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Abstract

Computer vision systems operate by capturing sequences of frames which are
processed frame by frame and in most cases pixel by pixel. The human brain
does not operate frame-wise. Each ganglion cell sends spikes to the visual
cortex when its activity level reaches a certain threshold. During the last
decade researchers have developed bio-inspired sensors which mimic human
visual sensing. In event-based vision, the neuronal spikes are represented by
events that are generated when the relative change of light intensity exceeds
a certain threshold. The output of an event-based vision sensor is a stream
of events, generated by autonomous pixels, which �re them as soon as they
occur and do not wait for an arti�cial, periodic frame time. Additionally,
redundant information like static image areas is suppressed, hence only data
from dynamic areas is generated.

Current Stereo Vision concepts based on Address-Event Representation
(AER) are abandoning the advantages of this asynchronous data representa-
tion by bu�ering incoming events into arti�cially introduced pseudo-frames.
One aim of this thesis is to design an asynchronous data interface for event-
based stereo matching which preserves these advantages. The second goal is
to make this data interface applicable to motion at di�erent velocities in the
sensor's �eld of view.

A ground-truth comparison between the state of the art approach and
the one presented by this work, has been performed in order to analyze
feasibility and improvements by the presented approach.

After analyzing di�erent methods for acquiring comparable ground-truth
data from dynamic scenes, it turned out that capturing ground-truth data
from scenes containing moving test objects with complex geometry remains
a topic for follow-up research, as its extent exceeds the scope of this work.
An evaluation approach using simple test objects, �nally led to a feasible
evaluation. Due to the test object simpli�cations, the evaluation was not able
to reveal improvements in stereo matching accuracy regarding varying object
movement velocities, as it was not able to su�ciently stress the drawbacks
of the state of the art solution.

Nevertheless, the principal aim, an asynchronous data interface, was
achieved and as visible in the evaluation result, without negative impact
on stereo matching accuracy.
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Kurzfassung

Computer Vision Systeme zeichnen Bildsequenzen auf, welche Bild für Bild
und Pixel für Pixel verarbeitet werden. Das menschliche Gehirn arbeitet an-
dererseits nicht bildweise. Jede Ganglionzelle sendet autonom Spikes zum
visuellen Cortex, wenn ihre Aktivität einen Schwellwert erreicht. Im letz-
ten Jahrzehnt entwickelten Wissenschaftler bio-inspirierte Sensoren, welche
das menschliche Sehemp�nden imitieren. Bei Event-based Vision werden die
neuronalen Spikes als Events dargestellt, welche generiert werden wenn die
relative Änderung der Lichtintensität einen Schwellwert überschreitet. Die
Ausgabe eines Event-based Vision Sensors ist ein Stream von Events, erzeugt
von autonomen Pixels, die gefeuert werden sobald sie auftreten und daher
nicht abhängig sind von einer künstlichen, periodischen Frame-dauer. Wei-
ters wird redundante Information, wie statische Bildbereiche, unterdrückt,
bzw. werden nur Daten von dynamischen Bereichen erzeugt.

Aktuelle, auf Address-Event Representation (AER) basierende, Stereo
Vision Konzepte verwerfen die Vorteile dieser asynchronen Datendarstellung,
weil ankommende Events in künstlich eingeführte Pseudo-Frames gepu�ert
werden. Ein Ziel dieser Arbeit ist ein asynchrones Daten Interface für Event-
based Stereo Matching zu designen, welche die meisten dieser Vorteile erhält.
Das zweite Ziel ist, dieses Daten Interface für Bewegungen von unterschied-
lichen Geschwindigkeiten einsetzbar zu machen.

Es wurde ein Ground-truth Vergleich, zwischen State of the Art Verfah-
ren und jenem das in dieser Arbeit vorgestellt wird, durchgeführt um die
Machbarkeit und Verbesserung dieses Verfahrens zu analysieren.

Nach der Analyse einiger Methoden um vergleichbare Ground-truth Da-
ten von dynamischen Szenen aufzuzeichnen, hat sich herausgestellt dass das
Aufzeichnen von Ground-truth Daten von Szenen die bewegte Testobjekte
mit komplexer Geometrie beinhalten ein Follow-up Forschungsthema bleiben
wird, da es den Umfang dieser Arbeit sprengt. Eine Auswertungsmethode
mit einfachen Testobjekte hat schlieÿlich zu einer machbaren Auswertung
geführt. Durch die Vereinfachung des Testobjektes konnte die Auswertung
aber keine Verbesserungen der Stereo Matching Genauigkeit bezüglich unter-
schiedlicher Bewegungsgeschwindigkeiten enthüllen, da es die Nachteile der
State of the art Lösung nicht stark genug hervorheben konnte.

Nichtsdestotrotz wurde das Hauptziel, Implementierung des asynchronen
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Kurzfassung viii

Daten Interfaces, erreicht und weist, wie aus dem Auswertungsergebnis sicht-
bar ist, keine negative Auswirkung auf die Stereo Matching Genauigkeit auf.
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Chapter 1

Introduction

The title of Tobi Delbrück's article [11] in The Neuromorphic Engineer em-
phasizes the main di�erence of event-based vision approaches in comparison
to common computer vision:

Freeing vision from frames

Frame-based (traditional) computer vision evolved historically from the
invention of the photo camera by adding the temporal dimension to the
retrieval of video sequences. While this is suitable for reproducing video
sequences on a viewing device, it requires unnecessary additional process-
ing for computer vision applications, which is a disadvantage especially for
real-time applications. Furthermore, human or mammalian vision does not
operate in a frame-based manner and does not process the data pixel-by-
pixel, but rather the optical nervous system �res nerve impulses when the
optical receptors receive an optical stimulus [33].

The representation of image data as periodic frames is inevitable in com-
mon computer vision. Event-based vision in contrast, abandons the frame
concept and considers only image regions where relative light intensity has
changed [11]. Since pixels only generate events when their relative intensity
change reaches a certain threshold, image regions which do not contain new
information do not generate data. An exception to this principle is events
generated because of sensor noise.

Event-based vision sensors produce data only where the relative light
intensity changes beyond a certain threshold. Basically, in the case of a
stationary camera, contours of moving objects are visible as long as there is
a di�erence in intensity between the object and the background. In general,
every change in light re�ection, or direct light radiation can be responsible
for a change in intensity.

Considering the before mentioned characteristics, event-based vision tech-
niques o�er new possibilities for developing highly-responsive applications.
A more detailed explanation of the event-based vision principles is provided
later in this work.

1



1. Introduction 2

1.1 Motivation

Common digital image or video acquisition techniques generate densely sam-
pled image data, whereby the index of each sample denotes implicit spatial
and temporal neighborhood relations. Moreover, the spatial and temporal
relations are equidistant, hence common image processing algorithms might
take the implicit spatial and temporal coherency of image data for granted.

Event-based computer vision on the other hand generates sparse image
data, whereby the index of each event has no relation to spatial neighbor-
ing events and the temporal relation is monotonically increasing but not
equidistant. The spatial and temporal relation between each event is explic-
itly de�ned by the event's x, y coordinates and its timestamp.

Because of this, there is still an unresolved question for event-based vision
research, as to whether the best solution is to adapt common image process-
ing methods, in order to operate on this event-based data representation,
or if we need to �nd new groundbreaking methods which operate on event-
based data directly, without any adaption or conversion. A more detailed
explanation of event-based data representation is provided in Chapter 2.

One way to establish a link between common image processing algorithms
and this event-based data representation is by periodically rendering the
event-based data into frames. As a result, the image data is processable as
usual. But this is achieved by neglecting the asynchronous nature, which
the event-based data representation originally has.

Initiated by our cooperation partner, the Austrian Institute of Technol-
ogy (AIT), this work investigates how the data conversion process can be
modi�ed in order to preserve the bene�ts of an asynchronous interface. In
order to evaluate the approach proposed by this work, the focus is set on
stereo vision as an application.

Another problem addressed in this investigation is that in order to con-
vert to a frame-based representation, a certain frame rate demands a certain
object movement velocity. Objects moving faster than the required velocity
through the sensor's �eld of view will result in cluttered object edges compa-
rable to motion blur as in common computer vision. The edges are cluttered,
because the object moves through the �eld of view of multiple pixels, frame
by frame. On the other hand, if objects move slower through the visible area
than the required velocity, edges will appear jagged or vanish completely.
This is due to the fact that the edge passes the �eld of view of only one
pixel during multiple frames and the events will be distributed over the �rst
frames. The frame in which each pixel will �re depends on when each pixel
of the edge reaches the threshold and �res the event. Due to minimal di�er-
ences in sensitivity of the individual pixels, they might not �re at the same
time, hence their timestamp might not be identical.

The velocity of an object passing through the �eld of view of each pixel in
image space is calculated using the thin lens equation 1.1 [18], derived from
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do di

ho hi

Figure 1.1: The thin lens equation de�nes a simpli�ed geometrical relation
between an object and its image. From http://en.wikipedia.org/wiki/File:
Lens3.svg.

the relationship illustrated in Figure 1.1, whereby ho denotes the object
height, hi denotes the image height, do denotes the object distance and f
denotes the focal length.

hi
ho

=
f

do − f
(1.1)

Derived from Equation 1.1, ho and hi can be replaced by the object
velocity vo and image velocity vi as depicted in Equation 1.2.

vi
vo

=
f

do − f
(1.2)

The image velocity vi of unit meter per second [m/s] can be converted to
the unit pixel per second [px/s] by dividing it by pixel pitch p of the sensor.
Then, it is converted to the unit pixel per frame [px/F ] by multiplying it by
the frame duration denoted as t. The image velocity in pixel per frame is
denoted as Vi, depicted in Equation 1.3.

Vi =
vi
p
· t (1.3)

As mentioned above, a certain periodic frame rate is only feasible for a
speci�c object velocity. In image space, this velocity is 1 pixel per frame. Let
Vi from Equation 1.3 be 1, as depicted in Equation 1.4, the suitable object
speed vo for a frame duration t (= 1/fps) can be calculated by transforming
and applying Equations 1.5 � 1.8.

