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Preface

This diploma thesis gives an overview of the extensive theory of elliptic
functions and elliptic curves. The main focus is on the connection and
overlappings of these theories: Using elliptic functions, it is possible to confer
a group structure to many types of elliptic curves.

The first chapter introduces elliptic functions, doubly periodic, meromor-
phic functions on the complex plane. Some important properties are given
about elliptic functions in general as well as for its prototype, the Weierstrass
℘-function.

The second chapter describes the basic theory of elliptic curves over ar-
bitrary fields. While initially, the approach is completely different from the
one in chapter 1, we see later, that we can use elliptic functions (and most
of all ℘) to describe and even parametrize most of the elliptic curves. In
the end of chapter 2, an outline to Mordells theory is given, which is an im-
portant result about the structure of elliptic curves over the field of rational
numbers.

In the last chapter, we consider elliptic curves finite fields and introduce
the L-series to an arbitrary elliptic curve, which contains information about
the reduction of that curve modulo all primes. There are many useful results,
but also open questions regarding these L-series. The most interesting open
question is the conjecture of Birch and Swinnerton-Dyer, which is one of
seven Millenium Prize Problems in mathematics. A small historical overview
on the development of recent results is also stated.

Elliptic curves have applications in various fields of mathematics: Alge-
braic number theory (it is possible to prove Fermats Last Theorem using
elliptic curves and modular forms), Cryptography (EEC-Cryptography is
based on elliptic curves over finite fields) and different kinds of Analysis
(many types of integrals can be solved by using elliptic functions).

I tried to write this thesis in a simple readable style, so that it can be
well understood by any mathematician or physicist with basic knowledges
in the fields of complex analysis, linear algebra, algebra and number theory.

Using this opportunity, I would like to give some acknowledges to several
people, who supported me, while writing this thesis:

My special thanks goes on the first place to Prof. Dr. Michael Drmota,
for his excellent assistance and supervision, when writing this thesis.

I also like to thank Prof. Dr. Hans Havlicek for his friendly support, not
only in connection with my diploma thesis, but also during my time as a
student assistant in the department of Differential Geometry and Geomet-
ric Structures. It was a honour to work with him and it also expanded my
mathematical knowledge further.
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Another thank goes to Iván Blanco for proofreading as well as to some of
my fellow students: First of all Junjian Yang, for his local assistance when
I was finishing my diploma thesis while being on a traineeship in Finland
as well as for many good suggestions and constructive criticism to my work.
And also to Florian Besau and Astrid Berg, for a very helpful collaboration
during my whole study time in Vienna.

My studies and this thesis would not have been possible without the
abiding support of my parents. I have to thank them a lot. I am also very
grateful to Teresa Fritzsche, Thomas Mehlsack, Patricia Hesselaar, my sister
Susanne Hutle and my brother Dr. Martin Hutle. They all supported me
much.

Christoph Hutle, 2012
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Chapter 1

Elliptic functions

In this chapter, I would like to give an overview over the wide-ranged theory
of elliptic functions.

Elliptic functions are meromorphic periodic functions on the complex
plane C with quite interesting and useful properties. Historically, elliptic
functions were discovered as inverse functions of elliptic integrals; these in
turn were studied in connection with the problem of the arc length of an
ellipse, whence the name derives.

The most important elliptic function is the Weierstrass ℘-function. As a
kind of prototype, we will be able to generate the field of all elliptic functions
in an easy way from ℘ and its derivative ℘′.

Moreover, the Weierstrass ℘ function is the key to the connection between
elliptic functions and elliptic curves, which we will discuss in chapter 2.

Most of the information given in this chapter is taken from [KK]. The
study of elliptic functions is closely related to the study of modular functions
and modular forms, a relationship proven by the modularity theorem. We
won’t outline this approach much, but further information can also be found
in [KK]

1.1 Lattices

Our first aim is to study lattices on the n-dimensional euclidean space Rn
over R. As an important special case, we identify the two-dimensional eu-
clidean space R2 with C. All properties for lattices in R2 are absolutely the
same for lattices in C, since both have the same vector space structure over
R.

In section 1.2, we will see, how lattices in C appear as periods of some
special class of meromorphic functions.

From now on, we will use the following unambigeous notation: For C,D ⊆
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Rn (resp. C) and ω ∈ Rn (resp. C) we write C +D, Cω for

C +D := {c+ d : c ∈ C, d ∈ D}.
Cω := {cω : c ∈ C}.

Definition 1.1.1. Let Rn be the n-dimensional euclidean space (n ≥ 1). We
call a subset Ω of Rn a lattice, if there exists a vector basis {ω1, ω2, · · · , ωn},
such that Ω = Zω1 +Zω2 + · · ·+Zωn. The n-tuple (ω1, ω2, · · · , ωn) is called
a basis of the lattice Ω.

With Ω being a lattice in Rn, quite obviously the set λΩ := {λΩ : ω ∈ Ω}
is also a lattice in Rn, if 0 6= λ ∈ R.

Definition 1.1.2. We call a closed subset D of a topological space X dis-
crete, if for all x ∈ X there exists a neighborhood U of x, such that U ∩D
is finite.

For our purpose, we will only need the case of X being the euclidean space
Rn.

In this case, discrete is equivalent to saying, that the set {z ∈ D : |z| ≤ ρ}
is finite for all ρ > 0.

We will need the following proposition later:

Proposition 1.1.3. Let c1, . . . , cn ∈ Ω linear independent. Then, for i =
1, . . . , n, we have the following: There are i linearly independent vectors
ω1, . . . , ωn ∈ Ω such that

c1 =u11ω1

c2 =u21ω1 + u22ω2

· · · where ujk ∈ Z, ujj 6= 0

ci =ui1ω1 + · · ·+ uiiωi

and

lin{ω1, . . . ωi} ∩ Ω = {u1ω1 + . . . uiωi : uj ∈ Z}.

Proof. We prove this statement by induction: For i = 1, choose among all
points of Ω on the line lin{c1} one with the minimum positive distance from
0, say ω1. Since Ω is discrete, this is possible. Then the assertion above
holds for i = 1 with this ω1.

Next, let i < n and assume, that the assertion above holds for i.
Consider the unbounded parallelotope

P = {α1ω1 + . . . αiωi + αci+1 : 0 ≤ αj < 1, α ∈ R}.

All points of P , which are sufficiently far from 0 have arbitrarily large dis-
tance from lin{ω1, . . . ωi}. Since (P ∩ Ω)\ lin{ω1, . . . ωi} ⊇ {ci+1} 6= 0 and
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since Ω is discrete, we thus may choose a point ωi+1 ∈ P ∩ L, which is not
contained in lin{ω1, . . . , ωi} and has minimum distance from lin{ω1, . . . , ωi}.
Then

ω1, . . . , ωi, ωi+1 ∈ Ω are linearly independent. (1.1)

Next, note that, for any point of Ω in lin{ω1, . . . ω1, ωi+1}, we obtain a
point of P by adding a suitable integer linear combination of ω1, . . . , ωi.
These two points then have the same distance from lin{ω1, . . . ωi}. Thus,
ωi+1 has minimum distance from lin{ω1, . . . ωi}, not only among all points of
(P ∩Ω)\ lin{ω1, . . . , ω1}, but also among all points of (lin{ω1, . . . , ωi, ωi+1}∩
Ω)\ lin{ω1, . . . , ωi}. This yields, in particular,

{α1ω1 + . . . αiωi + αi+1ωi+1 : 0 ≤ αj < 1} ∩ Ω = {0}. (1.2)

We now show, that

lin{ω1, . . . ωi+1} ∩ Ω = {u1ω1 + . . . uiωi + ui+1ωi+1 : uj ∈ Z}. (1.3)

Let x ∈ lin{ω1, . . . ωi+1}∩Ω. Hence x = u1ω1 + · · ·+ui+1ωi+1 with suitable
ui ∈ R. Then

x−bu1cω1−· · ·−bui+1cωi+1 ∈ {α1ω1+. . . αi+1ωi+1 : 0 ≤ αj < 1}∩Ω = {0}.

by (1.2) and thus x = bu1cω1 + · · ·+ bui+1cωi+1. Comparing the two repre-
sentations of x and taking into account the fact, that ω1, . . . ωi+1 are linearly
independent by (1.1), it follows that uj = bujc ∈ Z, for j = 1, . . . , i + 1.
Thus, the left-hand side in (1.3) is contained in the right-hand side. Since
the converse is obvious, the proof of (1.3) is complete.

By definition of ωi+1,

ci+1 ∈ (lin{ω1, . . . , ωi+1} ∩ Ω)\ lin{ω1, . . . ωi}.

Thus (1.3) yields

ci+1 = ui+1 1ω1 + · · ·+ ui+1 i+1ωi+1 where ui+1 j ∈ Z, ui+1 i+1 6= 0.

Considering this, the induction is complete, concluding the proof of the
proposition.

An important characterization of lattices is given by the following

Theorem 1.1.4. Let Ω ⊂ Rn be a lattice. Then the following statements
are equivalent:

1. Ω is a lattice.

2. Ω is a discrete subgroup of Rn, which is not contained in a hyperplane.
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Proof. (1)⇒ (2): Let {ω1, . . . , ωn} be a basis of Ω. If `, m are integer linear
combinations of ω1, . . . , ωn, then so is `−m. Hence Ω is a sub-group of Rn.

For the proof, that Ω is discrete, note that

{α1ω1 + · · ·+ αnωn : −1 < αi < 1} ∩ Ω = {0}. (1.4)

Let ρ > 0 be the radius of a ball with centre at 0, which is contained in the
open parallelotope in 1.4. Then the distance from 0 to any point of Ω\{0}
is at least ρ.

Therefore, we have ||` − m|| ≥ ρ for `,m ∈ Ω, ` 6= m. If Ω is not
discrete, it contains a bounded infinite subset. This subset then has at least
one accumulation point. Any two distinct points of this subset, which are
sufficiently close to the accumulation point, have distance less than ρ. This
contradiction concludes the proof, that Ω is discrete.

Furthermore, Ω is not contained in a hyperplane since it contains the
points 0, ω1, . . .ωn.

(2) ⇒ (1): It is sufficient to show the following:
There are n linear independent vectors ω1, . . . , ωn ∈ Ω such that

Ω = {u1ω1 + · · ·+ unωn : ui ∈ Z}. (1.5)

This is an immediate consequence of the case i = n of the proposition
1.1.3.

Different bases of a given lattice are related in a rather simple way.
We call a quadratic matrix unimodular, if its determinant equals ±1.

Therefore, unimodular integer n× n-matrices are exactly the integer n× n-
matrices, which have an inverse integer matrix. Thus, we denote the set of
all unimodular integer matrices with GL(n;Z).

Theorem 1.1.5. Let {ω1, . . . , ωn} be a basis of a lattice Ω in Rn. Then the
following statements hold:

1. n vectors ω′1, . . . , ω
′
n belongs to Ω if and only if there exists an integer

n× n-matrix U with

(ω′1, . . . , ω
′
n) = (ω1, . . . , ωn) · UT . (1.6)

2. {ω′1, . . . , ω′n} form a basis of Ω, if and only if U is unimodular, i.e.
U ∈ GL(n;Z).

Proof. 1.: This follows directly from the definition of a lattice, since each
point of a lattice is an integer linear combination of {ω1, . . . , ωn}.

2.: If {ω′1, . . . , ω′n} is also a basis of Ω, it follows from 1. that, conversely

(ω1, . . . , ωn) = (ω′1, . . . , ω
′
n) · V T , (1.7)
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where V is a suitable integer n×n-matrix. From (1.6) and (1.7) we conclude
that

(ω′1, . . . , ω
′
n) = (ω1, . . . , ωn)UT = (ω′1, . . . , ω

′
n)V TUT = (ω′1, . . . , ω

′
n)(UV )T .

Since ω′1, . . . , ω
′
n are linerly independent and thus (ω′1, . . . , ω

′
n) is a non-

singular n × n-matrix, it follows that det(UV )T = 1 or detU detV = 1.
Since U and V are integer matrices, their determinants are also integers.
This shows detU = ±1.

Conversely, if U ∈ GL(n;Z), there exists V := U−1 ∈ GL(n;Z) and (1.6)
implies (1.7). Thus, every ωi is an integer linear combination of the vectors
ω′1, . . . , ω

′
n. Since every vector of Ω is also an integer linear combination of

ω1, . . . , ωn, it follows, that each vector of Ω is an integer linear combination
of the vectors ω′1, . . . , ω

′
n.

Since U is regular, ω′1, . . . , ω
′
n are also linearly independent.

Hence {ω′1, . . . , ω′n} form a basis.

Corollary 1.1.6. Let Ω be a lattice in C and (ω1, ω2) a basis of Ω. Then
the following holds for ω′1, ω

′
2 ∈ C:

1. ω′1 and ω′2 belong to Ω if and only if there exist (clearly unique) integers
a, b, c, d, so that

ω′1 = aω1 + bω2

ω′2 = cω1 + dω2.

2. (ω′1, ω
′
2) form a basis of Ω, if and only if ad− bc 6= 0.

Proof. This statement follows directly from theorem 1.1.5 by U =

(
a b
c d

)
.

Definition 1.1.7. Given a basis {ω1, . . . , ωd} of a lattice Ω, the correspond-
ing fundamental parallelotope �(ω1, . . . , ωn) is defined by:

�(ω1, . . . , ωn) = {α1ω1 + · · ·+ αnωn : 0 ≤ αi < 1}. (1.8)

This term is legitimated, because for all v ∈ Rn, there exists a unique ω in
Ω, so that v − ω ∈ �(ω1, . . . , ωn).

In a similar way, we can define any period parallelotope to a given basis
point u ∈ Rn by

�(u;ω1, . . . , ωn) = {u+ α1ω1 + · · ·+ αnωn : 0 ≤ αi < 1}. (1.9)

Remark 1.1.8. The volume of �(ω1, . . . , ωn) is given by | det(ω1, . . . , ωn)|, if
ω1, . . . , ωn is a basis of Ω. It follows from theorem 1.1.5, that this determi-
nant is actually independent of the particular choice of a basis ω1, . . . , ωn of
Ω. Therefore every period parallelotope to a given lattice Ω has the same
volume and we may denote this value by Vol Ω.
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Let us again regard the case of the complex plane:

Corollary 1.1.9. Let Ω be a lattice in C. The area Vol Ω of a fundamental
parallelogram �(ω1, ω2) (and therefore of every period parallelogram too) is
given by

Vol Ω := |=(ω1 · ω2)|.

where = denotes the imaginary part of a complex number.
The formula is independent of the choice of the basis (ω1, ω2) of Ω.

Proof. It follows from remark 1.1.8 that

Vol Ω :=

∣∣∣∣det

(
<(ω1) <(ω2)
=(ω1) =(ω2)

)∣∣∣∣ .
Now, one may easily check, that |<(ω1)=(ω2)−<(ω2)=(ω1)| = |=(ω1 · ω2)|.

Further interesting results about lattices in euclidean vector spaces, like
Minkowski’s First and Second Fundamental Theorem or the Minkowski-
Hlawka Theorem can be found in [PG].

With a view to elliptic curves, we will now fully constrain on lattices in
C.

1.2 Meromorphic functions

Definition 1.2.1. We call a function f meromorphic on C, if there exists
a closed, discrete subset Df ⊂ C, such that f : C\Df → C is holomorphic
with poles at the points Df .
If f is not holomorphically continuable in a point c ∈ C, then it exists a
positive integer m and a neighborhood U of c, such that

(z − c)m · f(z) is bounded at U\{c}. (1.10)

In this case, we call c a pole of f .
If f is a meromorphic function, there is for every point c ∈ C an integer
n, a neighborhood U of c and a holomorphic function g : U → C with the
property

f(z) = (z − c)n · g(z) for all z ∈ U\{c} and g(c) 6= 0.

We then call n =: Ordc f the order of f in C.
(Therefore, each pole has negative order, each zero has positive order,

depending on its multiplicity).

From the theory of complex analysis, recall the
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Theorem 1.2.2 (Identity theorem). Let G ⊆ C be a domain and f : G→ C
an analytic function in G. If the set {z ∈ G : f(z) = 0} has an accumulation
point in G, then f = 0.

Lemma 1.2.3. Let f , g be meromorphic functions. Then, αf (α ∈ C),
f + g, f · g and 1/f are also meromorphic functions and it holds

Dαf = Df , α 6= 0, Df+g ⊂ Df ∪Dg, Dfg ⊂ Df ∪Dg.

Proof. For αf , f + g and f · g, this is an immediate consequence of (1.10).
From the identity theorem 1.2.2, it follows, that the zero set of a holomor-
phic function f 6= 0 is always discrete and closed in C. Therefore, 1/f is
meromorphic too.

Corollary 1.2.4. The set of all meromorphic functions on C form a field.

We will denote this field with M.

Next, we will study periods of meromorphic function. The fundamental-
lemma will give a characterization of all types of periodic meromorphic
functions.

Definition 1.2.5. Let f be a meromorphic function on C. We call ω ∈ C
a period of f , if

• Df + ω = Df and

• f(z + ω) = f(z) for all z ∈ C\Df

holds.
With Per f , we denote the set of all periods of f . Obviously, 0 ∈ Per f for

every f ∈M and it is also easy to see, that Per f is a subgroup of (C,+).
For a constant function f , Per f = C.

Lemma 1.2.6. If f ∈ M is not constant, Per f is a closed subgroup of
(C,+).

Proof. If Per f is not discrete, there are pairwise different ωn ∈ Per f, n ≥ 1,
so that limn→∞ ωn exists. Since Df is always closed, it follows Df +ω = Df .
Thus, if f is holomorphic in a point c ∈ C, then f is also holomorphic in c+ω.
From f(c) = f(c+ωn) for all n ≥ 1, we now conclude that f(c) = f(c+ω),
because f is particularly continuous. The identity theorem 1.2.2 now implies,
that f is constant.

Corollary 1.2.7 (fundamental-lemma). If f ∈ M is not constant, exactly
one of the following cases occures:

1. Per f = 0
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2. There exists an ωf ∈ C\{0} (unique except for the sign) such that
Per f = Zωf .

3. Per f is a lattice in C, so Per f = Zω1 + Zω2 with ω1, ω2 ∈ C linearly
independent.

In this case, we can choose ω1, ω2 such that τ := ω1/ω2 meets =τ > 0
and |τ | ≥ 1.

Proof. If Per f 6= 0, there exists an ωf ∈ Per f with

0 < |ωf | = inf{|ω| : 0 6= ω ∈ Per f}.

Assume the case, that Per f lies completely on the line Rωf . Then we can
prove Zωf = Per f as follows:

Zωf ⊆ Per f is obvious, because Per f is a subgroup of C. For ω ∈ Per f ,
there exists an α ∈ R with ω = αωf according to our assumption. Choose
m ∈ Z with |α−m| < 1 and |ω −mωf | = |α−m| · |ωf | < |ωf |. Since ω, ωf
both belong to Per f , ω −mωf ∈ Per f too, which implies ω = mωf , since
|ωf | was chosen minimal. Therefore Zωf = Per f is shown for this case.

In the other case Per f is a discrete subgroup (see 1.2.6), which is not
contained in a line. By theorem 1.1.4, we see, that Per f is a lattice.

From the fact that ω1, ω2 are linearly independent over R, it follows that
=τ 6= 0. Without loss of generality, we can say that |τ | > 0 (otherwise we
substitute ω1 by −ω1. If required, we can also interchange ω1, ω2 so, that
|ω1| ≥ |ω2| to obtain |τ | ≥ 1.

The use of τ will turn out later.

1.3 Elliptic functions

In this section, Ω = Zω1 + Zω2 is always a lattice in C.

Definition 1.3.1. A meromorphic function f on C is called elliptic relating
to Ω, if Ω is contained in the set of periods of f , i.e. Ω ⊆ Per f .

This means:

• Df + ω = Df for all ω ∈ Ω

• f(z + ω) = f(z) for all ω ∈ Ω and z ∈ C\Df

These two conditions are already true, if they hold for a basis of Ω.

From the theory of complex analysis, we know, that for 0 6= f ∈ M and
c ∈ C, there exists a Laurent expansion of the form

f(z) =
∑
n≥m

an(z − c)n, am 6= 0,
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which converges locally uniformly.
The residuum of f in c is given by resc f := a−1.
The order Ordc f of f in c (see definition 1.2.1) is in this representation

quite obviously given by m.
If f is an elliptic function relating to Ω, ω ∈ Ω and z any point in a

suitable neighborhood of c+ ω, it follows from

f(z) = f(z − ω) =
∑
n≥m

an(z − [c+ ω])n,

that

Ordc+ω f = Ordc f as well as resc+ω f = resc f (1.11)

Hence, if c is a pole of f , c + ω is a pole too for every ω ∈ Ω. The same
holds for zeros.

Since poles cannot accumulate in a compact set, we get:

Proposition 1.3.2. The set of all elliptic functions relating to a lattice Ω
form a subfield ofM, which contains all constant functions. We will denote
this field by K(Ω). Each f ∈ K(Ω) has only finitely many poles in every
period parallelogram.

Lemma 1.3.3. Let f(z) ∈ K(Ω). Then also f ′(z) ∈ K(Ω) and g(z) :=
f(nz + ω) ∈ K(Ω), if 0 6= n ∈ Z, ω ∈ C.

