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Abstract

In this thesis a comprehensive study of the most important bulk phases of Zirconia
(ZrO2) and its interface to a Platinum-Zirconium alloy is presented. The ZrO2 bulk
is stable at ambient pressure and room temperature in a monoclinic P21/c structure,
while at higher temperature the ZrO2 bulk shows phase transitions first into a tetragonal
P42/nmc and then into a cubic Fm3m structure. Furthermore orthorhombic phases
(Pbca and Pnma structures) are stabilized by applying high pressures.
Using the ab-initio DFT code VASP the stability of each phase was calculated us-

ing both local and non-local functionals and compared to experimental data. The four
different functionals used included the Local Density Approximation (LDA), the PBE
and PBEsol functionals employing the General Gradient Approximation, and hybrid
functionals where part of the exchange energy is taken from the Hartree-Fock approach
(HSE). Equilibrium structural parameters were calculated, including lattice constants,
volumes, cell shapes, bulk moduli and the internal positional parameters. It could be
shown that the PBEsol functional gives the best agreement with the experiments con-
cerning the structural parameters and transition pressures. The densities of states were
also obtained using the different functionals, with the non-local hybrid functionals giving
the best results with respect to the band gaps.
Experimental data have shown that the creation of thin Zirconia films is possible by

oxidation of a suitable metal, for example Pt3Zr. Again using the ab-initio VASP DFT
code both the Pt3Zr substrate and the interface between an ultra-thin film of ZrO2 were
studied. The Pt3Zr crystal has a hexagonal lattice similar to Ni3Ti and is built up of
stacks of mixed zirconium–platinum layers. These layers are arranged in the bulk in an
ABAC stacking. Experiments have shown that steps in the surface of the Pt3Zr substrate
have a height of two atomic layers and that the surface is devoid of zirconium atoms due
to oxidation. The present DFT calculations allowed to determine the correct surface
termination to be of A type.
STM images of the ZrO2 film which is a O–Zr–O trilayer show a (

√
19×

√
19)R23° cell

with respect to the (111) surface plane of the Pt3Zr substrate. To reduce the compu-
tation time two different models were used to study the ZrO2–Pt3Zr interface. Results
obtained with the PBE functional which shows only very weak bonding were compared
to calculations using functionals including approximations to the non-local van der Waals
contributions (vdW-DF). These results have confirmed that the van der Waals interaction
needs to be accounted for to yield results in agreement with the experiment. By simu-
lation of STM images the bright spots in the experimental STM images were attributed
to the zirconium atoms.



Zusammenfassung

In dieser Diplomarbeit wurden die wichtigsten Phasen von Zirkonoxid (ZrO2) und des-
sen Grenzfläche mit einem Platin-Zirkon Metall untersucht. Der ZrO2 Festkörper ist bei
Raumtemperatur und Normaldruck in einer monoklinen P21/c Phase stabil, während es
bei höheren Temperaturen zwei Phasenübergänge zu einer tetragonalen P42/nmc Phase
und zu einer kubischen Fm3m Phase gibt. Unter erhöhtem Druck sind orthorhombische
Phasen (Pbca und Pnma) stabil.
Die Stabilität dieser Phasen wurde mit dem Dichtefunktionalprogramm VASP so-

wohl mit lokalen als auch mit nichtlokalen Funktionalen untersucht. Vier verschiedene
Funktionale wurden verwendet: die lokale Dichtenäherung (LDA), die PBE und PBEsol
Funktionale, die beide eine Form der Gradientennäherung (GGA) verwenden, und ein
Hybridfunktional (HSE) bei dem ein Teil der Austauschenergie mit der Hartree-Fock-
Methode berechnet wird. Mit diesen Funktionalen wurden für die jeweiligen Strukturen
die strukturellen Parameter im energetischen Minimum berechnet, das sind Gitterkon-
stanten, Zellformen und -volumen, Kompressionsmodul und die internen Positionspara-
meter der Atome. Das PBEsol Funktional zeigt im Vergleich mit dem Experiment die
beste Übereinstimmung dieser Parameter und der Übergangsdrücke. Weiters wurden die
elektronischen Zustandsdichten der Phasen mit den vier Funktionalen berechnet und mit
experimentellen Daten verglichen. Für die Bandlücke ergibt das Hybridfunktional die
beste Übereinstimmung.
Um dünne Zirkonoxid Schichten herzustellen kann eine geeignete Legierung oxidiert

werden, zum Beispiel Pt3Zr. Mit Hilfe von VASP wurde das Pt3Zr Substrat und die
Grenzfläche zwischen diesem und einer dünnen Zirkonoxid Schicht untersucht. Der Pt3Zr
Kristall besteht aus einem der Ni3Ti Struktur ähnlichen hexagonalen Gitter und ist aus
gemischten Schichten von Platin- und Zirkonatomen in ABAC-Reihenfolge aufgebaut.
Die experimentell bestimmten Daten zeigen dass die Oberfläche des Substrates keine
Zirkonatome mehr enthält, und dass Stufen in der Oberfläche des Pt3Zr Substrates zwei
Atomlagen hoch sind. Die hier präsentierten DFT Rechnungen konnten eindeutig zeigen
dass die bevorzugte Oberflächenschicht vom Typ A ist.
STM Bilder der ZrO2 Schicht zeigen eine O–Zr–O Trilage in einer (

√
19 ×

√
19)R23°

Superzelle auf einer (111) orientierten Oberfläche des Substrates. Um die Rechenzeit zu
verringern wurden zwei verschiedene Modelle für die ZrO2–Pt3Zr Grenzfläche erstellt
und mit dem Experiment verglichen. DFT Rechnungen die mit dem PBE Funktional
durchgeführt wurden zeigten nur sehr schwache Bindung zum Substrat. Im Vergleich mit
einem Funktional, bei dem Näherungen zur nichtlokalen van der Waals Wechselwirkung
hinzugefügt wurden (vdW-DF), zeigen diese dass die van der Waals Beiträge für eine
Übereinstimmung mit dem Experiment essentiell sind. Durch Simulation von STM Bil-
dern konnten die hellen Punkte in den STM Bildern als Zirkonatome identifiziert werden.
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1. Introduction

Zirconia (ZrO2) is an interesting material with various applications, both in pure and in
doped forms. It is one of the most corrosion-resistant and refractive materials known,
and its applications range from the use as thermal barrier coating in engines, to artificial
diamonds, oxygen sensors and fuel cell membranes due to its ability to allow free move-
ment of oxygen ions through the crystal structure. It also has a large band gap of 5 eV
to 7 eV depending on the studied phase and is therefore a good isolator.
At room temperature ZrO2 is stable in a monoclinic P21/c phase, while at higher

temperatures it shows phase transitions first to a tetragonal P42/nmc phase at about
1440K and then to a cubic Fm3m phase at about 2650K. Under high pressure ZrO2
exists in different orthorhombic phases, first transitioning to an orthorhombic Pbca phase
at 8GPa to 11GPa and later to an orthorhombic Pnma phase at 21GPa to 27GPa.
Stabilization of the cubic phase can be achieved by doping the ZrO2 crystal with Yttrium
or by creating thin ZrO2 films on a suitable metal.
The direct application of electron based analysis methods like scanning tunneling mi-

croscopy (STM) to zirconia is difficult due to the large band gap. It is therefore useful
to examine ultra thin zirconia films which have been deposited on a suitable substrate.
One example of this technique is deposition and oxidation of zirconia of a Pt3Zr(111)
substrate. The research presented in this thesis covers ultra thin ZrO2 films grown on a
Pt(111) substrate, resulting in ZrO2 films which are (111)-oriented with respect to the
cubic fluorite ZrO2 bulk structure[1–3].
As the interest in solid oxide fuel cells has recently risen, using density functional

theory is a promising method to understand the structural and electronic properties of
the ZrO2 bulk phases and its interface to various metals.
In chapter 2 a short introduction to the physics of phases and phase transformations

is given, followed by an introduction to density functional theory in chapter 3 where
its advantages and caveats are explained. Then, in chapter 4, a comprehensive ab-
initio study of the most important phases of Zirconia is presented, covering both high
temperature and high pressure phases. Both the structural and electronic parameters of
the various phases were studied. This is followed by an investigation of the interface of
a platinum terminated Pt3Zr substrate and a ZrO2 monolayer in chapter 5 where the
different tools offered by density functional theory were used to complement experimental
measurements[4].
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2. Crystal Phases and Phase Transitions

2.1. Definition of a Phase

A phase is defined as a region of space with uniform physical properties. These properties
can be the density, magnetization or chemical composition of a material, but also the
structural order of a crystal. A transformation between different phases is called a phase
transition. During this transition one of the aforementioned properties changes as a
result of an external condition. Especially, transitions between different crystal phases
can occur when a crystal is heated or put under pressure.
A phase transition is marked by a singularity in a thermodynamic potential. One has

to differentiate between phase transitions of first and second order. In the first-order
phase transitions a discontinuous transition occurs, meaning that one or more of the
first derivatives of the appropriate thermodynamic potential has a finite discontinuity. If
the first derivatives are continuous but second order derivatives discontinuous, the phase
transition is called continuous or critical.
For the description of a crystal phase one appropriate potential is the Enthalpy H.

It includes the internal energy required to create a system and the energy required to
establish its volume and pressure according to

H = U + pV (2.1)

with U being the internal energy, p the pressure and V the volume of the crystal.
Another important thermodynamic potential is the Gibbs free energy G, given by

G = U + pV − ST (2.2)

with S being the entropy and T the temperature. As DFT calculations essentially occur
at T = 0 the Gibbs free energy is equal to the Enthalpy.

Diffusionless Transformations

One important type of phase transition is a diffusionless phase transition. It is a phase
change where cooperative, homogenous movement of atoms results in a change of the
crystal structure. The crystal lattice can be distorted by dilation or shearing while
keeping the relative positions of the atoms more or less in place, transforming one Bravais
lattice into another. A special case of first-order diffusionless transformations is the
Martensitic transformation where the strain energy plays a significant role. Here the
product phase inherits the same atomic order and composition as the parent phase.
Originally found by quenching the steel structure Austenite to the eponymous Martensite

10



phase transformations of this kind have been observed in various metal transformations
such as the cubic to tetragonal transition of Zirconia studied in section 4.1.2.

2.1.1. Critical exponents

A critical point is marked by a divergence in an extensive property of a thermodynamic
system. Critical exponents help to understand the form of these divergences and the
singular behavior of other thermodynamic functions near the critical point by describing
them in terms of a power law around the critical temperature Tc.
A measure of the deviation in temperature from the critical temperature Tc is the

reduced temperature
t = (T − Tc)/Tc. (2.3)

The critical exponent associated with a function F (t) is, assuming that the limit t → 0
exists, defined as

λ = lim
t→0

ln |F (t)|
ln |t|

. (2.4)

Equation (2.4) can also be written as

F (t) ∼ |t|λ (2.5)

with ∼ signifying that this equation only describes the asymptotic behavior in the limit
t→ 0. Comparing eq. (2.5) to the leading behavior of the singularities in the thermody-
namic function one arrives at various critical exponents for different systems. Some of the
most commonly used critical exponents for example for a fluid system include the corre-
lation length ξ ∼ |t|−ν or the isothermal compressibility κT ∼ |t|−γ . Critical exponents
are to a large degree universal depending on only a few fundamental parameters, while
the critical temperature Tc is very sensitive to details of the interatomic interactions.

2.2. Models

To describe a physical system it is useful to build mathematical models which describe
the cooperative behavior. While it is possible to create a very realistic model which
includes all many-body interactions, solving the corresponding Schrödinger equation nu-
merically often cannot be done in a sensible timeframe. Another approach is therefore
to build the simplest possible model which includes all essential physics and hope it is
still accurate enough to give a good approximation of the numerical solution. In the
following section a short introduction to some statistical mechanical model will be given.
For more information a standard textbook on statistical mechanics like Thermodynamik -
Von der Mikrophysik zur Makrophysik by Stierstadt [5] or Statistical Mechanics of Phase
Transitions by Yeomans [6] should be consulted.
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Spin-1/2 Ising model

One very successful model for an interacting system is the spin-1/2 Ising model. It
describes the interaction of classical spin variables si which can take the values ±1 and
are placed at the lattice sites of the system. These spins interact pairwise according to
a Hamiltonian

H = −J
∑
〈ij〉

sisj −H
∑
i

si. (2.6)

The first term in eq. (2.6) describes the interaction between the spins si and the possibility
of a phase transition. J corresponds to the exchange energy, and 〈ij〉 stands for a sum
over the nearest-neighbor spins. The Hamiltonian can of course be expanded by adding
terms describing interactions between further-neighbor spins.
An example for a system which can be described with the spin-1/2 Ising model is

beta brass, a binary alloy. Beta brass consists of copper and zinc atoms which form a
body-centered lattice. At high temperature the lattice sites are occupied at random by
either copper or zinc. At a temperature below Tc = 733K a phase transition occurs to
an ordered state where each species prefers to occupy one of the two sub-lattices if the
bcc lattice.
As each site can be occupied by either copper or zinc the system can be described by

a spin-1/2 Ising model. A value of the spin-variable si = 1 corresponds to an occupation
of position i by copper, and si = −1 by an occupation of position i by zinc. With JCuCu,
JZnZn and JCuZn describing the interaction between two copper atoms, two zinc atoms
and a copper and a zinc atom respectively the Hamiltonian can be written as

H =
1

4

∑
〈ij〉

JCuCu(1 + si)(1 + sj) +
1

4

∑
〈ij〉

JZnZn(1− si)(1− sj)+

+
1

4

∑
〈ij〉

JCuZn{(1 + si)(1− sj) + (1− si)(1 + sj)}.
(2.7)

Equation (2.7) can also be written as

H = −J
∑
〈ij〉

sisj −H
∑
i

si + C (2.8)

with J = 1
4(JCuCu + JZnZn − 2JCuZn) and C being a spin-independent variable.

Because each lattice site is always occupied by either a copper or a zinc atom and
no impurities or vacancies are presumed to exist the use of an Ising variable is not an
approximation. Nevertheless, to reproduce the thermodynamic functions of this system
correctly more variables have to be taken into account, like long-range interactions and
multi-spin terms (interaction between more than two spins, e.g. sisjsk).
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Spin-1 Ising Model

For the description of systems with more than two states the spin-1/2 Ising model needs
to be expanded, leading to the general Hamiltonian

H = −J
∑
〈ij〉

sisj −K
∑
〈ij〉

s2i s
2
j −D

∑
i

s2i

−L
∑
〈ij〉

(s2i sj + sis
2
j )−H

∑
i

si, si = ±1, 0. (2.9)

In this model all possible terms sαi s
β
j with α, β = 0, 1, 2 are allowed, and higher powers of

the spins do not have to be taken into account because s3i = si. It can describe a much
higher variety of critical behavior due to its enlarged parameter space than the spin-1/2
Ising model.