1 =
vi
p
· t (1.4)

http://en.wikipedia.org/wiki/File:Lens3.svg
http://en.wikipedia.org/wiki/File:Lens3.svg
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(a) (b)

Figure 1.2: Pedestrian, acceptable edges, left (a) and right (b) sensor, frame
duration 20 ms. The images are rendered from accumulated Address-Events,
whereby the intensity value denotes the sum of positive and negative events
at this location.

p

t
= vi (1.5)

p
t

vo
=

f

do − f
(1.6)

p

t
=

f

do − f
· vo (1.7)

vo =
p
t
f

do−f

(1.8)

If the expected object velocity is given, the suitable frame duration t is
calculated as

t =
p

f
do−f · vo

(1.9)

Figure 1.2 illustrates a walking pedestrian, rendered from accumulated
Address-Event data with a frame duration of 20 ms. The edges of the moving
person are visible and appear sharp, so it can be assumed that the frame
duration �ts the movement velocity.

The cyclist in Figure 1.3 on the other hand, rendered again using a
frame duration of 20 ms, moves too fast for the chosen frame duration. For
this object movement velocity a frame duration of 7 ms is more suitable.
Figure 1.4 illustrates the di�erence.

If the pedestrian, on the other hand, is rendered using only 7 ms frame
duration, the amount of Address-Events visible in each frame is too low to
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(a) (b)

Figure 1.3: Cyclist, cluttered edges, left (a) and right (b) sensor, frame
duration 20 ms. The intensity value denotes the sum of positive and negative
events at this location.

(a) (b)

Figure 1.4: Cyclist, acceptable edges, left (a) and right (b) sensor, frame
duration 7 ms. The intensity value denotes the sum of positive and negative
events at this location.

result in acceptable images, as Figure 1.5 shows. These examples illustrate
the problem when Address-Event data with movement of varying velocity is
rendered with the same frame duration.
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(a) (b)

Figure 1.5: Pedestrian, jagged edges, left (a) and right (b) sensor, frame
duration 7 ms. The intensity value denotes the sum of positive and negative
events at this location.

1.2 Objective of this Work

The targeted result of this thesis is a data interface which preserves the
image quality (in regard to the input for stereo matching) over a broad
range of object movement velocities and as a result increases stereo matching
accuracy. A ground-truth comparison of the proposed concept to state of
the art AER stereo matching approaches (periodic frame duration) will be
presented in order to show the feasibility and improvement achieved by this
work.

As one aim of this investigation is to increase stereo matching accuracy,
test disparity map data is recorded and validated against generated ground-
truth data.

1.3 Contribution

A novel asynchronous data interface approach for event-based stereo vision
data is the main contribution of this work. The interface uses image space
local Address-Event bu�ers, which allow the e�cient application of a local
event density threshold. This way, the interface provides asynchronous ac-
cess to the image data and independence from the velocity of the object
in motion at the same time. A detailed description of the asynchronous
interface realization is provided in Chapter 4.

Another contribution is the evaluation of ground-truth validation ap-
proaches for event-based stereo image data of dynamic scenes. The struc-
tured light method for ground-truth data acquisition requires static scenes,
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and is hence not applicable for event-based vision since static scenes do not
produce data (in case of static camera position, like in this work). The �rst
approach implemented is a ground-truth comparison using a 3D digitized
object that was moved along the track of a toy train. The second approach
was further re�ned by using a rectangular object with regular edges in or-
der to overcome spatial alignment problems between the captured data and
the 3D model used for comparison. See Chapter 5 for more details on the
evaluation.

Additionally, a space-time visualization tool is presented in Chapter 2.
This application visualizes the Address-Event data in real-time as points
in the space-time cube (2D space plus 1D time), so that the data can be
analyzed without any prior conversion (except the 3D to 2D projection).

The approach of using blinking circles as a calibration pattern for camera
calibration is also a contribution presented by this work. This approach
solves the problem of static calibration patterns not being visible for these
type of image sensors. The implemented calibration pattern is described in
more detail in Chapter 5.

1.4 Scope

Improving the image quality of the input data to the later stereo matching
process is the principal scope of this thesis. Improving other elements in
the stereo calculation process chain, like improving the stereo matching al-
gorithm itself is not within the scope of this work. Processing performance
and real-time capability is outside the scope of this thesis as well, in order
keep the complexity on a suitable level for a master thesis.

1.5 Outline

After this brief overview of the topic and the purpose of this thesis, the
following chapter provides a brief introduction to the human vision system
including the structure of the retina and an overview to the principle of the
visual nervous system. The second part of Chapter 2 provides a summary of
event-based vision and depicts the Address-Event data structure speci�cation
relevant for this work. Chapter 2 concludes with a description of the space-
time representation and a presentation of a visualization tool implemented
for the analysis of event-based image data.

Afterwards, an introduction to stereo vision, including epipolar geometry
and the stereo processing pipeline, is presented in Chapter 3, followed by the
state of the art of current research in event-based stereo vision.

Chapter 4 presents the concept of the proposed asynchronous data in-
terface, the local Address-Event bu�er, and depicts the implementation in
pseudo code. Additionally, exemplary output results of the implemented
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interface are illustrated in Chapter 4.
Chapter 5 describes the calibration of the stereo system used in the ex-

periment including the resulting intrinsic and extrinsic camera parameters.
The di�erent approaches to the ground-truth data acquisition process are
also described in this chapter, as well as the actual evaluation process of this
interface. In the evaluation section, the performance between the proposed
system and a state of the art approach are compared relative to ground-truth
data followed by the presentation and an interpretation of these results.

A conclusion arguing about the achievement of the de�ned objectives and
providing reasons why one of the goals has not been reached is provided in
Chapter 6. Finally, the outlook on possible further research completes the
�nal chapter of this thesis.



Chapter 2

Bio-inspired Computer Vision

There are examples in research where mimicking natural processes resp. nat-
ural functionality is attempted. Examples for biological inspired technology
are the lotus paint inspired by the lotus plant [2], gecko tape [14] and auto-
motive re�ectors inspired by cat eyes [22]. The following sections provide a
summary of how human vision works and what recent research in the area
of computer vision has learned and adopted from nature. The technique
considered by this work, event-based bision, is an example of a technique
which applies some of these concepts.

2.1 Human Vision

The eye is the principal organ for the sense of sight and from a technical point
of view has remarkable characteristics. The eye has photoreceptors that are
able to sens even single photons. The range of recognizable illumination is
from 10−6 cd/m2 (e. g. cloudy sky at night) to between 104 cd/m2 and 105 cd/m2

(e. g. snow in sunlight) [29], which means it has a dynamic range of 200 dB
compared to the dynamic range of average digital camera sensors of less than
70 dB.

The human eye is an optical system comparable to a camera. Likewise,
it contains an iris, a circular muscle to control the amount of light entering
the eye and a lens, to bundle light rays allowing a sharp image. Additionally,
in front of the lens there is the pupil, which appears black from the outside
because of the retina's light absorbing ability [26]. Both pupil and iris are
covered and protected by the cornea. The sclera is known as �the white of
the eye� [26]. Figure 2.1 illustrates the basic structure of the eye.

The part which is most interesting for the design of bio-inspired vision
sensors is where the projected image is perceived and where the visual stimuli
are transmitted to the visual cortex of the brain. The visual perception
process takes place in the retina, which is located on the inner backside of
the eye. The optic nerve is responsible for the transmission of the image

9
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sclera choroid

fovea

retina
cornea

pupil

lens

iris

ciliary
body

optic
nerve

Figure 2.1: Anatomy of the eye. From [25].

data after it has been perceived.

The retina

The retina is structured in distinct layers and is hardly 0.5 millimeter thick.
There are three layers of nerve cells and 2 layers of synapses. Further details
on the synapses layers can be found in neuroscience literature such as [33].
The photoreceptors, which are the sensing unit, are located on the back side
of the retina, close to the pigment epithelium (Figure 2.2) and make up the
�rst nerve layer. Therefore, light has to travel through all other layers, before
activating them.

There exist two kinds of photoreceptors in the human retina:

Rods � responsible for low-light vision

Cones � responsible for daylight bright-colored vision [25].

The fovea contains most of the cones. The dense alignment of cones in the
fovea allows sharp daylight vision and is mainly responsible for color vision,
whereas the wide distribution of rods in the retina allows recognition of
slight low-light changes in a wide �eld of view. This is in particular useful at
night or in dark surroundings. There are three di�erent kinds of cones, one
responding to red light, one responding to green light and one to blue light.

The photoreceptors are connected to the biploar cells, which form the
middle nerve layer. The photoreceptors release neurotransmitters to the
bipolar cells under dark conditions and stop transmitting if light strikes the
receptors [25]. The bipolar cells can be grouped into two categories. ON
bipolar cells inhibit if they receive neurotransmitters from the photoreceptor
(dark) and activate if the transmission stops (light). OFF bipolar cells work
the other way round, they activate if neurotransmitters are received (dark)
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pigment
epithelium

rods

cones

horizontal
cells

bipolar
cells

amacrine
cells

ganglion 
cells

nerve fiber
layer

outer
plexiform

layer

inner
plexiform

layer

L
igh

t

Figure 2.2: Arrangement of neural cells like rods, cones and ganglion cells
in the retina. From [25].

and get deactivated if transmission from the photoreceptor stops [23].
The outer layer is composed of ganglion cells. The human retina holds

between only 1 million and 1.5 million ganglion cells, compared to between
100 and 130 million photoreceptors (numbers vary in literature between au-
thors). In the fovea, the ganglion cells receive input from only a single or a
few photoreceptors, whereas in more peripheral areas thousands of photore-
ceptors transmit to one ganglion cell. This ensures a high spatial resolution
in the fovea.

