FAKULTAT
FUR INFORMATIK
Faculty of Informatics

ViePEP - Vienna Platform for
Elastic Processes

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

DIPLOMARBEIT
zur Erlangung des akademischen Grades
Diplom-Ingenieurin
im Rahmen des Studiums
Software Engineering & Internet Computing
eingereicht von

Philipp Hoenisch
Matrikelnummer 0725710

an der
Fakultat fir Informatik der Technischen Universitat Wien

Betreuung: o.Univ.-Prof. Dipl.-Ing. Mag. Dr. Schahram Dustdar
Mitwirkung: Dr.-Ing. Stefan Schulte
Dr. Srikumar Venugopal

Wien, 29. Januar 2013

(Unterschrift Verfasserin) (Unterschrift Betreuung)

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 = www.tuwien.ac.at

FAKULTAT
FUR INFORMATIK
Faculty of Informatics

ViePEP - Vienna Platform for
Elastic Processes

MASTER'’S THESIS
submitted in partial fulfillment of the requirements for the degree of
Diplom-Ingenieurin
in
Software Engineering & Internet Computing
by

Philipp Hoenisch
Registration Number 0725710

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: o.Univ.-Prof. Dipl.-Ing. Mag. Dr. Schahram Dustdar
Assistance: Dr.-Ing. Stefan Schulte
Dr. Srikumar Venugopal

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 = www.tuwien.ac.at

Vienna, 29. Januar 2013

(Signature of Author) (Signature of Advisor)

Erklirung zur Verfassung der Arbeit

Philipp Hoenisch
Brunner Gasse 56-58, 2380 Perchtoldsdorf

Hiermit erklére ich, dass ich diese Arbeit selbstidndig verfasst habe, dass ich die ver-
wendeten Quellen und Hilfsmittel vollstindig angegeben habe und dass ich die Stellen
der Arbeit - einschlieBlich Tabellen, Karten und Abbildungen -, die anderen Werken
oder dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall un-
ter Angabe der Quelle als Entlehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasserin)

Acknowledgements

Since no one will ever read this... Lorem ipsum dolor sit amet, consectetur adipiscing
elit. Sed tincidunt felis ac erat ultrices fringilla. Phasellus tincidunt libero ac ante pulv-
inar semper. Suspendisse pulvinar pulvinar massa. Nullam quam nisl, viverra in ultrices
vel, mollis sed dui. Aenean lobortis aliquet ligula nec accumsan. Vestibulum pharetra,
nulla in varius mattis, orci ante pharetra lectus, vel elementum urna risus ultrices lorem.

Anyway, if you get that far, I would like to say a big thank to my supervisor at
the Vienna University of Technology, he gave me a lot of feedback to my work and
motivated me to improve myself from the first day on. Another special thank goes to
Srikumar Venugopal from the University of New South Wales, without him this work
would not be possible, it was a great honor to spend 4 great month at the UNSW where
I have learned a lot about research and had overall a great time.

11

Abstract

Within this thesis, we propose a novel Business Process Management System for the Cloud. It
is able to process several hundred workflows simultaneously while monitoring their executions
in order to counteract against potential Service Level Agreement violations through scheduling
the queued workflows and acquiring additional computing resources when needed or releasing
unneeded ones.

Elastic Processes are a novel paradigm from the field of Cloud computing. It combines
the various facets of elasticity that captures process dynamics in the Cloud. Elastic Processes
are described in three ways: cost elasticity, resource elasticity and quality elasticity. Nowadays,
these elasticities are also relevant for workflows in the Cloud. A workflow consists out of several
individual processes, each requires a different amount of resources, follows different Quality-of-
Service attributes and produces a different amount of costs. Since in today’s workflows resource
intensive tasks get more and more common, and the amount of workflows executed in parallel
varies over time, the amount of needed resources will also diversify enormous. That is way it
is necessary to acquire additional computing resources during the system’s runtime, or release
some whenever they are not needed anymore.

Therefore, we developed ViePEP — the Vienna Platform for Elastic Processes. ViePEP is
on the one hand a Business Process Management System for the Cloud, capable to manage and
process the execution of several hundred workflows simultaneously. It further monitors their
executions in order to identify potential Service Level Agreement violations in time. And on
the other hand, ViePEP is able to counteract against the lack of needed or the excess of used
computing resources. Using a prediction model, ViePEP is not just able to counteract in-time
but also predict the future need of resources for the near future in order to acquire additional
resources punctual or release unneeded resources. By evaluating ViePEP with different config-
ured experiments we have shown, that ViePEP is able to automatically process workflows, while
taking care of Service Level Agreements through scheduling their executions and acquiring or

releasing computing resources.

Kurzfassung

In dieser Arbeit stellen wir ein Business Process Management System (BPMS) fiir die Cloud
vor. Dieses BPMS kann mehere hundert Geschiftsprozesse (BPs) simultan bearbeiten und aus-
fiihren. Diese BPs werden wihrend der Ausiihrung beobachtet um auf etwaige Dienstgiiterver-
inbarungen verstoBe frithzeitig zu reagieren, mehr Resourcen anzuforder wenn nétig, oder nicht
mehr gebrauchte Resourcen freizugeben.

Elastische Prozesse (EPs) sind ein neuartiges Konzept aus dem Bereich von Cloud Com-
puting bei dem die Vielartigkeit der Elastizitit der Cloud zum Einsatz kommt. EPs zeichnen
sich durch 3 Eigenschaften aus: Kosten Elastizitit, Resourcen Elastizitit und Qualiét Elastizi-
tit. Diese Elastizitidten spielen heutzutage ebenfalls bet BPMSs in der Cloud eine grofe Rolle.
Ein BP besteht aus mehreren einzelnen Prozessen die alle unterschiedliche Anforderungen an
Resourcen haben, andere Qualiitskriterien gelten und somit auch unterschiedlich hohe Kosten
anfallen. Die Anzahl der gleichzeitig auszufithrenden BPs kann iiber die Zeit enorm variieren,
und dadurch auch die Anzahl der benétigten Resourcen. Daher kann es notwendig sein, dass
wihrend der Laufzeit zusitliche Resourcen angefordert, oder nicht mehr bendtigte Resourcen
wieder freigegeben werden.

Wir entwickelten daher ViePEP — the Vienna Platform for Elastic Processes. ViePEP ist
gleichzeitig ein BPMS welches in der Lage ist, mehrere hundert BPs gleichzeitig ausfiihren zu
konnen, ihre Abarbeitungen zu beobachten und etwaiigen Dienstgiiterverinbarungen verstof3en
frithzeitig entgegen zu steueren. Weiters ist es in der Lage BPs nach ihrer Prioritit zu sortieren, so
dass ausgemachte Vereinbarungen iiber die Dienstgiiter der einzelnen Services nicht gebrochen
werden. Weiters ist ViePEP in der Lage gegen etwaige Resourcenknappheit frithzeitig entgegen
zu wirken. Mit Hilfe eines Prediction Models, kann ViePEP die bendtigten Resourcen fiir die
nahe Zukunft vorhersagen um zusitlich benétigte Resourcen rechtzeitig anzufordern oder unno-
tige freizugeben.Mittels ausfiithrlichen Experimenten mit unterschiedlichen Einstellungen haben
wir gezeigt, dass ViePEP in der Lage ist, automatisiert BPs auszufiihren, auf alle Dienstgiiterve-

rinbarungen zu achten und automatisch neue Resourcen anzufordern oder freizugeben.

vii

Contents

(I__Introduction| 1
(L1 Motivationl e

(12 AmoftheWorkl 0. 3

(1.3 Organization|. 3

2 State of the Art 5

2.1 _Service-Oriented Architecturel 5

22 WebServices| 7

2 Business Processes| oo o oo 9

3T _WSBPEL. . . . 11

[2.3.2 Service Level Agreement| 13

24 Cloud Computing| 15

2.4.1 Cloud Layered Architecture] 16

17

18

18

18

19

21

3 Related Work 23

4 Requirements Analysis & Design| 29

.1 Introductory Example Scenariof 29

4.2 Requirements| 30

.3 System Life-Cyclel. oo 32

iX

4.4 Component Description| L L

i

Workflow Management|

LX)

Service Deployment) 000000

43

Communication & Shared Memory|

A4

Optimization|

[Implementation|

5.1 TheBigPicture|

[5.2 Business Process Management System VM|

521

Workflow Manager| oL

531

Service Deployment| 0000,

532

ActionEngmme| o000

3.4 Shared Memory|

[3.5 Service Repository|

6.3.3

Pyramid Arrival Scenariofo o000

(6.4 Summary|

[List of Figures|

59
59
59
61
62
63
64
65
66
68
69

71
72

74

79

83

xi

CHAPTER

Introduction

The following gives a short introduction to this thesis. Prefaced by the motivation for
the topic follows the aim of the work. Afterwards, we give a overview about the thesis’
structure.

1.1 Motivation

Business Process Management (BPM) is a multidisciplinary approach which covers or-
ganizational, management, and technical aspects, and “includes methods, techniques,
and tools to support the design, enactment, management, and analysis of operational
Business Processs (BPs)” [[70]. One specific subtopic of BPM is the automatic process-
ing of BPs, which needs to be supported by concepts, methodologies and frameworks
from the field of computer science [46]. Ludéscher et al. [41] defines the automated
part of a business process as a business workflow. In many cases, (Web) services are
composed to a dynamic business workflow that may span several organizations and
computing platforms [56]. Each service in this workflow is also called business process
or workflow step. Nowadays, resource-intensive tasks may not only be found within
Scientific Workflows (SWF), but appear more and more often in BPs. So are compute
and data-intensive analytical processes often found in the finance industry and systems
for managing smart girds in the energy industry. In the latter one, data from a very
large number of sensors has to be gathered automatically, preprocess, processed, an-

alyzed and stored in order to offer customers consumption reports or even guarantee

1

grid stability [59]. Since a business process consists out of several individual, depen-
dent or independent process steps, it is necessary to define theirs functional require-
ments [18]. Beside of the functional requirements coming with the services, a number
of non-functional requirements are added to such a business process description. An
example is the timeliness of tasks, i.e., while some of these processes have to be carried
out in real-time, others can be postponed to the future but still need to consider a partic-
ular deadline. Further, since the amount of process instances, which have to be carried
out simultaneously, may vary to a very large extend, it is a difficult task to estimate the
ever-changing demand of computing resources.

Therefore, a technology is needed which is able react to the dynamic change of
needed computing resources while still ensuring the faultless BP execution, i.e., when-
ever additional resources are needed, the technology has provide them in any way, such
that, the BP execution will not crash or stuck at a critical moment. Throughout the last
couple of years, software engineering research and practice have put remarkable focus
on the field of Cloud computing which is capable to do exactly this.

The definitions of Cloud computing are many-faceted, Buyya et al. [11] propose the
following definition: “A Cloud is a type of parallel and distributed system consisting
of a collection of interconnected and virtualized computers that are dynamically pro-
visioned and presented as one or more unified computing resources based on Service
Level Agreements (SLAs) established through negotiation between the service provider
and consumers.” Another famous definition of Cloud computing has been introduced
by National Institute of Standards and Technology (NIST) [43] “Cloud computing is a
model for enabling ubiquitous, convenient, on-demand network access to a shared pool
of configurable computing resources (e.g., networks, servers, storage, applications, and
services) that can be rapidly provisioned and released with minimal management ef-
fort or service provider interaction”. They further define five essential characteristics
as : On-demand self-service — Cloud-based resources are provided on-demand to the
end-users by request. Broad network access — the Cloud-based resources can be ac-
cessed worldwide using standard network mechanism. Resource pooling — the access to
Cloud-based resources is based on a multi-tenant way. Rapid elasticity — the underlay-
ing Cloud infrastructure allows dynamically scaling up and scaling down, i.e., by adding
or removing computing resources. Measured service — the consumption of resources is
measured and serves as a foundation for elastic pricing and billing models [43]].

The relatively new technology of Cloud computing enables developers to realize

so called Elastic Processs (EPs) [17]. The concept of these processes are defined by
[17] “as the various facets of elasticity that capture process dynamics in Cloud and
human computing”. The main properties for the economic and physical dynamics of
EPs are resource elasticity, 2) cost elasticity, and 3) quality elasticity. The promise of
Cloud computing enables developers to achieve software applications and frameworks
considering all three ways of elasticity at the same time.

Therefore, a Business Process Management System (BPMS) is needed, which is
able to carry out, several BPs simultaneously while still meeting their non-functional
requirements, monitoring the executions in order to learn from the monitored data, thus,

it can predict the future need of computing resources.

1.2 Aim of the Work

Within this thesis, we want to introduce a novel BPMS for the Cloud. It should be
able to execute hundreds of BPs simultaneously, respond to unexpected or expected
changes of the current needed resources in a way that it acquires further or removes
unneeded Virtual Machines (VMs) during process runtime. Further, it will monitor the
BP executions in order ensure the faultless BP executions and counteract against SLA
violations in-time. In order to know, when the system needs additional resources, we
will deploy an elastic reasoning algorithm, which is able to learn from the monitored
data by applying a prediction model, thus it can forecast the future need of resources for
each single service. Further, by charging a Load Balancer with balancing the invocation
on all available resources, the framework ensures an optimal resource utilization.

In order to evaluate our approach, we present a prototypical implementation of an
BPMS for the Cloud. We call this BPMS ViePEP — the Vienna Platform for Elastic
Processes. ViePEP will be evaluated by running several different configured scenarios.

1.3 Organization

The remainder of this thesis is structured as following:

* Chapter 2] details the current State of the Art in the area of Cloud computing and
Business Process Management. This chapter explains important terms in this area

and presents some well approved standards.

Chapter [3| provides an overview of related work in the area of service optimiza-

tion, resource management, and BPM in the Cloud.

In Chapter] we firstly present ViePEP — a Business Process Management system
for the Cloud. We introduce a real world use case scenario in order to show how
and where the results of this thesis can be applied. Afterwards, we define the
single tasks which ViePEP is taking care of, i.e., Business Process Management

and their executions, monitoring, and resource optimization.

Chapter [5] covers a presentation of our prototype implementation of ViePEP. Fur-
ther, the single components acting in ViePEP are explained. In addition, we give

a detail description of our resource prediction approach.

Chapter [shows how we evaluated the ViePEP while presenting and discussing

the results of the experiments.

Chapter [7]concludes this thesis with a short summary and gives an outlook of our

future work.

CHAPTER

State of the Art

In this section, we give some background knowledge for this work. We discuss the
underlying concepts of Service-Oriented Architectures, Cloud computing including Re-
source Provisioning, Business Process Management and Service Compositions, Quality-
of-Service (QoS) attributes and how to monitor them. Furthermore, we discuss some

basic methods for resource optimization.

2.1 Service-Oriented Architecture

Since software engineering may be a very complex, time consuming and expensive
process, reusable software elements, provided as services can benefit vendors and as
well customers. To achieve sustainable reusability, on a business-internal as well as on
a Business-to-Business (B2B) level, a high degree of interoperability and integration is
crucial. The concept of Service-Oriented Computing (SOC), [27,55] utilizes services as
fundamental elements for developing applications. According to Papazoglou, services
are “self describing, platform-agnostic computational elements that support rapid, low-
cost composition of distributed applications” [55]]. They perform functions, which can
be anything from a simple requests to a complex business processes (BP). Erl writes

in [20] that the important characteristics of services are:

* Loose coupling: Services are autonomous and not hard-wired. The relationship
between services minimizes dependencies and allows for the replacement of sin-

gle elements.

» Service contract: Services retain to a communications and interface agreement,

as defined by one or more service description documents (e.g., SLA).
* Autonomy: Services have the single control over their implemented logic.

» Abstraction: A service is described by an interface in a service contract but they
hide the actual implementation logic from the outside world.

* Reusability: The functionality provided by a service is aimed for reuse.

» Composability: Services can be assembled to form service compositions (see Sec-
tion[2.3). In these compositions, the abstraction principle still applies, that means
that to the outside world, composite services may not be distinguishable from an

atomic service.

e Statelessness: Services do not retain an internal state. Context information is

carried in the message exchange with the service and service caller.

 Discoverability: Services are designed to be describable so that they can be found
via an accessible discovery mechanisms, e.g., Universal Description, Discovery
and Integration (UDDI) [|65].

In addition to these characteristics, the view of services is the basis for creating a
Service-Oriented Architecture (SOA). Today’s SOAs comprises much more than just
services, service consumers and a registry (as depicted in the outdated SOA-triangle
[45]). The SOA-triangle covers as well as message mediators, service buses, monitors,
management and governance systems, workflow engines, and many other component
types [56].

