

Technische Universität Wien

A-1040 Wien ▪ Karlsplatz 13 ▪ Tel. +43-1-58801-0 ▪ www.tuwien.ac.at

Process Models

and Project Management in

Open Source Projects

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Martin Schönberger
Matrikelnummer 0325307

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Thomas Grechenig

Wien, 13.09.2012

 (Unterschrift Verfasser/in) (Unterschrift Betreuer/in)

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Technische Universität Wien

A-1040 Wien ▪ Karlsplatz 13 ▪ Tel. +43-1-58801-0 ▪ www.tuwien.ac.at

Process Models

and Project Management in

Open Source Projects

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Martin Schönberger
Registration Number 0325307

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Thomas Grechenig

Wien, 13.09.2012

 (Unterschrift Verfasser/in) (Unterschrift Betreuer/in)

Technische Universität Wien, Forschungsgruppe INSO

A-1040 Wien ▪ Wiedner Hauptstr. 76/2/2 ▪ Tel. +43-1-587 21 97 ▪ www.inso.tuwien.ac.at

Process Models

and Project Management in

Open Source Projects

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Martin Schönberger

0325307

ausgeführt am

Institut für Rechnergestützte Automation

Forschungsgruppe Industrial Software

der Fakultät für Informatik der Technischen Universität Wien

Betreuung: Thomas Grechenig

Wien, 13.09.2012

Erklärung zur Verfassung der Arbeit

Martin Schönberger

Johannagasse 26/22, 1050 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die ver-

wendeten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen

der Arbeit - einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken

oder dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall un-

ter Angabe der Quelle als Entlehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i

Abstract

Open source software typically is developed in distributed communities, which em-

ploy specialized means of management and cooperation. The purpose of this research

is to study and define a modern open source development process by identifying el-

ements shared by open source projects and determining aspects in which they differ.

Furthermore, the thesis investigates how open source development relates to structured

processes on one hand, and agile methods on the other. Essential elements of the open

source process are identified and compared with those of four process models which are

widely used in proprietary development, namely the RUP, PMBoK, Scrum and XP. In

an empirical case study grounded on qualitative interviews, developers of three active

open source projects provide in-depth information on the lifecycle and practices used

in the projects’ development. This data is used to show how open source communities

have created a distinct way of development, which is based on a shared culture and is

uniquely adapted to its environment of distributed collaboration, voluntary contribution

and developer participation. It is shown how open source development distinguishes it-

self from other approaches of creating software by a number of specific characteristics.

Suggestions are offered how to improve both open source development processes and

proprietary forms of development.

iii

Kurzfassung

Die Entwicklung von Open Source Software wird hauptsächlich in verteilten Entwickler-

gemeinden vorgenommen, die eigene, spezifische Methoden des Managements und der

Zusammenarbeit praktizieren. Diese Diplomarbeit verfolgt das Ziel, moderne Formen

des Open Source Entwicklungsprozesses zu untersuchen und zu definieren, indem sie

Gemeinsamkeiten und Unterschiede zwischen einzelnen Projekten analysiert. Weiters

untersucht die Arbeit, in welchem Zusammenhang Open Source Entwicklung mit struk-

turierten Prozessen einerseits und mit agilen Methoden auf der anderen Seite steht. Für

diesen Vergleich werden definierende Elemente des Prozesses ermittelt und zunächst

theoretisch den vier Vorgehensmodellen RUP, PMBoK, Scrum und XP gegenüberge-

stellt. In einer empirischen Fallstudie werden qualitative Interviews mit Entwicklern

von drei aktiven Open Source Projekten durchgeführt, die Einblicke in den Lebens-

zyklus und die Methoden, die in den jeweiligen Projekten verwendet werden, bieten.

Im Rahmen der vorliegenden Arbeit wird gezeigt, wie sich in Open Source Gemein-

schaften eine eigenständige Art der Entwicklung etabliert hat, die einerseits auf einer

gemeinsamen Entwicklungskultur beruht als auch in einzigartiger Weise an ihr Um-

feld angepasst ist, das sich durch verteilte Zusammenarbeit, freiwillige Kontribution

und Mitverantwortlichkeit der Entwickler auszeichnet. Darauf aufbauend werden kla-

re Charakteristika herausgearbeitet, durch die sich Open Source Entwicklung definiert

und von anderen Formen der Softwareentwicklung abgrenzt. Abschließend werden An-

regungen zur Verbesserung von Entwicklungsprozessen insbesondere im Open Source

Bereich, aber auch für proprietäre Entwicklungen gegeben.

v

Contents

1 Introduction 1
1.1 Topic and Relevance . 1
1.2 Research Questions . 3

1.2.1 Shared Aspects of Open Source Development 3
1.2.2 Agile Methods and Structured Processes in Open Source Projects 4
1.2.3 Variable Factors and Practical Constraints 4
1.2.4 Transferability of Results . 5

1.3 Approach . 5

2 Development Processes 7
2.1 Choosing a Process Model . 8
2.2 History of Software Development . 9
2.3 Structured Processes . 10
2.4 PMBoK . 11

2.4.1 Overview . 11
2.4.2 Lifecycle . 11
2.4.3 Practices . 13

2.5 Rational Unified Process . 16
2.5.1 Overview . 16
2.5.2 Lifecycle . 17
2.5.3 Practices . 19

2.6 Agile Methods . 21
2.7 Scrum . 23

2.7.1 Overview . 23
2.7.2 Lifecycle . 23
2.7.3 Practices and Values . 24

2.8 Extreme Programming . 27
2.8.1 Overview . 27
2.8.2 Lifecycle . 28
2.8.3 Practices and Values . 28

vii

3 Open Source Development 33
3.1 Definition . 34
3.2 History of Open Source . 35
3.3 Areas of Research . 37

3.3.1 Inputs . 38
3.3.2 Emergent States . 39
3.3.3 Outputs . 40

3.4 Open Source Development Process . 41
3.4.1 Overview . 41
3.4.2 Lifecycle . 42
3.4.3 Practices . 44

3.5 Classification . 47
3.5.1 Approach . 47
3.5.2 Comparison by Process Element 48
3.5.3 Results . 57

4 Case Study 59
4.1 Methodology . 60

4.1.1 Aims . 60
4.1.2 Case Study Instruments . 62
4.1.3 Rationale & Limitations . 66

4.2 Project Selection . 68
4.2.1 Overview . 68
4.2.2 Criteria . 68
4.2.3 Selection Process . 70
4.2.4 Project Outline and Comparison 71

4.3 Django . 72
4.3.1 Project Overview . 72
4.3.2 Case Study Approach . 73
4.3.3 Process Description . 73

4.4 Drupal . 77
4.4.1 Project Overview . 77
4.4.2 Case Study Approach . 78
4.4.3 Process Description . 79

4.5 XWiki . 82
4.5.1 Project Overview . 82
4.5.2 Case Study Approach . 83
4.5.3 Process Description . 84

4.6 Summary of Project Findings . 87

5 Analysis of Case Study Findings 89

viii

5.1 Concepts by Process Category . 90
5.1.1 Governance . 90
5.1.2 Planning . 91
5.1.3 Requirements . 91
5.1.4 Architecture . 92
5.1.5 Risk . 93
5.1.6 Roles . 93
5.1.7 Integration . 94
5.1.8 Costs . 95
5.1.9 Testing . 95
5.1.10 Knowledge . 96
5.1.11 Cooperation . 97
5.1.12 Tools . 98
5.1.13 Release . 98
5.1.14 Maintenance . 99

5.2 Process Model Comparisons . 100
5.2.1 PMBoK . 100
5.2.2 RUP . 101
5.2.3 XP . 102
5.2.4 Scrum . 103

5.3 Assessment of Research Questions . 105
5.3.1 Shared Aspects of Open Source Development 105
5.3.2 Agile Methods and Structured Processes in Open Source Projects 106
5.3.3 Variable Factors and Practical Constraints 107
5.3.4 Transferability of Results . 109

5.4 Summary . 110

6 Conclusion 113
6.1 Summary of Results . 114

6.1.1 Thesis Aims and Approach . 114
6.1.2 Findings Explained . 114

6.2 Comparison With Related Work . 116
6.3 Open Issues and Future Research . 118
6.4 Implications and Recommendations for Practice 120

A Interview: Django 127

B Interview: Drupal 139

C Interview: XWiki 151

ix

D The Agile Manifesto 163

Bibliography 167

List of Figures

2.1 Process Groups of the PMBoK [42] . 12
2.2 Phases of the RUP [33] . 18
2.3 Project Flow of Scrum (based on [19]) . 24
2.4 Primary and Corollary Practices of XP [6] 29

3.1 Classification Scheme . 47
3.2 Classification of Governance . 48
3.3 Classification of Planning . 49
3.4 Classification of Requirements . 49
3.5 Classification of Architecture . 50
3.6 Classification of Risk . 51
3.7 Classification of Roles . 51
3.8 Classification of Integration . 52
3.9 Classification of Costs . 53
3.10 Classification of Testing . 53
3.11 Classification of Knowledge . 54
3.12 Classification of Cooperation . 54
3.13 Classification of Tools . 55
3.14 Classification of Release . 56
3.15 Classification of Maintenance . 56
3.16 Overview of Classification Results . 57

4.1 Comparative Factsheet . 71
4.2 Summary of Case Study Findings by Project and Category 88

5.1 Tendency Shift Observed in Process Categories 111

x

CHAPTER 1
Introduction

1.1 Topic and Relevance

“The first step toward the management of disease was replacement of de-

mon theories and humours theories by the germ theory. That very step,

the beginning of hope, in itself dashed all hopes of magical solutions.” -

Frederick P. Brooks, Jr. [11]

In his essay “No Silver Bullet” [11] Brooks examined the technologies and man-

agement techniques of the time in order to evaluate if one of them had the potential to

make software development radically more productive, simpler and more reliable over

the course of the following decade. In the end, however, he concluded that the essential

difficulties of the field would not be overcome by any single means, but would have to

see gradual and slow improvement over a long period of time. In the 25 years since the

text was written, technology has changed profoundly. Also, new methods of develop-

ment and management concepts have emerged, were tested and refined, and have been

adopted broadly. But still, software development remains an inherently complex and

unpredictable task, and projects fail on an all too regular basis.

A traditional and widely accepted way to develop software is to plan it carefully

and to apply processes and ideas from the field of engineering in its construction. Yet,

1

the last decade also saw the rise of empirical methods, which aim to build software in-

crementally while being flexible enough to incorporate frequent change. Most of the

approaches used today can be placed somewhere on a line between predictive and adap-

tive solutions, between structure and agility (see Boehm and Turner in [9]). However,

there is no general agreement over which method should ideally be used in any given

scenario, and proponents of each approach argue fiercely over the right way to develop

software. This alone shows that none of the approaches in use magically solved the

essential problems of software development.

When a number of large and successful projects emerged throughout the nineties

that were based on free and open source software development, this movement and its

methods quickly became a center of public attention. It presented itself as a radically

new way of creating software, based on openness and voluntary contribution, and de-

veloped by distributed self-organized Internet communities. Naturally, some were eager

to see the arrival of a new era of software development and the end of most problems

troubling traditional software engineering. However, open source is not a silver bullet.

A popular saying in the movement is that open source is not “magic pixie dust”, being

able to miraculously save a project from failing. It goes back to a letter in which for-

mer Mozilla developer Jamie Zawinski [68], frustrated and disillusioned, declared his

resignation from the project. In the same letter, however, Zawinski asserted his confi-

dence that “[o]pen source does work”, given the necessary preconditions. And indeed,

Mozilla’s later history should prove him right. After the architectural structure and

the development process was adjusted to fit its new open environment (as documented,

for example, by [36] and [44]), the project gained momentum and became one of the

world’s leading browser solutions.

The huge success of some early open source projects led to increased interest from

both the public and commercial developers and resulted in an outright hype during the

first years of the millennium. Proponents soon claimed open source to be “faster, better

and cheaper” [48] than software engineering; others, however, contested this view im-

mediately [25]. On the whole, early research on the topic was said to be either “animated

by partisan spirit, hype or skepticism” [17], while unbiased academic studies were rare.

After the initial hype subsided, open source development continued to mature, and new

projects helped to diversify the movement’s landscape. Still, however, the now growing

2

body of research built primarily on the roots of the movement, on major projects like

Linux, Mozilla and Apache, and on the enthusiastic visions of its first few years.

There is an ongoing need for empirical and in-depth research, that takes modern

projects and their adaptations and solutions into consideration. By examining several

cases in detail, the thesis aims to contribute to a better understanding of how contem-

porary open source projects are managed and developed. Also, although open source

projects are mostly developed in a special environment that is unique in several aspects,

open source projects have to face many of the same challenges encountered by other

types of software projects. Therefore, to discover the similarities and differences to

other forms of development, the thesis will set the processes found in those projects

into relation to the solutions of various agile and structured approaches. Finally, it will

explore possibilities of transferring elements of open source processes to other project

environments.

1.2 Research Questions

The goals of this thesis can be split into several areas of research. In order to set a

specific focus and scope, the following four questions have been devised:

1.2.1 Shared Aspects of Open Source Development

Open source projects inherently differ from other endeavors of software development

in a range of aspects. These differences are reflected in the way projects are organized

and developed. One important question this entails is whether open source projects as a

group follow the same standards and ideals, and whether they employ similar develop-

ment processes. If such common elements can be discovered, a next step is to find out

what grounds they are based on, and which concepts contribute to their prevalence. Can

these shared characteristics be aggregated to form a distinct process model? What is the

focus of open source development, and how are its core values and properties defined?

Apart from these questions it shall also be assessed at this point what an open source

3

project needs to be successful, and what the special risks and possibilities are that apply

to this particular environment.

1.2.2 Agile Methods and Structured Processes in Open Source
Projects

Structured processes and agile methods have developed radically different ideas about

the best way to create software, which led them to thrive in different areas of appli-

cation. Open source projects exist in a special environment, and follow rules which

deviate from those of proprietary software development. Still, it seems plausible that

common process elements are used in various areas. A primary goal of this thesis is to

discover whether any and if so which characteristic elements of said approaches exist

in open source projects, and how they influence the process of their development. More

precisely it will be researched where developing an open source project resembles Ag-

ile Methods on the one hand, and Structured Processes on the other. Also is will be

assessed if there are areas where this approach covers a sort of middle ground between

the two, and in which aspects open source development follows a way that is distinct

from both. Different levels of accordance will be taken into consideration, ranging from

direct application of practices to an abstract transfer of ideas.

1.2.3 Variable Factors and Practical Constraints

It can be assumed, when various open source projects are inspected, that differences

will be found in their practical execution, and that their development process is adapted

to their respective project environment. Tasks of this thesis include examining these

variable factors, finding out what their primary causes are and in which part of the

process the most variation can be observed. To which degree do differences in the

development depend on factors like project size, its maturity, the organizational structure

or the type and intended use of the product that is being developed? It will also be

assessed if the observed range of variation can give an indication for overall trends and

causes in the scope of open source development processes.

4

1.2.4 Transferability of Results

A considerable portion of open source development methods is likely to be valid only

within the specific constraints of their environment. In order to place the findings into

a wider perspective, the final research question asks whether parts of the process are

applicable to other tasks or if they can be adapted to fit into other fields of software de-

velopment. In this respect it should be assessed if there are concrete practices which can

be carried over into another environment, or if more generic ideas and methods are em-

ployed that could benefit a broader market. Can open source processes or communities

contribute substantial impulses to more conventional forms of software engineering, or

are their methods limited to only function well in their specific niche and environment?

1.3 Approach

In order to address these questions, the primary means of obtaining data will be through

a case study, in which developers of open source projects are interviewed about the

processes they employ. This case study is embedded into a framework of theoretical

research, based on secondary sources, to back up the findings and help putting them

into a broader context. In combination, these results will be used to define and explain

common elements, variations and universal principles of open source development.

First, some of the process models used in proprietary software development will be

described. Alongside general information about managing software projects and a short

overview of its history, those models will be the primary focus of Chapter 2. On the

one hand, examining different approaches of building software will provide information

about their structure and the areas of development they cover. This knowledge will

help identifying the elements that are necessary for defining open source processes. On

the other hand, the two agile methods and two structured processes provide concrete

reference points for later comparisons. Each approach is going to be explained through

a general overview, its proposed lifecycle and its most characteristic practices. The

information presented is based on a review of relevant literature, an important part of

which being the original descriptions of the examined processes.

5

The second part of the theoretical background, laid out in Chapter 3, will cast a light

on the open source movement, will describe its roots and further history, and will give a

characterization of a possible development process. In addition, it includes an overview

of topics usually dealt with in academic research on open source. Like the chapter

before, it is based on a review of available literature. It forms the necessary foundations

for the case study by defining the field of open source development and isolating the

parts that are relevant for staking out its process. By comparing the findings from the

literature to the other examined development approaches, the chapter arrives at a list of

preliminary open source process elements.

Backed up by the theoretical findings, Chapter 4 will then describe the case study,

which constitutes the core of this research. A close examination of how this case study

is carried out, and what it aims to achieve, is the focus of the case study methodology,

which forms the chapter’s first part. Following this, the process of selecting the projects

participating in the case study is laid out. Each of the three projects is then dealt with

separately in a dedicated section. These sections contain a general overview, the descrip-

tion of the specific interviewing approach, and a summary of the development process

as shared by the interview partner.

The analysis in Chapter 5 will draw conclusions from the case study data by exam-

ining it from a number of different perspectives. At first, it will separately inspect each

part of the process as defined by the process categories that were previously identified.

This is followed by a comparison of approaches, in which common grounds and differ-

ences between open source development and each of the examined process models are

assessed. The results of the case study, combined with the findings and conclusions from

the analysis, then allow answering the research questions posed in this introduction.

Finally, Chapter 6 concludes the thesis with a summary of findings. It provides a

broad comparison to related work on the topic, gives suggestions for a range of possible

future studies, and offers general recommendations for developers, based on the results

of this research.

6

CHAPTER 2
Development Processes

“It is tempting, if the only tool you have is a hammer, to treat everything as

if it were a nail.” - Abraham Maslow

Before the development of open source projects is examined and the elements of its

processes are defined in detail, the following chapter investigates a number of different

process models in order to establish the context and theoretical basis for further analysis.

After some introductory remarks on the nature of process models are made, a short

overview on the history of software development illustrates the roots and evolution of

the different approaches featured in this chapter. It is followed by a description of the

characteristics of Structured Processes and Agile Methods, two quite contrary directions

of development prominently used in contemporary project environments. Each of these

approaches is represented by two popular process models, which are then laid out in

detail to serve as a basis of comparison for the later findings of the thesis. The examples

given for Structured Processes are the PMBoK and RUP, while Scrum and XP represent

the group of Agile Methods.

7

2.1 Choosing a Process Model

Process models provide sets of guidelines and techniques to facilitate and organize

project management, and increase the chance of successfully carrying out projects. In

short, development processes define the lifecycle of a project and promote a set of activ-

ities considered to be best practice. However, there are many different views about how

such methods of developing software should look like. Various process models, which

are quite different in structure, scope and content, have been developed and formalized

during the last decades. The nature of the applied process is only one factor responsible

for the quality of the resulting software, but following a working methodology is key

for delivering high quality reliably and repeatably.

It has often been discussed what the success rates of each development philosophy

and of specific process models are. Ardent followers of each methodology have claimed

that their preferred choice of process is the only rational way to successfully create

software. Moderate voices, like Barry Boehm, have argued for both hybrid solutions [7],

and for the concept of a certain home ground of different process models [9]. The latter

denominates special project environments for which a specific approach is suited best.

In this model, Agile Methods are preferably used in small, uncritical projects with a

high rate of changes, while Structured Processes are best for large, stable, organized

and critical environments. More often than not, however, real life applications are not

as easily classifiable.

The question, which of the examined process models should be used in which en-

vironment, is not easily answered and lies outside the scope of this research. For the

purpose of the topic at hand it suffices to say that all processes and methods presented in

this chapter have been shown to be capable of delivering successful software solutions,

that they are in wide use, and that the two presented groups of process models differ

significantly from each other in several aspects. The last point is especially important

for establishing points of reference, against which the process elements of open source

development are set in comparison in the following chapters.

8

2.2 History of Software Development

The development of software began as a small set of tasks necessary for handling the

large and expensive computers of the 1950s. These were maintained by mathemati-

cians and engineers, who applied the principles of hardware engineering to the new

field and started to engineer software. Those methods (like using detailed and careful

up-front specifications and thoroughly testing product when they are finished) turned

out to add value to the process, and were implemented eagerly in increasingly stan-

dardized ways. It became apparent, though, that software differed in several important

points from hardware. One difference was that it was much easier to copy and modify

code than tangible products. This allowed writing software with barely any preparation

beforehand, while dealing with program errors later on. As Boehm points out in [8],

the resulting code-and-fix programming sped up the development process and allowed

people without engineering background to fill the ranks of the rapidly growing business,

but led to hardly maintainable code and was not able to cope with the larger projects and

more complex requirements of the late 1960s.

To avert an imminent software-crisis caused by slipping schedules and overdrawn

budgets, a NATO conference on software engineering was called up in 1968, where it

was postulated that software should not be tinkered, but (once again) engineered “in

a clean fabrication process” [4]. Following this conference, a number of formal and

structured approaches were developed in the 1970s. One of them, which became quite

influential, was [46] by Winston Royce. While the original paper included prototyping

and basic iterative ideas, it was often misapplied as a pure sequential waterfall process,

based on a model Royce only recommended for smaller and simple projects. The 1980s

brought a series of government standards, commissioned by the U.S. Department of

Defense to normalize software processes and define the documents necessary for com-

pliant projects. The steps needed for milestone progression and their inspection were

expensive, therefore enforcing sequential, waterfall-like development [8]. Capability

Maturity Models for software development were created in order to assess and improve

process quality on an organizational level. The software market, however, kept growing

rapidly, while new technologies and the need to deliver better quality in lower time-to-

market put new constraints on software engineers and the processes they used. Iterative

9

and Incremental Design, while not a new concept, as Larman points out in [34], gained

prominence. Applying the development phases iteratively (or concurrently) allowed

prioritizing high-risk or high-value features, adaption to change and early testing. The

approaches introduced in this chapter, however different, all encourage iterative devel-

opment to various degrees.

Two different approaches are predominantly used in present-day development. On

one hand, structured standards are typically complex and heavy-weight and rely on

detailed planning and control to ensure high quality and a predictable project outcome.

On the other hand, the late 1990s saw the beginnings of agile methodologies, which are

light-weight and empirical, and rely on rapid feedback and flexibility to be able to react

to increasingly changing environments.

2.3 Structured Processes

Structured or well-defined processes as an approach to create software have existed

since the early days of software development and have long been considered to be the

only way to produce high-quality software with foreseeable and repeatable success. In-

corporating concepts from other fields of engineering, they are based on detailed plans,

extensive documentation, a rigid structure and gradual improvement of the process.

Standardized procedures are applied to transform the software from initial require-

ments into the finished product in a number of steps. The nature of these steps and the

activities they encompass depend on the specific approach and can vary significantly.

Early stages typically involve detailed planning and risk assessment, while managing in

later phases focuses on processes monitoring and execution. During the project’s course

a number of artifacts are created and maintained in order to provide documentation for

guidance and traceability. Workflows, roles and responsibilities are defined in detail to

allow a higher degree of control.

The following sections highlight two popular process models further. First, the PM-

BoK is described, which consists of a highly formalized set of processes aimed at pro-

viding a general and complete approach for project management. The RUP, which is

10

presented next, is a structured, but highly adjustable process, which is specialized for

developing software.

2.4 PMBoK

2.4.1 Overview

The Project Management Body of Knowledge (PMBoK), developed and maintained by

the Project Management Institute (PMI), is a well-known and widely used collection

of processes and guidelines to plan and execute projects. Since its foundation in the

late 1960s, the PMI published a number of versions of the standard. This overview is

based on the fourth edition of the “Guide to the PMBoK” [42]. Collected in it are 42

processes, which are considered to be generally applicable best practices. The PMBoK

is not specific to software engineering or any other field, but instead focuses on general

aspects of project management, regardless of the developed product. Every process

belongs to one of nine defined Knowledge Areas and is tied to the one of five Process

Groups, in which all of its activities take place. Described within each process are

the inputs required for its initiation, the outputs created through its completion and the

tools and techniques supporting the transition from inputs to outputs. Depending on the

project’s size and complexity, the processes and the rigor with which they are followed

have to be tailored to fit its specific needs. In their entirety the processes provide a

complete coverage of traditional project management areas.

2.4.2 Lifecycle

Managing a project according to the PMBoK is highly structured. It is achieved by

applying and integrating the processes to control ongoing activities, and to progress

project development. The processes are logically grouped into five Process Groups, are

interdependent and executed in a set order, where the output of one process becomes the

input of the next. On a higher level, depending on the project’s characteristics, it can be

organized in several Project Phases, where each cycle of process application constitutes

11

one phase. Project Phases differ in length and number and are either stringed together

in a strictly consecutive way or overlap to varying degrees to enhance their flexibility.

Figure 2.1: Process Groups of the PMBoK [42]

Figure 2.1 shows the flow and interactions of the five Process Groups of PMBoK.

Together they form either the whole project or one of its phases, depending on the

project’s complexity. The Initializing Process Group contains the processes necessary

for starting every project or phase. Their goals include defining the scope, identifying

stakeholders, and initiating financial commitments. Scope and objectives are contin-

uously defined and refined through activities of the Planning Process Group. Project

management plans and documents are created early on, and maintained and updated

throughout the project. While the project’s work is carried out, the processes of the Ex-

ecuting Process Group help coordinating team and resources. They keep the project on

track and are used to realign the plans with reality. Carried out in parallel to other ac-

tivities, the Monitoring and Controlling Process Group is responsible for observing the

project’s progress and performance. If upcoming problems are identified, the project

flow can be altered by employing preventive or corrective measures. In the end, the

phase or project is formally closed and activities are finalized through the processes of

the Closing Process Group. After the completed work has been reviewed, the gathered

information is used to enhance the process for future applications.

12

2.4.3 Practices

The PMBoK is heavily structured and focuses on the description of its processes, which

are employed as best practices. These processes are extensive, and can be grouped into

project management knowledge areas. The following section gives a short overview on

each of these areas and the processes they contain:

Project Integration Management
This knowledge area includes the necessary processes to combine and coordinate

all management activities. Integration is important when processes interact with

each other, and when their goals are in conflict. The project charter, a high-level

description of the project, is one of the first documents to be created. It is one

of the foundations for the project management plan, in which further plans of

the different knowledge areas are collectively documented. The plans are devised

early, but are updated throughout the course of the project. If the performance

fails to conform to the plans, corrective measures in the execution of the project

have to be undertaken. Changes in the project’s course have to be requested and

assessed, and only if they are approved they are incorporated into the management

plans. When all objectives are completed, the ongoing project or phase is formally

closed.

Project Scope Management
The main task of managing the scope of a project is making sure that work con-

centrates exactly on the deliverables necessary to fulfill the project’s requirements.

First, these requirements have to be identified in cooperation with stakeholders

and through various methods, like customer workshops and interviews. The re-

sulting detailed list serves as basis for the project scope statement, which de-

scribes deliverables, acceptance criteria and project constraints. The work is then

divided and hierarchically decomposed to create a work breakdown structure, in

which all project tasks have to be documented. Throughout the lifecycle of the

project it is monitored whether the results are congruent with the defined scope,

and whether they are accepted by the customer. If not, changes of the plan have

to be approved and carried out in order to bring the project back on track.

13

Project Time Management
Time management gives temporal structure to the project, making sure that activ-

ities are completed in a timely manner. The processes it contains are responsible

for creating a schedule, and they also ensure that it is kept. Starting from the

work breakdown structure, the project manager defines a list of activities and

milestones. This list is then arranged into a network diagram, which takes depen-

dencies and constraints into consideration and allows creating a definite sequence

of all tasks. A variety of methods and tools are employed to estimate the duration

of activities and which resources they probably need. This data is combined into

a schedule, which gives specific dates for milestones and start and end dates for

activities. It is completed in the planning phase, but may be refined at a later time.

The progress of the project schedule is measured and controlled throughout its

execution.

Project Cost Management
Controlling the costs of the project and making sure that expenditures stay within

acceptable limits is an important area of the PMBoK. Cost management starts

early in the project lifecycle and is the foundation for many other plans. Based

on the scope baseline and the project’s schedule the costs for all activities are col-

lected and separately estimated. This list is then aggregated and extended in order

to form a complete budget. A further evaluation tries to determine the necessary

funding over time. During the course of the project it is monitored how much

money has been spent and how this relates to the value created by the project.

This information is gained by utilizing statistical analysis, forecasts, performance

reviews and budgeting tools. If possible, cost overruns are detected and measures

are undertaken to minimize the damage.

Project Quality Management
Setting up quality policies and standards, and making sure that they are fulfilled

throughout the project, are the main objectives of quality management. The qual-

ity of the final result has to be high enough to satisfy the demand of the customers

and to meet their acceptance criteria. Planning considers the cost of implementing

quality raising methods, and compares it with the loss caused by failures. In com-

bination with several analysis methods, statistical samples, flowcharts and tools

14

this leads to the creation of a detailed quality management plan and corresponding

metrics. Processes which control the adherence to quality standards are carried

out throughout the execution of the project. At the same time they collect data

in order to improve quality management over time, to benefit current and future

projects.

Project Human Resource Management
Human resource management combines the processes that are necessary for form-

ing and managing the team of people who carry out the project. It tries to take

human factors into consideration, but also aims at influencing them for increased

success. Specific roles and responsibilities that are required for project comple-

tion are determined at the start of the lifecycle. These positions are arranged in a

fixed hierarchy and are then filled with readily available or specifically hired per-

sonnel. The ongoing tasks include keeping up the performance of team members

and further developing both the skills of individuals and their work efficiency as

a team. How well the team performs is monitored through observation, reviews

and reports of the project status. Managing the team is based on a combination of

interpersonal and leadership skills, and formal methods.

Project Communications Management
A primary task of the project manager is to collect information and distribute it

through appropriate channels. It focuses on communicating the information that

is most important for project success in an efficient way. An early goal is to find

out who the project’s stakeholders are and what they expect from its development.

This becomes the main source for the communications management plan, which

also defines the methods, models and technologies used for information transfer.

Feedback from stakeholders is integrated in the form of change requests, which

lead to changes in the project if they are approved. Process reports are a different

part of communication management. They are based on performance informa-

tion and measurements, and are distributed in varying levels of detail to different

audiences.

Project Risk Management
The main goals of risk management are to identify the risks that can possibly

15

happen in the project, to analyze them in detail and to plan appropriate counter-

measures. At the same time it tries to raise the likelihood and impact of project

opportunities. The process tries to detect most risks in the early phases of the

lifecycle. Before that, however, a risk management plan has to be formed, which

describes the risk-related activities carried out in the project and the level of infor-

mation stored with identified risks. Reviewing project plans methodically results

in the list of possible risks and opportunities. Risk analysis is carried out qual-

itatively, and quantitatively if necessary, to prioritize them. The probability and

impact of risks is assessed, and they are categorized accordingly. Appropriate

responses are individually set for all entries of the list. During the course of the

project, risks are continuously monitored and are reassessed if necessary.

Project Procurement Management
Procurement includes processes which organize buying or otherwise acquiring

products and services from third parties. It helps managing contracts over the

whole duration of their lifecycle. The first point of consideration is deciding

which portion of the product is developed inside the project, and which should be

acquired from outside. This results in a procurement plan and accurate descrip-

tions of the desired parts. Analyzing the offers of different sellers and carrying out

negotiations leads to the signing of a contract. The performance of all contracts is

then observed in an ongoing process, and it is being ensured that obligations are

kept. Contracts are formally closed when they have been fulfilled.

2.5 Rational Unified Process

2.5.1 Overview

The Rational Unified Process (RUP) is a process framework for software engineering,

originally developed by Rational Software, and now maintained by IBM. Its creators de-

scribe the RUP in [32] to be both a structured software process and an iterative software

development approach. It is driven by use-cases and risk and is highly flexible with an

adaptable level of ceremony. It does, however, clearly define roles and responsibilities,

16

and it provides a structured time frame for the lifecycle with major milestones and de-

cision points. In addition, the RUP is treated and sold as a software product. As such,

it is regularly updated, can be browsed and searched online, and customized to business

needs.

At an architectural level the RUP can be viewed in two dimensions. The static struc-

ture groups process elements logically into disciplines: it defines activities, roles, arti-

facts and workflows. Also, it provides guidance in the form of templates, tool mentors,

roadmaps and similar concepts. The second dimension structures the project’s temporal

flow and forms a lifecycle, which is described in the following section.

2.5.2 Lifecycle

The lifecycle of RUP is highly structured and describes the phases Inception, Elabora-

tion, Construction and Transition. Every development cycle of these four phases results

in the creation of a new product generation. Phases are ended with the completion of

certain predefined milestone activities. It is possible to partition each phase into sev-

eral iterations. This iterative approach mitigates risks early and helps managing change

whenever it occurs. The development flow, its activities and their significance over time

are illustrated in Figure 2.2.

While the milestones finalizing each phase and a number of other process elements

are typically present in each project, the workflow on the whole is not fixed, and is

subject to change. Artifacts are maintained and constantly revised during the whole

course of the project. Both the workflow used and the artifacts created should be tailored

to reflect the actual needs of the project, and to incorporate the desired level of ceremony.

The following section describes the phases of RUP, their corresponding milestones and

the activities they focus on.

Inception
The main objective of the first phase, which usually consists of only one itera-

tion, is to gather information about the general scope and course of the project,

about its desired functionality and which basic requirements need to be fulfilled to

achieve it. At least one possible solution is sketched, and it is evaluated whether it

17

Figure 2.2: Phases of the RUP [33]

is realistic and financially viable. If this is the case, the Lifecycle Objective Mile-

stone is achieved, and the project enters the next phase. Otherwise, the project is

to be reconsidered or aborted.

Elaboration
During this phase, requirements are reassessed and refined. This information is

used to design, implement and test a working prototype. In later phases, this

prototype is evolved into the final product; therefore it is already built on a sta-

ble and working architecture. A subset of architecturally significant or otherwise

critical scenarios is implemented to identify and mitigate technical risks early.

Also, the development environment is set up at this point, and the process is cus-

tomized. Depending on project complexity, elaboration can consist of one or more

iterations. When the architecture and the project vision are stable, the Lifecycle

Architecture Milestone is reached.

Construction
Starting from the foundation created before, the phase of Construction aims to de-

velop this prototype into a complete, operable version of the system. It is usually

18

the most time-consuming phase, requiring the highest amount of work and the

highest number of developers. It therefore typically consists of several iterations.

