
Priority parameter must therefore also be in the range of 1 to 16. The application of the
BACnet device holding the object with the commandable property continuously monitors the
Priority_Array. It takes the first non-NULL value of the array starting at index 1 and in-
terprets this as the current value of the commandable property. In case the Priority_Array
contains only NULL values, the value of the Relinquish_Default property is taken, which
can be seen as a default value.

11



Parameter Name Request Indication Response Confirmation
Argument M M(=)

Object Identifier M M(=)
Property Identifier M M(=)
Property Array Index U U(=)
Property Value M M(=)
Priority C C(=)

Result(+) S S(=)

Result(-) S S(=)
Error Type M M(=)

Table 2.2: Structure of WriteProperty service primitives [20]

The specific parameters of the WriteProperty service primitives are shown in Table 2.2.
The same symbology like in Table 2.1 is used.

Besides these service related parameters the destination network address must also be known
when invoking these services. Success is indicated to the client by sending a positive confirma-
tion response. A typical scenario for an unsuccessful service call is an access violation, i.e. in
case of the WriteProperty service being applied on a property with a read only conformance
code.

Alarm and Event Services

In this section, only the services responsible for the Change of Value (COV) reporting mechanism
shall be described. Other representatives for the Alarm and Event service class are the Intrinsic
Reporting services and the Algorithmic Change Reporting services.

The COV reporting services enable one or more BACnet clients to be informed about a
change of a process value under control of a BACnet server. A temperature value is a typi-
cal datapoint to apply a COV subscription on. This can be done on temporary or permanent
base. If a BACnet object supports COV reporting, a client may send a subscription request
(SubscribeCOV or SubscribeCOVProperty) to the server holding this object. The for-
mer results in the server reporting on changes of pre-defined properties of the specified object
(for most objects the Present_Value and the Status_Flags properties), the latter regards
only a distinct property of the specified object. Parameters are the Subscriber Process
Identifier for assigning the subscription to a specific process in both server and client,
the Monitored Object Identifier of the object of interest, an Issue Confirmed
Notifications flag indicating if a confirmation from the client after receiving a notification
is required and the Lifetime of the subscription. The SubscribeCOVProperty addition-
ally requires the Monitored Property Identifier. The destination address also needs
to be passed to these requests. Table 2.3 summarises the parameters of the SubscribeCOV-
Property service primitives.
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Parameter Name Request Indication Response Confirmation
Argument M M(=)

Subscriber Process Identifier M M(=)
Monitored Object Identifier M M(=)
Issue Confirmed Notifications U U(=)
Lifetime U U(=)
Monitored Property Identifier M M(=)
COV Increment U U(=)

Result(+) S S(=)

Result(-) S S(=)
Error Type M M(=)

Table 2.3: Structure of SubscribeCOVProperty service primitives [20]

If for example the shift of the present value property of an analog input object exceeds the
offset determined by the COV_Increment property of the object, a COVNotification
service or a ConfirmedCOVNotification service, respectively is generated by the server.
The client which has applied the subscription on this object or property (or every device in the
network, if the service is transmitted as a broadcast) receives the notification and can hereby
obtain the new property value passed by the List of Values argument of the COVNoti-
fication. The List of Values argument contains the property values that need to be
reported. BACnet specifies for every standard object that may support COV reporting a list of
properties that need to be transferred and criteria that trigger a COVNotification. For de-
tails about these definitions confer to Clause 13.1 of the BACnet standard [20]. For correct origin
assignment of the notification the Subscriber Process Identifier, the Initiat-
ing Device Identifier, the Monitored Object Identifier are transferred as
well. The Time Remaining argument informs the client about the duration till the subscrip-
tion will end. The parameters of the ConfirmedCOVNotification service primitives are
illustrated in Table 2.4.

Remote Device Management Services

In order to discover BACnet networks and to find devices holding specific objects the un-
confirmed Who-Is and Who-Has services are available. If one device broadcasts an un-
restricted Who-Is to the network, every device (including the sender) responds with an I-
Am service carrying the network address and the Object_Identifier of the respective
Device_Object. The Who-Is can also be used to search for devices where the corre-
sponding device ID is within a specific range. However, if the lower and upper bound of
this range are set to the minimum and maximum Object_Id, all devices respond. By read-
ing the Object_List of the Device_Object of every device that has responded, all ob-
jects within the network can be discovered. If one BACnet device wants to determine the
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Parameter Name Request Indication Response Confirmation
Argument M M(=)

Subscriber Process Identifier M M(=)
Initiating Device Identifier M M(=)
Monitored Object Identifier M M(=)
Time Remaining U U(=)
List of Values M M(=)

Result(+) S S(=)

Result(-) S S(=)
Error Type M M(=)

Table 2.4: Structure of ConfirmedCOVNotification service primitives [20]

Private BACnet/IP 

network

BACnet Controller 1

Device ID: 35652610

IP Address: 172.19.0.20

Visualisation workstation

IP Address: 172.19.0.18

BACnet Controller 2

Device ID: 35652609

IP Address: 172.19.0.19

Figure 2.6: BACnet/IP network with two controllers and a visualisation workstation

address information of the device holding an object where the Object_Name or the Ob-
ject_Identifier is known, it broadcasts a Who-Has service with the Object_Name
or the Object_Identifier as a parameter. The device that finds the requested object in its
database returns an I-Have message. This response carries the address of the device together
with the Device Object_Identifier as well as the Object_Identifier and the
Object_Name of the requested object.

The I-Am and the I-Have service may be broadcasted by BACnet devices every time and
do not need to be preceded by a Who-Is or Who-Has service request.
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Visualisation BACnet Controller 2

Who-Is 
Source Address = 172.19.0.18

Destination Address = 172.19.0.255

I-Am

Source Address = 172.19.0.19

Destination Address = 172.19.0.255

Device_ID = 35652609

Max APDU Length Accepted = 1476

Segmentation Supported = TRUE

Vendor Identifier = 35413

ReadProperty.req
Source Address = 172.19.0.18Destination Address = 172.19.0.19Object_Identifier = 35652609Property_Identifier = Object_List

ReadProperty.resp

Source Address = 172.19.0.19

Destination Address = 172.19.0.18

Object_Identifier = 35652609

Property_Identifier = Object_List

Property Value[] = {Device Object,

Binary Input Object 1,

Analog Output Object 1,

…}

BACnet Controller 1

Who-Is 

Source Address = 172.19.0.18

Destination Address = 172.19.0.255

I-Am
Source Address = 172.19.0.20

Destination Address = 172.19.0.255
Device_ID = 35652610

Max APDU Length Accepted = 1476Segmentation Supported = FALSE
Vendor Identifier = 35450

ReadProperty.req

Source Address = 172.19.0.18

Destination Address = 172.19.0.20

Object_Identifier = 35652610

Property_Identifier = Object_List

ReadProperty.respSource Address = 172.19.0.20Destination Address = 172.19.0.18Object_Identifier = 35652610Property_Identifier = Object_ListProperty Value[] = {Device Object,Analog Input Object 1,Binary Output Object 1,
…}

ReadProperty.req

Source Address = 172.19.0.18

Destination Address = 172.19.0.20

Object_Identifier = Analog Input Object 1

Property_Identifier = Present_Value

ReadProperty.respSource Address = 172.19.0.20Destination Address = 172.19.0.18Object_Identifier = 4194306Property_Identifier = Present_ValueProperty Value = 24.7362

Figure 2.7: Network discovery and reading a Present_Value property
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2.6 Use Case Example

This section shall give an example of how a BACnet network is discovered and how process
data are gained from a BACnet object. Figure 2.6 shows the setup of a simple BACnet network
consisting of two BACnet controllers acting as servers and one visualisation workstation act-
ing as a client. These two BACnet controllers each implement an Analog Input Object
representing a temperature sensor and a Binary Output Object which state is mapped
to a binary light actuator. As obligate, each controller also holds a Device Object giving
information about the properties of the controller and about the implemented BACnet objects.

Before the visualisation workstation can access any datapoint of the BACnet network, it has
to discover which devices are actually present and which BACnet objects they currently hold.
The first goal is achieved by broadcasting a Who-Is service request to the network. The se-
quence diagram in Figure 2.7 shows the communication between the three network devices.
After receiving the Who-Is service request, both controllers answer with an I-Am service
respond. By its arguments it delivers the network address, the Device Object Identi-
fier, communication specific properties (Max APDU Length Accepted, Segmenta-
tion Supported) and the Vendor Identifier of the controller. Now, since the visual-
isation workstation has gathered the network addresses and the Device Identifiers it is
able to do the next step in discovery, namely to determine which BACnet objects each controller
implements. This is done by reading the Object_List property of the Device Objects
of each controller. Issuing the ReadProperty service request with the Device Object
Identifier determined before and the Object_List as arguments makes the controllers
deliver the content of their Object_List properties to the visualisation client.

Now the visualisation workstation has completed the network discovery and has knowledge
about which BACnet devices are currently present in the network and which BACnet objects
these devices implement.

As seen in Figure 2.7 in the last ReadProperty.req - ReadProperty.resp se-
quence, an actual datapoint (the Present_Value of the Analog Input Object 1 rep-
resenting the value of a temperature sensor) can finally be accessed.
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CHAPTER 3
OPC Unified Architecture

3.1 History and Development

In 1995, an association of vendors developing Human Machine Interface (HMI) and Supervi-
sory Control and Data Acquisition (SCADA) software was founded. It targeted to address the
drawbacks of the great plenty of vendor-specific fieldbus systems and protocols already avail-
able on the market but being not compatible among each other. The association was named OPC
Foundation.

Its first release was a standard providing services for reading and writing process data. It
was named OLE for Process Control (OPC), since the protocol was based on Microsoft OLE.
The idea behind OPC was that each vendor provides specific OPC drivers for (network) devices.
These drivers link the individual (network) protocols to the OPC Application Programming In-
terface (API). This enables devices relying on different communication standards to exchange
data and control information using the uniform OPC representation of data and services. In the
beginning, Microsoft’s Component Object Model (COM) and Distributed COM (DCOM) were
used as APIs. This reuse of intellectual property enabled the foundation to focus on the de-
velopment of important new features and quick adoption of the standard for the addressed use
cases [35] which was an advantage of the OPC Foundation against other organisations. In ad-
dition to the original OPC standard which was later renamed to OPC Data Access (OPC DA),
additional specifications were defined. Examples are OPC Alarm & Events (OPC A&E) that de-
scribes the handling of event based information, and OPC Historical Data Access (OPC HDA)
which specifies an interface to archived process data. These three different parts together with
several other specifications form the Classical OPC specifications. They covered the majority
of requirements in the domains of industrial and building automation.

Originally an advantage, the COM/DCOM dependency of these so called classical OPC
specifications became more and more a limitation to many applications [38]. This is for several
reasons. First, the limited remote access support of DCOM does not allow access over a Wide
Area Network (WAN) like the Internet. Weak security mechanisms of DCOM do not make Inter-
net connections recommendable, either. Second, the dependency on Microsoft Windows systems
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is a constraint to some developers especially when designing software for low-power embedded
systems. Third, there are compatibility issues of COM/DCOM between different Windows ver-
sions (e.g., Windows XP and Windows Vista/Windows 7). In addition to the insufficiency of
COM/DCOM, another drawback of classical OPC was the weaknesses in modelling complex
data and systems caused by the lack of object oriented concepts like using a type hierarchy. To
eliminate these drawbacks, the OPC Unified Architecture (OPC UA) [19, 22] was released as a
full replacement of the classical OPC specifications [31]. The main points of evolution of this
new standard are:

• Combine all features from the classical OPC specifications into one specification
• Achieve platform independence by using Web Services and TCP based protocols for com-

munication
• Allow remote access over the Internet
• Provide strong security mechanisms
• Use of a common object-oriented model for representing any kind of data
• Allow scalability in data complexity
• Offer the possibility to model meta information of process data
• Provide an abstract base model from which other user-defined models can be derived

3.2 Protocol Overview

Data modelling and transportation are the two core components of the OPC UA architecture.
In the illustration of the foundation of the OPC UA standard (see Figure 3.1), two pillars cor-
responding to these two aspects can be identified. One of them is the Transport pillar, which
describes a TCP based binary protocol for efficient communication and data exchange and a pro-
tocol based on Web Services, XML, and SOAP over HTTP (for more information about SOAP
cf. [7]). It is intended to use HTTP(S) for data transportation in future. Both OPC UA protocols
allow access of data via a WAN like the Internet. One advantage of the use of Web Services is
that most of the network components like firewalls are already configured properly for passing
them through. The exchange of data in OPC UA follows the client-server model.

The Meta Model, illustrated in form of another pillar, defines basic modelling constructs
and rules how to model data. Here also the base types used for building type hierarchies are
specified. Actual information models sit on top of these abstract definitions. Also concepts like
state machines for modelling sequential control jobs are described in this part. A more detailed
description of this part is given in Section 3.4.

Going upwards in Figure 3.1 there are two more parts lying on top of the two founding
pillars. One of them is the OPC UA service part (Section 3.5). Services provide clients access
to the information model lying on the servers.

The Base OPC UA Information Model is founded on the rules of the meta model. The struc-
ture of this part is shown in detail in Figure 3.2. Here the additional specifications known from
the classical OPC standard like Alarms & Conditions (AC), Historical Access (HA), Programs
(Prog) and new, automation specific Data Access (DA) features are included.
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Figure 3.1: The foundation of OPC UA [35]
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OPC UA Information Model
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Figure 3.2: OPC UA layered architecture [35]
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Standards published by, for example, the IEC1 or other organisations use these OPC UA
information models and build their own specific ones on top of it. The uppermost layer of
information models is formed by vendor specific extensions designed for particular applications
using the OPC UA Base, the OPC UA Information Models or other OPC UA based models.

3.3 Information Modeling in OPC UA

Contrary to classical OPC which only provides possibilities to represent basic data, OPC UA
supports mechanisms to enrich data with specific semantics. For example, in addition to the
measurement value of a sensor, information about the sensor type or the device that implements
the sensor functionality can be modelled, too. This form of meta data can be interpreted by
clients and used by applications to provide additional information related to process data. OPC
UA defines the following rules regarding information modelling:

• Information is modelled in form of nodes carrying attributes and references linking the
nodes (cf. Figure 3.3).

• Type hierarchies and inheritance are used as object-oriented principles.
• There is no distinction between the exposure of data and type information. The latter is

needed by clients to interpret the data which is accessed.
• Information is modelled in form of a network of full-meshed nodes. There is no unique

way to model information. Each use case requires a specific manner of modelling.
• The base information model as part of the specification is extensible with regard to defin-

ing subtypes of nodes and references between them.
• Information models only exist on OPC UA servers. Clients gain their knowledge about

how data is modelled by fetching that information from the server.

Interoperability between devices of different vendors requires a uniform representation of
data. In OPC UA, the idea is to define information models (i.e., data representations) for differ-
ent application domains. Vendors can use these models to expose data of their applications or
can even extend them by their own domain-specific knowledge. Clients do not have to distin-
guish between different vendors for their functionalities since they all have the same base model
exposing data in common. Displaying current process data in a simple, generic user interface,
access to historical data or event-driven update of data exposed or signalisation belong to these
basic functionalities. If a server provides an information model with functionalities extending
these basic ones, clients are able to interpret this more complex data by gathering the additional
semantic from the information model. This way, advanced visualisation, more sophisticated
computing or automated integration into other systems can be done with data provided by an
OPC UA server.
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Node 1

Attributes
NodeId: “1“
NodeClass: Object

References

Ref1:
-NodeId: “2“
-ServerURI: NULL
-Type: “has-parent“
-Direction: forward

Node 2

Attributes
NodeId: “2“
NodeClass: Object

References

Ref2:
-NodeId: “1“
-ServerURI: NULL
-Type: “is-child-of“
-Direction: inverse

Figure 3.3: The concept of nodes and references [35]

3.4 Address Space

Information models in OPC UA are based on a meta model called Address Space. It contains
definitions for basic data types, references, for creating variable types, object types, reference
types, methods and further information entities. The underlying idea beneath the address space
model is the concept of Nodes and References. Nodes in OPC UA consist of attributes which
give a description of the node and references creating links between nodes (cf. Figure 3.3). Some
attributes are inherent in all node classes, some are specific. Examples of common attributes are
the NodeId for uniquely identifying the Node in the address space, the BrowseName which
identifies a node when browsing through the address space, and the DisplayName attribute
containing the name of the node to be displayed in a user interface. See [19] Part 3 for the entire
list of attributes.

Each node is assigned to a distinct node class. In addition to the Base node class it can
be distinguished between node classes defining types and node classes defining instances of
types. Type definition nodes can be abstract or concrete. From abstract types no instance can be
derived. They are used to aggregate common attributes of their subtypes and make the structure
of a type hierarchy more organised. Concrete types are directly instantiable.

