
MSc Economics

A Master’s Thesis submitted for the degree of
“Master of Science”

supervised by

Revenue-Maximizing Combinatorial Auctions
in a Simplified Setting

Martin Meier

Béla Szabadi

1026546

Vienna, 8 June 2012

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

MSc Economics

Affidavit

I,

hereby declare

that I am the sole author of the present Master’s Thesis,

pages, bound, and that I have not used any source or tool other than those

referenced or any other illicit aid or tool, and that I have not prior to this date

submitted this Master’s Thesis as an examination paper in any form in Austria or

abroad.

Vienna,
Signature

Béla Szabadi

Revenue-Maximizing Combinatorial Auctions in a Simplified Setting

69

8 June 2012

Contents

Lists of Figures ii

List of Tables iii

List of Appendices iv

1 Introduction 2

2 Combinatorial Auctions 5

2.1 The Model . 5

2.1.1 The Bidders’ Behavior . 7

2.1.2 Objectives of the Auctioneer 8

2.1.3 The Revelation Principle 10

2.2 Issues with Combinatorial Auctions 12

2.2.1 Dimensions of the Problem 12

2.2.2 Strategies . 12

2.2.3 Complexity Issues . 13

2.2.4 Goals of the Auction . 16

2.2.5 Other Common Problems in Auction Design 18

2.3 VCG Auctions . 18

2.3.1 Properties of the VCG Auctions 19

2.3.2 Generalized VCG Auctions 22

2.3.3 Other Generalization: The VCG-µ Auction 24

3 The Office Complex Example 27

3.1 Setup of the Problem . 28

3.2 The SPP . 30

3.3 Simulation Results . 33

3.3.1 Symmetric Case, [0, 1] Bidders 34

3.3.2 Symmetric Case, [2, 3] Bidders 35

3.3.3 Asymmetric Case, Non-Overlapping Distributions . . . 38

3.3.4 Asymmetric Case, Overlapping Distributions 41

4 Concluding Remarks 47

References 49

Appendix 51

i

List of Figures

1 Expected revenues in the symmetric [0, 1] case 36

2 Package distribution of one bidder in the symmetric [0, 1] case . 36

3 Package distribution of all bidders in the symmetric [0, 1] case . 37

4 Expected revenues in the symmetric [2, 3] case 39

5 Package distribution of one bidder in the symmetric [2, 3] case . 39

6 Expected revenues in the first asymmetric case 42

7 Expected revenue as a function of weights I/1 42

8 Expected revenue as a function of weights I/2 43

9 Package distribution of the bidders in the first asymmetric case 43

10 Package distribution of one bidder in the first asymmetric case . 45

11 Expected revenues in the second asymmetric case 45

12 Expected revenue as a function of weights II/1 46

13 Expected revenue as a function of weights II/2 46

ii

List of Tables

1 The coefficient matrix of a single floor with five blocks per floor. 31

2 The coefficient matrix of the set packing problem. 31

3 Counterexample for perfection of the matrix A. 33

4 Average numbers of packages in one round, symmetric cases . . 37

5 Average numbers of packages in one round, asymmetric cases . 41

iii

List of Appendices

A Source Code . 51

iv

Abstract

Combinatorial auctions are multi-object auctions where bidding on

packages of objects is allowed. These auctions have attractive features and

both the bidders and the auctioneer can benefit from the combinatorial

bids. However, the rich structure could lead to serious issues. The com-

putational complexity related to these auctions could make it impossible

to implement them even with a moderate number of goods. Moreover,

finding a revenue-maximizing auction is still an open problem. The usual

approach of the literature is to make (sometimes too strict) assumptions

(usually on the bidders’ preferences) or to run simulations in very small

environments where the computational difficulties are not too serious.

In this paper, besides presenting the issues and their treatments pro-

posed by the literature, we also investigate an alternative approach. In-

stead of making assumptions on the preferences, we restrict the set of

available packages in a reasonable way. We present the idea through a

real-life example and use simulations to determine the implications of the

imposed restriction. We find that the alternative approach makes the sit-

uation simple enough and we can run larger simulations without huge

difficulties. With these simulations we obtain important insights into the

behavior of the applied auction forms and their revenue properties. Since

the imposed structure is reasonable in other relevant auction situations

too, this work can serve as a ground for future research that generalizes

these conclusions.

1

1 Introduction

Consider the following situation. We possess a series of rare postage stamps

that we want to sell. Among the many ideas that could possibly come into our

mind, organization of an auction is surely there. It seems to be a good and prof-

itable way of selling the stamps to bring some potential buyers together and

let them fight for the items with their bids. However, it is not straightforward

how we should set the rules of such an auction. Should we sell every item indi-

vidually on different smaller auctions at the same time? Maybe in a sequential

order? Or would it be a better idea to try to sell everything in one huge pack-

age? Our stamps are special in the sense that they are collector’s items. We

have good reasons to assume that the collectors of these stamps might be will-

ing to pay more for more stamps together than the sum of what they would

pay for the individual items. There might be synergies between the stamps.

From this point of view, first, we would prefer selling everything in one large

bundle. However, we cannot be sure that our potential buyers do not possess

some items from the series already. It might happen that one of them needs

only half of the stamps, another buyer the other half and they do not want to

pay much more for the whole package. But then why don’t we let them bid

on every combination they might want to have? In that way we may be able

to utilize the synergies between the stamps and find an allocation which could

maximize our income. This would be also beneficial on the bidders’ side, since

they could avoid very unfortunate outcomes by bidding on packages. For ex-

ample, if a bidder needs only three stamps to complete his collection, he might

want to pay more for a package which contains all of them than for smaller

packages which contain only one or two of those desired stamps. He could

express this in higher bids on the former package and lower bids on the latter

ones. Whatever happens, he will not risk too much in the auction. However, in

an auction where bidding on packages is not allowed, he should post bids ex-

ceeding his item-valuations to increase his chance of obtaining the three items

together. In this case, losing one out of the three could lead to a disaster: He

would pay more for the remaining two than what those are really worth to

him. Thus in this example, bidding on packages seems to be highly beneficial

for both sides.

Now we have the basic idea of how we want to auction off these items, but

there are some other details left that need to be solved. First, after we collected

the bids, how should we allocate the goods and determine the payments? We

2

can choose the allocation which gives the largest overall bid combination and

we can simply charge those bids like we pictured it before. But are we sure that

there is no better way of doing this? Did we create the incentives for the bid-

ders to tell the truth in our auction? Are there other rules which could result

in a higher income? Secondly, even a small number of stamps could lead to a

huge number of possible packages. Are we able to choose the winning pack-

ages if the number of possible package allocations is so huge? Unfortunately

the answers to these are not straightforward and we need to use and develop

economic models to be able to solve these questions.

Such procedures are called combinatorial auctions in the literature. One of

the earliest appearances of such auctions is Rassenti et al. [1982]. They used

combinatorial auctions for the allocation problem of airport time slots. In this

context, the idea of having packages is quite natural since airlines want to

have working flight schedules and thus are interested only in certain combi-

nations of time slots. In the past decades, combinatorial auctions became very

popular within the field of multi-item auction design. The survey paper of

de Vries and Vohra [2003] presents the main contributions and the status of

the combinatorial auction literature at the beginning of the 21st century. Vohra

[2011], which is a recently published book on mechanism design, devotes an

entire chapter to combinatorial auctions. Cramton et al. [2010] is a 1000-page

book dedicated only to this type of auctions. The reason for this popularity is

that there is a huge number of difficult and in some cases unresolved problems

associated to this type of auctions.

First, there is a computational difficulty since the rich structure of packages

becomes impossible to handle even with a reasonable number of items. Sec-

ondly, there are issues related to economic theory: the bidders’ behavior and

the incentives we need to create are challenging questions too. It is not clear ei-

ther and still an unsolved problem how we should set rules to reach maximal

revenue in the auction.

The computational difficulty can be reduced by imposing extremely strict

restrictions on the preferences. The bidders’ behavior, the appropriate incen-

tives and the role of the rules can be modeled and investigated by the tools

of game theory and mechanism design. Although there is no general solution

to the maximal revenue problem, we can improve the properties of existing

mechanisms by small modifications.

In this paper, we would like to discuss the aforementioned issues and their

3

proposed solutions in detail and use an alternative approach to overcome the

difficulties. In section 2 we give a formal description of the model. Section 2.1

presents the economic model we work with. Section 2.2 discusses the issues

with combinatorial auctions and their proposed solutions in the literature. Sec-

tion 2.3 presents particular auction mechanisms and discusses their properties.

We depart from the usual approach of the literature in section 3 and instead of

making hard assumptions on the bidders we restrict the sets of possible pack-

ages in a reasonable way. We discuss the implications of this and present them

through simulations. Section 4 concludes the paper.

4

2 Combinatorial Auctions

In this part we describe the auction environment and the key notions behind

combinatorial auctions. After this, we discuss the issues related to combina-

torial auctions and their possible solutions in the literature. At the end of the

section, a typical class of auctions and their properties are presented in detail.

2.1 The Model

In our world we have finitely many players called bidders, agents or potential

buyers and one decision maker called the seller, the auctioneer or the designer

of the auction. Let the set of bidders be N = {1, . . . , N}1, the auctioneer be

denoted as player 0 and the set of the bidders with the auctioneer be defined

as N ∗ .
= N ∪ {0}.

The auctioneer possesses finitely many heterogeneous goods G={1, . . . , G}
and wants to sell them to the bidders in a way that implements some goal

like expected revenue maximization. For simplicity, we assume that the auc-

tioneer gets no utility from possessing any of his goods. On the other side,

the bidders assign non-negative valuations to each object. Moreover, goods

consumed together might give a different utility to a bidder than the sum of

utilities gained by consumption of the parts. There might be synergy effects be-

tween the goods. Because of these interdependencies, the bidders’ valuations

are defined on the set of possible packages H ⊆ 2G and not only on the set

of goods G. 2 We also assume that receiving nothing is possible, thus ∅ ∈ H,

and the associated valuation is zero in every case. The valuations on the set

H are represented by valuation functions vn : H → R. For every n ∈ N , let

the set of all possible valuation functions be denoted by Vn. The elements of

this set are also called types of the bidders. We assume that at the beginning of

the game a type is drawn independently for every bidder according to prob-

ability density/mass functions pn : Vn → [0, 1]. The distributions are common

knowledge, but the actual realizations are private information. Since the draws

are independent, no one gets additional information about the distribution of

1In our work we denote such index sets by calligraphic letters (N) and their largest ele-

ments by the same non-calligraphic capital letter (N). We denote an arbitrary element by the

lower-case equivalent (n ∈ N). In this way it is much easier to follow the notation and talk

about cardinality of sets (since |N | = N).
2The set of possible packages might be restricted by the auctioneer for some reasons, that

is why we use a subset H of all packages 2G .

5

the others after learning his valuation. Let the set of all valuation profiles be

denoted by V .
= ×n∈NVn.

The bidders might make transfers during the auction and we suppose that

their utility function is linear in money: for each bidder n ∈ N , un : H×R → R

such that for all h ∈ H and t ∈ R, un(h, t) = vn(h) + t.

The auctioneer chooses the rules of the auction. First of all, he defines what

the bidders are allowed to do during the process. This means that he assigns

a strategy set Sn to each player n ∈ N which contains the player’s available

strategies. Let the set of all strategy profiles be denoted by S .
= ×n∈NSn. Sec-

ond of all, he can define the consequences of the joint behavior of the players.

This means that given each strategy profile s ∈ S , he chooses a possible dis-

tribution of the goods in G and charges payments for this allocation. Formally,

the set A of all possible allocations of the objects is defined by

A .
=

{
(h0, . . . , hN)∈ 2G×HN :

N⋃
n=0

hn = G and hn ∩ hm=∅, ∀n, m∈N ∗, n 6=m

}
.

The elements of A are basically partitions of the set of goods G, such that

the first element denotes the goods not sold at the end of the auction and every

element hn gives the package allocated to bidder n.3 In the text, we will use the

an = hn notation as well to refer to the package that is allocated to n ∈ N ∗

under allocation a. As we mentioned before, the fact that there are possible

restrictions on the packages sold to the bidders is governed by the choice of

the set H. Now, the first rule, called an allocation rule, can be defined as a

function from the space of strategy profiles into the set of possible allocations:

A : S → A. The second object, called the payment rule, is simply a function

from the set of strategy profiles to the N-dimensional real vectors: P : S → RN.

Definition 1 The list describing the rules of the auction (S , A, P) is called a

game form. A game form together with the list of possible preference profiles,

(S , A, P;V), is called an auction mechanism.4

Notice that the game form (S , A, P) is different from the concept of a nor-

mal form game. The outcomes here are packages and payments, not utility
3We call everything that a bidder receives a package. In this context it makes no sense to

talk about receiving more than one packages since the valuation of the obtained goods will

come from the obtained goods together and not from the individual packages independently.
4Thus, an auction mechanism is just a special case of a general mechanism defined in mech-

anisms design. Throughout this paper, we use the expressions auction mechanism and auction

as synonyms. They are the tools to achieve the goal of the auctioneer.

6

levels. Thus, for every valuation combination v ∈ V , this structure defines dif-

ferent utility levels over the outcomes and thus a different normal form game.

Therefore, the players’ behavior might be also different for different valua-

tion profiles. In this context, an auction mechanism is a family of normal form

games.

Within this framework, an auction can be organized as follows:

1. The set of players N ∗, the set of goods G, the set of available packages H,

the valuation profiles V and the pmfs/pdfs (pn)n∈N are given.

2. The valuation functions (vn)n∈N of the bidders N are drawn from the

distributions described by the pmfs/pdfs. Everyone knows these distri-

butions, but the actual realizations are kept private.

3. Given N and the beliefs of the auctioneer, he declares the rules of the

auction. This means that he chooses the strategy sets, the allocation and

the payment rules (S , A and P respectively) and tells them to the bidders.

4. Given the objects defined so far, the bidders choose their strategies (make

their bids) which results in a strategy profile s ∈ S .

5. The auctioneer allocates the goods according to A(s) and collects the pay-

ments P(s) from the players.

2.1.1 The Bidders’ Behavior

We will use game theoretical equilibrium concepts to model the behavior of the

bidders in an auction mechanism. In a given auction mechanism (S , A, P;V),
let E(S , A, P; ·) : V ⇒ S denote the equilibrium correspondence of some equi-

librium concept. Thus, every strategy combination s ∈ E(S , A, P; v) is an equi-

librium of the game (S , A, P; v). We call this abstract construction the E equi-

librium concept. We intend to design auctions such that for every v ∈ V , at

least one equilibrium exists.

In this work, we use only the dominant strategy equilibrium therefore we

define this equilibrium concept here. For all s ∈ S and for every player n ∈ N ,

let an(s) denote the package assigned to n by the allocation rule A.

Definition 2 (Dominant strategy equilibrium) In a game (S , A, P; v), a strat-

egy profile s ∈ S is a dominant strategy equilibrium if for all players n ∈ N
the following holds:

vn(an(sn, s̃−n))− Pn((sn, s̃−n)) = vn(an(s̃n, s̃−n))− Pn((s̃n, s̃−n)) for all s̃ ∈ S .

7

In the definition, s̃−n denotes the strategies of the players except n in the

strategy profile s̃. The definition simply says that in a dominant strategy equi-

librium, every player plays a strategy which is better than all his other strate-

gies irrespective of the other players’ behavior. In other words, at every strat-

egy profile every player has an incentive to deviate to his equilibrium strategy.

2.1.2 Objectives of the Auctioneer

The auctioneer has to design an auction which helps him to fulfill his goals. Of

course these goals could be very different, but in this work we will stick to the

two main concepts of the auction literature: efficiency and optimality.

The objectives can be conveniently defined by using the terminology of

mechanism design. To be able to do this, first we need to introduce some con-

cepts. A correspondence Ad : V ⇒ A is called a direct allocation rule. For the

definition of the objectives, we will select direct allocation rules and construct

mechanisms that have equilibrium outcomes which are consistent with these

direct allocation rules. This is captured in the following definition.

Definition 3 (Weak implementation) Given the direct rule Ad : V⇒A, we say

that the auction mechanism (S , A, P;V) weakly implements Ad in the equi-

librium concept E if for all possible valuation combination v ∈ V , there is a

strategy profile s ∈ E(S , A, P; v) such that A(s) ∈ Ad(v).

Thus, for every possible valuation profile, there is an equilibrium outcome

which is consistent with the direct allocation rule. Of course this does not im-

ply that there are no other equilibrium outcomes that are not consistent with

this rule and might be considered to be very bad. However, we are not con-

cerned with this issue since the theory of combinatorial auctions usually sticks

to this definition and the implications of changing to a stronger concept would

lead us too far. Now we are ready to discuss the goals of the auctioneer.

