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Abstract

A real-time computer system is a computer system in which the correctness of the sys-
tem behavior depends not only on the logic results of the computations, but also on the
physical instant at which these results are produced. Today, most real-time computer
systems are implemented as collections of software tasks that are executed concurrently
on a suitable hardware platform consisting of one or multiple microprocessors or micro-
processor cores. Obtaining the worst-case execution time (WCET) of each real-time task
is an essential step in ensuring the correctness of such a system.

Measurement-based timing analysis (MBTA) is an easily retargetable analysis ap-
proach for estimating the WCET of a given task running on a particular target platform.
In this approach, the execution times of individual task fragments are measured while
the task is being executed on the intended target hardware. The observed local execution
times of the individual task fragments are subsequently combined into a global WCET
estimate for the task as a whole.

Industry demands WCET estimates that are close to the actual WCET. To fulfill this
requirement, we must limit two opposed influences on the closeness of WCET estimates
obtained by MBTA: (1) conservative WCET estimate calculation, otherwise known as
pessimism, and (2) incomplete measurement coverage, also known as optimism.

Preliminary versions of individual research results found in this thesis have been
published in various scientific formats. In this thesis I strengthen the following original
contributions:

Context-sensitive IPET: I present context-sensitive IPET as a strategy for reducing
the pessimism found in standard IPET.

Integration of methods: I discuss how the methods for reducing optimism and pes-
simism that have been developed within the FORTAS project have been tied
together to form a complete MBTA approach that can provide closer WCET esti-
mates than possible with standard MBTA approaches.

Experimental evaluation: I present an experimental evaluation of the FORTAS ap-
proach. The results indicate the effectiveness of the approach. Most importantly,
the evaluation includes a quantitative comparison between analysis results obtai-
ned by the FORTAS tool and the corresponding results of the industrial-strength
static WCET analysis tool aiT.
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Kurzfassung

Ein Echtzeitcomputersystem ist ein Computersystem, bei dem die Korrektheit des Sys-
temverhaltens nicht nur von den logischen Berechnungsergebnissen abhängt, sondern
auch vom physikalischen Zeitpunkt, zu dem die Resultate erzeugt werden. Heutzuta-
ge werden die meisten Echtzeitcomputersysteme als Ansammlungen von Software-Tasks
implementiert, welche parallel auf einer passenden Hardware-Plattform mit einem oder
mehreren Mikroprozessoren oder Mikroprozessorkernen ausgeführt werden. Das Ermit-
teln der Worst-Case Execution Time (WCET) der einzelnen Echtzeit-Tasks ist ein es-
sentieller Schritt bei der Sicherstellung der Korrektheit eines solchen Systems.

Die Messbasierte Zeitanalyse (MBTA) ist ein einfach retargierbarer Ansatz zur
Abschätzung der WCET eines gegebenen Tasks, der auf einer bestimmten Hardware-
Plattform ausgeführt wird. Bei diesem Ansatz werden die Ausführungszeiten einzelner
Task-Fragmente gemessen, während der Task auf der vorgesehenen Target-Hardware
ausgeführt wird. Die beobachteten lokalen Ausführungszeiten werden anschließend zu
einer globalen WCET-Abschätzung für den Gesamt-Task zusammengesetzt.

Die Industrie fordert WCET-Abschätzungen, die nahe an der tatsächlichen WCET
liegen. Um diese Forderung zu erfüllen, müssen wir zwei gegensätzliche Einflüsse auf die
Nähe der mit MBTA ermittelten WCET-Abschätzungen beschränken: (1) die konser-
vative Berechnung von WCET-Abschätzungen, bekannt als Pessimismus, und (2) die
unvollständige Messabdeckung, bekannt als Optimismus.

Vorläufige Versionen einzelner Forschungsergebnisse in dieser Dissertation wurden
bereits im Rahmen unterschiedlicher wissenschaftlicher Formate publiziert. In dieser
Dissertation erweitere ich die folgenden originären Beiträge:

Kontextsensitives IPET: Ich stelle kontextsensitives IPET als Strategie zur Verrin-
gerung des Pessimismus in Standard-IPET vor.

Integration von Methoden: Ich diskutiere, wie die Methoden zur Verringerung von
Optimismus und Pessimismus, die in Rahmen des FORTAS-Projekts entwickelt
wurden, zu einem vollständigen MBTA-Ansatz zusammengefügt wurden, der näh-
rere WCET-Abschätzungen liefern kann, als dies mit Standard-IPET-Ansätzen
möglich ist.

Experimentelle Evaluierung: Ich stellen eine experimentelle Evaluierung des FOR-
TAS-Ansatzes vor. Die Evaluierung umfasst insbesondere einen quantitativen Ver-
gleich zwischen den Analyseergebnissen des FORTAS-Werkzeugs und der entspre-
chenden Analyseergebnisse des statischen WCET Analyseswerkzeugs aiT.
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CHAPTER 1
Thesis Overview

In this introductory chapter, we provide an overview of the topic and the contributions
of this thesis.

We consider the need for close estimates of the worst-case execution time of soft-
ware tasks during the construction of a real-time computer system. We contrast the
traditional methods used for worst-case execution time estimation to the relatively new
measurement-based approach. We present multiple use-cases for the measurement-based
approach, where it seems favorable over traditional methods. We mention the problem-
atic effects of optimism and pessimism, which are associated with the measurement-based
approach. We then point out the contributions of this thesis and close the chapter by
giving an outline of the rest of the text.

1.1 What is the WCET?

The worst-case execution time (WCET) of a given program on a particular execution
platform is the maximal amount of time the program may require to execute, from the
moment it is started to the moment it completes its execution.

1.2 Why do we need WCET Estimates?

A real-time computer system is a computer system in which the correctness of the system
behavior depends not only on the logic results of the computations, but also on the
physical instant at which these results are produced [Kop97].

Today, most real-time computer systems are implemented as collections of software
tasks that are executed concurrently on a suitable hardware platform consisting of one or
multiple microprocessors or microprocessor cores. Obtaining the WCET of all real-time
tasks is an essential step in ensuring the correctness of such a system.

In the field of WCET analysis, we consider the problem of obtaining the WCET of
a given task running on a particular hardware platform [WEE+08]. It turns out that
obtaining the exact WCET is infeasible in most practically relevant cases, due to the
large number of possible behaviors that even a moderately complex piece of software can
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1. Thesis Overview

exhibit on modern computer hardware. As a consequence, a major research focus of the
WCET community is the development of methods for inferring WCET estimates.

For practical use, the WCET estimates must be close, i.e., they should be as close
to the actual WCET as practically feasible.

The WCET of a given task is always specific to its particular executable machine
code, as well as to the target hardware on which that code is executed. There is no
general method that could be used to obtain the WCET, or even a reasonably close
estimate thereof, of arbitrary code to be run on an arbitrary microprocessor.

1.3 Traditional Methods for WCET Estimation

The most straightforward way to obtain an estimate for the WCET of a given piece of
code on a particular target platform is to observe the end-to-end execution times while
that piece of code is executed under different execution scenarios, to pick the maximal
observed execution time, and to multiply that value with a safety factor that is specific
to the intended application. This is what is partly done in industry in the case of low-
criticality systems under the term dynamic timing analysis [WEE+08]. However, the
same approach cannot be used for safety-critical systems.

Unlike in other fields of engineering, like, for example, construction, where systems
usually demonstrate mostly continuous behavior that is suitable for such forms of ex-
trapolation, it turns out that digital systems typically demonstrate many behavioral
discontinuities. As a result, the actual WCET cannot easily be extrapolated from a set
of observed execution times. Situation can and do occur, where the WCET is only trig-
gered in rare situations that cannot be adequately modeled by continuous mathematical
models. For critical applications, however, such rare situations must be considered, to
ensure correct, dependable, and safe operation.

The traditional approach for WCET analysis is static timing analysis, where a WCET
estimate is calculated directly from the executable machine code. Analysis methods that
follow this approach depend on a correct and precise behavioral model of the target
hardware on which the code is intended to be executed. As a result, such methods are
highly dependent on the intended target hardware.

Developing a static WCET analysis for a modern microprocessor is an expensive and
error-prone undertaking, as such hardware usually contains an abundance of performance
optimization features, like caches, buffers, processor pipelines, branch predictors, etc.
Due to the intricate interaction of these features, static analysis methods are forced to
make simplifying assumptions during WCET inference, which can lead to considerably
imprecise WCET estimates.

1.4 Measurement-based Timing Analysis (MBTA)

Measurement-based timing analysis (MBTA) methods [BCP02, BCP03, KWRP05,
WKRP09, SM10] try to alleviate the portability issue of static timing analysis. MBTA
is an easily retargetable analysis approach for estimating the WCET of a given task
running on a particular target platform. In MBTA,
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1.5. Use Cases for MBTA

1. the execution times of individual task fragments are measured while the task is
being executed on the target hardware, and

2. the observed local execution times of the individual task fragments are subse-
quently combined into a global WCET estimate for the task as a whole.

A major strength of MBTA is its low retargeting effort. Retargeting requires the
implementation of a target-specific driver that compiles and links the code of the task,
uploads the executable machine code to the target platform, starts the execution of the
code, and records the execution time of individual program parts.

Because the space of possible input data is usually enormous, it is not feasible to per-
form individual measurements on all possible input configurations. A subset of possible
input data must be chosen. As a result, MBTA methods face the challenge of optimism:
A WCET estimate obtained using MBTA may be lower than the actual WCET. This
is very different from the situation in static analysis, which is always conservative in its
assumptions about worst-case behavior, even at the cost of a potentially high overesti-
mation of the actual WCET. A WCET estimate obtained from a correct static WCET
analysis is a guaranteed upper bound of the actual WCET.

Consequently, the subset of input data on which measurements are carried out must
be selected carefully. Generating suitable input data, in order to limit the extent of
underestimation, is therefore a crucial issue in MBTA.

1.5 Use Cases for MBTA

The properties mentioned in the previous section make MBTA suitable for the following
scenarios:

Development of soft real-time systems: A soft real-time computer system is being
developed, where an occasional miss of a task completion deadline can be tolerated.
MBTA is particularly expedient for systems with high resource utilization, where
close WCET estimates are particularly important.

Development of mixed-criticality systems: A mixed-criticality computer sys-
tem [BLS10] is being developed. For such a system, it is possible to use a mix
of static timing analysis and MBTA. In such a mixed analysis approach, static
timing analysis can be used to obtain WCET estimates associated with a high
criticality level, whereas MBTA can be used to obtain WCET estimates asso-
ciated with a low criticality level. Dynamic mixed-criticality scheduling algo-
rithms [BBD+10, BLS10, BBD11] can then be used to guarantee that all highly
critical task are timely scheduled.

Testing and evaluation of static WCET tools: A new static WCET analysis is be-
ing developed in-house, for example, because there is a need to analyze a hard
real-time system, but no suitable analysis tool is available for the chosen target
hardware. MBTA can then be used to test and evaluate the newly developed static
analysis tool.

3



1. Thesis Overview

Cross-checking of analysis results: A static WCET analysis tool from a third party
vendor is used to analyze a highly critical hard real-time system. MBTA can be
used to cross-check the obtained WCET estimates.

Development of gracefully-degrading real-time systems: A hard real-time com-
puter system is being developed, but the costs for developing a static WCET ana-
lysis is prohibitive. MBTA can then be used to obtain WCET estimates. These
estimates can be used for scheduling, under the condition that the system pro-
vides a suitable safe fall-back operation mode, which is guaranteed to be entered
automatically in the unlikely case of a timing error.

Design space exploration: A hard or soft real-time computer system is being de-
veloped, but there are still open design decisions. At this stage of development,
MBTA can be used for design space exploration, to help the system designer in
evaluating different choices of target hardware, algorithms, task factorization, etc.

1.6 Optimism and Pessimism

In MBTA, the program code under analysis is executed on the target hardware, and
the execution times for different program parts are observed. In the simplest case, the
considered parts are individual instructions or non-overlapping code blocks [BCP02,
BCP03, WKRP09]. Another possibility is to consider individual instruction sequences
occurring in the code [BCP02, BCP03]. Typically, the maximal observed execution time
(MOET) of each program part is then taken as approximation of the block’s WCET. A
global WCET estimate for the whole task can then be computed by combining the local
MOETs.

A crucial issue in MBTA is closeness. The quality of the WCET estimate is deter-
mined by the ability to control two diametrically opposed sources of deviations:

Pessimism: When inferring a global WCET estimate, we combine the local WCET es-
timates of the individual program parts in a conservative fashion, i.e., we assume
that the effects that lead to local WCETs of individual program parts may accu-
mulate during program execution, even if we have not witnessed such a situation
during measurement. The rationale for choosing this form of over-approximation is
that the WCET is, by definition, a pessimistic parameter of a task. Unless we have
collected sufficient evidence to the contrary, we assume the existence of execution
scenarios where local WCETs of different program parts accumulate. On a global
level, this form of abstraction can lead to a potential overestimation of the actual
WCET.
Assume, for a moment, that we knew the actual WCET of each program part.
In this case, any monotonic composition method (cf. Section 4.2) for calculating
a global WCET estimate introduces some error epess ≥ 0, such that we have
êst = wcet + epess, where êst is the optimism-free global WCET estimate, and
where wcet is the actual global WCET.

Optimism: In MBTA, we cannot be sure that our measurements capture all possible
execution times of a given program part, for the following two reasons:

4



1.6. Optimism and Pessimism

• The size of the relevant state space, i.e., the space of possible initial conditions
with respect to the timing-relevant computer state (cf. Section 3.3) is usually
prohibitively large.

• We want MBTA to be portable, so we do not want to tailor the method to
the specifics of any particular target hardware.

Although MBTA applies sophisticated input-data generation techniques to achieve
measurements that cover most of the possible temporal behaviors of the individual
task parts, it cannot guarantee that the local MOET on which the global WCET
estimate is based hits the local WCET. Globally, this effect can lead to a potential
underestimation of the actual WCET of the task as a whole.

Unlike static WCET analysis, MBTA intentionally does not consider the imple-
mentation details of the processing hardware in order to preserve portability. Also,
checking all possible execution times of a given code block exhaustively by enu-
meration is not feasible in practice, due to the size of the initial state space. As a
consequence, taking the MOET of each block as an estimate of the block’s WCET
is inherently optimistic. Assuming, again, that a monotonic composition method
is used to calculate the global WCET estimate, optimism introduces an addi-
tional error eopt ≥ 0, such that est = êst − eopt = wcet + (epess − eopt), for the
WCET estimate est under a combination of optimism—introduced by relying on
measurements—and pessimism—introduced by relying on overapproximative esti-
mate calculation.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 e=0

unsafe
estimates

unsafe
estimates

safe
estimates

safe
estimates

static timing analysis MBTA

Var(e) Var(e)

e=0

e=E(e)e=E(e)

Var(e) Var(e)

Figure 1.1: The closeness of a WCET analysis method can be quantified by reference to
the variance V ar(e) and the estimated value E(e) of the estimation error e = est−wcet.
In the case of static analysis, the area of unsafe estimates is excluded by using over-
approximation, and closeness quantifies the expected overestimation. MBTA, however,
does not guarantee safety. In this case, estimates might be higher or lower than the
actual WCET, and closeness quantifies the expected deviation from the actual WCET.
To increase the closeness of MBTA, we must reduce both, the variance V ar(e) of the
WCET estimate’s error and the deviation wcet−E(e) of the expected value of the WCET
estimate’s error from the actual WCET. Note that V ar(e) and wcet−E(e) correspond
to the notions of accuracy and precision in metrology, respectively.
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1. Thesis Overview

One way to quantify the closeness of an analysis method is by reference to the variance
V ar(e) and the expected value E(e) of the estimation error e = est−wcet, as illustrated
by Figure 1.1. To increase the closeness of MBTA, we must reduce both, the variance
V ar(e) of the WCET estimate’s error and the deviation wcet − E(e) of the expected
value of the WCET estimate’s error from the actual WCET. This can be achieved by
reducing pessimism and optimism simultaneously.

1.7 Contributions

A major requirement for a good MBTA tool that is in industrial practice is that it should
be able to produce close WCET estimates, i.e., estimates that are as close to the actual
WCET as practically feasible. To achieve this, the analysis must limit the influence of
both, optimism and pessimism. Moreover, such a practical tool should be easy to deploy
and use.

In this thesis, I condense and extend research results that have been obtained within
the FORTAS project. The goal of the FORTAS project was foundational research into
new methods for MBTA, which should pave the way for the development of industrial-
strength MBTA tools. Central research topics that were treated within the FORTAS
project are new strategies for reducing both, pessimism and optimism, and the iterative
refinement of analysis results. On a higher level, the FORTAS approach aims at tying
together all these methods into an integral analysis approach.

Various individual results from the FORTAS project have been published in prior
scientific publications [BT08, ZBK09, ZBK10, BZTK11, BZK11, ZBK11, vHHL+11]. In
this thesis I strengthen the following original contributions1:

Context-sensitive IPET: In Section 4, I discuss context-sensitive IPET as a strategy
for reducing the pessimism found in standard IPET.

Integration of methods: In Chapter 6, I discuss how the methods for reducing opti-
mism and pessimism that have been developed within the FORTAS project have
been tied together to form a complete MBTA approach that can provide closer
WCET estimates than possible with standard MBTA approaches.

Experimental results: In Chapter 7, I present an experimental evaluation of the
FORTAS approach. The results indicate the effectiveness of the approach. Most
importantly, the evaluation includes a quantitative comparison between analy-
sis results obtained by the FORTAS tool and the corresponding results of the
industrial-strength static WCET analysis tool aiT.

1.8 Guide to this Thesis

Chapter 2—Real-Time Computer Systems: In this chapter, we review the basic
concepts of real-time computing. In Section 2.1, we start with the definition of

1Notice: The results presented in Chapter 5 have mostly been obtained through the research effort
of Sven Bünte, as part of our research collaboration within the FORTAS project. The author of this
thesis provides this overview for the sake of completeness, but does not claim any scientific results in
that chapter as his own.
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a real-time system. In Section 2.2, we discuss available design options for real-
time computer systems. In Section 2.3, we take a look at the development process
of critical systems. In Section 2.4, we review the concept of a task. We then
review task scheduling on uniprocessors, in Section 2.5, and on multiprocessors, in
Section 2.6.

Chapter 3—Introduction to WCET Analysis: This chapter presents the prelimi-
naries of WCET analysis. After considering several simplifying restrictions on the
hardware and software under analysis that are usually assumed for WCET analysis
(cf. Section 3.1), we discuss the influence of modern high-performance microarchi-
tectures on WCET analysis in Section 3.2. In Section 3.3, we consider what parts
make up a computer’s state, and how these parts may affect the temporal behav-
ior of a running program. We then consider the software development process in
Section 3.4, and its implication on WCET analysis in Section 3.5. The traditional
approach for WCET analysis follows the idea of splitting the program under analy-
sis into smaller parts and determining local WCET estimates for these individual
parts. In Section 3.6 we discuss different splitting choices. Processor-behavior
analysis, which we discuss in Section 3.7, is concerned with determining WCET
estimates for the individual program parts. Control-Flow Analysis, which is dis-
cussed in Section 3.8, is concerned with determining the feasible sequences in which
the individual program parts can be executed. Estimate calculation, which is con-
cerned with combining the local WCET estimates obtained by processor-behavior
analysis into a global WCET estimate for the whole program, is discussed in Sec-
tion 3.9. We then discuss concrete methods for WCET estimate calculation, in
Sections 3.10, 3.11, and 3.12. In Section 3.13, we discuss the general principles of
MBTA. In Section 3.14, we discuss the MBTA issue of generating suitable input
data. We conclude the chapter with a discussion of measurement, in Section 3.15.

Chapter 4—Reducing Pessimism: In this chapter, we develop a method for reduc-
ing pessimism in MBTA. In Section 4.1, we consider how pessimism arises due to
overapproximation of the systems behavior. In Section 4.2, we consider a particu-
lar property found in many widely used estimate calculation methods that we need
later to ensure our method for reducing pessimism can never increase pessimism.
In Section 4.3, we consider that the state of a system can be viewed as a summary
of its execution history, which allows us to obtain partial state information from
execution histories. In Section 4.4, we present context-sensitive IPET, a generic
estimate calculation method. In Sections 4.5 through 4.9, we present a concrete
instantiation of context-sensitive IPET that is suitable for use in practice.

Chapter 5—Reducing Optimism: In this Chapter, we describe a method for reduc-
ing optimism in MBTA. In Section 5.1, we identify measurements as source of
optimism in MBTA. In Section 5.2, we present FROO, an input-data generation
technique that seeks to reduce the optimism of MBTA through an increase of
the measurement coverage of temporal behavior. In Section 5.3, we present an
evaluation for FROO. In Section 5.4, we describe some limitations of FROO.

Chapter 6—FORTAS: In this chapter, we present the FORTAS approach for high-
precision MBTA. In Section 6.2, we review the features that distinguish the FOR-
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TAS approach from standard MBTA methods. One particularly innovative feature
is iterative refinement, which we review in Section 6.3. In Section 6.4, we review
the modular software architecture of the FORTAS tool.

Chapter 7—Experiments: In this chapter, we present an experimental evaluation of
the FORTAS approach. We first describe the target platform that we used in
our evaluation. In Section 7.1, we present the TriCore TC1796 microprocessor.
In Section 7.2, we present the OCDS debugging interface, which provides the
technical prerequisites for collecting timed execution traces without exerting a
probe effect on the system. In Section 7.3, we present the TriBoard TC179X
Evaluation Board that we used as a platform for the TC1796. In Section 7.4, we
present the benchmarks that we used. In Section 7.5, we explain the design of our
experiments. In Section 7.6, we present the results of our evaluation.

Chapter 8—Conclusion and Outlook: This chapter closes the thesis, with the
conclusion formulated in Section 8.1, and an outlook to future research in Sec-
tion 8.2.
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CHAPTER 2
Real-time Computer Systems

In this chapter, we review the basic concepts of real-time computing.
A real-time computer system is a computer system in which the correctness of the

system behavior depends not only on the logic results of the computation, but also on
the physical instant at which these results are produced.

In Section 2.1, we start with the definition of a real-time computer system. We
point out the fundamental difference between hard and soft real-time computer systems.
We also review the related concepts of safety-critical computer systems, mission-critical
computer systems, mixed-criticality computer systems, cyber-physical systems, and hybrid
systems.

Next, we consider the design and development of real-time computer systems. In
Section 2.2, we discuss available design options for real-time computer systems. In
Section 2.3, we take a look at the development process of critical systems.

We then consider multi-tasking in real-time computer systems. In Section 2.4, we
review the concept of a task, which is the fundamental building block of a modular real-
time computer system. We then review task scheduling on uniprocessors, in Section 2.5,
and on multiprocessors, in Section 2.6. We review some classic schedulability tests—
analytic criteria that traditionally form the basis for ensuring the correctness of a multi-
tasking real-time computer system. These tests require knowledge of the WCET—or
at least a WCET estimate—of each task. Schedulability analysis is thus a primary
motivation for WCET estimation.

2.1 What is a Real-Time Computer System?
A real-time computer system is a computer system in which the correctness of the system
behavior depends not only on the logic results of the computations, but also on the
physical instant at which these results are produced [Kop97].

Real-time computer systems typically manifest themselves in the physical world as
embedded computer systems, i.e., special-purpose computer systems based on application-
specific hardware and software, often implemented as a self-contained physical device.
Typical applications of embedded computer systems include mobile phones, video game
consoles, media players, electronic control units in various kinds of ground, air, naval,
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and space vehicles, plant automation systems, and medical devices. Figure 2.1 shows
some typical applications of real-time computer systems.

Figure 2.1: A few application examples of real-time computer systems: (a) DVD player,
(b) capsule endoscope, (c) GPS satellite, (d) laproscopic surgery robot, (e) civil airplane,
(f) industrial laser cutter, (g) planetary rover, (h) remotely operated underwater vehicle,
(i) unmanned aerial vehicle.

Most embedded computer systems interact tightly with their physical environment.
As a consequence, they are usually subject to real-time constraints that are imposed by
the real-world objects that they interact with.

For some applications, the imposed real-time constraints are more rigid than for
others. For example, an embedded controller for the combustion engine of a car must
be able to inject the correct amount of fuel into the combustion chamber precisely at
the right instant in time when the piston in the cylinder reaches the right position. A
failure in timing can severely impact the efficiency of the engine, or even cause physical
damage to the point where the safe operation of the car is compromised [Kop97]. In
avionics, flight control software must execute within a fixed time interval in order to
accurately control the aircraft [DB11]. Temporal constraints of this kind are called
hard real-time constraints, and computer systems that are subject to at least one hard
real-time constraint are called a hard real-time computer systems [Kop97].

On the other hand, there are also many embedded systems that, while still classified
as real-time, are subject to less rigid timing constraints. A typical example are media
players, where a voluminous stream of data needs to be processed in real time, but
where an occasional miss of a temporal deadline can be tolerated, as it would merely
lead to a degradation in service quality. For example, the dropping of a single frame
from a video stream due to resource overload is hardly noticeable to the human viewer.
However, if too many frames are dropped, the service quality of the system is impeded
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to a point where the system would be considered unusable. Temporal constraints of
this kind are called soft real-time constraints, and computer systems that are subject to
at least one soft real-time constraint—but no hard real-time constraint—are called soft
real-time computer systems [Kop97].

Occasionally, a further distinction is made between hard real-time computer systems
and firm real-time computer systems, in which case a hard real-time computer system is
defined as a system where a failure in the temporal domain can lead to a catastrophe,
whereas in a firm real-time computer system this is never the case [Kop97].

A computer system that must operate correctly to ensure the safety of people and the
environment is called a safety-critical computer systems [Sto96, Kni02]. Any hard real-
time computer system is therefore, by definition, also a safety-critical computer system.
On the other hand, a mission-critical computer system is a computer system where a
failure can degrade or prevent the successful completion of an intended operation [Fow04].
An example of a mission-critical computer system would be an electronic trading system.
In the special case of algorithmic trading [KK07b], these systems also classify as soft
real-time computer systems.

An example of a safety-critical system is the flight control system of an unmanned
aerial vehicle (UAV). A malfunction of this system may cause the vehicle to crash and
cause direct damage to people and the environment. On the other hand, the navigation
system may be considered less critical. A failure of this system may cause the vehicle
to fail on its mission, but—in the case of a carefully designed system—it will still be
possible to control the vehicle and safely abort the mission.

Amixed-criticality computer system is a safety-critical computer system that contains
one or more parts that are considered non-critical, or less critical than the other parts
of the system [BLS10]. Coming back to the previous example, the UAV’s control system
is a mixed-criticality system, if the flight control and navigation are integrated into a
single system.

We use the more general term critical systems to refer to the union of safety critical
and mission-critical systems. Since a mixed-criticality system is a special kind of safety-
critical system, it follows that a mixed-criticality system is also a critical system, but,
on the other hand, not every critical system needs to be a mixed-criticality system.

Rather recently, the term cyber systems has been coined to designate systems that
perform computational tasks—in particular digital computer systems. This contrasts
physical systems, which involve the transformation of matter and energy. The latter
subsume, for example, mechanical, chemical, or biological systems.

Accordingly, the term cyber-physical system designates a system that combine physi-
cal and cyber components, where the cyber components are usually embedded computer
systems. Since these cyber components typically need to interact with the physical com-
ponents in a timely manner, a cyber-physical system is usually a real-time computer
system. Moreover, networked communication is frequently considered as a salient in-
gredient of a cyber-physical system. The theory of cyber-physical systems views such
systems as an integrated whole, providing tools and techniques for modeling, designing,
and analyzing them.

Physical systems are characterized by their apparent continuous dynamics, which
can be modeled by continuous mathematics. On the other hand, cyber systems—which
are usually implemented using digital computer hardware—are characterized by discrete
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dynamics, which can be modeled by discrete mathematics. Systems that exhibit both,
continuous and discrete dynamics, are known as hybrid systems.

2.2 Design Options

Most real-time computing systems are implemented on special-purpose embedded hard-
ware that is suited to their application-specific resource requirements. There are three
basic options for realizing the computational part of a real-time computing system. In
practice, systems may be designed using a mix of these options:

Hardware Solution The first option is to implement the computational functionality
completely in application-specific hardware. The result is an ASIC that is sub-
sequently produced by a semiconductor manufacturer. Such application-specific
hardware can be highly optimized to perform application-specific tasks effectively.
However, once the ASIC has been produced, its design cannot be modified any
more, which rules out any adjustments that might turn out necessary or beneficial
at a later time. Moreover, the production of an ASIC is usually only cost-effective
in high volumes.

Software Solution At the other end of the hardware/software spectrum, the compu-
tational functionality can be implemented in software running on an off-the-shelf
embedded microprocessor. Typical microprocessor families that are found in em-
bedded devices are the MPC5500 processor series from Freescale Semiconductors,
the ARM processor series from ARM Ltd., the TriCore processor series from In-
fineon Technologies, the AVR processor series from Atmel Corporation, and the
Cortex processor series from NXP Semiconductors, to name only a few common
examples.

Reconfigurable Hardware Solution The third option is to use an FPGA. These pro-
grammable devices offer the flexibility of an ASIC in the sense that they allow for
the implementation of arbitrary, user-defined logic functions. This flexibility in-
cludes the possibility of implementing complete soft-core processors [TAK06]. Un-
like an ASIC, an FPGA can be reprogrammed, allowing for design modifications
long after the system has been manufactured, for example as a part of system main-
tenance. Taking advantage of this technology, reconfigurable instruction set pro-
cessors [BL00], for example, are able to dynamically adapt their instruction set to
the application being executed. More generally, reconfigurable computing [Bob07]
embraces the idea of changing the hardware design at runtime, as a part of normal
operation. A computer system that implements the idea of reconfigurable com-
puting can, for example, dynamically add special-purpose processing components
when they are needed.

Identifying a balanced design that combines the benefits of these three basic solutions
is a fundamental problem that is addressed in the discipline of hardware/software co-
design.

In this thesis, we are concerned with analyzing the execution time of individual
pieces of software running on a microprocessor, i.e., we are dealing with systems that
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have been designed according to the second design option. Methods for execution-time
analysis of hardware, which are needed in the case of a hardware solution, are, for
example, presented in [BC09]. Concerning reconfigurable hardware, some preliminary
ideas have been presented in [KBZ10].

2.3 Dependability and the Development Process

Many real-time computer systems perform critical tasks during their interaction with
the physical world. Consequently, such systems are usually subject to various kinds of
dependability requirements.

Besides dependability requirements like reliability, maintainability, and availability
of the system, one of the most critical requirements is usually safety, meaning that
the system must not exert damage to people or the environment. Systems like flight-
control systems, traffic signal systems, control systems for nuclear power plants, and
many medical systems are considered to be highly safety-critical.

To ensure that a critical system is safe, the developers must follow a rigid design
process that includes planning, implementation, review, and reporting [BP82, Fow04].
One of the most widely used development life-cycle models for the design of critical
systems is the V-model [STA89, Sto96]. This model depicts the major processes in the
design of a critical system, as well as the primary flow of information between these
processes. Figure 2.2 shows a generic version of the model, as presented in [Sto96].

The information flow can be interpreted to indicate a natural sequencing of individual
development phases, although, in practice, the development does not need to be strictly
linear. For example, it is possible to make use of pipelining techniques to speed up the
development process.

As indicated in the model, critical systems must typically receive approval by an
official, independent certification agency. During the certification process, the manu-
facturer of the system is obliged to convincingly demonstrate the safety of his system.
Because timing errors can affect the correct behavior of a real-time computer system,
demonstrating temporal correctness is an important issue during certification.

Besides safety, another dependability requirement that has recently gained increasing
importance in embedded and real-time computing is security. Today, more and more
systems use shared processing resources or are interconnected via various kinds of net-
works. In the case of critical systems, it is vital to provide mechanisms and techniques
that ensure the integrity of the system in the case of a malicious attack.

2.4 The Task Abstraction

Modern real-time computer systems are usually highly complex artifacts. To avoid
unnecessary complexity in the engineering process and to keep the systems maintainable,
the software of a real-time computer system is hardly ever designed as a monolithic piece
of code. Rather, a typical design is based on a collection of cooperating software tasks
that together serve to provide the intended service. This simplifies the isolation and
correction of errors, maintenance, and the later addition of new functionality.
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Figure 2.2: The V-model is a typical development life-cycle model that is applicable for
the design of critical systems. It depicts the major processes in the development, as well
as the primary flow of information between them. This particular version of the model
is adopted from [Sto96].