Proof. Follows directly from definition 1.3.1

Now, we like to formulate four theorems about elliptic functions, which
hearken back to Liouville. (Here, these are the theorems 1.3.4, 1.3.5, 1.3.7
and 1.3.9. All these theorems give important information about the struc-
ture of elliptic functions:

Theorem 1.3.4. If f ∈ K(Ω) is holomorphic, then f is already constant.

Proof. Let P be a period parallelogram. Since the closure of P is compact,
f is bounded, i.e. there exists a C > 0 such that |f(z)| ≤ C for all z ∈ P .
For arbitrary z ∈ C, there exists an ω ∈ Ω such that z+ω ∈ P . Now we see
from |f(z)| = |f(z + ω)| ≤ C, that f is bounded in C. The classic Liouville
theorem then yields, that f is constant.

Theorem 1.3.5. Consider f ∈ K(Ω) and P a period parallelogram of Ω.
Then∑

c∈P
resc f = 0. (1.12)
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Proof. The number of poles of f in P is finite, hence the sum is finite.
Because of (1.11), the sum (1.12) is also not dependent on the choice of the
period parallelogram. Hence, we can choose the basis point u without loss
of generality so, that no singularities lie on the boundary ∂P of P . Now, we
consider the integral of f along ∂P .

From the residue theorem, we obtain

± 2πi
∑
c∈P

resc f

=

∫ u+ω1

u
f(z) dz +

∫ u+ω1+ω2

u+ω1

f(z) dz +

∫ u+ω2

u+ω1+ω2

f(z) dz +

∫ u

u+ω2

f(z) dz

=

∫ u+ω1

u
(f(z)− f(z + ω2)) dz +

∫ u

u+ω2

(f(z)− f(z + ω1)) dz.

Since f ∈ K(Ω), the right-hand side equals 0.

Corollary 1.3.6. Each elliptic function with period parallelogram P , that
is not constant, has either a pole of order 2 (with residue 0) or at least two
different poles in P .

Proof. This follows directly from theorem 1.3.4 and theorem 1.3.5.

Theorem 1.3.7. If f ∈ K(Ω) is not constant and P a period parallelogram
of Ω, then for each ω ∈ C it holds∑

c∈P
Ordc(f − ω) = 0. (1.13)

Therefore, the number of poles of f in P equals the number of ω-points of f
in P for all ω ∈ C, if we count multiplicities.

In particular, we see that each non constant f ∈ K(Ω) takes on every
value in C.

Proof. Because of Lemma 1.3.3, the function g(z) := f ′(z)
f(z)−ω is also elliptic

relating to Ω.
We now show, that

resc g = Ordc(f − ω). (1.14)

For n := Ordc(f − ω) = 0, this is trivial. So assume, that n 6= 0. We then
can write f(z)− ω = (z − c)n · h(z) with a suitable holomorphic function h.
From

g(z) =
f ′(z)

f(z)− ω
=

(z − c)nh′(z) + n(z − c)n−1h(z)

(z − c)nh(z)
=

n

z − c
+
h′(z)

h(z)
,

we obtain (1.14), since h(z) is holomorphic.
Then, (1.13) follows from theorem 1.3.5.
Since f is not constant, if follows from theorem 1.3.4, that f has at least

one pole in P . So the add-on is also true.
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From the theory of complex analysis, we obtain the following theorem:

Theorem 1.3.8 (theorem of the zero-counting integral). Let f be a mero-
morphic function on a domain D ⊆ C. Then, for a smooth, closed and
rectificable curve γ ⊂ D which does not contain any poles and zeros, the
following equation holds:

1

2πi

∫
γ

f ′(z)

f(z)
dz = Nf − Pf ,

where Nf and Pf denote the number of zeros resp. poles of f in the inner
of γ.

Theorem 1.3.9. Let 0 6= f ∈ K(Ω) and P a period parallelogram, then∑
c∈P

(Ordc f) · c ∈ Ω (1.15)

holds.

Proof. For the proof, we use the same method as in theorem 1.3.5. From
theorem 1.3.8, we obtain

2πi
∑
c∈P

(Ordc f) · c =

∫
∂P
z · f

′(z)

f(z)
dz

= ±
(∫ u+ω1

u
z
f ′(z)

f(z)
− (z + ω2)

f ′(z + ω2)

f(z + ω2)
dz +

+

∫ u

u+ω2

z
f ′(z)

f(z)
− (z + ω1)

f ′(z + ω1)

f(z + ω1)
dz
)

= ±
(
ω1

∫ u+ω2

u

f ′(z)

f(z)
dz − ω2

∫ u+ω1

u

f ′(z)

f(z)
dz

)
.

The last equality follows from periodicity, i.e. f(z) = f(z + ωj). From the

theory of complex analysis, we then know, that
∫ u+ωj
u

f ′(z)
f(z) dz ∈ 2πiZ for

j ∈ {1, 2}. So, (1.15) is proven.

If we count poles and zeros of a non-constant f ∈ K(Ω) with multiplicities,
we get from theorem 1.3.7 points a1, . . . , ar and b1, · · · , br in P , such that f
has zeros exactly in a1, · · · , ar and poles exactly in b1, . . . , br. Multiplicity
is in both cases expressed by the number of repetitions of the point.

With this notation, theorem 1.3.9 means

a1 + · · ·+ ar ≡ b1 + · · ·+ br mod Ω. (1.16)

r is called the order of the elliptic function f .
Theorem 1.3.4 states, that every elliptic function of order 0 is constant.

Corollary 1.3.6 predicates, that there is no elliptic function of order 1.
Later, we will see, that r ≥ 2 and (1.16) is already sufficient for the

existence of an elliptic function with the specified poles and zeros.
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1.4 The ℘-function of Weierstrass

We now define, what will turn out to be a key example of an elliptic function
relative to a given lattice Ω. This function is called the Weierstrass ℘-
function. It is denoted ℘Ω or simply ℘, if the lattice is fixed throughout the
discussion. We set

℘ := ℘Ω := z−2 +
∑

06=ω∈Ω

(
(z − ω)−2 − ω−2

)
, z ∈ C\Ω. (1.17)

It is not obvious to see, why the sum in (1.17) is convergent and ℘ is a well-
defined function. To see this, we will first need to collect some information
about multiple infinite series.

To a given lattice Ω ∈ C with basis {ω1, ω2}, we define

δ := δ(ω1, ω2) := sup{|z − ω| : z, ω ∈ �(ω1, ω2)}

as the diameter of the fundamental parallelogram. For ρ > 0, let Aρ be the
number of lattice points in the closed circle around 0 with radius ρ, i.e.

Aρ := #{ω ∈ Ω : |ω| ≤ ρ}.

Lemma 1.4.1. For all ρ ≥ δ,

π

Vol Ω
(ρ− δ)2 ≤ Aρ(Ω) ≤ π

Vol Ω
(ρ+ δ)2.

Proof. We compare the sets

Kρ := {z ∈ C : |z| ≤ ρ} and Mρ :=
⋃

ω∈Ω,|ω|≤ρ

�(ω;ω1, ω2)

and their areas πρ2 resp. Vol Ω ·Aρ(Ω). From the definition of δ, it follows,
that

Kρ−δ ⊂Mρ ⊂ Kρ+δ.

Regarding the areas, this yields

π(ρ− δ)2 ≤ Aρ(Ω) ·Vol(Ω) ≤ π(ρ+ δ)2,

hence the assertion.

Lemma 1.4.2 (convergence-lemma).

The series
∑

06=ω∈Ω |ω|−α converges, if α > 2.

17



Proof. For a finite set ∅ 6= E ⊂ Ω\{0}, define M := max{|ω| : ω ∈ E}.
From lemma 1.4.1, we obtain a c2 > 0 with

An+1(Ω)−An(Ω) ≤ π

Vol Ω
[(n+ 1 + δ)2 − (n− δ)2] ≤ c2n

for all n ≥ δ. With

c1 :=
∑

06=ω∈Ω,|ω|≤δ+1

|ω|−α

we get∑
ω∈E
|ω|−α ≤

∑
n∈N, δ<n<M

(An+1(Ω)−An(Ω))n−α

≤ c1 + c2

∞∑
n=1

n1−α =: C <∞.

Remark 1.4.3. It also holds, that the series
∑

06=ω∈Ω |ω|−α does not converge,
if α ≤ 2. For α ≤ 0, this is trivial, for 0 < α ≤ 2, this is proven in [KK], 1.9.

Corollary 1.4.4. The so-called Eisenstein series

Gk := Gk(Ω) :=
∑

06=ω∈Ω

ω−k for k ≥ 3 (1.18)

are absolutely convergent. For odd k ≥ 3, Gk(Ω) = 0.

Proof. The absolute convergence follows directly from lemma 1.4.2.
Since an absolutely convergent series can be rearranged according to the

Riemann series theorem and because for each ω ∈ Ω also −ω ∈ Ω, we obtain
Gk = (−1)kGk, so Gk = 0, if k is odd.

Remark 1.4.5. Regarding the Fourier series expansion of Gk, it outcomes,
that Gk 6= 0, if k is even.

Lemma 1.4.6. Let K ⊂ {(ω1, ω2) ∈ C×C;ω2 6= 0, ω1/ω2 /∈ R} be a compact
set. Then, there exist absolute terms α, β, such that

β|m1i+m2| ≤ |m1ω1 +m2ω2| ≤ α|m1i+m2| (1.19)

for all m1,m2 ∈ R and (ω1, ω2) ∈ K.

Proof. For m1,m2 = 0, the statement is trivial.
Elsewise, choose r > 0 such that m2

1 +m2
2 = r2, i.e. |m1i+m2| = r. The

continuous function (ω1, ω2,m1,m2)→ |m1ω1 +m2ω2| takes on a maximum
a and a minimum b on the compact set K×{(m1,m2) ∈ R×R : m2

1 +m2
2 =

r2}. Since ω1 and ω2 are linearly independent over R, m1ω1 + m2ω2 6= 0
holds. Define α := a/r and β = b/r. Both are positive values, which satisfy
(1.19).
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Proposition 1.4.7. The series of the function

℘(z;ω1, ω2) := z−2 +
∑

06=ω∈Zω1+Zω2

(
(z − ω)−2 − ω−2

)
, z ∈ C\Ω.

is absolutely and uniformly convergent on each compact set in

{(z;ω1, ω2) ∈ C× C× C : ω2 6= 0, ω1/ω2 /∈ R, z /∈ Zω1 + Zω2}. (1.20)

Proof. Let K be such a compacta in (1.20). We choose ρ > 0 such that

K ⊂ Kρ ×K ′, Kρ := {z ∈ C : |z| ≤ ρ}.

For K ′, we choose β like in lemma 1.4.6. Then for all (z;ω1, ω2) ∈ K and
(m1,m2) ∈ Z with |m1i + m2| ≥ (ρ + 1)/β, it holds, that |ω| ≥ ρ + 1 for
ω = m1ω1 +m2ω2.

Therefore,∣∣∣ 1

(z − ω)2
− 1

ω2

∣∣∣ =
∣∣∣ 2zω − z2

ω2(z − ω)2

∣∣∣ =
∣∣∣ 2− z/ω
(1− z/ω)2

∣∣∣ · |z||ω|3
≤ 3

(1− ρ/(ρ+ 1))2
· ρ

|ω|3
≤ 3ρ(ρ+ 1)2

β3|m1i+m2|3
.

Since there are only finitely many tuples (m1,m2) ∈ Z × Z with |m1i +
m2| ≤ (ρ+1)/β, the statement follows from the absolute convergence of the
Eisenstein series G3(Zi+ Z) (see corollary 1.4.4).

Quite analogously, we get the following result:

Lemma 1.4.8. For k ∈ N, k ≥ 3 and a fixed lattice Ω, the series∑
ω∈Ω

(z − ω)−k

converges absolutely and uniformly on every compacta in C\Ω.

Proposition 1.4.9. The Weierstrass ℘-function

℘(z) := ℘Ω(z) := z−2 +
∑

06=ω∈Ω

(
(z − ω)−2 − ω−2

)
, z ∈ C\Ω. (1.21)

is absolutely and uniformly convergent in every compacta of C, which does
not contain a lattice point. ℘ is an even elliptic function with respect to Ω
and has poles of order 2 in the lattice points of Ω with residue 0. In C\Ω,
℘ is holomorphic.

The Laurent expansion at the point 0 has the form

℘(z) = z−2 + a2z
2 + . . . (1.22)
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Proof. The convergence follows directly from proposition 1.4.7.
We set ρ > 0 arbitrary and Kρ := {z ∈ C : |z| < ρ}. Now we split

℘(z) = z−2 +
∑

ω<ρ+1

(
(z − ω)−2 − ω−2

)
+

∑
|ω|≥ρ+1

(
(z − ω)−2 − ω−2

)
.

Here, the first finite sum is meromorphic on Kρ. The second sum is holo-
morphic on Kρ because of proposition 1.4.7. Hence ℘|Kρ has poles exactly
in the points Ω ∩Kρ. These poles are of order 2 and have residue 0.

To see, that ℘ is an even function, note, that ℘(−z) = ℘(z), since the
right side of (1.21) remains unchanched, if z is replaced by −z and ω is
replaced by −ω. But summing over ω ∈ Ω is the same as summing over
−ω ∈ Ω.

Substituting z by 0 in the sum of (1.21), we obtain 0, hence the Lau-
rent expansion at 0 has the constant coefficient 0. Since ℘ is even, all odd
coefficients vanish. This yields (1.22).

It remains to show the periodicity, i.e. ℘(z + ω) = ℘(z) for all ω ∈ Ω and
z ∈ C\Ω, so that ℘ is an elliptic function.

Because the expression in (1.21) is convergent, we can regard the deriva-
tive of ℘.

℘′(z) = −2
∑
ω∈Ω

(z − ω)−3, z ∈ C\Ω. (1.23)

This series is also convergent due to lemma 1.4.8. Since replacing z by z+ω
merely rearranges the terms in the sum in (1.23), it follows, that ℘′(z+ω) =
℘′(z) for ω ∈ Ω. For a basis ω1, ω2 of Ω, we then get ℘(z + ωj) = ℘(z) + cj
with absolute values cj and j ∈ {1, 2}. If we set z = ω1/2 resp. z = ω2/2, we
obtain c1 = c2 = 0, since ℘ is an even function. Therefore ℘(z + ωj) = ℘(z)
for j ∈ {1, 2} and since (ω1, ω2) form a basis, ℘ has all ω ∈ Ω as periods.

Remark 1.4.10. From proposition 1.4.9, we see, that ℘′ is an odd function
with poles of order 3 at the lattice points Ω. On C\Ω, ℘′ is holomorphic.

Let us now specify the zeros of ℘′:

Lemma 1.4.11. For ω ∈ Ω and ω/2 /∈ Ω, it holds, that ω/2 is a zero of
order 1 of ℘′. Conversely, every zero of ℘′ has this form.

Proof. From periodicy and since ℘′ is an odd function, we get ℘′(z + ω) =
℘′(z) = −℘′(−z). If ω/2 /∈ Ω, i.e. ω/2 is no pole of ℘ and ℘′, we may set
z := −ω/2 and obtain ℘′(ω/2) = −℘′(ω/2), hence ℘′(ω/2) = 0.

To proof the converse, let ω1, ω2 be a basis of Ω. In the fundamental
parallelogram P := �(ω1, ω2), we have at least three different zeros at the
points ω1/2, ω2/2 and (ω1 + ω2)/2. In remark 1.4.10, we saw, that ℘′ has
only one pole in P at the point 0. That pole has order 3. Due to theorem
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1.3.7, the number of zeros of ℘′ in P equals the number of poles of ℘′ in P ,
counting multiplicities.

Therefore, these three zeros are already all zeros of ℘′ in P and all of
them have order 1.

So, if z is an arbitrary zero of ℘′, then there exists ω′ ∈ Ω with z−ω′ ∈ P .
Then z − ω′ is one of the three points ω1/2, ω2/2, (ω1 + ω2)/2. So z also
has the form z = ω/2 with ω ∈ Ω and ω/2 /∈ Ω.

Now let us regard zeros (or more generally ω-points) of ℘ itself:

Lemma 1.4.12. Let P be an arbitrary period parallelogram of Ω. For each
z ∈ C with

z 6= ℘(ω/2), for all ω ∈ Ω, such that ω/2 /∈ Ω, (1.24)

there are exactly two different points u, v ∈ P with ℘(u) = ℘(v) = z. In this
case, u+ v ∈ Ω.

Conversely, if there are two different u, v ∈ P with ℘(u) = ℘(v) = z, then
(1.24) holds.

Proof. Since there is only one pole of ℘ in P of order 2, it follows from 1.3.7,
that the number of z-points in P (counting multiplicities) is also 2. Now
distinguish the following cases:

• There is only one u ∈ P with ℘(u) = z. Then u is a z-point of order
2 and it follows, that ℘′(u) = 0. From lemma 1.4.11, we then get a
contradiction to our condition (1.24).

• There are two different points u, v ∈ P with ℘(u) = ℘(v) = z. It then
follows from theorem 1.3.9, that u+ v ∈ Ω.

To summarize, let ω1, ω2 be a basis of Ω and P := �(ω1, ω2) the corre-
sponding fundamental parallelogram. Using the notation

ek := ℘(ωk/2), k ∈ {1, 2, 3} with ω3 := ω1 + ω2, (1.25)

we obtain from lemma 1.4.11 and lemma 1.4.12, that

℘(z)− ek has exactly one zero of order 2 in P for k ∈ {1, 2, 3} (1.26)

℘(z)− ω has two zeros of order 1 in P for ω /∈ {e1, e2, e3} (1.27)

Since ω1, ω2, ω3 are all pairwise disjoint, (1.26) yields, that

e1, e2, e3 are pairwise disjoint. (1.28)

The definition of e1, e2, e3 depends on the elected basis, but a basis change
only permutates these values.
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1.5 Differential equations for the Weierstrass ℘-
function.

Next, we want to give two important differential equations for ℘. We will
need these results later.

Theorem 1.5.1. For all z ∈ C\Ω, the equation

℘′2(z) = 4 · (℘(z)− e1) · (℘(z)− e2) · (℘(z)− e3) (1.29)

holds.

Proof. Let P again be the fundamental parallelogram �(ω1, ω2). Regard the
elliptic function

f(z) := 4(℘(z)− e1)(℘(z)− e2)(℘(z)− e3)

From (1.26), we see, that f has zeros exactly at the points ω1/2, ω2/2, ω3/2,
all of them of order 2. Lemma 1.4.11 implies, that the same holds for ℘′2.
As a product of three functions with a pole of order 2 in 0, f has a pole of
order 6 at 0. This is the only pole of f in P . From the formula (1.23), we
see, that ℘′2 also has a pole of order 6 at 0. From theorem 1.3.7, we obtain,
that this is the only pole of ℘′2 in P .

Therefore, the function ℘′2/f is an elliptic function without poles, i.e.
holomorphic and because of theorem 1.3.4 constant.

Since the coefficient of z−6 in the Laurent expansion at 0 equals 4 in both
cases, we see, that this constant value is 1. Hence, ℘′2 = f .

For the second important differential equation for ℘, we first need to
calculate the coefficient in the Laurent expansion (1.22).

For this, consider again the Eisenstein series

Gk := Gk(Ω) :=
∑

06=ω∈Ω

ω−k for k ≥ 4 even, (1.30)

from corollary 1.4.4. Also in corollary 1.4.4, we saw, that for odd k ≥ 3, the
series Gk equals 0.

Setting

γ := γ(Ω) := min{|ω| : 0 6= ω ∈ Ω}

we get the following

Theorem 1.5.2. For all z ∈ C and 0 < |z| < γ(Ω), we have the Laurent
expansion

℘(z) = z−2+

∞∑
n=2

(2n−1)G2n·z2n−2 = z−2+3G4z
2+5G6z

4+7G8z
6+. . . (1.31)
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Proof. Since

1

(1− t)2
=

d

dt

(
1

1− t

)
=
∞∑
m=1

mtm−1 for |t| < 1,

we get for an arbitrary ω ∈ C\{0}

1

(z − ω)2
− 1

ω2
=

1

ω2

(
1

(1− z
ω )
− 1

)
=

∞∑
m=2

m · z
m−1

ωm+1
, |z| < γ,

and therefore

℘(z) = z−2 +
∑

06=ω∈Ω

( ∞∑
m=2

m · z
m−1

ωm+1

)
, 0 < |z| < γ. (1.32)

Because of∣∣∣m · zm−1

ωm+1

∣∣∣ ≤ γm( |z|
γ

)m−1

· |ω|−3

and the convergence lemma 1.4.2, the series in (1.32) is absolutely convergent
in both m and ω.

Now, we may rearrange the series according to the Riemann series theorem
and so we get

℘(z) = z−2 +
∑
m≥2

mGm+1 · zm−1, 0 < |z| < γ.

Since Gk = 0 for odd k, as seen in corollary 1.4.4, the statement is proven.

Definition 1.5.3. The so-called Weierstrass-invariants g2, g3 are given by

g2 := g2(Ω) := 60G4(Ω) (1.33)

g3 := g3(Ω) := 140G6(Ω) (1.34)

This notation is quite standard in the literature.
The indication invariants will explain itself later.