At this point, most major risks have already been mitigated. During Construction,

the RUP is used primarily to minimize the cost of development, optimize the use

of resources and ensure a high quality of work-products. When the product fulfills

the targeted functionality, a beta version is released. This forms the basis for the

next milestone, the Initial Operational Capability Milestone.

Transition
At this point, the system should already be stable and sufficiently tested. The

final phase of the RUP lifecycle therefore consists of fine-tuning and preparing the

product for release. Beta tests are the basis for user-feedback and ensure that all

their needs are met. Other tasks include user training, deployment, and possibly

marketing and packaging. Insights gained in the project are collected to increase

future process performance. When stakeholder satisfaction and project goals are

reached, the project ends with the Product Release Milestone. Afterwards, either

a new development cycle is started, or the project is considered to be finished and

maintenance begins.

2.5.3 Practices

The following list of practices is based on process components endorsed by [33]. Al-

though more practices are included in the product, those given provide a starting point

and can be followed in most projects.

Iterative Development
As the lifecycle suggests, the RUP is designed to be used iteratively. The process

model recommends timeboxed iterations of two to six weeks and encourages cre-

ating early executables for feedback, which can be used to detect risks and flaws.

The goals and duration of each iteration, as well as their total number, are fac-

tors which are defined by the process, but can be adjusted to accommodate for

incoming changes.

19

Requirements Management
A number of methods are used in the RUP to find functional and nonfunctional

requirements of a system, including workshops and use-case modeling. As re-

quirements get more detailed, or change during the course of the project, it be-

comes a major task to organize the requirements based on risk and priority, while

their status is tracked continuously. This process is heavily tool-supported.

Architecture and Components
An early emphasis is put on developing a structured and cohesive architecture,

in order to discover technical risks as soon as possible, and to be able to address

them accordingly. An executable prototype with limited functionality is created

using this architecture. Later it is extended and finally developed into the final

product. A component-based approach is chosen to encapsulate functionality and

facilitate reuse.

Visual Modeling
The RUP uses a number of different models to simplify complex systems, and to

provide different perspectives to the various roles and activities. It encourages do-

ing some kind of visual modeling before programming in each iteration. Usually

those models are based on the UML, which provides a common vocabulary and

form. Different tools and techniques are described and can be used depending on

the complexity of the project.

Configuration and Change Management
As a project evolves, so do its artifacts. Keeping them updated and synchronized

with each other requires some work, which is covered by this practice. Config-

uration management involves version control and maintenance of interdependent

artifacts. Other closely related activities include the management of change re-

quests, and the collection of information for status assessment. Again, tools are

provided to automate most aspects of this practice.

Verify Quality
Testing starts early and is carried out throughout the whole project course. At the

start of the lifecycle, standards are defined and a testing plan is created. Conform-

ing to project specifications and finding errors soon in order to reduce their costs

20

are the main objectives of the testing process. Also, the tests are used to monitor

the project’s progress. Although tests preferably cover all use cases, risky areas

of the code are tested most extensively.

Use-Case-Driven Development
Use cases provide a way to talk clearly about problems and requirements with

different stakeholders. In the RUP they drive various activities and are used in

design, implementation and as a basis for acceptance tests. Related use cases

are organized in a use-case model, which serves as an interface to other model

representations of the system.

Process Configuration
RUP is highly customizable and should be tailored to fit specific needs. Depend-

ing on the project’s size and complexity, artifacts and workflows can be omitted

if their cost exceeds their value. However, the process can also be enhanced with

custom practices and rules. As long as the proposed practices and guidelines are

followed, the RUP can cover a wide array of development styles.

Tools Support
Many activities in the RUP can be automated using tools, especially creating and

maintaining artifacts and models. The process description lists tools for various

tasks and gives detailed guides explaining their usage. Tool-support is optional,

though. In smaller projects it can be substituted or complemented by hand-written

models, paper cards and similar methods.

2.6 Agile Methods

Since the late 1990s, a number of Agile Methods for developing software emerged and

became popular. Although they differ from each other in form and scope, they share

common roots and concepts. Many of the ideas picked up by the movement, like iter-

ative development, continuous integration and the focus on delivering executable soft-

ware rather than byproducts, were not new as such. However, by combining these ideas

and pushing them further, by including some new practices, and by holding them to-

21

gether with common sets of values, a novel approach of developing software was cre-

ated [34].

In 2001, a number of creators of popular agile methods met to agree upon a common

vision of their way of developing software, and wrote it down in the Agile Manifesto [2].

This manifesto contains several weighted values and a set of principles, with a strong

focus on human factors and other key aspects shared by Agile Methods. It is included

in its entirety in Appendix D.

“[. . .] we have come to value:

• Individuals and interactions over processes and tools.

• Working software over comprehensive documentation.

• Customer collaboration over contract negotiation.

• Responding to change over following a plan.

That is, while there is value in the items on the right, we value the items on

the left more.”

Although the individual methods may differ in their chosen path to reach these goals,

the principles and values agreed upon in this initial meeting provide a common scaffold-

ing for Agile Software Development. Since the publication of the Manifesto, diverse

methods with agile methodology have been devised and used, with varying success,

as Abrahamsson notes in [1]. The use of agile methods is on the rise ever since, and

although their adoption often is incomplete or mixed with other approaches, as West de-

clares in [64], he sees this upwards trend to continue further. Two of the most prominent

and most widely used approaches, Scrum and XP, are described in the following section

as typical examples of this family of development methods.

22

2.7 Scrum

2.7.1 Overview

Scrum is an agile project management method and is based on an empirical process

control model. It was first referenced by Takeuchi and Nonaka in [59] to describe a

development process observed in Japanese companies. The method was named after a

strategy in rugby, underlining the claim that in agile development, as in the ballgame,

teams have to be adaptive, quick and self-organizing in order to succeed. Scrum was

formalized and evolved by Ken Schwaber, Jeff Sutherland and Mike Beedle during the

late 1990s and early 2000s and has since then become the most popular Agile Method

in use [64].

The emphasis of Scrum, according to its creators in [51], lies in project management

and the project’s lifecycle. It does, however, not provide explicit programming practices.

Because of this nature, it can be easily combined with other methods. The method

emphasizes iterative design, self-organizing teams and a daily measurement of progress.

Although it can be used for larger projects by combining several teams, as described

by [58], it is usually employed in small, co-located project environments. The next

section explains the lifecycle used in projects managed by Scrum, and introduces some

of its roles, practices and artifacts. Subsequently, it describes these practices in detail,

and lists the values given by the definition of Scrum.

2.7.2 Lifecycle

As the first activity in the Scrum lifecycle, a vision for the developed product is artic-

ulated. Desired features, functionality and technology are collected and composed into

an initial Product Backlog. This prioritized list is managed by the Product Owner and is

constantly updated and refined during the course of the project. Development is struc-

tured into Sprints, time-boxed iterations of several weeks length. At the beginning of

each Sprint a Sprint Planning Meeting is held, in which the project team chooses items

from the top of the Product Backlog to implement during the next iteration.

23

Figure 2.3: Project Flow of Scrum (based on [19])

The team has the authority and autonomy to decide how to fulfill the project goals. It

is assisted by the Scrum Master, who guides the team, removes impediments and makes

sure the practices of Scrum are being understood and followed. In a short daily meeting

called the Daily Scrum, the members of the team tell each other the progress of their

work, synchronize their plans of action and identify possible blocks. Each Sprint ends

with a Sprint review, where the team shows their progress to stakeholders and discusses

future directions. The Product Backlog is updated and forms the basis for the next

Sprint. Figure 2.3 provides an outline of the lifecycle of a typical Scrum project.

2.7.3 Practices and Values

The practices of Scrum mainly consist of the roles, artifacts and management activities

already mentioned in the description of the lifecycle. The following section illustrates

them in greater detail.

Scrum Master
The Scrum Master, as introduced and defined in [51], is a key role to the success

24

of Scrum. Main responsibilities of the Scrum Master are to make sure Scrum

practices and values are understood and followed by anyone involved in the pro-

cess, and to enable the team to work unimpeded and with maximum productivity.

The Scrum Master should possess the authority and determination to protect the

team members from outside influences and to remove blocks. Rather than as-

signing tasks, the Scrum Master is encouraged to facilitate self-organization of

the team. She also serves as initiator and moderator, and communicates between

management, team and the Product Owner.

Team
The second important role defined by the method is the Scrum Team. The team in-

cludes all the people working on the realization of the project. It should ideally be

cross-functional and be formed of, more or less, seven persons. In larger projects,

several teams can be formed, which are then each coordinated by their own Scrum

Master. Within the team there are no special roles or titles, instead everyone is

asked to put their talents to the best use of the project. The team commits to do

a certain portion of work for every Sprint and chooses for themselves how to get

it done. For best efficiency, teams should be stable, dedicated to one project and

work together in a common and open workspace to facilitate communication.

Product Owner
The role of Product Owner is ideally held by a single person with authority, who is

responsible for the value of the product. The Product Owner lists desired features,

arranges them based on their business value, risk and cost, and maintains this list

as Product Backlog during the course of the project. Compared to the traditional

role of a product manager, the Product Owner interacts more closely with the

development team, reviews their success and offers them the possibility to choose

items from the top of the Product Backlog to implement in their Sprints.

Product Backlog
Originating from the product vision and influenced by stakeholder interests and

feedback of the team, the Product Backlog is an ever-evolving list of all features,

functions and technology goals to possibly make it into the final product. Relative

estimates of effort, value and risk are the basis for a prioritization of items on

25

a list, with high-value and high-risk items being tackled first. Lower priority

features can be sketched roughly as they arise and are refined in more detail as

their implementation draws nearer.

Sprint Planning Meeting
Before each Sprint begins, the Product Owner and the team come together in a

Sprint Planning Meeting to map out the work for the next development iteration.

The meeting starts with a review of top priority items on the Product Backlog

to gain a common view of upcoming tasks. Based on this understanding and

considering the available workforce, the team chooses a manageable amount of

items from the top of the list to implement in the upcoming Sprint. Necessary

design decisions are made, the chosen backlog items are decomposed into fine-

grained individual tasks, and are then collected into a Sprint Backlog. Finally, the

team members split the tasks between each other.

Sprint
A Sprint in Scrum is a time-boxed iteration of incremental development. The

length of a Sprint is agreed on in advance, should never be extended and typically

lasts between two and four weeks. The foundation for the Sprint is the backlog.

As soon as those goals have been set, they cannot be altered externally. Any

additions or changes are delayed to the next Sprint to allow the team to focus

on their chosen tasks. Progress on the tasks is measured daily by recording the

estimated time remaining on a Sprint Burndown Chart and by the Daily Scrum

Meeting. If it becomes evident that the backlog will not be cleared by the end

of the Sprint, scope or functionality can be reduced by the team. Unimplemented

features are then added to the Product Backlog in the next Sprint Review Meeting.

Daily Scrum Meeting
The Daily Scrum, which is an essential element of the method, is a short daily

stand-up meeting to synchronize and facilitate work. It is moderated by the Scrum

Master, who asks all team members to report in a group setting what they did since

the last meeting, what they are planning for the next one, and what impedes their

progress. The Scrum Master has the responsibility to help the team removing

those blocks.

26

Sprint Review
Every Sprint ends with a Sprint Review, where the team comes together with

the Product Owner, the management, customers and other stakeholders to discuss

the status of the project and the results of the last Sprint. The team presents the

newly completed functionality with a live demonstration, while everyone else is

encouraged to provide feedback or ask questions. This conversation increases the

transparency of the project and provides input for the next Sprint, which starts im-

mediately after a new Sprint Planning Meeting. This series of Sprints is repeated

until the product is ready for release.

The values described in Scrum are Commitment, Focus, Openness, Respect and

Courage. They are the foundation for the practices and serve as a basis of decision-

making. As the team commits to a common goal and is assisted by the Scrum Master to

be able to focus on its completion without distractions. Cooperation inside and outside

the team should be based on mutual respect, while responsibility is taken by the group,

not the individual. Information about status and course of the project is open and visible

to all participants. Finally, the method asks for the courage to uphold its values and

principles.

2.8 Extreme Programming

2.8.1 Overview

Another well known and widely adopted agile method is Extreme Programming (XP),

created by Kent Beck [6]. It provides a body of software development practices based on

a set of agile values to achieve fast and sustainable development in environments open

to change, while reducing the overhead of detailed documentation and rigid processes.

Its philosophy is to combine proven concepts like code testing and review, customer

involvement, early feedback and frequent integration and take them to, in Beck’s words,

“extreme levels.̈ The practices are intended to complement each other. It is argued, and

shown in empirical studies like [29], that the effect of practices is amplified when they

are used in combination.

27

In the first edition of his method description, Beck defined XP as “a lightweight

methodology for small-to-medium-sized teams developing software in the face of vague

or rapidly changing requirements” [5]. Later, he broadened this definition to say that

with some alterations, larger teams and projects can possibly be realized. Cao et al.

describe such a case of a large-scale project in [14], while Boehm and Turner point out

in [9] that such alterations are likely to introduce elements of plan-driven processes into

XP.

This section continues with an overview of the method’s lifecycle, before the prac-

tices of XP and its underlying values are illustrated.

2.8.2 Lifecycle

XP aims to be highly iterative in order to gain early feedback and to produce new value

rapidly and continuously. Customers write short Story Cards for desired features, which

are then roughly estimated by developers. After date and stories for the next release are

agreed upon, development starts. For every time-boxed iteration, which is preferably

as short as one week, customers choose a set of stories for implementation, based on

priority and available time.

The development team breaks up the stories into short tasks and implements them

using practices like test-driven development and pair programming. During all phases

of development the customer collaborates closely with the development team, ideally

working on-site to be able to clarify requirement and design issues as soon as possible.

2.8.3 Practices and Values

Underlying the practices of XP is a set of general values, intended to give them direction

and purpose. Beck stresses that without values to guide them, practices are in danger of

becoming meaningless routine, a “thing to do to check off a box” [6]. The values of XP

are listed as Communication, Simplicity, Feedback, Courage and Respect. Communica-

tion, especially in the form of personal conversations, is valued highly in XP as a way

to strengthen teamwork, to convey the needs of the customer and to overcome recurring

28

Figure 2.4: Primary and Corollary Practices of XP [6]

problems. The value of simplicity encourages looking for the most basic solutions, tools

and designs that are promising to work in a given context and to avoid complexities that

may or may not arise in the future. Quick and detailed feedback is highly valued in the

environment of rapid change to judge a project’s status and to adjust the direction of its

development. Furthermore, XP advocates courage to act according to these values even

in situations of fear and stress and asks to respect the personality and contributions of

the persons involved in the process. The mutual interdependence of values and practices

is confirmed in observational studies like [45].

Complementary to these rather abstract values, XP describes a collection of princi-

ples, which are used to map those values to the specific practices of software develop-

ment. It emphasizes humanity and human interactions, diversity of teams and shared

responsibility. Also, it encourages a rapid iteration of small steps of improvement, in-

stead of major changes. Problems and occasional failure are accepted if they are used as

a way to gain knowledge. Because available time and money are usually fixed, a project

is steered mostly by a continuous adaptation of scope.

The practices provided by XP are specific and situation-dependent working instruc-

tions for developing software. A distinction is made between primary and corollary

29

practices. Figure 2.4 shows a sketch of all practices contained in XP. The thirteen pri-

mary practices represent the core of XP, and are general enough to be followed in most

circumstances. Those practices are sketched out individually in the next section.

Sit together
The method encourages establishing an open, shared workspace for all members

of the team. Additional workstations can be provided outside this common area to

fulfill the developers’ need for privacy. Personal communication and co-location

are considered to be important aspects of XP.

Whole team
A team in XP should be cross-functional and the developers working in it should

possess all needed skills and the necessary know-how. Tasks and responsibilities

are taken over as a team. These practices originally also included the requirement

of customers working on-site with the developers. However, with the second

edition of [6], this was extended to be an independent (corollary) practice.

Informative workspace
Making information visible is seen as an important measure to enhance feedback

about a project’s course. This practice encourages putting up big, handwritten

charts and story cards, sorted by state of completion, to display up-to-date status

information directly at the team’s workspace.

Energized work
XP discourages developers working overtime, as its creator doubts that it is sus-

tainable and effective over time. Beck argues that working while being tired or

sick not only slows progress of development, but poses the threat of removing

value from a project through an increased rate of errors. A 40-hour week is seen

as ideal, and countermeasures (like reducing the scope) are used in order to realize

this.

Pair programming
A core practice of XP is to write all production code in pairs, with two persons

working simultaneously on one shared workstation. Although this seems wasteful

at first, authors like Cockburn (in [15]) have argued that higher code quality (due

30

to instant code review) and increased trust make up for this perceived loss of

productivity. To maximize the gain of mutual learning and the feeling of shared

code ownership, pairs are rotated regularly, every few hours.

Stories
In the Planning Game, desired functionality and features are gathered by the cus-

tomer and written down on index cards as stories. To be able to quickly prioritize,

developers should estimate the stories as soon as they are written. It is encouraged

to use actual cardboard cards in order to keep the descriptions short and to create

tangible items for visualizing progress.

Weekly cycle
XP encourages developing in short iterations of roughly one week. Each phase

begins with the selection of stories to be implemented. The stories are split into

tasks, which the team members then distribute among themselves. Work starts

with writing automated tests and ends, when stories are functionally implemented.

After every cycle it should be possible to deploy working software.

Quarterly cycle
In addition to the weekly iteration, XP defines another cycle every quarter of a

year. This should be used to plan at a larger scale and to make sure that the project

still follows it initially defined vision. Also, every such cycle should provide room

for reflection on the team, the project and the used methods, in order to detect and

overcome bottlenecks and to make long-term decisions.

Slack
XP encourages clear communication and realistic schedules to avoid overcom-

mitment. Broken promises are to be avoided because of their long-term negative

impact on customer-relations. Slack also suggests to add additional, minor tasks

to plans, which can then be omitted if necessary.

Ten-minute build
In XP, the process of building and testing the system should be fully automated,

to facilitate maintenance and make the process repeatable. Additionally, it should

be continuously optimized to take less than ten minutes, because longer builds

31

tend to not be used regularly. If it is still not possible to test the whole system in

time, automatic testing can be limited to the most error-prone parts.

Continuous integration
To reinforce short feedback cycles, XP employs continuous integration. Changes

to the code are to be integrated in the main build as soon as possible, preferably

after each session of pair-programming. Before starting a new task, the integrated

system should be built and tested. It is argued that correcting bugs is easier if it is

done directly after introducing them into the code.

Test-first programming
Before any code is implemented, a short unit-test is written and coded against, un-

til it passes correctly. Following this practice ensures that testing is not neglected,

helps focusing on the intended result of the task at hand and encourages a loose

coupling of components. The working tests are then added to the automated build.

Incremental design
Instead of creating an elaborated design prior to implementation, XP encourages

to start with a simple design and enhancing it whenever necessary. There should

be continuous working on the design to keep it in proportion with the current

system. Large changes are applied in small steps, to profit from feedback sooner.

Refactoring aims at eliminating duplication of code in order to keep the design

more flexible.

32

CHAPTER 3
Open Source Development

“Like many things about the Internet era, open source software is an odd

mix of overblown hype and profound innovation.” - Steven Weber [63]

Open source is a complex phenomenon. It is a social movement, an ideology, a set

of legal definitions and a development process. Reflecting briefly on the whole approach

and giving an overview of the underlying concepts and principles provides the necessary

foundation to tackle more specific process-related questions later on.

The general outline begins by summarizing popular definitions and explains the

roots and further development of the movement in a short historical overview. It is

followed by a survey of prominent research topics and their respective relevance for the

topic at hand. Common elements found in open source projects and the corresponding

literature are then used as a basis to present a development cycle and to showcase the

practices typically used in the process. Finally, the thereby established process model

is split up into basic elements to be compared individually to the approaches described

in the previous chapter. This theoretical comparison provides preliminary answers for

the categorization of open source process elements and builds the foundation for the

following case study.

33

3.1 Definition

The general concept of open source has become well-established and its central premise,

to provide free access to a software’s source code to everyone, is widely known. In order

to delve deeper into the details of open source development later in this chapter, it is,

however, necessary to provide a closer perspective on its exact definitions.

Due to the different roots and motivations that led to the movement’s origin, several

names are in common use. The terms Free Software and Libre Software (the latter to

avoid ambiguities around the word free in the English language) predate open source,

and a part of the movement prefer them still (see [56], for example, for a longer treatise

on the topic). This leads to the emergence of umbrella words such as F/OSS, F/OSSD

or FLOSS, which are used to cover the most popular variants. However, the differences

in denomination are mainly due to ideological issues and differences of opinion outside

the main scope of this research. In the context of the development process, the term

open source is predominant and is therefore primarily used throughout this thesis.

The license under which software has to be published to be considered open source

(or free software) has to fulfill a set of characteristics, formulated in the Free Software

Definition by the Free Software Foundation [23] and the Open Source Definition by the

Open Source Initiative [28]. Although these two definitions differ in their rhetoric and

in some detail, they widely agree on content, and the most commonly used licenses are

in accordance with both, as is explained further by Grassmuck in [26]. The following

breakdown gives an overview of the key ideas covered by the two definitions:

Access
Providing free access to a readable version of the source code is a primary re-

quirement and a necessary precondition for other rights. It covers not only the

right to study the code passively, but also to modify it. Everyone has the same

rights to access the code, and the license can not be used to hinder individual per-

sons, groups or whole professional fields from using the software or contributing

to its development.

Distribution
Another basic right allows everyone to redistribute copies of the software, includ-

34

ing modified versions. Although distributors are allowed to charge fees for the

effort of distribution, those fees can not be required by the license, and free ways

to obtain the software have to exist. The rights given by the license automatically

extend to all copies.

Constraints
The definitions contain several additional constraints and characteristics. The li-

cense may require modified versions to be redistributed under a different name to

protect the authenticity of the original version’s author. Other issues prescribe that

the license is not coupled to a specific technology, and that no restrictions can be

placed on software just for being distributed together with open source software.

It can, however, be extended to software with which it interacts, a fact that is used

in the GPL and attributes to its viral character.

Licenses conforming to the aforementioned points differ profoundly from propri-

etary contracts and licensing schemes, and introduce a diametrically different concept

of ownership. Still, taken on its own, this does not require fundamental differences

in the process of development, and a number of projects with an opened source code

are nonetheless produced with conventional methods by an in-house development team.

In many major open source projects, however, a common process has evolved, which

draws heavily on the possibilities of distributed cooperation and voluntary contribution.

Before this process is described in detail and common grounds and differences are

elaborated, a short history informs about the different roots and mile stones in the de-

velopment of the movement.

3.2 History of Open Source

In the first decades of computing history, software was only a by-product to keep the

large and expensive mainframes running, and was of small commercial value in compar-

ison. Code was often shared and collaboratively written by developers of different com-

panies to create complex machine-code instructions, a behavior encouraged by manu-

facturers to raise the value of their hardware. This cooperation was limited however, as

35

Karl Fogel notes in [21], by technical obstacles like serious hardware incompatibilities

and the absence of a global network.

When in the seventies computers spread to universities, these places became ma-

jor places for innovation, two of which being especially important for the history of

open source: the University of California at Berkeley and the Massachusetts Institute

of Technology (MIT). With increased hardware standardization and the introduction of

high level programming languages, the value of software rose, however, and expensive

proprietary licenses restricted sharing and joint improvement of code.

Steven Weber has researched in depth the role Berkeley played in contributing to

the beginnings of open source in [63]. They had collaborated with AT&T on the ad-

vancement of the UNIX operating system, releasing patches and packages of tools as

Berkeley Software Distribution (BSD). When AT&T massively raised UNIX licensing

fees during the eighties, the developers at Berkeley began to replace proprietary parts by

re-engineering them, assisted in this effort by voluntary contributions over the Internet

and resulting finally in the free operating system 386/BSD, distributed under generous

licensing terms.

The Artificial Intelligence Lab at the MIT was another central hub for software de-

velopment, and had developed a distinct culture of openness and code sharing. However,

this community did not last through the changes brought to the industry by new systems

that came without sources and asked for confidentiality and non-disclosure. Richard

Stallman, one of the developers who was unwilling to leave the old ideals behind, ini-

tiated a counter-movement and founded the Free Software Foundation with the goal of

developing a completely free and open operating system. While similar efforts at Berke-

ley followed rather pragmatic intentions, Stallman’s GNU project had strong moral and

ideological undertones about the freedom of information. In the next years the project

grew and resulted in an extensive suite of utility tools, published under the GPL, a spe-

cial license Stallman had devised, using copyright to ensure sustained freedom of the

software and its derivatives, as Grassmuck notes [26].

In 1991 GNU still lacked a kernel though, the most important part for any indepen-

dent operating system. At this time the Finnish student Linus Torvalds created a simple

UNIX-based kernel, mostly for his own use, and posted it on an Internet newsgroup to

36

be used and modified freely; but although it was simple, it was working, attracted atten-

tion and with the help of many volunteers and combined with the available GNU tools

it became the first major free operating system, GNU/Linux. The way Torvalds coor-

dinated the project and its contributors, gave direction to a new process of developing

software, and Linux eventually evolved to become one of the most prominent success

stories of open source. The same time, however, marked the beginnings of other highly

successful projects of a similar nature, like the Apache web server, led by a commit-

tee of distributed developers, who began their work in 1995 and continued to develop

Apache to become the standard choice for HTTP servers ever since [35].

Still, however, the community lacked formalism, common grounds and a name ev-

eryone could identify with. Several crucial events, like the publication of Eric Ray-

mond’s influential text “The Cathedral & the Bazaar” [43], sparked a discussion about

identity. In 1998 the name open source was coined in an effort to re-brand the move-

ment to appeal to companies, to move away from Stallman’s controversial ideology and

to propagate the development model for pragmatic reasons of quality and cost. The

marketing move worked, and when several large international companies decided to

create Linux ports for their systems to lessen their dependency on Microsoft’s operating

system Windows, it led to increased public awareness and credibility for open source

software in general. Competition with Microsoft was also a direct cause for another

project to join the OS palette when Mozilla decided to release the source code for their

browser software in a tactical maneuver to gain ground against the Internet Explorer.

Although the public hype surrounding open source abated slightly, the last decade

saw a further maturing of the process and its projects, increased theoretical research

and a large number of newcomers. Seen as a viable alternative to proprietary systems

in many areas, it also gained a foothold in commercial settings, and is increasingly

supported and used by companies of all sizes.

3.3 Areas of Research

A growing body of research is dedicated to understanding the concepts constituting

open source development. In this study of the field a number of key areas of interest

37

have emerged, and the primary goal of this section is to give a structured overview of

these research topics. A list resulting from this categorization will furthermore serve as

a basis to evaluate each topic’s contribution to the process and its relevance to the core

issues at hand.

Several undertakings have been made by different research groups to lay out the

existing works on open source and summarize their results, some examples being [61],

[50] and [18]. The latter uses an input-mediator-output-input (IMOI) model to structure

the data, where mediators influence the transition from inputs to outputs and are made

up of processes and emergent states. Outputs contribute to the inputs of future iterations.

The following overview of topics and the findings linked to them build upon this model,

but leave out the process, which will be dealt with more thoroughly in a subsequent

section.

3.3.1 Inputs

There are three relevant groups of inputs to open source, according to Crowston et

al. [18]. The first concerns member characteristics, and deals with the geographical

location and distribution of contributors as well as their motivations on individual level

and from a company perspective. Of further importance are the characteristics of the

project, mainly the influence of different license types, and the use of technology as a

means of coordination.

Findings

The question of motivation, why people contribute their time and energy to work on

an open source project, has traditionally been a major issue of empirical and theoreti-

cal research. Personal needs to improve the software have been shown to often be the

decisive factor for initial participation, and many contributors leave after these initial

needs have been fulfilled. For those who stay past this phase and increase their partici-

pation, the initial reasons to take part are superseded by a mix of intrinsic and extrinsic

motivations (see, for example, [41]). Examples for the former include having fun at

coding, taking an active part in a community and gaining opportunities to gather and

38

pass on knowledge. The latter comprise of gaining reputation and status, raising one’s

worth on the market and, when being employed by a firm, getting paid. Companies are

in turn motivated to participate by the opportunity to gain large-scale external support

and a corresponding increase in quality. Comprehensive studies empirically researching

motivation in open source projects, such as [52], identified several groups of develop-

ers, such as need-driven participants and hobbyists, contributing differently because of

highly diverse motivations.

Open source contributors are globally distributed, with English being the common

language in a majority of projects. The type of the license plays an important role in the

categorization of a project and has influence on a number of factors like governance and

relationships to commercial companies. Another important input is the used technology,

as it enables most communication in an open source project and is the main means of

creating and sharing knowledge.

Relevance

Motivation is a topic important to understand when considering open source, but not

directly relevant to many issues of the development process. It is important, though,

for issues of collaboration and conflict management, to keep the diversity of people in

terms of culture, motivation, origin and language in mind. Also, the use of technology

for communication plays an important role in the process.

3.3.2 Emergent States

Like processes, emergent states are mediators controlling the transition from project

inputs to desired outputs. They describe both social characteristics like trust inside the

team and task-related concepts like roles, commitment levels and shared mental models.

Findings

Mutual trust between contributors has significant influence on the effectiveness of a

team. This trust can be strengthened by close collaboration, a mediating authority and

39

shared ideology. Communities with low levels of trust can still effectively produce

results, but have an increased need of control and review mechanisms.

The roles people hold in open source projects are usually unspecified and flexible,

and most developers of the software are at the same time users of the systems they are

working on. Many communities grant members of merit special committing rights, and

those committers also gain extended voting rights in democratic decisions. Further def-

inite roles are granted to maintainers of packages and in different levels of management

(for example, the Eclipse Development Process defines a number of roles, together with

their tasks [24]).

As contributors with different levels of dedication work together on a project, labor

is naturally distributed unequally. Although the ratio differs for different projects, the

majority of work is usually done by a small core of developers, with a large number of

people contributing casually or just once. This supposed imbalance has been observed

many times in studies like [39] and [30]. The core groups are able to collaborate closely

due to a shared vision of the projects and a thorough understanding of the code base.

Relevance

The nature and composition of roles has an influence on the process, as do the control

mechanisms that are adopted to coordinate growing or loosely collaborating groups.

Different levels of dedication have to be attributed in the social structures and in the

distribution of knowledge.

3.3.3 Outputs

This research area deals with the outcome and consequences of development and how

to use them for future improvements. It includes means of measuring success and iden-

tifying the variables contributing to it, looks into the application areas and the context

in which open source is applied and examines the progressive development over time of

both software itself and the community creating it.

40

Findings

A number of studies have been dedicated to determine how to best measure the success

of an open source project. As the field lacks the more direct measurement of commer-

cial success, several other standards have been proposed. A commonly used criterion is

code quality, although the number of possible ways to measure success suggests mul-

tidimensional qualities that should be taken into consideration as well. Those aspects

of success have been shown to depend on several variables like size, ideology, type of

license, openness in governance practices and other organizational characteristics, many

of which influence the success of the project (see [16]).

On multiple occasions open source software has been shown to grow unusually fast

in certain stages of its development due to the self-reinforcing effects of rising popular-

ity, as demonstrated by [31]. Different code sections tend to evolve at variable rates, but

structures stay stable and code duplication is naturally low. The communities of grow-

ing projects often see a conversion from a single hub to the formation of a core team and

a surrounding periphery, and leadership shifts occur from single persons to committees

and hierarchies.

Relevance

To understand the process of open source development it is not of immediate importance

how success is measured, but it is relevant to notice which variables play a contributing

role in its feasibility. The development of projects over time allows conclusions about

long-term effects of the process.

3.4 Open Source Development Process

3.4.1 Overview

Creating open source software differs considerably from other forms of software devel-

opment, and due to a shared culture and a constant exchange of ideas and people, enough

41

common elements have formed that it has become common to talk about an open source

development process. Although such a process did not emerge from a theoretical basis,

and significant differences appear between various projects, the similarities that exist do

warrant a common denomination and description.

In many ways, open source projects do not follow the ideas of traditional project

management. Nevertheless, if the process of their development is examined more closely,

it becomes clear that the practices employed in these projects fulfill similar functions

and are used to cover many areas of project management and system development. This

fact justifies a closer comparison of these seemingly disjunct approaches. Following the

structure of the process overviews in the previous chapter, this section is subdivided into

a description of the development cycle and a list of commonly found practices.

3.4.2 Lifecycle

Due to the open-ended nature of many open source projects, it is difficult to describe a

definite lifecycle covering the whole project duration. It has even been argued that the

term lifecycle might be misleading. Massey sees the open source development process

conceptualized as “steady-state affair” [37]. Furthermore, it is quite common that a

project’s source code is only opened to the public after an initial version of the product

has already been developed. Although, by definition, a project is not yet open source

in this early stage of development, this phase can be seen as part of the overall open

source development process if it is carried out with the intention of opening it later on.

Several precautions can be undertaken at that time to facilitate this transition, as Fogel

describes in [21]. Whether an open source project starts with an executable prototype,

a fleshed-out product or a mere idea may have consequences for its initial positioning,

but has little influence on the mechanisms carried out during its development.

In any case, a release cycle can typically be identified, which defines steps to be

iterated through to contribute changes and fix problems. The following list is a sam-

ple, based on the early Apache process described in [39] and [54]. Similar variations,

however, can be found in several other project descriptions.

42

Discover Problem
The development cycle usually starts when someone notices the occurrence of

a problem or the need for new functionality. As a first step the issue has to be

reported in one of the available communication tools of the project like a mail-

ing list or a bug tracker. If the suggested change is considered important by the

community, its development cycle is started.

Find Volunteers
Self-assignment for tasks is one of the most universal concepts of open source,

and the continuation of the cycle depends on finding a volunteer first. However,

a segmentation of the code with at least informally known maintainers exists in

many cases, and if no one else volunteers for an important change, those experts

in the field can try to delegate the problem or take up the work themselves.

Identify Solution
Suggested solutions for the problem are then posted back to the mailing list, where

the community discusses their value and feasibility, and decides on the best route

to follow if multiple possibilities have been proposed. When an agreement has

been found, the developer goes to work, informing the rest of the community

about it to avoid duplication of work.

Develop and Test Code Locally
Changes are generally implemented on local copies of the system and should be

tested and documented by the developer before the code is sent back as a patch to

the community. For simple fixes, the prior steps can be skipped and the finished

patch is presented to the team for scrutiny.