2.3. Mean-field theories

As it is very hard to solve the spin-1/2 Ising system in three dimensions various ap-
proximation techniques were introduced. One of the most widely used is the mean-field
theory. Here the n-body system is replaced by a 1-body system interacting with a cho-
sen external field which replaces the interactions between an arbitrary particle and all
other particles. This field is also called molecular field. The problem is though that it
ignores spin fluctuations and can therefore only be valid when those fluctuations can be
disregarded.
To derive the mean-field theory one starts with the Bogolyubov inequality

F ≤ Φ = F0 + 〈H −H0〉0 (2.10)

whereH0 is a trial Hamiltonian with the parameter H0, F0 the corresponding free energy,
F the true free energy of the system and the brackets stand for the average taken in the
ensemble defined in H0. Minimizing Φ with respect to H0 leads to the mean-field free
energy

Fmf = minH0{Φ}. (2.11)

The inequality in eq. (2.10) ensures that the mean-field free energy cannot fall below the
true free energy, so eq. (2.11) gives the best possible approximation.
An example for the use of the mean-field theory is the nearest neighbor Ising model in

zero field. It is defined by the Hamiltonian in eq. (2.6) with H = 0 on a lattice with z
nearest neighbors for each site. For a simple cubic lattice z = 6.
The trial Hamiltonian is therefore

H0 = −H0

∑
i

si (2.12)
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which is the Hamiltonian of a paramagnet. The free energy F0 corresponding to the trial
Hamiltonian is now

F0 = −NkT ln(2 coshβH0) (2.13)

and the mean value of the spins

〈s〉0 = tanhβH0. (2.14)

As H0 only contains single-site terms one can write

〈H −H0〉0 =

∑
{s}(−J

∑
〈ij〉 sisj +H0

∑
i si) exp[βH0

∑
i si]∑

{s} exp[βH0
∑

i si]

= −J
∑
〈ij〉

〈si〉0〈sj〉0 +H0

∑
i

〈si〉0 (2.15)

For a translationally invariant system 〈si〉0 = 〈sj〉0 ≡ 〈s〉0 and eq. (2.15) can now be
written as

〈H −H0〉0 = −JzN〈s〉20/2 +NH0〈s〉0. (2.16)

with zN/2 being the number of bonds in the lattice. Finally, using eqs. (2.10), (2.13),
(2.14) and (2.16) one arrives at

Φ = −NkT ln(2 coshβH0)−
JzN

2
tanh2 βH0 +NH0 tanhβH0. (2.17)

A minimization of this expression leads to a self-consistent formula for the mean field

H0 = Jz tanhβH0. (2.18)

The mean-field free energy is now

Fmf = −NkT ln(2 coshβJz〈s〉0) +NJz〈s〉20/2 (2.19)

as can be seen by substituting eq. (2.18) into eq. (2.17).

2.3.1. Mean-Field Critical Exponents

Similar to section 2.1.1 critical exponents can be calculated for the mean-field Ising model.
For example to obtain the exponent α which describes the temperature dependence of
the specific heat one differentiates the free energy twice. This leads to

C =
3

2
Nk +O(t) T < Tc (2.20)

C = 0 T > Tc (2.21)

and a discontinuity in the specific heat so that αmf = 0.
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2.4. Equations of State

An equation of state describes the state of a matter under certain physical conditions.
It formulates the mathematical correlation of multiple state functions of a material, for
example its temperature, pressure, volume or internal energy. Historically these equations
are used to describe the correlation of the temperature and pressure of a liquid to the
density of its gas with the ideal gas law pV = R(TC +273.15) being one of the oldest, but
also solid crystals can be modeled by such an equation of state. Murnaghan [7] derived
formulae to calculate the stress in an elastic medium for a known strain and a known
elastic energy density. While Hooke’s law in its general form can predict the virtual work
of all forces acting upon the medium in the infinitesimal theory this does not hold for
finite matter. There the virtual work must be obtained by integrating over the scalar
product of the stress tensor by the space-derivative of the virtual displacement vector.
Murnaghan derived a formula for an isotropic elastic solid under hydrostatic pressure
which describes its pressure using only two elastic constants λ and µ:

p(V ) = a(f(V ) + 5f(V )2), f(V ) =
1

2

{ (
V0
V

) 2
3

− 1

}
, a = 3λ+ 2µ. (2.22)

Francis Birch [8] further developed this theory for a cubic symmetric medium under
both hydrostatic compression of any amount, and a homogenous infinitesimal strain of
general type. This led to the more elaborate formula for the pressure as a function of
the volume shown in eq. (2.23) with the equilibrium volume V0, the bulk modulus B0

and the pressure derivative of the bulk modulus B′0 being the state variables of the solid.
It should be noted that experimentally B′0 is found to change little with pressure and is
considered constant in these equations.

p(V ) =
3B0

2

[(
V0
V

) 7
3

−
(
V0
V

) 5
3

]{
1 +

3

4

(
B′0 − 4

) [(V0
V

) 2
3

− 1

]}
(2.23)

Integrating eq. (2.23) for the pressure according to the thermodynamic equation p =
−(∂E/∂V )S gives an equation for the energy:

E(V ) = E0 +
9V0B0
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[(

V0
V

) 2
3

− 1

]3
B′0 +

[(
V0
V

) 2
3

− 1

]2 [
6− 4

(
V0
V

) 2
3

] . (2.24)

Using this formula for the total energy of a crystal system the enthalpy can be calculated
according to eq. (2.25):

H = E + pV. (2.25)

A point in a H over p diagram where the enthalpy for two phases is equal corresponds
to the transition pressure between the two phases. This transition pressure can also be
determined by using a common tangent construction in the plots of the total energy
E(V ) as shown in section 4.3.3.
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3. Computational Methods

3.1. Density Functional Theory

The description of the structure and dynamics of many-electron systems is one of the
fundamental problems in chemistry and theoretical physics. One important property of
such systems is the structure of the electronic shell or, in the case of crystals, the elec-
tronic band structure. The stability of a system is directly determined by the electronic
structure, and it is also an important parameter for electric and magnetic moments or in
transport properties like the electrical conductivity.
Two different approaches can be used to study these properties:
1. Here the fundamental, true Hamiltonian of the system serves as the foundation

of the approach, also called first principles or ab-initio approach. To facilitate
this approach many technical approximations have to be used to solve the result-
ing many-body Schrödinger equation, an example being the representation of its
single-particle ingredients in terms of a finite basis set. As with all approximations,
important features can be missed depending on the system or the studied property
when no due diligence is performed with regard to the approximations. The ma-
jor advantage of the ab-initio approach is that no additional adjustable physical
parameters are introduced.

2. For the second approach a suitable model Hamiltonian is introduced. Available
data, often from experiments, is used to derive the model Hamiltonian. The ad-
vantage compared to the first approach is that the resulting many-body problem is
much simpler than the ab-initio problem, but on the other hand important features
may be ignored during the construction of the model.

The density functional theory approach used in this work uses the ab-initio approach
introduced by Hohenberg and Kohn [9]. The Hohenberg-Kohn (HK) theorem represents a
basic theorem which ensures that stationary many-body systems can be fully character-
ized by the ground state charge density. Knowledge of the ground state is therefore suf-
ficient to determine all ground state observables, and the ground state energy functional
E[n] can be used to determine the ground state density using a variational equation. As
the exact form of the energy functional is not given by the HK-theorem, the Kohn-Sham
(KS) scheme [10] was introduced to map an interactive N-particle problem to a suitable
noninteracting system.
The energy functional can now be written as a functional of the electron density n(r),

E[n(r)] = T [n(r)] + Vee[n(r)] + Vext[n(r)], (3.1)
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with
Vext[n(r)] =

∫
drn(r)Vext(r). (3.2)

The functional T [n(r)] corresponds to the kinetic energy of the electrons, Vee[n(r)] rep-
resents the Coulomb interaction between the N electrons of the system, while Vext[n(r)]
represents the interaction between the electrons and the nuclei.
Equation (3.1) can now be written in terms of Ts[n(r)] which represents the kinetic

energy of a virtual system of non-interacting electrons yielding the same density as the
original interacting one, and in terms of the Hartree energy U [n(r)] which represents the
electronic interaction of one electron with all other electrons:

U [n(r)] =
1

2

∫
dr

∫
dr′

n(r)n(r′)

|r− r′|
(3.3)

Ts[n(r)] = −1

2

N∑
i=1

∫
drφ∗i (r)∇2φi(r) (3.4)

Also, another term is introduced, the exchange-correlation energy Exc[n(r)]. It accounts
for both the deviation of the Hartree energy from Vee[n(r)] and of Ts[n(r)] from the real
kinetic energy T [n(r)]:

Exc[n(r)] = (T [n(r)]− Ts[n(r)]) + (Vee[n(r)]− U [n(r)]) , (3.5)

leading to
E[n(r)] = Ts[n(r)] + U [n(r)] + Vext[n(r)] + Exc[n(r)]. (3.6)

Equation (3.6) can now be minimized with respect to the electron density n(r) according
to

0 =
δTs
δφ∗i

+
δ

δn(r)

{
U [n(r)] + Vext[n(r)] + Exc[n(r)]

}
δn(r)

δφ∗i
(3.7)

with φi being one-electron wave functions. This finally leads to the Kohn-Sham equa-
tions[10] {

− 1

2
∇2
i + Veff (r)

}
φi(r) = εiφi(r) (3.8)

with i = 1, . . . , N and

n(r) =
N∑
i=1

|φi(r)|2, (3.9)

Veff (r) = Vext(r) +

∫
n(r′)

|r− r′|
dr′ +

δExc(r)

δn(r)
. (3.10)

As can be seen in eq. (3.8) the problem is now reduced to N coupled Schrödinger
equations of non-interacting particles. These equations can now be solved iteratively,
starting from an initial guess n0(r) for the charge density. After inserting n0(r) into
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Veff (r) the Kohn-Sham equations (eq. (3.8)) are solved and the resulting charge density
is compared to the initial values. If the difference between the two charge densities is
greater than a predefined threshold the calculated charge density is again inserted into
eq. (3.8) and new results are calculated. A more comprehensive derivation of the Kohn-
Sham equations can be found in Density Functional Theory - An Advanced Course by
Dreizler and Engel [11].
Until now the exact form Exc term is still unknown and needs to be determined by

one of the various approximations described in the following sections.

3.2. Local Density Approximation (LDA)

In the LDA approach to approximate the exchange correlation energy term only local
contributions of the electron density are accounted for, leading to the following functional
for the exchange energy:

ELDAxc [n(r)] =

∫
drεxc(n(r))n(r). (3.11)

The term εxc(n(r)) represents the exchange-correlation energy density for a homogenous
electron gas. Advanced many-body techniques like quantum Monte-Carlo simulations
can then be used to produce accurate results for the correlation energy density[12], and
the resulting functional for the exchange correlation energy can then be used to solve
eq. (3.8) iteratively.
As the coefficients used to describe the exchange energy density εxc(n(r)) are com-

pletely determined by the properties of the homogenous electron gas the LDA is fully
consistent with the ab-initio concept of the density functional theory. One deficiency of
the LDA is that it predicts atomic negative ions to be unbound which results from the
exponential decay of the LDA exchange potential. When used to investigate the lattice
parameters of crystals it tends to over-bind and therefore leads to underestimated lat-
tice constants. Nevertheless the LDA has been used for decades with surprisingly good
results for numerous inhomogeneous systems.

3.3. Generalized Gradient Approximation (GGA)

To improve the results from the LDA many modifications of the energy correlation func-
tional were introduced. An important expansion of the LDA regime is the generalized
gradient approximation (GGA) which includes the gradient of the energy density in the
exchange energy density function. This leads to a functional for the exchange energy

EGGAxc [n↑, n↓] =

∫
drεxc(n↑, n↓,∇n↑,∇n↓)n(r). (3.12)

with n = n↑ + n↓ and the electron spin densities n↑(r) and n↓(r).
As the accuracy of the exchange energies is directly transferred to the total ground

state energies the GGA can produce much better results for the crystal lattice parameters.
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Perdew et al. [13] have for example shown that the total energies of various atoms and
molecules can be calculated at much higher accuracy compared to the LDA. The GGA
also tends to give better results for crystal lattice parameters and bond lengths making
it the de-facto standard approximation in present-day DFT. It should be noted though
that while reducing the error compared to LDA calculations the GGA has its deficiencies
too, for example overestimating crystal lattice parameters and bond lengths. As both
the LDA and the GGA are closely related to the homogenous electron gas the calculated
value for the band gap can get underestimated drastically, as can be seen in section 4.3.4.
One of the most widely used functionals using the GGA is the PBE functional in-

troduced by Perdew, Burke and Ernzerhof (PBE)[14] which is an analytical fit to the
numerical GGA in which all parameters are fundamental constants. This marks an im-
provement to older functionals like the semi-empirical B88[15] or PW91[16]. To further
improve the results for lattice properties and bulk exchange energies of metals the PBE
functional was modified by recovering the gradient expansion for exchange over a wide
range of density gradients. This approach resulted in the PBEsol[17] functional which is
specially tailored for calculations of solids.

3.4. Non-local Contributions

To further increase the accuracy of DFT calculations functionals were introduced which
include non-local interaction energies in the exchange-correlation term. In this work
functionals using two different approaches were used: hybrid functionals using part of
the exact Hartree-Fock in the exchange energy term and van der Waals DFT.

3.4.1. Hybrid Functionals

In the approach used to construct the hybrid functionals the term for the exchange
correlation energy Exc is modified by adding part of the exact Hartree-Fock exchange
energy to the usual GGA term. The correlation term is usually the same as for the GGA
exchange functional. This results in a term for the exchange energy

Ehybxc = aEHFx + (1− a)EGGAx + EGGAc (3.13)

with the mixing parameter a which has to be determined by advanced many-body meth-
ods. One problem with this method is that the calculation of the exact Fock-exchange
energy in solids with periodic boundary conditions is computationally very expensive due
to the 1

r decay of the energy. To mitigate this issue screened hybrid functionals have been
introduced, where the Coulomb interaction term is decomposed into a short-range and a
long-range part. The hybrid functional used in this work was proposed by Heyd, Scuseria
and Ernzerhof (HSE06)[18] and replaces the long-range part of the exact exchange energy
by the PBE exchange energy, resulting in the following term for the exchange energy:

EHSExc =
1

4
EHF,srx +

3

4
EPBE,srx + EPBE,lrx + EPBEc (3.14)
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The HSE06 (just called HSE in this work) functional produces good results for the
crystal lattice parameters, mitigating some of the deficiencies of the LDA and GGA
approaches. As it simulates the electronic structure more accurately the results for the
calculated band gap are much closer to experimental values, as can be seen in chapter 4.