Now we can state the second differential equation for ℘:

Theorem 1.5.4. The Weierstrass ℘-function meets the following differen-
tial equation:

℘′2 = 4℘3 − g2℘− g3. (1.35)
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Proof. To ease our notation in the proof, we use the Landau-notation:
If for a function f , there exists a constant C, such that |f(z)| ≤ C|z|k for

all z in a suitable neighborhood of 0, we shortly write O(zk) for it.
Based on

℘(z) = z−2 + 3G4z
2 + 5G6z

4 +O(z6), (1.36)

(see 1.31), we calculate

℘2(z) = z−4 + 6G4 + 10G6z
2 +O(z3),

℘3(z) = z−6 + 9G4z
−2 + 15G6 +O(z),

℘′(z) = −2z−3 + 6G4z + 20G6z
3 +O(z4),

℘′2(z) = 4z−6 − 24G4z
−2 − 80G6 +O(z).

Using definition 1.5.3, we then get

℘′2(z)− 4℘3(z) + g2℘(z) + g3 = O(z). (1.37)

As a linear combination of ℘ and ℘′, the left-hand side of (1.37) is an
elliptic function with poles only in Ω. But (1.37) also includes, that the left-
hand-side is holomorphic at 0 and therefore a globally holomorphic function.
From theorem 1.3.4, it follows, that this function is constant. Again due to
1.37, we see, that

℘′2(z)− 4℘3(z) + g2℘(z) + g3 = 0.

Corollary 1.5.5. Another differential equation for ℘ is given by

2℘′′ = 12℘2 − g2 (1.38)

Proof. This follows immediately by differentiating equation (1.35).

Proposition 1.5.6. For n ≥ 4, we have the recursion formula

(n− 3)(2n+ 1)(2n− 1)G2n = 3 ·
∑

p≥2,q≥2
p+q=n

(2p− 1)(2q− 1)G2pG2q. (1.39)

Proof. We insert the Laurent series (1.31) into the differential equation
(1.38) and obtain∑

n≥2

(2n− 1)(2n− 2)(2n− 3)G2nz
2n−4 + 30G4

= 12
∑
n≥2

(2n− 1)G2nz
2n−4 + 6

∑
p≥2

∑
q≥2

(2p− 1)(2q − 1)G2pG2qz
2p+2q−4.

A comparison of coefficients yields the wanted result.
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This formula specially implies

7G8 = 3G2
4,

11G10 = 5G4G6,

143G12 = 42G4G8 + 25G2
6 = 18G3

4 + 25G2
6.

Corollary 1.5.7. For k ≥ 8, we have

Gk ∈ Q[G4, G6].

Proof. This is an immediate consequence of proposition 1.5.6.

Theorem 1.5.8. Let Ω be a lattice in C and g2, g3 its Weierstrass invari-
ants. Then, each meromorphic, non-constant solution f of the differential
equation

f ′2 = 4f3 − g2f − g3

in a domain G ⊂ C is given by f(z) = ℘(z+w), z ∈ C with a suitable w ∈ C.
For f ∈M being such a solution, Ω is the corresponding lattice of f .

Therefore, the lattice Ω is uniquely determined by g2(Ω) and g3(Ω), resp.
by G4(Ω) and G6(Ω).

Proof. Let f be a meromorphic and non-constant solution of the given dif-
ferential equation in a domain G ⊂ C. If f is holomorphic in a disc U ⊂ G
with center u and f ′ 6= 0 in U , then we can choose a suitable square root to
obtain f ′ =

√
4f3 − g2f − g3. Due to lemma 1.4.12, we may choose a w ∈ C,

such that ℘(w + u) = f(u). By substituting w by −w − 2u if necessary, we
may additionally assume, that ℘′(w + u) = f ′(u).

So, the two functions f(z) and g(z) := ℘(z + w) both conform to the
same differential equation of first order and accord at the point u. So it
follows from the existence and uniqueness theorem of Picard-Lindelöf, that
f(z) = g(z) for all z ∈ U . The identity theorem 1.2.2 then implies, that
f(z) = g(z) globally, since the set of zeros of the difference function (f−g)(z)
has every point in U as an accumulation point.

Because for the ℘-function the set of poles equals the period lattice, Ω is
also the corresponding period lattice of f .

Together with corollary 1.5.7, this yields, that Ω is already uniquely de-
termined by g2 and g3.

We will see later, that for any two values c2, c3 ∈ C such that c3
2−27c2

3 6= 0,
there exists a lattice Ω, such that c2 = g2(Ω) and c3 = g3(Ω).

Theorem 1.5.9. For an indeterminate x, it holds, that

4x3 − g2x− g3 = 4(x− e1)(x− e2)(x− e3). (1.40)
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Proof. Since ℘ takes on at least three different values, we obtain this result
by comparing the differential equations in theorem 1.5.1 and theorem 1.5.4.

Corollary 1.5.10. The following equations hold:

0 = e1 + e2 + e3. (1.41)

g2 = −4(e1e2 + e2e3 + e3e1). (1.42)

g3 = 4e1e2e3. (1.43)

Proof. We get this by comparison of coefficients in theorem 1.5.9.

1.6 Conjugation-invariant lattices

In this short section, we want to give some simple properties about the
special class of conjugation-invariant lattices. The following results will not
be needed for the rest of this chapter, but are undoubtly interesting and
have consequences in chapter 2, when we deal with elliptic curves over R.

Definition 1.6.1. We call a lattice Ω conjugation-invariant, if for ω ∈ Ω its
complex conjugate ω is also in Ω, i.e. Ω = Ω. The most important examples
for conjugation-invariant lattices are

• the rectangular lattice: Ω = Zω1 + Zω2 with 1
iω1, ω2 ∈ R+,

• the hexagonal lattice: Ω = Zρ+ Z with ρ := 1
2(1 + i

√
3).

Proposition 1.6.2. Let Ω be a conjugation-invariant lattice, then

℘Ω(z) = ℘Ω(z) and ℘′Ω(z) = ℘′Ω(z).

Specially for z ∈ C\Ω, it holds that

• ℘Ω(z) is real for z ∈ R and z ∈ iR,

• ℘′Ω(z) is real for z ∈ R and purely imaginary for z ∈ iR.

Proof. We get this directly from the definition and the fact, that ℘ is en
even function, whereas ℘′ is an odd function.

Now we can give the following characterization:

Theorem 1.6.3. For a lattice Ω = Zω1 +Zω2, the following statements are
equivalent:

1. g2(Ω) and g3(Ω) are both real values.

2. All Gk(Ω), for k ≥ 4 even, are real.
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3. Either all of the three values e1, e2, e3 are real or one is real and the
other two are complex conjugates of each other.

4. Ω is conjugation-invariant.

Proof. (1) ⇔ (2): Use definition 1.5.3 and proposition 1.5.6.
(1) ⇒ (3): By theorem 1.5.9, we see, that e1, e2, e3 are exactly the roots

of the real polynomial 4x3−g2x−g3. So one is real and the others are either
complex conjugate or real too.

(1) ⇐ (3): Use 1.42 and (1.43)
(1) ⇔ (4): This equivalence follows from g2(Ω) = g2(Ω), g3(Ω) = g3(Ω)

and the fact, that Ω is uniquely defined by g2 and g3 due to theorem 1.5.8.

1.7 Discriminant and j-invariant of a given lattice

Definition 1.7.1. To a given lattice Ω, we define the discriminant ∆ by

∆ := ∆(Ω) := g3
2 − 27g2

3 (1.44)

Proposition 1.7.2. It holds, that

∆ = 16(e1 − e2)2(e2 − e3)2(e3 − e1)2 6= 0.

Proof. From (1.41) and (1.42), we get

g2 = 2(e2
1 + e2

2 + e2
3) (1.45)

g2
2 = 16(e2

1e
2
2 + e2

2e
2
3 + e2

3e
2
1). (1.46)

Using (1.42), (1.45) and (1.46), we further obtain

2(e1 − e2)2 = 2(e2
1 + e2

2)− 4e1e2 = 2g2 − 2e2
3 + 4e3(e1 + e2) = 2g2 − 6e2

3

and so

(e1 − e2)2 = g2 − 3e2
3.

We get similar equalities by interchanging e1, e2 and e3. Now calculate

16(e1 − e2)2(e2 − e3)2(e3 − e1)2

= 16(g2 − 3e2
1)(g2 − 3e2

2)(g2 − 3e2
3)

= 16g3
2 − 3 · 16g2

2(e2
1 + e2

2 + e2
3)

+ 9 · 16g2(e2
1e

2
2 + e2

2e
2
3 + e2

3e
2
1)− 27 · 16e2

1e
2
2e

2
3.

Using (1.45), (1.46) and (1.43), we see, that this expression equals g3
2−27g2

3,
i.e. ∆.

Since e1,e2 and e3 are pairwise disjoint due to (1.28), ∆ 6= 0.
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We will see, that every nonzero value appears as a determinant to a
suitable lattice.

To prove this, we will first need to collect some more information about
discriminants using the notion of the absolute invariant :

Definition 1.7.3. The value

j := j(Ω) := (12g2)3/∆ (1.47)

is called the absolute invariant of the lattice Ω.

One important property of the absolute invariant j is given by the follow-
ing

Theorem 1.7.4. For two lattices Ω and Ω′ in C, the following statements
are equivalent:

1. There exists a nonzero λ ∈ C, such that Ω′ = λΩ.

2. j(Ω) = j(Ω′)

Proof. (1) ⇒ (2): From our definition of the Eisenstein series in (1.18), we
obtain Gk(Ω

′) = Gk(λΩ) = λ−kGk(Ω) for k ≥ 3. This implies, using the
respective definition, that

g2(Ω′) = g2(λΩ) = λ−4g2(Ω), (1.48)

g3(Ω′) = g3(λΩ) = λ−6g3(Ω), (1.49)

∆(Ω′) = ∆(λΩ) = λ−12∆(Ω), (1.50)

j(Ω′) = j(λΩ) = j(Ω), (1.51)

hence (2).
(2) ⇒ (1): Consider the case j(Ω′) = j(Ω) 6= 0. Then, there exists a

0 6= λ ∈ C, such that

g2(Ω′) = λ−4g2(Ω) = g2(λΩ).

By replacing λ by iλ if necessary, we can assume, that g2(Ω′) = g2(λΩ) and
also g3(Ω′) = g3(λΩ). We then get Ω′ = λΩ by theorem 1.5.8.

Otherwise, if j(Ω′) = j(Ω) = 0, we have g2(Ω) = g2(Ω′) = 0 as well as
g3(Ω) 6= 0 and g3(Ω′) 6= 0 due to 1.7.2. We then get (1) in an analogous
way.

We now want to introduce a new kind of notation, which will be useful in
order to show the inversion theorem:

If (ω1, ω2) is a basis of Ω, we can write

℘(z;ω1, ω2) := ℘Ω and Gk := Gk(Ω) for k ≥ 3.
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Since neither ℘ nor Gk are dependent of the choice of our basis, corollary
1.1.6 yields

℘(z;ω′1, ω
′
2) = ℘(z;ω′1, ω

′
2) and Gk(ω

′
1, ω
′
2) = Gk(ω1, ω2) for k ≥ 3. (1.52)

if

ω′1 = aω1 + bω2

ω′2 = cω1 + dω2

with a, b, c, d ∈ Z, ad− bc = ±1.
As a basis of Ω, ω1, ω2 are linearly independent over R, so τ := ω1/ω2 /∈ R.

Since for every basis (ω1, ω2) of Ω, (ω′1, ω
′
2) is also a basis of Ω, we may assume

without loss of generality, that =(τ) > 0. This is the case, if and only if the
triagle (0, ω2, ω1) is positively oriented.

From the definitions, we see that if 0 6= λ ∈ C, it holds that

℘(λz;λω1, λω2) = λ−2℘(z;ω1, ω2),

Gk(λω1, λω2) = λ−kGk(ω1, ω2) for k ≥ 3.

It then follows by (1.52), that

℘(z;ω1, ω2) = ω−2
2 ℘(z/ω2; τ, 1) and Gk(ω1, ω2) = ω−k2 Gk(τ, 1) for k ≥ 3.

So assuming ω2 = 1 is no major restriction, if we study elliptic functions
over Ω and we can work with lattices of the form

Ω = Zτ + Z with τ ∈ H,

where H discribes the upper half-plane:

H := {τ ∈ C : =τ > 0}

Due to

τ ′ :=
ω′1
ω′2

=
aω1 + bω2

cω1 + dω2
=
aτ + b

cτ + d
and =τ ′ = ad− bc

|cτ + d|2
· =τ (1.53)

we may only allow integer values a, b, c, d with ad−bd = 1, if we change over
from a basis (τ, 1) of Ω to a basis (τ ′, 1) of 1

cτ+d with τ ′ ∈ H.
So, (1.52) can be written as

℘

(
z

cτ + d
;
aτ + b

cτ + d
, 1

)
= (cτ + d)2 · ℘(z; τ, 1) (1.54)

Gk

(
aτ + b

cτ + d
, 1

)
= (cτ + d)k ·Gk(τ, 1) for k ≥ 4, (1.55)

with integers a, b, c, d such that ad− bc = 1.
We will shortly write j(τ) for the absolute invariant j of the lattice Zτ+Z.
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Theorem 1.7.5. For τ, τ ′ ∈ H with j(τ ′) = j(τ) there exist integers a, b, c, d
with ad− bc = 1, such that

τ ′ =
aτ + b

cτ + d
.

Proof. According to our premises, j(Zτ ′ + Z) = j(Zτ + Z). From theorem
1.7.4, it follows, that Zτ ′ + Z = Zλτ + Zλ for a 0 6= λ ∈ C. So (τ ′, 1) and
(λτ, λ) are two bases of a lattice. Due to corollary 1.1.6, there exist integers
a, b, c, d with τ ′ = aλτ + bλ, 1 = cλτ + dλ and ad − cb = ±1, so τ ′ = aτ+b

cτ+d .
Since τ and τ ′ both lie in H, equation (1.53) yields ad− bc = 1.

We will need the use of these approaches and results in order to prove the
inversion theorem for elliptic functions. First though, we need to calculate
the power series expansions of j(τ).

1.8 Fourier series expansions of important param-
eters

Our next aim will be to prove the inversion theorem for elliptic functions.
For this, we will need the Fourier series expansions of the discriminant ∆(τ)
and the j-invariant j(τ) of a lattice Zτ + Z.

Like in the definitions 1.5.3, 1.7.1 and 1.7.3, we introduce

g2(τ) := 60G4(τ)

g3(τ) := 140G6(τ)

∆(τ) := g3
2(τ)− 27g2

3(τ).

It can be shown (compare [KK] for a detailed proof), that the Fourier
expansions of g2(τ) and g3(τ) are as follows:

g2(τ) =
(2π)4

12

(
1 + 240 ·

∞∑
m=1

σ3(m) · e2πimτ

)
, (1.56)

g3(τ) =
(2π)6

216

(
1− 540 ·

∞∑
m=1

σ5(m) · e2πimτ

)
, (1.57)

where σk(m) :=
∑

d∈N,d|m
dk. Both are holomorphic in H.

Theorem 1.8.1. The discriminant ∆(τ) has a Fourier series expansion of
the form

∆(τ) = (2π)12 ·
∞∑
m=1

τ(m) · e2πimτ , τ ∈ H, (1.58)
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with integer coefficients τ(m) and τ(1) = 1. The discriminant ∆ : H → C
is a holomorphic function with ∆(τ) 6= 0 for all τ ∈ H and

∆

(
aτ + b

cτ + d

)
= (cτ + d)12∆(τ) (1.59)

for all integers a, b, c, d with ad− bc = 1.
The denotation of the coefficients in (1.58) with τ(m) is a tradition. The

two different meanings of τ should not cause any confusion here.

Proof. We abbreviate

A :=
∞∑
m=1

σ3(m) · e2πimτ ,

B :=

∞∑
m=1

σ5(m) · e2πimτ .

Then, (1.56) and (1.57) imply

∆(τ) =
(2π)12

1728
((1 + 240A)3− (1− 504B)2) = (2π)12(e2πiτ + . . . ), (1.60)

with a power series in e2πiτ on the right-hand side.
To see, that the coefficients are in Z, note, that d3 ≡ d5 (mod 12) for d ∈ Z

and so σ(m) ≡ σ5(m) (mod 12) for m ∈ N. Refering to the coefficients, we
have A ≡ B (mod 12). Now we calculate modulo 1728 = 123 and obtain

(1 + 240A)3 − (1− 504B)2 ≡ 122(5A+ 7B) ≡ 0 (mod 123).

Hence the denominator in (1.60) cancels in all coefficients.
Since g2 and g3 are holomorphic, ∆ is it too. We obtain ∆(τ) 6= 0 by

corollary 1.7.2. The relation (1.59) follows quite directly from (1.55).

In the next step, we want to calculate a power series expansion of the
absolute invariant j, which was defined (see definition 1.7.3) as

j(τ) = (12g2(τ))3/∆(τ), τ ∈ H.

Because of theorem 1.8.1, j(τ) is defined for all values τ ∈ H.
Before we can get a similar series for j, we need the following proposition:

Proposition 1.8.2. Let f and g be power series

f(q) =
∑
n≥0

anq
n, g(q) =

∑
n≥0

bnq
n, an, bn ∈ Z,

which are convergent for |q| < 1 with g(q) 6= 0 for |q| < 1. Then f/g is also
a power series with integer coefficients, convergent for |q| < 1.
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Proof. With f and g is also f/g holomorphic for |q| < 1 and so there exists
a power series expansion, whose coefficients we denote with cn. From∑

n≥0

cnq
n

 ·
∑
n≥0

bnq
n

 =
∑
n≥0

anq
n

and b0 = 1, we get the recursion formula

c0 = a0, cm = am −
m−1∑
n=0

cnbm−n, m ≥ 1.

So, the cn are all integers.

Theorem 1.8.3. The absolute invariant j : H → C is holomorphic and has
a Fourier expansion of the form

j(τ) = e−2πiτ +
∑
m≥0

jm · e2πimτ = e−2πiτ + 744 + 196884 · e2πiτ + . . .

and jm ∈ Z. It holds, that

j

(
aτ + b

cτ + d

)
= j(τ) for all integers a, b, c, d with ad− bc = 1. (1.61)

Proof. Since g2 and ∆ are holomorphic, j is it too. After separating a factor
e2πiτ from ∆, we can use proposition 1.8.2 and obtain the Fourier expansion
of j by (1.56) and (1.58). The equation (1.61) is a consequence of (1.59) and
(1.55).

1.9 The inversion theorem

In this section, we will prove the very important inversion theorem, based
on the results, that we obtained about the j-invariant. This theorem will be
the key to the connection between the theory of elliptic functions and the
theory of elliptic curves, that we will treat in chapter 2.

Theorem 1.9.1. For each c ∈ C, there exists a value τ ∈ H with j(τ) = c.

Proof. Suppose, j(τ) 6= c for all τ ∈ H. Then F (τ) := j′(τ)
j(τ)−c is holomorphic

in H. Now consider the integral∫
γ
F (τ) dτ, γ = γ1 + γ2 + γ3 + γ4 + γ5

along the path γ = ∂G from the figure:
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2

0 1
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1

i

γ1

γ2

γ3

γ4 γ5

G

From (1.61), it follows, that

F (τ + 1) = F (τ), F (−1/τ) = τ2F (τ).

So, we have
∫
γ1
F (τ) dτ +

∫
γ3
F (τ) dτ =

∫
γ4
F (τ) dτ +

∫
γ5
F (τ) dτ = 0.

Due to proposition 1.8.2 and theorem 1.8.3, F (τ) has a Fourier expansion
of the form

F (τ) =
∑
m≥0

ame
2πimτ , a0 = −2πi.

So we have
∫
γ2
F (τ) dτ = 2πi. By the residue theorem, we get

2πi ·
∑
τ∈G

Ordτ (j − c) =

∫
γ
F (τ) dτ = 2πi.

This is a contradiction. So there exists a τ ∈ H with j(τ) = c.

Corollary 1.9.2 (Inversion theorem). For c2, c3 ∈ C with c3
2 − 27c2

3 6= 0,
then there exists a unique lattice Ω with c2 = g2(Ω) and c3 = g3(Ω).

Proof. According to theorem 1.9.1, there exists a lattice Ω such that j(Ω) =
(12c2)3

c32−27c23
.

Consider the case c2 = 0. Then, j(Ω) = 0, i.e. g2(Ω) = 0 and g3(Ω) 6= 0.
Now choose a 0 6= λ ∈ C such that g3(Ω) = λ6c3. By (1.49), it follows, that
g3(λΩ) = λ−6g3(Ω) = c3 and g2(λΩ) = λ−4g2(Ω) = 0 = c2.

If c2 6= 0, we have j(Ω) 6= 0 and g2(Ω) 6= 0. Now choose a 0 6= λ ∈ C with
g2(Ω) = λ4c2. It follows g2(λΩ) = c2 and due to j(λΩ) = j(Ω) we obtain
c2

3 = g2
3(λΩ). If necessary, we substitute λ by iλ and so get the existence of

the wanted lattice.
The uniqueness follows (in both cases) directly from theorem 1.5.8.
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1.10 The field of elliptic functions

We want to end this chapter with a quite important algebraic theorem,
that gives us an idea, why the Weierstrass ℘-function is so important to
understand the theory of all elliptic functions.