The following built-in instance definition node classes are defined in OPC UA:

• Variable node class: variables must always belong to another node (e.g., an object).
The Value attribute holds a physical value of a technical process (if it is linked by a
HasComponent reference) or provides meta information, i.e. characteristics like an
engineering unit for the superior node (when referenced by HasProperty). In this
case, a variable is called Property. Properties can neither be of a complex type nor have
any subtypes.

1International Electrotechnical Commission [4], a not-for-profit, non-governmental standardisation organisation
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Motor_1

Status

Configuration

Start

Stop

Emergency Start

Reversing

Lock – out Time

Figure 3.4: Example of a complex Object [35]

• Object node class: objects consist of variables, methods, and properties. They are used
to model devices or components of the technical process under control, like a temperature
controller or a motor controller.
• Method node class: methods are always referenced to an object. They represent functions

that can be called by an OPC UA client (e.g., start and stop routines of a motor controller
object).
• View node class: in order to reduce the scope of a client accessing an information model

on a server, views can be used to make only parts of it visible. Depending on the use case,
only the relevant part of the whole model can be made visible to the client.

Figure 3.4 shows an example of a complex OPC UA object which models an electric motor.
The Motor_1 object exposes a Status variable informing about the current state of the motor.
Also the Configuration sub-object holds two variables representing two attributes of the
motor configuration. This sub-object fulfils the purpose of structuring this model by grouping
semantically related variables. At last, two methods (Start and Stop) are available providing
the according functionality.

Users can extend the built-in information model by defining their own use case specific
type definitions. These types are defined by inheriting them from built-in ones, enhanced with
additional semantics and user-defined names (simple types) or by defining further sub nodes
(complex types). The latter will be shown in Chapter 4.
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The built-in type definition node classes are the following:

• DataType node class: defines the data type of the value attribute of a variable or variable
type. DataTypes are organized in a type hierarchy, with the abstract BaseDataType
on the top. Typical built-in DataTypes are Boolean, String or Number. Subtypes
of the abstract Number DataType are Integer, Float and Double.

• VariableType node class: used to define the type of a variable. There are simple
VariableTypes which only define the semantics and the data type to be used for the
value attribute, where complex variable types hold a structure of nodes which enables
structuring the variable type into sub values.

• ObjectType node class: specifies the type of an object. ObjectTypes can also be
complex or simple where the difference is whether they expose a structure of other nodes
beneath them or not. Complex ones can hold other objects, variables, and methods. This
allows the engineer to create models of technical devices that reflect the entirety of the
relevant device properties.
• ReferenceType node class: used to specify reference types. References in OPC UA

derived from reference types are applied to create a link between two nodes. There
are both abstract ReferenceTypes and concrete ones. The idea is the same as for
DataTypes, namely to aggregate common attributes of sub types within an abstract
super type and generate a more structurised type hierarchy this way. References can ei-
ther be symmetric or asymmetric, depending on whether they have the same semantics in
both directions or not. The Symmetric attribute of the ReferenceType indicates this
property.
Although a reference type is handled internally as a node, references do not have attributes
directly accessible – only indirectly by browsing a node. However, reference types follow
the same extensible concept as nodes. Users can likewise inherit special reference types
from built-in ones in order to give them the required meaning. References are divided into
hierarchical and non-hierarchical ones. Hierarchical reference types are typically used
in type hierarchies (e.g., the HasSubtype reference) or when assigning properties to
objects or variables by a HasProperty reference. The HasTypeDefinition is a
typical non-hierarchical reference that relates an instance node to its type definition node.

The type definition (recognisable by the shadow behind the object rectangle) of the complex
object in Figure 3.4 can be seen in Figure 3.5. This type definition has the same structure as the
associated instance. All the sub-nodes of the MotorType object type are InstanceDeclarations,
which means that they are also instantiated when instantiating the super-node. This way, the
structure of a complex object type is preserved.

3.5 Services

The services in OPC UA are used to exchange data between OPC clients and servers. Each
service is composed of a request and a response message. If a client wants to access data of
the information model lying on the server, it calls a distinct method of the service set. After
processing this request, the server returns a response to the client. Contrary to the classic OPC
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Figure 3.5: Example of a complex ObjectType [35]

specification, services in OPC UA are defined independently to the transport protocol and the
platform used which requires an abstract service description (cf. Part 4 of [19]). The mappings
of this abstract definition to specific transportation protocols, such as Web Services or OPC UA
TCP is defined in Part 6 of [19].

OPC UA gets along with a very generic and reduced set of services. This is possible since
information is provided by the server address space. There is no need for specialised methods
for accessing different types of data or information. This can all be done by simple read services
or write services.

The services described in the following are only a small selection of the complete set of
services defined in OPC UA. It is a limitation to the ones relevant to this work.

Discovery Service Set

Before a client can start communication with a server, it must discover the set of available servers
in its network first. This is achieved by the Discovery Service Set. A Discovery Server holds a
list of available servers in a network. Each OPC UA server going online registers itself to this
discovery server. A client sending the FindServers request to the discovery server gets a list of
so called Endpoints of the available servers returned. With this information available, a client
can establish a connection using the proper settings to the desired server.
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View Service Set

To find the node holding the desired data in the information model on the server, the client can
directly access it using its NodeId or it must browse to it from a starting node called the Entry
Point. Following the outgoing references the client reaches the destination node holding the
data. This is done in a recursive way by calling the Browse service for each node on this path.
It returns an array of references originating in the node and pointing to a target node. Filtering
mechanisms help to reduce the amount of data returned. When the requested node is reached, it
can be identified by its NodeId.

Attribute Service Set

This set of services provides access to the attributes of nodes which are uniquely identified by
the AttributeId and the NodeId. These are passed to the service methods as parameters.
The most essential services are the Read and Write service. Depending on what kind of access
is desired, one of these is called by the client. This is the most common use case to access data.
Attributes of an array-type can be accessed element-wise by passing an index argument to the
service method. But it is also possible to read or write the entire set or a range of elements of
this attribute type as a composite.

In the following a description of the most relevant (with respect to this work) parameters of
the Read service request and the according response as well as the Write service request and
its response is given:

• Read request:
nodesToRead[] is an array of nodeIds and attributeIds that should be read.

• Read response:
The results[] array consists of the attribute values as results of the read operations.
The order is the same as in the nodesToRead[] array.
• Write request:

The nodesToWrite[] parameter is an array of nodeIds, attributeIds and val-
ues that should be written.
• Write response:

The results[] array holds the statusCodes that give information about the success
of the write operations. The order is the same like in the nodesToWrite[] array.

In order to access historical values or events on an OPC UA server, the HistoryRead and
the HistoryUpdate services exist. The former is very similar to its Read sibling but applied
for historical data, where the latter is used to change historical data in hindsight. Historical data
are not directly visible in the address space, therefore these special services are defined to gain
access to it.

MonitoredItem- and Subscription Service Set

In many cases it is required to be kept informed when the value of a datapoint changes or an
event happens. This can be achieved in OPC UA from the MonitoredItem services set. It
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Figure 3.6: The relation between MonitoredItems and Subscriptions in a Session [35]

allows a client within an established communication Session to create Subscriptions on so
called MonitoredItems. This context and the cardinality of the relations is shown in Figure
3.6. A MonitoredItem is an entity representing a source of information. Variable values,
EventNotifiers and aggregated variable values are such possible sources of information.
In the first and nearly most important use case, one or more variables in the server address space
are continuously sampled. The sample rate is individually settable for each MonitoredItem
by the client. The results of this sampling process are passed to the superior Subscription
item. The Publishing Interval, an attribute of the Subscription, determines the
time interval in which Notifications are generated by the Subscription item. A No-
tification is a message sent as a servers response (and is therefore also called Publish
Response) to a Publish Request of the client which has applied the Subscription
on the underlying source of information. To assure that Notifications can be generated by
the server at any time a proper amount of Publish Requests needs to be pending.

EventNotifiers as another source of information are OPC UA objects combining sev-
eral event sources. These can be for example changes of the configuration of the technical
process or error conditions. EventNotifiers need not to be sampled since they are asyn-
chronously triggered by the events they are representing. Data is passed to the Subscription
item which again generates Notification messages.

As the third possible source of information it is also allowed to monitor aggregated variable
values. The procedure is the same like for simple variable values, except that aggregated values
are based on a calculation using simple ones as an input. These aggregated values are further
transmitted as Notification (i.e. Publish Response) messages by the Subscrip-
tion holding this MonitoredItem.

The point in time of transmitting Notification messages is determined by the server.
After the client has sent a Publish Request to the server, the latter is not expected to answer
immediately. This request can be queued until a Notification (Publish Response) is
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ready to be sent.
In the following a description of the most relevant parameters of the CreateSubscrip-

tion and CreateMonitoredItems service primitives is given.

• CreateSubscription request:
The requestedPublishingInterval parameter determines the time interval be-
tween two Notifications returned by the server to the client. The value of this pa-
rameter is also used as the default sample rate of the assigned MonitoredItems.
• CreateSubscription response:

The subscriptionId server-wide uniquely identifies the subscription created.
• CreateMonitoredItems request:

The subscriptionId is the identifier of the Subscription the MonitoredItem
should be assigned to. This Subscription will issue Notifications for the Mon-
itoredItem.
The itemsToCreate[] is an array of MonitoredItemCreateRequests con-
taining the itemToMonitor (in turn holding the nodeId, the attributeId and
other parameters specifying the monitoring process), the monitoringMode (to specify
whether monitoring of the item is disabled, values are sampled but just queued, or No-
tifications are reported) and the requestedParameters variable. The latter
defines, among other parameters, the sampling interval, filter rules and the queue size.
• CreateMonitoredItems response:

The results[] parameter is an array of statusCodes giving information about the
success of creating the requested MonitoredItems, Subscription-wide unique
monitoredItemIds as identifiers of the MonitoredItems and parameters about
the sampling intervals, queue sizes and filters applied on the MonitoredItem.

A detailed description of the complete set of OPC UA services and their parameters can be
found in Part 4 of the OPC UA specification [19].

3.6 Use Case Example

In order to make the usage of OPC UA services more vivid, a typical use case of a client-server
communication is shown in the following. A sequence diagram illustrating this communication
can be seen in Figure 3.7.

It starts with the invocation of discovery services by the client with the goal to get infor-
mation about the endpoints of OPC UA servers. It is assumed that there is a local discovery
server present in the network which responses to the clients request. Now the client can send
a GetEndpoints Request to the OPC UA server to get all the necessary information like
the servers network address and the security settings to set up a connection.

Connection establishment between client and server is done next. This is achieved by setting
up a secure channel and a session on top of it. After the session is activated by the Activate-
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Session request and response service, the connection can be considered established. A more
detailed description of this procedure especially regarding to security is given in Section A.3.

Now, by calling the Browse Request service containing one or more starting nodes, the
client can explore the server address space and provide it either to another application interfacing
the client or to the user in form of a graphic representation.

The next action in this use case is chosen to be a write access to one of the server address
spaces nodes. Therefore, the client generates a Write Request containing the nodeId, the
attributeId and the new value. This is answered by a Write Response informing the
client about the success of the operation.

At this point the user decides to apply a data change Subscription on a distinct node
value. First, a subscription needs to be created on the server. Then, the creation of a Moni-
toredItem with a variable value as a source of information follows. This MonitoredItem
is assigned to the Subscription. After the server has acknowledged these requests, the client
starts to send Publish Requests to the server. These requests are kept pending till a data
change event happens and the new value can be transmitted in form of a Publish Response.
If the value does not change within a defined period, the Publish Response of the server
contains only a Keep Alive Message. Sending empty messages between server and client
fulfils the purpose of detecting communication problems and keeping firewall ports open. The
client needs to send new Publish Requests when it receives according response messages
such that the server can continue sending Publish Responses.
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Figure 3.7: A typical use case of OPC UA services
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CHAPTER 4
An OPC UA Information Model for

BACnet

4.1 OPC UA at different levels of automation

The same challenges in the industrial automation domain the OPC foundation originally ad-
dressed when releasing the classical OPC standards exist in building automation networks. There
are many different control and fieldbus protocols and technologies available but there exists only
weak compatibility between them. OPC UA was primarily designed for application at the man-
agement level of the automation pyramid. Used at this tier, OPC UA can provide interoperability
by abstracting the different, underlying networking technologies. It creates a uniform view of
the process data and allows communication between network devices of different technologies.
OPC UA clients, which are located within the same subnet or even in a remote network linked by
a WAN can access datapoints of this process image for supervising purposes (for example, for
visualization and trending applications). Another use case is taking over control of the process
by an operator of a building management system.

In the meanwhile, there are efforts underway to integrate OPC UA in all different levels
of the automation hierarchy. Examples are the OPC UA companion standards for IEC 61131-
3/PLCopen [3] and Field Device Integration (FDI) [2]. The same that applies for the manage-
ment level applies also for the control and the field level: Providing a common interface to
devices using different technologies is a huge benefit when using them in a heterogeneous sys-
tem. It results in a reduction of cost by making specific gateways unnecessary and it improves
maintainability and scalability in a sense that components can easily be replaced or added.

Since OPC UA scales very well by adapting the set of profiles (cf. [19] Part 7) implemented
and restricting them to the given requirements, OPC UA is applicable even down to field level
devices. In this lowest level of automation systems mostly embedded devices with very limited
hardware resources are called into action. Typically, the field devices in this environment acting
as OPC UA servers do not have to provide the same amount of data like an enterprise level OPC
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Efficiency and standards

OPC is a set of industrial standards 
for systems interconnectivity, pro-

viding a common interface for commu-
nications between different products 
from different vendors Factbox 1 . There 
are over 22,000 products supplied by 
over 3,200 vendors. Process control 
systems must be able to communicate 
with all these products, accessing data 
or providing data access via a com-
mon communications platform. Classic 
OPC provides standard specifications 
for data access (DA), historical data 
access (HDA), and alarms and events 
(A&E). These OPC specifications are 
widely accepted by the automation in-
dustry. Classic OPC is based on aging 
Microsoft-COM/DCOM-technology,1) 
which has led to the development of 
new OPC Foundation specifications 
known as OPC UA (Unified Architec-
ture). These specifications have been 
developed by more than 30 automa-
tion vendors, during a time period of 
five years. The main goal of OPC UA 
is to keep all the functionality of Clas-
sic OPC, while switching from Micro-
soft-COM/DCOM-technology to state-
of-the-art Web services technology. By 
using web service technology OPC UA 
becomes platform-independent and 
can thus be applied in scenarios 
where Classic OPC is not used today. 
OPC UA can be seamlessly integrated 
into Manufacturing Execution Systems2) 
(MES) and Enterprise Resource Plan-
ning3) (ERP) systems, running not only 
on Unix/Linux systems using Java, but 
also on controllers and intelligent de-
vices having specific real-time capable 
operation systems. Of course, compat-
ibility with earlier OPC specifications 
was a requirement for OPC UA. It does 
not, therefore, preclude its use in 
Windows-based environments where 
Classic OPC already operates today – 
suiting Microsoft’s Windows Commu-
nication Foundation4), which can also 
communicate using Web services 1 .

OPC UA has to fulfill and improve the 
non functional requirements of Classic 
OPC providing, for example, robust, 
reliable, high-performance communi-
cation suitable for automation. Learn-
ing from OPC XML-DA5) (the first at-
tempt made by the OPC Foundation 
to provide XML-based web services), 
OPC UA was designed to support 
 binary encoding for high-performing 
data exchange. To provide reliable 

OPC (OLE* for process control) was devel-

oped in 1996 by the automation industry 

as a standard specification that would al-

low the communication of real-time plant 

data between control devices produced by 

different manufacturers. The OPC Founda-

tion was created to maintain the standard 

and has since overseen the introduction of 

a series of standard specifications (such as 

OPC data access). Today the OPC Foun-

dation states that OPC UA is no longer an 

acronym for OLE for process control, but 

OPC UA is an acronym for OPen Connec-

tivity Unified Architecture). 

*) Object Linking and Embedding (OLE) allows 

the visual display of data from other programs 

that the host program is not normally able to 

generate itself (eg, “embedding” a pie chart in 

a text document). The data in the file used to 

produce the embedded chart can change, 

“linking” the data so that the chart is updated 

within the embedded document.

Factbox 1  OPC

A meta model is a model to describe mod-

els. The meta model of an SQL (Structured 

Query Language) database defines the 

concept of a table, in an object-oriented 

programming language the concepts of a 

class and objects, and in IEC 61131-3 

 languages the concept of tasks, function 

blocks, programs, etc. In OPC UA the meta 

model defines the concepts of objects, 

their types, variables, data types, etc.