According to [Kop97], a task is the execution of a sequential program that starts with
reading some input and state data, and terminates with some output and an update of
state data.

The execution time of a given task does not include waiting times that are caused
by synchronization with other tasks. As these delays depend on the progress of other
tasks, they are better addressed at the scheduling level (cf. Sections 2.5 and 2.6). For
execution time analysis, it is then safe to assume that all synchronization operations
complete without waiting.

On systems that allow task preemption, a given task may be interrupted during ex-
ecution, and resumed at some later time. In the meantime, other tasks or operating
system software may execute on the same hardware. This behavior is problematic for
WCET analysis, because preemption can normally occur at almost arbitrary locations in
a task, and any code that is executed between the preemption and subsequent resump-
tion of a task may influence its execution time through non-functional dependencies.
For example, in the presence of an instruction cache, tasks may influence each other’s
execution time by accessing conflicting addresses.

Depending on the application, a real-time computer system can be subject to different
kinds of temporal constraints. Most commonly, the system is expected to deliver a
certain service within a specified interval of time, i.e., at a given reference point in time
t, the system must deliver its service within a maximal response time RESP . To do so,
all the corresponding tasks in the system that are associated with the particular service
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must complete within the allowed time interval [t, t+RESP ].

2.5 Task Scheduling on Uniprocessors

In a multi-tasking real-time computer system there are multiple tasks—subject to differ-
ent timing constraints—that need to be executed in a concurrent fashion. To coordinate
the arising competition for processing resources, there is a need for an execution schedule,
a plan that determines at what times each task is to be executed on which processing
unit, such that all tasks can finish execution on time. Such a schedule can be created
either statically before the system is started, or dynamically during system execution:

• In static scheduling the temporal assignment of tasks to processing units is per-
formed before the system is started, usually at the time when the system is de-
signed.

• In dynamic scheduling a software scheduler, which executes alongside normal sys-
tem tasks, decides at runtime which task should be assigned to which processing
unit at any given point in time.

A static schedule is a fixed temporal assignment of tasks to processing units. This
means that each task has one or more fixed time windows during which it is allowed
to execute. The size of the time window(s) determines a maximal amount of time for
which each task may run.

Once a WCET estimate is known for all tasks, it becomes possible to check whether
a given static schedule allows each task to successively complete its purpose. If that is
not the case, knowledge of the WCET estimates allows the system designer to redesign
the schedule, such that all task deadlines can be met.

Concerning dynamic scheduling, there exists an abundance of different strategies for
real-time computer systems. Here we mention just four particularly popular strategies
for assigning independent tasks to a single processing unit, which are: rate-monotonic
scheduling (RMS) [LL73], deadline-monotonic scheduling (DMS) [ABRW91, Aud93], ear-
liest deadline first scheduling (EDF) [XP90], and least laxity scheduling (LL) [DM89].
All four strategies base their scheduling decisions on task priorities. At run time, when-
ever a task completes or a new tasks becomes ready for scheduling, a pending task with
maximal priority is selected and dispatched. However, the four strategies use different
metrics to assign a priority to each task.

• RMS assumes that each critical task Ti becomes ready for scheduling and must be
completed periodically within a fixed time period of length pi. The priority of each
task Ti is based on its period: Tasks with shorter periods receive higher priority
than tasks with longer periods. The RMS strategy can easily be extended to allow
for the scheduling of additional non-critical tasks by assigning them priorities below
those of any critical task.

• DMS is a generalization of RMS that allows tasks with deadlines that are placed
before the end of the respective task period. This enables the modeling of com-
munication overhead and sporadic tasks [ABRW91, Aud93].
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• EDF bases the priority of each task on its upcoming deadline: Tasks with shortly
upcoming deadlines receive higher priority than tasks with later deadlines.

• LL scheduling—also known as least slack time (LST) scheduling—establishes the
priority of a task based on its slack time, i.e., the difference between its remaining
time budget until its deadline and its remaining execution time. By assigning
higher priorities to tasks with a lower slack time, the strategy makes sure that
pending processes are deferred as long as permissible with respect to the given
deadlines.

All four strategies are optimal for scheduling independent, i.e., non-synchronizing,
preemptable tasks on single-processor systems, in the sense that they will always find
some schedule that allows all critical tasks to meet their deadlines, if such a schedule
exists for the given collection of tasks.

However, testing whether such a schedule exists is usually not easy. In practice,
sufficient schedulability tests are applied to ensure that a given set of critical tasks is
schedulable under all possible circumstances.

For a given collection of n tasks T1, . . . , Tn, the inequality
n∑
i=1

wceti
pi
≤ n · ( n

√
2− 1)

forms an utilization-based, sufficient condition for the collections schedulability under
the RMS strategy [LL73]. In this inequality, wceti denotes the worst-case execution
time (WCET) of task Ti, i.e., the maximal amount of time that Ti may take to execute,
if started and left running uninterruptedly. To apply this test, it is therefore necessary
to first determine the WCET of each task. Finding the WCET of a task is not at all
trivial, though. In fact, determining the exact WCET of a given piece of executable code
running on a particular hardware platform is usually intractable. The field of worst-case
execution time analysis is concerned with providing suitable approximation techniques
that can be used to obtain estimates of the WCET.

There exists a similar schedulability test for the EDF strategy [XP90]. Again, we
need to know the WCET of each task, in order to apply this test:

n∑
i=1

wceti
pi
≤ 1.

Concerning the DMS strategy, Audsley et al. present an algorithmic schedulability
test in [ABRW91]. Again, the test uses the WCET of all tasks.

Lastly, let’s reconsider the LL scheduling strategy. To determine the priority of a
given task, LL needs to determine that task’s remaining execution time. The most
practical—albeit conservative—way to do this is to dynamically track how much time
each task has spent executing so far, and to take the difference to the tasks WCET as a
pessimistic estimate of the task’s remaining execution time. Again, we need to know to
WCET of each task.
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2.6 Task Scheduling on Multiprocessors and Recent
Trends

The four scheduling strategies we have just seen are suitable and optimal for systems
with a single execution unit. However, the advent of multiprocessor architectures1 on
the embedded systems market has added a new level of complexity to scheduling: Un-
like scheduling algorithms for uniprocessor architectures, algorithms for multiprocessor
architectures must not only decide at what time each task should be run, but also on
which processor it should be run.

Solving the latter problem, which is known as the task allocation problem, can be
especially tricky in the case of heterogeneous multiprocessor architectures, where each
processor might have different scheduling-relevant properties. In the case of uniform
multiprocessor architectures, all processors are identical, but may run at different clock
frequencies, leading to different possible execution times of the very same task instance.
In the simplest case of a homogeneous multiprocessor system, all processors are identical
and also run at the same clock frequency. As a result, in such systems the WCET of a
given task instance is the same on all processors, which simplifies scheduling.

Scheduling algorithms for multiprocessor architectures can also be classified accord-
ing to whether and when the allocation of a specific processor to a particular task is
allowed to change. Whereas partitioned scheduling algorithms use a fixed assignment of
tasks to processors, global scheduling algorithms may allow task-level migration, meaning
that different task instances may be executed on different processors, or even job-level
migration, meaning that each task instance may be dynamically moved between proces-
sors, during execution.

The choice of preemption policy—preemptive, non-preemptive, or cooperative
scheduling—adds yet one more dimension to the space of different scheduling strate-
gies for multiprocessor architectures.

A recent survey of algorithms and schedulability tests for multiprocessor architectures
is given in [DB11].

Lately, scheduling theory has become an even more complex topic, through the ad-
vent of energy and thermal constraints. Energy constraints are particularly relevant for
battery-powered devices, which are on a limited energy budget [SKL01]. Temperature
constraints have become necessary for modern processors, where very high on-chip tem-
peratures may occur under high processing load. To ensure the integrity of the system,
it is necessary to limit the operating temperature, in order to prevent system failures
that may occur due to overheating [FCWT11].

Even for the most recent task scheduling algorithms being developed, the WCET
remains an essential parameter. For each critical task, the WCET must be determined,
in order to guarantee that the system can always provide its critical services on time.

In the next chapter, we turn to the problem of determining the WCET of a given
task on a particular hardware platform.

1Concerning scheduling, multi-core architectures are normally treated in the same way as multipro-
cessor architectures. For simplicity, our use of the term multiprocessor architecture shall therefore also
subsume multi-core architectures.
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2.7 Chapter Summary
In this chapter, we have reviewed the basic concepts of real-time computing.

A real-time computer system is a computer system in which the correctness of the
system behavior depends not only on the logic result of the computation, but also on
the physical instant at which these results are produced. Whereas in a hard real-time
computer system, failure to produce the result of some computation at the correct time
may lead to disaster, the consequences of a similar failure in a soft real-time computer
system are more benign. The requirements of temporal correctness are thus less rigid for
soft real-time computer systems than for hard real-time computer systems. This affects
the rigor of the system development process, as well as the rigor of WCET estimation.

Today, there are multiple design options available for real-time computer systems.
A common choice are designs that are based on a multi-tasking microprocessor. In this
thesis, we focus on such designs.

The traditional way to ensure the temporal correctness of such systems is to perform
a schedulability test. Such a test requires the WCET—or at least a WCET estimate—
of each task. The need to perform schedulability analysis is a primary motivation to
investigate methods for WCET estimation.
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CHAPTER 3
WCET Analysis

In this chapter, we consider methods for estimating the WCET of a given task running
on a real-world system.

First we consider several simplifying restrictions on the hardware and software under
analysis that are usually assumed for WCET analysis (cf. Section 3.1).

One major challenge that WCET analysis faces today are the complex microarchi-
tectural features of today’s high-performance microprocessors (cf. Section 3.2), which
introduce a considerable jitter in the execution time of individual instructions. This
jitter eventually depends on the computer state (cf. Section 3.3).

To understand the way timing analysis is implemented today, it is important to con-
sider the software development process for real-time systems (cf. Section 3.4), which has
contributed to the typical layered WCET analysis approach (cf. Section 3.5): WCET
analysis is traditionally based on the idea of splitting the program under analysis into
smaller parts (cf. Section 3.6), determining WCET estimates for these individual parts
(cf. Section 3.7), and combining them into a global WCET estimate for the whole pro-
gram (cf. Sections 3.8 and 3.9). The combination step can be performed using differ-
ent techniques, of which we discuss path-based estimate calculation (cf. Section 3.10),
tree-based estimate calculation (cf. Section 3.11), and the implicit path-enumeration
technique (cf. Section 3.12).

Lastly, we turn our attention to measurement-based timing analysis (MBTA) (cf. Sec-
tion 3.13). The two major issues in MBTA are the generation of suitable input data
(cf. Section 3.14), and recording the execution time of individual program parts through
measurements on the target hardware (cf. Section 3.15).

3.1 WCET Analysis of Real Software

In scheduling theory, a task is usually viewed as an abstract process that, when active,
consumes processing time in a continuous way. In a real microprocessor-based system,
however, a task is implemented as a program that is intended for execution on one of
the system’s processors. The program consists of a sequence of discrete instructions
that are loaded into the system’s instruction memory, from where they can be fetched
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and processed by the processor. There are certain design options in microprocessor
development that fundamentally affect WCET analysis:

Synchronicity: Most of today’s microprocessors are implemented in synchronous logic.
This means that the progress of the microprocessor’s operation is controlled by
a global system clock. At the beginning of each clock cycle, which is typically
marked by a rising edge of the system clock signal, all the processor’s latches ob-
tain a new value that remains stable until the beginning of the subsequent clock
cycle. However, the assumption of a single global clock is not valid for processors
with asynchronous logic. A prominent example are microprocessors with globally
asynchronous locally synchronous (GALS) logic [KGGV07]. Such a processor is
driven by multiple clocks that govern individual subsystems. We are not aware of
any previous work on WCET analysis of software running on asynchronous micro-
processors, and we are ourselves considering synchronous microprocessor designs
only. As asynchronous designs are becoming more common, WCET analysis for
such microprocessors can be considered an interesting research topic.

Determinism: Most microprocessors designs are functionally deterministic. Given the
current state and all future inputs, there is exactly one possible future behavior
that the microprocessor may exhibit. Still, non-deterministic microprocessors have
been proposed for special applications [MMS01]. As with asynchronicity, we are
not aware of any previous work onWCET analysis for non-deterministic processors,
and we consider WCET analysis for deterministic designs only.

Instruction set constancy: Some modern microprocessor provide multiple instruc-
tion sets that may be switched between dynamically. This is not only true for
modern desktop and server processors, but also for certain processors that are
specifically targeted at the embedded market. A good example is the ARM7 TDMI
microprocessor, which features two instruction sets: The regular A32 instruction
set provides a full range of unrestricted 32-bit instructions, whereas the Thumb
instruction set implements a subset of restricted variants of A32 instructions, us-
ing compact 16-bit wide opcodes. As an intended use-case, an application that is
running on a device with little memory may implement most functions using the
Thumb instruction set, while switching dynamically to A32 for calculation-intensive
code. In the present work, we consider WCET analysis for a fixed instruction set
only.

Frequency constancy: In traditional microprocessor designs, the global system clock
runs at a fixed frequency. However, many modern power-aware designs employ
dynamic frequency scaling and dynamic voltage scaling to reduce energy consump-
tion [SKL01]. Both techniques usually imply an adaptive frequency change of the
global system clock. Only little previous work is available on WCET analysis for
systems with a dynamically changing clock frequency. We consider WCET analysis
for a fixed clock frequency only.

The assumption of frequency constancy is important for many WCET analysis meth-
ods, because it allows the calculation of the WCET from the worst-case execution cy-
cles (WCEC), the maximum number of clock cycles that a given program requires to
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execute, from the moment it is started, to the moment it completes its execution. The
WCET can then be easily calculated by using the equation

wcet = wcec

fclk
, (3.1)

where fclk is the microprocessor’s constant clock frequency.
Having considered the effect that different hardware design choices can have on

WCET analysis, we must also consider design choices that affect the tasks that we
are going to analyze:

Preemption: When a task is preempted, its is put into a ready state, where it does
not consume any processing resources. Later, it is put back into a running state,
and execution continues. During preemption, the functional state of the task is
preserved, so that execution can later continue with the state before the task was
preempted. When we consider the WCET of a preemptable task, we refer to the
maximal time for which the task is actually executing, i.e., the duration of time
for which it is in the running state.

Synchronization: Task synchronization means that two or more executing tasks to-
gether perform some joint action. This implies that all involved tasks must be
ready for the joint action at the same time. If some task becomes ready for the
joint action before some of the other tasks invoked, it must wait until they are
also ready. Consequently, any synchronization action involves a potential delay
in the execution that depends on the execution of one or more other tasks. The
execution time of a given task does not include waiting times that are caused by
synchronization with other tasks. As these delays depend on the progress of other
tasks, they are better addressed at the scheduling level (cf. Sections 2.5 and 2.6).

Termination: Real-time scheduling requires a bound for the processing time of each
task, i.e., it requires the WCET of each task. This implies that any task must termi-
nate on all its possible inputs—non-termination is considered an error. In WCET
analysis, we therefore presume the termination of any program under analysis.
The development of methods and tools for checking termination is the domain of
termination analysis. Recent attempts in this area include methods that are based
on model checking [CGP00], and static program analysis [CPR06].

Code constancy: We assume that the code under analysis remains invariant during
execution. This simplifies code analysis by excluding self-modifying code, as well
as any modification of the code by the operating system.

Input behavior: The last issue that we consider is the question of when a task receives
its input. There are basically two design choices: Firstly, we may consider tasks
that dynamically receive new input while they are being processed. The second
option is a task that does not receive input while it is being processed. In this
case, all inputs must be encoded in the task’s initial state. The task then performs
a calculation. In our work we consider the second option. When we talk about the
input of a task, we thus mean the input that is encoded in the initial state.
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3.2 Microarchitectures
Traditionally, the microprocessors employed in real-time systems used to feature rather
simple microarchitectures, where the time spent on executing a particular type of
instruction—like an addition, or a conditional jump—used to be relatively stable, or
even constant. Consequently, many early techniques for WCET analysis rely on the
simplifying assumption of a constant local WCET for individual types of instruc-
tions [PK89, PS93, PS97, LM97, Pus98]. Inferring a global WCET estimate for a com-
plete task then reduces to the problem of considering the possible execution sequences
of the task’s instructions, and finding the one that amounts to the highest global WCET
estimate. In the case of strictly sequential execution, such an estimate can be obtained
as the cost-weighted sum of instruction execution counts.

WCET analysis is traditionally biased towards pessimistic estimation, i.e., it favors
estimates that are upper bounds of the actual WCET, even at the cost of a high overesti-
mation. This is a consequence of the fact that schedulability tests are usually monotonic
in the WCET estimate. For example, if we take the sufficient schedulability test for the
RMS scheduling strategy [LL73]

n∑
i=1

wceti
pi
≤ n · ( n

√
2− 1),

from Section 2.5 and replace the WCET values wceti with corresponding estimates w̃ceti,
such that

wceti ≤ w̃ceti, for 1 ≤ i ≤ n,

then, by the monotonicity of the inequality, we obtain a tighter condition that can only
be satisfied in cases where the original condition is also satisfied. Hence, we see that
using a pessimistic WCET estimate in place of the actual WCET might make the test
fail for some tasks sets that might be classified as schedulable for the actual WCET, but
it will never lead to misclassification of a non-schedulable task set as schedulable.

As a result of avoiding underestimation, many proposed techniques suffer from con-
siderable overestimation, which forces system designers of highly critical systems to
either over-dimension their systems, or to provide appropriate fall-back mechanisms in
case of a timing error.

On today’s high-performance microprocessors, individual instructions may experi-
ence a considerable jitter in execution time. The concrete execution time of a given
instruction depends on the processor state. This dependence can be hard to model,
because multiple microarchitectural features, like pipelines, caches, branch prediction,
and parallel execution, may be involved.

To illustrate the complexity of today’s modern processors, consider the following
description of the FreeScale MPC8641D microprocessor, taken from [CFG+10]:

The MPC8641D is a dual-core derivate of the MPC7448, which is a complex
single-core architecture employed in the avionics industry. A single core
MPC7448 consists of a [sic] e600 core with a complex, eight-level pipeline
that allows out-of-order and speculative execution and features first- and
second level caches with PLRU and random replacement. Already as a single-
core, this architecture is non compositional, exhibiting both domino-effects
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in the pipeline and the caches. The MPC8641D tightly couples two such
cores with a single shared bus. [. . . ] Each access, either for the instruction
fetches or any data access must pass this one shared resource. Given the
non-compositionality of the two cores, any clash on the shared bus during
execution could trigger a domino effect. This makes the timing behavior of
the entire system very unpredictable, unless interference on the shared bus
can somehow be avoided.

Kadlec and Kirner [KK07a] provide a classification of the effects the different hard-
ware optimization features can have on WCET analysis. In particular, they identify
hidden interactions between different optimization features and dynamic hardware code
optimization as major challenges.

In spite of the traditional bias towards overestimation in WCET analysis, it is a
primary assumption of this thesis, that underestimation is permissible in many important
use-cases (cf. Section 1.5), if this can help in obtaining close WCET estimates at a lower
cost.

3.3 The Computer State

In Section 3.1, we have argued that we consider strictly synchronous, deterministic mi-
croprocessors that run at a constant clock frequency. Such a processor can be understood
as a finite state machine that operates in discrete steps. The timing of these steps, called
clock cycles, is governed by a global system clock that ticks with a fixed frequency. Each
fetching and processing of one of the program instructions occupies some of the proces-
sor’s computational resources for a certain number of clock cycles.

 fµ

(next state logic)
D

(stateful components)

gµ

(output logic)

 xµ

xµ◦D-1

yµ

uµ

Figure 3.1: The computer as a finite state machine (Mealy variant). The stateful com-
ponents—implemented in sequential logic—retain the current processor state. The next-
state logic—implemented in combinational logic—computes the computer state for the
next clock cycle. The output logic—implemented in combinational logic—computes the
output.

In the formalism of signals and systems [LV01], we can describe the behavior of such
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a microprocessor µ by difference equations

xµ(n+ 1) = fµ(xµ(n), uµ(n)) (step)
yµ(n) = gµ(xµ(n), uµ(n)) (output)
xµ(0) = xµ0, (init)

where xµ : N → Bl is a function that maps each clock cycle n to its state xµ(n) in a
state space of l bits, where uµ : N → Bk is a function that maps each clock cycle n to
its input uµ(n) in an input space of k bits, and where yµ(n) : N→ Bm is a function that
maps each clock cycle to its output yµ(n) in an output space of m bits. Moreover, the
equation for xµ(0) defines the initial state of the microprocessor. Figure 3.1 illustrates
how this model can be seen as the description of a finite state machine.

At the beginning of each clock cycle, which is typically marked by a rising edge
of the system clock signal, all the processor’s latches obtain a new value that remains
stable until the beginning of the subsequent clock cycle. The total of all these latch
values constitutes the processor state, and the Cartesian product of all latch value ranges
constitutes the processor state space.

Among the multiple latches that make up the processor state, the instruction address
register, also knows as program counter or instruction pointer, marks the instruction
memory address of the currently fetched machine instruction1. Given Equation 3.1,
the execution time of a piece of machine code depends on the number of clock cycles
that pass, starting with the first cycle where the instruction address register obtains an
address containing some instruction of that code, and ending with the last cycle before
it obtains an address containing some instruction outside of the machine code under
consideration.

The value that the processor latches obtain at the beginning of each clock cycle is
a function of the previous processor state and the input that the processor receives via
its external interfaces, defined by the deterministic, combinational processor logic. With
the important exception of reconfigurable systems [KBZ10], the combinatorial processor
logic is fixed. The number of cycles taken for executing a given piece of code therefore
depends on

the initial latch state, i.e., the value of all latches just before the first instruction of
the code under consideration is processed, and

the external inputs, i.e., the value of all external signals that the processor is subject
to during execution of the code under consideration (we assume that the code
under consideration itself has already been loaded to the instruction memory and
is immutable at runtime).

For the external inputs, we can further distinguish

computer-external inputs, i.e., inputs that come from outside the computer, like,
for example, external interrupts and signals received from external hardware, and

1In the case of a VLIW architecture, the instruction address register indicates blocks of instructions
rather than individual instructions. Conceptually, operating on larger blocks of instructions is not
different from operating on individual instructions.
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computer-internal inputs, i.e., inputs that come from a state-bearing hardware com-
ponent within the computer, like, for example, caches, memories, or other compo-
nents that are connected via a processor bus.

Not all of a processor’s latches are directly accessible by the machine code. Latches
that are directly accessible include the various data registers, status registers, and address
registers. These are relevant for the functional semantics of the code execution. We shall
therefore call this part of the processor state functional processor state.

However, the functional semantics of the code execution can be influenced not only
by the functional processor state, but also by the functional part of the state of other
hardware components. For example, one such hardware component is the external data
memory, which is connected to the processor via the memory-bus. The total part of
the computer state that can influence the functional semantics of the code execution—
which includes the functional processor state—is called functional computer state, or
architectural state [KK07a].

The functional computer state may influence the execution time of the code under
analysis in two ways:

Influence on control flow: The functional computer state at any given clock cycle
determines the concrete sequence of instructions that is subsequently processed,
which has usually a major impact on the execution time. A case where the func-
tional computer state has no influence on the instruction sequence is single path
code [PB02, Pus02, Pus03, Pus05], which allows, by design, only one single possible
processing sequence of instructions.

Influence on individual execution times: The functional computer state at any
given clock cycle may determine the number of clock cycles spent on processing
subsequent instructions. A typical example is a multiplication instruction that is
implemented via a shift-and-add algorithm, as found on the Motorola 6809 micro-
processor. Another example is a memory-load instruction that can access multiple
memory areas with different read latencies.

The rest of the computer state is transparent to the code, from a functional point of
view. We therefore call this part of the computer state hidden computer state [KK07a].
The hidden processor state is the part of the hidden computer state that is also part of
the processor state. This comprises latches that are not directly accessible from the code,
like the latches that encode the state of the pipeline(s) and dynamic branch predictor(s).
Computer components that carry part of the hidden computer state that is not also part
of the hidden processor state are, for example, caches and various kinds of buffers.

Just like the functional computer state, the hidden computer state can influence the
execution time of subsequent instructions at any clock cycle. For example, the state of
the data caches and buffers can influence the execution time of instructions that access
the data memory.

The part of the computer state that can influence the execution time of subsequently
executed instruction sequences is called timing-relevant computer state (TRCS) [KKP09].
It may comprise parts of both, the functional and then hidden computer state.

Figure 3.2 illustrates the connection between the various parts of the computer state
and gives some examples of hardware components for each parts of the computer state.
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functional computer state hidden computer state

• data registers
• address registers
• control registers

• pipeline state
• branch predictor
• internal caches

• buffers
• external caches

• data memory
• read sensor values

functional processor state hidden processor state

timing-relevant
computer state (TRCS)

computer state

processor state

Figure 3.2: The computer state can be split into the functional computer state, and the
hidden computer state, which may both contain parts that are timing-relevant. These
parts form the timing-relevant computer state (TRCS). Functional and hidden computer
state comprise functional and hidden processor state, respectively.

3.4 The Implementation of System Behavior
As already mentioned in Section 3.3, from the point of view of a hardware architect,
a microprocessor operates like a finite state machine, where each transition takes one
clock cycle to complete. The passage of physical time is thus an inherent aspect of the
operational system model.

The stated goal of WCET analysis is to obtain an estimate of the WCET of a given
task running on a particular hardware platform. To perform such an analysis, we have
to take into account the properties of both, hardware and software. It is therefore
important to consider how the behavior of a system is implemented:

High-level programming: Today, the software of a real-time system is usually writ-
ten in a high-level programming language, like C. From the point of view of the
programmer, the source code is a description of a computational process. That
description ought to ultimately determine the behavior of the processor.

Compilation: Since the processor cannot execute high-level programs, a compiler is
used to translate the source code to a semantically equivalent executable machine
program for the target platform. To do so, the compiler must comply to both, the
semantics of the high-level programming language, and the semantics of the target
microprocessor’s instruction set.

Execution: During the operation of the target system, the executable machine pro-
gram is executed by the target processor, which implements the semantics of its
instruction set via a concrete microarchitecure. By executing the machine code
produced by the compiler, it, moreover, implements the behavior of the program
source code.

Model-driven engineering: Model-driven engineering has rather recently introduced
a fourth layer of abstraction above the high-level source code. In model-driven
engineering, the system is initially described by a model that is formulated in a
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domain-specific modeling language. Such a language enables engineering on a very
high level of abstraction that is focused on domain knowledge, rather than on com-
putation, as is the case for the most frequently used general-purpose programming
languages. In this case, the domain-specific model, which represents the original
system design, is initially translated to high-level source code that implements the
behavior described by the model. Accordingly, the eventual behavior of the system
is then affected by the domain-specific model.

Figure 3.3: The multi-level workflow of model-driven engineering.

Figure 3.3 illustrates the multi-level workflow of model-driven engineering: Starting
from a domain-specific model of the system, a code generator is used to automatically
generate source code. The domain-specific model is itself based on the original system
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specification (not shown), which describes the salient properties that the system under
design should eventually have. The source code is subsequently fed into the target-
specific compiler tool-chain. This tool-chain eventually produces machine code that can
be executed on the target platform, inducing the desired behavior of the physical system,
as demanded by the specification.

More importantly, the figure indicates how the eventual behavior of the system is
affected by the semantics of the model and its descendants, i.e., the source code and the
machine code, on the one hand, and the microprocessor’s microarchitecture that imple-
ments the microprocessor’s instruction set, on the other hand. The microarchitecture
is determined by the microprocessor manufacturer and can normally not be changed by
the system designer. It is semantically transparent in the value domain, but directly
determines the temporal behavior (cf. Section 3.3).

3.5 Layered WCET Analysis
WCET analysis of software has traditionally focused on the lower three levels, i.e., the
analysis approaches are designed to analyze the WCET of programs that implement the
individual tasks of a real-time system.

Recently, however, there have been efforts to integrate the static timing analysis tool
aiT [TSH+03] with model-driven development tools like SCADE [FHLS+08, LSHK08],
ASCET [FHW+08, FHRF08], and RT-Druid, as well as with the scheduling analysis
tool SymTA/S [KWH+09, FHRF08].

From the point of view of WCET analysis, the corresponding publications generally
report an improvement of the closeness of the obtained WCET estimates for generated
code in comparison to hand-written code. This observation is attributed to the limited
set of code patterns that occur in automatically generated code.

In contrast, other works argue that WCET analysis ought to more directly exploit the
information contained in high-level system models. Erpenbach and Altenbernd [EA99]
have presented an approach for directly analyzing Statemate statecharts [HN96].

Kirner et. al. [KLPT00, KLFP02] have presented an approach for analyzing Mat-
lab/Simulink models. Their approach uses a modified code generator to extract sup-
plementary control-flow information.

Lei et. al. [JHCR09, JHRC09, JHRC10] have presented an analysis technique for
Esterel [BdS91, BCE+03] programs that makes use of context information.

The FORTAS approach follows the traditional approach of targeting the program
code for analysis. One benefit thereof is that the approach works independently from
any particular modeling language, while retaining the possibility of coupling it with
higher-level models, in a similar way as was done for aiT.

The traditional approach for WCET analysis follows the idea of splitting the pro-
gram under analysis into smaller parts and determining local WCET estimates for these
individual parts. Subsequently, a global WCET estimate for the complete program is
inferred from the individual local WCET estimates. This also requires an analysis of how
the local WCET estimates can be combined. A complete analysis approach therefore
consists of the following three stages:

Processor-behavior analysis: Processor-behavior analysis (cf. Section 3.7) is con-
cerned with the possible execution times that individual program parts, like in-
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structions, instruction sequences, or code blocks may exhibit on a particular target
platform, under different hardware states. The central point of processor-behavior
analysis is to determine WCET estimates for the individual program parts.

Control-flow analysis: control-flow analysis (cf. Section 3.8) is concerned with deter-
mining the feasible sequences in which the individual program parts can be exe-
cuted. The central point of control-flow analysis is to exclude as many provably
infeasible execution sequences as practically possible from further consideration
during estimate calculation.

Estimate calculation: Estimate calculation (cf. Section 3.9) is concerned with infer-
ring a global WCET estimate of the whole program, combining the information
obtained from the processor-behavior and control-flow analyses.

The rationale behind this separation is that processor-behavior analysis relies largely
on the temporal semantics of the hardware, which is determined by the microprocessor’s
microarchitecture, whereas control-flow analysis relies largely on the functional semantics
of the program code. A monolithic approach is considered prohibitively complex in most
cases, and this division serves as a natural line of separation.

In general, however, processor-behavior analysis cannot always be fully separated
from control-flow analysis without a loss of closeness. One particular problem is that the
execution time of an individual instruction may depend on the TRCS (cf. Section 3.3),
which, in turn, may be depend on which instructions have been previously executed.

The method described in Chapter 4 addresses this problem by using context infor-
mation to distinguish different execution scenarios of the individual program parts.

3.6 Splitting a Program

The traditional approach for WCET analysis follows the idea of splitting the program
under analysis into smaller parts and determining local WCET estimates for these indi-
vidual parts. Later on, the WCET estimates of the individual parts are combined into a
global WCET estimate for the whole program. The exact notion of a program part may
vary from analysis to analysis. The following are key factors that affect the concrete
choice:

System representation level: In Section 3.4, we have seen that a system implemen-
tation may be viewed at different representation levels. Also, in Section 3.5, we
have argued that the rationale behind the separation of control-flow analysis from
processor-behavior analysis is that processor-behavior analysis relies largely on the
temporal semantics of the hardware, whereas control-flow analysis relies largely
on the functional semantics of the program code. Control-flow analysis may be
performed at different representation levels, and depending on this choice, the
definition of a program part may differ: If the analysis targets machine code, pro-
gram parts may, for example, be individual instructions. In the case of VLIW
processing, however, it may be more useful to refer to blocks of instructions that
are processed in parallel. If the analysis is performed at the source-code level,
basic blocks [Muc97] are a natural choice for program parts. An analysis of the
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domain-specific system model may refer to the model’s functional building blocks.
In the case of third party software, the higher level representations might not be
disclosed. In that case, performing an analysis of the machine code may be the
only available option.