The SOA-triangle can be found in Figure [2.1]and consists out of three roles [48]:

* Service Provider: The Service Provider is the host who provides the service im-
plementation. It publishes the Service Description to a Registry. The Service
Description contains information about the service like what it is good for, what
are the necessary input parameters, and how does the result look like.

» Registry: The Registry is the mediator between the Service Provider and the Ser-
vice Consumer. It services as an database where Service Providers can register
their (Web) services so that, Service Consumers can find and further invoke them.
An example is UDDI, a service registry which is described in [65]]

Registry

fin
Service
Description
. subscribe .
[Serwce ConsumerJ= =L Service Producer

Figure 2.1: SOA-Triangle (adapted from [26])

 Service Consumer: The Service Consumer queries the Service Registry for a spe-
cific service. When an appropriate service was found, the binding takes place and

the Service Consumer can subscribe to the wanted service in order to invoke it.

2.2 Web Services

A way to implement SOAs is to use Web service technologies [16,48,55]. Web Services
are software components which are made available through the Internet or Intranet.
As shown in Figure 2.1 Service Providers can publish their Web Services (using the
Service Description). In addition to that, Web services can be discovered, subscribed
and further invoked by Service Consumers. In order to interchange data Web services
make use of the Extensible Markup Language (XML) [75]]. According to Curbera et al.,

a Web Service framework is divided into three areas [[16]:

* Communication: SOAP
To allow Web services to be distributed and heterogeneous, a communication
mechanism is needed which is platform independent, unified, secure and, in or-
der to reduce network traffic, as light-weight as possible. XML [75] is nowa-
days a fully established standard for information and data encoding for platform-
independence and internationalization. Therefore, building a communication pro-
tocol for Web Services using XML is a logical consequence. SOAP, originally
defined as Simple Object Access Protocol was initially created by Microsoft and

7

<SOAP:Envelope xmIns:SOAP="http://

schemas.xmlsoap.org/soap/envelope/">

SOAP Header
Header Block reservation <SOAP:Header>
<l-- content of header goes here -->
Header Block passenger </SOAP:Header>
SOAP Body

<SOAP:Body>
<l-- content of body goes here -->
</SOAP:Body>

Body sub-element: itinerary

Body sub-element: lodging

</SOAP:Envelope>

Figure 2.2: SOAP Envelope (adopted from [164/76])

later implemented in collaboration with several companies including Develop-
mentor, IBM, Lotus, and UserLand. Simple Object Access Protocol (SOAP) de-
fines an XML-based protocol for messaging and Remote Procedure Calls (RPCs).
It does not describe a new transport protocol, but works on top of existing ones
such as HTML and SMTP. The core of a SOAP message is called the SOAP En-
velope. It has a very simple XML structure consisting out of two child elements:
one for the header and the other one for the body. Figure [2.2] shows a graphical
representation of a SOAP Envelope and the XML format for it.

Description: WSDL

In the case of Web services, SOAP offers the basic communication, but it does
not describe what messages must be exchanged to successfully invoke services.
To solve this problem, WSDL (Web Service Description Language) was created.
WSDL is an XML-based format which was developed by IBM and Microsoft

to describe Web services as collections of communication endpoints that can ex-

change certain messages. In other words, a WSDL document describes a Web
service interface and provides the users with a point of contact. At the time of
writing this thesis, WSDL 2.0 is the current recommendation by W3C and has
replaced its predecessor WSDL 1.1 [8]. Its conceptual model can be found in
Figure The Web service description contains the following parts:

— Description: The root element description wraps the abstract and concrete
parts of the service definition.

— Abstract Part: The abstract part includes the service interfaces (this replaced
the portType from WSDL 1.1 [77]), corresponding operations, input and
output messages.

— Types: The message types, also often called parameters, are needed to de-
fine the accepted types for the input and output parameters. They can consist

out of subtrees in order to define simple and complex types.

— Concrete Part: The concrete part contains the service binding, service end-
point (which replaces the service port from WSDL 1.1 [[77]]) and the actual
service [8]].

* Discovery and Registry: UDDI

In order to provide Web services to several users a discovery mechanism is needed.
UDDI [65] is an OASIS specification for Web service registry implementations.
It defines a data model to describe service providers, what services they offer and
the relations within the entities. Firstly, UDDI registries describe services verbally
(informal) and secondly, it describes the services technically (formal) so that ser-
vice consumers can use special query operations on order to look for services.
Technical service descriptions usually link to the service WSDL definitions.

2.3 Business Processes

At the beginning of this thesis, we described briefly the purpose of the framework we
want to create. We mentioned that a platform for Business Process Management shall
be developed. BPM is a multidisciplinary approach, covering organizational, manage-
ment and technical aspects and “includes methods, techniques, and tools to support the

design, enactment, management and analysis of operational business processes’ [70]].

9

WSDL Description

Type c
§e]
IS
©
Interface Operation — C
[&]
g
D
Q0
Fault <

Bindin
et Operation c
Re]
£
Fault ©
L O
(]
©
Service g
Endpoint (&)

Figure 2.3: WSDL 2.0 (adapted from [61])

One particular subtopic of BPM is the automatic execution of modeled processes, which
needs to be supported by concepts, methodologies and framework from the field of com-
puter science [46]]. The automated part of a business process is also known as a business
workflow [41]]. The notion processes is more specific than workflows. Processes can
apply for physical or biological processes for instance. Anyway, processes may be dis-
tinguished from a workflow by the fact that a process has a well-defined input, output
and purpose, while the notion of workflow may apply more generally to any systematic
pattern of activity.

The basic infrastructure of Web services (described in Section [2.2)), is sufficient to
create application only involving single invocations. In contrast, we speak of a service
composition (or workflow), which is a sequence of concatenated services, if a service’s
business logic involves the invocation of several Web services in a sequence. More
detailed, sometimes it is necessary to provide a solution to a problem where a single
service call is not sufficient to provide some functionality but a set of service calls

are. In this case we speak about service compositions. Figure [2.4] shows an example

10

workflow for booking a flight.

[18] gives an overview of several service composition approaches including static
and dynamic, automated and manual, business rule driven, model driven, context-based
and declarative composition. The most common approach for Web service composition
is WS-BPEL which is presented in the following.

?

Search for a
flight

Use this Yes :
flight Pick one?

No

Data
correct?

Book this
flight

Figure 2.4: Workflow for Booking a Flight

2.3.1 WS-BPEL

The industry has reached a general agreement for a single orchestration specification:
the OASIS Web Service Business Process Execution Language (WS-BPEL) [50]. WS-
BPEL is an XML-based language, the single process steps are performed by Web ser-
vices. It assumes that each service is defined using a WSDL file and policy assertions
that identify any extended features. The participating Web services are specified by

11

partnerLink definitions, which point to the respective portType declarations and service
EndpointReferences (EPRs). If the WSDL portType definition of a service is meant
to be an equivalent of a class interface definition in object-oriented programming, the
partnerLink element can be seen as the equivalent object.

Since BPEL documents are very verbose, they are usually generated by tools having
a graphical user interface where the main directives can be added in a drag-and-drop
manner (e.g., Eclipse BPEL Editor [[19]], Netbeans BPEL Designer [47]], Oracle BPEL
Process Manager [54]]). The finished BPEL document is parsed by a WS-BPEL parser
engine. which publishes the process WSDL file and accepts incoming SOAP messages
which requests the execution of this process. Upon receipt of a request message, the
engine starts to interpret the XML-encoded directives given in the process definition.
The main WS-BPEL directives are defined by OASIS [50]:

» subscribe: This instruction subscribes to an operation of another Web service.
Input and output of the invocation are defined by one variable each.

 assign: WS-BPEL allows for the use of variables which can be assigned values
using the assign instruction. The values can be of atomic nature (e.g., String,
Integer,...) or an XML markup. In order to select the part of a variable which

shall be used, XPath expressions [[78] are used.

* receive: The receive instruction signifies that a message has to be received from
an outside participant. This can be used either at the beginning of the process to
let a user define a start parameter and to start the execution or in the middle of the

process to receive results from asynchronous invocations.
 while: specifies a repetitive execution of some process steps.
 switch: conditional execution of parts of the process.
* flow: defines a parallel execution of several process steps.
* reply: returns the process result.

Finally, it is important to mention that BPEL has been designed for use with more
than one target service and is not intended for intra-service protocol specification. Fur-
thermore, the WS-BPEL specification does not (yet) define any human interactions: it is

not possible for an user to interrupt a Business Process in order to manipulate variables

12

or change its workflow. Since in many cases a human interaction in BPs is useful, OA-
SIS defined a specification for a BPELAPEOPLE, e.g., “This specification introduces a
BPEL extension to address human interactions in BPEL as a first class citizen. It de-
fines a new type of basic activity which uses human tasks as an implementation, and
allows specifying tasks local to a process or use tasks defined outside of the process
definition.” [49]].

2.3.2 Service Level Agreement

While a WSDL file describes a Web service in a more technically manner (e.g., what
methods are provided or what is the expected result, ...), a SLA can be seen as a contract
between two services or between a service provider and a service consumer [11}28,/60,
'7/3]. A SLA guarantees specific levels of performance and reliability at a certain cost.
“Usually, cost is the underlying factor that drives QoS that can be offered” as mentioned
in [73]]. This can easily explained, because as more money a user is willing to pay, the
more resources are offered by the service provider.

A complete SLA is a legal document stating the parties which are involved, the terms
of the agreement, application and the support services included. SLAs also specify what
service providers can expect from their customers in terms of workload and resource
usage. In addition to what has to be monitored and what the terms of this agreement are,
the SLA document specifies what penalties are applied whenever a SLA was violated
by a party.

Guarantees in a SLA are defined as a set of Service Level Objectives (SLOs) [9].
A SLO is a combination of one or more component measurements to which constraints
are applied. A SLO is said to be in compliance if the underlying measurement values
are within the specified constraints. SLOs may have operating periods during which the
SLO has to be compliant. Because of the statistical nature of the Internet, it is usually
not possible to offer guarantees that can always be met. Thus, a compliance period and
a compliance percentage may be associated with SLAs. The compliance percent defines
the percentage of time the SLA has to be compliant over the compliance period.

A SLA can contain SLOs for any kind of services, however, in this paper we want
to focus on Web services. In total, there is no standard for SLAs, but IBM has defined a
specification for Web Service Level Agreement (WSLA) [42]]. This specification defines
a SLA template for Web Services. The WSLA language is XML-based and is defined

13

by an XML Schema [79]. It can be used by both, the service provider and the service

customer.

An very important aspect of WSLA is its capability to deal with specification of

particular domains and technologies. Therefore, the WSLA language was created to

be extensible to include specific types of operation descriptions, (e.g., using WSDL to

describe a Web services operation), measurement directive types for specific systems,

special functions to compose aggregate metrics and predicates to evaluate specific met-

rics. Some of the most commonly defined SLOs include:

14

Service Provisioning: This guarantees that the service will be provisioned in
a certain way. An example is that a provider will provide the customer with

redundant connection to its Web services.

Reliability: Reliability metrics consist of availability guarantees over a period of
time. Some examples are: no more than 1 hour of unscheduled downtime during
the year for the network; the Web server will be available 99% of the time it is

accessed over a period of a year.

Response time: This metric defines the maximum time a service is allowed to
take to respond to user requests. Example of this metric is 95% of users will have
a response time of 3 seconds or less during the working hours, where working

hours are between 8 am and 6 pm

Throughput: This metric defines the number of Web service requests success-
fully served in a given time period. It is an important metric since service providers
want to know how many users can be served within a given time period simulta-

neously without losing quality.

Finish before: This metric defines a fix deadline. The service provider has to
make sure that the wanted service invocation has happened before the defined
deadline passed. An example is a fix date like 2012-12-24;18:00:00.

Costs: The cost metric defines the maximal costs a customer is willing to pay.
This metric is often connected to the “Finish before” metric and it is becoming
an important metric because of the pay-as-you-go models, where you just pay for

the resources you have acquired.

2.4 Cloud Computing

Cloud Computing [5,/10,/12,24,58,/71] is a new paradigm for delivering resources on
demand to customers similar to other utilities like water, electricity or gas. Although
there are many Cloud computing providers (e.g., Amazon EC2!, Google App Engine?,
Microsoft Azure®, Heroku?, etc.) there is no standard taxonomy for it. Everyone tries
to define Cloud computing and its services in their own way. However, the NIST [43]]
defines Cloud computing as “a model for enabling ubiquitous, convenient, on-demand
network access to a shared pool of configurable computing resources (e.g., networks,
servers, storage, applications, and services) that can be rapidly provisioned and released
with minimal management effort or service provider interaction.” Further, they say that

every Cloud-based resource is defined by five essential characteristics [43]:

* They can be automatically provided on-demand, when they are requested by a
cloud consumer (Scale-out: horizontally scaling in the sense of adding additional
resources [44]).

* They can accessed worldwide using standard network mechanisms.
* They support access in a multi-tenant way.

* Their consumption is measured and serves as a foundation for elastic pricing and

billing models.

* The underlying Cloud infrastructure is able dynamic scale up and down in order
to adapt to the changing demand of resources (Scale-up: vertically scaling in
the sense of adding resources to a single node, e.q., adding additional CPUs or

memory to a machine [44]).

Therefore, what everyone agrees on is that in Cloud computing everything can be seen
as a service (XaaS). Most often there is talk of Software-as-a-Service (SaaS), Platform-

as-a-Service (PaaS), Infrastructure-as-a-Service (IaaS), Hardware-as-a-Service (HaaS),

etc. (see Section [2.4.2))

'http://aws.amazon.com/ec2/
2https://appengine.google.com/
Shttp://www.windowsazure.com/
4http://heroku.com

15

http://aws.amazon.com/ec2/
https://appengine.google.com/
http://www.windowsazure.com/
http://heroku.com

Software-as-a-Service (SaaS)

Y
AN

Platform-as-a-Service (PaaS)

Y
AN

Infrastructure-as-a-Service (laaS)

Y
AN

Hardware-as-a-Service (HaaS)

- J

Figure 2.5: Cloud Layered Architecture (adopted from [58]])

2.4.1 Cloud Layered Architecture

The Cloud Layered Architecture is the design of different components layered on sev-
eral levels. Each layer is defined by a service which supports the five characteristics
specified by NIST [43] (shown in Figure [2.5). “Cloud architectures are underlying on
infrastructure which is used only when it is needed that draw the necessary resources
on-demand and perform a specific job, then relinquish the unneeded resources and often
dispose them after the job is done.” [58]. The lowest layer forms the HaaS, it provides
the needed hardware for IaaS. On top of it is a PaaS deployed which enables providers
to deploy their software on top of it, this layer is the so called SaaS. All of these ser-
vices are accessible from all over the world. Through Cloud providers such as Amazon,
Google, Microsoft, ... it appears that that there is only one single point of access to these

resources. There are three different kinds of Cloud models mentioned by [4]]:

e Public Cloud: Public Cloud describes the Cloud mode in the traditional main-
stream sense, where resources are provided on-demand over the Internet via Web
services or Web applications.

 Private Cloud: This Cloud mode is managed within an organization and it is not
limited by the restrictions of network, bandwidth, security, security exposures and
legal requirements that may come with Public Clouds.

* Hybrid Cloud: The Hybrid Cloud is a mix out of the two other Cloud models.

16

2.4.2 X-as-a-Service

As mentioned before, in correlation with Cloud computing, everything can be seen as
a service. There are many possible variations of XaaS like HaaS, laaS, PaaS, SaaS,
Communication-as-a-Service (CaaS), ... [23]]. For the purpose of this thesis, it is suffi-

cient to focus on the following [43]]:

* HaaS: The Hardware-as-a-Service model is aimed to be an advantage for business
users. They can rent the hardware in the sense of computing resources, and do

not need to invest in building and managing data centers.