3.4.2. Van der Waals-DFT

As the LDA and GGA functionals do not include non-local dispersive forces, they do
not produce accurate results for weakly bonded systems. Of the many approaches to ac-
count for the non-local dispersion in DFT the non-local van der Waals density functional
proposed by Langreth and Lundqvist[19] (vdW-DF) shows the most promising results.
Here the exchange correlation energy term can be written as

Exc = EGGAx + ELDAc + Enlc (3.15)

with Enlc denoting the non-local correlation energy. In its simplest form it can be written
as

Enlc =
1

2

∫
drdr′n(r)φ(r, r′)n(r′) (3.16)

where φ(r, r′) is a given, general function depending on r− r′ and the densities n in the
vicinity of r and r′.
Enlc can now be calculated via a model response function for electron densities. As

the exchange functional affects the interaction energy obtained with vdW-DF the choice
which functional is used is important for the accuracy of the calculated interaction en-
ergies. Klimeš et al. [20] have shown that using a modified Becke88 (B88)[15] functional
yields the best results for the S22 benchmark data set of weakly bonded dimers. This
functional was named optB88 and got implemented in summer 2011 in the VASP DFT
code[21].

3.5. Vienna Ab-initio Simulation Package (VASP)

All calculations presented in this work have been done with the VASP code, short for
Vienna Ab-initio Simulation Package. It has mainly been developed by Kresse et al [22–
25] at the Institute of Computational Physics of the University of Vienna. VASP uses
a plane wave basis set and PAW potentials[26, 27] to treat the electronic exchange and
correlation effects. The projector augmented wave method (PAW) is used to reduce the
number of wave functions to be calculated and to build the PAW potentials with which
the collective system of nuclei and core electrons are described. VASP can also calculate
the full stress tensor for structure relaxation processes, and all the different functionals
mentioned in the sections above are implemented in the VASP code.
VASP uses plain text files to control the input parameters and to write results to

the hard drive. Important files are the INCAR, POSCAR, CONTCAR, POTCAR,
KPOINTS, OUTCAR, CHGCAR and DOSCAR files.
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• The INCAR file controls the settings for the calculation. Here VASP can be told
for example which functional to use, whether to do ionic relaxations and at which
accuracy, or the desired energy cutoff to be used in the calculations. A more com-
prehensive list of parameters used in this work is given in appendix A.

• The POSCAR file holds the lattice geometry and the positions of all atoms in the
cell. It also includes the number of each element in the atomic cell. The coordinates
can be given either in direct or cartesian coordinates. This file can also be used
to switch on selective dynamics, which enables the fixation of atoms in a certain
direction during the ionic relaxation, for example keeping one atom in place in the
x-coordinate while letting relax in the y- and z-coordinate. The CONTCAR file has
the same format as the POSCAR file and contains the positions of the atoms after
each ionic relaxation step. Should the relaxation not converge in one run the content
of the CONTCAR file can just be copied to the POSCAR file and the relaxation
process can be restarted.

• As mentioned above VASP uses PAW potentials to account for the exchange cor-
relation interaction, and these can be found in the POTCAR file. For each atomic
species there exists a pre-calculated POTCAR file which contains the elements fun-
damental constants and the pseudo-potential. Since VASP version 5.2 the POTCAR
files also include default values for the energy cutoff. If the studied cell contains
multiple atomic species the POTCAR files of the corresponding elements need to
be joined together in the same order as the atoms in the POSCAR file.

• The KPOINTS file contains information on how to create the k-point grid. VASP
can automatically create even spaced grids of k-points by using the scheme of
Monkhorst and Pack [28], either centered at the Γ-point or with even subdivisions
shifted off the Γ point. Alternatively the k-points can be entered manually to gen-
erate strings of k-points connecting specific points in the Brillouin zone. This mode
is particularly useful for band structure calculations.

• The OUTCAR file contains almost all relevant output from the calculations, for
example the calculated energies, magnetic moments, the charge distribution, band
structure and the stress tensor. Additionally it contains the coordinates of all k-
points and the input settings read from the INCAR and POTCAR files. As this
file is usually several thousands lines long it can be cumbersome to read, so to
quickly get information on calculated energy of the current electronic or ionic step
the OSZICAR file can be used.

• The CHGCAR file holds the same information on the lattice parameters as the
CONTCAR file, but it also includes the total charge density multiplied by the cell
volume on the fine FFT grid and the PAW one-center occupancies. It can be used
to restart VASP from an existing charge density and to visualize the charge density
of the cell.

• The densities of states and the integrated DOS are contained in the DOSCAR file.
If site-projected DOS calculations are desired, a dataset for each ion is also included
in this file.
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4. The ZrO2 Bulk

Experimentally, many different distinct phases of ZrO2 have been observed, although
some may be misinterpreted due to the difficulty to determine the exact structure. This
is especially true for high pressure phases. In this chapter a thorough study of a number
of ZrO2 phases is presented, covering both high temperature and high pressure phases.

4.1. ZrO2 Bulk Phases

4.1.1. Monoclinic Phase

At ambient pressure all the different phases ZrO2 assumes are well understood: at room
temperature, ZrO2 assumes a monoclinic (C5

2h, P21/c, Space-group 14) unit cell contain-
ing four ZrO2 molecules (Z=4), see fig. 4.1. This structure is also called baddeleyite and
has first been described by McCullough and Trueblood [29]. The monoclinic phase is a
heavily distorted fluorite (CaF2) structure with the Zr atom on 7 coordination, which
means it has 7 oxygen atoms as nearest neighbors. The basis vectors of the primitive cell
are

A1 = aX

A2 = b Y

A3 = c cos(β) X + c sin(β) Z

with X = (X,Y, Z) representing a vector in cartesian coordinates. For the description
of the fractional coordinates the Wyckoff notation[30] is used: zirconium and oxygen
atoms occupy the Wyckoff positions 4e at ±(x, y, z) and ±(−x, y + 1/2, 1/2− z).

4.1.2. Tetragonal Phase

At about 1440K a martensitic phase transition from the monoclinic to a tetragonal
(D15

4h, P42/nmc, Space-group 137) phase is observed. The zirconium atoms are 8-fold
coordinated. According to Teufer [31] it represents a slightly distorted cubic CaF2 struc-
ture where the oxygen atoms are displaced from their ideal cubic positions: alternating
columns of oxygen atoms are shifted up and downwards in z direction. To make this
displacement visible and to make it comparable to the cubic cell the structure is rep-
resented by a distorted body-centered cubic cell composed of two ZrO2 formula units
(Z=2). The zirconium atoms can be found at (0, 0, 0) and (1/2, 1/2, 1/2) while the oxy-
gen atoms occupy the positions at (1/2, 0, 1/2−dz), (1/2, 0,−1/2+dz), (0, 1/2, 1/2+dz)
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Figure 4.1.: Monoclinic ZrO2. Green spheres correspond to zirconium, red to oxygen
atoms.

and (0, 1/2,−1/2− dz). The internal coordinate dz is defined to represent the difference
between the cubic and the tetragonal position of the oxygen atoms (see fig. 4.2). The
basis vectors of the primitive cell are

A1 = aX

A2 = a Y

A3 = cZ

with a c/a ratio of ≈ 1.45.

Figure 4.2.: Tetragonal ZrO2. Green spheres correspond to zirconium, red to oxygen
atoms.
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4.1.3. Cubic Phase

Another phase transition takes place at a temperature of about 2650K from the tetrago-
nal to the cubic fluorite phase (O5

h, Fm3m, Space-group 225). This structure is isostruc-
tural to CaF2 and the Zr atoms are in 8-fold coordination. The unit cell can be considered
a special case of the tetragonal phase with a c/a ratio of

√
2 and the oxygen atoms shifted

along the z coordinate into central positions in the unit cell. There are multiple alterna-
tives as to how the structure can be constructed, for better comparability a body centered
cell similar to the tetragonal cell consisting of two ZrO2 formula units (Z=2) was used.
The atoms can be found at the same positions as with the tetragonal phase with the
internal parameter dz = 0. The basis vectors spanning the cubic fluorite cell are similar
to the tetragonal cell mentioned before with a c/a ratio of

√
2.

Figure 4.3.: Cubic ZrO2. Green spheres correspond to zirconium, red to oxygen atoms.

4.1.4. Orthorhombic Phases

The structures of high pressure phases are not as well understood as the high temperature
phases, but it is known that ZrO2 shows several orthorhombic phases at high pressure.
Between 8 and 11GPa a phase transition can be observed (see Leger et al. [32], Al-
Khatatbeh et al. [33]) to an orthorhombic structure. While first studies using in situ
X-ray diffraction identified this structure to be of Pbcm type (Kudoh et al. [34], Heuer
et al. [35]), newer data gained from neutron powder experiments have indicated that
the space group of this structure is Pbca (Howard et al. [36], Ohtaka et al. [37]). This
structure consists of 8 ZrO2 formula units in the primitive cell and the zirconium atom
shows 7-fold coordination. One set of zirconium and two sets of oxygen atoms occupy
the Wyckoff positions 8d: (x, y, z), (−x + 1/2,−y, z + 1/2), (−x, y + 1/2,−z + 1/2),
(x+ 1/2,−y+ 1/2,−z), (−x,−y,−z), (x+ 1/2, y,−z + 1/2), (x,−y+ 1/2, z + 1/2) and
(−x+ 1/2, y + 1/2, z).
At even higher pressures of 21–27GPa[32, 33] another phase transition occurs. This
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Figure 4.4.: Orthorhombic Pbca (Ortho-I). Green spheres correspond to zirconium, red
to oxygen atoms.

structure has been identified by X-ray diffraction as an orthorhombic Pnma structure
(Space-group 62) which is isostructural to cotunnite PbCl2. Compared to the fluorite
prototype this structure is the most heavily deformed. The zirconium atoms show a 9-fold
coordination with the positions of the atoms at ±(u, v, 1/4) and ±(1/2−u, v+ 1/2, 1/4)
in Wyckoff notation (position 4c) and the fractional parameters u and v.
The lattice of both orthorhombic structures is parametrized by the three lattice pa-

rameters a, b, c:

A1 = aX

A2 = b Y

A3 = cZ

The orthorhombic Pbca phase will subsequently be called Ortho-I, while the ortho-
rhombic Pnma phase will be denoted as Ortho-II.
It is not easy to get good results for the bulk properties like lattice parameters and

compressibility from experimental measurements due to the high pressures at which these
phases stabilize. Powdered ZrO2 which is used for these measurements does not provide
direct information about the symmetry of the crystal, and due to the use of dopants
like graphite to facilitate heating a comparison to data gained from pure zirconia is very
difficult. Another issue with these experiments is that quenched samples are not in a
thermodynamic equilibrium which can result in incorrect interpretation of the data due
to lack of knowledge of the complete history of the sample.

4.2. Calculations

To compare the different functionals mentioned in chapter 3 a variety of functionals were
used to treat the electronic exchange and correlation effects: LDA, PBE[14], PBEsol[17]
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Figure 4.5.: Orthorhombic Pnma (Ortho-II). Green spheres correspond to zirconium, red
to oxygen atoms.

and the HSE hybrid functionals proposed by Heyd, Scuseria and Ernzerhof[18].
To facilitate the comparison with results from other researchers the pre-generated

potentials[27] distributed with VASP were used. The exact versions of the potentials can
be found in table C.9. An energy cutoff of 400 eV was used, and the k-point meshes were
automatically generated Γ-centered grids using the algorithm introduced by Monkhorst
and Pack [28].
For the calculations both the internal coordinates and the cell shape were relaxed while

keeping the volume of the cell constant1 until the difference in the total energy between
two ionic steps was smaller than 10−4 eV. For the calculations using the HSE functional
the structures were pre-relaxed with the PBE functional and then only 10 ionic steps
were done with the HSE functional due to its high computational cost. The setting
of the partial occupancies for the orbitals was done with the tetrahedron method with
Blöchl corrections[38]2 which the VASP authors recommended3 for insulators.
To determine the appropriate density of the k-point mesh test calculations for each

ZrO2 phase were done. The total energy with lattice parameters taken from the ex-
periments were calculated at increasing numbers of k-points. The energies were then
compared and the highest value where the difference in the energy for that phase was
lower than 0.01% was then taken for the k-point mesh. The k-point meshes used for
calculations with local functionals are noted in table 4.1.
For the calculations using the non-local HSE functionals different k-point meshes were

used. To reduce the computing time the exact Hartree-Fock exchange energy was not
calculated in the whole Brillouin zone but only for a sub-grid in close proximity to the

1VASP parameter: ISIF = 4
2VASP parameter: ISMEAR = -5
3see http://cms.mpi.univie.ac.at/vasp/vasp/ISMEAR_SIGMA_FERWE_FERDO_SMEARINGS_tag.html
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Phase k-point mesh irreducible k-points

Monoclinic 4× 4× 4 30
Tetragonal 7× 7× 7 64
Cubic 10× 10× 10 10
Orthorhombic-I 8× 8× 8 125
Orthorhombic-II 4× 4× 4 27

Table 4.1.: K-point meshes used for the ZrO2 bulk calculations using local functionals.

primitive cell, and for the rest of the supercell the PBE exchange energy was added4.
For this to work the k-point grid needs to be constructed of a grid of even numbers of
k-points, resulting in the meshes shown in table 4.2.

Phase k-point mesh irreducible k-points

Monoclinic 6× 6× 6 80
Tetragonal 10× 10× 10 216
Cubic 10× 10× 10 126
Orthorhombic-I 6× 6× 4 48
Orthorhombic-II 6× 6× 6 64

Table 4.2.: K-point meshes used for the ZrO2 bulk calculations using the HSE functional.

To determine the equilibrium volume the total energy was calculated at different cell
volumes in the vicinity of the cell volume given by experiments, and the results were
then fit to a third order Birch-Murnaghan equation of state as mentioned in section 2.4.
To further improve the results for the lattice parameters another relaxation process was
done at the equilibrium volume determined by the fit.

4.3. Results

4.3.1. Equation of State

To compare the energies of the different phases both the volume and the calculated total
energy was divided by the number of formula units in the cell. Plotting the equations of
state for the different ZrO2 phases show that all functionals correctly predict the order
of stability of the different phases. According to the calculations the most stable phase
is the monoclinic P21/c phase where the equilibrium volume is at the lowest energy. At
higher energies all functionals predict the tetragonal (P42/nmc) and the cubic (Fm3m)
phase, in that order. The least stable ZrO2 phase according to the DFT calculations is

4VASP parameter: NKRED = 2

27



the orthorhombic Pnma phase for all but the LDA functional where the calculated total
energy at a cell volume of 120Å3 of the orthorhombic phase has a lower energy than all
volumes of the cubic phase. Calculating the total energy at the equilibrium volume gained
by the fit the total energy per formula unit is again lower for the orthorhombic phase
than for the cubic one by 5meV. This is comparable to the results of both Dewhurst and
Lowther [39] and Christensen and Carter [40] who found the orthorhombic phase at even
lower energy than the monoclinic phase using a LDA functional and Troullier-Martins[41]
PAW potentials respectively.
As can be seen in table 4.3 the energy difference at equilibrium volume differs for each

functional, with the largest value given by the PBE functional and the lowest value by
the LDA functional. This is also visible in the difference of the height of the equation of
state plots in figs. 4.6a, 4.6b, 4.7a and 4.7b.