Efficiency In the first case, the auctioneer wants to allocate the goods in an ef-

ficient way, which means that for every valuation profile v ∈ V , he is willing to

maximize the sum of the individual valuations of an allocation. This allocation

can be found by solving the following problem:

8

max
a=(a0,...,aN)

∑
n∈N

vn(an)

s.t. a ∈ A

This problem always has a solution since with finitely many bidders and

goods, the number of all possible allocations is bounded from above by NG.

Moreover, the set of possible allocations is never empty by our assumptions

since the auctioneer can always keep his goods. Thus, finding an efficient allo-

cation can be done by calculating the overall utility level for all possible allo-

cations and choosing the best one.

Although writing down all the possible allocations is an exciting combina-

torial exercise, this may not be the simplest and most efficient way to solve

this problem. Luckily, we can characterize the set A by linear inequalities and

use the following integer programming problem to find the utility-maximizing

allocation:5 6

max
y ∑

n∈N
∑

h∈H
vn(h) y(h, n)

s.t. ∑
n∈N

∑
h3g

y(h, n) 5 1 ∀g ∈ G

∑
h∈H

y(h, n) 5 1 ∀n ∈ N

y(h, n) ∈ {0, 1} ∀h ∈ H, n ∈ N

Here the 1 value of the y(h, n) variable represents the fact that the package h

is assigned to player n. The first group of constraints ensures that no assigned

packages overlap, i.e. every good is assigned at most once. The second group

guarantees that every player can get at most one package. Again, this is an

important condition since otherwise one could end up with more than one

package and the utility gained from these (the utility of the union) would not

5As defined in Vohra [2011].
6In the paper, we denote vectors and matrices by bold letters. Obviously, some previously

defined objects, like the valuation functions, can also be represented by vectors; v and v mean

basically the same thing.

9

be the same as the utility represented in the objective function (sum of the

utilities).

Note that maximizing the overall utility of the bidders from an allocation is

the same as maximizing the social welfare since the payments are only trans-

fers from the bidders to the auctioneer and the auctioneer values every pack-

age 0.

This problem defines a direct auction rule over V . Call this the efficient al-

location rule and denote it by Ae. An efficient mechanism is one which weakly

implements this allocation rule in an equilibrium concept E. This means that

in every valuation profile v ∈ V , there is a strategy combination of the bid-

ders which is consistent with our equilibrium concept and leads to a socially

efficient outcome. We will show in section 2.3 that such a mechanism exists.

Optimality Revenue maximization is harder to achieve. In this case, we are

interested in the maximization of our expected income from the auction. This

is a non-trivial problem since a mechanism that weakly implements the effi-

cient allocation rule does not give us the largest possible revenue in general.

Thus, we might have to find a different direct allocation rule A∗ that can be

weakly implemented by a mechanism where the expected payments associ-

ated to the implementing strategies are maximal among all direct allocation

rules and auctions weakly implementing these. Formally, we are searching for

the solution of the following optimization problem:

sup
S ,A,P,A∗,s(v)

Ev ∑
n∈N

Pn(s(v))

s.t. s(v) ∈ E(S , A, P, v) ∀v ∈ V

A(s(v)) ∈ A∗(v) ∀v ∈ V .

We will discuss the goals and the difficulties in section 2.2 in detail. In the

following we show how the difficulties can be reduced a bit by a famous result

of mechanism design.

2.1.3 The Revelation Principle

Whatever our goal is, finding an implementing mechanism could be very diffi-

cult. We have to set free objects: the strategy sets S , the allocation rule A and a

10

payment rule P. Fortunately, the revelation principle of mechanism design can

help us to simplify these problems by fixing the strategy sets without losing

generality. First, we need to define a few things. We call an auction mechanism

(S , A, P;V) a direct auction mechanism if S = V holds. In a direct mechanism,

every bidder announces his type, and for every possible type combination, an

allocation and a payment scheme is assigned. In such auctions we can define a

new notion of weak implementation.

Definition 4 (Truthful implementation) We say that the direct mechanism im-

plements a direct allocation rule Ad : V ⇒ A truthfully in the equilibrium con-

cept E, if v ∈ E(V , A, P; v) and A(v) ∈ Ad(v) for all v ∈ V .

Thus, telling the truth is an equilibrium strategy. If a mechanism satisfies

this, we alternatively say that it is incentive compatible (IC). From now on, we

completely restrict our attention to dominant strategy equilibria. The follow-

ing result, in the form as stated in Myerson [1981], establishes a useful relation

between weakly implementing auction forms and truthfully implementing di-

rect auctions.

Theorem 5 (Revelation Principle) Let Ad : V ⇒ A. If there exist an auction

mechanism which weakly implements Ad in dominant strategy equilibrium

then there exists a direct auction mechanism which implements it truthfully in

dominant strategy equilibrium, giving the auctioneer the same expected rev-

enue and the bidders the same expected utilities as the original mechanism.

Thus, we can focus our search on direct mechanisms. As we will see, while

the first goal (efficiency) is straightforward to achieve, optimality is still an un-

solved problem in the theory of multi-object auctions. Finally, we can impose a

second requirement for a truthfully implementing direct auction mechanism.

By incentive compatibility, we created the incentives to tell the truth but there

is no guarantee that this strategy will give nonnegative expected payoff to the

bidders. In most of the auction settings the bidders cannot be forced into par-

ticipation. Individual rationality (IR) establishes the incentives for that. It re-

quires that, under a given allocation rule A and payment rule P, the expected

utility of telling the truth be non-negative: for all bidder n and vn ∈ Vn,

Eṽ−n (vn(an(vn, ṽ−n))− Pn((vn, ṽ−n))) = 0.

From the revelation principle we know that if the original mechanism re-

sulted in a non-negative expected utility for a player, then the direct counter-

11

part will do the same. Thus the IR property is also implied by the similar prop-

erty of the original auction and the search among direct auction mechanisms

is justified with this additional requirement too.

2.2 Issues with Combinatorial Auctions

The idea behind combinatorial auctions is fascinating and these mechanisms

have several attractive features. However, these auctions are plagued with se-

vere issues and the designer of the auction has to face a lot of difficulties. These

will be discussed in this section of the paper.

2.2.1 Dimensions of the Problem

The first group of issues is related to the specific structure of the problem. First,

if we consider direct auction mechanisms and allow participants to bid on

packages of goods, the number of objects that can be bid on in the auction

will significantly increase. If we auction off 20 goods (which, in real life auc-

tions, is not an uncommon case) and bidding on every subset is possible, then

every bidder has to make 220 = 1048576 bid decisions. This would be more

than challenging in real-life situations.

The second problem is that after collecting the bids from every player, the

auctioneer has to use this huge valuation profile to determine the allocation

and the payments. Of course the process will depend on the defined A and P

functions, but generally, it is not easy to determine the allocation and the pay-

ments and the process usually involves complicated mathematical optimiza-

tions. For example, if we want to implement efficient allocations in an incen-

tive compatible auction (where we have reasons to believe that the bidders will

tell the truth), we have to solve the problem defined in section 2.1.2 after we re-

ceived the bids. With 20 goods and 5 players, this means 5 · 220 = 5242880 vari-

ables which raises some questions regarding the possibility of solving these

problems computationally.

2.2.2 Strategies

Obviously, given the vast number of possible bids, the strategical aspects be-

come much more complicated too. How should a participant choose his bids to

reach the best possible outcome? Can he use bids on less appreciated subsets to

improve his chances at other packages? Unfortunately, the characterization of

12

equilibrium strategies of different combinatorial auctions is still an unresolved

problem in the literature.7 This difficulty is also a reason why the literature

mostly focuses on incentive compatible direct auctions and the weak notion of

implementation.

2.2.3 Complexity Issues

We already mentioned computational difficulties. Now we go a bit deeper and

discuss the properties of the optimization problem used to determine welfare-

maximizing allocations. This mathematical programming problem is widely

used in the theory of combinatorial auctions and has a central role in all of the

auctions presented in this paper later. The problem is repeated here for conve-

nience. After the bidders made their announcement v ∈ V , the auctioneer has

to choose the winning allocation in some way. This means that he has to solve

the following problem:

max
y ∑

n∈N
∑

h∈H
vn(h) y(h, n)

s.t. ∑
n∈N

∑
h3g

y(h, n) 5 1 ∀g ∈ G

∑
h∈H

y(h, n) 5 1 ∀n ∈ N

y(h, n) ∈ {0, 1} ∀h ∈ H, n ∈ N

This is an instance of the famous Set Packing Problem (SPP). The SPP is

a binary linear programming problem where given a family of subsets of an

underlying set (here the sets H and G respectively) and a family of associated

weights (here the vn valuation functions), we want to select a non-overlapping

collection which maximizes the sum of the weights of the selected subsets. As

we discussed above, this problem always has a solution. Unfortunately find-

ing it is not easy in the computational sense: if we increase the size of the prob-

lem, the required time for reaching the solution increases too fast (in a non-

polynomial manner).8 We will see in the next section that auction mechanisms

usually use more than one SPP and we could easily end up in a computation-

ally infeasible situation even with a relatively small number of goods.

7For a discussion on this topic, see Andersson and Wilenius [2009].
8For a formal discussion see Sandholm [2002].

13

In the following it will be convenient to use the matrix-vector formulation

of the problem:

max
y

vy

s.t. Ay 5 1

y ∈ {0, 1}HN ,

where A is a 0-1 matrix representing the first two groups of constraints and 1

is a vector full of ones with the appropriate number of dimensions.

It is important to see that the reason for this computational difficulty is the

fact that the variables are binary. The linear relaxation of the problem can be

defined as the following linear programming problem:

max
y

vy

s.t. Ay 5 1

y = 0.

The only difference between the two problems is that we replaced the last

constraint with a non-negativity constraint where 0 is a vector full of zeros.

From the theory of linear programming we know that every such problem is

solvable in polynomial time and thus an increase in the size of the problem

does not lead to an explosion in the required time. If we could show that the

two solution sets coincide then we could use the linear relaxation to weaken

the computational difficulties. Unfortunately, this is not the case in general, but

there are some conditions that can ensure the equivalence between the solution

sets.

It can be immediately seen that this new constraint combined with the first

two ensures that all the variables are between zero and one. From linear pro-

gramming we also know that if an optimal solution exists, then there is an

optimal solution which is an extreme point of the polyhedron defined by the

inequalities of the problem.9 Moreover, every extreme point can be represented

as a solution of the problem with some nonzero v vector in the objective func-

tion. Thus, what we actually need is to find conditions on the problem that

9An extreme point is a vector which cannot be constructed as a convex combination of two

other vectors from the solution set. In other words, it is a vertex of the polyhedron.

14

ensure that all of our extreme points will be binary.10 A coefficient matrix A

with this property is called perfect in the literature. It can be shown, that the

next definition is a characterization of perfect matrices. 11

Definition 6 (Perfection of a matrix) A 0-1 matrix A is called perfect if it con-

tains no m × m, m > 3 submatrix B that satisfies the following properties:

• the row and column sums of B are all equal to the same k = 2;

• if we consider those columns in A where the elements of B were taken

from, there is no row in this submatrix which has a row sum greater than

the number k.

The set of perfect matrices is precisely the class of matrices where the poly-

hedron associated to the corresponding SPP has only binary extreme points. If

we have such matrices, the linear relaxation of the SPP can be used and thus

the original problem can be solved in polynomial time. 12

Determining whether a matrix is perfect could be very difficult since we

should prove somehow that every such submatrix violates at least on of the

properties mentioned in Definition 6. Luckily, there are other notions that im-

ply perfection and are much easier to identify. Such concepts are the consec-

utive ones property, total unimodularity and balancedness. Since we will use

only the first one, only this is defined here. For a definition of total unimodu-

larity and balancedness, see for example de Vries and Vohra [2003].

Definition 7 (consecutive ones property) We say that the 0-1 matrix A satis-

fies the consecutive ones property if the rows of A can be reordered in a way

that in each column of the matrix, the 1 elements are consecutive.

It can be shown that the consecutive ones property implies total unimodu-

larity which implies balancedness which leads to perfection. If we could show

that our coefficient matrix satisfies any of these properties, we could use the

linear relaxation and avoid much of the computational difficulties.

In general, the coefficient matrix A is not perfect. However, it can be shown

that if we impose some (sometimes too strong) restrictions on the structure of

10Or that the non-integral extreme points can be optimal only with the valuation profiles

outside V , but we do not investigate this in this paper.
11See Padberg [1974] for more details.
12There are other special cases where there is a polynomial algorithm that can be used

for the SPP, but we do not use these concepts in this paper. For a detailed account, see

de Vries and Vohra [2003].

15

the packages and on the preferences of the bidders, we can reformulate the set

packing problem in a way such that the new coefficient matrix fulfills at least

one of these properties. For such restrictions, see Rothkopf et al. [1998].

2.2.4 Goals of the Auction

As we discussed before, the usual goals that an auction should achieve either

is efficiency or revenue-maximization. Of course, the different aims need dif-

ferent approaches and different incentives for the players during the auction.

Efficiency is the simpler case. We will show in the next section that the

problem of designing an efficient mechanism has been already solved in the

literature and there are auction forms with attractive features that could im-

plement the efficient allocation of the goods. Such an auction mechanism is

the celebrated Vickrey–Clarke–Groves (VCG) mechanism which could inter-

nalize society’s goals by charging the bidders for the damage they cause to

other players by participating in the auction. Given these payments, this mech-

anism can be considered as the generalization of the second-price auctions to

the multi-object case.

Unfortunately, optimality is much harder to achieve. Myerson [1981] solved

the problem in the single good case but his results (construction of the optimal

mechanism and revenue equivalence) cannot be generalized to combinatorial

auctions in a straightforward way. The general solution to this problem has

not been found yet. The existing results in the literature are either based on

oversimplifications and too strong assumptions or simulations involving only

a small number of goods given the computational complexity of the problem.

We have seen that the problem can be formulated as an optimization problem:

We should choose an allocation rule that can be implemented by an incentive

compatible and individually rational auction with the largest expected pay-

ments.

This problem becomes “simple” if we have finitely many profiles in V .

In this case, there are only finitely many allocation rules (V → A functions)

and finding a revenue-maximizing payment scheme for a given allocation rule

such that IC and IR hold is just a linear programming exercise.13 We could go

over all the possible payment rules and compare the expected revenues at the

end. However, this is impossible even in very small environments. Consider

the case of 4 goods and 3 players where every player has binary valuations

13See de Vries and Vohra [2003] for more details.

16

for every good and the package valuations are calculated from these without

any additional uncertainty. This means that every player has 24 = 16 types,

thus the number of type combinations is 163 = 4096. There are no restrictions

on the set of packages which means that we have 34 = 81 possible alloca-

tions. However, the number of allocation rules (again, V → A functions) is

814096 = 1.427701207 · 107817 which makes the above mentioned way impossi-

ble to use.

One thing is clear: We can give an upper bound of the revenue that can

be achieved by such mechanisms. Since we assume that individual rational-

ity holds, no one can have a larger expected payment than his total expected

utility from the possible allocations. Thus, the expected revenue is bounded

from above by the expected utility from the efficient allocation of goods which

is simply the expected value of the value function of the SPP defined above.

However, we have to give the right incentives to the bidders to tell the truth.

Thus, there is no guarantee that there exist a mechanism which could extract

all these expected valuations as an expected revenue.

There are only few analytical results in the literature. Levin [1997] used

the assumption that the preferences of the bidders are known up to a single

number, which collapsed the problem into a one-dimensional mechanism de-

sign problem he was able to solve. The optimal mechanism here had a similar

second-price property as the VCG mechanisms. Armstrong [2000] derived the

optimal auction in an other very simple environment with two bidders, two

goods and no synergies. Monderer and Tennenholtz [2005] proved an interest-

ing feature of the VCG mechanism: with symmetric bidders, it is asymptoti-

cally revenue maximizing and its expected revenue converges to the theoreti-

cal maximum.

Other studies in the literature, such as Krishna and Rosenthal [1996] and

Andersson and Wilenius [2009], tried to compare the revenue properties of

multi-object auctions of different types. Both considered environments where

the bidders can be divided into two groups: local bidders who are interested

in single objects and global ones who like multiple objects together and have

some additional utility by consuming packages. The former investigated very

small environments and reached the conclusion that combinatorial auctions

are not revenue superior in these cases compared to simultaneous auctions

while the second paper concluded the opposite in a slightly different setting

by using combinatorial reasoning to construct lower and upper bounds on the

17

revenues and separating the two possible revenue sets.