An information model is a model based on 

a meta model defining a specific semantic 

(meaning). In case of OPC UA this is main-

ly done by defining specific types of ob-

jects and variables, but also by defining 

specific objects and variables having a 

specific semantic (eg, entry points into the 

address space of a server). For example, 

based on the OPC UA meta model an 

 information model for analyzer devices is 

defined by specifying specific types of 

 analyzers. An OPC UA server can use this 

type of information to represent its data 

coming from an analyzer device.

Factbox 2  Meta model and information models

Footnotes
1) Component Object Model (COM) was introduced by Microsoft in 1993 to allow component software to com-

municate between different applications. Distributed Component Object Model (DCOM) was also introduced 

by Microsoft allowing software components to communicate even when distributed across a network.
2) Manufacturing Execution Systems (MES) manage and monitor work in progress on the factory floor.
3) Enterprise resource planning (ERP) is a company-wide computer software system used to manage and coordi-

nate all the resources, information, and functions of a business from shared data bases.
4) Windows Communication Foundation (WCF) is a programming framework used to build applications that inter-

communicate.
5) OPC XML-DA builds on the existing OPC DA standard to deliver multi-vendor interoperability and connectivity 

to factory floor information via the Internet.

OPC Unified Architecture

1  OPC UA can be used for applications within the automation pyramid.
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Figure 4.1: OPC UA in different levels of automation [42]

UA server [42]. On the other hand, demands on processing and response time are orders of mag-
nitude higher. Since OPC UA also provides a binary data encoding which significantly reduces
data and processing overhead, achieving reasonable performance even on low-end hardware is
feasible.

Figure 4.1 shows how OPC UA can be applied in all different levels of automation. In this
example, an industrial automation network divided in four tiers is shown. Slightly different
terms are used in this domain, but the structure is similar to a building automation network and
the requirements with respect to interoperability are comparable. Each level shown in Figure
4.1 has its dedicated network where data is exchanged in a horizontal manner (i.e. between
devices of the same level). Devices at the lowest tier (field level) are already acting as OPC UA
servers. At higher levels there are components which act simultaneously as OPC UA servers
and clients. On their client side they interface the inferior level. With their server side they
provide information to the superior network. This way, vertical communication between the
tiers is established.

One further advantage of using OPC UA for data exchange in the whole pyramid is that
a powerful security concept is available for the whole system (cf. Chapter A). As illustrated
in Figure 4.1, the horizontal network traffic (i.e. communication between devices at different
levels) is additionally filtered by firewalls. This assures that a security flaw in one level is
unlikely to compromise devices of other levels.
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Figure 4.2: Use Case Example: OPC UA interfacing BACnet and KNX

4.2 OPC UA in a building automation network

Figure 4.2 shows a possible setup of an OPC UA server in a building automation network where
at a backbone (automation) level two network protocols are applied: BACnet/IP and KNXnet/IP
[?]. At the lowest level of the network hierarchy the communication between field devices
and the superior controller is done by typical field protocols. At the BACnet side this could
be for example LonTalk [17]. In the KNX part of the network, field devices communicate
via KNX protocol over TP1 medium [16]. The KNXnet/IP routers encapsulate the KNX TP1
telegrams with a destination address in the superior level (the IP network) or at the other branch
of the KNX network into KNXnet/IP datagrams. This is also done in the inverse direction,
KNXnet/IP packets with a destination address in one of the KNX field networks are unwrapped
and propagated as telegrams to the right KNX TP1 network.

In the use case example seen in Figure 4.2 the OPC UA server which is connected to the IP
network is used to gather data from both different building automation networks to create a live
process image of the whole network. This allows every datapoint of both the BACnet and the
KNX network being accessible for an OPC UA client which is connected (whether locally or via
a router and a WAN) to the server.

In the work presented, the focus is on building an OPC UA information model for BACnet.
Using this information model, OPC UA servers and clients can be used to implement man-
agement applications that need to access data from BACnet networks. There is a significant
resemblance in BACnet and OPC UA with respect to their data model. Both standards follow
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an object oriented approach. However, the modelling concept in OPC UA is more advanced
than in BACnet. The latter, for example does not support inheritance. Thus, defining a type
hierarchy is not possible in BACnet. Section 4.3 presents how the interworking model of BAC-
net can be mapped to OPC UA. Another similarity exists in addressing the objects holding the
process data. In BACnet, objects have an Object_Identifier, properties have a Prop-
erty_Identifier. In OPC UA nodes are referenced by their NodeId. A mapping of these
two addressing schemes is given in Section 4.4. Furthermore, the concepts of services used to
access data are similar in both standards. Access services to read and write process data ex-
ist in both worlds (cf. Section 4.5). Alarm and event handling are also defined which allow
for example, the monitoring of process variables and triggering of events or alarms in case a
change of value happens or if a threshold is exceeded. Section 4.5 deals with the mapping of
one representative of this BACnet class of services to OPC UA.

4.3 Mapping of BACnet Datapoints to OPC UA

Due to the advanced modelling capabilities of OPC UA the BACnet view of data can be mapped
to OPC UA quite conveniently. The chosen approach is to transform BACnet objects to OPC UA
complex objects. BACnet properties as members of BACnet objects are in turn mapped to OPC
UA variables which are referenced by the corresponding OPC UA objects. In order to instantiate
an entity in OPC UA, a type describing it has to be defined before. This needs to be done for
objects, variables and references. BACnet-specific datatypes need to be defined in OPC UA as
well.

DataType Definitions

Since the value attribute of an OPC UA variable is of a particular data type, the first thing to
do is to define a data type hierarchy that represents the existing BACnet data types. Some of
these BACnet data types can directly be mapped to the built-in OPC UA data types. For in-
stance, the BACnet property data type REAL (e.g., used by the property Present_Value
of a BACnet Lighting Output Object type) can be modelled as the OPC UA Float
data type. However, there are more complex BACnet property data types that can not be rep-
resented by built-in OPC UA data types. Examples are the BACnetObjectIdentifier,
the BACnetObjectType and the BACnetLightingOutputType. These BACnet data
types have to be modelled as subtypes of OPC UA built-in data type Structure which can
be used to represent complex data types. An exemplary part of it is shown in Figure 4.3. Rela-
tions between the type definitions in type hierarchies are always denoted by the HasSubtype
reference. All user-defined BACnet data types are subtypes of the user-defined abstract data
type BACnetPropertyDatatype which is inherited from the OPC UA built-in data type
Structure. For each user-defined structured data type, at least one encoding has to be de-
fined. This encoding is used by clients to correctly interpret the user-defined data representation.
In the proposed model, DefaultBinary encoding is chosen for all user-defined data types.
For every encoding, a description of the type (represented by a DataTypeDescription-
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Type node) exists which in turn is a component of the BACnetPropertyDictionary.
Within this user-defined dictionary, the entire encoding is described in XML format.

For the BACnet property type BACnetObjectIdentifier, this XML representation
looks as follows1:
<StructuredType Name="BACnetObjectIdentifier">

<Field Name="ObjectType"
TypeName="Bit" Length="10">

</Field>
<Field Name="InstanceNumber"

TypeName="Bit" Length="22">
</Field>

</StructuredType>

VariableType Definitions

After having defined the BACnet data types, the BACnet properties have to be represented in
OPC UA. To achieve this, user-defined OPC UA variable types are defined. Later on, they will
be referenced by OPC UA objects representing BACnet objects. Each of the BACnet specific
user-defined variable types is a subtype of the abstract user-defined BACnetPropertyType
variable type. This abstract variable type exposes the user-defined OPC UA property BACnet-
PropertyIdwhich represents the BACnet Property_Identifier. It is inherited to each
subtype when instantiating it. This attribute is unique for each BACnet property. A selection of
such variable type definitions is shown in Figure 4.4. The Present_Value VariableType ex-
poses an additional property, the BACnetPriority. This one represents the priority of write
accesses in BACnet (cf. Section 2.5).

To create user-defined OPC UA variable types, the corresponding attributes of the new vari-
able type have to be set. The DataType attribute is set to the corresponding built-in or user-
defined OPC UA data type introduced before, except for the Present_Value variable type.
In this case the DataType attribute is set to the abstract, OPC UA built-in BaseDataType.
This allows to further specify this attribute when instantiating this variable type in order to reflect
the real datatype of the BACnet property represented.

Examples for further attributes to be set are the BrowseName and the DisplayName
which are both set to the human-readable name of the BACnet property defined in the standard.
The ValueRank attribute provides information about the value attribute of the variable type
being an array and if so, how many dimensions this array has. If this attribute is set to Scalar
it means that the variable type represents a scalar datapoint. In case it is set to Any, the value
attribute of the instance can be a scalar or a vector. This is the case for the Present_Value
variable type definition. This allows to model BACnet objects with a Present_Value prop-
erty being a scalar or an array using the same variable type definition.

ReferenceType Definitions

In the model proposed, there are two scenarios where references are used: To assign OPC UA
variables standing for BACnet properties to OPC UA objects representing BACnet objects and

1For details about the XML representation refer to Part 3 of [19]
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Structure

BACnetProperty 
DataType

BACnetObject 
Identifier BACnetObjectType

HasEncoding HasEncoding

DefaultBinary::
DataTypeEncodingType

DefaultBinary::
DataTypeEncodingType

BACnetObjectIdentifier
Description::

DataTypeDescriptionType

Attributes
DataType=ByteString
Value={„BACnetObjectIdentifier“}

HasDescription

BACnetObjectType
Description::

DataTypeDescriptionType

Attributes
DataType=ByteString
Value={„BACnetObjectType“}

HasDescription

BACnetProperty_Dictionary::
DataTypeDictionaryType

Attributes
DataType=ByteString
Value={„<?xml...“}

OPCBinary::
DataTypeSystemType

BaseDataType

Enumeration NodeId . . .

. . .

BACnetLighting
OutputType

DefaultBinary::
DataTypeEncodingType

BACnetLightingOutputType
Description::

DataTypeDescriptionType

Attributes
DataType=ByteString
Value={„BACnetLightingOutputType“}

HasDescription

HasEncoding

Figure 4.3: Datatype Definition

moreover to assign these OPC UA objects to further OPC UA objects representing BACnet de-
vices. To express the special semantics of these references, the new reference types HasBAC-
netProperty and HasBACnetObject are introduced. These reference types are inherited
from the hierarchical built-in one HasComponent. This type hierarchy can be seen in Figure
4.5.
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BaseDataVariableType

BACnetPropertyType
BACnetPropertyType

Attributes
BrowseName=“BACnetPropertyType“
DisplayName=“BACnetPropertyType“
Description=“Abstract BACnet VariableType“
DataType=BACnetPropertyDataType
IsAbstract=TRUE

Object_IdentifierType

Attributes
BrowseName=“Object_IdentifierType“
DisplayName=“Object_IdentifierType“
Description=“BACnet Object_IdentifierType“
ValueRank = Scalar
DataType=BACnetObjectIdentifier
IsAbstract=FALSE

Object_NameType

Attributes
BrowseName=“Object_NameType“
DisplayName=“Object_NameType“
Description=“BACnet Object_NameType“
ValueRank = Scalar
DataType=ByteString
IsAbstract=FALSE

Object_TypeType

Attributes
BrowseName=“Object_TypeType“
DisplayName=“Object_TypeType“
Description=“BACnet Object_TypeType“
ValueRank = Scalar
DataType=BACnetObjecType
IsAbstract=FALSE

Present_ValueType

Attributes
BrowseName=“Present_ValueType“
DisplayName=“Present_ValueType“
Description=“BACnet Present_ValueType“
ValueRank = Any
DataType=BaseDataType
IsAbstract=FALSE

.   .   .   

BACnetPropertyID::
BACnetPropertyIDType

[Mandatory]
AccessLevel = Readable

HasProperty

Out_Of_ServiceType

Attributes
BrowseName=“Out_Of_ServiceType“
DisplayName=“Out_Of_ServiceType“
Description=“BACnet Out_Of_ServiceType“
ValueRank = Scalar
DataType=Boolean
IsAbstract=FALSE

ResolutionType

Attributes
BrowseName=“ResolutionType“
DisplayName=“ResolutionType“
Description=“BACnet ResolutionType“
ValueRank = Scalar
DataType=REAL
IsAbstract=FALSE

BACnetPriority::
BACnetPriorityType

[Mandatory]
AccessLevel = Writable

Figure 4.4: Variable type definitions

ObjectType Definitions

Now having all the necessary components available, the BACnet object types can be modelled
in OPC UA. All BACnet object types are represented by user-defined OPC UA complex object
types that are all subtypes of the abstract user-defined BACnetObjectType which in turn is a
subtype of the built-in BaseObjectType. The BACnetObjectType contains the BACnet
properties Object_Identifier, Object_Name, and Object_Type which are common
to all BACnet objects. The assignment of the variables representing the BACnet properties to the
corresponding object type is done by using the HasBACnetProperty reference mentioned
before.

As can be seen in Figure 4.6, the variables reflecting the BACnet properties and the BAC-
netDeviceObject node have no shadows beneath them. This means that they are no type
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HasComponent

HasBACnetProperty HasBACnetObject

Aggregates

Figure 4.5: Reference type definitions

definition nodes like the BACnetObjectType node. Here so called InstanceDeclarations are
present, which can be objects, variables or methods and are always subnodes of ObjectType
nodes.

One other attribute needs to be set at variable instance declarations: The AccessLevel.
This attribute informs the OPC UA client about access permissions to the particular variable. In
the information model proposed the access permission facet of the conformance code of BACnet
properties is mapped to this OPC UA node attribute. Possible values of the AccessLevel are
Readable and Writeable.

When instantiating an ObjectType node exposing instance declarations, the latter are also
instantiated (depending on the ModellingRule referenced). The key feature of this concept
is that the relative paths from the ObjectType node to the instance declaration nodes are
preserved when instantiating an object. This way, the structure of the type definition survives
and exists in every instance derived from it.

ModellingRules give information about how an instance declaration will be treated
when creating an instance of the type definition. In order to be instantiated together with the
ObjectType node, each InstanceDeclaration referenced by a TypeDefinition
must have a ModellingRule. Otherwise, they will not appear in the instance. In the model
presented in this work, the ModellingRules Mandatory and Optional are used. The
meaning corresponds to the name of the ModellingRule, a Mandatory one forces the In-
stanceDeclaration to be present in the instance, an InstanceDeclaration referenc-
ing an Optional one may be present in the instance. This way, the aspect of the conformance
code of BACnet properties specifying whether a property must be present or not is modelled.
A BACnet Conformance Code of R or W is mapped to a Mandatory ModellingRule, a
Conformance Code of O is mapped to an Optional ModellingRule.

Inherited from the abstract BACnetObjectType all BACnet object types which are spec-
ified in the standard can be defined in OPC UA. Figure 4.6 shows an example how the BAC-
net Device Object type, the Lighting Output Object type and the AnalogOut-
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putObject type are represented using this concept. As shown in this figure, only the object
specific variables are defined – the common ones are inherited from the supertype. As it is com-
mon in OPC UA, the HasSubtype reference is used to model the relation between sub- and
supertype. An example of how meta information can be modelled is also shown in Figure 4.6 in
form of the EngineeringUnit node referenced from the Power variable of the Lighting
Output Object. To model the assignment of a unit to the value of a variable, the UPC UA
built-in reference HasProperty is taken.

If one compares the Present_Value node of the LightingOutputObjectType
and the one referenced by the AnalogOutputObjectType, the datatype attribute of these
two variables differs. The former one is set to BACnetLightingOutputType, the lat-
ter is set to the OPC UA built-in type REAL. As mentioned in Section 4.3 when defining the
Present_ValueType, this attribute is set to a specific and concrete value when defining the
instance declaration. Inheritance mechanisms of OPC UA allow to do this because the abstract
BaseDataType is a supertype of all other datatypes.

In BACnet, each BACnet object is dedicated to exactly one BACnet device – BACnet objects
are therefore never distributed across more than one BACnet device. Therefore, it is reasonable
to take over this device-centric view – each BACnet device is represented as an OPC UA object
instance of the user-defined object type BACnetDeviceType which in turn is a subtype of
the standard OPC UA BaseObjectType (cf. Figure 4.6). The corresponding BACnet objects
are assigned to the OPC UA object representing a BACnet device by using the user-defined
HasBACnetObject reference.

The BACnetDeviceType in Figure 4.6 references an InstanceDeclaration of a
BACnetDeviceObject. This InstanceDeclaration also exposes a Mandatory Mod-
ellingRule. This reflects the fact that on every BACnet device exactly one instance of the
DeviceObject must be present.