Review Code Change
Although review mechanisms work differently in each project, in most cases some

form of peer review happens before the code is committed back to the global

repository, especially for changes in stable releases extensive review is common.

In development branches it is also possible for code to be reviewed after its de-

ployment.

43

Commit and Document
If the change has been approved, someone with the right to alter the code base,

preferably the maintainer who was responsible for the issue, commits the change

back to the repository. Methodical documentation is especially important in open

source development due to the lack of personal communication, and automatic

commit logs and the archived thread in the mailing list serve as additional arti-

facts.

Release Management
Although code can be accessed and downloaded at any given time, special release

management is necessary to produce the stable versions preferred by most users.

For these the project’s release manager declares a code-stop, at least for a special

branch designated for the release. A phase of repeated testing and bug-fixing is

then initiated until enough issues have been resolved for the release to be con-

sidered stable. Frequency and timing of new releases differ considerably among

specific projects.

3.4.3 Practices

Although the release cycle seems simple in its execution, in order to work effectively

it requires a number of social structures and practices to be in place. The following

overall view of concepts is structured to follow general areas of software engineering

and system development.

Governance and Decision Making
In many cases, open source projects neither possess a central corporate authority,

and do not conduct traditional project management. Still, some kind of gover-

nance is necessary for efficient decision making. The two most commonly found

forms of leadership are that of a Benevolent Dictator or a consensus-based democ-

racy, led by a committee, as detailed in [21]. Those two are not as different as they

seem at first. In both cases control-mechanisms are in order to limit authority and

control the actions of the leaders, as [40] explains. They are either set up by the

44

project or implicitly derived from the license. The possibility for unsatisfied de-

velopers to fork the code at any given time, for example, makes rough consensus

desirable in order to conserve the project as a whole. Projects often start with

a single decision-maker and share the responsibilities in a committee when they

grow larger, though exceptions exist where a single leader remains in place.

Like in proprietary environments, managers have to provide a vision and a com-

mon sense of direction, and coordinate efforts. The means of coordinating differ,

though, as a considerable part of the available work-force consists of volunteers,

who cannot be ordered, but have to be persuaded. The governing body or leader

also relays authority to package maintainers and other managerial roles, often

through informal appointment.

Planning and Requirements
Most projects do not conduct formal planning or detailed requirement analysis

ahead of time. Requirements that arise from mailing list discussions or entries

in the bug tracking software are noted in public lists and serve as a basis for

development. However, the participation of commercial firms has a definitive

influence on the way planning and requirements are carried out and the priority

they receive.

Architecture and Design
A lot of the communication in mailing lists is dedicated to finding common grounds

about the design and ways to improve it. A major concern of open source architec-

ture is its modular structure, as noted in [36]. This division of the code into easily

manageable loosely coupled parts allows newcomers to quickly get familiar with

the code segment they want to work on, and keeps the complexity of the overall

system low. Extensive refactoring, like it happened in the Mozilla project, can be

justified and considerably boost efficiency if it helps to increase the modularity

and reduce unwanted dependencies.

Testing and Review
Although testing processes differ considerably between different projects, many

lack a dedicated testing team and formal testing routines. Instead, several tech-

nical and social mechanisms are in place to ensure high quality of contributed

45

code. It is encouraged to test one’s own code before committing. Also, automatic

testing is in wide use, and the publicly visible nature of the release cycle allows

many people to participate in a peer reviewing process. This relies heavily on the

developers’ commitment to the project.

Maintenance and Quality
Due to the nature of open source projects and the lack of a delivery date, projects

are in a constant state of maintenance and improvement. Continuous cycles of

bugfixing and new features improve the project quality gradually over time. Qual-

ity management is rarely executed in a formal way, and although the system works

if the number of contributors and their participation is high enough, it can be seen

as inefficient from an outside perspective, and some projects do provide commer-

cial support instead.

Coordination and Collaboration
Coordinating a heterogeneous and voluntary group of people with a strong sense

of freedom is a challenging task and requires a number of mechanisms to al-

low for efficient collaboration. Often, code and areas of responsibility are split

into parts. This helps to keep the complexity of both code and social structures

down to a manageable level. There is also a form of “microcompetition” [10]

in place, when several developers simultaneously work on a bugfix. Controlling

the number of people with committing rights also helps with coordination issues.

Standardized procedures, general policies and guidelines help building the com-

mon vision and focus necessary for self-organizing teams. The open access to the

community and its inherent diversity entail the need for effective strategies for

conflict management to be devised. This requires social skills from leaders and

relies heavily on the social intuitions of the community.

Knowledge Management and Documentation
The distributed and knowledge intensive nature of open source projects compli-

cates not only coordination mechanisms, but also the management of knowledge.

Because communication mostly happens online, most information is written. To

organize and keep track of an ever growing body of knowledge, technological

tools play an important role, as do community guidelines and a shared aware-

46

ness of the importance of documentation. Nearly all communication is open and

persistently available for future inquiries.

3.5 Classification

3.5.1 Approach

To evaluate how open source development relates to agile methods on the one hand and

to defined processes on the other, a dual approach is pursued. It will first compare the

theoretical grounds built up in the previous parts of the thesis, and in a second step relate

those results to the empirical findings of the case study.

Open source presents itself as a distinct method with distinctive characteristics, de-

ployed in a peculiar environment. When viewed in its entirety, it is neither agile nor

structured. In order to attempt a meaningful comparison, it is therefore divided into a

number of process elements, which are then compared individually. These disciplines

are based on the characteristics of the examined definitions of process models. They

are defined to cover all relevant areas of project development, yet focus on the areas in

which the differences between the approaches are most apparent.

The fourteen process categories originating from this itemization are the focus of the

following section. For each element a short outline is given, along with a description of

how it is handled in both defined processes and agile methods. This serves as a basis to

put open source development in direct relation to the other approaches, according to the

classification scheme in Figure 3.1. The scale distinguishes whether there is a tendency

toward either of the management styles in the particular discipline, whether open source

is balanced between them, or whether it uses an approach that is significantly different

from both.

Figure 3.1: Classification Scheme

47

3.5.2 Comparison by Process Element

Governance

Governance involves all tasks carried out by the leading authority to direct the project

and to make decisions, and the structures and hierarchies behind them. Agile projects

depend on self-organization and teamwork, and their managerial roles guide the devel-

opment by facilitating communication, endorsing the method and removing blocks in its

execution. The hierarchy is flat, and decisions, like prioritizing and distributing tasks,

are based on informed discussions that include developers and customers. Defined pro-

cesses utilize a tighter organizational structure, in which managers, in addition to plan-

ning and controlling the workflow, are responsible for allocating tasks to be carried out

by specialist workers. The clear separation of functions, combined with a rigid pro-

cess, allows for a more direct style of leadership. Lacking those structures, open source

governance relies on indirect means of control, and despite differing environments, its

project leaders share many tasks and methods with agile management. Decision mak-

ing, however, depends even more on the opinions and influence of the developer base,

and leadership is constantly counterbalanced by democratic (or meritocratic) forms of

control.

Figure 3.2: Classification of Governance

Planning

Planning describes the steps undertaken in advance to steer the project and to develop

the appropriate course of action. Agile development starts with a simplified outline of

the whole project and a rough estimate of important parts, fleshing out features and

components more accurately only when they are ready to be implemented in an upcom-

ing iteration. Structured processes define more elaborate plans on different levels before

starting each phase and use them as a basis for dependent actions and artifacts, although

48

they can be updated if changes occur or more information becomes available. Open

source projects start with a general idea and a vision for further development, but the

project’s course can change considerably during development, depending on the ideas of

developers and a growing contributor base. Although the influence of leaders and com-

panies can steer the project into a direction, open source solutions cannot be planned

in detail because of the freedoms guaranteed by the license and the unpredictability of

volunteer contributors.

Figure 3.3: Classification of Planning

Requirements

Requirements define a project’s scope and focus; finding out what they are and organiz-

ing them in a manageable pattern constitutes the discipline of requirement analysis. The

initial phases of well-defined processes pay special attention to the search for require-

ments, they are determined in workshops and brainstorming sessions with customers

and build an important foundation for the project’s schedule, costs and general outline.

Agile methods start with a less elaborate definition of requirements, considering scope

as the most flexible control variable, which is adjusted over the project’s course in accor-

dance with the customer to reflect changing priorities, updated information and available

time. Open source software also has adjustable scope, and because of less planning be-

forehand and fewer restrictions on schedule and costs it has an even looser conception

of requirements. An ongoing discussion about what should be included in the product

is held between users and developers, and feature priorities are updated continuously.

Figure 3.4: Classification of Requirements

49

Architecture

The architecture of a software system builds the structural skeleton for the code and in-

corporates design decisions about the layout and behavior of its components. In defined

processes that specifically address software development, like the RUP, high priority is

given to designing the architecture. It is elaborated in the early phases of development,

contributing to the idea of tackling complex and risky concepts at the beginning, and

serves as a stable core to which functionality can be added in a modular way. Agile

methods initially start with a simple architecture and gradually scale it to keep up with

what is required, constantly refining and refactoring it in small steps whenever new in-

formation about its desired form becomes available. Open source moves between those

approaches, aiming for an executable version with a working modular structure early

on, and improving the architecture by refactoring when the need arises.

Figure 3.5: Classification of Architecture

Risk

Risk management concerns possible future events with adverse effects on project suc-

cess and deals with how to avoid them or mitigate their impact. Defined processes define

risk management as a separate discipline, where possible risks are collected in the early

phases of the project. Then they are rated according to the probability of their occur-

rence, and on how grave their impact would be in such a case. The RUP is risk-driven,

in that the riskiest parts of development are tackled first. Agile methods use implicit

ways to address risks throughout the project lifecycle, mainly made possible by rapid

feedback times and adaptable approaches. In open source communities, risks differ sig-

nificantly in nature and in the threats they pose, due to different goals and definitions of

project success. Therefore, these communities have also come up with different ways

to absorb and avert risks, ingrained in license terms and social conventions.

50

Figure 3.6: Classification of Risk

Roles

Roles give information about the skills and responsibilities of persons working on the

project, as they define and categorize people’s function in the team. Defined processes

specify a comprehensive number of roles in all positions of project development and

have people with similar roles work together on specialized tasks. In this system, people

are hired and trained specifically to fulfill particular functions over extended periods of

time. Agile methods use dedicated roles mainly for managerial positions, and although

workers can have specialized backgrounds and focus on different areas, teams are cross-

functional and tasks are chosen rather than distributed. A similar situation presents

itself in open source projects, where roles are used primarily to designate administrative

functions - and even there they are mostly informal and highly flexible. Team members

can earn influence in specialized areas based on their expertise and commitment, and

may be given authority as maintainer or coordinator.

Figure 3.7: Classification of Roles

Integration

Integration describes the task of putting together the various components forming a sys-

tem, as well as managing, creating and merging differing versions and code bases. Here,

the approaches do not vary much, as there is a common tendency to integrate often and

to keep divergences to a minimum, but variations exist because of the restrictions of

different environments. Agile methods benefit the most from their small size, close

cooperation and low organizational overhead. This allows for continuous or even syn-

51

chronous integration, where versions are kept uniform in a single code base. Modern

structured processes aspire toward the same direction, but due to a slower iterative cy-

cle and a larger number of people involved in it, different versions and components are

kept up and integration exists as a definitive step in the lifecycle. A similar situation

can presumably be found in open source projects. Different versions exist and survive

at any given time at the developers’ workplaces, and although changes are incorporated

into the main project frequently, a number of code bases, like stable and nightly builds,

are managed simultaneously in an ongoing integration process.

Figure 3.8: Classification of Integration

Costs

Cost management deals with money as a resource and covers the steps necessary to

prepare a budget, to estimate tasks and to control spending in order to be finally able to

adhere to its limits. Agile methods consider the budget as a given, which is fixed outside

the project, and use it to align the scope to the available funds. Estimates concerning

the time necessary for task completion are sketched roughly at the beginning and are re-

fined within the team throughout the course of the project. Although defined processes

specify more concrete means of estimating, and deploy them more rigorously in the

planning phase, the general principles are similar, in that cost management mainly deals

with estimating tasks and increasing their precision. Approaches in an open source en-

vironment differ profoundly from both; because of a mostly voluntary workforce and no

direct income from product sales, money is less significant to the development process.

Money can be used to offer an incentive to do unpopular work, as a way for a company

to buy influence or to pay for marketing and server upkeep.

52

Figure 3.9: Classification of Costs

Testing

Testing consists of a wide array of practices carried out to ensure and increase the quality

of written code, making sure the product fulfills its intended functionality reliably and

with low rates of defect. Agile development places testing close to coding, since it is

carried out both at nearly the same time and by the same group of people. It employs

frequent and automatic testing, often utilizing test-driven development, to increase the

chance of identifying and fixing defects early on. In defined processes, testing is a self-

contained discipline carried out by a dedicated team of specialized testers, who follow

a formal testing plan and review finished code to ensure a high coverage of possible

areas of defect. After the release of the first beta version, direct user input drives further

tests. Open source uses a mixed approach for testing, combining different approaches

and taking advantage of the large number of possible contributors. Submitted code is

ideally subjected to both peer review and automatic testing, and projects are deemed in

a state of beta testing during their whole lifecycle, relying on user feedback to locate

and fix problems.

Figure 3.10: Classification of Testing

Knowledge

Knowledge management concerns the ways information in the project is collected, pro-

cessed and distributed among stakeholders. In agile development, knowledge is implic-

itly shared among management, team members and customers. The need for elaborate

documentation is reduced due to personal communication and close collaboration in a

53

shared environment. The formal process utilized by well-structured approaches defines

a set of artifacts, which are gradually refined using the information at hand. They serve

as a baseline for the workflow and provide stable and visible data for everyone it con-

cerns. Open source projects have similar needs to make information transparent and

available for a large group of persons. Although their documents tend to be less for-

mal, they too provide a reliable common knowledge base for stakeholders and are used

extensively to synchronize and coordinate development efforts.

Figure 3.11: Classification of Knowledge

Cooperation

Cooperation affects all parts of development, dealing with how people collaborate and

what is done from a management perspective to help coordinate effective teamwork. A

prominent characteristic of agile development is the close collaboration of a small team

in a co-located environment, using face-to-face communication to increase efficiency.

Practices like XP’s pair programming, the Daily Scrum and shared ownership over a

single code base all further these means. Defined processes, on the other hand, pursue

division of labor to parallelize activities in an efficient way. Code is owned by indi-

viduals, and specialized teams are responsible for each part of the development. The

distributed nature of open source projects presents an environment which is different

from both and has originated its own mechanisms. It uses extensive communication,

aided by technology and a pronounced sense of shared identity, to coordinate a large

group of relative strangers and establishes trust to work on common goals.

Figure 3.12: Classification of Cooperation

54

Tools

Tool support is an auxiliary factor with influence on all stages of development, and

the use of technology can profoundly alter project flow and communications. Agile

development is designed for speed and efficiency at close quarters, and while it uti-

lizes tools for automation purposes, it prefers “low-tech/high-touch” [19] techniques

like story cards on post-its and whiteboard diagrams to visualize and organize project

flow. The processes used in structured approaches, however, use a full spectrum of tools

to support development in a synchronized and accountable way. The RUP as a whole

can be seen and is delivered as a software product providing tools for all its disciplines.

Open source projects, due to their highly distributed character, also rely heavily on

technology for communication and structure, and utilize a wide and diversified palette

of tools in similar ways to synchronize and aid the effort of their developers throughout

their lifecycle.

Figure 3.13: Classification of Tools

Release

Release management controls the flow of development, defining how often new versions

of the software reach the users and how the project’s lifecycle is structured. Agile

development methods encourage that a runnable version is created early, and that new

releases follow frequently thereafter, with XP aiming for daily deployment to minimize

differences between the versions used by developers and customers. Defined processes

allow more time between releases and usually do not deploy until the project has reached

a beta-stage with almost full functionality. From there it is improved through bugfixes

and performance-tuning until it gets accepted by the customer as a final version. Current

development versions of open source software can typically be downloaded and can be

run at any given time. In addition, though, those projects often follow some kind of a

release process to create stable versions for general use.

55

Figure 3.14: Classification of Release

Maintenance

Maintenance is the ongoing attendance of a system in use, providing a way to interact

with users to supply them with information and support. It allows fixing problems

surfacing in the running software. Agile methods know no clear demarcation between

maintenance and development, as they directly involve customers in the project from the

start. Problems with operating the program are faced whenever they arise. In defined

processes maintenance is a separated discipline with clear specifications, mainly carried

out during the phases of beta testing and thereafter and ended by achieving acceptance

with the customer. Open source projects utilize user feedback as its driving force and

exist in a constant state of maintenance, where every user is a potential beta tester to

improve system functions and spot its weaknesses. User support is either achieved by

peers helping in forums or outsourced as professional paid training.

Figure 3.15: Classification of Maintenance

56

3.5.3 Results

Based on process descriptions, research on open source projects and the defining charac-

teristics of their shared environment, the theoretical comparison has brought out varied

results. Figure 3.16 provides an overview of the reviewed elements and their classifi-

cation. It shows an even and widespread distribution of tendencies, which confirms the

previous assumption that open source shares similarities with the compared approaches

in some aspects, while differing from both in other areas. However, these results are

preliminary and will be refined and updated with the information gained from modern

projects through the means of a case study, which is described in detail in the following

chapter.

Figure 3.16: Overview of Classification Results

57

CHAPTER 4
Case Study

“Many people think that open source projects are sort of chaotic and anar-

chistic. They think that developers randomly throw code at the code base

and see what sticks.” - Winifred Mitchell Baker

The second half of the previous chapter provided a general overview of the elements

typically found in open source development, based on the available literature, popular

early projects, and the natural constraints and possibilities of the open source environ-

ment. Within the case study, which was carried out in the course of this research, this

data was complemented with updated knowledge gained from several contemporary

cases.

What the case study is trying to achieve, and how it addresses its goals, is the main

focus of the methodology which constitutes the beginning of this chapter. The next

section describes the criteria for process selection and gives a report of how the three

projects of the case study were selected. Each of these projects is then addressed in

detail in the main part of the case study, which includes an overview of the projects in

general, a report of the specifics of the case study approach, and a thorough examination

of the development process as attained by developer interviews and the study of the

project documentation.

59

4.1 Methodology

4.1.1 Aims

Before the case study and its methodology are described in detail, it will first be estab-

lished what exactly the research aims to achieve. There are a number of different aspects

in which the review of secondary data is insufficient to answer the research questions, or

in which further conclusions can be drawn from direct contact with open source devel-

opers. In general this case study serves as a reality check. It looks at complete instances

of the process as it is found in the examined projects and helps forming a well-rounded

picture of the organizational culture of open source environments.

Actuality
Open source development, like most sectors of information technology, is a fast

moving and ever-changing environment. This leads to a noticeable gap between

secondary data from published literature and the reality of development in action.

In particular, the available literature hints at several trends and changes in the

process. One of the aims of the case study is to pick up these trends and to observe

if they can be found in modern examples, and how they have influenced the nature

of open source projects in general. The data gained from the case study then

presents an updated view of the development process that takes modern structures

and practices into consideration and shows a snapshot of present-day open source

development.

Variation
A large part of the research that contributed to initially formalizing the open

source process was based on a small sample of very specific projects. While early

and popular agents of free software like Linux and Apache have played a crucial

role in the rise of open source, the methods used in their creation may not, at least

in some aspects, be representative for the majority of contemporary projects. The

relevant question in this case is, however, not only how the process changed over

time, but also how and in which parts of the development these modern projects

differ from each other. The case study aims to explore where variations can be

60

found, and which practices exist in a common form even under diverging condi-

tions. It also tries to find out how much the development process depends on the

type of the project and its environment.

Details and Dependencies
The general process descriptions, which constitute the foundation for the theoret-

ical analysis in the previous chapter, cover different aspects of development to a

varying degree. To be able to reliably categorize open source development pro-

cesses and to compare them with those of the different proprietary approaches, a

closer examination of several parts of the process and structure is necessary. It

is not enough, however, to look at those process elements in isolation. As it is

likely that the different tasks of development are dependent on each other as well

as on the environment they are employed in, it is important to view the projects as

integrated systems and to focus on how the elements of their processes interact.

Motive and Perspective
An important goal of the case study is to collect inside information, based on first-

hand experience and showing the perspective of those developing the projects.

Additional insights concerning the background and motives for the process design

can be gained by supplementing the theoretical data with direct input obtained

from committed members of open source communities. Also, by determining

the influence of the project’s culture on the chosen process models and practices,

these choices can be rationalized more clearly. Personal assessment by experts

in the field can therefore contribute to a well-balanced view on the open source

process and is decidedly one of the specific aims of the case study.

Relevance and Practical Realization
Theory is often based on ideal cases and matters of principle. Observing projects

in action and leading conversations with those most invested in them can shed

light on those circumstances where the workflows in practice differ from the ones

propagated by abstract definitions of processes. This is especially important and

becomes a matter of investigation when the constraints of reality alter the execu-

tion of the process permanently, leading to deliberate changes and special tailor-

ing. One final purpose of the case study is therefore to examine the influence of

61

practical project characteristics and execution on the adaptation of processes, and

how relevant those remain to be in everyday development.

4.1.2 Case Study Instruments

In order to gain a thorough and well-rounded perspective of the projects and the pro-

cesses they employ, the case study utilizes a two-sided approach, which combines the

study of available project documentation with interviews led with knowledgeable in-

siders working on the projects. How those two methods are planned and carried out is

the focus of this section, while the reasons behind the choice for this particular setup in

favor of possible alternatives are explained thereafter in a short chapter describing the

case study rationale.

Project Documentation

Two of the characteristics of many open source projects are a tendency to provide elab-

orate documentation and a desire for transparent and open processes. Where these prin-

ciples are combined and applied diligently, this documentation presents a rich source of

information about many aspects that are relevant for answering the research questions

at hand. The background knowledge that is gained through the study of the process as

it is described on the projects’ websites can on its own provide sufficient material to

understand parts of the way development works in the project, while it simultaneously

serves as a sound foundation for interviewing the developers. In the latter function the

precursory research supports the subsequent interviews both in the preparation phase

and in the analysis of the results.

Although it would have been possible to compile uniform questions for all case study

objects by basing them solely on the general knowledge of process models and the open

source environment, tailoring the interviews around the internal process records found

in the projects’ documentation resulted in several advantages, which are further detailed

in the chapter on the method’s rationale. Because not every project provides process

information at the required level of thoroughness, the availability of detailed and up-to-

date descriptions of the project’s development methods has been chosen as a criterion

62

for project selection in the present case study. In most cases, however, a larger body of

written knowledge comes with the cost of an increasingly complex documentation struc-

ture, along with a concurrent increase of information not or only marginally relevant to

the research topics. Therefore the bulk of possibly relevant process documentation had

to be sighted, filtered and processed before the interviews were conducted.

Qualitative Interviews

Although examining the project documentation was an important part of the case study,

the main source of information were the interviews with developers. To ensure that

their results would be of high quality, they had to be carefully planned and carried out.

The interviewing process was influenced by the approach utilized by Herbert and Irene

Rubin in [47], who included responsive elements into their qualitative research in order

to be able to adapt the interviews to fit specific fields of application and to react to the

answers of interview partners. Following these considerations, the method was designed

to incorporate the following attributes:

Qualitative
The first and most important step in planning the case study was the decision

to base the collection of primary data on qualitative interviews. These were tar-

geted at committed developers and major contributors of open source projects,

and were designed with the intention to provide a conclusive inside view into

the process, and to shed light onto the practices employed and how those prac-

tices interact with each other. Personal experience and expertise of the interview

partners helped in the understanding of complex correlations and peculiarities of

the process, and their familiarity with the specific culture facilitated putting those

process elements into the right perspective.

In-Depth
In the matter of balancing the case study’s scope and width it was decided to ex-

amine each targeted project comprehensively and in depth. Although this entailed

a long and detailed preparation phase, it was deemed important to do so in order to

thoroughly understand the process of open source development, and especially to

63

grasp the way this process is deployed in modern real-world applications. How-

ever, this meant that a trade-off had to be made by limiting the size of the sample

in order to stay within the time-constraints of the study. While this imposes some

limitations on the universality of results (cf. Rationale & Limitations), a thorough

and well-balanced insight into the researched projects is crucial for the purpose

of the study and outweighs these limitations.

Semistructured
An important point of consideration concerns the structure of the interviews,

specifically how detailed it is planned upfront, how flexible it is and how it is

used to help focus the conversation on the research questions. In this case study

a semistructured approach has been chosen, in which guidelines for the questions

and the topics they cover exist, but no specific wording or sequence is prescribed.

The researcher used a checklist of topics and corresponding potential questions,

which was based on the process areas mapped out by the previous chapter and

incorporated specific adaptations to fit the particular projects. Several broad ex-

ploratory main-questions were devised, which were complemented by more spe-

cific follow-up questions to fill the gaps.

Responsive
Another measure that was undertaken to get the most out of each interview was to

follow a responsive approach. Entailed by this style of questioning is an ongoing

adaptation of follow-up questions to previous answers of the conversational part-

ner, with the goal of covering the proposed set of topics in a targeted and efficient

way. This method works well in combination with the semistructured format de-

scribed earlier, and is further assisted by providing the interviewee with an outline

of topics in advance. The responsive character of the case study was somewhat

limited though, as only a single session was held with each interview partner and

the time frame for each of the conversations was limited.

Remote
As most established open source development communities are distributed glob-

ally and the Internet is their primary means of interaction, it came naturally to use

internet-based forms of communication for the interviews. Although this method

64

has some drawbacks compared with face-to-face conversation, it meant that the

search for potential candidates was not confined on a specific regional area, but

could build on a global pool of contributors. It was left to the choice of the inter-

view partners if they preferred a spoken conversation or a written format like chat

or email.

Realization

After the preparation phase and in addition to making the mentioned design decisions,

several practical steps had to be taken in order to actually realize the case study. In a first

step, a list of potential candidate projects had to be made and narrowed down, a process

which is further described in the section on Process Selection. The developers of those

projects which met the required criteria were then contacted in a standardized email,

asking for their participation in the case study. Furthermore the email both provided

details about the study and its research topics and informed about the format and prac-

tical procedures of the interview. In those instances in which the initial contact elicited

feedback, an appointment was made and the interview was carried out. A recording was

made with the compliance of the interviewee to facilitate the following analysis and

ensure a faithful account of their position.

Analysis

A first preparatory step in analyzing the results was to transcribe the recorded conver-

sations, and compile and sort the parts of the email-based interview into a more easily

readable form. These written records can be found in the appendices A, B and C of the

thesis. For the purpose of the research they were then analyzed and coded using the pro-

cess categories established in Chapter 3.5. Wherever the data provided by the interview

lacked detail or needed clarification, the project documentation was consulted for addi-

tional information. This resulted in a structured collection of data for each project of the

case study, which was then included in the thesis in two ways. Examined separately, the

data of each case was used to describe the development process of the particular project

to form the process reports at the end of this chapter. Compared by process element,

65

and incorporating the theoretical data of the two previous chapters, the data constituted

the foundation for answering the research questions in Chapter 5.

4.1.3 Rationale & Limitations

The following section explains why the present approach has been chosen, and it justi-

fies the choice by giving reasons why, for the particular field of study and the present

aims, it is more useful than alternative methods. To present a balanced view and give

ideas for future research, it furthermore describes the limitations of the case study in its

current form and execution.

The consideration that carried the most weight was the decision to use qualitative

interviews as the main element of the case study. It would have been possible, instead,

to base the research solely on quantitative data, extracted from one or more of several

possible sources. In the meta study conducted by Crowston in [18], more than half

of the studies in the sample were “based on archival data retrieved from development

repositories.” Another alternative would have been to send out surveys to the projects

with standardized questions about the process. Those and similar approaches share

the advantage of providing numerical and comparable data, and using them facilitates

collecting and analyzing a large sample more efficiently. Nevertheless these alternative

methods were finally rejected, because the type of information gained by applying those

methods would have been insufficient for the research topics at hand.

The aims of the case study required a thorough view on the sample projects in order

to understand their development processes well enough to compare them with other

process models. In order to obtain this view it was necessary to gain insight into culture,

background and conventions of the examined open source communities. To achieve this

it was decided to go directly to the source and conduct interviews with people who are

committed in the development of these open source projects. Furthermore, dedicated

insiders would give depth to the process data by providing examples from their personal

experience, expert assessments and information about the development of the project

over time.

Using available project documentation as a foundation for these interviews followed

66

from several considerations. First, it helped phrasing specific questions to be able to

proceed beyond discussing common knowledge in the limited time frame of the inter-

views. Also, in the subsequent analysis of the conversations the additional information

could be used to prevent misunderstandings, to put the given answers into broader per-

spective and limit personal bias. Some parts of the processes could be reconstructed

almost entirely from available documents, mailing list archives and blog entries, leav-

ing more time and space to focus on those aspects that were less documented or more

complex.

Along similar lines of reasoning followed the decision to cover the observed projects

in depth, forgoing a larger number of participants in favor of detailed analysis of each

item of the sample. Spending less time on preparation or analysis, or limiting the inter-

views to a narrower scope would have compromised the quality and explanatory power

of the results, even when considering a larger sample as a balancing factor. Separately

examining several elements of the process increased the complexity of the research, but

allowed deeper insights into the development lifecycle.

The in-depth analysis and the focus on a smaller sample led to one of the more

obvious limitations of the case study. It does not lie within the possibilities or the in-

tentions of the research to deliver a representative view of how all open source projects

are developed nor does it provide a numerical comparison of how common and how

pervasive certain development practices are in the overall ecosystem of different ap-

proaches. It rather showcases possible scenarios of how the process can be employed

and successfully be in effect in a selection of model projects. Within these constraints,

however, the study was designed to give insight into a range of environments showing

varying solutions depending on the type of the software and the culture established by

the communities. While leading to first-hand information and insights from domain ex-

perts, basing the research on developer interviews also put limitations on the method.

Data gained in individual conversations is naturally influenced by the personal position,

knowledge, interests and opinion of the interview partner. This had to be considered

while setting the study up and carrying it out. Therefore the information obtained in

interviews was backed up with additional sources wherever they were available.

67

4.2 Project Selection

4.2.1 Overview

Before the interviews could be carried out, suitable candidates for participating in the

case study had to be found. Starting from a comprehensive list of projects, a number of

criteria have been applied to limit the list to the most promising cases. An invitation to

take part in the research has then been extended to the developer communities of those

projects. The following section focuses more closely on several points of the selection

setup and execution. It starts by giving a description of the criteria which have been

applied to find suitable projects, followed by a report of the actual selection process,

and ends with a short overview and factual comparison of those projects which finally

constituted the participating set of the case study.

4.2.2 Criteria

Project Information
For several reasons it was important to restrict the case study to projects with well-

developed documentation and sufficient information about the project in general,

as well as with some specific data describing its development process. Most of

these reasons are laid out already in the methodology and are directly concerned

with supporting the interviews with complementary knowledge. In addition, the

coverage and state of the project website was used as an indicator for the overall

maturity and transparency of the process. Although basic information and user

documentation were present in most cases, the availability of comprehensive and

well-organized data aimed at developers was used as a meaningful selection cri-

terion.

Possibility for Participation
Another detail that was specifically looked for on the websites of prospective

cases was instructive information about how to contribute to the projects’ devel-

opment. An area which presents various ways of contribution and is easily ac-

cessible to newcomers to the project was considered a necessary requirement for

68

inclusion in the case study. This was justified by the consideration that the pos-

sibility to participate in the process is a major indication of the project not only

being open source in a purely technical, legal sense, but that it was developed by

an open community using an inclusive process, which in turn was required for

staying inside the scope of the research. It is important to emphasize this point,

as roughly one half of surveyed projects did not present this information in a suf-

ficient way.

Active Development
In addition to examining the static information displayed on the project’s website

the selection process also entailed looking for signs of active, ongoing develop-

ment of the project. Points that were taken into consideration when determining

the status and progression of code development included the patch-history, up-

dates in the repository and, if present, roadmaps for future releases. Measuring

the activity in the project’s mailing lists and public forums was used as an indi-

cation of general activity of the community, as was the existence and actuality

of developer blogs and newsfeeds. A further selection factor was ensuring that

the project was well-established and has reached a certain degree of maturity, as

indicated by the release history, project age and available information about the

project’s past and present development.

Size and Popularity
Determining size and popularity of an open source project is no trivial task, as

both depend on a multitude of different factors that are often hard to establish

and can be largely independent of each other. Using available information on

the official websites and on ohloh.net [55], which features detailed statistics of

many open source projects, rough estimates about the size of the communities

and the length and complexity of the code itself were made. Many projects were

found to be based mainly on the work and dedication of individuals and very

small teams, and were excluded for their obvious lack of necessary cooperation

and governance. On the other hand, highly popular and much-researched projects,

like the many distributions and derivatives of Linux, were also excluded from the

sample, since information about their development already builds the foundation

of the theoretical knowledge of open source processes.

69

Diversity
The criteria which were listed so far only consider the characteristics of individual

projects. It was, however, also an issue how the chosen projects would relate to

each other in various aspects. While all participants in the case study would have

to fulfill the given criteria, they should also show a certain degree of variation

in terms of structure, business model, product type and size. Contrary to the

other criteria, which could be used to filter the list of projects before attempting to

contact them, the criterion of diversity depended on the state of the case study, and

had to be taken into consideration throughout the process to adjust the search in

order to look for projects that would complement the research in the best possible

way.

4.2.3 Selection Process

An online list found on the website of the magazine t3n [67] formed the starting point

for the selection process. Being comprised of roughly 350 popular open source projects

and giving basic information and links, the list provided an adequate basis for further

selection. Since the purpose of this initial screening was to find a small number of fitting

projects for the qualitative case study, it was of no particular concern if the starting list

was complete, or if its selection was representative. By visiting the websites of the

listed projects and applying the criteria laid out in the above description, the number of

prospective projects was reduced to a sample of approximately 60 cases. In a subsequent

step, the online statistics of the remaining projects (as found on ohloh.net) were used to

select a smaller subset of 15 entries by comparing the available information on commits

and project size over time.

After projects with the necessary characteristics had been selected, they were con-

tacted one at a time per email, on appropriate channels like the developer mailing lists.

Based on the needs for diversity, the list of potential projects was meanwhile gradually

adjusted in terms of number and order of candidates. Emails were written to about ten

projects, until enough project developers agreed to participate in the research. This led

to the final selection of the three projects constituting the case study.