To start with, we see from the definition of ℘, that in a polynomial in ℘,
poles can not be eliminated. Therefore, ℘ is not algebraic, but transcendent
over the field C and the field C(℘) is isomorphic to the field of all rational
functions over C.

Theorem 1.10.1. The following statements hold:

1. The even elliptic functions relating to Ω are just the rational functions
in ℘.

2. K(Ω) = C(℘)[℘′].

3. The degree of the field expansion of K(Ω) over C(℘) is exactly 2.

Proof. 1.: Let f ∈ K(Ω) be an elliptic function, that is even and not con-
stant. Furthermore, let m be the number of poles of f in a period paral-
lelogram (counting multiplicities), P a fundamental parallelogram of Ω and
N := {c ∈ P : f ′(c) = 0}. We see, that N is finite.

We now prove the following statement:
The number m is even, m = 2k. For each complex number u /∈ f(N),

there exist pairwise disjoint points

c1, . . . , ck, c
′
1, . . . c

′
k ∈ P, cj + c′j ∈ Ω for j = 1, . . . , k, (1.62)

such that f takes on the value u exactly at the points (1.62) in P , each with
multiplicity 1.

By theorem 1.3.7, we see, that the number of u-points of f is also m. Let
c ∈ P be given with f(c) = u. Since f is even, we also have f(−c) = u and
so there exists a ω ∈ Ω such that c′ := ω − c ∈ P and f(c′) = u. If c′ = c,
then for arbitrary z, we have f(c+z) = f(ω− c+z) = f(−c+z) = f(c−z),
hence f ′(c+ z) = −f ′(c− z) and so it would follow f ′(c) = 0, i.e. u ∈ f(N),
which contradicts our presumption. So c and c′ are disjoint. From this, we
see, that all u-points appear pairwise and since u /∈ f(N), every u-point has
multiplicity 1. So, the statement above is proven.

Now, we want to show, that f is a rational function in ℘. Choose v 6= u
with v /∈ f(N). From the statement above, we see, that there exist points

d1, . . . , dk, d
′
1, . . . , c

′
k, dj + d′j ∈ Ω for j = 1, . . . , k,

such that f takes on the value v in P exactly at these points, each with
multiplicity 1. Then, the elliptic function

g(z) :=
f(z)− u
f(z)− v
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has zeros in P exactly at c1, . . . , ck, c
′
1, . . . , c

′
k, (each of order 1) and poles in

P exactly at d1, . . . , dk, d
′
1, . . . , d

′
k, (each of order 1), because all poles of f

vanish.
If we now choose e1, e2, e3 like in (1.25) and u, v different from those three

points, then the function

h(z) :=
(℘(z)− ℘(c1)) . . . (℘(z)− ℘(ck))

(℘(z)− ℘(d1)) . . . (℘(z)− ℘(cd))

has the same poles and zeros as g.
So the quotient g/h is holomorphic and therefore constant due to theorem

1.3.4. Hence g ∈ C(℘), and since f = vg−u
g−1 , f is a rational function in ℘.

2.: If f ∈ K(Ω) is not constant, we can write f = g + h℘′ with g(z) :=
1
2(f(z) + f(−z)) and h(z) := 1

2℘′(z)((f(z) − f(−z)). Obviously g and h

both belong to K(Ω) and are even. So statement 1 yields, that g and h are
rational functions of ℘.

3.: On the one hand side, ℘′ /∈ C(℘), since ℘′ is an odd function, on the
other hand side, theorem 1.5.4 implies that the degree is not higher than
2.

Hence we see, that each f ∈ K(Ω) can be written in the form

f = R(℘) +Q(℘) · ℘′, (1.63)

where R,Q are rational functions over C. So we can discribe elliptic func-
tions in a very easy way using the ℘-function.

We now can give the following

Corollary 1.10.2. Let x, y be independent indeteminants over C. Then

K(Ω) ∼= C(x)[y]/I(x, y),

where I(x, y) is the principal ideal generated by y2−4(x−e1)(x−e2)(x−e3)
in C(x)[y].

Proof. We define a ring-homomorphism Φ : C(x)[y]→ K(Ω) by x→ ℘, y →
℘′. By theorem 1.10.1, Φ is surjective. Now we write a φ ∈ C(x)[y] after
division with remainder over the field C(x) in the form

φ(x, y) = (y2 − 4(x− e1)(x− e2)(x− e3)) · q(x, y) + r(x, y)

where q, r ∈ C(x)[y] and the degree of r is lower than 2. Due to theorem
1.5.4, φ is in the kernel of Φ, if r(℘, ℘′) = 0. Because of (1.63), this means
r(x, y) = 0. So the kernel of Φ is exactly I(x, y) and the statement follows
from the fundamental theorem on homomorphisms for rings.

Since two elements of K(Ω) are algebraically dependent, we also get the
following

Corollary 1.10.3. For f, g ∈ K(Ω), it exists a non-trivial polynomial P (x, y) ∈
C[x, y], such that P (f, g) = 0.
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Chapter 2

Elliptic curves

An elliptic curve is, easily spoken, a smooth cubic in the projective plane
over an arbitrary field K. Being smooth means, that it is free from cusps or
self-intersections.

Using the theory of elliptic functions, it can be shown that elliptic curves
defined over the complex numbers correspond to embeddings of the torus
into the complex projective plane. The torus is also a commutative group,
and in fact this correspondence is also a group isomorphism.

One can show, that such an elliptic curve can be regarded as a commu-
tative group not only over C, but over every field in a similar way. This is
called the group law for elliptic curves. There is one infinite point on each
elliptic curve, which plays a special role. It is the zero element of the group.

Elliptic curves are especially important in number theory, and constitute
a major area of current research; for example, they were used in the proof,
by Andrew Wiles, of Fermat’s Last Theorem. More details can be found
in [AW2] and [TW]. They also find applications in cryptography (see the
article elliptic curve cryptography) and integer factorization.

2.1 The projective plane

For our further considerations, it is useful to introduce the concept of a
projective plane. The main disadvantages of the affine plane K ×K, where
K is a field, lies in the fact, that these set of points are not topologically
compact, which make the affine plane somehow incomplete.

This leads to many distinctions of cases: For example, two different lines
intersect in just one point, if they are not parallel. Therefore, we add one
additional (infinite) point to each line, such that two lines have the same
point at infinity, if and only if they are parallel in the affine plane. The set
of all infinite points builds another line - the line at infinity.

This leads to the fact, that we do not have to differ between parallel and
non-parallel lines. Also it is much easier to describe the characteristics of a
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curve in infinity. This also makes it is easy to see, that ellipses, hyperbolas
and parabolas are, projectively seen, the same thing, if we regard the line
at infinity like any other line.

Definition 2.1.1. Let K be a field. The projective plane P2(K) is defined
as the quotient of {(x, y, z) ∈ K3\{(0, 0, 0)}} by an equivalence relation ∼,
where (x′, y′, z′) ∼ (x, y, z) if (x′, y′, z′) = λ(x, y, z) for some λ ∈ K\{0}.
Therefore, the coordinates of a point are only defined up to scaling. We will
write (x : y : z) for the point represented by these coordinates.

A line in P2(K) then is defined by a nonzero polynomial L = ax+ by+ cz
with fixed a, b, c ∈ K. We regard L and L′ = a′x+ b′y + c′z to be the same
line, if (a′, b′, c′) is a multiple of (a, b, c). Therefore the locus

L(K) = {(x, y, z)|ax+ by + cz = 0}

is well defined in P2(K) and we will speak of the line L(K) in P2(K).

In this definition, we can also identify points in P2(K) as lines through
the null point (0, 0, 0) in the three-dimensional affine space K3.

The affine planeK2 has a standard one-one imbedding into P2(K): Namely
we map a vector (x, y) into (x : y : 1). The set, that is missed by the image is
the set, where z = 0, which is called the line at infinity. Any point (x : y : 0)
in P2(K) is therefore aid to be a point at infinity.

For all other points, we can define the reverse map by mapping (x : y :
z) ∈ P2(K) onto (x/z, y/z), which then is in K2.

Remark 2.1.2. In the same manner, we can define the projective space
Pn(K), which is connected with the affine space Kn−1. But as we are
interested in planar curves, we will only work with P2(K).

Further informations and approaches to this can be found in many books
about projective geometry.

2.2 Planar curves

Definition 2.2.1. Let K[x, y, z] be the set of all polynomials with indeter-
minates x, y, z.

A polynomial F ∈ K[x, y, z] is called homogeneous of degree d, if it has
the form

F =
∑

r+s+t=d

arstx
ryszt.

A projective planar curve of degree d over a field K is given by a homo-
geneous polynomial 0 6= F ∈ K[x, y, z] of degree d.

Again, two curves are regarded as the same curve, if they are multiples
of each other. The locus

F (K) = {(x : y : z)|F (x, y, z) = 0}
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is well defined in P2(K), since F is homogeneous. We speak of the curve
F (K) in P2(K).

In the special case that d = 1, 2, 3, the curve is called a line, conic, or
cubic, respectively.

Definition 2.2.2. An affine planar curve C over a field K is given by a
non-constant polynomial f ∈ K[x, y].

We identify this polynomial with the set of all points (x, y) ∈ K2 with
f(x, y) = 0 and shortly write f(K) for it.

Now we want to give a connection between affine and a projective planar
curves:

Given an affine curve f(K) by a polynomial f(x, y) of highest degree d, we
can define F (x, y, z) := zdf(x/z, y/z), which is a homogeneous polynomial
of degree d. Therefore F (K) is a projective planar curve. We call it the
projective closure of f(K). By identifying P2(K) with K2 according to the
standard imbedding, we can regard F (K) as a continuation of the affine
part f(K). The new points F (K)\f(K), i.e. the points in F (K) with z = 0
are exactly the infinite points of the curve.

Conversely, if F (K) is a projective planar curve of degree d, then f(x, y) :=
F (x, y, 1) is a polygone of maximal degree d. We call f(K) the affine part
of C. In the case that F = azd, the affine part is empty, because f = a
does not define an affine curve. This means that all points of F (K) are on
the line at infinity. In all other cases f(K) is an affine curve in K2, not
necessarily of degree d.

These operations are almost inverse: The affine part of a projective clo-
sure of an affince curve f(K) is again f(K). The projective closure of the
affine part of a projective curve F (K) is again F (K), if F is not divisible
by z.

We now want to study projective planar curves. It will turn out, that a
projective planar curve of degree d and a line intersect in exactly d points,
counting multiplicities. For this, we need to give a proper definition of this
intersection multiplicity:

Definition 2.2.3. Let P = (p1 : p2 : p3) ∈ P2(K) be a point, L(K) a
projective line over K (given by L : ax+by+cz = 0) and F (K) a projective
curve F (given by a polynomial F : F (x, y, z) = 0). We assume, that
ax+ by + cz is not a divisor of F , else the line L(K) would be contained in
F (K).

We now define the intersection multiplicity i(L,F ;P ) of the point P with
respect to L and F as follows:

For P /∈ L(K) ∩ F (K), we set i(L,F ;P ) := 0. Else, we solve L for one
variable (for example z = −a

cx −
b
cy if c 6= 0) and insert it into F . We

get a homogeneous polynomial H in two variables, which is divisible by
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(p1y − p2x) (respective (p1z − p3x) or (p2z − p3y), if we eliminated another
variable instead of z). The multiplicity of this factor then is i(L,F ;P ).

It is easy to see, that this definition is independent of our choice, which
variable we eliminate.

Example 2.2.4. Consider the curve F (K) given by F : y2z − x3 + xz2.
For the line given by y = 0, we obtain H : −x3 + xz2 = x(x + z)(−x + z),
so we have intersection multiplicity 1 in each one of the points (0 : 0 : 1),
(−1 : 0 : 1) and (1 : 0 : 1).

Taking the line x − z = 0 instead, we get H : xy2 by eliminating z, so
the intersection point (1 : 0 : 1) has multiplicity 2. (This line will turn out
to be the tangent on F(K) at this point. The definition of a tangent will be
given later.)

Finally, we look at the line z = 0. In this case, we have H : −x3, so we
even have an intersection point of multiplicity 3 at (0 : 1 : 0). (This line will
turn out to be an inflexion tangent)

Theorem 2.2.5. Let F (K) be a projective planar curve of degree d and
L(K) given by L : ax + by + cz a projective line, which is not contained in
F (K). Then∑

P∈L(K)∩F (K)

i(L,F ;P ) = d,

where K denotes the algebraic closure of K.

Proof. Without loss of generality, we can assume, that c 6= 0. We set a′ :=
−a/c, b′ := −b/c, so the line equation of L(K) is given by z = a′x +
b′y. Inserting this into F , we get H(x, y) = F (x, y, a′x + b′y). This is a
homogeneous polynomial of degree d in K[x, y].

Due to the fundamental theorem of algebra, this polynomial splits into
linear factors in K[x, y]:

H(x, y) = α(η1x− ζ1y)d1) · · · (ηkx− ζky)dk).

For each intersection point P = (p1 : p2 : p3) ∈ L(K) ∩ F (K), we have
H(p1, p2) = 0 as well as p3 = a′p1 + b′p2 - and conversely such a point is an
intersetion point.

So the intersection points are exactly (ζ1 : η1 : a′ζ1 + b′η1), . . . , (ζk :
ηk, a

′ζk + b′ηk) and their multiplicities are per definition d1, . . . , dk. But as
d1 + · · ·+ dk = d, this concludes the proof.

Remark 2.2.6. This theorem is a special case of the theorem of Bézout, which
states, that two projective curves of degree d1 and d2 intersect in exactly
d1d2 points.

The proof of this theorem requires some deeper knowledge in algebraic
geometry.
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In analysis, we are mainly interested in somehow “smooth” objects, i.e.
objects which are not only contineous, but also have some differentiability
properties.

Since we do not have any topology, we need another suitable definition,
because we can not derivate by using limits of differential quotients. How-
ever, we can use the following definition:

Definition 2.2.7. We call an affine planar curve given by f(x, y) = 0 smooth
in a point P = (p1, p2) ∈ F (K), if the partial derivation in P , ∂f∂x (p1, p2) and
∂f
∂y (p1, p2) do not both equal 0.

Analogous, we call a projective planar curve given by F (x, y, z) = 0
smooth in a point P = (p1 : p2 : p3) ∈ F (K), if(

∂F

∂x
(p1, p2, p3),

∂F

∂y
(p1, p2, p3),

∂F

∂z
(p1, p2, p3)

)
6= (0, 0, 0).

We call a curve (affine or projective) F smooth, if it is smooth in all points
P ∈ F (K). Otherwise, we say, F is singular.

Any point P , where the curve F is not smooth, is called a singular point
of F .

Remark 2.2.8. A point on an affine curve f(K) is a singular point, if and
only if it is a singular point on the projective closure of f(K). This follows
quite obviously from the fact, that it doesn’t matter, if we set z = 1 before
or after derivating a curve in the projective closure of f(K).

Example 2.2.9. We take the curve F : y2z − x3 − z3 from example 2.2.4.
Is it smooth? Each singularity point (p1, p2, p3) has to satisfy

−3p2
1 = 2p2p3 = p2

2 − 3p2
3 = 0.

If char(K) 6= 2, 3, this implies p1 = p2 = p3 = 0. But since (0 : 0 : 0) is not
a point in the projective plane, F (K) is smooth.

The affine curve y2 = x3 − x2 is not smooth in P = (0, 0), since both
derivatons 3x2 − 2x and 2y equal 0 there.

The curve F (x, y, z) = x3 − 6xz2 + 6yz2 − y3 is well-defined over K = Q,
is smooth at every point of F (Q) ans has a singular point ar (

√
2,
√

2, 1). So
the curve is singular.

Definition 2.2.10. If F is smooth in P , then there exists a unique line L
through P = (p1 : p2 : p3), such that i(L,F ;P ) ≥ 2. This line is called the
tangent line on F in P and is given by the equation

∂F

∂x
(p1, p2, p3)x+

∂F

∂y
(p1, p2, p3) y +

∂F

∂z
(p1, p2, p3) z = 0.

If i(L,F ;P ) ≥ 3, we say, that P is an inflection point of F .
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2.3 Elliptic curves

In this section, we will introduce elliptic curves (over arbitrary fields):

Definition 2.3.1. An elliptic curve over a field K is a smooth projective
cubic E over K, which is given by an equation of the form

y2z + a1xyz + a3yz
2 = x3 + a2x

2z + a4xz
2 + a6z

3 (2.1)

with coefficients a1, a2, a3, a4, a6 ∈ K.
A cubic of the form (2.1) is said to be the Weierstrass form.
The corresponding affine Weierstrass form is given by the equation of the

affine part:

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (2.2)

The notation is absolutely standard. The subscripts can be seen to in-
dicate the degree of homogenity of the corresponding term under a certain
change of variables.

We now state some very important properties about elliptic curves:

Proposition 2.3.2. Let E(K) be a curve in Weierstrass form (not neces-
sarily smooth) over a field K like in definition 2.3.1. Then E(K) has exactly
one point at infinity, namely (0 : 1 : 0). E is smooth in (0 : 1 : 0) and the
tangent at E in (0 : 1 : 0) is the line at infinity z = 0. Moreover, (0 : 1 : 0)
is an inflection point of E.

Proof. To find points at infinity, we have to set z = 0 in equation (2.1).
It remains the term x3 = 0, so (0 : 1 : 0) is the only point at infinity
(independent of our choice of the field K) and the intersection multiplicity
of the line at infinity with E is 3, so (0 : 1 : 0) is an inflection point of E.

To prove, that E is smooth in (0 : 1 : 0), we regard the partial derivations
of E evaluated at that point. Derivating (2.1) by z, we get a single term y2

as well as several other terms, which include x or z, so ∂E
∂z (0 : 1 : 0) 6= 0.

Therefore (0 : 1 : 0) is not a singular point.
Since E is smooth in (0 : 1 : 0) and the intersection multiplicity is ≤ 2, we

see, it follows, that the line at infinity z = 0 is the tangent at that point.

Since the behaviour of an elliptic curve at its only infinite point is so well
understood by proposition 2.3.2, we can study much of the behaviour of the
curve by working with the affine form (2.2).

This form has the advantage, that the notation is simpler.

Definition 2.3.3. Let E(K) be an elliptic curve. An admissible change of
variables in a Weierstrass equation (2.2) is one of the form

x′ = u2x+ r and y′ = u3y + su2x+ t (2.3)
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with u, r, s, t ∈ K and u 6= 0. Projectively seen, this is a transformation x′

y′

z′

 = Φ

 x
y
z

 with Φ :=

 xu2 0 r
su2 u3 t
0 0 1

 . (2.4)

It fixes (0 : 1 : 0) and carries the tangent z = 0 to the same line.
Two elliptic curves over the same fieldK, that are related by an admissible

change of variable are said to be isomorphic.

Proposition 2.3.4. Let E(K) be an elliptic curve over K. For char(K) 6=
2, E(K) is isomorphic to an elliptic curve E′(K) of the form

E′ : y2 = 4x3 + b2x
2 + 2b4x+ b6. (2.5)

If additionally char(K) 6= 3, we can futher simplify (2.5) to a form

y2 = x3 − 27c4x− 54c6. (2.6)

Equation (2.6) is said to be the short Weierstrass form and is the standard
form for elliptic curves, if char(K) 6= 2, 3.

Proof. Based on the affine form (2.2), we use the following notation:

b2 := a2
1 + 4a2

b4 := 2a4 + a1a3

b6 := a2
3 + 4a6

b8 := a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4

(2.7)

and

c4 := b22 − 24b4
c6 := −2b32 + 36b2b4 − 216b6.

(2.8)

In the first simplification of (2.2), we complete the square by replacing y +
1
2(a1x+ a3) by 1

2y. The result is equation is

E′ : y2 = 4x3 + b2x
2 + 2b4x+ b6, (2.9)

with b2, b4, b6 as in (2.7). (The coefficient b8 will play a role later in this
section.) This yields the first result.

In the second simplification (assuming additionally, that char(K) 6= 3),

we replace (x, y) in (2.5) by
(
x−3b2

36 , y
108

)
and the result is (2.6).

Remark 2.3.5. By substituting (x, y) by (36x, 108y) in (2.6), we get the form

y2 = 4x3 − g2x− g3, (2.10)

where

g2 := c4/12 and g3 := c6/216. (2.11)

This form will be very useful later, when we consider the special case K = C.
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Definition 2.3.6. For any field K, we introduce the discriminant ∆ of a
cubic in Weierstrass form (2.2) by the formula

∆ := −b22b8 − 8b34 − 27b26 + 9b2b4b6 (2.12)

with b2, b4, b6, b8 as in (2.7). When char(K) 6= 2, 3, we can solve for ∆ by
the formula

1728∆ = c3
4 − c2

6. (2.13)

If we substitute c4 and c6 by g2 and g3 like in (2.11), we get

∆ = g3
2 − 27g2

3. (2.14)

This strongly reminds us of definition 1.7.1 and we will see later, when
we discuss the connection between elliptic curves and elliptic functions, that
this is essentially the absolute same concept.

Our next aim will be to show, that a cubic in Weierstrass-form is smooth
(and so an elliptic curve) if and only if ∆ 6= 0.