Object Instantiation

After having presented how BACnet object and property types are modelled in OPC UA, it must
be specified how instances of BACnet objects and properties are represented by the OPC UA
server. Figure 4.7 shows an example how a BACnet device represented as an OPC UA object
instance (BACnetDevice1) holding a BACnet Device Object and a BACnet Lighting
Output Object is modelled. It has the same structure as its type definition node. Notice that
the instances of the two objects also expose the properties all BACnet objects have in common
(Object_Identifier, Object_Name, and Object_Type which are referenced by the
abstract object type BACnetObjectType) and not only the properties specific to each object.

4.4 Mapping of the BACnet Addressing scheme to OPC UA

What is still remaining is how the BACnet properties exposed by BACnet objects can be ad-
dressed in the OPC UA information model. In BACnet, properties are addressed by the Prop-
erty_Identifier which is unique within the object. In the information model proposed,
this can be done by reading the BACnetPropertyID property that is dedicated to each BAC-
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BACnetObjectType

BACnetLighting
OutputObjectType

Present_Value::
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[Mandatory]
AccessLevel = Readable
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Progress_Value::
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Figure 4.6: Object type definitions
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LightingOutputObject1::
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Figure 4.7: Instantiation of OPC UA objects representing a BACnet device with two objects
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net variable definition. To address the BACnet object, the Object_Identifier which is
unique within the device is used. The Object_Identifier can be determined by the read-
ing the value of the Object_Identifier variable which is mandatory for each BACnet
object. Finally, to address the device itself, the BACnet Device_Id or the Device_Name
which are both unique within the whole BACnet network can be taken. To determine the BAC-
net Device_Id within the OPC UA model, the value of the Object_Identifier vari-
able of the DeviceObject has to be read. To gather the Device_Name, the value of the
Object_Name variable of the Device Object has to be retrieved. As a result, the com-
bination of the value of the BACnetPropertyID property, the value of the OPC UA Ob-
ject_Identifier variable, and the value of the Object_Identifier variable of the
Device Object (or the value of the Object_Name variable of the Device Object) is
used to address a BACnet property in the presented OPC UA model.

Figure 4.7 illustrates an instantiation of a BACnet Lighting Output Object. Con-
sider, for example, an OPC UA client browsing to the Present_Value variable of the BACnet
Lighting Output Object and attempting to read the value of it. To read its current value
from the BACnet network, the OPC UA server needs to invoke the BACnet ReadProperty
service. In order to generate this request, the address information used as parameters of the
ReadProperty service have to be determined first. The network addresses is determined by
the (technology-specific) BACnet driver interfacing the OPC UA server performing a network
discovery before being able to access any BACnet device. Like the visualisation workstation
mentioned in Section 2.6, the BACnet driver is also in the role of a client. It broadcasts a Who-
Is request and gets I-Am responses from the network devices containing the network addresses
and the Device_IDs of these controllers. Having this information, the driver can make an as-
signment of Device_IDs to network addresses. However, this procedure is transparent to the
OPC UA server and therefore not part of the information model.

The other address parameters passed to the ReadProperty service request are gained
from the BACnet information model. The Property_Identifier is determined by reading
the BACnetPropertyID property of the Present_Value variable (in the proposed exam-
ple 85). Afterwards, the value of the Object_Identifier variable is read (in the given
example 1). Then, the Device_Id is determined by reading the Object_Identifier
variable of the Device Object (in the proposed example 29054). This value is used to
look up the network address of the according controller. Using the combination of the Prop-
erty_Identifier, the Object_Identifier and the network address, the OPC UA
server is able to generate the ReadProperty request and send it to the BACnet device. After
having received the response (in the given example containing the value 75), the OPC UA server
is able to forward the present value to the OPC UA client.

4.5 Mapping of BACnet Services to OPC UA Services

In a (building) automation network, where OPC UA and some domain specific network tech-
nologies are applied, OPC UA is implemented hierarchically spoken at the superior network
layer and the domain specific one is lying below (cf. Section 4.1). Access procedures to process
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data are always initiated at the upper level, where OPC UA clients reside. OPC UA servers
provide the interface to the lower level of the automation network.

Derived from this fact, there is need for a transformation of OPC UA services to the domain
specific services by the OPC UA servers. Applied to this case study of BACnet as a building
automation network and OPC UA this results in following:

Service requests of an OPC UA client addressed to a server shall result in BACnet service re-
quests generated by the BACnet driver interfaced by the OPC UA server. These BACnet service
requests shall finally address devices in the BACnet network. The responses to these BACnet
service requests received by the BACnet driver shall be propagated in form of OPC UA service
responses to the OPC UA client.

This concept is applied to representatives of services used for accessing process data and
also to an event handling service. A description of the service parameters used in this mapping
can be found in Section 2.5 (BACnet Services) and in Section 3.5 (OPC UA Services).

OPC UA Attribute Services and BACnet Object Access Services

Mapping in this context means that an OPC UA Read or Write service request performed by
an OPC UA client to an OPC UA server results in a BACnet ReadProperty or a WriteProp-
erty service, respectively which is generated by the server and sent to the underlying BACnet
network. In the course of these service calls, the arguments required by the BACnet object ac-
cess services for addressing a datapoint have to be passed. This addressing information is gained
from the information model by the server and also by the driver which has performed a network
discovery as described in the section above (cf. Section 4.4).

Since write accesses are prioritised in BACnet, a way has to be found to represent this
circumstance in the OPC UA information model. This is done by reading an additional property
referenced by the Present_Value variable, namely the BACnetPriority property (cf.
Figure 4.4). In case a write access is intended to be performed to a Present_Value variable,
the BACnetPriority property must be read first. The result of this operation is passed to the
BACnet WriteProperty service in order to propagate the right priority.

The parameters of the primitives of two services of the OPC UA attribute service set are
mapped to the parameters of the corresponding BACnet object access service primitives. The
mapping in detail looks like the following:

• OPC UA Read service request→ BACnet ReadProperty service request:

– The BACnet Object_Identifier and the Property_Identifier are de-
termined by the OPC UA server using the information model and the current element
(a nodeId) of the nodesToRead[] parameter of the OPC UA Read service
request. The network address of the target device is determined based on the De-
vice_ObjectID.

– The attributeId parameter is checked by the server and only if it is set to
Value the BACnet ReadProperty service request is generated. Otherwise, the

43



desired attribute is read from the information model and passed as an argument to
the OPC UA Read service response.

• BACnet ReadProperty service response→ OPC UA Read service response:

– The current element of the result[] parameter of the OPC UA Read service re-
sponse is set to the Property Value parameter of the BACnet ReadProperty
service response. This is only done if the latter service was successful.

– The current element of the diagnosticInfos[] parameter of the OPC UA
Read service response is set to Good in case the desired operation was success-
ful. Otherwise it is set to Bad.

• OPC UA Write service request→ BACnet WriteProperty service request:

– The current element (the nodeId) of the nodesToWrite[] parameter of the
OPC UA Write service request is translated to a BACnet Object_Identifier
and a Property_Identifier by the OPC UA server using the information
model. The network address of the target device is determined using the De-
vice_ObjectID.

– The attributeId parameter is checked by the server and only if it is set to
Value the BACnet WriteProperty service request is generated. Otherwise,
the write operation is performed on the node in the information model only.

– The value parameter of the OPC UA Write service request is passed to the
Property Value of the BACnet WriteProperty service request. This is only
done if the attributeId is set to Value.

– The Priority parameter of the WriteProperty service request is set accord-
ing to the value of the BACnetPriority property referenced by the Present_-
Value node of the current OPC UA object.

• BACnet WriteProperty service response→ OPC UA Write service response:

– If the BACnet WriteProperty service response indicates Result(+), the cur-
rent element of the result[] parameter of the OPC UA Write service response
is set to Good, otherwise to Bad.

– The current element of the diagnosticInfos[] is set to Success if the Write-
Property service returns with Result(+). Else, this parameter is set to Failed.

Figure 4.8 shows the procedures of reading and writing a datapoint of the process image by
an OPC UA client via an OPC UA server. It is assumed that a session is already established
between the OPC UA server and client and that the driver has already performed a discovery on
the BACnet network. For clearance, the sequence diagram shows only application layer related
parameters. Network layer parameters (IP addresses) are omitted.

OPC UA Subscription Services and BACnet COV Subscription Services

As mentioned in Section 2.5, there are two Change of Value Subscription services in BACnet, the
SubscribeCOV service which subscribes on a predefined set of properties (for the majority of
of BACnet objects on the Present_Value and the Status_Flags property) as well as the
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Figure 4.8: OPC UA client accessing BACnet data via an OPC UA server
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more general SubscribeCOVProperty service where the set of properties can be passed
as an argument. Depending on the application, one of these services can be chosen. Since
more freedom is given by the SubscribeCOVProperty service, this one is considered more
suitable for this mapping. Following this approach, the OPC UA client has complete freedom in
selecting the datapoints, where the subscription shall be applied on.

Besides the value of a variable, there are also two other possible sources of information for a
MonitoredItem in OPC UA, EventNotifiers and aggregated variable values. However,
these fulfil other purposes than the BACnet COV services. So it can be stated that a subscription
on a MonitoredItem with a variable value as a source of information in OPC UA has a
similar semantics than applying a SubscribeCOVProperty on a BACnet property.

The procedure of an OPC UA client applying a subscription on a MonitoredItem is
explained in Section 3.5, where also a use case example thereof is given. In the second step
of this sequence, when a MonitoredItem is created on the server as a consequence of the
CreateMonitoredItem call of the client, the parameters of the BACnet SubscribeCOV-
Property request need to be set before it can be issued to the underlying BACnet network.
The address data needed therefore is again gained from the information model.

The opposite use case of applying a subscription on a MonitoredItem is to remove the
latter from its subscription and delete it as well. Deleting a MonitoredItem must conse-
quently result in cancellation of the BACnet COV subscription. There is no explicit service in
BACnet to achieve this, but it is done by calling the SubscribeCOVProperty service where
the IssueConfirmedNotifications and the Lifetime parameters are omitted.

The mapping of CreateMonitoredItem request parameters to SubscribeCOVProp-
erty request arguments in detail looks like the following:

• OPC UA CreateMonitoredItem request → BACnet SubscribeCOVProperty
request:

– The Subscriber Process Identifier parameter of the SubscribeCOV-
Property request is set to the nodeId value gained from the current element
of the itemsToCreate[] argument of the CreateMonitoredItem request.
This results in a unique assignment of a BACnet COV subscription to an OPC UA
variable, assumed there is only one OPC UA server interfacing the BACnet network.
If two or more servers are present, it has to be taken care that they use different
ranges of nodeIds, i.e. by using different name spaces. Deploying two or more
servers modelling different BACnet properties with the same nodeId results in
wrong assignment of COVNotifications to OPC UA variables by the servers.

– The Monitored Object Identifier parameter of the SubscribeCOV-
Property request shall be set to the value of the Object_Identifier of the
object that holds the property of interest. This value can be read from the Ob-
ject_Identifier variable exposed by the object in the server address space.

– The Issue Confirmed Notifications flag can be set to TRUE if the OPC
UA server is desired to confirm the received COVNotifications. Otherwise, it
has to be set to FALSE. This is an implementation dependent setting.
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– The Lifetime parameter indicates how long the subscription shall be active. In
this model, a default value which can be chosen depending on the application sce-
nario is taken. As future work, this parameter could be integrated in the information
model.

– The Monitored PropertyIdentifier specifies which property to subscribe
on. Its value is also gained from the information model and is set to the value of the
BACnetPropertyID property referenced by the variable of interest.

• BACnet SubscribeCOVProperty response→OPC UA CreateMonitoredItem
response:

– In case the SubscribeCOVProperty response returns with Result(+), the
current element of the result[] parameter of the OPC UA CreateMonitored-
Item response is set to Good, otherwise to Bad.

– The current element of the diagnosticInfos[] parameter of the Create-
MonitoredItem response is set to Success if the SubscribeCOVProperty
response indicates Result(+). Else, this parameter is set to Failed.

• OPC UA DeleteMonitoredItem request → BACnet SubscribeCOVProperty
request:

– The Subscriber Process Identifier parameter of the SubscribeCOV-
Property request is set to the nodeId value gained from the current element
of the itemsToCreate[] argument of the DeleteMonitoredItem request.
The same restrictions valid for the CreateMonitoredItem and the Subscribe-
COVProperty with respect to uniqueness of the assignment apply to this service
mapping.

– The Monitored Object Identifier argument of the SubscribeCOV-
Property request is set to the Object_Identifier value of the object that
holds the particular property. This value is read from the Object_Identifier
variable of the object in the server address space.

– The IssueConfirmedNotifications parameter as well as the Lifetime
parameter are omitted in order to achieve the cancellation of the COV subscription.

– The Monitored PropertyIdentifier is set to the BACnetPropertyID
value referenced by the variable of interest. The BACnetPropertyID value is
gained from the information model.

• BACnet SubscribeCOVProperty response→OPC UA DeleteMonitoredItem
response:

– In case the SubscribeCOVProperty response returns with Result(+), the
current element of the result[] parameter of the OPC UA CreateMonitored-
Item response is set to Good, otherwise to Bad.

– The current element of the diagnosticInfos[] parameter of the Create-
MonitoredItem response is set to Success if the SubscribeCOVProperty
response indicates Result(+). Else, this parameter is set to Failed.
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In case, a BACnet device issues a COVNotification which is received by the OPC
UA server, the server has to change the internal value of the particular variable. Since the
COVNotification contains the Subscriber Process Identifier which has been
set to the value of the nodeId of the variable, correct assignment is achieved (network-wide
uniqueness of nodeIds provided). The new value is propagated to the OPC UA clients which
have applied a subscription on this variable during the next publishing interval.

It is also possible to update a subscription (i.e. change its parameters) on a Monitored-
Item by an OPC UA client. The ModifyMonitoredItems service fulfills this purpose. A
call of this shall result in the server issuing the SubscribeCOVProperty service and passing
the new parameters. This procedure was not in the focus of this work. However, the parameter
mapping is similar to CreateMonitoredItem and SubscribeCOVProperty.

Figure 4.9 shows a typical procedure of an OPC UA client applying a subscription on a
node representing a BACnet property. As a consequence, the OPC UA server issues a Sub-
scribeCOVProperty Request to the proper BACnet controller. Incoming COVNoti-
fications from the controller trigger the OPC UA server to issue Publish Response
messages on the OPC UA client’s Publish Requests. These Publish Responses
contain the new value of the BACnet property that has changed.
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Figure 4.9: OPC UA client applying a subscription to a BACnet property via an OPC UA server
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CHAPTER 5
Implementation of an OPC UA Server

for BACnet

To evaluate the information model developed for BACnet, a proof-of-concept implementation
has been written. The implementation uses parts of the Comet Automation Toolkit which was
developed in the context of the EraSME project “Web-based Communication in Automation
(WebCom)”1 by the project partner HB-Softsolution2. The whole toolkit is written in Java and
provides platform-independency. One of its parts is the Comet Model Designer, a graphical
editor for XML-based OPC UA information models. Another one is the Comet UA Server SDK,
a framework which was used to implement an OPC UA server being able to interface BACnet/IP
networks.

5.1 Comet UA Model Designer

The Comet UA Model Designer was taken in the course of this work to generate an XML repre-
sentation of the BACnet information model. As an editing tool, the Model Designer can be used
to build up information models and to extend existing ones. It provides a graphical user interface
that supports the user in applying definitions of data types, variable types, reference types, and
object types. To achieve this functionality, various input elements like text fields, checkboxes
and drop-down menus are available for defining the particular attribute values. Furthermore, in-
stances may be derived from the previously created type definitions in a very comfortable way.
The hierarchical structure of the resulting information model is expressed by a tree view. A
screenshot of the Model Designer user interface (Figure 5.1) shows the definition of the BAC-
net Lighting Output Object (without completeness of properties) embedded in its type
hierarchy. The information model created by the Comet Model Designer is finally exported to

1http://www.webcom-eu.org/
2http://www.hb-softsolution.com/
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Figure 5.1: OPC UA Model Designer

an XML file. This file can be opened again by the Model Designer for further editing. Alterna-
tively, it can be loaded by the Comet OPC UA Server. The format of these XML files follows
the XML Schema Definition published by the OPC foundation [8].

