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Kurzfassung

Digital subscriber lines (DSL) sind mit weltweit über 300 Millionen Nutzern
eine der aktuell wichtigsten Breitbandtechnologien. Neben einem wachsenden
Umweltbewusstsein ist es diese große Anzahl an bereits installierten Systemen,
die Energieeffizienz zu einem wichtigen Gütemaß für DSL Systeme macht. Die
Hauptbeeinträchtigung der Übertragungsqualität in gebräuchlichen DSL Syste-
men ist das Übersprechen im Kabelbündel. Die Koordinierung der Sendeleis-
tungsspektra mehrerer Systeme erlaubt es, die nachteiligen Auswirkungen des
Übersprechens abzuschwächen und die Übertragungseffizienz und Verbindungssta-
bilität zu verbessern. Das entsprechende mehrdimensionale “Rucksackproblem” ist
jedoch nur für Zugangsnetze mit wenigen aktiven DSL Nutzern optimal lösbar. Das
Ziel dieser Arbeit ist daher der Entwurf von robusten und energieeffizienten Algorith-
men zum dynamischen Spektrum-Management (DSM) mit niedriger Komplexität,
welche auf große DSL Netzwerke anwendbar sind.

Die vorgestellte Entwurfsstrategie zielt auf eine Sendeleistungsminimierung in
Mehrträgerübertragungssystemen mit mehreren Nutzern ab, wobei eine Lagrange-
Relaxierung des Optimierungsproblems zur Anwendung kommt. Die Wahl der
Zielfunktion resultiert aus vergleichenden Simulationen mit einem nichtlinearen
Modell des Leistungsverbrauchs eines Leitungstreibers, welcher einen Großteil der
Gesamtleistung eines DSL Sendeempfängers darstellt. Es wird gezeigt, dass die ver-
wendete Relaxierung eine “Dualitätslücke” in Bezug auf die Zielfunktion mit sich
bringt, die jedoch in praxisrelevanten Szenarien vernachlässigbar ist. Um eine enge
Schranke für die Performanz von DSM Algorithmen zu berechnen wird ein neuer
Ansatz für dual-optimales DSM hergeleitet, der die Menge der derzeit lösbaren DSM
Probleme erweitert. Für noch größere Netzwerke wird ein neuartiger und vielseitig
anwendbarer DSM Algorithmus vorgeschlagen, welcher die Anwendung von effizien-
ten Heuristiken erlaubt.

All diese DSM Verfahren erreichen Energieeffizienz durch die Reduktion der
Sendeleistung bei gleichzeitiger Einhaltung vereinbarter, minimaler Bitraten. Von
Netzbetreibern wird jedoch neben Energieeffizienz auch Serviceabdeckung nachge-
fragt. Darauf Rücksicht nehmend wird ein systematischer Ansatz vorgestellt, um
zulässige minimale Bitraten zu berechnen. Dadurch lässt sich der Überschuss an
Bitrate über das dem Service entsprechende Maß hinaus reduzieren und die damit
einhergehende Vergeudung von Sendeleistung vermeiden. Nichtsdestotrotz werden
energieeffiziente DSM Lösungen nur dann in der Praxis akzeptiert, wenn die nachge-
fragte Servicequalität auch unter Schwankungen von elektromagnetischen Störungen
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und möglichen Fehlern im Optimierungsmodell bereitgestellt werden kann. Des
Weiteren werden deshalb auf DSM basierende Techniken zur Verbindungsstabil-
isierung auf ihre Energieeffizienz untersucht. Es zeigt sich, dass der berechnete,
damit verbundene zusätzliche Leistungsverbrauch gering ist im Vergleich zum En-
ergieeinsparungspotential welches marktübliche DSL Technologien bergen.
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Abstract

Digital subscriber lines (DSL) are one of the major current broadband access tech-
nologies, with a penetration of over 300 million DSL subscribers world-wide. Besides
an increasing environmental awareness, it is this large number of deployed systems
which has let energy-efficiency become an important operational metric for DSL.
The major performance limiting impairment in current DSL systems is the interfer-
ence among DSL lines. Using power spectral coordination among the lines we can
mitigate the detrimental effects of interference and improve their efficiency and sta-
bility. The corresponding multi-dimensional nonlinear Knapsack problem however
becomes intractable to be solved optimally for all but access networks with a few
lines. The aim of this thesis is the design of novel robust and energy-efficient dy-
namic spectrum management (DSM) algorithms with low complexity for large DSL
networks.

The presented design approach targets the transmit-power minimization and is
based on a Lagrange dual relaxation of the multi-user and multi-carrier constrained
optimization problem. The choice of objective is supported by simulations comparing
it to a nonlinear model of the line-driver power consumption, a major contributor
to the power budget of a DSL transceiver. The applied relaxation is shown to incur
a gap in objective value compared to the original target function, which is however
found to be negligible in practically relevant scenarios. In order to obtain a tight
performance bound for DSM a new approach for dual optimal DSM is derived which
enlarges the current set of DSM problems that can be solved optimally in practice.
For even larger problems a novel versatile and scalable DSM framework is proposed
which allows for the application of low-complexity heuristics.

All these DSM schemes are energy-efficient by reducing the transmit power while
achieving an agreed target-rate. Recognizing the network operators’ demand for
both, energy-efficiency and service coverage, a systematic approach to find feasible
target-rates is presented. This allows to lower the excess in rate beyond the targeted
service and therefore to avoid the needless waste of transmit power. However, energy-
efficient DSM solutions will only be accepted in practice if a demanded quality of
service can be guaranteed under fluctuations in electromagnetic disturbances and
possible errors in the optimization model. Hence, low-complexity DSM-based stabi-
lization techniques are investigated in terms of their energy-efficiency, and found to
expend little extra power compared to the savings achievable by currently available
DSL technologies.
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Chapter 1 Introduction

1.1 Motivation and State-of-the-Art

Energy-efficiency is naturally an important design criterion for battery-powered com-
munication systems. However, the growing pressure on the information and com-
munication technology (ICT) sector to reduce its energy consumption has made
researchers, standardization bodies, companies, and governmental bodies also think
about the energy-efficiency of wired communication systems [48, 51, 83–85, 89]. For
example, the European “Code of Conduct on Energy Consumption of Broadband
Equipment”, a voluntary governmental initiative existing since July 2006, has set
its goal to halve the expected electricity consumption of broadband equipment by
2015 [48]. In [64] the share of the fixed broadband access in the telco’s energy con-
sumption for 2020 is estimated at around 14 %. Herein we focus on the most widely
deployed fixed broadband access technology today [170], namely digital subscriber
lines (DSL).

Approaches for reducing the power consumption of DSL equipment can be clas-
sified into three categories [20]: the optimization of hardware components (or also
network topology), dynamic rate adaptation (or spectral optimization, respectively),
and low-power operation modes. Up to the beginning of the work on this thesis
only little effort has been made to systematically optimize the energy-efficiency in
DSL. A noteworthy exception is the introduction of low-power modes (LPM) in
the asymmetric DSL (ADSL) 2 standard [86], a technique facing various concerns
related to the instability it introduces in the network. Since then various proposals
were made on how to save energy in DSL, for instance by the design of energy-
efficient hardware modules [134, 137,147,185], by using LPMs and enabling its sta-
ble usage [18, 58, 69, 95, 189], by the dimensioning and energy-efficient operation
of the network processor [76], by wireless traffic aggregation at the user side and
efficient line-card usage at the network side [61], or by the deployment of street
cabinets [15, 62, 74]. The latter allows to reduce the transmit power by shortening
the cable length, and to reduce cooling requirements [16, 17] by reducing the num-
ber of installed line cards. In this thesis we restrict ourselves to a specific means of
tackling the energy minimization problem in DSL, namely by judiciously controlling
the transmit power, also known as dynamic spectrum management (DSM) [149].
The complexity of the optimal DSM problem [33] has triggered numerous studies on
approximate and fast DSM algorithms. However, multi-user DSM in interference-
limited multi-carrier communication systems such as DSL remains a challenging
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Ch. 1 Introduction

problem, especially so in networks with many users and with respect to optimality
guarantees.

Besides our initial work in [186], the idea of reducing the transmit power by DSM
was also followed by others, for example in [67, 164]. In [65, 68] DSM is performed
with the objective to optimize a functional model of the line-driver (LD) power
consumption, which constitutes a large part of the power budget in today’s DSL
transceivers. From power consumption measurements of today’s state-of-the-art very
high speed DSL (VDSL) 2 chipsets we know that the LD accounts for up to 60 %
[186]. A reduction in transmit power was shown to result in additional energy savings
by reducing the power consumption of the LD [67, 186]. Thus, by DSM we can
significantly lower the DSL system power consumption as a whole. However, an
open question remains which information needs to be exchanged between protocol
layers (e.g., on the used hardware) to design energy-efficient DSM algorithms.

In the form considered in this thesis, DSM necessitates the knowledge of the
magnitudes of the channel transfer coefficients, and the control of the transmit-
ted power levels. Implementations of DSM in real systems have been described
in [30,117,154,168,175]. While in [168] iterative water-filling was applied in ADSL,
in [154] the standardized power back-off technique was used in VDSL2 systems.
Both DSM realizations are applicable without explicit knowledge of the crosstalk
channel. Differently, two DSM heuristics were applied to ADSL2 systems in [30,117]
which make use of estimated crosstalk coefficients. An open question remains how
crosstalk channel identification errors observed in practice [117], [92, Ch. 3] can be
incorporated in DSM algorithms and how they impact the energy-efficiency of the
DSM technique.

1.2 Models and Notation

1.2.1 DSL System Model

We consider a modern DSL transceiver as illustrated in Figure 1.1, cf. [59,60] for de-
tails on the following system model. Multi-carrier modulation is implemented using
the discrete multi-tone (DMT) technique, where an inverse fast Fourier transform
(IFFT) and FFT pair is used to effectively split the spectrum into C independent
narrowband subchannels (“subcarriers”). The input to the IFFT is generated by
allocating a block of data bits to the C subcarriers and quadrature amplitude mod-
ulation (QAM), scaled to control the desired digital power of the symbol (commonly
referred to as “power-loading”). The process of mapping an integer number of bits
to subcarriers is referred to as “bit-loading”. Integer modulation constellations al-
low for simpler decoder implementations [59]. Bit-loading is based on the estimated
channel frequency response and spectral noise power on each subcarrier and ac-
complished during the initialization phase of a line. The specific IFFT gives real
output symbols which are extended to combat inter-symbol interference (ISI) and
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1.2 Models and Notation

S/P
Bit-Loading and 
QAM Modulation IFFT

P/S, Cyclic
Extension

DAC, 
Transmit Filter

Line-
Driver

Hybrid, 
Transformer

To/From Line

Receive-
Amplifier

ADC, 
Receive Filter

S/P, Rem. 
Cyclic Ext.

FFT,
FEQ

QAM DeodulationP/S

Encoded
Data 
Stream

Figure 1.1: Schematic of a DSL transceiver, highlighting various signal processing
blocks in the transmission and reception path, such as the serial-to-
parallel (S/P) and parallel-to-serial (P/S) conversion, the quadrature
amplitude modulation (QAM), the (inverse) fast Fourier transformation
((I)FFT), the digital-to-analog conversion (DAC) and analog-to-digital
conversion (ADC), and the frequency domain equalizer (FEQ).

to enable synchronization between the transmitter and the receiver. The signal is in
the following digitally filtered, digital-to-analog (DAC) converted, and runs through
an analog filter to match signal requirements such as a regulatory power spectral
mask. The line-driver serves to amplify the signal and to match the characteristic
impedance to the line. Finally, the hybrid circuit enables the simultaneous trans-
mission and reception of signals in the frequency-division duplexing (FDD) system
by attenuating the leakage of the stronger transmit signal into the receiver path.
The equivalent reverse operations are performed at the receiver side to recover the
received, encoded data stream.

In this thesis we study the problem of multi-user bit-loading and power-loading,
which we refer to as “dynamic spectrum management” (DSM) [40, 125, 149]. More
precisely, our definition of DSM corresponds to what is known as “spectrum bal-
ancing” [152], also referred to as DSM with “level 2” coordination, cf. [98] for an
overview. DSM is a part of dynamic line/bundle management [116,159] which refers
more generally to any kind of physical-layer parameter adaptation for rate and qual-
ity improvement, including for example also changes of rate and code settings.

1.2.2 DSL Network and Channel Model

Simple network models are shown in Figure 1.2, consisting of U lines deployed in
a joint cable binder. The transmission direction from the central office (CO) to the
subscribers is referred to as “downstream”, while that in the reverse direction is
referred to as “upstream”. By electromagnetic radiation the signal on one line cou-
ples into the other lines. While the copper wires are in fact twisted to mitigate this
effect, imperfect twisting leads to a remaining interference, commonly referred to as
“crosstalk”. Assuming perfectly synchronized DMT modulation at each modem and
the use of FDD, the near-end crosstalk (NEXT) is negligible, that is the interference
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(a)

NEXT

FEXT
Subscribers

downstream

Central 

Office

(b)

Central 

Office
Subscribers

upstream

FEXT

Figure 1.2: Schematic crosstalk scenarios; (a) Near-end crosstalk (NEXT) and far-
end crosstalk (FEXT); (b) Upstream near-far scenario.

between the collocated transmitter and receiver, cf. Figure 1.2(a). Further assuming
a sufficient length of the cyclic prefix allows to neglect ISI and to model the subcarri-
ers as orthogonal subchannels. Hence, we effectively face a far-end crosstalk (FEXT)
limited system due to the typically comparably low background-noise levels, where
FEXT refers to the crosstalk between transmitters and receivers on opposing ends of
the cable, cf. Figure 1.2(a). We assume a central unit, e.g. a spectrum management
center (SMC) at the collocated end of the cable bundle, has full knowledge of the
magnitudes of the crosstalk couplings. The most critical FEXT scenario occurs in
so-called “near-far” situations – that is the case when the intended received signal is
strongly attenuated over a long loop, while the received crosstalk noise is relatively
strong as the distance between the receiver and the disturbing transmitter is rela-
tively short, cf. Figure 1.2(b). Near-far situations occur in practice for example in
upstream transmission when the loop-lengths vary widely among subscribers, and
mixed central office and cabinet deployments [40] where the crosstalk victim and
disturber are not collocated on either end of their lines.

An important parameter for the simulation of DSM-enabled DSL systems is the
chosen FEXT model as it influences the coupling among users, the achievable per-
formance gain by DSM compared to static (i.e., network-oblivious) power-allocation
rules, as well as the complexity of optimally solving the DSM problem as we shall
see in Chapter 3. We mostly rely on the widely used and reproducible and empirical
99 % worst-case channel1 model [59]. Denoting the channel coefficient from user i to
user u by Gc

ui, the transfer coefficient Hc
ui = |Gc

ui|2 on subcarrier c is modeled as

Hc
ui = KFEXT · f 2

c · L · Hc
uu, (1.1)

1This means that in no more than 1 % of the taken channel measurements the FEXT transfer
function exceeded the given model.
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Figure 1.3: Gaussian interference channel on subcarrier c due to electromagnetic cou-
pling among U copper lines.

where KFEXT is a constant with suggested value for Europe [59] of KFEXT = 10−4.5,
fc [MHz] is the center frequency of the c’th subcarrier, and L [km] is the loop-length
over which the interfering lines are coupled. The value Hc

uu = |Gc
uu|2 is the transfer

coefficient of the direct channel at frequency fc, commonly given by a two-port
transmission line model [59], with parameters following the “TP100” cable in [50]. In
general the signal attenuation over the direct channel is larger at higher frequencies.
The channel models in this thesis were calculated using the xDSL simulator publicly
available in [126]. Our intention behind the usage of the worst-case FEXT model
is to construct challenging interference scenarios for the design and comparison of
DSM algorithms. Simulation results which show the gain in power consumption by
DSM should therefore be carefully interpreted, although in [115] it has been reported
that in Europe even higher crosstalk levels than expected from the worst-case model
are often observed in the field. However, note that the power reduction by power-
minimizing DSM under this model compared to full-power transmission is indeed an
underestimate of the potential savings by DSM, as larger crosstalk couplings imply
an increase in the power consumption at the power-minimizing DSM solution. Hence,
the worst-case model is used throughout this thesis if not mentioned otherwise. More
precisely, in Sections 2.3.4, 3.3.1, 3.3.4, and 3.3.5 we use measured coupling data
among 24 lines taken from [153], for instance to demonstrate the optimal solvability
of the DSM problem under low crosstalk couplings. This has however the drawback
of giving non-reproducible results. Both, reproducible as well as measurement-based
statistical FEXT models have been reported in [115,150,191] and could alternatively
be used in Monte-Carlo simulations to quantify the average performance gain by
DSM. Differently, we will at various places show average results under uniformly
sampled loop-lengths L for each user, but using the worst-case model above.

Under the made assumptions the equivalent baseband model for subcarrier c ∈
C = {1, . . . , C} is in the form of an interference channel [43], cf. Figure 1.3, where
the received symbol of user u ∈ U = {1, . . . , U} is given as

yc
u = Gc

uux
c
u +

∑

i∈U\u

Gc
uix

c
i + zc

u, (1.2)

where the transmitted symbols are denoted as xc
u ∼ N (0, pc

u), zc
u ∼ N (0, N c

u), is
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the additive white Gaussian background noise, and N (µ, σ2) represents a circular
symmetric complex normal distribution with mean µ and variance σ2.

1.2.3 DSL Optimization Model

The DSL channel can be assumed to be only slowly time-varying, the main reason be-
ing temperature changes. Hence, it is reasonable to optimize all users’ bit-allocations
(“bit-loading”) and corresponding power-allocations (“power-loading”) based on the
estimated transfer coefficients, cf. [106] for a practical estimation method. With the
exception of Chapter 6 we will assume that these coefficients are perfectly known.
Online reconfiguration methods [59, Sec. 7.5] adapt the bit-allocation and the power-
allocation continuously and therefore complement the “offline” DSM problem con-
sidered in this thesis. In [40] it is stated that the DSM parameter recommendations
might change “daily or even more often”, which together with the slow variability of
the channel supports the practical feasibility of using sophisticated offline optimizing
DSM schemes.

In our DSL model the modems regard crosstalk solely as noise, which, for a suffi-
ciently high number of users, can be well approximated by a Gaussian distribution, a
common approximation in spectrum management applications [152, Ch. 11]. Hence,
the achievable rate per DMT-symbol for user u ∈ U on subcarrier c ∈ C assuming
two-dimensional signal constellations can be approximated in practice [59] by

rc
u (pc)

.
= log2

(

1 +
Hc

uup
c
u

Γ(
∑

i∈U\uH
c
uip

c
i + N c

u)

)

, (1.3)

where pc = [pc
1, . . . , p

c
U ]T , pc

u is the power spectral density (PSD) of the transmitted
signal, Γ is the signal-to-noise ratio (SNR) gap which allows to effectively approxi-
mate the performance loss compared to the theoretical capacity [43], N c

u is the total
receiver noise spectral density, and Hc

uu and Hc
ui are the squared magnitudes of the

channel transfer coefficient of user u and from user i to user u, respectively, on sub-
carrier c. We will write the vector of all users’ rates as rc(pc) = [rc

1 (pc) , . . . , rc
U (pc)]T ,

and use pc(rc) to denote the unique [194] power-allocation resulting in the rate vec-
tor rc. By adequate reformulation of the equation in (1.3) the computation of pc(rc)
can be written as the single-carrier power control problem [37,54]

minimize
pc�0

∑

u∈U

pc
u (1.4a)

subject to (I − Fc)pc � nc, (1.4b)

where Fc ∈ RU×U , with elements F c
uv = Γγc

u
Hc

uv

Hc
uu

, c ∈ C, u ∈ U , v ∈ U , where nc =

[Γγc
1

Nc
1

Hc
11

, . . . , Γγc
U

Nc
U

Hc
UU

]T , R denotes the set of real numbers, and where γc
u = (2rc

u −1)

is the targeted signal-to-interference-plus-noise ratio (SINR) of user u on subcarrier
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c. While the SINR is constant in this single-carrier problem, we will later see how
the spectrum balancing algorithm optimizes and determines the values rc

u and hence
γc

u, c ∈ C, u ∈ U . The SINR-constraints in the linear program (LP) in (1.4) keep the
objective from attaining the minimum it would obtain when neglecting the SINR-
constraints, which due to pc � 0 is 0. Hence, at optimum the constraints in (1.4b)
hold with equality. Furthermore, the unique optimal solution in (1.4) is element-
wise lower or equal than any other feasible solution [103]. From this it follows that
adding linear weights in the objective or a maximum per-user power restriction
does not change this optimal solution. Provided the problem in (1.4) is feasible, the
optimal solution pc(rc) of (1.4) is given as the solution of the linear matrix equality
(cf. also [22, Ex. 4.8])

(I − Fc)pc = nc. (1.5)

It is well known [37,54] that, assuming nonzero background noise, crosstalk couplings
and SINR-targets, a solution to the power control problem in (1.4) exists iff

ρ (Fc) < 1, (1.6)

where ρ(·) denotes the spectral radius2 or Perron-Frobenius eigenvalue. To model
constraints on the modulation’s constellation size and regulatory PSD mask limita-
tions we use the set of feasible per-subcarrier PSDs on subcarrier c ∈ C,

Qc = {pc|rc
u (pc) ∈ B, 0 ≤ pc

u ≤ p̂c
u, ∀u ∈ U}, (1.7)

where p̂c
u, c ∈ C, u ∈ U , indicates the PSD mask, and B = {0, θ, 2 θ, . . . , θ̂} is the set

of discrete per-subcarrier bit-allocations with rate-steps of size θ and a bit-cap θ̂.

1.2.4 Generic Multi-Carrier Optimization Problems

At the center of this thesis is a generic multi-user DSM problem in the form of a
multi-dimensional nonlinear Knapsack problem [123], formulated as

P ∗
(R,P̂)

= minimize
pc∈Qc,c∈C

∑

c∈C

f(pc, ŵ, w̆) (1.8a)

subject to
∑

c∈C

rc
u (pc) ≥ Ru, ∀u ∈ U , (1.8b)

∑

c∈C

pc
u ≤ P̂u, ∀u ∈ U , (1.8c)

2The spectral radius of a matrix is the largest magnitude of any of its eigenvalues [2].
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where the objective is a weighted-sum of sum-powers and sum-rates defined by

f c(pc, ŵ, w̆) = ŵTpc − w̆T rc(pc), c ∈ C, (1.9)

where ŵ, w̆ ∈ RU
+ are weights, where R ∈ RU

+ are the target-rates in [bits/DMT-

symbol], and where P̂ ∈ RU
+ are the maximum sum-powers supported by the line-

driver. Note that this formulation allows to consider sum-power minimizing users as
well as sum-rate maximizing users in a single optimization problem by an adequate
setting of the weights ŵ and w̆, which results in a trade-off between the two ob-
jectives. This captures for example the problem in [158] where resource allocation
under inhomogeneous traffic is studied. While a rate maximization problem is con-
sidered for best-effort users, delay-constrained users are incorporated at the same
time under a minimum-rate constraint. In [166] various DSM formulations similar
to that in (1.8) are presented which target a fair power reduction in DSL networks.
Intuitively, a solution is considered fair in [166] if a rate reduction compared to an
operation point on the rate-region boundary is accompanied by an adequate power
reduction. While in the objective in (1.9) we only consider the transmit power, in
Section 2.3 we will discuss its relation to the system power consumption.

Efficiently computable special cases of (1.8) include the single-user case as shown
in Section 2.1.2, and the analytically solvable single-carrier power-control problem
[37] in (1.4). Note that rc

u (pc) in (1.3) is a quasi-convex function3, resulting in
general in a non-convex objective in (1.8a) in the variables pc, c ∈ C. This, besides
the discrete bit-loading, can be seen as the origin of the non-convexity of the problem
in (1.8) which persists even in the continuous bit-loading case.

For later reference we define the Lagrange dual problem to (1.8) as

D∗
(R,P̂)

= maximize
λ�0,ν�0

q(λ, ν), (1.10)

where the (partial) dual function [12, 22, 124] is defined as

q(λ, ν) =
∑

c∈C

qc(λ, ν) + λTR− νT P̂, (1.11)

where λ, ν ∈ RU are the Lagrange multipliers associated with the constraints in
(1.8b) and (1.8c), respectively, and where

qc(λ, ν) = min
pc∈Qc

{

f c(pc, ŵ + ν, w̆ + λ)
}

, ∀c ∈ C. (1.12)

The optimal dual objective D∗
(R,P̂)

lower-bounds the optimal primal objective P ∗
(R,P̂)

in (1.8a) as given by the weak-duality inequality [12] D∗
(R,P̂)

≤ P ∗
(R,P̂)

. The difference

3This follows from quasi-convexity of the logarithm’s argument in (1.3) [22, Ex. 3.32] and com-
position with the (nondecreasing) logarithm [22, Sec. 3.4.4].
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between the two objectives is referred to as the “duality-gap” [12], given by

ζ = P ∗
(R,P̂)

− D∗
(R,P̂)

≥ 0. (1.13)

We refer to Section 2.1.1 for a derivation of (1.13) and more details on Lagrange
relaxation.

1.3 Outline and Contributions
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In the following we summarize the content of each chapter in more detail:

The first part of this thesis in Chapter 2 summarizes our motivation for the
concept of transmit-power efficient DSM in DSL, derived from various view-points.
We provide a mathematical problem formulation, survey the common algorithmic
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DSM approach based on Lagrange-dual relaxation, analyze its complexity, derive its
relation to the time-sharing relaxation, and study the duality-gap in our non-convex
DSM problem. The latter empirically justifies the application of Lagrange-dual
relaxation for DSM. While the transmit power constitutes only a minor fraction
of the transceiver’s total power consumption, we will show that DSM significantly
reduces the consumption beyond the transmit power. Also, empirical evidence
shows that knowledge of the line-driver hardware does not significantly increase the
possible energy savings by transmit-power efficient DSM, which motivates the DSM
algorithms developed in Part II. Yet another motivation for our DSM framework
presented in this chapter is the low-power state in DSL, that is an operation mode
where the modem operates at a reduced transmit power and rate. However, this
mode leads to more severe fluctuations in crosstalk noise, and hence necessitates
active, DSM-based stabilization techniques. One such approach will be described in
more detail in Chapter 7. Chapter 2 is to a large extent based on [W1–W6].

The second part of this thesis is concerned with the development of efficient
algorithms for the DSM problem in large DSL networks with versatile optimization
objectives.

Chapter 3 describes a novel algorithm for optimally solving the combinato-
rial per-subcarrier power control problems. Previously proposed algorithms for its
optimal solution are only applicable for networks with few users, while the subop-
timality of less complex bit-loading algorithms has not been studied adequately
so far. We deploy problem-specific branch-and-bound and search-space reduction
methods which for the first time give a low-complexity guarantee of optimality
in certain multi-user DSL networks of practical size. Simulation results show the
dependency of our algorithm’s complexity on the target-rate, and precisely quantify
the suboptimality of multi-user bit-loading schemes in thousand ADSL2 scenarios
under measured channel data. This chapter is based on [W7].

Chapter 4 summarizes a novel framework for discrete-rate spectrum balanc-
ing. More precisely, a column generation based DSM algorithm based on the
time-sharing relaxation as well as a heuristic to recover primal feasible solutions
is described. Low-complexity combinatorial rate and power-allocation heuristics
for the single-carrier problem are proposed and their performance compared by
simulation. Simulation results in randomly generated DSL network topologies
are presented which show the improvements by our column generation scheme
using the allocation heuristics in terms of sum-rate and sum-power compared to
state-of-the-art DSM algorithms. This chapter is based on [W1], [W8], and [W9].

Chapter 5 describes a novel problem formulation for DSM, targeting the
maximization of service coverage. A low-complexity heuristic is presented which is
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based on the column generation framwork of Chapter 4 and a convex relaxation at
the initial stage. Two relaxation approaches are compared to the global optimum
in small-sized networks by simulation. For large networks we compare the coverage
maximization approach using heuristics for the per-subcarrier problems to sum-rate
maximizing schemes in terms of coverage and power consumption. Corresponding
simulation results demonstrate an average gain in service coverage of more than
13 % and an average transmit-power reduction by 37 % compared to sum-rate
maximizing DSM. This chapter is partly based on [W8].

In the third part of this thesis we study two cases where the actual DSL en-
vironment may differ from that when the power-allocation was optimized offline.

In Chapter 6 we propose the concept of a crosstalk margin which conserva-
tively captures our uncertainty in the measured crosstalk couplings. We exemplify
the concept through two computationally advantageous uncertainty models and
demonstrate the trade-off between the rate / sum-power performance and robust-
ness. Simulation results confirm that the transmit power can be reduced while
providing robustness with respect to crosstalk uncertainty. This chapter is partly
based on [W10].

Chapter 7 deals with the stabilization of DSL networks under varying crosstalk
noise. The injection of artificial noise (AN) at the transmitter has been proposed as
a solution for current DSL systems without the need for further standardization.
We develop the idea of setting the frequency selective AN power jointly with
the SNR margin, based on a worst-case stabilization criterion. Furthermore, the
AN is adjusted jointly with the transmit-power spectrum and the frequency flat
SNR margins in order to compute a performance bound for AN-enabled networks.
Simulation results confirm the strong dependency of the performance under AN on
the selected SNR margin, which motivates their joint optimization for the actual
network topology. This chapter is based on [W11].
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Energy-Efficient Dynamic Spectrum
Management (DSM)
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Chapter 2 Lagrange Relaxation
based Transmit-Power
Optimization

We begin this chapter by introducing Lagrange relaxation based DSM in Section 2.1
and, differently to previous work, motivate it from various view-points. Its initial
motivation [33] is the complexity reduction by decomposing the DSM problem into
many per-subcarrier problems. Additionally to that we will a) show its equivalence
to the time-sharing relaxation which opens the way for the improved DSM im-
plementations proposed in Chapter 4, b) empirically demonstrate a small gap in
objective value to the original problem in Section 2.2, concluding that DSM has
sufficient capabilities for interference-avoidance in current DSL systems, c) motivate
it by comparing the achieved line-driver (LD) power consumption to a direct opti-
mization of the LD power in Section 2.3, d) motivate it by the substantial achieved
power reduction in Section 2.3.4, and e) briefly motivate it as an enabling technique
for the energy reductions promised by low-power modes in Section 2.4, on which
we further elaborate in Chapter 7. At the core of all these motivational examples
are the primal and Lagrange-dual DSM problems introduced in Section 1.2.4 and
analyzed more closely in the following section.

The application of Lagrange relaxation in power spectrum shaping for improving
the spectral compatibility between different DSL technologies has been proposed
in [7]. In [33] Lagrange relaxation was applied to a combinatorial multi-user DSM
problem in modern DSL systems, which triggered further research on optimal and/or
low-complexity Lagrange-dual relaxation based DSM algorithms for DSL. We refer
to [31,163,198] for examples of discrete-rate Lagrange relaxation based optimization
algorithms, and to [82, 129, 161] for an overview of various continuous optimization
schemes for the DSM problem.

2.1 Mathematical Problem Formulations for DSM

2.1.1 Background Information on Lagrange Relaxation

In this section we elaborate more on the initial primal and Lagrange-dual DSM
problem formulations in (1.8) and (1.10), respectively. The separable function
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L(p, λ∗, ν∗) =
∑

c∈C f c(pc, ŵ+ν, w̆+λ)+λTR−νT P̂ which we minimize in (1.12)
is referred to as “Lagrangian” in the literature [12], where p = [(p1)T , . . . , (pC)T ]T .
More precisely, in (1.12) the point-wise minimum is taken over a set of functions
f c(pc, ŵ + ν, w̆ + λ) which are linear in the Lagrange multipliers ν and λ, respec-
tively, and indexed by the power-allocations pc ∈ Qc. Therefore the dual function
q(λ, ν) in (1.11) is always concave [12], implying that the dual problem in (1.10) is
a convex optimization problem. Denoting a pair of primal and dual solutions by p∗

and (λ∗, ν∗), respectively, we have the relations

q(λ, ν) ≤ q(λ∗, ν∗) = min
pc∈Qc,c∈C

{

L(p, λ∗, ν∗)
}

(2.1a)

≤ L(p∗, λ∗, ν∗) (2.1b)

≤
∑

c∈C

f c(pc,∗, ŵ, w̆) = P ∗
(R,P̂)

, (2.1c)

where the inequality in (2.1c) follows from the feasibility of p∗ for the original con-
straints in (1.8b) and (1.8c), respectively. From these relations it follows that the
dual function q(λ, ν) is a lower bound to the primal optimum P ∗

(R,P̂)
, and also the

weak-duality inequality in (1.13). Moreover, in the special case where the solution
p(λ̃, ν̃) obtained from the subproblems in (1.12) for non-negative (that is, feasible
for the dual problem in (1.10)) variables λ̃, ν̃ is primal feasible in (1.8) and comple-
mentarity1 holds, then p(λ̃, ν̃) is also optimal for the primal problem in (1.8). This
holds by (1.13) and

D∗
(R,P̂)

= maximize
λ�0,ν�0

q(λ, ν) ≥ q(λ̃, ν̃) = L(p(λ̃, ν̃), λ̃, ν̃) (2.2a)

=
∑

c∈C

f c(pc(λ̃, ν̃), ŵ, w̆) (2.2b)

≥ P ∗
(R,P̂)

, (2.2c)

where (2.2b) holds due to the assumed complementarity. A consequence of a positive
duality-gap ζ is that the dual function q(λ, ν) in (1.11) is non-differentiable at every
dual optimal solution [12, Ex. 6.1.1]. Furthermore, it is polyhedral2 as a consequence
of the finiteness of Qc, c ∈ C, cf. [12, Sec. 6.1]. Both facts give reason for the ap-
plication of non-differentiable optimization algorithms [12] to the dual problem in
(1.10). We refer to [12] for more details on Lagrange-dual relaxation.

1Complementarity [12, Sec. 3.3.1] holds if
∑

c∈C
rc
u

(

pc(λ̃, ν̃)
)

= Ru if λ̃u > 0, and
∑

c∈C
pc

u
(λ̃, ν̃) = P̂u if ν̃u > 0, ∀u ∈ U .

2That is, conv(Q̆) is a finitely constrained polyhedron [12, p. 719], where conv(·) denotes the
convex-hull operation and Q̆ is defined in (2.5).
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2.1.2 Time-Sharing Relaxation

As an alternative relaxation to the dual relaxation in (1.10), a problem formula-
tion involving the continuous sharing of subcarriers (in time or frequency) among
various bit and power-allocations (e.g., among users) was suggested for orthogonal
frequency-division multiple access (OFDMA) systems in [73,79,80,140,158,176,190,
200] and for interference-limited systems in [56, 187]. For time-sharing3 we consider
all allocations pc,i ∈ Qc indexed by i ∈ Ic = {1, . . . , |Qc|} and the fractions of time
0 ≤ ξc

i ≤ 1 that allocation i is used on subcarrier c ∈ C. Considering time-average
objective and constraint values we write the continuous time-sharing relaxation of
(1.8) as the linear program (LP)

P ∗,ts

(R,P̂)
= minimize

ξc
i≥0,i∈Ic,c∈C

∑

c∈C

∑

i∈Ic

f c(pc,i, ŵ, w̆)ξc
i (2.3a)

subject to
∑

c∈C

∑

i∈Ic

rc(pc,i)ξc
i � R, (2.3b)

∑

c∈C

∑

i∈Ic

pc,iξc
i � P̂, (2.3c)

∑

i∈Ic

ξc
i = 1, ∀c ∈ C, (2.3d)

where the constraint in (2.3d) ensures that the time-shares on each subcarrier sum to
one. We emphasize that the problem in (2.3) allows for inter-user interference using a
finite set of rates according to (1.3), but under a varying fraction of time the possible
power combinations on each subcarrier are applied. While we employ time-sharing on
a per-subcarrier basis, note that it can also be performed in “aggregated” form [132]
over the

∏

c∈C |Qc| feasible sum-power and corresponding sum-rate allocations. We
have the following result characterizing the optimum of (2.3):

Theorem 1. Define Ic
ξ = {i ∈ Ic|ξc

i > 0}, for c ∈ C, and the set of subcarriers
where time-sharing occurs as C+

ξ = {c ∈ C| |Ic
ξ| ≥ 2}. Assuming feasibility of (1.10)

it holds that P ∗,ts

(R,P̂)
= D∗

(R,P̂)
and there exists a solution ξ̃ to (2.3) with |C+

ξ̃
| ≤ 2U ,

i.e., time-sharing is required on at most 2U subcarriers.

See Appendix A.1 for a proof.
From Theorem 1 follows also a standard interpretation of Lagrange relaxation

in integer programming theory [124] as an optimization over the convex hull of
all (discrete) solutions which satisfy the constraints that were not relaxed. A very
similar intuition of Lagrange relaxation will be given in the following Section 2.1.3,
cf. [12, Ch. 5], where the convex hull is taken over a set which includes the objective
as one dimension.

3Note that ultimately we regard time-sharing solely as an algorithmic detour to obtain solutions
for our original problem in (1.8), as will become clearer in Section 4.1.
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In [187] a scheduling strategy termed “periodic scheduling” was investigated which
allows to adapt the target-rates in a multi-carrier system during a scheduling frame
of N DMT symbols while meeting an average target-rate per symbol, with the goal
to further reduce interference among users. This strategy was shown to be equivalent
to a DSM problem over the scheduling frame. Since allocations can only vary from
symbol to symbol, periodic scheduling is a special case of time-sharing where the
weights ξ are supposed to be taken from a discrete set {0, 1

N
, . . . , 1}. Hence, the

continuous time-sharing relaxation in (2.3) is a relaxation of periodic scheduling in
this sense. However, by Theorem 1 the dual problem in (1.10) also lower-bounds
the optimal, average periodic scheduling objective, meaning that the average gain
in terms of objective value by periodic scheduling is bounded by the duality-gap ζ .
We refer to [187] for an alternative proof thereof and to [183] where a decomposition
algorithm was proposed for the joint periodic scheduling and DSM problem.

A special case is the single-user bit-allocation and power-allocation problem which
due to the discreteness of the optimization variables remains a non-convex problem.
The pure sum-power minimization problem however is known to be solvable by a
greedy bit-loading algorithm [27]. The following theorem shows that no improvement
in optimal objective can be obtained by time-sharing in the single-user case.

Theorem 2. For U = 1 it holds that P ∗
(R,P̂)

= P ∗,ts

(R,P̂)
= D∗

(R,P̂)
, ∀R ∈ {R̃ ∈

RU |R̃u = k · θ, k ∈ Z+, ∀u ∈ U}.

See Appendix A.2 for a proof.
A consequence from the proof of Theorem 2 is that in the single-user case greedy

bit-loading is optimal for the objective in (1.8a), extending corresponding previous
results [27] to a more general objective function.

For completeness, we proceed by analyzing the scalability of the time-sharing
problem in (2.3). The number of feasible bit and power-allocations |Qc|, c ∈ C, and
therefore the number of variables in (2.3) grows with an increasing number of users
U . However, the following result indicates how interference among users restricts
this growth.

Theorem 3. Assuming
Hc

ui

Hc
uu

≥ α > 0, the number of feasible allocations |Qc| on

subcarrier c ∈ C grows at most polynomially as O(U Û), where the constant exponent
Û is given by

Û = 1 +
(

Γ(2θ − 1)α
)−1

. (2.4)

See Appendix A.3 for a proof.
The parameter α has the interpretation of a minimal normalized cross-channel

attenuation coefficient in the network. Using this minimal value we obtain a lower
bound for the (normalized) interference noise per interfering user in (1.3). Assuming
all users transmit at a positive rate we thereby obtain an upper-bound for the
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Figure 2.1: Number of feasible bit-allocations |Qc| on selected subcarriers c ∈ C in
symmetric U -user VDSL scenarios with 800 m long lines.

number of users that can be supported by the system in (2.4), hence limiting the
growth of the time-sharing formulation in (2.3) as shown by Theorem 3.

Next we will illustrate this bound and the true number of power-allocations |Qc|
by a DSL example, noting that normalized crosstalk coefficients in DSL networks
have been reported to be fairly weak, e.g., α < −11.3 dB on typical VDSL lines [28].
In Figure 2.1 we plot the number of possible bit-allocations on the lowest (at about
3 MHz) and highest subcarrier (at about 12 MHz) for a symmetric VDSL upstream
scenario with line-lengths lu = 800 m, ∀u ∈ U , and simulation parameters as specified
in Section 4.3. Additionally we show a polynomial of degree Û shifted by Û given in
(A.9c), as suggested by our bound in Theorem 3. Interference among users clearly
decelerates the complexity growth in U . Due to higher crosstalk couplings this effect
of interference on complexity is more visible at higher subcarriers where the number
of possible allocations is anyway lower due to the more attenuated direct channel.
The conclusion we can draw from this example is that while interference has an
impact on how fast the number of variables

∑

c∈C |Qc| in the LP in (2.3) grows with
the number of users U , this number (although of complexity theoretic interest) is
too large for a direct LP solution of the time-sharing problem in (2.3). Hence, in
Section 4.1 we propose a DSM algorithm based on a decomposition scheme which
works with a small subset of these time-sharing variables.

We conclude this section with a result on the complexity of the dual subproblems
in (1.12).

Corollary 1 (of Thm. 3). The per-subcarrier subproblems in (1.12) have polynomial
complexity in the number of users U given the assumptions of Theorem 3.