The ganglion cells can be distinguished between ON-center and OFF-
center cells [23] and X-type and Y-type cells (also the terms P-type and
M-type are found in literature) [33]. Resting ganglion cells �re at a base
rate, excitation or inhibition increase or decrease the rate at which they �re.
They have a circular receptive �eld, whereby ON-center cells excite if their
center is exposed to light and inhibit if the remaining area, which is called
the surround, is stimulated. OFF-center cells respond inversely. Figure 2.3
illustrates the ganglion cell responses to di�erent light conditions.

The behavior described above is valid for X-type cells which �re as long
as the light stimulation continues, Y-type cells, on the other hand, respond
to the onset and o�set of light [33]. Figure 2.4 illustrates the ganglion cell
�re rate for X-type and Y-type ganglion cells.

In a nutshell, di�erent layers of nerve cells in the retina apply prepro-
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On center cell

Light on 

center 
only

Off center cell

Ganglion cell does not fireGanglion cell fires rapidly

Light on 
surround 

only

Cell does not fire Cell fires rapidly

No light on 
center or 

surround

Cell does not fire Cell does not fire

Light on 
center and 

surround

Weak response

(low frequency firing)

Weak response

(low frequency firing)

Figure 2.3: Response of ganglion cells according to di�erent light condi-
tions in their receptive �eld. From http://commons.wikimedia.org/wiki/File:
Receptive_�eld.svg. Note: In the discussion of the Wikipedia article �Recep-
tive �eld� it is questioned whether the o� center cell responses for the cases
light on center and surround and dark on center and surround are correct in
this diagram. Whether or not this is true, in the authors personal opinion
there is no harm done for this basic overview, simply used to demonstrate
the motivation of bio-inspired vision sensors.

http://commons.wikimedia.org/wiki/File:Receptive_field.svg
http://commons.wikimedia.org/wiki/File:Receptive_field.svg
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Figure 2.4: X-type cells �re rapidly during light stimulation of the receptive
�eld center. Y-type cells, on the other hand, respond best between changes
in light conditions. From [33].

cessing tasks, like detecting spatial changes in contrast (e. g. edges) and
temporal changes in light exposure, before transmitting the nerve signals
to the visual cortex in the brain. This preprocessing step also reduces the
amount of signals necessary to transmit the image to the brain, which is
later responsible for the remaining image procession and interpretation. The
methods of processing the visual information, �rst in the human retina by
the neuron network, and later in the visual cortex are highly parallel, which,
combined with the aforementioned preprocessing, makes human vision very
e�cient.

Note: This section has to be considered as a simpli�ed summary used
simply to outline the basic principles of human vision, as this is su�cient for
the purpose of this work. Should a more in depth summary be needed, the
latest literature in visual neuroscience, like [33] or [23], is recommended.

2.2 Event-based Vision Sensor

For computer and machine vision, as well as for human vision, the objective
of retrieving information from the sensed visual stimuli does not implicitly
require capturing a visual, viewable image, for example in the form of a
two dimensional matrix of absolute intensity or color values. This is mainly
required in order to present the image data on a device, like a screen, viewable
for humans.

In the late 1980s, a new interdisciplinary �eld evolved called neuromor-
phic engineering. Coined by Carver Mead [37], neuromorphic engineering
has drawn inspiration from Biology, Physics, Mathematics, Computer Sci-
ence and Engineering in order to design arti�cial neural systems, such as
the vision system. As depicted in the previous section, the human vision
system processes visual stimuli in a massively parallel and data-driven way
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[29]. Data-driven processing signi�es that transmission is initiated if new
information is sensed, in contrast to periodic polling by the sensing unit.

If a computer or machine vision application only requires detecting a
change or movement in the �eld of view of the camera, static image areas
may be neglected. Hence, capturing full intensity or color coded frames is
not necessary. Research in neuromorphic engineering strives to mimic the
principles of biological vision in order to overcome limitations resulting from
frame-based vision systems.

The �rst event-based bision sensor, the silicon retina, was developed by
Misha Mahowald and Carver Mead in [35] and [37]. The term silicon retina is
an analogy to the chip intending to mimic the human retina. On the chip, the
photoreceptors, which are in this case photodiodes, are composed of silicon.
According to [29], Carver Mead's and Misha Mahowald's silicon retina was
only a demonstration of concept which was unusable for real applications,
as it only sensed high contrast stimuli, like blinking LEDs.

According to [32], asynchronous vision sensors prior to the temporal con-
trast sensor were merely useful for demonstrations of concepts, but no useful
application has been implemented. Therefore, they will not be discussed in
further detail.

Temporal contrast sensor

A group of researchers from the Institute of Neuroscience of the University
of Zürich are one of the main contributors in the area of event-based vision
sensors [28]. [27] and [30] present their �rst developments before presenting
in [29] the temporal contrast sensor. Applications like the pencil balancer
[8] demonstrate the new abilities of the sensor, in this case the low latency
of the feedback loop.

The main di�erence of the temporal contrast image sensor in contrast to
traditional image sensors, is the integrated logic in each pixel. Figure 2.5
shows the layout of the temporal contrast sensor chip including a magni�-
cation of the pixel's integrated circuits. The programmable bias generators
control parameters like ON-threshold and OFF-threshold.

Basically, the pixel's integrated circuit is designed in three parts [29],
as shown in Figure 2.6. The photoreceptor part uses a photodiode which
produces the photocurrent I proportional to incoming light intensity. The
photocurrent I is converted logarithmically into voltage Vp. Further, the pho-
toreceptor part is coupled with a di�erencing ampli�er to determine whether
light intensity is increasing or decreasing (Vdiff ). If the voltage Vdiff reaches
the ON- or OFF-Event threshold, the ON or OFF comparator switches and
an ON or OFF event is generated. Afterwards, the di�erentiator is reset.

Figure 2.7 illustrates the principle of the pixel's operation. The upper
graph displays the logarithmic photocurrent I and the lower graph displays
the corresponding output of the di�erentiator and marks the points when
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Figure 2.5: Die photograph of the 128 px×128 px temporal contrast sensor.
The magni�cation displays a block of 4 pixels, where the circuits are arranged
quad-mirror-symmetric with the photodiode (PD), analog and digital parts.
From [29].
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Figure 2.6: Principal design of the temporal contrast sensor. From [29].
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Figure 2.7: Address-Event generation sequence. From [29].

ON or OFF events are generated.
The integration of circuit logic for each pixel enables each pixel to au-

tonomously detect changes in light intensity and let them �re events as soon
as changes are detected, regardless of arti�cial frame times. Another advan-
tage is that static image areas do not generate data, except for cumulated
sensor noise which leads to the generation of noise events.

The logarithmic response to light intensity enables the sensor to detect
intensity changes in a dynamic range of more than 120 dB. Figure 2.8 dis-
plays a comparison of the temporal contrast sensor's Address-Event image
to a conventional camera with di�erent illumination durations. The left half
of the scene is illuminated by 780 lux and the right half by 5.8 lux. The
temporal contrast sensor delivers readable data for both halves whereas the
conventional camera only produces acceptable results for either half, depend-
ing on the exposure time.

The event response latency depends on the bias con�guration and on
the illumination [29]. With a �fast� bias con�guration, the latency varies
between 400µs and 15µs whereas a �slow� bias con�guration results in a
latency between 4 ms and 1 ms.

For the non-simpli�ed version of the pixel's circuit diagram and a more
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Figure 2.8: The dynamic range of the temporal contrast sensor (left) versus
the dynamic range of a conventional digital camera (right). The left part of
the scene is illuminated by 780 lux whereas the right part of the scene is
illuminated by 5.8 lux. With the temporal contrast sensor both parts are
visible using identical settings, whereas the conventional camera over- or
underexposes one part. From [29].

detailed explanation of how it works, a look into [29] is recommended.
A research team at the Austrian Institute of Technology recently de-

veloped an event-based vision sensor of Quarter-VGA resolution (304 px ×
240 px) called Asynchronous Time-based Images Sensor (ATIS). Besides in-
creased resolution, this sensor combines the temporal contrast approach and
the transmission of absolute gray-scale values, in each pixel's logic. For fur-
ther detail please take a look into [39], [41] and [40].

In the literature, various terms have evolved, each emphasizing unique
characteristics of event-based vision sensors. [11] and [10] presented the
Temporal contrast Sensor, [38] [12] use the term event-based vision sensor,
[10], [38], [8] and [45] call it a Dynamic Vision Sensor and [31] uses the term
Asynchronous Vision Sensor. The community has not agreed on one speci�c
term yet, in this work the term event-based vision is used.

2.3 Address-Event Representation

The sensing pixels from event-based image sensors generate events, when
the light-intensity changes. The pixels can be interpreted as neurons, as
the principal idea of these were sensors derived from neuromorphic circuits.
These neurons require a point-to-point interconnection between the input
layer and further processing layer(s). For a high number of neurons, this
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is complex to implement in hardware and also ine�cient as the expected
number of concurrent communicating neurons is sparse [4].

In the neuromorphic engineering community, a protocol for the commu-
nication between neuromorphic chips called Address-Event Representation
(AER) has been developed. In AER, each neuron is identi�ed by a unique
address and the spikes of these neurons are events which include the spik-
ing neuron's address. Depending on the implementation, the event data can
be extended by additional information (e. g. timestamp, coordinates, signal
payload).

The AER, rather, speci�es the communication sequence, and not exactly
how it is implemented in hardware. [4] is a tutorial on how to design AER-
based interchip communication channels.

Although mainly optical AER applications like the silicon retina are
pointed out in this work, there are also other applications like the silicon
cochlear [7].

As this work proposes an algorithm for AER processing, it focuses on
the event data structure of AER, rather than going into detail about the
AER communication protocol from the hardware's point of view. AER does
not de�ne the data content of the events, as it is not dedicated to a speci�c
application, like vision in this case.