Some papers in the literature gave up the idea of finding an optimal auc-

tion and investigated how existing auction mechanisms can be modified in

a way that they still satisfy incentive compatibility and individual rationality

but they are able to reach higher revenues. Krishna and Perry [1998] gener-

alized the VCG mechanism in a way that the new auction became revenue-

maximizing among efficient auctions. Likhodedov and Sandholm [2004] and

Likhodedov and Sandholm [2005] used a computational approach: they tried

to mimic Myerson’s idea and replaced the type announcements by modified

“virtual” valuations in an incentive compatible way in the VCG mechanism.

They introduced a larger class of mechanisms which could be described by

additional parameters and contained the VCG as a special case. By a numeri-

cal optimization in this parameter space they were able to give the VCG large

revenue boosts in most of the cases. We will describe these mechanisms in this

paper in detail.

2.2.5 Other Common Problems in Auction Design

There are other issues that every auction form is vulnerable to and combina-

torial auctions are not an exception either. Klemperer [2002] provides a good

survey on the issues auction designers should care about when designing auc-

tions in the real world. The main idea is that bidders basically behave like firms

on the market. The stronger bidders make bid signals in order to deter weaker

ones from entering the auction or to show their willingness to share the goods

with other bidders and reduce competition. Sometimes they form coalitions,

coordinate their actions and keep their bids down in the auction. This could

lead to enormous inefficiencies or huge gaps in the revenue. However, there

is no general recipe for auction design: the organizer of such an event must

take the whole environment into account and create the rules of the auction

correspondingly.

2.3 VCG Auctions

In this section, we present the combinatorial Vickrey–Clarke–Groves (VCG)

auction mechanism and some of its extensions. The VCG auction is named

after Vickrey [1961], Clarke [1971] and Groves [1973]. This mechanism can be

used to implement efficient allocations and, as we will see, it has some really

18

attractive features.

For every valuation profile (v1, . . . , vM) of a subset of the players M ⊆ N ,

let a(v1, . . . , vM) denote an efficient allocation among the bidders in M.14 Now,

the VCG mechanism can be defined as follows:

Definition 8 (VCG auction mechanism) Consider a situation described by the

tuple (N ∗,G,H,V , p). A Vickrey–Clarke–Groves mechanism can be defined as

a triple (S , A, P), where

• Strategies: S = V , thus we have a direct mechanism.

• Allocation rule: For every announcement profile ṽ ∈ V , the auction al-

locates the goods in an efficient way assuming that ṽ is the true profile,

A(ṽ) = a(ṽ).

• Payment rule: every player n ∈ N pays the damage caused to the other

players by his presence in the auction:

Pn(ṽ) = ∑
m 6=n

ṽm(am(ṽ−n))− ∑
m 6=n

ṽm(am(ṽ))

Thus, the mechanism naïvely assumes that everyone tells the truth and

makes the bidders pay the utility loss caused to other players from the allo-

cation difference.

It is easy to see that in the single-unit case, this auction is just the sealed-

bid second price auction. In this setting, the winner of the object is the bidder

with the highest announcement. He causes damage only to the bidder with

the second-highest bid who would obtain the item if the winner was excluded.

Thus, the winner will pay the second-highest announcement at the end of the

auction.

2.3.1 Properties of the VCG Auctions

Now we discuss the properties of the VCG auction. First, we show that it is

capable of creating the incentives for an efficient distribution of the goods. As

a proof for this result we gave the usual proof of the literature but with more

details. For a typical proof see Krishna and Perry [1998].

Theorem 9 The VCG mechanism is an incentive compatible, individually ra-

tional and efficient direct mechanism.
14As we have seen, such an allocation can be found by solving the set packing problem of

section 2.2.3.

19

PROOF First, we show that truth-telling is a dominant strategy equilibrium.

Suppose that the true valuation profile is v ∈ V and consider an arbitrary

announcement profile ṽ ∈ V . In this case, the mechanism selects a(ṽ), a socially

optimal allocation under ṽ:

a(ṽ) ∈ arg max
a∈A

∑
n∈N

ṽn(an).

Consider an arbitrary bidder n ∈ N . This announcement with the associ-

ated payment gives him the utility

un(an(ṽ), Pn(ṽ)) = vn(an(ṽ))− Pn(ṽ)

= vn(an(ṽ)) + ∑
m 6=n

ṽm(am(ṽ))− ∑
m 6=n

ṽm(am(ṽ−n)).

Note that by modifying his announcement ṽn, bidder n can influence only

the first two terms in his payoff. If he announced his true valuation function

vn, the auctioneer would choose the allocation a((vn, ṽ−n)), maximizing the

objective function vn(a) + ∑m 6=n ṽm(a), which means that

vn(a((vn, ṽ−n))) + ∑
m 6=n

ṽm(a((vn, ṽ−n))) = vn(a) + ∑
m 6=n

ṽm(a), ∀a ∈ A.

Since this holds for all allocations, it also holds for a(ṽ) implying that

un(an((vn, ṽ−n)), Pn(vn, ṽ−n)) = u(an(ṽ), Pn(ṽ)).

Thus, by telling the truth, the bidder cannot get a payoff which is worse

than that of his original announcement ṽn ∈ Vn. Since the announcement pro-

file ṽ and the player n ∈ N were chosen arbitrarily, we just got back the defini-

tion of the dominant strategy equilibrium. Thus, telling the truth is a dominant

strategy for every player.

For individual rationality, observe that the payoff of bidder n ∈ N if every-

one tells the truth is

un(an(v), Pn(v)) = ∑
m∈N

vm(am(v))− ∑
m 6=n

vm(am(v−n)).

20

This is just the difference between the maximum social welfare from the

auctions with and without n. If n is participating, the auctioneer can still choose

the same allocation that he did in the other case. However, it is not necessarily

welfare maximizing in this setting and he might be able to choose a better one.

Thus the difference between the two welfare levels must be non-negative. We

concluded that the utility levels are always non-negative under truth telling,

consequently, the expected value of truth telling must be non-negative too.

Efficiency is trivially satisfied since telling the truth is an equilibrium strat-

egy and given the defined allocation rule it results in a socially optimal distri-

bution of goods.

�

It is important to emphasize two implications of the rules defining the VCG

auction. The first one is that we did not use the information on the distribution

of the types, the construction does not depend on this. Secondly, we have to use

N additional set packing problems to determine the payments which makes

the computational difficulties more severe in this case.

Before we continue with the description of the properties, we need some

new notions. First, the agents are called symmetric if they have the same set of

possible valuation functions and the same probability distributions defined

on them. A second notion we need is monotonicity of valuation functions.

A valuation function v : H → R+ of an agent is called monotone, if for all

h1, h2 ∈ H, h1 ⊆ h2, it satisfies that v(h1) 5 v(h2). Thus, the agents are never

worse off by having additional items too (without considering the payments

of course). Now we are ready to state the next property which is a result of

Monderer and Tennenholtz [2005].

Theorem 10 (Asymptotic optimality) With symmetric, weakly risk averse bid-

ders, and monotone valuation functions, the Vickrey–Clarke–Groves mecha-

nism is asymptotically revenue maximizing. In other words, the expected rev-

enue of the auction almost surely converges to the theoretical maximum as the

number of bidders goes to infinity.

PROOF See Monderer and Tennenholtz [2005] for the formal proof. �

Thus we have seen that the VCG mechanism has good revenue properties

if the number of agents is large and the agents are symmetric. To see what

happens in other cases, we need to define a generalized version of the VCG

auction.

21

2.3.2 Generalized VCG Auctions

The idea behind this generalization is to modify the payment scheme of the

VCG auction in a way that the mechanism still preserves its basic properties

(incentive compatibility, individual rationality and efficiency) but it leads to

higher revenues. This is done by choosing a “basis strategy” for every bidder

and making them pay for the utility difference caused to other bidders by not

playing their basis strategy plus their valuation under this strategy. This idea

is introduced by Krishna and Perry [1998] and this section is based on their

results. We can use this generalized mechanism to describe the revenue prop-

erties of the VCG auction in a general setting where the number of agents can

be small too.

Definition 11 (GVCG mechanism) Consider an auction situation described by

the tuple (N ∗,G,H,V , p). Let v̄ ∈ V be an arbitrary valuation combination. A

Generalized Vickrey–Clarke–Groves (GVCG) mechanism with basis v̄ can be

defined as a triple (S , A, P), where

• Strategies: S = V .

• Allocation rule: For every announcement profile ṽ ∈ V , the auction al-

locates the goods in an efficient way assuming that ṽ is the true profile,

A(ṽ) = a(ṽ).

• Payment rule: every player n ∈ N pays the following:

Pn(ṽ) = v̄n(an(v̄n, ṽ−n)) + ∑
m 6=n

ṽm(am(v̄n, ṽ−n))− ∑
m 6=n

ṽm(am(ṽ)).

Thus, the GVCG auction modifies the payment scheme of the VCG auction.

Instead of considering the case where n is excluded, the mechanism lets n par-

ticipate with his basis strategy v̄n and adds his valuation to the damage caused

to the other agents by not bidding his basis strategy. This construction also in-

ternalizes the overall welfare and gives incentives to tell the truth. This auction

also involves N + 1 set packing problems and all of them include every bid-

der; thus, computationally it is a bit harder than the original VCG auction. It

can be shown that this mechanism is revenue-maximizing under the efficient,

incentive compatible and individually rational mechanisms. With some addi-

tional assumptions the two auctions coincide and in these cases the original

VCG mechanism shares this great property too. But for this, first we need to

22

see whether the generalization still satisfies incentive compatibility, efficiency

and individual rationality. The first two properties can be immediately shown

by the same way as we did in the VCG case.

Theorem 12 The GVCG mechanism is an efficient and incentive compatible

direct auction.

PROOF Same as the proof of the same properties of the VCG auction. �

Thus, the GVCG mechanism is efficient and incentive compatible. How-

ever, it is not always individually rational, but by choosing the right basis,

it satisfies this property too. Moreover, with an appropriately chosen basis,

it generates the largest revenue among all efficient IC-IR mechanisms. These

findings are stated in the next theorem.

Theorem 13 Let the basis valuations be defined as follows. For all n ∈ N ,

v̄n ∈ arg min
vn∈Vn

Ev−n un(an(v), P(VCG)
n (v))

= arg min
vn∈Vn

Ev−n

(
∑

n∈N
vn(an(v))− ∑

m 6=n
vm(am(v−n))

)
.

Then, the Generalized VCG auction with this basis v̄ is individually rational.

Moreover, it maximizes the expected revenue of the auctioneer under all effi-

cient, incentive compatible and individually rational auctions.

PROOF See Krishna and Perry [1998]. �

Thus, for every player, the basis strategy is the player’s “worst type”, i.e.

the valuation function that gives him the worst expected utility in the VCG

auction.15 The reason behind the larger revenue is that in the VCG auction,

playing the worst type can still result in a positive after-payment utility. The

GVCG scheme does not leave this utility to the worst-type bidders, it increases

their payments by this amount instead. Thus, in contrast to the VCG auction,

we used the extra information carried by the valuation distributions.

However, in some cases, the GVCG and the VCG auctions are the same.

This finding is formalized in the following corollary:

15In some cases it could be hard to compute these worst types analytically. However, in some

special settings like our example in section 3, they can be given immediately.

23

Corollary 14 If for every player n ∈ N , the above defined basis strategy v̄n

is such that either the player never wins with that strategy or causes no harm

to the other bidders by winning, then the VCG mechanism and the GVCG

mechanism with basis v̄ coincide. In such cases, the VCG mechanism is optimal

among all efficient IC-IR auction mechanisms. The condition is automatically

satisfied if 0 ∈ V .

2.3.3 Other Generalization: The VCG-µ Auction

In the previous section we have seen that the GVCG auction represents the

limit case among efficient mechanisms in the expected revenue sense. If we

want to reach a higher revenue than that of the GVCG mechanism, we must

give up efficiency and find other allocation rules that can be implemented by

an auction with higher expected payments. But how should we find such an

allocation rule? This question is difficult to answer and, as we discussed in sec-

tions 2.1.2 and 2.2.4, no one has found a general solution to this problem. In this

part of the paper, we present the results of Likhodedov and Sandholm [2004]

and Likhodedov and Sandholm [2005]. They modified the allocation rule and

the payment rules of the VCG auction such that the new mechanism still sat-

isfies incentive compatibility and individual rationality but is able to reach

higher revenues by giving up efficiency. They introduced a new class of IC-

IR auctions where each auction can be described by a set of parameters. Given

the bidders and their valuation function distributions, numerical optimization

in the parameter space can be used to find the auction with the largest expected

revenue within this class. Since the VCG is also included here, we can be sure

that the new mechanism generates at least as large revenue as the VCG.

The introduced parameters are of two types. The first group consists of

“bidder weights”; positive numbers by which the announced value functions

are multiplied in the auction. The elements of the second group are “alloca-

tion boosters”: additive modifications of the bidder’s valuation function con-

ditional on whether a particular bundle is received during the auction. Since

the second group would introduce too many additional parameters which

would make the auctions of the later sections computationally intractable, we

describe only the situation of bidder weights here.

Let µ ∈ RN
++ denote a strictly positive vector of weights. Given the valua-

tion profile (v1, . . . , vM) of a subset of the players M ⊆ N , let aµ(v1, . . . , vM)

define an allocation with the following property:

24

aµ(v1, . . . , vM) ∈ arg max
a∈A

∑
m∈M

µmvm(a).

Thus, ã(v1, . . . , vM) is the allocation maximizing the social welfare if we

rescale the bidders’ valuations by the µ parameters. Now the VCG-µ auction

can be defined by a VCG auction over these “virtual valuations”:

Definition 15 (VCG-µ auction) Consider a situation described by the tuple

(N ∗,G,H,V , p). A Vickrey–Clarke–Groves-µ (VCG-µ) mechanism can be de-

fined as a triple (S , A, P), where

• Strategies: S = V .

• Allocation rule: For every announcement profile ṽ ∈ V , the auction allo-

cates the goods in an efficient way assuming that for each player n ∈ N
µnṽn is the true profile. A(ṽ) = aµ(ṽ).

• Payment rule: every player n ∈ N pays the damage caused to the others

by his presence in the auction given the virtual valuations, rescaled by

his weight µn:

Pn(ṽ) =
1

µn

(
∑

m 6=n
µmṽm(aµ

m(ṽ−n))− ∑
m 6=n

µmṽm(aµ
m(ṽ))

)
.

Thus, a VCG-µ mechanism replaces the actual announcements with the

scaled virtual valuations, executes a usual VCG mechanism and rescale the

payments by the individual weights at the end. If µ = 1, we get back the orig-

inal VCG mechanism.

We can see that both the chosen allocation aµ and the payments depend

only on the ratios of the scaling factors, thus we can set one of them to be equal

to 1. This will be important for the simulations since it reduces the number of

dimensions by 1.

Incentive compatibility and individual rationality can be proven in the same

way as at the VCG mechanism. Therefore we just summarize these properties

here.

Theorem 16 Let µ > 0 be arbitrary. Then, the defined VCG-µ auction is incen-

tive compatible and individually rational.

PROOF Immediate from the proofs of the similar properties of the VCG auc-

tion. �

25

We can see that in the optimization we use the probability distributions

again (we maximize the expected revenue). Although with given µ, the overall

number of set packing problems is still N + 1, the optimization requires mul-

tiple executions with different weight vectors in a possibly large-dimensional

space. Thus, the computational difficulties can become really serious here. How-

ever, as we will see in the next chapter, this generalization is able to give sig-

nificant boosts to the VCG/GVCG revenues.

26

3 The Office Complex Example

In this section, we present a simplified setting to create an environment where

larger combinatorial auctions can be solved without much of the difficulties

mentioned in the previous section.

Consider the following situation. Our company has recently built a high-

tech office complex in the downtown of a huge city. The interior of the building

is not fixed; each floor consists of a couple of “office blocks” that can be merged

into larger offices later. There is a number of firms willing to buy offices in this

building. Because of the flexibility of the interior structure, these firms can con-

sider bundles of office blocks as potential offices. This structure suggests non-

additive preferences: a bidder can utilize some neighboring blocks better, there

can be synergies between these blocks. In other words, the bidders might want

to pay more than the sum of their individual reservation prices for having a

couple of blocks together. However, these preferences are restricted in some

sense. Every firm wants to have blocks very close to one another; they cannot

use a 200 m2 office space such that 100 m2 is located on the first and the other

100 m2 on the 30th floor. They might not be indifferent regarding the location

of their future office either: some might want to have a place at the bottom of

the building, others could prefer blocks at the top. The set of possible pack-

ages might be also restricted on the auctioneer’s side to reach computational

manageability in this large problem.