∆E/meV Mono Tetra Cubic Ortho-II

LDA 0 57 93 108
PBE 0 97 199 310
PBEsol 0 79 144 179
HSE 0 97 166 294

Table 4.3.: Energy difference per formula unit at the equilibrium volume compared to
the monoclinic phase.

The monoclinic phase shows an anomaly beginning at a cell volume of about 140Å3

(≈ 30% more than the equilibrium volume depending on the functional) where another
phase transition seems to occur. Analyzing the lattice parameters has not led to a
definitive answer as to which final phase is involved. One would rather need calculations
of these phonon eigenvectors to gain some knowledge about presumed soft modes and
frequencies. Figures 4.6 and 4.7 show the calculated energies and the fit to the Birch-
Murnaghan equation of state for each ZrO2 phase. For better comparability the x axis
only shows the volume per formula unit between 25Å3 and 45Å3, and the energy range
shown on the y axis is 0.8 eV in all plots.
All calculated energies can be found in tables C.1 to C.4 and the fit parameters for the

Birch-Murnaghan equation in tables C.5 to C.8.

4.3.2. Lattice Parameters

The comparison of the lattice parameters of the different phases at the respective equi-
librium volume shows that the different functionals give results with different accuracy.
For good comparability all volumes are given as volume per formula unit. As the LDA
functional tends to over-bind the calculated cell volume is smaller compared to the exper-
imental data by between 1.4% for the monoclinic phase and 1.9% for the orthorhombic
phase. The PBE calculations on the other hand show that the generalized gradient ap-
proximation overestimates the lattice parameters. The different ZrO2 phases show an
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Figure 4.6.: Calculated total energy versus volume per formula unit (f.u.) of all five ZrO2
phases with the LDA and the PBE functional. Points denote calculated
energies, lines the fit to the Birch-Murnaghan equation of state. Tangents
denote the transition pressures between the mono–ortho-I (red solid line)
and the ortho-I–ortho-II phase (violet dashed line), also see section 4.3.3.
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Figure 4.7.: Calculated total energy versus volume per formula unit (f.u.) of all five ZrO2
phases with the PBEsol and the HSE functional. Points denote calculated
energies, lines the fit to the Birch-Murnaghan equation of state. Tangents
denote the transition pressures between the mono–ortho-I (red solid line)
and the ortho-I–ortho-II phase (violet dashed line), also see section 4.3.3.
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overestimation of the cell volume by 3 − 6%. The hybrid functionals improve the PBE
result to an overestimation of only 1.2 − 2%, but only by using the PBEsol functional
the prediction of the cell volume is improved to a deviation from experimental data of
only ≈ 1%.

Monoclinic

Compared to the experimental data by Howard et al. [42], the LDA functional under-
estimates the length of the cell vectors a and c by 0.44% and 0.49% respectively, while
predicting the length of the b vector very accurately with a deviation of below 0.1%.
This results in an underestimation of the cell volume of 0.97%. The predictions for the
cell lengths calculated with the PBE functional show a different picture: all lattice pa-
rameters are elongated with respect to the experimental data by between 1.34% for the
a vector to 1.54% and 1.59% for the b and c vector. This results in an expansion of the
predicted cell volume of 4.59%. The HSE functional improves these results by reducing
the overestimation of the cell edge lengths to 0.63%, 0.88% and 0.48% for the edges a,
b, and c respectively and of the cell volume to 1.93%. The best prediction of the lattice
parameters is given by the PBEsol functional with a small overestimation of the volume
by 0.83%, resulting from the elongation of the cell edges by 0.14%, 0.61% and 0.19% for
the vectors a, b, and c respectively. It should also be noted that the distortion of the cell
represented by the angle β is larger for all functionals by up to 0.48° compared to the
experimental data, with the best result given by the HSE functional at 0.26°. Compared
to older research using LDA (Zhao and Vanderbilt [43], 2002) and GGA (Jaffe et al. [44],
2005) functionals where the cell volume is under- and overestimated by 2.46% and 2.74%
respectively (see table 4.4) the results for all except the PBE functional presented in this
work do fit the experimental data much better.

Mono a/Å b/Å c/Å β/◦ V/Å3

Exp[42] 5.1505 5.2116 5.3173 99.23 35.68

LDA 5.1277 5.2152 5.2915 99.62 34.88
PBE 5.2196 5.2919 5.4017 99.71 36.77
PBEsol 5.1575 5.2436 5.3276 99.64 35.51
HSE 5.1829 5.2576 5.3429 99.49 35.90

LDA[43] 5.1083 5.1696 5.2717 99.21 34.35
GGA[44] 5.1974 5.2798 5.3498 99.53 36.19

Table 4.4.: Monoclinic P21/c lattice parameters.

A comparison of the deviation of the calculated internal coordinates of the atoms for
the monoclinic cell shows that the HSE functional gives the best approximation at an
average of 0.15%, followed by the PBEsol functional with an average of 0.30%. The other
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local functionals are not far off at 1.25% for the LDA and 0.26% average deviation for
the PBE functional, as can be seen in table 4.5.

Mono xZr yZr zZr xO1 yO1 zO1 xO2 yO2 zO2

Exp[42] 0.2754 0.0395 0.2083 0.0700 0.3317 0.3447 0.4496 0.7569 0.4792

LDA 0.2783 0.0425 0.2097 0.0709 0.3377 0.3404 0.4475 0.7576 0.4810
PBE 0.2755 0.0448 0.2106 0.0662 0.3291 0.3489 0.4525 0.7572 0.4735
PBEsol 0.2776 0.0431 0.2096 0.0706 0.3373 0.3409 0.4482 0.7577 0.4799
HSE 0.2761 0.0418 0.2093 0.0710 0.3372 0.3418 0.4512 0.7577 0.4786

Table 4.5.: Monoclinic P21/c internal parameters.

Tetragonal

The comparison of the results for the tetragonal cell shows a similar picture to the
monoclinic cell. The LDA functional again results in an underestimation of the lattice
parameters of 0.54% and 0.71%, and therefore a reduction of the cell volume of 1.84%
compared to the experimental data by Howard et al. [42]. The PBE functional expands
the cell volume by 4.93%, a result of the elongation of the lattice parameters a and
c by 1.24% and 2.50% respectively. Using the HSE functional improves these results
to an expansion of the volume of only 1.57% as the length of the lattice vectors are
overestimated by only 0.28% and 0.93% (a and c). Again the PBEsol functional gives the
best prediction for the lattice parameters, elongating the vectors a and c by only 0.17%
and 0.67% and overestimating the cell volume by 1.01%. This is an improvement of
older calculations which underestimate the volume by 4.16%[43] using a LDA functional
or find a 2.41%[44] larger equilibrium volume using a PBE functional. Table 4.6 shows
all relevant cell parameters of the tetragonal cell.
Looking at the internal parameter dz it is surprising that the PBE functional gives the

closest prediction of the displacement of the oxygen atom rows, while all other functionals
give a much lower displacement.

Cubic

As the only difference between the cubic and the tetragonal cell is the ratio c/a which is√
2 for the cubic cell and with the internal parameter dz being zero, the results are quite

similar to the tetragonal cell. The LDA functional gives more accurate results compared
to the experimental data[42]. The calculated length of the cell edge is only 0.40 off the
measured length which results in a reduction of the cell volume by 1.20%. Again the
PBE functional gives an expanded cell volume by 2.97%, and using the HSE functional
the predicted volume is only 1.23% bigger than the experimental findings. Similar to
the other ZrO2 phases the PBEsol functional gives the best prediction of the cell volume
resulting in an overestimation of only 0.93%.
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Tetra a/Å c/Å V/Å3 dz/Å

Exp[42] 3.6055 5.1797 33.66 0.057

LDA 3.5860 5.1430 33.04 0.0419
PBE 3.6502 5.3094 35.32 0.0555
PBEsol 3.6115 5.2142 34.00 0.0482
HSE 3.6157 5.2281 33.30 0.0498

LDA[43] 3.5567 5.1004 32.26
GGA[44] 3.6287 5.2070 34.47

Table 4.6.: Tetragonal P42/nmc lattice parameters.

Cubic c/Å V/Å3

Exp[42] 5.0858 32.89

LDA 5.0651 32.50
PBE 5.1354 33.87
PBEsol 5.1011 33.20
HSE 5.1063 34.37

LDA[43] 5.0371 31.95
GGA[44] 5.1280 33.71

Table 4.7.: Cubic Fm3̄m lattice parameters.
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Orthorhombic-I

The calculated lattice parameters for the orthorhombic Pbca phase show a deviation
similar to the cubic and tetragonal phases. Again the LDA functional underestimates
the cell volume by 1.13%, while the PBE functional overestimates it by 4.12% compared
to the experimental values published by Ohtaka et al. [37]. Using the HSE functional
improves the predicted cell volume to an overestimation of 1.48%, but the best agreement
is again given by the PBEsol functional with an overestimation of the cell volume of only
0.86%. As can be seen in table 4.9 the values of the internal coordinates of the atoms
are very similar for all four functionals and do not deviate much from the experimental
values.

Ortho-I a/Å b/Å c/Å V/Å3

Exp[37] 10.0861 5.2615 5.0910 33.77

LDA 10.0430 5.2488 5.0656 33.39
PBE 10.2157 5.3329 5.1628 35.16
PBEsol 10.1069 5.2833 5.1029 34.06
HSE 10.1224 5.2953 5.1129 34.27

GGA[45] 10.1500 5.2900 5.1200 34.40

Table 4.8.: Orthorhombic Pbca (Ortho-I) lattice parameters.

Ortho-I xZr yZr zZr xO1 yO1 zO1 xO2 yO2 zO2

Exp[37] 0.8843 0.0332 0.2558 0.7911 0.3713 0.1310 0.9779 0.7477 0.4948

LDA 0.8849 0.0348 0.2528 0.7910 0.3764 0.1287 0.9770 0.7390 0.4976
PBE 0.8844 0.0348 0.2517 0.7891 0.3733 0.1242 0.9779 0.7388 0.4973
PBEsol 0.8847 0.0350 0.2526 0.7906 0.3758 0.1283 0.9772 0.7388 0.4975
HSE 0.8844 0.0343 0.2535 0.7897 0.3739 0.1266 0.9782 0.7388 0.4981

Table 4.9.: Orthorhombic Pbca (Ortho-I) internal parameters.

Orthorhombic-II

Due to the difficulties of measuring the exact lattice parameters for the orthorhombic
Pmna phase described in section 4.1.4 the accuracy of the calculations cannot be assessed
as well as for the other ZrO2 phases. Compared to the measurements of Haines et al.
[46] done in 1997, the relative deviation of the predicted cell volumes is similar to that of
the monoclinic phase. The LDA functional again over binds which results in a calculated
cell volume 1.55% smaller than measured. The PBE functional overestimates the volume
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by 5.02%, and using hybrid functionals this overestimation gets reduced to 1.97%. As
with the other phases the PBEsol functional results in the best prediction of the cell
volume with a deviation of 1.16%. Another difference in the predicted lattice parameters
is that both the LDA and the PBE functional distort the cell with the LDA calculations
elongating the cell in the x direction while compressing it in y and z direction. The PBE
functional on the other hand shows a greater expansion of the cell in the x direction than
in the y and z direction. The other two functionals show a more uniform expansion in
all directions.

Ortho-II a/Å b/Å c/Å V/Å3

Exp[47] 5.7410 3.2460 6.3410 29.54
Exp[46] 5.5587 3.3298 6.4847 30.16

LDA 5.5774 3.2869 6.4455 29.54
PBE 5.6825 3.3778 6.5671 31.51
PBEsol 5.5938 3.3331 6.5127 30.36
HSE 5.5921 3.3538 6.5258 30.60

LDA[39] 5.5980 3.3400 6.5530 30.63
GGA[44] 5.6140 3.3474 6.5658 30.86

Table 4.10.: Orthorhombic Pnma (Ortho-II) lattice parameters.

The internal coordinates do not vary much when comparing the different functionals.
Due to the aforementioned difficulty of doing measurements on orthorhombic Pnma
zirconium the comparison to the experimental values should be taken with a grain of
salt, see table 4.11. The average difference to the experimental values is 1.6%, 2.4%,
0.4% and 1.6% for the LDA, PBE, PBEsol and HSE functional. Again the PBEsol
results in the best prediction of the internal coordinates of the atoms.

Ortho-II uZr vZr uO1 vO1 uO2 vO2

Exp[47] 0.2510 0.1090 0.3640 0.4220 0.0210 0.3280
Exp[46] 0.2459 0.1108 0.3599 0.4248 0.0250 0.3388

LDA 0.2451 0.1147 0.3596 0.4272 0.0264 0.3374
PBE 0.2452 0.1152 0.3591 0.4277 0.0274 0.3361
PBEsol 0.2463 0.1123 0.3598 0.4260 0.0252 0.3383
HSE 0.2481 0.1088 0.3606 0.4241 0.0229 0.3400

Table 4.11.: Orthorhombic Pnma (Ortho-II) internal parameters.
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4.3.3. Bulk Moduli and Transition Pressures

The bulk modulus of a substance characterizes its resistance to uniform compression. It
is defined as the ratio of an infinitesimal pressure applied to a substance to the relative
change of its volume and its base unit is Pascal (Pa). Typical bulk moduli of Zirconia de-
termined by experiments are between 150GPa and 332GPa, as can be seen in table 4.12.
To determine the bulk modulus of a specific structure the fit to the Birch-Murnaghan
equation is used as it is the variable B0 of said equation.
For both the monoclinic and the orthorhombic Pnma phase the calculated values of

all functionals are 10%− 37% less than the experimental values, while for the tetragonal
and the cubic phases the calculated bulk moduli are close to experimental values. The
calculated values for the orthorhombic Pbca phase only comes close to the lowest value
determined by experiments when using the HSE functional. As there are multiple meth-
ods to measure the bulk modulus and as the preparation of the sample can influence
the measurements the spread in the experimental data is quite large. It should also be
stated that the high bulk modulus measured by some groups for the orthorhombic phase
(444GPa by Desgreniers and Lagarec [48]) could not be confirmed.