Researchers of the Neuroinformatics group of the Austrian Institute of
Technology have developed a stereo vision camera, with 2 integrated event-
based vision sensors based on the technology developed at the Institute of
Neuroscience of the University of Zürich. The event data structure of this
stereo event-based vision sensor device is illustrated in Figure 2.9 [24,46]. In
comparison to the data structure used by the temporal contrast sensor, the
data structure of the event-based stereo vision sensor is extended by �elds
required for stereo vision. The visual information in AER is transmitted as
a stream of Address-Events, where each event is transmitted as soon as it
occurs and as soon as the transmission media is ready. On this hardware
platform, an Address-Event is an 8 byte (two 32 bit words) data structure
consisting of the following values:

x � the pixel's x coordinate

y � the pixel's y coordinate

timestamp � the time (in µs) when the change in intensity was detected

p � polarity, whether it is an ON or OFF event

c � channel, whether it is from the left or right sensor

The depth �eld in Figure 2.9 is in gray font since it is only set if the stereo
computation of the stereo camera is activated, which has been disabled for
this analysis.
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Figure 2.9: Address-Event data structure.

2.4 Space-time Representation

Data transmitted by event-based vision sensors is uniquely de�ned by the
dimensions x, y and t. Each event can be considered as a point in this
3-dimensional space. Visualizing the data as a video stream requires the
introduction of arti�cial frames and choosing parameters like frame duration
which is not implicitly given by the data. Considering this, the most natural
visualization approach for event-based vision data, is displaying the events
as points in a space-time cube. This way, no additional assumption has to
be made.

Real-time Space-time Visualization Tool

In order to gain insight from the data, a space-time visualization for Math-
works Matlab® has been developed. The purpose of this visualization tool
is to make the structure of the space-time point cloud visible and support
better understanding of the data for development of event-based algorithms.

Figure 2.10 displays a screenshot of the space-time visualization, whereby
(a) displays the raw AER data from the stereo vision system and (b) displays
the �ltered AER data using the background activity �lter described in [10].
The background activity �lter reduces the amount of noise events which, as
an example, can be useful for accumulating events over a long period of time
into one frame, like capturing the trajectory of a moving object [10].

Basically, the visualization tool receives Address-Event data from a net-
work interface as binary data transmitted via the User Datagram Protocol
(UDP) and stores it in a ring bu�er in the local memory. A rendering loop
reads the bu�er each cycle and renders the events of ∆t ≤ 20 ms as big
points, whereby ON-events are rendered in red and OFF-events are ren-
dered in blue. The remaining events are rendered as small black dots, but
only if their timestamp is within ∆t ≤ 2000 ms. These parameters (∆t of



2. Bio-inspired Computer Vision 20

(a)

(b)

Figure 2.10: Space-time visualization tool, which displays the left and right
channel's AER data of a juggling person, using the stereo vision system
described in the following chapter. The most recent 20 ms are illustrated
as big colored points, ON-events in red and OFF-events in blue color. (a)
displays the raw AER data from the stereo vision system, (b) displays the
�ltered AER data using the background activity �lter described in [10].



2. Bio-inspired Computer Vision 21

most recent events and visible time) are con�gurable via the graphical user
interface.

The Space-time Visualization Tool directly renders the data received from
the UDP input stream, which allows real-time visualization of the data sent
by the stereo system. As the Matlab1 libraries are too bulky for the �uent
visualization of the AER data from the stereo system, the rendering loop
has been extracted into a Java component, using Java Bindings for OpenGL
(JOGL) as a graphics Application Programming Interface (API). The com-
bination of Java plus JOGL has been chosen because of native support to
access Java components from within Matlab applications. Likewise, the data
retrieving loop has been extracted into a Java component, in order to mini-
mize the risk of input bu�er over�ows, resp. the risk of data loss.

Summary

This chapter has presented the ideas and principles of biological inspired
computer vision and how it has been inspired by human resp. mammalian
vision. The �rst section summarized the principles of the visual system and
especially focused on the functionality of the retina and the visual nervous
system. The second section presented the history and the state of the art in
event-based vision. Further, the temporal contrast sensor was presented, and
additionally its hardware characteristics as well as the event generation logic
were depicted. The latter sections described the idea of the Address-Event
protocol and the Address-Event data structure used in this implementation,
as well as how to visualize Address-Event data in the space-time cube.

The essential point of this chapter is that like the retina applies prepro-
cessing on the sensed stimuli before transmitting signals to the visual cortex,
the pixels of event-based vision sensors integrate logic for preprocessing as
well and transmit data only for the dynamic part of the observed scene.

1Matlab version 7.0 (R14)



Chapter 3

Stereo Vision

This chapter introduces the principle and current state of the art of stereo
vision and furthermore gives an overview of current investigations into event-
based stereo vision.

3.1 Stereo Vision

Humans accomplish depth perception when the brain computes the space
disparity of image points between the left eye image and the right eye im-
age. This disparity is inversely proportional to the distance of the perceived
object, hence it converges to zero at in�nite distance.

Machine or computer vision systems use the same principle for depth
computation, whereas the eyes are replaced by two (preferably identical)
cameras. However, instead of the brain, a microprocessor or computer is
responsible for disparity computation.

The reason why the disparity can be used to compute distances lies in
the geometrical relations of epipolar geometry, which is brie�y described in
the following section. Afterwards, the typical steps of stereo processing are
explained.

3.1.1 Epipolar Geometry

The epipolar geometry describes the relation between two projections (im-
ages) of the same scene. Figure 3.1 depicts a stereoscopic image acquisition
system based on two pinhole cameras. OL and OR denote the camera cen-
ters of the left and right camera. The line joining those centers, which is
called baseline, intersects the two image planes in their epipoles eL and eR.
Basically, epipolar geometry between two views is the geometry of the in-
tersection of image planes with the family of planes having the baseline as
their axis [17]. As can be seen in Figure 3.1, an arbitrary point X in 3
dimensional space is, from the perspective of the left camera, the projected

22
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Figure 3.1: Epipolar geometry. From http://en.wikipedia.org/wiki/File:
Epipolar_geometry.svg.

point xL on the left image plane, which is the intersection of the line de-
�ned by X and OL and the image plane. As in a stereo image acquisition
system, only xL is known (and not X), and the set of points de�ned by the
ray from OL through xL denote possible positions of X (e. g. X1, X2, X3,
etc.). All these points are coplanar with the centers OL and OR and the
plane formed by these points is called the epipolar plane. The intersection of
the epipolar plane with the image plane is de�ned as the epipolar line. All
epipolar lines intersect at the epipole [17]. This geometric relation is useful
for computing stereo correspondence, and moreover reduces the matching
problem of an arbitrary point in one image to an one dimensional search
along the corresponding epipolar line in the other image. This forms the
epipolar constraint :

Each image point xi of a space point X lies in the image plane
only on the corresponding epipolar line [9].

As illustrated in Figure 3.2, given the point X and its projections on the
left and right image planes xL and xR in image plane coordinates (u, v), the
disparity d is de�ned as [48]

d = uL − uR (3.1)

3.1.2 Stereo Processing Pipeline

Stereo processing systems include the following steps:

1. Image undistortion and epipolar recti�cation

http://en.wikipedia.org/wiki/File:Epipolar_geometry.svg
http://en.wikipedia.org/wiki/File:Epipolar_geometry.svg
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Figure 3.2: Stereo geometry (top view) for the axis parallel case. From
[48].

2. Stereo matching

3. Stereo reconstruction

If no absolute distance measures are required (e. g. if only relative depth
di�erences are required for image segmentation), the last step can be skipped
as the resulting disparity map is su�cient for relative comparison.

Step 1 � Image Undistortion and Epipolar Recti�cation

The thin lens equation (see Chapter 1) is only a simpli�ed geometrical model
of the projection in image acquisition systems. Real camera lenses introduce
distortions into the image, which have to be considered if measurements in
image space are used to deduct distances in world space. The resulting distor-
tion is a combination of radial distortion and tangential distortion. Camera
calibration algorithms (see Chapter 5) compute the radial and tangential
distortion parameters in order to undistort the image.

Epipolar recti�cation is the transformation and rotation of the left and
right image plane to a common coplanar plane so that their corresponding
epipolar lines and the image scan lines become collinear [9]. Figure 3.2 il-
lustrates the stereo geometry for the axis parallel case (after recti�cation).
The transformation operations of image undistiortion and epipolar recti�ca-
tion can be combined and precomputed once using a lookup table, storing
the mapping of source to destination coordinates, for fast application when
undistorting each frame.
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Step 2 � Stereo Matching

As explained before, if the projected point on the left image plane xL and
the projected point on the right image plain xR is known, the point in 3 di-
mensional space X can be computed. Finding this correspondence is the
goal of the stereo matching step. This is the crucial part in the pipeline,
because the �nal accuracy depends on the matching accuracy.

The existing approaches for stereo matching can be divided into two
types, depending on the type of output they generate [9]:

Dense or area-based stereo matching � Stereo disparity is calculated
for each pixel with the result of a dense stereo map.

Sparse or feature-based stereo matching � Stereo disparity is calcu-
lated only for corresponding features of both views. Depending on the
application, either the disparity values only for these feature points are
su�cient or their disparity values are propagated to their surrounding
pixels. For example, image segmentation is applied and similar dispar-
ity values are assigned to pixels of the same image region.

The stereo matching approaches can also be grouped into local and global
methods. Local methods compare regions of the left and right images,
whereas global methods minimize global cost functions in order to compute
the disparity map. This work focuses on local, dense (resp. area-based) stereo
matching, whereas feature-based or sparse stereo matching is not within the
scope of this work.

Note: As the image sensor already �lters static image regions (see Chap-
ter 2) before stereo matching is applied, and even though a dense stereo
matching approach is applied in this work, the result is a sparse disparity
map as only areas were events have been received are taken into account for
stereo matching.