70

4.2.4 Project Outline and Comparison

The case study is comprised of the projects Django, Drupal and XWiki. They are each

described in further detail in the following sections, along with a report of the approach

used for the respective interviews, and an aggregation of the facts gained about the de-

velopment processes applied in the projects. Some basic facts about the projects are

collected in the factsheet in figure 4.1. All three fulfill the established criteria. On their

websites they provide ample information and developer documentation, and describe

different ways to join the development as a contributor. Also, they are actively devel-

oped and have lively communities and regular patches. In order to compare the size of

the projects, several factors were taken into consideration, such as lines of code in re-

spect to programming language, number of core developers and contributors, user base

and the traffic on their preferred online communication channels. Still, this provides

only rough estimates which place Django and XWiki quite similarly as medium-sized

projects, and Drupal in a larger category, mainly due to its massive collection of user-

contributed modules and the people maintaining them. Although they are similar in

many aspects, the projects show significant differences in their social structures and

design decisions, as will be demonstrated in the following process descriptions.

Figure 4.1: Comparative Factsheet

71

4.3 Django

4.3.1 Project Overview

Django is an open source web-framework, which is based on Python and facilitates

the development of dynamic Internet applications. It originated as an in-house project

at the “Lawrence Journal-World”, a local newspaper company situated in Kansas. As

the programmers describe their situation in [22] and [27], working in this “fast-paced

newsroom” environment required the construction of new web-projects under a tight

schedule and “extreme deadlines”. To manage the workload and automate the pro-

duction in an efficient way, developers Adrian Holovaty and Simon Willison started

developing reusable components for their projects, switching from PHP to Python in

2003. Over time they created a framework and used it to power most of the company’s

web-applications. Together with Jacob Kaplan-Moss, who had joined the development

team, Holovaty then decided to release their work as Django, opening the source code

to the public under a BSD license in the summer of 2005.

Following the publication of the code, the project grew in popularity and managed

to attract a large circle of users and contributors, gradually increasing in size and matur-

ing to a versatile product. Holovaty and Kaplan-Moss stayed on the project, guiding its

progress as Benevolent Dictators For Life, but the development effort spread to a larger

team of volunteers, and is now centered around a core team of twenty to thirty develop-

ers with committing rights. The target audience consists mainly of web-developers with

a background in programming with Python, leading to a significant overlap between

users and contributors. Since 2008 Django is maintained by the Django Software Foun-

dation, a non-profit organization set up to promote the project and support it financially

and legally.

The framework consists primarily of a collection of libraries that provide the func-

tionality to rapidly develop web-applications in Python. Although the terminology in

the project is different, Django roughly follows an MVC (Model-View-Controller) ar-

chitectural pattern, splitting development into models, templates and views, with loose

coupling between those parts. The stack furthermore features a database wrapper, pro-

viding object-relational mapping and a basic CRUD-interface, as well as a URL dis-

72

patcher and an optional self-generating administration interface with automated vali-

dation. Other characteristics include internationalization assistance, a caching system

and authentication support. At the time of writing the project is in version 1.4, with

a new minor version being released roughly every nine months. Besides powering the

websites of many major and minor newspapers, Django is used in a wide variety of

web-applications, ranging from websites at NASA to high-profile startups like Pinterest

and Instagram.

4.3.2 Case Study Approach

The conversation about the development process of Django was the first interview in

the case study. It was led in the form of a Skype call, lasted about 35 minutes, and is

available as a transcript in appendix of the thesis. The interview partner was Dr. Russell

Keith-Magee, an Australian developer who has been in the core development team of

Django for the last six years. He maintained the release process for the project’s 1.2 and

1.3 release cycles, was involved both in several internal refactorings and the creation of

the test system, and is also the President of the Django Software Foundation. During the

conversation, the interviewee provided a detailed overview of the development process

and the structures behind it, elaborating his account with examples and personal assess-

ments. The researcher acted mainly as an impulse-giver to ensure an equal coverage of

the relevant topics.

4.3.3 Process Description

The development of Django is structured in several release cycles of different scale.

Major Releases bring ground-shaking changes but happen very rarely, So far only one

Major Version (Version 1) has been released. About every nine months, a new Minor

Version is scheduled to bring new features and major improvements to existing ones.

The time frame between Minor Releases is roughly split into three phases. In the first

phase proposals for new features are accepted and decisions are made on which of those

features to include in the release. The second phase is dedicated to the development,

and the last is reserved for necessary bugfixes. Between every two Minor Releases

73

one or more Micro Releases can be carried out to repair important bugs or fix security

issues. There is a strong concern for backwards compatibility, so code is designed to

keep working between new releases, and if a feature is flagged for deprecation, it is still

supported for two full Minor Release cycles, giving users 18 months to move to newer

functions. Because the framework exists as a library of different components, there

is an inherent modularity in the architecture, facilitating the overhaul or replacement

of single features and, when following the deprecation process, the transition to new

solutions. According to Keith-Magee there have been some major reworks in the early

stages of development, but the core architecture has been “almost completely stable” in

the last four years. This ongoing stability is seen as a source of the popularity Django

has earned among large organizations.

Bugfixes are not only implemented in the latest version, but also backported to the

previous release. In addition, important security patches are retrofitted to the previous

two versions. This leads to the existence of three concurrently active branches in the

main repository, although the majority of the development effort effectively happens in

the trunk, where the most recent version is located. Further branches exist for large, offi-

cially mandated projects like the contributions made for the Google Summer of Code, in

which Django regularly participates. Generally, though, branched development plays a

secondary role, as most other features tend to be developed outside the official branches

of the project and are later handed in as patches, once they have been advanced suffi-

ciently. Anyone can develop a patch and propose its inclusion in the main project. In

order to be accepted, however, it has to fulfill several criteria. Notable among these

criteria is that the code has to be sufficiently documented, and all significant areas have

to covered by tests.

Testing plays a major role in the project, and according to Russell Keith-Magee

the framework was very heavily tested from the start. One important aspect of the

testing process is the reliance on automatic tests. At the time of the interview the test

suite had about 4,500 tests on different levels, including unit-tests, view-level tests,

integration-level tests and browser-tests. These tests are run against actual databases,

and the duration of executing the tests depends heavily on the type of the database.

Before any code is accepted into the main repository, it has to be reviewed by at least

one additional developer, and more reviewers are required for larger or more complex

74

features. Because only core developers have the necessary rights to check-in changes,

they are considered to be “the last line of review” and are responsible for getting the

problem fixed if the new code breaks the system or causes tests in the test-suite to fail.

The intended purpose of these measures is to keep the trunk essentially stable at all

times. Although it is usually not recommended, checking out the most recent build of

the code should work at any given time. The commit process in general is elaborate,

but informal and depends on the judgment of the developers, especially that of the core

committers.

Different tools are used throughout the process to automate workflows, to facili-

tate the communication between the people involved in the project and to allow the

coordination of their efforts. Mailing lists and an IRC-channel are used to exchange

knowledge, discuss multiple approaches and to socialize. A central hub of cooperation

is trac, which is used as an issue- and bugtracker. The development team compares

the use of the bug tracking system to a “community garden”, where every developer is

allowed to create and modify tickets and can do their part in assessing and processing

issues. People work together to identify priorities and try to agree on the best course

of action. Discussions of a larger scale are moved to the mailing lists in order to find a

consensus. For their written code to be included into the project, contributors have to

convince the other developers, especially the core team, of its significance to the project

as well as of the fact that their chosen approach works best. No individual or group

in the project has the power to force others to implement a feature, which means that

developers have to either implement their ideas on their own or need to try convincing

others in the community of the importance of the feature and the benefits resulting in its

implementation.

As personal initiative and dedication are main factors for earning responsibility, the

project is based on a mostly informal role system. Some formal roles with specific func-

tions do, however, exist in the project, like the Release Manager, who is officially tasked

with the necessary steps to cut a new release, and the BDFLs, who are the founders of

the project and whose opinion on the course of the project has special weight in the com-

munity. This fact is represented and formalized by, among other things, special decision

rights and the final say in conflicts of opinion. A major distinction that has some far-

reaching implications is typified by the degree to which developers have write-access to

75

the main repository. There are a number of domain experts who have full access to their

special area of expertise but no additional political rights or responsibilities. Members

of the core team on the other hand, who have committing-rights throughout the whole

project, are responsible for the code that is checked in, and have voting rights that influ-

ence the project flow. New committers are therefore selected carefully by existing core

developers to represent the ideals and “design ethics” of the project, which is one of

the reasons why the core team stayed relatively small, with about a dozen or less active

committers at any given time. Having code internals shared by too few developers can

pose a threat to the development of the project though, as those individuals could leave

the project or become inactive. Further potential risks include fundamental security

problems or the concurrent departure of several important decision makers. The fact

that the project does not have a formal disaster recovery plan was explained by Russell

Keith-Magee in his interview. He emphasized the resilience Django, and open source

software in general, have against catastrophes:

“If the worst happened - if every single member of the core team got hit by a

bus, and the Django website went down, and all the worst things that could

possibly happen to the code happened to the code - you would still have the

code. And it would be sitting in thousands of repositories around the world,

and someone would be able to find a way to get the most recent revision up

somewhere, and I’m sure there would be enough of the community around

to start developing the next round of patches, the next round of updates, and

so on.”

The above quote also provides some indication of how knowledge is shared in the

project and in which form it presents itself. In essence, there are two sources from which

detailed information about how the code works can be gained; one is the direct contact

with the community, the other one is the code itself and its surrounding documentation.

By constantly communicating via transparent and public channels, information is spread

among many members of the community. According to the interviewee it would, how-

ever, also be possible to reconstruct the essentials of the project from written sources

alone, due to extensive documentation and good readability of the Python code.

76

Because of the voluntary character of most contributions to the project it is not pos-

sible for anyone to give orders to others, which causes what Russell Keith-Magee calls

“perhaps the biggest culture shift” compared to other forms of developing software.

One implication of this is that there are no detailed plans for the long-term development

of Django, instead it is guided by a general idea of where the project should be head-

ing. This idea is defined by commonly established rules and a culture shared by the

developers. Whenever decisions have to be made, it is usually first attempted to find a

consensus by informally discussing a respective issue in the community. In some cases,

or if no agreement can be found, the core committers cast a vote using Apache style

voting rules. Should this indicate dissent among the core team members, it is up to the

BDFLs to intervene and make a final decision. Legal representation, fundraising and

promotion of the project are in the hands of the Django Software Foundation. Budgets

and monetary issues, however, are of little significance to volunteer-driven development,

therefore the DSF’s concerns are widely separated from the development process itself.

The interviewee pointed out that it is an important requirement for the management of

open source projects to keep its developers happy and interested in the tasks at hand.

4.4 Drupal

4.4.1 Project Overview

Drupal is an open source content management system (CMS) and a platform to create

dynamic websites. It features a large collection of prebuilt components and provides

tools to create custom solutions. In the beginning, however, it started as a small project

among students, who created a simple message board and news site to communicate

with each other in their dorms. The founder of the project, Dries Buytaert, kept the

site up after his graduation and opened it to the Internet. There it attracted a larger

group of people, who used the platform for discussing their ideas concerning new web-

technologies. The community began implementing these ideas, using the project as

an “experimentation environment”. In 2001 the software that backed the website was

released under a GNU license and also adopted its final name, Drupal.

77

This publication led to further growth and diversification of both code and commu-

nity, which resulted in an organizational split between Drupal Core, the central com-

ponent that provides basic functionality, and a large universe of custom modules. The

core is developed under the supervision of a small team of committers surrounding Buy-

taert, who keeps on leading the development of the project as its BDFL. The modules

are maintained by members of the community, and although those modules share the

main project’s infrastructure, they are autonomous in several aspects and can be added

to an installation of the system individually or in pre-made distributions. With more

than 18,000 developer-accounts and 840,000 signed-up users (as listed on the project

homepage [12]), Drupal builds on a broad and closely connected community. It is fur-

thermore backed by the Drupal Association, an educational non-profit organisation, and

a large network of profit-oriented companies providing support and additional services.

The targeted audience for the project consists of web-developers and designers with

different levels of expertise. Because of the graphical user interface, no special pro-

gramming skills are necessary for installation, administration and the creation of basic

websites. By installing Drupal Core, users get essential CMS functionality like user

administration, news aggregation and a publishing workflow, and they can use it for

discussion and commenting purposes. This function range can be extended by adding

modules from the “Contributed Space”, or by writing or changing extensions to adjust

the solution to fit specific needs, using PHP. Drupal is used for a wide variety of dif-

ferent web-projects and powers about six percent of CMS sites and two percent of all

websites worldwide, according to Buytaert in his keynote for the DrupalCon 2012 in

Denver [13]. Notable operators include ubuntu.com, entertainment nodes like mtv.co.uk

and prominent government offices, including whitehouse.gov.

4.4.2 Case Study Approach

Like the previous interview, the case study on Drupal is based on a 35-minute Skype

call with a dedicated contributor. The transcript of the conversation can be found in

appendix B. Klaus Purer, who agreed to take part in the research, works as a web-

developer for a company specializing on Drupal-based solutions, and has been an active

member in the Drupal community since 2008. In this time he helped maintaining several

78

modules, provided patches for Drupal Core, and acted as a mentor for new developers.

He has also been actively involved in the project reviewing process. Contrary to the

other interviews, the conversation was held in German, as this is the native language

of both researcher and interviewee. The intention behind this decision was to allow for

a more fluent and natural conversation. In comparison to the first interview there was

a more active involvement of the researcher, leading to a dialog-like exchange through

several phases of the interview. The conversation started with a general overview of

the process and the organizational structure of Drupal and moved further from there to

cover more specific details and examples of the development and the methods applied

in it.

4.4.3 Process Description

At the current rate of development it takes about two to three years for a new Major

Version of Drupal Core to be released. The development cycle is, at the time of writing,

about halfway between the release of Drupal 7 and that of Drupal 8, which is scheduled

to be finished in 2013. A new release starts with an initial phase of turmoil and fixing

bugs, until the current version and its API stabilize. Meanwhile, new features are devel-

oped predominantly for the future release. To allow for progress between such versions,

changes in the architecture and reworkings of existing functionality is possible. There-

fore, although it is also part of Drupal’s philosophy concerning backwards compatibility

that the users’ data is protected when updating to a new major version, the code of the

website probably requires to be readjusted. To allow for longer phases of transition,

the project also keeps providing maintenance for one previous Major Release, that way

effectively granting site owners a time frame of about six years to move their code to

a more recent version. Support is available in a variety of forms and from different

sources, and ranges from peer support in online forums over books and documenta-

tion to paid customer service and training courses provided by affiliated companies.

The large network of custom components surrounding Drupal Core is characteristic and

a result of the distinctively modular architecture of the project. These modules build

upon the core, which acts as a hub and provides common ground and scaffolding for

the components. Also, published modules are stored in a central repository. They can

79

be globally searched and can all be addressed with a shared issue tracker. They are,

however, individually maintained and differ from each other in how they are developed,

tested and released.

Contributions to either core or modules are in most cases developed locally and

then proposed to be added as patches, which are then integrated into the project once

they are sufficiently advanced. According to Klaus Purer, the modules are where most

of the innovation happens in the development. If they are of high enough quality and

serve a purpose that benefits most users, they may be considered for inclusion in the

project’s core. For many components there is ongoing discussion whether these should

be included in Drupal Core or keep on existing as optional extensions. Lately there has

been an increased promotion of using Distributions, special compilations of modules

that provide the functionality for a variety of common use cases.

Contributions to Drupal undergo various stages of testing and quality control before

they are accepted into the project. A rather recent addition to the testing process is the

automatic test suite covering the functionality of Drupal Core, which includes both unit

and integration tests. It is triggered whenever a patch is posted to the issue tracker, and

if the contribution causes the tests to fail, it automatically sets the issue to an according

status. Before being added to the core, every piece of code also has to be manually

tested and reviewed. Only if the community approves of a patch it is considered to

be ready for inclusion. In the modules, the rigidity of the testing process varies and

depends on the individual maintainers’ judgment, but tends to be more lenient to allow

for a more rapid development of new functionality. The degree to which automatic

testing is implemented also varies, but the larger modules are reported to be generally

well-covered.

A major channel of communication and a source of cooperation in the community

is the issue-queue in the bug tracker. It allows for posting ideas for new features as well

as discussing existing ones. By setting the status of an issue and commenting on its

progress, developers try to find an agreement over the progress of a component and its

corresponding patches, as well as in which area there is need for improvement. Gen-

erally it can be said that a working community with closely connected developers is a

highly held ideal in Drupal, and the project features an array of events and mechanisms

for facilitating cooperation and integrating new people into the community. These in-

80

clude an IRC-channel with weekly Core Office Hours, participation in the Google Sum-

mer of Code, and several possibilities for real-world meet-ups between developers in the

form of regular talks, workshops and the major convention DrupalCon, which is held

twice a year. While these occasions strengthen the team spirit and help spreading knowl-

edge, most of the everyday business happens on the Internet and is assisted by tools like

the issue tracker, the chat system and the discussion capabilities provided by Drupal

itself. Tool support is therefore especially important for communication purposes, in

addition to test automation and version control of the code.

A second source of gaining information about the project internals other than direct

contact within the community, is written documentation. According to the interviewee,

Drupal Core and most of the modules are “excessively” covered with comments in the

code, and although a collection of general and introductory documentation material can

be found on the project portal, he asserted that the comments are in most cases a better

reference than the documentation pages on drupal.org. He considered a lack of ability to

visualize architectural processes a major weakness in Drupal’s documentation system.

Also, because there are less strict rules for documentation than for coding style, the

quality of documentation varies in different parts of the system.

The governance structure of Drupal relies on a small group of people being respon-

sible for developing the core and builds on a large and flat hierarchy of contributors

who supply patches and develop and maintain modules. Dries Buytaert, as the founder

of Drupal and its Benevolent Dictator, has the right to lead core development and to

make final decisions concerning the future of the project. In supervising Drupal Core

he is supported by a small team of co-maintainers, usually not more than three people

at a time, who have committing rights throughout the core. For smaller tasks, and par-

ticularly for work in the modules, it applies that whatever someone wants to implement

and finds a way to realize it usually finds its way into the project, a concept that is often

described as Do-ocracy. Apart from a possible intervention of Dries Buytaert, Drupal

does not have formal decision making rules or mechanisms to resolve conflict. Mem-

bers of the community are expected to follow the social norms set out in the project’s

Code of Conduct, and the process relies on people discussing their issues and subse-

quently reaching consensus. Although this works in most situations, the interviewee

reported cases in which two groups could not agree on a contested topic, and the Benev-

81

olent Dictator had to solve the dispute by making a final call. Klaus Purer attributed

the difficulties of the consensus-based system to the growing size of the project and the

diversity of its community. Apart from individual developers and the inner circle of core

developers another factor contributing to the development of Drupal is the influence of

companies whose developers are paid for doing work on Drupal. However, this influ-

ence is indirect in nature, as developers still speak and act as individuals. The Drupal

Association, although it handles the project’s finances and supports it legally, has little

impact on its governance, and it does not pay for development efforts.

Long-term planning of the project, deciding which functionality should be added to

the core and how to do this has long been a soft spot in the process; the interviewee

described the situation in the first seven years of development as “very chaotic”. How-

ever, recent development cycles have brought changes to improve the predictability of

the core development, and for Drupal 8 so called Core initiatives have been installed.

These are special task forces with designated leaders that are assigned to tackle chal-

lenging, risky or promising areas of development, like implementing support for mobile

browsers of HTML5, in a preemptive and coordinated way. Concerning the perception

of software management in Drupal, Klaus Purer described what he sees as “cultural

clash”, emphasizing that although sophisticated development processes were in place in

many areas of the project, due to their pronounced hacker ethos many members of the

community would be reluctant to openly acknowledge them.

4.5 XWiki

4.5.1 Project Overview

XWiki is an open source wiki software written in Java. It is described by its developers

as a “second-generation wiki” [66], because it combines the functions of a standard wiki

with enterprise features and allows users to extend the wiki with scripts and macros

to create data-based applications. The project’s development began in 2003, when its

founder, the French developer Ludovic Dubost, created the first version and released it to

the public, originally under a GPL-license. Shortly afterwards he founded a company to

82

sustain the project and provide an organizational framework for its developers. Initially

called XPertNet, it was later renamed and restructured into XWiki SAS and is at the

time of writing fully owned by 12 of its employees. In 2006 the license of the open

source project was changed to the less restrictive LGPL in order to facilitate embedding

of code and make it easier to manage code contributions. The project showed steady

growth, and in 2007 XWiki 1.0 was released.

The software targets a wide range of customers, from individuals and non-profit or-

ganizations to commercial companies. Besides serving as a basic wiki, it is used for

collaborative authoring, as blog or simple CMS, to create mash-ups and feeds of exter-

nal sources, and for similar tasks that are too small to justify stand-alone development.

At the basis of the system is the XWiki Platform, which provides APIs and common UI

elements. Those are necessary to power the main implementation, XWiki Enterprise,

but can also be utilized in the extensions, the project’s library of contributed modules,

and in individual custom components. The project is governed by its committers, who

each have equal voting rights in discussions. Although the majority of the core commit-

ters are employed at XWiki SAS, there is a strong separation of concerns between the

company and the open source project.

Up to version 4.0, the latest Major Release, the project has accumulated a number of

features for creating wikis and wiki-based applications. In addition to authentication and

rights management, skinning and a WYSIWYG editor with inline editing, it also allows

for the inclusion of user-created data structures, based on Hibernate. Furthermore, it

has strong import and export capabilities and a form and scripting engine to extend its

functionality and serves as collaborative development environment. It is used both by

individual users and many customers in the enterprise sector, and has formed a special

partnership with the e-learning platform curriki.org.

4.5.2 Case Study Approach

Following the suggestion of one of the core committers of XWiki, a form of communi-

cation different from the one used for the other projects was chosen to gain information

about the project’s development process. It was argued that by posting and discussing

the interview questions openly on the project’s mailing list, more developers would be

83

able to take part in the conversation, and that the public could profit directly from the an-

swers. The resulting exchange can be read in its entirety in the mailing list archives [65],

and is also included in appendix , slightly edited for a more linear reading experience.

Because of the chosen approach the interview took a significantly longer time to yield re-

sults. Yet, in return it led to valuable and diverse responses from several members of the

development team. Contributions were made by Vincent Massol, Guillaume Lerouge,

Ecaterina Moraru and Sorin Burjan. The interview was split into three sets of questions,

leaving a adequate amount of time between posing each to allow for responses from the

community. To account for the format of the interview, and because the project’s doc-

umentation already laid out the basic structure of the process, the questions had to be

both more specific and phrased in greater detail. The answers given differed in length,

but were mostly to the point, included many additional links and granted insight into

different viewpoints inside the core team.

4.5.3 Process Description

The release cycle for Major Versions of XWiki lasts approximately one year, with five

or six Minor Releases scheduled in the course of this period. Before the development

on each Minor Release starts, the community decides about its content and records the

necessary tasks in the project’s roadmap. This collaborative exploration and decision

process happens on several levels. In the open source community, committers and con-

tributors start by stating what they individually would like to work on for the release.

Furthermore, there is a Roadmap Meeting at XWiki SAS, where stakeholders come to-

gether to discuss priorities and to find and assign developers as owners of issues and

features. The proposed roadmap is further discussed and refined on the mailing lists,

and committers have the chance to vote on changes concerning both content and sched-

ule. The releases themselves are timeboxed, and structured further to contain several

milestone releases and one or two release candidates, which are published before the

final version comes out and serve as a means to collect early feedback from the com-

munity. As Guillaume Lerouge stated in the interview, about 40-50 percent of the core

developers’ time is preserved for maintenance and bugfixing tasks. XWiki developers

pledge support for the latest stable version and the one under development, leading to

84

two active branches being maintained at any given time. At a community level, user

support happens in the mailing lists and the project’s IRC channel, as well as through

online documentation. The documentation is continually updated to provide informa-

tion and instructions for the most common user requests, while developers and users

try to answer specific questions individually but in public. In addition to said methods,

professional support is given by affiliated companies, mainly XWiki SAS. Their paid

services include hosting, user training, consulting and custom development.

Keeping up backward compatibility has a high priority in the project to accommo-

date the needs of enterprise users. This has led to several design decisions, one of which

being to embrace “evolution rather than revolution”, as Vincent Massol put it in the

interview, and to further the project through slow but constant changes. A major under-

taking was the gradual move from a monolithic code to a module-based system in order

to allow for easier customization and extendability. These modules can be added or

removed from a runtime, and are managed with an integrated extension manager. Dep-

recated features are moved into legacy modules, but are kept in the repository in case

they are needed anyway. From the perspective of the XWiki Platform user-contributed

extensions are handled similarly to top level projects, accessing the same APIs and ex-

tending their functionality, and all code is collectively stored and versioned in a global

GitHub repository. Whenever code gets checked in, a build is compiled by Jenkins,

which is used as the project’s continuous integration tool. Also triggered with every

commit is the execution of the test-suite, which consists of unit tests carried out in iso-

lation on mock objects, and functional tests, which in turn include UI tests and code

validations. If the build fails, the responsibility to fix it or find someone who can lies

with the Build Manager, a role for which the active committers take weekly turns. In

the end, though, all developers are responsible for the quality of their own code, and

should both manually test the patches they submit and cover them with automatic tests.

For the manual testing process the project follows a combined approach. In part it relies

on the community of users and developers to find bugs, especially those occurring in

exotic browser or database environments or during special use cases. In addition there

is a dedicated QA engineer employed at XWiki SAS, who follows a formal Manual Test

Plan and specifically screens for certain problems. In both cases, issues are reported in

the bug tracker JIRA, where they can be picked up and fixed by one of the developers.

85

As can be seen in the above description, many parts of the process, like test au-

tomation, code versioning and integration, issue tracking and decision making rely on

a set of tools to coordinate the different groups and members of the community. On-

line communication platforms play an important part, and although the developers have

meetings and discussions outside the observable channels, special emphasis is laid on

making all relevant proposals and decisions in public on the project’s mailing list. This

is a mechanism partly in place to allow external observers to follow the development and

to lower the entry barrier for joining the community. Also, a common coding style is

encouraged to enhance the readability of the code, especially with multiple persons col-

laborating on the files, and the documentation specifically tries to address the problems

encountered by many. The multiple active rules for development can, on the other hand,

make it harder for new people to join the community. Still, everyone is encouraged

to participate according to their abilities. In the open source project, the only official

differentiation of roles is between contributors and committers. The former group is

comprised of all people who participate in the project and add to its development by

submitting bug reports, patches or translations, by writing extensions, or by just pro-

viding helpful feedback in discussions. Contributors who send in enough good patches

and show a long-term dedication to the project can be voted in to join the development

as committers. Through this meritocratic process developers gain full write-access to

the source repository and the right to vote. They are also responsible for reviewing

patches, and applying them when they meet the necessary requirements. Many of the

currently active committers have also been recruited into XWiki SAS, which has a more

hierarchical structure and a diverse role system, to work on the project from a company

environment. However, the XWiki SAS title or affiliation with any other company plays

no part when participating in the open source community, where all interactions are kept

decidedly between individuals only.

The governance of XWiki lies in the hands of its committers. To make decisions,

the project follows the voting rules laid out by Apache. These votes are held whenever

important changes to the code, the process or the team have to be made. For an issue to

be successful it requires three positive votes, and the fact that no-one makes use of their

veto within 72 hours. Votes are accompanied by a discussion in the mailing lists, but

although the expertise and the past actions of the developer influence the weight of their

86

opinion, every committer has the same rights in the voting process. If no consensus can

be found, the proposal is discussed and amended until everyone agrees on the course

of action. While the current development team includes about 15 active committers,

an interviewee expressed confidence that the system would be able to scale to 50 or

more people. Although the long-term progress of the project is not planned ahead in

detail, a shared vision is in place about the general direction of its development. Every

year, before the work on a new major release starts, the team agrees on a theme and

a sub-theme for the release. Also, the project maintains several research activities to

stay up-to-date with modern technology. Ludovic Dubost stated in his blog series about

the future development of XWiki [20] that the vision of the project is defined by the

upper management, but that it is refined by discussions with its employees. Asked di-

rectly about the common ground of the process to other forms of software development,

Vincent Massol expressed his personal preference for agile methods and listed several

similarities between practices used in XWiki and Extreme Programming.

4.6 Summary of Project Findings

In order to provide a quick overview and a point of reference, the table in Figure 4.2 ag-

gregates the case study results of the three examined projects according to the categories

defined previously in the theoretical part of this thesis. It has to be noted, however, that

the illustration shows only a shortened and simplified view of the data to fit the cho-

sen format and should therefore be only considered in combination with the written

descriptions made in this chapter, which provide a more thorough representation of the

interview findings, and the detailed analysis following in Chapter 5.

87

Figure 4.2: Summary of Case Study Findings by Project and Category

88

CHAPTER 5
Analysis of Case Study Findings

“How do you eat an elephant? One bite at a time!” - Philippe Kruchten

[33]

The findings of the case study, in combination with information gained from pre-

vious chapters, form the basis for the following analysis. Its aim is to split the results

according to several criteria, re-integrate them into more broadly applicable conclusions

and finally to set them into a wider perspective.

In a first step, the process categories established in Chapter 3.5 are revisited and

updated with the newly gained primary data. The second part of the analysis looks at

the process models, which constituted the core of Chapter 2, and tries to find points of

intersection between them and the elements of open source development. With the final

section of the analysis, the research questions, which were set up in the introduction,

are assessed and responded to, reflecting the knowledge gained throughout the thesis.

89

5.1 Concepts by Process Category

5.1.1 Governance

A direct control of open source projects is very difficult, as there is no reliable way of

giving binding orders to volunteer contributors. In the social context of a project, how-

ever, developers earn influence within the community, and the core development team

does have control over the main repository. It has the ability to decide which contribu-

tions are integrated into the commonly distributed version of the software. Similar to a

democratic system, this procedure works as long as the community members put their

trust into the decisions of the group or individual holding control over the code, because

unhappy developers can fork the source code at any given time, or will simply stop

contributing. Regardless of the form of governance, a project, therefore, always needs

the acceptance of the community. Who makes decisions in the projects, and how these

decisions are formally made, differs in the inspected cases. In XWiki the committers

can cast votes on contested issues, and discuss their opinions until they find consensus.

Django has a similar system, which is, like XWiki’s, derived from the voting system in-

troduced by the Apache community, but in the case of ongoing dissent the two founders

of the project have the final say in their function as Benevolent Dictators. Drupal does

not have special voting rights for committers. If there is a conflict that blocks develop-

ment, it lies in the hands of the project’s Benevolent Dictator to settle it. In the external

modules developers have the liberty to implement what they want, if they are able to

realize it.

All examined projects also have clearly defined rules of cooperation and codes of

conduct in order to establish a productive atmosphere of communication. Although in

other projects different forms of governance are possible, they are necessarily limited to

a certain range of parameters due to the nature of open source licenses and the restric-

tions of power those entail. Management tasks and responsibilities do resemble those

found in agile development, but the open source environment presents unique challenges

and opportunities which ask for distinct forms of governance.

90

5.1.2 Planning

In each of the projects of the case study, development follows a general vision shared

by the community. Making concrete and reliable plans for the future is not possible, be-

cause a project’s progress ultimately depends on the interests and actual contributions of

its developers. There are, however, indirect means of control through which the course

of development can be influenced. In order to achieve this, the examined projects pursue

different approaches. While in Drupal everyone is free to add their own external mod-

ules, the Benevolent Dictator decides which contributions are added into the project’s

core, and thus retains control over its progress. Recent past also saw the introduction

of Core Initiatives, in which the development of certain key features is actively pursued

with a long-term plan. Django’s progression depends on the views its core committers

have of the direction of the project’s growth. New committers are carefully recruited

to reflect the general ideas of the existing community. XWiki starts every new release

with a meeting and subsequent online discussions to agree on a roadmap and a priori-

tization of tasks. On a larger timescale the team agrees on a theme and sub-themes of

development.

The nature of open source inherently makes detailed long-term planning hard to

realize. Influencing the course of development requires trust, gradual changes, and the

establishment of a shared vision within the community. Due to its constraints, planning

plays a distinct role in open source development. In order to steer the project at all, agile

ideas of management promise to be more successful than those of traditional software

engineering.

5.1.3 Requirements

The examined projects employ a very similar approach in respect to their requirements.

In all cases there is no formal requirement analysis, and there are barely any restric-

tions on the projects’ scope. What gets added to the code depends primarily on what

people are willing and able to implement. Developers with committing-rights can how-

ever influence which contributions are accepted into the main project, and what will be

available in external modules or in private repositories only. The communities regularly

91

assess the priorities of tasks, and discuss which features should be included in upcoming

releases. Stakeholders outside a project have less influence on its requirements. Users

can ask for a feature to be developed and try to convince the developers of its necessity,

but unless they can implement it themselves there is no guarantee that it will be done.

Even if everyone can pay developers to implement needed functionality, in order for

the changes to be included into the main project they still have to make a case for the

usefulness of the changes to the community as a whole.

Because of the nature of open source licenses nobody can be prevented from mod-

ifying the code, as long as the rules of the specific license are being upheld. But what

is developed depends on the programmers doing the work, and what gets added to the

distributed main version depends on the committers of the community maintaining it.

While the agile approach has an ongoing discussion about scope between the project

owners and the customers, in open source projects this discussion takes place inside the

community.

5.1.4 Architecture

What the projects of the case study primarily have in common in terms of architecture

is their strong modular character. This is most obvious in Drupal, which is strictly sep-

arated into a comparatively small core, which provides basic functionality, and a large

number of optional modules. XWiki is made of several interacting parts, including a

platform for common API, XWiki Enterprise as a working implementation, and a library

of extensions which can be added and combined at will. Django is inherently modular

because of its function as a framework. In all three project the code and its architec-

ture have changed considerably over time. Django has been through major refactorings

particularly during its early years, and gradually changed since then. In XWiki changes

in the code have been continuous and cautious, but have slowly transformed the sys-

tem into its aforementioned modular structure. Although Drupal keeps its code stable

during the time frame of a major release, it encourages radical changes in its structure

with each transition to a following version. Each project has deprecation routines and

facilitates upgrading to new versions through different methods.

92

Modular architecture allows simultaneous work on different areas of the software

by many people at once and appears to be a major factor for scalability. It also makes

it easier to replace parts without compromising the integrity of the whole system. Open

source projects use various approaches to change their architecture over time while mak-

ing sure that users can reliably keep on using the software. By starting the architecture

simple, but moving it gradually toward a modular structure, different approaches are

combined.

5.1.5 Risk

The reviewed projects do not employ formal risk management as a separate process

discipline. One explanation for this is that the possible risks of open source software

are inherently different from those threatening the development of proprietary projects.