This is, what makes the concept of ∆ so important for elliptic curves.
However, before we can proof this, we need to give more informations

about discriminants of cubic polynomials:

Definition 2.3.7. Let

f(x) = x3 − αx2 + βx− γ = (x− r1)(x− r2)(x− r3) (2.15)

be a monic cubic polynomial over K with roots in K. Here α, β and γ are
given by the elementary symmetric polynomials

α = r1 + r2 + r3, β = r1r2 + r1r3 + r2r3, γ = r1r2r3. (2.16)

We can check, that

det

 1 1 1
r1 r2 r3

r2
1 r2

2 r2
3

 = (r3 − r2)(r3 − r1)(r2 − r1) (2.17)

and that 1 1 1
r1 r2 r3

r2
1 r2

2 r2
3

 1 r1 r2
1

1 r2 r2
2

1 r3 r2
3

 =

 3 σ1 σ2

σ1 σ2 σ3

σ2 σ3 σ4,

 (2.18)

where σi := ri1 + ri2 + ri3 for 1 ≤ i ≤ 4. The discriminant d of f(x) is given
by

d := (r1 − r2)2(r1 − r3)2(r2 − r3)2. (2.19)

For a cubic polynomial, that is not monic, we define d to be the same as
for the multiple that is monic. If we then replace x by x/C in a cubic, the
discriminant gets multiplied by C6 (since each root gets multiplied by C).
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Lemma 2.3.8. The discriminant of the polynomial f(x) in (2.15) is given
by

d = det

 3 σ1 σ2

σ1 σ2 σ3

σ2 σ3 σ4,

 (2.20)

where

σ1 = α,

σ2 = α2 − 2β

σ3 = α3 − 3αβ + 3γ

σ4 = α4 − 4α2β + 2β2 + 4αγ.

Proof. The determinant formula follows directly from (2.17), (2.18) and
(2.19). Then, σ1, σ2, σ3, σ4 are symmetric polynomials in r1, r2, r3 and hence
are polynomials in the elementary symmetric polynomials α, β, γ. There is
an algorithms for finding the polynomials in α, β, γ and application of it
yields the above expression for σ1, σ2, σ3, σ4. These expressions can be veri-
fied by direct computation.

Corollary 2.3.9. For the cubic polynomial f(x) = x3 +px+q, the discrim-
inant is d = −4p3 − 27q2.

Proof. This is the special case of lemma 2.3.8 in which α = 0, β = p and
γ = −q.

Example 2.3.10. The easiest case is a cubic polynomial f(x) defined over
R. The discriminant d is 0 if and only if f has a repeated root. If the three
roots are real, then d ≥ 0. If f has one real root r1 and one pair of complex
conjugate roots r2 and r2 = r2, then (r1 − r2)(r1 − r2) is real and (r2 − r2)
is imaginary. Since d is the square of the product, d is ≤ 0.

In the general case, d = 0 for a cubic polynomial, if and only if at least
two of the roots are equal.

The relevance of the discriminant d for detecting singularities of cubics in
Weierstrass form is as follows:

Proposition 2.3.11. If C is a nonzero element of K and if char(K) 6= 2,
then the planar curve

y2 = C(x3 − αx2 + βx− γ) (2.21)

is smooth, if and only if f(x) = C(x3 − αx2 + βx− γ) has distinct roots in
K.
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Proof. Since proposition 2.3.2 showed, that there can be no singularity on
the line at infinity, the curve is singular, if and only if there exists a K-
rational point (x0 : y0 : 1) on the curve where the following three equations
are all satisfied:

0 =
∂

∂x
= 3x2

0 − 2αx0 + β (2.22)

0 =
∂

∂y
= 2y0 (2.23)

0 =
∂

∂z
= C(−αx2

0 + 2βx0 − 3γ)− y2
0. (2.24)

Equations (2.23), (2.21) and (2.22) are equivalent with

0 = y0 = f(x0) = f ′(x0),

and (2.24) is redundant, giving the extra condition 3f(x0) − x0f
′(x0) = 0.

Thus the only candidates for singular points over K are (x0 : 0 : 1), where
x0 is a root of f and such a candidate (x0 : 0 : 1) is singular, if and only if
x0 is a multiple root of f .

Proposition 2.3.12. If char(K) 6= 2, let db and dc be the discriminants of
the cubic polynomials on the right sides of (2.5) and (2.6), respectively.

Then

dc = 212312db (2.25)

and

∆ = 24db. (2.26)

Proof. Consider the case char(K) 6= 3: Apart from translations, (2.6) is
obtained from (2.5) by replacing x by x/C with C = 62 and we have seen
that this effect on discriminants is to multiply them with C6. Thus (2.25)
follows. By corollary 2.3.9 and (2.13), we have

dc = −4(−27c4)3 − 27(−54c6)2 = 22 · 39 · 123∆.

Then, (2.26) follows from (2.25)
If char(K) = 3, it is immediate from corollary 2.3.9, that dc = 0 and

hence (2.25) is valid. The discriminant db of (2.5) is the same as that of
(2.21) with

α = −b2
4
, β =

b4
2
, γ = −b6

4
, C = 4.

Since 3 = 0, lemma 2.3.8 says that

db = 2σ1σ2σ3 − σ3
2 − σ2

1σ4 = −σ1σ2σ3 − σ3
2 − σ2

1σ4
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where

σ1 = α

σ2 = α2 + β

σ3 = α3

σ4 = α4 − α4 − α2β − β2 + αγ

with

α = −b2, β = −b4 γ = −b6.

Substituting gives

db = −β3 + α2β2 − α3γ = b34 + b22b
2
4 − b32b6. (2.27)

Meanwhile, in any characteristic, we can check that

4b8 = b2b6 − b24.

Therefore in characteristic 3,

∆ = −b22b8 + b34 = −b32b6 + b22b
2
4 + b34.

Comparing this equation with (2.27), we see, that ∆ = db and so (2.26)
follows.

Now, we are ready to prove the following important theorem:

Theorem 2.3.13. A cubic E(K) in Weierstrass form like in (2.1) is sin-
gular, if and only if ∆ = 0.

Proof. Suppose char(K) 6= 2. Then E(K) is singular, if and only if (2.5)
is singular, if and only if the right side of (2.5) has a repeated root (by
proposition 2.3.11), if and only if db = 0, if and only if ∆ = 0.

Suppose, char(K) = 2. Then, ∆ reduces to

∆ = b22b8 + b26 + b2b4b6

= a6
1a6 + a5

1a3a4 + a4
1a2a

2
3 + a4

1a
2
4 + a4

3 + a3
1a

3
3.

Meanwhile, just as in the first paragraph of proposition 2.3.11, E can have
singularities only at K-rational points (x0 : y0 : 1) on the curve and it has a
singularity at such a point, if and only if

0 =
∂

∂x
= a1y0 + x2

0 + a4 (2.28)

0 =
∂

∂y
= a1x0 + a3 (2.29)

0 =
∂

∂z
= y2

0 + a1x0y0 + a2x
2
0 + a6. (2.30)
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Equation (2.30) is redundant, being the sum of the curve, x0 times (2.28)
and y0 times (2.29).

Suppose, a1 = 0. Then, ∆ = 0 if and only if a3 = 0, if and only if (2.29)
holds. To complete this case, it is enough to show, that the system

y2
0 = x3

0 + a2x
2
0 + a4x0 + a6

0 = x2
0 + a4

has a solution in K. But we have only to choose x0 ∈ K so, that the second
equation holds, substitute it into the first equation and choose y0 ∈ K so,
that the first equation holds.

Now suppose, a1 6= 0. Then, (2.29) and (2.28) successively give

x0 = a−1
1 a3 and y0 = a−3

1 a2
3 + a−1

1 a4.

Substitution of these values for x and y in the difference of the two sides of
(2.2) gives

(a−6
1 a4

3 + a−2
1 a2

4) + (a−3
1 a3

3 + a−1
1 a3a4) + (a−3

1 a3
3 + a−1

1 a3a4) +

+a−3
1 a3

3 + a−2
1 a2a

2
3 + a−1

1 a3a4 + a6,

and the equation at the beginning of the proof says, that this is just a−6
1 ∆.

Thus (x0, y0) satisfies (2.2), yielding (x0 : y0 : 1) as a singular point, if and
only if ∆ = 0. This concludes the proof of the theorem.

2.4 Elliptic curves over C and the inversion theo-
rem

Now, we are ready to give the connection between elliptic curves and elliptic
functions:

Theorem 2.4.1 (Fundamental inversion theorem). Consider a lattice Ω in
C. Then, the set

E(Ω) := {(x, y) ∈ C2 : y2 = 4x3 − g2x− g3}

is an elliptic curve in C2 in affine Weierstrass-form. We call it the (affine)
elliptic curve generated by Ω.

Conversely, for any elliptic curve in C2, there exists a unique lattice Ω,
that generates E.

Proof. From the definition, it is clear, that E(Ω) is an affine cubic in C2.
Proposition 1.7.2 shows, that ∆ 6= 0 and since the discriminant for elliptic
curves was defined in an analogous way (see (2.10) and (2.14)), theorem
2.3.13 yields, that this affine cubic is smooth. So we have an elliptic curve.

Conversely, given an elliptic curve E, we can use the form (2.10), since
charC = 0. Since ∆ 6= 0 due to theorem 2.3.13, we can use the inversion
theorem 1.9.2 to find the corresponding lattice Ω, which generates E.

47



Remark 2.4.2. In a similar way, we have the projective elliptic curve gener-
ated by Ω:

E(Ω) := {(x : y : z) ∈ P2(C) : y2z = 4x3 − g2xz
2 − g3z

3}.

It is the projective closure of E(Ω).

Remark 2.4.3. In the same manner, we can use R or Q instead of C in the
proof of theorem 2.4.1 to see, that the elliptic curves in R2 resp. Q2 are
exactly

ER(Ω) := {(x, y) ∈ R2 : y2 = 4x3 − g2x− g3} for g2, g3 ∈ R,
EQ(Ω) := {(x, y) ∈ Q2 : y2 = 4x3 − g2x− g3} for g2, g3 ∈ Q.

These sets are called the real part resp. the rational part of E(Ω), since they
are clearly subsets of E(Ω).

Remark 2.4.4. The Weierstrass invariants g2, g3 are real if and only if Ω
is a conjugation-invariant lattice due to theorem 1.6.3. Hence the elliptic
curves over R2 correspond with conjugation-invariant lattices. Depending
on whether 4x3 − g2x − g3 has one or three real roots, we then obtain the
following graphs for the real part:

Since each lattice Ω is connected with its ℘-function, we even get a
parametrisation of the elliptic curve E(Ω):

Theorem 2.4.5. Let P be an arbitrary period parallologram of Ω. We can
identify P with the set C/Ω by reasons of periodicy.

The mapping

Φ : (C/Ω)\{Ω} → E(Ω), Φ(u+ Ω) := (℘(u), ℘′(u)),

is a bijection.
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Proof. The differential equation of theorem 1.5.4 shows, that the range of
Φ is contained in E(Ω). For (x, y) ∈ E choose u with ℘(u) = x by lemma
1.4.12. Then it holds that y2 = 4x3 − g2x − g3 = ℘′(u)2, again by theorem
1.5.4. If necessary, we may substitute u by −u to get ℘′(u) = y. So (x, y) is
in the range of Φ, hence Φ is surjective.

Let u1, u2 ∈ C be with (℘(u1), ℘′(u1)) = (℘(u2), ℘′(u2)). If ℘′(u1) 6=
0, we see by lemma 1.4.11 and lemma 1.4.12, that u1 + u2 ∈ Ω/2 and
u1, u2 6= {ω/2 : ω ∈ Ω}. But since ℘′ is an odd function, it follows, that
u1 ≡ u2 (mod Ω). If ℘′(u1) = 0, it follows from lemma 1.4.11 and , that
(1.26), that u1, u2 ≡ ω1/2, ω2/2, ω3/2 (mod Ω). But as the values ℘(ωk/2) =
ek, k = 1, 2, 3 are all disjoint due to (1.28), it is u1 ≡ u2 (mod Ω) also in this
case. Thus, Φ is injective.

We can also regard the projective closure E(Ω) and define the following
bijection:

Φ : C/Ω→ E(Ω), Φ(u+ Ω) :=

{
(℘(u) : ℘′(u) : 1), for z /∈ Ω

(0 : 1 : 0), for z ∈ Ω
.

By using the standard imbedding from section 2.2, we can regard Φ as a
continuation of Φ. So we will also write Φ for it in future.

With the parametrisation Φ, we can convey the group structure of C/Ω
on the set E: For P,Q ∈ E, we define an addition by

P +Q := Φ(Φ−1(P ) + Φ−1(Q)), (2.31)

at which the addition in C/Ω is given by (u+ Ω) + (v + Ω) := (u+ v) + Ω.
We then get this important theorem about elliptic curves (in C):

Theorem 2.4.6. With the composition defined in (2.31), E(Ω) is a com-
mutative group with identity element (0 : 1 : 0). The mapping

Φ : C/Ω→ E(Ω)

then is a group isomorphism. So for t ∈ C\Ω, we have

−(℘(t), ℘′(t)) = (℘(−t), ℘′(−t)) = (℘(t),−℘′(t)),

and for u, v ∈ C with u, v, u+ v /∈ Ω, we have

(℘(u), ℘′(u)) + (℘(v), ℘′(v)) = (℘(u+ v), ℘′(u+ v)). (2.32)

Proof. This is just, how we defined it.

Our next aim will be to find a way to calculate the sum of two points
P,Q on an elliptic curve without knowing about the lattice Ω.
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2.5 Intersection formulas

Let E be an elliptic curve. From theorem 2.2.5, we already know, that each
line intersects in exactly three points. This will turn out to be the key to
calculate our addition directly from the curve.

We will work here with the affine form of an elliptic curve. This has the
advantage, that this is easier to work with, but the disadvantage, that we
have to exclude the point (0 : 1 : 0) for our next considerations. However,
since (0 : 1 : 0) is the identity element in our group, we know anyway, how
addition works for it.

So let P = (xP , yP ), Q = (xQ, yQ) be two points on a curve. If xP 6= xQ,
we may consider the complex line LP,Q through P and Q:

y = aP,Qx+ bP,Q,

where aP,Q and bP,Q are given by

aP,Q :=
yP − yQ
xP − xQ

,

bP,Q := yP − aP,QxP =
xP yQ − xQyP
xP − xQ

.

This line will intersect the curve in a third point. In case, that the curve
has a nontrivial real part, we might have the following situation:

P

R

R •R

Q

P •Q

We define the point P •Q by

xP•Q :=
1

4
a2
P,Q − xP − xQ (2.33)

yP•Q := aP,QxP•Q + bP,Q (2.34)

Obviously, P •Q lies on the line L.

Lemma 2.5.1. For all x ∈ C, we have

4x3− g2x− g3 = 4(x−xP )(x−xQ)(x−xP•Q) + (aP,Qx+ bP,Q)2. (2.35)
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Proof. Obviously, the coefficients of x3 are the same on both sides. Due to
(2.33), this holds also for the coefficients of x2. So, (2.35) reduces to an
equation of the form g2x+ g3 = Ax+B with A,B ∈ C. But since (2.35) is
true for the two points x = xP and x = xQ, that lie on E, it follows A = g2

and B = g3 for all x ∈ C.

So, we found the third intersection point of L with E:

Corollary 2.5.2. For P,Q ∈ E with xP 6= xQ, it holds that P •Q ∈ E.

Proof. This follows directly from lemma 2.5.1 by setting x = xP•Q.

Therefore, we call the formulas (2.33) and (2.34) intersection formulas.
Next consider the case, that P = Q: Instead of taking the connecting

line, we take the tangent line in P ∈ E. Again, we suppose, that yP 6= 0.
We set

aP :=
12x2

P − g2

2yP
,

bP := yP − aPxp.

, The line y = aPx+ bP then is the tangent in P at E. Now define

xP•P :=
1

4
a2
P − 2xP , (2.36)

yP•P := aPxP•P + bP . (2.37)

Lemma 2.5.3. For all x ∈ C, the following equation holds:

4x3 − g2x− g3 = 4(x− xP )2(x− xP•P ) + (aP,Qx+ bP,Q)2. (2.38)

Again, the coefficients of x3 concur and due to (2.36), this holds also for
the coefficients of x2. For x = xP , the formula (2.38) holds and due to our
choice of aP and bP , this is also true for the derivated equation of (2.38).

Corollary 2.5.4. For P ∈ E with yP 6= 0, it holds, that P • P ∈ E.

Proof. This follows directly from lemma 2.5.3 by setting x = xP•P .

So, counting intersection multiplicities, the third intersection point of the
tangent in P on E is given by P • P . Equation (2.36) and (2.37) are also
called intersection formulas.

Last, we want to consider the case, where our line is parallel to the y-axis,
i.e. xP = xQ or yP = 0, P = Q. In this case, there is no third intersection
point in the affine form of E, but we may define P • P := (0 : 1 : 0) in the
projective closure and so get the third intersection point in this case.

Our next aim will be to connect our new operator • with the addition,
that we defined in (2.31). We will see, that this operator is almost, what we
need - except for a kind of conjugation.
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Let us regard the function Φ, that we defined as

Φ : C/Ω→ E(Ω), Φ(u+ Ω) :=

{
(℘(u) : ℘′(u) : 1), for z /∈ Ω

(0 : 1 : 0), for z ∈ Ω
.

For u, v ∈ C, we define the points P,Q ∈ E by P := Φ(u + Ω) and Q :=
Φ(v + Ω).

Lemma 2.5.5. For u, v, w ∈ C\Ω with u + v + w ∈ Ω, such that u + Ω,
v + Ω and w + Ω are pairwise disjoint, we have

P •Q = Φ(w + Ω).

Proof. The elliptic function f(z) := ℘′(z)− (aP,Q℘(z) + bP,Q) has a pole of
order 3 at 0 and so it has 3 zeros in C/Ω by theorem 1.3.7. By construction,
it is f(u) = f(v) = 0 and from theorem 1.3.9, we see, that f(w) = 0. So, P ,
Q and Φ(w+ Ω) are the three intersection points of the line between P and
Q with E. This proves the lemma.

Now, we define the operator ∗ as follows: For a point P = (xP , yP ) ∈ C2,
we set P ∗ := (xP ,−yP ).

As a final result, we then get the following

Theorem 2.5.6. The addition (P,Q)→ P +Q on E is given by

P +Q = (P •Q)∗, for xP 6= xQ,

2P = (P • P )∗, for yP 6= 0,

so we can add as follows:

xP+Q :=
1

4
a2
P,Q − xP − xQ,

yP+Q := −aP,QxP+Q − bP,Q

for xP 6= xQ and

x2P :=
1

4
a2
P − 2xP ,

y2P := −aPx2P − bP .

for yP 6= 0.
Additionally, it holds, that

−P = P ∗ = (xP ,−yP ). (2.39)
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P

Q
P •Q

P +Q

Proof. For ℘(u) 6= ℘(v), (2.31) and lemma 2.5.5 yield

P +Q = Φ(Φ−1(P ) + Φ−1(Q)) = Φ(u+ v + Ω) = Φ(−w + Ω)

= (℘(w),−℘′(w)) = (Φ(w + Ω))∗ = (P •Q)∗.

The other statements follow from the respective definitions and from theo-
rem 2.4.6.

So we have seen, that it is possible to introduce a group operation, +, on
the elliptic curve over C with the following property: Considering the point
at infinity to be the identity 0 of the group, a straight line intersects the
curve at the points P , Q and R if and only if P +Q+R = 0 in the group.

We might also take this as a definition for our addition and the question
arises, if we always get such a commutative group, independent on the choice
of our field K. The answer is yes. It can even be shown that the set of K-
rational points E(K) on the curve (including the point at infinity) forms a
subgroup of our group. This is, what is said to be the group law of elliptic
curves. A detailed proof for this more universal theorem can be found in
[AK]. The main idea however is the following: Let P , Q are two K-rational
points on the curve. Applying Bézout’s theorem yields that P +Q ∈ E(K).
Now one uses the fact that if a cubic polynomial defined over K has two
roots in K, the third one is also in K.

2.6 The Mordell-Weil Theorem

We have seen some of the structure and properties of elliptic curves over C
(parametrized by the ℘-function) and R (its real part, if existent). The aim
of this section is to describe the structure of the group E(Q):

It will turn out, that we can consider points of finite order and points of
infinite order separately. This section largely provides an overview of results
in this area; few theorems are actually proved.
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Since the characteristics of Q is 0, we can make an admissible change of
variables, such that E(Q) is given by an equation of the form

E : y2 = x3 + ax2 + bx+ c. (2.40)

For the considerations of this chapter, let always E(Q) be an elliptic curve
over Q like in (2.40) and∞ denote the infinite point in the projective closure
at (0 : 1 : 0).

Definition 2.6.1. We say that a point P ∈ E(Q) has m-torsion if mP =∞.
(Writing mP just means adding P to itself m times).

As a motivation, let us first regard the special case of a, b, c being integer
coordinates:

It turns out, that we can easily characterize the set of 2-torsion points,
denoted by E(Q)[2]. Clearly, 2∞ = ∞. Otherwise, let P = (x0, y0) be an
affine point such that 2P =∞, or, equivalently, P = −P . Since the negative
of a point is just that point reflected around the x-axis due to theorem 2.5.6,
a point (x0, y0) is its own inverse, if it lies on the x-axis, i.e. y0 = 0. Then,
x0 is a solution of the equation f(x) = x3 + ax2 + bx + c = 0. Since we
assumed, that a, b, c are integers, each rational solution of this polynomial
equation must already be integer. This is, because the denominator of each
such solution must divide the coefficient of x3, which is 1.