The stereo matching algorithm used in this investigation is based on the
Sum of Absolute Di�erences (SAD) [48] as a cost measurement. SAD was
chosen because an existing implementation of SAD was available for reuse.
Moreover, the choice of the stereo matching approach is secondary since the
focus of this work is on the in�uence of the data interface. SAD is a block
matching algorithm (also known as window-based) whereby the absolute dif-
ferences between image blocks along the epipolar line are computed and the
positions with minimal absolute di�erence are chosen as stereo correspon-
dence candidates. A similar approach is the Sum of Squared Di�erences
(SSD) [36] where, as the name implies, the minimal sum of squared di�er-
ences is used for computing the best match.

An overview of stereo matching algorithms and their comparison is pro-
vided by [42].
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Figure 3.3: Mutual occlusions of objects. From [9].

Stereo Matching Problems: Stereo matching faces conceptional prob-
lems which are not solvable (except by post-processing the result) with the
information of only two images from a stereo acquisition system.

Occlusion � More precisely, binocular half-occlusion [9] is what the problem
of 3D objects being only visible from one of the two viewing positions
is called. The problem is visualized in Figure 3.3, where an object
B1 is partially occluded by the object B2. The point xL, which is a
projection of the 3D point X on the surface of the object B1, cannot
be matched with any other point on the right image, as it is not visible.

Occluded pixels can be detected using the Left-Right Consistency check
(LRC) [9]. In this method, the matching process is performed using
the left image as a reference image and additionally a second time
using the right image as reference. If the disparity di�erence between
|dL(u, v)| and |dR(u − dl(u, v), v)| is higher than a speci�c threshold,
then this point might be occluded.

Untextured Regions � Homogeneous regions without descriptive informa-
tion result in matching errors as well.

Horizontal aligned Textures � Problems also occur if the pixel data is
only descriptive in the vertical direction, but not along the horizontal
axis. E. g. an edge parallel to the epipolar lines.

Repetitive Patterns � If patterns along epipolar lines are not unique, they
might result in false matches.

(Specular) Re�ections � Re�ections are view dependent, hence they can
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not be matched correctly.

There are more phenomenons responsible for stereo matching inaccuracy
which are not described in detail here. For example Image Sensor Noise,
Sampling Artifacts, Di�erent Illumination, etc.

State of the Art: The window size of window-based matching approaches,
like the one described above, controls the smoothness of the resulting dis-
parity map. Large window sizes reduce the problem of untextured regions
and repetitive patterns whereas small window sizes reduce the errors along
depth discontinuities. The works of [13] and [20] present approaches using
adaptive windows which combine the bene�ts of small and large windows by
computing window sizes for each pixel individually in a �exible way.

Current state of the art approaches introduce a weight function, which
increases and decreases the in�uence of matching window pixels by the like-
lihood that they are of the same disparity as the matching window's center
pixel. These Adaptive Support Weights are computed in di�erent manners.
[49] states the assumption that pixels of similar color and small Euclidean
distance are most likely to have the same disparity. Based on this assump-
tion, an exponential weight function of the sum of similarity and distance is
presented.

[21] states the assumption that points of the same disparity share a cer-
tain level of connectivity. Connectivity, in this case, is denoted as the sum of
color di�erences along a path, whereby a low value represents high connec-
tivity. For example, a path along homogeneous color results in high connec-
tivity whereas a path which crosses an edge results in low connectivity. The
mentioned work proposes a weight function based on the geodesic distance,
which computes the length of the shortest path in the color volume.

Step 3 � Stereo Reconstruction

The relation between disparity and depth is derived by the transformation
of similar triangle equations of parallel stereo acquisition systems (see Fig-
ure 3.2). The depth map is computed by applying Equation 3.2 to the
disparity map:

z =
fB

d
(3.2)

whereby z denotes the distance along the z�axis, f denotes the focal
length, B denotes the baseline and d denotes the disparity.

3.2 Event-based Stereo Vision

[15] proposes a stereo disparity computation approach of event-based data
using time domain encoded signals and presents an experimental implemen-
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Figure 3.4: Stereo event-based vision sensor. From Austrian Institute of
Technology (AIT)

tation using computer generated AER data. In [47], a complete stereo vi-
sion system with stereo disparity computation from event-based data im-
plemented in hardware, is presented. This work uses the Normalized SAD
(NSAD) as the stereo matching mechanism. Figure 3.4 illustrates the stereo
vision system presented in the paper mentioned and which is also used in
this work. This stereo vision system has been chosen because it was a re-
quirement from the Austrian Institute of Technology, our cooperation part-
ner. As [1] describes, the data of this event-based stereo vision sensor is an
asynchronous stream of Address-Events (AE), which has to be converted to
periodic frames of frame length DT, whereby DT determines the temporal
resolution of this stereo vision system. Therefore, each frame is initialized
(with zero for signed values or half of the maximum representable value of
the data type used) and each event within the time scope of the frame is
accumulated by adding +1 for ON events or −1 for OFF events at the corre-
sponding pixel location. Hence, the gray value is proportional to the number
of events with identical coordinates per frame.
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State of the Art: [24] presents experimental area-based and feature-based
stereo vision approaches for an automotive pre-crash warning system for side
impacts using AE data, where SAD is used for area-based and a segment
center matching approach is used for feature-based stereo matching.

A real-time tracking system using event-based stereo vision is presented
in [45] and demonstrates experimental results for people tracking. The same
authors present a clustering algorithm for event-based stereo data in [44]
and a real-time pedestrian and cyclist classi�cation algorithm (also based on
event-based stereo data) in [3].

All event-based stereo vision approaches that are found in current state of
the art literature use periodic frame conversion (i. e. a �xed frame duration)
in order to apply traditional stereo vision algorithms. However, [24] states
the future intention of investigating in a stereo vision approach that directly
processes the AE data, without frame generation strategies.

Summary

This chapter has presented the principles of epipolar geometry and how these
principles are used for stereo disparity computation. A detailed description
of the stereo processing pipeline is presented as well as the limitations of
stereo matching. The most crucial and therefore interesting part of the
stereo processing pipeline is the stereo matching section. The di�erent stereo
matching approaches can be grouped into dense or sparse stereo matching,
as well as local or global stereo matching approaches.

The last section of this chapter described how these stereo vision concepts
are applied for event-based image data and concluded that the state of the art
event-based stereo vision approaches use synchronous resp. periodic frame
conversion in order to apply stereo processing algorithms.



Chapter 4

Asynchronous local

Address-Event Bu�er

One aim of this work is to provide AER-based input data for stereo match-
ing, which is robust regarding variable object movement velocity. Addition-
ally, this aim includes providing the data in an asynchronous manner, which
means that it is not coupled to a frame creation period. This chapter de-
scribes the methodology of this work and provides rationales as to why the
chosen approach is a solution to the problem de�ned in Chapter 1.

4.1 Basic Idea

The advantage of an asynchronous interface is that it retains the asyn-
chronous manner of the event stream for the later application which pro-
cesses the image data. This way, the application which uses the data decides
how often it querys the recent data, for example depending on how fast it
processes each frame. This adds more �exibility in contrast to periodic frame
generation, which is object movement velocity dependent.

A preliminary idea for ful�lling the asynchronous interface requirement
could be implementing a sliding window approach on the event stream, with
overlapping time scope for each frame. But even if this approach provides an
asynchronous interface, it would not solve the problem of object movement
with varying velocities.

In order to handle cases of objects with di�erent velocity in the image
sensors �eld of view, a local method is preferable over a global method in
order to gain acceptable results for each object.

As described in Chapter 1, if the event-based image data is rendered
periodically into frames, depending on the frame duration, motion at only
a certain velocity delivers acceptable results. If the object moves faster the
edges will become cluttered and lacking in detail, if it moves too slowly the
edges will become jagged or completely vanish between frames.

30
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Fast movement results in many events which clutter the resulting frame.
This problem is addressed in this work by locally limiting the event density
using a threshold. If a region exceeds the density threshold, the oldest events
in the region will be removed. If the density of events is kept low, the edges
continue to appear sharp.

To provide an asynchronous interface, all events are kept in bu�ers (one
for each pixel) and removed when the local density threshold is exceeded.
The current frame may be queried at any time and provides a frame rendered
from all events still residing in the bu�ers.

The drawback of this concept is that image noise accumulates over time
and when the moving object has already passed the �eld of view of one
pixel, the corresponding bu�er is never emptied. This problem is addressed
by a second rule, which is a timestamp threshold. The timestamp threshold
de�nes the maximum age of events in the bu�er. If an event exceeds the
threshold it will be removed.

4.2 Concept

The Address-Event data is processed as a stream, whereby each event is
immediately stored in one of the bu�ers, where the image data which is
currently valid is stored. Applications using this data interface can retrieve
the currently valid image data at any time. This way, the application decides
how frequently it retrieves the image data, for example, based on how long
it needs to process the data.

The addition and removal of Address-Events to the bu�er needs to be
e�cient, therefore a First-In-First-Out (FIFO) bu�er is constructed for each
pixel. This way, the events are stored chronologically for each possible image
space coordinate, and allows the removal of the oldest events from a certain
location by direct access.

In order to e�ciently evaluate whether the local density threshold is ex-
ceeded, a map providing the current local density for each pixel is kept up to
date at all times. This is achieved by increasing the count of each pixel that
is within the region of Address-Events which have been added to a bu�er,
and vice versa for each Address-Event which has been removed from a bu�er.
Figure 4.1 illustrates the local density map.

A similar principle is applied to the evaluation of the timestamp threshold
to ensure it is performed e�ciently. Another map, which provides the oldest
timestamp of the currently valid AEs at each location, is also kept up to
date at any point in time. This is achieved by setting the timestamp map
value to the timestamp of events which are added to an empty bu�er, and
if an event is removed from a bu�er the timestamp is replaced by the value
of the next valid event from this bu�er.
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Figure 4.1: Local event density Map. The color scale denotes the absolute
sum of events in the local neighborhood.