Because their code is distributed and changes are revertible, and because their develop-

ment does not directly rely on money or schedules being kept, open source projects are

not easily stopped completely as long as enough people are interested in continuing to

develop them. Nevertheless, certain events can hinder progress or have negative effects

on the community. These are discussed as soon as they can be fully anticipated, and

countermeasures are planned when necessary. Also, Drupal introduced Core Initiatives

lately to preemptively deal with important technical challenges, and XWiki keeps up

research activities to stay up to date with recent technology.

The influence of risks is mitigated by several aspects of the development process,

like rapid feedback cycles, openly available code and knowledge, and the modular ar-

chitecture. Although the specific measures and practices may vary between different

projects, the overall observations concerning risk hold for a majority of open source

projects. Open source projects face distinct risks with distinct dangers, but deal with

them in a reactive and agile way.

5.1.6 Roles

In all participating projects, special rights and responsibilities are closely tied to the

commit-access to the main repository. The role of committer has therefore an impor-

93

tant function in each of the processes. Both XWiki and Django have an elected team

of committers who, among other things, have the right to vote and the final say in ac-

cepting patches into the project. The committing rights for Drupal Core lie in the hands

of its founder, who acts as the project’s Benevolent Dictator, and a handful of different

aides for each release. Django has two Benevolent Dictators complementing the core

commit team. Additionally, the projects all define some specific roles and titles for indi-

viduals with specific representative or administrative responsibilities, like the release or

build manager, or maintainers of project parts. Although people contribute differently

according to their abilities, the projects do not distinguish formally between developers

based on their field of activity. Each community has a basis of contributors, develop-

ers who add their contributions to the project but do not fulfill specific administrative

functions in its organization.

This partition into a dedicated core team and a base of casual contributors, with

specific additional roles for administrative tasks, is commonly found in open source

projects. Although role attribution is at least as flexible as it is in agile methods, many

of the roles and their distribution and tasks represent concepts distinct in open source

development.

5.1.7 Integration

All three examined projects have a central repository, where different versions of the

source code are kept. New additions to the code are applied to a dedicated development

branch, or trunk, which should be in a working condition at all times. New builds are

created whenever the code is changed. Major new features and bugfixes are developed

locally and applied to the code base as patches, if they pass the respective project’s re-

view process. If a patch breaks the system anyway, it can be rolled back easily. Besides

the development branch, the projects maintain stable versions of the software, which are

created and released in regular intervals, and can later receive important bugfixes, but

no new features. Major features in Drupal are often implemented as a separate mod-

ule. In some cases they are integrated into the core at a later time, given that they are

stable and considered to be useful for a majority of users. A similar strategy has been

pursued lately with the extension-system of XWiki. Django has separate branches for

94

the development of some large features, but most patches are developed in user-owned

repositories before they are applied to the trunk.

In general the integration procedure appears to be facilitated by a modular architec-

ture and by encapsulating changes in the form of patches. Development branches are

likely to be updated and integrated continuously, in a way that is similar to the various

other forms of modern incremental development.

5.1.8 Costs

Although the reviewed projects differ in their organizational background, money plays a

similar role in each of their processes. This role is fundamentally different from its sig-

nificance in the creation of proprietary software. The main discerning factor is that the

actual task of developing the software does not cause costs for the open source projects

as entities. This does not mean, however, that all contributions have to come from devel-

opers working for free. Django is indeed mainly a volunteer effort, but many of Drupal’s

contributors are paid by affiliated companies, and most of the core developers of XWiki

are employed to work on the project. Because people still interact with the projects as

individuals, the source of contributions is largely irrelevant for management purposes.

Money is still needed for other issues, like legal expenses, promotion and server costs,

but these factors are not directly tied to the development of the software.

Because the budgets of the projects do not include the development efforts, they

are to a large degree independent of the development processes. Additional cost man-

agement can become necessary whenever projects are more directly involved in the

payment for development tasks. All in all, however, the role of money in open source

development is profoundly different from the one it plays in other environments.

5.1.9 Testing

The three projects of the case study each focus on the quality of the software in multiple

ways and in various parts of the process. An important step of testing is to prevent

that bugs get into the code base in the first place, by using peer review and executing

95

automatic tests before or while patches are applied. All projects have an automatic test

suite covering at least the most critical parts of the code. These tests are either written

by the person contributing the code, or added at a later time. Which type of tests the

test suites consist of depends on the nature of the code, but commonly they include at

least unit and integration tests. Before code is added to the main repository, there is

always at least one review by another developer. Django and Drupal require multiple

reviewers for complex or critical patches. In any case, the final review is made by the

member of the core team who applies the changes. Besides these measures, the projects

rely mostly on the participation of the community in finding and reporting bugs that

occur. The bug tracking systems in use provide a platform for organizing reported bugs

and the information known about them, and they document the status of efforts made

to correct them. In addition to relying on the community to find bugs, XWiki employs

a dedicated tester, sponsored by the project’s supporting company, who tests the code

manually following a formal testing plan.

It is difficult to say which parts of the quality assurance and testing process have

greater influence on the resulting quality of the code, but projects tend to pursue a broad

mixture of approaches. Apart from the heavy involvement of the users in finding and

fixing bugs, which is characteristic for this type of development, the elements of test-

ing used in open source projects are applied similarly both in agile and structured ap-

proaches.

5.1.10 Knowledge

Common to the three projects is that they feature extensive documentation of the code

and its development. General instructive knowledge about the projects can be gained

from their online documentation pages, and specific information about the code is avail-

able in the form of code comments. There is also a considerable amount of interpersonal

communication, but as these conversations are mostly held in a persistently written and

publicly observable form, they are later available as archive and become part of the

documentation and the common knowledge. In Django it is a necessary criterion for

patches to be sufficiently documented. Drupal also emphasizes the importance of docu-

mentation directly at the code level, especially in critical code areas such as the project

96

core. Although many of its core developers share an office, XWiki makes it a point to

hold all important discussions and decisions publicly in archivable mailing lists.

Knowledge in open source projects seems to be predominantly distributed in written

form, via persistent channels that are open to the public. Although it has to be noted

that the projects of the case study were partly chosen for the quality of their documen-

tation, a sighting of the market and considerations from the environment infer that these

assumptions generally hold. The management of knowledge is less formal than it is in

structured processes, and its exchange happens primarily between peers.

5.1.11 Cooperation

The projects of the case study are being developed in distributed communities, which

influences the way how developers communicate. It also means that certain methods

for coordinating people’s work are necessary. One of these methods, which is com-

mon to the examined projects, is the extended use of a bug-tracker. Not only does it

store bug reports and feature requests, it also documents the status of patches and fixes,

as well as corresponding discussion among the developers. Contributions to the code

have to go through a review-process, in which at least one other developer checks the

code’s function and quality. For larger features, many people work together to write the

code. Although individuals are sometimes responsible for maintaining certain parts of

the software, there is no code ownership for specific files, and every developer can make

changes throughout the code base. This enforces a common code-style and good docu-

mentation to enhance the readability of the source code. Public discussions in chats and

mailing lists, together with comments in the bug-tracker and the version control system,

are used to discuss best courses of action. Although these communication channels and

coordination methods are used in different degrees in the specific projects, the principles

of cooperation are very similar. To give an example, in XWiki, where many core team

members develop from a common workplace, important decisions are still made online

to include the whole community.

The principles of using public, tool-supported communication channels and collab-

orating closely both in large-scale planning and in specific feature-development hold for

97

most open source projects. Even if development happens distributed over the Internet,

cooperation resembles that of agile methods in style and underlying concepts.

5.1.12 Tools

Both the types of used tools and the functions they are employed for in the process

are quite similar among the inspected projects. Communication tools serve as a way to

enable distributed and open conversations, to build social communities, and to support

knowledge exchange. Version control systems are used to help synchronize different

versions, to integrate them into a shared repository and to allow rolling back code if

necessary. Bug and issue tracking software helps coordinating the contributions people

make to the project, and automatic test and build systems allow faster feedback cycles

and more efficient work. The projects of the case study differ in the specific software

tools used and in the degree those tools are employed to fulfill the described tasks.

A common characteristic of the technology found in open source development is that

it is mainly employed by the community in a decentralized, bottom-up way, in contrast

to, for example, the use of planning and scheduling software in the RUP. This means

that how tools are used is in essence a mix between their employment in agile and in

structured development.

5.1.13 Release

Although a working copy of the current code can be downloaded at any given time, the

development of each of the reviewed projects is structured into nested release cycles

of different length. Larger releases allow for significant changes over a long period

of time, while smaller versions released in between might only bring fixes for known

bugs or security issues. Each major release itself is more or less strictly separated into

phases. Apart from these common grounds, the specific structure and content of the

releases differ between the examined projects. Drupal Core goes through release cycles

of several years of time. Each cycle begins with a period of large-scale refactorings and

the introduction of new features and then gradually stabilizes. XWiki mainly utilizes a

shorter rhythm of time-boxed releases, which last between two and three months. Each

98

starts with the community agreeing on a roadmap, and results in a new stable release.

In Django a new major version is released roughly every nine months, and the time is

split into periods to cover feature proposal, development and fixing bugs.

Different ways of release management are conceivable, but many open source projects

seem to have long-lasting release cycles in addition to them continuously improving the

current development branch. This allows the implementation of large-scale changes

without sacrificing the continuous availability of a running version of the code. The

resulting approach combines elements from both agile and structured types of release

management.

5.1.14 Maintenance

As the reviewed projects are continuously developed and improved, they are also in a

constant state of maintenance. The input that tells the developers where improvement

is necessary and which bugs need fixing comes from the user-community. Issue tracker

software is used to store and organize this information. Bugs that pose a problem for

many users have a higher priority of being fixed right away. In addition to maintaining

the current development version, the projects provide support for one or more previous

releases, and certain patches are backported to older versions of the software. User

training happens in various ways. An important part in all observed cases is peer support

by the community, usually in persistent form (like online documentation, books, FAQs

and searchable mailing lists) to allow many people to profit from answers given once.

Affiliated companies or individual developers provide additional professional support if

needed. The projects differ in how long previous versions are supported. While Drupal

supports several older releases to allow users an extended period of time to migrate,

XWiki only guarantees community support for the latest stable version and encourages

users to update frequently.

The fact of projects being in a constant state of development and maintenance is an

important general aspect of open source software. The form and scope of support might

vary in different projects, although peer support is a key factor in most cases. As a

whole, maintenance and support in open source development builds on several concepts

that are not equally significant in either of the other approaches.

99

5.2 Process Model Comparisons

5.2.1 PMBoK

The PMBoK covers all areas of traditional project management and describes them from

a manager’s perspective. It represents a well-proven but generic approach, which does

not give special attention to the possibilities and constraints of developing software.

For most processes to function successfully, a manager using PMBoK requires a high

degree of control over the project. As far as it has been observed, however, open source

projects and communities are not and cannot be controlled in such a way. When trying

to apply the lifecycle of the process model and its phases on a larger scale, this becomes

obvious. As work on the project starts, its scope and the means of development are

not yet decided on. This takes away the foundation of both initiation and planning

process groups. Because there is no planned duration and end of development, the flow

of execution is fundamentally different, and the project is not formally closed. It is

possible in theory to apply the phases of the lifecycle to individual releases, but patterns

found in shorter iterations of observed projects differed from this structure.

Planning ahead on different levels and in detail is an essential part of PMBoK, but

was not, in this degree, seen in open source projects. Rough schedules are used to define

releases, but which activities would constitute the respective period is not decided in

advance. Incidentally, this also makes the concept of change management obsolete.

Although shared visions of the projects typically exist, the specific scope depends on

the changing interests of the community and on what developers actually choose to

implement. Teams are not systematically assembled, but form naturally from the people

who are dedicated to the project. Risks are not formally identified up front, but are

addressed as soon they become apparent. Ideas from the monitoring and controlling

process group are represented in open source projects, but the ways in which they are

implemented differ. Controlling is decentralized, and inherently has to be more subtle,

depending on interpersonal skills and persuasion. While monitoring is an important

part of open source development, it also happens in an informal way. It is done publicly

and utilizes widespread tool-support. Several areas in which the PMBoK specializes

are hardly significant for the observed type of projects. This includes cost management,

100

which is only marginally relevant for the development aspect of open source, and the

procurement of proprietary components, which is problematic for both cost- and license-

related reasons.

Overall, the many differences in form and content show that the core elements of

generic project management, as they are proposed by the PMBoK, either do not work

or are not needed in the specific environment of open source projects.

5.2.2 RUP

The Rational Unified Process provides a structured framework and adaptable guidelines

to manage the development of software. It can be tailored to match specific problem

fields and it allows different styles of development. This inherent flexibility complicates

attempts to categorize the RUP. Depending on its setup and usage, it can have elements

both of agile and of well-defined approaches. Taking this characteristic of the process

model into consideration is necessary when comparing it to the ways open source soft-

ware is developed. The phases of RUP’s lifecycle differ in a subtle, but important way

from traditional models like the PMBoK. Following an incremental project flow, the

process aims to build a working prototype early on and develops it further through sev-

eral iterations of the various phases until all requirements are met. The iterations used in

the observed open source projects cannot be easily mapped to similar phases. Lacking

predefined requirements, the projects as a whole did not progress through formal stages

of development in order to reach certain levels of acceptance. A similar concept on a

smaller scale could, however, be deduced from applying the lifecycle to shorter releases,

which are often developed through various stages of growing function and stability, with

milestones in between signaling progress.

Formal structures, static workflows and a fixed role-system, on which the process

is partially based, take no significant part in the examined projects. The dynamic pro-

cess components however, which are used to control development in an ongoing way,

show a number of similarities. One common element is the flow of iterative, timeboxed

development. Also, continuous verification and improvement of quality, which is sup-

ported by automatic testing, goes along the same line in both approaches. Building

a component-based architecture is a major concept of the RUP. Although they arrived

101

there differently, in a more gradual way, all examined open source projects have a sim-

ilar structure in place. Even though both ways of development are heavily supported

by tools, it differs how and in which areas they are applied. Features of open source

projects are presented in a way that is similar to the use-cases endorsed by the RUP, but

are less formally defined. All of this shows that the approaches often have similar ideas,

but differ in the way they are carried out. Other areas, however, show differences in

their core foundations. In contrast to the RUP, open source projects do not follow a pre-

defined specification. In the bottom line, this removes the need for change management

and analysis of requirements. Also, because those projects have different conceptions

of risk and value, these have less significance as guiding principles.

All in all, the RUP is meant to be used in another environment, and is organized quite

differently. Nevertheless, interesting parallels can be seen, especially when examining

the dynamic methods used to tame the complexities of the project flow.

5.2.3 XP

Extreme Programming gives detailed rules about how to organize work in agile soft-

ware development teams. It manages many aspects of collaboration by describing both

a general set of principles and particular routines to follow in a project. Many of its

practices are specifically designed to function in shared working spaces, which makes

a direct comparison of some of its practices difficult. The lifecycle, however, is mostly

free of such constraints. With its iterations lasting from one to several weeks, Extreme

Programming creates new releases faster than the observed open source projects are

able to. It can be argued though, that in addition to their official release cycles, all of

those projects make new and often stable versions available to their users after every

committed change. When considering individual development activities, a simple com-

mon workflow is found in both approaches. A developer chooses a task to work on,

implements it, and after it is peer reviewed, the code is integrated into the main repos-

itory. In XP, ongoing close cooperation with the customer ensures that the tasks fulfill

their requirements. In open source projects, developers are often users themselves, and

implement whatever functionality they require of the product.

102

Some of the practices included in the description of Extreme Programming are re-

lated to the general flow of the project and provide guidelines for how to build the

code. Many of the ideas entailed by these practices, whether they concern continuous

integration, incremental design, quick and frequent builds, or fast release cycles, are

reflected in a similar way in the examined open source projects. By encouraging test-

ing before writing code, XP goes a step further in the aim of automating the testing

process. Programming in pairs, sitting together and using the workspace as a means to

convey information about progress cannot be transferred literally to the distributed way

of creating open source projects. The underlying ideas, however, are present in the way

their developers use the Internet to cooperate, share information and review each other’s

work. Those practices that give advice on how to structure working time of employees

are not significant in open source environments, where work is either contributed by

volunteers or managed from outside the scope of the project.

XP is a collection of guidelines which cover only a subset of project management

areas. Also it is meant to be used in project surroundings which are quite different from

those of typical open source communities. Still, the method’s workflow and many of its

practices resemble at their core the rules which guide the examined projects, and can be

transferred to their environment with only minor adjustments.

5.2.4 Scrum

Scrum provides a particular lifecycle that can be employed to manage agile projects,

and it explains the concepts, roles and meetings that are necessary to make it work. The

method is specially tailored to fit its environment, and all of its practices are tightly in-

terwoven with the project flow it describes. A crucial difference between Scrum Sprints

and a typical lifecycle of an open source project is that the former starts from existing

specifications and is goal-oriented towards fulfilling its objectives efficiently, while the

latter is used to generally keep on improving the product. Many activities in Scrum fo-

cus around choosing, prioritizing and distributing tasks. Although feature logs exist in

a similar form in the observed open source projects, they are less binding and defining

for the overall flow than the Product and Sprint Backlogs are for a Scrum project. While

knowledge exchange and feedback in Scrum happen primarily in personal group meet-

103

ings, in open source communities this purpose is fulfilled by Internet discussions, tools

and public documents. This form of asymmetric communication allows a larger and

distributed group of people to participate in the project, but otherwise follows similar

principles. Instead of Scrum’s preference for low-tech and high-touch methods, these

communities employ technology in a decentralized and informal way. The general flow

of development shows similarities between the two approaches, like timeboxed releases,

incremental development and constant measurement of progress. However, the lifecycle

of Scrum is strictly controlled in several aspects, and requires developers to focus more

clearly on the activities they agreed to take on at the beginning of a Sprint.

The method definition of Scrum explicitly describes two distinct management roles

together with their common tasks and responsibilities. Although in open source projects

those functions are usually not assigned formally to a single person, dedicated commu-

nity members carry out tasks which are similar to those of the Scrum Master in order to

keep the project running. These include initiation, moderation and conflict management,

and enabling people to work unhindered on the project. It is possible that leaders of open

source communities create and maintain a collection of desired features and prospective

research areas, but in contrast to the backlog created by the Product Owner these have

only recommendatory character. While Scrum works best in small teams of seven to ten

people, many more people are usually involved in the creation of open source projects.

Also, larger communities often distinguish developers depending on their commitment

and involvement in the project. Apart from these obvious differences, teams in the two

approaches share many characteristics, like being cross-functional, self-organized and

being able to choose the tasks they would like to work on for themselves.

To sum up, the lifecycle of Scrum is structured to help small and agile teams ef-

ficiently reach the goals set for each iteration. While this differs from open source

development as observed in the case study, several general characteristics are shared.

Moreover, analogies can be drawn when comparing how teams are organized and how

they collaborate.

104

5.3 Assessment of Research Questions

5.3.1 Shared Aspects of Open Source Development

From both theoretical research and analysis of the market - the latter including a close

examination of the projects of the case study - it became apparent that projects in an

open source environment, even if they differ in other aspects, share a considerable part

of their ideas and methods of development. These similarities justify talking about an

open source development process. Furthermore, projects show signs of a shared cul-

ture, commonly held values and a global identity. This is noteworthy as this process

(and in a broader sense the culture) is not based on a single standard or one definite

description, but instead grew out of several different communities, ideologies and pio-

neering projects. In part these common grounds stem from sociological reasons, like

the constant networking between major project groups and the writing of various im-

portant texts which helped building this identity. But it also seems that developing in an

open source environment alone prescribes certain characteristics to its process because

of underlying shared aspects in the nature of open source projects.

The characteristics of open source development have been discussed on several oc-

casions throughout this thesis. By extracting information from the available literature,

a rough sketch of the process was built up in Chapter 3.4, which was then split into

separate project categories in 3.5 to be compared to other forms of development. These

categories were then revisited in further detail in Chapter 5.1, where the results of the

case study were used as an additional data point to provide a more thorough assessment

of the individual elements. But in addition, some general insights about the process can

be gained or reinforced from these observations:

• License schemes and voluntary contributions restrict direct control over the pro-

cess and make subtler, collaborative forms of governance necessary

• Development itself does not cause costs to the project, a fact that moves budget

management outside of the project’s central scope

• Because binding specifications cannot be defined in advance, the process is less

goal-oriented and focuses on maintaining steady progress

105

• Using the Internet as a shared workspace and employing decentralized, asymmet-

ric communication allows large, globally distributed teams to cooperate

It is not an easy task to measure the success of open source projects, as many dif-

ferent metrics exist, none of which is definitive on its own. The continuing existence of

a community, which keeps up its interest in maintaining and improving the software, is

the single most important factor for the survival of an open source project.

5.3.2 Agile Methods and Structured Processes in Open Source
Projects

The core of this research question, examining the elements of agile methods and struc-

tured processes in open source development, has been a common theme throughout this

thesis, and it has been a starting point for several detailed comparisons in this analysis

and in the previous chapters. Besides providing a short summary of the findings so far,

the primary focus of this section is to extract a number of general conclusions about the

relationship between open source development and each of the other approaches, and to

state the most important reasons for major incompatibilities.

Agile
One of the main conflicting issues when comparing open source development to

agile methods is that the two approaches are optimized to work in specific envi-

ronments, which differ from each other in a profound way. This allows various

agile practices only to be applied indirectly to open source projects, if at all. On

the other hand, many similarities can be seen in the approaches’ general culture,

problem solving strategies, and value systems. Together they share a common

style of governance and collaboration, and prefer gradual adaptation over plan-

ning ahead. Communicating over the Internet, open source communities cannot

act quite as flexible as agile teams, but are able to scale more easily.

Structured
Several main elements of structured approaches, like detailed plans at an early

106

stage of the project, and separating the project flow into formal phases and pro-

cesses, cannot normally be applied to an open source project due to inherent

characteristics of its environment. Nevertheless, process models like the RUP,

which is iterative and specifically adapted to the field of software engineering,

clearly show similarities, especially in mechanisms which are employed to keep

the project flow running over time and to tame rising complexity. Examples of

common ground are found in architectural design, release and knowledge man-

agement, and partly in the way tools are employed in the process.

Open source development handles no major part of the process in the same way as

either of the other approaches does. In many cases, though, it applies either hybrid so-

lutions with elements from both, or an independent solution, which might have tenden-

cies toward one or the other. A significant distinction, which sets open source projects

apart from both agile and structured approaches, is that they usually do not start from

specifications that should be eventually met, but instead evolve gradually, while always

depending on the interests and capabilities of the community.

5.3.3 Variable Factors and Practical Constraints

Because open source development is not based on a single authoritative theory, it is not

possible to assess projects with regards to the extent they differ from such a standard.

Instead, it always has to be observed how individual projects relate to each other. Al-

though single projects in an open source environment tend to be similar if compared to

other forms of development, differences can still be found in project execution through-

out all relevant areas of the process. On the basis of variations found in the projects of

the case study and other popular examples of open source development, variable factors

and ideas of corresponding causes can be derived:

• A system’s architecture has to reflect the size of the project, with larger projects

typically possessing some form of modular structure

107

• Projects have developed different ways of upgrading their product without de-

terring its users; forms of backward compatibility and the support of deprecated

versions differ depending on targeted user groups and product type

• Although organizational forms and decision making structures differ between

projects, they usually do so within a certain set of parameters, which are rooted in

a global culture

• Depending on the project’s business orientation, there can be different involve-

ment of affiliated companies, which can provide additional services and profes-

sional support

• In most cases different kinds of testing and a variety of communication channels

exist in a single project; however, their specific composition differs and depends

on mixed aspects of the community culture

• In order to keep up with current external events and developments, different types

of research activities can be carried out in a project, if the community considers

them to be worthwhile

• The level of collaboration between individuals also differs between project com-

munities, and is influenced to a certain degree by the complexity of the code

While it is not exhaustive, the above collection of factors can at least be indicative of

some general trends and can provide a starting point for further considerations. In spite

of the diversity found in multiple aspects of the process, the parameters move within

certain limits which are specific to the environment and set open source processes apart

from other forms of software development. Also, the most differences can be seen in

those parts of the process where a broad spectrum of approaches can be successfully

employed at once. In centrally applied concepts, like the project’s governance or archi-

tecture, a smaller range of variety is found.

108

5.3.4 Transferability of Results

Many aspects of open source development have origins in other forms of project devel-

opment and have been adapted to fit its particular environment and needs. But regardless

of whether they stem from consistent adaptation, or if they are based on genuinely new

ideas, the development concepts emerging from open source projects have their own

merit and are aptly suited to guide the creation of software in their specific field of

application. However, whether any part of this process can be applied to other environ-

mental backgrounds remains a question to be answered.

In order to find transferable strengths of open source development, a good starting

point for a search are those areas of the process which have the potential to pose seri-

ous problems, and therefore have undergone certain steps of innovation. An example

for these are the mechanisms of coordinating the work of large groups of independent-

minded individuals without detailed plans or imposed hierarchies. Many structures in

open source projects, if applied together, specifically function to facilitate this kind

of collaboration, like the extended use of issue tracker systems and other tools, the

widespread practice of peer reviews, and the corresponding architectural design. De-

serving of special note is the way people communicate in the projects. Communication

is mostly public and persistent, and yet at the same time decentralized and largely in-

formal. This grants large communities a fast and comprehensive way of exchanging

knowledge.

These are mainly concepts which could be used in a similar way in order to allow

Agile Methods to scale more easily, or to grant Structured Processes added flexibility.

It can be argued that the self-organized forms of close cooperation found in open source

communities require a certain mindset and a dedication to the project which may not al-

ways be found in traditional company environments. But this leads directly to one of the

core strengths of said communities. The strong sense of motivation and social cohesion

is a major driving force of open source software, and is based on various community-

building efforts, a common sense of accomplishment and the possibility of dedicated

members to participate on all levels of the project in a meaningful way. Finding ways to

transfer these concepts and values to other structures of software development exceeds

the scope of this thesis, but if successfully integrated into an approach they could prove

109

to be an effective way to increase the cohesion of a team, and thus strengthen the project

as a whole.

5.4 Summary

Analyzing the case study findings and relating them to previously obtained information

revealed some general trends and further insights into the development of open source

projects. A first glance at the literature had already suggested that no part of the process

is carried out exactly as it is in either agile or structured development. However, ten-

dencies toward one of the approaches were frequently observed. The second and more

thorough look at the process categories, which took the results of the case study into

consideration, calls for a validation and an update of these tendencies:

First, it should be noted that the observations of the theoretical process assessment

still hold true in principle. However, when examining the process categories in greater

detail, it became clear that most elements of the process have to be revalidated. When

observed in the projects of the case study, mechanisms that seemed closely related to

those found in agile or structured approaches, revealed peculiar underlying character-

istics unique to open source development. Also, several of its parts, which resembled

well-defined processes in the first place, have been shown to be more decentralized,

informal, or otherwise show a tendency toward hybrid approaches. The style of com-

munication and management, although different in many ways, often embodies agile

principles. Changes from the original model and an approximation of observed tenden-

cies are illustrated in Figure 5.1.

Because their development has no roots in a definitive theoretical standard, it was

expected that different projects would vary wildly in their development approach. How-

ever, although variation among the projects and a certain spectrum of approaches was

observed, strong common tendencies could be noticed as well. The same concepts, de-

nominations, and solutions were encountered repeatedly throughout each participant of

the case study. Both the special, distributed environment of open source projects and

the shared conventions are factors contributing to a distinct culture and to a fundamental

distinction of the open source development process from other approaches.

110

Figure 5.1: Tendency Shift Observed in Process Categories

Furthermore, a direct comparison to the four other examined process models showed

different extents of similarity: With traditional, predictive forms of project management,

as represented by the PMBoK, the least accordance could be found. In comparison with

the RUP, some similarity with the process model’s more iterative and dynamic features

could be seen. Both of the agile methods showed resemblance of basic principles. How-

ever, most of their specific practices differ in the specific environment they are targeted

at.

Some of the ideas found in open source projects can be transferred to proprietary

software development. In particular, it is noteworthy how projects and teams are able

to scale with little formal hierarchy, and even less signs of centralized control. This

is made possible by a number of mechanisms, tools and design decisions. Successful

open source communities give developers the chance to meaningfully participate in a

common project and co-decide its course.

111

CHAPTER 6
Conclusion

“In software development, ‘perfect’ is a verb, not an adjective. There is no

perfect process. There is no perfect design. There are no perfect stories.

You can, however, perfect your process, your design, and your stories.” -

Kent Beck [6]

The final chapter looks back on the thesis and, after concisely revisiting the findings

so far, goes on to explore the implications of this study and takes a glance into the future.

In a first step, the aims and the approach of the thesis are restated and the results of

the case study are summarized and explained. The conclusion continues by placing this

work in the context of related studies. Furthermore, suggestions for additional research

topics are given, which could be pursued to expand the study beyond its inherent limita-

tions, are given. Practical recommendations for different groups of developers and final

thoughts complete the chapter.

113

6.1 Summary of Results

6.1.1 Thesis Aims and Approach

This thesis set out to investigate the development of open source projects and sought

to demystify its profile, its characteristics, and how it relates to other forms of creating

software. In a first step, concepts and practices prominently used in open source devel-

opment were reconstructed from previous academic literature on the topic. From these,

a process model was derived, which was then put in relation to a number of popular soft-

ware development methods in order to find similarities and identify areas of distinction.

In order to cross-check the results gained in this comparison with the reality of contem-

porary open source development, knowledgeable members of three active projects were

consulted using in-depth qualitative interviews. This first-hand information, embedded

in a background of theoretical research, served to deepen the understanding of how soft-

ware is created in an open source environment. Further investigation showed how the

approach differs from other types of development, and how it varies in different open

source projects. Understanding how open source works leads to knowledge that can be

used to improve software development processes used in open source projects, as well

as those optimized for other environments.

6.1.2 Findings Explained

Open source development is a unique and self-contained approach for creating software.

It is tightly interwoven with the open source and free software movements, and relies

on the usage of an open licensing scheme and the participation of an active community.

Although the process uses concepts shared with other forms of development, it stands

on its own by employing distinct and specifically adapted solutions in most of its parts.

It is iterative and open-ended, and heavily utilizes the Internet to coordinate distributed

development efforts. Developers take over a significant role in defining the content and

outline of the project, both by choosing how to contribute and by participating directly

in the process of decision making. Projects are in a constant state of maintenance, and

draw upon their user-base for suggestions and feedback. Knowledge is distributed on

114

public and mostly persistent channels, through which the community discusses issues

openly and in a decentralized way. These are some of the most common aspects shared

by the majority of open source projects.

Although essential points of this information could already be derived from the the-

oretical analysis, the case study added further details, explained the rationale behind

the data, and gave insight into the interrelation of practices, and what their successful

use depends on: Necessarily, the specific environment of open source development in-

fluences the shape of its process. On one hand, it puts constraints on the possibilities

of managing projects, because the degree of control that can possibly be exerted on

the project and its developers is inherently limited. Put simply, people cannot directly

be told what to do by anyone in the project, a fact that hinders attempts of detailed

long-term planning. Scope depends on the interests and capabilities of the commu-

nity; successfully steering the course of the development requires persuasion and skills

in community-building. On the other hand, the open source environment changes the

structure of the process by altering the importance of its elements. Several areas of tra-

ditional project management are not relevant in an open source project, and therefore

play no role in the process. Others require special treatment and profoundly different

practices because of their specific nature. In a similar way, the lifecycle of open source

projects differs from that of conventionally managed projects, particularly noticeable in

both initiating and closing phases. Whenever methods are compared directly, this shift

in process coverage, balance and scope has to be taken into careful consideration.

Another noteworthy observation is that open source projects share many characteris-

tics that go beyond what is necessarily defined by their environment. Those similarities

in project structure, roles and tool sets, decision making procedures, and very specific

terms and vocabulary cannot be explained by the necessity of project surroundings, but

are instead signs of a shared development culture. This culture originated from common

roots of the open source movement, the emulation of successful pioneering projects, and

ideas absorbed from widely read vision papers. In an early criticism on the open source

methodology, Steve McConnell once remarked that it was primarily based on “informal

legend, myth and lore” [38]. Although the rationale behind the development process

of open source software was already more complex back then, and has evolved signif-

icantly ever since, it should be noted that there is indeed not a definitive single theory,

115

but tradition and loose conventions to be found at its ground. As a consequence, the

process is naturally harder to understand, to define, and to expand upon.

However, this also means that many variations of the open source development pro-

cess exist. In fact, there are in all likelihood no two projects that employ the exact same

process. Still, the differences between projects are limited by the boundaries of the

open source environment, the shared culture, and interdependencies between practices.

Possible reasons for variety are diverse and include the project’s business model, team

composition, size and product type. Projects examined throughout this thesis showcased

independent solutions in several process areas and have adjusted their approach as they

grew and matured.

All in all, the developer interviews gave insight into the development of open source

projects and provided working examples of a multifaceted and elaborate development

process. It is in its main parts independent of other approaches, although parallels do

exist in a number of practices and shared values. Variations exist within constraints of

environment and culture.

6.2 Comparison With Related Work

A large quantity of studies has already been carried out dealing with the different as-

pects of creating open source software. While a considerable part of them focuses on a

specific aspecct of development, only few examine the process itself and the actual use

of practices in contemporary projects. One of the most comprehensive overviews of the

research on open source and its findings is provided by the meta-study of Crowston et

al. in [18]. Another useful compilation of studies is [61] by von Krogh and von Hippel.

These collected findings have been the main foundation for describing the open source

process in Chapter 3. However, the case study showed a number of practices being em-

ployed by the observed projects that were not found as such in the examined research,

and major shifts were noticed in the emphasis of the development process.

One possible reason for these differences is the previously noted variation among

open source projects. As all examined projects differ from the body of research in a

similar way, it is likely though that contemporary open source development has evolved

116

from its early roots and picked up trends not yet visible in the majority of academic

research. Indeed, many studies rely on secondary data, particularly on early texts that

observed and defined the open source process at its beginnings. Those texts include

works like Eric Raymond’s [43], the comparison of Apache and Mozilla by Mockus

et al. [39], early works of Walt Scacchi [48] [49], and the influential essay [60] by

Paul Vixie. While those studies and essays all are important documents for understand-

ing the beginnings of open source and contributed significantly to the building of an

open source culture and its shared identity, in many cases their practical observations

no longer reflect the reality of open source development. Because of the continually

evolving nature of the process model it is critical for effective research to incorporate

contemporary project data. For this reason, the thesis included primary data from an

in-depth case study.