Bulk Modulus/GPa Mono Tetra Cubic Ortho-I Ortho-II

LDA 151 201 267 201 251
PBE 149 155 232 187 176
PBEsol 162 181 250 208 229
HSE 166 177 258 219 240

Exp 187[49] 149[50] 194[51] 210[32] 278[52]
-183[49] -254[51] -281[48] -332[47]

Table 4.12.: Calculated bulk moduli for all functionals and structures.

To determine the transition pressure between the phases a common tangent construc-
tion was used where the transition pressure corresponds to the gradient of the tangent.
The tangents displayed in figs. 4.6 and 4.7 show the pressure induced transitions from
the monoclinic to the orthorhombic Pbca phase and from the orthorhombic Pbca to the
orthorhombic Pnma phase is predicted correctly with all four functionals. A comparison
of the calculated values for the transition pressure to the experimental data mentioned in
section 4.1.4 shows that the PBE functional predicts the experimentally observed values
the closest, while especially the PBEsol and the LDA functionals underestimate them
severely. It should nevertheless be noted that the results compare well to other calcula-
tions, for example Terki et al. [45] calculated a transition pressure of 8GPa and 12GPa
for the monoclinic – orthorhombic Pbca and the orthorhombic Pbca – orthorhombic
Pnma phase transition respectively using PBE with WIEN2k[53].
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Transition pressure/GPa m–t t–c c–o2 m–o1 o1–o2

LDA 6 29 1 3 3
PBE 17 29 7 7 12
PBEsol 10 29 2 5 6
HSE 32 11 8 5 11

Table 4.13.: Transition pressures - m: Monoclinic, t: Tetragonal, c: Cubic, o1:
Orthorhombic-I, o2: Orthorhombic-II.

4.3.4. Electronic structures

The densities of states for all five phases were also calculated using the four different
functionals. The total DOS is composed of two valence bands and one conduction band.
As can be seen in fig. 4.8, the DOS for the different phases are very similar. The lower
valence band lies at about −17 eV and has O−2s character, while the upper valence band
with O−2p character lies between ≈ −5 eV and 0 eV. After a band gap a conduction
band of Zr−4d type forms. It is noticeable that the LDA, PBE and PBEsol functional
give quite similar values for the position of the bands and the width of the band gap,
while HSE functional results in a much larger band gap. The values for the band gap
given in table 4.14 show that using hybrid functionals gives much better results for band
structure calculations compared to experimental values. The disadvantage of using hybrid
functionals is the much higher computational cost. Currently these calculations cannot
be parallelized in an efficient manner, so calculating the exact Hartree-Fock exchange
energies takes up to 520 times longer compared to a PBE calculation.

Band Gap/eV Mono Tetra Cubic Ortho-I Ortho-II

LDA 3.45 3.84 3.12 3.65 2.70
PBE 3.50 3.90 3.15 3.59 2.79
PBEsol 3.45 3.85 3.15 3.62 2.73
HSE 5.13 5.52 4.80 5.37 4.38

Exp (EELS)[54] 4.20 4.20 4.60 n.a. n.a.
Exp (VUV)[55] 5.83 5.78 6.10 n.a. n.a.

Table 4.14.: Calculated and measured band gaps.
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Figure 4.8.: ZrO2 densities of states. The DOS calculated with the HSE functional is
shown in red, highlighting the larger band gap.
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4.4. Conclusion

A comparison of the four different functionals has revealed that they all predict the
order of stability correctly with the two PBE functionals being more accurate. Both
the tendency of the LDA functional to over-bind and the overestimation of the lattice
parameters of the PBE functional could be confirmed by the calculations. The PBEsol
functional did produce the best results for the crystal lattice parameters due to it being
tailored for solids. While the non-local HSE functional has produced slightly better
results than the PBE functional the high computational cost makes them less useful when
the accuracy of the electronic structure is not that important. The values for the bulk
moduli and transition pressures tend to get underestimated with all four functionals with
LDA giving the least accurate results, while the electronic structure is best represented
by the hybrid functionals.
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5. The Pt3Zr-ZrO2 Interface

5.1. Introduction

In this chapter a first-principles study of both the Pt3Zr bulk and the Pt3Zr-ZrO2 inter-
face is presented. First, the results of an investigation of the bulk and surface structure
of Pt3Zr are presented, followed by an in-depth analysis of the interface between a mono-
layer of ZrO2 and the Pt3Zr bulk.

5.2. Experiment

The high melting point of zirconium (ca. 2130K) makes it very difficult to obtain thin
ZrO2 films from evaporation from a heated crucible. Another approach would be to
evaporate a rod of ZrO2 in an ultrahigh vacuum electron beam evaporator, but the low
vapor pressure at the melting point makes this a very lengthy process. A more useful
approach to create the ZrO2 film is oxidation of a suitable metallic alloy. It has been
shown that either an alloy with a low concentration of the reactive metal (e.g. Copper
with 9 atom-percent of Aluminum[56]) or a so-called super alloy which show strong
chemical ordering and high stability can be used. This is an important precondition
for the formation of well-ordered oxide films. Well known examples for this approach
are NiAl(110)[57, 58] and Ni3Al(111)[59]. In the experiments which accompanied this
theoretical work a Pt3Zr (0001) substrate has been used to grow the ultra-thin ZrO2
films.
The exact steps taken are documented in the soon to be published paper by Antlanger

et al. [4].

5.3. The Pt3Zr Substrate

5.3.1. Bulk Structure

Pt3Zr has a high melting point of 2427K which is significantly higher than that of
pure Platinum or Zirconium at 2042K and 2128K respectively[60]. According to Predel
[60] its structure shows a hexagonal lattice similar to the Ni3Ti crystal (Strukturbericht
designation: D024). It consists of layers of Zr atoms surrounded by Pt neighbors which
are arranged in an ABAC stacking. As can be seen in fig. 5.1, the crystal can be described
as a hybrid of a hexagonally close-packed and a face-centered cubic structure.
To determine whether the DFT calculations would give good results for the Pt3Zr

surface the optimal lattice parameters were calculated of the bulk crystal using both GGA
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Figure 5.1.: Pt3Zr crystal structure. Zr atoms are colored green, Pt atoms grey. The
values for the lattice parameters are given in table 5.1.

(PBE) and vdW-DF (optB88) functionals using an approach similar to the calculations
done on the ZrO2 bulk phases described in section 4.2. VdW-DF was used to account
for weak interacting forces in the crystal. The PAW potentials used are described in
table C.9. For the calculations a 12× 12× 12 Γ-centered k-point grid which corresponds
to 301 irreducible k-points was used. As a first step the total energy was calculated for
different static crystal volumes while simultaneously relaxing both the lattice parameters
and all internal degrees of freedom1 for the GGA (PBE) functional. Similar to the
procedure described for the ZrO2 bulk calculations the results were then fit to a Birch-
Murnaghan equation of state (see section 2.4) to determine the equilibrium volume. Due
to constraints in the implementation of the vdW-DF algorithm in VASP it was not
possible at the time of this research to optimize the unit cell directly when using vdW-
DF functionals, so the GGA lattice parameters were used and the cell shape was fixed2

to determine the equilibrium volume when using vdW-DF. The comparison between the
calculated values shown in table 5.1 and the measurements taken by Predel [60] (also see
fig. 5.1) shows that both GGA and vdW-DF overestimate the lattice parameters by about
1.7% and 1.9% respectively, while the volume is overestimated by about 5.5% for the
PBE functional and 6.1% for the optB88 functional. The calculated interlayer distance
is 234.1 pm for the PBE and 234.5 pm for the optB88 functional. The deviation of these

1VASP parameter: ISIF = 4
2VASP parameter: ISIF = 2
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results from the experimental data is in accordance with the ZrO2 bulk calculations done
in section 4.3.2.

PBE optB88 Exp.[60]

a/Å 5.729 5.742 5.624
c/Å 9.364 9.380 9.213
V/Å3 266.3 267.8 252.4

Table 5.1.: Lattice parameters and equilibrium volume for bulk Pt3Zr.

5.3.2. Surface Termination

The experimental data mentioned in section 5.2 show that the surface of a well prepared
Pt3Zr(0001) sample exhibits large terraces with a step height of 4.5Å or an integer mul-
tiple thereof. This value is about double the measured layer distance which means that
the surface of the substrate is terminated by either an A or a B/C layer. As a prerequisite
to building a model to simulate the interface between the substrate and the ZrO2 film
it was therefore important to first examine the termination of the substrate crystal. To
achieve this calculations have been done of both pure and Platinum terminated Pt3Zr
slabs to determine the various crystal parameters, and by determining the total or sur-
face energy of both configurations of Pt3Zr it was possible to resolve which layer should
be the terminating layer. For all the calculations used in the following sections only the
PBE functional was used unless otherwise noted.

ABA vs CAB

As a first step this approach was tested on small slabs consisting only of 3 layers in an
ABA and a CAB configuration (see fig. 5.2). The lattice parameters for these slabs were
taken from the results shown in table 5.1 with the addition of ∼14.7Å vacuum in the z
coordinate. To calculate the total energy a 8×8×1 Γ-centered k-point grid (21 irreducible
k-points) and an energy cutoff of 400 eV was used. The cell shape and volume was held
in place while the internal coordinates were able to relax during the calculations3. As
can be seen in table 5.2 the total energy for the ABA type slab is 439meV lower than
for the CAB slab and the surface energy per atom is 54meV lower for the ABA type as
well. These values gave a first hint that the terminating layer of the Pt3Zr slab should
be of the A type.

3VASP parameter: ISIF = 2
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(b) B/C-terminated

Figure 5.2.: Slabs consisting of 3 layers of Pt3Zr, both in ABA and CAB configuration.

5- and 7-layered Slabs

As the 3-layer model is fairly inadequate when compared to the real substrate crystal
(e.g. contraction of the interlayer distance4 by 1.8%) further calculations with thicker
slabs consisting of 5 and 7 layers were done. Again a 12 × 12 × 1 Γ-centered k-point
grid (ABACA: 43, BACAB, ABACABA, CABACAB: 74 irreducible k-points) and a
cutoff energy of 400 eV were used. The results showed that the outer layers of all four
configurations move inwards by about 2% to an interlayer distance of about 230 pm
compared to the bulk interlayer distance. The distance between the second and third
layer on the other hand increases by about 0.8% to ≈ 236 pm. The calculated surface
energy per surface atom for the A-terminated 5-layered slab (ACABA stacking, see fig.
5.3a) is 0.73 eV, which is 66meV lower than for the C-terminated (CABAC stacking, see
fig. 5.3b) slab of the same size. As shown in table 5.2 the similar results for the 7-layer
slab confirm the hypothesis that the surface is terminated by an A-type layer.
A close look at the atomic coordinates of the fully relaxed 7-layered slab reveals that the

Zirconium atoms on the surface sit 15 pm lower than the surrounding Platinum atoms
so that the surface shows a small amount of buckling. In the second monolayer the
Zirconium atoms buckle up towards the surface by the same amount. Compared to the
interlayer distance obtained from the bulk calculations of 234.1 pm the distance between
the first and the second monolayer is only 229.5 pm, and the distance between the second
and third monolayer 236.1 pm. This means a contraction of the distance between the
first two layers of 1.96% and an expansion of 0.86% by the second two layers.

4The interlayer distance is the difference between the average height of the atoms in each layer.
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layer termination Energy/eV

3 A −86.781
B/C −86.359

5 A −148.737
B/C −148.224

7 A −210.627
B/C −210.264

Table 5.2.: Calculated total and surface energies for the Pt3Zr slab configurations.
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(a) A-terminated
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(b) B/C-terminated

Figure 5.3.: Slabs consisting of 5 layers of Pt3Zr, both in ABACA and BACAB configu-
ration.
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Pt-terminated Slab

To further refine the model for the substrate more simulations were done using a slab
terminated by a full Platinum layer. As described in section 5.2 the ZrO2 film is created by
oxidation of the Pt3Zr surface which means liberating Zr atoms from the alloy and results
in a Platinum-rich surface. To construct the Pt-terminated slabs the surface Zr atoms
were simply replaced by Pt atoms, and again 5- and 7-layered A- and B/C-terminated
slabs were compared. It is not trivial to calculate the surface energy for each slab because
there are not the same numbers of atoms for each termination, so only the total energies
were compared. As can be seen in table 5.3 the total energy is lower for all A-terminated
configurations, especially for the 5-layered slab with the Pt termination on one side where
the total energy is 297meV lower than for the B/C-terminated configuration.
Compared to the pure Pt3Zr surface there also exists slight buckling of the surface

by 8 pm because the Platinum atom which has a Zirconium atom below it in the third
monolayer moves down, while the Zirconium atom in the second monolayer moves towards
the surface by 16 pm. Similar to the pure Pt3Zr surface the distance between the first
and second monolayer decreases by 2%, and also the distance between second and third
monolayer decreases by 0.9%. Compared to the pure slab this means a compression of
the two outer layers from 465.6 pm to 461.5 pm (a difference of 4.1 pm or 0.9%).

layer termination Energy/eV

5 A −142.669
B/C −142.372

7 A −204.543
B/C −202.891

Table 5.3.: Calculated total energies of the Pt-terminated Pt3Zr slab configurations.

5.4. The ZrO2 film

The STM images mentioned in [4] show that the ZrO2 film consists of a hexagonal lattice,
and additional Auger measurements confirmed the existence of only one such ZrO2 layer
on top of the Pt-terminated substrate. The exhibited lattice suggests the existence
of a ZrO2(111) layer which has also been observed after oxidation and deposition of
Zr on Pt(111) crystals[1–3]. The lattice constant of this layer was determined to be
350(2)pm. A Fourier transform of the STM images show that the superstructure cell
is commensurate because both the Fourier spots of the substrate cell (280 pm lattice
constant) and the oxide are on lattice points of the superstructure reciprocal lattice. The
measurements have shown that the reciprocal lattice of the oxide has a side length of 2

√
3

while the side length of the metal substrate is
√

19. This means that the superstructure is
a (
√

19×
√

19)R23° cell with respect to the lattice of the substrate. The lattice constant
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Figure 5.4.: Slabs consisting of 4 layers of Pt3Zr and a terminating Pt layer, both in
ABACA and BACAB configuration.
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of the oxide film can therefore be determined by multiplying the lattice constant of the
metal by the quotient of the side length of the substrate and the oxide:

√
19/(2

√
3) =

1.258 × 280 = 352.24 pm. The rotation angle between substrate and oxide lattice is
30− 23.4 = 6.6°.
As a starting point for the construction of the ZrO2 trilayer the results from the ZrO2

bulk calculations (section 4.1.3) were used. The first step was to use a small hexagonal cell
with an unsupported ZrO2 trilayer to find the optimal lattice parameters as illustrated
in fig. 5.5. Similar to earlier calculations the total energy was calculated for various cell
volumes while letting the internal coordinates relax. Good convergence of the energies
was reached with a 8×8×1 k-point grid (150 irreducible k-points) using an energy cutoff
of 400 eV.
The fully relaxed unsupported film shows an equilibrium lattice constant of 330.3 pm

with the Oxygen layers at a distance of 97.4 pm from the Zirconium layer. This corre-
sponds to a contraction of 9% of the in-plane distances and an expansion perpendicular to
the plane of 31% compared to cubic ZrO2 (DFT values, PBE functional in section 4.1.3:
lattice parameter 363.2 pm, interlayer distances: 74.1 pm). The diagonal distance be-
tween Zr atoms was measured to be 572.0 pm which compared to the lattice constant
of 572.9 pm of the Pt3Zr slab suggested that the ZrO2 trilayer should fit on top of the
substrate after a rotation by 90◦ without heavily distorting the trilayer.