 IaaS: IaaS is the delivery of computing IaaS to customers. l.e., it is the idea of
providing computing resources in the form of Virtual Machine to the customers.
Beside of the higher flexibility, a key feature of IaaS is the usage-based pay-
ment models (pay-as-you-go model). This allows the customers to only pay what
they use and grow/shrink in needed resources whenever they need to. Examples
for TaaS providers are Amazon EC2°, Windows Azure Virtual Machine (VM)s®,
Google Compute Engine’, HP Cloud?,

* PaaS: A Platform-as-a-Service is a category of Cloud computing services that
provides a computing platform and a stack of solutions as a service. The big idea
behind of PaaS is to provide a platform for developers with all the system libraries
and environments so that they can control the deployment and configuration of
their software. The purpose of PaaS is to facilitate the deployment of applications
without the cost and complexity of buying and managing the underlying hardware
and software and provisioning hosting capabilities. A popular example for an

Paa$ provider is the Google App Engine’.

e SaaS: As HaaS, IaaS and PaaS, Software-as-a-Service can as well be seen as a
multi tenant platform. It uses common resources and a single instance of both,
the object code of an application as well as the underlying database in order to

serve multiple customers simultaneously. SaaS is deployed on top of the Platform

Shttp://aws.amazon.com/ec2/
Snttp://www.windowsazure.com/
"https://cloud.google.com/products/compute—engine
8https://www.hpcloud.com/
https://appengine.google.com/

17

http://aws.amazon.com/ec2/
http://www.windowsazure.com/
https://cloud.google.com/products/compute-engine
https://www.hpcloud.com/
https://appengine.google.com/

as a Service which provides interfaces to its underlying layers and it is commonly
referred to the Application Service Provider (ASP) model.

2.4.3 Virtualization

Virtualization is a key feature of Cloud computing. This concept abstracts the coupling
between the operating system and the hardware. In order to improve agility, flexibility
and to reduce costs and thus to enhance business values, it refers to the abstraction of the
logical resources away from the underlaying physical resources. Basically, virtualiza-
tions in Cloud computing are of different types: server virtualization, where a software
layer is added to a real machine in order to support a desired architecture in form of
VM [62]], storage virtualization and network virtualization. A common interpretation of
server virtualization is the mapping of physical available resources to multiple virtual
(logical) representations or partitions. In such an environment it is easy to create new

virtual computing environments, expand, shrink or move as demand varies [1].

2.4.4 Fault Tolerance

Since Cloud computing relies by nature on complex system, i.e., the splitting of software
components into several pieces and distribute them on different layers, the requirement
for fault-tolerance to achieve reliability has become a critical issue [25,/64]]. By using the
key feature of Cloud computing, namely virtualization, Cloud providers and software
developers, are enabled build more fault-tolerant systems. This fault-tolerance can be
achieved on different levels, 1.e., on VM level it is possible to create a back-up copy of
each VM instance, so that, in case of an error in an instance, the affected instance can be
restored by creating a new instance out of the back-up. Similar applies to the SaaS layer,
whenever a software service is not reachable anymore, it can easily be redeployed on a
different VM. However, the challenges in this area multifaceted, it is desired to prevent
errors and faults in advent, that is why many researchers are focusing on complex data
mining and machine learning models in order to be able to predict and prevent faults.

2.4.5 Interoperability

Interoperability is needed to allow applications to be ported from one cloud to another,

or to have one application deployed on several cloud instances, e.g., for higher per-

18

formance. The recently created Cloud Computing Interoperability Forum (CCIF)!°
was formed to define an organization that would enable interoperable enterprise-class
Cloud computing platforms through application integration and stakeholder coopera-
tion. However, this is very optimistic and it turned out that vendor lock-in is a big
problem in today’s world of Cloud computing. Vendor lock-in, is the situation in which
the customers are dependent on a single supplier for a product (i.e., a good or service),
or products, and cannot move to another vendor without substantial costs and/or incon-
venience. This topic was addressed by Frank Leymann et al. in [[7]. In his successive
paper [6]] he proposed the framework TOSCA to realize portable Cloud services. Arm-
brust et al. [S]] propose using multiple providers at the same time in order to address the
problem of vendor lock-in. This approach is often defined as the Cloud federation [35].
Cloud federation can be used within the service model layer (horizontal federation) or
across layers (vertical federation). Also, it can be permanent (redundancy) or temporary

(migration) nature.

2.5 Elastic Processes

The authors of [17] proposes the phrase EP in connection processes and services.
Cloud computing and human computing have features in common like dynamic re-
source requirements and provision and QoS within processes. However, this elasticity
captures the biggest essence of Cloud computing: when limited resources are offered
for potentially unlimited use, providers must manage them elastically by scaling up and
down, as needed. But, as it is common today, understanding and supporting elasticity
purely from the view of resource management, which is rather restrictive. Resources’
requirements are not determined only by the application using them. Therefore [|17]]

proposes the definition of Elastic Processes in three ways:

* Resource Elasticity: Describes the elasticity in the sense of the acquired or used
resources. Since the demand of resources (e.g., CPU, RAM, network bandwidth)
may vary during runtime, it is necessary to react to this need. Therefore it might
be essential to acquire more resources in order to expand or release unneeded
resources to shrink.

Ohttp://www.cloudforum.org/

19

http://www.cloudforum.org/

 Cost Elasticity: Cost elasticity describes the resource provision’s responsiveness
to changes in cost. Service providers apply this cost elasticity when they want
to define a price model for their Cloud computing system. In this context, the
cost elasticity is referred to as utility computing, in which resources such as com-
putational services provided by VMs, network bandwidth, and storage services
provided on different storage hierarchies are charged-based on so-called pay-as-
you-go pricing mechanism. For example Amazon and other IaaS providers define
usually for their services at least two pricing models: On-demand instances are a
pure pay-as-you-go price model in which the customers do not have a longterm
commitment. And, Spot instances occur when spot prices fluctuate over time ac-
cording to supply-demand status and other factors. Users bid the maximum price
they are willing to pay for these instances and run them as long as the spot price
is lower than the bidding price, or until the instance is explicitly terminated. The
service provider can charge higher prices on peak times and lower prices during
off-peak time using these Spot prices in order to shape customers behavior and
that more flexible users would tend to consume rather during off-peak times and
than during peak times.

* Quality Elasticity: Measures how responsive the QoS is to the change of used
resources. This elasticity comes from the idea, that the more resources are con-
sumed, the better the achievable quality is. To achieve this, and underlaying al-
gorithm is needed, that can decide whether more resources are needed to improve
the quality or some can be freed. The main challenge here is to define a measur-
able quality and cost function in order to compute the resource requirements for a
given quality attribute, such as maximal execution time. However, in most cases
some kind of reasoning is required which does not give an exact answers, but an

approximate or quick result.

To summarize it, EPs combine the concepts of Business Processes (and their automated
execution) with the idea and the possibilities of Cloud computing. However, there are
many challenges and problems coming with this idea which are described in more detail
in Chapter 3

20

2.6 Resource Optimization

The abilities of Cloud computing facilitates flexible and efficient resource management
via virtualization at anytime and from anywhere, so that customers can get the de-
manded IT resources easily. In this environment, the servers are shared by different
applications. Furthermore, the Cloud resources are offered in distinct types of VMs.
The needed resources may not be static and the permanent provisioning of comput-
ing resources which are able to handle peak system loads is obviously not the best
solution, as the capacities will not be utilized most of the time. Therefore, a lot of
research has happened in this area: [81]] proposes an approach that combines resource
consumption prediction and resources allocation in the Cloud that provides VMs to
users. This approach allocates resources while the VM is starting for load balancing,
named Statistic-based Load Balance (SLB). SLB includes online statistical analysis of
VM’s performance and resource demand forecasting and a load balancing algorithm
choosing a proper host. [29]] proposes a way using agents which are assigned to single
resources, using this methology the provided resources can be used efficiently.

Out of this, resource optimization can be divided in several fields including: (but
not limited to): load balancing, reasoning about the needed resources, demanding of
additional resources, releasing of unneeded resources, move/copy/delete services from
instances, and many more. In many cases, load balancing in combination with resource

optimization using data mining or reasoning is used, which are described in following:

* Load Balancing: The goal of load balancing [32], is to improve the performance
by balancing the load among various resources (e.g., CPUs, discs, network links,
VMs, ...) to achieve an optimal resource utilization, maximize the throughput and

minimize the response time by avoiding an overloaded system.

* Resource Optimization: Optimizing a Cloud system can be done in two different
ways: firstly, reactive, i.e., whenever the load is getting in a critical state, a new
resource is acquired and the load is balanced, or secondly, proactive, i.e., the
needed resources are demanded before the system can get in a critical state, this
is often done using a machine learning approach [74]. In both cases, a monitoring

component has to record the used resources.

Since resource optimization is a big challenge in Cloud computing, it is a hot re-

search topic in computer science and many researchers all over the world take up that

21

challenge. We present relevant research results in the next Chapter and consider them

as related work for this thesis.

22

CHAPTER

Related Work

In this chapter related work in the field of this thesis will be presented. The presented
approaches are compared on several criteria that can be found in Table [3.1] The table
consists out of 9 criteria, a v/, O or — in the row below a paper means, that the
author(s) have either considered this topic, partially considered or did not consider it at

all. The criteria are described in the following:

* QoS Monitoring: The authors consider QoS monitoring in their work, which
means, they monitored VMs, the execution of services, ... in terms of their QoS
attributes.

* SLA: If there is a checkmark (v') for SLA, it means that the authors of the men-
tioned paper covered SLA-management in their work.

¢ Elastic Processes: If the authors mention EPs in their work, in terms of the three
characteristics of elasticity defined in [17], a checkmark is set.

* Cloud Computing: If there is a checkmark in this line, it means, that the authors
consider their Cloud computing as the research field in their work.

* Reactive Optimization: Reactive optimization means, that the presented system

is optimized just in-time.

* Proactive Optimization: This means, that the resources, services, ... are opti-

mized in advance.

23

24

Service Optimization: Service optimization means, that the authors consider

mainly services, i.e., the optimization aims to improve the service quality.

Business Processes: This means, that the authors consider business processes or

workflows in their work.

Reasoning: Reasoning means, that the authors perform some kind of reasoning

in order to optimize their system.

Automated Control in Cloud Computing: Challenges and Opportunities

Lim et al. address in [39]] the topic of automatic controlling of computing re-
sources in the Cloud. Their solution was based on a simple scenario in which a
small startup company runs a Web application service that serves dynamic con-
tent to clients. The hosted application is horizontally scalable, i.e., it can grow
to serve a higher request load by adding additional virtual machines. In order to
do so, they followed an approach where a Cloud hosting provider runs its own
control system to arbitrate resource requests, select guest VM placements, and
operate its infrastructure to meets its own business objectives. For estimating the
relationship between the CPU utilization and the cluster size under a synthetic
heavy workload, a linear regression model was used. By applying this model they
were able to calculate an estimated workload which is the minimum of CPU uti-
lization but still be able to satisfy the clients demands. They claim, that using
their formula it is possible to detect the right moment whether a new VM hast to
be started or one can be shut down. While [|39] focuses on the front-end tier of
Web applications and simulated the actual controller implementation, Lim et al.
continues this approach in [38]] and focus on a the storage controller including the

implementation of an elastic controller.

A Business Driven Cloud Optimization Architecture

In the paper [40], the authors Litoiu et al. discuss several facets of the opti-
mization in Cloud computing. Further, they discuss the corresponding challenges
and propose an architecture addressing them. This architecture supports self-
management by automating most of the activities regarding optimization, like
monitoring, analyzing, predicting, planning and executing. Within their architec-
ture the authors consider different optimization goals of each layer because each

layer reflects the layer’s owner’s economic interests, either to increase profit or

maximize end user satisfaction. While the focus of the presented work lays on the
interests of different stakeholder, they are not really comparable to the approach
followed within this thesis. However, the presented architecture reflects very well

an interesting software architecture for Cloud computing.

Using Reinforcement Learning for Controlling an Elastic Web Application
Platform

The authors Han Li and Srikumar Venugopal propose in [[37] an approach for con-
trolling an elastic Web application platform using reinforcement learning. They
mention that the main challenge, “manage the infrastructure so as to satisfy per-
formance requirements of applications as well as minimize ongoing costs” can be
spit into two sub-challenges: the provisioning [66] problem (finding the small-
est number of computing resources to satisfy the requirements) ands the dynamic
placement problem [30] (distribute applications among the servers such that the
applications are able to meet their response time and availability requirements).
In their work, they used Reinforcement Learning (RL) [63]] in order to control
an elastic Web application hosting platform. Their platform is designed in two
different kinds of VMs: first) a Proxy Server, which is responsible to forward
the clients requests to the wanted service, and balance the load on each Backend
Server. And two) a Backend Server, on which a application server hosting the
service instances are deployed. In addition to that, the RL Controller is deployed
on this VM.

In order to “feed” their algorithm the virtual servers are monitored in terms of
CPU usage. While this value directly influences the service quality which shows
if a service is working as expected, they do not directly consider SLAs. While the
focus of the RL algorithm lays on a local optimization, the result is a global opti-
mized system. This means, each Backend Server is verifying if it is in a normal
state. If it becomes critical, the RL Controller identifies an action for optimizing

the system, like Copy/Move a Web service, or Start/Terminate a Backend VM.

At this point we want to indicate that this work has influenced this thesis the
most. While we are following a similar architectural design including similar
actions for the optimization, we have different assumptions on the single Web
Services. In the work of Han Li et al. each service instance is independent of

each other, in our work, the focus lays on Business Processes, i.e., the reasoning

25

26

component has to consider, that for processing a workflow, several Web services
have to be invoked. Further, in ViePEP the optimization component uses global
information, i.e., monitored data of each Backend VM in order to reason about
an action, in contrast to the presented work, in which the RL Controller only uses

locally monitored data.

A Novel Architecture for Realizing Grid Workflow using Tuple Spaces

Jia Yu and Raikumar Buyya addressing the topic in [80] of workflow and re-
source management within Grid computing. Since Grid computing can be seen
as the mother of Cloud computing there are several similarities. So is the resource
management within this grid as much important as it is in todays Clouds. In con-
nection to the resources management challenge, the authors of [80] addresses
the challenge of realizing a workflow management system in a Grid. To do so,
they get use of the notification feature of a Tuple Space implementation. Using
these notifications, they were able to realize a just in-time scheduling system, thus
resources are only reserved when they are needed. All things considered, the au-
thors of [80] are following a similar approach as we do in this thesis. However, a
big difference is, that the system presented in the mentioned paper is not consid-
ering the future in the sense of how the system may look like, but it is reserving

resources just in-time.

SLA-Aware Virtual Resource Management for Cloud Infrastructures

Hien Nguyen Van [|68]] proposes an automatic resource management system which
aims at having the ability to automate the dynamic provisioning placement of
VMs while taking into account, both application-level SLAs and resource ex-
ploitation costs. Further, this resource management system supports heteroge-
neous applications and workloads including both enterprise online applications
with strict QoS requirements and batch-oriented CPU-intensive applications. The
VM provisioning and packing problem was expressed using a two Constraint Sat-

isfaction Problem.

SLLA-aware Resource Management for Application Service Providers in the
Cloud
Cardellini et al. [[13]] proposes an autonomic resource provisioning solution for

Application Service Providers (ASPs). This solution enables ASPs offering a

Cloud-based application to handle the dynamic resources provisioning at appli-
cation level by taking into account application specific QoS objectives as well as
resource utilization costs. Their framework includes a Performance Monitor in
order to detect SLA violations early and counteract while acquiring new comput-
ing resources. In order to do so, they on one hand act reactive, and on the other
hand proactive, e.g., forecast the workload for the next time slot and whenever
the resources are overloaded they acquire more. The difference to our solution
is that, our focus lays on Business Process in combination of resources forecast-
ing using this information. In contrast to that, Cardellini et al. focus on resource

management by taking into account customers SLAs and QoS attributes.

Autonomic Virtual Resource Management for Service Hosting Platforms

Hien Nguyen Van et al. addresses in [67] the problem of autonomic virtual re-
source management for hosting service platforms with a two-level architecture
which isolates the application specific functions from a generic decision-making
layer. As Han Li et al. in [37] they split their optimization problem into two
sub-problems: provisioning and packaging problem. However, in contrast to Han
Li et al. and our implementation, the packaging problem addresses the place-
ment of virtual machines on physical machines and not (web) services on virtual

machines. They express this problem as a two Constraint Satisfaction Problem.

A min-max framework for CPU resource provisioning in virtualized servers
using H ., Filters

Charalambous T. and Kalyvianaki E. suppose in [14] a solution for resource al-
location in the Cloud. By using a ‘H, Filter Controller they try to minimize the
maximum error in performance as measured by the requests mean response time.
The difference to other approaches is, that they do not allocate new VMs but in-
crease the resource amount of a overloaded one, i.e., if a the CPU load of a single
VM is likely to go over a defined threshold, because of an increased workload,
the H, Controller allocates an additional CPU core to this VM.