Proof. By Theorem 3 we have that |Qc| has polynomial size in U , and the evaluation
of the objective in (1.9) has polynomial complexity. We refer to Chapter 3 for an
optimal branch-and-bound scheme for the subproblems in (1.12) with polynomial
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Figure 2.2: Schematic illustration of the “objective-over-constraints” set Q̆ and the
duality-gap ζ .

complexity in U , including both, the evaluation of feasible as well as infeasible
power-allocations. This concludes the proof.

2.1.3 Graphical Interpretation of DSM Problem Relaxations

An intuitive way of rewriting the original problem in (1.8) is by enumerating all
possible sum-power and sum-rate combinations (referred to as “aggregated” form
in [132]) and formulating it as the binary optimization problem of selecting the
combination with the lowest objective [182]. More precisely, the problem is to pick
the optimal element out of the set Q̆, where

Q̆ =
∑

c∈C

Q̆c, Q̆c =

{

[

f c(pc, ŵ, w̆), rc(pc),pc
]T

|pc ∈ Qc

}

, (2.5)

which we term “objective-over-constraints set” for obvious reasons. A schematic
example of this set of points is provided in Figure 2.2. The geometric “min-
common/max-crossing” framework derived in [12, Ch. 5] shows that the duality-
gap (the difference between P ∗(R, P̂) and D∗(R, P̂)) can be depicted as shown in
Figure 2.2, where the dual optimal objective D∗(R, P̂) is the objective value of the
point on the boundary of the polytope conv(Q̆) with sum-rate/sum-power (R, P̂).
The central observation for the analysis in [12, Ch. 5] is that the dual function in
(1.11) can be written as

q(λ, ν) = min
[o,r̆,p̆]T ∈Q̆

{

[1,−λT , νT ] ·
[

o, r̆T , p̆T
]T

+ λTR − νT P̂
}

, (2.6)
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which is a linear function in the elements of Q̆. Furthermore, we have that

min
[o,r̆,p̆]T∈conv(Q̆)

{

[1,−λT , νT ] ·
[

o, r̆T , p̆T
]T

+ λTR − νT P̂
}

(2.7)

= min
α ∈ R

2U+2
+ ,

P2U+2
j=1 αj = 1,

si ∈ Q̆, 1 ≤ i ≤ 2U + 2

{

2U+2
∑

i=1

(

αi [1,−λT , νT ]si
)

+ λTR− νT P̂
}

(2.8)

≥ q(λ, ν), (2.9)

where in (2.8) we use Carathéodory’s theorem [12, p. 696] and in (2.9) we use
(2.6), and the reverse inequality holds as Q̆ ⊆ conv(Q̆). Hence, the minimum value
over Q̆ in (2.6) is the same as the minimum value over conv(Q̆), adding another
interpretation of Theorem 1 and Figure 2.2.

2.1.4 Continuous Bit-Loading with Frequency-Division

Constraints

While our focus is on the DSM problem for DSL in (1.8) with inter-user interference,
it is of additional value to consider a common assumption in wireless networks
[80, 114, 158, 176], namely that of assigning subcarriers to users exclusively, i.e.,
pc

up
c
i = 0, ∀i ∈ U \ {u}, ∀u ∈ U . Denoting the interference-free rates similarly as in

(1.3) as r̆c
u(p

c
u) = log2(1+ Hc

uupc
u

ΓNc
u

), we write the modified problem of that in (1.8) with

continuous bit-loading and frequency-division multiple access (FDMA) constraints
as

minimize
0≤pc

u≤p̂c
u,u∈U ,c∈C

∑

c∈C,u∈U

(

ŵup
c
u − w̆ur̆

c
u(p

c
u)
)

(2.10a)

subject to
∑

c∈C

r̆c
u(p

c
u) ≥ Ru,

∑

c∈C

pc
u ≤ P̂u, ∀u ∈ U , (2.10b)

pc
up

c
i = 0, ∀i ∈ U \ {u}, u ∈ U , c ∈ C, (2.10c)

which is non-convex due to the complementarity (i.e., FDMA) constraints in
(2.10c).4 Conditions for optimality of an FDMA solution in an interference-limited
sum-rate maximization problem with continuous bit-loading were derived in [72].
However, these conditions essentially imply a sufficiently strong crosstalk coupling
which is not realistic in DSL. The per-subcarrier dual function for this problem,

4Note that the bit-cap θ̂ maps uniquely to a maximum power constraint through r̆c
u(pc

u) and can
hence be enforced by an adequate definition of the power mask p̂c

u
.
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corresponding to (1.12) for our original problem, is, ∀c ∈ C, given as

q̆c(λ, ν) = min
u∈U

{

minimize
0≤pc

u≤p̂c
u

(

(ŵu + ν̆u)p
c
u − (w̆u + λ̆u)r̆

c
u(p

c
u)
)}

, (2.11)

where ν̆, λ̆ ∈ RU are the Lagrange multipliers associated with the rate and power
constraints in (2.10b), respectively, whereas the dual problem and the dual function
in (1.10) and (1.11), respectively, remain unchanged compared to our original prob-
lem. The subproblems in (2.11) can be solved efficiently as the objective is concave
and (even the problem with discrete rates) can be optimized, for each user sep-
arately, by first-order optimality conditions and projection onto the simple power
mask bounds in (2.11), cf. Appendix A.7 for a description of this solution approach
in a closely related problem. The final task in solving the subproblems in (2.11) is
to pick the user with the smallest (optimal) objective value. In total, the complexity
of solving the subproblems in (2.11) is O(U), cf. the corresponding result without
FDMA constraints in Corollary 1. As mentioned in Section 2.1.1 the dual problem in
(1.10) is concave, so it can be solved in polynomial time using the ellipsoid method,
which together with the linear complexity of solving the subproblems in (2.11) means
that the dual problem to the FDMA problem in (2.11) has polynomial complexity
(both, in the continuous and discrete bit-loading cases), cf. [114] for more details.

As mentioned in Section 2.1.2, another popular relaxation for the FDMA problem
is the continuous sharing of subcarriers. Introducing sharing coefficients ξc

u ∈ R, re-
placing the FDMA constraints in (2.10c), this time-sharing relaxation of the FDMA
formulation in (2.10) can be written as

minimize
0≤pc

u≤p̂c
u,ξc

u≥0,u∈U ,c∈C

∑

c∈C,u∈U

(

ŵuξ
c
up

c
u − w̆uξ

c
u r̆c

u (pc
u)
)

(2.12a)

subject to
∑

c∈C

ξc
u r̆c

u (pc
u) ≥ Ru,

∑

c∈C

ξc
up

c
u ≤ P̂u ∀u ∈ U , (2.12b)

∑

u∈U

ξc
u = 1, ∀c ∈ C, (2.12c)

where we work with average power and rate values, with the exception of the mask
constraints in (2.12a) which are enforced at all times. The time-sharing relaxation
in (2.12) is a convex problem, as can be seen after the transformation pc

u = p̃c
u(ξ

c
u)

−1

(related to the sharing of subcarriers in frequency) by the following arguments. The

function r̆c
u(p̃

c
u) is concave and therefore also the function ξc

u r̆c
u

(

p̃c
u

ξc
u

)

as it is the

perspective function of r̆c
u(p̃

c
u) [22, p. 39], implying that the relaxation in (2.12)

is a (polynomial time solvable [112]) convex problem. Having the results of the
previous section in mind it comes now as no surprise that the dual relaxation of
the FDMA problem in (2.10) derived above is the Lagrange-dual problem to the
time-sharing relaxation in (2.12), where due to convexity of (2.12) strong duality
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holds under constraint qualification [22]. The proof follows in analogy to that given
for Theorem 1 in Appendix A.1.

2.2 The duality-gap in DSM

So far we have analyzed Lagrange relaxation for DSM and showed the equivalence in
terms of objective value to a time-sharing relaxation. Hence, both relaxations incur
a duality-gap to the primal optimal objective in (1.8a) due to the non-convexity
of the primal problem. Therefore we devote this section to investigate the duality-
gap ζ more closely. Our focus is on two important special cases, namely a sum-
power constrained sum-rate maximization problem and a sum-rate and sum-power
constrained sum-power minimization problem.

2.2.1 Illustrative Examples

The constraint sets of both, the primal problem and the dual subproblems in (1.8)
and (1.12), respectively, involve integer bit-loading constraints. These integer con-
straints naturally imply a non-zero duality-gap for non-integer target-rates. There-
fore we focus in the following on integer target-rates and bit-loading solutions only.
In [146] curves of optimal objective values along a line of target-rates were investi-
gated. The non-convexity of such a curve implies a strictly positive duality-gap for
certain target-rates. The reverse conclusion does however not hold, cf. the geometric
interpretation of dual optimization in Section 2.1.3. In the following we will therefore
consider the dependency of the duality-gap on the target-rate.

Figure 2.3(a) depicts the duality-gap ζ for any primal feasible target-rates R in
a scenario with symmetric interference and C = 2 subcarriers.5 Noteworthy, for
feasible target-rates the duality-gap in this example can be as much as 93% of the
corresponding optimal primal objective. Also, higher gap values seem to be located
near to the boundary of the rate-region. An exception occurs at approximately equal
target-rates for both users where orthogonal allocations are both, primal and dual
optimal.

For weighted sum-rate maximization and sum-power minimization problems with
FDMA constraints as in (2.10) these duality-gaps may appear when, changing R or
P̂, the subcarrier assignment to users changes at a primal optimal solution [146].
Differently, in DSL systems we empirically observed that duality-gaps may occur
around target-rates where users start to strictly load their bits on different subcar-
riers, while at rates below these points at least one subcarrier is still shared by both
users.

5The parameters were P̂u = ∞, Γ = 19, Huu
c = 10−1, Nu

c = 4.3125 10−11 mW, Hui
c = 10−4, i 6=

u, p̂u
c

= 10−2 mW, ∀c ∈ C, ∀u ∈ U , ŵ = [0.8, 0.2]T , w̆ = 0.
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(a)

(b)

Figure 2.3: Dependency of the duality-gap on the target-rates R for the problem in
(1.8), a) in a scenario with symmetric interference and C = 2 subcar-
riers, b) in a scenario with C = 64 subcarriers, additional sum-power
constraints in (1.8c) and orthogonality constraints in (2.10c), and using
one-dimensional signal constellations only.

Similar intuitions can be drawn from Figure 2.3(b) where we depict the duality-
gap in a system with FDMA constraints and C = 64 subcarriers.6 The maximum
duality-gap in this example amounts to approximately 3.2 % of the corresponding
optimal objective value, while it is negligible in most parts of the feasible rate-region.

6The parameters were P̂u = 20 mW, Bu
c = {0, 1, . . . ,∞}, p̂u

c = 1 mW, ∀u ∈ U , ∀c ∈ C, H11
c /Γ =

c1.5, H22
c

/Γ = (C + 1 − c)1.5, N1
c

= N2
c

= 0.1 mW, ∀c ∈ C, ŵ = [1/3, 2/3]T , w̆ = 0, and only
one-dimensional signal constellations were used for simulation complexity reasons, cf. also the
similar simulation setup in [146].
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2.2.2 Bounds on the Duality-Gap

In [71] it has been shown that the duality-gap in nonconvex problems is zero if
the optimal primal solution as a function of the Lagrange multipliers is continuous
at all dual optima. This condition implies the convexity of the optimal weighted
sum-power objective value in the target-rates. Due to this convexity property it has
been argued in [198] that the duality-gap in multi-carrier systems vanishes as the
number of subcarriers approaches infinity, cf. also [113] and similar results in the
optimization literature [11, Sec. 5.6.1], [4]. Real DSL systems however use at most a
few thousand subcarriers, and it is up to now not clear how large the gap is in this
case, cf. the simple examples above and also the simulation results in [146] on the
duality-gap in orthogonal frequency division multiplexing systems with continuous
bit-loading.

We will develop bounds on the duality-gap in our DSM problem, including one
that follows directly from the simple weak-duality relations in (1.13) and (2.1a). This
simulation based approach was for example also applied in [114] to an FDMA system.
Hence, we emphasize that the key novel aspect of this section lies in analyzing the
target-rate dependence of the duality-gap, focussing mainly on interference-limited
systems.

In [11, p. 371] the duality-gap of a general non-convex optimization problem was
bounded under several assumptions. Based thereon the following can be said about
the duality-gap in a (weighted) sum-rate maximization problem with no target-rate
constraints.

Corollary 2 (of [11, Prop. 5.26]). The duality-gap ζ between the optimal objectives
of the problem in (1.8) and its partial dual in (1.10) for the special case of a weighted
sum-rate maximization problem (i.e., Ru = ŵu = 0, w̆u ≥ 0, ∀u ∈ U) can be upper-
bounded by

ζ ≤
∑

u∈U

w̆u · ∆Ru, (2.13)

where

∆Ru = max
{C̃ | C̃⊂C,|C̃|=(U+1)}

{

∑

c∈C̃

max
pc∈Qc

{rc
u (pc)}

}

. (2.14)

The result follows from the proof to [11, Prop. 5.26].
Instead of summing over the (U + 1) maximum values over subcarriers, we may

also upper-bound the right-hand-side in (2.14) using

∆Ru ≤ (U + 1) max
c∈C,pc∈Qc

{rc
u (pc)}, (2.15)

as done similarly in [11, Prop. 5.26]. As an application example of the bound in

39



Ch. 2 Lagrange Relaxation based Transmit-Power Optimization

o

[R, P̂]

Q̆

D∗
(R̂,P̂)

−D∗
(R,P̂)ζ

[R̂, P̂]

+

+
+

++
+

+
+

+
+

+
+

+
+

+

+

+
+

+
+

+
+ +

+ +
+

+
+

+
+

+
++

+ +
+

+
+

+
+ +

+ +
+

+
++

++
+ +

++
+++

+
+ +

+ +
+ +

+ +
+ +

+ +
+

+
+

+
+

+
+

+
+ +

+
+

+

+
++

+++

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+

+
+

+

+

+

+

+
+
+

+
+

+
+

+
+

+
+

++
+
+

+

+

+
+

+
+

+
+

+
+

+

+

+
++

+

+
+

+

+ +
+

+
+

++

+
+

+
+

+

+

+
+

+
+

+
+

+
+

+
+

+

+
+

+

+

+
+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+

+

+

+ +++ +

+

+

+

+

+

+

+

+
+

+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
++

+
+

+

+

+

+
+

+

+

+

+
+

+

+

+

+

+

+
+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+
+

+

+
+

+

+

+

+

+

+
++

+

+

+

+

+
+

+

+
+

+

+

+

+
+

+

+
+

+

+

++ +
+
+

+

+

+

+

+

+ +

+
++
++++

++

++
+

+

+

+

+

+

+

+

+

+

+ +

[P ∗
(R,P̂)

,R, P̂]T

+

+
+
+

+

+

+ +
+

+

+

+

+

+

++

+

+

Figure 2.4: Schematic illustration of the discrete set of feasible objective value -
target-rate pairs Q̆, the duality-gap ζ according to the geometric in-
terpretation in [12, Ch. 5], and its bound in (2.16) for w̆ = 0.

Corollary 2, using (2.15) and assuming a maximum value of θ̂ = 15 bits per sub-
carrier and a DMT symbol-rate of 4 · 103 symb/sec, the duality-gap per user ζ/U is
independently of the channel parameters and other system constraints bounded by
0.66 Mbps and 3.06 Mbps for U = 10 and U = 50 users, respectively.

However, the assumptions made in the proof of [11, Prop. 5.26] do not hold for the
target-rate constrained problem in (1.8), as integer bit-loadings and an interference
channel are considered. A modified proof allows to show the following bound on the
duality-gap of the problem in (1.8), cf. Figure 2.4 for the idea behind the bound.

Theorem 4. The duality-gap ζ between the optimal objectives of the problem in
(1.8) and its dual in (1.10) is upper-bounded by

ζ ≤ D∗
(R̂,P̂)

+
∑

u∈U

w̆u∆Ru − D∗
(R,P̂)

, (2.16)

where D∗
(R̂,P̂)

is the optimal cost of a perturbed problem to (1.10) with modified

target-rates R̂ ∈ RU ,

R̂u = Ru +

{

∆Ru, if Ru > 0,

0, otherwise.
(2.17)

See Appendix A.4 for a proof.

The proof is based on an application of the Shapley-Folkman theorem [11, p.
374] to a feasible solution of a perturbed problem to (1.8) with increased target-
rates, and the boundedness of the set of feasible per-subcarrier bit-loadings in (1.7).

Assuming the maximum number of bits loadable per subcarrier we make the most
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2.2 The duality-gap in DSM

conservative estimate of the rate-functions’ lack of convexity, cf. [4]. Furthermore,
the computation of this bound necessitates to solve the dual problem in (1.10)
twice with different target-rate vectors. Solving the dual problem only once we may
already apply the weak-duality relation [22, Ch. 5] in (1.13), which is valid for any
primal and dual feasible solutions. More precisely, a simple bound available during
the optimization process is given by

ζ ≤
∑

c∈C

f c(p̃c, ŵ, w̆) − q(λ̃, ν̃), (2.18)

where p̃ is feasible in (1.8) and λ̃, ν̃ are feasible in (1.10). Note that this bound
is less computationally complex compared to (2.16) and additionally bounds the
sub-optimality of any primal feasible solution.

Yet another bound is computable for the special case of a (weighted) sum-power
minimization problem without optimizing the dual problem in (1.10), but under
feasibility assumptions only.

Theorem 5. Given target-rates R, assume that the problem in (1.8) is feasible
under the modified target-rates R̂ as defined in (2.17). The duality-gap ζ between
the optimal objectives of the original problem in (1.8) and its Lagrange-dual problem
in (1.10) for the special case of a weighted sum-power minimization problem (i.e.,
w̆u = 0, ŵu ≥ 0, ∀u ∈ U) is then upper-bounded by

ζ ≤ 2

θ
·
∑

u∈U

∆Ru · max
c∈C

{∆pc
u}, (2.19)

and where

∆pc
u = max

{ {pc, p̃c} | pc, p̃c ∈ Qc,
rc
u(p̃c) = rc

u(pc) + θ,
rc
i (p̃

c) = rc
i (pc), ∀i ∈ U \ u}

{

∑

u∈U

ŵu (p̃c
u − pc

u)
}

. (2.20)

See Appendix A.5 for a proof.

The proof is based on the weak-duality relation in (1.13) and the application of
Theorem 4 for modified target-rates. We emphasize that we kept the bound general
by avoiding to make any specific assumptions on the optimal power-allocations to
(1.12). While loosening the bound, this in fact maximizes the set of target-rates R
for which it is applicable. Furthermore, we expect this bound to decrease with an
increasing number of subcarriers for a constant total bandwidth as it depends on
the maximum number of bits loadable per subcarrier in (2.14).
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Figure 2.5: Duality-gap bound in (2.19) for different numbers of subcarriers over a
constant bandwidth in a DSL scenario with users collocated at 500 m.

Simulations

In this section we will present simulation results for all derived bounds in an up-
stream very high speed DSL (VDSL) scenario using equal weights ŵu = 1 for all users
u ∈ U . Furthermore, we assume w̆u = 0, ŵu = 1, ∀u ∈ U , i.e., we consider only pure
sum-power minimization problems which allows us to directly relate the duality-gap
to our transmit-power objective. The simulation parameters were chosen according
to the VDSL standard in [50], with an SNR gap Γ = 12.8 dB, a flat spectral mask
constraint at −60 dBm/Hz, two transmission bands as defined in band plan 997-
M1x-M, and neglecting the sum-power constraints in (1.8c). The background noise
comprised VDSL noise A [50] added to a constant noise floor at −140 dBm/Hz. The
first scenario is one where all users u ∈ U are collocated at 500 m distance from
the deployment point. This case serves solely to investigate the dependencies of the
rough bound in (2.19) w.r.t. the number of users and the subcarrier width, cf. Fig-
ure 2.5. As can be seen, the bound value increases with the number of users U and
eventually exceeds the largest possible value given by summation of the spectral
mask constraints over all users and subcarriers. However, as expected at the end of
the previous section, by decreasing the subcarrier width (increasing the number of
subcarriers for a constant bandwidth) the bound values also become smaller. This
is in accordance with the simulation results obtained in [114] for an FDMA system
and the corresponding theoretical result showing a decrease of the duality-gap with
an increase in the number of subcarriers. This decrease was shown to occur at an
asymptotical rate proportional to the inverse of the square-root of the number of
subcarriers [114].

Next we consider distributed DSL scenarios with U = 1, U = 2, or U = 3 users
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Figure 2.6: Comparison between the duality-gap bound in (2.16) and the weak-
duality bound in (2.18) per symbol in a distributed DSL scenario.

located at {500}m, {400, 600}m, or {300, 500, 700}m distance from the deployment
point, respectively. Figure 2.6 compares the duality-gap bounds in (2.16) and (2.18)
using these 3 scenarios and showing the dependency on the target-rates. We observe
that both bounds become looser as target-rates increase, indicating a certain “loss
of convexity”. Moreover, the theoretical bound in (2.16) turned out to be less tight
in this simulation results than the weak-duality bound in (2.18). Inequality (2.19)
gives in these scenarios an upper-bound of 0.07, 1.43, and 3.37 mW for U = 1, . . . , 3,
respectively. Note that these values are irrespective of the target-rates and roughly
up to a factor of 5 higher than the bound in (2.16) from which this bound was
derived. Furthermore, the bound in (2.16) gives non-zero values even for U = 1,
while from Theorem 2 we know that the duality-gap must be zero in this case.
Based on the weak-duality bound in (2.18) it is provable for all but the highest
feasible target-rates that the duality-gap of the problems studied in Figure 2.6 is
vanishingly small. We will see further simulation results which use weak-duality to
show a negligible duality-gap in Sections 3.3.5 and 4.3.1.

2.3 Minimizing the Line-Driver Power Consumption

The power consumption of a DSL transceiver can be divided according to its three
major parts: the digital front-end - performing digital signal processing; the analog
front-end - performing ADC and DAC as well as signal filtering; and the line-driver
(LD) - performing power amplification. Depending on the used transmission profile
(e.g., bandwidth, maximum aggregate transmit-power) the LD power (LDP) con-
sumption can amount to between 20 % and 50 % of the transceiver’s total power
consumption. The main focus for energy savings in DSL therefore lies on the LDP
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Figure 2.7: ADSL2+ line-driver model from [137] for a maximum aggregate transmit-
power of 19.9 dBm.

consumption [66, 68].

However, so far we have studied optimization models for DSM targeting a
transmit-power (TP) reduction. The TP constitutes roughly between 0.5 % and 10 %
of the transceiver’s total power budget per port at the network side (depending on
technology, profile, and equipment), and even less at the customer side, further
depending on the functionality of the home gateway [48]. Therefore an important
question is how well the LDP can be optimized by our energy-efficient, hardware-
oblivious DSM approach.

2.3.1 Optimization Models

The following investigations are based on the LDP consumption models for different
classes of LDs in [66,185], where the LDP as a function of the total TP Pu =

∑

c∈C pc
u

of user u is given in the form of

fLD
u (Pu) = v̂u

√

Pu + v̆u, (2.21)

and where the parameters v̂u ∈ R+ and v̆u ∈ R+ are dependent on the hardware
and system model.7 The intuition behind the shape of this function is that the sum
of the average output power Pu and the average power Pdiss dissipated in the LD
(excluding the quiescent power) can be written as [133]

Pu + Pdiss = E{|VO| · |IO|} + E{(VS − |VO|) |IO|} = VS · E{|IO|} ∝
√

Pu, (2.22)

7The specific model and parameterization used throughout this thesis is that of a class-AB line-
driver specified in the simulation section in [185].
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2.3 Minimizing the Line-Driver Power Consumption

where VS is the constant supply voltage of the LD, and VO and IO are the output
voltage and current, respectively. We will use two key features of this function: a) it
is monotonously increasing, and b) concave in the sum-power Pu (and hence also in
pc

u, c ∈ C). The only DSM algorithm for LDP optimization proposed so far [66] uses
continuous bit-loading (i.e., B = [0, θ̂]). Hence, as a comparison to this scheme seems
natural when comparing LDP and TP optimization, we will throughout this section
focus on the continuous bit-loading problem with inter-user interference. Similarly to
our original formulation in (1.8) and as in previous studies in the field of DSL [33,130]
we mathematically formulate the problem of minimizing the transmit sum-power in
DSL in the form

JTP =minimize
pc

u,u∈U ,c∈C

∑

u∈U

∑

c∈C

pc
u (2.23a)

subject to Coupling constraints in (1.8b) and (1.8c) (2.23b)

0 ≤ pc
u ≤ p̂c

u, rc
u (pc) ≤ θ̂, ∀c ∈ C, ∀u ∈ U . (2.23c)

Similarly, based on the model in (2.21) the problem of minimizing the total LDP
consumption in DSL can be stated as

JLD =minimize
pu

c ,u∈U ,c∈C

∑

u∈U

√

∑

c∈C

pc
u (2.24a)

subject to Constraints (2.23b) and (2.23c), (2.24b)

where for simplicity of exposition we assume identical LD models for all users which
allows us to omit the added constant v̆u and the factor v̂u, u ∈ U , as they have
no influence on the optimal solution in this case. Note that the latter factors can
easily be reintroduced under the numerical optimization approaches in Section 2.3.3.
For instance, heterogeneous LD models will be considered for the simulations in
Section 2.3.3.3. For brevity we will denote the optimal per-user sum-power values
for the problems in (2.23) and (2.24) by PTP ∈ RU

+ and PLD ∈ RU
+, respectively.

2.3.2 Analysis of the Optimization Models

Before turning to the numerical optimization of the problems in (2.23) and (2.24)
we analyze their solutions and the difference between their solutions in terms of
LDP independently of their exact solution value. To begin with we define the set of
possible solutions, referred to as the “power-region”.

Definition 1 (“Power-Region”). The power-region associated with the problems in
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Ch. 2 Lagrange Relaxation based Transmit-Power Optimization

(2.23) and (2.24) is defined as the set

P ={P ∈ RU | ∃pc
u, c ∈ C, u ∈ U ,which are feasible in (2.23), Pu =

∑

c∈C

pc
u}. (2.25)

Theorem 6. The sum-power vectors PTP and PLD achieved at a solution of the
power minimization problems in (2.23) and (2.24), respectively, both lie on the
boundary of the power-region P as defined in (2.25), i.e., ∄P ∈ P,P 6= PTP,P �
PTP and ∄P ∈ P,P 6= PLD,P � PLD.

Proof. The proof simply follows from the monotonicity of the objectives in (2.23a)
and (2.24a), respectively.

Theorem 6 also suggests a practical heuristic approach for LDP optimization,
namely through a sequence of gradient-based updates of sum-powers P with gradi-
ents computed from the objective functions fLD

u (Pu), u ∈ U , and DSM-based pro-
jections onto the power region. We refer to [23] where a similar idea was applied to
a rate-utility maximization problem, to Section 4.1.3 where we define a DSM for-
mulation to accomplish the mentioned projections, and to Section 2.3.3.2 for further
intuition behind this idea. However, while in [23] a non-concave maximization of a
rate-utility function is performed over the rate-region, in (2.24) we face a concave
minimization problem over the power-region P.

The following theorem identifies the smallest problem instances where a difference
between the two problems in (2.23) and (2.24) in terms of LDP may occur, and which
we will study further in Section 2.3.3.

Theorem 7. Differences between the optimal solutions of the problems in (2.23)
and (2.24) in terms of LDP can only occur for U ≥ 2 and C ≥ 2.

See Appendix A.6 for a proof.
Next we define the relative gain by LDP optimization in (2.24) compared to TP

minimization in (2.23) as

ξ =

v̂
∑

u∈U

(

√

PTP
u −

√

P LD
u

)

v̂
∑

u∈U

√

PTP
u + U · v̆

. (2.26)

In the following we derive a bound on ξ for any number of users U and subcarriers
C with powers pc

u summing to the total power Pu =
∑

c∈C pc
u. More precisely, we

have
√

∑

u∈U

PTP
u ≤ JLD ≤

∑

u∈U

√

PTP
u , (2.27)
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2.3 Minimizing the Line-Driver Power Consumption

where the first inequality holds due to the concavity and monotonicity of the model
in (2.21), and the optimality of

∑

u∈U PTP
u in (2.23), and the second inequality holds

due to feasibility of a solution to the problem in (2.23) for the problem in (2.24).
Using (2.27) in (2.26) we obtain the bound

ξ ≤
v̂
(

∑

u∈U

√

PTP
u −

√
∑

u∈U PTP
u

)

v̂
∑

u∈U

√

PTP
u + U · v̆

, (2.28)

which is only dependent on the solution of the problem in (2.23) and shown in Fig-
ure 2.8. Expanding our intuition from Theorem 7, we see that this simple bound does
not allow for any LDP reduction by direct LDP optimization in (2.24) compared to
the TP minimization in (2.23) when all but one user transmit with low power. Us-
ing Jensen’s inequality [22, p.77] we have U

√

1/U
∑

u∈U PTP
u ≥∑u∈U

√

PTP
u , which

applied to (2.28) and after simple reformulations leads to a solution-independent
upper bound given by

ξ ≤
(

1 − 1√
U

)



1 +
v̆
√

U

v̂
√

∑

u∈U P̂u





−1

. (2.29)

The gain ξ for U = 2 users is for instance bounded by 1 − 1/
√

U ≈ 30 %. The
bounds in (2.28) and (2.29) are identical when PTP

u = P̂u = P, ∀u ∈ U . However,
if the solution to the TP minimization problem in (2.23) demands all users to use
maximum sum-power, by sum-power optimality in (2.23) the same must hold in the
LDP minimization problem in (2.24) and so the difference between the two must
vanish.

In this section we have located the solutions of our two optimization problems
on the boundary of a power-region and identified potentially insightful problem
instances. In the next section we will use this information to study the real gain ξ
by directly optimizing the LDP model through numerical methods.

2.3.3 Empirical Numerical Optimization Study

We will use three approaches to obtain insights into the differences between TP
and LDP minimization in terms of the LDP consumption founded on the functional
model in (2.21): The first one is based on an efficient but possibly suboptimal succes-
sive geometric programming (GP) approximation used in order to identify problem
parameters under which differences between the optimal solutions of the two opti-
mization problems occur. While it is known that the TP optimization problem can
be approached by GP, our contribution is to recognize this fact for the LDP opti-
mization problem. The second approach is based on the globally optimal solution
of both problems in (2.23) and (2.24). Global optimality is a necessary property
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Figure 2.8: Upper-bound in (2.28) on the LDP difference between the solutions of
the problems in (2.23) and (2.24) for U = 2 users under realistic ADSL2+
and VDSL LDP models with a maximum aggregate TP of 19.9 dBm and
11.5 dBm, respectively.

to study the power-region in Definition 1 and the location of the solutions to the
problems in (2.23) and (2.24) in this region. For solving these non-convex and rate-
constrained LDP and TP optimization problems we found it necessary to develop
a problem-specific algorithm, deviating in various aspects from the approaches pro-
posed for related rate-maximization problems in [49, 192]. The third approach uses
the heuristic successive convex approximation algorithms proposed in [68] and [130],
respectively. These two algorithms allow to study problem instances of large size and
with realistic system parameters.

2.3.3.1 DSM based on successive SINR-approximation and geometric
programming

Geometric programs (GP) are a class of problems which is not convex but can easily
be converted into a convex form by logarithmic transformations [21]. They were
applied to power control in [35, 39], where also successive GP approximations were
proposed for non-convex problems based on monomial [21] or SINR approximations
[130]. For a short introduction to GP and the corresponding problem transformation
of the LDP optimization problem in (2.24) we refer to Appendix C.1.

As mentioned above, our motivation for applying successive GP is to solve numer-
ous small problem instances (U = C = 2) in order to identify problem parameters
which lead to a substantial gain ξ by LDP optimization compared to TP optimiza-
tion. We generated numerous problem instances of (2.23) and (2.24) by setting Hc

21

and Hc
12 to all combinations out of the set {−90,−67.5,−45,−22.5, 0} dB, and for

each of these combinations forming all target-rate combinations sampling the users’
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2.3 Minimizing the Line-Driver Power Consumption

Figure 2.9: Percent gain ξ by direct LDP optimization through the suboptimal suc-
cessive GP algorithm.

possible rates at 20 equi-distant rate-levels from 0 to the maximum achievable rate
(i.e., 400 rate-combinations).8 After running successive GP for the problems in (2.23)
and (2.24) we re-initialize the algorithm with the obtained result for the respective
other problem and keep the best solution found for each problem.9 Also, we multi-
ply the per-user sum-powers by a factor of 500 before applying the LDP model in
order to obtain a more realistic estimate of the LDP savings.10 The result of this
experiment can be summarized as follows: Significant values of ξ occurred under
unsymmetric settings of target-rates and crosstalk coefficients, especially so when
the stronger disturber is the one having the larger target-rate, cf. Figure 2.9. Intu-
itively this kind of setup results in one user operating with low sum-power (where
the derivative of the LDP model in (2.21) is high) while the user with the larger
target-rate operates at a higher sum-power (corresponding to a lower derivative of
the LDP model in (2.21)). While from a sum-power perspective it may make sense
to allow the strong disturber to interfere with the weak disturber due to the specific
target-rates, from an LDP perspective the user with the low target-rates is worth
protecting more due to the larger derivative of the LDP model at low sum-power
values, cf. the LDP model in Figure 2.7. In the next section we select a specific

8The remaining relevant parameters are Hc
uu

= 1, Γ = 12.3 dB, ∆ = 4.3125 · 103 [Hz], N c
u

=

10−14 · ∆[mW], p̂c
u = 10−4 · ∆[mW], u ∈ U , c ∈ C, θ̂ = ∞.

9This sequential re-initialization process is stopped in case the best solution found for both prob-
lems does not improve for more than three consecutive iterations.

10By multiplication with 500 we heuristically scale the transmit sum-power values to that of a
system with 1000 subcarriers in order to obtain LDP values through our LDP model which
are somewhat comparable to those under more realistic system parameters in the following
sections.
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scenario based on these insights for further investigation.

2.3.3.2 Global solutions of non-convex LDP optimization problems using
difference-of-convex-functions programming (DCP)

Difference-of-convex-functions programming (DCP) [77] is a widely applicable ap-
proach in global optimization, where non-convex objective and constraint functions
are reformulated as the difference of convex functions, cf. [49, 192] for recent ap-
plications in power control. Similarly to the reformulation shown in [49, 192] for a
rate-maximization problem, the rate constraints in (1.8b) can be equivalently writ-
ten as

−
∑

c∈C

rc
u (pc) + Ru = gu (p) − hu (p) ≤ 0, ∀u ∈ U , (2.30)

where

gu (p) = −
∑

c∈C

log
(

Hc
uup

c
u +

∑

j∈U\{u}

ΓHc
ujp

c
j + ΓN c

u

)

+ Ru, (2.31)

hu (p) = −
∑

c∈C

log
(

∑

j∈U\{u}

ΓHc
ujp

c
j + ΓN c

u

)

, u ∈ U , (2.32)

are convex fuctions. Writing the objective in (2.24a) formally as 0 − h0(p) with
convex function h0(p) = −∑u∈U

√
∑

c∈C pc
u, we can write the problem in (2.24) as

the following DCP [77]

minimize
pc

u,u∈U ,c∈C
− h0(p) (2.33a)

subject to gu (p) − hu (p) ≤ 0, ∀u ∈ U (2.33b)

Constraints (1.8c) and (2.23c). (2.33c)

While in previous applications of DCP in the area of power control [49,192] the prob-
lem was in fact solved as a concave minimization problem over a convex constraint
set, we have additionally complicating DCP constraints in (2.33b). Correspondingly
we developed a more general solution approach, namely a box-based branch-and-
reduce algorithm initialized by a successive GP [39] solution, cf. Appendix C.2 for
details. Note that this DCP algorithm can similarly be applied to (optimally) solve
the TP problem in (2.23).

We use the developed global optimal algorithm to investigate the power region as
given in Definition 1. For reasons of tractability we restrict ourselves to a specific sce-
nario (U = C = 2) identified using the heuristic in Section 2.3.3.1.11 In Figure 2.10

11The relevant selected parameters are that of Section 2.3.3.1 with the exception of R1 =
41.36 [bits/frame], R2 = 5.9 [bits/frame], Hc

12 = −67.5 dB, and the value given to Hc
21, c ∈ C.
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Figure 2.10: Locations of the solutions to the studied problems in (2.23) and (2.24)
in the power region, respectively, and the gain ξ by the latter in terms
of the LDP consumption.

we show the power-regions and the solutions of the problems in (2.23) and (2.24) for
a varying crosstalk parameter H21

c . Firstly we see that both solutions PTP and PLD

lie on the power-region, as predicted by Theorem 6. However, the solutions lie on
different contour lines of the function

∑

u∈U

√
Pu, meaning that they provably differ

in terms of LD power consumption. While the TP solution minimizes [0.5, 0.5] · P
over the power-region, the LD power optimal solution minimizes [0.17, 0.83] · P. In
other words, the LD power optimum is attainable by a weighted sum-power opti-
mization with specific weights. Searching these weights is in fact the idea behind the
projected gradient heuristic indicated in Section 2.3.2. With a decreasing parameter
H21

1 the needed sum-powers for constant target-rates decrease, leading to a decrease
of the achievable gain ξ by LD power optimization compared to TP minimization,
cf. Figure 2.10.

2.3.3.3 An experiment in real-sized DSM problems using heuristics

In this section we compare solutions obtained by two DSM heuristics and static
spectrum management (SSM) in terms of their LDP: a) the successive convex ap-
proximation algorithm [186] for the problem in (2.23) which is based on the convex
approximation r̃c

u(pc) of the rate-function rc
u(pc) as given in Appendix C.1 and in-

troduced in [130] for a rate-maximization problem in DSL; b) the successive LP
approximation algorithm in [68] for the problem in (2.24) which mainly differs from
the above approximation heuristic in that the approximation is linear and the ap-
proximated problems are not solved iteratively but jointly for all users; and c) single-
user water-filling [22] considering a static background noise (i.e., SSM). This static
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Figure 2.11: Constructed Network Example with 7 cabinet-deployed lines disturbing
a CO-deployed line.

background noise includes the highest possible crosstalk noise, assuming that all
other systems transmit at the PSD mask level. A novelty we introduce for the com-
parison of suboptimal DSM algorithms is that after obtaining the result of a DSM
scheme we initialize the respective other DSM algorithm with this result and keep
the best solutions in terms of LDP and TP objective, respectively.12 The purpose
of this strategy is to avoid the dependency of the comparison on the initialization13

which might have been chosen in favor of one of the algorithms. The difference to
the initialization approach in Section 2.3.3.1 is that we cross-initialize two heuristics,
while in Section 2.3.3.1 we applied a single heuristic to two different problems.

Based on the insights of the two previous sections we design a network scenario
with realistic parameters where we would expect a difference in LDP between the
two considered optimization approaches. This is with respect to the selected channel
model (a 99 % worst-case model [59]), the network topology (a near-far scenario with
one CO deployed line and 7 cabinet deployed disturbers), the bandplan (showing
strong crosstalk with the CO deployed line, see below), the target-rates (low rates
for the CO deployed victim line and high rates for the cabinet lines), and the selected
DSL systems (the LDP model for the VDSL cabinet lines [185] has a lower slope than
that for the ADSL2+ CO line shown in Figure 2.7). More precisely, we consider the
near-far downstream scenario shown in Figure 2.11 with 8 lines deployed in the same
cable bundle, where 7 VDSL lines are deployed from a cabinet and one ADSL2+ line
is deployed from the CO. We set the parameters of the ADSL2+ line in accordance
with the standard in [87] (using the non-overlapping bandplan with the integrated
services digital network (ISDN) in [87, Annex A]) and of the VDSL lines according
to [50] with a total SNR gap of Γ = 12.3 dB in both systems.14 The assigned target-

12This sequential re-initialization process is stopped if no improvement of the best solution found
by any of the algorithms was detected for two consecutive iterations.

13The PSD for the TP optimization and its first approximation was initialized at a low level of
−120 dBm per subcarrier and user. The trust-region used in the LDP optimization scheme [68]
is set to −70 dBm per subcarrier and user, after being initialized with the solution of the
sequential TP minimization algorithm [186].

14We consider the bandplan setting for fiber-to-the-exchange, mask variant B, and un-notched
mask M2, which was chosen due to the high ingress noise into ADSL lines. Thereby we aim to
imitate the insightful scenarios found in Section 2.3.3.1.
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rates are 1, 2, or 3 Mbps and 10, 13, 16, or 19 Mbps for the CO and cabinet deployed
lines, respectively, and we investigate all 12 combinations of these target-rates.15

We observed that due to the heuristic nature of both algorithms the LDP opti-
mization did not always give a better total LDP than the TP optimization (cor-
responding to a negative gain ξ in (2.26)). In summary, the gain ξ in (2.26) was
in the studied 12 scenarios between −0.01 % and +0.01 %. DSM gives a more sub-
stantial LDP reduction compared to SSM of between 20 % and 40 %. While this
result is no definite answer to whether or not LDP optimization makes a difference
to TP optimization, it is another indication that in practice the difference may be
negligible, which motivates the simplification of the optimization in this direction.
However, multi-user DSM bares a substantial potential for energy-reduction com-
pared to SSM, as we shall further see in a larger set of scenarios in the following
section.