(a) ZrO2 trilayer viewed from the side (b) ZrO2 trilayer viewed from top

Figure 5.5.: ZrO2 trilayer, constructed by slicing a cubic ZrO2 cell in (111) direction.
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Figure 5.6.: Calculated total energies of the ZrO2 trilayer shown in fig. 5.5.

5.5. Pt3Zr-ZrO2-Interface

5.5.1. The Model

With the values for the lattice parameters gained from the calculations of the substrate
and the oxide film and after a comparison with the results from the experiments men-
tioned above it was decided to build a simpler model to simulate the Pt3Zr-ZrO2-interface.
Modeling the whole (

√
19 ×

√
19)R23° superstructure would take too much computing

power to do ionic relaxations due to the large number of atoms needed, so two versions
of a smaller cell were constructed. Both variants consist of a single cell of Pt-terminated,
5 layers thick substrate and a 3-formula unit-sized film of oxide. Figure 5.7 shows the
substrate and the two different oxide trilayer structures. The two versions of the model
only differ in the horizontal position of the oxide film: in variant 1, which is called Zr/Pt,
the Zirconium atom at position (0,0,z)5 with respect to the lattice of the big trilayer
structure is positioned on top of the Platinum atom at position (0,0,z) of the substrate
lattice, while in the second version called O1/Pt the Oxygen atom at (x,y,z) is positioned
on top of the Platinum atom at position (0.5,0.5,z) of the substrate lattice. In the z-
direction about 18.9Å vacuum was added to minimize the influence of the lower surface
of substrate on the oxide film. Figure 5.8 illustrates the construction of both variants.
Even though the two variants only represent an approximation for the real structure, a

comparison of the results of the calculations done with the two variants should produce
a good simulation of the real crystal.

5Values are given in direct coordinates.
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(a) Pt-terminated substrate, top view

(b) ZrO2 trilayer Zr model, top view (c) ZrO2 trilayer Zr model, side view

(d) ZrO2 trilayer O1 model, top view (e) ZrO2 trilayer O1 model, side view

Figure 5.7.: Top and side views of the two variants of ZrO2 films. In the O1 model the
ZrO2 film is shifted by (1/3, 1/3, 0) with respect to the Zr model.
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(a) Zr/Pt model, side view (b) O1/Pt model, side view

(c) Zr/Pt model, top view (d) O1/Pt model, top view

Figure 5.8.: Illustrations showing the difference of the Pt3Zr-ZrO2-interface models. In
the Zr/Pt model Zr atoms of the ZrO2 film sit on top of Pt atoms of the
substrate, in the O1/Pt model the ZrO2 film is shifted so that an O atom of
the ZrO2 film sits on top of a Pt atom of the substrate.
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5.5.2. Calculations

As a first step test calculations were done to determine at which number of k-points
the precision was high enough, starting with a 4 × 4 × 1 Γ-centered grid. Good energy
convergence was reached at a 12 × 12 × 1 k-points grid. The energy cutoff was set to
400 eV. For the ionic relaxation calculations the cell shape was held fixed and only the
ionic coordinates were allowed to relax6. As the real substrate is much thicker than
the 5 layers used in the model not letting the cell shape change was used to simulate
the stability and thickness of the real substrate. The next step implemented was an
investigation on the optimal distance between the substrate and the oxide film by using
varying starting parameters for the distance and using low precision, followed by more
accurate calculations to gain a better understanding of the exact positions of the oxide
atoms. Finally, properties like the densities of state and the charge distribution were
investigated.

Distance Substrate–Oxide

To get an overview of the distance between oxide film and substrate calculations were
done using a coarse-grained 4 × 4 × 1 Γ-centered k-point grid. The energy cutoff was
again set to 400 eV and only the PBE functional was used. The oxide film was moved
to different distances and the ionic relaxation process was started. By comparing the
equilibrium distances of these different calculations a rough estimate for the optimal
distance when using the PBE functional could be obtained. For the vdW-DF these tests
were only done for the Zr/Pt configuration with less test cases as the PBE results showed
that the two models gave similar results for the equilibrium distance.

start/direct coordinates start/pm equilibrium/pm Energy/eV

5 152 421 −227.120
6 182 417 −227.117
7 212 412 −227.110
8 242 422 −227.122
9 272 403 −227.098

10 302 397 −227.086
12 362 417 −227.117
13 392 431 −227.128
14 422 440 −227.129
18 542 559 −227.120

Table 5.4.: Distances of the terminating platinum layer of the substrate to the lower
oxygen layer of the ZrO2 film. The equilibrium values were calculated with a
coarse 4× 4× 1 k-point grid.

6VASP parameter: ISIF = 2
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Figure 5.9.: Calculated distances of the terminating platinum layer of the substrate to
the lower oxygen layer of the ZrO2 film dependent on the starting distance.

The plot shown in fig. 5.9 shows the distance between the surface Pt layer of the
substrate and the lower Oxygen layer of the oxide film after relaxations from various
starting values, with the lowest value at roughly 4Å. Due to the low precision used for
the calculations and the small binding energy (see table 5.6) the spread in the calculated
distances is rather large. While the scatter of the obtained values does not permit an
accurate prediction of the optimal distance, the results at least allowed a preliminary
prediction of the distance.
Due to the low accuracy this approach was not used for the vdW-DF, there one re-

laxation starting from an arbitrary distance resulted in enough information to modify
the model to minimize the computational cost. The initial values used for more accurate
calculations can be found in table 5.5.

Functional PBE vdW-DF

Configuration O1/Pt Zr/Pt O1/Pt Zr/Pt

dO2−Zr (pm) 30 30 30 30
dZr−O1 (pm) 30 30 30 30
dO1−Pt (pm) 362 362 272 272

Table 5.5.: The initial distances used for the accurate calculations. The upper oxygen
layer is named O2, the lower oxygen layer O1.
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High Precision Calculations

To determine the positions of the atoms in the slab with higher precision further calcu-
lations were done using the initial values from table 5.5. Some VASP parameters were
changed: a fine 12×12×1 k-points grid was used, and the electronic smearing parameter
was set to a Methfessel-Paxton method of order 17. The forces between the atoms were
relaxed to a value of 0.01 eV/Å8 and the relaxation of the electronic degrees of freedom
was done until a value of 10−5 eV was reached9. After doing one relaxation process start-
ing from the values from table 5.5 the results were used for another round of relaxations
with the precision set to “accurate”10. More information on the computing parameters
can be found in appendix A.
Using the PBE functional the results show a smooth oxide film at a distance of 337 pm

for the Zr/Pt and 349 pm for the O1/Pt configuration. The distance between the Oxygen
layers and the Zirconium layer was measured to be 95 pm for both configurations. In the
surface layer of the substrate the situation is similar to the results in chapter 5.3.2: a
slight contraction of the interlayer distance of the first and second layer of 2% to 229 pm
can be observed compared to the bulk interlayer distance, and slight buckling happens
of 8 pm due to the lowering of the Pt atom sitting on top of a Zr atom in the third layer.
Compared to typical bond lengths of about 286 pm the distance between oxide film and
substrate is quite high which suggests that the adsorption of the oxide film is rather weak.
This is further confirmed by the calculated adhesion energy which at −300meV for the
Zr/Pt and −299meV for the O1/Pt configuration per ZrO2 formula unit (table 5.6) is
rather small. The adhesion energy is calculated by subtracting the total energy of both
the relaxed substrate and the oxide film from the total energy of the relaxed model.
Illustrations of the different versions are shown in fig. 5.10.
Further calculations were done using the van der Waals-DFT (vdW-DF) to examine

whether non-local contributions play a role in the adsorption of ZrO2 on Pt3Zr, and to get
an improved description of the physisorption. Indeed, the vdW-DF results show a much
lower distance between oxide and substrate at around 250 pm which is closer to typical
bond lengths of the Pt3Zr bulk (286 pm) and a higher adhesion energy of 385meV and
380meV per ZrO2 formula unit for the Zr/Pt and the O1/Pt model, respectively. When
letting all atoms of the O1/Pt configuration relax the oxide film moves horizontally: while
the substrate atoms move for 30 pm along a vector in (1, 1, 0) direction with respect to
the lattice coordinates, the oxide film moves along a (−1,−1, 0) vector until the position
is similar to the Zr/Pt model. To counter this movement the O1/Pt model was modified
so that both the Platinum atom in the middle of the surface layer (coordinates in direct
coordinates: (0.5, 0.5, z)) and the Oxygen atom directly above it are held in position in
the x and y coordinates using VASPs selective dynamics capability. This modification
resulted in a much lower adhesion energy of 338meV per ZrO2 formula unit and a higher
distance of 266 pm between oxide film and substrate.

7VASP parameter: ISMEAR = 1
8VASP parameter: EDIFFG = -0.01
9VASP parameter: EDIFF = 1E-5

10VASP parameter: PREC = Accurate
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Compared to the results gained from the PBE calculations, strong buckling of the
Zirconium layer of the oxide film of 56 pm and 71 pm for the O1/Pt and the Zr/Pt
configuration can be observed. In the Zr/Pt geometry, the Zr atom directly above a Pt
atom in the substrate moves down by 47 pm with respect to the middle of the upper and
lower oxygen layers. The buckling leads to a distance of 293 pm of the lower Zr atom and
the Pt atom directly below it, which is close to the Pt-Zr distance in the alloy (286 pm
with vdW-DF, see table 5.1), while the other Zr atoms move up by 22 pm.
In the O1/Pt configuration on the other hand there is one Zr atom at a distance

of 328 pm to a Pt atom of the surface, and the O atom held in place on top of a Pt
atom of the surface is found at a distance of 258 pm, confirming the existence of an
attractive interaction between Pt and O while still being far longer than typical Pt-O
bond lengths[61]. The buckling of the Zr layer leads to a movement of one Zr atom
towards the surface by 36 pm, and a movement of the upper Zr atoms away from the
surface by 17 pm on average. While the oxygen layers do not show significant buckling in
both configurations, oxygen atoms from the lower oxide layer move horizontally by 14 pm
away from the lowered Zr atoms, and a similar movement can be observed in the upper
oxygen layer. This increases the O-O distance from 331 pm to 357 pm in the triangle
below the Zr atom which moves downward, and reduces the O-O distance to 312 pm in
the triangle above this Zr atom. A comparison of the binding energies and the bond
lengths of two models show that the oxide binds more strongly via the Zr atoms than
the O atoms. In fig. 5.11 the different models calculated with vdW-DF are shown, and
exact values for layer distances can be found in table 5.6.

Functional PBE vdW-DF

Configuration O1/Pt Zr/Pt O1/Pt Zr/Pt

dO2−Zr (pm) 95 95 96 96
dZr−O1 (pm) 95 95 95 94
dO1−Pt (pm) 349 337 266 244

bZr (pm) 2 9 56 71
bO1 (pm) 0 0 5 0
bPt (pm) 8 7 7 1

Eads (meV) -299 -300 -338 -385

Table 5.6.: Interlayer distances, buckling and adsorption energies of the different models.
The distances between the atom layers is the difference between the average
height of the atoms of the respective layer. The buckling is the distance
between the highest and the lowest atom of each layer. The upper oxygen
layer is named O2, the lower oxygen layer O1.
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Figure 5.10.: Fully relaxed Pt3Zr-ZrO2 structure calculated with the PBE functional.

Work Function Φ

As the average height of the Zr atoms of the oxide film does not differ from the center
of the two O layers, the overall dipole moment is negligible and does not affect the work
function. Nevertheless, the work function does get reduced by the adsorption of the oxide
film by from 5.41 eV for the clean Pt/Pt3Zr surface to 5.15 eV (∆Φ = −0.26 eV) for the
PBE configuration. A similar result is given by the vdW-DF with a ∆Φ of −0.56 eV to
4.85 eV when averaging over both configurations. An explanation for this decrease of Φ
is the compression of the wave functions above the surface of the substrate as observed
by Goniakowski and Noguera [62].
To determine the work function Φ with VASP the total local potential11 in vacuum

has to be calculated and the fermi energy EF subtracted from this value. To minimize

11VASP parameters: LVTOT = .TRUE. and LVHAR = .TRUE.
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Figure 5.11.: Fully relaxed Pt3Zr-ZrO2 structure calculated with vdW-DF. The bond be-
tween the middle lower oxygen atom and the platinum atom of the substrate
in fig. 5.11b signifies that both the platinum atom and the oxygen atom are
fixed in x- and y-direction during the relaxation to prevent it from relaxing
into the Zr/Pt configuration.

the influence of the lower surface a slab which is symmetric to the z = 0 plane was used
for these calculations.

Charge Distribution

The evaluation of the charge distribution is useful to gain knowledge of the electronic
interaction between substrate and oxide film. VASP writes the total charge density after
each ionic relaxation process into the CHGCAR file, which makes it easy to evaluate
the charge distribution. In fig. 5.12 a comparison of the total charge density of both
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Functional Model Φ/eV

PBE O1/Pt 5.15
Zr/Pt 5.15

vdW-DF O1/Pt 4.84
Zr/Pt 4.84

Table 5.7.: Work function Φ for the two configurations O1/Pt and Zr/Pt.

structures (PBE: Zr/Pt and vdW-DF: O1/Pt) is shown. The charge densities of the
substrate, the oxide film and the complete slab were calculated separately and summed
in the x-y plane. The horizontal axis in fig. 5.12 corresponds to the z-coordinate of the
crystal lattice, its scale indicating the z-coordinate of the fine FFT grid, and the vertical
axis corresponds to the sum of the charge density in the x-y plane.
To calculate whether there is a charge transfer between the substrate and the oxide

film the separately calculated total charges were summed up and compared to the total
charge of the complete slab. The results indicate that the charge transfer is essentially
zero, and this can also be seen in the graphs of fig. 5.12: although there is some overlap
in the middle of the distance between substrate and oxide film, the charge density of
the complete slab (indicated by the filled line) is not distorted compared to the sum of
substrate and oxide film.