A Profit-Aware Virtual Machine Deployment Optimization Framework for
Cloud Platform Providers
The authors Wei Chen et. al [[15] address the problem of VM deployment and

reconfiguration from the view of Platform Providers. They identified the different

27

Table 3.1: Table of relate work (v'- covered, O- partial-covered, —- not-covered)

[13] | [14] | [15] | (37] | [39] | [40] | [67] | [68] | [80] | ViePEP

QoS Monitoring v O v v v O v v O v
SLA v —10]O]—]1]0]0O0] v |O v
Elastic Processes O|—|—=—| =10 | === —|— v
Cloud Computing v v v v v v v v | v
Reactive vlol—|v | —]O|—]O0|0O] v
Optimization

Proactive vivi v iv|iv]|Olv|—=v| v
Optimization

Service _ _ | = | = | —
Optimization © © v v v
Business Processes — 0 | — v v
Reasoning v - v v v v v v v v

concerns of Platform Providers in initial deployment and runtime configuration.
The methods they proposed are mainly for reducing costs in both phases. In or-
der to do so, they proposed a local adjustment strategy which reduces the number
of VM migrations while balancing the multi-dimensional resource utilization ac-
cording to the current requested resource demand or workload. Further, using a
prediction model they used data from the runtime monitor in order to calculate

the objective values and predict the future need of resources.

As far as we know, hardly anyone considers every criteria mentioned in Table [3.1]
By looking at the presented related work and specially at the Table[3.1] we can see, that
the field of Business Process was rarely handled, only [[80] considers Business Process,
but they do not consider them in connection with Cloud computing. Nevertheless, ev-
ery presented work considers QoS monitoring in order to optimize their system either
proactive, reactive or both. The lack of a solution, covering every presented criteria, led
to the aim of this work: a Business Process Management System for elastic Business
Processs in the Cloud, which is able to optimize the hosted services reactive or, by using

a reasoning model, proactive.

28

CHAPTER

Requirements Analysis & Design

In this Section, we present the design of ViePEP. Before we do so, we describe an
introductory example scenario which helps us to define the requirements for ViePEP.
After the example scenario, we present the design of ViePEP which is split into four
main parts: firstly, we derive the requirements from the example scenario, secondly, we
describe ViePEP’s life-cycle, and thirdly, we define the single parts of ViePEP that play
an important role, such as the workflow management, the Backend VM on which the
single services can be deployed, the communication part between each VM instance
and, last but not least, we describe how the optimization is working.

In this Section we focus on the conceptual ideas of the framework, whereas details

concerning the prototypical implementation can be found in Section [5

4.1 Introductory Example Scenario

As a motivating example for ViePEP, we consider an imaginary bank which is an highly
active stock market player (for sake of simplicity we call this imaginary bank IB).

IB provides several (software) services to their customers (to transfer money, to
view account information, ...), to their employees (customer management, credit rat-
ing, stock market actions, ...) and some automated workflows such as the creation of
back-ups. Many of these provided services consist out of several tasks, e.g., to create a
credit rating for a customer several steps have to performed, such as checking the inter-

nal databases and requesting other banks or credit institutes for information about this

29

customer. Another example is the automated back-up service which has to be run every
night. This back-up service includes processes such as the collection of relevant data
(log files, databases, ...), the preprocessing of the data and the creation of an archive or a
replica at a different location. Eventually, every process provided by IB can be assigned
to a single workflow consisting out of one or more different services (see Section [2.3)).

These workflows are multifaceted, they consist out of different services and have
different priorities. E.g., while some of the workflows have to be carried out in real
time, others can be postponed into the near future. For determining whether a workflow
has to be carried out before another, i.e., has a higher priority, it is necessary to prioritize
them somehow, e.g., give each workflow a time limit until the it has to be finished.

IB is a big company and they want to be able to process hundreds of workflows
simultaneously. Further they want to be able to scale their provided services in any di-
mension when needed. To be able to do this, IB moves their services into the Cloud. But
still, they need a system which is able to fulfill the following requirements: they want
to ensure that every workflow is processed in-time while considering the workflow’s
SLAs. Further, IB wants to minimize the amount of demanded computing resources in

order to limit their expenses.

4.2 Requirements

The following requirements for the needed system arise from the introductory example

scenario:

1. Business Process Management System: IB provides several BPs which have to
be carried out automatically. That is why, the system they need has to be a BPMS.
This BPMS has to fulfill the following requirements:

1.1. Workflow Managing: The main part of an BPMS is a Workflow Manager,
which is responsible to accept new workflows, schedule their executions,

performing the executions while monitoring them.

1.1.1. Workflow Execution: A component is needed which takes over the
workflow executions. In order to know which service has to be executed
within the workflow, a description is needed.

1.1.2. Workflow Description: A workflow description represents a BP, i.e., it

is now possible to process the workflow automatically. As mentioned in

30

1.1.5.

[70] by van der Aalst et al., every workflow consists out of several steps
which have to be carried out individually. Each single step is defined in
the workflow description. Since it should be possible to prioritize the

single workflows and services, additional SLAs can be defined.

. Scheduling: It should be possible to schedule the queued workflows

by sorting them according their priority. This can be done by using the

SLA information provided within the workflow description.

. Workflow Queue: In order to store waiting workflows, a data structure

is needed where the workflows are queued until they get executed. This
queue is ordered by the workflows’ priority.

Service Monitoring: It is important to monitor the single service in-
vocations in order to identify if everything is working as expected, e.g.,
ensure the given SLAs.

1.2. Cloud Connection: As mentioned above, IB wants to move their services

into the Cloud. In order to get use of the features provided by the Cloud, the

following is needed:

1.2.1.

1.2.2.

Service Runtime Environment: Each workflow consists out of several
single services which have to be invoked. Therefore, a service runtime
environment is needed in which the services can be deployed in order
to be executable, e.g., an application server deployed on a VM.

Resource Optimization: Since IB wants to be able to scale-out to meet
the required demand, in terms of acquired resources, it should be pos-
sible to acquire additional resources or releasing some during runtime,
duplicate the services, and balance their executions on the available re-

sources:

1.2.2.1. Reasoning: In order to find out when additional resources are re-

1.2.3.

1.2.4.

quired or when some can be released, because they are not needed
anymore, a reasoning component is employed.
Cloud-related Action Execution: An interface to the Cloud is needed
which is able to perform actions like creating additional VMs or termi-
nating VMs.
Service-related Action Execution: In addition to the Cloud-related ac-

tions, it has to be possible to perform service-related actions to manage

31

the services which are deployed in the service runtime environment. It
has to possible to deploy a required service on a newly created VM. For
that, a repository is needed, where every available service is stored.

1.2.5. Service Repository: The service repository is a database like structure
where every service is stored. It has to be accessible from every service

action executor.

1.2.6. Load Balancing: Since several instance of the same service can be
available, a load balancer is needed which balances the invocations on

the available resources.

4.3 System Life-Cycle

Now that we know what the requirements of the needed systems are, we have to define
the system’s life-cycle. Therefore we get use of the MAPE-K cycle as used in [31]] for
autonomic computing. The workflow can be seen in Figure MAPE-K stands for
Monitor-Analyze-Plan-Execute and Knowledge and its purpose is described as follow-

ing:

* Plan: In the framework ViePEP two things have to be planned: 1) the execution
of the workflows, and 2) the demanded computing resources (when to start how
many VMs). For this purpose we have two individual components which are
actually working together. The Workflow Manager, for scheduling the workflows’
executions and a Reasoning Component, for computing the amount of needed

computing resources.

* Execute: The Workflow Manager is not only creating a scheduling plan for the
workflows’ executions, but also performing the actual executions, i.e., invoking
the individual workflow steps. Further, actions like starting and shutting down of

VMs have to be executed.

* Monitor: The systems state is monitored in regular intervals (e.g., every 10 sec-
onds) on two different levels : firstly, the load of acquired resources (e.g., CPU
load, Ram load, network bandwidth) and secondly, the deployed service instances

(e.g., service response time, failure rate, ...).

32

Figure 4.1: MAPE-K Cycle (adapted from [31])

* Analyze: The monitored data is analyzed in order to verify if SLAs have been
violated and more resources are needed or if enough resources are available to

process the workflows without any problems.

* Knowledge Base: The knowledge base is in our case a simple database located
in a shared memory storing all the monitored data. In addition to that and for the

purpose of a later evaluation, every executed action is also stored in this memory.

4.4 Component Description

4.4.1 Workflow Management

The key purpose of ViePEP is to process workflows. Therefore it is necessary to have
a Workflow Manager. Its task is to manage the execution of the workflows. For this a
queue-like data structure is holding the waiting workflows. Only the Workflow Man-
ager is allowed to store new workflows in this queue, which means, that whenever a
user requests to add a new workflow for being processed, the requested workflow will
be stored in this queue. Since every workflow description can have optional SLAs, a de-
tailed scheduling plan can be created. This scheduling plan is just an in-memory order
of the workflows in the queue, thus the queue can be sorted accordingly. In addition, the
Workflow Manager can react to the request of ad-hoc workflows. This means, that the
Workflow Manager is able to accept new workflows at every moment during the sys-
tem’s runtime, update the scheduling plan and reorder the queue, thus workflows with a

higher priority can be processed before workflows with a lower priority.

33

4.4.2 Service Deployment

In the case of ViePEP these service steps are represented by an arbitrary application.
For now, we use Web services which can be invoked either via SOAP or REST and are
deployed on a VM (we call this VM Backend VM). Since another purpose of ViePEP is
to optimize the used resources and to ensure SLAs in order to provide a stable system,
each single service and the VM it is running on, are monitored. To make it easier to
dedicate the monitored data (e.g., CPU and Ram usage) to a single service instance (we
define a running service as a service instance), we decided to deploy each single service
on an own VM. Thus, we get one service per VM, but we can have several VMs running
the same service. In any case, every VM is indirectly connected to each other using a
shared memory in order to provide a place for storing the monitored data and to facilitate
communication (see next Section). On account of letting ViePEP be autonomous, we
decided that it should be able to start a new Backend VM whenever a new service has
to be invoked. Therefore we created a service repository where every available service

instance is stored.

4.4.3 Communication & Shared Memory

As mentioned in the previous Section, it is necessary to have a communication layer
between the VMs. ViePEP should be distributed and very scalable, i.e., it should be
possible to add and remove VMs during its runtime. Therefore, we need some kind of a
shared memory which supports ad-hoc joining and leaving of peers. This shared mem-
ory has two purposes: first: serving as a communication layer, thus the VMs can com-
municate with each other, and second, as a database where the recorded data is read- and
writable from each VM. In our case, we decided to make use of MozartSpaces! which
is an Java-based open source implementation of the extensible virtual shared memory
(XVSM) technology based on Tuple Space [|34]]. The communication is possible thanks
to the notification feature provided by MozartSpaces. These notifications are based on
a Topic-based Publish-Subscribe pattern: Clients (in our case the Backend VM and
Action Executor) subscribe themselves on a topic and get notified whenever new infor-
mation for that topic is available [21]], e.g., every time a new monitoring entry from an
Backend VM was stored or an action from the Action Executor was fired. As important

as the communication layer is the possibility to store data in the MozartSpaces. The

'http://www.mozartspaces.orqg/

34

http://www.mozartspaces.org/

recorded data is saved in the MozartSpaces in a database manner. Records can be writ-
ten and read in real-time which is very important for our optimization approaches. In
addition to that, MozartSpaces provides the possibility to query the data similar to SQL.
A more detailed usage of MozartSpaces is described in Section[5.4]

4.4.4 Optimization

As mentioned in the introductory example scenario, another key principle of ViePEP is
the optimization of the computing resources, i.e., optimizing the load of the currently
used VMs and the future needed ones. This means that we only want to have as much
VMs running as we really need in order to guarantee every SLA and be cost-efficiently
as possible.

At the first start of ViePEP, we just have one VM running: the BPMS, and whenever
a new workflow request is coming in, the system checks if the needed services are
already available. Afterwards, a scheduling plan is created and the executions are started
(see above). In the case of having a specific service not already deployed on a VM, a
new VM instance is acquired and the service is deployed on it.

As our basic idea is to provide a solution which is able to consequently adapt the
system landscape, i.e., add or remove VM instances during the system’s runtime since
the Cloud user has to pay for every running VM. In our use case, hundreds or thousands
of workflows are running concurrently and while they are executed, it is likely that more
and more are started. As already mentioned, each workflow consists out of several
service steps. These services are represented by applications that need to be invoked
in order to execute the workflows. Executing these services leads to ever-changing
demands regarding computing resources in terms of CPU usage and Ram usage.

There are several reasons why the needed resources within a given scenario or sys-
tem landscape vary over time. It might be the case that very data-intensive tasks have to
be carried out from time to time, services are invoked as regular batches, or simply that
during a peak time (e.g., during the working hours) much more resources are needed
than during of-peak time (e.g., at night).

With the possibilities of Cloud computing, in theory it is possible to have virtually
unlimited resources. Thus resources can be added if the performance of a single service
decreases or the resources can be released if the demand of requests decrease. In an ideal

world with perfect information about the present and future situation, it would be easy to

35

add as much computing resources as needed at a given point of time, leading to optimal

cost efficiency. Unfortunately, we are not living in a world with perfect information.

Therefore, the challenge is, to use every available information about our system and

the state it is in, for calculating the amount of needed computing resources. In fact, in

the scenario described so far, two major sources are available: firstly, the current load

of resources and secondly, the information about the current and future invocation of

executed workflows (including the information about which particular services have to

be invoked). We decided to use a 3 Step Optimization Approach to solve this challenge:

36

1. Step 1 In the first step the system tries to calculate the amount of needed resources

for each single service. This is done, by learning from the monitored data. If our
set of historical data is large and distinguishing enough, a data mining approach is
able to derive for a single service invocation how the resource demand will look
like.

. Step 2 As the next step, we get an overview about the complete future system

landscape: Based on the information from the last step, and in combination about
the information about the future workflows (and their single services), we can
estimate the future need of resources in order to create a complete future system

landscape. This is done for some predefined time intervals, e.g., 5 minutes.

. Step 3 When we get the information from Step 2, we follow an approach quite

similar to the one proposed by Han Li et al. in [37], i.e., try to find the best
action in terms of copy, merge, start, shutdown service instances and their VMs
(or combinations of these actions). However, there is one major difference in the
approaches and what we try to achieve: while the authors of [377]] are doing a local
optimization, we are optimizing on a system landscape level. While in a future
version ViePEP will be able to optimize the workflow executions in the sense of
being fast and effective, for now we concentrate on the optimization of the used

computing resources.

For detailed information about this optimization please be referred to Section[5.2.3]

CHAPTER

Implementation

In this section our prototypical implementation of the ViePEP framework is presented.
Firstly, we will have a look at the “big picture”, i.e. how the framework components are
connected with each other. Subsequent to this, the details about their implementation
will be explained step by step. The whole ViePEP framework is developed in SUN
1.6 Java [53]] and can be built using Apache Maven 3 [22]]. The system was developed
and tested in a Linux environment. ViePEP was designed for the OpenStack [52], an
open-source Cloud computing platform, but by the design of ViePEP it is possible to
change or extend the implementation, thus ViePEP can be used within different Cloud

providers, such as Amazon S3, Windows Azure, Google Cloud, ...

5.1 The Big Picture

As depicted in Figure [5.1] (using an FMC Block Diagram), ViePEP has five top level

entities:

1. The client models service-based workflows and can optionally define SLAs. The
workflows are modeled making use of an XML-based description format, as pre-
sented in Listing which also defines non-functional constraints and prefer-
ences for each step, or for the whole workflow in form of SLAs. This description
is handed over as a workflow request to the Workflow Manager (WfM) of the

BPMS in order to instantiate and execute a workflow. A Client may request many

37

workflows at the same time and the system is able to serve several clients simul-

taneously.