The following listing shows an extract of the XML file representing the BACnet information
model developed. It is the beginning of the sequence describing an OPC UA object which stands
for a BACnet Analog Input Object:
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<Node i : t y p e =" ObjectNode ">
<NodeId >

< I d e n t i f i e r >ns =4; i =17093 </ I d e n t i f i e r >
</ NodeId >
<NodeClass > Objec t_1 < / NodeClass >
<BrowseName>

<NamespaceIndex >0 </ NamespaceIndex >
<Name> A n a l o g I n p u t O b j e c t 1 < /Name>

</ BrowseName>
<DisplayName >

<Locale >en </ Locale >
<Text > A n a l o g I n p u t O b j e c t 1 < / Text >

</ DisplayName >
< D e s c r i p t i o n >

<Locale >en </ Locale >
<Text >BACnet Analog I n p u t O b j e c t 1 </ Text >

</ D e s c r i p t i o n >
. . .

</ Node>

The attributes of the OPC UA objects are modelled as XML elements. The NodeId element,
for instance, starts with a <NodeId> tag and ends with a </NodeId> tag. Its content in be-
tween consists of another element, the <Identifier>ns=4;i=17093</Identifier>
where the namespace index of the node (ns=4) and the nodeId itself (i=17093) are defined.
Other attributes that can be seen in this example are the BrowseName, the DisplayName and
the Description.

5.2 Comet UA Server SDK

Another major part of the Comet Automation Toolkit is a Software Development Kit (SDK) for
implementing Java based OPC UA servers. This server SDK is functionally separated into two
parts: one is the core OPC UA server which is based on the OPC UA Java stack released by the
OPC foundation. The second part of the server module consists of a driver framework which
allows to implement drivers (interfaces) for particular network technologies that can be loaded
into the core server.

Both the server and the client SDKs are available for development in the widely used
Eclipse3 IDE. For each SDK, a Wizard is provided that facilitates setting up a project.

Figure 5.2 shows the overall architecture of the Comet Server SDK. The central part is the
Core Server based on the OPC UA Java stack published by the OPC foundation. It provides
several interfaces:

• A network interface accepting connections from OPC UA clients via the backbone net-
work. Here the incoming requests from the clients are handled and responses are sent
back.

• A bidirectional software interface passing the requests of the client downwards to the
technology specific driver based on the Driver SDK on the one hand, and providing the
driver access to the OPC UA address space on the other hand.

• A file handler loading the information models in XML format. Via an XML parser, these
files are read and the server address space is built up based on these data.

3www.eclipse.org
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Figure 5.2: Comet OPC UA Server Architecture

The driver package communicates with the Core Server and interfaces the automation net-
work specific protocol stack. Therefore, methods are provided that pass requests from the server
to the protocol stack. To enable the automation network stack to access the server address space,
there are also methods provided to fulfil this purpose. This way, address information regarding
the underlying automation network can be gained and value changes in the process image can
be propagated to the address space.

In order to abstract the access to the target network, a package implementing a specific
protocol stack can be loaded. This package provides methods for issuing service calls and also
handlers to deal with requests originating from the underlying network.

Comet OPC UA Core Server

The Core Server embodies a Java implementation of the OPC UA standard. It also supports a
generic address space which means that it can load the standard OPC UA information model plus
any user-defined information models out of one or more XML files. Furthermore, this address
space can be considered dynamic. This means that changes (in the sense of adding and removing
nodes) can be applied during runtime.

54



Server specific configuration parameters are loaded from another XML file. This way, the
configuration is completely isolated from the server’s source code.

Due to the use of Java, the Comet OPC UA Server is completely platform-independent,
which is one of its key features. Another one is the capability to interface even multiple technol-
ogy specific drivers. So it is able to provide a unified view to a physical process, where different
network technologies are put in operation. This is achieved by each driver interface commu-
nicating with one specific network technology. Also multiple clients using multiple security
profiles can connect to one server instance. One client is allowed to apply multiple subscriptions
on nodes in the address space, too. These features make the server to very flexible and scalable
tool.

Currently, the core server implements the following OPC UA Facets out of the Profile List
defined in the OPC UA standard (cf. [19] Part 7):

• Base Server Behaviour Facet

• Basic DataChange Subscription Server Facet

• Core Server Facet

• Data Access Server Facet

• Enhanced DataChange Subscription Server Facet

• Method Server Facet

• Node Management Server Facet

• Standard UA Server

In the following, the folder structure of the Comet Server framework is illustrated. Figure
5.3 shows a screenshot of the package view provided by the Eclipse IDE.

• The main method is located in the BACnetServerApp.java file in the src folder.
Here, a server instance is created and the server configuration is loaded (the content of
this XML file is described beneath the item dedicated to the serverconfig folder):
o p c S e r v e r . l o a d S e r v e r C o n f i g u r a t i o n ( " s e r v e r c o n f i g / s e r v e r c o n f i g . xml " ) ;

The information model is loaded from one or more XML files. The nodeset.xml
denotes the standard OPC UA information model, whereas the BACnet.xml represents
the BACnet specific part:
o p c S e r v e r . l o a d M o d e l F i l e ( " I n f o r m a t i o n M o d e l / n o d e s e t . xml " ) ;
o p c S e r v e r . l o a d M o d e l F i l e ( " I n f o r m a t i o n M o d e l / BACnet . xml " ) ;

• The Referenced Libraries folder in Figure 5.3 exposes the jar archives including
the class files of the server framework. They are all included in the server release, except
the driver specific libraries that are also placed here. An example of such a driver library
is the Comet_BACnet.jar which represents the BACnet driver. This package was
developed in the course of this thesis (cf. next subsection).
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Figure 5.3: Comet Server Folder Structure

• The certificateStore folder contains the server certificates and the private key file.
An introduction into operating an OPC UA server in a trusted environment and also into
certificate management is given in Section A.4.

• Information model files in XML format must be located in the InformationModel
folder. The XML schema these file have to follow is specified in an XML Schema Defini-
tion (XSD) file published by the OPC foundation (cf. [8]).

• The lib folder actually contains the jar archives which are shown beneath the Refer-
encedLibraries.

• The serverconfig folder contains the serverconfig.xml where various settings
regarding the core server can be applied. Following the XML tags, it is straight forward to
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find the fields where vendor information, security configuration, transport quotas, and sup-
ported security policies can be set. Notice that the local address of the network interface
via which an OPC UA client connects to the server must be set as follows:
< BaseAddresses >

<ua : S t r i n g >opc . t c p : / / 1 7 2 . 2 0 . 0 . 5 1 : 6 0 0 6 < / ua : S t r i n g >
</ BaseAddresses >

In this example, the network address is set to 172.20.0.51 and the server listens on port
6006.

Comet Driver Framework

Drivers interfaced by the Comet Core server are responsible for providing the connections to the
protocol stacks of the underlying networks. Depending on their technologies, the stack imple-
mentations can freely be chosen. In order to uniquely assign the nodes of a specific information
model to a distinct driver implementation, the Namespace Uniform Resource Identifier (URI),
which is configured via the DRIVER_NAMESPACE member variable of the CometDRVMan-
ager class, must be equal to the namespace URI attribute of each node of the information
model. This way, the server is able to distinguish between specific driver implementations based
on the namespace URI of the node currently accessed. This is especially useful if more than one
driver implementation is loaded by the server.

Figure 5.4 shows the folder structure of the driver framework. The source (src) folder con-
tains the ICometDriverConnection.java and the CometDRVManager.java which
are delivered with the driver framework. The interface methods provided by the driver frame-
work and which are responsible for communication and data exchange with the stack implemen-
tations of the underlying network protocols are located in the CometDRVManager.java. The
following methods are available:

• prepareRead(NodeId nodeId) is called after the server has received a Read re-
quest from a client and before syncReadValue(NodeId, long senderState)
is called. This method is used to determine if a node of the server address space that
is currently accessed by a client is a representation of a datapoint of the process image
(i.e. if this access needs to be handled by the driver or not). The result of this decision is
internally saved by the server by setting a flag to SYNCREAD or NOREAD, respectively.
• prepareWrite(NodeId nodeId) fulfills the same purpose as
prepareRead(NodeId) but is used for Write requests.
• syncReadValue(NodeId nodeId, long senderState) is called after a client

has sent a Read request to the server and the node needs to be accessed by the driver. This
method takes the NodeId of the particular node and returns the value of the datapoint de-
termined by the stack implementation.
• syncWriteValue(NodeId nodeId, DataValue, long senderState)

has the same functionality as syncReadValue(NodeId, long) but for write ac-
cesses. Additionally, the value of the datapoint to be written must be provided as an
argument.
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• registerNotification(Node node, MonitoredItemCreateRequest)
is called by the server if a client applies a subscription on a MonitoredItem with a
variable node of the process image as data source.
• unregisterNotification(NodeId nodeId) shall inform the underlying sys-

tem that a cancellation of a subscription on a MonitoredItem has been requested by
the client. This cancellation request is propagated to the subscription mechanism of the
underlying system by this method.
• writeFromDriver(NodeId nodeId, DataValue value, long
dpState) must be called by the driver if a client has applied a subscription on a Moni-
toredItem with a variable node of the process image as data source and if the driver re-
ceives a notification from the underlying network that the value of a datapoint has changed.
The new value must be passed to this method which propagates it to the server address
space. The server again publishes the new value to the particular client which has applied
the subscription.
• readValue(NodeId nodeId) can be called by the driver to read the value of a node

of the server address space.

The jar archives exposed by the Referenced Libraries folder in Figure 5.4 are part of
the driver framework release, except the bacnet4j.jar and the seroUtils.jar. These
two files are specific for the implementation of the BACnet driver introduced below. The first one
contains the BACnet/IP Java stack (BACnet4J, cf. Section 5.3), the second one is a dependency
of BACnet4J.

The libraries described above and just logically linked to the Referenced Libraries
folder are actually located in the lib folder which can be seen at the bottom of Figure 5.4.

In order to use the driver with the Comet OPC UA Core Server, the whole folder structure
of the driver framework described above must be packed into a jar archive and put into the lib
folder of the server framework. Packing is done either by hand or more conveniently by the
Export wizard (File→ Export...→ Java→ Jar) of the Eclipse IDE.

5.3 BACnet Driver implementation

This section describes the implementation of a BACnet specific driver interfaced by the Core
Server. The Driver Module contains methods to initialise network communication, discover
devices present in the network and gather the necessary data from the information model to
address a datapoint in the BACnet network. There are also methods for read and write access
and for applying a subscription on specific datapoints. All the code sections described below are
located in the CometDRVManager.java.

BACnet/IP Stack for Java

The driver implementation for the required interface to the BACnet/IP network is based on the
open source BACnet/IP for Java stack4, also called BACnet4J. It is a Java implementation of

4http://bacnet4j.sourceforge.net/
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Figure 5.4: BACnet Driver Folder Structure

the BACnet/IP protocol supporting all BACnet services defined in the current specification [20].
Emulating a BACnet device by instantiating local BACnet objects is also a task of this imple-
mentation. BACnet objects can be individually created by combining the desired properties to a
custom object. However, in the context of this work, the BACnet stack is only used to implement
client functionalities, besides the instantiation of a local DeviceObject, which is mandatory
for each BACnet device in a network.

There exists a rudimentary documentation in form of a Javadoc5 (an HTML based documen-
tation of the API) which is provided on the Sourceforge BACnet4J webpage. Example programs
for basic applications are also included in the test subfolder within the package BACnet4J is
delivered. Support is given via the forum6 of Serotonin Software, the developer of BACnet4J.

BACnet4J is available as a jar archive. Notice that a classpath entry must be set for
seroUtils.jar (also available via the Sourceforge project webpage) as well when using
bacnet4J.jar [1].

Initialisation

When the server is started, the BACnet4J stack is initialised by assigning the (IP) address of the
correct network interface and also assigning the device identifier to the local device. The driver
is this way behaving like a BACnet device in the network exposing a Device Object. This
is done by instantiating a new LocalDevice:

BACnetLocalDevice = new Loca lDev ice (13579 , BACNET_BROADCAST_ADDRESS, BACNET_LOCAL_ADDRESS ) ;

5http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
6http://mango.serotoninsoftware.com/forum/forums/show/12.page
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A new event listener (the Listener class which is inherited from the DefaultDevice-
EventListener must be defined) to process incoming service responses is added to the event
handler of the local device:
BACnetLocalDevice . g e t E v e n t H a n d l e r ( ) . a d d L i s t e n e r ( new L i s t e n e r ( ) ) ;

Then the Local Device is initialised:
BACnetLocalDevice . i n i t i a l i z e ( ) ;

After this a Who-Is broadcast is performed to the network to determine which devices are
present. This is done by the following statements:
I n e t S o c k e t A d d r e s s add r = new I n e t S o c k e t A d d r e s s ( I n e t A d d r e s s . getByName (BACNET_BROADCAST_ADDRESS) ,
4 7 8 0 8 ) ;
BACnetLocalDevice . sendUnconf i rmed ( addr , n u l l , new WhoIsRequest ( ) ) ;

The replies (I-Ammessages) which provide the assignment of the device identifiers to the IP ad-
dresses are internally stored by the BACnet4J stack. Additionally the Object_List property
of each device is read and printed to the local console.

Obtaining address information of a BACnet property node

A method that is called whenever an access to a node is performed is the public BACnetAd-
dress getBACnetAddress(NodeId), which determines if the node represents a BACnet
datapoint. If so, it reads the components of a BACnet address (PropertyIdentifier, Ob-
jectIdentifier and DeviceIdentifier) from the server address space and returns an
object of the BACnetAddress class containing these parameters. The server address space is
based on the information models loaded and contains an image of all its nodes including their
attributes. The algorithm of the getBACnetAddress(NodeId)method, which is illustrated
in form of a flowchart depicted in Figure 5.5, works the following way:

In a first step, all references linked to the start node, where the nodeId is passed to the
method as an argument, are saved to an array. Since the node holding the property identifier is
an OPC UA property of the start node, the array is searched for a reference pointing to a node
with the browse name attribute set to Property_Identifier. If it is found, this reference
is followed and the value of the target node is read and saved. The same array is also searched
for an inverse reference with the browse name HasBACnetProperty. This one should point
to the BACnet object node which holds all the BACnet properties. Again, an array containing
the references linked to the object node is created. This array is searched for a reference pointing
to a node with the browse name Object_Identifier and for an inverse reference with the
browse name attribute set to HasBACnetObject. If the Object_Identifier node is
found, its value is saved. If the HasBACnetObject reference is found, it is followed, to the
object node representing the BACnet device. Again an array of its references is saved. This array
is searched for a reference pointing to a node with the browse name DeviceObject. The same
procedure of creating an array of its references is applied for this node. Again, the resulting array
is searched for a reference pointing to a node with the browse name Object_Identifier.
The target node holds the DeviceObject_Identifier, which value is also saved.

If all three components of the BACnet address have been found, an object of the BAC-
netAddress class containing these components is instantiated and returned by this method,
otherwise null is returned.
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Read/Write Access

If an OPC UA Client browses to a variable of a BACnet object and performs a read or write
request to its value, the server first calls the prepareRead(NodeId nodeId) method or
the prepareWrite(NodeId nodeId) method, respectively. In these methods, the get-
BACnetAddress(NodeId) is called to determine if the particular node is a BACnet data-
point or not. According to this decision, an internal server flag is set to indicate the nodes
affiliation. If the node is a variable representing a BACnet property, the server calls the syn-
cReadValue(NodeId nodeId, long senderState) method or the syncWrite-
Value(NodeId nodeId, DataValue, long senderState) method, respectively.

To avoid recursive calls of the syncReadValue(NodeId nodeId, long sender-
State) method, there is a boolean member variable DriverAccessLock, which is checked
for being true in the beginning of the method execution. If so, the method is immediately ex-
ited. Otherwise, DriverAccessLock is set to true and the method is executed. Without this
locking mechanism it would be also executed when reading a node value by the getBACnet-
Address(NodeId) since the server has, in case prepareRead(NodeId nodeId) has
not been called for this specific nodeId and the affiliation flag has not been set, no knowledge
about the node representing a BACnet property or not.

Before accessing the BACnet network, the proper BACnet4j RemoteDevice has to be
found in the internal data structure containing the (IP) addresses of the network devices as-
signed to the Device_Identifier. As mentioned, this data structure has been created at
initialisation time after scanning the BACnet network.