Thus, in this case, we get a point of order two for every integral root
of f(x). The set of 2-torsion points actually forms a subgroup of E(Q).
This subgroup, E(Q)[2], is either the trivial group, Z/2Z, or Z/2Z⊕ Z/2Z,
depending on whether f(x) has zero, one or three integral roots.

It can be shown, that for each m ≥ 1 and for any P ∈ E(Q)[m], this point
P will have integer coordinates. Furthermore, the discriminant ∆ of f(x) is
given by 4a3c+ a2b2 + 18abc− 4b3 − 27c2. Then either y0 = 0 (and m = 2),
or y2|∆. This result is known as the Nagell-Lutz theorem.

Proposition 2.6.2. For an elliptic curve

E : y2 = x3 + ax2 + bx+ c. (2.41)

with integer coordinates, there exists an algorithm to check, if a point P ∈
E(Q) has finite order.

Proof. We simply calculate P , 2P , 3P , etc., until an m is found such that
either mP =∞ (then, P is an m-torsion point) or mP does not have integer
coordinates, or the y-coordinate of mP does not divide the discriminant (in
these two cases, P is not a torsion point). Since there are only finitely many
integers which divide ∆, the algorithm will terminate after finitely many
steps.
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However, the group E(Q) could contain elements of infinite order, as well.
That this can happen is evidenced for example by the elliptic curve

y2 = x3 + 17.

One can check, that the point P = (1/4, 33/8) lies on the curve. But its
coordinates are not integers, while all points of finite order have integer
coordinates. So P must be of infinite order.

It turns out that, even though the group E(Q) may not be finite and
there are elements of infinite order, E(Q) is always finitely generated: There
exists a finite set of points so that any other point is equal to some linear
combination of that set of points: E(Q) ∼= Zr ⊕ T , where T is a finite
commutative group. In other words, there is a set of points P1, P2, . . . , Pr
so, that for a Q ∈ E(Q), we can always find integers c1, . . . , cr and a F ∈ T
such that Q = F + c1P1 + c2P2 + · · · + crPr. r is called the rank of the
elliptic curve. It is the size of a smallest torsion-free generating set.

This theorem was proved by Mordell in 1922, and subsequently general-
ized to arbitrary abelian varieties over number fields by Weil, compare [LM]
and [AWe1], [AWe2].

The proof given here assumes that there is a rational point of order two
on the curve. While the theorem is true without this assumption, the proof
is somewhat simpler if we can stay in the rational numbers. Now, if E is a
curve given in Weierstrass form, then a rational point of order two looks like
(x0, 0). We can make an admissible change of varibales, (x, y)→ (x− x0, y)
which sends (x0, 0) to (0, 0). Such a change does not affect the structure
of the group E(Q). Thus, given the restriction that we are considering
curves with a rational two-torsion point, we can assume that E is given by
y2 = x3 + ax2 + bx, not necessarily with integer coefficients.

Our first goal is to show that the image of the multiplication-by-two map
[2] : E(Q) → E(Q) has finite index. The approach taken here is to break
the map [2] into two pieces, and show that the image at each step has finite
index.

Initially, we need to find a group G and a pair of maps f : E(Q)→ G, g :
G→ E(Q) so, that g(f(P )) = [2](P ) = 2P .

For any particular curve E, we pick a related elliptic curve E′ and map
ϕ : E(Q) → E′(Q) and ψ : E′(Q) → E(Q). These will be given by explicit
formulas. Some of the motivation for the specific choices of E, ϕ and ψ is
given in [ST].

Given a curve E : y2 = x3 + ax2 + bx, define the curve E′ by

E′ : y2 = x3 + a′x2 + b′x

a′ := −2a

b′ := a2− 4b.

In a sense, E and E′ are duals of each other. Applying the construction
twice yields E′′ : y2 = x3 + (−2 · −2a)x2 + (4a2 − 4(a2 − 4b))x, or y2 =
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x3 + 4ax2 + 16b. This is almost the same as the original curve, E; for if
(x0, y0) is a point on E, then (4x0, 8y0) must be a point on E′′. It’s similarly
easy to identify a point on E′′ with a point on E. In fact, the two curves
are isomorphic via this identification. This will be useful in constructing the
maps ϕ and ψ.

Define the map ϕ : E → E′ by (x, y) → ( y
2

x2
, y x

2−b
x2

). This is well-defined
everywhere on E except ∞, and the two-torsion point (0, 0), which is the
only point on E with a zero x-coordinate. We can extend the definition to
everywhere on E.

ϕ : E → E′, ϕ(x, y) :=

{(
y2

x2
, y x

2−b
x2

)
for P = (x, y) 6= (0, 0),∞

∞′ for P = (0, 0) or P =∞.

Here, ∞′ is the point at infinity on E′.
One can use an identical construction to get a map from E′ to E′′. What

we actually want, however, is a map from E′ back to the original curve, E.
Thus, we combine the above map with (x, y)→ (x/4, y/8) to define ψ:

ψ : E′ → E, ϕ(x, y) :=

{(
y′2

4x′2 , y
x′2−b
8x′2

)
for P = (x′, y′) 6= (0, 0),∞

∞ for P = (0, 0) or P =∞′.

The maps ϕ and ψ are partially characterized by the following proposition:

Proposition 2.6.3. Let E, E′, ϕ and ψ be defined as above. Then the
following statements hold:

1. The maps ϕ and ψ are homomorphisms.

2. The kernel of ϕ is {(0, 0),∞}, and the kernel of ψ is {(0, 0),∞′}.

3. The composition of the maps is multiplication by two, i.e., ψ ◦ϕ = [2],
and ϕ ◦ ψ = [2]′.

Proof. The proof of this proposition is simple, but tedious; the approach is
merely indicated here. Proving that ϕ is a homomorphism is a matter of
verifying that the group law is preserved: ϕ(P +Q) = ϕ(P ) + ϕ(Q). So we
have to confirm, that the rational functions obtained through addition and
application of ϕ match up as they should. The price of having such concrete
definitions of ϕ and the group law is that many cases must be separately
checked. Of course, if ϕ is a homomorphism, then ψ is too, because of the
way it was constructed.

Showing that kerϕ = {(0, 0),∞} is trivial, given the definition of ϕ; all
other points are mapped to affine points on E’. The same argument works
for ψ.

Finally, ψ ◦ ϕ(P ) = 2P . This, too, can be verified through purely alge-
braic computations.
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Thus far, we have broken multiplication by two into two maps, as promised.
We now give the following

Proposition 2.6.4. Let A and B be abelian groups with homomorphisms
ϕ : A → B and ψ : B → A, such that ψ ◦ ϕ = [2]A and ϕ ◦ ψ = [2]B.
Also, suppose that [B : ϕ(A)] and [A : ψ(B)] are both finite. Then the index
[A : 2A] is finite.

Proof. The proof is straight-forward. Take a1, . . . , am and b1, . . . , bn to be
coset representatives for ψ(B) in A and ϕ(A) in B, respectively. Now one
shows that the set {ai +ψ(bj)} is a complete set of coset representatives for
2A in A.

Applying this proposition we find that [E(Q) : 2E(Q)] is finite, as desired,
if we are able to show that the index of the image of each map is finite, i.e.,
that [E′(Q) : ϕ(E(Q))] and [E(Q) : ψ(E′(Q))] are both finite.

This is the hardest part of the proof. As before, the approach is to
(seemingly arbitarily) define a map, and then show that it behaves nicely.
The following definitions and lemmas will be stated for the ϕ : E → E′ half
of the problem; the analogous statements for ψ can be made and proven in
the same way.

We can define a map α′ : E′(Q)→ Q∗/Q∗2, where Q∗ is the multiplicative
group of rational units, and Q∗2 is the subgroup consisting of perfect squares.
So Q∗/Q∗2 is like the nonzero rational numbers, with two elements identified
if their quotient is the square of a rational number.

α′ : E′(Q)→ Q∗/Q∗2, α′(x′, y′) :=


x′ mod Q∗2 for P = (x′, y′) 6= (0, 0)

1 mod Q∗2 for P = (0, 0)

b′ mod Q∗2 for P =∞′.

Now, one can proof the following proposition, which characterizes the
behaviour of α′:

Proposition 2.6.5. Let E, E′, ϕ and α′ be as above. Then the following
statements hold:

1. The map α′ : E′(Q)→ Q∗/Q∗2 is a homomorphism of groups.

2. The kernel of α′ is ϕ(E(Q)) and α′ induces a natural injection E′(Q)
ϕ(E(Q)) ↪→

Q∗

Q∗2 .

3. Let p1, . . . , pr be distinct primes dividing b′. Then the image of α′ is
contained in the subgroup of Q∗/Q∗2 with representatives

{(−1)ε0pε11 p
ε2
2 . . . pεrr : ε ∈ {0, 1}} ⊂ Q∗/Q∗2.
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We do not give a proof here, but an overview of it is given in [JA]. Using
this proposition, we can show the following consequence:

Corollary 2.6.6. The index [E′(Q) : ϕ(E(Q))] is finite.

Proof. Let R∗ be the subgroup of Q∗ given by

R∗ := {±pe1pe2 · · · per : ei ∈ Z}.

The size of R∗/R∗2 is easily seen to be 2r+1, and E′(Q)/ϕ(E(Q)) maps
injectively into it due to proposition 2.6.5. So the index [E′(Q) : ϕ(E(Q))] ≤
2r+1, and is certainly finite.

In a similar way, it can be shown, that [E(Q) : ψ(E′(Q))] is also finite.

Since [E(Q) : 2E(Q)] = [E(Q) : ψϕ(E(Q))], we can use proposition 2.6.4
and get the following

Theorem 2.6.7. Let 2E(Q) denote the subgroup obtained by doubling all the
points in E(Q): 2E(Q) = {2P : P ∈ E(Q)}. Then the index [E(Q) : 2E(Q)]
is finite.

This is the first half of the Mordell-Weil theorem.

The other half of the Mordell-Weil theorem requires a notion of the height
of a point. This yields a tool which is useful in establishing a set’s finitude.

The classic method of descent uses the absolute value function in order
to show that, for example, a given polynomial has no integer solutions: One
shows that, given a particular integer solution, one can produce another
solution whose absolute value is strictly smaller. This yields a contradiction:
On one hand, one claims that there is an infinite sequence of integers with
strictly decreasing absolute value. On the other hand, the set of integers
with absolute value less than some particular value is finite.

This notion of the size of a solution works quite well for studying integers.
However, it is not as well suited to studies of rational solutions to equations.
The key fact used in the strategy outlined above is that, for any bound
B, the set {x ∈ Z : |x| ≤ B} is finite. If we let x take on rational values,
however, this assertion is no longer true. For example, one could take the set
{1, 1

2 ,
1
3 , . . . }. We need a slightly different measure of the size of a rational

number.
Let us define the height of a rational number x to be the maximum of the

absolute value of its numerator and denominator. More formally,

Definition 2.6.8. Let x = m
n be a rational number, where m and n are rel-

atively prime. Then, the height function is given by H(x) := max{|m|, |n|}.
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This enjoys the same sort of finiteness property described above. Specif-
ically, for any B, the set {x ∈ Q : H(x) ≤ B} is finite.

Now this definition can be extended to the rational points on an elliptic
curve. Let P = (x, y) be an affine point on the curve and define H(P ) :=
H(x). A similar finiteness property still holds, namely {P ∈ E(Q) : H(P ) ≤
B} is finite for any fixed bound B. This is because there are only finitely
many choices for the x-coordinate, and any value of x yields at most two
points on the curve E.

The height function behaves somewhat multiplicatively on the rationals;
it makes sense to compare H(x)H(y) to H(xy). Notationally, however, it is
desirable to have a function, which acts additively. There is an addition law
on points on an elliptic curve, while there is no multiplication function. So
we define the logarithmic height as follows:

Definition 2.6.9. Given a point (x, y) on the curve, the logarithmic height
is given by

h(x) := logH(x).

Since for any rational number x, H(x) is at least 1, we see, that h(x) is
always a nonnegative real number.

To prove the Mordell-Weil theorem, one must establish certain properties
of this height function:

Proposition 2.6.10. Define the logarithmic height function h : E(Q)→ R
as above. Then the following statements hold:

1. For every B ∈ R, the set {P ∈ E(Q) : h(P ) ∈ B} is finite.

2. For every P0 ∈ E(Q) there is a constant κ0, depending only on P0 and
E, such that h(P + P0) ≤ 2h(P ) + κ0 for all P ∈ E(Q).

3. There is a constant κ, depending only on E, such that h(2P ) ≥ 4h(P )−
κ.

Proof. The first part of this proposition follows directly from the discussion
above.

The proof of the latter two parts can be read in [ST]. Essentially, one
works with the concrete descriptions of the addition laws, and attempts to
compute the height of the resulting value. This can be a little intricate.
The quotients given by the addition formulae are not necessarily in reduced
lowest form. One must show that there is not too much cancellation between
the numerator and the denominator, in order to put a lower bound on the
resulting height.

Given the proposition 2.6.10 of the height function and theorem 2.6.7, we
can prove the desired theorem:
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Theorem 2.6.11 (Mordell-Weil). Let E(Q) be an elliptic curve over Q.
Then E(Q) is finitely generated.

Proof. We prove this theorem for elliptic curves E only for the case, in which
there exists a rational point of order two.

Theorem 2.6.7 says that the group E(Q)/2E(Q) is finite, so we can take
a finite set of representatives Q = {Q1, Q2, . . . , Qr} for the cosets of 2E(Q)
in E(Q).

The second part of proposition 2.6.10 yields, that for each Qi, there exists
a κi, such that h(Qi+P ) ≤ 2h(P ) +κi for all rational points P . Since there
are only finitely many Qi, we can take κ′ to be the maximum of these κi.
Thus

h(Qi + P ) ≤ 2h(P ) + κ′ for all Qi ∈ Q and P ∈ E(Q). (2.42)

Let κ be the constant from the same proposition, such that

h(2P ) ≥ 4h(P )− κ. (2.43)

Then the set R := {P ∈ E(Q) : h(P ) ≤ κ′ + κ} is finite, as well. As we will
see shortly, Q∪R already generates all of E(Q).

To prove this claim, we must show that any P ∈ E(Q) can be written as
a combination of elements of Q∪R.

In a way, this proof is inductive. Indeed, if the error-terms κ and κ′ were
zero, one could prove the theorem by induction on the height. Even with
the error term, however, the proof is elementary.

The point P must have a coset representative Qi1 ∈ E(Q)/2E(Q) with
P −Qi1 ∈ 2E(Q). So there is a P1, such that P −Qi1 = 2P1. Similarly, we
can find an index i2 and a point P2 so that P1 −Qi2 = 2P2. In fact, we can
continue this chain as far as we like. Substituting after the m-th iteration,
we find

P = Qi1 + 2(Qi2 + 2(Qi3 + · · ·+ Pm) · · · ))
= Qi1 + 2Qi2 + 4Qi3 + · · ·+ 2m−1Qim + 2mPm.

Each of the Qij is in Q, of course. If we can show, that we can pick a (finite)
m so, that Pm ∈ Q ∪R, we are finished.

The strategy is to show that the logarithmic height decreases enough at
each step to force Pm into R. We want to show that at, say, the j-th step
of the chain, the size is decreasing.

From (2.42) and (2.43), we get

4h(Pj) ≤ h(2Pj) + κ = h(Pj−1 −Qij ) + κ ≤ 2h(Pj−1) + κ′ + κ.

Now we can isolate h(Pj) as follows:

h(Pj) ≤
1

2
h(Pj−1) +

κ′ + κ

4

=
3

4
h(Pj−1)− 1

4
(h(Pj−1)− (κ′ + κ)).
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If h(Pj−1) ≤ κ′ + κ, then we are done, since Pj−1 ∈ R. Otherwise, h(Pj) ≤
3
4h(Pj−1). The height is decreasing by a factor of 3/4 at every step. After
some finite number of steps, the height of h(Pm) will be less than the bound
κ′+κ, and so Pm will be in R. This concludes the proof of the Mordell-Weil
theorem.

Corollary 2.6.12. Every elliptic curve E(Q) can be written in the form
E(Q) ∼= Zr ⊕ T . T is uniquely defined, finite and commutative and called
the Torsion subgroup of E, r is the rank of E.

Proof. This is an immediate consequence from theorem 2.6.11 and the fun-
damental theorem of finitely generated abelian groups.
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Chapter 3

L-functions and further
applications

In the last chapter, we gave an overview of important results about elliptic
curves over the fields C, R and Q. In this chapter, we want to focus on finite
fields of characteristics p, where p is a prime. More exactly, we will define
the reduction of an elliptic curve modulo some prime p. We will see, that
we can describe much information about an elliptic curve and its reductions
modulo all primes with its L-function. This leads to some quite interesting
results in number theory.

3.1 Singular points

Singular Weierstrass curves arise for certain primes p when a Weierstrass
curve with integral coefficients is considered modulo p. Such curves are easy
to analyze and we shall note some ot their features in this section.

Let E be a singular Weierstrass curve over a field K. We saw in propo-
sition 2.3.2 that the infinite point (0 : 0 : 1) on the curve is nonsingular.
So we have only to analyze points (x, y) in the affine plane. We will see,
that there is only one singularity and that, under a mild restriction on K,
it occurs at a rational point (x0, y0).

We then can make an admissible change of variables to translate (x0, y0)
to the origin (0, 0). This leads to a projective curve of the form

y2z + a1xyz + a3yz
2 = x3 + a2x

2z + a4xz
2 + a6z

3 (3.1)

with a6 = 0, like in (2.1) . The condition that ∂
∂x give 0 at (0 : 1 : 0) means,

that a4 = 0 and the condition, that ∂
∂y give 0 at (0 : 1 : 0) means, that

a3 = 0. Thus, E is given in affine form by the equation

y2 + a1xy = x3 + a2x
2. (3.2)
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We can factor y2 + a1xy − a2x
2 over K, obtaining

(y − αx)(y − βx) = x3 with α, β ∈ K. (3.3)

We say, that a singular point (0, 0) is a cusp , if α = β, or a node , if α 6= β.
Pictures of the two kinds of behaviour (with a1 = 0) are as follows:

We now get the following theorem about singular planar curves:

Theorem 3.1.1. For a singular Weierstrass curve E over a field K, there
is only one singular point (x0, y0). It is K-rational, if either

1. char(K) 6= 2 or

2. char(K) = 2 and K is closed under the operation of taking square roots
(as is the case, when K is a finite field of characteristics 2).

The point (x1, y1) is a cusp, if c4 = 0 or a node, if c4 6= 0, using the notation
from (2.8).

Proof. If char(K) 6= 2, we can apply, without loss of generality, a projective
transformation to eliminate the a1 and a3 terms. By proposition 2.3.11,
the curve will be singular, if and only if the cubic polynomial f in x has a
repeated root. In this case, f and f ′ have a greatest common divisor g over
K with degree ≥ 1 and the singular points are (x0, 0), where x0 ranges over
the roots of g.

If g has degree 1, its unique root x0 is in K and (x0, 0) is the unique
singular point. If g has degree 2, its two roots x0 and x′0 must be equal,
since otherweise x0 and x′0 would both be roots of multiplicity ≥ 2 for the
cubic polynomial f . Since we can conclude x0 = x′0, x0 is in K and (x0, 0)
is the unique singular point.

If char(K) = 2, the singular points are the points (x0, y0) on the affine
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curve over K, satisfying the two equations

0 =
∂

∂x
= a1y0 + x2

0 + a4

0 =
∂

∂y
= a1x0 + a3,

from (2.28) and (2.29). If a1 6= 0, the second equation uniquely determines
x0 and the first equation then uniquely determines y0. The resulting point
(x0, y0) is K-rational. If a1 = 0, the first equation forces x2

0 + 4 = 0. In
characteristics 2, square roots are unique and the second assumption 2 says,
that x0 is in K. Since the second equation shows a3 = 0, y0 is given by

y2
0 = x3

0 + a2x
2
0 + a4x0 + a6

and again exists in K. It is unique in K under the assumption 2.
Return to general K. Under the translation over K, that moves (x0, y0)

to the origin, c4 is unaffected. Thus it is enough to decide cusp vs. node in
(3.2). From (2.7) and (2.8), the value of c4 is

c4 = b22 − 24b4 = (a2
1 + 4a2)2 − 24(2a4 + a1a3) = (a2

1 + 4a2)2.

If char(K) 6= 2, the discriminant of y2 + a1xy− a2x
2 is a2

1 + 4a2, which is 0,
if and only if c4 = 0; hence α = β (and there is a cusp) if and only if c4 = 0.

If char(K) = 2, then

(y − αx)2 = y2 + a1xy − a2x
2

says a1 = 0 and α2 = a2. Hence, α = β (and there is a cusp) if and only if
a1 = 0, which happens if and only if c4 = 0.

It will be useful to distinguish two subcases of nodes:

Definition 3.1.2. We say, that a node is in split case, if the mombers α
and β of (3.3) lie in K. In the contrary case, α and β lieb in a nontrivial
quadratic extension of K and we say, that the node is in a nonsplit case.