2. The BPMS VM offers the central functionalities of a service infrastructure and
Cloud control solution, e.g., workflow and service scheduling and load balancing.
The BPMS is running inside a VM. We have decided so in order to allow for
further self-adaptation capabilities in a future version of ViePEP and to ensure
that in case of a high load of this VM it does not effect other services. The BPMS
will be presented in more detail n Section

3. A Backend VM hosts a particular service. In a typical ViePEP-based system,
many Backend VMs exist at the same time and have to be controlled through the
BPMS. Together with the BPMS, the Backend VM is the central entity in ViePEP
and will therefore be presented in more detail in Section [5.3]

4. The Shared Memory is used to provide data sharing between the BPMS and the
different Backend VMs. We chose MozartSpaces for this, as it allows to easily
deploy and access a peer-to-peer-based, distributed shared memory. For a more
detailed description refer to Section[5.4]

5. Last but not least, the Service Repository hosts service descriptions as well as
their implementations as portable archive files, which allows to search for services
and deploy them on a ViePEP Backend VM, see Section [5.5]

5.2 Business Process Management System VM

As already mentioned, the BPMS runs inside an own VM. For us it is very important to
be able to easily scale our system. To have a centralized component for the workflow
management part helps us to achieve this. A more detailed view of the components mak-
ing the BPMS working can be found in Figure[5.2] The purpose of this VM is to plan
and control the future executions of the workflows. The Workflow Manager is deployed
for that reason, and in addition, it further delegates the actual service executions of these
workflows to its helper component, the Workflow Executor. Further, a Load Balancer
is deployed to balance the invocations and use the Cloud resources efficiently. Besides

of the workflow management, a component for the resource optimization is deployed

38

BPMS
Application Server
)
| /—>
Service Monitor
Workflow | Workflow e
YETEa “| Executor D
g
Q
T m
o ¥
() 3
]
(%]
| —a| Acton | —a| Load
Reasoner Executor Balancer
) Action Engine
/4 / ¥
L ~ N Y

[MozartSpaces]

Figure 5.1: ViePEP Implementation

(Reasoner). For executing the actions coming from the Reasoner an Action Executor is
deployed. Figure[5.3|shows a sequence diagram representing the workflow of the BPMS
VM: A user requests ViePEP to start a new workflow. This workflow gets accepted by
the Workflow Manager which re-schedule the waiting workflows and updates the queue.
Further, the Workflow Manager processes the workflow queue by delegating the execu-
tions to the Workflow Executors. The Workflow Executor processes each workflow step
by step, i.e., it queries the Load Balancer for the best fitting Backend VM and invokes
the service. The result is stored for a later processing.

5.2.1 Workflow Manager

The WM controls and schedules the workflows and further delegates the service exe-
cutions to the Workflow Executors (see Figure[5.2) for their executions. It receives the

necessary workflow description from the Client and stores it in the Workflow Queue for a

39

BPMS
! 1
/ i !
L J i | : :
i ! . Service -
Workflow .| Workflow - : :
Manager “| Executor oZ o
1
! 8. 1
1o
5 o
1 [0} 1
) / R
1 c |
o,
0
! 1
—a Action | —al Load ! 1
REEEONOT Executor Balancer i 1
l‘_ ___?
- I K] LS I M A
1
i MozartSpaces :
1 1

Figure 5.2: ViePEP: BPMS System Components

later (or immediate) execution. These workflow descriptions contain information about
the single steps in a workflow and the accompanying SLAs. Afterwards, the Workflow
Manager queries the Service Repository for the services matching the workflows steps.
This mapping is needed in order to identify already running services instances through
the Load Balancer. Based on this information, the WfM is able to issue service invo-
cation requests to a particular Backend VM hosting this service and possessing enough
resources to serve this invocation under given QoS constraints as defined by the SLAs.

There are many ways to describe workflows and SLAs [2,42,50]. However, in this
work we make use of a basic lightweight workflow description language which can be
found in Listing [5.1] The purpose of this format is to let users/ customers define their
workflows and SLAs in one file which will be processed by our framework. Using this
file, it is possible to describe a workflow (see element businessProcess) which has to
have at least one process step (see element stepsList). So far, only sequential workflows
are possible, but in a future work we will consider branching, loops, Both, the
workflow itself and its process steps can have an optional SLA (see element sla) which
can have the following SLOs:

40

sd BPMS Sequence Diagram)

Workflow Workflow Load Service
Manager Executor Balancer

User I

[
I
I
I
1: Add Workflow :

1.1: Update |

Scheduling |

Plan and add t
Queue

o1~ — =

loo

|
While Queue is not efnpty J
T

2: Start WIME |

|
loop While Workflow has steps }

2.1: Request
Service Location

<~ Semice T
Location

3: Invoke

- ———

3.1: Return result

et = il

Figure 5.3: ViePEP: BPMS Sequence Diagram

» endBefore: This SLO describes the latest date and time the workflow’s or the
individual process step’s execution has to be finished.

» maxResponsetime: The SLO maxResponsetime defines a service specific attribute.
It says that the service response time should not be higher than the defined value.

» maxCost. Since every used Cloud resource produces costs, this SLO defines the

41

limit a user is willing to pay for the workflow or the process step.

A valid example can be found in Listing In this example a workflow is defined
which consists out of two steps: in step 1 a service with the service ID webservicel
has to be invoked. Further, the user also defined a SLA which says that the service’s
response time has to be below 300 milliseconds. In step 2, a service with the id web-
service2 has to be invoked but the user does not care about when it is executed, but he
defined a maximum cost for this service, which is 10€. In addition to the SLA on work-
flow step level, the user defined a SLA for the whole workflow: he wants this workflow
to be executed not later than August 30", 2013 at 09:00:00 am.

Anyway, by the nature of ViePEP, it is easy to replace our proprietary format with

any non-proprietary format.

Listing 5.1: Business Process Description Language

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema" elementFormDefault="<—
qualified ">

<xs:element name="businessProcess" type="BusinessProcessType"/>

<xs:complexType name="BusinessProcessType">
<xs:choice minOccurs="1" maxOccurs="2">
<xs:element minOccurs="1" maxOccurs="unbounded" name="stepsList" type="+«>
StepType" />
<xs:element name="sla

"

type="slaType" minOccurs="0" maxOccurs="1" />
</xs:choice>
</xs:complexType>

<xs:complexType name="StepType">
<xs:sequence>
<xs:element name="step" minOccurs="1" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>

<xs:element name="serviceld" type="xs:string" minOccurs="1" maxOccurs<«>
="1" />

<xs:element name="description" type="xs:string" minOccurs="1" <
maxOccurs="1" />

<xs:element name="sla" type="slaType" minOccurs="0" maxOccurs="1" />

</xs:sequence>
<xs:attribute name="id" type="xs:NCName" use="required"/>
</xs:complexType>

</xs:element>

</Xs:sequence>

42

</xs:complexType>

<xs:complexType name="slaType">

'

<xs:choice minOccurs="0" maxOccurs="3">
<xs:element name="endBefore" type="xs:dateTime"/>
<xs:element name="maxResponsetime" type="xs:integer"/>
<xs:element name="maxCost" type="xs:integer"/>
</xs:choice>

</xs:complexType>

</xs:schema>

Listing 5.2: Example Business Process

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<businessProcess>
<sla>
<endBefore>2013—-08—-30T09:00:00</endBefore>
</sla>

<stepsList>
<step id="stepl">
<serviceld>webservicel</serviceld>
<description>this is step I</description>
<sla>
<maxResponsetime>300</ maxResponsetime>
</sla>
</step>
<step id="step2">
<serviceld>webservice2</serviceld>
<description>this is step 2</description>
<sla>
<maxCost>10</maxCost>
</sla>
</step>
</stepsList>
</businessProcess>

To execute a workflow and its service steps, a Workflow Executor takes a workflow
from the queue. Based on the workflow request and a workflow/service scheduling
obtained from the Reasoner (see next point), the executor gueries the Load Balancer
for the best fitting service instances (Backend VMs) for the next workflow steps. For
this we decided to use the Backend VM having a system load closest to a predefined
threshold (For now, this threshold is a fixed value, but in a future version of ViePEP this
will be dynamic and depends on the deployed service. For more information refer to
Section

43

The Workflow Executor is able to measure the service response time (this includes
the network latency and the time it takes to generate a response from the time the service
was invoked [57]]). This is happening by simply measuring the time from the moment
the execution was started to the moment the result is returned. This functionality is
needed in order to determine deviations from the expected service behavior at an early
state and avoid SLA violations, which can lead to penalty costs [36]. The information
about the service invocations, i.e., date of invocation, the actual response time and the
HTML result code is stored in the Shared Memory. If a deviation appears, a workflow
re-planning is done by the W{M. If this replanning is done, the Reasoner takes the
updated information about the current process landscape into account.

If the Workflow Executor does not receive a fitting service instance from the Load
Balancer, i.e., no such service is available (this happens whenever a service has to be
invoked for the first time), the Workflow Executor tells the Action Executor the missing
service description and puts the actual workflow execution on hold, and puts it back
to the queue. After that the Workflow Executor is idle for a few seconds and can start
processing another workflow. However, ViePEP is designed in a way, that Workflow
Executors never have to wait. Since a service instance can be unreachable because of an
error, we had to consider this case. In any other case, the workflow will not be started
before every needed service is deployed. The Action Executor queries in the meantime
the Service Repository for the according service implementation and instantiates a new
Backend VM. For that reason we have created Backend VM snapshots containing every
necessary component. With help of this snapshot a new Backend VM can be started
which is already fully configured. Depending on the Cloud provider this will take up to
a few minutes. After that, the Action Executor deploys the appropriate service archive
on this VM and tells an Workflow Executor that the according Web service is available,
so that the paused workflow can be continued.

The Workflow Manager provides an interface allowing the Reasoner (or an system
administrator in order to verify if ViePEP is running correctly) to get information about
the number and the structure of the workflows (and their service steps) in the queue in-
cluding their according QoS constraints and preferences. Furthermore, the reasoner can
request via an interface the number of active Workflow Executors, active workflows, and
services currently running on the system. Even more important, the WfM implements
an interface allowing to request how many services have to be invoked at what point of

time. In addition to that, information about new user-issued workflow requests as well

44

Reasoner

Service2

WE2

BackendVM3

Service2

Load
Balancer

BackendVM4

WE3

Service1

BackendVM1

WES

Service1

BackendVM2

[SharedMemory]

Figure 5.4: Load Balancer

as occurring and likely deviations in non-functional service behavior are provided to the

Reasoner.

5.2.2 Load Balancer

As the name already implies, this component’s purpose is to balance the load on the
Backend VMs, thus it makes sure that the utilization of a Backend VM does not exceed
a critical (upper) threshold. Importantly, the Load Balancer is a passive component.
This means that when a service request comes in, it filters and provides information
from the Shared Memory to the Workflow Executor and Reasoner, but it does not con-
trol the Backend VMs by itself. Figure [5.4] shows how the Load Balancer is work-
ing and with which other components it communicates: A Workflow Executor (repre-
sented in the figure by WS1-WS6) requests the wanted service from the Load Balancer.
The Load Balancer retrieves this information from the SharedMemory (i.e., from the
MozartSpaces) and delegates the service invocations to a service instance. By doing so,
the Load Balancer takes care, that each service instance is used efficiently.

The Load Balancer provides an interface so that, it can get requested by the Work-
flow Executor in order to identify the best fitting Backend VM for a service invocation.
For this, it retrieves the actual Backend VM states (in terms of occupied CPU and RAM

resources) for the specified service from the Shared Memory and takes into account

45

the scheduling information about current and future service invocations provided by
the Reasoner. Based on this information, the Load Balancer is able to link the ser-
vice requests from the Workflow Executor to a particular service instance running on a
Backend VM.

In our prototypical implementation, the Load Balancer makes use of a rules-based
approach to determine the best fitting Backend VM: Service requests are linked to the
VM instance which degree of utilization is closest to a predefined upper threshold. Thus,
the Load Balancer allows the Workflow Executor to invoke services until a VM’s load
reaches this threshold. If the Load Balancer is not able to allocate a service to a service
instance, e.g., because all VMs are overloaded or there is currently no VM running
this service, it gives this information back to the Workflow Executor, which then may
conduct a re-planning as mentioned above or trigger a new reasoning.

The Load Balancer implements an interface, so that, it can be invoked by the Rea-
soner in order to determine the best fitting Backend VM for an action (see Section[5.2.3).
For example, the Reasoner may decide that it is necessary to duplicate a Backend VM,
as the service provided by the VM needs to be invoked too often as the current stock
of VMs running this service would be able to handle it in a particular time span. In
our case, the VM with the least load will be replicated, since the duplication action will
produce some additional CPU load. As another example, the Reasoner may decide that
a Backend VM is not required anymore as the requests to its hosted service can be han-
dled by another Backend VM. In this case, the Load Balancer will select the VM with
the least number of current service invocations; furthermore, it will effectively block
further invocations of this service instance, i.e., if a Workflow Executor sends a partic-
ular service request to the Load Balancer, the VM to be terminated will not be regarded
anymore. As it is a passive component, the actual command execution, to duplicate or

terminate a VM will be issued by the Reasoner, not the Load Balancer itself.

5.2.3 Reasoner

While the BPMS controls the invocation of single workflows, 1.e., it delegates the in-
vocation to the Workflow Executor, the Reasoner aims to optimize the complete pro-
cess and system landscape. Further, it is responsible to find a scheduling plan for the
workflows and the included process steps under the given SLAs and cost, resource, and
quality constraints. This plan is forwarded to the WfM, which itself will delegate this

46

invocation to the Workflow Executor which invokes the services described in the single
process steps. The scheduling is directly related to the controlling of the Backend VMs.
For that reason we defined actions which are invoked by the Reasoner and performed by
the Action Engine (see Section @) (e.g., actions like the decision to start, terminate,
and duplicate Backend VMs, move a Web service from one Backend VM to another,
or exchange the services running on a particular VM). In any case, the Reasoner needs
to take into account the information about the currently and future running workflows
including their QoS constraints from the WfM. Further, It considers deviations from the
expected workflow execution behavior in order to find an appropriate countermeasure.
The Reasoner requests the information about the currently VM resources (CPU and
RAM usage) from the Shared Memory and interacts with the Load Balancer in order to
decide whether a particular Backend VM is sufficient to carry out a service invocation,
or if another Backend VM hosting that service needs to be started (duplicated), or if a

VM can be terminated due to low load.

5.2.3.1 Scheduling

The scheduling plan created by the Reasoner is based on the given SLAs for each work-
flow. We assume that each Backend VM has the same CPU and RAM configuration,
and further, costs the same. Consequently every service invocation costs the same thus
it does not matter where a single service instance is invoked. For now, the scheduling
plan is only based on the SLO endBefore, thus workflows with an earlier target date
have a higher priority. In the case, when two or more workflows have the same (or no)
defined deadline, then they are handled by the First-come First-served-policy. The re-
sult is a fixed scheduling plan, which tells us exactly when how many services have to
be invoked. This plan is needed for the resource prediction. While the SLO endBefore
is needed for prioritizing the workflows, we always try to stick to the other SLO maxRe-
sponsetime. However, in a future version of ViePEP we will provide additional SLOs,
e.g., penalty costs.

5.2.3.2 Prediction

As mentioned in Section 4.4.4] the reasoning is happening in three steps, first we calcu-
late the need for one single service invocation, second, we try to forecast how the future

need of resources will look like in the next few minutes in terms CPU and RAM usage,

47

and third, we compute the amount of needed resources in VMs and perform the nec-

essary action, e.g., starting/terminating VMs or moving/copying services. To calculate

the need of resources for one single service invocation, each service is monitored (see

sub-point of Section[5.3.1)) in terms of CPU usage and RAM usage as mentioned before.

48

e Step 1: In the first step, we want to create a prediction model which is able to

compute the need of resources for one single service invocation. But before we
can do so, we have to filter and prepare the monitored data, since it may include
some deviations and calculation errors. To create a prediction model which is not
influenced by these errors we make use of Oridinary Least Square (OLS) Linear
Regression. The reason why we use Linear Regression is that it attempts to find
a straight line that best fits the data, where the variation of the data above and
below the line is minimized while these deviations have a much higher influence
to the average (see Figure[5.5). This graph shows the CPU load depending on the
number of concurrent invocations. The square (including the line it sits on) was
computed using OLS Linear Regression while the circle is the average value. As
we can see, the average is more far away from the actual measured value than the

predicted linear regression value.

But before we can get use of the OLS Linear Regression algorithm, we need to
sort the monitored data. In the current version, every VM looks the same, e.g., it
has the same CPU and RAM settings (we neglect the deviation of these provided
resources caused by the Cloud operating system). Therefore it is easy to bring the
monitored data to a common denominator. In detail, the monitored data can be

represented as a vector:

{C}, Ry, I, V, S} where V is the ID of the VM on which the service is running
specified by S. In addition to that, C; defines the CPU load, R; the actual RAM

usage and I, is the amount of concurrent invocations at time t (see Section [5.3.1).

We sort this data by service IDs, thus we can remove the VM from the vector.