2.3.4 Average Performance Evaluation

Differently to the previous section we will next study the possible LDP reduction by
TP optimization (i.e., DSM) compared to SSM in 300 randomly generated network
topologies with simulation parameters as specified in Section 2.3.3.3. More precisely,
we study two deployment scenarios, where the first one consists of 15 ADSL2+ lines
with loop-lengths uniformly sampled between 800 m and 1600 m. The second type
of scenarios consists of 15 VDSL cabinet-deployed lines with loop-lengths between
300 m and 800 m.16 We compare the TP optimization algorithm in [186] and the SSM
algorithm as described in Section 2.3.3.3. The target-rates are set by multiplying the
(scenario dependent) maximum achievable per-user rates as achieved by the heuristic
in [68] by factors of {0.2, 0.4, 0.6, 0, 8}. Differently to above, the crosstalk channel
model is based on measured data in [153], where we perform a uniformly random
cable selection. Summarizing, the simulation setup does not exaggerate the inter-user
crosstalk (e.g., by near-far scenarios or worst-case crosstalk couplings) and therefore
provides a realistic evaluation of the energy savings by multi-user DSM compared
to SSM.

Next we present the average LDP consumption results together with 99 % con-
fidence intervals according to a student t-test. The average LDP consumption in
the ADSL2+ scenarios obtained by the sum-rate maximizing DSM algorithm in [68]
leads already to an LDP reduction compared to (spectral mask and sum-power con-
strained) full-power transmission of 38.70 % (±0.97 %), which has to be compared
to the maximum possible savings by TP reduction (which are obtained by reducing
the TP to zero) of 85.69 %. Hence, even rate-maximizing DSM can be regarded as

15The maximum rate for the VDSL lines in the considered scenario as found by the LDP opti-
mization algorithm [68] is approximately 19.9 Mbps.

16Simulation parameters for both DSL technologies are as specified in Section 2.3.3.3, except that
for VDSL we use the bandplan specified in [50] for fiber-to-the-cabinet, mask variant A-M1.
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Figure 2.12: LDP savings achieved by various TP optimization strategies in a)
ADSL2+; b) VDSL.

an energy saving technology, as already argued in [41]. In the VDSL scenarios the
sum-rate maximization leads to an LDP reduction compared to full-power transmis-
sion of 9.10 % (±0.46 %). The maximum possible savings are now only 32.14 %, due
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to the lower sum-power constraint as enforced by the spectral mask.
The additional savings by energy-efficient (EE) DSM compared to rate-

maximizing DSM are shown in Figure 2.12. In Figure 2.12(a) we see that in the
ADSL2+ scenarios multi-user DSM gives (on average) more than 70 % LDP reduc-
tion at 80 % of the maximum rates compared to sum-rate maximizing DSM, whereas
SSM only results in less than 11 % LDP reduction. Hence, DSM gives substantial
improvements compared to SSM, most noticeable at higher rates. In the VDSL sce-
narios the conclusions are qualitatively similar. However, as shown in Figure 2.12(b),
the LDP reduction at 80 % of the maximum rates is now only 23 %, whereas SSM
results in less than 7 % LDP reduction.

Estimating the contribution of the LDP in the transceiver’s total power budget
at between 30 % and 50 % [68,74], we end up with power savings by energy-efficient
DSM in the order of 25 % to 40 % for ADSL2+ and 9 % to 15 % for VDSL compared
to full-power transmission, at 80 % of the maximum rates as defined above. This
result is in line with the assumed 10 % to 30 % power savings by DSM at the DSLAM
in [75].

2.4 Low-Power Modes in DSL

We have so far looked at the case where power could be saved by reducing the set
target-rate, and hence the transmit power. Besides the definition of these targets
through service level agreements, a second opportunity occurs when modems are
enabled to reduce their bit-rates in response to (temporarily) lowered traffic rates.17

This technique is known as “low-power modes” (LPM) in DSL, and will be briefly
surveyed in the following. As this section is mainly meant to provide background
information for this chapter and Chapter 7, we refer to [86] for details on the im-
plementation of LPMs, to [189] for an initial study on the optimization of LPMs, to
Chapter 7 where we analyze a specific LPM enabling technology by means of various
DSM approaches, and to Section 8.3 where we summarize open research directions
concerning LPMs.

LPMs are a standardized [86] technique in ADSL2 aiming at reducing the power
consumption at the CO side of the DSL link by reducing the downstream transmit
rate and power. The initial motivation for LPMs in DSL was the reduction of the heat
dissipation and consequently cooling power needed at the CO [42] where typically
a large number (up to thousands [75]) of DSL connections are terminated at the
DSL access multiplexer (DSLAM). The LPM rate-level was supposed to be just
high enough to keep up the basic DSL functionality (e.g., synchronization) and
basic telephony services such as the voice-over-Internet protocol (VoIP). Figure 2.13
illustrates the functionality of LPMs in ADSL2 [86]. For example, one may define a

17We will encounter a third method for defining the target-rates in Chapter 5 where our goal is
the maximization of the service coverage.
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Figure 2.13: Simplified illustration of the LPM functionality in ADSL2 [86].

delay between the time the traffic rate falls below the (single) LPM rate-level and
the time the system enters the LPM state. Furthermore, the system exits the LPM
instantaneously in order to avoid a user-perceived delay. The exit from the LPM
state potentially causes instability in the network as it leads to changes in transmit
power and hence in crosstalk noise received on other lines. The effects of LPMs on
network stability have been studied in [42], we refer to Chapter 7 for further details
on stabilization techniques.

Besides the initial motivation for LPMs, recently energy reduction itself has be-
come an important design criterion in DSL [48,75], having impacts on system scal-
ability (e.g., cooling requirements) and telco’s operational expenditure and Carbon
dioxide footprint. The European code of conduct on energy consumption of broad-
band equipment [48] even sets design goals for the energy consumption of DSL equip-
ment. For example, a power reduction by approximately 30 % in the low-power state
is foreseen for ADSL2 by 2014.18 As already stated in Section 1.1, the transceiver’s
line-driver (LD) accounts for a large part of the transceiver’s power budget, e.g.,
nearly 50 % of the ADSL2 based DSLAM’s energy consumption [75]. Furthermore,
the LD power (LDP) consumption scales with the transmit power [65,137]. Regard-
ing Figure 2.7 we see that for ADSL2+ transceivers a maximal LDP reduction of
85 % is possible by transmit-power reduction. This conforms to the predicted en-
ergy profile for DSLAMs in [20], showing an energy scaling potential of roughly
45 % of the power consumption in full-power state. Differently, in [75] the energy
savings by LPMs were more conservatively estimated at 20 %. In [42] maximum
savings of 420 mW were found in a specific experimental setup, which assuming a
power consumption of an ADSL2 line-card of 1.2 W (the consumption target for
2011-2012 in [48]) corresponds to a saving of 28 %. Furthermore, the saved energy at
the transceiver side results in an at least as high extra energy saving in the facility
support equipment at the CO, a fact known as the “cascade effect” [127, 141] or
“power usage effectiveness” [171]. This makes the scaling of transmit power a viable
energy reduction technique. Also, in [141] energy saving modes were found to be the
most beneficial energy reduction strategy at the CO, a result based on the energy

18The precise targets foresee an energy reduction from 3.4 W in the full-power state to 2.4 W on
the customer side and from 1.1 W to 0.7 W on the CO side.
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reduction targets in [48] and to a large extent in consequence of the cascading ef-
fect. This conclusion is further strengthened by the typically low usage of the DSL
link. In [20] a network forecast of Telecom Italia for 2015-2020 is given. Therein the
link usage (fraction of time the connection is used) and utilization (demanded data-
rate compared to the maximum achievable rate) in the wired access network are
quantified by 30 % and 10 %, respectively. This indicates the potential for improving
the energy-efficiency in DSL by introducing LPMs and adaptive transmission rates.
In [51] private DSL and triple-play users are estimated to use the link less than 10 %
and 35 %, respectively. Similarly, the study in [144] highlights that the time when
the aggregate network traffic in North America is within 5 % of the peak value over
the day is only around 2 hours. In [99] the current average Internet usage per day
for Bavaria (Germany) was even reported to be as low as 37 minutes (2.6 %).

To obtain an estimate of the saving potential of LPMs we assume a power con-
sumption of an ADSL2 line-card of 1.2 W (the consumption target for 2011-2012
in [48]), an average saving in LDP consumption of 64 %,19 a share of the LDP in
the line-card’s power budget of 50 % [69], and a multiplicative energy-saving fac-
tor of 2 due to the power usage effectiveness [75, 127, 141]. Altogether we obtain
an energy saving potential of 6.7 kWh (or 0.67 Euro assuming an energy price of
roughly 10 cent/kWh [136]) per year and DSL line. Summarizing, the efficiency of
LPMs depends on the time operated in LPM and the transmit power spent in LPM.
In [189] we optimize the LPM rate level for a single DSL line and based on different
models and assumptions of the arrival traffic. This bottom-up approach provides a
comparable range for the average LDP saving potential compared to that assumed
in our estimate (64 %), namely roughly between 60 % and 80 %. An assumption for
the work in [189] is that the DSL line is stabilized and the fluctuations in received
crosstalk noise masked by the considered increased background noise, cf. Chapter 7
for a specific means of line stabilization.

19This number is based on an average link usage of 20 % and a potential LDP reduction in LPM
during idle-times of 80 % [137], resulting in an average saving potential of (1−0.2)×0.8 = 0.64.
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Chapter 3 Optimal Discrete-Rate
DSM

Our main contribution in this chapter is the proposal of optimal methods for solv-
ing the decomposable dual multi-user subproblems in (1.12), and the analysis of
the suboptimality of greedy multi-user bit-loading [103] based on these methods.
This work does not depend on the specific algorithm which generates the Lagrange
multipliers λ and ν, cf. the Lagrange-dual problem in (1.10).

Combinatorial multi-user rate and power-allocation as in (1.12) is of interest not
only in interference-limited DSL systems, but also in other application domains
where interference plays a role, such as wireless multi-user networks [36, 105, 135].
A dual optimal multi-user DSM algorithm in DSL with discrete power levels was
first proposed in [33], where an exhaustive search was applied to solve the per-
subcarrier problems. In [188] we propose a robust extension to DSM where the
exhaustive search is made more efficient by avoiding the evaluation of infeasible
rate combinations. A branch-and-bound (BnB) algorithm for optimal per-subcarrier
search was proposed in [163], where the BnB search had an exponential complexity
in terms of time and memory, and ADSL downstream scenarios were simulated
for up to 8 users. Optimal continuous power-allocation has been studied in [138,
162, 177, 192], where in [192] dual optimal results were presented for up to 8-user
VDSL scenarios. In [100] a power control scheme for finite-rate OFDMA systems
with a single (base-station) sum-power constraint was proposed. Its peculiarity is
the usage of the actual bisection search interval in the dual master problem in order
to declare optimality of a per-subcarrier solution (i.e., the subcarrier allocation to a
single user and its transmit power) early on in the dual search. Our application of
BnB methods to the interference-limited and multi-user per-subcarrier problems also
allows to incorporate dual master problem information, as we shall see in Section 3.1
and Chapter 4.

A traditional approach for discrete-rate DSM is discrete bit-loading (DBL) [59].
Various optimal DBL algorithms have been proposed in the single-user case, cf. [5,27]
and the references therein. However, only few heuristic have been described in the
multi-user case [103,184,196]. To the best of our knowledge no study has up to now
investigated the precise suboptimality of multi-user bit-loading schemes in a large
set of scenarios.

We propose a low-complexity optimal discrete-rate allocation method for the per-
subcarrier power control problems in (1.12) which consists of problem-specific im-
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plementations of two mechanisms which are generic parts of a modern nonlinear
discrete problem solver [8, 143]: a BnB framework and a variable-range reduction
technique. We propose in Section 3.1 two BnB schemes which show favorable com-
putational and memory complexity to that previously proposed in [163]. The key
feature of our BnB schemes is that maximum bit-loading information is passed be-
tween neighboring nodes in the BnB search tree in order to reduce the number of in-
feasible rate evaluations. In Section 3.2 we suggest a low-complexity optimal search-
space reduction (SSR) scheme based on a partly interference-free, convex relaxation
of the per-subcarrier problems. In the context of related integer programming lit-
erature [9, 26, 142, 143] our SSR scheme can be interpreted as a low-complexity,
relaxation specific, nonlinear, objective-based [142] variable range reduction tech-
nique. SSR is seen to be most effective in scenarios with low levels of crosstalk,
e.g., low-bandwidth DSL systems or DSM problems with low target-rates. Simula-
tion results are presented in Section 3.3, where we motivate our problem-specific
approach by comparison to a general-purpose solver for mixed-integer non-convex
problems [8], investigate the effectiveness of the proposed techniques individually,
and demonstrate the effect of target-rates on the solution complexity in a 16-user
ADSL2 scenario. Furthermore, we analyze the sum-rate performance of a classi-
cal greedy multi-user DBL algorithm [103] for which we provide for the first time
precise suboptimality figures in thousand ADSL2 networks using measured channel
data from [153]. We will now study the problem in (1.12) in the general multi-user
case and drop the subcarrier index c throughout the rest of this chapter for ease of
notation. Also, to facilitate an intuitive understanding of the algorithms proposed
in the following we rephrase the problem in (1.12) in terms of bit-rates as

minimize
r∈Qr

f(p(r), ŵ + ν, w̆ + λ). (3.1)

The complete proposed methods can be found in the tables Algorithm 11 and Al-
gorithm 12. We emphasize that our contribution does not depend on the specific
algorithm which generates the Lagrange multipliers λ and ν and is therefore also
applicable to previous work on DSM algorithms. However, for our simulations in
Section 3.3 we use the finitely converging spectrum balancing framework described
in Chapter 4. It is based on a linear problem (LP) which is iteratively updated us-
ing the per-subcarrier solutions of the problems in (3.1). The dual solution of this
LP comprises the Lagrange multipliers which are used to define the subproblems in
(3.1).
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Figure 3.1: Schematic illustration of the search-tree associated with a single per-
subcarrier problem in (1.12).

3.1 Branch-and-Bound (BnB) for Discrete-Rate

Power Control

Solving the per-subcarrier problem in (3.1) can be regarded as a sequence of U
consecutive decisions, each assigning a certain number of bits to one of the U users.
This can be illustrated in form of a decision tree, where decisions are made starting
with that of user 1, cf. Figure 3.1. A node at tree-depth u corresponds to a vector
of bit-allocations r(u) ∈ Ru of “already loaded users” 1 up to u. We define the set
of all users’ possible rates (the leaf nodes at the bottom of the search-tree) per
subcarrier as L =

∏

u∈U B, the set of feasible rates by Qr = {r ∈ L|p(r) ∈ Q}, and
the set of infeasible rates by Q̄r = {r ∈ L | r /∈ Qr}. Note that this work can be
readily extended to more general (finite) sets B. Branch-and-bound (BnB) [101] is
a systematic and exact search method for finding the leaf-node r(U) ∈ Qr ⊆ L with
minimum objective value f(p(r(U)), ŵ + ν, w̆ + λ), i.e., for solving the subproblem
in (3.1). The algorithm starts at the root node of the tree (cf. Figure 3.1) and at
each node makes a branching decision, i.e., it decides which node to explore next
at the next-lower tree-level. The second key component of the method beside the
branching rule is the computation of lower-bounds on the objective values of any
leaf-node belonging to a subtree rooted at node r(u), cf. Section 3.1.1. However,
the exact computation of the tightest possible lower bound would necessitate the
solution of the problem (cf. (1.3), (1.7), (1.9), and (3.1))

minimize
ri ∈ {0, θ, . . . , θ̂}, u + 1 ≤ i ≤ U,

pi ∈ [0, p̂i],∀i ∈ U

∑

{i∈U | i≤u}

(

(ŵi + νi)pi − (w̆i + λi)r
(u)
i

)

+

∑

{i∈U | i≥(u+1)}

((ŵi + νi)pi − (w̆i + λi)ri) (3.2a)

subject to r
(u)
i ≤ ri (p) , 1 ≤ i ≤ u, (3.2b)

ri ≤ ri (p) , u + 1 ≤ i ≤ U, (3.2c)
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which differs from the original problem in (3.1) only in the fact that the rates of users
i, i ≤ u, are fixed at r(u). Consequently, solving (3.1) with a BnB algorithm using the
tightest lower bound would be as costly as solving (3.1) by a brute-force enumeration
of Qr. However, the efficiency of the BnB algorithm comes from the use of efficiently
computable lower-bounds to the optimal objective of the problem in (3.2), which can
be used to infer the suboptimality of a subtree (“pruning” the subtree) based on the
comparison of this lower-bound with the objective value of the best (“incumbent”)
solution r(U) ∈ Qr found so far. The algorithm only stops when it has either visited
or pruned all leaves of the tree. Hence, there is a complexity tradeoff in BnB schemes
between the computation of lower-bounds and the exploration of the tree.

3.1.1 Computing lower-bounds in BnB schemes

Before proposing explicit BnB methods we will describe the computation of bounds
which are less complex than the solution of the problem in (3.2). We generically
denote such a lower-bound for the subtree rooted at r(u) as

lbr
(u)

(pmin, rmax) = (ŵ + ν)Tpmin − (w̆ + λ)T rmax, (3.3)

where pmin and rmax are chosen appropriately, cf. [163] for a specific BnB scheme
dependent choice. A selection which gives a valid lower-bound in (3.3) to the exact

lower bound in (3.2) is pmin
i = pi(r

(u)), rmax
i = r

(u)
i , 1 ≤ i ≤ u, and pmin

i = 0, rmax
i =

θ̂, (u + 1) ≤ i ≤ U , where pi(r
(u)) = pi(r), i ∈ U , as defined in (1.3) with r ∈ RU

being formed by extending r(u) with (U − u) zeros. This selection results in a valid
lower-bound as a) the rates of already loaded users are fixed while those of the
remaining users are constrained by θ̂; b) the power needed to support the rates r(u)

in (3.2b) monotonously increases with the crosstalk noise and is therefore the lowest
when the power of the remaining users is the lowest possible (i.e., 0); and c) the
objective in (3.2a) is monotonously increasing in the powers and decreasing in the
rates. In Section 3.1.2.1 and 3.2 we will see two less conservative ways of obtaining
bounds by modifying pmin

i and rmax
i for users i, where (u + 1) ≤ i ≤ U .

Another means of efficiently lower-bounding f(p(r), ŵ+ν, w̆+λ) for all leaf nodes
r in the subtree rooted at r(u) also derives from the above key observation that the
power needed to support the rate ri (p) in (3.2b) and (3.2c) without interference
among users lower-bounds the corresponding values with interference. A relaxation
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of the problem in (3.2) in this respect can be formulated as

minimize
ri ∈ {0, θ, . . . , θ̂},

pi ∈ [0, p̂i], u + 1 ≤ i ≤ U

∑

{i∈U | i≤u}

(

(ŵi + νi)pi(r
(u)) − (w̆i + λi)r

(u)
i

)

+

∑

{i∈U | i≥(u+1)}

((ŵi + νi)pi − (w̆i + λi)ri) (3.4a)

subject to ri ≤ log2

(

1 +
Hiipi

ΓÑi

)

, u + 1 ≤ i ≤ U, (3.4b)

which differs from the exact lower-bounding problem in (3.2) in that the powers pi

for users i, i ≤ u, are fixed at the above mentioned lowest values pi(r
(u)) and the

constraints in (3.2b) are neglected. Furthermore, the total received noise considered
in the rate functions ri(p) in (3.2c) is lower-bounded by considering only the inter-
ference from already loaded users, which by the same argument as above leads to
the lower-bound on the received noise given by Ñi = Ni +

∑

1≤j≤u Hijpj(r
(u)), for

the remaining users i, (u + 1) ≤ i ≤ U . Solving the problem in (3.4) forms the basis
of our search-space reduction algorithm in Section 3.2 and its solution with linear
complexity in U is detailed in Appendix A.7.

Yet another relaxation of (3.2) in the form of an LP can be obtained in that we
first apply a continuous relaxation of the discrete rate variables, and relax (3.2c)
as in (3.4b). This relaxation would truly capture the interference induced to the
already loaded users through the constraints in (3.2b). However, we find that the
improvements of the pruning process in our BnB schemes are outweighed by its
complexity and we will therefore not consider it further.

3.1.2 Depth-First BnB (DFB) and Best-First BnB (BFB) Search

The symmetric BnB scheme in [163], which we refer to as the Regular Splitting based
BnB (RSB), branches by expanding all sub-trees in parallel. This leads to exponen-
tial worst-case memory requirements, making RSB inapplicable for a larger number
of users. The second disadvantage, as the simulations in Section 3.3.2 will reveal, is
that testing infeasible allocations r ∈ Q̄r significantly contributes to the search com-
plexity of this method. The BnB schemes presented in the following remedy exactly
these two disadvantages by having linear worst-case memory requirements and in-
troducing an explicit mechanism to exploit the impact of some user’s bit-allocation
on other users.

3.1.2.1 Depth-first BnB

Depth-first BnB (DFB) explores the search-tree starting from the node r(U) = 0,
corresponding to the bottom-left node in Figure 3.1. Bits are iteratively increased,
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θ
2θ0

u

u − 1

na nb nc

u − 2

Figure 3.2: Part of a BnB tree under depth-first search for the case of θ̂ = 2θ contain-
ing a set of three neighboring subtrees rooted at level u−1; Dashed lines
and circles illustrate infeasible allocations; The red path corresponds to
the current allocation, based on which we infer infeasibility of the sub-
trees highlighted in blue.

starting with user U , corresponding to the bottom level of the search-tree. Algo-
rithm 11 summarizes the DFB scheme in more detail, with specific aspects being
explained in the remainder of this section. Lines 8–14 and 19–24 implement the
searching strategy (i.e., the update of the currently investigated node in the search
tree), with an update of the minimal power-allocation pmin in Line 11 as used in
(3.3), and a conditional update of the incumbent objective f ∗ in Line 13. In Line 19
the sub-tree is pruned based on the comparison of the current lower bound lb to the
current upper bounds. In Lines 15–18 we perform further tasks needed to improve
the lower bound in (3.3), including an update of rmax and a call of Algorithm 12 to
be specified in Section 3.2.

Information regarding the maximum feasible1 bit-loading of user u, in a subtree
rooted at level u − 1, can be used to produce an upper bound on user u’s feasible
bit-loadings in all neighboring subtrees rooted at level u − 1. This is made possible
by the intuitive observation that increasing the rate of any other user i ∈ U , i 6= u,
cannot increase the maximum feasible number of bits of user u as increasing the
rate of another user can only increase the overall interference. The basic idea is
exemplified in Figure 3.2, where the infeasibility of node na implies that also the
nodes nb and nc are infeasible. Consequently, having visited node na in the DFB
search over the tree illustrated in Figure 3.2 and found this node infeasible, the
upper bound on the maximum rate of user u can be set to rmax

u = θ when searching
the neighboring subtrees rooted at level u − 1. In the general case, having found a
node r(u) infeasible, the DFB can set rmax

u = r
(u)
u − θ in the search of the remaining

neighboring subtrees at level u − 1, i.e., in any remaining subtree rooted at r(u−1),
where r

(u−1)
i = r

(u)
i for i = 1, . . . , u − 2.

Testing feasibility of a node r(u) requires in general the computation of the unique
power-allocation p(r(u)) as the solution of a set of linear equations (cf. Section 1.2.3).

1We call a node r(u) in the search-tree feasible if the extension of the bit-allocation with zero bits
for users i, u < i ≤ U , yields a feasible leaf-node r(U) ∈ Qr. If r(U) is infeasible (i.e., r(U) /∈ Qr),
no feasible extensions exist.
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The value of the observation described above is that by using the upper bound on
the rate of user u we can avoid testing certainly infeasible nodes, thus reducing the
number of computations required in the BnB implementation. The procedure can
be applied at any level of the tree, although the upper bound rmax

u must be re-set
to θ̂ when the search back-tracks to level u − 2.

Besides lowering the number of feasibility tests performed (cf. the use of variable
r̂tmp
u in Algorithm 11), the reduction of rmax

u also strengthens the lower bound in
(3.3), cf. Lines 14 and 18 in Algorithm 11. Furthermore, the initialization of the
incumbent in lines 3–5 can be further improved, e.g., by using heuristics [181] or
the solutions of other DSM algorithms, cf. Section 3.3. Note that DFB as well as
the scheme presented in the following section can make use of an available objective
bound Φ to improve the pruning process, cf. Line 19 in Algorithm 11 and [179]
where the specific relaxation gives such a bound as a byproduct. The variable f lb in
Algorithm 11 serves as a certificate in case no feasible solution with objective lower
than Φ is found, i.e., as a lower-bound for the objective of any (e.g., pruned) feasible
allocation. In the following we analyze the complexity of DFB.

Corollary 3 (of [179, Thm. 2]). The complexity of the search scheme DFB in Al-
gorithm 11 for solving the subproblem in (3.1) is polynomial in the number of users
U given Hui

Huu
≥ α > 0, ∀u ∈ U .

Proof. While by Theorem 3 we have that |Qr| grows polynomially in U , we also see
that the same holds for the complexity per feasible allocation in the BnB Algorithm
11 (i.e., including the solution of a linear system for evaluating p(r) and the cal-
culation of lower-bounds through (3.3) or the solution of the relaxation in (3.4) as
detailed in Appendix A.7). Furthermore, the number of tested infeasible allocations
r ∈ Q̄r can be bounded as follows: Assuming a feasible bit-allocation (e.g., r = 0),
the algorithm proceeds by increasing the number of bit-steps for user U by one. If
this is feasible we obtain another feasible bit-allocation, while if it is not we return
to the previous user U −1 and increase its bit-allocation by one, setting that of user
U to 0. Following this procedure we find that the maximum number of failed trials
per feasible bit-allocation is bounded by the depth of the search-tree U , concluding
our argument.

3.1.2.2 Best-first BnB

Best-first BnB (BFB) differs from DFB in that branching is not performed sys-
tematically starting from lower bit-allocations and proceeding to higher ones. More
precisely, the algorithm branches the node which has the lowest lower-bound in (3.3).
Whether this is a good decision will clearly depend on the quality of the lower-bound.
Similarly as in DFB we can make use of the maximum bit-loading information rmax

u .
However, considering only subtrees rooted at level u − 1 with equal bit-allocation
r
(u−1)
i for all previous levels i, i ≤ u − 2 (cf. Figure 3.2), in BFB we might visit a
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Figure 3.3: Illustration of the idea behind objective-based search-space reduction
(SSR).

subtree with higher rate r
(u−1)
u−1 before visiting a subtree with lower rate r

(u−1)
u−1 at level

u−1. Therefore we might not have access to the closest estimate rmax
u we would have

obtained if we had visited the neighboring subtree with lower rate r
(u−1)
u−1 first. This

deteriorates the effectiveness of the bounds in (3.3) and the search as a whole. For
brevity we omit a detailed algorithm description of BFB as we found BFB inferior
compared to DFB for a larger number of users, cf. our results in Section 3.3.

3.2 A Search-Space Reduction (SSR) Scheme

In Theorem 3 an upper-bound on the size of the feasible search space |Qr| for
the per-subcarrier problem in (3.1) is given which grows with decreasing crosstalk
strength. The bound has therefore its highest value if we assume no crosstalk between
users. This is however counter-intuitive in face of the fact that a greedy bit-loading
algorithm would then solve (3.1) optimally, cf. the proof of Theorem 2 and the fact
that the per-subcarrier problem decouples into single-user problems in the absence
of interference as seen in Section 3.1.1. In the following we suggest a method which
can take advantage of low-interference cases in order to reduce the size of the search-
space for the exact problem in (3.2) corresponding to a subtree rooted at r(u).

The idea behind our SSR scheme is to first solve the lower-bounding problem in
(3.4) which partly neglects inter-user interference, and is therefore a relaxation of
the exact problem in (3.2). Then, starting from the optimum of the lower-bounding
problem, we search the bit-allocations with a lower-bound (i.e., objective value in
the lower-bounding problem) below the real objective (i.e., with fully considered
inter-user interference) of a known feasible solution for the exact problem in (3.2).
This idea is illustrated in Figure 3.3 where it is shown how a lower bound on the
objective provides a tightened superset of all bit-allocations that can improve upon
the target objective. Correspondingly, the SSR scheme in Algorithm 12 contains two
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Figure 3.4: CPU time comparison between our two proposed search mechanisms
(DBF and SSR) and an applicable general-purpose solver under a time-
out of 2 minutes, in randomly sampled 5-user ADSL2 scenarios.

parts, where in the first one in Lines 4–8 we solve the lower-bounding problem in
(3.4) as described in Appendix A.7 and search a feasible target objective value Ltarget

for the exact problem in (3.2). Note that also the objective value of the current global
incumbent solution can be used as the target objective value. While the incumbent
objective might be lower than any feasible objective value in the subtree considered
in the exact problem, the SSR scheme will not exclude any solution in the subtree
from the search-space that has a better objective than the current incumbent and
therefore supports the pruning of suboptimal solutions. The second part of the SSR
scheme is detailed in Lines 10–14 of Algorithm 12 and concerns the search-space
reduction. As seen in Appendix A.7 the lower-bounding problem can be solved by
separate problems for users i, u+1 ≤ i ≤ U . Hence, also the minimum and maximum
bit-rate of user i in the subtree rooted at r(u) can be found by searching, starting
from the optimum of the lower-bounding problem, the minimum and maximum rates
which result in a lower-bound that is below the target objective value.

This SSR method can be employed at any level of the search-tree of BFB and
DFB, cf. Line 16 in Algorithm 11, but only on the root node in RSB. Note also
that minimum power/maximum bit-loading information is obtained by SSR which
is used for computing lower-bounds in Line 18 of Algorithm 11.

3.3 Simulation Results on Optimal DSM

3.3.1 Performance comparison to a general-purpose solver

In order to motivate our problem-specific BnB and variable-range reduction mech-
anisms DFB and SSR we compare them to the open-source general-purpose solver
for non-convex mixed-integer problems “Couenne” [8] in terms of central processing
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unit (CPU) time for various sum-rate maximization problems.2 In order to have
problem instances that are easier to solve by general purpose software we base the
simulations on 5-user upstream transmission ADSL2 scenarios3, with topologies gen-
erated by uniformly sampling the users’ line-lengths between 500 m and 2000 m. The
used crosstalk channel data is based on measurements in [153] and a random cable
selection as the number of measured lines exceeds U . Figure 3.4 depicts the cu-
mulative distributions of CPU time for our combined scheme (DFB and SSR) and
for Couenne. The main observation from these results is that there is a subset of
the per-subcarrier problems which could not be solved by Couenne in the set time-
limit of 120 seconds. Hence, the development of problem-specific techniques for the
problem at hand is qualitatively justified.

3.3.2 Comparison of BnB methods

In the following we investigate the average complexity of solving the subproblems in
(3.1) under the three BnB schemes outlined in Section 3.1. In order to study a more
challenging DSM case we use numerous VDSL upstream scenarios as described below
and a 99 % worst-case crosstalk model [59]. For tractability we restrict ourselves
to the simulation of every 50 th subcarrier out of the more than 1600 subcarriers
under fixed values of weights w̆u = 0, ŵu = 1/U, and identical Lagrange multipliers
λu = λ, νu = 0, ∀u ∈ U . To capture the performance of these methods exclusively we
do not make use of incumbent initializations. Also, we avoid machine dependency
of our performance evaluation to a large extent by focussing on two reproducible
complexity merits: the number of visited feasible leaf nodes (rate allocations) r ∈ Qr,
and the total number of visited leaf nodes r ∈ L (corresponding to the number of
solved matrix equations [33] in the power evaluation p(r) for a bit-allocation r),
where the latter also includes the tested allocations r ∈ Q̄r which turn out infeasible.
Furthermore, we neglect the complexity of other logical operations needed to perform
the BnB searches. As explained in Section 3.1.2 the RSB scheme has more severe
memory requirements compared to our two BnB search proposals, and hence our

2Both algorithms solve, for each scenario, the per-subcarrier problem in (3.1) for all subcarriers
c ∈ C only once, that is, for the set of weights and Lagrange multipliers that are output in
the first iteration by the sum-rate maximizing master LP in (4.1) after being initialized by the
solution of the DBL algorithm in [103]. For Couenne we apply default parameters, except for
the branching priority of continuous variables which was set lower than for integer variables.
The platform is Windows 7 on an Intel quad-core system running at 2.4 GHz with 4 GB of
random-access-memory.

3The parameters for ADSL2 and VDSL follow the corresponding standards in [86] (Annex B.1.3)
and in [50] (band plan 997-M1x-M, a flat spectral mask constraint at −60 dBm/Hz, alien
crosstalk according to VDSL noise A [50]), with Γ = 12.8 dB and θ = 1. The background noise
for ADSL2 is set to N c

u = −120 dBm/Hz, while that for VDSL is chosen as −140 dBm/Hz. The

maximum bit-allocation θ̂ for the single-carrier simulations in Sections 3.3.1–3.3.3 was set to
16 as it was used in the BnB simulations in [163], while for multi-carrier simulations we use a
standard compliant value of 15.
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Figure 3.5: Average complexity of various BnB schemes in terms of the number of
total or feasible visited leaf nodes for solving the per-subcarrier problems
in (1.12) with ŵu = 1/U, λu = 10−3, ∀u ∈ U ; in a) and b) over the
subcarrier index for U = 6; in c) the sum-complexity for all per-subcarrier
problems over the number of users U .
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comparisons favor this previously proposed scheme. The network scenarios are
based on a set of specified line lengths {200, 400, 600, 800}m, and forming all U -
combinations with repetitions4 to allocate users to these lengths, cf. [181] for further
details.

Figures 3.5(a) and 3.5(b) show the total number of visited leaf nodes and the
number of visited feasible leaf nodes, respectively, over the subcarrier index under
different search schemes for 6 users. The bend of the curves at index 500 is due
to the use of two non-adjacent frequency sub-bands. In general we find that the
complexity in solving the per-subcarrier problems (3.1) decreases in all schemes with
the subcarrier frequency due to the increasing crosstalk coupling per unit-length and
channel attenuation. In a “naive search” all allocations in

∏

u∈U{0, θ, . . . , θ̂u} ⊆ L
are evaluated, where we define θ̂u, θ̂u ≤ θ̂, as the maximum number of bits the user
u can transmit without interference, cf. Figure 3.5(b). However, we see that the
number of feasible leaf nodes |Qr| in the search-tree, labelled “all feasible”, is far
below this number. This complexity reduction can already be achieved by a modified
exhaustive search [188, Algorithm 2]. Furthermore, we observe a reduction in the
number of visited leaf nodes by the BnB schemes BFB, DFB and RSB, with DFB
performing best over the whole range of subcarrier problems, cf. Figure 3.5(b). This
can be further explained by comparing Figures 3.5(a) and 3.5(b), where we see that
a large part of the complexity of RSB lies in the evaluation of infeasible allocations,
which is avoided by our proposed BnB mechanism in Section 3.1.2.1. Regarding the
comparison in average sum-complexity over subcarriers in Figure 3.5(c) we see that
for less than 4 users RSB performs better than DFB. However, for a higher number
of users we observe a growing gap in complexity between the two schemes with DFB
performing better, both, in terms of computational and memory complexity.

3.3.3 The impact of the Lagrange multipliers on the complexity

We use the same simulation setup as in the previous section and demonstrate in
Figure 3.6 the dependency of the average (over users and network scenarios) search
complexity on the Lagrange multipliers λu = λ, u ∈ U , associated with the bit-rates.
Our SSR scheme is shown to successfully reduce the search space for lower values of
λ, where we note that the algorithm is only executed once at the root of the search-
tree, cf. the curve labelled “DFB+SSR, No Bounding”. Higher values of λ on the
other hand lead to higher optimal per-subcarrier rates and therefore to stronger in-
terference levels among users at the optimum. This on the other hand decreases the
quality of the lower-bound computed from the interference-free problem in (3.4) and
therefore the performance of the SSR scheme. However, DFB outperforms RSB for
larger values of λ, making the joint application of SSR and DFB search outperform
RSB over the whole range of λ, cf. the curve labelled “DFB+SSR, With Bound-

4For example, for U = 6 the number of thereby generated scenarios is 84.
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Figure 3.6: Dependency of the average branch-and-bound (BnB) sum-complexity
over all selected per-subcarrier problems in (1.12) on the Lagrange mul-
tiplier λu = λ, ∀u ∈ U , in various 6-user VDSL scenarios; a) Visited
feasible bit-allocations; b) Total number of tested bit-allocations.

ing”. By comparison between Figures 3.6(a) and 3.6(b) we see once more that our
proposed BnB schemes avoid testing infeasible bit-allocations, while a large part of
the complexity of RSB lies in testing such allocations. Furthermore, as explained in
Section 3.1, RSB has a worst-case storage requirement that increases exponentially
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Figure 3.7: Comparison between the average sum-complexity and the achieved per-
user bit-rates for our proposed search scheme.

in the number of users, while that of DFB increases only linearly. Altogether we
argue that DFB is the preferable BnB scheme, especially in scenarios with a larger
number of users.

Another aspect in Figure 3.6 is that the average search complexity of all shown
BnB schemes only increases up to a certain value of λ, after which it decreases again.
As the number of feasible allocations is independent of λ we attribute this behavior
to the lower-bound lbr

(u)
(pmin, rmax) in (3.3). We argue that during BnB search

there is typically a good bound rmax available, be it either based on the search-
region definition as in RSB [163] or on message passing of maximum bit-loading
information as in DFB and BFB. However, lower-bounds pmin

i on the optimal power
consumption of a user i, u < i ≤ U, for a sub-tree rooted at r(u) are harder obtained,
where notably our SSR scheme allows us to get lower-bounds other than pmin

i = 0,
cf. Line 14 of Algorithm 12. Altogether we have stronger lower-bounds for either
lower values of λ where the optimal power levels are small, or higher values of λ
where the total weight (w̆ + λ) on the rates is dominant.

The multiplier λ controls the rates’ weight in the objective f(p, ŵ + ν, w̆ + λ)
defined in (1.9). Figure 3.7 illustrates the average per-user rate over the multiplier λ
in percent of the maximum achieved value (at λ = 10) and compares it to the com-
plexity of our combined search method (DFB and SSR) taken from Figure 3.6(a).
We observe that a wide range of low average rates is achievable at fairly low com-
plexity. For example, we find that for λ = 3 · 10−8 our combined search method
(DFB and SSR) visits less than 0.8 % of the total number of feasible leaf nodes in
the search-tree, while the resulting average rate is more than 30 % of the maximum
one at λ = 10.

3.3.4 The impact of target-rates on the complexity of DSM

Differently to the previous section we will now directly analyze the impact of
the target-rates on the complexity of a dual optimal DSM scheme as a whole in
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Figure 3.8: Complexity of solving a dual sum-power minimization problem using the
column generation technique of Chapter 4 and the optimal techniques
DFB and SSR in a distributed 16-user ADSL2 scenario.

various sum-power minimization problems. The simulation is based on a single
ADSL2 topology with 16 users transmitting in upstream direction and situated
at 800, 850, . . . , 1550 m distance from the deployment point, and we use the average
crosstalk per unit-length between all 24 measured cables in [153] for the calculation
of the crosstalk couplings. A maximum total number of evaluated feasible allocations
of 109 was set to limit the simulation time. From the simulation results shown in Fig-
ure 3.8 we find that the complexity of our dual-optimal DSM algorithm qualitatively
increases with the target-rates. However, we also note that sum-rate maximization
(cf. the point at the bottom-right in Figure 3.8) had again a complexity which
was lower compared that of sum-power minimization at the highest shown target-
rates. This is most likely due to the fact that sum-power constraints were not tight
in this scenario and the multipliers ν are consequently all zero. Therefore a good
lower bound on the objective can be computed by knowing a good upper-bound
on the number of bit-steps that can be loaded, as obtained in our DFB search,
cf. Section 3.1.2.1. This observation is also in accordance with the interpretation of
Figure 3.6(a) in Section 3.3.3.

3.3.5 Performance evaluation of greedy multi-user bit-loading

We will next investigate the suboptimality in rate-maximization problems of two
multi-user discrete bit-loading (DBL) approaches: the greedy multi-user DBL
(MDBL) scheme in [103] and single-user bit-loading [27] under worst-case crosstalk
noise computed using the users’ PSD masks and the (measured) cross-channel data
(i.e., “Mask-Based” SSM). The performance metric we consider for these two heuris-
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Figure 3.9: Cumulative distribution function of the performance ratio µ(R,P̂) in (3.5)
for our dual-optimal DSM scheme and two bit-loading algorithms.

tics is their performance ratio defined as

µ(R,P̂) =
D∗

(R,P̂)

P heur
(R,P̂)

, (3.5)

where we denote the objective value of a heuristic bit-loading scheme achieved by
a feasible solution of the primal problem in (1.8) as P heur

(R,P̂)
≥ P ∗

(R,P̂)
. For example,

in the considered case of ŵ = 0, meaning a pure rate-maximization problem, we
have D∗

(R,P̂)
≤ P heur

(R,P̂)
≤ 0 and it therefore holds that µ(R,P̂) ≥ 1. The dual optimal

objective D∗
(R,P̂)

in (1.10) is computed by our dual optimal DSM scheme, consist-

ing of the optimal Lagrange multiplier update algorithm in Chapter 4, initialized
at the solution under MDBL, and using our optimal techniques DFB and SSR for
the subproblems in (3.1). In order to obtain a clearer picture of the duality-gap
(P ∗

(R,P̂)
−D∗

(R,P̂)
) in realistic scenarios we also derive primal feasible solutions to the

problem in (1.8) by applying the heuristic described in Section 4.1.4 on top of our
dual optimal DSM scheme. We simulated 1000 ADSL2 scenarios with 10 users and
other simulation parameters and a random topology and cable selection as described
in Section 3.3.1. Our results are shown in Figure 3.9. Regarding the cumulative dis-
tribution5 for our extended dual-optimal scheme we see that the performance ratio
µ(R,P̂) was in fact nearly 1 in all tested scenarios. More precisely, its suboptimality
and therefore the duality-gap is below 0.01 % of D∗

(R,P̂)
in more than 99.6 % of the

scenarios, with a confidence of 99 % according to a t-test. Similarly, the suboptimal-
ity of MDBL is guaranteed to lie below 1 % in more than 97.7 % of the scenarios,
demonstrating the near-optimality of MDBL in realistic ADSL2 scenarios. Surpris-
ingly, even the conservative mask-based SSM approach leads to a suboptimality of
below 5 % in more than 91.1 % of the scenarios.