A wide range of approaches can be employed to study the development of open

source projects. Two books demonstrating the bandwidth of in-depth research are “Pro-

ducing Open Source Software” by Karl Fogel [21] and “The Success of Open Source”

by Steven Weber [63], who represent widely differing vantage points on the same topic.

Being an open source developer himself, Fogel concentrates on the practical aspects

of building a project and provides guidelines for successfully managing its execution.

On the other side, the political scientist Weber observes open source culture from the

outside and provides an anthropological view on the workings and rationale of open

source communities and the processes used by them. Both view the process as a whole

and emphasize complex relationships between project development and its surround-

ing environment. The two contrary approaches highlight the importance of different

perspectives in order to fully understand a complex topic such as open source develop-

ment. By placing qualitative process data into a theoretical framework, this thesis adds

another perspective to this picture.

Comparisons of open source practices with various other process models has a long-

standing history in academical research on open source. On one hand, traditional soft-

ware engineering was mostly shown to differ from open source development in various

aspects, for instance by Massey in [37]. On the other hand, a number of studies, includ-

ing [30] and [62], noted analogies between the values and practices of agile methods

and those of open source development. On the basis of similar considerations, sev-

117

eral attempts of hybridizing the two approaches have been made, an example of which

being [3]. The impact of these theoretical studies on the actuality of open source de-

veloping is, however, unclear. Quite recently, researchers have started focusing on the

complementary field of Inner Source, which signifies the usage of open source devel-

opment practices in a corporate environment. Stol et al. discovered several interesting

challenges and implications concerning the topic in their qualitative study published

in [57]. By analyzing analogies and differences, comparative studies have contributed

a lot to identifying the special characteristics of each development approach. By us-

ing both agile and structured process models as points of reference, this thesis helped

defining the open source process more clearly.

Sound and in-depth qualitative research, which incorporates both the position of de-

velopers and theoretical background, offers great promises in extending the knowledge

on the complex interactions found in open source projects. Besides [57], another good

example for a study based on extensive developer interviews is Sonali Shah’s [52], in

which the researcher analyzed the manifold motivations of people contributing to open

source projects. However, most studies rely on secondary data and quantitative mea-

sures, while only about 10% are based on interviews, as Crowston et al. observe in [18].

For building accurate and usable theory, Shah and Corley note in [53], qualitative and

multi-method studies are necessary. By combining theoretical process information,

project documentation and data from qualitative interviews, this thesis provided such

an in-depth and varied view into open source development.

All in all, this comparison with related work showed that with its practical exami-

nation of contemporary project development - embedded in a theoretical background of

process models - the thesis contributed in multiple ways to an improvement of modern

theories for developing open source projects.

6.3 Open Issues and Future Research

The thesis as it stands produced useful results, gave insight into the development of

open source projects, and fulfilled its initial goals as defined by the research questions.

However, the case study was limited to a relatively small scope, examining the general

118

development processes of a carefully selected sample of projects. The most promising

ways of adding to the research are therefore to modify sample size and composition,

to give a special focus or greater depth to each of the interviews, or to ground the case

study on a different theoretical framework:

Sample Set

• An obvious choice of action is to expand the sample set to include a significantly

larger number of similar projects. This is laborious, but improves the variance and

reliability of results. It helps identifying common tendencies between projects and

has the chance of pointing out individual solutions.

• Another possibility is to specifically choose projects that differ in one of the rel-

evant project properties like product type, size of community, age, or business

model, but otherwise show similar characteristics, in order to isolate a respective

factor and investigate the influence it has on the development process.

Observation Focus

• The interviews of the case study provided an overview of the whole cycle of de-

velopment. A different, but equally viable strategy is to concentrate on a specific

part of the process and examine it in detail throughout various projects. Each of

the observed process categories can reasonably be treated as the main focus of a

conversation.

• A further interesting prospect is to observe a chosen project over time, carrying

out interviews at various stages of its growth. Although this requires time and

dedication to carry out, the study setup would in turn be able to show and explain

the changes a project goes through in its development from an immediate and

uniquely traceable perspective.

• An approach that was partly realized in this study is the consultation of multiple

developers per project, either in an open conversation or individually. This helps

illuminating the process from different points of view, and improves results by

119

triangulation. In large projects, this setup may become necessary if no single

interview partner has sufficient insight into all examined parts of the process.

Process Comparison

• The comparison with four different process models was used to define the struc-

ture of the interviews and helped putting the findings into context. By comparing

open source projects with other development methods than the ones used in this

study, and thus applying different measurement, interesting new results could be

gained.

• In the case study, only stand-alone projects and processes were examined. Al-

though most open source projects are developed independently, there are several

organizations like Apache, Eclipse or Mozilla, which develop groups of projects

in sequence or concurrently. In these cases it is worthy of research how process

improvements compare to those measured by organizational frameworks like the

CMMI.

• The current research compared theoretical standards and methods on one hand

with actual processes found in open source projects on the other. However, an

interesting and perhaps more balanced approach might be to compare realistic

project data on both sides, by carrying out interviews with developers from each

of the compared process models.

The above list of suggestions covered some of the areas in which future research

could reach additional conclusions using a study setup similar to the one employed in

this thesis. Along the same lines, further related topics could easily be thought of, and

researched using analog methods.

6.4 Implications and Recommendations for Practice

It has been argued before, and demonstrated by many successful projects, that open

source development does work. Research like this one shows why, how, and in what

120

circumstances it works. To know these factors is important for another question with

significant implications: How can software development be improved to be more suc-

cessful, and to be successful more often? The introduction already emphasized the fre-

quent failure of projects, and this problem is not limited to commercial and proprietary

environments alone. Karl Fogel began his book on producing open source software [21]

by decidedly saying: “Most free software projects fail.” He argued that failure of open

source projects was merely less visible than that of their commercial counterparts, be-

cause they do not fail in a single dramatic event, but rather through decline of interest

and lacking contributions. Yet, the main motivation for studying and comparing pro-

cesses does not even have to be a threat of failure. It is enough to know that most

projects could do better in what they are doing to justify research on development and

searching for chances of improvement.

Recommendations for Open Source Developers

The fact that open source projects are not based on a common theory has contributed

to the movement’s diversity and led to many creative solutions. On the downside, this

means that the same mistakes are found to be repeated throughout every consecutive

generations of projects. A systematic investigation of contemporary open source pro-

cesses and modern research is crucial for anyone starting a new project, but seems to be

often neglected. By considering state-of-the-art instead of re-evolving from the roots of

the movement, reliance on trial and error can be reduced significantly. New governance

and business models, useful and highly-modular design ideas, integrated tool-support

and modern means of communication have been introduced in many communities in-

dividually, without being adopted by a majority of projects. A lot of innovation is

therefore wasted or considerably delayed.

Projects are well-advised not to stop innovating. Even if a part of the process works

as intended, possible improvements should always be considered. For example, email-

based communication used in many projects has changed little over the last decade,

while modern technology allows faster, more convenient and better integrated means of

communication and connectivity. Social and technological structures are repeatedly in-

herited from projects like Linux or Apache without any major innovation or adaptation.

121

In place of the radical (and often crazy) ideas that fueled the movement’s initial growth,

in many areas today’s projects exhibit conformance to cultural standards and settle for

what works.

Also, parts of the movement still consider proprietary development as “the enemy”

[56]. While the ideological implications of free software are a source of motivation for

many and a unique part of the movement’s culture, this should not lead to an isolation of

the method. A familiarity with approaches used in proprietary development is necessary

for understanding and, in consequence, effectively improving open source processes.

Recommendations for Other Developers

For other creators of software, open source processes can serve as a working example

for a unique way of development which is in many ways different from commonly

used process models. In its analysis, this thesis briefly discussed several areas in which

it could be useful to transfer ideas found in open source projects to other forms of

development. Noteworthy and innovative elements include distributed, tool-supported

cooperation, decentralized management with active developer participation, the strong

focus on user-feedback, and open, persistent and decentralized knowledge exchange.

How these concepts could be modified to be successfully applied to a different en-

vironment exceeds the scope of this research. Here they are mentioned to serve as a

reminder of the potential open source development methods have for introducing new

elements into the overall area of software development. For the last decade, project

management was mostly stuck in drawn out debates between Structured Processes and

Agile Methods. Experimenting with the inclusion of open source concepts could be a

way to find novel solutions for old problems and to perhaps move away slightly from

this dichotomy.

122

Final Thoughts

The elements of a process are interrelated and complement each other. Effective im-

provement often depends on making several careful steps and courageous jumps, all at

once. In order to do this successfully it is necessary to understand the motivation be-

hind practices and rules, to know the parts of the process and to see correlations and

causations.

Two strategies can lead to better processes. The first one is to improve existing

approaches gradually and carefully. Every method, even if employed correctly, can

always be pushed a little bit further. The second strategy is to keep on searching for

radically new ways of developing software. Now called traditional software engineering

was once radically new; as was agile development, and open source.

In the end, it probably does not matter if legendary silver bullets are ever to be

found - it has always been the search for better solutions that continues to drive constant

improvement and occasionally inspires profound innovation.

123

Acknowledgements

A number of different people were involved in the making of this thesis, without whom

this work would not have been possible.

My first and foremost thanks go to my parents, Alois and Ulrike, not only for their

constant financial and personal support, but also for their ongoing care and the occa-

sional gentle nudge in the right direction.

Furthermore, I wish to thank the people at the INSO institute and the AMMA group

for their supervision and guidance, in particular my advisor Thomas Grechenig as well

as Martin Pazderka and Brigitte Brem for their dedicated support.

The chosen approach would have failed without the active assistance given by the

open source communities and individuals involved in this work’s case study. My special

thanks go to Russell Keith-Magee from Django, Klaus Purer from Drupal, and Vincent

Massol, Guillaume Lerouge, Ecaterina Moraru and Sorin Burjan from XWiki.

And lastly, my dearest Evelyn, I would like to thank you for proof-reading and hon-

est advice, for moral and practical support and, perhaps most importantly, for believing

in me throughout this whole time.

Martin Schönberger

125

APPENDIX A
Interview: Django

Martin Schönberger: Thanks a lot for agreeing to talk to me. Can you just tell me for a
start a bit about yourself and your role in the development of Django?

Russell Keith-Magee: Okay. My full name is Dr. Russell Keith-Magee, I am a
core developer of Django and I joined the project in January of 2006, which was about
six or seven months after the Django project went public. I don’t know how much
you know about the background, but Django originally started as an in-house project
at the Lawrence Journal-World which is a local newspaper in Kansas. The two co-
founders of the project, Jacob Kaplan-Moss and Adrian Holovaty, went to PyCON in
2005 and gave a little informal presentation about this thing they were working on and
were sort of overwhelmed with interest from people who said: “Hey, can you open
source that so we can help out?”. They open-sourced in June-July 2005. I discovered
the project in about November 2005, made a few contributions and was added as a
core contributor in January 2006. Since then I’ve been fairly active contributor to the
project, the early days was a rapid development time so there was lots of new features I
could add in, so the fact that Django is a testing framework is mostly my doing. After
that point Django sort of stabilized and became a more mature framework so a lot of
it has become smaller, incremental changes and managing the introduction of larger
features developed by other people. So for example I mentored for the Google Summer
of Code, Alex Gaynor who is now a core contributor but at the time wasn’t, adding
multiple database-support to Django. So yeah, I am a core contributor, I have been a
core contributor - over the last twelve months I’ve been a little less active than I have
been in terms of actual code contributions, but I am still active in the mailing lists in
terms of helping users with support and having discussions - where the project should
go, what features we should add, what properties those features should have and so

127

on. Not as strictly related to the software management sort of things, but I’m also the
president of the Django Software Foundation, which is the not-for-profit fundraising of
the Django project. I took that role over just short of two years ago. That’s got very little
to do with the development of Django itself, other than being the body that holds the
RP, is the legal owner of the source code from a copyright-perspective, of a trademark-
perspective and is the body that you can give money to if you want to give money to
Django.

MS: So that money, how is it ... ?

RKM: Well, that’s the interesting thing. Because it’s an open source project, be-
cause it’s a volunteer project, the requirement for money has very little to do with the
development of the soft ware itself. It has a lot more to do with things like: We have
a trademark dispute because someone has decided to start using the Django name in a
way that the project is not comfortable with. When we need to hire a lawyer. That’s ex-
pensive. To actually make the trademark application for Django.That’s expensive, and
involves a lawyer. It’s more things like that. And then occasionally we have been able
to give funds for people which gather at [] conferences or to give keynotes or things like
that. So it’s not strictly to do with development of Django or paying for the development
of Django itself, but it is related activities to support the project as a whole. Did you
want any more about me personally or my background or .. ?

MS: Well, you told me you were the release manager of 1.2 and 1.3?

RKM: Formally not the release manager. We have a release manager, that’s the
person who is responsible for actually cutting the release. Inside that - one of the things
that I’m sure will become apparent over the course of this conversation is that a lot of
the roles in Django are very ad-hoc. Anyone who steps up to do something is the person
who ends up doing it. When we get close to the point where a release is necessary there
is usually in the community who says: “Hi, it’s about time we do the 1.2 release” and
then that person steps up and really drives the process to make sure: “Okay here are all
the bugs, I know where all the bugs are, I know what status they’re in, I know who’s
working on them” and just mainstays on top of that process until that thing is out the
door. I managed that process for 1.2 and 1.3. 1.4 was handled by Aymeric Augustin
who is a relatively new contributor. But it’s not a formal role in that sense. We have
a formal release manager who has the keys and knows all the email addresses - of the
Red Hat package manager who needs to be notified when there’s a security update - and
that sort of thing. That wasn’t me. I was just the person who managed a lot of the work,
managed the release process.

MS: I see. The release process seems kind of complex, with the branches and things
- I think it might be a bit complex to get those differing versions together, the feature
branches, and the bugfix releases. Is there development at the same time in different

128

versions of the software? How does it usually work?

RKM: Yes there are branches, but generally speaking they don’t actually play that
big of a role in our development process. We generally work on a principle that the trunk
should always be stable. So, although in practice you probably don’t actually want to
do this but you should, in theory, be able to take the most recent commit to the version-
control system and deploy it into a live site. So the goal is, the trunk should always be
stable. Nothing gets committed until it is stable enough that we have confidence that we
could use it in []. Essentially there’s only ever really three branches in effect. There’s
trunk, where all the active development is happening. There’s our maintenance release,
which is one version back effectively. So right now, we have just released Version
1.4, our maintenance branch is 1.3, where any significant bugfix gets back-ported. By
significant bug-fix we basically say anything that would have held up the release of 1.4
if we had known about it before 1.4 came out. So that means: catastrophic data-loss.
If a query can accidentally delete half your database. Or a significant error in a new
feature. This is a new feature that has been added, and something is fundamentally
wrong about the way that it operates. Things that are on that sort of level of significance
get backported one release to 1.3 and then we also maintain one version back prior that
for security problems. So if someone discovers that there is a hole in a CSRF framework,
for example, which allows a malicious attack to pretend that you are a user you are not.
Then that gets backported two releases. So it would be in trunk, it would be in 1.3,
and it would be backported to 1.2. Now effectively that means that we’ve only ever got
three versions of the code we are working on, and two of them are only ever receiving
back-ports of things that go into trunk. We do have other branches, so if you look in it
there are other branches that are in the tree. They are usually for large projects that have
been officially mandated, or officially sort of blessed by the core team. That in practice
usually means GSoC, mostly because GSoC requires us to have a branch in order to get
paid. Alex, for example, did his multiple database support. We set up a branch, under
the Summer of Code, and every now and then, Alex would push code into that branch
which would then be the official GSoC multiple database branch, which eventually got
merged into the main release tree. And essentially the day it was merged into the main
trunk tree it was ready for production because it had been tested very heavily. When
we’re developing other major features we tend to just develop them as patches, there is
a growing use of things like Github and Bitbucket in the community broadly, and quite
often you discover that those features have been developed in a branch in someone’s
Github repository, but they’re not officially branches in Django’s core repository.

MS: I see. Can we talk a bit about the testing process, you said you were involved
in it? How did it get set up?

RKM: Okay, so.. I can claim responsibility for part of the testing framework. When
I joined the project, it had been in serious use, and actually had an off-shoot as a com-

129

mercial product as well, the journal World. Django was very heavily tested to start with,
there was very very good test coverage off its cart. And we essentially said if anything
ever breaks in the test-suite the person who commits it has to fix it, and you don’t get
to commit anything unless it is fully tested or there is a very significant reason why you
can’t test it - there are some high-level meta processes that are very hard to test and so we
accept [] testing of that. What I added back in 2006 was essentially that framework that
lets you add easily tests to your Django project, not to Django itself but to the Django
project. And all of those tools they get, they’re essentially shared between what Django
uses to test itself and what you as an end-user can use on your Django project. So we
have a test-suite, last time I checked in ran something like 4,500 tests I think. So it has
fairly heavy coverage, it covers anything from individual unit-tests to small features to
view-level tests, integration-level tests, or just recently we started adding browser-tests,
to make sure that Django’s admin interface worked the way it should.

MS: How long does it take to run these tests?

RKM: Depends. The controlling factor is mostly the database that you are backing it
on to. If you’re running under SQLite on a moderately modern machine, you’re looking
at about 10-15 minutes to run the full test-suite. If you install it on a badly configured
version of MySQL, it can take eight hours. Everything in between that is possible. One
of the areas that Django doesn’t do very well is we don’t mock database interfaces for
example, so when we run tests we’re running them against an actual database, which
means you got a lot of ’create-table’, destroy-table’, ’create-table’, destroy-table’, .. and
on many databases, that’s not an [] operation, because it’s not something you should be
doing very often. So that’s the source of the slowdown when there is a slowdown when
you test right.

MS: And then there’s also then the testing on the user-level, like the bug-triaging
system? And I read something about code reviews. Every code is reviewed when it is
checked in?

RKM: The way that the commit-process essentially works is that we have a very
small, small by some standards anyway, core commit team. So there’s only about 28
people I think, who could commit anything to the Django source repository at all. Of
those, at any given time there’s probably only a dozen or less who are actually actively
committing code. Many of them are people who had access and just haven’t done any-
thing for three years. So the core team ultimately takes responsibility for checking
anything into the tree. And that means that if it breaks, it’s their fault, it’s their responsi-
bility to fix it, so we are essentially the last line of review that happens before anything
gets committed. If you got a core team member who’s been developing something on
their own, they will usually end up calling on another core committer to say: “Hey can
you throw some eyes over that so it’s not just my eyeballs that have been reviewing this.”
Looking at contributions from the broader community, we have a bug-tracker, we have

130

trac. The way our documentation describes it as sort of a community garden. Anyone
is welcome to do anything they want to the database, to update any ticket, to modify
any ticket, to add any patch they want and we sort of rely upon the fact that aren’t going
to be actively malicious and that they’ll be sort of cautious and not just go through and
close everything because they can. So what we ask people to do is essentially: any piece
of code that you add to the repository as a patch gets someone else to look at it. And if
it’s a really big patch, maybe get two or three people to look at it. The core team won’t
commit it until they’re satisfied that is has been reviewed, and generally if it’s a big
patch, one of the precursors that we are looking for is that there is evidence that three
or four people have looked at this and said that it’s okay. Or even better, that three or
four people that I know have looked and said it’s okay. So it’s not a formal “You must
get this person to look at it, then it must be checked off by this person”. It’s a very soft
process, that is ultimately held down by the small group of core committers to [] of what
is acceptable.

MS: Okay, that makes sense. So, when someone proposes a feature .. I would like
to know a bit more about the larger picture. When you plan the development of Django
over a long period of time, how does the vision of Django change over time? Three
years ago, what did you think the project would look now? And I’ve seen plans of
Django 1.5, .6, .7, 2.0, that’s about three years in the future. How can you steer the
project to that with the contributions of random submitters?

RKM: Right. That is perhaps the biggest culture shift and the biggest fundamental
difference between textbook software engineering and what happens in an open source
project. Essentially we can’t guide the project. I can control what I do, I know what
I want in general, and I know, because I talked with other members of the core team,
maybe what they’re interested in as well. But I can’t make anyone else be interested
in something. and ultimately, because this is a volunteer project, something only gets
done if someone actually volunteers to fix it, which usually means that the features that
get added are whatever itch someone has right now. And sometimes someone will say
something or do something in a particular forum and that will excite a lot of people at the
same time to look at one particular problem. So what we so discovered over time is that
it is almost pointless for us trying to plan what is going to be in two years time or even
two releases time, it’s almost pointless to work out what’s going to be in the next release
until we are almost ready to cut the []. So the features that get added are essentially
whatever anyone in the community can write and essentially get the community and
core team to buy in on the idea that their approach is correct. That’s a little bit harder
than it sounds, it’s not completely ad-hoc because the core team is somewhat resistant
to change. We have a very firm backwards compatibility policy, we have a very firm
[principally led surprise] sort of design aspect. One of the reasons the core team has
remained so small for so long is that we are very picky about who we add, and we
need to make sure that the people we are adding to the project don’t have fundamentally

131

different ideas about where the project is going long term. And the best judge of whether
someone has a similar design ethic and feeling about how the project runs is to see them
contribute a bunch of code and see that the code they are contributing is something you
would have written if only you’d had the spare time. So, essentially we don’t have
grand plans. We have ideas of things we might like to fix, we have directions we might
be vaguely heading, someone to protect [] an idea we might sort of say. We’ve had some
ideas about that, and that kind of goes in the opposite direction of where we thought we
were going. But ultimately the features that get added is whatever someone actually
volunteers and steps up to write the code for. And manages to get the two or three
other people to review. And then manages to find a core team member who is actually
willing to do the final review and commit. Now a good example of that in practice, we
had just recently an active and sometimes heated discussion about the way the users
manage things on Django. Now that is a feature that has been in Django since Version
1, so way back in the days of yore [..] So the user model has been in Django since
way back, since before I joined essentially. But it had a couple of assumptions built
into it. That a username must have this many characters and must be unique, and that
an email-address must fit into this many characters, and there are a number of people
who have complained over the last six years that the user model isn’t flexible enough.
Over those six years people have variously said: “Hey we should just do this.” and the
core team has said: “No we’ve got bigger plans we’d like to address here, this is sort
of the direction we would like to go.” And the person who said “Well I’m just going
to do this little thing” they’ve just gone off and done the little thing and not contribute
it back to Django. What has happened just recently is that enough people got together
and sort of said: “Hey this sucks enough that we wanna see if we can fix it, how can
we fix it? Let’s go through a process of working out exactly what we need to do, what
we can’t do, where our constraints are, build up a full formal documentation of what
we could do, and then get the core team to formally buy into this, to say what are we
actually gonna do.” The core team had a few opinions and said a few things, came up
with a few new ideas. And when there’s a dispute among the core team essentially we
fall back to the original two core developers, Adrian and Jacob - following the naming
from Python they’re called the Benevolent Dictators for Life - to make the final call.
And we said: “Okay, here’s seven options: This one has almost no impact, this one has
incredibly high impact, this one is gonna at least require changes, and so on, which one
are we going to do?” And I said: “We are going to do this one.” And now hopefully
that’s gonna turn into a body of work that will get committed for 1.5. Does that sort of
explain how that process works?

MS: Yes absolutely, it does. But what happens with unpopular code, which has to
be done but no one really has the time for, or the skills, or just doesn’t want to do it at
the time. Does that happen at all?

RKM: That is probably the reason why things don’t get built when they need to

132

be built. Essentially .. I suppose by unpopular code you mean things like tests and
documentation and the support code and things like that?

MS: Not only that, but..

RKM: If you had a specific in mind?

MS: Also like a critical bugfix that has to be done, a security fix that has to be done
but no one has the time. Or is the commitment from the core developers then kicking
in?

RKM: Essentially there’s commitment from the core team. That’s part of the reason
why people get added to the core team, because they demonstrated that they’re going
to be active in the project for a while. And at this point, you know, if someone goes
out in public and says Django is insecure, my career is kind of on the line for that.
Because I have put so much of my effort into Django, and my name is one of a very
small number that is on the door as someone who can commit. So, if it’s a security
patch, we got a bit of personal responsibility from the core team to look after that. If
it’s a significant bug, generally it falls back to the person who originally committed it.
If it’s a significant bug that gets discovered in code that has been lingering for very long
time essentially the reading of that is that it can’t be that significant. So, significant bugs
are things you actually going to hit all the time, and there is a difference between a use
case that I hit all the time, and a use case that everyone hits every time. So if something
looks like it is going to become high profile as in “Here is a bugfix that caused a high
profile customer to lose a lot of data”, then that kind of again comes back to the security
problem where the core team has their reputation on the line to sort of address it. But
unless it’s actually one of these reputation-modifying things, essentially nothing gets
committed to core unless it is ready to be in core. So there shouldn’t be any major bugs
in the code, by the time it actually gets there. And when you review their code and
then you discover there are bugs the person who added the code is the person who is
responsible for fixing them. It doesn’t get committed unless it’s got tests, it doesn’t get
committed unless it’s got documentation, it doesn’t get committed unless it looks like
the tests actually test everything that need to be there. So we slightly avoid the problem
you were describing by essentially saying you don’t get into Django unless you’ve met
these basic criteria. And the rest falls back to the core team responsible for the project
looking serious and looking professional over time.

MS: Okay, I see. So, what’s the worst that could happen to the project? Are there
any major risks on your mind, and countermeasures planned for emergency situations,
whichever could arise?

RKM: There are areas of code, where we have a very low bus factor, so if - a couple
of years ago, if someone had driven over myself and Malcolm Tredinnick in a bus there
would have been very few people who would have known the internals of the database

133

code well enough to be able to fix it straight away. That has been largely mitigated
by bringing in more core developers who have spent time in the database code, so that
situation has been improved. Worst case scenarios would be things like a very high
profile Django site being hacked for a reason that wasn’t an esoteric problem, it was a
fundamental problem in Django’s security. We never know what security problems exist
until some finds them and exploits them, but we have a fairly good historical reputation
with security, and we’ve been fairly proactive in terms of fixing security problems and
forcing security fixes down on people over time. I suppose the biggest issue would be
if the active members of the core team stopped being active. The are twenty-odd people
who have the commit-bit, but any given time there’s probably only a dozen, maybe even
down to less than six, who are actually actively committing code, and if those people get
bored, or go off somewhere else, or have other commitments, or anything else happens,
then development on Django stalls because that is our bottleneck. The core team is our
bottleneck.

MS: So is the knowledge on the team held implicitly by the core developers?

RKM: There is a lot more knowledge about Django’s internals than is held purely
by the core team itself. The metric I’ll have to use on that is that I’m in Australia,
on the west coast of Australia, I know any number of people who are using Django.
Almost none of them are in the commit-file or even on the Django mailing list, but most
of them know the internals of some of Django. Because it’s an open source project,
because it’s Python it’s very easily to read, very easily to get in to, so there is a lot of
knowledge about Django that isn’t specifically held in the core team itself. The core
team obviously is a group of people who do know the internals very well, but they’re
not the only people who know the internals very well. I’m trying to think of other
things that could be a problem- If both of the BDFLs decided they wanted to disappear
completely, that might be a minor problem because we’d had to find a new way of []
resolving ties. If our formal release manager got hit by a bus, then we’d need to find
all the people who are on our actual notification list and renegotiate GPG key signing,
things like that. At the moment we have one person who has the keys who can formally
sign a Django release and knows who to notify when that release happens.

MS: But whatever emergencies could come up you decide when they really arise
how to deal with them?

RKM: Yeah, I mean we don’t have a formal disaster recovery plan if that’s what
you’re asking. It’s mostly because - and this is one of the redeeming characteristics of
[] - if the worst happened, if every single member of the core team got hit by a bus,
and the Django website went down, and all the worst things that could possible happen
to the code happened to the code, you’d still have the code. And it would be sitting in
thousands of repositories around the world, and someone would be able to find a way
to get the most recent revision up somewhere, and I’m sure there would be enough of

134

the community around to start developing the next round of patches, the next round of
updates, and so on.

MS: And would it be possible to retrieve the knowledge about the code from the
code and the documentation?

RKM: Almost certainly, yes. One of the things about Django is that does have
extraordinarily extensive documentation. If you printed it out, I think at last count it
ran to something like 1,200 pages if you would physically print it all out. So it’s very
well documented. There are some areas the documentation could be better that’s for
sure, but most of Django is very well documented. And internally it is also very well
documented on the parts that are difficult, and it’s very well tested in terms of the things
that are complex, and a really good branch coverage in terms of the things that are
complex. So I’ve no doubt that if you got someone who is left dependent on actually
being able to progress Django and fix Django’s core and they didn’t have access to the
core team, they would be able to fix those problems, it’s not a complete black hole.

MS: Okay. I see we almost already ran out of time, so a quick question about the
architecture. It says on your bio that there were some major refactorings you were
involved in. How much does the architecture change or was the code structure quite
stable over time?

RKM: The core structure has been very stable over time. There was one massive
rework, which happened within about three months of me joining the project. When I
joined the project, we were in the middle of a change called the ’magic removal’.

MS: Oh yes, I read about that.

RKM: Yeah, it was getting rid of a bunch of insider tricks that worked, but weren’t
very good engineering. So that was a massive rework of all sorts of parts of Django.
Since then, there’s been one semi major change. We made a big change to the forms-
framework, but that was still before version 1. Since version 1 has come out, there’s
been almost nothing that I would classify as a major change. There have been very
major features added, but it has been a very intentional position of the core team that
backwards compatibility is core. People developing Django projects expect them to live
for a very long time and not have to every minor release go and refactor all of their
code because something changed, positional value of an argument changed, something
like that. So we have a very firm policy that if you are upgrading from Version 1.2 to
Version 1.3 the code must just work, unless there is a fundamental reason why it cannot.
And that usually means there is a security problem, or something very very serious that
is wrong with the original. And even then we try to make the changes in a way that if
you update the code, you’ll get warnings telling you what it is you need to update, and
consequences will happen if you don’t update. So architecturally the core framework,
the core structure of Django, has been basically stable, or has almost completely stable

135

for four years, and relatively stable for quite sort of five, almost six. And the intention
is it’s going to stay that way, we have enough of an installed base, that we cannot make
a major change without causing a lot of people to be very pissed of. And one of the
reasons that I attribute to why Django has been able to maintain or has been able to
gain popularity in a lot of very large organizations is that policy. Some projects say it’s
perfectly okay to completely change the meaning of something between a minor release.
We don’t. Which means that large organizations like NASA can say: “Okay, we gonna
deploy this now” and know that it’s going to be exactly the same for the next four years
without any surprises popping up over time.

MS: So is it a modular structure, or how does it allow for additions to be made on
the stable architecture?

RKM: Well there’s sort of a core architecture which is basically just describing the
things that Django is. It is a database model, it is a collection of contributed apps that
make building web apps easier, there are some testing systems, there are some form
management systems, and they are all just high level modules. And inside that, yes, we
made modifications to the form system, and we add a new submodel inside forms that
makes that happen. One example: in 1.3 we added a new generic views framework,
there’s this idea that most web pages are essentially: “Show me a list of stuff, show the
details for one thing in that list, allow me to edit for one thing in that list.” That generic
concept was wrapped up in a series of views. In 1.3 we replaced all of these views with
a new version of a more easily expendable class base that could be easily modified and
so on. It’s now Django 1.4, you can still use the old views. They are in a package, it
is labeled, and if you try to import that package now, you get a warning that pops up
that says: “Hi, these views have been deprecated you may need to update. If you want
to update, you can do this update. Here is the sequence of steps to go through, it’s all
documented it’s got what you need to modify and how you modify them.” But if you
are building a new project from scratch you can just use the new views from scratch,
import them from the new module and on you go. So we do explore the fact that you
can have modules and submodules to enable that sort of migration to happen, and then
we use this sort of deprecation process to get people away from the old modules and
into new modules. And essentially, once we formally decide to deprecate something,
you’ve effectively got about 18 months to get your code off of the old version before we
completely cut off for the old version.

MS: That’s quite a while. Well, thanks a lot, you answered my questions wonder-
fully. Do you have any things to add on your own, any agenda, any more points coming
up?

RKM: No. I suppose the only thing is, I mean I said it before, but it really does
bear repeating, is that there is a fundamental difference between the way commercial
projects work, the way commercial software engineering, planning, resource manage-

136

ment works, and the way open source projects have to work, by necessity. Now I cannot
compel anyone to do anything. I cannot build an oak chart that says that I am gonna tell
someone to finish this thing in two weeks. The best I can do is offer them an enticement
to say: “If you do this in two weeks, then I will do this for you.” And that fundamen-
tally alters the dynamic for how you manage a project. It really does change what you
can realistically achieve and the timelines of when you can achieve things. And often it
means that you have to say: “No, I just can’t do that because I can’t force someone to
do that for me. I’ve either gotta do it myself or live with the fact that it doesn’t exist.”

MS: I’ve researched quite a bit into agile development methods as one of the things I
was comparing in my thesis and there is also a tendency for the methods of project man-
agers to change away from assigning work to enabling people to do what they choose
to do. Do you see connections to this type of management?

RKM: Very much so. It’s essentially the ultimate expression of that. Because we lit-
erally cannot force anyone to do anything, we can only entice them to do something and
make it interesting for them. And sometimes that actually means that you’ve actually
got to go out of your way to make something really really bad in the hope that someone
will step up and do the hard job. You say: “We are not going to commit a half-assed
solution to the usermodel problem, we need a proper fix. So go off and work on a proper
fix.” So yeah I would completely agree: The modern management is all about making
your employees happy - we have no option but to make our employees happy.

MS: The interesting thing is that the agile development methods work in a small
and spatially very concentrated team of like ten people in one room constantly commu-
nicating with each other while open source development teams are spread all over the
world.

RKM: Spread all over the world but never the less communicative. Big communi-
ties, we generate a lot of mail on django-dev, we generate a lot of mail on django-users,
the IRC-channel is almost always populated, there is a strong social aspect, even outside.
There is django-dev, the IRC-channel, but there is also the IRC-channel django-social,
where people just go and kind of hang out with other Django people, so there is a very
strong community aspect. And whilst they are not necessarily geographically together
there is a very strong sense of keeping in touch with each other.

MS: And the technology is enabling this communication?

RKM: Yes, sure.

MS: Well, thanks. Thank you for the conversation.

137

APPENDIX B
Interview: Drupal

Martin Schönberger: Hallo erstmal und danke dass du teilnimmst an dieser Case Study.
Kannst du dich am Anfang kurz vorstellen und erzählen wie deine Arbeit mit Drupal
aussieht, in welchen Bereichen du aktiv sind und wo deine Schwerpunkte liegen?