Scale of analysis: Next, the choice of program parts also depends on the scale on
which the analysis should be performed. There is a trade-off between the closeness
that can be achieved by WCET estimation under given resource constraints—like
analysis time—and the size of a system that can be analyzed. Basic blocks are
a natural candidate for program parts in many situations. However, a more fine-
grained choice—like individual statements and/or expression evaluation steps—
allows for a more detailed modeling of individual timing effects, because it permits
the analysis to localize them more precisely. On the other hand, to perform an
analysis of huge quantities of code, it may be necessary to choose much larger
program parts, like entire code fragments or even components.

Estimate calculation: Lastly, different methods for estimate calculation (cf. Sec-
tion 3.9) require different kinds of program parts. Path-based estimate calcula-
tion (cf. Section 3.10) operates on instruction sequences that are allowed to overlap
each other. Tree-based estimate calculation (cf. Section 3.11) requires the program
parts to coincide with the leave nodes of the program’s abstract syntax tree. The
original version of the implicit path-enumeration technique (cf. Section 3.12) op-
erates on contiguous code fragments that have a single point of entry, as well as
a single point of exit for control flow, so-called SESE regions [JPP94]. These re-
gions may form a partition, in which case they must cover the entire code without
overlapping, or a hierarchy.

Analyzing code at the software level rather than on the executable level brings certain
advantages:

Ease of flow analysis: Analyzing the control flow is usually easier for high-level code
than for machine code. In particular, compiled code may contain computed jumps
that are difficult to analyze. Further complications when working on compiled
code may arise due to use of branch delay slots, guarded code, and VLIW, due to
the embedding of data within code sections, and more [The00].

Ease of code annotation: Most analysis methods require the user to provide certain
code annotations. In particular, the user must typically provide constraints—so-
called flow facts—that describe the maximal number of iterations of loops, in cases
where the analysis is unable to discover such bounds automatically. Additional flow
facts can be provided to improve the closeness of the analysis results. For the user,
it is usually more convenient to annotate high-level code than machine code.

The mapping between source code and machine code can, however, be compromised
by optimizing code transformations that are performed by the compiler. This has two
major consequences:

Mismatch of flow facts: Flow facts that are specified at the source-code level cannot
be mapped directly to the machine code, but must be transformed along with
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the code [Kir08, KPP10a]. This affects all analysis approaches that require the
specification of flow facts, including measurement-based approaches.

Mismatch of code coverage: Test suites that meet a given structural code coverage
criterion—like statement, decision, or predicate coverage—at the source-code level
do not necessarily meet the same criterion at the machine-code level. Kirner has
presented criteria for the preservation of structural code coverage [Kir09]. These
criteria can be used to decide whether a given compiler optimization affects a
given coverage criterion [KH09]. Experiments have shown that a classification
of compiler optimizations can be used to restrict optimizations to unproblematic
cases. Importantly, it has been demonstrated that such a restriction does not cause
a significant performance penalty [KZ11].

3.7 Processor-Behavior Analysis

Processor-behavior analysis, or micro-architecture analysis, is concerned with finding
the possible execution times that individual program parts, like instructions, instruction
sequences, or code blocks may exhibit on a particular target platform. The central
point of processor-behavior analysis is to determine WCET estimates for the individual
program parts.

In the case of static WCET analysis, an upper bound of the local WCETs of indi-
vidual program parts is calculated by applying techniques from static program analy-
sis [NNH99].

A widely used technique in processor-behavior analysis is abstract interpretation.
In [FMWA99], Ferdinand et al. have presented an abstract interpretation for model-
ing the behavior of a set-associative LRU cache. In [SF99], Schneider and Ferdinand
have presented an abstract interpretation for a superscalar pipeline design. Colin and
Puaut [CP00] have presented an abstract interpretation for a 2-bit saturating branch
predictor.

In the case of measurement-based WCET analysis, local WCET estimates of indi-
vidual program parts are obtained from measurements (cf. 3.13).

3.8 Control-Flow Analysis

Control-flow analysis is concerned with determining the feasible sequences in which the
individual program parts can be executed. The central point of control-flow analysis is
to exclude as many provably infeasible execution sequences as practically possible from
further consideration during estimate calculation. Information about which execution
sequences are feasible is called control-flow information, or, more concisely (but less
precisely), flow information. Individual bits of control-flow information are sometimes
called flow facts.

One possible source of control-flow information is the program’s AST. In compiler
construction, an AST is a tree structure that encodes the hierarchical syntactic struc-
ture of a program. However, the popular paradigm of structured programming [Dij70]
demands that structure of the possible control flow within a given program should co-
incide with the program’s syntactic structure. In such a setting the AST does not only
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encode the syntactic structure, but also implicitly describes the possible control flow.
Tree-based estimate calculation (cf. Section 3.11) makes direct use of this control-flow
information.

A more explicit representation of control-flow information is provided by a program’s
CFG, which is normally obtained via static code analysis:

Definition 3.1 (Control-flow graph). A control-flow graph G of program P is a quadru-
ple (V,E, vstart, vend), consisting of a set of nodes or vertices V , a set of edges
E ⊆ V × V , a start node vstart ∈ V , and an end node vend ∈ V , such that all other
nodes are reachable from vstart, i.e., (vstart, v) ∈ E+, for any v ∈ V , where E+ is the
transitive closure of E, and vend is reachable from all other nodes, i.e., (v, vend) ∈ E+,
for any v ∈ V . Moreover, we require that vstart is not strictly reachable from any node,
i.e., (v, vstart) /∈ E+, and no node is strictly reachable from vend, i.e., (vend, v) /∈ E+,
for any v ∈ V .

vstart

v1

v2

v3

vend

Figure 3.4: Visualization of the CFG from Example 3.1.

Example 3.1. Consider G = (V,E, vstart, vend) with

V = {vstart, vend, v1, v2, v3} and

E = {(vstart, v1), (v1, v2), (v1, v3), (v2, v3), (v3, v3), (v3, vend)}.

Figure 3.4 contains an illustration of G.

Semantically, each node in a CFG corresponds to a program part that is assumed to
be executed in an atomic fashion, at suitable abstraction level. The start node vstart and
the end node vend are special, as they do not have any real program code associated with
them, but are merely introduced to mark the entry and exit point of program execution,
respectively. To keep things simple, we conceptually consider that these special nodes
are associated with empty code that can be executed instantaneously, without exerting
any side-effects. For simplicity, we will identify each node with its associated program
part; for example, we might say that a node is executed, rather than saying that its
associated program code is executed.
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A directed edge in a CFG with a source node v and a target node w indicates that
the execution of w may immediately follow the execution of v. On the other hand, the
absence of an edge from node v to node w indicates that the execution of w must not
immediately follow the execution of v. Consequently, the execution of any node v having
exactly n immediate successors w1, . . . , wn must be followed by the execution of exactly
one of its successors w1, . . . , wn.

Since the start node vstart is not strictly reachable from any node, it may only occur
at the start of an execution sequence, and since all other nodes are strictly reachable
from vstart, it is the only possible starting point of an execution sequence. Likewise, no
node is strictly reachable from the end node vend, hence it may only occur at the end of
an execution sequence, and since vend is strictly reachable from all other nodes, it is the
only possible termination point of an execution sequence.

The set of all paths that start with vstart and end in vend overapproximates the set of
possible execution sequences. Any sequence of program parts that does not form such a
path in the CFG cannot occur during program execution and can thus be safely excluded
from timing analysis.

The notion of a CFG that we are using is closely related to the one used in compiler
construction, but there are some minor differences:

1. In compiler construction the nodes of a CFG usually correspond to maximal atomic
blocks of code, so-called basic blocks. This restriction is due to performance con-
siderations of the algorithms operating on CFGs. Since our presentation is on
a conceptual level, we allow any suitable kind of program parts, as discussed in
Section 3.6. It might be useful, however, to introduce similar restrictions at an
implementation level.

2. Our definition of a CFG automatically excludes certain undesirable program struc-
tures, like unreachable code.

The expressive power of CFGs corresponds to regular expressions. This means that
CFGs are not powerful enough to impose iteration bounds on cyclic program structures.
Such bounds are traditionally provided as additional constraints over the CFG.

Many iteration constraints can be derived automatically by code analysis. Healy
et al. [HSRW98] presented three different methods for bounding the number of loop
iterations: one method that can determine numeric upper and lower iteration bounds
for loops with multiple exits; one method for inferring symbolic iteration bounds for
loops where the iteration bound depends on loop-invariant variables; and one method
for handling nested loops.

Ermedahl and Gustafsson [EG97, GESL06] used a variant of abstract interpretation
to determine the possible value ranges of program variables, which includes the induction
variables of loops. Later Ermedahl et al. [ESG+07] presented a related approach that
supports program slicing and mixed interval/congruence domains.

Holsti and Saarinen [HS02] presented an approach that tries to identify program
variables that act as loop counters. By bounding both, the initial value of the loop
counters and the increment per iteration, they were able to infer iteration bounds for
certain kinds of loops.
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Rieder et al. [RPW08] have presented a method that employs the CBMC model
checker for ANSI C and C++ programs [CKL04] to find loop bounds. The do so by
modifying the source code, requiring no adaption of CBMC.

Zuleger [ZGSV11] demonstrated that the size-change abstraction is an effective ab-
stract domain for bound analysis.

If a suitable loop bound cannot be derived automatically for some cyclic program
structure, then it must be supplied by an expert who has to manually inspect the source
code.

Apart from determining loop bounds, control-flow analysis can also infer information
about infeasible paths in acyclic code fragments [Alt96]. Approaches for control-flow
analysis that are based on symbolic execution [LS98, LS99, GESL06] are, in general,
capable of excluding infeasible paths, and so is the approach by Healy et al. [HSRW98,
HW99].

3.9 Estimate Calculation
Estimate calculation is concerned with combining the local WCET estimates obtained by
processor-behavior analysis (cf. Section 3.7) into a global WCET estimate for the whole
program, according to the information obtained by control-flow analysis (cf. Section 3.8).
Three basic techniques have been proposed for estimate calculation. We will briefly
discuss these methods in Sections 3.10 through 3.12:

Path-based calculation: The path-based calculation method operates—to a large
extent—on individual control-flow paths. Since the number of control-flow paths
is usually huge, even for small CFGs, all practical path-based analysis methods
really operate on path fragments, or subpaths.

Tree-based calculation: The tree-based calculation method calculates the global
WCET estimate bottom up along a tree structure encoding the possible execu-
tion sequences of program instructions.

Implicit Path-Enumeration Technique: The IPET is a calculation method where
the set of allowed paths is described by integer linear constraints over the ex-
ecution frequency of the individual program parts. Under the assumption of a
constant local WCET estimate for each program part, a global WCET estimate
can be obtained by finding a maximal solution of a weighted sum of local execution
frequencies.

The previous classification is based on how the program under analysis is decom-
posed, and how the local WCET estimates are, accordingly, combined. Another aspect
that varies between different calculation methods is the value domain that is used to
represent WCET estimates:

Numeric domain: In the simplest case, a WCET estimate is represented by a single,
positive numeric value that encodes the duration in terms of real (“wall-clock”)
time or processor cycles. Sequential execution then corresponds to numeric addi-
tion, and alternative execution correspond to taking the maximum of the corre-
sponding set of WCET estimates.
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Reservation tables: This is a more sophisticated domain, which encodes information
about the occupation times of different stages in a pipelined architecture. Here,
sequential execution corresponds to a concatenation operation, and alternative
execution corresponds to logical disjunction [RML+94, HWH95, LBJ+95, HBL+95,
KMH96, HAM+99, SA00].

Probability distributions: In the case of probabilistic WCET analysis [BCP02,
BCP03], WCET estimates are encoded by probability distributions, which de-
scribe the chance that the execution time will exhibit a certain value. In this
case, sequential execution corresponds to convolution. For alternative execution,
Bernat et al. [BCP02] propose a maximum operator. Unfortunately, it is not clear
how the resulting probability distribution should be interpreted under the latter
operation. Whereas the convolution operator allows us to interpret the resulting
probability distribution as describing the probability that the corresponding piece
of code will exhibit a certain execution time, the same is not true for the probability
distributions obtained by applying the proposed maximum operator.

3.10 Path-based Estimate Calculation

The path-based calculation method operates—to a large extent—on individual paths.
Since the number of control-flow paths is usually huge, even for small CFGs, all practical
path-based analysis methods really operate on path fragments, or subpaths.

One widely used strategy is to partition the CFG of the program under analysis
into hammock graphs [ZD04] and to treat the resulting subpaths within each hammock
on an individual basis. The partitioning itself can be performed statically, when the
analysis starts [WKRP05, BC08, WKRP09, ZBK09, ZBK11], or dynamically, through
a periodical merging of path information during analysis strategies that are based on
abstract execution or similar techniques.

The analysis obtains a local WCET estimate for each hammock. These lo-
cal WCET estimates are subsequently combined into a global WCET estimate for
the whole program. This can be done using specialized longest path search algo-
rithms [LS98, LS99, SA00, SEE01], by employing the tree-based approach [HWH95,
CP00, CP01, CB02, BB06], or by using IPET [EE99, EE00, WKRP09, ZBK09, ZBK11].
Interestingly, the path-based approach can be seen as a refinement of the latter estima-
tion methods, rather than a genuine estimation method.

3.11 Tree-based Estimate Calculation

The idea of tree-based WCET analysis [PK89, PS93, Pus98], which is also known as
timing schema [Sha89, PS91], is to calculate the global WCET estimate bottom up along
a tree structure encoding the possible execution sequences of program instructions.

In compiler construction, an AST is a tree structure that encodes the hierarchical
syntactic structure of a program. However, the popular paradigm of structured program-
ming [Dij70] demands that structure of the possible control flow within a given program
should coincide with the program’s syntactic structure. In such a setting the AST does
not only encode the syntactic structure, but also describes the possible control flow.
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In particular, the semantics of compound constructs—like sequential execution, con-
ditional, and looping constructs—mandate that the set of allowed instruction sequences
of a corresponding AST node is obtained from the instruction sequences of its child
nodes via the operations of concatenation and set union.

For example, the possible execution sequences for a sub-AST corresponding to a
while-like looping construct with an iteration bound of k could be described by the set

{b ◦ (s ◦ b)i | 0 ≤ i ≤ k, b ∈ B, s ∈ S},

where B is the set of possible execution sequences for the evaluation of the loop condition,
where S is the set of possible execution sequences for the loop body, where the operator
◦ denotes subsequent execution, and where

(b ◦ s)i =
{
ε if i = 0,
(b ◦ s) ◦ (b ◦ s)i−1 if i ≥ 1, i ∈ N.

int binary_search( struct DATA const * data, int x )
{ int fvalue, mid, low, up;

fvalue=0;
mid=0;
low = 0;
up = 14;
fvalue = -1; /* all data are positive */
while (low <= up) {

mid = (low + up) >> 1;
if ( data[mid].key == x ) { /* found */

up = low - 1;
fvalue = data[mid].value;

}
else /* not found */

if ( data[mid].key > x ) {
up = mid - 1;

}
else {

low = mid + 1;
}

}
return fvalue;

}

Figure 3.5: Source code of a binary-search algorithm in C.

As an illustration of the idea, consider the example source-code snippet in Figure 3.5,
which is a C implementation of a binary-search algorithm.

If we resolve the hierarchical structure of the statements into a tree, we obtain an
AST like the one depicted in Figure 3.6. Assuming that we have already obtained
WCET estimates for the atomic program parts corresponding to the tree leaves (marked
in black) we can easily derive a global WCET estimate for the complete program by
applying a set of simple inference rules.

Each rule infers the WCET estimate for one of the possible compound constructs
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Figure 3.6: AST of the binary-search implementation from Figure 3.5. The black nodes
are leaf nodes containing atomic statements, whereas the white nodes correspond to
compound statements.

from the WCET estimate of the construct’s child nodes. The rules mirror the restrictions
imposed by the paradigm of structured programming and the semantics of the individual
constructs. By applying these rules in a bottom-up fashion, we obtain a WCET estimate
for the root node, which corresponds to the complete program.

The actual rules depend on the specific semantics of the used programming language
and on the level of abstraction used in the modeling of the control flow. In a simple case,
the inference rules for the three compound statement types of a While-like language
[NNH99], i.e., sequential composition, conditional execution, and while loop, could be

w̃cet(S1) = tS1 w̃cet(S2) = tS2

w̃cet(S1 ;S2) = tS1 + tS2

(sequential composition),

w̃cet(b) = tb w̃cet(S1) = tS1 w̃cet(S2) = tS2

w̃cet(if b then S1 else S2) = tb + max(tthen + tS1 , telse + tS2)
(cond. exec.), and
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w̃cet(b) = tb w̃cet(S) = tS

w̃cet(while b do S) = (k + 1) · tb + k · (tS + tloop) + tend
(loop),

where tthen and telse are, respectively, the constant WCETs for transferring control to
and back from the then and else branch (typically implemented by one conditional for-
ward jump plus one unconditional forward jump), where tloop is the constant WCET for
transferring control to the loop body and later back to then loop test (typically imple-
mented by one conditional forward jump plus one unconditional backwards jump), where
tend is the constant WCET of transferring control out of the loop (typically implemented
by one conditional forward jump), and where k > 0 is an integer constant denoting the
maximal number of iterations of the respective loop.

The pessimism of the WCET estimates that are obtained through the tree-based
approach can be reduced through the use of additional flow constraints. For example,
the approach presented by Puschner, Koza, and Schedl [PK89, PPVZ92, PS93, Pus98]
introduces program annotations that allow the user to place constraints on the control
flow within program scopes. Colin and Puaut [CB02] have presented a similar technique.

A scope limits the influence of a particular constraint to the control flow within a
specific subtree of the AST, typically a loop. An important use case is the exclusion of
infeasible paths within nested loops.

Park [Par93] proposed a special-purpose language that allows the user to concisely
specify typical constraints on the occurrence of individual statements on control-flow
paths. Again, based on the notion of a scope, their language provides primitives for
specifying how often a particular statement should occur along a path, disallowing or
enforcing the occurrence of a statement, specifying the mutual exclusion or inclusion of
two statements, and more. For analysis, the user-provided constraints are translated
to regular expressions, which are used calculate an overapproximation of the feasible
control-flow paths. To perform the actual estimate calculation, two techniques are pro-
posed: The first technique is based on transforming the program according to disjoint
sets of feasible control-flow paths. The second technique is a variant of the tree-based
approach with refined rules that consider the set of feasible paths through the current
AST subtree.

Another way to extend the tree-based approach is to use a different value domain.
For example, in [RML+94, LBJ+95, HBL+95, KMH96], sets of worst-case reservation
tables [Kog81] have been used as domain elements, in order to model the instruction
interleaving in single in-order issue pipelines, as found in RISC processors similar to the
MIPS R3000. The latter work also presented a strategy for handling the state of direct-
mapped caches via post-conditions for individual domain elements. In [KMH96], Kim et
al. use similar post-conditions to model the state of direct-mapped data caches. Related
techniques have also been used Healy, Whalley, and Harmon [HWH95, HAM+99] to
model instruction interleaving and caching on a SPARC V7 processor.

Colin and Puaut [CP00] have presented a tree-based approach to take into account
branch prediction, using static program analysis to classify the behavior of the branch
predictor at different program locations.

The tree-based approach can also be used to calculate an estimate of the global
BCET [Sha89]. It is efficient and particularly appealing due to its compositional nature,
which is especially suitable in cases where a user is not interested in the global WCET
estimate only, but would moreover like to investigate the estimated WCET of individual
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program parts. On the downside, the approach is limited to programs that follow the
paradigm of structured programming [Dij70], ruling out unstructured jumps.

The approach by Betts and Bernat [BB06] uses a variant of tree-based estimate
calculation. However, they do not rely on the program AST, but use a special structure
that is based on instruction sequences between instrumentation points.

3.12 The Implicit Path-Enumeration Technique (IPET)

The IPETIPET is another widely used method for inferring a global WCET estimate
of a complete program from local WCET estimates of individual program parts. It was
developed independently by Puschner and Schedl [PS97], and Li and Malik [LM97]. The
name of the method refers to the idea of using an implicit description of the possible
sequences of program parts, or paths, instead of enumerating each path individually.
Despite this very general etymological roots, the term IPET is usually used to designate
a specific variant where the set of allowed paths is described by integer linear constraints
over the execution frequency of the individual program parts.

In this usual form of IPET, general non-linear constraints cannot be expressed di-
rectly. Such constraints must be approximated, for example, through a piecewise linear
approximation.

Under the assumption of a constant local WCET estimate for each program part,
a global WCET estimate can be obtained by finding a maximal solution of a weighted
sum of local execution frequencies under the given constraints.

In IPET, the problem of inferring a global WCET estimate of a complete program
from the local WCET estimates of its individual parts is expressed as an integer linear
optimization problem: In the original variant of IPET, the execution count of the in-
dividual program parts is expressed as a set of non-negative integer variables, and the
possible control flow between the individual program parts is overapproximated by flow
facts that are formulated as linear constraints. The execution of each program part is
associated with a constant cost, namely the local WCET estimate of that program part.
The objective function of the optimization problem is the cost-weighted sum of execution
counts of all program parts, and the optimal value of that function is the global WCET
estimate for the complete program.

Given a CFG (V,E, vstart, vend) of some program P, we introduce, for each node
v ∈ V , an integer variable fv, called node variable, to capture the execution count of
node v during a single execution of P. Likewise, we introduce, for each edge (v, w) ∈ E,
an integer variable f(v,w), called edge variable, to capture the number of times control is
transfered from node v to node w.

It should be noted that the introduction of node variables is not strictly necessary,
as all linear constraints over some node v can also be expressed as linear constraints over
the sum of v’s incoming (or outgoing) edges. The sole benefit of using node variables is
that they can sometimes make constraints more readable.

Usually, the solution space is chosen to represent an overapproximation of all fea-
sible execution sequences of program parts. This is established through the following
connection: For any feasible execution sequence π = v1, . . . vn of P, the valuation

{fv 7→ cv | v ∈ V } ∪ {fe 7→ ce | e ∈ E}
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must be a solution, where cv is the number of occurrences of node v in π, and where ce
is the number of occurrences of edge e in π, i.e.,

cv = |{i | vi = v, 1 ≤ i ≤ n}| and ce = |{i | (vi, vi+1) = e, 1 ≤ i < n}|.

The number of occurrences of individual program parts, as well as the number of
individual control-flow transitions are finite cardinal numbers and must hence be non-
negative. We therefore add non-negativity constraints

fv ≥ 0, for all v ∈ V and fe ≥ 0, for all e ∈ E.

We want to model any single run of program P. We can ensure this by requiring
that there is exactly one occurrence of the start node vstart and exactly one occurrence
of the end node vend:

fvstart = 1 and fvend
= 1.

We consider only sequential programs, in which case the CFG semantics implies that
each execution of some node v ∈ V must be followed by the execution of exactly one
of its immediate successor nodes w ∈ V , unless control terminates in v. Likewise, each
execution of some node v ∈ V must follow the execution of exactly one of its immediate
predecessor nodes w ∈ V , unless control starts in v. This can be expressed by the linear
constraints

fv =
∑

(w,v)∈E
f(w,v) for all v ∈ V, fv =

∑
(v,w)∈E

f(v,w) for all v ∈ V.

These constraints are called structural constraints, because they capture the static
structure of the control flow encoded in the CFG, without taking into account the dy-
namic program behavior.

Considering the structural constraints imposed under our notion of CFG, we see
that we really need only one of the previous two constraints governing vstart and vend.
Keeping both is not strictly necessary, but otherwise causes no harm.

As mentioned in Section 3.1, programs that implement the individual tasks of a
real-time system always have a finite set of possible inputs vectors on which they can
operate and are, moreover, required to eventually terminate on any of these inputs.
Unfortunately, the CFG does not provide enough information about the control flow
within its strongly connected components. Without further constraints, the control flow
within cyclic regions of the CFG would be unbounded, and so would then be the whole
optimization problem.

In Section 3.8, we have mentioned that many types of loop iteration constraints can
be derived automatically by code analysis. In cases where this is not possible, they must
be supplied by an expert who has to analyze the source code.

The most general notion of a cyclic area in a program corresponds to the notion of
a strongly connected component from graph theory, i.e., there exists a path from each
node inside the component to any other node inside the same component. Although it
is possible to formulate loop iteration constraints for strongly connected components,
for most practical programs it is sufficient to consider the more restrictive notion of a
natural loop.
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Constraints Use Case

fv = k · fe Edge e occurs k times as often as node v. Example: Inside
a loop with header v, edge e is associated with a control-flow
decision that becomes true for every k-th iteration.

fe1 ≤ fe2 For each occurrence of edge e1, there is at least one occurrence
of edge e2. Example: Inside a loop, edge e1 is associated
with a control-flow decision that implies another control-flow
decision, associated with the execution of e2, to be taken.

fe1 ≤M · fe2 If there is an occurrence of edge e1, there is at least one oc-
currence of edge e2. Constant M must have a large positive
value. Example: Edge e1 is associated with a control-flow
decision that corresponds to the activation of a specific oper-
ation mode in which code guarded by the control-flow decision
associated with edge e2 is activated.

fe1 = fe2 For each occurrence of edge e1, there is exactly one occurrence
of edge e2. Example: The conditions associated with edge e1
and edge e2 guard code that is dispersed, but functionally
related.

fe1 ≤M · y
y ≤ 1

If there is an occurrence of edge e1, there is at least one oc-
currence of edge e2. Constant M must have a large positive
value. Example: Edge e1 is associated with a control-flow
decision that corresponds to the activation of a specific oper-
ation mode in which code guarded by the control-flow decision
associated with edge e2 is activated.

Table 3.1: Examples of different types of constraints in IPET.

We recall the definition of a natural loop: A node v is said to dominate another node
w, if any path from the start node vstart to w must pass through v. A natural loop is
defined by its back edge (w, v), which is an edge, such that its target node v dominates
its source node w.

Iteration constraints for such loops are typically inequalities that bound the flow
through the back edge relative to the total outside flow f(w1,v) + . . . + f(wn,v) into the
loop header v, i.e.,

f(w,v) ≤ b · (f(w1,v) + . . .+ f(wn,v)),

where b is a positive integer constant, where {w1, . . . , wn, w} is the set of immediate
predecessors of node v and where w dominates v.

One particular benefit of IPET is the possibility to include supplementary constraints
on the control flow in the form of arbitrary linear constraints, as might be provided by
program analysis or expert insight into the behavior of the underlying program. Doing
so may considerably reduce the solution space, resulting in closer WCET estimates. A
number of examples of additional forms of constraints are given in Table 3.1, with more
to be found in [PS97].
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Lastly, the objective function of a standard IPET problem takes the form∑
v∈V

w̃cetv · fv,

where w̃cetv is the local WCET estimate of node v. Maximizing this function yields a
global WCET estimate for the whole program.

Example 3.2. Reconsider the CFG from Example 3.1. Assume that the loop can reiter-
ate at most 7 times whenever it is entered. Furthermore, assume that WCET estimates
for nodes v1, v2, and v3 are 50, 20, and 30 microseconds. We obtain the following IPET
problem:

• Non-negativity constraints:

fvstart ≥ 0; fv1 ≥ 0; fv2 ≥ 0; fv3 ≥ 0; fvend
≥ 0.

• Structural constraints and single run constraints:

fvstart = 1; fvstart = f(vstart,v1);
fv1 = f(vstart,v1); fv1 = f(v1,v2) + f(v1,v3);
fv2 = f(v1,v2); fv2 = f(v2,v3);
fv3 = f(v1,v3) + f(v2,v3) + f(v3,v3); fv3 = f(v3,v3) + fvend

;
fvend

= (v3, vend); fvend
= 1.

• Iteration constraint:

f(v3,v3) ≤ 7 · (f(v1,v3) + f(v2,v3)).

• We may add supplementary linear constraints that might have been provided by
program analysis or expert insight into the behavior of the underlying program.
As a made-up example, we might observe that the number of reiterations of the
loop is constrained to 3 whenever the loop is entered through edge (v2, v3), for
example, due to some program variables being set to a certain value in node v2.
We would then add an extra constraint

f(v3,v3) ≤ 7 · f(v1,v3) + 3 · f(v2,v3).

• Objective function:

0 · fvstart + 50 · fv1 + 20 · fv2 + 30 · fv3 + 0 · fvend
.

One particular limitation of standard IPET is the assumption of a constant local
WCET estimate for each program part. This assumption turns out to be prohibitively
pessimistic for the case of contemporary hardware platforms, where individual instruc-
tions can experience a considerable jitter in execution time, depending on the state of
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caches, pipelines, an other hardware components (cf. Sections 3.2 and 3.3). To overcome
this limitation, authors have proposed various different variants of standard IPET:

Li et al. have presented an approach where potential instruction cache misses are
modeled by considering the feasible control-flow paths between code that maps to the
same cache line. This allows the formulation of conservative constraints on the number of
cache misses, which are modeled by introducing an additional non-negative integer vari-
able for each program part. They demonstrate their approach on both, direct-mapped
[LMW95, LMW99] and set-associative caches [LMW96].

Ottoson and Sjödin [OS97] have proposed the modeling of pipeline effects by in-
troducing separate variables for pairs of adjacent program parts. Engblom and Er-
medahl [EE99] have proposed a similar approach for larger sequences of instructions.

3.13 The Measurement-based Approach

In Measurement-based timing analysis (MBTA), the execution times of individual pro-
gram parts are measured while the program is being executed on the intended target
hardware. The observed local execution times of the individual program parts are sub-
sequently combined into a global WCET estimate for the program as a whole, using any
of the calculation methods discussed in Sections 3.9 through 3.12.

In Section 3.3, we have discussed that any method for precisely analyzing the WCET
of a given piece of software on modern target hardware must be capable of dealing with
both, the functional computer state and the TRCS. In MBTA, we apply advanced input-
data generation techniques (cf. Section 3.14) in order to achieve a high TRCS coverage.
MBTA here relies on a best-effort argument that cannot guarantee the coverage of all
possible temporal behaviors. However, considering the use cases of MBTA that we have
given in Section 1.5, such a best-effort approach is justified.

On the other hand, the functional computer state is handled in the same way as
in static analysis, i.e., by control-flow analysis (cf. Section 3.8). Calculation methods
like path-based estimate calculation (cf. Section 3.10), tree-based estimate calculation
(cf. Section 3.11), or IPET (cf. Section 3.12) are then used to infer a global WCET
estimate for the program as a whole. The major difference to static analysis is that the
local WCET estimates originate from measurements.

In this Section we discuss the dataflow of MBTA, as depicted in Figure 3.7. The
diagram can also be understood as depicting sequential processing, i.e., a workflow.
The reason why it is useful to think in terms of dataflow, rather than in terms of a
workflow, should become clearer in Chapter 6, where we present the extended dataflow
of the FORTAS approach, which contains cycles and allows for the parallelization and
pipelining of the various analysis operations.

We first take a look at the pieces of data (cf. Figure 3.7) that MBTA operates on:

Program code: This is the code of the task under analysis. Some implementations
of MBTA are built to analyze machine code [BCP02, BCP03, SM10], whereas
others, including the FORTAS tool, operate on the source-code level [KWRP05,
WKRP09]. We have already discussed the advantages and disadvantages of either
choice in Section 3.6.
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Figure 3.7: The dataflow of MBTA.

Control-flow information: Also known as flow facts, control-flow information com-
prises the available constraints over the feasible control flow within the software un-
der analysis, i.e., all the information obtained during control-flow analysis (cf. Sec-
tion 3.8). This includes constraints imposed by the static structure of the code,
as described by the program’s CFG or AST, loop bounds, and any general flow
constraints that help to exclude infeasible paths.

Test suite: A test suite is a collection of input vectors that are used to initialize the
computer state before executing the program for the purpose of performing a mea-
surement. Ideally, each input vector should provoke a particular TRCS (cf. Sec-
tion 3.3). In practice, it is not possible to guarantee a full coverage of the TRCS,
since the exact connection between input-data space and the TRCS space is—
intentionally—not modeled explicitly in MBTA. The specific type of used input
vectors limits the TRCS space coverage that is achievable by a particular MBTA
implementation. The term test suite is taken from functional testing.

Local estimates: The local WCET estimates are WCET estimates for the individual
program parts. A straightforward choice are the local maximal observed execution
times (MOETs). Optionally, a safety margin can be added to each local maximal
observed execution time, or extreme value theory [Col01] can be applied to the
collected samples.