This service specific monitoring data is filled into a graph, an example can be
found in Figure[5.6

In the next step we try to find a relationship between these points by using OLS

Linear Regression as described in [72]:

1

0.9
0.8
0.7
0.6

CPU%

0.5
0.4
0.3
0.2

0.1 j j j j j j j j
0 5 10 15 20 25 30 35 40 45

Invocations

Measured LR Prediction [
Average Prediction © Linear Regression

Figure 5.5: Linear Regression vs. Average Values

We have a sample with N observations on individual CPU loads and amount of
invocations including other characteristics (e.g., RAM usage) from the monitored
data of past invocations. We are interested in how the invocations are related to
the CPU loads (and maybe other observation like RAM). Let us donate the CPU
load by y and the other k£ — 1 characteristics by xs, x3, ..., . Our question is
now: which linear combination of 7o, ..., xx and a constant can give us a good
approximation for y (the CPU load). For that, we make use of an arbitrary linear
combination which includes a constant:

61 + BQIQ + ...+ BKxK

f31...fx are the constants to be chosen. If we index the observations by the variable
1 for ¢ = 1,...N we can express the difference between an observed value y; and

its linear approximation as

Yi — [61 + 521@ + ...+ BK%‘K]-

49

50

T
: : : : : : : (X
T
0.8 it }%f} -
: : : : UK S
0.7 o #Xé\z o
06 [%%;4%"%' R .
N Ky XX
S CXx T
0.4 - K T
03[T¥ o ox :
><><i>< XX
0.2 o K .
% 5 X
R e
7N : : : : : : : :
0 | | | | | | | |
0 5 10 15 20 25 30 35 40 45
Invocations
VM1 VM2 > VM3 X

Figure 5.6: Combined Graph for 3 VMs

In order to simplify this derivations we collect z-values for an individual 7 in a
vector x; including the constants and introduce the short-hand notation.

€T; = (Iig ;3 --- xiK>~

After collecting the 3 coefficients in a new K -dimensional vector 3 = (51, ey ﬁ}()’

we can write :

Yi — [Bl + 32%‘2 + ...+ BKJUZ‘K] asy; — fié

It is desirable to choose ,5’1 .. B k such that, the differences are as small as possible.
The most common approach is to choose /5’ such that the sum of square is as
small as possible. Therefore, we determine B so that it minimizes the following
function:

0.9
0.8 I
0.7 -
0.6
0.5
0.4 |
03
02 F
0.1 oo

K
0 j j j j j j j j

0O 5 10 15 20 25 30 35 40 45
Invocations

CPU%

VM1 VM2 X VM3 X f(x)

Figure 5.7: Combined Graph for 3 VMs (including Linear Regressions Line)

N
S(B) = Z(yi - 90;5)2
i=1
Taking the square ensures that positive and negative deviations do not cancel out
when taking the summation. In our current version we use Apache Commons
Math’s implementation to solve the OLS Linear Regressions [3]. The result of

the linear regression analysis for Figure 5.6 can be found as a line in Figure

Step 2:

The result of Step 1 is a function in which we can fill the amount of invocations
in the near future. The result is the amount of needed CPU resources which will

be forwarded to Step 3.

In detail: The Reasoner requests the Workflow Manager for the queue of waiting
workflows including a list of currently running workflows. These workflows are
split into its single service steps thus it can add up the amount of invocations

for each single service. The result is a plan of which service has to be invoked

51

how often in the next minutes. This can be again represented as a vector: {5, I}
where S is the service ID and I the number of future invocations. The amount
of future invocations is filled into corresponding Regression Function from Step
1 and the approximate amount of needed CPU usage can be computed. Since
we assume that each VM can accept as much requests until a upper threshold is
reached (at the moment we have a fixed threshold of 80%), we can compute how

many Backend VMs we need at least for each service instance.

» Step 3:

In Step 3 the result of Step 2 (the amount of needed Backend VM for each ser-

vice instance) is compared to the actual systems state and a necessary action (see
Section [5.3.2)) is performed.

In detail: The Reasoner queries the Shared Memory in order to retrieve the in-
formation about how many Backend VMs are up and running and asks the Load
Balancer if any Backend VM is currently locked, e.g., it is currently performing
an action. Out of this information it calculates the available CPU resources which
are available for each service instance. By comparing this to the result of Step
2, the Reasoner knows whether it is necessary to duplicate a Backend VM or if
one can be terminated. This decision (action) is forwarded to the Action Engine

which handles the actual execution.

5.3 Backend VM

While the BPMS VM controls the process and system landscape, the actual service exe-
cution is done on the Backend VMs. Each Backend VM provides Software-as-a-Service
(SaaS) in terms of a particular Web service. As can be seen in Figure [5.8] a Backend
VM features two major components: The Application Server (Service Deployment) and

the Action Engine.

5.3.1 Service Deployment

In order to host Web services, a Backend VM needs an Application Server capable to
run it. At the moment, we employ Apache Tomcat!. However, it is possible to switch

'http://tomcat.apache.org/

52

Backend
\ VM

\ Application Server

Workflow Service Monitor
Executor

Action Engine

A

4

Figure 5.8: ViePEP — Backend VM components

to any other J2EE application server like Glassfisch? or JBoss®. The Application Server

comprises two components, namely the actual Service Instance and a Service Monitor:

* Service Instance: As mentioned above, services are generally stored in the Ser-
vice Repository. To host a service within the Application Server, the Action En-
gine retrieves the according Web Application ARchive (WAR)-file from the repos-
itory and deploys it on the Application Server. In the current version we support
any RESTful Web service which can be called using an HTTP GET request or

can be invoked using a remote procedure call.

“http://glassfish.java.net/
3http://www.jboss.org/

53

* Service Monitor: As explained above, the BPMS makes use of information
about the Backend VM’s resources in terms of CPU and RAM utilization. Hence,
ViePEP-enabled Backend VMs feature an Application Server Monitor. Monitor-
ing is conducted on a Platform as a Service (PaaS) level, i.e., the CPU and RAM
utilization is measured for the VM, but not the underlying hardware/infrastruc-
ture. We use psi-probe* as server monitoring tool. It generates an HTML report
for the service running on the application server which is parsed by our monitor-
ing component. This report contains information about the number of invocations
happened in total and the service response time. To get the information about the
Backend VMs CPU load and RAM usage, a simple bash script is executed. The
recorded data can be represented in an vector:

{Cta Rt7 Itv ‘/7 S}

V' is the ID of the VM

Sy specifies the service instance running on V'

C} defines the actual CPU usage in percent at time ¢

R; defines the actual RAM utilization in percent at time ¢

I, defines the number of concurrent invocations at the time ¢

The monitored data is stored in the Shared Memory in order to be available for
every other component including the Reasoner.

5.3.2 Action Engine

The Action Engine is responsible to perform commands to the Application Server and
to its hosting Backend VM. It receives the according commands from the Reasoner
through the Shared Memory. The most important commands in the context of the work
at hand are [37]:

* START a new Backend VM: An empty VM is started by the Reasoner by issuing
a corresponding command to the Cloud infrastructure hosting the Backend VMs
(in our case: OpenStack; not depicted in Figure [5.1). When the Backend VM has
successfully booted, the Action Engine obtains the needed service file from the

Service Repository and deploys it on the Application Server.

“http://code.google.com/p/psi-probe/

54

 TERMINATE the Backend VM. Again, the according action command was is-
sued by the Reasoner. If the Action Engine receives the command to terminate it-
self, it first requests information about currently running service invocations from
the Application Server. If there are any, the Action Engine waits and regularly
polls the Application Server until all service invocations have been finished. Af-
ter that, the Action Engine unregisters the Backend VM by pushing the according
status information to the Shared Memory, and finally terminates the VM. Af-
terwards, the Reasoner and Load Balancer will not take this Backend VM into

account anymore (in terms of scheduling and service invocations).

* DUPLICATE an existing Backend VM. If the Reasoner determines that the com-
puting resources hosting a particular service are not sufficient to carry out the
future service invocations, it can issue an action command to a Backend VM in
order to duplicate it. For this, the Action Engine will start a new Backend VM

which hosts the same service.

« EXCHANGE the deployed service by another service. In some cases, the hosted
Web service is not needed anymore, as there will be no further invocations in the
(near) future for that service. However, another service needs to be started. Since
the starting of a new VM takes some time, we can speed up the deployment of ser-
vice by reusing the former Backend VM by exchanging the service running on it.
To exchange a service, the Action Engine behaves similarly to the termination of a
Backend VM: First, it checks if the provided service is currently invoked; if this is
the case, the Backend VM waits until the invocations are finished and blocks ev-
ery further invocations. Second, the current service is replaced by another service
from the Service Repository.

* MOVE a running service to another Backend VM: The Action Engine is able to
move the whole system state to another server. Again, running service invocations
need to be finished first and no further invocation is accepted before this action

command can be performed.

So, whenever the Reasoner decides, that an action has to be performed, it first commu-
nicates with the Load Balancer in order to find the best fitting Backend VM. The best
fitting Backend VM is always related to the action command which has to be performed,
for this purpose refer to Section[5.2.2]

55

5.4 Shared Memory

The Shared Memory 1s used to provide data sharing between the BPMS and the different
Backend VMs. We chose MozartSpaces? for this, as it allows to easily deploy and access
a peer-to-peer-based, distributed database [33]. It further enables ad-hoc joining and
leaving from peers (in our case Backend VMs). Mozart Spaces provides the possibility
to query for data in the database. This is very useful for the Reasoner, thus the data
returned by the query is already sorted. In addition to the usage as a shared memory,
an important feature coming with Mozart Spaces is the possibility to raise notifications:
We need this communication method in order to provide a reliable communication layer,
thus we can send commands from the Reasoner to the Action Engine. As it is presented
in Figure[5.9|the shared memory can be accessed from the Reasoner, the Load Balancer,
the Action Executor and the Action Engine on the Backend VM.

* The Reasoner has read-write permissions: it can read from the Shared Memory,
i.e., to retrieve some more information about the services, and is able to write
something to it.

* The Action Executor has a write-only permission. Whenever the Reasoner de-
cides that an action has to be performed, it delegates this action to the Action
Executor. This one writes the corresponding action into the shared memory, thus
a notification is raised at the target Backend VM.

* The Load Balancer has a read-only permission: it gets notified whenever new
monitor data is available, thus it has the actual information about the whole system
landscape, so that it can tell the Action Executor and/or the Workflow Executor
about the best Backend VM for their needs.

* The Action Engine has read and write permissions: it registers a notification lis-
tener on the shared memory with the service ID which is deployed on its host VM.
Thus, it gets informed whenever the Action Executor sends an action command.
In addition to that, it is able to write into the space, e.g., right after the Backend
VM has been started, it registers itself in the shared memory, and after it received
a shutdown message it unregister itself from the shared memory.

Shttp://mozartspaces.org

56

E . Action . .

: ; :] Load E N Y R SR
Reasoner : Executor E k : :

E : A E - Balancer : g :

: : Service g 3

(50 e |

[Mozart Spaces

Figure 5.9: ViePEP — Shared Memory

5.5 Service Repository

The Service Repository hosts the service descriptions of the Web services as well as
their implementations as portable archive files (i.e., as WAR-file). It provides a search
mechanism, thus the Action Engine/Action Executor can query this repository in order
to find a service they want to deploy on an arbitrary ViePEP Backend VM. Figure[5.10|
shows which components can interact with the Service Repository.

57

Application Server

— :
~—
-]
o
‘@
o
= T e I
9]
14
®
.2
........ /_\> 2
[; o)
]] &
Action
ExecutOr . , 0
Service : :
— Action Engine
................ \)

Figure 5.10: ViePEP — Service Repository

58

CHAPTER

Evaluation

In this section we perform an evaluation of the work presented in this thesis. The eval-
uation focuses on the design decisions discussed in Section] as well as the concrete
prototype implementation presented in Section [} While the ViePEP framework can
hardly be compared to existing similar solutions on the whole, we compare our pro-
totype including the optimization against a baseline. In our case the baseline uses the
same setup but without an optimization, i.e., the system works reactive: whenever the
system is not able to handle the requests for a single service, a new instance will be

created.

6.1 Evaluation Scenario

6.1.1 Scenario

For evaluating ViePEP, we decided to use the following scenario setup from the same
domain as our example from Sectiond] For the sake of simplicity and to let the results
be classifiable to the performed actions, we decided to make use of one single business
process. The business process we chose consists out of five different steps and can be
found in Figure This business process consists out of 5 steps, first: a dataloader
service, second, a pre-processing service, third, a processing service, fourth, a reporting
service and fifth, a mailing service. To simplify matters, we simulate the operations

which are usually performed in such services, however, the actions usually performed

59

dataloader . pre-. processing reporting mailing
service processing service service service
service
Figure 6.1: Evaluation Workflow

in such a service a described below. In order to get reliable results we decided to run the
presented business process 20,000 times:

1. Data Loader Service: The Data Loader Service simulates the loading of the
needed data from an arbitrary source. This could be a service which reads data
from a database, from sensors or a service which communicates with other ser-
vices. However, since this service is not performing any calculations, this service

needs not many resources.

2. Data Pre-processing Service: After the data has been loaded, it needs to be pre-
processed before it can be used in another service. This pre-processing is a bit
more resource-intensive than loading the data. In order to simulate this load, we

perform some simple mathematical calculations every time this service is invoked.

3. Data Processing Service: After the data has been prepared for processing, this
service is called. It simulates the processing of the data. This service needs in
contrast to the other services more computational resources, especially the CPU
usage will be much higher than for the others. In order to simulate a high CPU
usage we perform some complex resource intensive mathematical calculations,
each time the service is invoked, i.e., calculating the Fibonacci sequence for a few
seconds.

4. Report Service: After the data has been processed a report will be generated,
e.g., in form of a PDF file. The needed CPU usage for generating such a report
depends highly on the data being processed in the step before. In order to simulate
this CPU load, we perform again some simple mathematical calculations as done

in the Data Pre-Processing Service.

5. Report Mail Service: At the end of our example business process, the created
report has to be delivered. This can be the sending of an email or pushing the cre-

ated report on a web server. However, this service is again not resource intensive,

60

therefore, we make use of the similar mathematical calculations as in the Data

Loader Service.

6.1.2 Arrival Functions

90001 90001 360+
80001 80001 320+
7000+ 70001~ 280+
60001 60001 L 2T

g 5000+ g 200

40004 40001 160+~

3000 3000 1204

2000+ 2000+ 80

10001 10001 407

Time Time Time.

(a) Burst Arrival (b) Linear Arrival (c) Pyramid Arrival

Figure 6.2: Arrival Functions

For our evaluation we decided do use three different arrival functions as can be seen

in Figures [6.24] [6.2b] and [6.2¢] In condition to that, each arrival function will be run
three times thus we get reliable data:

1. Burst Arrival Scenario: In this scenario we execute the workflows in a burst
manner, i.e., the same amount of simultaneously executed workflows will be
started every few seconds. For the time steps we decided to use an interval of
10 seconds. The graphical representation of this function can be found in Figure
The number of simultaneously executed workflows is set to 150. However,
we assume that this value is not relevant to the result of our optimization which
will be clarified in the discussion below.

2. Linear Arrival Scenario: In this scenario, the workflows are executed in the
manner of a linear rising function, i.e., y = k * x + d where y is the amount of
simultaneously executed workflows. Since a continuously increasing execution
of the workflows would be limited by the underlaying operating system, we de-
cided to increase the number of simultaneous workflow invocations by 10 every 5

seconds. The Linear arrival function can be found in Figure [6.2b]

61

3. Pyramid Arrival Scenario: In this scenario we execute the workflows in form
of a Pyramid Function which can be seen in Figure In this scenario we
start with a low number of simultaneously executed workflows increase it to a
maximum and decrease it again to 0. We repeat this steps until the workflow
queue is empty. This scenario is used to test the behavior of the optimization in

case of seemingly unpredictable arrival pattern.

6.1.3 Baseline & Scenario

As shortly mentioned above, for evaluating our scenario we define the baseline as fol-
lowing: We make use of ViePEP but disable the optimization. This means, that no
reasoning is performed in order to acquire additional resources. Since it would be quite
unfair to have just a limited amount of resources available, we decided to introduce an
additional functionality, thus additional resources for a particular service instance are
acquired whenever the load of this instance exceeds the threshold. However, since there
is no further optimization, the load gets balanced at all Backend VMs evenly. That is
why, a Backend VM will never be released again.