The list below enumerates the main responsibilities of the algorithm
which processes the event stream.

1. Count how many AEs are stored in bu�ers in the local neighborhood
per pixel (the local density threshold).

2. Store the oldest AE timestamp per pixel (for the timestamp threshold).

3. Store the AEs in FIFO bu�ers per pixel.

4. Remove oldest AEs of the regions where the local density threshold is
exceeded.

5. Remove AEs older than the maximum delta timestamp.

4.3 Implementation

The implemented algorithm has the following con�gurable parameters:

local density threshold � The number of AEs per region which are maxi-
mally valid at any point in time can be con�gured with the local density
threshold. The local density threshold depends on the region size pa-
rameter and on the spatial frequency of the image data that produces
the Address-Events. If the expected spatial frequency of the moving
objects is high, a high density threshold is required. For low spatial fre-
quencies, for example a moving object measured as constant intensity
values, a low density threshold is required.



4. Asynchronous local Address-Event Bu�er 33

timestamp threshold � The maximally valid delta between the current
time and the oldest timestamp of an AE in the bu�ers can be con�gured
with the timestamp threshold. If the timestamp threshold parameter
is set too high, too much noise will be accumulated over time. If the
timestamp threshold is set too low, slow movements are not stored as
continuous image data. Hence, the timestamp threshold is determined
by the lowest velocity which needs to be reproducible. In other words,
it needs to be higher than the duration of the slowest object passing
through one pixel in sensor image space.

region size � The window size which is treated as a region by the algorithm
can be con�gured with the region size parameter. The region size
adjusts the granularity of local adaption to di�erent movements in the
sensors �eld of view. If the region size is too big, for example much
bigger than the expected moving objects, the number of events will
vary depending on how many moving objects are within this region.
On the other hand, if the region size is too small, the local density
variance is most likely high, since it depends on the local contours
of the moving objects. Hence, if the region size is too low, a chosen
local density threshold will lack in generalizability to the locally varying
amount of events.

timestamp threshold evaluation period � The time period between the
periodical evaluation of the timestamp threshold. As this parameter de-
�nes the temporal evaluation of the timestamp threshold, which itself is
already a temporal parameter, it makes sense to choose the timestamp
threshold evaluation period in relation to the timestamp threshold, for
example 10% of timestamp threshold.

Program 4.1 shows the design of the implemented algorithm in pseudo
code. First the data structures used are initialized, separately for both the
left and right data channel. The localDensityMap is initialized with zeros,
the timestampMap is initialized with in�nity and the buffers are initialized
with empty lists. After initializing the data structures, the Address-Event
data is processed. For each event the data structures corresponding to the
events channel are used (line 4). Then, a matrix of ones of region size with
center at x and y of the current Address-Event is added to increase the
count in the localDensityMap (line 11). Afterwards, the event is added to
the buffer at position x and y of the Address-Event. If the buffer at this
position was empty before the processing the current Address-Event, the
timestampMap at the Address-Events position is set to the timestamp value
of the event.

Later on, the localDensityMap is evaluated in order to retrieve the po-
sitions where the local density threshold is exceeded (line 18). In fact, as the
threshold is evaluated after each Address-Event added to the bu�er, only
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Program 4.1: Asynchronous bu�er for Address-Event data (in pseudo code)

1 initializeDataStructures();

2 foreach addresEvent in stream

3 // split left and right channel
4 if (addressEvent.channel == LEFT)

5 useLeftDataStructures();

6 else

7 useRightDataStructures();

8 end

9

10 // store event in bu�er and update maps
11 localDensityMap.increaseEventCountForRegionWithCenterAt(addressEvent.

position, regionSize);

12 if (buffers[addressEvent.position].isEmpty())

13 timestampMap[addressEvent.position] = addressEvent.timestamp;

14 end

15 buffers[addressEvent.position].add(addressEvent);

16

17 // evaluate density threshold
18 areaExceedingThreshold = localDensityMap.getPositionsExceedingDensity(

localDensityThreshold);

19 if (!areaExceedingThreshold.isEmpty())

20 removeOldestEventOfRegion(areaExceedingThreshold);

21 end

22

23 // evaluate timestamp threshold
24 if (timeElapsed(evaluateTimestampThresholdPeriod))

25 removeEventsExceedingTimestampThreshold(timestampThreshold);

26 end

27 end

the region surrounding the events position needs to be evaluated, as there is
only a density change in this region. If there are events exceeding the thresh-
old, the function removeOldestEventOfRegion is called (see Program 4.2).
Within this function, since pixels can simultaneously exceed the threshold,
�rst the center of the exceeding area is determined. Then, the oldest events
from the region with this center is removed and the maps are updated.

Whether the timestamp threshold evaluation period has elapsed, since the
last time the timestamp threshold has been evaluated, is checked at the end of
the loop (line 24). If this is the case, the function removeEventsExceeding-

TimestampThreshold is called. This function evaluates the timestampMap

to get the positions where Address-Events in the bu�er exceed the times-
tamp threshold. Then, for each bu�er at those positions, all Address-Events
exceeding the timestamp threshold are removed and the maps updated ac-
cordingly.
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Program 4.2: Pseudo code function implementation

1 function removeOldestEventOfRegion(areaExceedingThreshold)

2 center = getCenter(areaExceedingThreshold);

3 oldestEvent = timestampMap.

getOldestEventPositionFromRegionWithCenterAt(center, regionSize);

4 removeEventAtPosition(oldestEvent);

5 end

1 function removeEventsExceedingTimestampThreshold(timestampThreshold)

2 exceedingTimestamps = timestampMap.

getPositionExceedingTimestampThreshold(timestampThreshold);

3 foreach position in exceedingTimestamps

4 while (buffers[position].getAt(1).timestamp < currentTime-

timestampThreshold)

5 removeEventAtPosition(position);

6 end

7 end

8 end

1 function removeEventAtPosition(position)

2 buffers[position].removeFirst();

3 if (buffers[position].isEmpty())

4 timestampMap[position] = INFINITY;

5 else

6 timestampMap[position] = buffers[position].getAt(1).timestamp;

7 end

8 localDensityMap.decreaseEventCountForRegionWithCenterAt(position,

regionSize);

9 end

4.4 Output

Figure 4.2 and Figure 4.3 show the result of the example Address-Event
data used for the �gures presented in Chapter 1 rendered with the presented
asynchronous data interface, both using the same set of parameters. The cy-
clist is more clearly visible compared to the 20 ms frame duration conversion
displayed in Figure 1.3 and the output of the pedestrian is still comparable
to the (already acceptable) output visible in Figure 1.2. Compared to the
�gures presented in Chapter 1, the cyclist rendered with the asynchronous
data interface is close to the example rendered with 7 ms frame duration and
the pedestrian rendered with the asynchronous data interface is close to the
example rendered with 20 ms frame duration. This shows that identical pa-
rameter settings can be used without prior estimation of the expected object
movement velocity.
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(a) (b)

Figure 4.2: Cyclist, left (a) and right (b) sensor, asynchronous data inter-
face. The intensity value denotes the sum of positive and negative events at
this location.

(a) (b)

Figure 4.3: Pedestrian, left (a) and right (b) sensor, asynchronous data
interface. The intensity value denotes the sum of positive and negative events
at this location.

Summary

This chapter described the general idea, the concept and the implementa-
tion of the asynchronous local Address-Event bu�er. How events are stored
into bu�ers has been described as well as how the local density threshold
and the timestamp threshold are evaluated. Section 4.3 described the pa-
rameters for �ne tuning the presented approach and how they in�uence the
eventual outcome. Furthermore, the design of the implemented algorithm is
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stated in pseudo code. The last section demonstrated the impact of apply-
ing the asynchronous local Address-Event bu�er on the example data used
in Chapter 1.

The essence of this chapter is that limiting the number of events based
on the local event density provides �exibility regarding object movement
velocity and avoids the necessity of a priori chosen frame durations. This
way the resulting image data keeps appearing sharp because clutter from
fast object movement and jagged contours from slow object movement are
reduced.



Chapter 5

Evaluation and Results

This chapter describes how the impact on the stereo matching accuracy
of the proposed algorithm has been evaluated and presents the results of
this evaluation. The evaluation is the crucial part of this work and reveals
whether the intended improvement of the presented approach holds or if the
presented ideas need further enhancement.

The asynchronous data interface has been evaluated by performing a
ground truth comparison. For this evaluation, the output of stereo matching
has been used for comparison, as the proposed approach claims to improve
stereo matching accuracy for scenes with varying object movement velocity.
It is evaluated in comparison with the current (synchronous) Address-Event
conversion approach by computing the relative average error to the ground
truth data.

5.1 Stereo Rig Calibration

If the same optical system is used for ground truth data acquisition as for
capturing the test data, then no calibration is needed since the comparison
can be performed directly with the disparity values and since both data
depend on the same distortion parameters. If the ground truth data does
not originate from the same optical system and the disparity values are back
projected from absolute measures of length, as in this case, the stereo system
needs to be calibrated. The distortion and camera parameters resulting from
the calibration are used to undistort the captured test data, in order to be
able to compare the data to the ground-truth model.

For this work, the Camera calibration toolbox for matlab [5] has been used
to calibrate the optical stereo system. To establish a relation between image
coordinates and world coordinates, extrinsic and intrinsic camera parameters
need to be known. The extrinsic parameters determine where the camera is
located in space and how it is oriented with regard to the world coordinate
system. The intrinsic parameters determine the relation between image

38
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coordinates (in pixels) and the camera coordinate system.
Varying sets of intrinsic camera parameter models can be found in current

literature. This work adheres to the intrinsic camera parameters of [5] which
are a modi�cation of the ones described in [19].

Extrinsic Camera Parameters:

Rotation Parameters (θ, φ, ψ) � The 3 rotation angles yaw, pitch and tilt
determine how the camera coordinate system is rotated with regard to
the world coordinate system.