The following code section shows how this procedure is defined for read accesses:
p u b l i c s y n c h r o n i z e d ReadResponse syncReadValue ( NodeId nodeId , l ong s e n d e r S t a t e ) {
i f ( Dr ive rAcces sLock == t r u e ) {

r e t u r n n u l l ;
}
Dr ive rAcces sLock = t r u e ;
DataValue [ ] P r o p e r t y V a l u e s = n u l l ;
D i a g n o s t i c I n f o [ ] DInfo = new D i a g n o s t i c I n f o [ 1 ] ;
System . o u t . p r i n t l n ( " Read from node : " + nodeId . t o S t r i n g ( ) ) ;
t r y {

cu r r en tBACne tAddre s s = getBACnetAddress ( nodeId ) ;
i f ( cu r r en tBACne tAddre s s != n u l l ) {

/ / f i n d p r o p e r BACnet d e v i c e
f o r ( RemoteDevice BACnetRemoteDevice : BACnetLocalDevice . ge tRemoteDev ices ( ) ) {

i f ( BACnetRemoteDevice . g e t I n s t a n c e N u m b e r ( ) == cu r r en tBACne tAddre s s . g e t D e v i c e O b j e c t I D ( ) ) {
System . o u t . p r i n t l n ( " RemoteDevice : " + BACnetRemoteDevice . g e t I n s t a n c e N u m b e r ( ) ) ;
/ / r e a d BACnet p r o p e r t y
P r o p e r t y V a l u e s = ReadBACnetProper ty ( BACnetRemoteDevice ,
cu r r en tBACne tAddre s s . g e t O b j e c t I d e n t i f i e r ( ) , cu r r en tBACne tAddre s s . g e t P r o p e r t y I d e n t i f i e r ( ) ) ;
i f ( P r o p e r t y V a l u e s == n u l l ) {

Dr ive rAcces sLock = f a l s e ;
r e t u r n n u l l ;

}
DInfo [ 0 ] = new D i a g n o s t i c I n f o ( " Read from BACnet s u c c e s s f u l " , n u l l , n u l l , 0 , 0 ,
nameSpaceIndex , 0 ) ;
Dr ive rAcces sLock = f a l s e ;
r e t u r n new ReadResponse ( new ResponseHeader ( DateTime . c u r r e n t T i m e ( ) , new U n s i g n e d I n t e g e r ( 0 ) ,

S t a t u s C o d e .GOOD, DInfo [ 0 ] , n u l l , n u l l ) , P r o p e r t y V a l u e s , DInfo ) ;
}

}
}
c a t c h ( E x c e p t i o n e ) {

e . p r i n t S t a c k T r a c e ( ) ;
DInfo [ 0 ] = new D i a g n o s t i c I n f o ( " Read from BACnet f a i l e d " , n u l l , n u l l , 0 , 0 , nameSpaceIndex , 0 ) ;
Dr ive rAcces sLock = f a l s e ;
r e t u r n new ReadResponse ( new ResponseHeader ( DateTime . c u r r e n t T i m e ( ) , new U n s i g n e d I n t e g e r ( 0 ) ,
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S t a t u s C o d e .BAD, DInfo [ 0 ] , n u l l , n u l l ) , P r o p e r t y V a l u e s , DInfo ) ;
}
Dr ive rAcces sLock = f a l s e ;
r e t u r n n u l l ;
}

The RemoteDevice, the Object_Identifier und the Property_Identifier
are passed to the ReadBACnetProperty(RemoteDevice BACnetRemoteDevice,
ObjectIdentifier ObjId, PropertyIdentifier PropId) method to call the
read service methods of BACnet4J and to perform the type conversion from BACnet data types
to OPC UA data types. An array of PropertyValues of the OPC UA datatype DataValue
is returned.

In case the syncWriteValue(NodeId nodeId, DataValue, long sender-
State) method is called, the type conversion from OPC UA data types to BACnet data types
has to be done first. The following listing shows this for OPC UA datatype Float:
i f ( v a l u e . g e t V a l u e ( ) . g e t V a l u e ( ) i n s t a n c e o f F l o a t ) {

p r o p e r t y V a l u e = new com . s e r o t o n i n . b a c n e t 4 j . t y p e . p r i m i t i v e . Rea l ( v a l u e . g e t V a l u e ( ) . f l o a t V a l u e ( ) ) ;

After this, the associated RemoteDevice needs to be found. This is done the same way
like in syncReadValue(NodeId nodeId, long senderState). Then, the Write-
BACnetProperty(NodeId BACnetPropertyNodeId, RemoteDevice BACnetRe-

moteDevice, ObjectIdentifier ObjId, PropertyIdentifier PropId,
Encodable propertyValue) method is called, if all previous operations have been suc-
cessful. These operations are shown in the following listing:
cu r r en tBACne tAddre s s = getBACnetAddress ( nodeId ) ;
i f ( cu r r en tBACne tAddre s s != n u l l ) {

f o r ( RemoteDevice BACnetRemoteDevice : BACnetLocalDevice . ge tRemoteDev ices ( ) ) {
/ / f i n d p r o p e r BACnet d e v i c e by i n s t a n c e number
i f ( BACnetRemoteDevice . g e t I n s t a n c e N u m b e r ( ) == cu r r en tBACne tAddre s s . g e t D e v i c e O b j e c t I D ( ) ) {

Wr i t eBACne tPrope r ty ( nodeId , BACnetRemoteDevice , cu r r en tBACne tAddre s s . g e t O b j e c t I d e n t i f i e r ( ) ,
cu r r en tBACne tAddre s s . g e t P r o p e r t y I d e n t i f i e r ( ) , p r o p e r t y V a l u e ) ;

/ / r e a d back p r o p e r t y v a l u e
Thread . s l e e p ( 3 0 0 ) ;
p r o p e r t y V a l u e _ r b = ReadBACnetProper ty ( BACnetRemoteDevice , cu r r en tBACne tAddre s s . g e t O b j e c t I d e n t i f i e r ( ) ,

cu r r en tBACne tAddre s s . g e t P r o p e r t y I d e n t i f i e r ( ) ) ;
b r e a k ;

}
}

}
e l s e {

/ / BACnetAddr n o t found
Dr ive rAcces sLock = f a l s e ;
r e t u r n n u l l ;

}

The priority parameter of the BACnet WriteProperty service is gained from the infor-
mation model within the WriteBACnetProperty(NodeId BACnetPropertyNodeId,
RemoteDevice BACnetRemoteDevice, ObjectIdentifier ObjId, Proper-
tyIdentifier PropId, Encodable propertyValue) method. A write access to a
BACnet property with a priority set too low results in the value of the property not being changed
effectively (for a description of the priority mechanism of write accesses in BACnet cf. Section
2.5). This can result in data inconsistency between the OPC UA server and the BACnet network.
Therefore, a check needs to be performed by a subsequent read access (after a short waiting
period to cover the delays of transmissions and processing the BACnet controllers take) to the

63



same property. The result of this check is passed to the server. This is done by OPC UA status
codes:

i f ( p r o p e r t y V a l u e _ r b [ 0 ] . e q u a l s ( v a l u e ) ) {
r e s u l t s [ 0 ] = S t a t u s C o d e .GOOD;
DInfo [ 0 ] = new D i a g n o s t i c I n f o ( " Wr i t e t o BACnet s u c c e s s f u l " , n u l l , n u l l , 0 , 0 , nameSpaceIndex , 0 ) ;

}
e l s e {

r e s u l t s [ 0 ] = S t a t u s C o d e .BAD;
DInfo [ 0 ] = new D i a g n o s t i c I n f o ( " BACnet P r i o r i t y " , n u l l , n u l l , 0 , 0 , nameSpaceIndex , 0 ) ;

}

The ReadBACnetProperty(RemoteDevice BACnetRemoteDevice, Objec-
tIdentifier ObjId, PropertyIdentifier PropId) creates a PropertyRef-
erence consisting of the Object_Identifier and the Property_Identifier which
were passed as arguments. This in turn is together with the RemoteDevice passed to the BAC-
net4J readProperties method which then applies the BACnet ReadProperty service to
the network.
P r o p e r t y R e f e r e n c e s P r e f = new P r o p e r t y R e f e r e n c e s ( ) ;
P r e f . add ( ObjId , P r op I d ) ;
P r o p e r t y V a l u e s pvs ;
DataValue [ ] D a t a V a l u e _ i n s t = new DataValue [ READ_BUFFER_SIZE ] ;

t r y {
System . o u t . p r i n t l n ( " Read BACnetProper ty " + P ro p I d . t o S t r i n g ( ) + " o f O b j e c t " + ObjId . t o S t r i n g ( ) ) ;
/ / Pe r fo rm R e a d P r o p e r t y R e q u e s t
pvs = BACnetLocalDevice . r e a d P r o p e r t i e s ( BACnetRemoteDevice , P r e f ) ;
System . o u t . p r i n t l n ( " P r o p e r t y Value = " + pvs . g e t S t r i n g ( ObjId , P ro p I d ) + " \ n " ) ;
Encodab le Value = pvs . g e t ( ObjId , P r op Id ) ;

Now the data type of the Value variable is determined and a new OPC UA DataValue is
created which holds the BACnet property value. This is shown for the BACnet REAL data type
in the following listing:
i f ( Value i n s t a n c e o f com . s e r o t o n i n . b a c n e t 4 j . t y p e . p r i m i t i v e . Rea l ) {

D a t a V a l u e _ i n s t [ 0 ] = new DataValue ( new V a r i a n t ( ( ( Rea l ) Value ) . f l o a t V a l u e ( ) ) ) ;
r e t u r n D a t a V a l u e _ i n s t ;

}

This works analogously for other data types including not only for scalars but also for arrays.

The WriteBACnetProperty(NodeId BACnetPropertyNodeId, RemoteDe-
vice BACnetRemoteDevice, ObjectIdentifier ObjId, PropertyIdenti-
fier PropId, Encodable propertyValue) method additionally takes the NodeId
of the BACnet property node in the server address space as an argument, since it has to de-
termine the BACnetPriority thereof. This is done by checking if the BrowseName of the
nodes referenced by the BACnet property node equals “BACnetPriority” and if true reading
the value:
/ / s e t l o w e s t p r i o r i t y by d e f a u l t
i n t P r i o r i t y = 1 6 ;
Node BACnetPropertyNode = t h i s . getNode ( BACnetProper tyNodeId ) ;
/ / Get p r i o r i t y from p r i o r i t y p r o p e r t y
f o r ( ReferenceNode R e f e r e n c e : BACnetPropertyNode . g e t R e f e r e n c e s ( ) ) {

NodeId P r i o r i t y N o d e I d = NodeId . g e t ( R e f e r e n c e . g e t T a r g e t I d ( ) . g e t I d T y p e ( ) , nameSpaceIndex ,
R e f e r e n c e . g e t T a r g e t I d ( ) . g e t V a l u e ( ) ) ;

i f ( t h i s . getNode ( P r i o r i t y N o d e I d ) . getBrowseName ( ) . getName ( ) . e q u a l s ( " B A C n e t P r i o r i t y " ) ) {
P r i o r i t y = r e a d V a l u e ( P r i o r i t y N o d e I d ) . g e t R e s u l t s ( ) [ 0 ] . g e t V a l u e ( ) . i n t V a l u e ( ) ;
System . o u t . p r i n t l n ( " P r i o r i t y = " + P r i o r i t y ) ;

}
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}
System . o u t . p r i n t l n ( " Wr i t e BACnetProper ty " + P ro p I d + " o f O b j e c t " + ObjId . t o S t r i n g ( ) +

" , Value = " + p r o p e r t y V a l u e . t o S t r i n g ( ) ) ;
/ / Send W r i t e P r o p e r t y R e q u e s t
t r y {

BACnetLocalDevice . send ( BACnetRemoteDevice , new W r i t e P r o p e r t y R e q u e s t ( ObjId , PropId , n u l l ,
p r o p e r t y V a l u e , new com . s e r o t o n i n . b a c n e t 4 j . t y p e . p r i m i t i v e . U n s i g n e d I n t e g e r ( P r i o r i t y ) ) ) ;

}
c a t c h ( E x c e p t i o n e ) {

throw e ;
}

Finally, the BACnet WritePropery service is generated by the send(RemoteDevice
d, ConfirmedRequestService serviceRequest) method of the BACnet4J class
LocalDevice.

Change Of Value Subscription

Following the mapping of the BACnet SubscribeCOVProperty service to the OPC UA
concept of Subscriptions on MonitoredItems described in Section 4.5, the OPC UA
server shall propergate an incoming subscription request of a client to the BACnet driver, which
in turn is intended to apply a SubscribeCOVProperty service request to the desired BAC-
net property via the BACnet network. If the value of the particular property changes and a
COVNotification is generated and received by the BACnet driver, this event shall be prop-
agated to the server. The server publishes this information by transmitting a Notification
service to the client having requested the subscription.

After receiving a subscription request from a client, the OPC UA server calls the regis-
terNotification(Node node, MonitoredItemCreateRequest) interface
method. The second argument, the MonitoredItemCreateRequest provides, besides the
nodeId and the attributeId, additional parameters describing the monitoring of the data
source which it is applied on. Since the node (and hereby the required nodeId) is passed as an
extra argument of the registerNotification(Node node, MonitoredItemCre-
ateRequest) method, the attribute to monitor is implicitly the Value. Further parameters
are currently not regarded. The additional information delivered by the MonitoredItem-
CreateRequest is currently not further processed.

The body of registerNotification(Node node, MonitoredItemCreate-
Request) looks like the following:
r e t u r n app ly_COVSubsc r ip t i on ( node . ge tNodeId ( ) , COVLifetime . d e f a u l t _ t i m e ) ;

The unregisterNotification(NodeId nodeId) method, which is called if the
server receives a cancel request on an existing subscription, looks very similar:
r e t u r n app ly_COVSubsc r ip t i on ( nodeId , COVLifetime . c a n c e l ) ;

So the main part of the work is done in the apply_COVSubscription(NodeId
nodeId, COVLifetime lifetime) method:
p u b l i c s y n c h r o n i z e d S t a t u s C o d e app ly_COVSubsc r ip t i on ( NodeId nodeId , COVLifetime l i f e t i m e ) {

i f ( Dr ive rAcces sLock == t r u e ) {
r e t u r n n u l l ;

}
Dr ive rAcces sLock = t r u e ;
t r y {

65



cu r r en tBACne tAddre s s = getBACnetAddress ( nodeId ) ;
i f ( cu r r en tBACne tAddre s s != n u l l ) {

/ / f i n d p r o p e r BACnet d e v i c e
f o r ( RemoteDevice BACnetRemoteDevice : BACnetLocalDevice . ge tRemoteDev ices ( ) ) {

i f ( BACnetRemoteDevice . g e t I n s t a n c e N u m b e r ( ) == cu r r en tBACne tAddre s s . g e t D e v i c e O b j e c t I D ( ) ) {
System . o u t . p r i n t l n ( " RemoteDevice : " + BACnetRemoteDevice . g e t I n s t a n c e N u m b e r ( ) ) ;
i n t PId = ( ( U n s i g n e d I n t e g e r ) nodeId . g e t V a l u e ( ) ) . i n t V a l u e ( ) ;
s w i t c h ( l i f e t i m e ) {

c a s e d e f a u l t _ t i m e :
BACnetLocalDevice . send ( BACnetRemoteDevice , new Subsc r ibeCOVPrope r tyReques t (

new com . s e r o t o n i n . b a c n e t 4 j . t y p e . p r i m i t i v e . U n s i g n e d I n t e g e r ( PId ) ,
cu r r en tBACne tAddre s s . g e t O b j e c t I d e n t i f i e r ( ) , new Boolean ( t r u e ) ,
DEFAULT_COV_LIFETIME , new P r o p e r t y R e f e r e n c e ( cu r r en tBACne tAddre s s .
g e t P r o p e r t y I d e n t i f i e r ( ) ) , n u l l ) ) ;

System . o u t . p r i n t l n ( "COV s u b s c r i p t i o n a p p l i e d " ) ;
b r e a k ;

c a s e c a n c e l :
BACnetLocalDevice . send ( BACnetRemoteDevice , new Subsc r ibeCOVPrope r tyReques t (

new com . s e r o t o n i n . b a c n e t 4 j . t y p e . p r i m i t i v e . U n s i g n e d I n t e g e r ( PId ) ,
cu r r en tBACne tAddre s s . g e t O b j e c t I d e n t i f i e r ( ) , n u l l , n u l l ,
new P r o p e r t y R e f e r e n c e ( cu r r en tBACne tAddre s s . g e t P r o p e r t y I d e n t i f i e r ( ) ) , n u l l ) ) ;

System . o u t . p r i n t l n ( "COV s u b s c r i p t i o n removed " ) ;
b r e a k ;

}
Dr ive rAcces sLock = f a l s e ;
r e t u r n S t a t u s C o d e .GOOD;

}
}

}
}
c a t c h ( E x c e p t i o n e ) {

e . p r i n t S t a c k T r a c e ( ) ;
Dr ive rAcces sLock = f a l s e ;
r e t u r n S t a t u s C o d e .BAD;

}
Dr ive rAcces sLock = f a l s e ;
r e t u r n S t a t u s C o d e .BAD;
}

After setting the DriverAccessLock flag to avoid recursive calls of the getBACnet-
Address(nodeId) method, the BACnet address is determined and the proper remote device
is looked up. If this has been successful, a SubscribeCOVProperty service request is gen-
erated by calling the send method of the BACnet4j stack with corresponding arguments. The
parameters of the SubscribeCOVProperty service request depend on the required action,
whether to apply a COV subscription or to cancel one. If a COV subscription should be ap-
plied, the IssueConfirmedNotifications (set to TRUE) parameter and the Lifetime
parameter (set to a default value via the DEFAULT_COV_LIFETIME member variable of the
CometDRVManager class) must be present (cf. [20] Section 13.15).