Global estimate: The global WCET estimate is the final result of timing analysis. It
approximates the value of the actual WCET of the software under analysis on the
given target hardware.

Next, we consider the individual operations (cf. Figure 3.7) that are performed at
analysis time:

Control-flow analysis: control-flow analysis (cf. Section 3.8) is concerned with de-
termining the feasible sequences in which the individual program parts can be
executed. The central point of control-flow analysis is to exclude as many prov-
ably infeasible execution sequences as practical from further consideration during
estimate calculation.

Input data generation: Input data generation (cf. 3.14) produces suitable input vec-
tors for the subsequent execution of the software on the target hardware.
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Measurement: In the measurement stage (cf. 3.15) the program is executed on the
target hardware, and execution times of the individual program parts are obtained.

Global estimate calculation: Estimate calculation is concerned with combining the
local WCET estimates obtained by measurement (cf. 3.15) into a global WCET
estimate for the whole program, according to the information obtained by control-
flow analysis (cf. Section 3.8). Estimate calculation was discussed in Section 3.9.

3.14 Input Data Generation

Any method for precisely analyzing the WCET of a given piece of software on a modern
target hardware must be capable of handling timing effects that are linked to both, the
functional computer state and the TRCS. Concerning the functional computer state, the
analysis must consider the effect on the execution sequence of machine instructions, as
well as the effect on execution times of individual instruction sequences. With respect
to the TRCS, the analysis must consider the effect on execution times of individual
instruction sequences.

In MBTA, the temporal behavior of the task under analysis is determined by execut-
ing the corresponding code on the actual target platform and measuring the execution
time of individual program parts. The possible sequences of program parts can be
modeled separately by applying control-flow analysis (cf. Section 3.8) and calculation
methods like path-based estimate calculation (cf. Section 3.10), the tree-based approach
(cf. Section 3.11), or IPET (cf. Section 3.12). On the other hand, information on the
execution time of individual instructions must be obtained by measurement.

Since the execution time of individual instructions depends on the TRCS, performing
a single measurement for each instruction, or program part, is not sufficient to obtain
enough information. Moreover, the connection between a particular TRCS and the
execution time it induces in a subsequently executed instruction is complex and cannot
be exploited without access to a detailed temporal model of the hardware.

Performing exhaustive measurements for all possible initial states is not tractable
due to the size of the state space. All that MBTA can do is to strive to achieve a high
coverage of the temporal behavior of individual instructions. Various heuristics can be
used to choose a suitable subset of initial states, which we will discuss shortly.

MBTA cannot directly control the complete TRCS. As we have seen in Section 3.3,
the TRCS may include parts of the hidden computer state that are not directly acces-
sible. Moreover, incomplete knowledge of the execution platform is one of the primary
assumptions of MBTA. However, MBTA can control the functional computer state.
When used as initial condition for executing a piece of code, elements of the functional
computer state are also called input vectors.

To perform execution-time measurements of an instruction or a sequence of instruc-
tions, it is important to consider whether the code should be executed within its program
execution context, or if it should be executed in isolation.

If the code is executed in isolation, then the initial state before execution can be
controlled more directly: For example, if a given function is executed in isolation, we can
directly control the value of all the function’s input parameters by specifying respective
arguments. However, if the same function is executed as part of a call from another
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function, we have no direct control over the parameters. Rather, we can only indirectly
enforce certain arguments by controlling the input data of the calling function(s).

Generating appropriate input data for the calling function to enforce some intended
input for the callee function can be difficult. On the other hand, generating input data
directly for the called function introduces pessimism, since in initial state for the called
function is no longer constrained by its execution context.

A mix of different techniques can be used to generate a set of input vectors [BZTK11]:

Random input-data generation: Generating random data is very fast. This allows
the generation of a large amount of input vectors in a short time. Random input
generation can achieve a surprisingly good coverage in a short time. However, the
method tends to miss rare conditions. Figure 3.8 provides a simple example of a
rare case that is likely to be missed by this technique.

Concolic testing: Concolic testing [WMMR05, CGP+08, God05, SMA05] is a tech-
nique for input-data generation from functional software testing that combines
concrete execution with symbolic execution [BEL75, How76]. Concolic testing
uses concrete execution to find the concrete sequence of instructions for some (ini-
tially random) input date. Subsequently it uses symbolic execution to collect path
conditions—necessary conditions over the input variables that lead to a particular
sequence of instructions—along the concrete execution path, up to a certain depth.
By negating one or more path conditions, a new set of constraints over the input
variables is obtained. This constraint set can be solved to compute new input data.
That way, concolic testing is able to quickly generate test suites that cover many
different execution paths.

Model checking: Another way to generate input data is to exploit the ability of model
checking [CGP00] to generate counter examples. Software model checkers like
CBMC [CKL04] or Blast [BHJM07] permit the checking of reachability properties
on source code. Given a particular state that should be used for measurement, a
corresponding safety property can be formulated. If the safety property is violated,
i.e., if the state is in fact reachable, such a model checker can provide suitable input
data in the form of a counter-example.

Stochastic optimization: Stochastic optimization can sometimes do a good job at
finding input data for some rare conditions, through iterative, heuristic approxi-
mation. It cannot guarantee to cover all special cases, though. The FROO method,
which we will present in Section 5.2, is an example of an input-data generation
method that is based on stochastic optimization.

3.15 Measurement
During measurement, the program is executed on the target hardware, and execution
times for the individual program parts are recorded.

To do so, this stage may need to prepare the program code for the execution. For ex-
ample, if the program code is provided as source code, it must be compiled for respective
target hardware platform. If the compiler performs optimizations that affect the control
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void foo(int x, int y) {
if (x == C1 && y == C2) {

[...]

} else {
[...]

}
}

Figure 3.8: An example of C source code for which random input-data generation does
not work well: The true-branch of the if-construct is unlikely to be invoked using input
data obtained by random input-data generation. The reason is that the branch condition
is only met by a single valuation of variables x and y (out of 264 possibilities, assuming
a 32-bit architecture.

flow, then any flow information that refers to the source code must be transformed as
well to match these optimizations [KP01, KP03, KPP10b]. This transformation can
be either performed by the compiler [KP05], or by an external tool that mirrors the
behavior of the compiler.

The former approach is simpler, but requires that the compiler either comes with
native support for the transformation of flow information, or is modified accordingly.
Such a modification might be practically infeasible, like in the case of a third-party
compiler for which no source code is available, or too costly, like in the case of a certified
compiler that would require re-certification.

The second approach of using an external transformation tool to mirror the behavior
of the compiler burdens that tool to exactly mimic all the transformations that are
performed by the compiler.

Eventually, the code is executed on the target hardware, using the input data from
the generated test suite, which is obtained from input-data generation (cf 3.14). This
yields either a set of observed execution times for each individual program part, or timed
traces, where each timed trace indicates the execution sequence of individual control-flow
elements and the execution duration for each entry in this sequence.

A set of timed traces can provide more useful information on the temporal behavior
of a program than the corresponding sets of execution times for each individual program
part: A timed trace additionally contains information on the control flow under which
a specific execution time occurred, as well as information on which execution times
occurred together. This information is not used in standard MBTA, but it is essential
for context-sensitive IPET (cf. Chapter 4).

In order to avoid exerting a probe effect on the system, special tracing hardware
can be used to perform the execution-time measurements [II03, SM10, Lau]. Otherwise,
software instrumentation can be used [Pet03, WRKP05, WKRP05, BB06, RWSP07,
WKRP09, BMB10].

Various techniques can be used to capture execution times:

Tracing hardware: Modern hardware usually features specialized on-chip debugging
interfaces that can be used to non-intrusively capture timed traces while the soft-
ware is running [Lau, BMB10, SM10].
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Software instrumentation: If such an interface is not available, the technique of soft-
ware instrumentation can be applied. In this case special time stamping code is
inserted into the software under scrutiny. This technique is intrusive, because it
introduces a probe effect into the system.

Simulation: In case a cycle-accurate simulation of the target hardware is available, it
is possible to obtain timed traces via simulation.

A major strength of MBTA is its relatively low retargeting effort. Such retarget-
ing requires the implementation of a target-specific driver that is able to perform the
following actions:

Compiling and linking: To produce executable machine code for the target platform,
the code must first be compiled and linked, using a target-specific compilation tool-
chain.

Executable download: Before the executable machine code can be run, it must
be downloaded to the target platform. This is usually done via a standard
IEEE 1149.1 JTAG debug port.

Starting and stopping: After the executable machine code has been downloaded to
the target platform, its execution must be started. Likewise, there must be a
mechanism to stop the execution after the last instruction of the program has
been processed.

Collecting timed traces: When collecting execution times, care must be taken not
to exert a probe effect on the system. Ideally, the timing information should be
captured using the features provided by modern, non-intrusive on-chip debugging
hardware [II03, SM10, Lau]. If such features are not available, software instrumen-
tation can be used as a fall-back technique [Pet03, WRKP05, WKRP05, BB06,
RWSP07, WKRP09, BMB10]. Moreover, some preprocessing is required to make
the timed traces accessible to the analysis. In particular, it might be necessary to
map the traces from the executable binary level to the source-code level.

Apart from implementing a target-specific measurement driver, it is necessary to
parametrize the analysis with respect to the processor’s specific data-types, for example,
value ranges and binary representations. The algorithms for control-flow analysis, input-
data generation, and estimate calculation need not be changed, however.

3.16 Chapter Summary

In this chapter, we have discussed the preliminaries of WCET analysis.
The traditional approach for WCET analysis follows the idea of splitting the pro-

gram under analysis into smaller parts and determining local WCET estimates for these
individual parts. Processor-behavior analysis is concerned with determining WCET
estimates for the individual program parts. Control-Flow Analysis is concerned with de-
termining the feasible sequences in which the individual program parts can be executed.
Estimate calculation is concerned with combining the local WCET estimates obtained
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by processor-behavior analysis into a global WCET estimate for the whole program. In
measurement-based timing analysis (MBTA) the execution times of individual program
parts are measured while the program is being executed on the intended target hardware.
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CHAPTER 4
Reducing Pessimism

In this chapter, we develop a method for reducing pessimism in MBTA.
In Section 4.1, we consider how pessimism arises due to overapproximation of the

systems behavior. In Section 4.2, we consider a monotonicity property that is exhibited
by many widely used estimate calculation methods. That property is important to
guarantee that our method for reducing pessimism will never increase pessimism. In
Section 4.3, we recall that the state of a system can be understood as a momentary
summary of the system’s execution history. As a result, it is possible to use a known
execution history to recover partial information about the system’s internal state at a
given point within a program’s execution. In Section 4.4, we present context-sensitive
IPET, a generic estimate calculation method that enables the reduction of pessimism
by allowing the specification of separate execution scenarios for any individual program
part. In Sections 4.5 through 4.9, we present a concrete instantiation of context-sensitive
IPET.

4.1 Pessimism

Pessimism arises in MBTA during estimate calculation, when we infer a global WCET
estimate from individual local WCET estimates without taking into account the depen-
dencies between the execution time of different program parts: The combination of two
or more local worst-case scenarios might not be feasible along any concrete run, due to
logical dependencies in the control flow.

Local WCET estimates that have been obtained by measurement are affected by
optimism. However, we choose to address optimism separately, in Chapter 5. In the
present chapter, we therefore assume that the local WCET estimates of each node are
free of optimism, i.e., each local WCET estimate is at least as high as the actual WCET,
formally:

w̃cet(v) ≥ wcet(v).

The methods for estimate calculation that we have discussed in the previous
chapter—path-based estimate calculation (cf. Section 3.10), tree-based estimate calcu-
lation (cf. Section 3.11), and IPET (cf. Section 3.12)—perform an over-approximative
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calculation of the WCET estimate, assuming that local WCET behaviors in two or more
different program parts may coincide, even if such an execution scenario has not been
observed or may not at all be exhibited by the system. Figure 4.1 illustrates the idea of
pessimistic estimate calculation by a simple example.
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Figure 4.1: Example for pessimistic estimate calculation: In this example we assume
a simple program fragment consisting of two consecutive code blocks, A and B. Fur-
thermore, we assume that there are only two execution scenarios. Part A exhibits its
WCET in the first scenario, whereas part B exhibits its WCET in second scenario. We
also assume that our measurement runs cover both scenarios. A simple version of IPET
will use the sum of the local WCET estimates to calculate the WCET estimate for the
sequence. Using the sum, however, is pessimistic, as a run in which both local WCETs
occur does not actually exist in this example. The result is a global WCET estimate
that is higher than the actual global WCET. In this example, the actual global WCET
shows up in Scenario 2.

The reason why estimate calculation in MBTA is inherently pessimistic is historic:
these calculation techniques have been adopted from static WCET analysis. In their
original context, these calculation techniques were developed with sufficient schedula-
bility tests in mind (cf. Section 2.5). MBTA later inherited these estimate techniques
without modification.

4.2 Monotonicity
The three estimate-calculation methods that we have considered—path based estimate
calculation (cf. Section 3.10), tree-based estimate calculation (cf. Section 3.11), and
IPET (cf. Section 3.12)—are monotonic in the local WCET estimates: If one of the local
WCET estimates that are used for calculating the global WCET estimate increases by
a positive value δ—with the other local WCET estimates staying the same—then the
global WCET estimate cannot decrease. Equivalently, we formally define:

Definition 4.1 (Monotonic estimate calculation method). Let f be a function that takes
as arguments local WCET estimates w̃cet1, . . . , w̃cetn and yields a global WCET estimate
w̃cet = f(w̃cet1, . . . , w̃cetn). We say that f denotes a monotonic estimate calculation
method, iff, for any change δ1, . . . , δn ≥ 0,

f(w̃cet1 + δ1, . . . , w̃cetn + δn) ≥ f(w̃cet1, . . . , w̃cetn).
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4.3 State as an Encoding of History

In Section 3.3, we have argued that the execution time of the individual instructions
of a program ultimately depends on the computer state, specifically on the TRCS. The
state of a system summarizes the information of the system’s history that is relevant
for its future behavior. Mesarovic and Takahara [MT89] identify the following principal
reasons for the introduction of state:

(i) A system is, in general, a relation; i.e., the same input can lead to different
outputs. The state enables a representation of the system as a function. The
idea is that if one knows what state the system is in, he could with assurance
ascertain what the output will be. In such a way one regains “predictability”
believed to be present if a complete set of observations is available.

(ii) The state enables the determination of a future output solely on the
basis of the future input and the state the system is in. In other words, the
state enables a “decoupling” of the past from the present and future. The
state embodies all past history of the system. Knowing the state supplants
knowledge of the past. Apparently, for this role to be meaningful, the notion
of past and future must be relevant for the system considered; this leads to
the notion of an abstract time system.

4.4 Context-sensitive IPET

Context-sensitive IPET is a generic estimate calculation method. It is an extension
of standard IPET (cf. Section 3.12). Unlike standard IPET, context-sensitive IPET
does not rely on a single, constant WCET estimate of each program part, but allows
for multiple execution scenarios of each program part, with different associated WCET
estimates.

Like standard IPET, context-sensitive IPET relies on solving an ILP problem. The
ILP problem used by context-sensitive IPET is based on the ILP problem used by
standard IPET. When switching from standard IPET to context-sensitive IPET, it is
therefore possible to reuse all available IPET constraints for a given program. This
is a key advantage of context-sensitive IPET over other context-sensitive calculation
methods.

To construct a context-sensitive IPET problem, we reuse all the variables from the
corresponding standard IPET problem: node variables to capture the execution count
of each node v ∈ V during a single execution of P and edge variables to capture the
number of times control is transfered from node v to node w, for each edge (v, w) ∈ E.
The semantics of these variables is preserved in the context-sensitive IPET problem,
and we therefore keep all associated constraints from the standard IPET problem: Non-
negativity constraints, constraints that enforce exactly one run, structural constrains
imposed by the CFG, loop iteration constraints, as well as any supplementary constraints
specified by the user or obtained through automatic analysis.

In standard IPET, we use the maximal observed execution time of each node v ∈ V
as that node’s WCET estimate w̃cetv. In context-sensitive IPET, we model, for each
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node v ∈ V , a set of different execution scenarios

Ev,1, . . . , Ev,n(v)

with different associated WCET estimates

w̃cetv,1, . . . , w̃cetv,n(v).

The execution count of each of the execution scenarios Ev,1, . . . , Ev,n(v) of node v
during a single execution of the given program P is modeled by respective scenario
variables

fv,1, . . . , fv,n(v) of v.

The individual execution scenarios of a given node v ∈ V should be understood as
refinements of the unspecific execution scenario of v, as used in standard IPET, which
is associated with the unspecific maximal observed execution time w̃cetv in MBTA. As
a consequence, the associated WCET estimates w̃cetv,1, . . . , w̃cetv,n(v) of the specific
execution scenarios must not exceed w̃cetv. Hence, we require:

Requirement 4.1 (Execution scenario specialization). The WCET estimates under a
specific execution scenario of some node v must not exceed the unspecific WCET estimate
w̃cetv of v, i.e.,

w̃cetv,i ≤ w̃cetv, for all 1 ≤ i ≤ n(v).

Furthermore, we require that the execution scenarios Ev,1, . . . , Ev,n(v) of each node
v ∈ V classify the executions of v, i.e., we require that each execution of node v during
a run of program P is associated with exactly one of the execution scenarios of v:

Requirement 4.2 (Execution scenario classification). For each node v ∈ V , the asso-
ciated execution scenarios Ev,1, . . . Ev,n(v) must form a classification of all occurrences
of v in any end-to-end path through the CFG.

Adopting of Requirement 4.1 allows us to add additional constraints to the IPET
problem:

fv =
n(v)∑
i=1

fv,i, for all v ∈ V.

Like any other variables representing counts of occurrences, scenario variables must
not be negative. We therefore include non-negativity constraints

fv,i ≥ 0, for all v ∈ V, 1 ≤ i ≤ n(v).

The objective function of the context-sensitive IPET problem is a refinement of
the objective function of the corresponding standard IPET problem. It is obtained by
replacing each summand

w̃cetv · fv
by the weighted sum

n(v)∑
i=1

w̃cetv,i · fv,i,
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i.e., the objective function of the context-sensitive IPET problem has the form

∑
v∈V

n(v)∑
i=1

w̃cetv,i · fv,i,

As in standard IPET, maximizing this objective function yields the global WCET
estimate for the whole program.

Since we keep all the constraints from context-free IPET, and by way of Require-
ments 4.1 and 4.2, context-sensitive IPET can never be more pessimistic than context-
free IPET, as stated in the following theorem:

Theorem 4.1. The global WCET estimate obtained from a context-sensitive IPET prob-
lem never exceeds the global WCET estimate obtained from the respective standard IPET
problem.

Proof. Let fv,1, . . . , fv,n(v), for all v ∈ V , be a solution of the context-sensitive IPET
problem. We have fv =

∑n(v)
i=1 fv,i and w̃cetv,i ≤ w̃cetv for 1 ≤ i ≤ n(v), hence

∑
v∈V

n(v)∑
i=1

w̃cetv,i · fv,i ≤
∑
v∈V

n(v)∑
i=1

w̃cetv · fv,i =
∑
v∈V

w̃cetv · fv.

More interestingly, we can actually reduce pessimism in context-sensitive IPET by
providing additional constraints over the scenario variables fv,1, . . . , fv,n(v). For example,
any constraint that tightens the lower bound of some variable fv,i with

w̃cetv,i < w̃cetv

reduces the global WCET estimate, for any solution where fv > 0. The classification
of occurrences of a given node v ∈ V must be performed in a way that allows such a
reduction of pessimism. This is captured by the following requirement:

Requirement 4.3 (Constraints). The classification of the occurrences of a given pro-
gram node v ∈ V during a run into execution scenarios Ev,1, . . . Ev,n(v) must be per-
formed in such a way that additional constraints over the corresponding scenario vari-
ables fv,1, . . . , fv,n(v) can be established.

Example 4.1. Reconsider the IPET problem from Example 3.2. Assume that the
WCET of node v3 varies, depending on which of the three node v1, v2, and v3 were
executed just before node v3. This could, for example, happen as a result of the pro-
cessor’s caching of accesses to instruction and data memory. Assume that the WCET
estimate of node v1, v2, and v3 is, respectively, 30, 10, and 5 microseconds. We therefore
introduce different execution scenarios E1, E2, and E3 for node v3 and add the following
constraints to the original IPET problem:

fv3 = fv3,1 + fv3,2 + fv3,3.
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The objective function of our context-sensitive IPET problem is:

0 · fvstart + 50 · fv1 + 20 · fv2 + 30 · fv3,1 + 10 · fv3,2 + 5 · fv3,3 + 0 · fvend
.

The context-sensitive IPET problem does not have any benefit over the standard
IPET problem, unless we add some effective constraints over the individual execution
scenarios. Since the execution scenario of node v3 depends on which of its immedi-
ate predecessors v1, v2, or v3 was executed immediately before, we add the following
constraints:

fv3,1 = f(v1,v3); fv3,2 = f(v2,v3); fv3,3 = f(v3,v3).

In this example, the total number of occurrences of edges (v1, v3) and (v2, v3) in a
single run is must be 1, due to the structural constraints of the IPET problem. Therefore,
adding the mentioned constraints closens the WCET estimate by enforcing a closer upper
bound on fv3,3.

This completes our presentation of context-sensitive IPET. However, since context-
sensitive IPET is a generic method, it cannot be applied right away, but must be instan-
tiated. Like that, different concrete methods with different properties can be created. In
the following sections we develop one possible instantiation of context-sensitive IPET:

• In Section 4.5, we introduce the notion of a context of a node, which we use to
instantiate the notion of an execution scenario. We also introduce two operations
that can be used to refine a given context.

• In Section 4.6, we show how we can infer context-specific linear constraints over
the number of times the given node may appear on any end-to-end paths through
the CFG. These constraints will help us to fulfill Requirement 4.3.

• In Section 4.7, we show how we can infer WCET estimates for individual contexts
from execution times that have been obtained from measurements. The specific
way estimates are assigned will allow us to fulfill Requirement 4.1.

• In Section 4.8, we present an algorithm for obtaining a set of contexts for a given
node. The set of contexts is constructed in a such a way that Requirements 4.2
and 4.3 can be fulfilled.

• In Section 4.9, we show how the results can be put together to obtain a concrete
instantiation of context-sensitive IPET.

4.5 Contexts

In this section we first introduce the notion of a clip, which is a specification of a set of
paths in a CFG leading from a specific set of entry edges to a specific set of exit edges.
A clip thus allows us to capture a set of paths that share a similar control flow.

The notion of a clip is the basis for the notion of a context. A context of a given node
v is a clip where v does not occur more than once on any of the paths associated paths
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of the clip. This enables a context to be used to exactly pinpoint a particular occurrence
of a given node.

In Section 4.4, we have imposed Requirement 4.2, which demands that the associated
execution scenarios of a given node v must form a classification of all occurrences of v
in any end-to-end path through the CFG. Our plan is to use contexts as execution
scenarios, so we must make sure that the contexts we use for a given node v form such
a classification.

By definition, a classification must ensure that each element belongs to a class, and
that no element belongs to more than one class. In other words, the set of classes must
cover all elements, any two classes must not overlap. Since our contexts will act as
classes, we present appropriate notions of coverage and disjointness.

We first present the notion of flow coverage, which catches the idea of capturing all
possible control flows that a given node can be involved in. Then, we present the notion
of divergence, which captures the idea of two contexts representing disjoint execution
scenarios.

Next, we introduce the simple-history context of a node, which is a particularly simple
context. The simple-history context of a node can easily be constructed from the CFG,
covers the node, and can form the basis for a subsequent refinement with respect to the
control-flow history.

Refinement can be achieved by splitting the initial context into smaller and smaller
contexts. We conclude the section with the introduction of two important splitting
operations: vertical and horizontal context splitting.

In the following, we assume a fixed CFG

GP = (V,E, vstart, vend).

of given program P of interest. Moreover, we write U to denote the set of end-to-end
paths of GP , i.e.,

U = {v1 . . . vn | v1 = vstart, vn = vend, (vi, vi+1) ∈ E, 1 ≤ i < n, n ∈ N}.

A clip is a specification of a set of paths in the CFG, leading from a specific set of
entry edges to a specific set of exit edges:

Definition 4.2 (Clip). A clip S is a pair JA,BK consisting of a set A ⊆ E of edges
called entry edges, and a set B ⊆ E of edges called exit edges.

Semantically, a given clip captures a particular set of paths that share a similar
control flow, starting from any of its entry edges, and ending in any of its exit edges:

Definition 4.3 (Paths in a clip). The set paths(S) of paths in a clip S = JA,BK is the
set of all CFG paths that start with some entry edge in A, that end with some exit edge
in B, and that do not contain any further entry or exit edges in between, i.e.,

paths(S) = {v1 . . . vn | (v1, v2) ∈ A, (vn−1, vn) ∈ B,
(vi, vi+1) ∈ E \ (A ∪B), 1 < i < n− 1, n ≥ 3}.

Note, that this definition implies that each path in a clip must have at least two
edges (three nodes).
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NICETOHAVE: Figure

Example 4.2. Reconsider the CFG from Example 3.1. Consider the clip

S1 = J{(v1, v2)}, {(v3, v3), (v3, vend)}K.

The set of paths in S1 is

paths(S1) = {v1v2v3v3, v1v2v3vend}.

Note, that paths(S1) does not contain any longer paths, because the back edge of the
loop is an exit edge.

A context of a given node v ∈ V is a clip S, such that v may occur at most once
inside any path of S. By the inside of a path, we mean anything between its first and its
last node, but we do not include these border nodes themselves. The idea behind this
constraint is that a context of a node v should make it possible to exactly pinpoint a
specific occurrence of v.

Ideally, each path of S should contain exactly one occurrence of v inside of itself,
but requiring this would be too restrictive. We therefore allow paths with no occurrence
inside of itself, but note that any algorithm for constructing clips should try to minimize
such paths. Formally, we define:

Definition 4.4 (Context). A context C of a node v ∈ V is a clip, such that any path
v1 . . . vn in C contains at most one occurrence of v in its inner part v2 . . . vn−1, i.e.,

v1 . . . vn ∈ paths(C), vi = vj = v, 1 < i, j < n =⇒ i = j.

Example 4.3. Reconsider the CFG from Example 3.1. The clip S1 = JA1, B1K with

A1 = {(v3, v3)}, and B1 = {(v3, v3), (v3, vend)}

is a context of node v3, because none of the paths paths(S1) = {v3v3v3, v3v3vend} in S
contains more than one occurrence of v3 inside itself. The clip S2 = JA2, B2K with

A2 = {(v2, v3)}, and B2 = {(v3, vend)}

is not a context of v3, because the path v2v3v3vend ∈ paths(S2) contains two occurrences
of node v3 inside itself.

The notion of flow coverage catches the idea of capturing all possible control flows
that a given node can be involved in:

Definition 4.5 (Flow coverage). A set of paths X covers a node v ∈ V , iff, for all non-
empty paths ρ, σ with ρ ◦ v ◦ σ ∈ U , there are subpaths ρ1, σ2 and non-empty subpaths
ρ2, σ1, with ρ1 ◦ ρ2 = ρ and σ1 ◦ σ2 = σ, such that ρ2 ◦ v ◦ σ1 ∈ X.

Example 4.4. Reconsider the CFG from Example 3.1. We have

U = {vstartv1πvend, vstartv1v2πvend | π ∈ {v3}+}.
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The clip
S3 = J{(v1, v3), (v1, v2), (v3, v3)}, {(v3, v3), (v3, vend)}K

covers node v3. The clip

S4 = J{(v1, v3), (v1, v2)(v3, v3)}, {(v3, vend)}K

does not cover node v3.

The notion of divergence captures the idea of two contexts representing disjoint
execution scenarios. We first define divergence on individual paths, and then extend the
definition to sets of paths:

Definition 4.6 (Divergent paths). Two paths π and σ are divergent, iff π and σ do not
overlap on more than a single edge, and none is a subpath of the other, i.e., none of the
following apply:

• there exist paths α, β, γ with α ◦ β = π, β ◦ γ = σ, and |β| ≥ 2;

• there exist paths α, β, γ with α ◦ β = σ, β ◦ γ = π and |β| ≥ 2;

• σ is a subpath of π;

• π is a subpath of σ.

Theorem 4.2 (Divergence of paths in clip). Let S = JA,BK be a clip, and let π, ρ ∈
paths(S) be paths of S, with π 6= ρ. Then π and ρ are divergent.

Proof. Let S = JA,BK be a clip. Choose any two paths

π = u1 . . . un ∈ paths(S) and σ = w1 . . . wm ∈ paths(S), with π 6= σ.

Assume that paths π and σ are not divergent. There are four cases:

Case 1: There exist paths α, β, γ with α ◦ β = π, β ◦ γ = σ, and |β| ≥ 2. Since π 6= σ,
we have |α| ≥ 1 or |γ| ≥ 1 (or both). If |α| ≥ 1, then π contains some entry
edge (ui, ui+1) ∈ A, where 2 ≤ i ≤ n− 2. This contradicts the assumption that
π ∈ paths(S). If |γ| ≥ 1, then σ contains some exit edge (wi, wi+1) ∈ B, where
2 ≤ i ≤ m− 2. This contradicts the assumption that σ ∈ paths(S).

Case 2: There exist paths α, β, γ with α ◦ β = σ, β ◦ γ = π and |β| ≥ 2. This case is
symmetric to Case 1.

Case 3: Path σ is a subpath of π. Since σ 6= π, path σ must be a proper subpath of
π, hence π contains some edge (ui, ui+1) ∈ A ∪ B, where 2 ≤ i ≤ n− 2. This
contradicts the assumption that π ∈ paths(S).

Case 4: Path π is a subpath of σ. This case is symmetric to Case 3.

Definition 4.7 (Divergent sets). Two sets of paths X and Y are divergent, iff, for any
two paths π ∈ X and σ ∈ Y , π and σ are divergent.
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Example 4.5. Reconsider clip

S4 = J{(v1, v3), (v1, v2)(v3, v3)}, {(v3, vend)}K

from Example 4.4. The paths of clip S4 and the paths of clip

S5 = J{(v2, v3)}, {(v3, vend)}K

are not divergent, because the path v2v3vend ∈ paths(S5) is a subpath of the path
v1v2v3vend ∈ paths(S4). On the other hand, the paths of clip S4 and clip

S6 = J{(v1, v3), (v1, v2)(v3, v3)}, {(v3, v3)}K

are divergent.

The simple-history context of a node is a particularly simple context. The simple-
history context of a node can easily be constructed from the CFG, covers the node, and
can form the basis for a subsequent refinement with respect to the control-flow history.
We first define the simple-history clip of given node v ∈ V \{vstart, vend}, and then show
that it is a context that covers v:

Definition 4.8 (Simple history clip). Let v ∈ V \ {vstart, vend}, i.e., let v be a node that
is neither the start node, nor the end node. The simple-history clip of v is the clip

S = J(Q ∪B) ∩R,BK,

where Q is the set of all edges (vstart, q) ∈ E that start with the start node vstart; where B
is the set of all outgoing edges (v, b) ∈ E of v; where R is the set of all edges (w, y) ∈ E,
such that there is a path from r to v, i.e.,

Q = {(vstart, q) ∈ E}; B = {(v, b) ∈ E}; R = {(w, r) ∈ E | (r, v) ∈ E∗}.

Theorem 4.3 (Simple history context). Let v ∈ V \ {vstart, vend}, i.e., let v be a node
that is neither the start node, nor the end node. Let Q be the set of all edges (vstart, q) ∈ E
that start with the start node vstart. Let B be the set of all outgoing edges (v, b) ∈ E of
v. Let R be the set of all edges (w, y) ∈ E, such that there is a path from r to v, i.e.,

Q = {(vstart, q) ∈ E}; B = {(v, b) ∈ E}; R = {(w, r) ∈ E | (r, v) ∈ E∗}.

Then the simple-history clip S = J(Q ∪B) ∩R,BK is a context, and paths(S) covers v.

Proof. We first show that S is a context, and then show the coverage property:

1. We show that S is a context of node v. Consider any path π ∈ paths(S). Any
edge (v, b) with source node v is an exit edge of clip S. Therefore, π can contain
at most one more node after the first occurrence of v. Hence, π contains at most
one occurrence of v inside itself.