5In the computer science literature [45] this empirical distribution is referred to as “performance
profile”.



Chapter 4 Low-Complexity
Discrete-Rate DSM

In this chapter we study low-complexity algorithms for the discrete, constrained
and interference-limited multi-user and multi-carrier power control problem in (1.8).
Lagrange relaxation is a common technique for the decomposition of such problems
into independently solvable per-subcarrier subproblems. However, in the previous
chapter we saw that the optimal solution of these subproblems as demanded by
Lagrange relaxation is not tractable to compute in large DSL networks in general.

Spectrum balancing algorithms applicable for a large number of users are cur-
rently based on further complexity reduction heuristics such as constructive greedy
heuristics [103,196], continuous and/or (sequential) convex relaxation [66,160,197],
and sequential power updates over users [31, 160, 197,198].

An alternative to the Lagrange relaxation is the time-sharing relaxation which al-
lows for a convex combination of various power-allocation solutions. Furthermore, as
shown in Section 2.1.2, it is the strong dual problem to the Lagrange relaxation, also
when the set of transmission rates is finite. Optimal subcarrier and power-allocation
in OFDMA networks with continuous power-allocation was recently shown to have
a polynomial time approximation [114], where also an equivalent linear time-sharing
formulation was derived. Similarly, continuous time-sharing was shown to yield a
convex and therefore polynomially solvable optimization problem under continuous
power-allocation in [80, 140, 190], cf. Section 2.1.4 for details.

In DSM problems with inter-user interference time-sharing was introduced as a
method which schedules various multi-user power-allocations over time, each of these
allocations still allowing for inter-user interference [56, 187]. In Section 2.1.2 we an-
alyze the time-sharing relaxation of our primal problem in (1.8). Its intractability
motivates the proposal of a novel framework for multi-carrier power control based
on a nonlinear Dantzig-Wolfe (NDW) decomposition [44] and a problem “disag-
gregation” [132] in Section 4.1. This approach differs from previous Lagrange re-
laxation schemes for DSM in interference-limited systems [33, 52, 163, 198] in the
dual master problem which is a linear program giving time-sharing solutions and
which exploits independence among subcarriers by separate treatment of the per-
subcarrier solutions. We emphasize that the time-sharing solutions do in our case
still allow for inter-user interference. In Section 4.1.2 we sketch how NDW decom-
position can not only be applied to sum-rate and sum-power optimization but also
for the maximization of users’ minimum rate, geometric mean rate, harmonic mean
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rate, proportional fair rate [151], and weighted minimum rate. Differently to most
work on dual-relaxation based DSM schemes, in Section 4.1.4 we also suggest a
heuristic to recover a feasible solution to the original primal problem. The proposed
DSM method avoids numerical convergence problems arising due to similarity of
subcarriers [52] or a positive duality-gap [114]. Furthermore, it bears the potential
to use a combination of optimal and low-complexity suboptimal solutions to the
combinatorial per-subcarrier subproblems while providing a monotonously improv-
ing objective value. This is in contrast to most previous Lagrange-relaxation based
DSM algorithms where the dual master problem theoretically demands for optimal
subproblem solutions, cf. (1.12), an exception being for instance the scheme in [111]
which uses approximate subgradients [12].

While we have seen in Section 2.1.2 that the combinatorial per-subcarrier prob-
lems in (1.12) have polynomial complexity in the number of users and developed
low-complexity optimal schemes in Chapter 3, we find that such suboptimal meth-
ods are indispensable in large systems. Thus we give an overview of various basic
dual heuristics, that is greedy and local search, and randomized extensions thereof,
including a “warm-start” heuristic which exploits the correlation among the solu-
tions of the per-subcarrier problems on neighboring subcarriers. The fact that the
number of heavily disturbing lines in near-far DSL scenarios is limited was exploited
in proposed schemes for vectored DSL systems by limiting the number of canceled
crosstalk sources [32]. We propose a mixed exhaustive and greedy dual heuristic
which makes use of this network feature to reduce the complexity also for spectrum
balancing. The simulation results following in Section 4.3 demonstrate the advan-
tage of performing a heuristic combinatorial search jointly for all users. Besides a
large 50-user VDSL network example we also provide an average DSM performance
comparison in a large set of thousand VDSL scenarios with mixed central office (CO)
and cabinet deployment.

4.1 A Novel Framework for DSM

In this section we propose a novel DSM framework which approaches the original
problem in (1.8) by iteratively optimizing the time-sharing relaxation in (2.3) and
using a heuristic for recovering feasible solutions for the original problem. Its key
features are the decomposition into independent per-subcarrier problems, similar to
the Lagrange dual problem in (1.10), as shown in Section 4.1.1, its applicability to
various DSM objectives as highlighted in Section 4.1.2, and the possibility for heuris-
tic solutions of the per-subcarrier problems as studied in Section 4.2. Our method is
related to previous dual relaxation based DSM algorithms [33, 52, 163, 198] through
Theorem 1 and partly motivated by the results in [114, 198] and Section 2.2, show-
ing a vanishingly small duality-gap — that is the difference between the optimal
objectives in the original problem in (1.8) and its dual in (1.10). The time-sharing
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problem in (2.3) can not only be motivated by its connections with Lagrange re-
laxation, but can also be regarded as the linear relaxation of an otherwise identical
problem to that in (2.3) with binary variables ξc

i ∈ {0, 1}, i ∈ Ic, c ∈ C. This binary
problem [182] only picks a single allocation per subcarrier and is therefore equiva-
lent to the original problem in (1.8). In Chapter 5 we will study an extended binary
problem which we partly solve by a semidefinite relaxation [102]. We note however
that this relaxation leads to a nearly quadratic increase in the number of variables
and we therefore deem its complexity too high for current solvers [155], even when
the iterative scheme in the following section is applied. Furthermore, we will propose
a heuristic for recovering binary solutions in Section 4.1.4 which shows good perfor-
mance in simulations (cf. its explicit performance evaluation in Sections 3.3.5 and
4.3.1), making the application of more complex relaxations than the linear relaxation
unattractive.

4.1.1 Nonlinear Dantzig-Wolfe Decomposition

The decomposition scheme described next from first principles is based on the math-
ematical programming concept of column1 generation [110], or more precisely a non-
linear Dantzig-Wolfe (NDW) decomposition [132], [44, Ch. 23] of (1.8). Applications
of this decomposition approach in the area of wireless communication can be found
in [6,19,91,148]. At iteration k of the algorithm we consider a subset of all columns
Ic,(k) ⊆ Ic, c ∈ C in (2.3), yielding the restricted master problem

P
∗,ts(k)

(R,P̂)
= minimize

ξ′≥0,ξc
i≥0,i∈Ic,(k),c∈C

∑

c∈C

∑

i∈Ic,(k)

f c(pc,i, ŵ, w̆)ξc
i + f ′(P̂,R)ξ′ (4.1a)

subject to
∑

c∈C

∑

i∈Ic,(k)

rc(pc,i)ξc
i + Rξ′ � R, (4.1b)

∑

c∈C

∑

i∈Ic,(k)

pc,iξc
i + P̂ξ′ � P̂, (4.1c)

∑

i∈Ic,(k)

ξc
i + ξ′ = 1, ∀c ∈ C, (4.1d)

where we added an artificial column with weight ξ′ and cost f ′(P̂,R) = ŵT (P̂+δ)−
w̆T (R− δ), for some arbitrary δ ≻ 0. By setting ξ′ = 1 and ξc

i = 0, for all i ∈ Ic,(k)

and c ∈ C, it can be seen that this “aggregated” column makes (4.1) always feasible.
Furthermore, the choice of cost leads to the following results, indicating that this
artificial column does not alter the solution when (2.3) is feasible.

Theorem 8. At the optimum of (4.1) we have ξ′ = 0 if a feasible solution to

1The term “column” refers to the column-vectors pi
c and rc(p

i
c) in the constraint matrices of the

LP in (2.3).
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(2.3) exists with ξc
i = 0, for all i ∈ Ic \ Ic,(k), c ∈ C, and ξ′ = 1, ξc

i = 0, for all
i ∈ Ic,(k), c ∈ C, otherwise.

See Appendix A.8 for a proof.

Corollary 4. Assuming feasibility of (2.3) we have P
∗,ts(k)

(R,P̂)
≥ P ∗,ts

(R,P̂)
.

Proof. By Theorem 8 we either have ξ′ = 0 or ξ′ = 1 at the optimum of (4.1). The
corollary follows as Ic,(k) ⊆ Ic, ∀c ∈ C, and by δ ≻ 0 and feasibility in (2.3) any
solution of (2.3) has a lower objective than f ′(P̂,R).

After solving (4.1), the second task at each iteration in a column generation
scheme is to compute new columns to be added to the master problem in (4.1)
in order to reduce the gap described in Corollary 4. Relaxing constraints (4.1b),
(4.1c) and (4.1d) in the restricted master problem at iteration k, and denoting
their Lagrange multipliers by λ(k), ν(k) ∈ RU

+ and Φ(k) ∈ RC , respectively, and
also including variables ξc

i = 0, for all i ∈ Ic \ Ic,(k) and c ∈ C, we can write the
Lagrangian for (4.1) as

L(k) =
∑

c∈C

∑

i∈Ic

(

f c(pc,i, ŵ + ν(k), w̆ + λ(k)) + Φ(k)
c

)

ξc
i +

(

RT λ(k) − P̂Tν(k) −
∑

c∈C

Φ(k)
c

)

(1 − ξ̃) + f̃(P̂,R)ξ̃. (4.2)

Adding any column i ∈ Ic \ Ic,(k) to (4.1) with negative derivative2 ∂L(k)/∂ξc
i =

f c(pc,i, ŵ + ν(k), w̆ + λ(k)) + Φ
(k)
c at the (dual) optimum of (4.1) lowers the opti-

mal objective of (4.1) or leaves it unchanged.3 Hence, a simple criterion, leading in
fact to pricing problems similar to those in the Lagrange-dual of the time-sharing
problem in (A.2), is to pick the column on subcarrier c with minimal derivative, lead-
ing to decomposable subproblems similar to (1.12) (and with identical complexity,
cf. Corollary 1) in the form of

qc,red(λ(k), ν(k), Φ(k)
c ) = qc(λ(k), ν(k)) + Φ(k)

c , (4.3a)

= min
i∈Ic

{

f c(pc,i, ŵ + ν(k), w̆ + λ(k))
}

+ Φ(k)
c , ∀c ∈ C. (4.3b)

The proposed DSM algorithm iterates between solving (4.1) and the C subproblems
in (4.3b). Hence, the number of columns in (4.1) increases by at most C in each

2This derivative is also referred to as the “reduced cost” of a column [14].
3More precisely, assuming non-degeneracy of a basic solution of (4.1) one can pivot on the new

variable ξc
i

with ∂L(k)/∂ξc
i

< 0 and thereby maintain feasibility while strictly decreasing the
objective value [14]. From a dual perspective, non-degeneracy corresponds to uniqueness of the

dual solution λ(k), ν(k), Φ
(k)
c , c ∈ C, to (4.1) [14]. Under this uniqueness it follows from the

existence of a negative gradient direction w.r.t. (4.2) at λ(k), ν(k), Φ
(k)
c , c ∈ C, and strict duality

that the optimal objective of (4.1) decreases strictly.
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iteration, cf. Algorithm 1. We emphasize that any potentially suboptimal solution
to (4.3b) with negative objective may improve the restricted master problem (4.1),
which is the reason why problem (4.3b) is amenable for fast heuristics, cf. Line 7
in Algorithm 1 and our overview on basic heuristics in Section 4.2. Furthermore,
we have that if qc(λ(k), ν(k)) ≥ −Φ

(k)
c , ∀c ∈ C, then P

∗,ts(k)

(R,P̂)
= P ∗,ts

(R,P̂)
, cf. (4.3a). The

same conclusion can be drawn if, ∀c ∈ C, we have i ∈ Ic,(k), where i is the minimum
argument in (4.3b), i.e., all newly generated columns are already part of the master

LP in (4.1). This follows from P
∗,ts(k)

(R,P̂)
≥ P ∗,ts

(R,P̂)
, cf. Corollary 4, and the relations

P ∗,ts

(R,P̂)
≥ q(λ(k), ν(k)) (4.4a)

= min
{ic∈Ic,c∈C}

{

∑

c∈C

f c(pc,ic , ŵ + ν(k), w̆ + λ(k)) + λTR− νT P̂

}

(4.4b)

= min
{ic∈Ic,(k),c∈C}

{

∑

c∈C

f c(pc,ic , ŵ + ν(k), w̆ + λ(k)) + λTR− νT P̂

}

(4.4c)

= P
∗,ts(k)

(R,P̂)
, (4.4d)

where (4.4a) follows from Theorem 1 and the definition of the dual problem in (1.10),
(4.4b) holds by definition, (4.4c) holds due to the assumed availability of the optimal
column in the restricted master LP in (4.1), and (4.4d) holds as λ(k), ν(k) were the
optimal dual multipliers in (4.1), and due to strong duality in the restricted master
LP. This means that the algorithm terminates if not at least one new allocation on
any subcarrier is added to the master problem in (4.1). A finite convergence time
of the algorithm then follows from the finiteness of |Qc|, c ∈ C. The negativity of

qc,red(λ(k), ν(k), Φ
(k)
c ) as a necessary criterion for an improving column can also be

exploited on each subcarrier to reduce the complexity of solving (4.3b), for instance

by using −Φ
(k)
c as the initial incumbent objective used for pruning the search tree

in branch-and-bound based algorithms, cf. Chapter 3 and specifically Line 19 in
Algorithm 11 for an application.

In general, based on Theorem 1 we can bound the (non-negative) gap P
∗,ts(k)

(R,P̂)
−

P ∗,ts

(R,P̂)
at iteration k by

ζ̃ = P
∗,ts(k)

(R,P̂)
− max

1≤j≤k
{q(λ(j), ν(j))}, (4.5)

where q(·, ·) is defined in (1.11), cf. Line 6 of Algorithm 1. Our stopping criteria in
Line 2 of Algorithm 1 additionally include a primal improvement criterion which
is necessary when suboptimal solutions are used as proposed in Line 7. Another
practical measure is taken in Line 8 where we only add new columns to the NDW
master problem in (4.1) to reduce its size.
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Algorithm 1 NDW-DSM

1: Initialize k = 1, Ic,(1), ∀c ∈ C, ζ̃ = ∞, P
∗,ts(0)

(R,P̂)
= ∞, δ̄

2: while ζ̃ > ζ tgt and |P ∗,ts(k−1)

(R,P̂)
− P

∗,ts(k)

(R,P̂)
| > δ̄ |P ∗,ts(k−1)

(R,P̂)
| do

3: Solve (4.1) by a primal-dual LP solver, obtaining dual multipliers
[λ(k), ν(k),Φ(k)]

4: Obtain new allocations solving (4.3b) either ...
5: ... a) Optimally (e.g., by branch-and-bound as in Chapter 3)
6: Compute ζ̃ as in (4.5)
7: ... b) Suboptimally (initially, e.g., using Algorithm 4)
8: Add only new allocations i ∈ Ic \ Ic,(k) to (4.1), k = k + 1
9: end while

10: Apply Algorithm 2 to recover solutions to (1.8)

4.1.2 Further Properties of NDW-DSM

We claim that the presented disaggregated NDW-DSM algorithm is numerically
more stable than previous Lagrange relaxation based DSM schemes based on the
following observations: As it is based on a time-sharing formulation it does not suffer
from the convergence problems [52,114] which may arise due to non-convexity of the
original problem in (1.8). In general, computing a primal feasible allocation based on
the dual optimum is then again non-deterministic polynomial-time (NP) hard [114].
However, by Theorem 1 there exists a time-sharing solution having an objective value
equal to the optimal dual one. In [52,53] a specific Lagrange multiplier search scheme
was proposed which similarly to our scheme yields time-shared solutions but works
differently with an aggregated formulation and theoretically necessitates optimal
per-subcarrier allocation schemes. We point out that the presented basic NDW-DSM
scheme may be further improved by stabilization techniques, cf. [110] for an overview.
We have already pointed out several times that NDW-DSM allows for sub-optimal
per-subcarrier bit and power-allocation procedures for the discrete, non-convex per-
subcarrier problems in (4.3b), while providing a monotonously improving objective
in (4.1a) over iterations k. Furthermore, the NDW master problem in (4.1) can be
initialized with the solution obtained from suboptimal algorithms such as iterative
spectrum balancing [31, 198] assuming the per-subcarrier feasibility in (1.7) is met,
thereby extending previous DSM schemes. This initialization may happen either by
initializing the set Ic,(1), c ∈ C, using the per-subcarrier solutions, or by adding the
sum-rate and sum-power solution in a similar way we added the artificial column in
the NDW master problem in (4.1). The memory of per-subcarrier solutions in the
NDW master problem in (4.1) may also pay off in cases where the original problem
in (1.8) needs to be solved for various values of target-rates R or objective functions,
see Section 4.1.3 and Chapter 5 for examples.
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4.1.3 Alternative Optimization Objectives

We have shown how the NDW decomposition can be applied to the optimization
of sum-rate and sum-power as covered by the objective in (1.9). More generally,
any minimization of a convex objective of users’ sum-power or sum-rates can be
approached by the NDW decomposition, yielding a convex master problem even-
tually including auxiliary sum-rate or sum-power variables and decomposable sub-
problems in the form of (4.3b). Examples include the maximization of the users’
minimum rate, the “balanced capacity” [93] (which is nothing but a weighted mini-
mum rate maximization problem, cf. the similar projection problem in (4.6) below),
the concave [22, Sec. 3.1.5] users’ geometric mean rate, the concave [22, Ex. 3.17]
users’ harmonic mean rate [81], or the concave “α-fairness” utility family [151], with
weighted proportional sum-rate fairness being one example of this family. To see this
consider the latter objective given by [151]

∑

u∈U wu log (tu), where tu are auxiliary
sum-rate variables which constrain the sum-rate as

∑

c∈C rc (pc) � t similarly to
the target-rates in (1.8b). It can readily be verified following the same steps as in
Section 4.1.1 that NDW decomposition results in a convex master problem over the
same variables as in (4.1) and additionally the U auxiliary variables t, as well as
decomposable subproblems identical in form to those in (4.3b).

Yet another application of our framework can be found in the context of opti-
mization across protocol layers [24]. More precisely, by the approach in [24] any
(e.g., non-concave) utility function can be locally optimized by an intertwined se-
quence of utility-gradient based updates of target-rates t and projections of these
target-rates onto the rate-region (e.g., the set of users’ sum-rates achievable by our
DSM algorithm) in a direction n̄ ∈ RU . We refer to [24] for details on this iterative
projected-gradient decomposition scheme. However, the most work-intensive task in
this scheme is the projection step, which, adapted to our notation and setting in
DSL, can be written as the “weighted” minimum-rate maximization problem

maximize
pc∈Qc,c∈C,x

x (4.6a)

subject to
∑

c∈C

rc
u (pc) ≥ tu + x · n̄u, ∀u ∈ U , (4.6b)

∑

c∈C

pc
u ≤ P̂u, ∀u ∈ U . (4.6c)

The applicability of the NDW decomposition to this projection problem follows
by similar arguments as for the other objectives above, where the master problem
remains an LP and the subproblems are once more identical in form to those in
(4.3b). The scheme in [24] further necessitates the weights w̆ we would need in a
weighted sum-rate maximization problem in order to achieve the same sum-rate

83



Ch. 4 Low-Complexity Discrete-Rate DSM

as found at optimum of the projection problem in (4.6).4 However, we recognize
that these are simply given by the dual multipliers associated with the constraints
in (4.6b). As time-sharing lets us work on the convex hull of the rate-region, an
attractive option is to always optimize over this convex rate-set and apply the last
step in Line 10 of Algorithm 1 only in the last iteration of the scheme in [24].
A second advantage of the NDW decomposition in the context of the projected-
gradient decomposition in [24] is again the memory of various previously found
power-allocations. Intuitively, as the iterates of the target-rates t can be expected
to be reasonably close to each other, the previously found allocations give a good
indication for the optimal projected rates and dual variables in the following iterates.

Another application example of our NDW-DSM framework can be found in the
context of energy-efficient networks [118], considering the minimization of the ratio
f eff(s, t) = (

∑

u∈U su/(
∑

u∈U tu) [Joule/Bit], where s, t ∈ RU are artificial vari-
ables representing the sum-powers and sum-rates of all users, respectively. A similar
power-efficiency metric has been suggested for fixed broadband equipment in [51],
which is given by the ratio of the average power consumption over the product of
bit-rate and loop length. As f eff(s, t) is a quasi-linear function [22, Ex. 3.32], one
general approach [22, Sec. 4.2.5] to minimize this function is by a line-search for the
smallest constant K for which the following problem is feasible

minimize
pc∈Qc,c∈C,s�0,t�0

0 (4.7a)

subject to K
∑

u∈U

tu ≥
∑

u∈U

su, (4.7b)

∑

c∈C

rc
u (pc) ≥ max{tu, Ru}, ∀u ∈ U , (4.7c)

∑

c∈C

pc
u ≤ min{su, P̂u}, ∀u ∈ U . (4.7d)

By similar arguments as above it follows that after NDW decomposition these prob-
lems necessitate the solution of a linear master problem and subproblems as in
(4.3b). Similar as in the gradient projection scheme above, the memory of power-
allocations found during optimization can be reused when the problem in (4.7) is
resolved for different values of K.

4.1.4 Combination Heuristic for Time-Sharing (CHET)

Algorithm 1 targets the solution of the time-shared problem in (2.3), having the
same optimal objective as the dual problem (1.10). In most of the previous work on

4In [24] the projection problem in (4.6) is solved by Lagrange relaxation and the resulting master
problem by a subgradient search, and similarly by a cutting plane method in [25]. Hence, these
weights are simply the dual optimal Lagrange multipliers found by these methods.
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Algorithm 2 Combination Heuristic for Time-sharing (CHET)

1: [{i∗c}c∈C] = CHET({Ic,(k), ξc
i , ∀i ∈ Ic,(k)}c∈C, λ, ν)

2: Initialize δ, κ ≥ 0, i∗c = argmaxi∈Ic,(k){ξc
i}, ∀c ∈ C

3: while No feasible solution to (1.8) found do δ = δ ∗ 2
4: while Allocation i∗c is updated on any c ∈ C do
5: for ∀c ∈ C do P̂∗ =

∑

c∈C pc,i∗c , R∗ =
∑

c∈C rc(pc,i∗c )

6: Ĭc = {i ∈ Ic,(k) | f c(pc,i, ŵ + ν, w̆ + λ) ≤
f c(pc,i∗c , ŵ + ν, w̆ + λ) + (|f c(p

i∗c
c , ŵ + ν, w̆ + λ)| + κ) · δ}

7: ∆Ri
u = [Ru − R∗

u + rc
u(p

c,i∗c) − rc
u(p

c,i)]+, ∀u ∈ U , i ∈ Ĭc

8: ∆P̂ i
u = [P̂ ∗

u − p
c,i∗c
u + pc,i

u − P̂u]+, ∀u ∈ U , i ∈ Ĭc

9: i∗c = argmini∈Ĭc{(ŵ + ν)T ∆P̂ i + (w̆ + λ)T ∆Ri}

dual-relaxation based DSM algorithms the problem of recovering feasible solutions
for the original problem (1.8) is either overlooked or circumvented by proposing di-
rect approximative implementations of time-sharing solutions [52, 70, 114, 187, 198],
with an exception being [52, 53]. However, we found that the heuristics in [52, 53],
originally proposed for a specific DSM algorithm and rate-maximization problem,
may result in large performance losses when applied to sum-power minimization
problems, cf. Section 4.3.1 for an example. More precisely, the scheme in [53] uses
the distance to a target (sum-power / sum-rate) solution as the decision metric
for greedily selecting a per-subcarrier solution. Furthermore, each user’s rate and
transmit power are normalized by its target-rate and the maximum sum-power, re-
spectively, which influences the algorithm’s valuation of power compared to rate.
Hence, the greedy selection heavily depends on this normalization, and only indi-
rectly on the actual objective function. Our novel heuristic proposed in Algorithm 2
remedies this drawback by explicitly taking the optimization objective into account.
While after convergence of Algorithm 1 restricted subsets of columns per-subcarrier
Ic,(k) ⊆ Ic are available, enumerating the product set

∏

c∈C Ic,(k) in order to find
feasible allocations for (1.8) remains intractable in general. The suggested algorithm
hence iteratively and greedily selects a single allocation i∗c ∈ Ic,(k), ∀c ∈ C. The main
target is feasibility in (1.8), which is why in Lines 7 and 8 of Algorithm 2 the impact
of choosing an allocation i ∈ Ic,(k) on the sum-power and the sum-rate constraints
in (1.8b) and (1.8c) is evaluated. In Line 9 a column i∗c is chosen which minimizes
a weighted sum of sum-power and sum-rate constraint violations. Note that the
scheme tries to prevent grave performance loss compared to P ∗,ts

(R,P̂)
by restricting

this selection to a subset of columns Ĭc ⊆ Ic,(k), c ∈ C, with objective values in
(1.12) below a certain threshold. This restriction is successively relaxed in case no
feasible allocation for the primal problem in (1.8) was found.

In the following we complete our framework by giving an overview of various
heuristics for the discrete per-subcarrier problems in (4.3b) as used in Line 7 of
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Algorithm 3 Joint Greedy Optimization (JOGO)

1: [r,p(r), f(p(r), ŵ + ν, w̆ + λ)] = JOGO(r0, Uopt, λ, ν)
2: r = r0, δ∗ = 0, fprev = f(p(r0), ŵ + ν, w̆ + λ)
3: while δ∗ ≤ 0 do
4: for u = sUopt+1, . . . , sU do
5: if ∃p ∈ Q|ru(p) = ru + θ, ri(p) = ri, ∀i ∈ U \ {u},
6: then δu = f(p, ŵ + ν, w̆ + λ) − fprev

7: else δu = ∞
8: end for
9: u∗ = argminu=Uopt+1...U δu, δ∗ = δu∗

10: if δ∗ ≤ 0 then ru∗ = ru∗ + θ, fprev = fprev + δu∗

11: end while

NDW-DSM in Algorithm 1. However, we hasten to add that the proposed de-
composition framework is general and works, in principle, with any heuristic. As
these subproblems can be studied independently we will drop the subcarrier index
c throughout the rest of this chapter for ease of notation.

4.2 Heuristics for Discrete Rate Allocation

In Chapter 3 we studied the optimal solution of the subproblems in (4.3b) by branch-
and-bound type of algorithms under a problem-specific variable-range reduction
strategy. Using this scheme we observed that problem instances with around 16
users are optimally solvable in short time when crosstalk levels and/or target-rates
are low. However, in general we found optimal solutions impractical for DSL net-
works with a large number of users, motivating suboptimal heuristics being used in
our NDW-DSM framework. In the following we give an overview of the basic build-
ing blocks of a large class of more sophisticated meta-heuristics [181], and propose
two more advanced, randomization-based heuristics.

4.2.1 Constructive Greedy Search Schemes

In Algorithm 3 we describe an iterative joint greedy optimization scheme
(JOGO) for optimizing the per-subcarrier optimization problems (4.3b) over the
bit-allocation of Ugreed = U − Uopt users, where we assume the allocations ru of
users 1 ≤ u ≤ Uopt, are fixed. In each iteration the cost for loading another θ bits
for any of the Ugreed users is calculated and θ bits are allocated to the user minimizing
this cost, cf. Lines 4–10 in Algorithm 3. Differently to JOGO, in the greedy heuristic
SEGO the bit-allocation is performed sequentially over users, cf. Algorithm 4. Each
user greedily minimizes the Lagrangian f(p, ŵ+ν, w̆+λ) under fixed bit-allocations
of already loaded users, cf. Line 5. Users loading bits at an earlier stage see in general
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Algorithm 4 Sequential Greedy Optimization (SEGO)

1: [r,p, f(p, ŵ + ν, w̆ + λ)] = SEGO(r0, Uopt, λ, ν)
2: r = r0, Ugreed = U − Uopt

3: Determine sequence s ∈ RUgreed
by ordering users Uopt+1 ≤ u ≤ U in descending

order of (w̆u + λu)/(ŵu + νu)
4: for u = s1, . . . , sUgreed do
5: [ru,p] = argmin

{ru∈B,p∈Q|r(p)�r}

{f(p, ŵ + ν, w̆ + λ)}
6: end for

⋯

User 1

User U

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Optimal . .
. . . .

⋯ ⋯

Search

...

...
...

...
...

...
...

...
...

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

Greedy
Search

User Uopt

...

Figure 4.1: Schematic illustration of the bit-allocation search-tree in a mixed exhaus-
tive and greedy line search.

less crosstalk and therefore encounter more possibilities for bit-loading than if their
turn had been at a later stage. Therefore we heuristically reschedule the users based
on their weights for rates and power using the relative metric (w̆u + λu)/(ŵu + νu),
cf. Line 3 in Algorithm 4. Comparing the two heuristics JOGO and SEGO from
a complexity point of view and assuming a recursive computation of the matrix
inverses for evaluating p(r) [103] we have that JOGO has a complexity per loaded
bit-step θ of O(U3), while that of SEGO is only O(U2), cf. the cost-update in Lines
4–7 of Algorithm 3.

To round-off our description of greedy heuristics we note that they can also be
applied jointly with optimal branch-and-bound schemes as in [163] and Chapter 3,
for instance to take advantage of the presence of a few dominant disturbers. More
precisely, an exhaustive search can be represented by a search tree where level u ∈ U
of the tree relates to the bit-loading decision of the u’th user and the leaves of the
tree correspond to the discrete power-allocations Q, cf. Section 3.1. We can make
a mixed exhaustive and greedy search (MEGS) by only performing an exhaustive
search for the first Uopt users, while for each tested allocation ru, 1 ≤ u ≤ Uopt, a
heuristic algorithm is used to allocate bits to the remaining Ugreed = U −Uopt users,
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Algorithm 5 Local Search (LS) based Bit-Loading

1: Initialize r
2: repeat
3: Update r by
4: a) the first-found r̃ ∈ N (r) with f(r̃) < f(r), or
5: b) any r̃ ∈ N (r) with f(r̃) < f(r), f(r̃) ≤ f(r̄), ∀r̄ ∈ N (r)
6: until Convergence

cf. Figure 4.1. While there are various options on the design of the optimal and
the heuristic search part, in our simulations we use a depth-first branch-and-bound
scheme from Chapter 3 and SEGO in Algorithm 4, respectively. In Section 4.3.1 we
will study a near-far scenario in which the proposed decomposition of the search
tree in MEGS leads to a near-optimal solution at a reduced complexity compared
to optimal allocation schemes.

4.2.2 Local search

An essential part of many meta-heuristics is the local search (LS), where in [181]
we found that a simple scheme presented next is able to substantially improve the
average performance of the presented greedy schemes. In local search schemes one
iteratively moves from an allocation r(k̃) in iteration k̃ of the search to an improving
allocation r(k̃+1) ∈ N (r(k̃)) ⊆ B where f(r(k̃+1)) < f(r(k̃)). The algorithm terminates
when no such improving step is possible, i.e., when a local optimum r with f(r̃) ≥
f(r), ∀r̃ ∈ N (r) has been reached, cf. Algorithm 5. The set N (r) is called the
neighborhood of r, where we found [181] that a simple but effective choice is the set

N (2)(r) = N (1)(r) ∪ N̄ (2)(r), (4.8a)

N (1)(r) = {r̃ ∈
∏

u∈U

B | r̃u = ru ± θ, r̃i = ri, ∀i ∈ U \ {u}, u ∈ U}, (4.8b)

N̄ (2)(r) = {r̃ ∈
∏

u∈U

B | r̃u = ru ± θ, r̃ū = rū ± θ, (4.8c)

r̃i = ri, ∀i ∈ U \ {u, ū}, u 6= ū, u, ū ∈ U}, (4.8d)

which contains all allocations that can be reached by perturbing at most two ele-
ments of r. Note that the complexity of a local search depends on the initialization
point r(0) and is intuitively lower when the search is initialized “close” to a local
optimum. This observation leads to a “warm-start” local search scheme described in
Section 4.2.7. The following result characterizes the asymptotic size of the proposed
neighborhood in U and the complexity of local search, respectively.

Theorem 9. Assuming Hui

Huu ≥ α > 0, ∀u, i ∈ U , the numbers of neighboring points
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|N (1)(r)| and |N (2)(r)| to a point r with p(r) ∈ Q grow as O(U), respectively.

Proof. The first part on |N (1)(r)| follows trivially from the definition in (4.8b), while
the second part on |N (2)(r)| follows from the proof of Theorem 3 as follows. The
number of users u ∈ U with non-zero bit-allocation ru > 0 in a feasible allocation
r with p(r) ∈ Q is by Theorem 3 bounded by a constant Û under the assumptions
of the theorem. All those users u ∈ U with ru = 0 can only increase their rates.
Therefore, the size |N̄ (2)(r)| of the set in (4.8c) comprising all allocations generated
by changing exactly two elements of r is bounded by O(ÛU). Altogether the size
|N (2)(r)| = |N (1)(r)| + |N̄ (2)(r)| of the set in (4.8a) grows linearly in U .

Corollary 5 (of Thm. 3 and Thm. 9). The local search for the problem in (4.3b)
has polynomial complexity in U under the assumptions and the neighborhood set of
Theorem 9.

Proof. This follows from Theorems 3 and 9 and by the polynomial complexity of
evaluating p(r) by solving the linear system in (1.5).

The assumptions in Theorem 9 are satisfied in the following. More generally they
hold in all randomized schemes in Sections 4.2.4 and 4.2.5 and in [181] as these only
evaluate the neighborhood around rates r where the power-allocation p(r) is in the
set of feasible PSD’s Q.

4.2.3 Analysis of the Constructive Greedy Heuristics

We analyze our two greedy heuristics by simulation on a large set of deterministically
generated problem instances: We choose a subset of subcarriers C̃ = 1, 51, . . . , 1601,
fixed Lagrange multipliers νu = 1/U, λu = 1, u ∈ U , and construct our network
scenarios using a set of specified line lengths {200, 400, 600, 800}m, considering all
U -combinations with repetitions, cf. Section 3.3.2. The simulation parameters were
selected according to the VDSL standard in [50], with Γ = 12.8 dB, θ̂ = 15, θ = 1,
upstream band plan 997-M1x-M, and noise N c

u resulting from a summation of VDSL
noise A [50] added to a flat background noise at −140 dBm/Hz. The maximum and
average suboptimality of JOGO over subcarriers C̃ and scenarios is 39.3 % and 3.7 %,
respectively. While the suboptimality values of JOGO were found to be zero for all
collocated scenarios, the highest values appear in classical near-far type of scenarios,
cf. [180] for details. For example, the largest suboptimality of 13.1 % appears for 4
users located at 800 m and 1 user located at 200 m and 400 m each. To analyze this
example even further we pick a specific subcarrier at approximately 9.26 MHz. The
greedy base heuristic JOGO assigns the bits r = [9, 4, 0, 0, 0, 0], i.e., only the short-
est lines are transmitting. Compared to an optimal allocation r∗ = [6, 4, 3, 2, 2, 2]
JOGO has a suboptimality of more than 31 %. Note that in this example SEGO
gives the result r = [16, 0, 0, 0, 0, 0] when the user sequence starts with the short-
est line, corresponding to a suboptimality of more than 15 %. Also, having the two
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greedy algorithms followed by the local search in Algorithm 5 does not improve the
solutions beyond 15 % of suboptimality. We noted that any user sequence in SEGO
which starts with one of the longer lines would have lead to an optimal result af-
ter a following local search initialized at the solution of SEGO. This motivates the
extension of SEGO in Section 4.2.5 where the user-sequence is optimized together
with the bit-allocation. In Section 4.2.4 we present a modification of JOGO which
uses randomized greedy decisions and local search. These two heuristics presented
next were seen to outperform those in Section 4.2.1 as well as various other meta-
heuristics [180].

4.2.4 A Greedy Randomized Adaptive Search Procedure (Grasp)

As the name indicates, Grasp [139] is a randomized extension of greedy search
schemes, cf. Algorithm 13. More precisely, Lines 3–12 mimic the joint greedy bit-
loading of JOGO with the important difference that in Line 11 a randomized, poten-
tially non-greedy decision is taken. The parameter β allows for a trade-off between
standard greedy schemes (β = 0) and purely random schemes (β = 1) [139]. How-
ever, just as in JOGO the greedy bit-loading process is considered complete when
even a purely greedy decision would increase the solution objective, i.e., δmin > 0,
cf. Line 3. The free parameters in the presented basic implementation of Grasp
are the local search strategy and neighborhood definition, cf. Line 14, the number
of restarts K (where an alternative stopping criterion will be used in our simula-
tions), and the randomization parameters βi, i ∈ {1, . . . , M}, where in each iteration
of Grasp a single parameter β is chosen depending on the average objective value
experienced under all parameters β, cf. Lines 4 and 16 of Algorithm 13, respectively.

4.2.5 Randomized SEGO (rSEGO)

Next we present an improvement over SEGO in Section 4.2.1 in the sense that the
sequence with which the users are loaded is adaptive, cf. Algorithm 14. It combines
elements of SEGO, Grasp, as well as ant colony system heuristics [46], cf. [180] for
an ant colony system based bit-loading scheme. More precisely, in Lines 9–14 of
Algorithm 14 the currently active user u decides which user should allocate his bits
next, where each possible decision i ∈ Ũ is assigned a sequence decision value τ̃u(i).
The decision on the bit-rate ru is made greedily in Line 7 similarly as in SEGO,
where similarly as in Grasp the decision is randomized based on the objective values
of all possible rate decisions. Finally, after K̄ solutions have been constructed in this
way, defining f̂ =

∑

u∈U(ŵu + νu)p̂u (the largest possible objective value) and using
any ρ ∈ [0, 1], a global update of the decision values τ̃u(j) is done in Line 19 as

τ̃u(j) = (1 − ρ) · τ̃u(j) + ρ ·
(

f̂ − f(r(k∗))
)

. (4.9)

90



4.2 Heuristics for Discrete Rate Allocation

Table 4.1: Improvements by randomized heuristics compared to JOGO.

Alg.

Mean objective
improvement

[%] (per
subcarrier)

[Min.,Max.]
improvement [%]
of sum-objective
over subcarriers

Mean
op.-count
[×103] per
subcarrier7

JOGO 0 [0, 0] 1.79±0.06
JOGO+LS 8.03±0.78 [0.91,32.13] 3.92±0.07

rSEGO(10∗)

rSEGO(20∗)

8.90±0.00 [0, 29.024] 10∗

9.76±0.00 [1.36, 21.89] 20∗

Grasp(10∗)

Grasp(20∗)

9.05±0.00 [0, 29.02] 10∗

9.86±0.00 [1.48, 21.89] 20∗

4.2.6 Simulations on Single-Carrier Heuristics

We will use the same simulation parameters and network generation method as
in Section 4.2.3. Furthermore, we make the practical assumption that there is a
restriction in simulation time for solving the subproblems in (4.3b). In order to
make our results reproducible for future research, as in Section 4.3 we will use
the number of power evaluations p(r) by solving the linear system in (1.5) as the
stopping criterion for Grasp and rSEGO. This is further motivated by the almost
identical simulation times of these heuristics as a function of the number of power
evaluations. We will initialize the incumbent solution (but not the initial starting-
point r = 0) of all methods by the result of the base heuristic JOGO. As this
heuristic is guaranteed to give a solution with negative objective value, we have that
also all other heuristics will produce a solution r∗ with negative objective value f(r∗).
The choice of parameters5 is based on Monte-Carlo simulations in six-user networks
where optimal solutions could still be obtained by the optimal methods presented
in Chapter 3. Comparing the two greedy randomized schemes rSEGO and Grasp,
both, their performance metrics as well as the scenarios where their performance
was suboptimal were found to be similar [181]. Grasp is based on JOGO and we
found that it takes a parameter β = 1 to remedy the shortcomings of JOGO in the
example made in Section 4.2.3.6 We chose to have two parameters β ∈ R2 among
which we select, cf. Line 4 in Algorithm 13.

Due to the large number of 30-user scenarios for the four selected line-lengths we
uniformly sample 200(100) scenarios (not cable lengths) for the deterministic (ran-

5For all randomized heuristics we chose a first-improving local search with the two-step neigh-
borhood in (4.8a). Parameters for rSEGO were β = 0.75, K̄ = 5, ρ = 0.99, and q0 = 0.2, while
for Grasp we use β = [0.75, 1].

6Lines are not identical in their transmission parameters in practice. Still, the example suggests
β to be set to a large value in near-far scenarios.

7The numbers marked by ∗ reflect the set complexity budget.
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domized) algorithms, make 50 repetitions for randomized algorithms, and present
mean values with 95 % confidence intervals according to a t-test. In order to reduce
the variance of our results we ran all heuristics on identical, sampled scenarios. Fur-
thermore, as we lack an optimal solution we use the greedy algorithm JOGO as
our reference and show the improvements in objective value. Table 4.1 reports our
average simulation results, where the values marked by a star reflect the applied
stopping criterion (complexity budget) and exclude the incumbent initialization us-
ing JOGO. We find that using a combination of JOGO and local search (with a
negligible difference whether we initialized LS at the solution of JOGO or at r = 0,
using JOGO solely as an initial incumbent solution) already gives improvements
compared to the objective value under JOGO of around 8 %, while the average im-
provements of our randomized algorithms are notably almost 10 % under the limit
of 2 · 103 matrix inversions.