Theorem 3.1.3. For the singular Weierstrass equation E in (3.2), the map

t→ (t2 + a1t− a2, t(t
2 + a1t− a2)

carries K\{α, β} one-one onto E(K)\{∞, (0, 0)}, where ∞ stands for the
infinite point (0 : 1 : 0) in the projective closure. If K is a finite field with
|K| elements, the nonsingular set E(K)\{(0, 0)} therefore has

|K| − 1 elements, if (0, 0) is a split-case node.

|K|+ 1 elements, if (0, 0) is a nonsplit-case node.

|K| elements, if (0, 0) is a cusp.
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Proof. In (3.2), x = 0 gives only y = 0 and (0, 0) is singular. Thus, any
nonsingular point of E(K)\{∞} has y = tx for a unique member t of K.
Substituting tx for y in (3.2) and using x 6= 0, we are led to

t2 + a1t− a2 = x.

Then also y is t(t2 +a1t−a2) and K maps onto the affine solutions of (3.2).
To exclude x = 0 from the image, we must exclude the roots of t2 +a1t−a2;
these are α and β. Once, x = 0 is not in the image, the map is one-one,
since t is recovered as y/x. The numerology, if K is a finite field is then
clear.

3.2 Reduction modulo p

We begin with the definition of a p-adic norm on Q, p being a prime:

Definition 3.2.1. Let p be a prime and r 6= 0 be in Q. We write r = pnu/v
with integers u and v such that u, v, p are all relatively prime, i.e. the
greatest common divisor of two of these values equals 1. The definition of
the p-adic norm then is |r|p := p−n. By convention, we define |0|p := 0.

Lemma 3.2.2. The p-adic norm has the following properties:

1. |r + s|p ≤ max{|r|p, |s|p}, with equality, if |r|p 6= |s|p,

2. |rs|p = |r|p|s|p.

Proof. Property (ii) is obvious from the definition. For (i), we write r =
pnu/v and s = pn

′
u′/v′. Without loss of generality, we may assume n ≤ n′.

Writing

r + s = pn
(
u

v
+ pn

′−nu
′

v′

)
= pn

uv′ + pn
′−nu′v

vv′

with vv′ and p being relatively prime. Then we obtain (i) directly.

Remark 3.2.3. Property (i) is called the ultrametric inequality. It implies
|r+s|p ≤ |r|p+ |s|p. If we define d(x, y) = |x−y|p, then the latter inequality
implies the triangle inequality for d and d is therefore a metric on Q.

Definition 3.2.4. We say, that r ∈ Q is p-integral , if |r|p ≤ 1. Due to
lemma 3.2.2, the p-integral elements form a subring of Q containing Z. Those
with |r|p < 1 form an ideal in this subring; they of course have |r|p ≤ p−1.

Let Zp be the finite field with p elements. The p-integral elements of Q
can be reduced modulo p : If r = pnu/v is p-integral, i.e. if n ≥ 0, then we
define rp(r) ∈ Zp by

rp(r) =

{
uv−1 mod p if n = 0

0 if n > 0.
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Then, rp : {p-integral elements} → Zp is a ring homomorphism.
In preparation for considering plane curves, we can try to use rp to get a

map of the affine plane over Q to the affine plane over Zp, but the best we
can get is a map defined on

{(r, s)|r and s are p-integral}

as rp(r, s) := (rp(r), rp(s)). To correct this deficiency, we work with curves
projectively as follows:

To define rp : P2(Q)→ P2(Zp), we let

rp(x : y : z) = (rp(x) : rp(y) : rp(z)), (3.4)

where (x : y : z) are coordinates of the point in question chosen so that x, y, z
all have | · |p ≤ 1 and at least one of them has | · |p = 1. Such a representative
of a point in P2(Q) is sait to be p-reduced . Note that if a general (x : y : z)
is given, we can multiply a suitable pn to obtain a p-reduced representative.
A p-reduced representative is unique up to a factor with | · |p = 1. Therefore
rp is well defined as a map of all of P2(Q) into P2(Zp).

Using (3.4), we can reduce projective plane curves modulo p. Let F ∈
Q[x, y, z]m be a plane curve of degree m. Multiplying the coefficients of F by
a constant, we may assume that all the coefficients have | · |p ≤ 1 and at least
one has | · |p = 1. Then we can reduce the coefficients modulo p, obtaining a
nonzero polynomial Fp ∈ Zp[x, y, z]m. Although Fp is not defined uniquely,
it is defined uniquely up to a nonzero scalar. Therefore its zero locus Fp(Zp)
is well defined.

Proposition 3.2.5. Let F ∈ Q[x, y, z]m be a plane curve. Under the reduc-
tion homomorphism rp : P2(Q)→ P2(Zp) given in (3.4), the image of F (Q)
is contained in Fp(Zp).

Proof. We normalize the coefficients of F as described above. Now let (x :
y : z) be a reduced representative of a point in P2(Q). Then

(x : y : z) ∈ F (Q) ⇔ F (x : y : z) = 0

⇒ rp(F (x : y : z)) = 0

⇔ Fp(rp(x) : rp(y) : rp(z)) = 0

⇔ Fp(rp(x : y : z)) = 0

⇔ rp(x : y : z) ∈ Fp(Zp).

Proposition 3.2.6. Suppose F ∈ Q[x, y, z]m is a plane curve, L ∈ Q[x, y, z]1
is a line and P = (x0 : y0 : z0) is a point on L. If Fp and Lp are reductions
of F and L modulo p, then the intersection multiplicities satisfy

i(L,F ;P ) ≤ i(Lp, Fp; rp(P )). (3.5)
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Proof. Without loss of generality, we may assume, that (x0 : y0 : z0) is a
p-reduced representative and that the coefficients of F and L are normalized
as they supposed to be. Choose a p-reduced representative (x′ : y′ : z′) 6=
(x0 : y0 : z0) of a point P ′ of L and form

ψ(t) = F (P + tP ′) = F (x0 + tx′0 : y0 + ty′0 : z0 + tz′0)

= trF ′r + · · ·+ tmF ′m,

with F ′r 6= 0. Now it is not difficult to see, that i(L,F ;P ) equals the order
of vanishing at t = 0 of ψ(t). This yields, that the left side of (3.5) is r.
Recomputing ψ(t) modulo p (i.e. in Zp[t]), we see the same way, that the
right side of (3.5) is ≥ r.

Let us apply proposition 3.2.5 and proposition 3.2.6 to elliptic curves E
over Q. For studying E(Q), we may make an admissible change of variables
to make all coefficients of E be in Z. Then, we can assume E being in
Weierstrass form with all coefficients in Z. To apply the above theory, we
consider the projective form (2.1) of E. The coefficients of E are all in Z
and hence are p-integral. Also zy2 and x3 have coefficient 1. Thus passage
to Ep is given simply by writing (2.1) with coefficients considered in Zp, no
preliminary normalization is needed.

The discriminant of Ep is clearly given by

∆p = ∆ mod p.

Thus, Ep is smooth, if and only if p - ∆. Our reduction map on E(Q) is a
mapping

rp : E(Q)→ Ep(Zp) (3.6)

by proposition 3.2.5.

Proposition 3.2.7. If Ep is smooth, then the map rp in (3.6) is a group
homomorphism.

Proof. Since rp(0 : 1 : 0) = (0 : 1 : 0), rp carries the infinite point ∞ of
E to the infinite point ∞p of Ep. We apply proposition 3.2.6. Since the
sum of intersection multiplicities over a line is ≤ 3 by theorem 2.2.5, the
proposition gives rp(P •Q) = rp(P ) • rp(Q). Thus

rp(P +Q) = rp(∞• (P •Q)) = rp(∞) • rp(P •Q)

= rp(∞• (rp(P ) • rp(Q))

= ∞p • (rp(P ) • rp(Q)) = rp(P ) + rp(Q),

according to the group law. So, rp is a group homomorphism.
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3.3 Global minimal Weierstrass equations

Let E be an elliptic curve over Q. Later, we want to define the L-function
of E, which is a certain Euler product, that takes into account informa-
tion about the reduction of E modulo each prime p. This section will deal
with some preliminaries, that make the definition invariant under admissible
changes of variables over Q.

From the start, we may assume, that the equation of E is given in Weier-
strass form, as in (2.1) and (2.2), i.e.

y2z + a1xyz + a3yz
2 = x3 + a2x

2z + a4xz
2 + a6z

3

or its affine form

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

with integer coefficients. The discriminant ∆ will then be an integer too
and the p-adic norm will satisfy |∆|p ≤ 1 with equality if and only if p - ∆.

Definition 3.3.1. A Weierstrass form like above is called minimal for the
prime p, if the power of p dividing ∆ cannot be decreased by making an
admissible change of variables over Q with the property, that the new coef-
ficients are p-integral. It is the same to say, that |∆|p cannot be increased
by such a change of variables. The equation is called a global minimal
Weierstrass equation, if it is minimal for all primes and if its coefficients are
integers.

Before considering existence and uniqueness questions for these notions,
it will be helpful to have close at hand detailed formulas for an admissible
change of variables. Such a change of variables is given as in (2.3.3) by

x = u2x′ + r and y = u3y′ + su2x′ + t. (3.7)

The effect on the coefficients ai of the Weierstrass equation and of the related
coefficients bi, ci and ∆ is given in the table below. The new coefficients are
denoted by primes.
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ua′1 = a1 + 2s

u2a′2 = a2 − sa1 + 3r − s2

u3a′3 = a3 + ra1 + 2t

u4a′4 = a4 − sa3 + 2ra2 − (t+ rs)a1 + 3r2 − 2st

u6a′6 = a6 + ra4 + r2a2 + r3 − ta3 − t2 − rta1

u2b′2 = b2 + 12r

u4b′4 = b4 + rb2 + 6r2

u6b′6 = b6 + 2rb4 + r2b2 + 4r3

u8b
′
8 = b8 + 3rb6 + 3r2b4 + r3b2 + 3r4

u4c′4 = c4

u6c′6 = c6

u12∆′ = ∆.

Lemma 3.3.2. Suppose, p is a prime and all the coefficients ai in the
Weierstrass equation are p-integral. If |∆|p > p−12 or |c4|p > p−4 or |c6|p >
p−6, then the equation is minimal for the prime p.

Conversely, if p > 3 and |∆|p ≤ p−12 and |c4|p ≤ p−4, then the equation
is not minimal for the prime p.

Proof. Suppose, a change of variables like in (3.7) leads to a system of p-
integral coefficients with a new discriminant ∆′, such that 1 ≥ |∆′|p > |∆|p.
Since u12∆′ = ∆, we have |u|12

p |∆′|p = |∆|p, so that |u|p ≤ p−1, and

|∆|p = |u|12
p |∆′|p ≤ p−12.

The arguments for c4 and c6 are similar.
Conversely, let p > 3 and |∆|p ≤ p−12 and |c4|p ≤ p−4. Then, equation

(2.13) gives 1728∆ = c3
4 − c2

6. Since |1728|p = 1, we see, that |c6|p ≤ p−6.
From proposition 2.3.4, we see that there is an admissible change of variables
leading from (2.2) to

y2 = x3 − 27c4x− 54c6

with discriminant ∆′ = 212312∆. If we make an admissible change of vari-
ables like in (3.7) with u = p and r = s = t = 0, we are led to

y2 = x3 − 27(c4p
−4)x− 54(c6p

−6).

This has p-integral coefficients, since |c4p
−4|p ≤ 1 and |c6p

−6|p ≤ 1 and the
discriminant ∆′′ = p−12∆′ has |∆′′|p = p12|∆′|p = p12|∆|p. Hence the given
equation was not minimal for the prime p.
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Remark 3.3.3. This proof shows, how constructively to achieve minimality
simultaneously for all primes p > 3.

Proposition 3.3.4. Fix a prime p and an elliptic curve E over Q. Then,
the following statements hold:

1. There exists an admissible change of variables for E over Q, such that
the resulting equation is minimal for the prime p.

2. If E has p-integral coefficients, then the change of variables in 1) has
u, r, s, t all p-integral.

3. Two equations that are minimal for the prime p and that come from
E are related by an admissible change of variables, in which |u|p = 1
and r, s, t are p-integral.

Proof. 1.: Without loss of generality, we may assume, that E has p-integral
coefficients (or actually integral coefficients). Then, |∆|p ≤ 1. Since the
range of | · |p is discrete away from 0, |∆|p can be increased only finitely
many times, if we are to maintain |∆|p ≤ 1. Hence, in finitely many steps,
we can pass to an equation minimal for the prime p.

2.: Let E have coefficients {ai} and let the minimal equation have co-
efficients {a′i}. Since |∆′|p ≥ |∆|p, we must have |u|p ≤ 1 due to the last
equation of the table. From (2.7), we see, that all {bi} and {b′i} are p-integral.
Suppose p 6= 3. If |r|p > 1, then the equation

u8b
′
8 = b8 + 3rb6 + 3r2b4 + r3b2 + 3r4

in the table has 3r4 as strictly the largest term in p-norm on the right side.
This is a contradiction. If p = 3, we can argue similarly with the equation for
u6b′6 from the table and the term 4r3 to see, that |r|p ≤ 1. Similar arguments
with u2a′ and −s2, and then with u6a′6 and −t2 give |s|p ≤ 1 and |t|p ≤ 1.

3.: We apply 2) to the change of variables relating two minimal equations,
finding that |u|p ≤ 1 and that r, s, t are p-integral. Applying 2) to the inverse
change of variables, which involves u−1, we see, that |u−1|p ≤ 1. Thus,
|u|p = 1.

For the proof of the next statement, we recapitulate the Chinese Remain-
der Theorem from the basic number theory:

Theorem 3.3.5 (Chinese Remainder Theorem). Given a set of simultane-
ous congruences

x ≡ ai mod mi

for i = 1, . . . , r and for which the mi are pairwise relatively prime, there
exists a solution of this set of congruences, given by

x ≡ a1b1
M

m1
+ · · ·+ arbr

M

mr
mod M,
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where

M = m1m2 · · ·mr

and the bi are determined from

bi
M

mi
≡ 1 mod mi

Theorem 3.3.6 (Néron). If E is an elliptic curve over Q, then there exists
an admissible change of variables over Q, such that the resulting equation is
a global minimal Weierstrass equation. Two such resulting global minimal
Weierstrass equations are related by an admissible change of variables with
u± 1 and with r, s, t ∈ Z.

Proof. The uniqueness follows immediately from the third statement of
proposition 3.3.4. So we are to prove existence:

Without loss of generality, we may assume, that E has integer coeffi-
cients ai. For each p dividing ∆, choose an admissible change of variables
{up, rp, sp, tp} over Q, such that the resulting equation has coefficients ai,p
and is minimal for the prime p. By the second statement of proposition
3.3.4, the rationals up, rp, sp, tp are p-integral. If the new discriminant is
denoted ∆p, then the last formula of the table gives

|up|12
p |∆p|p = |∆|p. (3.8)

Let us write

up = pdpvp with |vp|p = 1. (3.9)

and define

u =
∏
p|∆

pdp .

We shall make an admissible change of variables {u, r, s, t} in the original
equation, that leads to an equation with integer coefficients a′i and discrim-
inant ∆′. Since u12∆′ = ∆, we have

|∆′|p = |u|−12
p |∆|p = |up|−12

p |∆|p = |∆p|p

by (3.8). Thus, the new equation is minimal for all p, hence is globally
minimal.

For each p with p|∆, let us write rp = pρpmp/np with mp and np in Z and
with |mp|p = |np|p = 1. Let n−1

p be an inverse to np modulo p6dp . We set
up the congruence

r ≡ pρpmpn
−1
p mod p6dp . (3.10)
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By the Chinese Remainder Theorem 3.3.5, we can find an integer r, such
that (3.10) is satisfied for all p with p|∆. Then |npr − pρpmp|p ≤ p−6dp and

|r − rp|p ≤ p−6dp

for all p. Similarly, we can find integers s and t, such that

|s− sp|p ≤ p−6dp and |t− tp|p ≤ p−6dp

for all p.
Our admissible change of variables {u, r, s, t} is now defined and we are

left with showing, that the new coefficients {a′i} are integers. We do this by
checking for each prime p, that |a′1|p ≤ 1, . . . , |a′6|p ≤ 1, using the formulas
from the table. For p - ∆, there is no problem: Since |u|p = 1 and r, s, t are
integers, we have |a′i|p ≤ 1. For p|∆, we estimate each |a′i|p. These estimates
are similar and we illustrate with a′2 only: We have

u2a′2 = a2 − sa1 + 3r − s2

= (a2 − spa1 + 3rp − s2
p)− (s− sp)a1 + 3(r − rp)− (s2 − s2

p)

= u2
pa
′
2,p − (s− sp)a1 + 3(r − rp)− (s− sp)(s+ sp).

So we get

|u|2p|a′2|p ≤ max{|u2
p|p|a′2,p|p, |(s− sp)a1|p, |3(r − rp)|p, |(s− sp)(s+ sp)|p}

≤ max{|u2
p|p, |s− sp|p, |r − rp|p} since up, rp, sp, tp are p-integral

≤ max{|u2
p|p, p−6dp} ≤ |u2

p|p by (3.9).

By the definition of u, it holds |u|2p = |u2
p|p. Thus, |a′2|p ≤ 1, and the proof

is complete.

The argument in theorem 3.3.6 is constructive, provided, we know how to
produce, for each individual p, an equation, that is minimal for the prime
p. The proof of lemma 3.3.2 shows, how to produce such an equation for
primes p > 3. An algorithm of Tate, which we do not discuss here, handles
the cases p = 2 and p = 3.

3.4 Dirichlet series and Euler products

Definition 3.4.1. A series
∑∞

n=1
an
ns with an and s complex is called a

Dirichlet series.

The first result shows, that the region of convergence and the region
of absolute convergence are each right half planes in C (unless it is equal
to the empty set or all of C. However, these half planes may not be the
same:

∑∞
n=1

(−1)n

ns is convergent for <(s) > 0 and absolutely convergent for
<(s) > 1.
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Proposition 3.4.2. Let
∑∞

n=1
an
ns be a Dirichlet series. Then the following

statements hold:

1. If the series is convergent for s = s0, then it is convergent uniformly
on compact sets for <(s) > <(s0) and the sum of the series is analytic
in this region.

2. If the series is absolutely convergent for s = s0, then it is uniformly
absolutely convergent for <(s) ≥ <(s0).

3. If the series is convergent for s = s0, then it is absolutely convergent
for <(s) > <(s0) + 1.

4. If the series is convergent at some s0 and sums to 0 in a right half
plane, then all the coefficients are 0.

Proof. The proof uses the summation by parts formula: If {un} and {vn}
are sequences and if Un =

∑n
k=1 uk for n ≥ 0, then 1 ≤M ≤ N implies

N∑
n=M

unvn =
N−1∑
n=M

Un(vn − vn+1) + UNvN − UM−1vM . (3.11)

Details for this proof can be found in [AK] and will be omitted here.

Example 3.4.3. The most important example of a Dirichlet series is the
Riemann zeta function, which is defined as ζ(s) :=

∑∞
n=1

1
ns . It is initially

defined and analytic for <(s) > 1 and can be extended meromorphically for
<(s) > 0. Its only pole is at s = 1, the pole has order 1.

The Riemann zeta function plays a pivotal role in analytic number theory
and has applications in physics, probability theory, and applied statistics.
By using a functional equation, it can be shown, that the Riemann zeta
function has zeros at −2,−4,−6, . . . . These are called the trivial zeros, in
the sense that their existence is relatively easy to prove. It is known that
any non-trivial zero lies in the open strip {s ∈ C : 0 < <(s) < 1}. The
Riemann hypothesis, considered one of the greatest unsolved problems in
mathematics, asserts that any non-trivial zero s has <(s) = 1

2 .

We are now able to give a connection between Dirichlet series and infinite
products:

An infinite product
∏∞
n=1 an with an ∈ C and with no factor 0 is said to

converge, if the sequence of partial products converges and the limit is not
0. A necessary condition for convergence is that an → 1.

Consider a formal product∏
p prime

(1 + app
−s + · · ·+ apmp

−ms + · · · ). (3.12)
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If this product is expanded without regard to convergence, the result is the
Dirichlet series

∑∞
n=1

an
ns , where a1 = 1 and an is given by

an = ar1p1 · · · a
rk
pk

if n = pr11 · · · p
rk
k . (3.13)

Suppose, that the Dirichlet series is in fact absolutely convergent in some
right half plane. Then every rearrangement is absolutely convergent to the
same sum and the same conclusion is valid for subseries: If E is a finite set
of primes and N(E) is defined as the set of positive integers requiring only
members of E for their factorisation, we have∏

p∈E
(1 + app

−s + · · ·+ amp p
−ms + · · · ) =

∑
n∈N(E)

an
ns
.

Consequently the infinite product has a limit in the half plane of absolute
convergence of the Dirichlet series and the limiting product (3.12) equals
the sum of the series. The sum of the series is 0 only if one of the factors on
the left side is 0. In particular, the sum of the series cannot be identically
0, by the last statement of proposition 3.4.2. Thus, (3.12) can equal only
this one Dirichlet series.