There are several reasons why we should organize a combinatorial auction

in this example. First of all, there is a synergy effect that we want to exploit,

and making the bidders be able to bid on packages might lead to a better re-

sult in that case. The second reason is that both the auctioneer and the bidders

might want to exclude some inconvenient outcomes that would be possible in

simultaneous auctions. For example, suppose that a bidder is interested only

in offices with neighboring blocks and he is willing to pay more for the pack-

age than the sum of the individual block valuations. In a simultaneous auction

where a bidder submits bids on every item simultaneously, he has to overbid

his individual valuations to increase his chances to win all the blocks. If he

does so, too large bids are compensated by the synergy at the end. However, if

he fails at obtaining one of the blocks, it might happen that he pays a too high

price for the others. In a combinatorial auction, where he can make a bid on the

whole package and different bids on its subsets, he can be sure that such a sit-

uation will never happen. For the auctioneer, allowing for combinational bids

27

and restricting the set of possible allocations could result in higher revenues.

Moreover, the auctioneer could exclude not desired outcomes (like fragmented

offices) by making restrictions on the set of packages in the combinatorial auc-

tion.

3.1 Setup of the Problem

The Auctioneer First of all, we assume that the building has K floors with

L office blocks on each floor. Thus, the overall number of goods is G = KL.

In each floor, the blocks have a “chain” structure: between the two “corner

blocks”, every block has exactly two neighbors. Thus, they can be indexed by

the number of the floor, and their position within this chain:

G .
= {gk,l : k ∈ K, l ∈ L}.

The auctioneer is interested in the maximization of his revenue. Since the

overall number of blocks G can be large in this example, the auctioneer faces

a computational issue. With 30 floors and 10 blocks on each floor, he would

have 2300 possible packages which would simply make the above mentioned

auctions impossible to implement without any further restriction. The usual

approach in the literature is to make assumptions on the preferences to sim-

plify this problem. Unfortunately, in problems like the office complex example

where we have many goods and many bidders, this cannot be done without

imposing too strict assumptions on the preferences. Therefore, we use a dif-

ferent approach and instead of restricting the preferences, we restrict the set of

available packages H. This causes no problems in the auction mechanisms dis-

cussed in section 2.3 since we did not need to specify this set in the definitions

and in the proofs of the properties.

We assume that the auctioneer wants to allocate only neighboring blocks

as offices at the end and every firm can be accommodated in only one floor.

With these restrictions, the auctioneer can avoid the chaos that could be caused

by commuting between separated parts of an office. In this case, the set of

available packages is defined in the following way:

H .
=
{
{gk,l1 , . . . , gk,l2} : k ∈ K, l1, l2 ∈ L, l1 5 l2

}
.

Property 1 In the office complex example, the number of available packages is

H =
KL(L + 1)

2
.

28

PROOF On each floor k ∈ K, we have 1 package of size L, 2 packages of size

L − 1, and so on with L packages of size 1 at the end. Thus, the number of

packages on a floor is just the sum of the first L natural numbers and this

makes the overall number KL(L+1)
2 . �

Now we have a significant drop in the number of possible packages com-

pared to the unrestricted case. For example, in the 30-floor, 10-blocks-per-floor

case, there are only 1560 possible packages instead of 2300.

The Bidders We assume that we have N possibly different, risk-neutral bid-

ders. Their valuations are determined in the same way: for each bidder n ∈ N
and each single block g ∈ G, vn(g) is drawn randomly from the same bidder-

specific distribution. The effect of synergies in the package-valuations is cap-

tured by a bidder-specific parameter αn > 0: for every package h ∈ H,

vn(h)
.
=

(
∑
g∈h

vn(g)

)
·
(

1 +
|h| − 1
|h| αn

)
.

Thus, the valuation of every package is just the sum of the item-valuations

multiplied by a size-dependent synergy term.

We use this particular form since it captures two effects which are reason-

able in the office complex example. First, merging two packages should result

in a higher utility level than the sum of the utilities of the two individual pack-

ages since we can utilize the available space better. Secondly, this extra syn-

ergy of merging should become smaller at larger package sizes. Merging small

packages should give a significantly higher increase in synergy than merging

huge ones. Here we have exactly these effects governed by the size-dependent

synergy multiplier. It introduces a gradual increase in synergy as the package

size grows, but this additional increase vanishes at large sizes. For instance,

a 0.2 synergy parameter means that after two blocks the bidder gets an ad-

ditional 10% utility from the synergy, three blocks give 15% (additional 5%

points), four gives 17.5% (additional 2.5% points) and so on. In the limit we

have a 20% increase in the overall utility. This structure also implies that even

if we receive something which is completely worthless by itself, we can still

utilize the extra space and gain something from the increased synergy of the

former blocks. By following the previous argument, it is easy to see that the

preference of the bidders satisfy monotonicity.

29

Since we have risk neutral bidders with monotone preferences, we can use

every result of section 2.3 in this part of the paper.

3.2 The SPP

In our analysis, we will use larger simulations to determine the theoretical

maximum of the revenues that an auction mechanism could achieve and the

revenue properties of the VCG, the GVCG and the VCG-µ mechanisms in dif-

ferent cases. In all of these simulations, the set packing problem has a cen-

tral role and we have to define and solve SPPs with different (N, K, L) triples

through our analysis. Since the underlying package structure makes the pro-

gramming part a non-straightforward exercise, we would like to explain how

the coefficient matrix in the SPPs looks like and how it can be created in a

simple way in the programming part.

Once again, the SPP is the following binary linear programming problem:

max
y

v · y

s.t. Ay 5 1

y ∈ {0, 1}NH.

In the office complex example, the coefficient matrix A must capture three

requirements:

1. the special structure of the packages;

2. the fact that no block can be assigned more than once;

3. the restriction that everyone can get at most one package.

For these, note first that we can label the blocks and the packages in the

same order in every floor. Now define a matrix B ∈ RL×L(L+1)/2 which cap-

tures the structure of the packages in a given floor. Consider an arbitrary floor

k ∈ K and define the set Hk as the packages in floor k. Now, define the elements

of B according to the following rule. For every l ∈ L and h ∈ Hk,

blh
.
=

1 if gk,l ∈ h

0 otherwise,

where blh denotes the h-th element in the l-th row of matrix B.

30

Thus, in the matrix B, every row represents a block, every column a pack-

age, and the 1 values indicate that the corresponding block is included in a

package. Table 1 shows an example in a 5-block-per-floor case.

1 0 0 0 0 1 0 0 0 1 0 0 1 0 1

0 1 0 0 0 1 1 0 0 1 1 0 1 1 1

0 0 1 0 0 0 1 1 0 1 1 1 1 1 1

0 0 0 1 0 0 0 1 1 0 1 1 1 1 1

0 0 0 0 1 0 0 0 1 0 0 1 0 1 1

Table 1: The coefficient matrix of a single floor with five blocks per floor.

The next step is to build the coefficient matrix A that guarantees that the

package structure imposed by the vector y contains only non-overlapping of-

fices and that the bidders can get at most one package at the end. The construc-

tion of Table 2 can satisfy these requirements.

bidder 1︷ ︸︸ ︷ bidder 2︷ ︸︸ ︷ bidder N︷ ︸︸ ︷

A .
=

B 0 · · · 0 B 0 · · · 0 · · · B 0 0 0

0 B · · · 0 0 B · · · 0 · · · 0 B 0 0
...

...
...

... · · · ...
...

0 0 · · · B 0 0 · · · B · · · 0 0 0 B

1 1 · · · 1 0 0 · · · 0 · · · 0 0 0 0

0 0 · · · 0 1 1 · · · 1 · · · 0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

0 0 · · · 0 0 0 · · · 0 · · · 1 1 1 1

}
floor 1}
floor 2

}
floor K}
bidder 1}
bidder 2

}
bidder N

Table 2: The coefficient matrix of the set packing problem.

In the table, the submatrices are separated by horizontal and vertical dashed

lines. In the upper submatrices, 0 denotes L × L(L+1)
2 matrices full of zeros. In

the lower submatrices, 0 and 1 are row vectors of length L(L+1)
2 , full of ze-

ros and ones, respectively. We have one upper and one lower submatrix for

each bidder, every upper submatrix contains K columns and K rows and every

lower submatrix has K columns and N rows of smaller matrices.

31

If the binary vector y is built up in the same way (blocks-floors-bidders),

then the Ay 5 1 linear inequality system can characterize our set of possible

packages. The constraints corresponding to the upper blocks represent the re-

quirement that each block can be assigned at most once, while the inequalities

defined by the lower blocks impose the bidder-specific constraints that every-

one can have at most one package at the end.

In the computer program, it could be challenging to define this A matrix for

different (N, K, L) parameters. However, the special structure of this matrix

lets us use the Kronecker product as a very powerful tool in the parameter-

dependent definition.

Definition 17 (Kronecker product) For two matrices C ∈ Rn×m and D ∈ Rp×q,

the Kronecker product of C and D is defined as

C ⊗ D .
=

c11D c12D · · · c1mD

c21D c22D · · · c2mD
...

...

cn1D cn2D · · · cnmD

 .

Using the Kronecker product, we can define the matrix A for different K, L

and N parameters as

A =

[
11×N ⊗ (IK ⊗ B)

IK ⊗ 11×L(L+1)/2

]
,

where IK denotes the identity matrix of dimension K.

Now our SPP can be easily defined and solved in our computer program.

One part of the computational difficulty is solved by the simplification, since

the number of variables fell dramatically. Unfortunately, the polyhedron de-

fined by these inequalities admits fractional extreme points, thus the problem

cannot be replaced by its polynomially solvable linear relaxation. Although the

first part of the coefficient matrix (11×N ⊗ (IK ⊗ B)) satisfies the consecutive

ones property, and thus is totally unimodular, the lower blocks destroy this

feature. This matrix is not even perfect as Table 3 shows.

Thus, the usual conditions for the integral extreme points are not fulfilled

and it can be shown that the bidders’ preferences do not exclude the non-

integral extreme points as solutions. See Appendix A for an example. We can-

not use the linear programming relaxation here. However, with the restriction

32

1 0 0 0 1 0 0 1 0 1 1 0 0 0 1 0 0 1 0 1

0 1 0 0 1 1 0 1 1 1 0 1 0 0 1 1 0 1 1 1

0 0 1 0 0 1 1 1 1 1 0 0 1 0 0 1 1 1 1 1

0 0 0 1 0 0 1 0 1 1 0 0 0 1 0 0 1 0 1 1

1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

Table 3: Counterexample for perfection of the matrix A.

of H we already made a huge improvement regarding the complexity of the

problem which allows us to consider and analyze larger models too.

3.3 Simulation Results

In this section, we describe four simulation scenarios. In the first two cases we

took symmetric bidders and showed the good revenue properties of the origi-

nal VCG auction. In the other two cases, the symmetry among the bidders was

broken, which led to ill-performing VCG auctions. We used the GVCG and

VCG-µ auctions to “restore the order” and get significantly higher expected

revenues in these cases. In the VCG-µ auctions, we used the same scaling fac-

tors for bidders of the same type to avoid computational intractability. This can

be justified by the reasoning that players of the same type should get the same

conditions in the auction while this should not necessarily hold for different

bidders. For example, the auctioneer might want to act as if he was benevolent

and subsidize the weaker bidders with a higher weight in the auction. We will

see that even selfish reasons can stay behind such a generous behavior.

All the simulations were done in R. For the set packing problem, the open

source mixed linear integer programming solver SYMPHONY was used. This

was developed by the Computational Infrastructure for Operations Research

community and can be downloaded without any limitations from their home-

page16 or from the R repository. The whole source code is contained in Ap-

pendix A.

Every case assumed a medium-sized building with 4 floors and 4 blocks

on each floor. This means that we had 16 blocks and 40 packages overall. This

size was large enough to get an insight into the implications of the specific

structure of this model. On the other hand it was small small enough to obtain

16http://www.coin-or.org/SYMPHONY/index.htm

33

the simulation results within reasonable time. We did not need large samples

in the simulations; the means converged very fast to the expected revenues.

3.3.1 Symmetric Case, [0, 1] Bidders

In the first scenario, we took symmetric bidders with item valuations inde-

pendently and uniformly distributed over the [0, 1] interval and a 0.2 synergy

parameter.

The maximal possible expected revenue and the revenue of the VCG auc-

tion were calculated with different numbers of bidders, from 1 to 30. The out-

come is presented in Figure 1. We can observe at least two things here. The

first one is that for relatively small numbers of bidders, the revenues of the

VCG mechanism were far from the optimal value. The reason behind this is the

special payment scheme of the VCG mechanisms: everyone pays the damage

caused to the others. If we have fewer bidders than the number of floors, ev-

eryone will occupy a whole floor at the end, causing only negligible damage to

the others. Although some other bidders might prefer my blocks to what they

got, the expected value of the difference cannot be too large since they received

whole floors after the auction. This situation changed at the moment when

the number of bidders exceeded the number of floors. From this point on, the

winners really harmed one another since the building was not large enough

anymore to accommodate all the bidders in whole floors. They had to share

and squeeze out the others causing significantly larger damages which led to

increased payments. Consequently, the revenue jumped to a value close to the

theoretical maximum which means that the VCG has good revenue properties

in this case.

The second observation is that we can see the asymptotic optimality of the

VCG mechanism in effect: as the number of bidders grew, the gap between the

expected revenue and the theoretical maximum shrank gradually. Even with

15 bidders we got great revenues from the auction.

It is important to see whether the synergy parameter has a reasonable value

in the auction. A too high parameter would lead to the sale of whole floors

since one particularly high item valuation would generate high valuations for

packages consisting that block too. This result would lead to an allocation

scheme for which a simpler auction form can be used without all the com-

putational difficulties. A typical package-distribution of a bidder is shown in

Figure 2. This figure depicts the numbers how often the different packages

34

were received during 100 auctions with ten bidders. The first ten numbers rep-

resent the first floor, the second ten the second floor and so on. Within a floor,

the bundles of different sizes are separated by dashed lines. For instance, the

points between the red and green lines belong to packages of size three. We

can see in this figure that the package structure at the end is not trivial; our

bidder received packages of every possible size during the 100 auctions. Table

reftab:sympack shows the average numbers of different packages allocated in

one auction considering all the ten players. We can see in the table that usually

smaller packages were assigned. The whole distribution of the ten bidders can

be seen in Figure 3. Not surprisingly, we can see that the distribution is close

to “symmetric”; every agent has the same power in the auction.

Since the worst possible valuation vector 0 is included in the set of possible

valuations for every player, the VCG and the GVCG auctions coincide in this

scenario. Consequently, the VCG mechanism is optimal among the efficient

auctions in this case. The VCG-µ auction was not implemented here since we

stuck to the philosophy that every player of the same type should have the

same conditions, i.e. the same weight in the auction.

3.3.2 Symmetric Case, [2, 3] Bidders

The only difference between this setting and the previous one is that we shifted

the distributions of the item valuations to a uniform [2, 3] distribution. This

implied that the VCG and GVCG auctions did not coincide anymore. We did

the same analysis as before. We calculated the expected revenues for differ-

ent numbers of agents between 1 and 30. The worst type of every player is

when all of his item valuations are 2. Therefore, we used this as a basis in the

GVCG auction. The expected revenues can be seen in Figure 4. Regarding the

VCG auction, we can make the same observations as in the previous case: The

VCG mechanism performed very badly if we had 4 or less bidders and pro-

duced high and asymptotically optimal expected revenues otherwise. On the

other hand, the GVCG auction was able to produce significantly more in these

cases. The reason behind the power of the GVCG auction was that it charged

“reserve prices” from the winners. If the number of bidders was smaller than

the number of floors, everyone occupied a whole floor and caused almost no

damage to the others. Since the worst types received something too, they were

charged by the first term in the payment scheme of the GCVG auction. This

property disappeared when we reached the 5-bidder case: worst-type bidders

35

0 5 10 15 20 25 30

0
5

10
15

20

number of bidders

re
ve

nu
e

theoretical maximum
VCG
GCVG

Figure 1: Expected revenues in the symmetric [0, 1] case

0 10 20 30 40

0
2

4
6

8

package indices

nu
m

be
r

of
 c

as
es

VCG
GVCG

Figure 2: Package distribution of one bidder in the symmetric [0, 1] case

36

0 100 200 300 400

0
2

4
6

8

package indices

nu
m

be
r

of
 c

as
es

VCG
GVCG

Figure 3: Package distribution of all bidders in the symmetric [0, 1] case

Size Case I Case II

1 4.13 0.79

2 3.04 1.39

3 1.21 0.73

4 0.54 2.56

Table 4: Average numbers of packages in one round, symmetric cases

37

received nothing in general in the auction, thus the GVCG payments coincided

with the VCG payments. Although the GVCG auction was able to increase the

expected revenues in the cases with few bidders, this result is not particularly

interesting in our context. In the office complex example we can assume that

the number of bidders is large enough to have competition among them. How-

ever, the insight of this result will be important at the other scenarios where we

have rare asymmetric types.