Translation Parameters (tx, ty, tz) � The 3 translation parameters form a
vector which determines the location of the camera's coordinate system
origin with regard to the world coordinate system.

Intrinsic Camera Parameters:

Focal Length (fx, fy) � The focal length denotes the distance between the
image plane and the center of projection (whether the image plane is
in focus). The focal length determines the projection factor. In [5], the
focal length is of unit pixels. If the image sensors pixels are squared
then the horizontal and the vertical focal lengths are equal.

Principal Point (Cx, Cy) � The principal point coordinates determine the
optical center of the lens, which is also the center of the radial lens
distortion.

Skew (α) � The skew coe�cient determines the angle between x and y axis
of the image coordinates.

Radial Lens Distortion (k1, k2) � The 2nd and 4th order coe�cients of
the radial distortion polynomial are denoted by k1 and k2. Depending
on the polarity of k1, if positive the radial distortion results in barrel
distortion (parallel lines are distorted radially out of the center, like
the contour of a barrel) and pincushion distortion if negative (image
borders are distorted radially to the center, like the contour of a cush-
ion).

Tangential Lens Distortion (k3, k4) � The radial distortion is due to the
shape of the lens, whereas, the tangential distortion on the other hand,
is because of manufacturing inaccuracy resulting in the lens not being
exactly parallel to the sensor plane [6].

The scale factors su and sv, which are used in intrinsic camera parameter
models in the current literature, are in this case already incorporated linearly
in fx and fy. These scale factors are the conversion factors between the
coordinates in pixel units and in metric units. The factors are in pixels per
unit (resp. the reciprocal of the pixel pitch) [17].
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(a) (b)

Figure 5.1: Calibration pattern for event-based vision sensors. (a) and
(b) are the two frames of an in�nite animation which has been used for
calibrating the stereo rig.

Calibrating Stereo Event-based Vision Sensors: For camera cal-
ibration, a mapping between world coordinate distances and image space
distances is required, in order to estimate the unknown extrinsic and intrin-
sic parameters. The mapping is established by capturing image data from a
scene containing a calibration pattern with known world coordinates (e. g. a
checkerboard pattern with known edge length) and with features detectable
in the later image (e. g. corners or intersections).

The Camera calibration toolbox for matlab [5] uses the Harris corner
detector [16], which detects local curvature maxima by approximating the
eigenvalues of the second-moment matrix, which are used for detecting the
calibration pattern points.

For the calibration of event-based vision sensors, a checkerboard pattern
could not be used since only changes in intensity can be captured. After
some experimentation, a LCD monitor displaying an animation of vanishing
and reappearing black circles turned out to be a usable calibration pattern.
Figure 5.1 illustrates the frames of the calibration pattern used. The black
circles are arranged within the frame so that their resulting horizontal and
vertical o�set on the screen is exactly 5 cm.

[5] uses an iterative gradient descent optimization algorithm to estimate
the intrinsic and extrinsic camera parameters from the detected points of the
calibration pattern. Each optimization step decreases the reprojection error
over all camera parameters.

The calibration pattern was captured from 24 di�erent camera positions
using the stereo rig. This means 24 calibration images for each camera
were acquired, each one containing 24 calibration points, resulting in 576
calibration points in total per image sensor.

Table 5.1 lists the parameters estimated by the Camera calibration toolbox
for matlab [5] that were used for undistorting the test image data. Figure 5.2
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Table 5.1: Result of the stereo rig calibration

Left Camera � Intrinsic Parameters

Parameter Unit Calibration result Estimated uncertainty (±3σ)

(fx, fy) [px] (102.58, 102.56) ± (1.085, 1.086)

(Cx, Cy) [px] (59.46, 62.97) ± (0.652, 0.537)

(k1, k2) [1] (-0.2063, 0.1327) ± (0.00864, 0.01191)

(k3, k4) [1] (-0.0002, 0.0011) ± (0.00099, 0.00114)

Right Camera � Intrinsic Parameters

Parameter Unit Calibration result Estimated uncertainty (±3σ)

(fx, fy) [px] (103.07, 102.94) ± (1.082, 1.077)

(Cx, Cy) [px] (59.35, 68.58) ± (0.659, 0.590)

(k1, k2) [1] (-0.2136, 0.1436) ± (0.00941, 0.01468)

(k3, k4) [1] (0.0017, 0.0004) ± (0.00103, 0.00102)

Extrinsic Parameters

Parameter Unit Calibration result Estimated uncertainty (±3σ)

(θ, φ, ψ) [◦] (0.77, -0.49, 0.80) ± (0.356, 0.328, 0.040)

(tx, ty, tz) [px] (-129.44, -1.17, 0.65) ± (0.628, 0.573, 1.688)

illustrates the resulting radial distortion model from the calibration process.
The tangential distortion model is depicted by Figure 5.3. Figure 5.4 shows
the calibration set-up and illustrates the locations of the calibration patterns
in world space.

5.2 Acquiring Ground Truth Data

In order to evaluate stereo matching performance, highly accurate disparity
maps (or depth maps) are required as ground truth data. The following
sections describe approaches considered for the evaluation of the proposed
algorithm.

5.2.1 Structured Light

The most commonly used technique to acquire stereo matching ground truth
data is structured light [43]. Structured light uses projected light patterns
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Figure 5.2: Radial distortion model of left (a) and right (b) image sensor.
Generated with [5]
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Figure 5.3: Tangential distortion model of left (a) and right (b) image
sensor. Generated with [5]

to solve the correspondence problem of stereo vision. For example, [43]
describes projecting a series of black and white stripe patterns onto the scene,
such that each projection denotes one bit of the resulting binary code. The
latter correspondence search is reduced to �nding pixels with equal code in
the left and right image. Figure 5.5 illustrates the principle of the described
structured light pattern.

The drawback of the structured light method is that it is only applicable
to static scenes, hence this technique is not a feasible solution for acquiring
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Figure 5.5: Structured light, binary projection pattern. From http://en.
wikipedia.org/wiki/File:13-stripes-s.png.

ground truth data for event-based stereo vision.

http://en.wikipedia.org/wiki/File:13-stripes-s.png
http://en.wikipedia.org/wiki/File:13-stripes-s.png
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Figure 5.6: 3D digitized toy car model.

5.2.2 Calibrated Object

The Structured Light technique is not applicable due to required the dynam-
ics of the scene. Since something needs to be moving in order to be visible
for event-based vision systems, moving objects with known geometry is one
way to acquire ground-truth data.

For this work, the engine part of a toy train was used for a controllable
movement of objects. Toy trains allow reproducible test runs, as they follow
a �xed track and their velocity is con�gurable. As claimed, the proposed
algorithm is more robust in terms of varying object movement velocity, such
that test data with varying velocity is required.

First, a plastic toy car was used for the ground-truth evaluation, be-
cause its geometry is smooth and not too complex. It was scanned with a
laser-beam triangulation 3D digitizer. The captured point cloud was later
converted into a 3D triangle mesh. Figure 5.6 illustrates the 3D model of
the toy car.

From this 3D triangle mesh, a depth map (resp. disparity map) needs to
be generated. [34] describes how the ray tracing program POV-Ray can be
used to render 3D scenes to a depth map. The depth map generated with
POV-Ray can be converted into a disparity map by transforming Equa-
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tion 5.1 into Equation 5.2.

Z =
f ·B
d

(5.1)

d =
f ·B
Z

(5.2)

The problem with this test object was that due to imperfect alignment of
the ground-truth model with the captured test data, a feasible comparison
was not possible. The event-based vision sensor only generates image data
if the light intensity changes and therefore only object or texture boundaries
are visible in the image data. Object boundaries, more precisely depth dis-
continuities, are the regions with the highest depth resp. disparity variance.
The consequence would be a failed comparison, if the di�erence between
the expected object position of the ground-truth model and the captured
scene were to lead to a displacement of the object locations in the disparity
maps of even one pixel. Initial tests led to the result that this high accuracy
requirement could not be reached, and therefore a simpler test object was
required.

5.2.3 Rectangular Object

An object with axis parallel surfaces (camera coordinate system axis) should
overcome the above described problem, since small registration inaccuracy
between ground-truth and test data does not lead to high disparity map
di�erences. A pyramid assembled of black and white Lego® bricks was
chosen.

The reason for using black and white bricks can be attributed to the fact
that their high contrast results in strong edges in the event-data stream.
The previously described toy train was also used to move the object for this
evaluation attempt. Intensity changes that are parallel to the movement
direction do not generate event data, and therefore the pyramid was mounted
on the toy train so that one of the diagonals of the pyramid points in the
movement direction.

POV-Ray was used again to generate the ground-truth disparity maps,
but this time the 3D model was created manually, using a 3D modeling soft-
ware (see Figure 5.7 and Figure 5.8). In order to reduce errors caused by
poorly predicting the pyramid position in 3D space, the following simpli�ca-
tions of the test data acquisition scene set up was applied. The event-based
stereo vision sensor was mounted above the train track, so that the pyramid
would move parallel to the stereo system trough the �eld of view and the
train moves in the direction of the stereo system's y axis. Additionally, the
event-based stereo vision system was positioned so that the left image sensor
was exactly in the middle of the track, resp. the pyramid peak was in the
middle of the left sensors �eld of view. The reason for this decision was,
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Figure 5.7: Pyramid 3D model.
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Figure 5.8: Ground-truth disparity map of the pyramid 3D model.

in this work the disparity map is based on the left sensor image, describing
the stereo disparity to the right sensor image. In other words, the resulting
disparity map denotes the same perspective as the left sensor image. Hence,
with the pyramid peak in the middle of the left sensor's �eld of view (resp.
the optical center) the ground-truth model is easier to predict as the pyramid
is captured from the left sensor's top view perspective. Figure 5.9 displays
how the stereo rig was set up.