4.2.7 Warm-Start Local Search (WS-LS)

Despite the presented low-complexity heuristics, solving the single-carrier problem in
(4.3b) on all subcarriers c ∈ C leads to a large total complexity. We therefore propose
a novel scheme where only a subset of all subcarriers C̃ ⊆ C is solved using one of the
single-carrier heuristics. The approach WS-LS takes to obtain a reasonable starting
point r̄ for local search on all other subcarriers c ∈ C \ C̃ is to use the heuristic
solutions rĉ and rc̆ on the “neighboring” subcarriers ĉ, c̆ ∈ C̃. The conservative
strategy we suggest to use is r̄u = min{rĉ

u, r
c̆
u}, ∀u ∈ U . Note that WS-LS is different

to the idea of subcarrier grouping in wireless networks or the complexity reduction
technique in [66] as we do not approximate or interpolate solutions on different
subcarriers. The following results are based on a maximum of 103 power evaluations
per subcarrier, a selection of subcarriers C̃ in regular intervals, and other settings as
specified in Section 4.2.6. As a base-line we added a randomized local search (rLS)
scheme where the LS algorithm is reinitialized at random starting points uniformly
drawn from the set of allocations feasible w.r.t. single-user bit-cap and power mask
constraints. Figure 4.2 depicts the average improvements in sum-objective by WS-
LS and its complexity in all 6-user scenarios as described in Section 4.2.6 compared
to using JOGO on all subcarriers. These results show that the performance gain
by increasing |C̃| actually flattens out, with this effect happening for lower values
of |C̃| using Grasp or rSEGO compared to rLS, cf. Figure 4.2(a). The initial drop
in complexity in Figure 4.2(b) is explicable by the dependence of the local search
complexity on its starting point. As an example, we find that using WS-LS with
|C̃| = 21 we can achieve a complexity reduction of more than 90 % compared to
using rSEGO with given complexity limitation.
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Figure 4.2: Trade-off for heuristic WS-LS between average objective improvement
compared to JOGO (a) and sum-complexity over all C subcarriers (b).

4.3 Simulation Results on Low-Complexity DSM

In Section 4.3.1 we will demonstrate the marginal loss incurred by CHET, the heuris-
tic for recovering primal feasible solutions from the solution of NDW-DSM. At the
same time we show an application scenario for the MEGS heuristic. The simulation
results in Section 4.3.2 give an example of a large network with 50 lines where our
proposed DSM framework gives substantial performance gains compared to previous
DSM schemes. In order to demonstrate that our algorithm performs very well not
only in special cases, we look at the average sum-rate performance achieved under
our framework compared to previous algorithms in a set of 103 distributed DSL
scenarios in Section 4.3.3. Throughout this section we assume a DSL system with
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Figure 4.3: Sum-power regions in a 4-user VDSL upstream near-far scenario.

simulation parameters chosen as in Section 4.2.3. We will compare our algorithm
to single-user bit-loading [27] under worst-case crosstalk noise

∑

i∈U\uH
ui
c p̂i

c, c ∈ C,

for user u ∈ U (“Mask-Based” SSM), to an iterative spectrum balancing (ISB)
algorithm8, and the multi-user DBL (MDBL) algorithm in [103].

4.3.1 A Near-Far DSL Example - Applying MEGS and CHET

In Figure 4.3 we present the power-regions of various DSM algorithms in a 4-user
VDSL upstream near-far scenario.9 In this scenario we have that the crosstalk be-
tween the longer two lines is low compared to the shorter two lines and we therefore

8In ISB we perform the Lagrange multiplier update sequentially over users while fixing PSDs as
in [31] but differently use a bisection search for this purpose and perform the line-search over
the bit-rates. As ISB does not result in a discrete bit-allocation we floor the final bits and run
MDBL [103] from this initialization, cf. [196] for a similar approach in extending continuous
rate-maximizing DSM schemes. The convergence criterion is a maximum number of 50 user
sweeps not improving the Lagrangian or a total of 200 iterations, while for the number of
iterations in NDW-DSM using heuristics we set 30 ≤ k ≤ 60 and set δ̄ to 0.1 ppm, cf. Line 2
in Algorithm 1. The used LP solver for the problem in (4.1) is the primal-dual interior point
solver in [120].

9Parameters for Figure 4.3 were R1 = R2 = 42 Mbps, R3 = R4 = 3 Mbps, ŵ1 = ŵ2 = 0.5 ∗
[0.05, 0.1, . . . , 0.95], ŵ3 = ŵ4 = 0.5 ∗ [0.95, 0.9, . . . , 0.05], w̆u = 0, ∀u ∈ U , shorter and longer
two lines have a length of 300 m and 1000 m, respectively, and are collocated at the CO side.
Results for the upper three curves show non-dominated points only.
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expect the MEGS heuristic presented in Section 4.2.1 to be useful. As Figure 4.3
shows, in this near-far scenario the power-region obtained by the MEGS heuristic is
close to the lower-bound given by the optimum10 P ∗,ts of the time-sharing problem
in (2.3), and larger compared to the other two popular heuristics, even when we em-
ploy CHET on top. For example, the lowest sum-power obtained by the combination
of ISB with MDBL is more than 30 % above that obtained by the combination of
NDW-DSM with MEGS and CHET, while applying MDBL alone implies an increase
of more than 19 %. This also shows that initializing bit-loading schemes using other
(e.g., continuous) DSM schemes does not necessarily improve their performance.

The share of subcarriers where time-sharing is applied at the solutions of the
time-sharing problem in (2.3) is in the range between 0 % (meaning that a single
solution was found and the relaxation gap between the problems in (1.8) and (2.3) is
hence zero) and 60 %. These numbers depend however on the used LP solver. While
we apply the interior-point solver in [120], a simplex solver [14] would result in a
number of time-shared subcarriers as given in Theorem 3.

Figure 4.3 also exemplifies the performance loss when the heuristic in [53] is used
jointly with NDW-DSM, cf. Section 4.1.4 for an intuitive explanation.11 Differently,
the CHET heuristic for recovering from time-sharing has, for the presented results
of this section and in combination with NDW-DSM, a guaranteed suboptimality in
the original problem (1.8) of less than approximately 2 %. This is inferred by using
the lower-bound on the optimal objective of (1.8) obtained by optimally solving
the time-sharing relaxation in (2.3), cf. the lowest curve in Figure 4.3. This shows
the validity of our approach to optimize (1.8) by (e.g., approximately) solving the
time-sharing problem in (2.3) and reconstructing solutions for (1.8) by the CHET
heuristic.

4.3.2 Mixed Near-Far DSL Example with 50 Users

Here we consider a 50-user upstream mixed VDSL scenario as shown in Figure 4.5
with LCO−Cab = 500 m, LCab−u = 300 m, ∀u ∈ U , where half of the users are deployed
from the central office and the other half from the cabinet. Figure 4.4 shows the
results of various DSM schemes under rate-maximization (ŵ = 0, w̆ = 1, cf. (1.9))
and sum-power minimization (ŵ = 1, w̆ = 0, Ru = 6 Mbps, ∀u ∈ U), respectively.
We apply NDW-DSM using the warm-start local search heuristic and rSEGO. The
runtime of NDW-DSM in this scenario was around 6 hours, while that of ISB and

10The time-sharing problem in (2.3) is solved optimally by Algorithm 1, solving the subproblems
in (4.3b) as stated in Lines 5 and 6 in Algorithm 1, and omitting Line 10 which only concerns
the original problem in (1.8).

11We adapted the mixing algorithm in [53] to the studied sum-power minimization problem by
using the (normalized [53]) Euclidean distance to the optimal time-shared solution found by
NDW-DSM as the selection metric.
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Figure 4.4: Average per-user rate and sum-power in a 50-user VDSL scenario.12
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Figure 4.5: Schematic of a mixed near-far DSL deployment.

MDBL was in the order of 1.3 and 0.4 hours, respectively.13 However, in terms of
sum-rate NDW-DSM shows a gain of 57.5 %, 39.1 % and 7.8 % in comparison to
“Mask-Based” SSM, ISB and MDBL, respectively. Regarding solely the short lines
NDW-DSM improves their sum-rate by 88.4 % compared to MDBL, demonstrating
the disadvantage of long lines under the greedy DSM scheme MDBL. In terms
of transmit sum-power NDW-DSM saves 21.6 % and 29.5 % compared to ISB and
MDBL, respectively. In conclusion, this example demonstrates the possible gains of
our combinatorial search compared to user-iterative and greedy DSM schemes under
discrete rates.

13All methods are coded in Matlab with the exception of the local search in NDW-DSM and the
line-search in ISB which are written in C. The platform is an 8-core Intel system at 3.33 GHz
with 12 GB RAM. The subproblem solutions in NDW-DSM for subcarrier groups as suggested
by the warm-start method in Section 4.2.7 were parallelized in Matlab over 4 processes. We
note that the exact runtimes may vary depending on the exact channel model. For example, in
experiments using the measurements in [153] and assuming the lines are distributed in three
binders with an inter-binder attenuation of 7.6 dB as reported in [115] we observed roughly
50 % higher simulation times for rate maximization. We attribute this behavior to the fairly
low crosstalk couplings and therefore larger number of feasible allocations compared to the
worst-case crosstalk model, cf. the discussion on complexity in Section 2.1.2.

13Sum-power results under the mask-based scheme were omitted as the target-rates could not be
reached.
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Figure 4.6: Average rates by various DSM schemes in 1000 DSL scenarios with 99 %
confidence intervals.

4.3.3 Average Performance for Mixed Near-Far DSL

Deployments

Differently to the specific DSL scenario investigated in the previous section, we will
now analyze the performance of our DSM framework in a large set of mixed near-far
VDSL deployments as shown in Figure 4.5 with 25 lines out of which 10 lines con-
nect to the cabinet. We generated 103 downstream scenarios by uniformly sampling
the lengths LCO−Cab ∈ [100, 1400] and LCab−u ∈ [50, 500], ∀u ∈ U . Note that this
random topology selection results in a diverse set of generated crosstalk coupling
scenarios. The average runtime complexity of NDW-DSM per network scenario was
approximately one hour and therefore in the order of the runtime complexity of
ISB, but significantly higher than that of MDBL which on average only required
in the order of 5 minutes. However, we note that reductions in runtime of NDW-
DSM as well as ISB may be achieved by further parallelization of the per-subcarrier
subproblem solutions.

Figure 4.6 shows the average per-user rates achieved by different DSM schemes
together with 99 % confidence intervals according to a t-test. The average gain by
NDW-DSM is +1.21 ± 0.03 Mbps (6.2 %), +1.49 ± 0.05 Mbps (7.7 %), and +5.94 ±
0.06 Mbps (40.0 %) compared to ISB, MDBL and Mask-Based SSM, respectively.
Regarding once more only the central-office deployed lines we have an average gain
by NDW-DSM compared to MDBL of +1.56 ± 0.05 Mbps (11.1 %), confirming the
behavior of MDBL towards longer lines as observed in Section 4.3.2.
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Chapter 5 Energy-Efficient
Maximization of Service
Coverage

In this chapter we propose and analyze a novel DSM problem, namely the maxi-
mization of the service coverage. Coverage will be defined as the number of DSL
lines which can be granted an operator-specified high-bandwidth service. The net-
work operators think in terms of the number of customers they can offer a particular
service, which is better reflected by this objective than by previous DSM formula-
tions. Furthermore, we hypothesize that controlling the users’ powers to optimize
coverage also leads to a sum-power reduction. This intuition is based on the fact
that the over-performing users’ rates are reduced to the service rate and the rates
of under-performing users which can not achieve the service rate are reduced to
a pre-defined minimum rate. Current objectives for DSM in the literature range
from sum-rate [197, 199] and min-rate (or reach) maximization [199], to sum-power
minimization [164, 186] and general utility (e.g., fairness [93, 145, 165] or hardware
power consumption [66]) optimization, cf. also Sections 1.2.4, 2.3.1, and 4.1.3 for
various examples. As we deem our original problem formulation including binary
service variables intractable for large DSL networks we initially apply a convex re-
laxation of these integer variables, from which we recover after rate-allocation and
power-allocation in a variable fixing phase. In Section 5.1 we compare two potential
such relaxations, namely a linear continuous relaxation and a semidefinite program
relaxation [102, 169]. We present simulation results in a large number of small-size
network scenarios where we can still compare to the global optimum. Irrespective
of the applied relaxation our heuristic approach for coverage maximization (CM) is
based on a modification of the column generation framework of Chapter 4, where we
exploit the method’s memory of numerous per-subcarrier solutions in order to test
various integer fixings of the relaxed binary variables at comparably low complexity.
This strategy also allows us to pursue energy-efficiency by reducing the users’ rates
according to the found service coverage, namely by having the service coverage opti-
mization followed by a sum-power minimizing DSM optimization. In other words, we
swap the optimization objective after having settled on a certain set of target-rates.
In Section 5.2.2 we show simulation results in 1000 25-user near-far DSL scenarios
which exemplify the substantial gain in service coverage by our heuristic compared
to various sum-rate maximizing DSM algorithms, and also support our intuition on
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the effect of CM on the sum-power consumption.

5.1 Problem, Relaxations, and a Heuristic

5.1.1 An Integer Problem Formulation

Our optimization problem is to guarantee a basic target-rate for all users while
obeying all system constraints and maximizing the number of users which can be
upgraded to a high-bandwidth service. Denoting the decision variables for service
upgrades by bu ∈ {0, 1}, u ∈ U , we formulate this coverage maximization (CM)
problem for DSL as

P cov
(R,P̂)

= maximize
pc ∈ Qc, c ∈ C,

bu ∈ {0, 1}, u ∈ U

∑

u∈U

bu (5.1a)

subject to
∑

c∈C

rc
u (pc) ≥ Ru + bu(R̂ − Ru), ∀u ∈ U , (5.1b)

∑

c∈C

pc
u ≤ P̂u, ∀u ∈ U , (5.1c)

where R̂ ∈ R+ is the target-rate for the service upgrade, and where R ∈ RU
+ and P̂ ∈

RU
+ are the users’ minimum target-rates and maximum sum-powers, respectively. As

the variables bu, u ∈ U , are binary the objective in (5.1a) reflects the number of high-
bandwidth users, i.e., the service coverage. We proceed by applying a relaxation of
the binary variables similarly as in the time-sharing relaxation of Section 2.1.2,
leading to the linear relaxation (“lr”)

P cov,lr

(R,P̂)
= maximize

pc ∈ Qc, c ∈ C,
bu ∈ [0, 1], u ∈ U

∑

u∈U

bu (5.2a)

subject to Constraints in (5.1b) and (5.1c) (5.2b)

Continuous linear (i.e., LP) relaxations are the standard approach in mixed integer
programming, typically applied in conjunction with cut generation procedures which
tighten the relaxation by “cutting off” non-integral solutions from the feasible con-
straint set [124]. We will investigate an alternative relaxation in Section 5.1.2 which
is based on a lifting of the binary variables into a higher dimensional space. Also,
we will present a method to return to a feasible binary solution in Section 5.1.3.

Assuming R̂ is a multiple of the bit-step size θ, due to bu ∈ R in this linear
relaxation we have that the rate constraints of the linear relaxation in (5.2) hold
with equality at optimum. Hence, by reformulation of these constraints we find that
the linearly relaxed problem in (5.2) can be interpreted as a weighted sum-rate
maximization problem with weights w̆u = (R̂ − Ru)

−1, u ∈ U , and maximum sum-
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5.1 Problem, Relaxations, and a Heuristic

rate constraints additional to the minimal target-rate constraints. In other words,
the priority of a user u ∈ U is larger the smaller the difference between the service
rate R̂ and the user’s target-rate Ru is. We will study the impact of setting such
minimal and maximal rate constraints on the service coverage by simulations in
Section 5.2.2.

Based on the same motivation as in Section 2.1.2 we further relax the problem
in (5.2) by a time-sharing relaxation of the rate and power-allocations, leading to a
linear master problem similar to that in (2.3), given as

P cov,lr,ts

(R,P̂)
= maximize

ξc
i ≥0,i∈Ic,c∈C,bu∈[0,1],u∈U

∑

u∈U

bu (5.3a)

subject to
∑

c∈C

∑

i∈Ic

rc
u(p

c,i)ξc
i � Ru + bu(R̂ − Ru), ∀u ∈ U , (5.3b)

Constraints in (2.3c) and (2.3d). (5.3c)

By the same motivation as in Section 2.1.2 we suggest the application of the column
generation process described in Section 4.1.1, upon termination of which the relaxed
variables bu, u ∈ U , will provide heuristic priority information on how to round these
variables to integer values. Before developing this idea in more detail we next regard
an alternative to the applied linear relaxation.

5.1.2 Semidefinite Relaxation of the Service Coverage Problem

The binary constraint bu ∈ {0, 1}, u ∈ U , implies the relation b2
u = bu, u ∈ U , and

we can therefore equivalently rewrite the original problem in (5.1) as

maximize
pc ∈ Qc, c ∈ C,

bu, u ∈ U

∑

u∈U

bu (5.4a)

subject to b2
u = bu, ∀u ∈ U , (5.4b)
∑

c∈C

rc
u (pc) ≥ Ru + b2

u(R̂ − Ru), ∀u ∈ U , (5.4c)

Constraint (5.1c). (5.4d)

The semidefinite programming (SDP) relaxation [102] of this problem can be seen
to be its Lagrangian bi-dual problem, as stated in Theorem 10, cf. Appendix A.9
for the common ad-hoc derivation [102] of the SDP relaxation with and without
time-sharing relaxation, and Theorem 11 for some of its properties.

Theorem 10. The bi-dual of the problem in (5.4) is the time-sharing/semidefinite
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relaxation given as

P cov,sdp,ts

(R,P̂)
= maximize

ξc
i ≥ 0, i ∈ Ic, c ∈ C,

B̆ ∈ R
(U+1)×(U+1)

∑

u∈U

B̆uu (5.5a)

subject to B̆uu = B̆(U+1)u, ∀u ∈ U , B̆(U+1)(U+1) = 1, (5.5b)

B̆ � 0, (5.5c)
∑

c∈C

∑

i∈Ic

rc
u(p

c,i)ξc
i ≥ Ru + B̆uu(R̂ − Ru), ∀u ∈ U , (5.5d)

Constraints in (2.3c) and (2.3d). (5.5e)

A sufficient condition for the Lagrange-dual and the bi-dual of the problem in (5.4)
to have equal objectives is the existence of a feasible solution of the bi-dual problem in
(5.5) with strictly higher sum-rates than the minimal rates R, i.e., B̆uu > 0, ∀u ∈ U .

See Appendix A.10 for a proof.

Theorem 11. We have that P cov,sdp,ts

(R,P̂)
≤ P cov,lr,ts

(R,P̂)
, i.e., the SDP relaxation is never

less tight than the linear relaxation. Furthermore, the conditions b ≻ 0,
∑

u∈U bu ≤ 1,

for the optimal solution in (5.3) are sufficient for P cov,sdp,ts

(R,P̂)
= P cov,lr,ts

(R,P̂)
to hold.

See Appendix A.11 for a proof.
While Theorem 11 indicates that the relaxation in (5.5) can be tighter than the

linear relaxation in (5.3), it does not say by how much. To further analyze this
question we simulated 1000 randomly generated 4-user DSL scenarios with param-
eters as specified in Section 5.2.1. We solve the problem in (5.3) to optimality by
applying the column generation scheme of Chapter 4, with optimal solutions of the
per-subcarrier problems in (4.3b) as described in Chapter 3. After convergence of
column generation at iteration k = k̂ we reuse the generated power and rate al-
locations indexed by i ∈ Ic,(k), c ∈ C, for the corresponding SDP relaxation and
compare the obtained objectives under both relaxations. We found that the differ-
ence between the objectives in relation to that of the continuous relaxation was less
than 1 ppm, indicating that the SDP relaxation is not substantially tighter than the
continuous relaxation.

In the following section we propose a heuristic for recovering integer solutions
bu ∈ {0, 1}, u ∈ U , and show further results comparing the two proposed relaxations.

5.1.3 A Heuristic For Coverage Maximization

In the above sections we considered the time-sharing relaxation of the original
problem in (5.1) under two further relaxations of the binary service update vari-
ables which both yield an estimate bu ∈ [0, 1], u ∈ U , of a binary solution of service
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5.2 Performance Evaluation

Algorithm 6 Coverage Maximization (CM) Heuristic

1: Solve the time-sharing relaxation in (5.3) or (5.5) by column generation, cf. Sec-
tion 4.1, solving the subproblems in (4.3b) using the heuristics in Section 4.2.

2: Use the obtained variables bu ∈ [0, 1], u ∈ U , as priority information in the
sequential variable fixing procedure in Section 5.1.3.

3: Resolve another LP as in (5.3) minimizing the sum-power based on the found
(fixed) coverage bu ∈ {0, 1}, u ∈ U , i.e., with target-rates Ru+bu(R̂−Ru), u ∈ U .

4: Recover a feasible solution for the problem in (5.1) using the heuristic CHET in
Section 4.1.4 with target-rates Ru + bu(R̂ − Ru), u ∈ U .

upgrades for the original problem in (5.1). More precisely, in case of the SDP re-
laxation we extract this information by taking the eigenvector of the solution B̆

according to the largest eigenvalue [157], element-wise divided by the last element.
Our next step is a heuristic for sequentially fixing the service variables to either
zero or one: We simply try setting the lower-bound of the largest fractional variable
bu, u = argmaxi∈U{bi}, to one and re-solve the master LP in (5.3) from the final col-

umn generation iteration k = k̂. If the LP is feasible we keep the lower-bound of bu at
one or reset it to zero otherwise, cf. the simple feasibility detection mechanism based
on an artificial column in Section 4.1.1. This process is repeated until all variables
bu, u ∈ U , are fixed at integer values. Next we solve yet another, similar LP with
the constraints as above but with lower-bounds of binary variables now set to the
found integer values and the objective being the minimization of the total transmit
power. This is to avoid unnecessarily wasting power while maintaining the found
level of service coverage. Finally we apply the CHET heuristic of Section 4.1.4 to
recover from the time-sharing relaxation and to find a feasible solution for our orig-
inal problem in (5.1), cf. the overview in Algorithm 6. Summarizing, the key ideas
of our CM heuristic are a) to exploit the information in the optimized continuous
variables bu, u ∈ U , in order to prioritize users in the sequential fixing process, and
b) to use the memory in column generation based schemes for checking feasibility
of specific 0-1 fixings. As a result we obtain a low-complexity method for sequential
fixing of fractional variables, where we only re-solve in total U + 1 LP’s as in (5.3)
instead of re-solving U + 1 different full DSM problems as in (5.1).

5.2 Performance Evaluation

5.2.1 On the Suboptimality in Small Networks

We will now study the suboptimality of our CM heuristic by comparison to an ex-
haustive search over all 0-1 combinations of binary variables bu, u ∈ U . We randomly
generate 2000 downstream, 4-user VDSL [50] scenarios by uniformly sampling the

103



Ch. 5 Energy-Efficient Maximization of Service Coverage

1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

x

pr
ob

 (
η 

≤ 
x 

)

 

 

Exhausitve Search (Primal Solution)
SDP Relaxation based CM Heuristic
Continuous Relaxation based CM Heuristic
Sum−Rate Maximization

Figure 5.1: Cumulative distribution function of the performance ratio η in (5.6) for
various DSM approaches.

lengths LCO−Cab ∈ [100, 1400] and LCab−u ∈ [50, 500], ∀u ∈ U , cf. Figure 4.5, with
3 and 1 lines deployed from central office and cabinet, respectively. The target-
rates are R̂ = 30 Mbps and Ru = 6 Mbps, for all users u ∈ U , respectively, and
the chosen simulation parameters are as detailed in Section 4.2.3. Furthermore, we
use the column generation framework of Chapter 4 with optimal solutions of the
per-subcarrier problems in (4.3b) as described in Chapter 3 for all of the compared
DSM approaches. We define an algorithm’s performance ratio η between the opti-
mal objective P cov

(R,P̂)
in (5.1) and the algorithm’s coverage P cov,Alg through a feasible

solution in (5.1) as

η =
P cov

(R,P̂)

P cov,Alg
. (5.6)

Figure 5.1 shows cumulative distributions of the ratio η for our CM heuristic, the
primal solution obtained after the exhaustive search through CHET in Section 4.1.4,
and the result of a sum-rate maximization. Regarding the upper dashed curve we
see that after the exhaustive search a feasible primal solution was obtained in all
cases (using CHET), confirming that we truly compare to the primal optimum. We
find that sum-rate maximization and the CM heuristic (with linear relaxation) are
optimal in less than 45 % and more than 68 %, respectively, with 99 % confidence
according to a t-test. The performance of the CM heuristic under the SDP relax-
ation was in various cases seen to be worse than that under the linear relaxation.
This is however an artifact of the applied heuristics for recovering binary variables
bu, u ∈ U , and recovering from time-sharing, cf. Theorem 11. On average the cover-
age achieved under the SDR relaxation is less than 5 % better than that under the
linear relaxation, cf. Figure 5.1. Further results and an intuition behind the good
performance of the applied linear relaxation will be developed in in the next section.
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5.2.2 Performance Evaluation in Large Networks

We apply our CM algorithm under the linear and SDP relaxations to the problem
in (5.1), as well as the sum-rate maximization (RM) scheme in Chapter 4, both
using the heuristics rSEGO with a complexity limit of 3 · 104 power evaluations
per subcarrier, WS-LS with 40 regular subcarrier intervals shifted in every itera-
tion k by a uniformly drawn random number of subcarriers between zero and one
interval length, and other simulation parameters as specified in Section 4.2.3. We
randomly generated 25-user DSL networks as described in Section 5.2.1 and assigned
10 users to the cabinet and 15 users to the central office. We compare our CM and
RM schemes to optimal single-user bit-loading [27] under worst-case crosstalk noise
∑

i∈U\uH
c
uip̂

c
i , c ∈ C, (“Mask-Based” SSM) and the sum-rate maximizing algorithms

in [103] (MDBL) and a scheme closely related to [31] (ISB).1 Under RM and CM
we assume minimum target-rates Ru = 6 Mbps, ∀u ∈ U . The upgrade target-rate is
set to R̂ = 16 Mbps. Our average simulation results are shown in Figure 5.2 where
we observe a large gap in terms of the number of upgraded users between the four
tested DSM algorithms and Mask-Based SSM. For example, CM(LR) (that is CM
under the linear relaxation) improves upon Mask-Based SSM in this respect by on
average more than 82.9 % (8.95±0.41). Comparing CM(LR) to the best-performing
rate-maximizing DSM algorithm RM we find that our CM scheme yields a 13.9 %
(2.42 ± 0.32 users) increase in service coverage. Intuitively, the improvements by
our CM heuristic under the applied continuous relaxation of binary variables in
Section 5.1.1 upon the sum-rate maximizing algorithms can be explained by the re-
duction in rates of the lines which would over-achieve the upgrade target-rate under
sum-rate maximization. This results in lower crosstalk into the longer, e.g., central
office deployed lines, and consequently in a higher service coverage. Differently to
Section 5.2.1 where we applied an optimal algorithm to solve the per-subcarrier
subproblems in (4.3b), we see in Figure 5.2 that the SDP relaxation (referred to as
“CM (SDP)” in Figure 5.2) performs worse than the linear relaxation under heuristic
subproblem solutions.

At the beginning of this chapter we hypothesized that CM is accompanied by a
power reduction compared to RM. Figure 5.3 shows the obtained average transmit
and line-driver sum-power values in our random scenarios, cf. Section 2.3.1 for the
used line-driver model. Comparing RM and CM(LR) we find that CM indeed yields
a reduction in transmit and line-driver power of more than 37.5 % (8.88±0.24 mW)
and 14.2 % (47.04 ± 0.98 mW), respectively, confirming our intuition.

1We perform iterative spectrum balancing (ISB) similarly as in [31] but differently using a line-
search over bit-rates and a bisection search over Lagrange multipliers. Feasible power-allocations
under ISB are obtained by the heuristic in [196]. The used convergence criterion for ISB is a
maximum number of 50 user sweeps not improving the Lagrangian or a total of 200 iterations,
while we set bounds on the number of iterations for CM and RM as 30 ≤ k̂ ≤ 60 and stop if
the primal improvement over iterations falls below 0.1 ppm. In CM we initially increase R̂ and
Ru, u ∈ U , by 3 % but use the original values for the final heuristic CHET.
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Figure 5.2: Average service coverage in 1000 DSL scenarios.
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Chapter 6 Robust DSM using
Crosstalk Margins

In this chapter we introduce robust DSM, an extension to energy-efficient DSM
algorithms which is based on margins on the crosstalk couplings and thereby allows
to guarantee a minimal rate-performance under a deterministic worst-case crosstalk-
channel uncertainty model. While this extension is a contribution in its own right,
our main motivation is to conservatively demonstrate the effect of errors in the
estimation of the crosstalk gain coefficients, which are a prerequisite for the DSM
methods studied in this thesis, on the energy-efficiency achieved by DSM. Minimizing
the transmit power based on given service-related target-rates may greatly reduce
the power dissipation of a DSL transceiver as shown in Chapters 2 and 5. However,
the transmission at minimum power may come at the expense of robustness as
the guaranteed service-rates may easily be violated when real and modeled system
parameters differ.

We assume the model uncertainties stem from estimation errors. While in cur-
rent DSL modems the direct channel can be accurately estimated during line ini-
tialization, various methods have been proposed in literature to also obtain esti-
mates of the crosstalk channel gains. Non-modem-based NEXT estimation in the
frequency domain was proposed in [55] based on correlation with a canonical set
of PSD basis-functions that are solely technology dependent. However, this scheme
is not applicable to FEXT estimation as FEXT also strongly depends on the loop
length. In [201] offline least-squares crosstalk identification is performed based on
the recording of transmitted and received signals. In [3] blind crosstalk estimation
is performed by expectation maximization. In [128] FEXT estimation is done incre-
mentally, i.e., each active line estimates the coupling from a currently initializing
line by estimation using the pseudo-random training sequence of the initializing line.
The reverse couplings are obtained similarly by sequentially re-initializing the ac-
tive lines. The performance is shown to depend on the (unknown) symbol frequency
offset, the background noise level, and the number of samples used for least-squares
estimation.

Differently to all these approaches, methods which do not necessitate changes
in current DSL modems’ hardware or software have been proposed in [92, Ch. 3]
and [106]. Furthermore, single-ended line testing (SELT) [97] can be used to esti-
mate the loop lengths, which together with the crosstalk model in (1.1) may give a
conservative indication of the FEXT gains. Related to the incremental estimation
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in [128], the crosstalk gain estimation suggested in [92, Ch. 3] uses the observed vari-
ations in SNR feedback when users become inactive / active. This estimate is further
improved by combining various estimates and smoothening the estimated frequency
response. A practical implementation of DSM based on crosstalk identification using
SNR fluctuations is presented in [30]. The least-square estimator in [106] is based on
U sequential modem-based single-input, multiple-output PSD measurements. The
suggested implementation is by using standardized loop diagnostic features [86]. Es-
timation errors are reported to be introduced as each PSD measurement is quantized
by an integer in dBm/Hz, and due to slight time-variations of the measurements that
are for instance attributed to the internal transceiver noise [106]. Laboratory exper-
iments with ADSL2+ modems are carried out and the proposed estimator is found
to have a mean deviation of less than 3 dB from the reference (network-analyzer
based) measurements for most frequencies [106]. For our simulations in Section 6.4
we will use this estimation performance as a reference. Various work has studied
the impact of crosstalk estimation errors on the rate-performance of DSM [92, Ch.
5], [107], [117]. The specifics of our study compared to these previous ones are that
a) we study the impact of crosstalk estimation errors on energy-efficiency, b) we per-
form DSM already under the assumption of estimation errors, and c) we use a fairly
conservative simulation setup. More precisely, we apply the “worst-case” model in
(1.1) and additionally assume a deterministic “worst-case” estimation error, cf. Sec-
tion 6.1 for a precise definition.

A classical approach to describe the uncertainty of optimization parameters is
by their probability distributions [94]. Differently, our work is based on the robust
optimization framework [10, 13], [22, Section 6.4], in which the uncertainty of pa-
rameters is modeled by the set of their possible realizations and the optimization
is performed with respect to the (a-priori unknown) worst-case element of this set.
We motivate the worst-case optimization approach in DSL by arguing that network
operators are not interested in a probabilistic long-term outage probability [96] but
in a guaranteed minimum rate which is in accordance with the service level promised
to the customers. Concluding, for energy-efficient DSM to be accepted by operators
it is imperative to explicitly account for model uncertainties during optimization in
a worst-case sense.

Examples of how the robust optimization framework has been applied to problems
in communications can be found in [1,109,121,122,131,174,193]. Previous approaches
to incorporate parameter uncertainty are an adequate noise-margin equally set for all
subcarriers as supported by current DSL modems [86], the virtual noise concept [172]
which effectively results in arbitrarily set per-subcarrier margins, the optimization of
outage probabilities [90], or the repeated/iterative optimization triggered by system
changes (e.g., online reconfiguration techniques such as “bit-swapping” [86]). While
DSM subject to uncertainty in the noise has been studied in [90], it is the uncertainty
in crosstalk coefficients we are foremost concerned with. However, an extension of our
approach to take uncertainties in the noise-power into account is straightforward.
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6.1 The Robust Spectrum Balancing Concept

Uncertainty in channel coefficients may account for channel estimation errors as
explained above, as well as implementation errors of the calculated power levels.
Implementation errors may occur through the representation of the power-allocation
as the interpolation of the power-values at a few frequency sampling-points, or in
practical DSM implementations due to the indirect specification of the PSD through
the definition of spectral mask constraints [117].

We begin in Section 6.1 by introducing our robust DSM problem formulation. The
complexity and conservatism of our worst-case optimization approach depend on
the definition of an uncertainty set of the per-subcarrier channel parameters, which
can be interpreted as a multi-dimensional margin specifically targeting variations in
crosstalk noise. Therefore we motivate in Section 6.2 the use of two tractable con-
vex per-subcarrier uncertainty sets characterized by a few parameters, including the
simple idea of scaling crosstalk parameters to their worst-case values (similar to per-
subcarrier margins). Furthermore, in Section 6.3 the robust per-subcarrier optimiza-
tion problems based on these uncertainty sets are shown to be readily integrated into
previous DSM schemes. This intuitively holds as the robust per-subcarrier power-
allocation problems and the bit-loading problem are in fact separable. One possible
application of robust DSM is in “design centering”, that is the problem of finding the
maximal parameter uncertainty for which a feasible robust solution can be found.
Note the similarity of this problem to the common margin-adaptive bit-loading strat-
egy [59]. However, as we target energy-efficiency, in Section 6.4 we will compare the
worst-case rate-loss of the optimal nominal (i.e., non-robust) DSM solution to the
sum-power penalty of robust DSM. Similarly, in [10] the “price of robustness” in lin-
ear programming was analyzed in numerous benchmark problems. Our hypothesis is
that the power penalty caused by the robust per-subcarrier solutions is controlled by
multi-carrier DSM, as the latter allows to assign heavily interfering users to different
subcarriers.

6.1 The Robust Spectrum Balancing Concept

We begin our development of energy-efficient robust DSM by introducing uncertainty
in the form of a vector H̃c

u: ∈ RU
+ of uncertain crosstalk coefficients to user u on

subcarrier c, where H̃c
uu = 0. The rate under these uncertain coefficients is defined

similar to that under certain coefficients Hc in (1.3) as

rc
u(p

c, H̃c
u:)

.
= log2

(

1 +
Hc

uup
c
u

Γ(
∑

i∈U\u H̃c
uip

c
i + N c

u)

)

, (6.1)

differing from (1.3) only in that the dependency on the crosstalk coefficients H̃c
u: is

made explicit. Based thereupon we extend the original nominal problem in (1.8) to
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its “robust counterpart”, referred to as the primal robust problem, given as

minimize
0≤pc

u≤p̂c
u,rc

u∈B
c
u,u∈U ,c∈C

∑

c∈C

f c(pc, ŵ, w̆) (6.2a)

subject to
∑

c∈C

rc
u ≥ Ru,

∑

c∈C

pc
u ≥ P̂u, ∀u ∈ U , (6.2b)

rc
u(p

c, H̃c
u:) ≥ rc

u, ∀u ∈ U , c ∈ C, ∀ H̃c
u: ∈ Hc

u, (6.2c)

where Hc
u ∋ H̃c

u: denotes the uncertainty set of feasible crosstalk coefficients. Without
loss of generality we may restrict ourselves to convex uncertainty sets as stated by
the following theorem.

Theorem 12. The worst-case rate minH̃c
u:∈H

c
u
{rc

u(p
c, H̃c

u:)} is invariant when re-
placing the uncertainty set Hc

u by its convex hull conv (Hc
u).

Proof. First we note the independence among users in terms of uncertainty sets and
target-rate constraints, and that rc

u(p
c, H̃c

u:) in (6.1) is monotonously decreasing in
the interference term

∑

i∈U\u H̃c
uip

c
i . Hence, the worst-case can be constructed by

maximizing this interference term. Assuming

H̃c,∗
u: = argmax

H̃c
u:∈H

c
u

{

∑

i∈U\u

H̃c
uip

c
i

}

, (6.3)

using Carathéodory’s theorem [12, Prop. B.6], and remembering that H̃c
uu =

0, ∀H̃c
u: ∈ Hc

u, we have that

max
H̃c

u:∈conv(Hc
u)

{

∑

i∈U\u

H̃c
uip

c
i

}

= max
αj≥0,

P

j∈U αj=1,

H̃
c,(j)
u: ∈Hc

u,∀j∈U

{

∑

i∈U\u

pc
i

∑

j∈U

αjH̃
c,(j)
ui

}

(6.4)

= max
αj≥0,

P

j∈U αj=1,

H̃
c,(j)
u: ∈Hc

u,∀j∈U

{

∑

j∈U

αj

∑

i∈U\u

H̃
c,(j)
ui pc

i

}

(6.5)

≤
∑

i∈U\u

H̃c,∗
ui pc

i , (6.6)

which concludes the proof.

As mentioned, our notation implicitly assumes independence of uncertainty among
users and subcarriers. The projection of the global uncertainty onto uncertainties
per user is natural, since the rate constraints have to be fulfilled for each user
separately and an uncertainty correlation among users is irrelevant for worst-case
feasibility under parameter uncertainty. The independence assumption among vec-
tors H̃c

u:, ∀c ∈ C, was made to allow an analytic treatment that is independent of
the underlying estimation process.
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Figure 6.1: Schematic illustration of an ellipsoidal uncertainty region Hc
u for u = 1

and U = 3, where the possible interference-maximizing set lying on the
relative boundary of Hc

u is emphasized.

6.2 Uncertainty Regions

In this chapter we have chosen a multiplicative model of uncertainty in the crosstalk-
coefficients. This choice captures for example arbitrary temporal changes of crosstalk
coefficients or an anticipated percental estimation error. A different approach would
have been to model uncertainty using an additive error measure. Assuming a norm-
constraint on the additive errors one obtains a similar convex subproblem formula-
tion as we will get for ellipsoidal uncertainty, as shown in [193] for single-subcarrier
power control. However, to get new insights into the resulting robust problem for-
mulation, and because the measured uncertainty values in [106] which will be of
relevance in our later simulations are available in logarithmic scale, we base our
derivations on a multiplicative formulation. Furthermore, we may also regard this
choice as a way to incorporate worst-case changes in the power-allocation of other
users, e.g., due to changes of their direct channel coefficients. Finally we note that
qualitatively the specific formulation of uncertainty will not alter the main conclu-
sions we draw from this work.

6.2.1 Ellipsoidal Uncertainty Sets

We will first derive and analyze an uncertainty set in the shape of an ellipsoid.
This shape is commonly used due to its relation to Gaussian probability distribu-
tions [22]. It was further chosen for its tractability and representativeness for convex
uncertainty regions with interdependence of worst-case coefficients. Under a multi-
plicative (percental) uncertainty of the crosstalk coefficients relative to their nominal
value, the uncertainty set is given by (cf. Figure 6.1)

Hc
u = {H̃c

u: |H̃c
ui = Hc

ui(1 + Λc
ui), ∀i ∈ U \ {u}, H̃c

uu = 0, ‖Λc
u:‖2 ≤ εu}, (6.7)

where Λc
u: ∈ RU , and ε ∈ RU

+ contains the uncertainty parameters of all users. Note
that due to the positivity of the variables pc

u it is sufficient to restrict our attention
to values Λc

u: � 0. A robust per-subcarrier power-allocation subproblem in similar
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Ch. 6 Robust DSM using Crosstalk Margins

Figure 6.2: Illustration of the boundaries of SNR constraint SOC’s and the fea-
sible power region (lightly shaded) for robust single-subcarrier power-
allocation with ellipsoid-shaped uncertainty of crosstalk coefficients.

form to the classical power control problem in (1.4) can hence be posed as

minimize
0≤pc

u≤p̂c
u,∀u∈U

∑

u∈U

wup
c
u (6.8a)

subject to
(

I −
(

Fc + ∆Fc,ell(Λc
u:)
))

pc � nc, (6.8b)

∀Λc
u: ∈ {Λ̃c

u: ∈ RU
+ | ‖Λ̃c

u:‖2 ≤ εu}, ∀u ∈ U ,

where w ∈ RU are constant weights which will be specified in Section 6.3.1,
∆Fc,ell(Λc

u:) ∈ RU×U , ∀c ∈ C, and

∆F c,ell
uv (Λc

u:) =

{

0, if v = u,

Γγc
uΛ

c
uvH

c
uv/H

c
uu, otherwise.