A typical package distribution of a bidder is shown in Figure 5. We still had

non-trivial bundling and not surprisingly, the distribution under the VCG and

GVCG auctions were the same. In Table 4, we can see the average numbers

of different packages in one auction. Now the auction favors larger packages,

thus the 0.2 synergy parameter has a stronger effect than it had in the previous

scenario.

3.3.3 Asymmetric Case, Non-Overlapping Distributions

In this case, the symmetry between the bidders was broken. We assumed that

there was a fixed, large number of low-valuation bidders (25 in the simula-

tions) and that we had some bidders with dominating higher valuation func-

tions. The item valuations were drawn uniformly from [0, 1] for the first group

and from [2, 3] for the second. We used a synergy parameter of 0.2 for both

types. The theoretical maximum and the expected revenues of the auctions are

shown in Figure 6, as functions of the number of “strong” bidders in the auc-

tions.

We can see that even though we had a large number of bidders, the VCG

auction did not perform well if the number of the strong bidders was small. We

can use the same reasoning as before: the few strong bidders occupied whole

floors at the end causing almost no damage to one another and only small

damages to the weak ones. This is a severe issue here since we cannot exclude

this case in the office complex example as we did in the previous section. In the

symmetric case it is not reasonable to assume that we have fewer bidders than

floors, but here in the asymmetric scenario we cannot avoid the case where

there is a small group of bidders with higher item-valuations.

Fortunately, the GVCG auction can be used here to set higher prices for

stronger bidders. We can see that we were able to increase the revenue signif-

icantly by using the GVCG mechanism in the few-strong-bidder case since it

acted in the same way as in the second scenario and imposed reserve prices

38

0 5 10 15 20 25 30

0
10

20
30

40
50

60

number of bidders

re
ve

nu
e

theoretical maximum
VCG
GVCG

Figure 4: Expected revenues in the symmetric [2, 3] case

0 10 20 30 40

0
2

4
6

8

package indices

nu
m

be
r

of
 c

as
es

VCG
GVCG

Figure 5: Package distribution of one bidder in the symmetric [2, 3] case

39

for the strong bidders. However, this asymmetry might allow us to do more.

As a next step, we used the VCG-µ auction form, fixed the scaling factor of the

first group at 1, and did a grid search over the [0, 2] interval to find the µ2 pa-

rameter which led to the maximal expected revenue. We can see in Figure 7 the

expected revenue as a function of µ2 in the case where we had only one strong

bidder. As we decreased the weight of the strong bidder, the expected revenue

started to increase immediately. This effect can be explained in the following

way: as we decrease the weight of the second group, the weaker bidders start

to become more important in the auction. With a small decrease in the weight,

the optimal allocation does not change. However, the higher relative impor-

tance of weaker bidders increases the calculated and rescaled damage to them

in the strong bidder’s payment. On the other hand, the weak bidders’ fee does

not change at all since the allocation did not change and their weights cancel

out in the payment scheme. Consequently, they cause no harm to the strong

one and the harm caused to other weak ones is the same as before. This argu-

ment holds if the allocation is unchanged. However, after some point the weak

bidders become rivals of the strong and efficiency breaks down. The payment

of the strong bidder still increases but after a point he lose his power and the

weaks share the whole building. Because of this, the whole situation crushes

down to the symmetric [0, 1] case which is responsible for the significant drop

in the expected revenue. After this point, an increase in µ2 does not change

the result since the strong bidder will still not win anything and the weak bid-

ders are equally important. Thus the weeks always get the same allocation and

cause the same harm to one another.

In the other direction where we overweight the strong bidder, a similar ar-

gument holds. If we increase the importance of the strong bidder, the allocation

does not change. However, the damage caused by him to the weak bidders will

decrease with the modified valuation function, thus the revenue decreases.

The same reasoning holds in the cases where we have several strong bid-

ders but their number is still below the number of floors.

However, as soon we have more strong bidders than floors, the situation

radically changes (see Figure 8). The strong ones will share the blocks alone,

thus the harm caused to the weak bidders will be zero. Since the relative weight

within the strong group are the same, the allocation and the payments after

decreasing µ2 will not change before the weaks become equally important. If

we reduce µ2 further, we get back the symmetric [0, 1] case again which results

40

in a significant drop in the expected revenue. Thus, in these cases the VCG-µ

auction leads to no improvement at all; all the three mechanisms give the same

expected revenue as it can be seen in Figure 6.

It is interesting to see how far the optimal package distribution is from the

efficient one. Figure 9 compares the distributions over the whole society in

the case of 4 strong bidders. The bidders are separated by vertical lines. The

package indices 1-1000 correspond to the weak bidders and the indices 1001-

1160 to the strong ones. Figure 10 presents the distribution of the first strong

bidder. We can see that in the VCG and GVCG cases, the weak bidders received

nothing: Their distribution is completely flat. But we broke the efficiency in

the VCG-µ auction and in few cases we gave packages to weak bidders too.

However, the two distributions are still really “close” to each other and in most

of the cases we gave the packages to the bidders who had the highest valuation

for them. This small difference can be seen in Table 5 too: The average numbers

of packages of different sizes are really close to each other in the two auctions.

Case I Case II

strong bidders weak bidders strong bidders weak bidders

Size (G)VCG VCG-µ (G)VCG VCG-µ (G)VCG VCG-µ (G)VCG VCG-µ

1 0 0.05 0 0.43 0.01 0.53 0.48 2.59

2 0 0.22 0 0.24 0.06 1.19 0.03 1.11

3 0 0.37 0 0.03 0.42 1.09 0.01 0.11

4 4 3.30 0 0.05 3.51 1.15 0.00 0.02

Table 5: Average numbers of packages in one round, asymmetric cases

3.3.4 Asymmetric Case, Overlapping Distributions

In this setting we created overlapping distributions by changing the item dis-

tribution of the strong group to [0.5, 2.5]. Thus, the worst type of the strong

bidders dropped from 2 to 0.5. The expected revenues are shown in Figure 11.

Since we had 25 [0, 1] bidders, their maximal valuation for every item was usu-

ally well above 0.5. Consequently, there was no significant difference between

excluding stronger bidders and leaving them in the auction with their worst

type. Thus, in general, the GVCG auction was not able to charge higher fees

than the VCG auction. However, the VCG-µ auction performed well again,

giving a significant increase in the expected revenue. Moreover, it was able to

41

1 2 3 4 5 6 7 8

0
10

20
30

40
50

60

number of strong bidders

re
ve

nu
e

theoretical maximum
VCG
GVCG
VCG−mu

Figure 6: Expected revenues in the first asymmetric case

0.0 0.5 1.0 1.5 2.0

14
16

18
20

22

weight

re
ve

nu
e

Figure 7: Expected revenues as a function of weights with one strong bidder,

first asymmetric case

42

0.0 0.5 1.0 1.5 2.0

15
20

25
30

35
40

45

weight

re
ve

nu
e

Figure 8: Expected revenues as a function of weights with five strong bidders,

first asymmetric case

0 200 400 600 800 1000 1200

0
5

10
15

20
25

30
35

package indices

nu
m

be
r

of
 c

as
es

VCG
GVCG
VCG−mu

Figure 9: Package distribution of the bidders in the first asymmetric case

43

improve the expected revenue in cases where we had more than four bidders

which is a different result than that we got in the non-overlapping case.

The reason behind this improvement is that the strong bidders do not al-

ways win: In few cases, the weaks can overbid the strong players. This means

that our former argument does not hold in the situations where we have more

strong bidders than floors. Now we cannot be sure that a strong bidder causes

damage only to other strong bidders in the auction by his presence. It might

happen that a weak bidder could benefit from the exclusion of the strong. This

“inter-group” damage destroys the former neutrality of the weights in these

cases. By lowering the weight of the strong bidders, we can make them pay

more for the damage caused to weaker bidders. The weight-revenue function

with 1 and 5 strong bidders are shown in Figures 12 and 13. Table 5 shows the

average numbers of packages in rounds. We can see that the difference from

the efficient allocation was larger in this case; the weak bidder won more in

average in the VCG-µ auction.

44

0 10 20 30 40

0
5

10
15

20
25

30

package indices

nu
m

be
r

of
 c

as
es

VCG
GVCG
VCG−mu

Figure 10: Package distribution of one bidder in the first asymmetric case

1 2 3 4 5 6 7 8

0
10

20
30

40

number of strong bidders

re
ve

nu
e

theoretical maximum
VCG
GVCG
VCG−mu

Figure 11: Expected revenues in the second asymmetric case

45

0.0 0.5 1.0 1.5 2.0

14
15

16
17

18

weight

re
ve

nu
e

Figure 12: Expected revenues as a function of weights with one strong bidder,

second asymmetric case

0.0 0.5 1.0 1.5 2.0

16
18

20
22

24
26

weight

re
ve

nu
e

Figure 13: Expected revenues as a function of weights with five strong bidders,

second asymmetric case

46

4 Concluding Remarks

The aim of this paper was to discuss the main issues of combinatorial auctions,

to present some of the solutions proposed by the literature and to describe an

alternative way to overcome some of the difficulties.

We have seen that combinatorial auctions have several attractive features

which make them a very good alternative in multi-object auction design but

the complex structure leads to computational and economic problems. The

goals of the auctioneer are sometimes hard to realize. While with the Vickrey–

Clarke–Groves auctions we possess a tool to implement efficient allocations,

revenue-maximization is still an unsolved problem. We can investigate the rev-

enue properties of different auctions but finding the optimal one is still an open

question even in small environments. The issue of computational complexity

makes the implementation of combinatorial auctions in larger settings diffi-

cult and after a point impossible. To avoid this problem, we have to impose

assumptions on the primitives of the auction. The usual approach in the litera-

ture is to restrict the preferences of the players in a very strict way. The papers

use binary valuations, distinguish between global and local players or impose

other assumptions like partial additivity to make the underlying optimization

problem simpler to solve. The simulations are usually done in very small set-

tings, with only two or three players and few goods where every combination

is allowed. The economic insight is sometimes hidden in such small environ-

ments.

This paper used a different approach. Through an example where we auc-

tion off a large office complex with a possibly large number of interior “blocks”,

we presented a different strategy. Instead of making too hard assumptions on

the bidders’ preferences, we restricted the set of possible packages. For several

reasons (e.g. avoiding chaos from commuting) we used the restriction that the

available offices (block packages) are constructed from neighboring connected

blocks in the same floor. As a consequence of this structure, the number of pos-

sible packages fell dramatically and allowed us to investigate larger systems

through simulations.

We considered four simulation scenarios in the paper. The first two as-

sumed symmetric bidders with uniform [0, 1] and [2, 3] item valuations, re-

spectively. We saw that in the first case, our auctions gave the same result:

they did not perform well if the number of agents was smaller than the num-

ber of floors, but after this point the revenue jumped to a high level and as

47

the number of bidders grew, it converged to the theoretical maximum. In the

second case, we were able to improve the revenues of the VCG mechanism in

the critical cases by using the GVCG auction. The reason behind this was that

the GVCG auction charged reserve prices in these cases.

The second pair of simulations assumed asymmetric bidders. In both sce-

narios, we had 25 “weak” bidders and one to eight dominating “strong ones”.

In the first case, the item-valuations were not overlapping. The VCG auction

had a poor performance if the number of strong bidders was smaller than the

number of floors. In such cases, the strong bidders did not pay close to their

real valuations and thus the VCG was not able to reach high revenues. How-

ever, we were able to use the “reserve price” property of the GVCG auction

again. Moreover, by giving up efficiency and modifying the importance of the

bidders in the auction, we could reach even higher revenues with the VCG-µ

auction. After 5 strong bidders, the three mechanism coincided.

The overlapping case gave slightly different results. Because of the weaker

“overlapping domination”, the GVCG was not able to improve the bad rev-

enues of the VCG auction. On the other hand, the non-efficient VCG-µ mech-

anism gave significant additional revenue even in the cases with more than

five strong bidders. Thus, by either charging “reserve prices” or by artificially

creating close rivalry between the bidders of different types we were able to

reach revenues close to the theoretical maximum.

All in all, our simplification not only let us solve the auctioning problem in

higher-dimensional environments but also gave us valuable economic insights

into the way how these auctions work and what this particular restriction on

the structure implies in the auction process. We think that this structure can be

used in other allocation situations too where the winners cannot obtain goods

from more than one subset at the same time for some reasons.17 Thus, this

work can be used as a preparation for a future research that might possibly

use analytical tools to generalize the conclusions.

17Consider an auction of rights for some activity in a country where the different subsets are

regions. In such a situation, it could happen that we do not want to allow a company to have

a right in more than one region since this would possibly create an ill market structure.

48

References

A. Andersson and J. Wilenius. A new analysis of revenue in the combinato-

rial and simultaneous auction. Technical Report 2009-001, Department of

Information Technology, Uppsala University, Jan. 2009. Updated May 2009.

M. Armstrong. Optimal multi-object auctions. Review of Economic Studies, 67

(3):455–81, July 2000.

E. H. Clarke. Multipart pricing of public goods. Public Choice, 11(1):17–33, Sept.

1971.

P. C. Cramton, Y. Shoham, and R. Steinberg. Combinatorial auctions. MIT Press,

2010.

S. de Vries and R. V. Vohra. Combinatorial auctions: A survey. INFORMS

Journal on Computing, 15(3):284–309, 2003.

T. Groves. Incentives in Teams. Econometrica, 41(4):617–631, 1973.

P. Klemperer. What Really Matters in Auction Design. Journal of Economic

Perspectives, 16(1):169–189, Jan. 2002.

V. Krishna and M. Perry. Efficient mechanism design. Technical report, Penn-

sylvania State University / The Hebrew University of Jerusalem, April 1998.

V. Krishna and R. W. Rosenthal. Simultaneous auctions with synergies. Games

and Economic Behavior, 17(1):1–31, November 1996.

J. Levin. An Optimal Auction for Complements. Games and Econ. Behavior, 18

(2):176–92, Feb. 1997.

A. Likhodedov and T. W. Sandholm. Methods for boosting revenue in combi-

natorial auctions. Technical report, Computer Science Department, Carnegie

Mellon University, 2004.

A. Likhodedov and T. W. Sandholm. Approximating revenue-maximizing

combinatorial auctions. Technical report, Computer Science Department,

Carnegie Mellon University, 2005.

D. Monderer and M. Tennenholtz. Asymptotically optimal multi-object auc-

tions. Technical report, Faculty of Industrial Engineering and Management,

TechnionIsrael Institute of Technology, 2005.

49

R. B. Myerson. Optimal auction design. Mathematics of Operations Research, 6

(1):58–73, 1981.

M. W. Padberg. Perfect zero-one matrices. Mathematical Programming, 6:180–

196, 1974.

S. J. Rassenti, V. L. Smith, and R. L. Bulfin. A Combinatorial Auction Mech-

anism for Airport Time Slot Allocation. The Bell Journal of Economics, 13(2):

402–417, 1982.

M. H. Rothkopf, A. Pekeč, and R. M. Harstad. Computationally Manageable

Combinational Auctions. Management Science, 44(8):1131–1147, 1998.

T. Sandholm. Algorithm for optimal winner determination in combinatorial

auctions. Artificial Intelligence, 135(1-2):1–54, February 2002.

W. Vickrey. Counterspeculation, Auctions, and Competitive Sealed Tenders.

The Journal of Finance, 16(1):8–37, 1961.

R. V. Vohra. Mechanism Design: A Linear Programming Approach. Econometric

Society Monographs. Cambridge University Press, 2011.