2. We show that S covers v. Consider any paths ρ, σ with ρ ◦ v ◦ σ ∈ U . Note that
path ρ starts with the start node vstart and that path σ ends with the end node
vend, which implies that paths ρ and σ are not empty.
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Case 1: Path ρ contains node v. Then choose paths τ1, τ2 with τ1 ◦ v ◦ τ2 = ρ,
such that τ2 does not contain node v. Path v ◦ τ2 ◦ v starts with an edge in
B ∩R, and path τ2 ◦ v contains no edge in Q ∪B, and path v ◦ σ starts with
an edge (v, b) ∈ B. Hence, path v ◦ τ2 ◦ v ◦ b is in paths(S), and there are
subpaths ρ1, σ2 with ρ1 ◦ v ◦ τ2 = ρ and b ◦ σ2 = σ.

Case 2: Path ρ does not contain node v. Then path ρ ◦ v starts with an edge in
Q ∩ R, path ρ ◦ v contains no edge in B, except for its first edge (v, b) ∈ B,
and path v ◦ σ starts with an edge (v, b) ∈ B ∪Q. Hence, path σ ◦ v ◦ b is in
paths(S), and there are subpaths ρ1, σ2 with ρ1 ◦ ρ = ρ and b ◦ σ2 = σ.

Example 4.6. Reconsider the CFG from Example 3.1. The clip

S = {(vstart, v1), (v3, v3)}, {(v3, v3), (v3, vend)}

is the simple-history context of node v3.

We can refine contexts by splitting them. A new set of contexts for a given node
v ∈ V \ {vstart, vend} can be obtained by recursive splitting some initial context C, for
example with the simple-history context. The used splitting operations should be flexible
enough to allow the splitting of a given context into suitable subcontexts. However, such
an operation should also preserve the coverage of the context it operates on: If the paths
of the original context cover node v, then the paths of the resulting subcontexts should,
together, cover v. Moreover, the resulting subcontexts should not overlap, i.e., their sets
of paths should diverge. Like this, recursive splitting of a suitable initial context will
produce a set of contexts that forms a suitable classification.

First, we consider vertical context splitting, which permits the isolation of a selected
sets of subpaths:

Definition 4.9 (Vertical context splitting). Let C = JA,BK be a context of node v ∈ V .
Let X be a set of edges (x1, x2) ∈ E\(A∪B), such that there exists an edge (a, u) ∈ A

with a path from node u to node x1 that contains only edges in E \ (A ∪ B), and such
that there exists an edge (w, b) ∈ B with a path from node x2 to node w that contains
only edges in E \ (A ∪B).

Let Y be the set of all edges (w, y) ∈ E, such that there exists an edge (a, u) ∈ A
with a path from node u to node w that contains only edges in E \ (A ∪B ∪X).

Let Z be the set of all edges (w, z) ∈ E, such that there exists an edge (x, u) ∈ X
with a path from node u to node w that contains only edges in E \ (A ∪B ∪X).

The application of vertical context splitting to context C produces two new contexts

C1 = JA, (B ∪X) ∩ Y K and C2 = JX, (B ∪X) ∩ ZK.

The fact that C1 and C2 are contexts is shown in the following theorem.

Theorem 4.4 (Vertical context splitting). Let C = JA,BK be a context of node v ∈ V .
Let X be a set of edges (x1, x2) ∈ E\(A∪B), such that there exists an edge (a, u) ∈ A

with a path from node u to node x1 that contains only edges in E \ (A ∪ B), and such
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that there exists an edge (w, b) ∈ B with a path from node x2 to node w that contains
only edges in E \ (A ∪B).

Let Y be the set of all edges (w, y) ∈ E, such that there exists an edge (a, u) ∈ A
with a path from node u to node w that contains only edges in E \ (A ∪B ∪X).

Let Z be the set of all edges (w, z) ∈ E, such that there exists an edge (x, u) ∈ X
with a path from node u to node w that contains only edges in E \ (A ∪B ∪X).

Then the following assertions hold:

1. C1 = JA, (B ∪X) ∩ Y K and C2 = JX, (B ∪X) ∩ ZK are contexts of v;

2. if paths(C) covers v, then paths(C1) ∪ paths(C2) covers v;

3. paths(C1) and paths(C2) are divergent.

Proof. First, we show that clips C1 and C2 are contexts of v. Next, we show that
paths(C1) ∪ paths(C2) covers v. Lastly, we show paths(C1) and paths(C1) are divergent.

1. We show that C1 and C2 are contexts of v. For every edge (x1, x2) ∈ X, there exists
an edge (a, u) ∈ A with a path from node u to node x1 that contains only edges
in E \ (A ∪ B) and an edge (w, b) ∈ B with a path from node x2 to node w that
contains only edges in E \ (A ∪ B). Therefore, every path in paths(JA,XK) is a
subpath of some path in paths(JA,BK), hence JA,XK is a context of v.
By a similar argument, every path in paths(JX,BK) is a subpath of some path in
paths(JA,BK), hence JX,BK is a context of v.
Lastly, every path in paths(JX,XK) is a subpath of some path in paths(JA,BK),
hence JX,XK is a context of v. We have

paths(JA, (B ∪X) ∩ Y K) ⊆ paths(JA,B ∪XK) ⊆ paths(JA,BK) ∪ paths(JA,XK);
paths(JX, (B ∪X) ∩ ZK) ⊆ paths(JX,B ∪XK) ⊆ paths(JX,BK) ∪ paths(JX,XK),

hence JA, (B ∪X) ∩ Y K) and JX, (B ∪X) ∩ ZK) are contexts of v.

2. We show that paths(C1)∪paths(C2) covers v. Choose any paths ρ, σ, with ρ◦v◦σ ∈
U . By our initial assumption, paths(C) covers v, i.e., there are subpaths ρ1, σ2
and non-empty subpaths ρ2, σ1, with ρ1 ◦ ρ2 = ρ and σ1 ◦ σ2 = σ, such that
ρ2 ◦ v ◦ σ1 ∈ paths(C). Moreover, there is some entry edge (a, u) ∈ A, some exit
edge (w, b) ∈ B, and paths α, β with a ◦ u ◦ α = ρ2 ◦ v and β ◦ w ◦ b = v ◦ σ1.
We are going to show, by construction, that there are always subpaths ρ′1, σ′2
and non-empty subpaths ρ′2, σ′1, with ρ′1 ◦ ρ′2 = ρ and σ′1 ◦ σ′2 = σ, such that
ρ′2 ◦ v ◦ σ′1 ∈ paths(C1) ∪ paths(C2).
Case 1: Path u◦α ◦ v ◦β ◦w does not contain any edge in X. Then u◦α ◦ v ◦β ◦w
contains only edges in E \ (A ∪ B ∪X), therefore edge (w, b) is in B ∩ Y . Hence,
choose ρ′2 = ρ2 and σ′1 = σ1. Path ρ′2 ◦ v ◦ σ′1 is in paths(C1).
Case 2: Path u ◦α ◦ v contains some edge in X, but path v ◦ β ◦w does not. Then
there is some edge (x1, x2) ∈ X and paths α1, α2, with α1 ◦ x1 ◦ x2 ◦α2 = u ◦α ◦ v,
such that path x2 ◦ α2 contains only edges in E \ X. Path x2 ◦ α2 ◦ β ◦ w then
contains only edges in E \ (A ∪ B ∪X), therefore edge (w, b) is in B ∩ Z. Hence,
choose ρ′2 ◦ v = x1 ◦ x2 ◦ α2 and σ′1 = β ◦ w ◦ b. Path ρ′2 ◦ v ◦ σ′1 is in paths(C2).

62



4.5. Contexts

Case 3: Path u◦α◦v does not contain any edge in X, but path v◦β◦w does. Then
there is some edge (y1, y2) ∈ X and paths β1, β2, with β1 ◦ y1 ◦ y2 ◦ β2 = v ◦ β ◦w,
such that path β1 ◦ y1 contains only edges in E \ X. Path u ◦ α ◦ β1 ◦ y1 then
contains only edges in E \ (A∪B ∪X), therefore edge (y1, y2) is in X ∩ Y . Hence,
choose ρ′2 = a ◦ u ◦ α and σ1 ◦ v = β1 ◦ y1 ◦ y2. Path ρ′2 ◦ v ◦ σ′1 is in paths(C1).
Case 4: Path u ◦ α ◦ v contains some edge in X, and so does path v ◦ β ◦w. Then
there is some edge (x1, x2) ∈ X and paths α1, α2, with α1 ◦ x1 ◦ x2 ◦α2 = u ◦α ◦ v,
such that path x2 ◦ α2 contains only edges in E \ X. Also, there is some edge
(y1, y2) ∈ X and paths β1, β2, with β1 ◦ y1 ◦ y2 ◦ β2 = v ◦ β ◦ w, such that path
β1 ◦ y1 contains only edges in E \ X. Now choose α3 with α3 ◦ v = x2 ◦ α2, and
choose β3 with v ◦ β3 = β2 ◦ y1. Path α3 ◦ v ◦ β3 then contains only edges in
E \ (A ∪B ∪X), therefore edge (y1, y2) is in X ∩ Z. Choose ρ′2 ◦ v = x1 ◦ x2 ◦ α2
and v ◦ σ′1 = β2 ◦ y1 ◦ y2. Path ρ′2 ◦ v ◦ σ′1 is in paths(C2).

3. We show that paths(C1) and paths(C2) are divergent.
Consider the paths

π = u1 . . . un ∈ paths(C1) and σ = w1 . . . wm ∈ paths(C2).

There are two cases how π and σ may overlap:

Case 1: π contains the first edge (w1, w2) ∈ X of σ. Since X ⊆ E \ (A ∪ B) and
(u1, u2) ∈ A, we therefore have (ui, ui+1) ∈ X, for some i with 2 ≤ i ≤ (n−1).
However, by the definition of Y , that means (un−1, un) /∈ Y , unless i = n− 1.
Hence, any occurrence of the first edge (w1, w2) of π must be on last edge
(un−1, un) of σ. Since π is a path of a context, it contains at least two edges—
an entry edge and an exit edge. Therefore, π cannot be a subpath of σ, and
there are no paths α, β, γ with α ◦ β = π, β ◦ γ = σ, and |β| ≥ 2.

Case 2: σ contains the first edge (u1, u2) ∈ A of π. Since X ⊆ E \ (A ∪ B) and
(w1, w2) ∈ X, we therefore have (wi, wi+1) ∈ A, for some i with 2 ≤ i ≤
(m− 1). However, by the definition of Z, that means (wm−1, um) /∈ Z, unless
i = m − 1. Hence, any occurrence of the first edge (u1, u2) of σ must be on
last edge (wm−1, wm) of π. Since σ is a path of a context, it contains at least
two edges—an entry edge and an exit edge. Therefore, σ cannot be a subpath
of π, and there are no paths α, β, γ with α ◦ β = σ, β ◦ γ = π, and |β| ≥ 2.

Example 4.7. Reconsider the simple-history context

Cv3 = S = {(vstart, v1), (v3, v3)}, {(v3, v3), (v3, vend)}

of node v3 from Example 4.6. There is a path from node v1 ∈ A to node v1 that contains
only edges in E \ {(vstart, v1), (v3, v3), (v3, vend)}, and there is a path from node v2 to
node v3 that contains only edges from E \ {(vstart, v1), (v3, v3), (v3, vend)}, so we may
choose

X = {(v1, v2)}.
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Hence, we have

E \ (A ∪B ∪X) = {(v1, v3), (v2, v3)};
Y = {(v1, v2), (v1, v3), (v3, v3), (v3, vend)};
Z = {(v2, v3), (v3, v3), (v3, vend)}.

Therefore, we obtain subcontexts

Cv3,1.0 = JA, (A ∪B ∪X) ∩ Y K = J{(vstart, v1), (v3, v3)}, {(v1, v2), (v3, v3), (v3, vend)}K;
Cv3,2.0 = JX, (A ∪B ∪X) ∩ ZK = J{(v1, v2)}, {(v3, v3), (v3, vend)}K.

Whereas vertical context splitting permits the isolation of a selected set of subpaths,
horizontal context splitting permits the isolation of a selected subset of paths:

Definition 4.10 (Horizontal context splitting). Let C = JA,BK be a context of node
v ∈ V , and let D be a partition of A. For each set D ∈ D, let ZD be the set of all edges
(u,w) ∈ E, such that there exists some edge (d, x) ∈ D with a path from node x to node
u that contains only edges in E \(A∪B). The application of horizontal context splitting
to context C produces the set of contexts {CD | D ∈ D} of v, where

CD = JD,B ∩ ZDK.

The fact that CD is a context of v, for any D ∈ D, is shown in the following theorem.

Theorem 4.5 (Horizontal context splitting). Let C = JA,BK be a context of node v ∈ V ,
and let D be a partition of A. For each set D ∈ D, let ZD be the set of all edges
(u,w) ∈ E, such that there exists some edge (d, x) ∈ D with a path from node x to node
u that contains only edges in E \ (A ∪ B). Then CD = JD,B ∩ ZDK is a context of v.
Moreover, the sets paths(CD1) and paths(CD2), are divergent, for any sets D1, D2 ∈ D
with D1 6= D2. Furthermore, if W ∪ paths(C) covers node v, for any set of paths W ,
then W ∪

⋃
D∈D paths(CD) covers node v.

Proof. First, we show that clip CD is a context of node v, for any D ∈ D. Next, we
show that W ∪

⋃
D∈D paths(CD) covers node v, if W ∪ paths(C) covers v, for any set of

paths W . Lastly, we show that paths(CD1) and paths(CD2) are divergent, for any sets
D1, D2 ∈ D with D1 6= D2.

1. We show that clip CD is a context of node v, for any D ∈ D. We have D ⊆ A,
because D is a partition of A, and B ∩ ZD ⊆ B. Therefore, paths(CD) is a subset
of paths(C).
Clip C is a context of node v, i.e., all paths in paths(C) contain at most one
occurrence of v. Since paths(CD) is a subset of paths(C), its paths also contain at
most one occurrence of v. It follows that CD is a context of v.

2. We show that W ∪
⋃
D∈D paths(CD) covers node v, if W ∪ paths(C) covers v, for

any set of paths W . Choose any non-empty paths ρ, σ, with ρ ◦ v ◦ σ ∈ U . By
assumption, W ∪ paths(C) covers v, i.e., there are subpaths ρ1, σ2 and non-empty
subpaths ρ2, σ1, with ρ1◦ρ2 = ρ and σ1◦σ2 = σ, such that ρ2◦v◦σ1 ∈W∪paths(C).
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If ρ2 ◦ v ◦ σ1 ∈W , then ρ2 ◦ v ◦ σ1 ∈W ∪
⋃
D∈D paths(CD), and we are done.

Otherwise, path ρ2 starts with some entry edge (a, x) ∈ A of context C, and since
D is a partition of A, there is some set D ∈ D, such that (a, x) ∈ D. Furthermore,
path σ1 ends with some exit edge (y, b) ∈ B of context C, and there are no further
occurrence of any edge from A∪B in ρ2 ◦v ◦σ1, therefore (y, b) is in B∩ZD, hence
ρ2 ◦ v ◦ σ1 ∈ paths(CD) ⊆W ∪

⋃
D∈D paths(CD).

3. We show that paths(CD1) and paths(CD2) are divergent, for any sets D1, D2 ∈ D
with D1 6= D2. Choose any path π ∈ paths(CD1), and any path σ ∈ paths(CD2).
Since D1 ∩D2 = ∅, paths π and σ must have a different entry edge.

Moreover, we have D1 ⊆ A and σ ∈ paths(C), therefore the entry edge of π can
only occur on the last edge of σ, hence π cannot be a subpath of σ, and there are
no paths α, β, γ with α ◦ β = π, β ◦ γ = σ, and |β| ≥ 2.

Likewise, we have D2 ⊆ A and π ∈ paths(C), therefore the entry edge of σ can
only occur on the last edge of π, hence σ cannot be a subpath of π, and there are
no paths α, β, γ with α ◦ β = σ, β ◦ γ = π, and |β| ≥ 2.

We conclude that CD1 and CD1 are divergent.

Example 4.8. Reconsider context

Cv3,1.0 = J{(vstart, v1), (v3, v3)}, {(v1, v2), (v3, v3), (v3, vend)}K

from Example 4.7. Choose the following partition of A:

D = {{(vstart, v1)}, {(v3, v3)}}.

We obtain the two new contexts of v3:

Cv3,1.1 = J{(vstart, v1)}, {(v1, v2), (v3, v3), (v3, vend)}K;
Cv3,1.2 = J{(v3, v3)}, {(v3, v3), (v3, vend)}K.

4.6 Context Constraints

A context of a given node v ∈ V is a clip S, such that v may occur at most once inside
any path of S. The idea behind this constraint is that a context of a node v should make
it possible to exactly pinpoint a specific occurrence of v. The next step then is to, in
turn, relate the occurrence of a given context C = JA,BK to the occurrence of its entry
edges A and its exit edges B. Both relations are established through linear constraints
that we will later translate to IPET constraints. To do all this, we must first formalize
the various notions of occurrence that we are referring about.

First, we define the notion of an occurrence of a node v ∈ V in a path. Also, we
define the notion of an occurrence of an edge e ∈ E in a path. Both of these notions are
rather straightforward formalizations of the natural concept of an occurrence.
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Next, we define the slightly more elaborate notion of a covered occurrence of a node
v ∈ V in a path, which is conceptually similar to the notion of an occurrence of a node
in a path, but only considers occurrences of v that occur inside a path of a given clip S.

The next step is to relate the occurrence of a given node v ∈ V to the occurrence of
its contexts, using linear constraints that we will later translate to IPET constraints.

As a last step, we relate the occurrences of a given context C = JA,BK to the
occurrence of its entry edge A and its exit edges B, using, again, linear constraints that
we will later translate IPET constraints.

For more convenience in the rest of our presentation, we first define the following
concatenation operator on paths and edges:

Definition 4.11 (Concatenation operator). The concatenation operator ◦ is defined
through the following equations:

v1 . . . vn ◦ v1 . . . vm = v1 . . . vnv1 . . . vm (concatenation of two paths)
v1 . . . vn ◦ (va, vb) = v1 . . . vnvavb (concatenation of path and edge)
(va, vb) ◦ v1 . . . vn = vavbv1 . . . vn (concatenation of edge and path)

(va, vb) ◦ (vc, vd) . . . vn = vavbvcvd (concatenation of two edges)

We define the set of occurrences of a node v ∈ V in a path as follows:

Definition 4.12 (Occurrences of a node). The set occ(v, π) of occurrences of a node
v ∈ V in a path π is defined as

occ(v, π) = {(ρ, σ) | ρ ◦ v ◦ σ = π}.

Example 4.9. Consider path π = vstartv1v3v3v3vend. We have

occ(v3, π) = {(vstartv1, v3v3vend), (vstartv1v3, v3vend), (vstartv1v3v3, vend)}.

Besides giving us an easy way to count the number of occurrences of a given node
in a given path, Definition 4.12 affords us the following equality, which is very useful in
situations where we need to refer to occurrences in different paths:

Theorem 4.6. Let v ∈ V be a node, and let X be a set of paths. Then

|
⋃
π∈X

occ(v, π)| =
∑
π∈X
|
⋃
occ(v, π)|.

Proof. Given Definition 4.12, we have occ(v, π) ∩ occ(v, σ) = ∅, for any paths π, σ with
π 6= σ. From this, the theorem follows easily.

Next, we provide our definition of an occurrence of an edge e ∈ E in a path:

Definition 4.13 (Occurrences of an edge). The set occ(e, π) of occurrences of an edge
e ∈ E in a path π is defined as

occ(e, π) = {(ρ, σ) | ρ ◦ e ◦ σ = π}.
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Example 4.10. Reconsider path π = vstartv1v3v3v3vend from Example 4.9. We have

occ((v3, v3), π) = {(vstartv1, v3vend), (vstartv1v3, vend)}).

As was the case with Definition 4.12, we have a useful equality:

Theorem 4.7. Let e ∈ E be an edge, and let X be a set of paths. Then

|
⋃
π∈X

occ(e, π)| =
∑
π∈X
|
⋃
occ(e, π)|.

Proof. Given Definition 4.13, we have occ(e, π) ∩ occ(e, σ) = ∅, for any paths π, σ with
π 6= σ. From this, the theorem follows easily.

Now we define the slightly more elaborate notion of a covered occurrence of a node
v ∈ V in a path. It is conceptually similar to the notion of an occurrence of a node in
a path, but only considers occurrences of v that occur inside a path of a given clip S.
Recall that by the inside of a path, we mean anything between its first and its ast node,
but we do not include these border nodes themselves:

Definition 4.14 (Covered occurrence of a node). Let S be a clip. The set occ(v, π,S)
of S-covered occurrences of a node v ∈ V in a path π is defined as

occ(v, π,S) = {(ρ1, ρ2, σ1, σ2) | ρ1◦ρ2◦v◦σ1◦σ2 = π, ρ2 6= ε, σ1 6= ε, ρ2◦v◦σ1 ∈ paths(S)}.

Example 4.11. Reconsider the contexts

Cv3,1.1 = J{(vstart, v1)}, {(v1, v2), (v3, v3), (v3, vend)}K;
Cv3,1.2 = J{(v3, v3)}, {(v3, v3), (v3, vend)}K

from Example 4.8. Moreover, reconsider path π = vstartv1v3v3v3vend from Example 4.10.
We have

occ(v3, π, Cv3,1.1) = {(ε, vstartv1v2, v3, v3vend)};
occ(v3, π, Cv3,1.2) = {(vstartv1v2, v3, v3, vend), (vstartv1v2v3, v3, vend, ε)}.

As was the case with Definitions 4.12 and 4.13, we have a useful equality:

Theorem 4.8. Let v ∈ V be a node, let X be a set of paths, and let S be a clip. Then

|
⋃
π∈X

occ(v, π,S)| =
∑
π∈X
|
⋃
occ(v, π,S)|.

Proof. Given Definition 4.14, we have occ(v, π,S) ∩ occ(v, σ,S) = ∅, for any paths π, σ
with π 6= σ. From this, the theorem follows easily.

The next step is to relate the occurrence of a given node v ∈ V to the occurrence of
its contexts, using linear constraints that we will later translate to IPET constraints:
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Theorem 4.9 (Relating nodes to context). Let C1, . . . , Cn be pairwise divergent contexts
of some node v ∈ V , such that

⋃
1≤i≤n paths(Ci) covers v. Then the following constraint

holds:
|occ(v, π)| =

∑
1≤i≤n

|occ(v, π, Ci)|, for all π ∈ U .

Proof. We separately show the ≤ and the ≥ part of the equality:

1. Since the contexts Ci are pairwise divergent, we have∑
1≤i≤n

|occ(v, π, Ci)| = |
⋃

1≤i≤n
occ(v, π, Ci)|, for all π ∈ U , for all π ∈ U .

Now, consider any path π ∈ U and any paths ρ, σ, with ρ ◦ v ◦ σ = π. Since⋃
1≤i≤n paths(Ci) covers node v, there is some index i with 1 ≤ i ≤ n, subpaths

ρ1, σ2, and non-empty subpaths ρ2, σ1 with ρ1 ◦ ρ2 = ρ and σ1 ◦ σ2 = σ, such that
ρ2 ◦ v ◦ σ1 ∈ paths(Ci).

Also, consider any paths ρ′, σ′, with ρ′◦v◦σ′ = π and (ρ, σ) 6= (ρ′, σ′). Again, since⋃
1≤i≤n paths(Ci) covers node v, there is some index i′ with 1 ≤ i′ ≤ n, subpaths

ρ′1, σ
′
2, and non-empty subpaths ρ′2, σ′1 with ρ′1 ◦ ρ′2 = ρ′ and σ′1 ◦ σ′2 = σ′, such

that ρ′2 ◦ v ◦ σ′1 ∈ paths(C′i). Since (ρ, σ) 6= (ρ′, σ′), we also have (ρ′1, ρ′2, σ′1, σ′2) 6=
(ρ1, ρ2, σ1, σ2).

We see that, for any two different elements (ρ, σ) and (ρ′, σ′) in occ(v, π), we get
different elements (ρ1, ρ2, σ1, σ2) and (ρ′1, ρ′2, σ′1, σ′2) in

⋃
1≤i≤n occ(v, π, Ci), hence

|occ(v, π)| ≤ |
⋃

1≤i≤n
occ(v, π, Ci)| =

∑
1≤i≤n

|occ(v, π, Ci)|, for all π ∈ U .

2. Since the contexts Ci are pairwise divergent, we have∑
1≤i≤n

|occ(v, π, Ci)| = |
⋃

1≤i≤n
occ(v, π, Ci)|, for all π ∈ U , for all π ∈ U .

Now, consider any path π ∈ U . Choose any paths ρ1, σ2 and any paths ρ2 6= ε, σ1 6=
ε, such that ρ1 ◦ρ2 = ρ, such that σ1 ◦σ2 = σ, and such that ρ2 ◦v ◦σ1 ∈ paths(Ci)
with 1 ≤ i ≤ n. Moreover, choose paths ρ′1, σ′2 and any paths ρ′2 6= ε, σ′1 6= ε, such
that ρ′1 ◦ ρ′2 = ρ′, such that σ′1 ◦ σ′2 = σ′, and such that ρ′2 ◦ v ◦ σ′1 ∈ paths(C′i) with
1 ≤ i′ ≤ n, and such that (ρ2, σ1) 6= (ρ′2, σ′1). There are two cases:

Case 1: i = j, i.e., paths ρ2 ◦ v ◦ σ1 and ρ′2 ◦ v ◦ σ′1 are in the same context. Then
they are divergent, by Theorem 4.2.

Case 2: i 6= j, i.e., paths ρ2 ◦ v ◦ σ1 and ρ′2 ◦ v ◦ σ′1 are in different contexts.
Then they are divergent, by the original assumption that all contexts Ci are
pairwise divergent.

In both cases, paths ρ2 ◦ v ◦ σ1 and ρ′2 ◦ v ◦ σ′1 are divergent. Therefore, we have
(σ1 ◦ σ2, ρ1 ◦ ρ2) 6= (σ′1 ◦ σ′2, ρ′1 ◦ ρ′2). We see that, for any two different elements
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(ρ2, σ1) and (ρ′2, σ′1) in
⋃

1≤i≤n occ(v, π, Ci), we get different elements (ρ1◦ρ2, σ1◦σ2)
and (ρ′1 ◦ ρ′2, σ′1 ◦ σ′2) in occ(v, π), hence

|occ(v, π)| ≥ |
⋃

1≤i≤n
occ(v, π, Ci)| =

∑
1≤i≤n

|occ(v, π, Ci)|, for all π ∈ U .

As a last step, we relate the occurrences of a given context C = JA,BK to the
occurrence of its entry edge A and its exit edges B, using, again, linear constraints that
we will later translate to IPET constraints:

Theorem 4.10 (Relating contexts to entries and exits). Let C = JA,BK be a context of
some node v ∈ V \ {vstart, vend} that is neither the start node, nor the end node.

Let X be the set of all edges (x, z) ∈ E, such that there exists an edge (a,w) ∈ A with
a path from node w to node x that contains only edges in E \ (A ∪ B), such that there
exists an edge (u, v) ∈ E \ (A∪B) with a path from node x to node u that contains only
edges in E \ (A∪B), and such there exists no path from node x to node v that contains
node z and only edges in E \ (A ∪B).

Let Y be the set of all edges (z, y) ∈ E, such that there exists an edge (w, b) ∈ B with
a path from node y to node w that contains only edges in E \ (A ∪ B), such that there
exists an edge (v, u) ∈ E \ (A∪B) with a path from node u to node y that contains only
edges in E \ (A ∪B), and such there exists no path from node v to node y that contains
node z and only edges in E \ (A ∪B).

Then the following constraints hold for every path π ∈ paths(C):

|occ(v, π, C)| ≤
∑
a∈A
|occ(a, π)| −

∑
x∈X
|occ(x, π)|;

|occ(v, π, C)| ≤
∑
b∈B
|occ(b, π)| −

∑
y∈Y
|occ(y, π)|.

Proof. We give a proof for the first inequality only. The proof for the second inequality
is completely symmetric.

By the definition of occ and by the observation that

occ(w, π) ∩ occ(w′, π) = ∅, for all w,w′ ∈ V,w 6= w′, π ∈ U ,

we have ∑
a∈A
|occ(a, π)| = |{(ρ, σ) | ρ ◦ a ◦ σ = π, a ∈ A}|;

∑
x∈X
|occ(x, π)| = |{(ρ′, σ′) | ρ′ ◦ x ◦ σ′ = π, x ∈ X}|.

If we consider the definition of X, we see that ρ′ must contain an occurrence of some
edge a ∈ A, such that there is no subsequent occurrence of any edge y ∈ A ∪ B in ρ′,
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i.e., we have

{(ρ′, σ′) | ρ′ ◦ x ◦ σ′ = π, x ∈ X} = {(ρ′, σ′) | ρ′ ◦ x ◦ σ′ = π, ρ ◦ a ◦ τ = ρ′, a ∈ A,
x ∈ X, 6 ∃(y ∈ A ∪B, τ1, τ2) : τ1 ◦ y ◦ τ2 = τ}.

We are merely interested in the number of elements in the latter set, not in the
elements themselves. This allows us to make use of the following equality:

|{(ρ′, σ′) | ρ′ ◦ x ◦ σ′ = π, ρ ◦ a ◦ τ = ρ′, a ∈ A,
x ∈ X, 6 ∃(y ∈ A ∪B, τ1, τ2) : τ1 ◦ y ◦ τ2 = τ}|

= |{(ρ, σ) | ρ ◦ a ◦ σ = π, τ ◦ x ◦ σ′ = σ, a ∈ A,
x ∈ X, 6 ∃(y ∈ A ∪B, τ1, τ2) : τ1 ◦ y ◦ τ2 = τ}|.

Since

{(ρ, σ) | ρ ◦ a ◦ σ = π, τ ◦ x ◦ σ′ = σ, a ∈ A,
x ∈ X, 6 ∃(y ∈ A ∪B, τ1, τ2) : τ1 ◦ y ◦ τ2 = τ}

is a subset of
{(ρ, σ) | ρ ◦ a ◦ σ = π, a ∈ A},

we have∑
a∈A
|occ(a, π)| −

∑
x∈X
|occ(x, π)| = |{(ρ, σ) | ρ ◦ a ◦ σ = π, a ∈ A}\

{(ρ, σ) | ρ ◦ a ◦ σ = π, τ ◦ x ◦ σ′ = σ, a ∈ A,
x ∈ X, 6 ∃(y ∈ A ∪B, τ1, τ2) : τ1 ◦ y ◦ τ2 = τ}|

Expansion of the set subtraction yields∑
a∈A
|occ(a, π)| −

∑
x∈X
|occ(x, π)| = |{(ρ, σ) | ρ ◦ a ◦ σ = π, a ∈ A,

6∃(x ∈ X, y ∈ A ∪B, τ1, τ2, σ
′) :

τ1 ◦ y ◦ τ2 ◦ x ◦ σ′ = σ}|.

Now, choose any element from occ(v, π, JA,BK), i.e., choose any paths ρ1, σ2, and any
paths ρ2 6= ε, σ1 6= ε, with ρ1 ◦ ρ2 ◦ v ◦σ1 ◦σ2 = π, and where ρ2 ◦ v ◦σ1 ∈ paths(JA,BK).
By the definition of a context, path ρ2 must start with an entry edge a ∈ A, must end
with an exit edge b ∈ B, and cannot contain any further occurrences of any edge in A∪B.
Moreover, path ρ2 ◦ v ◦ σ1 cannot contain any edge x ∈ X. Therefore, (ρ1 ◦ ρ2, σ1 ◦ σ2)
is an element of

{(ρ, σ) | ρ ◦ a ◦ σ = π, a ∈ A,
6 ∃(x ∈ X, y ∈ A ∪B, τ1, τ2, σ

′) : τ1 ◦ y ◦ τ2 ◦ x ◦ σ′ = σ}.

Next, choose another element from occ(v, π, JA,BK), i.e., choose paths ρ′1, σ′2, and
any paths ρ′2 6= ε, σ′1 6= ε, with ρ′1◦ρ′2◦v◦σ′1◦σ′2 = π, and where ρ′2◦v◦σ′1 ∈ paths(JA,BK),
with (ρ′1, ρ′2, σ′1, σ′2) 6= (ρ1, ρ2, σ1, σ2). By the definition of a context, path ρ′2 must start
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with an entry edge a ∈ A, must end with an exit edge b ∈ B, and cannot contain any
further occurrences of any edge in A∪B. Moreover, path ρ′2 ◦ v ◦ σ′1 cannot contain any
edge x ∈ X. Therefore, (ρ′1 ◦ ρ′2, σ′1 ◦ σ′2) is an element of

{(ρ, σ) | ρ ◦ a ◦ σ = π, a ∈ A,
6 ∃(x ∈ X, y ∈ A ∪B, τ1, τ2, σ

′) : τ1 ◦ y ◦ τ2 ◦ x ◦ σ′ = σ}.