Klaus Purer: Mein Name ist Klaus Purer, ich bin im Drupal-Projekt seit 2008 mehr
oder weniger aktiv, habe davor schon Drupal benutzt als User und bin seit 2008 auch De-
veloper. Ich arbeite in einer Wiener Firma die sich hauptsächlich mit Drupal beschäftigt,
wir machen Web-Projekte. Unsere Firmenphilosophie ist, dass wir sehr stark mit der
Drupal-Community zusammenarbeiten, das heißt Entwicklungen die wir machen geben
wir dann wieder als Module frei für die Community und nehmen uns dafür auch andere
Module, kombinieren Arbeiten von anderen Leuten, und so schaffen wir es eigentlich
recht effizient zu arbeiten und recht schnell unsere Projekte durchzuziehen. Meine Auf-
gabe bei dem Ganzen ist: einerseits bin ich ein bisschen im Systemadministrationsbere-
ich tätig, das heißt ich schau dass die Seiten laufen, schau dass die Konfiguration passt,
alles was da zur Verwaltung dazugehört, und bin auf der anderen Seite Developer, das
heißt ich schreibe Module, ich mache Arbeiten im Back-End, PHP-Programmierung ist
das eben bei Drupal. Im Vergleich dazu gibt es bei Drupal auch andere Rollen, Themer,
Site-Builder, aber ich bin eher so der Hardcore-Developer.

MS: Es gibt hier also eine Aufteilung zwischen den Rollen, unter denen Aufgaben
verteilt sind?

KP: Ja. Also Drupal ist im Web-Development-Bereich ein bisschen berüchtigt dafür,
sogar eine neue Rolle erfunden zu haben. Das ist bei Drupal der Site-Builder, das heißt
es gibt nicht nur Leute die Code schreiben und Designs entwickeln und die in HTML
umsetzen sondern es gibt auch eine dritte Rolle die sich eigentlich nur damit beschäftigt,

139

Drupal zu konfigurieren, Sachen im User-Interface zusammenzuklicken und die Seite
zu betreuen über das Administrationsinterface.

MS: Verstehe, das ist ja doch eine eigene Aufgabe bei der einiges zu tun ist.. Ich in-
teressiere mich auch sehr für den Entwicklungsprozess, wie die Abläufe sind. Kannst du
mir vielleicht so einen Ablauf in der Projektentwicklung beschreiben, wie die typischen
Schritte sind von der ersten Idee bis zur fertigen Umsetzung?

KP: Also im Prinzip wird Drupal immer wieder bezeichnet als ’Do-ocracy’. Das
heißt wenn jemand etwas machen will und das durchzieht, dann wird es auch meistens
bei Drupal aufgenommen und hat Erfolg. Es gibt keine starren Strukturen die irgend-
wie vorgeben was die Roadmap ist oder fix erledigt gehört, sondern Leute haben Ideen
und versuchen die dann umzusetzen. Und wenn es Erfolg hat, dann fließt es in Dru-
pal ein und wird so weitergegeben an das ganze Projekt. Prinzipiell interagieren die
Leute ja weltweit miteinander, das heißt es läuft alles in der Issue-Queue ab, das ist der
Bugtracker auf drupal.org. Dort werden die Ideen gepostet, dort können die Leute kom-
mentieren, dort wird der Status festgelegt für diese Idee, die kann zum Beispiel ’aktiv’
sein, oder es kann schon ein Patch zur Verfügung stehen, also Code der diese Änderung
implementiert, oder es kann noch Arbeit brauchen, oder es wird wieder geschlossen
weil es nicht relevant ist, oder andere Gründe. Sozusagen die zentrale Anlaufstelle für
die Koordination im ganzen Projekt ist drupal.org mit dem Issue Tracking. Ein zweiter
sehr wichtiger Kanal bei Drupal ist der IRC-Chat, wo sich die Leute online zum Chatten
treffen um schneller miteinander zu interagieren - um sich nicht über lange Kommentare
auszutauschen, sondern eben direkt im Chat. Es gibt natürlich auch Skype-Calls zwis-
chen einzelnen Personen, aber es gibt das zentralisierte Chat-System damit sich die
Leute schneller austauschen können.

MS: Also eine Kommunikation auf unterschiedlichsten Kanälen. Ist die Arbeit dann
aber eher aufgeteilt, und wie eng ist die Zusammenarbeit innerhalb der einzelnen Mod-
ule oder Bereiche?

KP: Bei Drupal gibt es den Drupal Core, das ist sozusagen was jeder in der Drupal-
Welt braucht, das ist das Herzstück das man sich als erstes installiert, und dann gibt es
noch ein großes Universum aus Modulen. Der Core wird von einigen wenigen Perso-
nen maintaint, die darauf aufpassen dass nur die ausgereiften Features hineinkommen,
dass die Bugfixes hineinkommen, ganz normale Wartung eben. Und dann gibt es einen
großen Bereich auf drupal.org, die sogenannte Contributed Module sind, das heißt es
gibt da wieder eigene Maintainer, die ihre eigenen Module schreiben, die diese dann
als Projekt bereitstellen und für das Modul verantwortlich sind. Es gibt also eine hi-
erarchische Aufteilung zum Core wo einige wenige Personen verantwortlich sind, und
dann eine große flache Hierarchie von gleichberechtigten Modulen, für die dann wieder
andere Einzelpersonen verantwortlich sind.

140

MS: Okay. Und wie ist so die Kommunikation zwischen dem Core und der Commu-
nity, wie wird es sich da dazwischen ausgetauscht, inwieweit richtet sich die Community
nach dem Core und umgekehrt?

KP: Ich würde sagen das ist so ein Geben und Nehmen. Der Drupal Core muss
natürlich sehr gut funktionieren, das heißt es bleibt wenig Spielraum für Experimente.
Wenn man also so sagen will: Innovation und wirklich radikal neue Sachen werden
sehr oft im Contributed Space, also bei den Modulen, zuerst entwickelt, bevor sie dann
später wenn sie gut funktionieren irgendwann im Drupal Core landen - oder auch nicht.
Es gibt auch einige Beispiele von Modulen, die explizit nicht in Drupal Core hinein
genommen werden, weil sie eben nicht für jeden Use Case geeignet sind. Andererseits
muss natürlich Drupal Core auch gewisse Regeln vorgeben und einen gewissen Com-
mon Ground schaffen, was jeder in der Community braucht, das heißt es passieren sehr
wohl auch neue Entwicklungen in Drupal Core, damit überhaupt die Module rundherum
gut funktionieren können. In der früheren Geschichte von Drupal - Drupal ist jetzt zehn
Jahre halt - ich würde sagen in den ersten sieben Jahren oder so, war das wirklich sehr
chaotisch. Es war nicht sehr vorherbestimmt was in Drupal Core aufgenommen wird,
was nicht, und wo eigentlich der Fokus liegt, was hineinkommen soll oder was in Dru-
pal Core neuentwickelt werden soll. Als das Projekt dann gewachsen ist, hat sich das
ein bisschen verändert zu sogenannten Core Initiativen. Die werden jetzt vor allem bei
der Entwicklung von Drupal 8 eingesetzt, da gibt es so spezielle, ich würde sagen kleine
Task Forces, die sich dann um gewisse Bereiche kümmern die zur Zeit in Drupal noch
sehr schmerzhaft sind, und wo viele Entwickler darunter stöhnen, und die dann im Core
vorantreiben, damit das wieder eine gemeinsame schöne API ist um gute Module darauf
aufsetzen zu können. So gibt sich die Innovation und die Neuentwicklung ein bisschen
die Hand.

MS: Ich habe mir die Keynote angehört, die Dries Buytaert im März gegeben hat, in
der er die Pläne von Drupal beschrieben hat, eben auch von diesen Core Initiativen, und
wie sich das Projekt in den nächsten drei Jahren und danach entwickeln soll. Und da
habe ich mich ein bisschen gewundert wie sich solche längerfristigen Visionen wirklich
umsetzen lassen in der Community?

KP: Generell hat Drupal keine sehr starren Regeln was Entscheidungsstrukturen
anbelangt. Es gibt einen Code of Conduct, der ist glaube ich von Ubuntu gestohlen, der
beschreibt wie die Community miteinander umgehen soll, dass man nett zueinander sein
soll, wenn man Probleme hat soll man andere Leute miteinbeziehen um das Problem zu
lösen... Hast du den schon gefunden, den Drupal Code of Conduct?

MS: Nicht bei Drupal, aber ich kenne das prinzipielle System von anderen Projekten.

KP: Es gibt also solche generellen Community-Regeln wie man miteinander umgeht
um Entscheidungen herbeizuführen und Probleme zu lösen. Dann gibt es eine ganz

141

nette Blog-Serie von Randy Fey über Drupals Governance, ich schicke dir mal den
Link (Link einfügen). Auf dem Blog gibt es einige Artikel darüber, wie es früher war,
wie es bei anderen Open Source Projekten ist, und wie es bei Drupal sein könnte. Nach-
dem Drupal jetzt ziemlich groß geworden ist funktioniert das Konsensprinzip nicht im-
mer. Das heißt: Eine gewisse Gruppe von Leuten ist sich einig in einem Issue, etwas
durchzuziehen, und plötzlich kommt eine Person her und redet dagegen, dann war es
früher meistens so dass das das ganze Issue aufgehalten hat, weil man eben versucht
hat einen Konsens zu bilden in der Community. Jetzt bei einer sehr großen Commu-
nity wird das natürlich immer schwieriger und muss man sich auch andere Entschei-
dungsprozesse überlegen wie man das Projekt vorantreibt oder in welche Richtung man
geht und so weiter.

MS: Ah ist klar. Kannst du dazu vielleicht ein konkretes Beispiel geben?

KP: Zum Beispiel Support von Internet Explorer 7 war ein heiß diskutiertes Thema.
Drupal 8 wird gerade entwickelt und wird wahrscheinlich nächstes Jahr releast werden,
oder vielleicht übernächstes Jahr, und da kommt natürlich die Diskussion auf ’Soll Dru-
pal 8 noch eine so alte Version vom Internet Explorer unterstützen, ja oder nein?’ Dann
kommen natürlich Leute aus Ländern wie zum Beispiel aus dem asiatischen Raum, aus
China, wo teilweise Internet Explorer 6 und 7 noch sehr verbreitet sind, und die ar-
gumentieren dann natürlich dagegen in dem Issue im Bugtracker. Und so treffen ein
bisschen zwei Fronten aufeinander, einerseits natürlich die progressiven Webentwick-
ler die mit dem neuen Standards arbeiten und den alten Code raushauen wollen, und
eine größere Usergruppe, die darauf angewiesen ist, dass auch zukünftige Versionen
von Drupal noch mit ihren Browsern funktioniert, die sie eben nicht ändern können bei
gewissen Firmen, weil diese die verwenden.

MS: Und hat man in diesem Fall eine Entscheidung gefunden, oder einen Kompro-
miss?

KP: Ja man ist mittlerweile doch in die Richtung gegangen dass Internet Explorer
7 nicht mehr supportet wird in Drupal 8, es haben sich sozusagen die Entwickler, die
die meiste Arbeit erledigen durchgesetzt, und das letzte Wort bei solchen Issues hat
bei Drupal dann meistens Dries selbst. Das ist ein ähnliches Modell wie bei Ubuntu
oder anderen Open Source Projekten, es gibt so einen Benevolent Dictator For Life,
jemanden der sozusagen der Chef vom Projekt ist und da gerade bei solchen politis-
chen Entscheidungen, weil es ist eigentlich kein technisches Problem zu lösen jetzt ob
Internet Explorer 7 supportet wird oder nicht, sondern es ist eigentlich eine politis-
che Entscheidung, das bewusst zu machen oder bewusst nicht zu machen. Und gerade
bei solchen Sachen hat dann Dries das letzte Wort, um dann eine Entscheidung her-
beizuführen.

MS: Ja ich verstehe. Eine andere Frage zur Architektur - soweit ich gelesen habe

142

verzichtet Drupal ja absichtlich auf zu viel Rückwärtskompatibilität, man hat starke
Veränderungen zwischen den Major Releases, von 6 auf 7, von 7 auf 8... Wenn sich der
Core stark verändert, wieweit wird man davon beeinflusst in der Entwicklung?

KP: Drupal hat in den letzten Jahren eine sehr interessante Veränderung durchgemacht.
Früher waren Major Releases nicht weit voneinander entfernt, da hat es teilweise einen
Releasecycle gegeben von einem Jahr, wo Module wieder geupdatet werden mussten.
Mittlerweile hat sich das sehr verzögert, also Drupal 6 ist noch Anfang 2008 her-
ausgekommen, Drupal 7 dann Anfang 2011, also 3 Jahre später, und Drupal 8 wird
wahrscheinlich wieder so 3 Jahre später herauskommen, das heißt mittlerweile haben
sich die Releasezyklen so verlängert dass man doch über einen gewissen Zeitraum eine
sehr stabile Version von Drupal auf die man setzen kann. Die Philosophie bei Drupal ist:
’We protect and update your data, but not your code’. Das heißt die Daten die man aus
einer alten Drupal-Installation hat kann man dann eh updaten, nur muss man halt darauf
warten bis die ganzen Module wieder zur neuen Version kompatibel sind, oder vielle-
icht gar nicht mehr notwendig sind, oder sich sonst irgendwie verändert haben. Das hat
aber auch die Konsequenz dass am Release-Tag von Drupal sicher sehr wenige Seiten
erst diese Drupal-Version einsetzen. Es gibt also immer eine gewisse Verzögerung bis
dann die Drupal Version so richtig abhebt, meistens ist das ungefähr ein Jahr. Bei Dru-
pal 6 war es ungefähr ein Jahr, bei Drupal 7 war es wieder ein Jahr ungefähr, wo man
dann merkt: ’Aha, jetzt zieht Drupal so richtig an’. Und die meisten Seiten updaten
dann auf die neue Version, weil eben die ganzen Module dann geupdatet sind, weil es
andere Möglichkeiten gibt wie man die neue Seite betreut, und so weiter. Andererseits
gehen natürlich Firmen wie wir zum Beispiel den Weg dass sie Drupal-Versionen über-
springen. Wir zum Beispiel haben eine Drupal-Seite sehr lange auf Drupal 5 laufen
lassen, das irgendwann 2007 herausgekommen ist, haben Drupal 6 übersprungen, und
haben sie dann auf Drupal 7 neu gebaut. Mittlerweile ist das nicht mehr so ein Problem,
weil immer die aktuelle und die vorhergehende Drupal-Version supportet wird. Das
heißt wenn eine Drupal-Version herauskommt, dann ist fast schon garantiert, dass die
für sechs Jahre supportet werden soll. Vom heutigen Standpunkt aus. Früher war das
natürlich um einiges kürzer, aber wenn man sich den Releasecycle von Drupal 6 an-
schaut, das 2008 herausgekommen ist, wird das wahrscheinlich immer noch bis 2013
oder 2014 verfügbar sein und supportet werden.

MS: Aber da muss man ja auch relativ lange Bugfixes nachziehen, oder? Entwickelt
man aber prinzipiell auf der neuesten Version, oder wie viel Zeit verbringt man damit
Probleme in alten Versionen zu beheben?

KP: Nicht so viel, würde ich mal sagen. Drupal hat einen extremen Stabilisierungs-
faktor, bis ein Jahr nach dem Release geht es noch ein bisschen drunter und drüber,
da gibt es auch noch schwere Bugs, es muss sich erst einspielen, die ganzen Produk-
tivseiten nehmen dann erst die Version auf, und dann werden noch ein paar Probleme

143

entdeckt die dann gefixt werden müssen. Aber dann kommt eine Phase, eine sehr lange
Phase, die wir auch bei Drupal 5 und 6 schon mitbekommen haben, seitdem ich mit
Drupal arbeite, wo es zu einer extremen Stabilisierung kommt. Da treten sehr wenig
gröbere Fehler auf, man hat dann wirklich eine sehr beständige API. An die man natür-
lich auch gekettet ist, neue Features kommen ja keine mehr hinein in die alten Versionen,
das heißt man kann nur mit Modulen rundherum arbeiten oder sonst irgendwie damit
auskommen. Dafür hat man aber einen sehr hohen Stabilitätsgrad, und ich kann mich
dann über einen längeren Zeitraum sehr gut auf die Drupal-Version verlassen, und habe
auch sehr wenige Bugfixes und auch Securityfixes die ich beheben muss.

MS: Umgekehrt hat man aber in der Zeit in den neuen Versionen die absolute
Neustrukturierung und Schaffensphase?

KP: Es ist keine triviale Aufgabe jetzt eine Drupalseite von einer Version auf die
nächste zu bringen, weil sich eben der Code bei sehr vielen Modulen ändert. Meine
Daten sind sicher, wenn es einmal Code gibt dann gibt es meistens auch die Update-
Routinen um die Daten mitzunehmen, aber dass sich der Code von den Modulen wieder
stabilisiert hat, und Drupal Core sich wieder stabilisiert hat, das braucht natürlich eine
Zeit, und da es dann auch einige Umstrukturierungen gibt muss ich dann auch meine
Seite umkonfigurieren und habe da schon ein bisschen Arbeit damit.

MS: Okay. Und die Prozesse während der Entwicklung, zum Beispiel das Testen?
Es gibt ja im Projekt einen relativ umfangreichen Review-Prozess - ich habe gesehen
du bist da auch ziemlich engagiert darin - wie funktioniert das so? Und was wird sonst
noch gemacht um die Qualität vom Code zu erhöhen und sicherzustellen? Gibt es au-
tomatische Tests, oder ...

KP: Ja die gibt es. Mit der Version 7 wurden eben dann automatische Testfälle
in Drupal Core eingeführt, und da gibt es jetzt glaube ich 35.000 Assertions die dann
abgeprüft werden mit diesen Testfällen. Also Drupal Core ist mittlerweile sehr gut
getestet, und auch die großen Module sind sehr gut mit automatischen Testfällen abgedeckt.
Und der Reviewprozess von neuen Features und Bugs in Drupal Core funktioniert im-
mer so, dass wenn ein Patch gepostet wird, dann wird automatisch der Testbot getrig-
gert, das heißt dieses Patchfile wird an ein externes Botsystem geschickt, der Patch wird
angewandt auf die aktuelle Drupal-Version, der Testbot führt die Tests durch, wenn die
erfolgreich sind dann leuchtet das grün auf in dem Issue, wenn sie nicht erfolgreich sind
dann wird das Issue auf ’Needs work’ gesetzt, das heißt da ist noch Arbeit notwendig.

MS: Aber diese Tests schreibt nicht der Entwickler selber, sondern die sind im Core
System drinnen, oder wie muss ich mir das vorstellen?

KP: Genau. Natürlich kann es sein dass ich irgendeine Änderung in Drupal Core
mache, die auch erfordert dass ich den Testfall anpassen muss. Kann natürlich sein.
Aber die sind vor allem dazu gedacht, dass man einerseits Unittests hat, damit man

144

weiß dass abgeschlossene Einheiten richtig funktionieren, und dass man andererseits
Integrationstests hat, damit man weiß: ’Wenn ich den Patch anwende, bricht nicht mein
ganzes Drupal zusammen’, oder ’Wenn ich an dem Ende irgendwo einen Bug fixe, dann
ist nicht am anderen Ende wieder etwas komplett kaputt’. Darum hat man diese große
Anzahl von automatisierten Testfällen, die das gewährleisten sollen, dass Drupal immer
noch funktioniert, wenn Bugs gefixt werden oder neue Features dazukommen.

MS: Okay klar, das ist also ein kontinuierlicher Integrationsprozess auf die Main
Version.

KP: Genau.

MS: Und der Review-Prozess, da wird also wirklich jeder Code der eingecheckt
wird von jemandem angesehen, muss von jemandem angesehen werden?

KP: Ja. Es wird kein Code committet der nicht in einem Issue irgendwo gepostet
wurde. Es wird auch kein Code committet der nicht im Status ’Reviewed and tested
by the community’ ist. Das heißt wenn ich einen Patch poste, dann kann nicht der
Maintainer hergehen und den einfach committen, sondern er muss erst warten bis an-
dere Mitglieder der Community sagen: ’Ja das funktioniert tatsächlich’ und dann kann
es der Maintainer committen. Bei Drupal Core ist das besonders streng, bei den Con-
tributed Modules im Universum steht es natürlich den anderen Maintainern frei wie
sie das handhaben. Da gibt es natürlich auch Fälle wo das die Leute früher commit-
ten. Da ist der Anspruch an die Qualität sozusagen nicht so hoch weil eben Drupal
Core wirklich der Common Ground für alle ist und die Module haben halt eher mehr
eine Schnelllebigkeit und wollen auch schneller entwickelt werden, deswegen ist der
Reviewprozess da auch um einiges lockerer als bei Drupal Core.

MS: Wie weit zieht sich dabei der Release-Zyklus bis zu den Modulen durch, oder
werden die eher kontinuierlich mitentwickelt?

KP: Die Module haben sozusagen eigene Release-Zyklen. Natürlich sind sie an Dru-
pal Core gebunden, das heißt ein Modul ist immer zu einer gewissen Drupal Core Major
Version kompatibel. Drupal sechs, sieben, acht, was auch immer. Und während dem
Lifecycle von einer solchen Drupal Major Version bringt das Modul natürlich auch neue
Versionen heraus. Es kann auch sein dass das Modul neu geschrieben wird während dem
Lifecycle einer Drupal Core Version, das heißt da wird dann eine 2.x Branch aufgemacht
die das ganze irgendwie anders handhabt oder vielleicht sogar eine 3.x Branch. Das ist
dann den Maintainern im Contributed Universum freigestellt wie sie das handhaben.

MS: Okay. Eine andere Frage: Wenn ich neu zum Projekt dazukomme, wo kriege
ich meine Informationen her? Ist es am Besten wenn ich mich einfach durch die
Dokumente durchlese, oder wende ich mich lieber an bestimmte Personen? Wie ist so
generell das Wissen über Projektdetails in der Community oder im Projekt vorhanden,
oder wie wird das weitergegeben?

145

KP: Also generell wird natürlich versucht, möglichst viel zu dokumentieren. Drupal
Core, und ich glaube auch die meisten Module, sind sehr exzessiv mit Kommentaren im
Code kommentiert, und meistens sind die Kommentare im Code auch die bessere Ref-
erenz als irgendwelche Documentation Pages auf drupal.org. Speziell um neue Leute
einzubinden gibt es dann eigene Sektionen auf drupal.org wo neue Leute sich Tasks aus-
suchen können, die sie erledigen können um ein bisschen Gespür zu kriegen für Drupal
und um ein bisschen in die Community hineinzukommen. Es gibt einmal in der Woche
Core Office Hours, im Chat gibt es da einen gewissen Zeitraum wo dann Maintainer
anwesend sind und da können dann auch Neulinge hineinschauen, Fragen stellen und
sich Aufgaben abholen. Also zur Koordination von neuen Leuten die gerade frisch ins
Projekt kommen.

MS: Ich habe da auch etwas von einem Mentor-System gelesen?

KP: Gibt es auch. Das ist aber eher sehr locker organisiert. Da gibt es keinen straffen
Prozess dafür, es gibt halt Leute die sich gewissen Einzelpersonen annehmen. Ich zum
Beispiel beim Project Application Review Prozess. Damit ein Modul auf drupal.org
veröffentlicht werden kann, mit einer schönen URL und mit Releases, muss es zuerst
einen Review-Prozess durchlaufen. Das machen natürlich vor allem neue Contributor,
die noch nicht Maintainer sind von irgendeinem Modul, die müssen zuerst ihr Modul
zur Verfügung stellen damit das auf Security überprüft werden kann, auf Code-Qualität,
und erst dann wird es auf drupal.org als volles Projekt veröffentlicht. Es gibt eben ver-
schiedene Kanäle. Es gibt auch das Google Summer of Code Programm, wo Google ein
bisschen Geld sponsert damit eben Studenten sich da beteiligen können und Aufgaben
ausfassen die sie dann über den Sommer lösen und so auch in die Community rein-
rutschen und Kontakt dazu kriegen. Natürlich gibt es auch die vielen Konferenzen und
Drupal-Camps, also Veranstaltungen wo sich die Leute irgendwo treffen, wo es Vorträge
gibt und Workshops. Die gibt es immer wieder in ganz Europa, ich würde sogar sagen
weltweit. Zweimal jährlich gibt es ja die DrupalCon, die Konferenz. Einmal in Nor-
damerika, einmal in Europa, heuer gibt es glaub ich die erste in Südamerika, und so
wird versucht die Leute irgendwie im Real Life zusammenzubringen damit sie da was
ausmachen können. In Wien zum Beispiel gibt es die Drupal Austria Group, die trifft
sich einmal im Monat, und da werden auch Sachen besprochen und irgendwelche Ak-
tionen gemacht, zum Beispiel haben wir gerade die Drupal Austria Road Show laufen,
wo ein paar Leute vom Drupal Austria Verein in Österreich herumfahren und so kleine
Vorträge machen und Drupal vorstellen um in den Bundesländern ein bisschen die Leute
auf Drupal aufmerksam zu machen und ein bisschen die Community zu konsolidieren,
wer denn da eigentlich aktiv ist, und mit wem man sich vernetzen kann.

MS: Auf die feste Community wird also Wert gelegt.

KP: Ja. Also im Vergleich zu anderen Content Management Systemen wie zum
Beispiel Joomla gibt es bei Drupal nicht dieses ’Modul verkaufen’. Alle Module die es

146

gibt sind auf drupal.org und die sind Open Source und frei verfügbar, währenddessen
es bei Joomla soweit ich weiß, ich weiß nicht ob sich da in letzter Zeit was getan hat,
gibt es sehr viele Module die man eben kaufen muss bei irgendeinem Anbieter und
es gibt dort kein zentrales Repository wo ich alle Module finde, das sind dann andere
Probleme. Aber Drupal hängt sich ja selbst den Spruch um: ’Come for the software, stay
for the community.’ Es wird immer wieder sehr großen Wert auf gute Community, gute
Vernetzung, gutes Miteinander, Teilen, auf so etwas wird immer wieder Wert gelegt.

MS: Weil du Dinge wie Module verkaufen ansprichst, wie ist in Drupal der Einfluss
von Firmen, und gibt es da Finanzierungsmodelle?

KP: Ich glaube der Einfluss von Firmen ist sehr groß bei Drupal. Da gibt es einige
größere Firmen die eben Leute dafür bezahlen, Vollzeit an Drupal Core zu arbeiten
zum Beispiel. Natürlich wird auch großteils das umgesetzt das umgesetzt bei Drupal
was diese Firmen vorgeben. Das heißt Drupal, das eigentlich aus einem sehr kleinen
Content Management Bereich gekommen ist, und klein angefangen hat, wächst durch
diesen Firmeneinfluss auch immer mehr in den Enterprise-Bereich hinein, also es wird
darauf geachtet dass Drupal gut skaliert, dass es an verschiedene Enterprise-Systeme
leicht angebunden werden kann, dass es an andere Datenbanken angebunden werden
kann, und so weiter. Da macht sich der Einfluss von Firmen, und natürlich auch das
Geld, das diese Firmen für ihre Entwickler ausgeben, die dann diese Entwicklungen für
Drupal machen, da macht sich das dann schon bemerkbar.

MS: Das bestimmt dann aber auch die Richtung in die sich das Projekt allgemein
weiterentwickelt? Wie ist so der politische Einfluss von größeren, geldhabenden Be-
trieben und Gruppen?

KP: Ich glaube dieser Einfluss ist nicht zu unterschätzen. Es wird sehr viel Wert
darauf gelegt dass Leute in der Community als Personen sprechen. Ich habe das noch
nirgends gesehen in Drupal dass Leute explizit für eine Firma sprechen, sondern es
ist immer noch ein sehr persönliches Verhältnis von Personen untereinander. Natürlich
macht sich trotzdem bemerkbar wenn Leute Vollzeit an etwas arbeiten, an einem Projekt
in Drupal. Da kommt dann natürlich auch was raus, und das ist dann auch ein Benefit
für die Firma.

MS: Also persönlicher Kontakt, aber im Hintergrund auch die Firmen die das er-
möglichen.

KP: Genau. Es gibt natürlich immer noch einen sehr großen Freiwilligenaspekt bei
Drupal, Leute beschäftigen sich mit Themen aus reiner Neugierde, als Hobby, oder
entwickeln aus anderen Motiven, das darf man glaub ich nicht unterschätzen. Aber
auf der anderen Seite stehen natürlich sehr viele Firmen dahinter dass gewisse Sachen
umgesetzt werden und vorangetrieben werden. Aber es gibt niemanden mit einem Fir-
menaccount auf drupal.org der jetzt als Firma posten würde, so etwas gibt es nicht.

147

MS: Okay, gut, dann sage ich dazu mal danke. Eine kurze Frage nach einer persön-
lichen Einschätzung: Ich weiß nicht wieweit du vertraut bist mit verschiedenen Projek-
tmanagementarten und Prozessmodellen. Etwa agile Methoden, strukturierte Prozesse.
Wo würdest du ein Projekt wie Drupal da sehen, gibt es Gemeinsamkeiten mit der einen
oder anderen Richtung, oder kann man das gar nicht vergleichen?

KP: Hmmm. Ich glaube es gibt da einen sehr großen, wie soll man das sagen, Cul-
tural Clash. Ich glaube der Hackerethos in der Drupal Community ist sehr groß, und ich
glaube die meisten Leute sind sich nicht bewusst, dass sie eigentlich in der Issue Queue
zum Beispiel agile Methoden anwenden. In Drupal hört man immer wieder: ’Talk is
silver, code is gold.’ Ich würde mal sagen damit ist nicht nur Reden gemeint, sondern
auch Projektmanagementprozesse, das ist eigentlich zweitrangig, es geht darum Code
zu zeigen, es geht darum was umzusetzen. Trotzdem, durch diese mittlerweile doch
sehr raffinierten Prozesse die es auf drupal.org gibt, dass Tests automatisch ausgeführt
werden, dass es einen sehr intensiven Reviewprozess gibt, dass es Initiativen gibt was
denn jetzt eigentlich in die nächste Drupalversion hinein soll und was nicht, wird es an-
dererseits schon wieder durchbrochen eigentlich, dieser reine Hackerethos vom Coder,
von diesem typischen Coder der eben keine Prozesse braucht oder will, weil es im Hin-
tergrund eben doch wieder einen gewissen Projektmanagementprozess gibt. Aber ich
glaub er ist doch versteckt und nicht sehr offensichtlich für die Leute.

MS: Ja da stimme ich zu, und danke für diese Einschätzung. Gibt es von deiner Seite
irgendetwas was du noch gerne loswerden würdest zum Thema, irgendein persönliches
Anliegen, oder haben wir etwas vergessen was den Entwicklungsprozess betrifft?

KP: Was mir noch einfällt zur Dokumentation: Auffallend bei Drupal ist dass es sehr
wenige Diagramme gibt. Es wird fast nirgendwo etwas gezeichnet um etwas klarzu-
machen. Ich glaube es ist ein großer Schwachpunkt von Drupal dass es nicht mehr auf
- es müssen nicht unbedingt UML-Diagramme sein - aber ich glaube Drupal ist mittler-
weile ein sehr komplexes System, und ich glaube gerade im Dokumentationsbereich,
was die Aufbereitung von der Architektur betrifft, ist Drupal schon noch sehr hinten
nach. Ich glaube da könnte man einiges tun um es den Leuten, den Entwicklern, klarer
zu machen wie Drupal funktioniert und wie es eigentlich tut.

MS: Ich stelle mir das aber auch schwierig vor durch die Verteiltheit der Leute,
durch die Nichtanfassbarkeit der Prozesse, hier solche visuellen Modelle aufzustellen.

KP: Ich glaube dass es viele Leute gäbe die das gerne machen würden, oder die so
etwas sinnvoll machen würden, aber ich glaube es bleibt sehr wenig Zeit dafür übrig.
Die Leute sind einfach damit beschäftigt ihre Module zu warten, ihre Patches zu posten,
ihren Code durchzupushen, und wenn sie dann mal in Drupal drinnen sind haben sie
natürlich eh das Verständnis für das System und haben auch nicht das Bedürfnis das
niederzuschreiben, und so bleibt das dann erst recht wieder auf der Strecke. Was ich

148

gesehen habe ist, dass Dokumentation am besten funktioniert wenn es Leute machen,
die gerade dabei sind Drupal komplett neu zu lernen. Wenn die dann mitschreiben, was
sie gelernt haben, dann kommt eigentlich die beste Dokumentation raus.

MS: Gibt es da eigentlich Richtlinien, wie die Dokumentation auszusehen hat?

KP: Gerade für Code gibt es sehr strenge Regeln. Für Documentation Pages gibt es
weniger strenge Regeln, es gibt auf drupal.org ein Documentation Team, das kümmert
sich ausschließlich um die Dokumentation um sie zu organisieren, schauen was fehlt,
alte Seiten upzudaten, etc. Es gibt schon ein gewisses Wertlegen darauf, aber nicht
überschwänglich würde ich mal sagen, die Dokumentation ist sicher keine Stärke von
Drupal.

MS: Ich verstehe. Gut, dann sage ich vielen Dank für die Unterstützung und für
deine Einblicke in die Entwicklung von Drupal!

149

APPENDIX C
Interview: XWiki

This record of the interview held with developers of XWiki is presented in a version that
has been slightly edited for better readability and spelling. The original mail-exchange
can be found in the April to June 2012 archives of the project’s developer mailing list
at [65].

Martin Schönberger: As far as the process is concerned directly, which are the parts
of development that profit most from the fact that XWiki is open source?

Ecaterina Moraru: Regarding this topic there is also a blog series written by Ludovic
where you can find some of the answers from the company perspective: http://www.
xwiki.com/xwiki/bin/view/Blog/XWikiVisionOpenSource

Guillaume Lerouge: We get plenty of testing of all parts of XWiki from plenty of
people, some of whom contribute specific fixes that would otherwise not be worked on.

Vincent Massol: Obviously it’s hard to contribute to the core of an open source
project than it is to contribute to extensions/plugins. This is the case with XWiki. Ac-
tually what we’ve started doing a few years ago and this is still underway is to split
the monolithic XWiki code into small modules, each implemented a specific feature
(tag, querying, wysiwyg editor, rendering, etc). We have hundreds of such small mod-
ules which makes it easier to contribute than before. In addition we’ve started to make
all those modules extensions, i.e. features that can be added/removed from an XWiki
runtime. And we now have an Extension Manager in the XWiki runtime to manage
all extensions. This means that when someone contributes an extension on exten-
sions.xwiki.org it’s directly visible from within everyone’s installed XWiki runtime,
in exactly the same way as extensions created by the XWiki Dev Team. Thus I believe
we’ll continue to see more and more contribution in the area of extensions.