(6.9)

In this specific case the semi-infinite problem in (6.8) can be cast in a minimax
form as shown in [57]. Conferring to the primal robust problem in (6.2), the model-
parameters maximizing the interference can be analytically derived using the fol-
lowing relations [22, p. 322]

max
H̃c

u:∈H
c
u

{

∑

i∈U\u

H̃c
uip

c
i

}

=
∑

i∈U\u

Hc
uip

c
i + max

{Λc
u:|‖Λ

c
u:‖2 ≤ εu}

{

∑

i∈U\u

Hc
uiΛ

c
uip

c
i

}

(6.10a)

=
∑

i∈U\u

Hc
uip

c
i + εu‖ diag(H̄c

u:)p
c‖2, (6.10b)

where diag(x) denotes the matrix having the vector x in the diagonal and zeros
elsewhere, and H̄c

u: ∈ RU is defined as H̄c
uv = 0 for v = u and H̄c

uv = Hc
uv otherwise.
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6.2 Uncertainty Regions

Hence, the constraint set in (6.8) can be written more compactly as the product-set
of second-order cone (SOC) [108] constraints, and the problem in (6.8) is rewritten
as

minimize
0≤pc

u≤p̂c
u,∀u∈U

∑

u∈U

wup
c
u (6.11a)

subject to

pc
u − Γ

γc
u

Hc
uu

(

∑

i∈U\u

Hc
uip

c
i + εu‖ diag(H̄c

u:)p
c‖2

)

≥ nc
u, ∀u ∈ U . (6.11b)

Figure 6.2 schematically illustrates a symmetric robust power-allocation problem
on subcarrier c = 1 for U = 3 users each located at 300 m distance from the de-
ployment point, εu = 300, ru

c = 1, ∀u ∈ U , and all other simulation parameters as
specified in Section 6.4. Note that the high uncertainty-radius was chosen to em-
phasize the shape of the constraint set. The lightly shaded area is the intersection
of three SOC’s as defined by the users’ constraints in (6.11b), the arrow represents
the constant gradient of the cost to be minimized, and the marked point indicates
the optimum.

6.2.2 Box-Shaped Uncertainty Sets

The second type of uncertainty regions we will use are box-shaped ones, given by

Hc
u = {H̃c

u: |H̃c
ui = Hc

ui(1 + Λ̃c
uv), ∀i ∈ U \ {u}, H̃c

uu = 0, Λ̃c
uv ≤ εu, ∀v ∈ U}, (6.12)

where Λ̃c
u: ∈ RU . Note that we use the same uncertainty parameters ε ∈ RU

+ as in the
previous section, in order to arrive at a fair comparison to ellipsoidal uncertainty sets
and extract the effect of their different shapes. This most pessimistic uncertainty set
is equivalent to multiplying the crosstalk coefficients Hc

u: by (1+ εu), ∀c ∈ C, u ∈ U ,
and can be considered as a margin on the crosstalk noise. The corresponding robust
power-allocation problem is posed as

minimize
0≤pc

u≤p̂c
u,∀u∈U

∑

u∈U

wup
c
u (6.13a)

subject to pc
u − (1 + εu)Γ

γc
u

Hc
uu

∑

i∈U\u

Hc
uip

c
i ≥ nc

u, ∀u ∈ U , (6.13b)

which notably has the advantage of remaining a linear program and being solvable
by matrix inversion, cf. Section 1.2.3. Comparing the robust subproblems in (6.11)
and (6.13), we see that they differ in a single term in the constraint functions. From
the triangle inequality, convexity of the square-function, and using H̄c

uu = 0, it holds
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that

1√
U − 1

∑

i∈U\u

Hc
uip

c
i ≤ ‖ diag(H̄c

u:)p
c‖2 ≤

∑

i∈U\u

Hc
uip

c
i . (6.14)

Hence we conclude that the constraint set in (6.11) is never more restrictive than
the constraint set in (6.13). Therefore robust power-allocation with box-shaped un-
certainty can never yield a lower minimum sum-power than one with ellipsoidal
uncertainty region when equal uncertainty parameters are used, which also follows
directly by inspection of their respective uncertainty sets in (6.7) and (6.12), respec-
tively.

In [13] a cardinality constrained uncertainty concept was proposed. Therein one
assumes box-constraints for each coefficient and restricts the number of coefficients
which are allowed to deviate from the nominal value. This approach is usable to
model the amount of interference in communication systems where users are entering
and leaving the system [193]. Hence, if statistics on the number of users active at any
time are available, this approach may be used to ensure robustness in DSL systems
when additional lines become active, cf. Chapter 7 where the worst-case crosstalk
noise from all lines in the system is considered. Note however that the users becoming
active then have to adhere to the spectral allocation foreseen/optimized by the DSM
algorithm. However, when assuming the maximum of U−1 disturbers, one falls back
to the box-constrained uncertainty model.

6.2.3 Feasibility Conditions and Outage Probability

Using the effect of uncertainty on the power-allocation constraint in (6.13) together
with the uncertainty region in (6.12) and the feasibility criterion in (1.6) for the nom-
inal power-allocation problem in (1.4), it is straightforward to derive the following
sufficient feasibility conditions for the robust case with multiplicative uncertainty.

Theorem 13. A robust, single-subcarrier power-allocation is feasible for the ellip-
soidal uncertainty constrained problem in (6.11) and for the box-uncertainty con-
strained problem in (6.13) with uncertainty parameters ε ∈ RU

+ if

‖Fc‖2 <
1

1 +
√

U‖ε‖2

. (6.15)

Furthermore, if εu = ε, ∀u ∈ U , then a sufficient condition for ellipsoidal uncertainty
is given by

ρ (Fc) <
1

1 + ε
. (6.16)

For box-shaped uncertainty sets (6.16) is sufficient and additionally necessary.
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6.2 Uncertainty Regions

See Appendix A.12 for a proof.
We note that the first condition is different to the convergence result in [193]

where additive instead of multiplicative uncertainty was assumed, while the latter
one turns out equivalent to Lemma 1 in [156] on the problem of power control with
SINR margins.

The power-allocation optimization problem in (6.11) for ellipsoidal uncertainty
regions can also be cast in a probabilistic framework [22, Section 4.4.2] if we assume
independent Gaussian random vectors H̃c

u, ∀u ∈ U , ∀c ∈ C. A probabilistic problem

formulation is obtained by replacing εu by φ−1(1 − σu) and diag(H̄c
u) by (Σc

u)
1
2 in

(6.11), where σu is the desired outage probability, Σc
u being the covariance matrix

for coefficients H̃c
u, and φ(·) denotes the Gaussian cumulative distribution function

with zero mean and unit variance.
We are further interested in an outage probability of a robust solution to (6.11)

with ellipsoidal uncertainty region when the real uncertainty set is box-shaped
(cf. (6.13)), which is independent of the exact solutions to (6.11) and (6.13). The
following theorem gives loose outage probability bounds under certain assumptions.

Theorem 14. Assume having coefficients

H̃c
uv ∈ [Hc

uv(1 − εu), H
c
uv(1 + εu)] , u ∈ U , v ∈ U \ {u}, (6.17)

all being independent and symmetrically distributed in the interval. The outage prob-
abilities σu = σ, ∀u ∈ U , according to a robust solution of Problem (6.11) are bounded
by

σ ≤ 1√
e
, (6.18)

independently of the scenario, uncertainty parameters εu, and the solution pc,∗, where
e is Euler’s number. Another bound of the outage probability is obtained by restriction
to the case of independent and uniformly distributed coefficients H̃c

uv as

σ = 1 − V ball(U − 1)

V box(U − 1)
, (6.19)

where V ball(d) and V box(d) are the volumes of the unit ball and the unit box in d
dimensions.

See Appendix A.13 for a proof.
We note that the bound in (6.19) for uniform distributions is monotonously in-

creasing in U . Related to this, in the results of Section 6.4.2 we will observe a larger
performance gap between the two uncertainty sets for networks with a higher num-
ber of lines. Eventually the bound in (6.19) becomes looser than the more general
bound in (6.18) when U ≥ 4.
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Ch. 6 Robust DSM using Crosstalk Margins

Algorithm 7 Lagrange Relaxation based Robust DSM

1: while Master Problem (Maximization in (1.10)) not Solved do
2: Generate a New Set of Dual Variables λ and ν (e.g.,

By the LP based Column-Generation Scheme in Section 4.1.1)
3: for All Subcarriers c ∈ C do
4: while Optimal Bit- and Power-Allocation Not Found do
5: Follow an optimal, discrete search method (e.g., the BnB Search in Sec-

tion 3.1.2.1) to Obtain Another rc

6: Evaluate pc(rc) and the Objective f c(pc, ŵ+ν, w̆+λ) in (1.12) by Solving
the LP in (6.13) or the SOC problem in (6.11) with weights w = (ŵ+ν)

7: end while
8: Optional (for the specific multiplier search scheme in Section 4.1.1,

cf. Line 2): Recover a solution to the problem in (1.8) by the Heuristic
in Algorithm 2

9: end for
10: end while

6.3 Integration of Robustness in DSM

6.3.1 A Robust DSM Algorithm

Our robust DSM approach can be readily integrated into Lagrange relaxation
based DSM algorithms, as exemplified in Algorithm 7. More precisely, we use the
column generation scheme of Section 4.1.1 to optimize the dual variables, and the
depth-first BnB search of Section 3.1.2.1, notably without the search-space reduction
scheme of Section 3.2 which was derived for the non-robust power control problem
in (1.4). Line 6 makes the DSM algorithm worst-case robust against uncertainties as
specified in Section 6.2. We use once more the heuristic of Section 4.1.4 in Line 10
of Algorithm 1 to return to a feasible solution to our original robust DSM problem
in (6.2).

6.3.2 Complexity and Distributiveness

For each evaluated bit-allocation we face the subproblem of computing a robust
power-allocation in Line 6 of Algorithm 7. The latter has in the case of a SOC-
problem [108] as well as in case of a matrix inversion an asymptotic complexity of
O(U3), assuming the matrix inversion for the case of box-uncertainty is performed
by Gaussian elimination. In practice the CPU time to solve the respective subprob-
lems however is to our experience several magnitudes higher in case of ellipsoidal
uncertainty.

As the dual optimal scheme in Algorithm 7 is only practical for a very moderate
number of users, it is also interesting to see how the two approaches are imple-
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mentable in schemes with lower complexity. For example, the heuristics of Section 4.2
are extendable in a straightforward fashion by evaluating the objective as done in
Line 6 of Algorithm 7. Various other DSM schemes such as ISB [31] apply sequential
iterations over users to optimize the power-allocation, cf. [184] for an application to
a sum-power minimization problem. Assuming a fixed power-allocation of all users
i ∈ U \ {u}, the power pc

u necessary for given SINR γc
u of user u is given as

pc
u = Γ

γc
u

Hc
uu

(

∑

i∈U\u

Hc
uip

c
i + εu‖ diag(H̄c

u:)p
c‖2

)

+ nc
u, (6.20)

where notably the right hand side does not depend on pc
u, cf. the problem in (6.11).

A similar expression of the minimal power-allocation for a given bit-allocation can
be derived from the robust subproblem in (6.13). However, in both cases the result-
ing power-allocation needs to be compared to the spectral mask in order to judge
feasibility of the rate allocation. Hence, as the scheme in [31] foresees an exhaustive
search of all bit-allocations rc

u ∈ B, we recognize that both approaches suddenly
have a similar complexity for evaluating the robust power-allocation.

Besides computational complexity, another practical point is the possibility of dis-
tributed implementations. The continuous and heuristic energy-efficient spectrum
balancing algorithm in [186], a modification of the original rate-maximizing scheme
in [129], theoretically allows for a semi-distributed implementation based on modems
measuring their total noise and a spectrum management center (SMC) having in-
formation about cross-channel couplings . This message-exchange scheme naturally
carries over to box-constrained uncertainty, where each modem u additionally has to
measure the background noise separately to derive the pure crosstalk noise and the
extra virtual noise term (1+εu)

Γ
Hc

uu
(
∑

i∈U\u Hc
uip

c
i +N c

u), cf. (6.13), and appropriately
scales the feedback messages to the SMC. Similarly, an iterative water-filling type of
algorithm [184] can be deployed under box-shaped uncertainty. Unfortunately there
appears to be no way to efficiently derive or measure the term 1

Hc
uu
‖ diag(H̄c

u:)p
c‖2

distributively, which is why both distributed schemes, the heuristic in [186] as well
as iterative water-filling, lose their attractiveness under the ellipsoidal uncertainty
approach (or in fact any other non-box-shaped uncertainty region).

Hence we see that the SOC-constraints in (6.11) couple the power-allocations
of all users on each subcarrier. The distributed robust power-control algorithm for
additive, ellipsoid-shaped uncertainty in [193] allows for delayed messaging of the
coupling terms. Still, in a multi-carrier system this means that a user has to transmit
the whole optimized power-allocation pc

u, ∀c ∈ C, after his iteration in order for
other users to be able to make their decisions distributively, which decreases the
attractiveness of distributed DSM schemes.
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6.4 Simulation Results

The aim of the following simulations1 is to evaluate and compare the two proposed
types of crosstalk margin in terms of the extra energy consumed and the loss in rate.
We consider VDSL downstream scenarios, where 3 or 33 users are equally distributed
at 200 m, 400 m, and 600 m distance from the the deployment point, respectively.
We note that there is no difference between ellipsoidal and box-shaped uncertainty
regions when only two users are considered. However, the consideration of a 3 user
scenario already allows to study the differences between the considered uncertainty
regions (e.g., using Algorithm 7), while keeping the combinatorial complexity at
a manageable level. In the case of 33 users we assume an equal bit- and power-
allocation of all collocated lines, which effectively results in the optimization of 3
user groups and which can be approached by a dual optimal DSM algorithm as in
Algorithm 7, cf. Section 7.2.4 for further details. For ease of exposition, we assume an
identical uncertainty parameter for all users, i.e., εu = ε, ∀u ∈ U . The values for the
uncertainty parameters ε will be varied around the value one, based on real-world
crosstalk parameter uncertainties indicated in [106].

6.4.1 Robust Sum-Rate Maximization

Figure 6.3 illustrates the optimal power density spectrum of the longest (600 m
long) lines for an uncertainty parameter ε = 5 (which under box-shaped uncertainty
sets is equivalent to a crosstalk noise level virtually increased by approximately
7.8 dB) in a sum-rate maximization problem with 33 lines, using an equal power-
allocation for collocated lines. As intuitively expected in this downstream scenario,
the bit-allocation of the longest lines tends to avoid crosstalk when a robust power-
allocation is used. Hence, especially the spectrum at higher frequencies where the
crosstalk into the shorter lines is stronger is then partially abandoned by the longest
lines.

In Figure 6.4 we compare the mean rate obtained by robust sum-rate maxi-
mization to the mean rate achieved by the nominal sum-rate maximizing solution
(power-allocation) under worst-case crosstalk coefficients. More precisely, the (con-
tinuous) bit-allocation for the nominal solution is computed from the nominal power-
allocation and assuming the worst-case channel coefficients on each subcarrier taken
from the ellipsoidal uncertainty set. The worst-case rates for the nominal solution
are either computed as a) the rates based on the resulting worst-case continuous
bit-allocation, or b) the rates obtained after flooring the worst-case bit-allocation.
The intuition is that these two cases indicate the range of rates in which the nomi-
nal power-allocation would result for the worst-case channel, having in mind that in

1The simulation parameters were chosen according to the VDSL standard in [50], with an SNR
gap Γ = 12.8 dB and two transmission bands as defined in band plan 997. The background
noise comprised VDSL noise A [50] added to a constant noise floor at −140 dBm/Hz.
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Figure 6.3: Nominal and robust power spectra of the longest lines at the sum-rate
maximizing solutions for ε = 5 and 33 lines.
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Figure 6.4: Comparison of the robust and nominal solutions in terms of mean rate
per user under the worst-case channel coefficients.

practice there are various mechanisms available which let the modems autonomously
adapt the bit-allocation when too-high bit-error rates are perceived [59, Sec. 7.5].
While we find that the mean rate under ellipsoidal uncertainty is fairly close to the
nominal one, there is a large gap under the box-shaped uncertainty. This can be
explained by the fairly large number of lines and the increasing ratio between the
volumes of a box and the enclosed ellipsoid with increasing dimension, as already
noted in Section 6.2.3. Intuitively, the ellipsoidal uncertainty set becomes less and
less conservative when the number of disturbers increases.
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Figure 6.5: Line-driver power savings by robust power minimization compared to a
non-robust sum-rate maximization in a 3-user scenario.

6.4.2 Energy Cost for Robustness

One motivation for robust optimization is to guarantee a stable target-rate when
these are intentionally reduced to save energy. However, the extra robustness we gain
by robust DSM will certainly have a price in terms of a higher power consumption
(the “price of robustness” [13]). Hence, we investigate the relation between saved
power by rate reduction and extra spent power by robust DSM.

In Figure 6.5 we show the average line-driver power2 consumption for 3 lines ob-
tained at the non-robust maximum sum-rate solution and a robust power minimiza-
tion solution with box-shaped uncertainty set and targeting 80 % of the maximum
non-robust rates per line. While the power gains by energy minimization compared
to the robust sum-rate maximization decrease with an increasing uncertainty, com-
pared to the non-robust solution we find a substantial power saving potential by
robust energy minimization.

In Figure 6.6 we show simulation results for a more realistic scenario with three
distributed groups of lines and 11 lines each. Due to the larger number of users
compared to the 3-user case we find that the (e.g., non-robust) sum-rate maximizing
DSM solution already leads to a reduced power consumption. Furthermore, we have
already seen in Section 2.3.4 that VDSL lines have a lower potential for power
saving compared to ADSL lines. However, Figure 6.6 does show once more that
robust solutions still allow to harvest the majority of the possible power savings
that would be achievable by transmitting at zero power.

In [188] we demonstrate the minimal transmit sum-power as a function of the un-
certainty parameter ε in a distributed 3-user upstream scenario. These results show
that at high uncertainty values ε the solutions under both uncertainty sets reduce

2Parameters of the class-AB line-driver model for VDSL are, similarly as for Section 2.3, given
in the simulation section in [185].
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Figure 6.6: Line-driver power savings by robust power minimization compared to a
non-robust sum-rate maximization in a 33-user scenario.

the frequency-overlap between the users and therefore give similar transmit powers
at high uncertainties. Under the setup of this section the solutions for collocated
lines are identical and the crosstalk scenario more severe due to the larger number
of DSL lines. Consequently we find a notable difference between the uncertainty
sets in terms of the range of uncertainties ε for which feasible solutions were found,
cf. Figure 6.6.
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Chapter 7 DSM for the Stabilization
of DSL under Varying
Crosstalk Noise

The activation of low-power modes (LPM) in the DSL access network implies fre-
quent transmit-power changes, resulting in SNR variations with which current DSL
systems can hardly cope, cf. Section 2.4 for an introduction to LPMs in DSL. We
study the problem of stabilizing DSL systems when using LPMs. A solution pro-
posed in [69] is to inject “artificial noise” (AN) at the transmitter in order to shift
eventual variations of the crosstalk noise inside the specified SNR margin which is
considered during the initialization of the modems. Besides the empirical description
in [69], to the best of our knowledge the problem of setting the AN power spectrum
has not been studied so far. Our contribution is the solution of various optimization
problems related to the performance evaluation of AN-enabled DSL networks, con-
sidering also regulatory and system constraints. Under a worst-case crosstalk noise
assumption similar to that made in practice [167] we demonstrate an analytical AN
power solution and show the gain by jointly optimizing the AN power spectrum and
the SNR margin. However, we embed the problem in a more general mathematical
programming framework, which in addition to this worst-case optimization allows
us to derive a tight performance upper-bound for AN-enabled DSL systems under
specific assumptions. Related to the computation of this bound we find that the
optimization of AN seamlessly integrates into previous DSM algorithms and show
provably near-optimal results for this bound. Our key messages are that a) the per-
formance under AN heavily depends on the set SNR margin and hence AN needs to
be optimized jointly with the margin; and b) the injected AN improves the stable
rate and power levels compared to systems which are stabilized by SNR margins
only, but shows a performance loss for longer loops (e.g., above 1.5 km) compared
to an “ideal”, frequency selective margin setting (commonly referred to as “virtual
noise” [172]).

Background Information and Outline

The activation of LPMs in DSL has already been motivated in Section 2.4 by the
achievable energy-savings at the central office (CO). However, the main concern
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brought up against LPMs is the fluctuation in the crosstalk noise received on a line
when other users enter or leave LPMs. This may lead to an increase in bit-error rate
which forces the modems to reinitialize. The two proposals in [47] to resolve this issue
partly require changes in standards or do not allow for immediate transitions back
into the full-power mode (e.g., in less than 3 s as foreseen in [86]). The most promising
proposal made in [69] is to physically inject additional “artificial noise” (AN) at the
transmitter (i.e., at the central office) and thereby to reduce the relative impact of
future crosstalk variations on the perceived SNR. A related technique is “virtual
noise” (VN) [172] which is a frequency selective, tunable receiver-noise parameter
masking the crosstalk noise. However, VN is currently not standardized for ADSL
systems. Differently to VN, the AN is not masking the changing noise scenario
but leads to additional received noise which makes these disturbances fit inside
the used SNR margin. In other words, increasing the background noise decreases
the SNR reduction when further crosstalk noise is added on top. This approach
does not need any standardization effort and supports fast power state transitions.
The only theoretical disadvantage is that the AN leads to a higher transmit power,
background noise, and crosstalk noise levels. This may reduce the achievable bit-rate
and conflict with our initial intention behind the usage of AN: namely to enable
LPMs and thereby to reduce the energy consumption in DSL. In [41] it is argued
that spectrum balancing in combination with bit-swapping [173] is the more energy-
efficient solution for current networks compared to VN, and hence also compared
to AN. However, this assumes the availability of the corresponding features in the
modems. Furthermore, we deem the majority of possible power savings in DSL
coming from the intensive usage of LPMs, which incurs much stronger crosstalk
fluctuations than occurring in current networks.

We begin in Section 7.1 by defining the formal system constraints and theoret-
ical multi-user optimization problem for jointly setting the AN power spectra, the
transmit-power spectra, and the bit-allocation. This multi-user formulation is no-
tably more general than actually needed for the single-user, worst-case crosstalk
noise problem faced in practice [167]: that is the stabilization of a line for the worst-
case crosstalk noise. However, the observed “worst-case” noise during the initializa-
tion of a DSL connection depends not only on the channel but, for example, also
on the lines’ target-rates, SNR margins, the user behavior (line usage), and the
sequence in which the modems are activated. In order to facilitate a deterministic
performance evaluation of AN-enabled networks we study three approaches: a) the
joint optimization of AN with the transmit-power spectra, bit-allocations, and SNR
margins, b) the single-user bit-loading problem stabilizing the line for the worst-case
crosstalk noise, and c) the multi-user sequential initialization of the lines assuming
the same worst-case noise as in b) but considering the actual crosstalk noise levels
at initialization. Approach a) effectively allows to compute an optimization based
bound on the performance under approach b), and is studied in Section 7.2. In this
theoretical setting we further investigate in Section 7.2.3 the impact of setting dif-
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Figure 7.1: Downstream signal model for the U -user interference channel on subcar-
rier c with all users’ received signals yc ∈ CU , channel matrix Gc ∈ CU×U ,
and additive noise zc ∈ CU , showing the addition of the artificial noise
x̃c ∈ CU to the transmitted symbols xc ∈ CU .

ferent SNR margins for different lines by means of a novel margin-search heuristic.
Note that this heuristic has also applicability in networks which are not AN-enabled.
Similarly, the simplified DSM approach for large networks in Section 7.2.5, based
on the assumption of an identical spectral power-allocation for collocated lines, is
applicable to the performance evaluation in networks with and without AN capabil-
ities. In Section 7.3 we study approaches b) and c), and derive an analytical solution
for the AN power spectrum and an optimal bit-loading algorithm for AN-enabled
networks. The performance under the proposed approaches is compared and the
value of explicit SNR margin optimization demonstrated by simulations.

7.1 Optimization Problem with Artificial Noise (AN)

7.1.1 Modified System Model

We extend the interference channel model on each subcarrier c ∈ C and assumptions
of Section 1.2.3 by an independent complex random signal (the “artificial noise”)
x̃c ∈ CU , x̃c

u ∼ N (0, ac
u), being added to the transmitted symbols xc ∈ CU , xc

u ∼
N (0, pc

u) of all users u ∈ U , cf. Figure 7.1, where CU means the set of complex
U -dimensional vectors. Similarly as in (1.3) we obtain the achievable rate under a
given bit-error probability as [59]

rc
u (pc, ac) = log2

(

1 +
Hc

uup
c
u

Γ
(

∑

i∈U\u

Hc
ui (p

c
i + ac

i) + Hc
uua

c
u + N c

u

)

)

, (7.1)

where ac ∈ RU are the AN power levels on all lines. As can be seen in Figure 7.1
and in (7.1) the added AN also generates additional crosstalk noise

∑

i∈U\uH
c
uia

c
i

among the users. The reverse, i.e., the powers pc(rc) for given rates rc and constant
AN ac, c ∈ C, can be computed by the solution of the linear matrix equation in
(1.5). However, AN is variable and should be chosen such that the worst SNR a
user may experience with respect to crosstalk noise (i.e., when all other users are
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transmitting) does not exceed the SNR which was targeted at the initialization of
the line. This constraint can be precisely written as

r̃c
u (pc

u, a
c
u) ≤ rc

u (pc, ac) , (7.2)

where r̃c
u (pc

u, a
c
u) denotes the rate at initialization. The rate r̃c

u (pc
u, a

c
u) will be the

largest, and therefore the constraint in (7.2) the most restrictive, if no crosstalk noise
is present at the initialization phase. Hence we define

r̃c
u (pc

u, a
c
u) = log2

(

1 +
Hc

uup
c
u

γuΓ
(

N c
u + Hc

uua
c
u

)

)

(7.3)

where γu is the extra SNR margin which is set at the line initialization phase and
used for protection against fluctuations in crosstalk noise.1 Recommended margin
values used in practice are in the range between 6 dB and 10 dB [195]. However,
in later sections we will optimize the margin value specifically for the considered
networks.

7.1.2 Formulation for the Optimization of Artificial Noise

By extending the original problem in (1.2.4) and considering the constraints of Sec-
tions 1.2.3 and 7.1.1, the problem of jointly optimizing transmit power and artificial
noise can be cast as

minimize
pc�0,ac�0,c∈C

∑

c∈C

f c(pc, ac, ŵ, w̆) (7.4a)

subject to
∑

c∈C

r̃c
u (pc) ≥ Ru,

∑

c∈C

(pc
u + ac

u) ≤ P̂u, ∀u ∈ U , (7.4b)

r̃c
u (pc) ∈ B, (pc

u + ac
u) ≤ p̂c

u, ∀c ∈ C, u ∈ U , (7.4c)

r̃c
u (pc

u, a
c
u) ≤ rc

u (pc, ac) , ∀c ∈ C, u ∈ U . (7.4d)

where the objective is similarly as in (1.9) defined as

f c(pc, ac, ŵ, w̆) =
∑

u∈U

(

ŵu (pc
u + ac

u) − w̆ur̃
c
u(p

c, ac)
)

. (7.5)

We emphasize once more that the purpose of formulating this problem is to derive
a performance bound for AN-enabled DSL networks which can be compared to
other stabilization techniques. Before presenting an algorithm for the solution of
this problem in Section 7.2 we proceed by studying one of its essential building

1While in all other chapters we assume that the SNR gap Γ already includes the margin γu, in
this chapter we explicitly state the margin value as we study the performance under varying
crosstalk noise, which is part of the disturbance the margin is supposed to protect against.
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blocks, that is the per-subcarrier bit and power allocation-problem.

7.1.3 Stabilized Power Control with Artificial Noise

The classical single-subcarrier power control problem [54, 194] for fixed, minimum
bit-allocation rc can be cast as the linear program [14] (LP) in (1.4) and its solution
pc(rc) obtained by solving the linear system in (1.5). Similarly, we will show that
the single-subcarrier power control problem including AN remains an LP. The value
of this observation is that discrete-rate DSM algorithms as in [163] or Part II, which
rely on the solution of a series of such power control problems, can be extended in
a straightforward way to cover also the optimization of the AN, cf. Section 7.2 for
details. Regarding only the per-subcarrier constraints in (7.4c) – (7.4d) we can write
the power control problem on subcarrier c ∈ C for the joint optimization of transmit
power and AN power under a fixed bit-load rc ∈ RU as

minimize
pc

u≥0,ac
u,∀u∈U

∑

u∈U

wu(p
c
u + ac

u) (7.6a)
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, ∀u ∈ U , (7.6b)
∑

i∈U\u

Hc
ui (p

c
i + ac

i) + Hc
uua

c
u + N c

u ≤ γu

(

N c
u + Hc

uua
c
u

)

,

∀(c, u) ∈ {(c ∈ C, u ∈ U)|rc
u > 0}, (7.6c)

(pc
u + ac

u) ≤ p̂c
u, ∀u ∈ U , (7.6d)

where w = (ŵ + ν), ν ∈ RU are additional weights which will be specified in
Section 7.2, and the initial bit-loading constraint in (7.6b) is simply a reformulation
of the constraint r̃c

u (pc
u, a

c
u) ≥ rc

u using (7.3). Moreover, the SNR variation constraint
in (7.6c) is a reformulation of (7.4d) using the rate-definitions in (7.1) and (7.3). The
fact that in (7.6c) we possibly only constrain a subset of the users comes from the
observation that the constraint in (7.4d) is only active when a user u transmits on
subcarrier c. Furthermore, in this case the constraint in (7.4d) only restricts the
denominators of the SNR terms in (7.1) and (7.3), cf. (7.6c). Note that γu > 1 has
to hold strictly in order for (7.6c) to be feasible under non-zero crosstalk noise and
bit-load, cf. (7.6c). The problem in (7.6) is an efficiently solvable LP [14].

7.1.4 Stabilized Power Control without Extra Noise

Another “stabilized” power control problem, which is below referred to as “Margin
Only”, is readily defined by dropping the AN terms in (7.6) as
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minimize
0≤pc

u≤p̂c
u,∀u∈U
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wup
c
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uup

c
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uip

c
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c
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In this formulation the stabilization comes solely from the selective bit-allocation, as
can be seen regarding the constraint in (7.7c) which limits the total crosstalk noise
received on each line. The solution of the problem in (7.7) can be given analytically,
as the constraint in (7.7b), when changed to an equality, provides us with the lowest
power values pc

u, independently for each user u ∈ U . All that remains to be done
is to evaluate feasibility of these values for the constraints in (7.7c) and the power
mask constraints in (7.7a) which are the loosest for the found smallest values of pc

u.
The optimal objective can then be evaluated in (7.7a), or assigned infinity in case
of infeasibility.

7.1.5 Stabilized Power Control with Virtual Noise

As mentioned in the introduction, the “ideal” alternative to AN, standardized for
VDSL2 systems [88], is “virtual noise” (VN) [172]. VN has a similar effect as AN
but is only a transmission parameter, i.e., not physically present on the line. The
optimal “receiver-referred” VN equals the crosstalk noise spectrum a line experiences
when all lines are active, and is hence computable by current DSM schemes [33,
163, 178]. More precisely, one first calculates the optimized received crosstalk noise
levels by multi-user DSM (setting the redundant margin to γ = 1) and then sets
vc

u =
∑

i∈U\uH
c
uip

c
i , where vc

u, u ∈ U , c ∈ C, is the received VN power level considered
at the initialization and added to the background noise N c

u. For comparison to AN
we will however also study the (only theoretically relevant) case where γu > 1 and we
enforce vc

u ≥ 0. In this case we need to solve linear subproblems similarly as in (7.7),
only differing in the variable VN terms vc

u which are added to the background noise in
(7.7b) and to the background noise on the right-hand side of the inequality in (7.7c).
Another definition of VN which is used in standardization [88] and which will be
used in later sections comes from referring to it as a transmit-power level, giving the
“transmitter-referred” VN vc

u/H
c
uu. However, this VN parameter is simply a scaled

variant of vc
u, and hence the way to compute the VN mentioned before remains valid.

After having studied the per-subcarrier power control problem for the cases with
AN, with VN, and without any additional noise parameters (i.e., using the SNR
margin only) we proceed with a Lagrange relaxation based approach for the near-
optimal solution of the original multi-carrier problem in (7.4).
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Algorithm 8 DSM Scheme for the Joint Optimization of AN and Transmit Power

1: while Master Problem (Maximization in (7.8)) not Solved do
2: Generate a New Set of Dual Variables λ and ν (e.g.,

By the LP based Column-Generation Scheme in Section 4.1.1)
3: for All Subcarriers c ∈ C do
4: while Optimal Bit- and Power-Allocation Not Found do
5: Follow an optimal, discrete search method (e.g., the BnB Search in Sec-

tion 3.1.2.1) to Obtain Another rc

6: Evaluate pc(rc) and the Objective in (7.8a) by Solving the LP in (7.6)
with weights w = (ŵ + ν)

7: end while
8: Optional (for the specific multiplier search scheme in Section 4.1.1, cf. Line 2

above): Recover a solution to the problem in (7.4) by the Heuristic in Al-
gorithm 2

9: end for
10: end while

7.2 Performance Bound Computation for AN-enabled

Networks

In this section we approach the problem in (7.4) by solving its partial Lagrange-
dual problem [12]. As in Section 1.2.4, the Lagrange relaxation is motivated by
the typically large number of subcarriers |C| which after the relaxation become
independent in terms of the power-allocation. The dual problem is, similarly as in
(1.10) for the case without AN, defined as

maximize
ν,λ

minimize
pc�0,ac�0,c∈C

∑

c∈C

f c(pc, ac, (ŵ + ν), (w̆ + λ)) +
∑

u∈U

νuP̂u − λuRu (7.8a)

subject to Per-subcarrier constraints in (7.4c) – (7.4d), (7.8b)

where ν, λ ∈ RU are the Lagrange multipliers associated with the relaxed sum-power
and sum-rate constraints in (7.4b), respectively.

7.2.1 An Optimal Algorithm for the Dual Problem in (7.8)

Our scheme for optimally solving the problem in (7.8) is summarized in Algorithm 8.
The minimization part in (7.8a) is solved by a discrete search over the bit-allocation
rc, c ∈ C, instead of an optimization over the (continuous) spectral power-allocation
variables with discrete-rate constraints as in (7.4c), as suggested by (7.8a). For this
purpose we use the problem-specific and optimal DFB search scheme specified in
Section 3.1.2.1, where we note that any other discrete search scheme such as that
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in [163] can in principle be used instead. Furthermore, such a discrete search involves
the evaluation of the powers pc(rc) by solving the LP in (7.6) in order to evaluate
feasibility in (7.8b) and the objective in (7.8a). On top of the discrete search for
the bit-allocation comes an iterative scheme targeting the maximization in (7.8a)
(the “master problem”), where we use the LP based column-generation scheme
specified in Section 4.1.1. Again we note that other algorithms for non-differentiable
optimization problems [12, Ch. 6] can in principle be applied instead, such as an
exhaustive search [33], a subgradient search [163], or the ellipsoid method suggested
in [198]. Altogether, we see that the optimization of AN jointly with the spectral
transmit-power allocation neatly integrates into previous DSM approaches, notably
also into low-complexity heuristics as in Section 4.2, cf. also Section 7.2.3 for an
extension of multi-user bit-loading [103]. While in this section we assumed a fixed
margin γu, u ∈ U , the spectral AN allocation and the SNR margin are coupled and
are therefore jointly optimized in Section 7.2.3. The optimal scheme of this section
is only applicable to problems with a few users. However, simplifications as the
introduction of “virtual disturber lines” [29, 104] reduce the number of lines which
are jointly optimized and therefore make such an optimal scheme also practically
relevant. Similarly, in Section 7.2.5 we simplify the multi-user optimization problem
by assuming an equal AN and transmit-power allocation for all collocated lines.

7.2.2 Simulation Results for Multiple Users and Fixed Margins

We evaluate the performance of our joint AN and power optimization scheme in
Algorithm 8 in a 3-user downstream ADSL2 scenario2 with loop-lengths of 800,
1100, and 1400 m, respectively. By weak-duality [12] we find that the suboptimality
of the primal solutions for the original problem in (7.4) obtained by the application of
the heuristic in Algorithm 2 subsequent to our dual-optimal algorithm (cf. Line 8 in
Algorithm 8) is below 10−4 % in all the simulation results shown in this section. This
means that the shown solutions, which apply to the original problem in (7.4), are
provably near-optimal. Figure 7.2(a) shows the optimal mean rate among all users
over the SNR margin γ, which is set equal for all users u ∈ U and increased in steps
of 0.2 dB. We see that the performance under AN increases up to a certain margin
value (at around γ = 12.6 dB), beyond which it decreases again. This behavior can be
intuitively explained by the constraints in (7.6c) which limit the SNR variation under
crosstalk and therefore, for small values of γ, the bit-allocation of heavily interfering
lines. Differently, under VN we have constant performance up to γ = 12.2 dB which
is explained by the fact that VN can fully replace the role of the SNR margin. Note

2The parameters for ADSL2 follow the standard in [86, Annex B], using non-overlapping spectra

with ISDN, Γ = 6.8 dB, θ̂ = 15, θ = 1, and N c
u = −120 dBm/Hz, ∀c ∈ C, u ∈ U . Weights for

rate maximization are set to ŵu = 0, w̆u = 1, u ∈ U , and to ŵu = 1, w̆u = 0, u ∈ U , for
sum-power minimization. The parameters for ADSL2+ follow the standard in [87, Annex A],
using non-overlapping spectra with ISDN and other settings as for ADSL2.
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that for better comparability to AN we always plot the transmitter-referred VN
vc

u/H
c
uu. Considering the third curve where the lines are stabilized by an adequate

bit-allocation and the SNR margin only, we see that the optimal margin is higher
than under AN (at around γ = 14.8 dB). The gain in sum-rate by AN compared
to the optimal margin setting without extra noise is approximately 6.8 % (cf. the
interval “(A)” in Figure 7.2(a)), while that of VN compared to AN is less than 0.4 %.
Note that this is a simplified evaluation of the gain by AN as we set the SNR margin
equal for all users. We will perform a heuristic setting of the margin for each user
separately in Section 7.2.3. Figure 7.2(b) further shows how for large values of γ the
total used AN (as well as transmitter-referred VN) decreases. This is intuitive as
for large values of the margin γ the initial bit-loading constraint in (7.6b) becomes
more and more active while the SNR variation constraint in (7.6c) becomes more
and more inactive and AN hence meaningless.

We repeat the simulation under the same simulation setup for ADSL2+ which
uses approximately double the spectral bandwidth compared to ADSL2, cf. Fig-
ure 7.3. The best found SNR margin values are now 9.2 dB and 6 dB under no extra
noise (“margin only”) and AN, respectively, cf. Figure 7.3. This means that the
optimal margin values are now smaller than for ADSL2, while we find that the AN
and VN sum-power values slightly increased compared to the results for ADSL2 in
Figure 7.2(b) (result not shown). This can be explained by the higher bandwidth
used in ADSL2+ compared to ADSL2 and the frequency selectivity of the channel,
which results in a more frequency selective crosstalk noise in ADSL2+. The gain at
the optimal margin value γ by AN compared to the case with no extra noise is now
7.5 % (cf. the interval “(A)” in Figure 7.3), and that by VN compared to AN 4 %,
cf. Figure 7.3. Concluding, the total power spent for AN is negligible compared to
the total transmit power.

Next we exemplarily have a look at the spectral shape of the optimized AN at our
solution in Figure 7.3 for the margin γu = 1 dB, ∀u ∈ U , in ADSL2+, cf. Figure 7.4
for an illustration. In [69] it is recommended that the (received) AN power levels
should follow the spectral shape of the crosstalk noise (i.e., the optimal VN setting),
and set at (or slightly below) the crosstalk power levels, as also described in [167].
However, from Figure 7.4 we see that this simple rule does not hold for every setting
of the SNR margin. In addition, our simulations will show that the optimal mar-
gin value can vary widely for different loop lengths, cf. Section 7.2.4. Concluding,
the power spectrum of the AN clearly needs to approximately follow that of the
crosstalk noise in order to enforce the stability constraint in (7.6c). However, the
precise/optimal relation between the AN and the crosstalk noise spectrum depends
on the specified SNR margin.
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Figure 7.2: Dependency of the mean rate (a) and transmit powers (b) of three sta-
bilization techniques on the set SNR margin γu = γ, ∀u ∈ U in ADSL2.