In order to acquire a statistically representative amount of test data, the
data was acquired in 2 overnight recording sessions: one moving the pyramid
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Figure 5.9: Stereo rig with event-based stereo vision sensor used for cap-
turing test data.

slowly and one moving the pyramid quickly, each running for 7 hours. The
acquisition occured overnight in order to minimize in�uence of changing light
conditions.

5.3 Evaluation

The evaluation part proves that the goals were achieved and that the pro-
posed improvements hold.

The test data and the ground-truth data was acquired using the methods
previously described. This data is the basis for the evaluation. As described
in the introduction, the aim of this work is to improve stereo matching
accuracy for scenes with varying object movement velocity.

In order to evaluate whether the goals were achieved, the comparison
between the test data and the ground-truth data was performed �rst using
the currently used data interface (periodic frame conversion) and afterwards
using the proposed asynchronous data interface. The error rate of each
approach was used for comparison. The evaluation was executed for test data
with a high object movement velocity and low object movement velocity.
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First, the frames which were to be used for comparison were extracted.
Therefore, only the frame for which the object was exactly in the center
of the stereo systems �eld of view when the moving object passed by, was
selected for each run. This is required in order to generate test data that
is precisely aligned to the centered pyramid of the ground truth data. The
frame is selected by evaluating the number of events over time from the event
stream. This function denotes an equally distributed amount of noise events,
a rising edge as the pyramid enters the �eld of view, a peak as the pyramid
passes through the optical center, and a falling edge as the pyramid leaves
the �eld of view. This event histogram, due to noise events, is not a smooth
function. Initial tests showed that the function peaks did not conform with
the index of the center frame of the train resp. pyramid pass. Therefore, it
was decided to use the middle frame between the rising edge and the falling
edge.

The middle frame was identi�ed by applying a threshold to the function,
which is higher than the event rate between the train resp. pyramid passing
by (noise event rate) and lower than the event rate as the train was passing
through the �eld of view. The �rst derivative of this binary function denotes
1 for each rising edge and −1 for each falling edge. The left and right frames,
located at the middle between each rising and falling edge, could be extracted
for comparison. The disparity maps of the test data frames were computed
by stereo matching the left and right frames.

The resulting disparity maps still display a variation in the pyramid cen-
ter location in the direction of movement. The disparity maps were cropped
to the pyramid's bounding box, in order to center the pyramid. There-
fore, a binary mask of the ground-truth image was used as a convolution
kernel. The peak of the convolution result denotes the pyramid center in
the computed disparity map. The disparity maps were cropped with these
convolution peaks as the window center. This way, the small o�sets of the
pyramid location were compensated. Additionally, the binary mask of the
ground-truth disparity map was applied on the cropped disparity maps in
order to eliminate image data resulting from noise events.

The ground-truth disparity computed from the depth map rendered by
POV-ray had decimal number values but the result from stereo matching
were integer values (pixels). Therefore, the ground-truth disparity map
needed to be rounded to integer values. In order to reduce evaluation error
due to rounding errors, 1 pixel tolerance was introduced by applying the
�oor and the ceiling function to the decimal disparity map resulting in two
ground-truth disparity maps.

The performance of each disparity map was measured by dividing the
number of pixels used for comparison by the number of pixels which corre-
spond to one of the two integer ground-truth disparity maps.
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Table 5.2: Evaluation result

Data interface Velocity Frames Avg. pixel Performance σ

Periodic slow 925 379.51 70.22 % 5.28 %

Periodic fast 5721 676.32 72.40 % 4.45 %

Asynchronous slow 925 336.66 68.86 % 5.24 %

Asynchronous fast 5721 419.09 72.25 % 5.26 %

5.4 Results

Table 5.2 shows the result of the evaluation process. The column Data inter-
face contains the type of data interface which was used for this comparison.
The type Periodic denotes the data interface currently used which renders
the Address-Event data in a synchronous manner. Asynchronous denotes the
type of data interface that is proposed in this work. The column Velocity
denotes from which test run (slow or fast) the data originated. The Frames
column contains the number of disparity maps that are computed from the
Address-Event data and used for comparison. Each disparity map denotes a
pass of the toy train moving the pyramid through the stereo systems �eld of
view. Since each acquisition session was of the same duration, more disparity
maps were considered for evaluation of the fast runs. The Avg. pixel column
denotes the average number of pixels per disparity map which are de�ned in
the disparity map, in other words, the number of pixels for which the stereo
matching process of the input frames delivered a disparity value. The e�ect
of the asynchronous interface is visible, since the average number of pixels for
the fast run using the asynchronous data interface decreased to a level close
to the average number of pixels of the slow runs. The column Performance
denotes the average percentage of correct disparity values per disparity map.
The σ column denotes the standard deviation of the percentage of correct
disparity values.

The presented result does not reveal statistical signi�cant improvement
in stereo matching accuracy for the presented asynchronous data interface.
The following chapter states an interpretation as to why no proof for an
improvement was measurable by the performed evaluation.

Summary

This chapter described why and how stereo acquisition systems are calibrated
and how this can be performed on stereo event-based vision sensors using an
LCD monitor displaying blinking circles. The second section compared dif-
ferent ground-truth data acquisition approaches. Since the structured light
method is only feasible for static scenes, the acquisition of ground-truth data
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by moving a 3D digitized test object along the track of a toy train was eval-
uated. The alignment of the test data with the digitized ground-truth model
turned out to be unstable, which led to using a more simple test object. The
use of a pyramid assembled out of Lego bricks allowed a feasible comparison
because small registration inaccuracies do not lead to high disparity map
di�erences. The third section described how the error rates of the periodic
frame conversion approach and the presented asynchronous interface com-
pared to the ground-truth data were computed. The last section presented
the stereo processing error rates for each data interface, compared to the
ground-truth data.

All in all, this chapter demonstrated that acquiring ground-truth data
for event-based stereo processing is challenging. The bottom line is that
the presented result denotes an asynchronous data interface of comparable
stereo matching accuracy to the state of the art approach, but it did not
reveal statistical signi�cant improvement in stereo matching accuracy.



Chapter 6

Conclusion and Outlook

The following sections provide an interpretation of the results presented in
Chapter 5 and suggest possible further research based on the achievements
of this work.

6.1 Conclusion

As described in the �rst chapter, this work targeted two goals. First, an
asynchronous data interface for event-based vision data was to be designed,
as the current state of the art only describes the processing in a synchronous
manner. This goal was achieved with at least equally good stereo matching
performance. The second goal of this work was the improvement of stereo
matching accuracy for scenes with varying object movement using the im-
plemented asynchronous data interface.

The proof for the second goal, the improved stereo matching accuracy,
was not evident in the presented evaluation result. However, the result im-
plies that stereo matching accuracy did not decrease when the presented
asynchronous data interface was used. Hence, the �rst goal, the asyn-
chronous data interface, was achieved with comparable stereo matching ac-
curacy to the state of the art Address-Event conversion approaches.

Why has stereo matching accuracy not improved?

As Table 5.1 shows, the performance even increased for the test runs with
high velocity, independent of the data interface used. This contradicts the
expected e�ect of high velocity object movement on the quality of the input
image data for stereo matching. On the other hand, the visual examples of
Address-Event data rendered with too high a frame duration for the captured
object movement velocity, demonstrate a loss in image detail due to the
clutter resulting from the overaccumulation of events. The outcome when
using too low a frame duration for conversion is even worse regarding the
resulting image data quality.

51
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These arguments lead to the assumption that the presented evaluation
approach is not able to stress the consequences of the e�ects in order to
unveil the bene�ts of the presented approach.

Clutter introduced because of fast motion (or high frame duration) results
in edges smearing in the direction of motion. Due to this, edges become noisy
areas. Since this kind of clutter is consistent in both (left and right) images
and the chosen objects surfaces are parallel to the axis, results in correct
disparity value computed from the cluttered stereo event data.

Moreover, due to the before mentioned smearing e�ect for fast motion,
the number of pyramid surface pixels used for ground-truth comparison in-
creases compared to the number of pyramid edge pixels. This also explains
the slightly increasing stereo matching performance for higher object move-
ment velocity, as depth discontinuities, like at the pyramid edges, are error
prone for stereo matching.

As a conclusion it can be assumed that the test object geometry simpli�-
cation necessary in order to retrieve comparable test data reduced the e�ect
of varying object movement velocity on the performance of stereo matching.
The improvement of the asynchronous data interface would be measurable
in scenes where the clutter introduced by fast motion covers up detail behind
it, which would furthermore result in di�erent disparity values. Therefore,
more complex scenes, which, on the other hand, are harder to evaluate (as
described in the previous chapter), are required.

6.2 Possible follow up Research

Both a fundamental investigation into the acquisition of highly accurate
ground truth disparity maps for dynamic scenes of arbitrary complexity and
comparison approaches of this ground-truth data with Address-Event data
would be an interesting topic for further research. The implementation of
a more complex evaluation approach exceeded the scope of this work, and
therefore working on the scale of this larger scope would be possible in follow
up work.

Furthermore, computation performance of the presented approach was
not within the scope of this investigation. The presented approach was
only prototyped using Matlab® and therefore is not optimized for real-
time processing. Computation optimization of the current approach and the
implementation of it on a platform suitable for real-time applications would
furthermore be interesting for further analysis.

6.3 Personal Experience

During the execution of this project, I gained some interesting insight into
a novel computer vision resp. image sensing technique. Working with cut-
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ting edge technology, like event-based vision sensors, was really fascinating
and I am curious about the future development of this technique and its
applications. On the other hand, it was also challenging to work on a topic
where the research community is not large enough yet, as literature covering
a broader diversity would have been helpful.

Additionally, acquiring profound experience in implementing stereo vi-
sion concepts and learning the (current) limits to these concepts, was exciting
and will certainly be a valuable experience.

Rather unexpected for me was the lesson learned that the evaluation part
can sometimes be the most challenging part. I think the awareness of this is
bene�cial for the execution of all kind of projects.

In a nutshell, I am happy with the outcome of my work, even though not
all goals were accomplished.
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