By Theorem 4.2, the paths ρ′2 ◦ v ◦ σ′1 and ρ2 ◦ v ◦ σ1 are divergent, and therefore we
have (ρ1 ◦ ρ2, σ1 ◦ σ2) 6= (ρ′1 ◦ ρ′2, σ′1 ◦ σ′2). We see that, for any two different elements
(ρ1, ρ2, σ1, σ2) and (ρ′1, ρ′2, σ′1, σ′2) from occ(v, π, C), we get different elements (ρ1 ◦ρ2, σ1 ◦
σ2) and (ρ′1 ◦ ρ′2, σ′1 ◦ σ′2) in

{(ρ, σ) | ρ ◦ a ◦ σ = π, a ∈ A,
6 ∃(x ∈ X, y ∈ A ∪B, τ1, τ2, σ

′) : τ1 ◦ y ◦ τ2 ◦ x ◦ σ′ = σ},

hence
|occ(v, π, C)| ≤

∑
a∈A
|occ(a, π)| −

∑
x∈X
|occ(x, π)|.

Example 4.12. Reconsider contexts

Cv3,1.0 = J{(vstart, v1), (v3, v3)}, {(v1, v2), (v3, v3), (v3, vend)}K;
Cv3,2.0 = J{(v1, v2)}, {(v3, v3), (v3, vend)}K;
Cv3,1.1 = J{(vstart, v1)}, {(v1, v2), (v3, v3), (v3, vend)}K;
Cv3,1.2 = J{(v3, v3)}, {(v3, v3), (v3, vend)}K.

of node v3 from Examples 4.7 and 4.8. First, consider context Cv3,1.0. We have

X = {(v1, v2)} and Y = ∅,

which yields the following constraints:

|occ(v3, π, Cv3,1.0)| ≤ |occ((vstart, v1), π)|+ |occ((v3, v3), π)| − |occ((v1, v2), π)|;
|occ(v3, π, Cv3,1.0)| ≤ |occ((v3, v3), π)|+ |occ((v3, vend), π)|.

For context Cv3,2.0, we have
X = ∅ and Y = ∅,

which yields the following constraints:

|occ(v3, π, Cv3,2.0)| ≤ |occ((v1, v2), π)|;
|occ(v3, π, Cv3,2.0)| ≤ |occ((v3, v3)), π)|+ |occ((v3, vend), π)|.

For context Cv3,1.1, we have

X = {(v1, v2)} and Y = ∅,
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which yields the following constraints:

|occ(v3, π, Cv3,1.1)| ≤ |occ((vstart, v1), π)| − |occ((v1, v2), π)|;
|occ(v3, π, Cv3,1.1)| ≤ |occ((v3, v3), π)|+ |occ((v3, vend), π)|.

For context Cv3,1.2, we have

X = ∅ and Y = ∅,

which yields the following constraints:

|occ(v3, π, Cv3,1.2)| ≤ |occ((v3, v3), π)|;
|occ(v3, π, Cv3,1.2)| ≤ |occ((v3, v3), π)|+ |occ((v3, vend), π)|.

4.7 Timed Traces and Clips

In this section we describe how the observed execution times of a given node v ∈ V—
obtained from measurements—can be assigned to individual contexts of v.

We assume that measurements are provided as timed traces. An individual timed
trace indicates the execution sequence of nodes during a particular run of the software
on the target platform, as well as the observed execution duration for each occurrence
of each node in the sequence. Formally, we define a timed trace as follows:

Definition 4.15 (Timed trace). A timed trace of a program P is a finite se-
quence π = (v1, t1) . . . (vn, tn), where v1 . . . vn is a path in the program’s CFG GP =
(V,E, vstart, vend), and where t1, . . . , tn are the associated observed execution times of
v1, . . . , vn.

The maximal observed execution time (MOET) of a given node v ∈ V within a timed
trace π is the maximal execution time that is associated with any occurrence of v inside
π. Recall that by the inside of a path, we mean anything between the first and the last
node, but we do not include the border nodes themselves. Formally, we define:

Definition 4.16 (MOET of node in timed trace). The maximal observed execution time
(MOET) moetv,π of a node v ∈ V inside a timed trace π is defined as the maximum over
all associated execution times of v occurring inside π, i.e.,

moetv,π = max{ti | π = (v1, t1) . . . (vn, tn), vi = v, 1 < i < n}.

Note that moetv,π is undefined, if π does not contain any occurrence of v.

Example 4.13. Consider the timed traces

π1 = (vstart, 0)(v1, 40)(v3, 20)(vend, 0); π2 = (v3, 5)(v3, 4)(v3, 4)(v3, 4);
π3 = (vstart, 0)(v1, 40)(v3, 25)(vend, 0); π4 = (vstart, 0)(v1, 40)(v2, 20);
π5 = (vstart, 0)(v1, 40)(v3, 30)(v3, 20)(vend, 0); π6 = (v3, 5);
π7 = (vstart, 0)(v1, 45)(v2, 15)(v3, 10)(vend, 0).
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The MOETs of node v3 are as follows:

moetv3,π1 = 20; moetv3,π2 = 4;
moetv3,π3 = 25; moetv3,π4 undefined;
moetv3,π5 = 30; moetv3,π6 undefined;
moetv3,π7 = 10.

The notion of a MOET of a node in a path can easily be lifted to sets of timed traces:

Definition 4.17 (MOET of node in set of traces). The maximal observed execution
time (MOET) moetv,T of a node v ∈ V over a set of timed traces T is defined as the
maximum of all maximal observed execution times of v ∈ V in any timed trace π ∈ T ,
i.e.,

moetv,T = max{moetv,π | π ∈ T }.

Note that moetv,T is undefined, if none of the timed traces in T contains an occur-
rence of v.

Example 4.14. Reconsider the timed traces π1, . . . , n7 from Example 4.13. The MOET
of node v3 over the set T = {π1, . . . , π7} of timed traces is

moetv3,T = 30.

Definition 4.18 (Untimed trace). The corresponding untimed trace π of a timed trace
π = (v1, t1) . . . (vn, tn) is the sequence of nodes occurring in π, i.e.,

π = v1 . . . vn.

Example 4.15. Reconsider the times traces π1, . . . , π7 from Example 4.13. The corre-
sponding untimed traces are

π1 = vstartv1v3vend; π2 = v3v3v3v3;
π3 = vstartv1v3vend; π4 = vstartv1v2;
π5 = vstartv1v3v3vend; π6 = v3;
π7 = vstartv1v2v3vend.

Definition 4.19 (MOET of node in clip). The maximal observed execution time
(MOET) moetv,S,T of a node v ∈ V in clip S over a set of timed traces T is the
MOET of v over the set of all timed subtraces in T with corresponding untimed traces
that are paths in S, i.e.,

moetv,S,T = max{moetv,π | π ∈ paths(S), σ ◦ π ◦ ρ ∈ T }.

Note that moetv,S,T is undefined, if none of the timed traces in T contains an oc-
currence of v, or if none of the timed traces in T that contain an occurrence of v has a
corresponding untimed trace that is a path in clip S.

Example 4.16. Recall that a context C of a node v is just a clip with an additional
constraint on the number of times that v is allowed to occur within the paths of C. So
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reconsider contexts

Cv3,1.0 = J{(vstart, v1), (v3, v3)}, {(v1, v2), (v3, v3), (v3, vend)}K;
Cv3,2.0 = J{(v1, v2)}, {(v3, v3), (v3, vend)}K;
Cv3,1.1 = J{(vstart, v1)}, {(v1, v2), (v3, v3), (v3, vend)}K;
Cv3,1.2 = J{(v3, v3)}, {(v3, v3), (v3, vend)}K

of node v3 from Examples 4.7 and 4.8. Also reconsider the timed traces π1, . . . , π7
from Example 4.13. The MOETs of node v3 within these contexts over the set T =
{π1, . . . , π7} of timed traces are

moetv3,Cv3,1.0,T = 30;
moetv3,Cv3,2.0,T = 10;
moetv3,Cv3,1.1,T = 30;
moetv3,Cv3,1.2,T = 4.

Theorem 4.11 (MOET reduction). Let S be a clip, and let T be a set of timed traces.
Then

moetv,S,T ≤ moetv,T .

Proof. It is easy to see that {moetv,π | π ∈ paths(S), σ ◦π ◦ρ ∈ T } ⊆ {moetv,π | π ∈ T }.
Hence the property follows immediately.

4.8 Finding Contexts for MBTA

In this section, we describe an algorithm for obtaining, for any given node v ∈ V \
{vstart, vend}, a set {Cv,1, . . . Cv,n(v)} of contexts of v, with pairwise divergent sets of
paths that together cover v. Moreover, the contexts are constructed in such a way that
they are associated with different maximal observed execution times.

To construct a suitable set of contexts for some node v ∈ V \ {vstart, vend}, the
algorithm tests the MOET moetv,C,T of v in various candidate contexts C, over the
provided set T of timed traces.

However, we have noted before that moetv,C,T needs not be defined under all circum-
stances: More precisely, moetv,C,T is undefined, if none of the timed traces in T contains
an occurrence of v, or if none of the timed traces in T that contain an occurrence of v
has a corresponding untimed trace that is a path in context C.

In MBTA the set T of timed traces is obtained by performing measurements. In
that case, moetv,C,T is undefined, if node v was not reached by any measurement, or if
none of the paths in C was exhibited by any measurement.

There are two basic strategies for handling such cases of missing measurements:

Conservative approach: In this approach, the algorithm by default attributes missing
measurements to insufficient coverage of the temporal behavior. It assumes that
suitable timed traces can, in principle, be found, and conservatively substitutes
the global MOET moetv,T for moetv,S,T .
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Progressive approach: In this approach, the algorithm by default attributes missing
measurements to infeasible paths. It assumes that suitable timed traces can, in
principle, not be found, substitutes 0 for moetv,S,T , and stipulates that the corre-
sponding clip is infeasible.

To simplify the presentation of the algorithm, we assume that moetv,S,T is always
defined, i.e., there is always at least one matching measurement. The handling of miss-
ing measurements does not provide additional insight into the fundamental idea of the
algorithm.

Algorithm 4.1 Find a set of contexts.
Require: CFG GP = (V,E, vstart, vend), node v ∈ V \ {vstart, vend}, timed traces T

find cut edges
Q← {(vstart, q) ∈ E} all outgoing edges of node vstart
B ← {(v, b) ∈ E} all outgoing edges of node v
R← {(w, r) ∈ E | (r, v) ∈ E∗} all edges that reach node v
A← (Q ∪B) ∩R JA,BK is simple-history context of node v
X ← ∅
for (u,w) ∈ E do
Ou ← {(u, x) ∈ E} all outgoing edges of node u
if moetv,J{(u,w)},BK,T ≤ moetv,JOu,BK,T then
X ← X ∪ {(u,w)} collect cut edge

end if
end for

vertical context split
Y ← {(u,w) ∈ E | (x, y) ∈ A, (y, u) ∈ (E \ (A ∪B ∪X))∗} restr. reachable from A
Z ← {(u,w) ∈ E | (x, y) ∈ X, (y, u) ∈ (E \ (A ∪B ∪X))∗} restr. reachable from X
A1 ← A, B1 ← (B ∪X) ∩ Y , Cv,1 ← JA1, B1K first context from split
A2 ← X, B2 ← (B ∪X) ∩ Z, Cv,2 ← JA2, B2K second context from split

horizontal context split
M ← ∅
for i ∈ {1, 2} do
∼i= {(x, y) | moetv,J{x},BiK,T = moetv,J{y},BiK,T , x, y ∈ Ai} MOET-equivalence
D ← A/ ∼i factor entry edges by MOET-equivalence
for D ∈ D do
ZD ← {(u,w) | (d, x) ∈ D, (x, u) ∈ (E \ (Ai ∪Bi))∗} restr. reachable from D
M ←M ∪ {JD,Bi ∩ ZDK} collect context

end for
end for
return M a set of suitable contexts

The following is a rather informal description of how our algorithm works. A more
precise formulation is given as Algorithm 4.1. Our algorithm proceeds as follows:

1. The algorithm initially finds the set Q all edges (vstart, q) ∈ E, the set B of all
edges (v, b) ∈ E, and the set R of all edges (w, r) ∈ E, such that there is a path
from r to v. Set R can easily be found by performing a backward depth-first
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4. Reducing Pessimism

search, starting from node v. Sets Q and B can be found from an adjacency list
or adjacency matrix of the CFG.

2. Let A = (Q ∪B) ∩R. Note that C = JA,BK is the simple-history context of v.

3. For each edge (u,w) ∈ E, the algorithm checks the condition

moetv,J{(u,w)},BK,T ≤ moetv,JOu,BK,T ,

where Ou = {(u, x) ∈ E} is the set of all outgoing edges of node u. The condition is
a test if context J{(u,w)}, BK of v—which has edge (u,w) as its only entry edge—
provides a lower MOET for node v than context (Ou, BK of v—which has all edges
starting from node u as entry edges. If this is true, then the context J{(u,w)}, BK
captures a potential special case of executing v with a reduced execution time. Let
X be the set of all edges (u,w) ∈ E for which the condition holds. It is therefore
reasonable to consider JX,BK as a separate context of v.

4. The next step of the algorithm is a vertical context split: The algorithm finds the
set Y of all edges (u,w) ∈ E such that there exists a path from some edge in A
to node u that contains only edges in E \ (A ∪ B ∪X). It also finds the set Z of
all edges (u,w) such that there exists a path from some edge in X to node u that
contains only edges in E \ (A ∪B ∪X). Let A1 = A, B1 = (B ∪X) ∩ Y , A2 = X,
and B2 = (B ∪X)∩Z. Note that Cv,1 = JA1, B1K and Cv,2 = JA2, B2K are contexts
with paths(Cv,1) ∩ paths(Cv,2) = ∅ of v that cover node v.

5. The final step of the algorithm is a horizontal split of context Cv,i, for i ∈ {1, 2}:
In this step the algorithm creates a partition Di of set Ai by the MOET of node
v, i.e., Di = Ai/ ∼i, where ∼i is the following equivalence relation:

x ∼i y iff moetv,J{x},BiK,T = moetv,J{y},BiK,T for all x, y ∈ Ai.

For each set D ∈ Di, the algorithm finds the set ZD of all edges (u,w) ∈ E, such
that there exists a path from some edge in D to node u that contains only edges
in E \ (Ai ∪Bi).

6. The set of suitable contexts produced by the algorithm is

M = {JD,B1 ∩ ZDK | D ∈ D1} ∪ {JD,B2 ∩ ZDK | D ∈ D2}.

Example 4.17. Reconsider CFG G from Example 3.1. Also, reconsider the timed traces

π1 = (vstart, 0)(v1, 40)(v3, 20)(vend, 0); π2 = (v3, 5)(v3, 4)(v3, 4)(v3, 4);
π3 = (vstart, 0)(v1, 40)(v3, 25)(vend, 0); π4 = (vstart, 0)(v1, 40)(v2, 20);
π5 = (vstart, 0)(v1, 40)(v3, 30)(v3, 20)(vend, 0); π6 = (v3, 5);
π7 = (vstart, 0)(v1, 45)(v2, 15)(v3, 10)(vend, 0)

from Example 4.13. We apply Algorithm 4.1 on CFG G, node v3, and the set of timed
traces T = {π1, . . . , π7}:
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1. The algorithm initially finds

Q = {(vstart, v1)};
B = {(v3, v3), (v3, vend)};
R = {(vstart, v1), (v1, v2), (v1, v3), (v2, v3), (v3, v3)}.

2. The algorithm sets

A = (Q ∪B) ∩R = {(vstart, v1), (v3, v3)},

The clip Cv3 = JA,BK is indeed the simple-history context of v3.

3. The algorithm finds

moetv3,J{(v1,v2)},BK = 10 ≤ moetv3,J{(v1,v2),(v1,v3)},BK = 30;

X = {(v1, v2)}.

4. The Algorithm performs a vertical context split along X:

Y = {(v1, v2), (v1, v3), (v3, v3), (v3, vend)};
Z = {(v2, v3), (v3, v3), (v3, vend)};
A1 = A = {(vstart, v1), (v3, v3)};
B1 = (B ∪X) ∩ Y = {(v1, v2), (v3, v3), (v3, vend)};
A2 = X = {(v1, v2)};
B2 = (B ∪X) ∩ Z = {(v3, v3), (v3, vend)}.
Cv,1 = JA1, B1K
Cv,2 = JA2, B2K

5. The algorithm finds

moetv3,J{(vstart,v1)},B1K = 30 6= moetv3,J{(v3,v3)},B2K = 4;

D1 = {{(vstart, v1)}, {(v3, v3)}};
D2 = {{(v1, v2)}};

Z{(vstart,v1)} = {(v1, v2), (v1, v3), (v3, v3), (v3, vend)};
Z{(v3,v3)} = {(v3, v3), (v3, vend)};
Z{(v1,v2)} = {(v2, v3), (v3, v3), (v3, vend)};
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6. The algorithm produces the set of contexts

M = {J{(vstart, v1)}, B1 ∩ Z{(vstart,v1)}K,

J{(v3, v3)}, B1 ∩ Z{(v3,v3)}K,

J{(v1, v2)}, B2 ∩ Z{(v1,v2)}K}
= {J{(vstart, v1)}, {(v1, v2), (v3, v3), (v3, vend)}K,

J{(v3, v3)}, {(v3, v3), (v3, vend)}K,
J{(v1, v2)}, {(v3, v3), (v3, vend)}K}.

Theorem 4.12. Given a CFG GP = (V,E, vstart, vend), a node v ∈ V \ {vstart, vend},
and a set of timed traces T , Algorithm 4.1 returns a set of contexts M = {Cv,1, . . . , Cv,n}
of node v, such that paths(Cv,i) and paths(Cv,j) are divergent, for 1 ≤ i ≤ n, 1 ≤ j ≤ n,
and i 6= j, and such that

⋃
1≤i≤n paths(Cv,i) covers node v.

Proof. The algorithm starts by constructing the simple-history context JA,BK of node
v. By Theorem 4.3, paths(JA,BK) covers node v. Next, it obtains contexts JA1, B1K and
JA1, B1K of node v, by performing a vertical split of context JA,BK. By Theorem 4.4,
paths(JA1, B1K)∪paths(JA2, B2K) covers node v, and JA1, B1K and JA2, B2K are divergent.
The algorithm then performs a horizontal split of contexts JA1, B1K and JA2, B2K, thus
obtaining contexts

M1 = {JD,B1 ∩ ZDK | D ∈ D1}, and
M2 = {JD,B2 ∩ ZDK | D ∈ D2}.

By Theorem 4.5,
paths(JA1, B1K) ∪

⋃
D∈D2

paths(JD,B2 ∩ ZDK)

covers node v. Again, by Theorem 4.5,⋃
D∈D1

paths(JD,B1 ∩ ZDK) ∪
⋃

D∈D2

paths(JD,B1 ∩ ZDK)

=
⋃

D∈D1∪D2

paths(JD,B1 ∩ ZDK)

covers node v.
By Theorem 4.5, paths(JD,B1 ∩ ZDK) and paths(JD′, B1 ∩ ZD′K) are divergent, for

D,D′ ∈ D1, with D 6= D′. Also, paths(JD,B2 ∩ ZDK) and paths(JD′, B2 ∩ ZD′K) are
divergent, for D,D′ ∈ D2, with D 6= D′.

Now choose any D ∈ D1 and D′ ∈ D2. Since the contexts JA1, B1K and JA2, B2K are
divergent, and since

paths(JD,B1 ∩ ZDK) ⊆ JA1, B1K, and
paths(JD′, B2 ∩ ZD′K) ⊆ JA2, B2K,

it follows that paths(JD,B1 ∩ ZDK) and paths(JD′, B2 ∩ ZD′K) are also divergent.
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4.9 Instantiating Context-Sensitive IPET
We are now able to put the results from Sections 4.5 through 4.8 together, to obtain an
instantiation of context-sensitive IPET:

1. We use Algorithm 4.1 to generate a set Qv = {Cv,1, . . . Cv,n(v)} of suitable con-
texts, for every node v ∈ V \ {vstart, vend}. By way of Theorem 4.12, paths(Cv,i)
and paths(Cv,j) are divergent, for 1 ≤ i ≤ n(v), 1 ≤ j ≤ n(n), and i 6= j, and⋃

1≤i≤n(v) paths(Cv,i) covers node v. Therefore, Theorem 4.9 applies, hence Re-
quirement 4.2 is met.

2. For each node v ∈ V \ {vstart, vend}, we interpret the individual contexts
Cv,1, . . . Cv,n(v) as individual execution scenarios Ev,1, . . . Ev,n(v).

3. We use the MOETs moetv,Cv,1,T , . . . ,moetv,Cv,n(v),T of each context as WCET es-
timates w̃cetv,1, . . . , w̃cetv,n(v).

4. We use the construction in Theorem 4.10 to infer ILP constraints over our execu-
tion scenario variables. The translation of the linear constraints presented in the
theorem is straightforward: For example, the linear constraint

|occ(v, π, C)| ≤
∑
e∈A
|occ(e, π)| −

∑
e∈X
|occ(e, π)|, for every path π ∈ paths(C)

translates to a corresponding IPET constraint

fv,i ≤
∑
e∈A

fe −
∑
e∈X

fe.

By adding these constraints, we fulfill Requirement 4.3. Moreover, Requirement 4.1
is fulfilled as a consequence of Theorem 4.11.

Example 4.18. Reconsider CFG G from Example 3.1. Example 3.2 provides an IPET
problem for G, constructed for some hypothetical WCET estimates of the individual
nodes. We can reuse the constraints from that IPET problem to construct a context-
sensitive IPET problem for the timed trace T = {π1, . . . , π7} from Example 3.1.

1. The latter example has already illustrated the application of Algorithm 4.1, to
obtain a set

M = {Cv3,1.1, Cv3,1.2, Cv3,2.0}

of suitable contexts for node v3, where

Cv3,1.1 = J{(vstart, v1)}, {(v1, v2), (v3, v3), (v3, vend)}K;
Cv3,1.2 = J{(v3, v3)}, {(v3, v3), (v3, vend)}K;
Cv3,2.0 = J{(v1, v2)}, {(v3, v3), (v3, vend)}K.

2. We interpret the individual contexts Cv3,1.1, Cv3,1.2, Cv3,2.0 as individual execution
scenarios Ev3,1, Ev3,2, Ev3,3 with associated variables fv3,1, fv3,2, fv3,3.
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3. We use the MOETs

moetv3,Cv3,1.1,T = 30;
moetv3,Cv3,1.2,T = 4;
moetv3,Cv3,2.0,T = 10.

of contexts Cv3,1.1, Cv3,1.2, Cv3,2.0—which we have calculated in Example 4.13—as
WCET estimates w̃cetv3,1, w̃cetv3,2, w̃cetv3,3.

4. We use the construction in Theorem 4.10 to infer the IPET constraints. We have
already calculated the linear constraints

|occ(v3, π, Cv3,1.1)| ≤ |occ((vstart, v1), π)| − |occ((v1, v2), π)|;
|occ(v3, π, Cv3,1.1)| ≤ |occ((v3, v3), π)|+ |occ((v3, vend), π)|;
|occ(v3, π, Cv3,1.2)| ≤ |occ((v3, v3), π)|;
|occ(v3, π, Cv3,1.2)| ≤ |occ((v3, v3), π)|+ |occ((v3, vend), π)|;
|occ(v3, π, Cv3,2.0)| ≤ |occ((v1, v2), π)|;
|occ(v3, π, Cv3,2.0)| ≤ |occ((v3, v3), π)|+ |occ((v3, vend), π)|.

in Example 4.12. These translate to corresponding IPET constraints

fv3,1 ≤ f(vstart,v1) − f(v1,v2);
fv3,1 ≤ f(v3,v3) + f(v3,vend);
fv3,2 ≤ f(v3,v3);
fv3,2 ≤ f(v3,v3) + f(v3,vend);
fv3,3 ≤ f(v1,v2);
fv3,3 ≤ f(v3,v3) + f(v3,vend).

4.10 Chapter Summary

In this chapter, we have developed a method for reducing pessimism in MBTA.
We have presented context-sensitive IPET as a method for reducing pessimism in

MBTA. The method is an extension of standard IPET. Unlike standard IPET, context-
sensitive IPET does not rely on a single, constant WCET estimate of each program
part, but allows for multiple execution scenarios of each program part, with different
associated WCET estimates.

Context-sensitive IPET is a generic estimate-calculation method. To be applied,
it must be instantiated. We have presented such an instantiation, which relies on the
notion of a context.

A context of a given node in a CFG is a collection of structurally similar paths in
a CFG, with an additional constraint on the number of times that the given node may
appear on any path of the context. For a given node, it is possible to choose a set of
contexts that forms a classification of the execution times of that node. Such a set of
contexts can then be used as execution scenarios in context-sensitive IPET.
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4.10. Chapter Summary

We have developed a formal framework for working with contexts. Furthermore,
we have presented an algorithm for finding suitable context sets, and demonstrated its
correctness.
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CHAPTER 5
Reducing Optimism

Notice: The results presented in this chapter on optimism have mostly been obtained
through the research effort of Sven Bünte, as part of our research collaboration within
the FORTAS project. The author of this thesis provides this overview for the sake of
completeness, but does not claim any scientific results in this chapter as his own.

In this Chapter, we describe a method for reducing optimism in MBTA.
In Section 5.1, we identify measurements as source of optimism in MBTA. In Sec-

tion 5.2, we present FROO, an input-data generation technique that seeks to reduce
the optimism of MBTA through an increase of the measurement coverage of temporal
behavior. In Section 5.3, we present an evaluation for FROO. In Section 5.4, we describe
some limitations of FROO.

5.1 Measurements and Optimism
In MBTA, the local WCET estimate for each individual program part is based on mea-
surements. These measurements usually cannot cover all possible initial states for the
individual program parts, for two reasons: Firstly, the size of the relevant state space,
i.e., the space of possible initial conditions with respect to the timing-relevant computer
state (cf. Section 3.3) is usually prohibitively large. Secondly, we want MBTA to be
portable, so we cannot allow the method to depend on the specific state space of some
particular target hardware.

The simplest possible local WCET estimate for a program part is its maximal ob-
served execution time, i.e., the maximum over all execution times that have been mea-
sured for that program part. Such estimates may, however, lead to a global WCET
estimate of the complete program that is lower than the program’s actual WCET. Fig-
ure 5.1 illustrates this by a simple examples.

Optionally, a safety margin can be added to each local maximal observed execution
time, or extreme value theory [Col01] can be applied to the collected samples. All
such extra effort serves the goal of reducing the amount of underestimation of the local
WCET estimates. An alternative approach are techniques that increase the measurement
coverage of temporal behavior. In this chapter we present such a technique.
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Figure 5.1: Optimism: Using local MOETs instead of the actual WCETs introduce
underestimation in the global WCET estimate. Based on the same code example as is
Figure 4.1, we assume that the actual WCET of program part A is by an error value
eA higher than the observed MOET. Likewise, the actual WCET of program part B is
higher than the observed MOET, by an error value eB. If the local MOETs are used as
local WCET estimates, a simple version of IPET will yield a global WCET estimate that
is lower that the actual global WCET, by an error value eopt. In this simple example,
we have eopt = eA + eB.

Recall that the goal of performing execution-time measurement in MBTA is to infer a
worst-case execution-time estimate for each program part (cf. Section 3.6). Furthermore,
we have assumed that each program part corresponds to a particular node v ∈ V in the
program’s CFG G = (V,E, vstart, vend) (cf. Section 3.8).

Let D be the domain of all possible input vectors that can be fed to the given
program. We assume the availability of a measurement method (cf. Section 3.15) that
yields a timed trace πd = (v1, t1) . . . (vn, tn) for each run of the program, under input
vector d, and on a particular execution platform of interest1.

We first define what we mean by the term test suite:

Definition 5.1. A test suite Γ is a set of input vectors, i.e., Γ ⊆ D.

The maximal MOET of a node over a test suite is given by the following definition:

Definition 5.2. The maximal MOET moetv,Γ of some node v over a test suite Γ is the
maximal MOET of v in any timed trace pid, for d ∈ Γ, i.e.,

moetv,Γ = max{moetv,πd
| d ∈ Γ}.

1Note that the obtained timed trace πd might differ between multiple measurement runs with the
same input vector, since the input vector only partially specifies the initial state of the computer (cf. Sec-
tion 3.3).
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5.2. FROO

5.2 FROO

FORTAS Reduction of Optimism (FROO) is an input-data generation technique that
seeks to reduce the optimism of MBTA through an increase of the measurement coverage
of temporal behavior. The technique is based on the principles of genetic algorithms
and model checking [CGP00], and tries to achieve its goal through a joint increase of
the MOET over all nodes.

The motivation for using a genetic algorithm stems from our previous
work [BZTK11], where we demonstrated that random input-data generation is very
fast, but unable to cover all parts of a program. Model checking, on the other hand, can
be used to generate test suites that satisfy sophisticated structural coverage criteria, but
requires considerable computational resources.

Fitness Evaluation
of Succession

Initialization

Fitness Evaluation

Recombination

Mutation

Insertion/Replacement

Termination?
yes

no

Selection

...

Figure 5.2: The FROO workflow.

FROO proceeds according to the standard phases of a genetic algorithm (cf. Fig-
ure 5.2):

FROO starts with an initial test suite that covers all reachable nodes, thereby guar-
anteeing that each reachable node is exercised at least once. Our implementation uses
FShell [HSTV08, HTVS10, HSTV11] to generate appropriate input vectors for this
initial test suite. The initial test suite forms the seed population of a genetic algorithm
that tries to further improve the quality of the test suite by heuristic optimization. In
the following we describe the individual steps of FROO:
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Initialization: The individuals of the genetic algorithm are input vectors, and the
complete population forms a test suite. We write Γi to denote the population; Γ0
is the seed population, which we generate in the following way: First, we generate
a test suite ΓB that satisfies node coverage using FShell. The input to FShell is
a C program and a test suite specification, expressed in the FQL [HSTV11]. For
example, if our nodes are basic blocks, we use an FQL queries of the form

IN @FUNC(foo) cover @BASICBLOCKENTRY.

The seed population must include test suite ΓB. However, if ΓB contains only
a few input vectors, we add a supplement to random input vectors in the seed
population.
Using a seed population that satisfies node coverage is superior to using an initial
population of random input vectors, because it incorporates knowledge on how to
reach each of the nodes. On the other hand, random test suites lack this knowledge
(cf. Figure 3.8). Moreover, using a seed population that satisfies node coverage
guarantees at least one measurement of each reachable node.

Fitness Evaluation: We use a fitness function that considers the execution time dis-
tance to the maximal execution time, observed with respect to the current popu-
lation. In order to account for jitter, and to even further promote distances that
are close to the MOET, we square the distance:

FΓi(d) =
∑
v∈V

1
1 + (moetv,Γi −moetv,πd

)2 , for d ∈ D.

Selection: Inspired by the work of Khan and Bate [KB09], we use roulette-wheel selec-
tion and pick 50% of the individuals in the current population for recombination.
We determined the particular ratio through experimentation.

Recombination: As suggested in previous work on input data generation via genetic
algorithms [Ata03], we use single-point crossover.

Mutation: We set the mutation probability to 2%, i.e., each individual in the offspring
has a chance of 0.02 to be mutated at one randomly chosen variable. For a variable
that is chosen to be mutated, a new uniformly distributed value in the variable’s
domain is generated. We determined the particular mutation probability through
experimentation.

Insertion/Replacement: We use elitist reinsertion: the whole offspring is inserted into
the current population; those individuals showing the lowest fitness are replaced.

Termination: Our genetic algorithm terminates after a fixed number of iterations.

5.3 Evaluation

In this section we evaluate FROO. We propose the following metric for quantifying the
optimism of a given test suite, where higher values indicate lower pessimism:
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Definition 5.3. The average MOET moetΓ of a test suite Γ is the arithmetic mean over
the MOETs of all nodes v ∈ V over Γ, i.e.,

moetΓ = 1
|V |
·

∑
v∈V

moetv,Γ.