Densities of States

It is interesting to see how the adsorption on a metal substrate influences the electronic
states of the oxide compared to bulk ZrO2. For the calculation of the densities of states
VASP offers the parameter LORBIT, which can be used to write the spd– and site
projected wave functions to the PROCAR file. To get accurate results for the electronic
structure a higher energy cutoff of 600 eV was used, and the VASP parameter NEDOS
which determines the number of grid points for the densities of states was set to 1001.
Additionally, the gaussian smearing method12 was used to make the graphs less spiky
and the precision parameter PREC was set to “Accurate”. As a first step, a static self-
consistent run using these values was done, followed by a non-self-consistent run with the
parameter ICHARG set to 11 using the charge densities calculated by the self-consistent
run. With ICHARG = 11 the charge density is kept constant during the whole electronic
minimization, because otherwise the supplied k-points would form an irregular grid and
therefore would not give sensible results for the band structure. The densities of states
for both models and for both the PBE and vdW-DF structure were calculated using only
the PBE functional to improve comparability and to reduce possible errors induced by
the vdW-DF.
As the two models (Zr/Pt and O1/Pt) are only approximations of the large (

√
19 ×

12VASP parameter: ISMEAR = 0
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0

1000

2000

3000

4000

5000

6000

7000

0 50 100 150 200 250 300 350 400

T
ot
al

C
ha

rg
e
D
en

si
ty

(e
le
ct
ro
ns
/Å

3
)

kz

Charge Distribution vdW-DF

Substrate
Oxide film

Complete Slab

(b) vdW-DF structure, O1/Pt model

Figure 5.12.: Charge distribution of the Zr/Pt PBE calculated model compared to the
O1/Pt vdW-DF calculated model. Kz corresponds to the z-coordinate of
the fine FFT grid (∆grid = 7.6531pm). The O1/Pt PBE and the Zr/Pt
vdW-DF model are not shown as they do not show significant difference to
the Zr/Pt PBE and the O1/Pt vdW-DF model respectively.
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√
19)R23° cell the values of both models are averaged for each functional. In both

configurations a band gap of about 4 eV can be observed, and while there is almost no
DOS in the gap in the PBE structure slightly higher DOS can be observed for the vdW-
DF configuration. It is also notable that while for the PBE configuration the upper
Oxygen and lower Oxygen DOS is similar, for the vdW-DF configuration the lower and
upper Oxygen density distribution differs. Here the lower oxygen densities are higher
at lower energies (approx. −5.6 eV) while being lower near the maximum of the upper
Oxygen densities (approx. −3.6 eV). Integrating over the energy range from −7 eV to the
fermi level at 0 eV13 however shows that for both the PBE and the vdW-DF configuration
the total charge of the two oxygen layers is the same. In the band gap the lower Oxygen
atoms have a higher DOS than the upper ones, indicating hybridization with the metal
substrate. Nevertheless, at the fermi level EF the oxide density of states is zero. A
conduction band is predicted to begin at ≈ 1.5 eV, which compares reasonably well with
the experimental observations when taking the underestimation of band gaps when using
the PBE functional into account.

STM Simulations

By plotting the local density of states it is possible to create simulated STM images which
can then be compared to experimental STM results and can help determining which
atoms show as bright or dark spots. Bright spots correspond to a high local density of
states (LDOS), while dark patches indicate low LDOS. The data used to create STM
simulations can be gained by calculating the partial (band decomposed) charge density14

in a specific energy range15.
A comparison of multiple simulated STM images at different energy ranges shows that

the best results can be achieved when plotting the LDOS between the fermi level EF and
EF + 0.5 eV. The simulations for the PBE structure show bright spots at the position
of the upper Oxygen atoms, while for the vdW-DF structure bright spots are shown at
the position of Zirconium atoms (see figs. 5.14a and 5.14b). This result is expected, as
the projected DOS (PDOS) analysis shows higher PDOS for the upper oxygen atoms in
the PBE geometry, but higher PDOS for the zirconium atoms in the vdW-DF structure
between EF and EF + 0.5 eV as can be seen in fig. 5.15.

13VASP sets the fermi level to the highest occupied state.
14VASP parameter LPARD = .TRUE.
15VASP parameter EINT
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Figure 5.13.: Averaged densities of states of the PBE and the vdW-DF structure.
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(a) O1/Pt PBE STM simulation

(b) Zr/Pt vdW-DF STM simulation

Figure 5.14.: STM simulations of the O1/Pt PBE model and the Zr/Pt vdW-DF model.
Green circles denote zirconium atoms, red and orange circles correspond to
the upper and lower oxygen atoms (also see figs. 5.10b and 5.11a). Bright
spots are visible at the positions of the upper oxygen atoms in the PBE
model, and at the positions of zirconium atoms for the vdW-DF model.
The states between EF and EF + 0.5 eV have been considered.
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Figure 5.15.: Averaged PDOS plot, showing a small energy range around the fermi level.
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5.6. Conclusion

First principles calculations have shown that DFT is a powerful tool which can be em-
ployed alongside experiments to gain better insight into the properties of materials. By
calculating surface energies of Pt3Zr, which is used as a substrate for ultra-thin ZrO2
films, a preferred surface termination could be established in agreement with experiments.
Calculations for the ultra-thin ZrO2 films have shown that using the PBE functional

leads to quite small adsorption energies and fails to reproduce the rumpling of the surface
seen in the experimental STM images. Compared to the PBE results calculations includ-
ing approximations to the non-local van der Waals correlation energies lead to a much
improved description of the binding of the ZrO2 film to the platinum terminated Pt3Zr
surface has been obtained. Using vdW-DF, the adsorption energies are larger and the
distance between ZrO2 film and the substrate is now closer to the typical bond lengths
found in the respective bulk systems. By comparing two different adsorption models of
the ZrO2–Pt3Zr interface a bonding of the ZrO2 film via the zirconium atoms could be
established. Looking at the charge distribution no charge transfer happens between sub-
strate and oxide film and furthermore the ZrO2 film does not develop a dipole moment.
Finally, the simulated STM images show bright spots at the position of the Zr atoms of
the oxide film.

5.7. Outlook

As described in section 5.5.1 the structures used for the calculations are not exact models
of the real configuration, so further research needs to be done whether this abstraction
plays a role in the results presented in this work. Answering this question would require
the construction of the much larger (

√
19×

√
19)R23° cell. Another issue which was not

looked into is whether the distortion of the ZrO2 film is really caused by the addition of
the van der Waals exchange energies, so the results should be compared to calculations
using the LDA functional to clarify this issue.
The creation of the thin ZrO2 films by oxidation of a suitable material can work with

other crystals too, for example Pd3Zr which is easier to produce and has similar lattice
parameters as Pt3Zr. By using DFT various materials could be investigated to check the
feasibility to grow zirconia films in experiments. It would also be interesting to investigate
the properties of thicker oxide films in agreement with the experimental assignments.
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A. The INCAR File

The INCAR file is the central input file which controls almost all of VASPs actions. In
this section a more thorough description of the VASP parameters used in this thesis will
be given. The complete list of all officially supported settings can be found in the VASP
Manual[63]. An example INCAR file is also given in listing A.1.

• SYSTEM: This parameter contains a string corresponding to the name of the system.
It can be chosen freely and is useful to identify a system as it is also written into
the central output file OUTCAR.

• ENCUT: Sets the cutoff energy of the plane wave basis set in eV, so all plane waves
with a kinetic energy lower than this value are included in the basis set. The default
value is the highest ENMAX value found in the POTCAR file.

• ENAUG: Sets the kinetic cutoff energy for the augmentation charges. It is used to
calculate the number of the fine FFT grid points where the localized augmentation
charges are represented. Similar to the ENCUT parameter the default value is the
highest value of the parameter EAUG in the POTCAR file.

• ISMEAR: This parameter determines the setting of the partial occupancies for each
orbital. For DOS calculations and accurate total energy calculations of metals a
value of−5 is recommended, which corresponds to a tetrahedron method with Blöchl
corrections. Setting this parameter to 0 compels VASP to apply Gaussian smearing
which leads to reasonable results in most cases. For metallic systems though it is
recommended to use the method of Methfessel-Paxton[64] of order 1 (ISMEAR =
1).

• IBRION: This parameter determines how the ions are moved during ionic relaxations
into a local energy minimum. By setting this value to 2 VASP uses a conjugate-
gradient algorithm[65] to relax the ions into their ground state. This setting is
recommended for difficult relaxation problems as this algorithm has good backup
routines. A quasi-Newton algorithm (RMM-DIIS[66]) which is very fast and efficient
is activated by setting IBRION to 1, but it does need good initial positions for the
ions.

• ISIF: This tag controls the calculation of the stress tensor and which degrees of
freedom can be varied during the ionic relaxation process. Setting this parameter
to 2 allows the relaxation of ions in the cell while keeping the cell volume and shape
fixated. A value of 4 allows relaxation of ions and simultaneous change of the cell
shape. Other combinations of changing cell shape, volume and ions can also be
calculated.

• NSW: Controls the maximum number of ionic relaxation steps.
• EDIFFG: This parameter defines the break condition for the ionic relaxation loop.
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If the value is positive the relaxation will be stopped if the total energy between
two steps is smaller than this value. By setting EDIFFG to a negative value the
relaxation will stop if all forces between ions is smaller than |EDIFFG|.

• EDIFF: Specifies the break condition for the electronic self-consistent loop. As soon
as the total energy change and the band structure energy change are both smaller
than this value.

• LREAL: For big systems with more than 20 atoms it is recommended to evaluate the
projection operators in real space, which can be achieved by setting this parameter
to “Auto” or “On”.

• NPAR: On massively parallel systems it is useful to distribute the electronic bands
efficiently over the different computing nodes. Per default all cores work on the
calculation on all bands by distributing the plane wave coefficients over all cores.
The parameter NPAR can now be used to determine how many cores work on one
orbital; it is recommended to set it to NPAR ≈

√
number of cores.

• PREC: This parameter controls the default value for different parameters like EN-
CUT, the FFT grid size and the number of grid points when LREAL = Auto. A
value “high” for example increases the default energy cutoff to MAX(ENCUT)∗1.3.

• LORBIT: This parameter controls whether the spd– or site-projected densities of
states are written to the DOSCAR file.

• LVTOT: Enabling this setting enables VASP to write the total local potential to
the LOCPOT file. The default setting is to write the entire local potential including
the exchange correlation potential. If the additional parameter LVHAR is set only
the ionic and the Hartree potential are output to the LOCPOT file.

1 SYSTEM = Pt3Zr Slab , ZrO2 Trilayer
2

3 ENCUT = 400.00 eV
4 ENAUG = 350.00 eV
5

6 ISMEAR = -5
7

8 IBRION = 2
9 ISIF = 2

10 NSW = 200
11

12 EDIFFG = -0.01
13 EDIFF = 1E-5
14

15 LREAL = Auto
16 NPAR = 8

Listing A.1: Sample INCAR file.
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B. CONTCARS

In this section the fully relaxed structure files are documented. The format of these files
follows the standard VASP POSCAR/CONTCAR regime. The value in the second line
is a multiplication factor. The coordinates of the cell which are written in lines 3–5 are
multiplied with this factor. Lines 6 and 7 define the atom types and the number of atoms
of each kind. The value line 8 defines how the coordinates of the atoms can be entered, it
can be either “direct” or “cartesian”1. To enable selective dynamics the value “selective”
needs to be entered in line 8, with all following lines shifted down. By enabling this
feature one can fixate the coordinates of each atom during the ionic relaxation process.
An example is given in listing B.4. Starting at the 8th line (or 9th if selective dynamics
is enabled) the coordinates of each atom has to be entered with the elements following
the number and type given in lines 6 and 7. If selective dynamics is enabled a “T” or
“F” (True or False) for each coordinate follows the atomic coordinate to signify which
coordinate is fixated (“F”) and which is not (“T”).

B.1. Pt3Zr-ZrO2-Interface

1 ZrO2 on Pt3Zr Zr/Pt config , PBE
2 1.00000000000000
3 5.7288565945186711 0.0000739554729630 0.0000000000000000
4 -2.8643642498900639 4.9613723232590345 0.0000000000000000
5 0.0000000000000000 0.0000000000000000 30.0000000000000000
6 Zr Pt O
7 7 16 6
8 Direct
9 0.0008475603290505 0.9998370080927663 0.0065189717324486

10 0.3339896796937819 0.6665866010089313 0.0756118635182501
11 0.0001921361849796 0.0000153289341786 0.1575867484183123
12 0.6662708707630585 0.3332891578323915 0.2381673968178486
13 0.3319526075543217 0.6656903826405887 0.4568350292730933
14 0.6653175045850667 0.3323541009720226 0.4550771409196915
15 0.9986216692999431 0.9990142111471977 0.4539152206917992
16 0.9989655086204701 0.9999025173864416 0.3095134311199402
17 0.4970359776418256 0.5036693769813819 0.0016433174710637
18 0.4969516087958878 0.9921023293400447 0.0016363209684917
19 0.0085454096888295 0.5036327924598943 0.0016390747459185
20 0.8312939086087550 0.6611382271039813 0.0806135393742806
21 0.8312213908003779 0.1692847912839432 0.0806138186112875
22 0.3395123532620342 0.1693904696497252 0.0806167889492373
23 0.4994145230090556 0.5009837876158344 0.1579492205100337

1Only the first character is read by VASP, so entering “d” or “c” is sufficient.
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24 0.4991674322887422 0.9982493575118931 0.1579565568201797
25 0.0018728407263041 0.5007236290712418 0.1579628108856364
26 0.1683230087040206 0.3365854279616235 0.2339029508182041
27 0.6631888332570819 0.8319999667973959 0.2338907045595409
28 0.1677023290349890 0.8313736313908608 0.2339011864447047
29 0.5015163697781383 0.4991889791686339 0.3119972437350055
30 0.4998628489420880 0.0030274265804785 0.3119787950221321
31 0.9961668145406537 0.4976275799243349 0.3119773242967898
32 0.3328574049935040 0.9978089484563061 0.4236941290744776
33 0.6670201326244682 0.0000172378776780 0.4870008876607356
34 0.9998407223788897 0.3344414057210533 0.4236852385512854
35 0.9977158301876636 0.6664121784462974 0.4869998641888114
36 0.6633267975986916 0.6649115462330673 0.4236872804080130
37 0.3313060461073323 0.3307420204097991 0.4869834804127774

Listing B.1: Zr/Pt PBE

1 ZrO2 on Pt3Zr O1/Pt config , PBE
2 1.00000000000000
3 5.7288565945186711 0.0000739554729630 0.0000000000000000
4 -2.8643642498900639 4.9613723232590345 0.0000000000000000
5 0.0000000000000000 0.0000000000000000 30.0000000000000000
6 Zr Pt O
7 7 16 6
8 Direct
9 0.9994844489681843 0.0003763223523976 0.0052954040387640