Otherwise, if a cancel request should be performed, these two parameters must be absent.
Therefore, null is passed as arguments of the SubscribeCOVPropertyRequest.

In case a BACnet SubscribeCOVProperty request is not acknowledged by the target
controller or the subscription failed, the send method of the BACnet stack throws an exception
which is cought by the apply_COVSubscription(NodeId nodeId, COVLifetime
lifetime) method. This results in a StatusCode.BAD returned to the server.

The ObjectIdentifier, the PropertyIdentifier and the SubscriberPro-
cessIdentifier are mandatory arguments of the SubscribeCOVProperty service.
The latter one is used to indicate the context of the subscription, i.e. which client and which
process within the client has applied it. As proposed in Section 4.5, this parameter is set to
the value of the NodeId of the corresponding OPC UA node to create a server-wide unique
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assignment.
If a COV subscription is applied to a BACnet property and a COV notification is received

by the BACnet4J stack, the covNotificationReceived method of the DefaultDe-
viceEventListener class is called:
c l a s s L i s t e n e r e x t e n d s D e f a u l t D e v i c e E v e n t L i s t e n e r {

@Override
p u b l i c vo id c o v N o t i f i c a t i o n R e c e i v e d ( com . s e r o t o n i n . b a c n e t 4 j . t y p e . p r i m i t i v e . U n s i g n e d I n t e g e r

s u b s c r i b e r P r o c e s s I d e n t i f i e r , RemoteDevice i n i t i a t i n g D e v i c e , O b j e c t I d e n t i f i e r
m o n i t o r e d O b j e c t I d e n t i f i e r , com . s e r o t o n i n . b a c n e t 4 j . t y p e . p r i m i t i v e . U n s i g n e d I n t e g e r
t imeRemaining , SequenceOf < P r o p e r t y V a l u e > l i s t O f V a l u e s ) {
.
.
.

}
.
.
.

}

The property value(s) that are affected by a change are provided by the listOfValues
argument. To correctly assign the notification to a subscription, the SubscriberProcessI-
dentifier is also passed.

After a type casting which is shown exemplarily for the BACnet REAL datatype in the listing
the writeFromDriver(NodeId nodeId, DataValue value, long dpState)
method of the server interface is called:
i f ( l i s t O f V a l u e s . g e t (BACNET_SEQUENCE_OFFSET ) . g e t V a l u e ( ) i n s t a n c e o f

com . s e r o t o n i n . b a c n e t 4 j . t y p e . p r i m i t i v e . Rea l ) {
w r i t e F r o m D r i v e r ( new NodeId ( nameSpaceIndex , s u b s c r i b e r P r o c e s s I d e n t i f i e r . i n t V a l u e ( ) ) ,
new DataValue ( new V a r i a n t ( ( ( Rea l ) l i s t O f V a l u e s . g e t (BACNET_SEQUENCE_OFFSET ) .
g e t V a l u e ( ) ) . f l o a t V a l u e ( ) ) ) , 0 ) ;

}

Again, the Subscriber Process Identifier holding the NodeId of the node rep-
resenting the BACnet property is passed so that the server can update the value of the correct
node in its address space and publish the new value to the OPC UA client having requested the
subscription.

5.4 Interoperability Test Lab

In order to show the correctness of the information model and the OPC UA server developed
in this work, an instance of a real-world BACnet controller, a Siemens PXC64-U, was modelled
by means of the Comet UA Model Designer. The BACnet controller (shown in Figure 5.6) is
connected via its I/O modules to a temperature sensor and the input of a lighting actuator. This
lighting actuator acts as an electronic control gear (ECG) for a luminescent lamp which is con-
trollable by its 0-10V input. The temperature sensor is a stock PT1000 resistance thermometer.
As a consequence of this peripheral equipment the controller implements one AnalogIn-
putObject and one AnalogOutputObject as a BACnet representation of these devices.
Additionally some other BACnet objects like BinaryInputObjects, BinaryOutput-
Objects, BinaryValueObjects and AnalogValueObjects which do not have pe-
ripheral counterparts, are instantiated. Table 5.1 gives a summary of all the datapoints parame-
terised on the controller, including the name of the datapoint (DP Name), the hardware address
in the notation of I/O module.Port, a description, the BACnet Device_Identifier
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InternetOpenVPN server

OpenVPN tunnel

Private IP network (BACnet/IP)

172.19.0.0/16

OPC UA server/BACnet driver

OPC UA client

172.20.1.10
OPC UA client

172.20.1.11

Private IP network (OPC UA)

172.20.0.0/16

BACnet controller

Siemens PXC64-U

172.19.0.19

Network interface 2: 

172.20.0.51

Network interface 1: 

172.19.0.51

Temperture sensor

PT1000
Light actuator

Object_Identifier = 0x000001

Object_Name = B’AI1

Object_Type = Analog Input

COV_Increment = 0.2

Description = Temperature Sensor 1 

Present_Value = 24.273

...

Object_Identifier = 0x400001

Object_Name = B’AO1

Object_Type = Analog Output

COV_Increment = 0.2

Description = Light Actuator 1

Present_Value = 75

...

Figure 5.6: Test Lab Setup

and the Object_Identifier. The resulting OPC UA information model of this BACnet
controller was developed with the Comet Model Designer, exported as an XML file and further
loaded into the OPC UA server.

The OPC UA server with its BACnet interface is connected to the same private IP network
(172.19.0.0/16) as the BACnet controller. This network can be considered as the automa-
tion level network, referring to the automation pyramid model. The other network interface used
for OPC UA communication is connected to another private network (172.20.0.0/16). The
latter private network is accessible from the Internet via a VPN connection. An OpenVPN7

server takes care that only authenticated users can connect to this network. This security mea-
sure avoids vulnerability of the OPC UA server in case of a bad security configuration of the

7http://openvpn.net/
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DP Name I/O Address Description DeviceID / ObjectID
TEMP_1 1.1 Temperature Sensor 1 29054 / Analog Input Object 1
AI_2 1.2 not connected 29054 / Analog Input Object 2
BI_1 1.3 not connected 29054 / Binary Input Object 1
BI_2 1.4 not connected 29054 / Binary Input Object 2
LGHT_1 1.5 Light Actuator 1 29054 / Analog Output Object 1
AO_2 1.6 not connected 29054 / Analog Output Object 2
AV_1 - Virtual Datapoint 1 29054 / Analog Value Object 1
DV_1 - Virtual Datapoint 2 29054 / Binary Value Object 1

Table 5.1: List of Datapoints

server during testing. For normal operation a well configured firewall would be sufficient since
OPC UA already provides strong security mechanisms (cf. Section A.2).

Any available OPC UA client can now be used to connect to the OPC UA server, for example
the UaExpert which is released as Freeware by Unified Automation8. Figure 5.7 shows a screen-
shot of a part (the AnalogInputObject which represents the analog input of the controller
the temperature sensor is connected to) of the server address space displayed by UaExpert. By
applying a Read service to the PresentValue node, the temperature value can be accessed.

Further, the analog output of the BACnet controller where the light actuator is connected,
can be controlled by performing a write access to the PresentValue node of the associated
AnalogOutputObject. As an additional feature of this installation to provide feedback
to operators at remote locations (especially useful for demonstrations), a simple IP webcam
focused on the luminescent lamp is set up.

In order to apply a subscription to a datapoint, a specific node can be dragged and dropped to
the Data Access (DA) view of the UaExpert, which is also shown in Figure 5.7. This triggers the
OPC UA server to call the COV subscription method of the BACnet driver which in turn applies
the SubscribeCOVProperty service of the BACnet stack to the specific BACnet property.
The node values displayed by the UaExpert are updated continuously this way, depending on
the Publishing Interval and the Sample Rate settings also adjustable via UaExpert.

8http://www.unified-automation.com
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Figure 5.7: OPC UA Server Address Space explored by UaExpert
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CHAPTER 6
Conclusion and Outlook

In this work an approach of developing an OPC UA information model for BACnet was pre-
sented. As an example, a few BACnet objects (Device Object, Lighting Output Ob-
ject, and the Analog Output Object) were taken to show the way of mapping a BACnet
object with its properties to an OPC UA information model. Also the BACnet addressing scheme
was transferred to this model. Following this pattern, further existing BACnet objects can be in-
tegrated in this information model. On the way to a complete information model, the mapping of
BACnet services needs to be refined. One example is the Lifetime parameter of the BACnet
SubscribeCOV service, which has currently no reflection in the information model. Also for
the BACnet services, which were not in the focus of this work, a mapping has to be found. Espe-
cially the alarm and event service sets, which allow to monitor BACnet properties and generate
alarms on particular conditions, have great practical relevance and so a mapping to monitoring
and subscription mechanism of OPC UA should be one of the next steps.

The proof-of-concept implementation of a BACnet driver for an OPC UA server developed
in the course of this thesis can also be enhanced. On the one hand, the mapping of the remaining
services mentioned above needs to be integrated into the driver. On the other hand, to make this
server implementation more useful in a real life BAS, a dynamic address space concept should
be introduced. This means that the server should generate its address space reflecting BACnet
devices and their objects during initialisation time based on a scan of the BACnet network. Fur-
thermore, the address space should be kept consistent during runtime by adapting it to changes
of the BACnet configuration (i.e. when objects are removed or new ones are added).

To achieve the desired interoperability between different standards used in BAS, information
models have to be introduced for other technologies, too. A similar information model that maps
the interworking model of KNX into OPC UA was already presented in [30]. A final step in this
process is to design a general information model representing the common aspects of BAS.

Also within the focus of the WebCom project was to implement a KNX driver for the OPC
UA framework presented in Chapter 5. It acts as a proof of concept like the BACnet driver
implemented in the context of this work. It can furthermore be integrated in the setup of the
interoperability test lab introduced to show the feasibility of accessing both network technologies
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in a unified way. Also further distributed tests over the Internet can be run with this extended
setup.

In the course of the ongoing research project Information Modelling in Automation1 (iMod-
elA) which acts as the successor of WebCom, further efforts regarding this topic are underway.
The goal of this project is to close the gap between the domains of building automation and
industrial automation by including energy consumption data and device configuration data into
the information models describing the underlying technologies. The BACnet information model
will also be enriched under these aspects. The Comet UA server for BACnet described in this
thesis is planed to be extended by interfaces to LONWorks and M-Bus.

Currently, a joint working group consisting of members of the OPC Foundation, the BACnet
Interest Group Europe2, the automation industry and the Automation Systems Group is laying
down a companion specification for BACnet and OPC UA. The information model introduced
in this thesis acts as a basis therefor. A first version of the new specification is expected to be
published in spring 2013. Since working prototypes of OPC UA servers for BACnet are planed
to be presented to the community, the Comet UA server for BACnet might play a further role in
this context.

1http://imodela.org
2www.big-eu.org
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APPENDIX A
Certificate Management in OPC UA

Applications: An Evaluation of
different Trust Models

A.1 Introduction

OPC Unified Architecture (OPC UA) provides a powerful and inherent security model. These
mechanisms rely on software certificates. In an automation system where OPC UA is applied, a
strategy must be defined how to manage these certificates, i.e. an organised way of distribution,
validation and revocation needs to be found. In general, there exist different concepts of how to
achieve this goal. Moreover, there are various, in some cases platform dependent frameworks
available which assist the developer in implementing a suitable concept. The aim of this paper
is to give an overview of these concepts and frameworks and discuss their positive and negative
aspects depending on the structure of different environments in which OPC UA applications
shall be embedded.

Contrary to the past OPC specifications, security is mandatory in OPC UA [19]. This should
avoid bad experiences like made in the past with respect to developers of OPC products relying
on the security mechanisms of the operating systems the OPC application runs on top of. This
resulted in many systems being insecure and vulnerable. The security measures of OPC UA
are unbundled of the operating system, so the developers of OPC UA products have almost full
control over the security level of an application running in a distinct environment.

OPC UA provides a very flexible security model that can be adapted to the desired use case.
There are different requirements on security, dependability and performance depending on the
system in which OPC UA applications are embedded. Also the number of OPC UA products
installed as well as the human and financial resources available have an influence on the question
of which approach leads to the optimal solution. The challenge is to find a trade-off between
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these requirements for each distinct environment. This work is intended to provide assistance in
addressing this decision.

In the following section, an introduction into the OPC UA security architecture is given. The
communication between an OPC UA server and a client is based on a session on top of a Secure
Channel. For this purpose certain digital certificates are necessary. This leads to the question
of how to establish trust relationships between OPC UA applications. Section A.4 is dedicated
to this topic. In the following Section A.5 various software frameworks aiming at this target are
presented. The paper ends with a discussion (Section A.6) of a guideline where several methods
of managing certificates based on different models of trust are compared and evaluated.

A.2 The OPC UA Security Architecture

Secure connections between an OPC UA client and a server are based on a three-layer archi-
tecture. This is shown in Figure A.1. Connections established by the transport layer of the OSI
Reference Model are based on server and client sockets. Here it is taken care of error detection
and error recovery to achieve a reliable connection between the communication partners.

Based on this socket connection a secure channel is opened by the communication layer of
the OPC UA protocol stack. The communication layer is responsible for exchanging data in a
secure way. Therefore, multiple requirements have to be fulfilled:

• Data integrity is guaranteed by digitally signing the content transmitted.

• Data confidentiality is a assured by encryption of data.

• Applications have to identify other applications by authentication and authorisation mech-
anisms. ITU1 X.509 certificates are applied for this purpose. The same is an option for
users instead of password-based authentication and authorisation.

The application layer on top of this architecture provides services for transmitting data, call-
ing methods and exchanging configuration data between server and client in a Session. Within
a session, communication partners like users and certain products have to be authenticated and
authorised. These tasks are managed by the OPC UA session services defined in the OPC UA
specification Part 4.

A.3 Connection Establishment

In the following, the establishment of a secure channel between an OPC UA client and a server
is described. Its main purpose is to exchange secret information for calculating symmetric keys
used for data encryption and also for signing communication data. These operations are less
CPU intensive using symmetric keys rather than using asymmetric ones.

In the beginning, the client either has preconfigured the connection settings to be used or
not. This configuration includes the security policy (the algorithms used for signing and encryp-
tion as well as the algorithm for key derivation) and the session endpoint of the server. If the

1International Telecomunication Union, www.itu.int
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Figure A.1: OPC UA Security Architecture (cf. [19] Part 2)

client does not have this knowledge, it sends an unencrypted GetEndpoints request to
the server. This is shown in Figure A.2. The server returns a GetEndpoints response
which contains the supported security configurations and the Server Application Instance Cer-
tificate. An application instance certificate in OPC UA is used to identify a running applica-
tion. After this certificate has been validated by a Validation Authority, the client sends an
OpenSecureChannel Request which is already secured by the selected security policy
to the server. The OpenSecureChannel Request contains the clients Client Application
Instance Certificate. The server accesses the validation authority and checks if this certificate is
valid. If so, it returns a similarly encrypted OpenSecureChannel Response. This indi-
cates a secure channel being established.

In a second step, in order to establish a session on top of the already established secure chan-
nel, the client sends a symmetrically encrypted CreateSession request to the server.
The CreateSession response of the server contains the Server Software Certificates
which prove the functional capabilities of the server. Another purpose of these certificates is
to identify a specific OPC UA product. These certificates are verified by a validation authority
the client sends them to.

At last, the session needs to be activated. Therefore, the client sends an ActivateSes-
sion Request to the server. This message contains the user credentials and the Client Soft-
ware Certificate. The user credentials are usually a username-password combination, but they
can also be provided in form of another X.509 certificate. The server validates the client’s soft-
ware certificate by a validation authority. The server checks the user credentials either by a
database lookup in case a username and a password is used or by a validation authority if a cer-
tificate is applied. If successful, it returns an ActivateSession Response to set up the
session.
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Figure A.2: Establishing an OPC UA Connection [35]

84



A.4 Certificate Management in OPC UA Applications

This section first gives an introduction into digital certificates and how they are created and used.
There exist different rules describing which entity creates certificates and how they are validated.
These sets of rules constitute various trust models which are presented in the following.