We assume that in each scenario, our approach will perform better than the baseline,
because of the following three facts: First, since we make use of a prediction model in
our approach, we are able to forecast the amount of needed resources and acquire them
in advance. In contrast, the approach without optimization will only acquire additional
resources, whenever the load of one single service instance gets to high, this may lead
to just shifting the bottlenecks, i.e., when starting the experiments, the first service will
only be able to handle an limited amount of service invocations before the VM gets
overloaded. As soon as the VM is overloaded, it will be duplicated, thus it can handle
more invocations. Since the first service is able to handle more requests now, the second
service has to handle more requests as well, consequently, it gets overloaded as well and
needs to be duplicated. The same applies for the third, fourth and fifth service. Second,
although we will try to forecast the amount of future resources, it may happen, that we
have acquired too many resources. As soon as ViePEP realizes that too many resources
are available, i.e., some of them are not needed at all, ViePEP will start to release them,
thus only exactly as much resources are acquired as needed. In contrast to that, in the
baseline configuration, no optimization is happing, that is why the unneded resources

will not be freed again. Third, because of our prediction model, the needed resources are

62

acquired in advance, thus no bottlenecks will arise. This makes it possible for ViePEP
to be much faster than the approach without optimization.

Our evaluation workflow scenario can be found in Figure [6.1] and is described in
Section @ Therefore, we have 20,000 workflows, each consisting out of 5 service
steps. In order to see how our system behaves under different premises, we make use
of 3 different arrival patterns described in Section [6.1.2] and presented in Figure [6.2]
During the development, we noticed, that starting a Backend VM the first time will take
more time, than duplicating it later on. This can be traced back to the fact, that when
instantiating an image the first time, the underlaying Cloud operating system needs to
copy the Backend VM’s image to a new physical machine. This takes longer than
duplicating this image on the same physical machine. Because of this, we decided to
start our experiments with one VM for each service instance available. As soon as every
instance is available, we start our evaluations according the arrival patterns and measure

their executions according the measurements metrics described in the next Section.

6.2 Measurement Metrics

After we executed each scenario 6 times (3 times with optimization and 3 times with-
out optimization) we examine the results under the following measurement metrics and

compare it to each other.

e Duration: The first criteria is the overall execution duration of all 20,000 in-
vocations, i.e., the timespan from the start of the first workflow execution to the

moment when the last workflow execution is done.

e Total Needed VMSs: The second criteria is the total amount of needed VMs
including their lifetime, i.e., the result of this is a list of VMs and how long they

have been running.

* Costs: The resulting costs are calculated by using the following approach: Since
we assume that each VM costs the same, we can add up the overall runtime of the
VMs. In this criteria we do not consider any extra costs which may rise when a
new VM has to be started, i.e., the costs for 20 VMs running for 5 minutes are
the same as for 10 VMs running for 10 minutes. Further, we do not consider

the different costs for different services since this would be needlessly complicate

63

Table 6.1: Evaluation Results (average of all 3 runs)

Burst Arrival Linear Arrival Pyramid Arrival

NoOpt Opt NoOpt Opt NoOpt Opt

Queued Business

20,000 20,000 20,000 20,000 20,000 20,000
Processes

Duration in
minutes (std.
deviation)

93.33 76.67 71.67 60 66.67 65
(0=2.89) | (0=2.89) (0=5.77) (0=2.89) | (0=2.89) (0=0)

Highest
Concurrent VMs
(std. deviation)

8.33 9.33 16 16.33 15.67 12.67
(0=0.57) | (0=0.57) (0=0) (0=0.57) | (0=0.57) | (0=0.57)

‘C,git;;‘l‘nu fes (std 745 526.67 915 758.33 831.67 576.67
deviation) (0=66.14) | (0=11.55) | (0=104.04) | (6=53.93) | (0=28.43) | (0=15.28)
Lost Invocations 116.6 31 120.3 27 97.33 45.66
(std. deviation) (0=13.50) | (o=1) (0=3.51) | (0=3.61) | (0=2.52) | (6=3.79)

the evaluation. To give the costs an independent value we define the unit VM-
Minutes. 1 VM-Minute is defined by 1 VM running for 1 minutes, therefore the
overall costs for 20 VMs running for 5 minutes is /100 VM-Minutes.

* Lost Invocations: The next criteria is the amount of lost invocations. Although
our system is designed in a way that a failed invocation has to be repeated it may
happen that a service invocation may be interrupted because of an unforeseen

event. The result of this is the failed invocations rate.

6.3 Results and Discussion

In the following we present the results of our evaluations. Since every scenario was

executed 3 times, the following values are the average values of the 3 executions, i.e.,
=3
% Y x; where z; is the recorded value.

Wl

=1
The detailed results can be found in the Appendix: for the burst arrival scenario
results see Figure [A.1] for the linear arrival scenario results see Figure [A.2] and for the

pyramid arrival scenario see Figure [A.3]

64

10 500

9 450

8 7 i 400

7 # 4 350

6 /. 3 300

250

4 \ 200
3 \ 150
2 100

1 50

Amount of Virtual Machines
(4]
.

Time in Minutes

With Optimization —=— Workflow executions ------
Without Optimization ---e---

Figure 6.3: Burst Arrival Results (average of all 3 runs)

6.3.1 Burst Arrival Scenario

Figure @ shows the results of the burst arrival scenario experiments, i.e., it shows the
average of all 3 runs with optimization and the average of all 3 runs without optimiza-
tion.

1. Without Optimization:

We had a maximum of 9 active VMs running simultaneously and an average run-
time of 95 minutes. In total we had 5 VMs running for ~100 minutes, 1 VM
running for 90 minutes, 1 VM running for 80 minutes, and 1 VM running for 60
minutes. This leads to the overall total costs of 730 VM-Minutes.

2. With Optimization: Figure [6.3] shows also the results of the burst arrival sce-
nario with optimization. At the beginning we started with 1 VM per service but
already after a short timespan of 5 minutes, the first two services, i.e., the dat-
aloader and preprocessor service have been duplicated, thus it can handle a higher
load. Because of that we achieved a higher throughput which led to the need of
a duplication of the other services. After about 40 minutes, the system found
the perfect amount of needed Backend VMs. It held this state for the rest of the
experiment, but as soon as the resources are not needed anymore, they are freed.

The experiment’s results can be found in Table[6.1] The costs for the first run are

calculated like the following (the same takes effect for the other two runs): We had

65

5 VMs running for the whole 70 minutes. In addition to that, the system started
an additional VM for the dataloader and pre-processing service after 5 minutes
for 20 minutes. Further, the system started a second VM for the report service for
about 20 minutes and a second VM for the mailservice for 10 minutes. Again, it
is obvious that the process service is the one with the highest need of resources,
therefore, the system started an additional VM for 65 minutes. If we sum this up,
we get the the total costs of 465 VM-Minutes.

All in all, the results of the burst arrival scenario are for all iteration pretty much the
same. The evaluations With Optimization and Without Optimization are for the first few
minutes of the experiments quite similar.

The initial situation was the same for both: we had 5 VMs running, 1 VM for each
service. Since these 5 VMs could not hold the high load, it was necessary to acquire
further resources. Both cases behaved pretty much the same until minute 20. The
first few minutes are very interesting in both case: in case of the Without Optimization
iteration, the amount of parallel executed workflows was not to high, so that, it was not
necessary to acquire more resources for dataloader and pre-processing service. Only the
processing service needed more resources.

In the case of the With Optimization scenario it is interesting, that ViePEP decided to
acquire more resources not only for the first service (dataloader service) but also for the
second one (preprocess service). This is explainable by the fact the ViePEP calculated
the maximal possible throughput of the first service, which led to the fact, that a higher
load for the second service is likely. Therefore, it was necessary to duplicate this service
as well. Consequently, the same happened to the third service. Further, as soon as
ViePEP realized, that the acquired resources are to much, e.g., the load of some VMs
was not high enough, it shutdown the unneeded VMs. In every run, the system found the

perfect state after about 30 minutes and did not acquire additional resources anymore.

6.3.2 Linear Arrival Scenario

Figure [6.4] shows the results of the linear arrival scenario experiments, i.e., it shows the
average of all 3 runs with optimization and the average of all 3 runs without optimiza-

tion.

66

17 — 500
16 -

15 A ok
14 e % !
13 e \\ i
12 : \ i 350
11

10 / 7 i \ g 300

- 400

250

Amount of Virtual Machines
*
L

(S SR R N NN
*

O 1O WO WO WO W W o W o
- -8 d ®®mF F O Lo O N

75

Time in Minutes

With Optimization —=— Workflow executions ------
Without Optimization ---e---

Figure 6.4: Linear Arrival Results (average of all 3 runs)

1. Without Optimization: As we can see in the Figure it is really obvious that
the amount of VMs is increasing while the number of simultaneously executed
workflows is increasing. We can affiliate this results to the fact, that a new VM is

always started, when the load is getting to high.

The result in numbers can be found in Table @ In total, this experiment was
running in average for about 71.67 minutes and we had at the maximum of 16
VMs simultaneously running. The total costs have been 915 VM-Minutes.

2. With Optimization: The results of the linear arrival scenario with optimization
can also be found in the Figure[6.4, As we can see, all in all the amount of VMs
is increasing linear, but there are some break-ins. These break-ins are explainable
because the optimization function is first trying to increase the needed resources
according a linear function. But after some time, it realizes that the actual needed
amount of needed resources is lower, that is why the unneeded resources are freed
again. Because the simultaneously executed workflows is still increasing, the
system needs more resources. We can see the rise of active VMs again at minute
20 until all workflows are processed around minute 60. As soon as the queue
is empty, the system realizes that the VMs can be removed (at minute 65). The
results of this experiment can be found again in Table [6.1]

The results of the linear arrival scenario for the iterations Without and With Optimization

are quite similar to each other. Despite of the fact, that the amount of active VMs are in

67

16 500
15 2
14

12

11 4
10 \

i 350

Amount of Virtual Machines

& 150

o 4N WA OO N ®
*
*
*

o 1 O 1w 9O W 9 W 9 W 9 W1V 9O
- - & d ® ®m ¥§ ¥ O 1 ©

65

Time in Minutes

With Optimization —a— Workflow executions ---3---
Without Optimization ---e---

Figure 6.5: Pyramid Arrival Results (average of all 3 runs)

both cases alike, the evaluation with optimization was faster in each case for an average
of about 10 minutes. This can be tracked back to the fact, that with optimization, ViePEP
acquired exactly as much resources as needed.

In detail: in the case of the evaluation without an optimization a new resource was
acquired as soon as the load got to high for a particular service. This means, only a
limited amount of workflows could be executed until more resources are available. In
the case of running this scenario with an optimization, the needed resources are acquired
in advance, which prevented bottlenecks.

6.3.3 Pyramid Arrival Scenario

Figure [6.5] shows the results of the pyramid arrival scenario experiments, i.e., it shows
the average of all 3 runs with optimization and the average of all 3 runs without opti-

mization.

1. Without Optimization: This scenario was the worst case for our system without
optimization, because the amount of parallel running executors are first increasing
and then decreasing again. Because of the nature of this unoptimized approaches,
no unneeded VM was shut down. Therefore, we literally wasted our resources as
the simultaneously running executors has decreased. The results in numbers can
be found in Table

68

2. With Optimization: The results of the three runs for the pyramid arrival scenario
can also be found in Figure [6.5] All in all ViePEP was doing well for the most
complicated case. As we can see in the presented figures, the amount of active
VMs is increasing in parallel with the amount of running executors. Further,
as soon as the demand of needed resources was decreasing, ViePEP decided to
shutdown unneeded VMs and reacquired them when they where needed. In this
scenario we had an average cost of 576.66 VM-Minutes while the maximum of
active VMs was 13.

The pyramid arrival scenario was the worst case for the runs without optimization and
big challenge for the runs with optimization turned on. As we mentioned in the descrip-
tion of the evaluation without optimization, new resources are only required when the
load got to high, but unneeded resources are not freed anymore. This led literally to a
waste of resources, because the system did not react to the decreasing demand of re-
sources. Therefore, the iterations with optimization turned on, produced a much better
result, although not a perfect one.

As we can see, in each of the three runs, the system still acquired resources at minute
15 although the amount of parallel running executors was already decreasing. This can
be traced back to our optimization approach presented in Section[5.2.3.2] We used linear
regression in order to calculate the amount of needed resources for each single service.
Since the amount of parallel running executors is increasing in a linear way, the system
produces pretty good results for the first few minutes. Since ViePEP can not know, that
the amount of needed resources is suddenly decreasing, it still acquires resources as
it has calculated. However, as we can see in the Figure [6.5] ViePEP reacts quite fast
as soon as the demand is decreasing again and removed unneeded resources. This can
be seen around minute 40, when the load is almost 0, we have only one VM for each
service (we defined this as the minimum of active VMs, i.e., for each service at least
one VM). Further, after the number of parallel running executors is increasing again,

ViePEP acquires more resources in order to meet the required load.

6.4 Summary

As we can see in the presented results, our framework performs pretty well under the

given evaluation scenarios. Compared to the runs without optimization, ViePEP did

69

not just process the workflow queue faster, but was also cheaper in costs and had a
lower error rate. Therefore, we can assume that in these cases, our approach using OLS
Linear Regression was the right choice. We can traceback the results of the burst and
linear arrival scenario on their linear natures.

As presented in the Table the standard deviation for the duration is always below
3. This indicates on the one hand that the measured values tend to be very close to
the average and this means on the other hand that our calculations produce very exact
results. It further tells us, that the results are reproducible and 3 runs were enough for
our evaluation. We can further see, that the the standard deviation with optimization
has been always lower than without optimization. Even more, the deviations between
the different arrival curves are almost the same. What stands out, is that the deviations
for the costs in VM-Minutes is for the pyramid arrival scenario in both cases, with and
without optimization lower than in the linear arrival scenario. This can be traced back
to the fact, that in the pyramid scenario the maximal amount of concurrent executed
workflows is lower than in the linear scenario, and thus, less VMs were needed. The
lower VM-Minutes become clear, when we compare the overall execution duration of
those two scenarios. The numbers for the lost invocations are also interesting: The
high values for the approach without optimization are explainable by the fact, that a
VM is only acquired when the load for a single service instance gets too high. This
means, it may happen, that too many requests are send to a particular Backend VM
and the Backend VM is not able to hold the load anymore, some requests may get lost.
In the scenarios with optimization, the values for the lost invocations are almost the
same for the burst arrival and the linear arrival scenario, however, the value for the lost
invocations for the pyramid arrival scenario are slightly higher.

Nevertheless, although our evaluations have produced pretty good results, we have
to admit, that the comparison of our approach against one without optimization is not
quite fair. However, to the best of our knowledge, so far no standardized benchmarking
system exists for such a BPMS, which could help us to evaluate our work. As we can
see in the related work, Han Li et al. [37] and Cardellini et al. [[13] did not compare their
results against a baseline at all.

In order to evaluate ViePEP more detailed, we could use several different workflows
with more different service, to see how our system behaves under different loads. How-
ever, this would go beyond the scope of this work, since the evaluations would need

much more time and much more resource which we did not had available.

70

CHAPTER

Conclusion and Future Work

Within this thesis, we addressed the concept of Elastic Processes (described in [17] as
cost, resource and quality elasticity) in connection with business process management
and resource optimization in the Cloud.

Even though Cloud computing has positioned itself as the State-of-the-Art technol-
ogy already a couple of years ago, a lot of research is still going on in this area. Devel-
opers, users and researchers are trying to get as much as possible out of the promises
coming with Cloud computing. The most famous term in connection with Cloud com-
puting is the word scalability. This is the promise of scaling up/out applications in order
to meet the increasing demand of requests or scaling down/in whenever the demand is
decreasing.

However, since scalability is only the promise that this is possible, it is still a big
challenge to make this possible. Dustdar et al. [17] proposes the term Elastic Pro-
cesses. The concept of Elastic Processes defines the various facets of elasticity in Cloud
computing. The authors name three elasticities: resource elasticity, cost elasticity, and
quality elasticity. Since to the best of our knowledge, no BPMS exists which is able
to process several hundred of workflows simultaneously while ensuring their SLAs
through scheduling their executions and optimizing the provided resources, we created
the BPMS ViePEP - the Vienna Platform for Elastic Processes.

ViePEP is able to process hundreds of workflows concurrently while still ensuring
the given SLAs. To do so, ViePEP schedules their executions and optimizes the acquired

resources while using each VM to its limits. In order to ensure the SLAs defined within

71

the workflows, ViePEP monitors each service invocation in terms of response time and
failure rate and further, the underlaying VMs’ CPU and Ram. Since ViePEP maintains
a queue of waiting workflows it is aware of when, how many workflows have to be
processed and consequently how many services have to be invoked. By combining this
information with the historical monitored data, ViePEP is able to predict the needed
resources for each single service in the near future thus it is time and cost efficiently.