Conversely if an absolutely convergent Dirichlet series
∑∞

n=1
an
ns has the

property, that its coefficients are multiplicative, i.e.

a1 = 1 and amn = aman whenever m and n are relatively prime,

then we can form the product (3.12) and recover the given series by expand-
ing (3.12) and using (3.13). In this case, we say, that the Dirichlet series has
(3.12) as an Euler product. Many functions in elementary number theory
give rise to multiplicative sequences, an example is an = ϕ(n), where ϕ is
the Euler ϕ-function.

If the coefficients are strictly multiplicative, i.e.

a1 = 1 and amn = aman for all m and n,

then the p-th factor of (3.12) simplifies to

1 + app
−s + · · ·+ (app

−s)m + · · · = 1

1− ap
ps
. (3.14)

In this case, our Dirichlet series has a first degree Euler product :

∞∑
n=1

an
ns

=
∏

p prime

1

1− ap
ps
. (3.15)

Conversely, an Euler product of the form (3.15) forces the coefficients of the
Dirichlet series to be strictly multiplicative.

A Dirichlet series
∑∞

n=1
an
ns with |an| ≤ nc for some real c is absolutely

convergent for <(s) > c + 1. This fact leads us to a convergence criterion
for first degree Euler products:
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Proposition 3.4.4. A first degree Euler product
∏

p prime

1
1−ap

ps
with |ap| ≤ pc

for some real c and all primes c defines an absolutely convergent Dirichlet
series (and hence a valid identity (3.15)) for <(s) > c+ 1.

Proof. The coefficients an are strictly multiplicative and thus |an| ≤ nc for
all n. The absolute convergence follows.

For application with elliptic curves, we also need other kinds of Euler
products: To isolate the notion of degree of an Euler product, let us write
(3.14) as a formal identity

1 + apX + · · ·+ amp X
m + · · · = 1

1− apX
.

Here, the denominator on the right is a polynomial of degree ≤ 1 with
constant term 1 and it is in the sense, that the Euler product (3.15) has
degree 1. The expansion (3.12) is called a k-th degree Euler product, if for
each prime p, there is a polynomial Pp(X) ∈ C[X] having degree ≤ k and
zero constant term, such that

1 + apX + · · ·+ amp X
m + · · · = 1

1− Pp(X)

as a formal identity. Let us factor 1− Pp(X) over C as

1− Pp(X) = (1− r(1)
p X) · · · (1− r(k)

p X).

We call the complex numbers r
(j)
p the reciprocal roots of 1− Pp(X).

Proposition 3.4.5. A k-th degree Euler product
∏

p prime

1
1−Pp(p−s) , whose

reciprocal roots satisfy |r(j)
p | ≤ pc for some real value c and all primes p

defines an absolutely convergent Dirichlet series for <(s) > c+ 1. For such
s, the sum of the Dirichlet series equals the Euler product.

Proof. We apply proposition 3.4.4 to
∏

p prime
[1 − s

(j)
p p−s] for each j. The

product of absolutely convergent Dirichlet series can be rearranged without
affecting the sum and the result is an absolutely convergent Dirichlet series.

3.5 Zeta functions and L-functions

To define the L-function of an elliptic curve E over Q, we assume, that E is
given by a globally minimal Weierstrass equation. This condition is no loss
of generality in view of theorem 3.3.6.
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For each prime p, we consider the reduction Ep of E modulo p. We have
seen, that Ep is defined over Zp and is singular, if and only if p |∆. In both
the singular and the nonsingular cases, we define

ap := p+ 1−#Ep(Zp), (3.16)

where Ep(Zp) is as usual the set of projective solutions, i.e. the points on
the reduced curve.

Definition 3.5.1. The local L-factor for the prime p is the formal power
series given by

Lp(u) =

{
1

1−apu+pu2
if p - ∆

1
1−apu if p |∆ (3.17)

The L-function of E is the product of the local L-factor with u replaced in
the p-th factor by p−s:

L(s, E) =
∏
p|∆

[
1

1− app−s

]∏
p-∆

[
1

1− app−s + p1−2s

]
. (3.18)

An elementary convergence result for this Euler product is given in the
next proposition. This result will be improved in the next section:

Proposition 3.5.2. The following statements hold:

1. For every prime p, |ap| ≤ p.

2. For p - ∆, the reciprocal roots of 1 − apu + pu2 are ≤ p in absolute
value.

3. The Euler product defining L(s, E) converges for <(s) > 2 and is given
there by an absolutely convergent Dirichlet series.

Proof. The members of Ep(Zp) include the infinite points (0 : 1 : 0) and
cannot consist of more than two other points for each x in Zp. Thus, 1 ≤
#Ep(Zp) ≤ 2p+ 1 and so |ap| ≤ p. This proves statement 1).

The reciprocal roots are 1
2(ap ±

√
a2
p − 4p), which is ≤ |ap| in absolute

value. Thus, 1) implies 2).
Statement 3) is an immediate consequence of 2) and proposition 3.4.5.

When p|∆, we can calculate ap exactly. According to theorem 3.1.1, when
there is a singularity, there is only one and it is classified as a cusp, a split
case of a node od a nonsplit case of a node. Adding one for the singularity,
we arrive (due to theorem 3.1.3) the following formula for ap, when p|∆:

ap =


0 for the case of a cusp

+1 for the split case of a node

−1 for the nonsplit case of a node.

(3.19)
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An arithmetically defined L-function typically is part of a more naturally
defined zeta-function or a variant of such a function. In the case at hand,
the zeta-function Z(u,Ep) is a generating function, that encodes, how many
points are on the curve in each finite extension of Zp. If Fpn denotes the
field of pn elements, the definition is

Z(u,Ep) := exp

( ∞∑
n=1

#Ep(Fpn)un

n

)
.

The definition is arranged so, that additive formulas for #Ep(Fpn) make
multiplicative contributes to Z(u,Ep): Operationally one calculates with
the formula

u
d

du
logZ(u,Ep) =

∞∑
n=1

#Ep(Fpn)un.

For our elliptic curve, calculation of Z(u,Ep) leads to a combination of three
polynomials, two appearing in the denominator and one in the numerator:

Z(u,Ep) =

{
1−apu+pu2

(1−u)(1−pu) if p - ∆
1−apu

(1−u)(1−pu) if p |∆.

Substituting u = p−s and taking product of the factors Z(p−s, Ep) over
all primes p yields∏

p prime

(u,Ep) =
∏
p-∆

1− app−s + p1−2s

(1− p−s)(1− p1−s)

∏
p|∆

1− app−s

(1− p−s)(1− p1−s)
.

The factors
∏ 1

1−p−s and
∏ 1

1−p1−s are just the Euler products of the Rie-

mann zeta-function ζ(s) resp. ζ(s−1) and give no useful information about
E. The remaining polynomial is just L(s, E)−1, which encodes a great deal
of information.

So L(s, E) is basically the product over the zeta-functions with u = p−s

for all primes p.

3.6 Hasse’s theorem

The goal of this section is to establish the following improvement of propo-
sition 3.5.2. It is proven by H. Hasse in 1933, see [HH].

Theorem 3.6.1 (Hasse). Let E be an elliptic curve over Q with integer
coefficients. For each prime p - ∆, let Ep be the reduction modulo p. Then

|p+ 1−#Ep(Zp)| < 2
√
p. (3.20)
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Proof. The full proof of this theorem is quite laborious. We will just give a
short sketch of a proof, that is due to Yuri Manin, [YM]:

First, we discard of the cases p = 2 and p = 3. For these values of p,
we have p < 2

√
p. In these cases, (3.20) therefore follows from the first

statement of proposition 3.5.2.
For p > 3, we can make an admissible change of variables, that does not

affect the condition p - ∆, does not change #Ep(Zp) and brings the equation
of E into the form

y2 = x3 + ax+ b. (3.21)

We may therefore assume, from the outset, that E is given by (3.21).
We shall work with the nonsingular cubic

Y 2 =
X3 + aX + b

x3 + ax+ b
(3.22)

defined over the field Zp(x) of rational functions with coefficients in Zp.
Two solutions are

(X,Y ) = (x, 1) and (X,Y ) = (xp, (x3 + ax+ b)
1
2

(p−1)).

From the group law, we know, that the projective solutions of (3.22) over
Zp(x) form a group with identity ∞.

We form the group element

Tn := (xp, (x3 + ax+ b)
1
2

(p−1)) + n(x, 1) (3.23)

for each integer n with −∞ < n <∞. We define a corresponding sequence
of integers dn ≥ 0 as follows: If Tn = ∞, then dn := 0. Otherwise, Tn is of
the form (Xn, Yn); in this case, we reduce Xn to lowest terms in Zp(x) and
we let dn be the larger of the degree of the numerator and the degree of the
denominator of Xn.

Now, one can proof the following two statements:

d−1 − d0 − 1 = #Ep(Zp)− p− 1. (3.24)

and

dn−1 + dn+1 = 2dn + 2 for −∞ < n <∞. (3.25)

Given these equations, it is not difficult anymore to prove the theorem:
By induction forwards and backwards from the basis n = 0 and n = −1, we
obtain from (3.25) the formula

dn = n2 − (d−1 − d0 − 1)n+ d0. (3.26)

78



Substitution from (3.24) and use of d0 = p gives

dn = n2 + apn+ p,

where ap = p+1−#Ep(Zp) as in (3.16). The dn’s are degrees of polynomials
and therefore ≥ 0. Moreover, two consecutive dn’s cannot both be 0. Since
ap is an integer, it follows, that r2+apr+p ≥ 0 for all real r. The discriminant
of this polynomial then must be ≤ 0 and thus |ap| ≤ 2

√
p. This completes

the proof of theorem 3.6.1.

Corollary 3.6.2. The Euler product defining L(s, E) converges for <(s) >
3
2 and is given there by an absolutely convergent Dirichlet series.

Proof. Let p - ∆. If ap = p+1−#Ep(Zp), the reciprocal roots r of 1−apu+

pu2 are r = 1
2(ap ±

√
a2
p − 4p). By theorem 3.6.1, the square root in this

expression is imaginary. Hence, due to Pythagoras, |r|2 = 1
4(a2

p+(4p−a2
p)) =

p and |r| = √p. The corollary therefore follows from proposition 3.4.5 with
c := 1/2.

3.7 The conjecture of Birch and Swinnerton-Dyer

Helmut Hasse also conjectured, that L(s, E) could be extended by analytic
continuation to the whole complex plane. This conjecture was first proved
by Max Deuring for elliptic curves with complex multiplication. It was
subsequently shown to be true for all elliptic curves, as a consequence of the
Taniyama-Shimura theorem, also known as the modularity theorem:

In mathematics the modularity theorem states, that elliptic curves over
Q are related to modular forms. A modular form is a holomorphic function
on the upper half-plane satisfying a certain kind of functional equation and
growth condition. We do not give a more detailed definition about modular
forms here. A more detailed approach to this topic can be found in [KK].

Yutaka Taniyama stated a preliminary (slightly incorrect) version of the
conjecture at the 1955 international symposium on algebraic number theory
in Tokyo and Nikko. G. Shimura and Y. Taniyama worked on improving
its rigor until 1957, see [TS]. Weil rediscovered the conjecture in 1957, and
showed in [AWe3] that it would follow from the (conjectured) functional
equations for some twisted L-series of the elliptic curve; this was the first
serious evidence that the conjecture might be true.

The conjecture attracted considerable interest when G. Frey (1986) sug-
gested in [GF], that the Taniyama-Shimura-Weil conjecture implies Fermat’s
Last Theorem. He did this by attempting to show that any counterexample
to Fermat’s Last Theorem would give rise to a non-modular elliptic curve.
However, his argument was not complete. The extra condition which was

79



needed to link Taniyama-Shimura-Weil to Fermat’s Last Theorem was iden-
tified by J. Serre in 1987 ([JS]) and became known as the epsilon conjecture.
In [KR], K. Ribet (1990) proved the epsilon conjecture, thereby proving that
the Taniyama-Shimura-Weil conjecture implied Fermat’s Last Theorem. A.
Wiles (1995), with some help from Richard Taylor, proved the Taniyama-
Shimura-Weil conjecture for all semistable elliptic curves, which was strong
enough to yield a proof of Fermat’s Last Theorem, see [AW2].

The full Taniyama-Shimura-Weil conjecture was finally proved by F. Dia-
mond (1996), R. Taylor (1999), and C. Breuil (2001) who, building on Wiles’
work, incrementally chipped away at the remaining cases until the full result
was proved in 2001. (Compare the references in [FD], [CDT] and [BCDT].
The now fully proved conjecture became known as the modularity theorem.

Now let us give a more precise idea of this analytic continuation of L(s, E):
By adding a few more analytic factors to the L-function, we obtain a function
Λ(s, E), that satisfies a remarkably simple function equation. Let

Γ(z) :=

∫ ∞
0

tz−1e−t dt

be the Γ-function, which meets Γ(n) = (n − 1)! for all integers n. Then, Γ
is a meromorphic function on C with poles at the non-positive integers.

Theorem 3.7.1. There is a unique positive integer N = NE and a sign
ε = εE ∈ {±1}, such that the function

Λ(s, E) := N
s
2 · (2π)−s · Γ(s) · L(s, E)

extends to a complex analytic function on all C, that satisfies the functional
equation

Λ(2− s, E) = ε · Λ(s, E)

for all s ∈ C.

Proof. We do not give a proof of this theorem here. The basic idea is the
following: One can prove, that the L-series of a modular form analytically
continues and satisfies the given functional equation. Since the Taniyama-
Shimura theorem states, that an elliptic curve defined over Q is modular,
this already implies our statement. A full proof to this theorem can be found
in [NK].

The integer N = NE is called the conductor of E and ε = εE is called
the sign in the functional equation for E or the root number of E. One can
prove, that the primes that divide N are the same as the primes, that divide
the discriminant ∆.
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Definition 3.7.2. Since L(s, E) can be analytically continued to a holo-
morphic function on all C, this implies, that L(s, E) has a power series
expansion about the point s = 1:

L(s, E) = c0 + c1(s− 1) + c2(s− 1)2 + · · ·

Define the analytic rank ran of E to be the order of vanishing of L(s, E) at
s = 1, i.e.

L(s, E) = cran(s− 1)ran + · · · .

This completely analytic definition of a rank is very different from the
purely algebraic kind of rank, that we defined in corollary 2.6.12. Neverthe-
less, there is a very weighty conjecture, that claims, that these two ranks
are actually the same:

Conjecture 3.7.3 (Birch, Swinnerton-Dyer). Let E be an elliptic curve
over Q. Then the algebraic and analytic ranks of E are the same.

This problem is extremely difficult. The conjecture was made in the 1960s,
and hundreds of people have thought about it for over 4 decades. Its status
as one of the most challenging mathematical questions has become widely
recognised. It is one of the Clay Mathematics Institute’s seven Millennium
Prize Problems, see [KD].

I will describe some historical backgrounds about the Birch-Swinnerton-
Dyer conjecture. Around 1960, Bryan Birch and Peter Swinnerton-Dyer
formulated a conjecture which determines the algebraic rank r of an elliptic
curve E over Q. The idea is that an elliptic curve with a large value of r
has a large number of rational points and should therefore have a relatively
large number of solutions modulo a prime p on the average as p varies. For a
prime p, we let N(p) be the number of pairs of integers (x, y) on the elliptic
curve E reduced modulo p.

Then the Birch-Swinnerton-Dyer conjecture in its crudest form said, that
we should have an asymptotic formula∏

p<x

N(p) + 1

p
∼ C · (log x)r as x→∞

for some constant C > 0. This in turn led them to make a general conjec-
ture about the behaviour of a curve’s L-function L(s, E) at s = 1, namely
3.7.3. This was a far-sighted conjecture for that time, because the analytic
continuation of L(s, E) there was only established for curves with complex
multiplication, which were also the main source of numerical examples. But
since the Taniyama-Shimura-conjecture is proven, we know, that there ex-
ists an analytic continuation of L(s, E) on C and so a power series expansion
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at the point s = 1 for all elliptic curves E. The original work of Birch and
Swinnerton-Dyer can be found in [BS].

The Birch and Swinnerton-Dyer conjecture has been proved only in special
cases:

• From the modularity theorem, one can infer, that it is possible to
generalize elliptic curves over Q to an elliptic curve over an arbitrary
algebraic number field (an algebraic number field is a finite and hence
algebraic field extension of the field of rational numbers). Since there
is not always a unique factorization of numbers in a product of prime
numbers. The failure of unique factorization is measured by the class
number.

In 1976, John Coates and Andrew Wiles proved in [CW] that if E is
a curve with complex multiplication and L(1, E) is not 0, then E has
only a finite number of rational points, in the case of class number 1.
This was extended to all imaginary quadratic fields by Nicole Arthaud.

• In 1983, Benedict Gross and Don Zagier showed in [GZ], that if a
modular elliptic curve has a first-order zero at s = 1, then it has a
rational point of infinite order. This is known as the Gross-Zagier
theorem.

• In 1990, Victor Kolyvagin showed in [VK] that a modular elliptic curve
E for which L(1, E) is not zero has rank 0, and a modular elliptic curve
E for which L(1, E) has a first-order zero at s = 1 has rank 1.

• Since 1999, the Taniyama-Shimura is proven, which extends the pre-
vious results about modular elliptic curves to all elliptic curves over
the rationals.

However, nothing has been proved for curves with rank greater than 1,
although there is extensive numerical evidence for the truth of the conjec-
ture.

An important consequence of the Birch-Swinnerton-Dyer conjecture is the
following proposition:

Proposition 3.7.4. Let E be an elliptic curve over Q. If Conjecture 3.7.3
is true, then there is an algorithm to compute the rank of E.

Proof. We will only give a basic idea of this proof:
By naively searching for points in E(Q), we obtain a lower bound on r,

which is closer and closer to the true rank r, the longer we run the search.
At some point this lower bound will equal r, but without using further
information we do not know when that will occur.

On the other hand, we can for any k compute L(k)(1, E) to any desired
precision. Such computations yield upper bounds on ran. In particular, if we
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compute L(k)(1, E) and it is nonzero (to the precision of our computation),
then ran ≤ k. Eventually this method will also converge to give an upper
bound on ran, though again without further information we do not know
when our computed upper bound on ran equals to the true value of ran.

Since we are assuming that Conjecture 3.7.3 is true, we know that r = ran,
hence at some point the lower bound on r computed using point searches
will equal the upper bound on ran computed using the L-series. At this
point, by Conjecture 3.7.3, we know the true value of r.

Remark 3.7.5. Let E be an elliptic curve over Q. It can even be shown, that
given the rank r, then there is an algorithm to compute E(Q). A proof of
this statement can be found in [WS].

Another consequence of the Birch-Swinnerton-Dyer conjecture lies in pure
number theory:

Definition 3.7.6. In mathematics, a congruent number is a positive integer
that is the area of a right triangle with three rational number sides.

Example 3.7.7. The sequence of integer congruent numbers starts with

5, 6, 7, 13, 14, 15, 20, 21, 22, 23, 24, 28, 29, 30, 31, 34, 37, 38, 39, 41, 45, 46, . . .

For example, 5 is a congruent number because it is the area of a 20/3, 3/2, 41/6
triangle. Similarly, 6 is a congruent number because it is the area of a 3, 4, 5
triangle. 3 is not a congruent number.

The question of determining whether a given rational number is a con-
gruent number is called the congruent number problem. This problem has
still not been brought to a successful resolution.

Tunnell’s theorem (see 3.7.8 below) provides an easily testable criterion
for determining whether a number is congruent; but his result relies on the
Birch and Swinnerton-Dyer conjecture, which we know, is still unproven.

Theorem 3.7.8 (Tunnell). For a given square-free integer n, define

An = #{x, y, z ∈ Z : n = 2x2 + y2 + 32z2}
Bn = #{x, y, z ∈ Z : n = 2x2 + y2 + 8z2}
Cn = #{x, y, z ∈ Z : n = 8x2 + 2y2 + 64z2}
Dn = #{x, y, z ∈ Z : n = 8x2 + 2y2 + 16z2}.

Tunnell’s theorem states that supposing n is a congruent number, if n is
odd then 2An = Bn and if n is even then 2Cn = Dn.

Conversely, if the Birch and Swinnerton-Dyer conjecture holds true for
elliptic curves of the form y2 = x3 − n2x, these equalities are sufficient to
conclude that n is a congruent number.
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p-adic norm, 65
p-integral value, 65
p-reduced point, 66

absolute invariant, 28
affine planar curve, 38
analytic rank, 81

conductor, 80
congruent number, 83
conic, 38
conjugation-invariant lattice, 26
cubic, 38
cusp, 63

Dirichlet series, 72
discrete set, 7
discriminant, 27, 43

Eisenstein series, 18
elliptic curve, 41
elliptic function, 13

fundamental parallelotope, 10

height function, 59
homogeneous polynomial, 37

inflection points, 40
intersection multiplicity, 38
isomorphic elliptic curves, 41

lattice, 7
line, 37

meromorphic function, 11
modularity theorem, 79

multiplicativity, 74

node, 63

pole, 11
projecive plane, 37
projective planar curve, 37

rank, 61
reciprocal root, 75
reduction modulo p, 65
residuum, 14

singular curve, 40
singular point, 40
smooth curve, 40

tangent line, 40
torsion subgroup, 61

ultrametric inequality, 65
unimodular matrix, 9

Weierstrass ℘-function, 17
Weierstrass form, 41
Weierstrass-invariants, 23
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