50

Appendix

A Source Code

1 l i b r a r y (Rsymphony)

3 # ##

D e f i n i t i o n of the a u x i l i a r y matr ices

5 # ##

7 ## matrix B : package s t r u c t u r e of a s i n g l e f l o o r ##########

9 B . mat <− func t ion (L) {

#L : number of blocks in a f l o o r

11 B <− diag (L)

f o r (l in 2 : L) {

13 B . add <− matrix (0 , L , L−l +1)

f o r (k in 1 : (L−l +1)) {

15 B . add [k : (k+l −1) , k] <− t (rep (1 , l))

}

17 B <− cbind (B , B . add)

}

19 B

}

21

matrix A: the c o e f f i c i e n t matrix of the SPP

23

A. mat <− func t ion (N,K=2 ,L=2) {

25 #N: number of bidders

#K: number of f l o o r s

27 #number of blocks :

H <− K∗L∗ (L+1)/2

29 A <− matrix (0 ,N+K∗L ,N∗H) # the c o n t r a i n t matrix

B <− B . mat (L)

31 #non−overlapping packages :

A[1 : (K∗L) ,] <− t (rep (1 ,N)) %x% diag (K) %x% B

33 # everyone should get one package a t the end :

A[(K∗L+1) : (K∗L+N) ,] <− diag (N) %x% t (rep (1 ,H))

35 A

}

37

##

39 # Def in i ton of the Set Packing Problems

##

41

The binary SPP

43

spp <− funct ion (N, v ,A) {

45 # d i r e c t i o n s of the i n e q u a l i t i e s :

d i r <− rep ("<=" ,dim (A) [1])

47 # r i g h t hand s ide :

b <− rep (1 , dim (A) [1])

49 # s o l u t i o n :

x <− Rsymphony_ solve _LP (v ,A, dir , b , types="B" ,max=TRUE)

51

51 l i s t (x$ objval , x$ s o l u t i o n)

}

53

The l i n e a r r e l a x a t i o n

55

spp . lp <− func t ion (N, v ,A) {

57 d ir <− rep ("<=" ,dim (A) [1])

b <− rep (1 , dim (A) [1])

59 x <− Rsymphony_ solve _LP (v ,A, dir , b , types="C" ,max=TRUE)

l i s t (ob j=x$ objval , s o l =x$ s o l u t i o n)

61 }

63 # ##

Valuation funct ion

65 # ##

67 va ls . uni f .N <− func t ion (N, K, L , vlim=c (0 , 1) , alpha = . 1 , B) {

H <− K∗L∗ (L+1)/2

69 # item−va lua t ions :

v <− r u n i f (N∗K∗L , vlim [1] , vlim [2])

71 # synerg ies :

v . syn <− rep (1 , L)

73 f o r (l in 2 : L) {

v . add <− t (rep (1 + (l −1)/ l ∗alpha , L−l +1))

75 v . syn <− c (v . syn , v . add)

}

77 v . syn <− rep (v . syn ,K∗N)

#package va lua t ions :

79 as . vec tor ((t (v) %∗% (diag (K∗N) %x% B)) ∗ v . syn)

}

81

An example

83

va ls . uni f .N(2 , 2 , 4 , c (0 , 1) , . 1 , B . mat (4))

85

##

87 # Finding a non−i n t e g r a l extreme point

##

89

randomly generated valuat ion p r o f i l e s to f ind an extreme

91 # point which i s non−i n t e g r a l

vv <− matrix (0 , 2 0 , 1 8)

93 f o r (i in 1 : 2 0) {

vv [i ,] <− va ls . uni f .N(3 , 1 , 3 , v=c (0 , 1) , alpha = . 2 , B . mat (3))

95 x <− spp . lp (3 , vv [i ,] ,A=A. mat (3 , 1 , 3)) $ s o l

p r i n t (x)

97 }

99 # the r e s u l t :

101 # the valuat ion p r o f i l e

[1] 0 .3847793 0 .9222561 0 .5643365 1 .4377389 1 .6352518

103 # [6] 2 .1208881 0 .7114423 0 .2962169 0 .9145589 1 .1084251

[1 1] 1 .3318534 2 .1785139 0 .0013681 0 .9905686 0 .1241367

105 # [1 6] 1 .0911304 1 .2261759 1 .2648832

52

#

107 # gives the optimal s o l u t i o n

[1] 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 5 0 . 5 0 . 0 0 . 5

109 # 0 . 0 0 . 0 0 . 0 0 . 0 0 . 5 0 . 0 0 . 0 0 . 0 0 . 0

#

111 #with o b j e c t i v e funct ion value

[1] 2 .368729

113 #

#which i s d i f f e r e n t from the s o l u t i o n to

115 # the i n t e g e r programming problem

[1] 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0

117 #

#with o b j e c t i v e funct ion value

119 # [1] 2 .352298

121 # ##

SIMULATIONS

123 # ##

125 ## THEORETICAL MAXIMUM ####################################

127 # asymmetric bidders :

(symmetric bidders i s a s p e c i a l case)

129

sim . max .N. asym <− func t ion (N. vec , K, L , v . mat , alpha . vec , rept) {

131 #N. vec : vec tor with the number of people of d i f f e r e n t types

#v . mat : Nx2 matrix with the i n t e r v a l s of the va lua t ions f o r d i f f e r e n t types

133 # alpha . vec : vec tor with the synergy parameters

rept : number of r e p e t i t i o n s

135 N <− sum(N. vec)

A <− A. mat (N, K, L)

137 B <− B . mat (L)

r . max .N. s <− rep (0 , rept)

139 # generate va luat ion p r o f i l e s and solve the auct ions :

f o r (i in 1 : rept) {

141 va ls <− rep (0 , 0)

f o r (n in 1 : length (N. vec)) {

143 va ls <− c (vals , va l s . uni f .N(N. vec [n] ,K, L , vlim=as . vec tor (v . mat [n ,]) , alpha=alpha .

vec [n] , B))

}

145 r . max .N. s [i] <− as . r e a l (spp (N, vals ,A) [1])

}

147 # histogram and mean , minimum and maximum as outputs :

h i s t (r . max .N. s)

149 c (mean(r . max .N. s) , min (r . max .N. s) ,max(r . max .N. s))

}

151

VCG AUCTION

153

VCG s o l v e r :

155

vcg <− funct ion (N, K, L , v) {

157 H <− K∗L∗ (L+1)/2

a u x i l i a r y matr ices f o r the problems where a player i s

159 # not excluded and wher he i s excluded :

53

A. 0 <− A. mat (N, K, L)

161 A. 1 <− A. mat (N−1,K, L)

valuat ion p r o f i l e s excluding the nth player :

163 v . e x c l <− matrix (0 ,N, (N−1)∗H)

o v e r a l l u t i l i t y of the other players where n i s included :

165 val . 0 . e x c l <− rep (0 ,N)

o v e r a l l u t i l i t y of the other players where n i s excluded :

167 val . 1 . e x c l <− rep (0 ,N)

a l l o c a t i o n and p r i c e s when n i s excluded

169 x . e x c l <− matrix (0 ,N, (N−1)∗H)

p . e x c l <− rep (0 ,N) # vickrey p r i c e s

171 #SPP f o r N people :

x <− spp (N, v ,A. 0)

173 x . s o l <− u n l i s t (x [2])

#SPP f o r the cases when a player i s excluded :

175 f o r (n in 1 :N) {

v . e x c l [n ,] <− v[− ((1+(n−1)∗H) : (H+(n−1)∗H))]

177 x . e x c l [n ,] <− x . s o l [− ((1+(n−1)∗H) : (H+(n−1)∗H))]

val . 0 . e x c l [n] <− x . e x c l [n ,] %∗% v . e x c l [n ,]

179 val . 1 . e x c l [n] <− as . r e a l (spp (N−1,v . e x c l [n ,] ,A. 1) [1])

p . e x c l [n] <− val . 1 . e x c l [n] − val . 0 . e x c l [n]

181 }

l i s t (matrix=cbind (p . excl , val . 0 . exc l , val . 1 . e x c l) , s o l =x . s o l)

183 }

185 # VCG simulat ions with asymmetric bidders :

(simmetric bidders i s a s p e c i a l case)

187

sim . vcg .N. asym <− func t ion (N. vec , K, L , v . mat , alpha . vec , rept) {

189 B <− B . mat (L)

N <− sum(N. vec)

191 r . vcg .N <− rep (0 , rept)

f o r (i in 1 : rept) {

193 va ls <− rep (0 , 0)

f o r (n in 1 : length (N. vec)) {

195 va ls <− c (vals , va l s . uni f .N(N. vec [n] ,K, L , vlim=as . vec tor (v . mat [n ,]) , alpha=alpha .

vec [n] , B))

}

197 r . vcg .N[i] <− rep (1 ,N) %∗% (vcg (N, K, L , va l s) $ matrix) [, 1]

}

199 h i s t (r . vcg .N)

c (mean(r . vcg .N))

201 }

203 ## GVCG AUCTION ###

205 # GVCG s o l v e r :

207 gvcg <− funct ion (N, K, L , v , vbar) {

H <− K∗L∗ (L+1)/2

209 A. 0 <− A. mat (N, K, L)

v . e x c l <− matrix (0 ,N, (N−1)∗H)

211 # " mixed " va luat ion p r o f i l e s where one bidder plays h i s

b a s i s s t r a t e g y :

213 v . mixed <− matrix (0 ,N,N∗H)

54

val . 0 . e x c l <− rep (0 ,N)

215 # o v e r a l l u t i l i t y of players given the mixed p r o f i l e :

val . 1 . mixed <− rep (0 ,N)

217 x . e x c l <− matrix (0 ,N, (N−1)∗H)

genera l ized Vickrey p r i c e s :

219 p . mixed <− rep (0 ,N)

x <− spp (N, v ,A. 0)

221 x . s o l <− u n l i s t (x [2])

c a l c u l a t i o n of the payments , case d i s t i n c t i o n i s needed :

223 v . e x c l [1 ,] <− v[− (1 :H)]

x . e x c l [1 ,] <− x . s o l [− (1 :H)]

225 v . mixed [1 ,] <− c (vbar [1 :H] , v [(1+H) : (N∗H)])

val . 0 . e x c l [1] <− x . e x c l [1 ,] %∗% v . e x c l [1 ,]

227 val . 1 . mixed [1] <− as . r e a l (spp (N, v . mixed [1 ,] ,A. 0) [1])

p . mixed [1] <− val . 1 . mixed [1] − val . 0 . e x c l [1]

229 i f (N==2) {

v . e x c l [2 ,] <− v[− ((H+1) : (N∗H))]

231 x . e x c l [2 ,] <− x . s o l [− ((H+1) : (N∗H))]

v . mixed [2 ,] <− c (v [1 :H] , vbar [(1 +H) : (N∗H)])

233 val . 0 . e x c l [2] <− x . e x c l [2 ,] %∗% v . e x c l [2 ,]

val . 1 . mixed [2] <− as . r e a l (spp (N, v . mixed [2 ,] ,A. 0) [1])

235 p . mixed [2] <− val . 1 . mixed [2] − val . 0 . e x c l [2]

}

237 e l s e {

f o r (n in 2 : (N−1)) {

239 v . e x c l [n ,] <− v[− ((1+(n−1)∗H) : (H+(n−1)∗H))]

x . e x c l [n ,] <− x . s o l [− ((1+(n−1)∗H) : (H+(n−1)∗H))]

241 v . mixed [n ,] <− c (v [1 : ((n−1)∗H)] , vbar [(1 + (n−1)∗H) : (H+(n−1)∗H)] , v [(1 +H+(n−1)∗H) : (

N∗H)])

val . 0 . e x c l [n] <− x . e x c l [n ,] %∗% v . e x c l [n ,]

243 val . 1 . mixed [n] <− as . r e a l (spp (N, v . mixed [n ,] ,A. 0) [1])

p . mixed [n] <− val . 1 . mixed [n] − val . 0 . e x c l [n]

245 }

v . e x c l [N,] <− v[− ((1+(N−1)∗H) : (H+(N−1)∗H))]

247 x . e x c l [N,] <− x . s o l [− ((1+(N−1)∗H) : (H+(N−1)∗H))]

v . mixed [N,] <− c (v [1 : ((N−1)∗H)] , vbar [(1 + (N−1)∗H) : (H+(N−1)∗H)])

249 val . 0 . e x c l [N] <− x . e x c l [N,] %∗% v . e x c l [N,]

val . 1 . mixed [N] <− as . r e a l (spp (N, v . mixed [N,] ,A. 0) [1])

251 p . mixed [N] <− val . 1 . mixed [N] − val . 0 . e x c l [N]

253 }

l i s t (matrix=cbind (p . mixed , val . 0 . exc l , val . 1 . mixed) , s o l =x . s o l)

255 }

257 # GVCG simulat ions with asymmetric bidders :

(simmetric bidders i s a s p e c i a l case)

259

sim . gvcg .N. asym <− func t ion (N. vec , K, L , v . mat , vbar . mat , alpha . vec , rept) {

261 B <− B . mat (L)

N <− sum(N. vec)

263 r . vcg .N <− rep (0 , rept)

f o r (i in 1 : rept) {

265 va ls <− rep (0 , 0)

vbars <− rep (0 , 0)

267 f o r (n in 1 : length (N. vec)) {

55

va ls <− c (vals , va l s . uni f .N(N. vec [n] ,K, L , vlim=as . vec tor (v . mat [n ,]) , alpha=alpha .

vec [n] , B))

269 vbars <− c (vbars , va l s . uni f .N(N. vec [n] ,K, L , vlim=as . vec tor (vbar . mat [n ,]) , alpha=

alpha . vec [n] , B))

}

271 r . vcg .N[i] <− rep (1 ,N) %∗% (gvcg (N, K, L , vals , vbars) $ matrix) [, 1]

}

273 h i s t (r . vcg .N)

c (mean(r . vcg .N))

275 }

277 ## VCG−MU AUCTION ###

279 # VCG−mu s o l v e r :

281 vcg .mu <− func t ion (N, K, L , v ,mu=rep (1 ,N)) {

H <− K∗L∗ (L+1)/2

283 A. 0 <− A. mat (N, K, L)

A. 1 <− A. mat (N−1,K, L)

285 #weighted valuat ion f u n c t i o n s :

v <− v ∗ (mu %x% rep (1 ,H))

287 v . e x c l <− matrix (0 ,N, (N−1)∗H)

val . 0 . e x c l <− rep (0 ,N)

289 val . 1 . e x c l <− rep (0 ,N)

x . e x c l <− matrix (0 ,N, (N−1)∗H)

291 p . e x c l <− rep (0 ,N)

x <− spp (N, v ,A. 0)

293 x . s o l <− u n l i s t (x [2])

f o r (n in 1 :N) {

295 v . e x c l [n ,] <− v[− ((1+(n−1)∗H) : (H+(n−1)∗H))]

x . e x c l [n ,] <− x . s o l [− ((1+(n−1)∗H) : (H+(n−1)∗H))]

297 val . 0 . e x c l [n] <− x . e x c l [n ,] %∗% v . e x c l [n ,]

val . 1 . e x c l [n] <− as . r e a l (spp (N−1,v . e x c l [n ,] ,A. 1) [1])

299 # modified payments :

p . e x c l [n] <− (val . 1 . e x c l [n] − val . 0 . e x c l [n]) / mu[n]

301 }

l i s t (matrix=cbind (p . excl , val . 0 . exc l , val . 1 . e x c l) , s o l =x . s o l)

303 }

305 # VCG−mu simulat ions with asymmetric bidders :

(simmetric bidders i s a s p e c i a l case)

307

sim . vcg .N. asym .mu <− funct ion (N. vec , K, L , v . mat , alpha . vec ,mu. vec=rep (1 , length (N. vec)) ,

rept) {

309 B <− B . mat (L)

N <− sum(N. vec)

311 #mu vector of a l l the bidders :

mu <− rep (0 , 0)

313 f o r (n in 1 : length (N. vec)) {

mu <− c (mu, rep (mu. vec [n] ,N. vec [n]))

315 }

r . vcg .N <− rep (0 , rept)

317 f o r (i in 1 : rept) {

va l s <− rep (0 , 0)

319 f o r (n in 1 : length (N. vec)) {

56

va ls <− c (vals , va l s . uni f .N(N. vec [n] ,K, L , v=as . vec tor (v . mat [n ,]) , alpha=alpha . vec [

n] , B))

321 }

r . vcg .N[i] <− rep (1 ,N) %∗% (vcg .mu(N, K, L , vals ,mu) $ matrix) [, 1]

323 }

h i s t (r . vcg .N)

325 c (mean(r . vcg .N))

}

327

##

329 # SIMULATIONS

##

331

4 blocks per f l o o r and 4 f l o o r s in a l l cases

333 # item valua t ions are d i f f e r e n t

the synergy parameter i s always . 2

335

symmetric types , I (0 i s included)

337

item valua t ions are i . i . d . uniform [0 , 1] draws .