This metric is based on the observation that a high MOET of an individual node is
less optimistic than a low MOET for the same node. However, to be able to compare
the optimism of different test suites for the same given program, we would like to have
a measure that summarizes the optimism of all nodes. By using the arithmetic mean
over all nodes, we make no assumption about how the global WCET estimate is derived
during estimate calculation. However, it would be possible to used other metrics that
are tailored to a particular estimate calculation methods. If IPET is used, for example,
it might be useful to consider a metric that favors nodes that occur frequently on the
WCET path.

We note that the given metric is only useful for comparing the optimism of test
suites for the same given program, but not so for comparing the optimism of test suites
of different programs.

Table 5.1: Average MOET moetΓ for a test suite of random input vectors (RDG),
a test suite satisfying node coverage (NC), a test suite obtained with FROO using a
seed population including individuals obtained by model checking (FROO), and a test
suite obtained with FROO using a seed population containing only random input vectors
(FROO∗). MAX denotes maximum over all average MOETs obtained in any experiment.

Benchmark RDG NC FROO FROO∗ MAX

md-binary_search-binary_search 55.69 49.64 65.93 56.36 66.93
md-bsort10-BubbleSort 84.44 69.17 85.47 85.47 86.80
is-engine_control_cs1-AktuatorMotorregler 44.66 46.06 61.19 56.33 63.67
jop-lift_control-ctrl_loop 23.80 51.35 61.31 24.84 66.82
pb-a1-course_run 53.86 48.15 60.20 42.20 60.20
pb-a1-course_pid_run 61.30 54.41 77.76 76.35 82.06
pb-a2-atan2 84.48 87.33 105.33 104.93 111.07
pb-a2-sin 52.93 50.21 73.52 52.89 74.48
pb-a2-navigation_update 44.96 40.00 54.80 36.00 54.80
pb-a2-nav_home 74.80 77.31 96.90 93.00 98.81
pb-a2-compute_dist2_to_home 69.58 64.83 89.50 44.12 89.50
pb-f1-check_mega128_values_task 50.19 54.91 69.09 27.27 71.00
pb-f1-servo_set 0 79.70 87.44 0 91.35
pb-f2-vector_10 88.54 85.61 99.00 76.06 101.56

Table 5.1 gives an overview of the results of our evaluation. Details on each of the
used benchmarks, as well as on the experimental setup can be found in Chapter 7, where
we present the evaluation of the complete the FORTAS tool. The invididual columns
contain the following information:

Benchmark: Name of the benchmark.

RDG: moetΓ for 1000 randomly generated input vectors. An extreme case that we
observed is pb-f1-servo_set, where the whole function is never reached by the
input data (it is conditionally called by pb-f1-check_mega128_values_task).

NC: moetΓ for a test suite that satisfies node coverage.
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FROO: moetΓ for FROO after 25 iterations.

MAX: moetΓ, with Γ including all input vectors we generated during all experiments
for the respective benchmark.

It is not possible to favor any of the two methods in terms of moetΓ. We see that
moetΓ is consistently higher for FROO than for both RDG and NC. Also, its values are
close to moetΓ for MAX. The results also show that FROO benefits from the initial test
suite satisfying node coverage. FROO∗ (results shown in column five) uses the same
configuration as FROO, but the former uses a seed of 200 randomly generated input
vectors, i.e., it does not utilize model checking. The results in Table 5.1 show that using
model checking in generating the seed population pays off: FROO’s average WCET
estimate is greater or equal than FROO∗’s for all benchmarks. A detailed evaluation of
FROO is provided in [BZK11].

5.4 Limitations

FROO requires an initial test suite that satisfies node coverage, such that at least one
execution-time measurement, as well as that corresponding input vector are available
for every node. In our implementation, we use FShell to generate an appropriate
test suite—this works fine for most of the benchmarks that we analyzed during our
evaluation. We could generate appropriate test suites for most of the benchmarks within
a few seconds. However, two of the benchmarks posed a challenge:

For benchmark md-binary_search-binary_search, as well as for Problem A3 from
the PapaBench benchmark suite, FShell failed to generate a seed population within
the given time frame, so we had to prematurely stop the respective experiments. In the
former case, the problem was due to general scalability issues of model checking. As a
workaround, we reduced the size of the input vector from 100 to 25 elements. In the
latter case, the problem had been caused by the used floating point operations. In this
case, the underlying SMT solver of the CBMC model checker failed to find a suitable
solution within the given time frame.

An inherent limitation of MBTA is that the initial state of the target system before
measurement cannot be controlled completely, as the hardware is not known in full
detail. This is another source for optimism. We did not address this problem specifically,
but there exists work on how WCET analysis can be complemented with mechanisms
that enforce a defined hardware state. For example, some architectures support cache
invalidation. As another example, the pipeline can be filled with NOP instructions to
bring it (including its branch predictor) into a defined state [KKP10]. However, those
techniques require some knowledge about the target hardware and are not subject to
our current research.

5.5 Chapter Summary

In this Chapter we have considered a method for reducing optimism in MBTA. We have
presented FROO, an input-data generation technique that seeks to reduce the optimism
of MBTA through an increase of the measurement coverage of temporal behavior. We
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have described how FROO works, and we have provided an evaluation of the technique.
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CHAPTER 6
FORTAS: High-Precision MBTA

In this chapter, we present the FORTAS approach for high-precision MBTA.
In Section 6.1, we present requirements for an industrial-strength WCET analysis

tool. These requirements—which had been collected in a previous study—formed the
initial motivation for our research on high-precision MBTA. We also present additional
requirements that we identified as essential for an MBTA-based industry-strengthWCET
analysis tool.

In Section 6.2, we review the features that distinguish the FORTAS approach from
standard MBTA methods. One particularly innovative feature is iterative refinement,
which we review in Section 6.3. In Section 6.4, we review the modular software archi-
tecture of the FORTAS tool.

6.1 Requirements
The FORTAS tool is a prototypical implementation of the FORTAS approach, intended
to integrate smoothly into the engineering process of embedded software. Previous work
on MBTA [KPW04] has established the following four requirements for an industrial-
strength WCET analysis tool:

Requirement IR-1: The tool must work with little user interaction. In particular, it
must not be expected that users of the tool provide manual code annotations about
possible and impossible execution paths of the code. For example, when model-
based development tools like Matlab/Simulink are used to design the system, the
WCET analysis tool must be able to extract such information by analyzing the
code generated by the code generator of Matlab/Simulink.

Requirement IR-2: The method must integrate into the development tool-chain of
customers without requiring a modification of the tool-chain (for example, modifi-
cations of Matlab/Simulink, the code generator, or the C compiler). However, it is
permissible to restrict the use of the tool-chain to enable WCET analysis. For ex-
ample, the available application development features of model-based development
tools like Matlab/Simulink may be restricted, or certain compiler optimizations
may be deactivated.
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Requirement IR-3: The method must be adaptable to changes in the tool-chain with-
out expensive modification.

Requirement IR-4: The WCET analysis method must be easily retargetable to dif-
ferent hardware settings, i.e., the implementation or configuration effort must be
economically feasible.

The FORTAS tool is a prototypical implementation of the FORTAS approach that
has been designed to fulfill all of these industrial requirements. However, since the
FORTAS tool is a research prototype without commercial-scale development resources,
we had to restrict the extent of our engineering effort. The current fulfillment status of
the industry requirements is as follows:

Fulfillment status of IR-1: Currently, the FORTAS tool requires the user to man-
ually specify loop iteration constraints. There are existing third-party tools that
are able to infer such constraints automatically in many common cases (cf. Sec-
tion 3.8). Integrating such components into the FORTAS tool is a matter of
engineering.
A general and fully automatic method of inferring loop iterations is currently
unknown, so the need for user annotations cannot be fully eliminated. State-
of the art tools, however, can keep the annotation effort low. In particular, a
fully automatic analysis of source code that is automatically generated by code
generators like Matlab/Simulink may be feasible [KLFP02].

Fulfillment status of IR-2: For the FORTAS tool, we have chosen the GNU-based
TriCore C/C++ tool-chain from HighTec EDV-Systeme GmbH [Hig11] as our tar-
get tool-chain. In principle, however the FORTAS tool could be used with any
other compiler that can produce code for the Infineon TriCore TC1796. The FOR-
TAS tool requires a tight correspondence between the source code of the software
under analysis and its corresponding executable machine code. To achieve such
a correspondence, most compiler optimizations must be deactivated for WCET
analysis (cf. Section 3.6).

Fulfillment status of IR-3: The FORTAS tool meets this requirement, as it allows,
in principle, for the use of an arbitrary compiler tool-chain, as discussed before.
The possibility to easily adapt the tool suite to a new release of a certain tool-
chain can be seen as special case of adapting the FORTAS tool to an entirely new
tool-chain.

Fulfillment status of IR-4: The FORTAS tool includes a measurement driver for
the Infineon TriCore TC1796 processor. More details on the current setup can
be found in Sections 7.1 through 7.3. Due to the general analysis method of the
FORTAS tool, and also due to its modular software architecture, an adaption to
other target platforms is expected to be relatively straightforward, through the
implementation of a target-specific measurement-driver (cf. Section 3.15).

A crucial issue in MBTA is the closeness of the obtained WCET estimates (cf. Sec-
tion 1.6). However, closer WCET estimates may come at the cost of a higher resource
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burden at analysis time, including a longer analysis time. The optimal balance between
closeness of the obtained WCET estimates and analysis effort may vary from use case
to use case. For example, a quick response from the analysis might be preferable at
an early development stage, whereas closer estimates might be required later on, as the
design matures. We therefore would like the user to be able to take control over this
balance, be way of the following requirement:

Requirement FO-1: There must be a way for the user to adjust the balance between
the achievable closeness in the WCET estimate and the required analysis effort.

Besides adjusting the balance between estimate closeness and analysis effort, the user
is also likely to be interested in adjusting the balance between pessimism and optimism.
In accordance, we have imposed the following requirement:

Requirement FO-2: There must be a way for the user to adjust the balance between
the pessimism and optimism of the analysis results.

Figure 6.1 illustrates how the balance between closeness and computational effort on
the one hand, and the balance between optimism and pessimism on the other hand form
the basis of a two-dimensional space of analysis configurations.

close estimatesfast analysis

optimism predominant

pessimism predominant

Figure 6.1: Refinement control.

The FORTAS tool was designed to support agility under changing system specifi-
cations and requirements. This is particularly important for application in design space
exploration (cf. Section 1.5). We have imposed the following requirement:

Requirement FO-3: If the software or target platform under investigation is changed,
results from previous analysis runs should be reused, as far as possible.

The FORTAS tool was designed for extensibility and scalability. The corresponding
requirements are:

Requirement FO-4: Analysis services can be used concurrently by multiple users in
different locations.

Requirement FO-5: The analysis must scale with the available resources. Additional
resources (computing power, data storage, additional target hardware, etc.) can
be added in order to boost the analysis.

We have tried to fulfill these requirement to the extent possible in a research project.
The following list explains the fulfillment status of each requirement:
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Fulfillment status of FO-1: The FORTAS approach introduces the novel feature of
adaptive input-data generation, in order to improve the precision of MBTA. Adap-
tive input-data generation is implemented as an iterative refinement approach
(cf. Section 6.2). Through the addition of this new feature, it becomes possible
to increase the closeness of the obtained WCET estimate, at the cost of a higher
resource consumption during analysis.

Fulfillment status of FO-2: The FORTAS approach integrates orthogonal methods
to reduce and pessimism (cf. Chapter 4) and optimism (cf. Chapter 5), which work
together to yield close WCET estimates. It is possible to adjust the balance be-
tween optimism and pessimism by balancing these methods through parametriza-
tion.

Fulfillment status of FO-3: The FORTAS tool provides a data repository, where all
relevant information from previous analysis runs, like input data, timed traces,
etc., is persistently stored. This information can be reused later. Even if the
software under analysis or the target hardware are changed, it is possible to reuse
some available information: For example, if the target processor is replaced, a
large amount of input vectors can usually be reused. Moreover, test cases from
functional testing can be imported or exported with little effort.

Fulfillment status of FO-4: The FORTAS tool provides distributed services and can
handle concurrent requests from a single as well as from multiple users (cf. Sec-
tion 6.4). The requests are implemented as remote procedure calls.

Fulfillment status of FO-5: The FORTAS tool is based on a modular software archi-
tecture (cf. Section 6.4), where each module is responsible for providing a certain
set of services. Service requests to different modules can be parallelized. Moreover,
multiple instances of each module can be created to process concurrent requests
in parallel, provided that enough resources are available. The communication be-
tween modules is implemented by remote procedure calls, which enables the distri-
bution of module instances over multiple host computers. Shared data is managed
centrally by a special data-repository components.

6.2 Distinctive Features of the FORTAS Approach

The FORTAS approach extends standard MBTA (cf. Section 3.13) by introducing mul-
tiple new operations into the data-flow, as illustrated in Figure 6.2:

Tracing measurement: Unlike traditional MBTA, which can operate on unspecific
(i.e.: context-free) execution times of individual program parts, the FORTAS
approach makes use of the contextual information contained in timed traces. In
particular, the FORTAS integrates methods for reducing pessimism that rely on
the control information contained in the timed traces. To make clear that timed
traces are required, rather than merely separate measurements of individual pro-
gram parts, we call the corresponding measurement operation tracing measure-
ment.
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Context-sensitive estimate calculation: This operation uses the timed traces that
are generated during tracing measurement and generates a global WCET esti-
mate. The important difference to estimate calculation in standard MBTA is that
context-sensitive estimate calculation applies methods that make use of the contex-
tual information contained in the timed traces, in order to produce less pessimistic
WCET estimates. The FORTAS tool uses context-sensitive IPET (cf. Section
4.4).

Adaptive input-data generation: This operation generates test suites to be used
during tracing measurement. The important difference to input-data generation
in traditional MBTA is that adaptive input-data generation is intended for iterative
input-data generation, based on feedback from previous measurement results and
from context-sensitive estimate calculation. The FORTAS tool integrates FROO
(cf. Section 5.2), in order to produce less optimistic WCET estimates. Moreover,
it also uses information about the execution scenarios within the context-sensitive
estimate calculation. This allows adaptive input-data generation to generate test
suites that are tailored for individual execution scenarios. To produce additional
test suites for specific execution scenarios is important, because the implicit split-
ting of the test suite along execution scenarios that takes place in context-sensitive
estimate calculation might leave certain execution scenarios poorly covered by test
vectors. This is compensated by generating test suites for specific, poorly covered,
execution scenarios.

context-sensitive
est. calculation

tracing
measurement

local estimates
(code blocks)

program code
global estimate

 (whole program)

test suite
adaptive input-

data generation
contexts

control-flow
analysis

control flow
information

timed execution
traces

Figure 6.2: The extended workflow of the FORTAS approach.

6.3 Iterative Refinement

Standard MBTA features a linear workflow: A program of interest is provided as input
to the analysis tool, the timing analysis is performed, and an estimate of the WCET is
produced after a finite amount of time.
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The workflow adopted by the FORTAS approach is very different from this: Once a
program of interest has been submitted to the analysis process, an iterative refinement
loop is started that generates an ongoing stream of test suites that are used for new
measurements. The resulting stream of new timed traces is buffered, and, periodically,
a new estimate calculation is performed. Adaptive input-data generation makes use of
feedback data from measurement and estimate calculation to guide the generation of
new test suites. Over time, this ongoing process yields more and closer intermediate
WCET estimates.

At any point in time, the user is able to inspect the current WCET estimate. How-
ever, there is no clearly defined end of the analysis process. The user may let the process
continue until he feels comfortable with the achieved precision, or he might specify an
exit condition for the process, like some upper bound on resource usage, or an upper
bound on the number of refinement steps to be performed.

6.4 The Software Architecture

The FORTAS tool embraces an extensible, modular design philosophy that simplifies
maintainability, scalability, and portability, through two major strategies:

• easy replacement of individual modules, for example, to provide support for new
target platforms;

• easy parallel and distributed processing, for example, through the distribution
of input-data generation, measurement, and estimate calculation with multiple
workers for different code fragments.

MBTA requires the cooperation of different tasks with different resource require-
ments:

Control-flow analysis: The resource requirements of control-flow analysis depend on
the complexity of the analyses that are performed. Whereas a CFG and simple loop
bounds can usually be obtained at relatively small costs in computation time and
memory, more sophisticated analyses of the control flow might be more demanding.
However, these methods are less demanding than the brute force methods used
in input-data generation. Sharing the computational infrastructure with global
estimate calculation might be considered.

Input-data generation: Input-data generation can require large amounts of process-
ing power, in particular if model checking is applied. Model checking can, moreover,
demand a lot of system memory. Even in a small setup, a powerful machine with a
large amount of memory is required for this task. For larger setups, a small server
farm should be considered, where model checking can be performed in parallel, on
different subspaces of the entire state space.

Measurement: Unless the measurements are performed on a cycle-accurate simulator,
access to the target platform is required. Depending on the setup, performing the
measurements sequentially can impose a performance bottleneck. Luckily, this task
can easily be parallelized by splitting up the test suite. Using multiple instances
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of the target platform in parallel can thus speed up the measurement process
linearly. However, certain measurement setups can be quite costly and might not
be available on all sites, so remote sharing of the measurement setup might be
necessary, especially if multiple users need to access them just on an occasional
basis. A pool of different target platforms might be considered, if a comparative
analysis is required. Moreover, a suitable infrastructure for preprocessing, relaying,
storing, and retrieving large amounts of tracing results must be provided.

Estimate calculation: Like in control-flow analysis, the resources requirements of es-
timate calculation depend on the actual method used. In the case of IPET, an
integer linear programming problem must be solved. Whereas ILP problems are
known to be NP-hard in theory, we never ran into performance issues with IPET.
Sharing the computational infrastructure with control-flow analysis should be con-
sidered.

Analysis & decomposition

Measurement

Repository

Input-data generation

Timing estimation

C Modeler

FShell

FShell

...

...

Database

IPET TriCore 1796
FORTAS User

Refinement control Core

Figure 6.3: The software architecture of the FORTAS tool.

As can be seen in Figure 6.3, the high level software architecture of the FORTAS
tool is based on a collection of replaceable modules that are centered around a core
service that is responsible for coordination, communication, and job distribution. The
following is a description of the individual components of the software architecture:

Analysis and decomposition: provides the CFG of the program under scrutiny.This
module can run program analyses, for example, to derive loop iteration bounds.
Such analysis are not currently implemented, though. Loop iteration constraints
must currently be annotated manually.

Input data generation: provides services for generating test data, given either a
specification of a test suite or a search heuristic. The FORTAS tool uses
FShell [HSTV08, HTVS10, HSTV11]. Multiple FShell workers run in parallel
to generate input data at a high rate.

Measurement: provides services for executing the program under analysis on the tar-
get hardware and yields timed traces. If necessary, the module also performs
compilation and linking for the target platform. We currently support tracing on
the TriCore 1796 microprocessor via a Lauterbach LA-7690 PowerTrace device.

Repository: provides persistent storage and retrieval services for source code, binaries,
timing models, CFGs, test suites, timed traces, and WCET estimates. The FOR-
TAS tool is based on the concepts presented in [BT08] as a PostgreSQL database.
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Estimate calculation: provides services for calculating a global WCET estimate from
the local WCET estimates of individual code blocks. The FORTAS tool provides
standard and context-sensitive IPET as calculation methods.

The Core: takes care of both, intercommunication between modules and parallel pro-
cessing.

Refinement control: provides the interface for the user.

Modules are independent of each other in the sense that jobs assigned to some module
A can be processed in parallel with the jobs assigned to another module B, since different
modules do not share critical resources.

An example of a job is the generation of input data according to a given test suite
specification. Jobs are defined in a way that only a single module is needed for processing
them.

An instance of a module is called a worker. Some representative examples of workers
are given in the oval boxes of Figure 6.3).

Multiple workers can be spawned to increase the job throughput of a given module.
The repository module, which maintains a central storage and retrieval service for analy-
sis information, is an exception, however. Only one database worker is currently used, to
make keeping the database easy. In the FORTAS tool, this centralized solution proved
sufficient from a performance point of view. For high-performance setups, a distributed
database may be more suitable. We have not further investigated such a distributed
solution.

Job
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Job M
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Input Queue

Worker  ...
Output Queue

Result J
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Modulen

M

J Job identi�cation �eld

Module identi�cation
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1 Worker  2 Worker  m

Module1

newJob(Job)

ID

getResult(ID)
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Figure 6.4: Asynchronous job processing.

The FORTAS tool supports concurrent job processing, as depicted in Figure 6.4.
As a first processing step, the Dispatcher assigns a unique job identifier and a unique
module domain to each incoming job. The ID is immediately returned to the callee.
The subsequent call getResult, however, blocks until all processing stages of a job are
completed and a result for the provided job identifier is available. After dispatching, a
job gets enqueued for a worker that fits the job’s target module. The dispatcher and
workers operate asynchronously; each worker Wi performs the following:

98



6.5. Chapter Summary

1. Check input queue for a job that fits to Wi;

2. Move that job from the input queue to Wi;

3. Process job;

4. Put result and job identifier into output queue;

5. Continue with (1).

Once a result is in the output queue, the dispatcher forwards it to the correct callee.

6.5 Chapter Summary
In this chapter, we have presented the FORTAS approach for high-precision MBTA.

Both, the FORTAS approach and the FORTAS tool, have been designed according
to industrial requirements. These requirements—which had been collected in a previ-
ous study—emphasize a need for little user intervention, easy integration into existing
development tool-chains, and portability. A comparison of static WCET analysis and
the FORTAS approach reveals the latter as more suitable basis for fulfilling these re-
quirements. Further requirements that we have identified refer to user control over the
balance between pessimism, optimism, and resource usage, reuse of previous analysis
results, concurrent use by multiple users, and scalability.

The FORTAS approach introduces several innovative features, which include trac-
ing measurement, context-sensitive estimate calculation, and adaptive input-data gener-
ation. Moreover, the FORTAS tool embraces an extensible, modular design philosophy
that simplifies maintainability, scalability, and portability.
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CHAPTER 7
Experiments

In this chapter, we present an experimental evaluation of the FORTAS approach.
We first describe the target platform that we used in our evaluation. In Section 7.1,

we present the TriCore TC1796 microprocessor. In Section 7.2, we present the OCDS
debugging interface, which provides the technical prerequisites for collecting timed exe-
cution traces without exerting a probe effect on the system. In Section 7.3, we present
the TriBoard TC179X Evaluation Board that we used as a platform for the TC1796. In
Section 7.4, we present the benchmarks that we used. In Section 7.5, we explain the
design of our experiments. In Section 7.6, we present the results of our evaluation.

7.1 The TriCore TC1796
We have chosen the Infineon TriCore TC1796 as target processor for the prototype
implementation of the FORTAS approach.

The TC1796 is a fairly complex 32-bit microprocessor—targeted at the automotive
market—that provides numerous on-chip peripherals that are useful for embedded appli-
cations. These peripherals include a Micro Second Bus, a fast analog-to-digital converter
unit, and aMicro Link Interface. The processor is specifically targeted at the automotive
industry, and features simple versions of many of the performance-enhancing features
found in modern desktop and server processors, like caching, pipelining, and branch
prediction. Contrary to popular belief, the TriCore TC1796 has only a single process-
ing core. It, however, features three parallel instruction pipelines that allow parallel
processing of different types of instructions, as well as a separate floating point unit.

Even though the FORTAS approach does not rely on knowledge about the internal
operation of the target microprocessor, we believe that such an understanding may be
useful to you, the reader of this thesis, for the interpretation of our experimental results.
We therefore provide an overview of three features that we consider particularly rele-
vant for WCET analysis: the memory subsystem, the instruction pipeline, and branch
prediction. More details about the TriCore architecture and the TC1796 microprocessor
can be found in the corresponding technical manuals [Inf06, Inf07].

Figure 7.1 provides a high-level view on the structure of the bus systems of the
TC1796 processor: The basic design is based on a Harvard architecture, with sepa-
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Figure 7.1: Block diagram of the bus systems of the TC1796. Illustration taken
from [Inf07].

rate interfaces for program and data memory (PMI, DMI). On the whole, the memory
subsystem is fairly complex and allows for an abundance of different memory configura-
tions that can be chosen by the system designer. The system consists of the following
components:

Program memory interface (PMI): The PMI (cf. Figure 7.2) is directly connected
to the CPU and is responsible for all accesses to program memory. It is equipped
with 64KiB of RAM, of which 16KiB can be used as instruction cache (ICACHE)
and of which 48KiB can be used as scratchpad memory (SPRAM). The ICACHE
is a two-way set-associative LRU cache with a line size of 256 bits, and a validity
granularity of 4 double-words (64 bit). The ICACHE can be globally invalidated
to provide support for cache coherency. The ICACHE can be bypassed, to pro-
vide direct access to the program local memory-bus (PLMB). The CPU interface
supports unaligned, i.e., 16-bit aligned, accesses with a penalty of one cycle for
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Figure 7.2: Block diagram of the TC1796 program memory interface (PMI). Illustration
taken from [Inf07].

unaligned accesses that cross cache lines.

Data memory interface (DMI): The DMI (cf. Figure 7.3) is directly connected to
the CPU and is responsible for all accesses to data memory. It is equipped with
64KiB of RAM, 8KiB of which is dual-port RAM (DPRAM) that is accessible
from the CPU and from the remote peripheral bus (RPB), and of which 56 KiB
is local data memory (LDRAM). The CPU interface supports unaligned, i.e., 16-
bit aligned, accesses with a minimum penalty of one cycle for unaligned accesses
that cross cache lines. There is a directly accessible interface to the data local
memory-bus (DLMB) that provides access to the rest of the system.

Program local memory-bus (PLMB): The DLMB is a synchronous, pipelined bus
that connects the DMI to the rest of the data-memory system. The bus protocol
supports single transfers of 8, 16, 32, and 64 bits (cf. Figure 7.4), as well as block
transfers of 64 bits (cf. Figure 7.5). The PLMB is managed by the program local
memory-bus control unit (PBCU), which handles requests from PLMB master de-
vices, which are the PMI and the program memory unit (PMU). Access arbitration
takes place in each cycle that precedes a possible address cycle, and is based on
the priority of the requesting master device. The PMI has priority over the PMU.
Busy slave devices can delay the start of a PLMB transaction.

Data local memory-bus (DLMB): The DLMB is a synchronous, pipelined bus that
connects the DMI to the rest of the data-memory system. The bus protocol sup-
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Figure 7.3: Block diagram of the TC1796 data-memory interface (DMI). Illustration
taken from [Inf07].

ports single transfers of 8, 16, 32, and 64 bits (cf. Figure 7.4), as well as block
transfers of 64 bits (cf. Figure 7.5). The DLMB is managed by the data local
memory-bus control unit (DBCU), which handles requests from PLMB master de-
vices, which are the DMI and the data-memory unit (DMU). Access arbitration
takes place in each cycle that precedes a possible address cycle, and is based on
the priority of the requesting master device. The DMI has priority over the DMU.
Busy slave devices can delay the start of a DLMB transaction.

Program local memory-bus control unit (PBCU): The PBCU is responsible for
managing data transfers on the PLMB.

Data local memory-bus control unit (DBCU): The PBCU is responsible for man-
aging data transfers on the DLMB.

Program memory unit (PMU): The PMU (cf. Figure 7.6) is connected to the
PLMB. It is equipped with 2MiB of program flash memory (PFLASH), 128KiB of
data flash memory (DFLASH), and 16KiB of boot ROM (BROM).

Data memory unit (DMU): The DMU (cf. Figure 7.7) is connected to the DLMB.
It is equipped with 64KiB of SRAM and 16KiB of standby memory (SBRAM).

Local memory interface (LMI): The LMI is a part of the DMU. It allows the DMI
and the DMU to access the PLMB, thereby enabling data transfers to and from
other PLMB devices, like the EBU.
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External bus unit (EBU): The EBU (cf. Figure 7.8) is connected to the PLMB and
serves as an interface to external memory or peripheral units. It supports asyn-
chronous or burst-mode external accesses. The external bus may be shared with
other bus masters. Arbitration can be performed either by the EBU, or by an
external bus master.

Local Memory to FPI bridge (LFI bridge): The LFI forms a bi-directional bridge
between the DLMB and the peripheral FPI bus.
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Figure 7.4: Timing of a LMB basic transaction. Illustration taken from [Inf07].
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Figure 7.5: Timing of a LMB block transaction. Illustration taken from [Inf07].

Figure 7.9 provides a high-level view of the structure of the TC1796 CPU, which
consists of the following components:

Instruction fetch unit: The instruction-fetch unit pre-fetches and aligns incoming in-
structions from the PMI and issues them to the appropriate instruction pipeline.

Execution unit: The execution unit consists of three parallel pipelines, each of which
can process a different type of instructions. The integer pipeline and the load-
/store pipeline each consist of the following four stages: fetch, decode, execute,
and write-back. The loop pipeline consists of the two stages: decode and write-
back. The integer pipeline handles data arithmetic instructions, including data
conditional jumps. The load/store pipeline handles load/store memory accesses,
address arithmetic, unconditional jumps, calls, and context switches. The loop
pipeline handles loop instructions, providing zero-overhead loops. The execution
unit also maintains the program counter.

General purpose register file (GPR): The GPR provides 16 address registers and
16 data registers.
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Figure 7.6: Block diagram of the TC1796 program memory unit (PMU). Illustration
taken from [Inf07].

CPU slave interface (CPS): The CPS provides accesses to the interrupt service re-
quests registers.

Floating point unit (FPU): The FPU is an optional, partially IEEE-754 compatible
component for processing floating-point instructions.

Individual instructions may experience a jitter in execution time, due to pipeline
stalls. Figure 7.10 illustrates an example of a pipeline hazard that is resolved by a
pipeline stall: In this case, the integer pipeline is processing a multiply-and-accumulate
(MAC) instruction, which requires two cycles in the execute stage. At the same time
the load/store pipeline is processing a load instruction to the write register of the MAC
instruction, which results in a write-after-write hazard.

For conditional branch instructions, the TC1796 uses a simple, static predictor that
implements the following rules: Backward and short forward branches (16-bit branches
with positive displacement) are predicted taken. Long forward branches are predicted
not taken. Table 7.1 summarizes the cycle penalties for each combination of predicted
and actual behavior.
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Prediction Outcome Penalty (cycles)

not taken not taken 1
not taken taken 3
taken not taken 3
taken taken 2

Table 7.1: Branch penalties of the TC1796 processor, for all combinations of prediction
and actual outcome.

7.2 The OCDS Debugging Interface

The TC1796 provides sophisticated debugging and tracing support that are made avail-
able via the On-Chip Debug Support (OCDS), a vendor-specific variant of the standard-
ized Nexus IEEE-ISTO 5001-2003 interface1.

The OCDS system is split organized in three levels that offer different debugging
features:

1http://www.nexus5001.org/
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Figure 7.8: Block diagram of the TC1796 external bus unit (EBU). Illustration taken
from [Inf05].

OCDS Level 1: This basic debugging level is based on the industry-standard JTAG
interface, which is widely used for debugging and development purposes. It of-
fers control over the internal buses, permits the reading and writing of registers
and memories, offers conditional breakpoints, and provides features for halting,
starting, and single-stepping execution.

OCDS Level 2: This level provides program-tracing support through a 16-bit wide,
clocked trace output port. It affords tracing of

• the program flow of the CPU,
• the program flow of the peripheral control processor (PCP),
• the transaction requests of the DMA controller, and
• the information of the DMA controller move engine.

Because the trace output port is only 16 bits wide, only one of the tracing facilities
can be enabled at any given instant.

OCDS Level 3: This level provides a multi-core debug solution (MCDS) that is based
on a special TC1796 emulation device, which includes the TC1796 product chip
and additional on-chip hardware.

The essential feature for our purpose is the CPU program-flow tracing of OCDS
Level 2. By using external special-purpose debugging hardware, it becomes possible to
reconstruct cycle-accurate timed traces of the code under analysis. Since the tracing
interface is non-intrusive, the traces can be collected without a probe effect on the
system.
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Figure 7.10: Example of a pipeline hazard in the TC1796 CPU. Illustration taken
from [Inf00].