7.2.3 Heuristic for the Joint Optimization of Spectral

Power-Allocation, Margin and Artificial Noise

Motivated by the dependency of the optimal spectral AN and transmit-power al-
location on the SNR margin we propose a heuristic for jointly optimizing all three
variable sets. However, the proposed scheme can also be applied to efficiently search
for the single best margin for all users, as found in Section 7.2.2 by an exhaustive
search. In order to obtain a low-complexity scheme we embed a multi-user bit-search
technique in a search for the margins γu, performed sequentially one user after the
other. A more explicit summary is given in Appendix C.3. We repeat the simulation
setup of Section 7.2.2, this time optimizing the SNR margins on a per-user basis us-
ing Algorithm 15, initialized at γu = 10 dB, ∀u ∈ U . Beginning with ADSL2 (cf. the
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Figure 7.3: Dependency of the mean rate under three stabilization techniques on the
set SNR margin γu = γ, ∀u ∈ U in ADSL2+.
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Figure 7.4: Relation between the crosstalk and the optimized artificial noise received
on the shortest (800 m long) line for a margin of γu = 1 dB, ∀u ∈ U , in
ADSL2+.

results for equal margins among users in Figure 7.2) we find that the gain by AN
compared to no extra noise (“margin only”) is now less than 1.8 %, cf. the interval
“(B)” in Figure 7.2(a). The little rate gains for AN by per-user margin optimization
are explicable by the the fact that VN upper-bounds the AN performance for any
margin setting under AN, and the performance under AN and a single margin was
already close to that of VN in Figure 7.2(a). The results for user-specific margin opti-
mization in Figure 7.3 show again higher improvements for the margin-only scheme,
making the difference to the scheme with AN shrink to less than 3.8 %, cf. the inter-
val “(B)” in Figure 7.3. Summarizing this section, AN seems to be able to partially
compensate for the performance loss incurred by setting the SNR margin values of
all users equal. However, also the single-margin value needs to be optimized under
AN based on the actual network topology, a point we investigate further in the next
section.
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Figure 7.5: Dependency of the mean rate on the single SNR margin γu = γ, ∀u ∈ U ,
for three stabilization techniques in two collocated scenarios.

7.2.4 Margin Optimization in Collocated Scenarios

Summarizing our simulation results so far, they indicate that a near-optimal (with
reference to the VN scheme) stable rate is, in networks with limited distribution of
users, already achievable by an adequate setting of a single network-wide SNR mar-
gin. In this section we investigate scenarios with 3 collocated users and loop-lengths
of 800 m and 2000 m, respectively, and apply again the near-optimal algorithm of
Section 7.2.1 for a varying SNR margin γu = γ, ∀u ∈ U . We find that the per-user
margin optimization heuristic of Section 7.2.3 does not significantly improve the
sum-rate compared to the optimal single margin γ in this collocated setup, and
omit these results for this reason. However, as seen in Figure 7.5 there is a large gap
between the optimal single-margin settings for the two loop-lengths, supporting our
point that the optimization of AN and the SNR margin need to be done jointly.

7.2.5 Simplification by Assuming an Equal Power-Allocation for

Collocated Lines

In Section 7.2.1 we mentioned the simplification of the optimal solution of the
Lagrange-dual multi-user DSM problem in (7.8) by considering “virtual lines”, which
represent several other, real lines in the system. Another simplification we may think
of is to enforce an identical power-allocation (in terms of AN/VN and transmit-
power/bit-allocation) for all collocated lines. This leads to small modifications of
the subproblems in (7.6) or (7.7) in the sense that the crosstalk from each optimized
user is multiplied by the number of lines collocated with the crosstalker, and addi-
tionally we need to consider the crosstalk from the lines that are collocated with the
victim line. The latter crosstalk is determined by the power-allocation of the victim
line, and can hence be interpreted as a “self-noise”. As the collocated lines share the
same solution, the optimization of a single line enforces the power and sum-rate con-
straints in (7.4b) for all collocated lines, assuming that the target-rates, sum-power
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Figure 7.6: Dependency of the mean rate under three stabilization techniques on the
set SNR margin γu = γ, ∀u ∈ U in an ADSL2+ network with 33 lines.

budgets, channel, DSL technology, etc., are equal (which we do here). The main ben-
efit from this simplification is that it allows us to make a performance evaluation
under optimal DSM in an environment with stronger crosstalk. In [30] a practical
DSM implementation on standard-compliant DSL chipsets is demonstrated, and the
application of a single (optimized) spectral mask to a group of users suggested to
reduce the complexity of implementing DSM. Our simplification is closely related
to this line grouping, where the crosstalk inside the group and into other groups is
explicitly modeled.

We consider three collocated ADSL2+ user groups of 11 lines each (i.e., 33 lines
in total), located, as above, at 800 m, 1100 m and 1400 m distance from the central
office, respectively, and other simulation parameters as specified in Section 7.2.2.

The results shown in Figure 7.6 qualitatively resemble those in Figure 7.3. For the
best single-margin setting we observe a rate and transmit power under AN which is
similar to those under VN. Furthermore, again we see that the margin-only scheme
profits most from a user-specific SNR margin, where the extra benefit by AN in terms
of mean rate drops from more than 23 % to less than 5 %. Comparing Figures 7.6
and 7.3 we find that the higher crosstalk level in this 33-user example compared
to the 3-user example in Section 7.2.2 results in a higher optimal SNR margin and
a higher AN sum-power (result not shown) at the optimal margin. Note also that
the extra benefit by VN compared to AN is below 2 % (or 0.3 Mbps). We repeated
this simulation, this time with all 33-users being collocated at a distance of 2000 m
from the deployment point (results not shown). While the optimal SNR margin for
AN approximately halves, the benefit by VN compared to AN is now more than
11 % (or more than 1.1 Mbps). Regarding once more Figure 7.5 for 3 collocated,
separately optimized ADSL2+ lines, we can draw a similar conclusion. There we
find a benefit by VN of around 0.8 % (or 0.18 Mbps) for a loop-length of 800 m,
and of more than 8 % (or 1.17 Mbps) in case of 2000 m. Summarizing, compared to
the “ideal” frequency selective SNR margins (that is VN) the stable performance
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Figure 7.7: Dependency of the mean line-driver power consumption on the single
SNR margin γu = γ, ∀u ∈ U , under AN compared to the optimal power
under VN in a 33-user ADSL2+ scenario.

suffers from the injection of AN especially at longer loop-lengths. This effect will be
further analyzed in Section 7.3.2 by loop-reach simulations, where we will also give
an intuitive explanation.

In Figure 7.7 we look at the mean line-driver power consumption3 for supporting
80 % of the per-user rates achieved by a sum-rate maximization under VN. While
the power under AN is seen to be fairly margin dependent, under the best shown
margin setting (at γ = 3 dB) it is close (less than 6 % higher) to that under VN.
Furthermore, the optimal margin value is far below that in the corresponding sum-
rate maximization problem (cf. Figure 7.6), meaning that the optimal margin setting
is not only channel and network topology, but also target-rate dependent. A word
of caution is needed at this point, as the typically encountered low AN sum-power
level (in comparison to the total transmit power) does not automatically imply
that the AN technique is energy-efficient, as transmit power may also be wasted
to compensate for the needed frequency-flat SNR margin. We will see an example
supporting this claim in the next section where a power-mask based crosstalk noise
is assumed in order to decouple and therefore simplify the original multi-user DSM
problem in (7.4).

3The used model in this chapter is that of a class AB line-driver and uses the parameterization
specified in [185].
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7.3 Performance Analysis under Worst-Case Crosstalk

A commonly applied simplification in performance evaluation for multi-user DSL
networks is to decouple the users by assuming the highest possible crosstalk noise
tu into line u ∈ U based on the spectral mask constraints4 in (7.6d), given as

∑

i∈U\u

Hc
ui (p

c
i + ac

i) ≤ tcu =
∑

i∈U\u

Hc
uip̂

c
i . (7.9)

Replacing the crosstalk terms by these (constant) upper-bounds in the per-subcarrier
problem in (7.6), we see that the users’ AN and power-allocation become decoupled
problems, and the constraint in (7.6c) can be simplified to

Hc
uua

c
u ≥ ãc

u
.
= (tcu/(γu − 1) − N c

u) . (7.10)

As a decrease in the AN value ac
u makes the constraints in (7.6b) and (7.6d) less

restrictive for the power-allocation variables pc
u and the goal is to minimize the total

transmit power in (7.6a), we can give the optimal AN setting explicitly as

ac
u =

[

ãc
u

]

+
/Hc

uu, (7.11)

where [x]+ = x for x ≥ 0, and [x]+ = 0 otherwise.

7.3.1 Optimal Algorithm for Stable Bit-Loading

We investigate the setting of the AN jointly with the transmit-power allocation based
on the decoupling worst-case assumption in (7.9), which, as will be shown, can be
solved efficiently and optimally through a (modified) greedy bit-loading procedure.
Inserting (7.11) back into (7.6) and regarding the original problem in (7.4) we see
that one recovers the modified single-user bit-loading problem

minimize
r̃c
u∈B,c∈C

∑

c∈C

ŵu

(

pc
u(r̃

c
u) +

[

ãc
u

]

+
/Hc

uu

)

− w̆ur̃
c
u (7.12a)

s.t.
∑

c∈C

r̃c
u ≥ Ru,

∑

c∈C

pc
u(r̃

c
u) ≤ P̂u, (7.12b)

pc
u(r̃

c
u) ≤ p̂c

u −
[

ãc
u

]

+
/Hc

uu, ∀c ∈ C, (7.12c)

where pc
u(r̃

c
u)

.
= (2r̃c

u − 1)
γu

Hc
uu

Γ
(

N c
u +

[

ãc
u

]

+

)

, (7.12d)

which we write in terms of the variables r̃c
u instead of pc

u to emphasize the relation to

4Note however that estimates of the worst-case noise encountered in real networks are more
commonly based on long-term network observations [167].
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Algorithm 9 Single-user AN and Bit-Allocation Scheme

1: for all users u ∈ U do
2: while (e.g., exhaustive) search for γu do
3: Compute the constant received AN

[

ãc
u

]

+
as in (7.10)

4: Solve the problem in (7.12) by greedy bit-loading [27]
5: end while
6: end for

bit-loading algorithms. AN solely leads to a modified (but constant) additive objec-
tive term, mask, and background noise in (7.12a), (7.12c), and (7.12d), respectively.
Hence, we find that greedy bit-loading [27, 178] (with sum-power objective) is opti-
mal when applied to the problem in (7.12). We refer to [27] for the corresponding
result under a sum-power objective, and Appendix A.2 for a proof which is applica-
ble to the cost function in (7.12a). The intuition is that the weights in (7.12a) are
equal for all subcarriers and hence do not alter the optimal decisions the classical
single-user bit-loading algorithm [27] takes. This optimal greedy bit-loading proce-
dure needs to be embedded in a (e.g., exhaustive) search loop for the SNR margin
value γu, cf. Algorithm 9 for a generic description.

The same arguments can be applied to show that the single-user bit-loading prob-
lem of optimizing VN (under general margins γu ≥ 1 and vc

u ≥ 0) is readily solvable
by a (modified) greedy bit-loading algorithm, and the (receiver-referred) VN power-

allocation explicitly given as vc
u

.
=
[

tcu
γu

− γu−1
γu

N c
u

]

+
, which for γu > 1 is equivalent

to (γu − 1)/γuã
c
u. This implies that, assuming worst-case crosstalk as in (7.9) and

an identical SNR margin, the VN spectral power-allocation is always below that of
the AN. Assuming the (for VN) optimal selection γu = 1, the VN vc

u equals the
crosstalk noise tcu, as already remarked in Section 7.1.5. As in the case of AN, the
bit-loading considers a background noise increased by the additional noise vc

u, while
the objective and power mask constraints are, differently to (7.12a) and (7.12c), not
altered by the VN.

We proceed with simulation results where the proposed modified greedy bit-
loading procedure is applied to a single user, showing the optimal rate and sum-
power levels under the conservative crosstalk assumption in (7.9).

7.3.2 Evaluation of Stable Single-User Bit-Loading

We repeat the 3-user ADSL2+ example of Section 7.2.2, this time using the worst-
case crosstalk assumption of Section 7.3 and Algorithm 8 applied to each user indi-
vidually. The results are shown in Figure 7.8, cf. Figure 7.3 for the corresponding
results under our near-optimal multi-user DSM scheme. First note that without the
extra noise (AN or VN) and fixed crosstalk noise the feasibility of the stability con-
straint in (7.6c) solely depends on the set SNR margin. Hence, in Figure 7.8 we
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Figure 7.8: Average rates (a) and power levels (b) under three stabilization tech-
niques and a worst-case crosstalk assumption in a distributed 3-user
ADSL2+ scenario.

obtain no (stable) rate below a certain threshold margin. Considering the larger
crosstalk noise considered here it comes as no surprise that the achieved rates are
lower and the AN and VN power levels higher in Figure 7.8 compared to Figure 7.3.
In Figure 7.8(a) we additionally show the mean rate achieved when we are allowed
to select the SNR margin for each user individually and optimally (up to the selected
granularity of 0.2 dB). Similarly as in Section 7.2.3 we find that this additional free-
dom in setting the margin mostly improves the performance in the case when no
extra noise (AN or VN) is used. Note that due to the user-independence under the
worst-case assumption in (7.9) it comes at no additional effort to find the optimal
user-specific margins compared to finding the single optimal margin applied to all
lines.

The main advantage of the conservative simplification made in in this section is
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Figure 7.9: Rate under the three stabilization techniques in ADSL2+ for 2 and 30
collocated disturbers, respectively.

that it allows to do a performance evaluation in networks with a large number of
users. Hence, we do now assume numerous disturbers collocated with an ADSL2+
system, and simulate Algorithm 8 with an exhaustive search over the margin with
a granularity of 0.2 dB. The results in Figure 7.9 represent the rate performance
for a certain loop-length and the best SNR margin selection in the above sense
for 2 and 30 collocated disturbers, respectively.5 Compared to the scenario without
extra noise we find that AN provides a gain in rate of between 6.3 % and 18.9 %
in case of 2 disturbers, between 13.4 % and 36.7 % in the case of 10 disturbers, and
between 17.4 % and 48.2 % in case of 30 disturbers. Furthermore, AN gives a (worst-
case crosstalk) rate performance similar to VN, at least for loop-lengths below 1 km.
Above this length we find a maximum rate loss compared to VN of 8.9 %, 11.3 %,
and 12.4 % for 2, 10, and 30 disturbers, respectively.

In order to further study the energy-efficiency of AN we repeat this loop-reach
simulation, but show instead of the achieved rate the line-driver power consumed at
80 % of the maximum rate achieved by the VN technique. The results depicted in
Figure 7.10 show a loss in terms of line-driver power consumption by AN compared
to VN for long loops, similar as observed in terms of rates in Figure 7.9. This can be
explained intuitively as for long loops the performance becomes less constrained by
the crosstalk noise tcu but more constrained by the noise Hc

uua
c
u +N c

u, while VN does
not suffer from the artificial noise term Hc

uua
c
u. The maximum extra power cost by

AN compared to VN is around 27 % (or 119 mW, respectively) for a loop-length of
2.25 km. Note however that the extra “power cost” by AN becomes less evident for
lower target-rates (e.g., below 50 % of the maximum rates, results omitted) where the
power consumption is lower as well. Figure 7.10 also shows the power consumption

5Results obtained for 5 and 10 disturbers are qualitatively similar (although shifted in terms of
rates), and therefore omitted.
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Figure 7.10: Line-driver power consumption of a single line under study, operating
at 80 % of the maximum achievable stable rate, under the three studied
stabilization techniques and 30 collocated disturbers in ADSL2+.

for two fixed values of the SNR margin. The comparison to the line-driver power
consumption under AN and the best selected margin shows once more the gain by
SNR margin optimization under varying loop-lengths.

7.3.3 Stable Sequential Initialization under Worst-Case

Crosstalk

In Section 7.3.2 we evaluated the performance of a line seeing no crosstalk noise
during its initialization, which is stabilized for the worst-case crosstalk noise in
(7.9). Differently, in case a line u initializes when other lines are already active we
need to consider the additional crosstalk noise t̃cu, c ∈ C, into line u ∈ U that is
caused by the active disturbers. Hence, the crosstalk noise present at initialization
also needs to be added to the right-hand side of the stabilization criterion in (7.6c).
This leads to a lower optimal AN level (cf. (7.11))

ac
u

.
=

1

Hc
uu

[

(

tcu − γut̃
c
u

γu − 1
− N c

u

)

]

+
. (7.13)

Using this definition the optimal modified bit-loading problem is given similarly as
in (7.12), differing only in the higher background noise (N c

u + t̃cu) and the altered
AN levels in (7.13).

The noise levels t̃cu at initialization depend on many factors as mentioned in the
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Figure 7.11: Average rate of 33 stabilized ADSL2+ lines under sequential initializa-
tion.

introduction to this chapter, including the users’ line usage behavior. As a simple
possible rule for performance simulation we assume that the lines initialize sequen-
tially, one user after the other, as also assumed in [167]. In a collocated scenario this
leads to a unique average rate per line, where we apply the modified bit-loading al-
gorithm in total U times with sequentially updated received crosstalk levels t̃cu, and
AN levels in (7.13). In Figure 7.11 we show the obtained simulation results for col-
located 33-user scenarios with varying loop-lengths. The lowest and highest curves
depict the performance without AN/VN and with VN, respectively. Especially at
lower loop-lengths we find a noticeable gain by margin optimization under AN. More
precisely, we find a maximum gain in average bit-rate in Figure 7.11 compared to
the fixed margin setting at 3 dB suggested in [167] of over 7 %. In terms of reach the
gain is even beyond 32 % up to a loop-length of 1 km.

7.3.4 Comparison of Performance Evaluation Techniques

In Figure 7.12 we compare the three proposed evaluation techniques in terms of
loop-reach simulations: The DSM based AN setting for collocated scenarios of Sec-
tion 7.2.5, the single-user optimization under worst-case crosstalk noise stabilization
criterion in Section 7.3.1, and the sequential initialization scheme with modified bit-
loading in Section 7.3.3. While the combination of AN and DSM gives rates that are
partly (for longer loops) below those under those obtained by sequential initializa-
tion and worst-case crosstalk noise stabilization, they form an upper bound for the
single-user worst-case stabilization scheme. The explanation is that while for both,
DSM and single-user optimization, we consider a stabilization criterion for the case
where no crosstalk noise is present at initialization, the DSM scheme results in an
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Figure 7.12: Average rate of 33 artificial noise enabled ADSL2+ lines under different
performance evaluation techniques.

optimized crosstalk noise spectrum and hence higher performance. Differently, all
but one line in the sequential evaluation scheme see a non-zero crosstalk noise power
at initialization, and the stabilization criteria are hence less restrictive for most lines.
Note however that the stabilization constraints in (7.6c) are easily adaptable to this
scenario and DSM is hence also usable to bound the performance under sequential
initialization.
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Chapter 8 Conclusions

8.1 Summary of the Thesis

We considered the use of dynamic spectrum management (DSM) for the reduction of
the power consumption in interference-limited multi-carrier digital subscriber lines
(DSL). In the first part of the thesis we motivated our approach, which is based
on the constrained optimization of the modems’ transmit power. The line-driver
is responsible for a major part of the transceiver’s total power budget. However,
most current low-complexity DSM algorithms are designed for the minimization of
the transmit power. We presented empirical evidence which shows the efficiency
of transmit-power minimizing DSM in reducing the line-driver power consumption.
The DSM problem has an exponential complexity in the number of subcarriers.
Lagrange-dual relaxation has previously been proposed as a means to approximate
the original problem with one that has a linear complexity in the number of subcarri-
ers. However, this approximation theoretically incurs a gap in the optimal objective
value compared to the original DSM formulation. We have shown that this gap is
indeed non-zero and dependent on the target-rate, but also found that it is negligible
in typical DSM problems of practical size.

In the second part of the thesis we focussed on novel DSM algorithms. We have
shown that the decomposed combinatorial per-subcarrier power control problems
have a complexity which is polynomial in the number of DSL lines. However, as
common search methods are still too complex for moderately sized DSL networks,
we aimed at optimal search schemes with even lower complexity. This was achieved
by exploiting the typically low crosstalk couplings in the search algorithm. Target-
ing DSM problems in even larger networks we focussed on the design of various
per-subcarrier bit-search heuristics. Differing from the commonly applied Lagrange
relaxation, we demonstrated a nonlinear Dantzig-Wolfe decomposition based DSM
framework which is able to coordinate the possibly suboptimal solutions obtained by
these heuristics in a robust fashion. We also proposed a novel coverage optimization
problem which we approached by a linear as well as a semidefinite problem relax-
ation. Its solution is based on our DSM framework, which also formed the basis for
the solution of the DSM problems below.

The third part of the thesis was devoted to stabilization techniques, including
the proposal of a novel concept of crosstalk margins which relies on the solution
of efficiently solvable convex per-subcarrier problem formulations. Furthermore,
we analyzed the performance of DSL networks which are enabled to add artificial
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noise at the transmitter. This artificial noise effectively stabilizes the network
performance and therefore enables the energy savings promised by low-power
modes in DSL.

8.2 Main Contributions of the Thesis

Key findings and conclusions are listed in the following.

Energy-Efficient DSM: We have empirically shown that optimizing the trans-
mit power in the design and application of energy-efficient DSM algorithms instead
of optimizing under the specific DSL line-driver incurs a negligible performance loss.
The optimization towards transmit power leads to a problem which is decomposable
into per-subcarrier problems and amenable to previously proposed low-complexity
DSM algorithms.

Enhancing DSM by power-allocation in time has previously been considered for
interference-limited DSL networks. We connected the possible energy savings by this
enhancement to the duality-gap of the DSM problem, which we empirically found
to be negligible for practical DSL systems. Hence, time-sharing in DSL is merely an
algorithmic detour as demonstrated in this thesis, and yields little additional energy
savings on top of that obtainable by DSM.

Energy-efficient DSM has been analyzed in terms of the line-driver power
consumption under real-world channel data and in numerous randomly sampled
near-far scenarios. We found that the line-driver power can on average be lowered
by up to 70 % while still providing 80% of the maximum bit-rates.

Optimal Discrete-Rate Power Control: Contrary to previous belief a com-
binatorial single-carrier bit- and power-allocation problem subject to interference
was seen to have a polynomial complexity in the number of users. Optimal search
algorithms were proposed for its solution. A problem-specific search-space reduction
method was proposed which demonstrates that weak crosstalk couplings can be
algorithmically exploited to lower the complexity. By our optimal methods we have
proved the near-optimality of previously proposed low-complexity, greedy DSM
schemes in specific sum-rate maximization problem instances under real-world
channel data.

Dantzig-Wolfe Decomposition: A novel framework for DSM based on a non-
linear Dantzig-Wolfe decomposition was introduced, and the relation to the com-
monly applied Lagrange-dual relaxation demonstrated. Due to its robustness with
respect to non-optimal subcarrier solutions it allows to perform a heuristic, discrete
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bit-search and thereby to obtain discrete bit-allocations as a result. A combination
heuristic was proposed which allows to return a feasible solution to the original
problem, which is not available for classical Lagrange-dual relaxation based DSM
schemes.

Our framework uses a storage of possible power-allocations. We demonstrated
that this storage allows to fast and approximately resolve the DSM problem for
various target-rates, which makes it an attractive basis for adaptive DSM solutions.
Similarly the DSM problem is fast, but only approximately, re-solvable for different
objective functions. In summary, this framework provides the foundation for the
optimization of various DSM objectives, and using optimal as well as suboptimal
power control schemes.

Coverage Optimization: The maximization of service coverage was formally
introduced as a novel DSM objective and two heuristic solution approaches were
compared. Furthermore, a dual-optimal algorithm was proposed which allows for
the exact quantification of the suboptimality of these heuristics in small networks.
Performance gains by the heuristics compared to sum-rate maximization in terms
of average coverage and power consumption were demonstrated in large networks.

Stabilized DSL Networks: Models of crosstalk margins were studied and inte-
grated in energy-efficient DSM algorithms. Results show that robust DSM solutions
still allow to harvest the majority of the possible power savings by applying DSM
while providing stable rates under worst-case crosstalk noise.

The evaluation of DSL lines by jointly performing DSM and the optimization of
the artificial noise (AN) was proposed, giving novel means to evaluate a bound on
the performance of AN-enabled networks. An analytical solution for the optimal
single-user AN setting was derived. This enables the proposed low-complexity joint
optimization with the SNR margin, which enhances the previously proposed way of
operating AN-enabled networks. Our results show that a significant power reduction
is achievable by low-power modes stabilized by AN, despite the additional power
consumption caused by AN.

8.3 Suggestions for Future Research

• Future research on energy-efficient DSL protocols may be directed towards
quantifying the theoretical gains by multi-user coordination of traffic-aware
rate scheduling decisions, which are currently decentralized by the use of au-
tonomous low-power modes, and which may strongly depend on the DSM
coordination level.

• As we have seen in this thesis, the discrete-rate power control problem is too
challenging in general to be approached by direct search methods. However,
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Ch. 8 Conclusions

we have shown by our search-space reduction technique in Section 3.2 that
the special case of a low crosstalk coupling can be exploited algorithmically
to obtain optimal solutions at low complexity. Another special DSM prob-
lem in interference-limited DSL networks has been studied in [162], where the
per-user sum-power constraints in (1.8c) were relaxed to a total sum-power
constraint for all users. The corresponding relaxed DSM problem under con-
tinuous power-loading was shown to be optimally solvable by convex optimiza-
tion, given that certain conditions on the channel data hold. The identification
of further special cases and algorithmic tools to lower the complexity of the
optimal DSM problem in interference-limited networks, as well as the analyti-
cal quantification of the suboptimality in search heuristics, are two important
directions for future research.

• In Section 4.2.7 we proposed a heuristic which exploits the similarity of the
subchannels in DMT-based DSL systems. Similarly, in [66] a low-complexity
DSM scheme is proposed where the solutions on a subset of the subcarriers
are interpolated to obtain the power-allocation on the remaining subcarriers,
thereby reducing the number of optimization variables. In Section 7.2.5 we
applied a near-optimal algorithm to an approximated DSM problem, where
it is assumed that all collocated DSL subscribers have an identical power-
allocation. In all these examples the similarity of bit- or power-allocations
among subcarriers or DSL lines has been exploited in some way. However, a
unified framework on how to exploit this similarity best is an open research
problem.

• We saw in Section 3.1.2.1 that dual variable information stemming from the
linear master problem in (4.1) can be used to reduce the search complex-
ity for solving the decomposed per-subcarrier problems. Similarly, in [100] an
OFDMA system with a single sum-power constraint for all users was studied
and the search complexity of the per-subcarrier problems reduced by using the
information about previously tested dual variables. More research is needed
in deriving algorithms with closer connections between the dual-variable op-
timization and the per-subcarrier problems to lower the search complexity in
optimal bit- and power-allocation.

• A fundamental modeling assumption in this work is that of synchronization
among the controlled DSL lines. The effect of asynchronism was analyzed
in [34] and modeled as crosstalk among adjacent frequency subcarriers, which
destroys the validity of assuming orthogonality among subcarriers. The DSM
approach in [34] consists of first solving a DSM problem assuming synchronism,
followed by a heuristic gradient-based bit-loading process for the actual DSM
problem with asynchronous crosstalk. It remains an open question to which
extent DSM schemes based on Lagrange relaxation or nonlinear Dantzig-Wolfe
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8.3 Suggestions for Future Research

decomposition as proposed in Chapter 4 are efficiently modifiable to the case
of asynchronous crosstalk.

• In our analysis of the coverage maximization problem we proposed two master
problem formulations which are based on two different problem relaxations.
The formulation has an impact on the collection of power-allocations obtained
by our Dantzig-Wolfe decomposition based DSM framework. Furthermore,
based on this collection a selection heuristic was applied to maximize the
service coverage. Further research is necessary to identify which are the most
suitable master problem formulations for this purpose. Another extension of
our work is the consideration of an arbitrary set of service-rate definitions.
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Appendix A Proofs

A.1 Proof of Theorem 1

Proof. The proof of the first statement follows from showing the equivalence be-
tween the dual linear program to (2.3) and the dual problem in (1.10), cf. [12, p.
652] for a similar proof. The continuous relaxation of Problem (2.3) is a standard
linear program and strong duality is obtained under feasibility [14] which holds by
assumption. Introducing Lagrange multipliers λ, ν ∈ RU

+ and Φ ∈ RC for constraints
(2.3b), (2.3c) and (2.3d), respectively, we obtain the dual linear problem as

maximize
λ�0,ν�0,Φ

∑

u∈U

(

λuRu − νuP̂u

)

+
∑

c∈C

Φc (A.1a)

subject to (λ + w̆)T rc(pc,i) − (ν + ŵ)T pc,i + Φc ≤ 0, ∀i ∈ Ic, c ∈ C, (A.1b)

The otherwise unconstrained variables Φ are upper-bounded by the constraints in
(A.1b) and their sum is maximized in (A.1a). More precisely, each variable Φc has
∑

c∈C |Ic| upper-bound constraints in (A.1b) and at optimum it attains the minimum
of those. Consequently we can replace Φ by these minimum upper-bounds and obtain

maximize
λ�0,ν�0

min
{ic∈Ic,c∈C}

{

∑

c∈C

(

ŵTpc,ic − w̆T rc(pc,ic)
)

+ λT

(

R −
∑

c∈C

rc(pc,ic)

)

+

νT

(

∑

c∈C

pc,ic − P̂

)}

. (A.2)

As by definition pc,ic ∈ Qc, ∀ic ∈ Ic, ∀c ∈ C, we see the equivalence to the dual
problem in (1.10) with the per-subcarrier objective defined in (1.9).

The second statement follows as (2.3) has 2U + C constraints and therefore a
solution exists1 that has at most this number of non-zero variables [14]. As |Ic

ξ| ≥ 1,
for all c ∈ C, we can subtract |C| = C from the number of non-zero variables and
obtain that the number of subcarriers |C+

ξ̃
| where time-sharing occurs is at most 2U ,

concluding the proof. A similar conclusion can be drawn by applying the Shapley-
Folkman theorem [11, p. 374], cf. the geometric interpretations of (1.8) and (1.10)
in [182].

1Such a solution is referred to as “basic solution” in LP theory [14].
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A.2 Proof of Theorem 2

Proof. We assume U = 1 and hence all vectors in this section are in R+. First we
prove the optimality of a greedy discrete bit-loading (DBL) algorithm which, starting
from rc = 0, ∀c ∈ C, sequentially loads θ bits where they incur the least extra cost
f c
rc+θ = ŵu(p

c(rc +θ)−pc(rc))− w̆uθ. We define the set of possible bit-steps E , |E| =
∑

c∈C |Qc
r|, a function which assigns each element of E the associated cost f c

rc , rc being
the rate after the bit-step, and the matroid (E ,F), F being the set of all subsets of
E [63]. Optimality of greedy DBL follows now from the optimality of greedily picking
elements out of E [63, Sec. 7.5] and the monotonicity of f c

rc in rc. It follows that
greedy DBL demands the minimum sum-power for a given target-rate. With this in
mind we denote the optimum of (1.8) for neglected sum-power constraints (1.8c) by
P ∗(R). We denote the maximal achievable rate by R̂ =

∑

c∈C max{rc|rc ∈ Qc
r} and

the minimum number of loaded bits after which all remaining possible bit-steps have
a positive cost by Ř ∈ R+, i.e., Ř = minR{R|∃rc ∈ Qc

r, c ∈ C,
∑

c∈C rc ≤ R, f c
rc+θ >

0, ∀c ∈ C}. By optimality we have that P ∗(R) is constant for R ≤ min{Ř, R̂}.
We will therefore focus on the case Ř < R̂, where P ∗(R) is strictly monotonously
increasing in R for R > Ř due to optimality of greedy DBL. Convexity of P ∗(R)
over 0 ≤ R ≤ R̂ follows from

αP ∗(R − kαθ) + βP ∗(R + kβθ) (A.3a)

≥ α(P ∗(R) − kαǫα) + β(P ∗(R) + kβǫβ) (A.3b)

= P ∗(R) − αkαǫα + βkβǫβ ≥ P ∗(R), (A.3c)

where in (A.3a) we form a convex combination of any two target-rates in the given
interval with lower and higher rate than R (i.e., kα, kβ ≥ 0), respectively. In (A.3b)
we use the optimality of greedy DBL, defining ǫα = P ∗(R) − P ∗(R − θ) and ǫβ =
P ∗(R+ θ)−P ∗(R). In (A.3c) we use α + β = 1 and αkα = βkβ as we are interested
in the convex combination at rate R, and again the optimality of greedy DBL
implying ǫα ≤ ǫβ . Next we regard any convex combination of feasible solutions to
our primal problem in (1.8), which are represented by the 3-dimensional set in (2.5).
By Carathéodory’s theorem [12, Prop. B.6], for U = 1 any point in the convex hull
of Q̆ can be represented by the convex combination of at most four points in Q̆.
We define target-rates R ∈ {R̃|R̃ = kθ, k ∈ Z+} and pick any such combination
with sum-power values P̂α, P̂β, P̂γ, P̂δ, with achieved sum-rates Rα,Rβ, Rγ, Rδ,
and with a set of weights α, β, γ, δ ≥ 0, such that αRα + βRβ + γRγ + δRδ = R

and αP̂α + βP̂β + γP̂γ + δP̂δ ≤ P̂. Referring to (1.8a) and (1.9) we obtain

ŵT
(

αP̂α + βP̂β +γP̂γ + δP̂δ

)

− w̆TR

≥ αP ∗(Rα) + βP ∗(Rβ) + γP ∗(Rγ) + δP ∗(Rδ) (A.4a)

≥ P ∗(αRα + βRβ + γRγ + δRδ) = ŵT P̂DBL − w̆TR, (A.4b)
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where the second inequality follows from the convexity of P ∗(R) and where P̂DBL is
the minimal sum-power corresponding to a feasible solution for (1.8), obtainable by
greedy DBL as explained above. Hence, if there exists such a convex combination
which meets the sum-power and sum-rate constraints, we can compute a feasible
solution to the primal problem in (1.8) by greedy DBL which has a lower or equal
objective. The reverse holds as a primal feasible solution is in Q̆. The proof follows
from tight duality between the optimization over convex combinations meeting the
sum-power and sum-rate constraints as in the time-sharing problem in (2.3), and
the dual problem in (1.10), cf. Theorem 1.

A.3 Proof of Theorem 3

Proof. We will analyze the number of feasible discrete power-allocations |Q| per-
subcarrier in an interference channel. Note once more that subcarrier indices are
omitted in this section for ease of notation. We show that there is a bound Û on the
maximum number of users which can jointly transmit at the lowest positive rate θ.
This will be seen to limit the number of “types” of rate allocations by a scenario
dependent constant, where the number of specific allocations belonging to each of
those allocation types grows polynomially in U . Altogether this will establish the
polynomial growth of |Q|. As we are solely interested in an upper-bound Û we will
neglect mask constraints as these only further constrain the set of feasible allocations
Q. Feasibility of all users loading θ bits implies ru (p) ≥ θ, ∀u ∈ U . Reformulating
(1.3) we obtain, ∀u ∈ U ,

1 ≥ (2θ − 1)Γ(
∑

i∈U\u

Hui

Huu

pi

pu
+

Nu

Huupu
). (A.5)

Using Nu

Huupu
≥ 0, Hui

Huu
≥ α > 0, and assuming u = argmini∈U{pi}, we have pi/pu ≥ 1

and the necessary condition for feasibility U ≤ Û , where Û derived from (A.5) is
given in (2.4). Note that for symmetric scenarios with Hui

Huu
= α, Nu = 0, ∀u ∈ U ,

this bound is in fact tight as all power-allocations are equal at optimum, i.e., pu =
pi, ∀u, i ∈ U . Next we apply the method of types [43, Ch. 11.1] where any vector
r = r(p),p ∈ Q, is characterized by a histogram (a “type”) Tr out of the set of all
U -user histograms TU , specifying the relative number of occurrences Tr(k · θ) of any
number of bits (k · θ) ∈ B, 0 ≤ k ≤ |B| − 1, in r. As any specific number of bits can
only appear U times, we have for the number of types [43, Thm. 11.1.1]

|TU | ≤ (U + 1)|B|
.
= m(U). (A.6)
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The set of bit-loading sequences leading to a certain type T is denoted by its type
class S(T ) of size

|S(T )| =

(

U

UT (0), . . . , UT (θ̂)

)

≤ 2UH(T ) (A.7a)

≤ 2
U(θ̂/θ+1)·

⌈U/(θ̂/θ+1)⌉
U

·log
“

⌈U/(θ̂/θ+1)⌉
U

”

.
= n(U), (A.7b)

where the first inequality follows from [43, Thm. 11.1.3] and H(·) denotes the entropy
function. Now we use the fact that interference among users limits the number of
types. More precisely, we have a correspondence between a type T̂ ∈ TÛ and a type
T ∈ TÛ+v given by

TÛ+v =

{(

Û T̂ (0) + v

Û + v
,
Û T̂ (θ)

Û + v
, . . . ,

Û T̂ (θ̂)

Û + v
,

)

| T̂ ∈ TÛ

}

. (A.8)

This holds as even the type with the largest frequency of occurrence of a non-zero
number of bits does not allow for further users loading a positive number of bits
when U > Û . In other words, |TU | = |TÛ | ≤ m(Û), ∀U ≥ Û . We will write T T̂ to

denote a type in TU formed from a type T̂ ∈ TÛ according to (A.8). Assuming any

U > Û + v, v > Û, we have

|S(T T̂ )| =
U · (U − 1) · . . . · (Û + 1)

(Û T̂ (0) + v) · . . . · (Û T̂ (0) + 1)
|S(T̂ )| (A.9a)

≤ U · (U − 1) · . . . · (Û + 1)

v · (v − 1) · . . . · 1 n(Û) (A.9b)

=
U · (U − 1) · . . . · (U − Û + 1)

Û !
n(Û) (A.9c)

= O
(

U Û
)

(A.9d)

where in (A.9a) we use the fact that only the number of occurrences of 0 bits grows
for U ≥ Û , in (A.9b) we use the bound in (A.7b) and bound the expression by
assuming T̂ (0) = 0, and in (A.9c) we use the assumption v > Û . Summarizing,
for any U > Û we have that |TU | ≤ m(Û) and |S(T )| is polynomially bounded by
(A.9d), ∀T ∈ TU , concluding the proof.

A.4 Proof of Theorem 4

Proof. Our aim now is to bound the duality-gap ζ
.
= P ∗

(R,P̂)
− D∗

(R,P̂)
between the

dual problem in (1.10) with optimal value D∗
(R,P̂)

to the primal problem in (1.8)
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with optimal value P ∗
(R,P̂)

. We start by formulating a perturbed primal problem as

P ∗
(R̂,P̂)

= minimize
pc∈Qc,c∈C

∑

c∈C

f c(pc, ŵ, w̆) (A.10a)

subject to
∑

c∈C

rc
u (pc) ≥ R̂u,

∑

c∈C

pc
u ≤ P̂u, ∀u ∈ U , (A.10b)

where Qc as defined in (1.7) is the set of feasible PSD’s on subcarrier c, resulting
in bit-loadings for each user u ∈ U out of the discrete set B, and where R̂ ∈ RU

is defined in (2.17) and (2.14), respectively. Assuming a mask on power spectral
densities per subcarrier and user p̂c

u ensures compactness of Qc. We will now use the
set of all possible combinations of objective values, sum-rates, and sum-powers Q̆ =
∑

c∈C Q̆c as defined in (2.5). Bounding the duality-gap for the primal problem in (1.8)

is equivalent to bounding the minimum distance in objective value between Q̆ and its
convex hull conv(Q̆) at the given target-rates and maximum sum-powers [RT , P̂T ]T ,
cf. Figure 2.4. Furthermore, the dual optimization in (1.10) can be interpreted as the
search for a non-vertical hyperplane supporting Q̆ and maximizing its intersection

with a vertical axis at [RT , P̂T ]T [12]. Based thereupon, let x̄ =
[

s̄, r̄T , p̄T
]T ∈

conv(Q̆) be a point where r̄ =
∑

c∈C r̄c � R̂, p̄ =
∑

c∈C p̄c � P̂, and s̄ =
∑

c∈C s̄c =

D∗(R̂, P̂), and where [s̄c, (r̄c)T , (p̄c)T ]T ∈ conv(Q̆c), D∗
(R̂,P̂)

being the optimal cost of

the partial dual problem to (A.10) after relaxing the coupling constraints in (A.10b).
As in [11, Sec. 5.6.1], we apply the Shapley-Folkman theorem, by which for any point
x ∈ conv(Q̆) it holds that

x ∈





∑

c∈C\D(x)

Q̆c +
∑

c∈D(x)

conv
(

Q̆c
)



 , (A.11)

where D(x) ⊆ C, | D(x) |= (U + 1). Hence, applying this theorem to the previously
defined point x̄, we may write

r̄ =
∑

c∈C\D(x̄)

rc (p̄c) +
∑

c∈D(x̄)

r̄c � R̂, (A.12a)

p̄ =
∑

c∈C\D(x̄)

p̄c +
∑

c∈D(x̄)

p̄c � P̂, (A.12b)

s̄ =
∑

c∈C\D(x̄)

f c(p̄c, ŵ, w̆) +
∑

c∈D(x̄)

s̄c = D∗(R̂), (A.12c)

where rc (p̄c) = r̄c and p̄c ∈ Qc, ∀c ∈ C \D(x̄). Note that only the second part in all
three equations in (A.12) involves points out of conv(Q̆c) for subcarriers c ∈ D(x̄).
Bounding r̄c

u ≤ maxpc∈Qc{rc
u (pc)} on subcarriers c ∈ D(x̄), noting that r̄c � 0, and
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using the initial definition of R̂ in (2.17) and (2.14), from Equation (A.12a) we infer

∑

c∈C

rc (p̄c) � R. (A.13)

Note that, without making any assumptions on the set D(x̄), it was necessary to
take the highest bit-loadings in (2.14) as the rate constraints have to hold for each
user. Inequality (A.13) holds for any p̄c ∈ Qc, ∀c ∈ D(x̄), and we may choose to set
the powers on these (U + 1) subcarriers to zero. By (A.13), feasibility in (A.12b) by
the choice of p̄c, ∀c ∈ D(x̄), and feasibility of p̄ with respect to the per-subcarrier
constraints in (1.7), the thereby created p̄ is shown to be feasible for the original,
unperturbed problem in (1.8) with target-rates R, maximum sum-power P̂, and
optimal cost P ∗

(R,P̂)
. Hence, Theorem 4 follows from (cf. Figure 2.4)

D∗(R) ≤ P ∗(R) ≤
∑

c∈C

f c(p̄c, ŵ, w̆) ≤ D∗(R̂) +
∑

u∈U

w̆u · ∆Ru, (A.14)

where the first inequality holds due to weak-duality relation in (1.13), the second in-
equality holds since p̄ is not necessarily the optimum of the primal problem (1.8), and
the third inequality holds due to the above choice p̄c = 0 and s̄c ≥ −∑u∈U w̆u∆Ru,
∀c ∈ D(x̄), cf. (A.12c).