339

expected revenues :

341

revs . max .N <− rep (0 , 3 0)

343 revs . max .N. vcg <−rep (0 , 3 0)

revs . max .N. gvcg <−rep (0 , 3 0)

345

a l l auc t ions give 0 in the one−bidder case

347

other cases :

349

f o r (i in 2 : 3 0) {

351 p r i n t (i)

revs . max .N[i] <− sim . max .N(i , 4 , 4 , c (0 , 1) , . 2 , 1 0 0) [1]

353 revs . max .N. vcg [i] <− sim . vcg .N. asym (i , 4 , 4 , matrix (c (0 , 1) , 1 , 2) , . 2 , 1 0 0) [1]

revs . max .N. gvcg [i] <− sim . gvcg .N. asym (i , 4 , 4 , matrix (c (0 , 1) , 1 , 2) , matrix (c (0 , 0) , 1 , 2)

, . 2 , 1 0 0) [1]

355 }

357 # f i g u r e of the expected revenues :

359 p o s t s c r i p t (f i l e =" sim01−01. eps " , paper=" s p e c i a l " , width =8 , height =6 , h o r i z o n t a l =FALSE)

p l o t (revs . max .N, ylim=c (0 , 2 0) , x lab=" number of bidders " , ylab=" revenue " , type=" o " , l t y =3 ,

pch =4)

361 l i n e s (revs . max .N. vcg , c o l =" red " , type=" o " , l t y =3)

l i n e s (revs . max .N. vcg , c o l =" blue " , type=" o " , l t y =3 , pch =3)

363 grid (c o l =" grey ")

legend (. 1 , 2 0 . 5 , c (" t h e o r e t i c a l maximum" , "VCG" , "GCVG") , bg=" white " , cex =0 .85 , c o l =c ("

black " , " red " , " blue ") , pch=c (4 , 1 , 3) , l t y =3)

365 dev . o f f ()

367 # package d i s t r i b u t i o n with 100 draws :

369 va ls . sym <− matrix (0 , 1 0 0 , 1 0 ∗ 40)

vbars . sym <− matrix (0 , 1 0 0 , 1 0 ∗ 40)

57

371 vcg . s o l . sym <− matrix (0 , 1 0 0 , 1 0 ∗ 40)

gvcg . s o l . sym <− matrix (0 , 1 0 0 , 1 0 ∗ 40)

373

VCG and GVCG simulat ions :

375

f o r (i in 1 : 1 0 0) {

377 p r i n t (i)

va l s . sym[i ,] <− va ls . uni f .N(1 0 , 4 , 4 , c (0 , 1) , . 2 , B . mat (4))

379 vbars . sym[i ,] <− va ls . uni f .N(1 0 , 4 , 4 , c (0 , 0) , . 2 , B . mat (4))

vcg . s o l . sym[i ,] <− vcg (1 0 , 4 , 4 , va l s . sym[i ,]) $ s o l

381 gvcg . s o l . sym[i ,] <− gvcg (1 0 , 4 , 4 , va l s . sym[i ,] , vbars . sym[i ,]) $ s o l

}

383

summing up gives the d i s t r i b u t i o n s :

385

d i s t r . vcg . sym <− rep (1 , 1 0 0) %∗% vcg . s o l . sym

387 d i s t r . gvcg . sym <− rep (1 , 1 0 0) %∗% gvcg . s o l . sym

389 # f i g u r e f o r one player :

391 p o s t s c r i p t (f i l e =" sim01−02. eps " , paper=" s p e c i a l " , width =8 , height =6 , h o r i z o n t a l =FALSE)

p l o t (d i s t r . vcg . sym [1 : 4 0] , type="p" , c o l =" red " , cex = 1 . 2 , ylab=" number of cases " , x lab="

package i n d i c e s ")

393 l i n e s (d i s t r . gvcg . sym [1 : 4 0] , type="p" , pch =3 , c o l =" blue " , cex = 1 . 2)

a b l i n e (v=c (seq (. 5 , 4 0 . 5 , by=10)) , l t y =1)

395 a b l i n e (v=c (seq (4 . 5 , 3 4 . 5 , by=10)) , c o l =" blue " , l t y =2)

a b l i n e (v=c (seq (7 . 5 , 3 7 . 5 , by=10)) , c o l =" red " , l t y =2)

397 a b l i n e (v=c (seq (9 . 5 , 3 9 . 5 , by=10)) , c o l =" dark green " , l t y =2)

legend (−0 . 2 , 9 . 2 5 , c ("VCG" , "GVCG") , cex = . 8 , bg=" white " , c o l =c (" red " , " blue ") , pch=c (1 , 3))

399 dev . o f f ()

401 # f i g u r e f o r a l l the players :

403 p o s t s c r i p t (f i l e =" sim01−03. eps " , paper=" s p e c i a l " , width =8 , height =6 , h o r i z o n t a l =FALSE)

p l o t (d i s t r . vcg . sym [1 : 4 0 0] , type="p" , c o l =" red " , cex = . 5 , ylab=" number of cases " , x lab="

package i n d i c e s ")

405 l i n e s (d i s t r . gvcg . sym [1 : 4 0 0] , type="p" , pch =3 , c o l =" blue " , cex = . 5)

a b l i n e (v=c (seq (. 5 , 4 0 0 . 5 , by=40)) , l t y =1)

407 legend (−1 0 . 8 , 9 . 2 2 , c ("VCG" , "GVCG") , cex = . 8 , bg=" white " , c o l =c (" red " , " blue ") , pch=c (1 , 3)

)

dev . o f f ()

409

average assignments of packages of d i f f e r e n t s i z e :

411

d i s t r . vcg . sym . t r <− matrix (d i s t r . vcg . sym , ncol =10 ,byrow=TRUE)

413

sum(d i s t r . vcg . sym . t r [, 1 : 4]) /100 # s i z e 1

415 sum(d i s t r . vcg . sym . t r [, 5 : 7]) /100 # s i z e 2

sum(d i s t r . vcg . sym . t r [, 8 : 9]) /100 # s i z e 3

417 sum(d i s t r . vcg . sym . t r [, 1 0]) /100 # s i z e 4

419 ## symmetric types , I I (0 i s not included) ################

421 # item valua t ions are i . i . d . uniform [2 , 3] draws .

58

423 # expected revenues :

425 revs . max .N. 2 <− rep (0 , 3 0)

revs . max .N. vcg . 2 <−rep (0 , 3 0)

427 revs . max .N. gvcg . 2 <−rep (0 , 3 0)

429 # one−bidder case :

431 revs . max .N. 2 [1] <− sim . max .N. asym (1 , 4 , 4 , matrix (c (2 , 3) , 1 , 2) , . 2 , 1 0 0) [1]

revs . max .N. gvcg . 2 [1] <− va ls . uni f .N(1 , 4 , 4 , c (2 , 2) , . 2 , B . mat (4)) [4 0]

433

two or more bidders :

435

f o r (i in 2 : 3 0) {

437 p r i n t (i)

revs . max .N. 2 [i] <− sim . max .N. asym (i , 4 , 4 , matrix (c (2 , 3) , 1 , 2) , . 2 , 1 0 0) [1]

439 revs . max .N. vcg . 2 [i] <− sim . vcg .N. asym (i , 4 , 4 , matrix (c (2 , 3) , 1 , 2) , . 2 , 1 0 0) [1]

revs . max .N. gvcg . 2 [i] <− sim . gvcg .N. asym (i , 4 , 4 , matrix (c (2 , 3) , 1 , 2) , matrix (c (2 , 2) , 1 , 2)

, . 2 , 1 0 0) [1]

441 }

443 # f i g u r e of the expected revenue :

445 p o s t s c r i p t (f i l e =" sim02−01. eps " , paper=" s p e c i a l " , width =8 , height =6 , h o r i z o n t a l =FALSE)

p l o t (revs . max .N. 2 , ylim=c (0 , 6 5) , ylab=" revenue " , xlab=" number of bidders " , type=" o " , l t y

=3 , pch =4)

447 l i n e s (revs . max .N. vcg . 2 , c o l =" red " , l t y =3 , type=" o ")

l i n e s (revs . max .N. gvcg . 2 , c o l =" blue " , l t y =3 , type=" o " , pch =3)

449 grid (c o l =" grey ")

legend (. 0 5 , 6 6 . 8 , c (" t h e o r e t i c a l maximum" , "VCG" , "GVCG") , bg=" white " , cex =0 .85 , c o l =c ("

black " , " red " , " blue ") , pch=c (1 , 4 , 3) , l t y =3)

451 dev . o f f ()

453 # package d i s t r i b u t i o n s :

455 va ls . sym . 2 <− matrix (0 , 1 0 0 , 1 0 ∗ 40)

vbars . sym . 2 <− matrix (0 , 1 0 0 , 1 0 ∗ 40)

457 vcg . s o l . sym . 2 <− matrix (0 , 1 0 0 , 1 0 ∗ 40)

gvcg . s o l . sym . 2 <− matrix (0 , 1 0 0 , 1 0 ∗ 40)

459

f o r (i in 1 : 1 0 0) {

461 p r i n t (i)

va l s . sym . 2 [i ,] <− va ls . uni f .N(1 0 , 4 , 4 , c (2 , 3) , . 2 , B . mat (4))

463 vbars . sym . 2 [i ,] <− va ls . uni f .N(1 0 , 4 , 4 , c (2 , 2) , . 2 , B . mat (4))

vcg . s o l . sym . 2 [i ,] <− vcg (1 0 , 4 , 4 , va l s . sym . 2 [i ,]) $ s o l

465 gvcg . s o l . sym . 2 [i ,] <− gvcg (1 0 , 4 , 4 , va l s . sym . 2 [i ,] , vbars . sym . 2 [i ,]) $ s o l

}

467

d i s t r . vcg . sym . 2 <− rep (1 , 1 0 0) %∗% vcg . s o l . sym . 2

469 d i s t r . gvcg . sym . 2 <− rep (1 , 1 0 0) %∗% gvcg . s o l . sym . 2

471 # f i g u r e of one bidder :

473 p o s t s c r i p t (f i l e =" sim02−02. eps " , paper=" s p e c i a l " , width =8 , height =6 , h o r i z o n t a l =FALSE)

59

p l o t (d i s t r . vcg . sym . 2 [1 : 4 0] , type="p" , c o l =" red " , cex = 1 . 2 , ylab=" number of cases " , x lab="

package i n d i c e s ")

475 l i n e s (d i s t r . gvcg . sym . 2 [1 : 4 0] , type="p" , pch =3 , c o l =" blue " , cex = 1 . 2)

a b l i n e (v=c (seq (. 5 , 4 0 . 5 , by=10)) , l t y =1)

477 a b l i n e (v=c (seq (4 . 5 , 3 4 . 5 , by=10)) , c o l =" blue " , l t y =2)

a b l i n e (v=c (seq (7 . 5 , 3 7 . 5 , by=10)) , c o l =" red " , l t y =2)

479 a b l i n e (v=c (seq (9 . 5 , 3 9 . 5 , by=10)) , c o l =" dark green " , l t y =2)

legend (−0 . 2 , 8 . 2 , c ("VCG" , "GVCG") , cex = . 8 , bg=" white " , c o l =c (" red " , " blue ") , pch=c (1 , 3))

481 dev . o f f ()

483 # average assignments of packages of d i f f e r e n t s i z e :

485 d i s t r . vcg . sym . t r . 2 <− matrix (d i s t r . vcg . sym . 2 , ncol =10 ,byrow=TRUE)

487 sum(d i s t r . vcg . sym . t r . 2 [, 1 : 4]) /100 # s i z e 1

sum(d i s t r . vcg . sym . t r . 2 [, 5 : 7]) /100 # s i z e 2

489 sum(d i s t r . vcg . sym . t r . 2 [, 8 : 9]) /100 # s i z e 3

sum(d i s t r . vcg . sym . t r . 2 [, 1 0]) /100 # s i z e 4

491

asymmetric types , I (non−overlapping case)

493

25 bidders with i . i . d . uniform [0 , 1] item valua t ions

495 # N bidder with i . i . d . uniform [2 , 3] item valua t ions

497 # optimal mu values by grid search :

499 opt . mus <− rep (0 , 8)

501 mu. search <− matrix (0 , 8 , 1 0 0)

503 mus <− c (seq (. 0 1 , 1 , length =80) , seq (1 . 0 5 , 2 , length =20))

505 f o r (n in 1 : 8) {

f o r (i in 1 : 1 0 0) {

507 p r i n t (c (n , i))

mu. search [n , i] <− sim . vcg .N. asym .mu(c (2 5 , n) , 4 , 4 , matrix (c (0 , 1 , 2 , 3) , 2 , 2 , byrow=TRUE)

, c (. 2 , . 2) ,mu. vec=c (1 ,mus[i]) , 2 5) [1]

509 }

opt . mus[n] <− mus[which . max(mu. search [n ,])]

511 }

513 # weight revenue funct ion with one strong bidder :

515 p o s t s c r i p t (f i l e =" sim03−02. eps " , paper=" s p e c i a l " , width =8 , height =6 , h o r i z o n t a l =FALSE)

p l o t (mus ,mu. search [1 ,] , type=" l " , ylab=" revenue " , xlab=" weight ")

517 grid (c o l =" grey ")

dev . o f f ()

519

weight revenue funct ion with f i v e strong bidders :

521

p o s t s c r i p t (f i l e =" sim03−03. eps " , paper=" s p e c i a l " , width =8 , height =6 , h o r i z o n t a l =FALSE)

523 p l o t (mus ,mu. search [5 ,] , type=" l " , ylab=" revenue " , xlab=" weight ")

gr id (c o l =" grey ")

525 dev . o f f ()

60

527 # expected revenues :

529 revs . max .N. asym <− rep (0 , 8)

revs . vcg .N. asym <−rep (0 , 8)

531 revs . gvcg .N. asym <−rep (0 , 8)

revs . vcgmu .N. asym <−rep (0 , 8)

533

f o r (i in 1 : 8) {

535 p r i n t (i)

revs . max .N. asym [i] <− sim . max .N. asym (c (2 5 , i) , 4 , 4 , matrix (c (0 , 1 , 2 , 3) , 2 , 2 , byrow=TRUE) ,

c (. 2 , . 2) , 1 0 0) [1]

537 revs . vcg .N. asym [i] <− sim . vcg .N. asym (c (2 5 , i) , 4 , 4 , matrix (c (0 , 1 , 2 , 3) , 2 , 2 , byrow=TRUE) ,

c (. 2 , . 2) , 1 0 0) [1]

revs . gvcg .N. asym [i] <− sim . gvcg .N. asym (c (2 5 , i) , 4 , 4 , matrix (c (0 , 1 , 2 , 3) , 2 , 2 , byrow=TRUE

) , matrix (c (0 , 0 , 2 , 2) , 2 , 2 , byrow=TRUE) , c (. 2 , . 2) , 1 0 0) [1]

539 revs . vcgmu .N. asym [i] <− sim . vcg .N. asym .mu(c (2 5 , i) , 4 , 4 , matrix (c (0 , 1 , 2 , 3) , 2 , 2 , byrow=

TRUE) , c (. 2 , . 2) ,mu. vec=c (1 , opt . mus[i]) , 1 0 0) [1]

}

541

f i g u r e : expected revenues :

543

p o s t s c r i p t (f i l e =" sim03−01. eps " , paper=" s p e c i a l " , width =8 , height =6 , h o r i z o n t a l =FALSE)

545 p l o t (revs . max .N. asym , type=" o " , ylim=c (0 , 5 8) , ylab=" revenue " , xlab=" number of strong

bidders " , l t y =3 , pch =4)

l i n e s (revs . vcg .N. asym , c o l =" red " , type=" o " , l t y =3 , pch =1)

547 l i n e s (revs . gvcg .N. asym , c o l =" blue " , type=" o " , l t y =3 , pch =3)

l i n e s (revs . vcgmu .N. asym , c o l =" darkgoldenrod4 " , type=" o " , l t y =3 , pch =22 , cex = 1 . 6)

549 grid (c o l =" grey ")

legend (. 7 8 , 5 9 . 6 , c (" t h e o r e t i c a l maximum" , "VCG" , "GVCG" , "VCG−mu") , bg=" white " , cex

=0 .85 , c o l =c (" black " , " red " , " blue " , " darkgoldenrod4 ") , pch=c (4 , 1 , 3 , 2 2) , l t y =3)

551 dev . o f f ()

553 # package d i s t r i b u t i o n s :

555 va ls . asym <− matrix (0 , 1 0 0 , 2 9 ∗ 40)

vbars . asym <− matrix (0 , 1 0 0 , 2 9 ∗ 40)

557 vcg . s o l . asym <− matrix (0 , 1 0 0 , 2 9 ∗ 40)

gvcg . s o l . asym <− matrix (0 , 1 0 0 , 2 9 ∗ 40)

559 vcg .mu. s o l . asym <− matrix (0 , 1 0 0 , 2 9 ∗ 40)

561 f o r (i in 1 : 1 0 0) {

p r i n t (i)

563 va ls . asym [i , 1 : (4 0 ∗ 25)] <− va ls . uni f .N(2 5 , 4 , 4 , c (0 , 1) , . 2 , B . mat (4))

vbars . asym [i , 1 : (4 0 ∗ 25)] <− va ls . uni f .N(2 5 , 4 , 4 , c (0 , 0) , . 2 , B . mat (4))