10 0.3322651304795320 0.6665982164717775 0.0744795738895700
11 -0.0011682267835733 -0.0004912641833119 0.1563227760078588
12 0.6652690925224860 0.3325068030383952 0.2369213573440752
13 0.1677890775513590 0.4996359126916705 0.4584846614635132
14 0.5012040571766680 0.1663471780555903 0.4577925427965153
15 0.8345520379418865 0.8330870933105133 0.4576808292363347
16 0.9992659924352567 0.9993525659474838 0.3083257172269268
17 0.4953416205931568 0.5041417350093598 0.0004899725204377
18 0.4952622328075906 0.9924231538121311 0.0005042333514609
19 0.0067901335589852 0.5039910761438552 0.0004945198231726
20 0.8296490722403489 0.6611717780370722 0.0793994647872984
21 0.8296226451158027 0.1692656187465280 0.0793961137924742
22 0.3379248100620264 0.1694025202272132 0.0794058912407170
23 0.4979021963384868 0.5003488337693355 0.1567287587762203
24 0.4979012027985616 0.9976240398730359 0.1567387241456813
25 0.0003754190811473 0.5001328368645402 0.1567478097307872
26 0.1673017940373109 0.3358625939758171 0.2326912642316906
27 0.6624804278962747 0.8309193150773272 0.2326858647300507
28 0.1668762700092982 0.8311779802528194 0.2326036053645377
29 0.5006245954292006 0.4978096698218133 0.3108728237169745
30 0.5005144776232087 0.0023227427846746 0.3106536401965862
31 0.9957698555022010 0.4978560472203108 0.3106243072649040
32 0.1680179838447095 0.8323657674383588 0.4263872084246255
33 0.5015436866686217 0.8332680779554694 0.4897212951569423
34 0.8348850196503931 0.1667447298425691 0.4264778212882714
35 0.8338292592940231 0.4997339376951636 0.4896966565536702
36 0.5005868462082019 0.4999572605170373 0.4262367245137032
37 0.1681388709486693 0.1660674872510786 0.4896967743862405
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Listing B.2: O1/Pt PBE

1 ZrO2 on Pt3Zr Zr/Pt config , vdW -DF
2 1.00000000000000
3 5.7288565945186711 0.0000739554729630 0.0000000000000000
4 -2.8643642498900639 4.9613723232590345 0.0000000000000000
5 0.0000000000000000 0.0000000000000000 30.0000000000000000
6 Zr Pt O
7 7 16 6
8 Direct
9 0.9991411673593150 0.9995605644879251 0.0062640903195769

10 0.3325879800260963 0.6661813508852441 0.0756413335128794
11 0.9993546088402320 0.9994252221637573 0.1581373702482466
12 0.6662769483525759 0.3327595307815683 0.2379781645035095
13 0.3335277350732618 0.6667390885943566 0.4331430159152979
14 0.6668576233321428 0.3334040552687632 0.4319033399897588
15 0.0001946925684715 0.0000577405217049 0.4095154757182253
16 0.9998218492410792 0.9994928765059078 0.3118538870309471
17 0.4954169487933796 0.5030528177552844 0.0012896000263155
18 0.4956056972370234 0.9923448104211225 0.0012975701584574
19 0.0062654601687291 0.5032394273728933 0.0013055853991077
20 0.8299892754264395 0.6608723737167386 0.0806591123123856
21 0.8298467447123686 0.1687470809184131 0.0806553597630143
22 0.3378480752554624 0.1688992076475921 0.0806526959993825
23 0.4996077937084073 0.5008546750416268 0.1579174795266028
24 0.4978918486294778 0.9981546094220265 0.1579040286206535
25 0.0006081106358378 0.4991890239800415 0.1579128175232426
26 0.1728062565090196 0.3401897239568533 0.2342810062865611
27 0.6587289392132718 0.8318919929093486 0.2342785529727308
28 0.1670841207545654 0.8261973715831276 0.2342744816987956
29 0.5086988184858166 0.5073358232741432 0.3120833245767586
30 0.4919775522580315 0.0004637270279134 0.3120850718147603
31 0.9987932573480897 0.4906205745271101 0.3120863270404018
32 0.3585080450418204 0.9977708832945584 0.3934106393968041
33 0.6862921784985958 0.0013306120522132 0.4567342317910386
34 0.0024346814018959 0.3606449783098664 0.3934079886847396
35 0.9989270044656485 0.6849170197532847 0.4567339233978850
36 0.6396077034464861 0.6417496786643818 0.3934232062917062
37 0.3152990032164850 0.3139135771622341 0.4567266554802019

Listing B.3: Zr/Pt vdW-DF

1 ZrO2 on Pt3Zr O1/Pt config , vdW -DF
2 1.00000000000000
3 5.7288565945186711 0.0000739554729630 0.0000000000000000
4 -2.8643642498900639 4.9613723232590345 0.0000000000000000
5 0.0000000000000000 0.0000000000000000 30.0000000000000000
6 Zr Pt O
7 7 16 6
8 Selective dynamics
9 Direct

10 -0.0012614421552791 -0.0008163172277703 0.0086272803623828 T T T
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11 0.3321564856396957 0.6657512063558595 0.0780691847592036 T T T
12 -0.0009667261969941 -0.0002152186748188 0.1603701785436534 T T T
13 0.6658285802363249 0.3317395855775101 0.2406110222499074 T T T
14 0.1854924066372216 0.5142462267679900 0.4415464524976996 T T T
15 0.5196927222004852 0.1798959499693791 0.4389947086345888 T T T
16 0.8540325968875938 0.8483968025710987 0.4227469119114667 T T T
17 -0.0073147418696367 -0.0052908714432958 0.3134068649105496 T T T
18 0.4950094712759728 0.5027777668260905 0.0036957055573614 T T T
19 0.4951905119361487 -0.0078706381800591 0.0037409087712957 T T T
20 0.0057725084751030 0.5028278872327959 0.0037482376140663 T T T
21 0.8295236129478298 0.6606434828568525 0.0830527562269842 T T T
22 0.8292680741473143 0.1686541070813134 0.0830112253153984 T T T
23 0.3373605816945349 0.1682662581493573 0.0830627193988333 T T T
24 0.4982583122250460 0.5000543611018388 0.1602934073371573 T T T
25 0.4986603904811781 -0.0025326251506061 0.1604774682986911 T T T
26 0.0008485308556861 0.4996840129950113 0.1604010756176169 T T T
27 0.1719966816038481 0.3400676026309202 0.2369343545935335 T T T
28 0.6607985925824453 0.8290451964327300 0.2367581859645116 T T T
29 0.1668182975965455 0.8311860292066742 0.2362733102959583 T T T
30 0.5000000000000000 0.5000000000000000 0.3157702851390790 F F T
31 0.4927433359668728 -0.0002045256199232 0.3142829533591343 T T T
32 -0.0055051291068217 0.4945426975264323 0.3141191696303202 T T T
33 0.2012596769530004 0.8440259158290415 0.4033003740881627 T T T
34 0.5345173034153631 0.8488356057738260 0.4666070325327869 T T T
35 0.8562694240133001 0.1985224472848969 0.4035952567297061 T T T
36 0.8494880841606971 0.5276114218971010 0.4664659194252846 T T T
37 0.5000000000000000 0.5000000000000000 0.4017984182425112 F F T
38 0.1757529030199748 0.1678191651504196 0.4666285277692497 T T T

Listing B.4: O1/Pt vdW-DF
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C. Additional Tables

Volume Energy per f.u./eV LDA functional
per f.u./Å3 Mono Tetra Cubic Ortho-I Ortho-II

25 −29.320 −28.754 −28.754 −29.400 −30.133
26 −29.755 −29.431 −29.432 −29.831 −30.507
27 −30.073 −29.953 −29.957 −30.764
28 −30.343 −30.348 −30.348 −30.413 −30.925
29 −30.580 −30.637 −30.638 −30.647 −31.002
30 −30.761 −30.836 −30.837 −30.830 −31.014
30.5 −30.905
31 −30.900 −30.967 −30.959 −30.967 −30.974
31.5 −31.016
32 −31.002 −31.037 −31.012 −31.053 −30.890
32.5 −31.078
33 −31.069 −31.062 −31.014 −31.092 −30.777
34 −31.101 −31.047 −30.967 −31.087 −30.647
35 −31.113 −31.000 −30.880 −31.043 −30.520
36 −31.090 −30.926 −30.760 −30.964 −30.397
37 −31.035 −30.830 −30.609 −30.281
37.5 −30.794
38 −30.953 −30.716 −30.436 −30.175
38.5 −30.667
39 −30.856 −30.588 −30.234 −30.095
39.5 −30.540
40 −30.794 −30.454 −30.020 −29.826
41 −30.757 −30.314 −29.790 −29.744
42 −30.721 −30.171 −29.549 −29.674
43 −30.683 −30.027 −29.298 −29.593
44 −30.638 −29.881 −29.038 −29.501
45 −30.578 −29.736 −28.771 −29.413

Table C.1.: Calculated energies, LDA.
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Volume Energy per f.u./eV PBE functional
per f.u./Å3 Mono Tetra Cubic Ortho-I Ortho-II

25 −25.560 −25.250 −25.251 −30.133
26 −26.489 −26.049 −26.050 −30.507
27 −26.916 −26.684 −26.689 −30.764
28 −27.255 −27.185 −27.186 −30.925
29 −27.583 −27.576 −27.578 −31.002
30 −27.844 −27.872 −27.873 −27.913 −31.014
31 −28.053 −28.093 −28.087 −28.127 −30.974
32 −28.219 −28.248 −28.225 −28.289 −30.890
32.5 −28.347
33 −28.347 −28.353 −28.310 −28.397 −30.777
33.5 −28.436
34 −28.442 −28.345 −28.342 −28.464 −30.647
34.5 −28.482
35 −28.502 −28.440 −28.330 −28.490 −30.520
35.5 −28.488
36 −28.541 −28.435 −28.282 −28.478 −30.397
36.5 −28.459
37 −28.549 −28.404 −28.200 −28.433 −30.281
37.5 −28.400
38 −28.528 −28.350 −28.092 −28.362 −30.175
39 −28.483 −28.280 −27.952 −28.272 −30.095
40 −28.426 −28.199 −27.798 −28.195 −29.826
41 −28.405 −28.109 −27.626 −28.041 −29.744
42 −28.390 −28.011 −27.440 −29.674
43 −28.372 −27.910 −27.242 −29.593
44 −28.354 −27.805 −27.033 −29.501
45 −28.330 −27.699 −26.817 −29.413

Table C.2.: Calculated energies, PBE.
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Volume Energy per f.u./eV PBEsol functional
per f.u./Å3 Mono Tetra Cubic Ortho-I Ortho-II

25 −28.710 −29.443
26 −29.183 −29.861
27 −30.159
28 −29.720 −29.823 −30.359
29 −30.049 −30.090 −30.473
30 −30.283 −30.282 −30.301 −30.521
31 −30.443 −30.441 −30.467 −30.514
32 −30.524 −30.551 −30.526 −30.582 −30.463
33 −30.613 −30.607 −30.559 −30.646 −30.380
34 −30.671 −30.625 −30.546 −30.669 −30.275
35 −30.700 −30.608 −30.489 −30.652 −30.169
36 −30.700 −30.561 −30.397 −30.600
37 −30.672 −30.493 −30.276 −30.518
38 −30.614 −30.411 −30.126 −30.412
39 −30.538 −30.312 −30.289
40 −30.481 −30.197 −30.099
41 −30.454 −29.937
42 −30.423 −29.801
43 −29.663
44 −29.384
45 −29.190

Table C.3.: Calculated energies, PBEsol.
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Volume Energy per f.u./eV HSE functional
per f.u./Å3 Mono Tetra Cubic Ortho-I Ortho-II

28 −36.472
29 −36.823 −36.861 −37.195
29.5 −37.233
30 −37.077 −37.077 −37.090 −37.256
30.5 −37.264
31 −37.255 −37.249 −37.274 −37.260
31.5 −37.241
32 −37.348 −37.369 −37.347 −37.406 −37.218
32.5 −37.452 −37.188
33 −37.442 −37.436 −37.390 −37.482
33.5 −37.505
34 −37.509 −37.462 −37.381 −37.516
34.5 −37.516
35 −37.546 −37.452 −37.328 −37.507
35.5 −37.487
36 −37.558 −37.414 −37.239 −37.459
36.5 −37.422
37 −37.536 −37.354 −37.116 −37.380
38 −37.485 −37.278 −36.968 −37.276
39 −37.414 −37.188 −37.160
40 −37.366 −37.090
41 −37.405
42 −37.407

Table C.4.: Calculated energies, HSE.

LDA
Factors Mono P21/c Tetra P42/nmc Cubic Fm3m Ortho Pnma

E0 −31.105 −31.056 −31.021 −31.006
V0 34.613 33.039 32.496 29.541
B0 0.940 1.252 1.666 1.567
B′0 2.557 5.863 4.295 7.987
MinVol/Å 34.878 33.039 32.496 29.541
E(MinVol)/eV −31.113 −31.056 −31.021 −31.006
B0/GPa 150.640 200.650 266.890 251.080

Table C.5.: Parameters of the Birch-Murnaghan equations, LDA.
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PBE
Factors Mono P21/c Tetra P42/nmc Cubic Fm3m Ortho Pnma

E0 −28.546 −28.428 −28.343 −28.215
V0 36.718 35.320 34.200 31.513
B0 0.928 0.965 1.450 1.101
B′0 2.468 5.828 4.230 8.062
MinVol/Å 36.767 35.316 33.868 31.513
E(MinVol)/eV −28.524 −28.427 −28.325 −28.215
B0/GPa 148.670 154.560 232.260 176.360

Table C.6.: Parameters of the Birch-Murnaghan equations, PBE.

PBEsol
Factors Mono P21/c Tetra P42/nmc Cubic Fm3m Ortho Pnma

E0 −30.703 −30.623 −30.561 −30.519
V0 35.467 33.962 33.152 30.380
B0 1.008 1.129 1.559 1.432
B′0 0.757 5.480 4.308 6.114
MinVol/Å 35.512 34.000 33.195 30.357
E(MinVol)/eV −30.704 −30.625 −30.560 −30.525
B0/GPa 161.531 180.952 249.803 229.365

Table C.7.: Parameters of the Birch-Murnaghan equations, PBEsol.

HSE
Factors Mono P21/c Tetra P42/nmc Cubic Fm3m Ortho Pnma

E0 −37.556 −37.461 −37.392 −37.263
V0 35.807 34.190 33.296 30.529
B0 1.036 1.104 1.611 1.498
B′0 −0.498 6.044 4.291 9.839
MinVol/Å 35.900 34.190 33.296 30.597
E(MinVol)/eV −37.558 −37.461 −37.392 −37.264
B0/GPa 166.056 176.833 258.185 240.044

Table C.8.: Parameters of the Birch-Murnaghan equations, HSE.
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