151

We have several layers of code contribution: http://dev.xwiki.org/xwiki/
bin/view/Community/Contributing#HContributeCode. (Note: I’ve updated
http://dev.xwiki.org/xwiki/bin/view/Community/Contributing

this morning)

Now more generally the XWiki open source project benefits from:

• extensions

• testing by the community and bug reporting

• discussions on the mailing lists to give ideas, to direct our work

MS: It seems like XWiki has a rather large core team closely working together,
and the Hall of Fame lists rather few external contributors. Does this reflect the actual
distribution in the project?

GL: Yes and no. Sure, most full-time XWiki developers are paid by XWiki SAS,
but it’s also because the company went to hire active community members. There are
also some former employees who are still contributors although no longer employed by
XWiki SAS.

VM: The list is valid for the committers. We’re about 15 active committers (ie.
XWiki Dev Team). We’ve always had a hard time identifying contributions since there
are lots of ways to contribute. Thus we asked contributors to add their names to the Hall
of Fame page but lots of people are shy or simply don’t think about putting their names
there. We’ve now moved to GitHub and it’s much easier to recognize code contributions
since we now use pull requests. I’m preparing a new section for the hall of fame that’ll
list all code contributors (and not only committers).

MS: What are the costs and benefits of using open source development methods in
this situation? Would communication patterns, knowledge management and develop-
ment cycles be approached differently if XWiki was developed purely in-house?

GL: Not really. The same processes would be used, only limited to internal mailing
lists.

VM: Definitely. One important difference is that there’s no power hierarchy in
XWiki development. All the committers are equal. We have built our rules on the
Apache model which is a Meritocracy. See http://dev.xwiki.org/xwiki/bin/
view/Community/Committership and especially our vote strategy. It’s enough that
a single person doesn’t agree for something to not happen.

EM: Regarding the other questions all that I can say is that I would love to have
much more external contributors. Some of us start as independent contributors and get

152

into the company, others work for companies related to XWiki and give back to the
community in a form or another (tests, bug reports, improvements requests, community
feedback and help, translations, documentation, etc.) The Hall of Fame reflect just
long time participants, but the sum of all contributions should be made with all the
users from l10n.xwiki.org; jira.xwiki.org; github.com/xwiki; xwiki.org, etc. In my case,
first I contributed to XWiki as a GSOC student and after that period I was offered a
position inside the company. And I am not the only case, same happened for other
GSOC students like Eduard, Ana-Maria, Asiri, Sergiu, etc. So IMO getting from an
external contributor to an internal one is great. From my perspective (as an Interaction
Designer) is great that I can work in an open source environment. I get to receive issues
(bugs) reports from all over the world, I can ask our users what improvements they
would like to see and what they think of my proposals. Sometimes is very hard to make
everyone happy, but since I am the only one in the company that is responsible with this
topic, if we didn’t have this open environment it would be impossible to do my work:
being in a remote team and being without a way to reach the users and learn what they
need, I couldn’t know what to do. Also, being in the open I can reference my work and
get critics on it (and I would love an even bigger community so that I could learn even
more things).

MS: Another thing I’m interested in is how the scope of the project and the direction
of development are decided on. To what degree do different stakeholders influence the
course of XWiki, what is caused by personal itches of the developers, requests of paying
customers, or complaints and suggestions of casual users?

GL: All of those factors play a role. Some customers pay for the development of
very specific features or extensions. For instance, the Office document Import feature
was paid for by a client. There is an internal roadmap process at XWiki SAS where
stakeholders from every department can voice their priorities (sysadmin, dev, project
management, sales, marketing, research...). Once this has been done, a roadmap is
proposed, that members of the open source community can add to if they wish. In
addition to this, about 40-50 % of the time of core developers is preserved so that they
work on maintenance and bugfixing tasks, which they choose what to spend on.

MS: Is there a special time in the release cycle when new content is agreed upon?
How far and in what detail can the content of future releases be planned ahead by the
developers? Are detailed plans desirable, or is it more advantageous to react to circum-
stances when they arise?

EM: Our development is made in release cycles. We do one cycle per year (for ex-
ample we are now developing the 4.x cycle and we just released 4.0, so now we work
on 4.1, etc.) In one year we get to have about 6 major releases per cycle (4.0-4.5). For
each major release we have a Roadmap meeting, before the release starts, where we
decide on what we work on. Check out http://enterprise.xwiki.org/xwiki/

153

bin/view/Main/Roadmap For each roadmap we vote on the mailing list the issues
we work on, the release dates, we vote if we need to delay a bit the release because
of certain problems, etc. So the decisions are transparent and everyone can give their
opinion on them and interfere. A very-very important aspect is that we do timebox-
ing releases instead of feature-driven releases so this IMO is a big differentiator be-
tween being an open source company and a closed source one (and wait indefinitely
for a certain feature). Read more about at http://xwiki.markmail.org/thread/
s5wajg23uhqmtnyh. Another important aspect is that even if we are a company, we
have very clear departments. We have a clear difference between who is working with
our paying customers (Clients Team) and who is working for the platform (Tech Team).
So even if we collaborate inside the departments we have different purposes and differ-
ent stakeholders. For the Tech Team the most important stakeholder is the community.
Of course we care about what the Clients Team asks, but IMO we consider them as part
of the community and as XWiki users (the only difference is that maybe their complains
reach faster since this complains can be made in person).

GL: Given the very frequent release cycle, meetings take place often. There is a new
large release every year, interspersed by major releases every 2-3 months. There is a
roadmap meeting for each of those, thus it’s easy to gather feedback and make priorities
evolve along the way. For a large release, a theme and a sub-theme are agreed on that
set the general direction of that release. For major releases, a list of JIRA tasks is agreed
on.

VM: The strategy:

• In the open source project, there are only individuals, no company. At the start of
each release committers and contributors can state what they’d like to work on for
this release. We publish this on our roadmap page: http://www.xwiki.org/
xwiki/bin/view/Main/Roadmap (especially http://enterprise.xwiki.
org/xwiki/bin/view/Main/Roadmap for XE).

• At XWiki SAS, we do internal roadmap meetings and then find/assign developers
who’re going to be the owners of issues/features on the xwiki open source project.
During these internal meetings we have representants of all XWiki SAS domains
(marketing, customer project, sales, tech, research, infrastructure,etc) present and
decide in a collegial manner.

MS: The third question concerns specialized tasks surrounding the development.
XWiki follows diverse strategies for testing. One of them is manual, formal testing
executed by a dedicated QA team.

VM: Actually we don’t have any notion of QA team in the xwiki open source project.
At the open source level each developer is responsible for the quality of his code and is

154

supposed to write automated tests and do manual testing of his code.However we have
one contributor named Sorin Burjan who’s helping the developers do this by systemati-
cally testing new releases himself. He’s helping us a lot. But he’s acting as a contributor.
Now Sorin is also an employee of XWiki SAS and within XWiki SAS his role is QA
engineer and his internal role is to make sure that releases are of good quality.

MS: Does this part of the approach make the many-eyeballs-method of discovering
bugs less important, or is a combination of these two strategies necessary for overall
high quality of the code?

GL: open source users tests parts of the software not tested by the QA team, and
vice-versa. Both methods complement each other.

VM: Combination. I’d say the vast majority of issues are still reported by the many
eyeballs. But Sorin finds a good lot too! :) Both are needed.

MS: Could automated testing stand on its own with sufficient coverage?

GL: No. Some things cannot be tested automatically, especially on the look & feel
side.

VM: IMO it could but we haven’t reached a good enough level yet. We need to
become better at this and start measuring better our test coverage. We have just started
automating tests on various environments (DBs, browsers) and that’ll take some time.
In the meantime Sorin has taken charge of manually testing XWiki on those various
environments. At some point we’ll also need to add automated performance tests which
is done manually too at this point.

MS: On a similar note, how do the different methods pursued in customer support
(like detailed documentation, peers helping each other, and specialized paid support)
interact and draw upon each other?

EM: Regarding this question, I just want to say that we are a small team. We have
just a single person as a dedicated QA so all the help he can get is welcomed. For
example, I test and report a lot of issues/improvements even though I am not part of the
QA team. Another thing is that XWiki is multi OS, multi browser, multi database, multi
display, multi whatever compatible :) We always need more eyes, hands, automated
tests, manual tests, any kind of tests to verify the quality and then ... we always need
more committers to fix them.

GL: Documentation is updated based on the most frequent requests from customers.
Paid support users are usually different from mailing list users, although some of the
latter do convert to the former from time to time.

Sorin Burjan: Yes, as Caty and Guillaume said, the more eyes are looking, the better
the Quality of the product is. I am the QA responsible of testing XE and XEM, but a lot

155

of other bugs are reported by the community. We have a formal Manual Test Plan, you
can check http://www.xwiki.org/xwiki/bin/view/TestReports/WebHome.
Besides this, we have also an automated tests suite maintained by tech team. We don’t
have a dedicated team for Testing Automation. For example, there are certain things I
always look for, for example: cross-browser compatibility, database migration, etc. The
role of the community is important because we have a lot of extensions or use cases
which we don’t have time/resources to test, but the users which installs them write on
the mailing lists, report issues or even provide patches if they find bugs. Usually when a
user from mailing lists has troubles accomplishing what he/she wants, we check if that
is a valid use case, our developers being very responsive in aiding them. If the use case
is valid, this usually goes documented in the according place, so other users wanting to
do that, won’t have to write on the lists. So the QA is done collaboratively, not only by
a dedicated team or individual. Hope this helps.

VM: XWiki SAS internal support will raise issues in our issue tracker like anyone
else and these will get fixed eventually. In general the most people who report an issue
and faster the XWiki Dev Team spends time on fixing it quickly.

[. . .]

MS: So my first question this time concerns the architectural design, and how it has
evolved over time. Did the basic structure change / grow significantly since the early
days of XWiki? Vincent mentioned the change from a monolithic code to small mod-
ules. Were these and other changes made in some major refactorings, or rather through
steady refinement? To what degree is it an issue to keep backwards compatibility be-
tween releases?

VM:We’ve decided a long time ago (we = the committers at that time) that we pre-
ferred evolution rather than revolution. The main reason is that XWiki already had an
important user base when the development team was started (before that it was just Lu-
dovic working on it). It takes more time but it allows us to keep existing users happy. In
addition we’ve been able to still move forward. There’s a JoelSpolsky blog about this
topic: http://www.joelonsoftware.com/articles/fog0000000069.html

I don’t have any figure I can prove but I’d say we’ve modified a bit more than half of
the code in a 5 years time span (maybe up to 75%). I can cite 2 examples of relatively
large refactorings we’ve done without breaking backward compatibility:

• The Rendering module. XWiki had a wiki syntax initially and we wanted to fully
rewrite the code that takes an input in that syntax and generate HTML out of it.
So we created a new Rendering engine that can take any input in any syntax and
generate an output in any other syntax (see http://rendering.xwiki.org).
And we added polyglot support in XWiki (i.e. the ability to support several wiki
syntaxes), and introduced XWiki Syntax 2.0.

156

• The WYSIWYG editor. We were using TinyMCE and switched to our own editor
that we wrote from scratch. If you’re interested we can explain the reason. . .

Then we have a lot of smaller refactorings. We can go into more details if you’re
interested. The only big part that hasn’t been refactored yet is the core Model. I’d really
like to tackle this and we’ve started designing the new model a bit but it’s complex and
requires a long period of focused time which I personally haven’t been able to get so
far. We’re very serious on backward compatibility and most wiki pages back from 5
years ago still work on the latest version. We’ve defined a precise strategy to ensure we
don’t break backwardcompatibility: http://dev.xwiki.org/xwiki/bin/view/

Community/DevelopmentPractices\#HBackwardCompatibility

If you’re interested in how we came up with this, it should be easy to find the mailing
list threads about it on http://xwiki.markmail.com

GL: I’m not very qualified to answer this one, but here goes. XWiki has had user
that started using the software in its early days (I have an example from around 2006
in mind) who are still using the software today and successfully managed to upgrade
from version 0.9 to version 3.5.1 and still have their wiki functional. XWiki has many
enterprise users, for whom backward compatibility is very important. So the XWiki dev
community has always been careful not to break too many things at once and provide an
upgrade path from one version to the next. Major changes (such as the switch to a new
syntax) came with a migrator to help handling them. It is sometimes tough to maintain
backward compatibility, but it’s a major priority of the dev team.

MS: Also I am interested more closely how the functions and responsibilities are
divided in the team. Caty wrote about ’very clear departments’ in her last answer, and
the teampage on XWiki.com lists a multitude of different and specific roles. Both of
your descriptions of the testing process, however, suggest a less strict separation of
tasks. So what role do the roles play? How specialized or cross-functional are the teams
and people working therein? Is there a difference between XWiki.org and XWiki SAS?

VM: At the open source project level we have only 2 roles:

• contributors: anyone contributing as defined here: http://dev.xwiki.org/

xwiki/bin/view/Community/Contributing

• committers: people who have right access to the SCM and who can vote, see
http://dev.xwiki.org/xwiki/bin/view/Community/Committership

Committers decide what they want to work on. Some can be more design-oriented,
others more test-oriented, etc. At XWiki SAS we have more roles and a more traditional
structure. Tech roles:

157

• CTO (me ;))

• Tech Lead or Senior Dev

• Web Developers

• Back end Developer

• Tester

• QA engineer

• Designer

GL: As Vincent explained, yes, there is a difference. While the company is orga-
nized in a more traditional way, with a division of responsibilities, in the XWiki.org
there are only committers and contributors, with no other formal title. Everyone is
encouraged to participate according to their abilities, be that coding, documenting,
testing or communicating. In addition to this, a lot of members of the community
are not related to the company whatsoever. You can find out more about them here:
http://dev.xwiki.org/xwiki/bin/view/Community/HallOfFame

MS: In a related matter, many of the role descriptions of the core developers contain
manager and leadership titles.

VM: Hmm. Do you have a link? AFAIK we just have committers.

MS: I’m sorry, I guess my mistake here was not taking the separation between
XWiki SAS and XWiki.org into consideration. I was referring to http://www.xwiki.
com/xwiki/bin/view/Company/Team, where three Project Managers, a Team
Leader, a Communication Manager, an Administration Manager, a Support & Docu-
mentation Manager, a Research Manager, etc. are mentioned, so I thought these roles
might be relevant. The same group of people working on the same projects in two
different ways, this is still a bit hard for me to grasp.

VM: It’s easy: think about it in the same way in which a person always belongs to
several groups:

• group of your close friends

• group of people sharing a hobby with you

• group of people playing a sport with you

• group of people going to Church with you etc.

158

For all these groups you’re the same person but with different hats when you’re in
one of those groups. And each of these groups has its own rules.The only hard part here
is that there’s the word “XWiki” in both entities (open source project and company). I
personally don’t like this since it brings ambiguity when we have a very clear separation
between both.

MS: What, in practice, are the main tasks of the people managing the development?

VM: There’s nobody managing the development ;) We’re auto-managed. Commit-
ters make proposals or start votes and others discuss and vote. We do stuff by collegial
agreements.

MS: I see your point. So everyone (who is interested and dedicated) takes an equal
part in making decisions?

VM: Yes. That’s our vote process.

MS: Do you think these collegial agreements would still hold if the base of contrib-
utors was significantly larger or wider spread, and therefore incorporated more diverse
ideas about the project? Or would the system have to be adapted to scale successfully?

VM: Right now we’re about 15 active committers. I have no idea at what level it
would break but my gut feeling is that it would hold till about 50 active committers.
The reason for this value is that I’ve worked in the past in company where we all had
the same title and worked collegially and we only had to introduce a hierarchy when we
reached 50 employees or so. Actually I even think that the open source project could
go beyond this value since it’s much more free and relaxed than a company. Note that
I’m talking about committers. Now there are a lot more people participating in various
ways (raising issues, suggesting ideas, supporting others on the list, writing articles/blog
posts/tweeting, sending pull requests, etc). Also note that there aren’t that many projects
with 50 active committers (Actually I can’t even cite one!) so we’re pretty safe for a
long time IMO ;)

MS: Many meritocracies have safety nets, some rules to follow or people to go to
when no consensus can be reached on important topics. Did this ever occur in XWiki?
What would be done in such a situation?

VM: It happens rarely. We do frequently don’t agree on some details. The proposals
or vote is then discussed and amended with a new proposal/vote. Example:

• First vote: http://markmail.org/thread/56v5thsj6wv7tpno

• Second vote: http://markmail.org/thread/tino4ngttflc5i3s

Sometimes it takes longer to reach a consensus but it’s always a better result IMO.
Nobody in this community votes -1 without a good reason just to bother people ;)

159

MS: Have either the formal roles or the informal merit people earned in a special
field some kind of influence on the weight of their voice in a dispute?

VM: Everyone has the same vote power but then people have more influence than
others through their past actions.

GL: I don’t have much to add to Vincent’s answer here. The important thing to
keep in mind is that when taking part to the community, your XWiki SAS title plays
no part. For instance in my case, the weight of my remarks would come from my past
involvement in the community (writing documentation, taking part to discussion about
features, testing the product) rather my XWiki SAS role.

MS: And last but not least some questions about the access and distribution of
knowledge: XWiki features an extensive written documentation of itself and the process
used in its development. What is the role then of additional, personal communication, of
the proverbial informal talk at the water cooler? Is the necessary time and ceremony of
written documentation always justified by making the knowledge permanently available
to everyone, or can you think of exceptions?

VM: We try to make it as easy as possible for someone external to follow the devel-
opment or join the team. We also try to have a common style for writing code. This is
needed before there’s no ownership of the code and everyone can modify any part of the
code. Also homogeneous code also makes it easier to join the dev team. Of course we
have lots of informal discussion on the mailing list and on IRC (and people speak with
other privately too but all proposals/decisions are always made publicly).

GL: When starting to work with a new piece of technology, even with the best docu-
mentation in the world there will be times when you will need to ask questions and have
a discussion with others. This can happen in real life (and it does a lot at the office), but
also through Skype or IRC. XWiki devs and users try to make themselves available to
answer questions from users and newcomers, which greatly contributes to the sense of
community around XWiki.

[. . .]

MS: As I explained in one of my earlier posts, I am researching open source devel-
opment processes in comparison to other approaches of developing software, and trying
to find out how they relate to each other in different aspects. Besides examining those
aspects, however, I am also interested in your opinion about the process. Do you see
similarities to agile methods of development, or to the well-defined processes of soft-
ware engineering, in your approach? Where can these similarities be found, and where
do they end?

VM: Well each open source project is completely free to organize itself the way it
wants so we cannot say anything about any similarities. Now I personally like agile

160

practices which I’ve been practicing before I came to know eXtreme Programming and
which I’ve been applying to my open source projects wherever I could. Some examples
of practices we’re applying here on the xwiki project:

• Release often (every 3 weeks in average)

• Relentless refactoring

• Automated tests (gives courage for refactoring) and Continuous Integration

• We don’t do pair programming but we do “continuous” reviews by sending email
diffs to the lists so that all committers can see them and review them

• Time boxing

• Collective code ownership

• Coding standard

• Simple design/System metaphor through our proposals/vote practice on the list
and through our common decision making

MS: Finally, may I ask you for a quick outlook into the future of XWiki? Which
chances and challenges do you see coming up? In what direction would you like the
development of XWiki to go in the following years?

VM: ahah. . . . Good question. Several answers:

• One current challenge is in finishing to split the XWiki code base into small mod-
ules that form our platform and that can then be assembled by users to construct
the collaborative web site they wish. We’ve progressed a lot in this direction but
there’s still some work with our Extension Manager, splitting our code and intro-
ducing extensible UIs through what we call Interface Extensions.

• We have an important challenge in being able to attract people. There are 2 dan-
gers here:

– The XWiki software is becoming better and better and people usually want
to participate to an open source project when they see it’s not “finished” and
they see they can help out. If a project is too well finished people won’t par-
ticipate. See this blog post I’ve written a long time ago about this: http://
web.archive.org/web/20090130001223/http://blogs.codehaus.

org/people/vmassol/archives/001325_how_can_i_improve_my_

oss_project_managment_skills.html

161

– The XWiki open source project is full of rules that we’ve voted over the
years to improve the way we develop software. This has a good and bad
point for attracting newcomers:

∗ bad: It could be seen as daunting to have to learn and bother with all
those rules when all you want to do is “just code”

∗ good: the newcomer will learn a lot about software development. More-
over nothing is set in stone. Anyone can propose to remove or change
a rule at any point in time and provided it’s voted positively it’ll be
changed

Actually I think that our solution for this is what we’ve started doing:

• Make everything an extension and allow anyone to contribute extensions irrele-
vant to how they developed it. This http://extensions.xwiki.org. Our
challenge is in creating the tools within the XWiki software to make it easy to
publish extensions.

MS: Also, do you have any points you would like to additionally mention, some
vital aspect of the process I failed to address, or a special emphasis on anything you feel
we did not talk about enough? I am glad for further hints and comments. :)

VM: Nothing comes to mind. Maybe just that we’re all passionate people :)

162

APPENDIX D
The Agile Manifesto

Manifesto for Agile Software Development

We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation

Customer collaboration over contract negotiation
Responding to change over following a plan
That is, while there is value in the items on

the right, we value the items on the left more.

Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward Cunningham,
Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries, Jon Kern,

Brian Marick, Robert C. Martin, Steve Mellor, Ken Schwaber, Jeff Sutherland, Dave
Thomas

c© 2001, the above authors
this declaration may be freely copied in any form,

but only in its entirety through this notice.

163

Principles behind the Agile Manifesto

We follow these principles:

Our highest priority is to satisfy the customer
through early and continuous delivery

of valuable software.

Welcome changing requirements, even late in
development. Agile processes harness change for

the customer’s competitive advantage.

Deliver working software frequently, from a
couple of weeks to a couple of months, with a

preference to the shorter timescale.

Business people and developers must work
together daily throughout the project.

Build projects around motivated individuals.
Give them the environment and support they need,

and trust them to get the job done.

The most efficient and effective method of
conveying information to and within a development

team is face-to-face conversation.

Working software is the primary measure of progress.

Agile processes promote sustainable development.
The sponsors, developers, and users should be able

to maintain a constant pace indefinitely.

Continuous attention to technical excellence
and good design enhances agility.

Simplicity–the art of maximizing the amount
of work not done–is essential.

The best architectures, requirements, and designs
emerge from self-organizing teams.

At regular intervals, the team reflects on how
to become more effective, then tunes and adjusts

its behavior accordingly.

164

165

Bibliography

[1] Pekka Abrahamsson, Juhani Warsta, Mikko T. Siponen, and Jussi Ronkainen.
New Directions on Agile Methods: A Comparative Analysis. In ICSE ’03:
Proceedings of the 25th International Conference on Software Engineering,
pages 244–254, Washington, DC, 2003. IEEE Computer Society.

[2] Agile Alliance. Manifesto for Agile Software Development.
http://www.agilemanifesto.org/, 2001. [Online; accessed 19-November-2011].

[3] Manuela Angioni, Raffaella Sanna, and Alessandro Soro. Defining a Distributed
Agile Methodology for an Open Source Scenario. In , editor, Proceedings of the
1st International Conference on Open Source Systems (OSS 2005) - Genova,
Italy, volume 1, july 2005. idxproject: MAPS NDA.

[4] Friedrich L. Bauer. Software Engineering - Wie es begann. Informatik Spektrum,
16(5):259–260, 1993.

[5] Kent Beck. Extreme Programming Explained: Embrace Change.
Addison-Wesley, first edition, October 1999.

[6] Kent Beck and Cynthia Andres. Extreme Programming Explained: Embrace
Change. Addison-Wesley, second edition, November 2004.

[7] Barry Boehm. Get Ready for Agile Methods, With Care. Computer, 35(1):64–69,
January 2002.

[8] Barry Boehm. A View of 20th and 21st Century Software Engineering. ICSE’06,
2006.

[9] Barry Boehm and Richard Turner. Balancing Agility and Discipline: A Guide for
the Perplexed. Addison-Wesley, May 2003.

[10] Terry Bollinger, Russel Nelson, Karsten M. Self, and Stephen J. Turnbull.
Open-Source Methods: Peering Through the Clutter. IEEE Software, 16(4):8–11,
July/August 1999.

167

[11] Frederick P. Brooks, Jr. No Silver Bullet: Essence and Accidents of Software
Engineering. Computer, 20(4):10–19, April 1987.

[12] Dries Buytaert. Drupal. http://drupal.org/, April 2012. [Online; accessed
24-April-2012].

[13] Dries Buytaert. DrupalCon Denver 2012 - Keynote.
http://denver2012.drupal.org/keynote/dries-buytaert, March 2012. [Online;
accessed 24-April-2012].

[14] Lan Cao, Kannan Mohan, Peng Xu, and Balasubramaniam Ramesh. How
Extreme Does Extreme Programming Have to Be? Adapting XP Practices to
Large-Scale Projects. In Proceedings of the Proceedings of the 37th Annual
Hawaii International Conference on System Sciences (HICSS’04) - Track 3 -
Volume 3, HICSS ’04, pages 30083.3–, Washington, DC, USA, 2004. IEEE
Computer Society.

[15] Alistair Cockburn. Agile Software Development: The Cooperative Game.
Addison-Wesley, October 2006.

[16] Kevin Crowston and Hala Annabi. Information Systems Success in Free and
Open Source Software Development: Theory and Measures. In Software
Process: Improvement and Practice, pages 123–148, 2006.

[17] Kevin Crowston and Barbara Scozzi. Open Source Software Projects as Virtual
Organizations: Competency Rallying for Software Development. IEE
Proceedings - Software Engineering, 149(1):3–17, 2002.

[18] Kevin Crowston, Kangning Wei, James Howison, and Andrea Wiggins.
Free/Libre Open Source Software Development: What We Know and What We
Do Not Know. ACM Computing Surveys, 44, 2010.

[19] Pete Deemer, Gabrielle Benefield, Craig Larman, and Bas Vodde. The Scrum
Primer. http://www.scrumalliance.org/resources/339, 2010. [Online; accessed
12-January-2012].

[20] Ludovic Dubost. XWiki - Vision on Open Source.
http://xwiki.com/xwiki/bin/view/Blog/XWikiVisionOpenSource, May 2012.
[Online; accessed 24-May-2012].

[21] Karl Fogel. Producing Open Source Software: How to Run a Successful Free
Software Project. O’Reilly Media, Inc., October 2005.

[22] Django Software Foundation. Django. https://www.djangoproject.com/, June
2012. [Online; accessed 17-June-2012].

168

[23] Free Software Foundation. The Free Software Definition.
http://www.gnu.org/philosophy/free-sw.html. [Online; accessed
28-January-2012].

[24] The Eclipse Foundation. Eclipse Development Process.
http://www.eclipse.org/projects/dev_process/development_process_2011.php,
2011. [Online; accessed 27-Mar-2012].

[25] Alfonso Fuggetta. Open source software: An evaluation. J. Syst. Softw.,
66(1):77–90, April 2003.

[26] Volker Grassmuck. Freie Software: Zwischen Privat- und Gemeineigentum.
Bonn: Bundeszentrale für Politische Bildung, 2002.

[27] Adrian Holovaty and Jacob Kaplan-Moss. The Django Book.
http://www.djangobook.com/en/2.0/, 2009. [Online; accessed 26-May-2012].

[28] Open Source Initiative. Open Source Definition.
http://www.opensource.org/docs/osd. [Online; accessed 28-Jan-2012].

[29] Osamu Kobayashi, Mitsuyoshi Kawabata, Makoto Sakai, and Eddy Parkinson.
Analysis of the Interaction Between Practices for Introducing XP Effectively. In
Proceedings of the 28th International Conference on Software Engineering, ICSE
’06, pages 544–550, New York, USA, 2006. ACM.

[30] Stefan Koch. Agile Principles and Open Source Software Development: A
Theoretical and Empirical Discussion. In Jutta Eckstein and Hubert Baumeister,
editors, XP, volume 3092 of Lecture Notes in Computer Science, pages 85–93.
Springer, 2004.

[31] Stefan Koch. Evolution of Open Source Software Systems: A Large-Scale
Investigation. In International Conference on Open Source Systems, pages
148–153, 2005.

[32] Per Kroll and Philippe Kruchten. The Rational Unified Process Made Easy: A
Practitioner’s Guide to the RUP. Addison-Wesley, 2003.

[33] Philippe Kruchten. The Rational Unified Process: An Introduction.
Addison-Wesley, third edition, 2003.

[34] Craig Larman. Agile and Iterative Development: A Manager’s Guide.
Addison-Wesley, 2004.

[35] Netcraft Ltd. July 2012 Web Server Survey.
http://news.netcraft.com/archives/2012/07/03/july-2012-web-server-survey.html,
July 2012. [Online; accessed 04-Aug-2012].

169

[36] Alan MacCormack, John Rusnak, and Carliss Y. Baldwin. Exploring the
Structure of Complex Software Designs: An Empirical Study of Open Source and
Proprietary Code. Manage. Sci., 52(7):1015–1030, July 2006.

[37] Bart Massey. Why OSS Folks Think SE Folks Are Clue-Impaired. In
Proceedings of the 3rd Workshop on Open Source Software Engineering,
International Conference on Software Engineering. 2003, pages 91–97. ICSE,
2003.

[38] Steve McConnell. Open-Source Methodology: Ready for Prime Time? IEEE
software, 1999.

[39] Audris Mockus, Roy T. Fielding, and James D. Herbsleb. Two Case Studies of
Open Source Software Development: Apache and Mozilla. ACM Trans. Softw.
Eng. Methodol., 11(3):309–346, July 2002.

[40] Siobhan O’Mahony and Fabrizio Ferraro. The Emergence of Governance in an
Open Source Community. Academy of Management Journal, 50(5):1079–1106,
2007.

[41] Margit Osterloh, Sandra Rota, and Bernhard Kuster.
Open-Source-Softwareproduktion: Ein neues Innovationsmodell. Open Source
Jahrbuch, 2004.

[42] Project Management Institute PMI. A Guide to the Project Management Body of
Knowledge. Project Management Institute, Newtown Square, PA, fourth edition,
2008.

[43] Eric S. Raymond. The Cathedral & the Bazaar. O’Reilly Media, revised edition,
January 2001.

[44] Christian R. Reis and Renata P. M. Fortes. An Overview of the Software
Engineering Process and Tools in the Mozilla Project. In Workshop on Open
Source Software Development, pages 155–175, Newcastle, UK, 2002.

[45] Hugh Robinson and Helen Sharp. XP Culture: Why the Twelve Practices Both
are and are not the Most Significant Thing. In ADC ’03: Proceedings of the
Conference on Agile Development, Washington, DC, USA, 2003. IEEE Computer
Society.

[46] Winston W. Royce. Managing the Development of Large Software Systems.
Proceedings of WESCON, 1970.

[47] Herbert Rubin and Irene Rubin. Qualitative Interviewing: The Art of Hearing
Data. Sage Publications, 2011.

170

[48] Walt Scacchi. Understanding Requirements for Developing Open Source
Software Systems. In IEE Proceedings - Software, pages 24–39, 2001.

[49] Walt Scacchi. Is Open Source Software Development Faster, Better, and Cheaper
than Software Engineering? In 2nd ICSE Workshop on Open Source Software
Engineering, 2002.

[50] Walt Scacchi, Joseph Feller, Brian Fitzgerald, Scott Hissam, and Karim Lakhani.
Understanding Free/Open Source Software Development Processes. 11(2):95
–105, March/April 2006.

[51] Ken Schwaber and Mike Beedle. Agile Software Development with Scrum.
Prentice Hall, first edition, 2002.

[52] Sonali K. Shah. Motivation, Governance, and the Viability of Hybrid Forms in
Open Source Software Development. Manage. Sci., 52(7):1000–1014, July 2006.

[53] Sonali K. Shah and Kevin G. Corley. Building Better Theory by Bridging the
Quantitative-Qualitative Divide. Journal of Management Studies,
48(8):1821–1835, 2006.

[54] Srinarayan Sharma, Vijayan Sugumaran, and Balaji Rajagopalan. A Framework
for Creating Hybrid-Open Source Software Communities. Info Systems, 12:7–25,
2002.

[55] Black Duck Software. Ohloh. www.ohloh.net, 2012. [Online; accessed
17-May-2012].

[56] Richard Stallman. Viewpoint: Why ‘Open Source’ Misses the Point of Free
Software. Commun. ACM, 52(6):31–33, June 2009.

[57] Klaas-Jan Stol, Muhammad Ali Babar, Paris Avgeriou, and Brian Fitzgerald. A
Comparative Study of Challenges in Integrating Open Source Software and Inner
Source Software. Inf. Softw. Technol., 53(12):1319–1336, December 2011.

[58] Jeff Sutherland. Agile Can Scale: Inventing and Reinventing SCRUM in Five
Companies. Cutter IT J, 14(12):5–11, 2001.

[59] Hirotaka Takeuchi and Ikujiro Nonaka. The New New Product Development
Game. Harvard Business Review, pages 137–146, January 1986.

[60] Paul Vixie. Software Engineering. In Chris DiBona, Sam Ockman, and Mark
Stone, editors, Open Sources: Voices from the Open Source Revolution. O’Reilly
and Associates, Cambridge, Massachusetts, 1999.

171

[61] Georg von Krogh and Eric von Hippel. The Promise of Research on Open Source
Software. Management Science, 52:975–983, 2006.

[62] Juhani Warsta and Pekka Abrahamsson. Is Open Source Software Development
Essentially an Agile Method? In Proceedings of the 3rd Workshop on Open
Source Software Engineering, 25th International Conference on Software
Engineering, pages 143–147, Portland, Oregon, 2003.

[63] Steve Weber. The Success of Open Source. Harvard University Press, 2005.

[64] Dave West. Water-Scrum-Fall Is The Reality Of Agile For Most Organizations
Today. http://www.cohaa.org/content/sites/default/files/water-scrum-fall_0.pdf,
July 2011. [Online; accessed 28-Jul-2012].

[65] XWiki. The devs Archives. http://lists.xwiki.org/pipermail/devs/, June 2012.
[Online; accessed 11-Jun-2012].

[66] XWiki. XWiki. http://www.xwiki.org/xwiki/bin/view/Main/WebHome, June
2012. [Online; accessed 24-Jun-2012].

[67] yeebase media GmbH. t3n. http://t3n.de/opensource/projects/, April 2012.
[Online; accessed 02-Apr-2012].

[68] Jamie Zawinski. Resignation and Postmortem.
http://www.jwz.org/gruntle/nomo.html, March 1999. [Online; accessed
27-July-2012].

172