A.5 Proof of Theorem 5

Proof. We aim now to proof Theorem 5 by modification of the bound in (2.16) for
the special case of a sum-power minimization problem, i.e., w̆ = 0. As a first step
we modify (2.16) into a bound formulated in terms of primal objective values. This
is necessary as we want to work with feasible integer bit-loadings and avoid the
obligation to consider convex combinations of those, cf. the proof of Theorem 4.
Define D∗

(R̂,P̂)
(P ∗

(R̂,P̂)
) and D∗

(Ř,P̂)
(P ∗

(Ř,P̂)
) as the optimal objective values to the

dual problem in (1.10) (primal problem in (1.8)), with modified target-rates R̂u as
in (2.17) and

Řu = max{0, Ru − ∆Ru}, ∀u ∈ U , (A.15)

where ∆Ru is defined in (2.14), respectively. Note that all these modified problems
are feasible by the assumptions of the theorem. Then we have

P ∗
(R̂,P̂)

≥ D∗
(R̂,P̂)

≥ P ∗
(R,P̂)

≥ D∗
(R,P̂)

, (A.16)
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where the second inequality follows from (2.16) and the other inequalities from the
weak-duality relation in (1.13). If Ru ≥ ∆Ru we may similarly apply (2.16) to show

D∗
(R,P̂)

≥ P ∗
(Ř,P̂)

−
∑

u∈U

w̆u∆Ru. (A.17)

It follows from the proof of Theorem 4 that (A.17) also holds in case of Ru < ∆Ru

and Ř chosen as in (A.15). More specifically, we see from (A.12a) and the non-
negativity of rates rc

u(·) that (A.14) remains valid also in this case. Combining (A.16),
(A.17), and (2.16) we have

ζ ≤ P ∗(R̂) − P ∗(Ř), (A.18)

where R̂ − Ř � 2 · ∆R. Therefore we proceed to bound ζ by bounding the extra
power necessary for each user u to load 2 · ∆Ru bits. Consider the worst-case cost
∆pc

u of loading a bit-step for user u on subcarrier c as defined in (2.20). For example,
it also holds that

ε · ∆pc
u ≥ max

{ {pc, p̃c} | pc, p̃c ∈ Qc,
rc
u(p̃c) = rc

u(pc) + ε · θ,
rc
i (p̃c) = rc

i (pc), ∀i ∈ U \ u}

{

∑

u∈U

ŵu (p̃c
u − pc

u)

}

, (A.19)

as loading ε bit-steps can be regarded as sequentially loading ε times one bit-step.
Hence, no matter how many of the extra bit-steps are loaded jointly, the extra
power-cost the 2 ·∆Ru bits incur is bounded by 2 ·∆Ru/θ times the maximum cost
over subcarriers ∆pc

u of loading one bit-step. Concluding, the bound (2.19) follows
from (A.18) and

P ∗(R̂) − P ∗(Ř) ≤ 2 ·
∑

u∈U

∆Ru/θ · max
c∈C

{∆pc
u}. (A.20)

We notably avoided making any assumptions on the optimal power-allocation in the
subproblems in (1.12) under target-rates Ř yielding the optimal objective P ∗

(Ř,P̂)
by

taking the maximum cost of loading a bit-step. An idea to strengthen the bound
is for instance to assume that from the optimal power-allocation of (1.8) with de-
creased target-rates Ř every user u can load an extra bit on 2∆Ru subcarriers. The
resulting bound would be lower, especially when subcarriers differ significantly and
the number of users increases.
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A.6 Proof of Theorem 7

Proof. For U = 1 and arbitrary C the objective in (2.24a) is simply a single non-
linear, monotonously increasing function (a square-root) of the user’s sum-power,
and omitting this function does therefore not change the optimum of the problem in
(2.24) [22], yielding an identical formulation as of the transmit-power minimization-
problem in (2.23). In the case of C = 1 and arbitrary U the target-rates in (1.8b)
uniquely define the minimal per-user transmit powers necessary to support the
target-rates [194]. However, as the LDP model in (2.21) as a function of the per-user
transmit sum-power is monotonously increasing, any other power-allocation feasible
in (2.24b) than this minimal one would have a higher LDP consumption, and the
minimum TP solution for the problem in (2.23) is therefore also optimal in the LDP
minimization problem in (2.24).

A.7 Solution of the Relaxation in (3.4)

In the following we detail the exact solution of the problem in (3.4) and use the
short notation ⌊rc

u (pc)⌋θ and ⌈rc
u (pc)⌉θ to denote the rate rounded up or down to

the next integer multiple of the bit-step θ, respectively. The problem in (3.4) is
separable among users i, (u+1) ≤ i ≤ U . The continuous relaxation of each of those
separated problems is convex and given as

minimize
ri∈[0,θ̂mod

i ]
f̃i(ri) = (ŵi + νi)(2

ri − 1)
ΓÑi

Hii

− (w̆i + λi)ri, (A.21)

where θ̂mod
i = min{θ̂, ⌊log2(1 + Hiip̂i

ΓÑi
)⌋θ} and we use the fact that the constraints

in (3.4b) hold with equality at optimum to replace the variable pi. The problem
in (A.21) can be given analytically, for each remaining user i, (u + 1) ≤ i ≤ U
independently, using first-order optimality conditions ∂f̃i(ri)/∂ri = 0, leading to

rtmp
i = min

{

log2

( λuHii

(ŵi + νi) log(2)ÑiΓ

)

, θ̂mod
i

}

, (u + 1) ≤ i ≤ U, (A.22)

with corresponding power-allocation

ptmp
i (rtmp

i ) = (2rtmp
i − 1)

ΓÑi

Hii
, (u + 1) ≤ i ≤ U. (A.23)

Inserting (A.22) in (A.23) we can interpret ptmp
i (rtmp

i ) as the water-filling solution [22,
Ex. 5.2] for the water-level (ŵi +νi)/ ((w̆i + λi) log(2)) under bit-cap and PSD mask
constraints, respectively. The solution r̄i, p̄i, (u+1) ≤ i ≤ U, of the discrete problem
in (3.4) can then be computed by rounding the user’s rates rtmp

i to one of the two
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nearest integer multiples of θ with the lower objective, i.e.,

[r̄i, p̄i] = argmin
{ri ∈ {⌊rtmp

i ⌋θ , ⌈rtmp
i ⌉θ},

pi = ptmp
i (ri)|ri ≤ θ̂mod

i }

{

(ŵi + νi)pi − (w̆i + λi)ri

}

. (A.24)

This holds due to the aforementioned convexity and user-independence.

A.8 Proof of Theorem 8

Proof. Assume feasible weights ξ̃′, ξ̃c
i , i ∈ Ic,(k), c ∈ C, in (4.1) with 0 < ξ̃′ < 1.

Consider weights ξ′ = 0, ξc
i = ξ̃c

i /(1− ξ̃′), ∀i ∈ Ic,(k), for the problem in (4.1), setting
the weights of columns not included in (4.1) to zero, i.e., ξc

i = 0, ∀i ∈ Ic \Ic,(k), ∀c ∈
C. Regarding (4.1b)–(4.1d), from the feasibility of ξ̃′, {ξ̃c

i } it follows that the weights
ξ′, {ξc

i} are also feasible in (2.3) and (4.1). Using (1.9) we can write the objective
value for weights ξ′, {ξc

i } in (4.1a) as

∑

c∈C

∑

i∈Ic,(k)

(

ŵTpc,i − w̆Trc(pc,i)
)

ξc
i (A.25a)

�
∑

c∈C

∑

i∈Ic,(k)

(

ŵTpc,i − w̆T rc(pc,i)
)

ξ̃c
i +

(

ŵT P̂ − w̆TR
)

ξ̃′, (A.25b)

≺
∑

c∈C

∑

i∈Ic,(k)

(

ŵTpc,i − w̆T rc(pc,i)
)

ξ̃c
i + f ′(P̂,R)ξ̃′, (A.25c)

where the two parts in (A.25b) are obtained by multiplying (A.25a) once by (1− ξ̃′)
and once by ξ̃′, respectively, and using the definition of ξc

i above as well as feasibility
in (4.1). Inequality (A.25c) follows as δ ≻ 0. This implies weights 0 < ξ̃′ < 1 are
not optimal in (4.1). Again from δ ≻ 0 it follows that if weights as described in the
theorem exist they will be feasible in (4.1) with ξ̃′ = 0 and have a lower objective
than f ′(P̂,R), concluding ξ̃′ = 0 at optimum of (4.1). On the other hand, if no
weights as described in the theorem exist we must have ξ′ > 0 at optimum of (4.1)
and 0 < ξ′ < 1 would lead to a contradiction by the arguments above, and hence
ξ′ = 1.

A.9 Alternative Derivation of the Semidefinite

Relaxation based Coverage Maximization

Problem in (5.5)

We can rewrite the relation b2
u = bu, u ∈ U , as diag(bbT ) = b [102]. Linearizing the

quadratic terms by introducing new variables Buv = bubv, u, v ∈ U , we can write the
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equivalent “lifted” problem to that in (5.1) as

maximize
pc ∈ Qc, c ∈ C,

b ∈ R
U , B ∈ R

U×U

∑

u∈U

bu (A.26a)

subject to diag(B) = b (A.26b)

B − bbT = 0, (A.26c)

Constraints in (5.1b) and (5.1c). (A.26d)

The constraint in (A.26c) is nonconvex and at this point relaxed to the convex
constraint B − bbT � 0 [102]. We can regard this relaxed constraint as the Schur
complement [22, p.650] of the equivalent constraint

B̆ =
[

1 bT

b B

]

� 0. (A.27)

Reversing the row and column indices does not change this condition as seen by
the definition of semidefiniteness [2], leading to the formulation of a semidefinite
programming (SDP) relaxation of the problem in (5.1) in the so called “diagonal
form” [102], given by

P cov,sdp

(R,P̂)
= maximize

pc ∈ Qc, c ∈ C,

B̆ ∈ R
(U+1)×(U+1)

∑

u∈U

B̆uu (A.28a)

subject to B̆uu = B̆(U+1)u, ∀u ∈ U , B̆(U+1)(U+1) = 1, (A.28b)

B̆ � 0, (A.28c)
∑

c∈C

rc
u (pc) ≥ Ru + B̆uu(R̂ − Ru), ∀u ∈ U , (A.28d)

Constraint in (5.1c), (A.28e)

where the additional constraint B̆(U+1)(U+1) = 1 is indeed needed to ensure that

B̆uu ∈ [0, 1], u ∈ U , as shown in the proof of the following corollary which compares
the strength of this relaxation to the linear relaxation in (5.2).

Corollary 6. We have that P cov,sdp

(R,P̂)
≤ P cov,lr

(R,P̂)
, i.e., the SDP relaxation is never less

tight than the linear relaxation. Furthermore, in the special case where the solution
of the linear relaxation in (5.2) satisfies b ≻ 0,

∑

u∈U bu ≤ 1, the two relaxations are

in fact equivalent in the sense that P cov,sdp

(R,P̂)
= P cov,lr

(R,P̂)
holds.

Proof. Theorem 11 proves the corresponding statements for the case with time-
sharing relaxation and the corollary follows along the arguments given in the proof
of Theorem 11 by just exchanging the role of time-sharing weights ξc

i , i ∈ Ic,(k), c ∈ C,
with that of the power-allocation variables pc, c ∈ C.
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To make the power-allocation part in (A.28) tractable we again apply a time-
sharing relaxation to the per-subcarrier power and rate allocation, leading to a
modification of the sum-terms of per-subcarrier rates and power in (A.28d) and
(A.28e), respectively, and the time-sharing relaxation of the SDP relaxation in the
form of the problem in (5.5).

A.10 Proof of Theorem 10

Proof. To prove the first statement we show the equivalence between the Lagrange-
duals of the problems in (5.4) and (5.5), respectively. We begin with the dual problem
of the original binary problem in (5.4), given as

minimize
λ∈R

U
+,ν∈R

U
+,κ∈RU

max
pc∈Qc,c∈C

{

∑

u∈U

(λu

∑

c∈C

rc
u (pc) − νu

∑

c∈C

pc
u)
}

−
∑

u∈U

λuRu

+
∑

u∈U

νuP̂u + max
b

{

∑

u∈U

(

b2
u + κu(b

2
u − bu) − λub

2
uR

+
u

)

}

, (A.29)

where R+
u = (R̂ − Ru). Clearly, the second maximization in (A.29) can be solved

analytically for each user separately, where we denote the optimal objective of user
u in this maximization by f(κu, λuR

+
u ), i.e., as a function of the dual variables κu

and λu, u ∈ U . By inspection we see that for this quadratic maximization problem
to have a bounded objective, the following two criteria need to be met

−
(

1 + κu − λuR
+
u

)

≥ 0, ∀u ∈ U , (A.30a)
(

1 − i(κu, λuR
+
u )
)

κu = 0, ∀u ∈ U , (A.30b)

where i(x, y) is an indicator function giving 0 in case (1+x−y) = 0, and 1 otherwise.
While (A.30a) ensures concavity, the complementarity condition in (A.30b) captures
the case when i(κu, λuR

+
u ) is zero and the maximization is hence a linear problem

with objective −κubu, making it necessary to enforce κu = 0 to ensure boundedness
of the objective. In case these criteria hold, the second (quadratic and unconstrained)
maximization problem in (A.29) is solvable by first-order optimality conditions, and
its optimal objective value given by

f(κu, λuR
+
u ) =

{

−1
4
κ2

u
1

1+κu−λuR+
u

if i(κu, λuR
+
u ) == 1,

0 otherwise,
∀u ∈ U . (A.31)
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Next we introduce an auxiliary variable −κ̃ for the just computed optimal objective
and rewrite the problem in (A.29) as

minimize
λ∈R

U
+,ν∈R

U
+,κ∈RU ,κ̃∈R

max
pc∈Qc,c∈C

{

∑

u∈U

(λu

∑

c∈C

rc
u (pc) − νu

∑

c∈C

pc
u)
}

−
∑

u∈U

λuRu

+
∑

u∈U

νuP̂u − κ̃ (A.32a)

subject to − κ̃ −
∑

u∈U

f(κu, λuR
+
u ) ≥ 0, (A.32b)

Constraints (A.30a) and (A.30b). (A.32c)

We recognize the constraints in (A.32b) and (A.32c) as the generalized Schur com-
plement conditions for positive semidefiniteness of singular block-matrices [22, p.
651], leading to the equivalent formulation of the problems in (A.29) and (A.32) as

minimize
λ∈R

U
+,ν∈R

U
+,κ∈RU ,κ̃∈R

max
pc∈Qc,c∈C

{

∑

u∈U

(λu

∑

c∈C

rc
u (pc) − νu

∑

c∈C

pc
u)
}

−
∑

u∈U

λuRu

+
∑

u∈U

νuP̂u − κ̃ (A.33a)

subject to

[

diag (−1 − κ + diag(R+)λ) 1
2
κ

1
2
κT −κ̃

]

� 0. (A.33b)

We continue by comparing this problem to the Lagrange-dual of the SDP [102] in
(5.5). Due to symmetry of B̆ the constraint in (5.5b) can be equivalently written as
B̆uu = 1/2(B̆(U+1)u + B̆u(U+1)), ∀u ∈ U . Using this modification and ǫ, κ, κ̃, Z, λ, ν,
and Φ to denote the Lagrange multipliers of the constraints in (5.5a)–(5.5e), respec-
tively, we write the dual SDP to the problem in (5.5) as

minimize
λ ∈ R

U
+, ν ∈ R

U
+, κ ∈ R

U , κ̃ ∈ R,

Φ ∈ R
C , ǫ ∈ R

P

c∈C
|i∈Ic|,

Z ∈ R
(U+1)×(U+1), Z � 0

max
ξc
i , i ∈ Ic, c ∈ C,

B̆ ∈ R
(U+1)×(U+1)

∑

i∈Ic,c∈C

ξc
i

(

∑

u∈U

(λur
c
u(p

c,i) − νup
c,i
u )

−Φc + ǫc,i
)

+
∑

u∈U

(

−λuRu + νuP̂u

)

+
∑

c∈C

Φc − κ̃ + κ̃B̆(U+1)(U+1) (A.34)

+
∑

u,v∈U

ZuvB̆uv +
∑

u∈U

(

B̆uu − λuR
+
u B̆uu + κu(B̆uu −

1

2
B̆(U+1)u − 1

2
B̆u(U+1))

)

The (unconstrained) maximization in (A.34) targets two linear terms, namely a term
of the form

∑

i∈Ic,c∈C Ac,iξc
i and a separate term of the form tr(MB̆), where tr(·)

denotes the trace of a matrix, Ac,i ∈ R, i ∈ Ic, c ∈ C, and M ∈ R(U+1)×(U+1). Hence,
for this maximization to be bounded we can introduce the constraints M = 0 and
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Ac,i = 0, i ∈ Ic, c ∈ C. Dropping the positive and positive semidefinite variables
ǫc,i, i ∈ Ic, c ∈ C, and Z, respectively, from these equations we obtain inequalities,
leading to an equivalent formulation of (A.34) given as

minimize
λ ∈ R

U
+, ν ∈ R

U
+,

κ ∈ R
U , κ̃ ∈ R,Φ ∈ R

C

∑

u∈U

(

−λuRu + νuP̂u

)

+
∑

c∈C

Φc − κ̃ (A.35a)

subject to
∑

u∈U

(λur
c
u(p

c,i) − νup
c,i
u ) ≤ Φc, i ∈ Ic, c ∈ C, (A.35b)

[

diag (−1 − κ + diag(R+)λ) 1
2
κ

1
2
κT −κ̃

]

� 0. (A.35c)

Now we can use the same argument as in the proof of Theorem 1 in Appendix A.1:
As we minimize over Φc, c ∈ C, in (A.35a) and these variables are lower-bounded in
(A.35b), we can replace them by the maximum lower-bound, leading to an objective
as in (A.33a). At this point we have that the problems in (A.35) and (A.33) are
equivalent and therefore that the problems in (5.5) and (5.4) are Lagrange bi-duals
of each other.

The second statement of the theorem follows from Slater’s condition for constraint
qualification [22, p.226] which ensures strong duality for convex problems, such as the
SDP in (5.5). More precisely, the conditions are the feasibility of all affine inequalities
and the strong feasibility (i.e., with strict inequality) of all other convex inequalities.
The only non-affine constraint of the SDP in (5.5) is the positive semidefiniteness
constraint in (5.5c). If a solution with B̆uu > 0, u ∈ U , satisfies the constraints in
(5.5d) as given by the assumptions of the theorem, then a solution B̆ ≻ 0 strictly
satisfying the constraint in (5.5c) is easily found as shown in the proof of Theorem 11
in Appendix A.11, concluding the proof.

A.11 Proof of Theorem 11

Proof. To prove the first statement it suffices to show that any feasible solution
in (5.5) can be directly mapped to a feasible solution in (5.3) and equivalence of
objective values. The positive semidefinite constraint in (5.5c) implies by definition
that xT B̆x ≥ 0, ∀x 6= 0. By specific choices of x it follows that B̆uu ≥ 0 and
B̆2

uv ≤ B̆uuB̆vv, ∀u ∈ U , v ∈ U \ {u}, cf. [2, Ex. 8.7]. Hence, together with the
constraint in (5.5b) it holds that 0 ≤ B̆uu ≤ 1, ∀u ∈ U . Therefore, considering the
specific choice of variables bu = B̆uu, u ∈ U , together with identical time-sharing
weights ξc

i , i ∈ Ic, c ∈ C, we see that all the constraints in (5.3) are satisfied with
identical objective of the corresponding variables B̆ in the SDP relaxation in (5.5),
proving the first part of the theorem. Conversely, for the second part we additionally
show that the specific conditions on the optimum b of the linear relaxation in (5.3)
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imply feasibility of the specific choice B̆ =
[

diag(b) b

bT 1

]

, for the constraints in (5.5).

More precisely, the constraint in (5.5b) is satisfied by the choice of B̆, leaving only
to show that constraint (5.5c) holds, which by appropriate change of the row and
column index order and the Schur complement conditions [22, p. 650] is valid if
and only if

(

diag(b) − bbT
)

� 0. By [2, Ex. 8.43] this relation holds, given b ≻ 0 as
ensured by the assumptions of the theorem, if and only if bT diag(b)−1b ≤ 1, which is
again satisfied by the given assumption

∑

u∈U bu ≤ 1. Feasibility of the sum-rate and
sum-power constraints in (5.5d) and (5.5e), respectively, follow by taking identical
time-sharing weights as at the optimum of (5.3). The objective value of the chosen
B̆ in (5.5a) is identical to that of the optimal variables b in (5.3a), which concludes
the proof.

A.12 Proof of Theorem 13

In the following we derive feasibility conditions for robust solutions of the problem in
(6.13). These conditions dependent on the matrix Fc, c ∈ C, defined in Section 1.2.3,
and the multiplicative uncertainty parameters ε ∈ RU . Regarding the feasibility
condition in Equation (1.6), for feasibility of (6.13) it has to hold that the spectral
radius ρ

(

Fc + ∆Fc,box
)

< 1, where ∆Fc,box ∈ RU×U , ∀c ∈ C,

∆F c,box
uv = Γγc

uΛ
c
uvH

c
uv/H

c
uu = Λc

uvF
c
uv ≤ εuF

c
uv, (A.36)

and Λc
uv are arbitrary values with Λc

uv ≤ εu, ∀u ∈ U , c ∈ C, cf. the constraints
in (6.13) and the definitions in (6.9), (6.12), and of matrix Fc in Section 1.2.3.
Reformulation of ρ

(

Fc + ∆Fc,box
)

as follows, where ‖ · ‖F denotes the Frobenius
norm, yields

ρ(Fc + ∆Fc,box) ≤ ‖Fc + ∆Fc,box‖2 ≤ ‖Fc‖2 + ‖∆Fc,box‖F (A.37a)

= ‖Fc‖2 + Γ

√

∑

u∈U

γc
u

∑

v∈U

|H̄
c
uv

Hc
uu

Λc
uv|2 (A.37b)

≤ ‖Fc‖2 + Γ

√

√

√

√

∑

u∈U

γc
u

∑

v∈U

(

H̄c
uv

Hc
uu

)2

ε2
u (A.37c)

= ‖Fc‖2 + Γ

√

√

√

√

∑

u∈U

ε2
uγ

c
u

∑

v∈U

(

H̄c
uv

Hc
uu

)2

(A.37d)

≤ ‖Fc‖2 + ‖Fc‖F · ‖ε‖2 (A.37e)

≤ ‖Fc‖2 ·
(

1 +
√

U‖ε‖2

)

, (A.37f)
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where in particular (A.37b) follows from (A.36) and the definition of the Frobe-
nius norm, and (A.37c) follows from the definition of Λc

uv, ∀v ∈ U . Hence,

‖Fc‖2 ·
(

1 +
√

U‖ε‖2

)

< 1 is sufficient for ρ
(

Fc + ∆Fc,box
)

< 1 to hold. By (6.14)

this condition is also sufficient for feasibility of the problem in (6.11), which proves
the first part of the theorem. Having the same uncertainty parameter ε for all users
we can write more simply ∆Fc,box = εFc, and as the largest eigenvalue necessarily
also scales with (1 + ε) we obtain the second part of the theorem.

A.13 Proof of Theorem 14

The first part of the outage probability bounds can be immediately derived based
on [10] as follows. The outage probability of an allocation pc in Problem (6.13)
under symmetric distribution of crosstalk coefficients in the interval given in (6.17)
can (based on the constraint-inequalities in (6.13)) be written as

σ = Pr{pc
u − Γ

γc
u

Hc
uu

(pc)T H̄c
u: − εuΓ

γc
u

Hc
uu

(pc)T diag
(

H̄c
u:

)

ηu < nc
u}, (A.38)

where ηu ∈ RU , ηu
v ∈ [−1, 1] being independent, symmetrically distributed random

variables following from the definition of the distribution in (6.17). A solution to
(6.11) is necessarily feasible for the constraints in (6.11b), and we may hence insert
these constraints into (A.38), giving

σ ≤ Pr{εuΓ
γc

u

Hc
uu

‖ diag(H̄c
u:)p

c‖2 + nc
u − εuΓ

γc
u

Hc
uu

(pc)T diag
(

H̄c
u:

)

ηu < nc
u},
(A.39a)

= Pr{(pc)T diag
(

H̄c
u:

)

ηu > ‖ diag(H̄c
u:)p

c‖2}. (A.39b)

The result follows together with the probability bound used in the proof to [10, Prop.
3.1]

Pr







U
∑

v=1

avηuv > Ω

√

√

√

√

U
∑

v=1

a2
v







≤ e−Ω2/2, (A.40)

where av ∈ R, Ω ∈ R+, ηuv are random variables with properties as specified above,
and e is Euler’s number.

In the case of uniformly distributed parameters H̃c
uv we may simply relate the

volumes of ellipsoidal [63, p. 67] and box-shaped uncertainty regions from the equa-
tions in (6.7) and in (6.12) to obtain the second given outage probability bound.
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C.1 A Geometric Programming (GP) Approach for

Line-Driver Power (LDP) Optimization

Geometric Programs (GPs) consist of posynomial objective and inequality con-
straints, as well as monomial equality constraints. Posynomial functions are sums
∑K

k=1 fk(p) of monomial functions fk(p) : RCU
+ → R of the form fk(p) =

ck · p
αk

1
1 · p

αk
2

2 · . . . · p
αk

CU
UC , where ck ≥ 0 and αk

i ∈ R, 1 ≤ i ≤ CU . Introducing
auxiliary variables tu, u ∈ U , for the sum-power terms

∑

c∈C pu
c in (2.24a), we obtain

the equivalent formulation

minimize
pu

c ,tu,u∈U ,c∈C

∑

u∈U

√
tu (C.41a)

subject to t−1
u ·

∑

c∈C

pu
c ≤ 1, ∀u ∈ U , (C.41b)

Constraints (2.23b) − (2.23c). (C.41c)

According to the definitions above, the objective in (C.41a) is a posynomial function
and the auxiliary constraints in (C.41b) have posynomial form [21]. As noted in [38]
the constraints in (1.8b) can also be written as posynomial constraints when using
for instance the SINR approximation [130] ru

c (pc) ≈ r̃u
c (pc) = αu

c log2(SINRu
c (p̃c))+

βu
c , c ∈ C, u ∈ U , where SINRu

c is the SINR in (1.3) and p̃u
c , c ∈ C, u ∈ U , is the

approximation point. To see this, one needs to introduce additional variables t̃uc ,
c ∈ C, u ∈ U , which replace the total noise (

∑

i∈U\uH
ui
c pi

c + Nu
c ) user u receives on

subcarrier c. The thereby created additional constraints 1 ≥ 1
t̃uc

(
∑

i∈U\uH
ui
c pi

c +Nu
c ),

c ∈ C, u ∈ U , are posynomial expressions. Under these additional variables the con-
straints in (1.8c) and (2.23c) can be seen to be already given in posynomial and
monomial form, respectively. Hence, we have that the problem in (C.41) can be ap-
proximated as a GP which can be efficiently solved optimally by convex optimization
software [120].
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Algorithm 10 Box-based Branch-and-Reduce Algorithm

1: Initialize the incumbent using a heuristic solution based
on successive geometric programming, cf. Section 2.3.3.1.

2: Initialize the first open, currently active box with minimal
and maximal corner-points 0 ∈ RUC and p̂ ∈ RUC .

3: while {Any box is open} do
4: Branching: Generate two new open boxes by splitting

the currently active box in half in dB-scale in the
dimension of its longest edge.∗

5: Bounding: Compute objective lower bounds for both
new boxes using an underestimating LP [78] to the
DCP problem in (2.33) with reduced variable ranges [142].

6: Reduction: Try a range-reduction based on the current
incumbent solution [142], and repeat the lower-bound
LP if a range-reduction was achieved.

7: Incumbent Update: Update the incumbent by testing the

2CU−1 new corner points created through branching
and the LP solutions for feasibility in (2.33).

8: Pruning: Close all boxes with a lower bound above
the incumbent solution.

9: Selection: Choose the open box with the lowest
lower bound as the new active box.

10: end while
∗ In case the value of the minimal element in splitting dimension is zero we use a lower value
based on a fixed ratio to the value of the maximal element in splitting dimension.

C.2 A Box-based Branch-and-Reduce Algorithm

Algorithm 10 schematically describes the proposed scheme for global optimization
of the difference-of-convex-functions programming (DCP) problem in (2.33). The
idea behind the method is to first enclose the set defined by the mask-constraints
in (2.33c) by a box, cf. Line 2, and to successively split this set (“branching”)
into smaller boxes, cf. Line 4. We observed that box-based branching repeatedly
outperforms simplicial branching [78]. We believe this is due to the conservative
initial search space in simplicial branching, which is a simplex with corner points
0, (
∑

u∈U ,c∈C p̂u
c )eu, u ∈ U , where eu is the u’th unit vector. Lower bounds on the

objective value in any box are computed by linear programming (LP) after linearly
approximating (underestimating) all convex functions gu (p) and all concave func-
tions −hu (p) , u ∈ U , cf. Line 5. The fact that such a linear underestimation of
convex and concave functions can easily be found [78] is the key advantage of the
DCP formulation in (2.33). Differently to [78] we propose to apply linear approxima-
tions of all convex functions gu (p) , u ∈ U , not only on a single point but on various
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points in the considered box, e.g., in regular intervals between the center point and
each corner point. Based on the lower-bounds and the best feasible solution found
so far (the “incumbent”) the created boxes are either further split or discarded if
the lower-bound lies above the upper bound, cf. Line 8. In [192] a transformation
of variables into dB-scale was proposed. Similarly, we perform the branching (bisec-
tion) in dB-scale, which has the advantage that we still consider the full search-space
beginning at a power-allocation of zero. Another technique integrated in Algorithm
10 is that of range reduction [142,143]. Briefly speaking, bounds on the values that
constraints may take in the LP used to compute lower bounds can be tightened
based on the obtained optimal dual variables associated with these constraints and
the current incumbent solution, cf. [142, 143] for details. Note that we omitted any
local search step for improving the incumbent solution as is typically done in con-
tinuous BnB methods [143]. We believe the incumbent initialization in Line 1 by the
successive geometric programming described in Appendix C.1 is tight enough for the
considered applications to make such a local search in the BnB process redundant.
We refer to [78] for a detailed description of a basic simplicial branch-and-bound
algorithm applied to a general DCP problem, and to [142] for an introduction to the
range-reduction technique, as well as to [26] for an application of range reduction in
a specific DCP problem with DCP functions in the objective only.
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Appendix B Algorithms

Algorithm 11 DFB Tree Search

1: [r∗, f ∗, f lb] =DFBSearch(r0, λ, ν, Φ)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2: Initialization— bEnd=false, r = 0, u = 1, bRet=false, r̂ = 1θ̂,
pmin = 0, lb = −∞, r̂tmp = r̂, Ltmp = L = [0, r̂], f lb = ∞,

3: if 0 � p(r0) � p̂ and f(p(r0), ŵ + ν, w̆ + λ) < 0 then
4: Set incumbent r∗ = r0, f ∗ = f(p(r0), ŵ + ν, w̆ + λ)
5: else Set incumbent r∗ = 0, f ∗ = 0
6: [Lu+1:U,:,p

min, lbSSR] = SSR(λ, ν, r, r̂tmp, 0, f ∗)
7: while ¬bEnd. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8: Start search at r = L:,1 — Update Allocation

9: if bRet then Set ru = ru + θ and bRet=false
10: if ru > min{r̂tmp

u ,Ltmp
u,2 } then bRet=true else

11: if 0 � p(r) � p̂ then Set pmin = p(r)
12: if f(p(r), ŵ + ν, w̆ + λ) < f ∗ then
13: r∗ = r, f ∗ = f(p(r∗), ŵ + ν, w̆ + λ)
14: else bRet=true, r̂tmp

u = ru − θ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15: if ¬bRet then — Bounding

16: [Ltmp
u+1:U,:,p

min, lbSSR] = SSR(λ, ν, r, r̂tmp, u, f ∗)
17: if u < U then

rmax
i =

{

ri, 1 ≤ i ≤ u,

min{r̂tmp
i ,Ltmp

i,2 }, u + 1 ≤ i ≤ U

18: lb = lbr
(u)

(pmin, rmax), cf. (3.3), lb = max{lb, lbSSR}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

19: if lb ≥ min{f ∗, Φ} then — Branching

20: Set bRet=true, f lb = min{f lb, lb}
21: else u = u + 1
22: else Set ru = Lu,1, u = u − 1
23: if u < U then r̂u+1 = Lu+1,2

24: if u = 0 then bEnd=true
25: if f ∗ ≤ Φ then f lb = f ∗
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Algorithm 12 Search-Space Reduction Scheme

1: [Ltmp
u+1:U,:,p

min, L̆] = SSR(λ, ν, rinit, r̂tmp, u, f ∗)

2: Initialize p = p(rinit), pmin = p, p̄ = p, r̄ = rinit

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3: Find the discrete optimum without crosstalk:

4: Compute Ñ ∈ RU , Ñi = Ni +
∑

1≤j≤u Hijpj , ∀i ∈ U
5: Repeat ∀i ∈ U \ {1, . . . , u} Equations (A.22)-(A.24)
6: L̆ = (ŵ + ν)T p̄ − (w̆ + λ)T r̄, Set r = r̄
7: while (p(r) /∈ Q) do ri = max{0, ri − θ}, u < i ≤ U
8: Ltarget = min{f ∗, f(p(r), ŵ + ν, w̆ + λ)}

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9: Find the restricted search-region around r̄:

10: for i = u + 1, . . . , U do
11: Set r = r̄, Increase ri in steps of θ until ri > r̂tmp

i

or (ŵ + ν)T p − (w̆ + λ)T r > Ltarget, with
pi = pi(r

init), i ∈ [1, u], pi = ptmp
i (ri) as in (A.23), i ∈ U \ [1, u],

12: Ltmp
i,2 = ri − θ, r = r̄

13: Decrease ri in steps of θ until ri < 0 or
(ŵ + ν)T p − (w̆ + λ)Tr > Ltarget, with
pi = pi(r

init), i ∈ [1, u], pi = ptmp
i (ri) as in (A.23), i ∈ U \ [1, u],

14: Ltmp
i,1 = ri + θ, pmin

i = ptmp
i (ri + θ)

15: end for
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Appendix B Algorithms

Algorithm 13 Grasp based Bit-Loading

1: Initialize r = 0, r∗, υ∗ = 0, fprev = f(r), β ∈ RM , βi ∈ [0, 1], gi = f̆ , ∀i ∈ M =
{1, . . . , M}, k = 1, K

2: for k = 1, . . . , K do
3: while υmin ≤ 0 do
4: Set β = βi∗ , g̃i = maxi∈M{gi} − gi, ∀i ∈ M, where i∗ ∈ M is sampled from

the distribution

Pi =
g̃i

∑

j∈M g̃j

, ∀i ∈ M, (C.42)

5: for u = 1, . . . , U do
6: if ∃p ∈ Q|ru(p) = ru + θ, ri(p) = ri, i ∈ U \ {u},
7: then υu = f(p, ŵ + ν, w̆ + λ) − fprev

8: else υu = ∞
9: end for

10: υmin = minu∈U{υu}, υmax = maxu∈U{υu}
11: Uniformly sample a user u∗ from the set {u ∈ U |

υu ≤ (1 − β)υmin + βυmax}
12: if υmin ≤ 0 then ru∗ = ru∗ + θ, fprev = fprev + υu∗

13: end while
14: Search a local optimum r̃ starting at r, cf. Algorithm 5
15: Update incumbent r∗ = r̃ if f(r̃) < f(r∗)
16: Update the average gi∗ with the newest value fprev

17: end for
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Algorithm 14 rSEGO

1: Initialize r∗, K, K̄, values τ̃u(i), ∀u, i ∈ U , q0, β, ρ
2: for k = 1, . . . , K do {/∗iterations∗/}
3: for k̄ = 1, . . . , K̄ do {/∗ant runs∗/}
4: Set r(k̄) = 0, Ũ = U , Uniformly sample s

(k̄)
1 ∈ U

5: for i = 1, . . . , U do {/∗sequential decisions∗/}
6: Set u = s

(k̄)
i , fmin = min

{r
(k̄)
u ∈B|p(r(k̄))∈Q}

{f(r(k̄))},

fmax = max
{r

(k̄)
u ∈B|p(r(k̄))∈Q}

{f(r(k̄))}
7: Uniformly sample r

(k̄)
u from the set {r(k̄)

u ∈ B |
p(r(k̄)) ∈ Q, f(r(k̄)) ≤ (1 − β)fmin + βfmax}

8: if i < U then
9: Exclude u from Ũ , Uniformly sample q ∈ [0, 1]

10: if q < q0 then {s(k̄)
i+1 = argmaxj∈Ũ{τ̃u(j)}}

11: else
12: Sample s

(k̄)
i+1 = j ∈ U from Pu(j | Ũ) = 0, j ∈ U \ Ũ , Pu(j | Ũ) =

τ̃u(j)
P

l∈Ũ τ̃u(l)
, j ∈ Ũ ,

13: end if
14: Update τ̃u(s

(k̄)
i+1) = (1 − ρ) · τ̃u(s

(k̄)
i+1)

15: end if
16: end for
17: Update r(k̄) by local search starting at r(k̄), cf. Algorithm 5
18: end for
19: k̄∗ = argmin

k̄=1,...,K̄

{f(r(k̄))}, Update τ̃
s
(k̄∗)
i

(s
(k̄∗)
i+1 ) as in (4.9), ∀i ∈ {1, . . . , U − 1}, Set

r∗ = r(k̄∗) if f(r(k̄∗)) < f(r∗)
20: end for
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Appendix B Algorithms

C.3 Heuristic for Joint Margin, Artificial Noise, and

Transmit-Power Optimization

Algorithm 15 Low-Complexity DSM Heuristic for Joint SNR Margin, AN and
Transmit-Power Optimization

1: Optional Initialization: Run Greedy Multi-user Bit-
Loading [103] under the Initial SNR margin and Use a
Heuristic⊗ to Recover a Stable (i.e., feasible w.r.t. (7.6c)
Initial Bit- and Power-Allocation

2: repeat
3: for u = 1 to U do
4: while Line-Search not Finished do
5: Update γu Inside a Line-Search⋆

6: Modified⊗ Greedy Multi-user Bit-Loading [103]
- Initialization based on Incumbent Allocation
- Calculate the Cost in (1.9) by Solving (7.6)

7: end while
8: end for
9: until Incumbent Objective Change is Below a Threshold

10: Optional: Call Algorithm 8 for the Found Incumbent SNR Margins to Obtain
the Final Bit, Power, and AN Allocation

⊗ The incumbent power-allocation (as currently available for any SNR margins in Line 6 or in

Line 1 the unstable power-allocation obtained by the algorithm in [103]) is used to produce an

initial discrete bit-allocation, which is decreased by θ for all users until it is feasible in (7.6) under

the actual SNR margins.
⋆ Initially we halve ∆ until γu + ∆ or γu − ∆ gives an improving objective (“Local Search”),

determining a search direction d = +1 or d = −1, respectively, and an update γu = γu + d · ∆.

Next we continue by searching in the improving direction (“directed search”), i.e., we repeat γu =

γu + d · ∆ while an improvement in objective is made. Otherwise we halve ∆ and go back to the

“local search” step. The process finishes when the step-size ∆ is below a threshold ∆min and hence

is guaranteed to converge.

Algorithm 15 summarizes a scheme for the joint optimization of the SNR margin
and the spectral AN (or VN) and transmit-power allocation. Similarly as in [119]
we apply a margin search on top of a common DSM algorithm. However, in [119] a
margin maximization was targeted, while differently our objective is the optimization
of power and/or rate under stability constraints as defined in Section 7.1. In Line 6
we run a greedy multi-user discrete bit-loading algorithm, differing from that in [103]
solely by the initialization which considers the currently best found margin, AN, and
transmit-power allocation, and the procedure for computing the cost in (1.9) of a
specific bit-allocation, namely by solving the LP in (7.6) (or the problem in (7.7)
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for the “margin-only” case, or a similar problem as in (7.6) in case of using VN for
γu > 1 and vc

u ≥ 0, cf. Sections 7.1.3–7.1.5 for details). In Lines 4–6 we perform a line-
search for the parameter γu of user u, which is repeated for all users. As commented
in Line 10 one may choose to call in the end a more complex DSM algorithm for the
found incumbent/fixed SNR margins as in Algorithm 8 or a similar scheme using
suboptimal heuristics, cf. the discussion of alternatives in Section 7.2.
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