Certificates

A digital certificate is an electronic document basically containing a Public Key (for deeper
information about public key cryptography cf. to [28]) and identity information about the owner
of the certificate. A digital signature applied by a trusted third party, the Certification Authority
(CA) or by the owner itself (self signed certificates) is used to bind these two attributes together.
This way, every other entity can check if the integrity of the certificate is preserved. Other
attributes which are also included in a digital certificate are a serial number, a version field, the
issuer of the certificate (the CA or the owner) and the validity period. There may be also a field
to be filled in with further information.

The public key of a public/private key pair bound to the owner of the certificate is used for
example for message encryption between a client and a server.

There must be found a way of organising the creation, distribution, validation and revocation
of certificates. Some technical and organisational infrastructure is necessary to achieve this goal.
The OPC UA standard does not define how such an infrastructure should look like. However,
there exist some general concepts how to implement such an infrastructure. The following sec-
tion introduces these concepts where each of them is suitable for a different application scenario.

Trust Models

Trust between End Entities (EEs) is achieved by either trusting in their associated certificates or
trusting in a third party (trusted third party) that has previously authenticated the other entity.
This is reflected in the different trust models introduced in the following.

A trust model can be organised in two ways, hierarchical by using one or more CAs or
user-centric (decentralised) by applying the models of Direct Trust or Web of Trust.

• A Web of Trust gets along without any CA as a trusted third party. It only consists of EEs
which make their own decision of whom to trust or not. This principle is applied in Pretty
Good Privacy (PGP) and its open source siblings OpenPGP and GnuPG. This model does
not scale well, since every EE needs to store a certificate of each EE it trusts. Also finding
a trust path from one EE to another EE in big sets can consume a lot of computational
power.

• The Direct Trust Model does not need any trusted third party, either. There are individual
trust relations between the EEs. These trust relations have to be set individually for each
EE. Therefore it does not scale well for big projects, either. This model is a very labour
intensive one because usually the certificate distribution must be done manually (out-of-
band). This method is only suitable for small environments but unreliable und inefficient
for large scales.
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• In a Public Key Infrastructure (PKI) there is one CA or even more CAs as trusted third
parties in a hierarchy of inheritance which are organised like shown in Figure A.3. A
hierarchical organisation of CAs also results in a trust hierarchy, where a sub CA always
trusts its super CA. Sub CAs can be assigned to particular units of an enterprise. This
model scales well for big projects.

Another way of organising CAs is a full-meshed architecture, which is a convenient ap-
proach if there is a lot of communication between different units of an enterprise. This
way, trust paths are kept short since there is a direct relationship between the CAs instead
of going up to the common root and back down the other branch. On the other hand, path
discovery may be more difficult since there may be multiple choices.

Each way of structuring a PKI has its advantages and disadvantages. A pro for a single
CA is that it is easy to maintain. On the other hand, it has limiting effects on the size
of the organisation. A multiple CA architecture scales well for big organisations but this
advantage has to be bought by an administrative effort multiplied by the numbers of CAs
present within the system.

Root CA

CA 3CA 2CA 1

EE 1 EE 2 EE 3 EE 4

Figure A.3: Hierarchical Trust Model [35]

Public Key Infrastructure

Concluding the different aspects of the particular trust models it can be claimed that a PKI
is the most suitable one for the majority of OPC UA applications. The direct trust model is
only applicable for very small organisations and the Web of Trust does not scale well, either.
Therefore, a closer look at the structure of a PKI is taken. A PKI consists of the following
entities which are illustrated in Figure A.4:
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• An end entity (EE) can be either an OPC UA product or a user. It requests and uses the
certificates issued by the CA.

• The CA is the trusted third party in a PKI. It generates documents based on the identity of
end entities and the CA’s private key. These documents are issued as certificates to other
end entities.

• A Registration Authority (RA) is not an essential but optional component of a PKI. It per-
forms tasks on behalf of the CA like verifying the identity of an end entity and checking,
if an end entity is allowed to have a certificate, have its certificate renewed or revoked.
After this verification, the RA forwards the EE’s request to the CA.

• The Validation Authority (VA) has the purpose of validating certificates that EEs provide to
it and returns the result of this calculation to the EEs. The validation process is performed
by verifying the signature, checking the validity period and if the certificate has not been
revoked. It must also be examined, if the usage of the certificate is within the specified
purpose.

In a PKI there exists a so called Certificate Lifecycle. Figure A.4 shows the different entities
in a PKI and how they interact within a certificate lifecycle. It starts with the request of certifi-
cates by the EEs. After verification of the request by the RA, the request is propagated to the
CA. The next step is to distribute the certificates among the EEs that issued the request. Now
the EEs (OPC UA applications or users) can take the certificates for authorising and authenti-
cating themselves or for message encryption. Since there is a limited period of time in which
certificates are valid, they need to be renewed or updated in case they are expired. If necessary,
certificates can also be revoked. This is the case if e.g. the private key associated to the certifi-
cate is compromised or the certificate is not needed anymore. The usual approaches of setting
up a PKI that manages the certificates lifecycle mainly differ in the methods of distribution and
revocation.

There are the following ways of distributing certificates issued by a CA among the requesting
EEs:

• Out-of-band: This method is performed manually by transporting the certificates on a
storage medium (e.g. disk, usb-stick) to the EE or transferring it by email to the target
entity. Here it is imported into a local repository. This approach is an easy solution for
small environments but does not scale well for big ones since it is labour intensive and
unreliable because of the human component involved.

• Certificates can also be published in a central, well known, public repository like a Light-
weight Directory Access Protocol (LDAP) [13] server. This can be seen as a Web server
which provides access to a database containing certificates. The database content is con-
trolled by a CA. This approach provides automatic download of certificates which makes
it to a reliable solution. On the other hand, a single server is always in danger to be
confronted with Denial of Service (DoS) attacks. Additional network traffic on an extra
channel is also caused following this approach.
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• In-band distribution means that an application-specific communication protocol is used
for exchanging certificates. This way, no additional channel or protocol is necessary.
Secure/Multipurpose Internet Mail Extensions (S/MIME), Transport Layer Security (TLS)
(cf. [25]) or even services from OPC UA can be used for this purpose.

For certificate revocation there also exist multiple choices:

• Following the offline approach so called Certificate Revocation Lists (CRL) are down-
loaded by the EEs from public, well-known locations like LDAP, FTP, HTTP servers at
certain intervals. A CRL contains information about all the revoked certificates of a trust
domain. It is signed by the CA that publishes the list. A CRL always reflects the past.
It cannot provide any information about the current validity of a certificate. The recency
of a CRL depends on the update intervals, which are determined as a trade-off between
network load and the desire of having an up-to-date CRL.

• The other choice is using online mechanisms to check if a certificate is valid. EEs connect
to a service provider every time they use a certificate and thereby have its validity checked.
A common way to achieve this is by using the Online Certificate Status Protocol (OCSP)
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[9]. It can provide real-time information, depending on the source of information the
OCSP server relies on. Contrary to CRLs, also positive information can be disseminated
about the validity of a certificate, i.e. an OCSP server can explicitly declare a certificate
valid.

A.5 Applicable PKI Frameworks for OPC UA

There is a big variety of proprietary and open-source PKI frameworks available today, like
OpenSSL2, Microsoft Windows Server3, OpenXPKI4, VeriSign Managed PKI Services5. Most
popular OPC UA SDKs published by the OPC foundation and the diverse software products
based on these SDKs are written in .NET, Java and ANSI C. Therefore, a small guideline of
which framework to use to operate OPC UA products in a trusted environment depending on the
programming language and other criteria will be given.

The OPC Foundation released two tools that also can be used to manage OPC UA applica-
tions and certificates, the UA Configuration Tool and the UA Certificate Generator. Since there
already exists a Whitepaper [37] giving a description of these tools and a guideline about the
administrative procedures that lead to a secure environment for OPC UA applications, there is
no further discussion about these tools in this work.

Windows Server, .NET

A Windows based PKI is a convenient commercial solution available for a reasonable price.
Many enterprises use a Windows environment anyway, so it is only about using additional fea-
tures of Windows Server and the client operating systems. The Windows ActiveDirectory Cer-
tificate Services exist since Windows NT 4.0 and can therefore be considered as very mature.

Windows Server machines act as the CAs in a PKI. RAs can be set up by also Windows based
Internet Information Services (IIS) Web servers. This allows Web Enrolment, i.e. an automatic
way of certificate dissemination among the EEs. User identity information is also gathered
by an IIS server and verified by using ActiveDirectory. LDAP services are also available via
ActiveDirectory.

A step by step guideline of how to setup a Windows based PKI is provided by Microsoft
TechNet [36].

VAs are represented by the local Windows Certificate Stores of each machine, which pro-
vide an abstract, unified way to access certificates. OPC UA applications based on .NET must
implement routines to access certificates from the certificate store. A paper that describes how
to deal with certificates in .NET applications and also containing example code can be found at
the MSDN Magazine Website [26].

2http://www.openssl.org/
3http://www.windowsserver.com/
4http://www.openxpki.org/
5http://www.verisigninc.com/
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OpenSSL

OpenSSL is an open source toolkit written in C. It implements the Secure Sockets Layer (SSL
v2/v3) and Transport Layer Security (TLS v1) protocols as well as a general purpose cryptog-
raphy library. It is released under an Apache-like licence. Supported platforms are UNIX-like
operating systems and Windows.

Besides the C libraries supporting cryptographic services, OpenSSL also provides a command-
line program called openssl with all the functionalities necessary for managing a PKI. For this
purpose, the toolkit must be installed on every machine of the environment. Issuing certificate
requests, the generation of RSA keys and X.509 certificates as well as commands to revoke
certificates and to generate a CRL are the main features of this tool.

All these steps can be performed in a manual way where the administrator acts as the CA
and the RA. This approach is suitable for small environments. In order to handle certificate
management in bigger projects, script based execution of these operations is recommendable.
Further information containing a step-by-step instruction of how to set up a PKI with OpenSSL
can be found at the Symantec webpage [39].

OpenXPKI

OpenXPKI is an open source software implementation targeting from small installations to
enterprise-level (large-scale) PKIs. It is designed for Unix-like operating systems and is re-
leased under an Apache licence. The key features of OpenXPKI are the support of multiple CA
instances on a single application instance in order to set up a trust hierarchy and the capability
of full automatic CA rollover. This way, continuous operation of the PKI is assured without
administrator intervention, in case one CA certificate expires and another CA has to take over.
High flexibility is achieved by an XML-file controlled workflow engine that allows extending
the basic PKI operations.

An OpenXPKI installation can act as a CA, a RA or an EE, depending of its configuration.
Certificates, private keys and revocation information are stored in a database system that can be
chosen out of the most popular ones like MySQL and Oracle. Documentation for developers is
provided on the project Webpage [6].

This solution will mainly be applicable for large scale installations because it causes quite an
effort to set up and configure an OpenXPKI based PKI. This work is best done by professional
developers. The complexity of this framework is a result of its high flexibility and modular
design.

Java

There is a powerful security API delivered with the Java SDK. It also includes classes (java.
security) related to PKI applications. Their functionalities encompass support for X.509 cer-
tificates, CRLs and PKIX-compliant [24] certification path building and validation [5]. Classes
that provide a key store (a secure repository for cryptographic keys) and a certificate store are
also available. This makes the Java security API mainly interesting for the use in EEs of a PKI.
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Figure A.5: 2-Tier automation network establishing a hybrid trust model

Additionally, there is a command-line program named keytool which can be used for
creating and managing key stores. The main features of this tool are:

• Create public/private key pairs and self-signed certificates

• Display, import and export X.509 certificates stored as files

• Issue PKCS#10 [10] (a standardised message format) certificate requests to be sent to CAs

• Import certificate replies obtained from the CAs as responses to certificate requests

• Designate public key certificates as trusted

More details about this tool and the Java security API can be found in the Java SE documen-
tation available at the Oracle Website [5].

A.6 Discussion

The question about the best trust model for a given application is a hard one to find an explicit
answer on. Moreover, the development of proper security metrics which would provide methods
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for quantitative comparison of different approaches is still an ongoing field of research. The
likelihood is that it is not possible to find metrics for every security aspect [32]. The decision on
the particular trust model implementation does not only depend on hard facts like size, structure
and the equipment already in use but is also based on personal taste. One may prefer the use
of free software where it is often more effort to set up a working system. Also hiring external
personnel for this purpose may be necessary. Another one favours commercial software which
is usually bought as an out-of-the-box product including support. This again results in less effort
for the own personnel.

But there are several criteria that lead the decision which solution to apply to a distinct
direction:

The budget available has a limiting influence on this choice. A single CA PKI is naturally
cheaper since there is less maintenance effort compared to the multiple amount of effort caused
by a hierarchical or a full-meshed architecture. Higher maintenance effort results in higher
personnel costs. For small applications also the direct trust model can be imaginable. This
represents the cheapest solution since there is no extra security-related equipment necessary.

The availability of human resources has a similar effect on the decision upon a trust model.
For small organisations, a single CA architecture or also the direct trust model will be sufficient.
This can be seen from two sides: Little human resources operating a small set of machines
in a trusted environment issue little requests for certificates. This keeps on the other side the
infrastructure small, i.e. the equipment to manage these requests and the personnel maintaining
the equipment. The opposite applies to large scales, which will result in an architecture with
multiple CA. The decision whether to deploy a hierarchy of CAs or a mesh of CAs depends on
other criteria.

Dependability may be a goal to achieve in case danger threatens humans or material if some
equipment is not available caused by a faulty trust infrastructure. In a single CA or hierarchical
CA architecture there is always a single point of failure: The single CA or the root CA, respec-
tively. On the contrary in a meshed architecture no fail of the whole PKI takes place if one CA
is compromised or out of service. Only the users or EEs affected, that have a trust relationship
to the CA involved. Recovery is also easier since a new certificate only needs to be distributed
among these few affected EEs.

It is finally convenient to map the structure of the organisation to the model of trust. This will
mostly be applicable if it is already clear that a single CA architecture or the direct trust model
will not fulfil the requirements because a distinct size of the organisation is already exceeded.
If a hierarchical structure is inherent with the organisation, i.e. there is mainly communication
between sub units and super units, then the trust relationship should be organised this way. On
the other hand, if there is also considerable communication between units on the same level, the
meshed PKI architecture is probably the right choice.

An idea, how trust relations can be organised in a real-world automation system is given in
Figure A.5. It illustrates a 2-tier automation hierarchy consisting of a field level, where measur-
ing and setting of physical values takes place and a backbone level where data from the lower
tier is aggregated for visualisation and trending. Configuration of the system and providing an
interface to management and enterprise applications are further tasks of the backbone level.

In this example, OPC UA is used at both tiers of the automation system. Having OPC UA
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servers at the backbone level to enable standardised and uniform access to process data of the
lower level [29], like shown in the right part of Figure A.5 can be seen as the classical approach.
Though, the current trend is leading to use OPC UA all down to the field level [2], which is
illustrated in the field device network in the left lower part of the figure.

The trust model used in this example follows a hybrid approach. The OPC UA devices (EEs)
are part of PKIs and receive their certificates from different CAs. There is one CA for each group
of devices: one for the OPC UA field devices, one for the OPC UA servers interfacing a distinct
network technology and one for the OPC UA clients. This way, a separation between these
groups regarding certificate management is achieved. This provides on one hand a distinct level
of dependability and keeps on the other hand the number of EEs per CA limited. In order not to
lose dependability gained by the multiple CA approach, there is no single root CA in this system
but trust between the CAs is established by implementing a full-meshed architecture. Yet, a
compromise is made with respect to scalability of the number of CAs since the number of trust
relationships between CAs grows polynomially.

A.7 Conclusion and Outlook

In this paper different methods of certificate management (trust models) in OPC UA applications
have been presented. As a reason of the limited scalability of the Web of Trust and the Direct
Trust Model, for medium and large scale environments the Public Key Infrastructure evaluated
as the most convenient approach of managing certificates. Nevertheless the Direct Trust Model
can be an option for an automation system in which a very limited amount of OPC UA devices
are installed. As research on security metrics advances, it might be feasible in the future to
quantitatively compare the aspects of trust models which have not been discussed in this work.

The choice between the presented frameworks on one hand depends on the operating system
preferred or already in use in the environment, respectively. There are frameworks available for
Windows, Unix-like platforms as well as the platform-independent Java security API. On the
other hand, different features provided by distinct frameworks have influence on this decision.

Finally, a discussion about how the structure of the environmental system where OPC UA
applications are installed, the resources available and a request to dependability shall affect the
strategy of managing certificates.

Since this is a very practice-related topic, experiences made by companies operating in the
field of automation which integrate and maintain OPC UA applications should be taken into
account to approve this theoretical work. A survey evaluating the feedback given by OPC UA
integrators and end-users could give more insight into this topic.
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