In our setup, we used a Lauterbach PowerTrace device [Lau], which was equipped
with 512MiB of trace memory. This setup allowed us to capture complete end-to-end
traces. Figure 7.11 shows a photo of the physical setup of the PowerTrace device and
the used evaluation board.

For large programs, the trace memory might be too small for capturing complete end-
to-end traces, such as we require for context-sensitive IPET. Apart from the obvious (but
limited) solution of using more trace memory, the special start/stop trigger features of
the OCDS Level 2 tracing facility would allow the implementation of techniques like
trace automata [SM10], in order to capture partial traces. A complete trace could
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Figure 7.11: Parts of a Lauterbach PowerTrace device (left picture), and connection to
an Infineon TriBoard TC179X (right picture).

subsequently be reconstructed from the partial traces. Since we never ran out of tracing
memory in our experiments, we did not try to implement this approach.

7.3 The TriBoard TC179X Evaluation Board

The TriBoard is equipped with 4MB of Burst Flash memory and 1 MB of asynchronous
SRAM, which are both connected to the processing core via the External Bus Unit of the
processor, and these are the only devices that are connected to the EBU (cf. Figure 7.12).
The Clock Generation Unit, which is controlled by an external crystal oscillator, produces
a clock signal fOSC at 20MHz. The CPU clock runs at 150MHz, and the system clock at
75MHz. More details can be found in the board manual [Inf05].

7.4 The Benchmarks

For the evaluation of the FORTAS tool, we used benchmarks from four different bench-
mark suites:

Industry Study (IS): This benchmark suite was derived from code provided by one
of our industrial partners. The code implements an engine controller.

Mälardalen WCET Benchmark Suite (MD): The Mälardalen WCET Benchmark
Suite [GBEL10] is a collection of benchmark programs that is specifically designed
for the evaluation of WCET analysis tools. It consists of 36 individual programs
that were collected from different research groups and tool vendors. We used two
of the benchmarks: bs, an implementation of binary search over an array of 15
integer elements, and bsort100, an implementation of bubble sort over an array of
100 integer elements. For the latter benchmark, input-data generation turned out
to be too expensive. We therefore modified the benchmark to use an array of only
10 integer elements.
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PapaBench (PB): The PapaBench benchmark originate from the UAV software that
had been developed within the Paparazzi project [pap12]. An original benchmark
was presented by Nemer et. al. [NCS+06]. Later, a collection of analysis problems
was derived from the original benchmark, for use within the WCET Tool Challenge
2011 [vHHL+11]. Since the source code of the benchmark required considerable
porting effort to make it work with our prototype analysis tool-chain, we decided
to focus on four analysis problems, which we selected arbitrarily out of the full list
of problems. The problems we chose were A1, A2, F1, and F2.

Java Optimized Processor Benchmark Suite (JOP): The Java optimized proces-
sor benchmark suite is a collection of programs that are used for evaluating the
Java Optimized Processor (JOP) [Sch09]. We used the central control function of
a C port of the lift control benchmark.

7.5 Experiments

To evaluate the FORTAS tool, we performed WCET analysis runs of the benchmarks
described in Section 7.4. We used two different memory setups:

Internal memory setup: We placed the executable program code in the PMI’s
scratchpad RAM (SPRAM), and the program data in the DMI’s local data RAM
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(LDRAM).

External memory setup: We placed the executable program code and the program
data in the external SRAM, and enabled the ICACHE.

We chose these two setups, because they represent the extreme cases with respect to
temporal jitter: Accesses to the internal memory of the PMI (ICACHE and SPRAM)
have a constant penalty of one cycle. There is no source of jitter—such accesses are fully
time predictable. The same holds true for accesses to the internal memory of the DMI
(DPRAM and LDRAM). On the other hand, accesses to external memory may experi-
ence a high access time jitter. Sources of jitter can be found in: possible cache misses, if
instruction caching is used; mixed single/block transfers over the PLMB/DLMB; possi-
ble occupation of the PLMB/DLMB by another bus master, like the PMU/DMU or the
LMI; occupation of the external memory-bus by another bus master; jitter in DRAM
accesses.

The two extreme cases for temporal predictability are therefore, on the one hand,
the use of the separate internal PMI and DMI memories, and, on the other hand, the
shared use of external memory for both, program and data, with instruction caching.

For the internal memory setup, we also performed analyses of the benchmarks using
a static WCET analysis tool. For this purpose, we chose the widely used industrial-
strength tool aiT [TSH+03].

It was not possible to obtain similar comparative data for the external memory setup,
because aiT does not support such a complex configuration. Whereas it is somewhat
unsatisfying not to have comparative data, this circumstance does, in fact, a central
advantage of MBTA: Here we have an example of a situation where MBTA is able
to readily provide WCET estimates, whereas static analysis is not supported—maybe
because the hardware is relatively complex, or just new on the market.

Our hypothesis was that the external memory setup could provide evidence of the
effectiveness of the strategies for reducing pessimism and optimism that we had built
into the FORTAS tool. On the other hand, we expected the results for the internal
memory setup to provide evidence that the analysis results of the FORTAS tool are
comparable in quality to those of static WCET analysis tools like aiT.

We performed the analyses on an Intel Core2 Quad Q9450 CPU running at 2.66GHz
with 8GiB of DRAM. For each benchmark, we generated at least 100,000 timed traces,
using FROO as primary input data generator. At each instant in time when at least
1,000 new traces had become available, the timing model was automatically rebuilt, and
an intermediate WCET estimate was obtained using context-sensitive IPET. In parallel,
we used FShell [HSTV08, HTVS10, HSTV11] to generate additional input data for the
individual contexts generated by context-sensitive IPET.

7.6 Results

Table 7.2 summarizes the analysis results for the internal memory setup. For each
benchmark, we list the end-to-end MOET, which is our greatest lower bound of the actual
WCET, the WCET estimate produced by the FORTAS tool using context-sensitive
IPET, the WCET estimate produced by the FORTAS tool using standard IPET, the
WCET bound calculated by aiT, the quotient between the WCET estimates produced
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by the FORTAS tool using the two different IPET variants, the number of contexts that
were produced by context-sensitive IPET when calculating the final WCET estimate,
and the number of CFG nodes.

Table 7.2: Comparison of WCET estimates for internal memory setup.

Benchmark MOET FORTAS aiT sens. Con- No-
sensitive standard /std. texts des

is-engine_control_cs1-AktuatorMo. 11.99µs 21.13µs 21.37µs 19.91µs 98% 937 398
jop-lift_control-ctrl_loop 7.39µs 10.45µs 11.00µs 9.91µs 95% 240 119
md-binary_search-binary_search 1.68µs 2.23µs 2.24µs 2.10µs 100% 15 14
md-bsort10-BubbleSort 29.34µs 40.39µs 42.44µs 37.60µs 95% 28 15
pb-a1-course_pid_run 0.91µs 1.35µs 1.41µs 1.89µs 96% 26 17
pb-a1-course_run 1.28µs 1.83µs 1.89µs 2.33µs 97% 12 10
pb-a2-atan2 0.85µs 1.11µs 1.12µs 1.67µs 99% 25 15
pb-a2-compute_dist2_to_home 0.41µs 0.56µs 0.56µs 0.97µs 100% 6 6
pb-a2-nav_home 8.17µs 11.48µs 12.13µs 16.56µs 73% 27 21
pb-a2-navigation_update 8.23µs 11.78µs 12.43µs 16.75µs 100% 4 5
pb-a2-sin 1.77µs 2.69µs 2.71µs 3.88µs 99% 38 29
pb-f1-check_mega128_values_task 2.81µs 3.52µs 3.63µs 4.18µs 97% 16 11
pb-f1-servo_set 2.21µs 2.69µs 2.76µs 3.57µs 97% 81 43
pb-f2-vector_10 1.07µs 1.30µs 1.32µs 1.14µs 98% 22 18

The latter two number should give the reader a rough idea about the quality of the
respective analysis problem: the number of contexts gives an indication about how often
suitable execution scenarios occur, whereas the number of CFG nodes provides a rough
estimate of the size of the analysis problem.

We can see that our observed end-to-end MOET is a consistent lower bound of the
respective WCET estimate. This is, of course, what is reasonably expected of an MBTA
tool. Moreover, we also expect the end-to-end MOET to be a lower bound of the WCET
estimates produced by static WCET analysis tools like aiT. As such tools are expected
to produce an upper WCET bound, a failure to exceed the MOET would indicate a
severe bug in the tool. However, this was not the case during our measurement.

When we compare the WCET estimates obtained by the FORTAS tool to the WCET
estimates produced by aiT, we see that the FORTAS tool returns a higher value for
some benchmarks, whereas aiT returns a higher value for some others. Since we have
high confidence that the estimates produced by aiT are upper bounds of the actual
WCET, we attribute the higher values returned by the FORTAS tool to pessimistic
estimate calculation. Nevertheless, it is important to keep in mind that even static
WCET analysis tools, like any other piece of software, may contain bugs that may result
in erroneous WCET estimates.

The case where the FORTAS tool produces lower WCET estimates than aiT is
more difficult to interpret. Without knowledge of the actual WCET of the corresponding
benchmark, it is not possible to decide whether or not the FORTAS tool is underesti-
mating the WCET, and how close the estimate is. The distance between the results of
both tools can be attributed to the combined effect of optimism and pessimism in the
analysis performed by the FORTAS tool, as well as to pessimism in aiT. However, there
is no way of deciding to which degree each of these effects contribute to the deviation.
Moreover, the magnitude of the deviation does not yield any clue about the precision of
the analyses performed by the FORTAS tool and by aiT.

Comparing the WCET estimates produced by the FORTAS tool using context-
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sensitive IPET to those produced by the FORTAS tool using standard IPET, we see that
the former results are closer to the MOET than the latter. This meets our expectation,
since a reduction of pessimism is expected to result in lower WCET estimates, unless
there is a comparable reduction of optimism, occurring at the same time. The only
parameter that we changed between the two experiments was the used IPET method,
whereas we left FROO working in both cases. We therefore have reason to believe that
the relative reduction of the WCET estimate observed when switching from standard
to context-sensitive IPET might serve as a rough indicator of the achieved reduction in
pessimism, illustrating the effectiveness of context-sensitive IPET.

Table 7.3 summarizes the analysis results for the external memory setup. As men-
tioned before, aiT does not support this more complex configuration, so we can only
provide results for the two analysis variants of the FORTAS tool.

When we consider these results, two things become apparent:
Firstly, all MOETs, as well as both WCET estimates are considerably higher than

with the internal memory setup. This is not surprising, as dynamic RAM has typically
a much higher access latency than static RAM. Moreover, the data path to external
memory is much longer than the data path to the SPRAM/LDRAM: The data path to
external memory includes, in series, the PMI/DMI, the PLMB/DLMB, the PMU/DMU,
the LMI (in case of program data), the EBU, the external memory-bus, and the memory
controller of the external memory. On the other hand, the SPRAM/LDRAM is located
in the PMI/DMI, which connect directly to the CPU.

Secondly, the distance between the WCET estimates obtained with the FORTAS
tool using context-sensitive IPET and the WCET estimates obtained with the FORTAS
tool using standard IPET is much larger for the external memory setup than for the
internal memory setup—in relative and absolute measures. This corresponds to our
expectation, since the data path to external memory contains many sources of temporal
jitter, whereas the data path to internal memory is virtually free of jitter.

Table 7.3: Comparison of WCET estimates for external memory setup.

Benchmark MOET FORTAS sens. Con- CFG
sensitive standard /std. texts Nodes

is-engine_control_cs1-AktuatorMo. 133.45µs 161.09µs 166.25µs 97% 813 398
jop-lift_control-ctrl_loop 64.95µs 73.59µs 87.29µs 84% 319 119
md-binary_search-binary_search 17.76µs 18.32µs 22.61µs 81% 17 14
md-bsort10-BubbleSort 287.89µs 316.23µs 392.93µs 80% 32 15
pb-a1-course_pid_run 8.78µs 9.71µs 10.83µs 90% 25 17
pb-a1-course_run 11.45µs 13.33µs 14.45µs 92% 12 10
pb-a2-atan2 8.29µs 8.58µs 8.66µs 99% 24 15
pb-a2-compute_dist2_to_home 4.02µs 4.16µs 4.16µs 100% 6 6
pb-a2-fly_to_xy 9.27µs 11.87µs 11.95µs 99% 5 5
pb-a2-nav_home 62.21µs 76.18µs 85.81µs 89% 34 21
pb-a2-navigation_update 63.67µs 77.79µs 87.41µs 89% 4 5
pb-a2-sin 15.30µs 17.74µs 19.61µs 90% 46 29
pb-f1-check_mega128_values_task 22.00µs 24.07µs 26.61µs 90% 18 11
pb-f1-servo_set 17.69µs 18.74µs 21.28µs 88% 64 43
pb-f2-vector_10 8.08µs 8.34µs 8.59µs 97% 21 18

To evaluate the effectiveness of the iterative refinement procedure of the FORTAS
approach, we have produced plots of the evolution of WCET estimates over the 100
refinement iterations that took place for each benchmark. Figures 7.15 (internal memory
setup) and 7.16 (external memory setup) indicate that the preliminary WCET estimates
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converge quickly2, such that useful estimates can be already be obtained after just a few
iterations.

A closer inspection of the shape of the curves for the IPET methods provides some
more insight into the operation of the FORTAS tool: We can see that, over iteration
time, there is mostly a clear upward trend. We attribute this increase of the WCET
estimate to the reduction of optimism that is achieved by FROO. The more iterations
are performed, the better the coverage of temporal behavior becomes. It can also be
seen that both, context-sensitive and standard IPET seem to profit from the decrease
in optimism.

Since standard IPET is a monotonically estimate calculation method (cf. Section 4.2),
the corresponding curve must be monotonic increasing, which is confirmed by our plots.
Context-sensitive IPET is—when used as a standalone method—also a monotonic esti-
mate calculation method. However, the iterative refinement approach in the FORTAS
tool can cause estimates to decrease over iteration time, for context-sensitive IPET: Ad-
ditional timed traces that are collected over time can result in a new choice of contexts.
This can, in turn, result in tighter constraints over the execution count of each execution
scenario, eventually causing a lower WCET estimate. This effect can be observed in the
plot for function sin in Figure 7.16.

The WCET estimates obtained by the FORTAS tool using context-sensitive IPET
are always below the WCET estimates obtained by the FORTAS tool using standard
IPET, which confirms the theoretical result of Theorem 4.1.

As before, we interpret the reduction of the WCET estimate observed when switching
from standard to context-sensitive IPET as a rough indicator of the achieved reduction in
pessimism. We can see that, for most benchmarks, the distance between the two remains
almost constant over iteration time. In some cases, however, the results converge over
time. We attribute this effect to an above average increase of the associated WCET
estimate of execution scenarios with a previously low associated WCET estimate, due
to increased coverage of temporal behavior. In the most extreme case, some previously
distinct execution scenarios of a given node may be merged, if their associated execution
times have become similar due to newly available data.

For reference, Figures 7.13 and 7.14 provide histograms of the end-to-end MOETs of
each benchmark.

From the evaluation, we conclude that our approach can yield reasonable WCET
estimates within only a few refinement iterations. These estimates are refined automat-
ically, if the analysis is left running for some more iterations. Furthermore, we have
seen the effectiveness of the salient novel features in the FORTAS approach, which are:
reduction of pessimism, reduction of optimism, and iterative refinement of the WCET
estimate. We have also demonstrated that the WCET estimates that can be obtained
using the FORTAS approach are comparable in quality to those obtained from static
WCET analysis, by the example of the widely used static WCET analysis tool aiT.

7.7 Chapter Summary

We have presented an experimental evaluation of the FORTAS approach. As target
platform, we have chosen a TriBoard TC179X evaluation board, equipped with a Tri-

2Note that the horizontal axis of the plots has a logarithmic scale.
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Core TC1796 microprocessor. We have chosen this platform, because the TC1796 is a
widely used, modern embedded microprocessor. Moreover, since the TC1796 features a
fairly complex architecture with many modern, performance-enhancing features, it is an
interesting candidate for MBTA, as even widely used static WCET analysis tools like
aiT support only a subset of the processor’s features. On the other hand, it is easy
to achieve support of the TC1796 for MBTA through the implementation of a suitable
measurement driver (cf. Section 3.15).

The results of our evaluation show that our approach can yield reasonable WCET
estimates. Furthermore, we have demonstrated the effectiveness of the salient novel
features in the FORTAS approach, which are: reduction of pessimism, reduction of
optimism, and iterative refinement of the WCET estimate. We have also demonstrated
that the WCET estimates that can be obtained with the FORTAS approach are com-
parable in quality to those obtained from static WCET analysis, by the example of the
widely used static WCET analysis tool aiT.
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Figure 7.13: Histogram of measured end-to-end execution times for internal memory
setup.
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setup.
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Figure 7.15: Convergence of WCET estimates during model refinement for internal mem-
ory setup: end-to-end MOET (solid line), WCET estimate obtained with aiT (dotted
line), WCET estimate for MBTA with standard IPET (long-dashed line), and WCET
estimate for MBTA with context-sensitive IPET (short-dashed line).
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Figure 7.16: Convergence of WCET estimates during model refinement for external
memory setup: end-to-end MOET (solid line), WCET estimate for MBTA with standard
IPET (long-dashed line), and WCET estimate for MBTA with context-sensitive IPET
(short-dashed line).
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CHAPTER 8
Conclusion and Outlook

This chapter concludes this thesis, summarizing the main aspects and contributions, and
gives an outlook on possible future research.

8.1 Conclusion
Within this thesis, we have presented the current state of our research in high-precision
MBTA. We have demonstrated that high-precision MBTA is possible, through the ap-
plication of smart strategies to reduce the inherent pessimism and optimism of MBTA.

We have presented context-sensitive IPET, a generic estimate calculation method.
The method is an extension of standard IPET. Unlike standard IPET, context-sensitive
IPET allows for the specification of different execution scenarios. This can help to
significantly reduce the pessimism of MBTA.

Context-sensitive IPET is a generic method. To obtain a concrete method, context-
sensitive IPET must be instantiated with a concrete notion of an execution scenario. We
have presented such an instantiation, which is based on the notion of a context, where the
notion of a context captures a specific control flow within the given program of interest.
We have also presented an algorithm that produces suitable sets of contexts that meet
the requirements of context-sensitive IPET. The algorithm constructs contexts based on
measured execution times in such a way that the application of context-sensitive IPET
can effectively reduce pessimism.

Next, we have presented FROO, an input-data generation technique that seeks to
reduce the optimism of MBTA through an increase of the measurement coverage of tem-
poral behavior. The method techniques from evolutionary computing with techniques
from formal verification, and tries to achieve its goal through a joint increase of the
MOET over all program parts.

We then have presented the FORTAS approach for high-precision MBTA. The ap-
proach that integrates our instantiation of context-sensitive IPET with FROO. Our
implementation follows requirements that had previously been collected from industry.
Distinctive features that set the FORTAS approach apart from other MBTA approaches
are: tracing measurement, context-sensitive estimate calculation, and adaptive input-
data generation.
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Moreover, the FORTAS approach supersedes the traditional linear workflow of
MBTA with an iterative refinement process: Once a program of interest has been sub-
mitted to the analysis process, an iterative refinement loop is started that generates
an ongoing stream of test suites that are used for new measurements. The resulting
stream of new timed traces is buffered, and, periodically, a new estimate calculation is
performed. Adaptive input-data generation makes use of feedback data from measure-
ment and estimate calculation to guide the generation of new test suites. Over time,
this ongoing process yields more and closer intermediate WCET estimates.

At any point in time, the user is able to inspect the current WCET estimate. How-
ever, there is no clearly defined end of the analysis process. The user may let the process
continue until he feels comfortable with the achieved precision, or he might specify an
exit condition for the process, like some upper bound on resource usage, or an upper
bound on the number of refinement steps that should be performed.

Lastly, we have presented an experimental evaluation of our experimental FORTAS
tool. The results of this evaluation show that our approach can yield reasonable WCET
estimates. Furthermore, it demonstrates the effectiveness of the salient novel features in
the FORTAS approach. Moreover, it demonstrates that the WCET estimates that can
be obtained with the FORTAS approach compare to those obtained from static WCET
analysis, by the example of the widely used static WCET analysis tool aiT.

In conclusion, we have achieved our goal of demonstrating the feasibility of high-
precision MBTA.

Generally speaking, MBTA is a useful approach for WCET estimation that comple-
ments static WCET analysis in a number of important use cases, which include

• the development of soft real-time systems,

• the development of mixed-criticality systems,

• the testing and evaluation of static WCET tools,

• the cross-checking of analysis results,

• the development of gracefully-degrading real-time systems, and

• design space exploration.

We believe that our research on an approach for MBTA that can provide high-
precision WCET estimates can help in further strengthening the utility of MBTA as an
approach for WCET estimation.

8.2 Outlook

Within this thesis, we have presented the current state of our research in high-precision
MBTA. We have demonstrated that high-precision MBTA is possible, through the ap-
plication of smart strategies to reduce the inherent pessimism and optimism of MBTA.
However, what we have done can just be seen as a first step towards industrial-strength
MBTA. Our current state of research provides plenty of future research problems that to
be investigated thoroughly, in order to help MBTA grow into a mature complementary
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WCET approach for WCET analysis. In this section, we suggest some of the possible
future research directions:

Handling of Pessimism: In Chapter 4, we have presented context-sensitive IPET as
a generic estimate calculation method. Unlike standard IPET, context-sensitive
IPET allows for the specification of different execution scenarios for a given pro-
gram part. We have then presented a concrete instantiation of context-sensitive
IPET that relies on flow contexts to distinguish different execution scenarios. What
we have presented is, of course, not the only possible way to approach the problem.
In particular, we find the following research questions particularly interesting:

• Could pessimism be further reduced by considering contextual timing informa-
tion?
The instantiation of context-sensitive IPET that we have presented consid-
ers the control-flow history of a given program part to distinguish different
execution scenarios. As our evaluation has shown, this can already help to re-
duce pessimism. However, the strategy that we have presented does not make
any use of contextual timing information. For example, the execution time
of a given program part might correlate with the execution time of another
program part that is executed before. In other words, the execution time of
the previously executed program part might allow the method to draw con-
clusions about the computer state at a later point of execution. It would be
interesting to see in which ways such information can be used in a meaningful
way, and whether using it could lead to a further, significant reduction of
pessimism.

• Could pessimism be further reduced by considering the execution future?
The instantiation of context-sensitive IPET that we have presented considers
the control-flow history, but it does not consider the future control-flow, i.e.,
the sequence of program parts that were executed after the given program
part of interest. The formal framework that we have presented is ready to
make use of such information. However, the algorithm for finding contexts
that we have presented considers only the execution history.
The intuition why considering the future control-flow can help with the re-
duction of pessimism is simple: For any give set of computer states A, there
is a certain set B of control flows that may follow. If we observe a control
flow that is not in B, we may, by logical contraposition, conclude that the
computer state was not in A. This reasoning, of course, requires that we
know the exact relation between states and possible control flows that may
follow, which is not the case in MBTA. However, the intention of the previous
scheme is to provide an intuition, not a complete solution.
Extending the algorithm to consider both, the execution history and the ex-
ecution future should not be too difficult, and it would be very interesting
to see, to which degree the use of such information could further reduce pes-
simism. In particular, it would be exciting to investigate whether there is
any qualitative difference between historic and future information, on both, a
philosophical and practical level, and how this difference affects the resulting
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reduction of pessimism. Besides the future control flow, future timing infor-
mation should also be considered. This overlaps with the previous research
question.

• How should missing measurements be handled?
In the presentation of our instantiation of context-sensitive IPET, we have
suggested two different strategies of dealing with missing measurements: A
conservative strategy, which assumes by default that missing measurements
are due to insufficient code coverage, and a progressive strategy that assumes
by default that missing measurements are due to infeasible paths. These are
two completely opposing, basic strategies of approaching the same problem.
It would be interesting to investigate, if there are another other strategies for
handling missing measurements.
In particular, we envision a smart strategy that combines the benefits of
the conservative strategy with the benefits of the progressive strategy. For
example, when a case of missing measurements is discovered, a smart strategy
might try to further investigate the actual cause for the lack of data. It could
direct smart input-data generation to find suitable input data to exhibit the
behavior in question, and it could apply static analysis and model checking
to test whether the path is indeed infeasible. Depending on the outcome of
these actions, the previously missing measurements might become available,
the particular behavior might be shown infeasible, or it testing might turn
out too expensive. The smart strategy might then make a heuristic decision
about how to handle the situation.

• How should function calls be handled?
We have presented a variant of context-sensitive IPET that operates on the
CFG of a program, but which does not provide any natural support for func-
tion calls. The only way in which the presented version of context-sensitive
IPET can support function calls is via code inlining. Whereas we have not
performed experiments in this direction, we expect this approach to work
well in the case of small functions, small call depths, and few call sites. If
the functions that are inlined are too big, if the calls too deeply nested, or if
there are too many call sites, then the approach might not scale well.
Supporting function calls in a context-sensitive way is very promising with
respect to achieving a further reduction of pessimism: calls from different
call sites, possibly with different control-flow history, may yield very different
execution times in the individual program parts of the called function, as well
as of the called function as a whole.

• Would less aggressive context splitting be beneficial? The algorithm for finding
contexts that we have presented in this thesis is very aggressive concerning
the separation of execution scenarios based on their temporal behavior: It
always tries to produce separate contexts, even if their associated WCET es-
timates differ only marginally. Keeping similar execution scenarios together
in a single context may result in a smaller IPET problem. Moreover, aggres-
sive separation strategies tends to produce many small contexts, whereas a
large, coherent context may enable tighter constraints on its execution count.
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It would be interesting to investigate the effect on the performance of the
used ILP solver, as well as on the closeness of the resulting WCET estimate.

• What is the complexity of the presented approach?
In this thesis, we have not provided any performance analysis of the generic
context-sensitive IPET or our concrete instantiation thereof. Whereas our
method performed very well during evaluation, it is unclear how well it scales
with program size, or how different program structures and different tempo-
ral behavior of the software on a particular target platform can affect the
method’s performance. A formal complexity analysis would be very useful
towards this end. Moreover, it would be interesting to collect real-world per-
formance data over a representative set of benchmarks.
An experimental performance evaluation of our prototypical FORTAS tool is,
however, not straightforward. Our implementation of context-sensitive IPET
interacts tightly with other parts of the analysis framework, like, for exam-
ple, input-data generation, and it is not clear to which degree the resource
consumption of other modules should be accounted. Moreover, the high par-
allelism of our implementation, as well as the cyclic dependency of services
within the refinement loop complicates a clean performance evaluation.

• How do different ILP solvers perform on context-sensitive IPET?
In our prototypical implementation of the FORTAS approach, we are using
the free LP solver lpsolve to solve ILP problems. It would be interesting
to investigate, whether different solvers can perform significantly better on
solving the particular class of problems that are produced by context-sensitive
IPET.

Handling of Optimism: In Chapter 5, we have presented FROO as strategy for re-
ducing the inherent optimism of MBTA1 . As is the case with our solution for
reducing pessimism, there is plenty of room for further investigation into strategies
for reducing optimism. The particular research questions that we find interesting
are:

• How should function calls be handled?
We have already encountered this question in connection with the handling
of pessimism. Like context-sensitive IPET, the version of FROO that we
have presented in this thesis operates on the CFG of a program, but does not
provide any natural support for function calls. Again, it is possible to sup-
port function calls via inlining, under the known scalability constraints that
we mentioned earlier. A particularly interesting research questions concern-
ing the possibility of natively supporting function calls in FROO is, which
coverage metrics should be used.

• How can FROO be integrated more tightly with context-sensitive IPET?

1Notice: The results presented in Chapter 5 have mostly been obtained through the research effort
of Sven Bünte, as part of our research collaboration within the FORTAS project. The author of this
thesis provides this overview for the sake of completeness, but does not claim any scientific results in
that chapter as his own.
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In the current version of the FORTAS tool, the integration of FROO with
context-sensitive IPET is rather loose, and work only in one direction, in the
sense that context-sensitive IPET profits from any increase in coverage of
temporal behavior that FROO can achieve.
There is, however, ample room for much greater synergy between the two
methods. A first step towards a tighter integration of the two methods could
be achieved by teaching FROO the notion of a context. If FROO could
operate on individual contexts, rather than on the whole CFG, it could focus
on reducing optimism in places where such a reduction is really needed.
An example of an improvement that could be achieved this way is a reduction
of bogus contexts. A bogus context is a context that appears to have a low
WCET, but actually suffers from high optimism, due to insufficient coverage.
To obtain close WCET estimates, it is important to reduce the number of such
contexts, and one way to achieve this would be to direct FROO to increase
their optimism.

FORTAS: In Chapter 6, we have presented the FORTAS approach for high-precision
MBTA. The approach integrates our strategies for reducing pessimism and opti-
mism. The most interesting open research question is, how the individual processes
within the FORTAS approach can be integrated more tightly. We have already
mentioned some ideas on how a tighter integration of FROO and our instantiation
of context-sensitive IPET could be achieved. Here we present some more research
directions concerning integration, as well as engineering issues:

• How can the FORTAS approach perform a WCET analysis on big programs?
Our evaluation of the FORTAS approach has demonstrated that our ap-
proach works well for rather small programs. However, to turn the FORTAS
approach into an industrial-strength approach, strategies must be developed
to handle larger programs.
A first step would, of course, be the identification of potential performance
bottle necks. A formal complexity analysis of our algorithms would help here.
Moreover, it would be interesting to see how the FORTAS tool performs on
larger benchmarks.
The question of scalability cross-cuts through all the central processes in the
FORTAS approach: control-flow analysis, input-data generation, measure-
ment, and context-sensitive estimate calculation. It seems that a relaxation of
coverage will be unavoidable for larger problems. A central research question
is, how to relax coverage in a smart way, i.e., without sacrificing too much
precision.
• How can the FORTAS tool automatically infer flow information?
Our current implementation of the FORTAS approach requires manual spec-
ification of loop iteration constraints. This is very inconvenient for users, who
would likely prefer a fully automatic WCET analysis (cf. Section 6.1). There
are existing third-party tools that are able to infer such constraints automat-
ically in many common cases (cf. Section 3.8). Integrating such tools into our
implementation of the FORTAS approach is merely a matter of engineering
effort.
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Evaluation: In Chapter 7, we have presented an experimental evaluation of the FOR-
TAS tool. Our evaluation was good enough as a proof of concept, demonstrating
that high-precision MBTA is possible, though the integration of smart strategies
for reducing pessimism and optimism. However, the presented evaluation is too
small to see how the FORTAS approach performs in different settings. For exam-
ple, we have claimed that MBTA methods like the ones applied in the FORTAS
approach are suitable for design space exploration to help the designer in evaluating
different choices of target hardware, algorithms, task factorization, etc. However,
we have not provided an evaluation of the FORTAS approach with respect to this
claim. Here we present some directions in which the current evaluation could be
extended:

• How does the FORTAS tool perform for different execution platforms?
It would be interesting to see how the FORTAS tool performs for different
target platforms. In particular, it would be very useful to have a measure-
ment driver for a very simple execution platform. This would allow a detailed
investigation of the operation of the FORTAS tool in a controlled environ-
ment. Most importantly, a very simple execution platform would allow the
calculation of the exact WCET, for certain programs, i.e., it would be possi-
ble to compare the WCET estimates provided by the FORTAS tool to the
actual WCET.
• How does the FORTAS tool perform for different benchmarks?
Our evaluation provides only a few, small benchmarks. While it serves well
as a proof of concept, it does not provide a complete picture of how the
FORTAS tool performs on different programs of different size, from different
application domains. It would therefore be interesting to perform a thorough
evaluation of the FORTAS tool, on a large number of benchmarks, including
some more complex ones.
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About this Reprint

This is a reprint of my thesis. It provides the following amendments:

• Formula 3.1: The correct formula is

wcet = wcec

fclk
;

• Example 3.2: The supplementary linear constraint for the loop is

f(v3,v3) ≤ 7 · f(v1,v3) + 3 · f(v2,v3).

Curiously enough, Formula 3.1 happens to appear on page 42
2 , whereas Example 3.2

happens to appear on page 42.
Besides these corrections, I have gently polished the wording of a couple of sentences

for more clarity. I have also removed an editing mark that had accidentally been left in
the original text.

I would like to express special thanks to Peter Puschner for pointing out some of
these issues, and to Raimund Kirner for motivating me to finalize this reprint.

Michael Zolda
January 2013
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