565 va ls . asym [i , (1 + 4 0 ∗ 25) : (4 0 ∗ 29)] <− va ls . uni f .N(4 , 4 , 4 , c (2 , 3) , . 2 , B . mat (4))

vbars . asym [i , (1 + 4 0 ∗ 25) : (4 0 ∗ 29)] <− va ls . uni f .N(4 , 4 , 4 , c (2 , 2) , . 2 , B . mat (4))

567 vcg . s o l . asym [i ,] <− vcg (2 9 , 4 , 4 , va l s . asym [i ,]) $ s o l

gvcg . s o l . asym [i ,] <− gvcg (2 9 , 4 , 4 , va l s . asym [i ,] , vbars . asym [i ,]) $ s o l

569 vcg .mu. s o l . asym [i ,] <− vcg .mu(2 9 , 4 , 4 , va l s . asym [i ,] , c (rep (1 , 2 5) , rep (opt . mus [4] , 4))) $

s o l

}

571

d i s t r . vcg . asym <− rep (1 , 1 0 0) %∗% vcg . s o l . asym

573 d i s t r . gvcg . asym <− rep (1 , 1 0 0) %∗% gvcg . s o l . asym

d i s t r . vcg .mu. asym <− rep (1 , 1 0 0) %∗% vcg .mu. s o l . asym

61

575

f i g u r e : package d i s t r i b u t i o n of a strong bidder :

577

p o s t s c r i p t (f i l e =" sim03−05. eps " , paper=" s p e c i a l " , width =8 , height =6 , h o r i z o n t a l =FALSE)

579 p l o t (d i s t r . vcg . asym [1 0 0 1 : 1 0 4 0] , type="p" , c o l =" red " , cex = 1 . 2 , ylab=" number of cases " , x lab

=" package i n d i c e s ")

l i n e s (d i s t r . gvcg . asym [1 0 0 1 : 1 0 4 0] , type="p" , pch =3 , c o l =" blue " , cex = 1 . 2)

581 l i n e s (d i s t r . vcg .mu. asym [1 0 0 1 : 1 0 4 0] , type="p" , pch =22 , c o l =" darkgoldenrod4 " , cex = 1 . 6)

a b l i n e (v=c (seq (. 5 , 4 0 . 5 , by=10)) , l t y =1)

583 a b l i n e (v=c (seq (4 . 5 , 3 4 . 5 , by=10)) , c o l =" blue " , l t y =2)

a b l i n e (v=c (seq (7 . 5 , 3 7 . 5 , by=10)) , c o l =" red " , l t y =2)

585 a b l i n e (v=c (seq (9 . 5 , 3 9 . 5 , by=10)) , c o l =" dark green " , l t y =2)

legend (−0 . 22 ,3 0 . 85 , c ("VCG" , "GVCG" , "VCG−mu") , cex = . 8 , bg=" white " , c o l =c (" red " , " blue " , "

darkgoldenrod4 ") , pch=c (1 , 3 , 2 2))

587 dev . o f f ()

589 # f i g u r e : package d i s t r i b u t i o n of every bidder :

591 p o s t s c r i p t (f i l e =" sim03−04. eps " , paper=" s p e c i a l " , width =8 , height =6 , h o r i z o n t a l =FALSE)

p l o t (d i s t r . vcg . asym [1 : 1 1 6 0] , type="p" , c o l =" red " , cex = . 5 , ylab=" number of cases " , x lab="

package i n d i c e s ")

593 l i n e s (d i s t r . gvcg . asym [1 : 1 1 6 0] , type="p" , pch =3 , c o l =" blue " , cex = . 5)

l i n e s (d i s t r . vcg .mu. asym [1 : 1 1 6 0] , type="p" , pch =22 , c o l =" darkgoldenrod4 " , cex = . 5)

595 a b l i n e (v=c (seq (. 5 , 1 1 6 0 . 5 , by=40)) , l t y =1)

legend (−35 ,35 . , c ("VCG" , "GVCG" , "VCG−mu") , cex = . 8 , bg=" white " , c o l =c (" red " , " blue " , "

darkgoldenrod4 ") , pch=c (1 , 3 , 2 2))

597 dev . o f f ()

599 # average assignments of packages of d i f f e r e n t s i z e :

601 d i s t r . vcg . asym . t r <− matrix (d i s t r . vcg . asym , ncol =10 ,byrow=TRUE)

d i s t r . vcg .mu. asym . t r <− matrix (d i s t r . vcg .mu. asym , ncol =10 ,byrow=TRUE)

603

weak bidders :

605

sum(d i s t r . vcg . asym . t r [1 : 1 0 0 , 1 : 4]) /100 # s i z e 1

607 sum(d i s t r . vcg . asym . t r [1 : 1 0 0 , 5 : 7]) /100 # s i z e 2

sum(d i s t r . vcg . asym . t r [1 : 1 0 0 , 8 : 9]) /100 # s i z e 3

609 sum(d i s t r . vcg . asym . t r [1 : 1 0 0 , 1 0]) /100 # s i z e 4

611 sum(d i s t r . vcg .mu. asym . t r [1 : 1 0 0 , 1 : 4]) /100 # s i z e 1

sum(d i s t r . vcg .mu. asym . t r [1 : 1 0 0 , 5 : 7]) /100 # s i z e 2

613 sum(d i s t r . vcg .mu. asym . t r [1 : 1 0 0 , 8 : 9]) /100 # s i z e 3

sum(d i s t r . vcg .mu. asym . t r [1 : 1 0 0 , 1 0]) /100 # s i z e 4

615

strong bidders :

617

sum(d i s t r . vcg . asym . t r [1 0 1 : 1 1 6 , 1 : 4]) /100 # s i z e 1

619 sum(d i s t r . vcg . asym . t r [1 0 1 : 1 1 6 , 5 : 7]) /100 # s i z e 2

sum(d i s t r . vcg . asym . t r [1 0 1 : 1 1 6 , 8 : 9]) /100 # s i z e 3

621 sum(d i s t r . vcg . asym . t r [1 0 1 : 1 1 6 , 1 0]) /100 # s i z e 4

623 sum(d i s t r . vcg .mu. asym . t r [1 0 1 : 1 1 6 , 1 : 4]) /100 # s i z e 1

sum(d i s t r . vcg .mu. asym . t r [1 0 1 : 1 1 6 , 5 : 7]) /100 # s i z e 2

625 sum(d i s t r . vcg .mu. asym . t r [1 0 1 : 1 1 6 , 8 : 9]) /100 # s i z e 3

62

sum(d i s t r . vcg .mu. asym . t r [1 0 1 : 1 1 6 , 1 0]) /100 # s i z e 4

627

asymmetric types , I I (overlapping case)

629

25 bidders with i . i . d . uniform [0 , 1] item valua t ions

631 # N bidder with i . i . d . uniform [. 5 , 2 . 5] item valua t ions

633 # optimal mu values :

635 opt . mus . 2 <− rep (0 , 8)

637 mu. search . 2 <− matrix (0 , 8 , 1 0 0)

639 mus. 2 <− c (seq (. 0 1 , 1 , length =80) , seq (1 . 0 5 , 2 , length =20))

641 f o r (n in 1 : 8) {

f o r (i in 1 : 1 0 0) {

643 p r i n t (c (n , i))

mu. search . 2 [n , i] <− sim . vcg .N. asym .mu(c (2 5 , n) , 4 , 4 , matrix (c (0 , 1 , . 5 , 2 . 5) , 2 , 2 , byrow=

TRUE) , c (. 2 , . 2) ,mu. vec=c (1 ,mus . 2 [i]) , 2 5) [1]

645 }

opt . mus . 2 [n] <− mus . 2 [which . max(mu. search . 2 [n ,])]

647 }

649 # f i g u r e : weight−revenue funct ion with one strong bidder :

651 p o s t s c r i p t (f i l e =" sim04−02. eps " , paper=" s p e c i a l " , width =8 , height =6 , h o r i z o n t a l =FALSE)

p l o t (mus ,mu. search . 2 [1 ,] , type=" l " , ylab=" revenue " , xlab=" weight ")

653 grid (c o l =" grey ")

dev . o f f ()

655

f i g u r e : weight−revenue funct ion with f i v e strong bidders :

657

p o s t s c r i p t (f i l e =" sim04−03. eps " , paper=" s p e c i a l " , width =8 , height =6 , h o r i z o n t a l =FALSE)

659 p l o t (mus ,mu. search . 2 [5 ,] , type=" l " , ylab=" revenue " , xlab=" weight ")

gr id (c o l =" grey ")

661 dev . o f f ()

663 # expected revenues :

665 revs . max .N. asym . 2 <− rep (0 , 8)

revs . vcg .N. asym . 2 <−rep (0 , 8)

667 revs . gvcg .N. asym . 2 <−rep (0 , 8)

revs . vcgmu .N. asym . 2 <−rep (0 , 8)

669

f o r (i in 1 : 8) {

671 p r i n t (i)

revs . max .N. asym . 2 [i] <− sim . max .N. asym (c (2 5 , i) , 4 , 4 , matrix (c (0 , 1 , . 5 , 2 . 5) , 2 , 2 , byrow=

TRUE) , c (. 2 , . 2) , 1 0 0) [1]

673 revs . vcg .N. asym . 2 [i] <− sim . vcg .N. asym (c (2 5 , i) , 4 , 4 , matrix (c (0 , 1 , . 5 , 2 . 5) , 2 , 2 , byrow=

TRUE) , c (. 2 , . 2) , 1 0 0) [1]

revs . gvcg .N. asym . 2 [i] <− sim . gvcg .N. asym (c (2 5 , i) , 4 , 4 , matrix (c (0 , 1 , . 5 , 2 . 5) , 2 , 2 , byrow

=TRUE) , matrix (c (0 , 0 , . 5 , . 5) , 2 , 2 , byrow=TRUE) , c (. 2 , . 2) , 1 0 0) [1]

675 revs . vcgmu .N. asym . 2 [i] <− sim . vcg .N. asym .mu(c (2 5 , i) , 4 , 4 , matrix (c (0 , 1 , . 5 , 2 . 5) , 2 , 2 ,

byrow=TRUE) , c (. 2 , . 2) ,mu. vec=c (1 , opt . mus . 2 [i]) , 1 0 0) [1]

63

}

677

f i g u r e : expected revenues :

679

p o s t s c r i p t (f i l e =" sim04−01. eps " , paper=" s p e c i a l " , width =8 , height =6 , h o r i z o n t a l =FALSE)

681 p l o t (revs . max .N. asym . 2 , type=" o " , ylim=c (0 , 4 0) , ylab=" revenue " , xlab=" number of strong

bidders " , l t y =3 , pch =4)

l i n e s (revs . vcg .N. asym . 2 , c o l =" red " , type=" o " , l t y =3 , pch =1)

683 l i n e s (revs . gvcg .N. asym . 2 , c o l =" blue " , type=" o " , l t y =3 , pch =3)

l i n e s (revs . vcgmu .N. asym . 2 , c o l =" darkgoldenrod4 " , type=" o " , l t y =3 , pch =22 , cex = 1 . 5)

685 grid (c o l =" grey ")

legend (. 7 6 , 4 1 . 2 , c (" t h e o r e t i c a l maximum" , "VCG" , "GVCG" , "VCG−mu") , bg=" white " , cex

=0 .85 , c o l =c (" black " , " red " , " blue " , " darkgoldenrod3 ") , l t y =3 , pch=c (4 , 1 , 3 , 2 2))

687 dev . o f f ()

689 # package d i s t r i b u t i o n s :

691 va ls . asym . 2 <− matrix (0 , 1 0 0 , 2 9 ∗ 40)

vbars . asym . 2 <− matrix (0 , 1 0 0 , 2 9 ∗ 40)

693 vcg . s o l . asym . 2 <− matrix (0 , 1 0 0 , 2 9 ∗ 40)

gvcg . s o l . asym . 2 <− matrix (0 , 1 0 0 , 2 9 ∗ 40)

695 vcg .mu. s o l . asym . 2 <− matrix (0 , 1 0 0 , 2 9 ∗ 40)

697 f o r (i in 1 : 1 0 0) {

p r i n t (i)

699 va ls . asym . 2 [i , 1 : (4 0 ∗ 25)] <− va ls . uni f .N(2 5 , 4 , 4 , c (0 , 1) , . 2 , B . mat (4))

vbars . asym . 2 [i , 1 : (4 0 ∗ 25)] <− va ls . uni f .N(2 5 , 4 , 4 , c (0 , 0) , . 2 , B . mat (4))

701 va ls . asym . 2 [i , (1 + 4 0 ∗ 25) : (4 0 ∗ 29)] <− va ls . uni f .N(4 , 4 , 4 , c (. 5 , 2 . 5) , . 2 , B . mat (4))

vbars . asym . 2 [i , (1 + 4 0 ∗ 25) : (4 0 ∗ 29)] <− va ls . uni f .N(4 , 4 , 4 , c (. 5 , . 5) , . 2 , B . mat (4))

703 vcg . s o l . asym . 2 [i ,] <− vcg (2 9 , 4 , 4 , va l s . asym . 2 [i ,]) $ s o l

gvcg . s o l . asym . 2 [i ,] <− gvcg (2 9 , 4 , 4 , va l s . asym . 2 [i ,] , vbars . asym . 2 [i ,]) $ s o l

705 vcg .mu. s o l . asym . 2 [i ,] <− vcg .mu(2 9 , 4 , 4 , va l s . asym . 2 [i ,] , c (rep (1 , 2 5) , rep (opt . mus

. 2 [4] , 4))) $ s o l

}

707

d i s t r . vcg . asym . 2 <− rep (1 , 1 0 0) %∗% vcg . s o l . asym . 2

709 d i s t r . gvcg . asym . 2 <− rep (1 , 1 0 0) %∗% gvcg . s o l . asym . 2

d i s t r . vcg .mu. asym . 2 <− rep (1 , 1 0 0) %∗% vcg .mu. s o l . asym . 2

711

average assignments of packages of d i f f e r e n t s i z e :

713

d i s t r . vcg . asym . t r . 2 <− matrix (d i s t r . vcg . asym . 2 , ncol =10 ,byrow=TRUE)

715 d i s t r . vcg .mu. asym . t r . 2 <− matrix (d i s t r . vcg .mu. asym . 2 , ncol =10 ,byrow=TRUE)

717 # weak bidders :

719 sum(d i s t r . vcg . asym . t r . 2 [1 : 1 0 0 , 1 : 4]) /100 # s i z e 1

sum(d i s t r . vcg . asym . t r . 2 [1 : 1 0 0 , 5 : 7]) /100 # s i z e 2

721 sum(d i s t r . vcg . asym . t r . 2 [1 : 1 0 0 , 8 : 9]) /100 # s i z e 3

sum(d i s t r . vcg . asym . t r . 2 [1 : 1 0 0 , 1 0]) /100 # s i z e 4

723

sum(d i s t r . vcg .mu. asym . t r . 2 [1 : 1 0 0 , 1 : 4]) /100 # s i z e 1

725 sum(d i s t r . vcg .mu. asym . t r . 2 [1 : 1 0 0 , 5 : 7]) /100 # s i z e 2

sum(d i s t r . vcg .mu. asym . t r . 2 [1 : 1 0 0 , 8 : 9]) /100 # s i z e 3

727 sum(d i s t r . vcg .mu. asym . t r . 2 [1 : 1 0 0 , 1 0]) /100 # s i z e 4

64

729 # strong bidders :

731 sum(d i s t r . vcg . asym . t r . 2 [1 0 1 : 1 1 6 , 1 : 4]) /100 # s i z e 1

sum(d i s t r . vcg . asym . t r . 2 [1 0 1 : 1 1 6 , 5 : 7]) /100 # s i z e 2

733 sum(d i s t r . vcg . asym . t r . 2 [1 0 1 : 1 1 6 , 8 : 9]) /100 # s i z e 3

sum(d i s t r . vcg . asym . t r . 2 [1 0 1 : 1 1 6 , 1 0]) /100 # s i z e 4

735

sum(d i s t r . vcg .mu. asym . t r . 2 [1 0 1 : 1 1 6 , 1 : 4]) /100 # s i z e 1

737 sum(d i s t r . vcg .mu. asym . t r . 2 [1 0 1 : 1 1 6 , 5 : 7]) /100 # s i z e 2

sum(d i s t r . vcg .mu. asym . t r . 2 [1 0 1 : 1 1 6 , 8 : 9]) /100 # s i z e 3

739 sum(d i s t r . vcg .mu. asym . t r . 2 [1 0 1 : 1 1 6 , 1 0]) /100 # s i z e 4

741 # ###

code.r

65