In our evaluation (see Chapter|[6)) we have shown that our approach produces accept-
able results. We have evaluated the same scenario with and without an optimization and
the results show, that in each tested scenario, our approach is not only faster, but also

cheaper in costs and has a lower error rate (see Table[6.I).

7.1 Future Work

Although ViePEP is in its current state a fully functional prototype, the development is
not considered to be finished. ViePEP is designed in a way that every single compo-
nent is easy extend- or replaceable. Consequently, ViePEP serves as a base for future
theses, dissertations or research papers. We plan to extend ViePEP by new features and

introduce further improvements to the current implementation:

* Our current workflow description provides sequential workflows, but in a future
work we will consider an approved standard, e.g., BPEL [51] or YAWL [|69], thus
more complex workflows including branches, loops, ... are possible.

* QOur proprietary SLA description included in the business process description will
be replaced by a standard as well, thus it is more generic and more different SLOs
can be defined. As a possible standard for a SLA description, WSLA [42] could

be applied.

* The current SLAs definition does not provide a field for penalty costs. Penalty
costs apply whenever a SLA has been violated. At the moment, we always try to
fulfill the wanted SLAs, although this is not possible in every case, we do not con-
sider any penalties. In addition to penalty costs, other SLOs will be considered,

e.g., service response time.

 For now, the threshold which has to be reached, before a new instance is acquired

is a fixed predefined value. This has a few drawbacks, e.g., if we have two dif-

72

ferent service, we estimated the needed resources for the first service at 1% CPU
usage for each invocation, in contrast to that, a single invocation for the second
service needs about 20% of the CPU. There, it is obvious, that we should fix the
threshold for the first service at an higher level than for the second service in order
to allow more simultaneously invocations. Since we do not want to predefine this
threshold for each service it is likely to make this value dynamic, i.e., by learning

from past invocations.

While we currently only support scale-out and scale-in, i.e., we acquire additional
VMs with the same configuration, in a future work we will consider scale-up and
scale-down as well, i.e., add additional CPUs or ram to a single VM as mentioned
in [44].

At the moment every Backend VM has the same configuration, i.e., the same CPU
and RAM. If we follow a more complex optimization approach, we could make
use of different configured VMs. This will lead to a better cost control and the
acquired resources can be used more efficiently.

Our centralized approach for the BPMS could lead to a bottleneck. Therefore, in
a future work will will consider distributing our BPMS on several different VMs

so that more workflows can be processed simultaneously.

In a future version of ViePEP we will evaluate different approaches as a replace-
ment for our Linear Regression Model, a possibility would be a self-adaptive

prediction model, e.g., Kalman Filters, or H ., Filters.

In addition to the self-addaptive prediction model, which we will consider in a
future work, we will examine more complex optimization approaches which in-
clude not only resource optimization but also managing the scheduling plan and

the number of concurrent executed workflows.

73

List of Figures

2.1 SOA-Triangle| 7
2.2 SOAPEnvelope| 8
23 WSDL2.0 10
2.4 Workflow for BookingaFlight 11
2.5 Cloud Layered Architecture|. 16

-KCyele| . . o o 33
[5.1 ViePEP Implementation|. 39
[5.2 ViePEP: BPMS System Components| 40
[5.3 ViePEP: BPMS Sequence Diagram|. 41
04 loadBalancen. Lo 45
[5.5 Linear Regression vs. Average Values| 49
[5.6 Combined Graphfor3 VMs| 50
[5.7 Combined Graph for 3 VMs (including Linear Regressions Line)[. 51
[5.8 ViePEP — Backend VM components| 53
[5.9 ViePEP — Shared Memory| 57
[5.10 ViePEP — Service Repository| 58
6.1 Evaluation Workflow| L 0L 60
62 ArrivalFunctionsl 61
[6.3 Burst Arrival Results (averageof all 3runs), 65
6.4 Linear ArrivalResults. o . 67
[6.5 Pyramid Arrival Results|. o o oo 68
(Al Burst Armval Results| oo oo 80
[A2 Tinear ArrivalResultsl. L. 81

[A.3 Pyramid Arrival Results|

75

List of Acronyms

ASP Application Service Provider.......... o i
BP BUSINESS PrOCESS . . .ottt ettt et ettt e e
BPMS Business Process Management Systemoooiiuiiniiinnnennn...
BPM Business Process Management i,
CaaS Communication-as-a-SeIVICE.ttt ettt e
EP Elastic PrOCESSottt ettt e et e e e e e 3l
EPR EndpointReference
HaaS Hardware-as-a-ServiCet
IaaS Infrastructure-as-a-Service.ot
NIST National Institute of Standards and Technology
OLS Oridinary Least Square.utiiii e 48|
PaaS Platform-as-a-ServiCeuiuriirt ittt
QO0S QUAlity-Of-SEIVICE . . .ottt ettt e

76

RPC Remote Procedure Call. e]

SaaS Software-as-a-SeIVICEuiuirett ettt 13
SLA Service Level Agreement.ttt
SLO Service Level Objectiveouutitt e
SOA Service-Oriented Architecture, 6
SOAP Simple Object Access Protocol
SOC Service-Oriented COMPULINGttt eiiieeens &
SWEF Scientific Workflows.
UDDI Universal Description, Discovery and Integration.......................... o]
VM Virtual Machine.oinii i e e
VMSs Virtual Machinesouiuiretite et Bl
WAR Web Application ARChiveoiiii e
WIEM Workflow Manager.ot

77

WSLA Web Service Level Agreement.co.uiiiuiiiitiniiinennne.n.

WS-BPEL Web Service Business Process Execution Language

XML Extensible Markup Language

78

APPENDIX A I

Evaluation Results

79

80

Amount of Virtual Machines

Amount of Virtual Machines

Amount of Virtual Machines

17] 500
16

151 1 450
“r 4 400
13

12 - 350
1

10k - 300
ol

ol -+ 250
7E 200
6l

sh—H | 150
s

N - 100
21 - s0
1 b

0 0

dataloader mmm— report ==
preproces mmmmm mailservice ———1
process === Workflow executions -

(a) Without Optimization Run 1

R e e e AL e s s e s e s e s B0
16
15 L 1 450
“r 4 400
131
12 4 350
1k
10 F - 300
ol

- 250
sl
TF 200
6l
st - 150
s
sl - 100
27 4 50
1 b
0 0

dataloader mmm—m report ==
preproces mmmmm mailservice ———
process === Workilow executions -~

(c) Without Optimization Run 2

17 T 500
16
151 - 450
“r 4 400
13+
12r + 350
1+
10 F - 300
ol

- 250
sl
7F 200
6l
5L 1 150
n
sl 4 100
2r 1 50
It
0 0

dataloader mm— report ==
preproces mmmm mailservice ———1
process === Workflow executions -

(e) Without Optimization Run 3

Amount of Virtual Machines

Amount of Virtual Machines

Amount of Virtual Machines

L e e e e e e e e e e e e R0

wowouw
SRCRCEER
Time in Minutes

dataloader mmm—m report
preprocess mmmmm mailservice ———1
process E=== Workflow executions -

(b) With Optimization Run 1

L/ o s s s R s s s B B e L)

SwowowowowowowWowLo WS W
8829888993838 128888
Time in Minutes
dataloader s report ==

preprocess mmmmm mailservice ———
process m=== Workflow executions -

(d) With Optimization Run 2

e e
16|
el - 450
“r - 400
13|
2 - a50
1
ol - 300
ol
ol B - 250
L 200
sl
st 1 150
it
sl - 100
2r - s0
1L
0 0

CWowWoWoOWoOWoOWVoOWoOWOWOW
SSFPERIB0IYBBIERNBIES

Time in Minutes

dataloader mm— report ==
preprocess mmmm mailservice ———1
process E===a Workflow executions -

(f) With Optimization Run 3

Figure A.1: Burst Arrival Results

Amount of Virtual Machines

Amount of Virtual Machines

Amount of Virtual Machines

18 —— — 500
17

16 F 4 450
15 | =

wul -+ 400
B - 350
12

nr 4 300
10

9t 1 250
s |

7k 1 200
6

sl 1 150
Ml - 100
3L

2r 4 50
s

0 0

cwowowouw
8822R4&83

cwowowouw
FIBZBBIERR

Time in Minutes

dataloader mm—
preprocess
process ===

(a) Without Optimization Run 1

mailservice ==
report ——
Workflow executions -

BT T T T T T T T T T T T 500
17

16| 1 450
15

b _ -+ 400
B - 4 350
12 -

nr 4 300
10|

9 4 250
s |

71 -+ 200
6|

sk 4 150
“r - 100
sLbd

2F 4 50
s

0 0

Swowowguy
8322RdA433

owguwugnow
FIBBIERR

Time in Minutes:

dataloader m—m
preprocess
process mm===

(c) Without Optimization Run 2

mailservice ===
—

repol
Workflow executions ------

cwowowow
FIBBIERRN

Time in Minutes

dataloader mm—
preprocess
process ===

(e) Without Optimization Run 3

mailservice ==
report ——
Workflow executions -

Amount of Virtual Machines

Amount of Virtual Machines

Amount of Virtual Machines

L N

ocwowouw
PR2RA8S

owowouwn
FIBBIE

Time in Minutes

dataloader mm—
preprocess
process E===

mailservice ===
report ———
Workflow executions -+~

(b) With Optimization Run 1

e N R]

\\\\\\’,1\500

2wgugwow
fIBBIERRN

Time in Minutes

dataloader mm—m
preprocess
process ===

mailservice ===
report ——1
Workflow executions -------

(d) With Optimization Run 2

18— 500
17

16 - - 450
15

1l - 400
B 4 350
12+ -

nr - 300
10 .

9l - 250
sl

7b ,. - 200
6l

5| | 1 150
‘T 4 100
NP

2r 1 s0
s

0 0

Swowowouw
P2RAES

ocwowowyouw
FIBBIERRN

Time in Minutes

dataloader mm—
preprocess
process ===

mailservice ==
report ——
Workflow executions -

(f) With Optimization Run 3

Figure A.2: Linear Arrival Results

82

Amount of Virtual Machines

Amount of Virtual Machines

Amount of Virtual Machines

VT 77— 500
16
15k - 450

S 8839
Time in Minutes

dataloader mm—

preprocess

process ===

(a) Without Optimization Run 1

o v o
88 88

=
mailservice ——

Workflow executions ------

17 500
16
151 . 1 450

S wowowgoyouw
8822

SE83 LT
Time in Minutes
dataloader m—m

preprocess
process E===m

(c) Without Optimization Run 2

2 9 g 9
3 888

report ==
ervice ——

mail
Workflow executions -------

17— 500
16
150 - 450

Time in Minutes

dataloader mm— report ==
preprocess mmmm mailservice ———1
process === Workflow executions -

(e) Without Optimization Run 3

Amount of Virtual Machines

Amount of Virtual Machines

Amount of Virtual Machines

preprocess

Time in Minutes

dataloader mm—
ervice ———

mails
process E=== Workflow executions -

(b) With Optimization Run 1

Time in Minutes

dataloader mm—m
preprocess
process mm===

report =3
mailservice ——
Workflow executions -~

(d) With Optimization Run 2

owowowo 0
PERSISBIELTBB 88

Time in Minutes

dataloader mm— report ==
preprocess mmmm mailservice ———1
process E===a Workflow executions -

(f) With Optimization Run 3

Figure A.3: Pyramid Arrival Results

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

Bibliography

Virtualization for dummies. John Wiley & Sons, Inc., New York, NY, USA, 2007.

T. Andrews, F. Curbera, H. Dholakia, and Y. Goland. Business process execution
language for web services. May 2003.

Apache. Apache commons math. http://commons.apache.org/math/.
[Online; accessed September-2012].

M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee,
D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. A view of cloud computing.
Commun. ACM, 53(4):50-58, April 2010.

M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Konwinski, G. Lee,
D. A. Patterson, A. Rabkin, and M. Zaharia. Above the clouds: A berkeley view
of cloud computing. Technical report, 2009.

T. Binz, G. Breiter, F. Leyman, and T. Spatzier. Portable cloud services using
tosca. IEEE Internet Computing, 16(3):80-85, May 2012.

T. Binz, F. Leymann, and D. Schumm. Cmotion: A framework for migration of
applications into and between clouds. In Service-Oriented Computing and Appli-
cations (SOCA), 2011 IEEE International Conference on, pages 1 —4, dec. 2011.

D. Booth and C. K. Liu. Web service description language (wsdl) version 2.0
part O: Primer. http://www.w3.0rg/TR/wsdl120-primer/. [Online; ac-
cessed August-2012].

I. Breskovic, M. Maurer, V. C. Emeakaroha, I. Brandic, and S. Dustdar. Cost-
efficient utilization of public sla templates in autonomic cloud markets. In Pro-
ceedings of the 2011 Fourth IEEE International Conference on Utility and Cloud

83

http://commons.apache.org/math/
http://www.w3.org/TR/wsdl20-primer/

[12]

[13]

84

Computing, UCC 11, pages 229-236, Washington, DC, USA, december 2011.
IEEE Computer Society.

R. Buyya, J. Broberg, and A. M. Goscinski. Cloud Computing Principles and
Paradigms. Wiley Publishing, 2011.

R. Buyya, C. S. Yeo, and S. Venugopal. Market-oriented cloud computing: Vi-
sion, hype, and reality for delivering it services as computing utilities. In High
Performance Computing and Communications, 2008. HPCC ’08. 10th IEEE In-
ternational Conference on, pages 5 —13, sept. 2008.

R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic. Cloud computing
and emerging it platforms: Vision, hype, and reality for delivering computing as
the Sth utility. Future Gener. Comput. Syst., 25(6):599—616, June 2009.

V. Cardellini, E. Casalicchio, F. Lo Presti, and L. Silvestri. Sla-aware resource
management for application service providers in the cloud. In Proceedings of the
2011 First International Symposium on Network Cloud Computing and Applica-
tions, NCCA 11, pages 20-27, Washington, DC, USA, 2011. IEEE Computer
Society.

T. Charalambous and E. Kalyvianaki. A min-max framework for cpu resource pro-
visioning in virtualized servers using H ., filters. In Decision and Control (CDC),
2010 49th IEEE Conference on, pages 3778 —3783, dec. 2010.

W. Chen, X. Qiao, J. Wei, and T. Huang. A profit-aware virtual machine deploy-
ment optimization framework for cloud platform providers. In Cloud Computing
(CLOUD), 2012 IEEE 5th International Conference on, pages 17 —24, june 2012.

F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S. Weerawarana. Un-
raveling the web services web: An introduction to soap, wsdl, and uddi. /EEE
Internet Computing, 6(2):86-93, Mar. 2002.

S. Dustdar, Y. Guo, B. Satzger, and H.-L. Truong. Principles of elastic processes.
volume 15, pages 6671, Piscataway, NJ, USA, Sept. 2011. IEEE Educational
Activities Department.

S. Dustdar and W. Schreiner. A survey on web services composition. International
Journals of Web and Grid Services, 1(1):1-30, August 2005.

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

Eclipse Foundation. Eclipse bpel project. http://www.eclipse.org/
bpel/. [Online; accessed August-2012].

T. Erl. Service-Oriented Architecture: Concepts, Technology, and Design. Prentice
Hall PTR, Upper Saddle River, NJ, USA, 2005.

P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec. The many faces
of publish/subscribe. ACM Comput. Surv., 35(2):114—-131, June 2003.

T. A. S. Foundation. Apache maven 3.0.4. http://maven.apache.org/
download.html. [Online; accessed June-2012].

R. Garcia and J.-M. Chung. Xaas for xaas: An evolving abstraction of web services
for the entrepreneur, developer, and consumer. In Circuits and Systems (MWS-
CAS), 2012 IEEE 55th International Midwest Symposium on, pages 853 —855,
aug. 2012.

S. K. Garg, S. Versteeg, and R. Buyya. Smicloud: A framework for comparing and
ranking cloud services. 2011 Fourth IEEE International Conference on Utility and
Cloud Computing, (Vm):210-218, Dec. 2011.

C. Gong, J. Liu, Q. Zhang, H. Chen, and Z. Gong. The characteristics of cloud
computing. In Proceedings of the 2010 39th International Conference on Parallel
Processing Workshops, ICPPW " 10, pages 275-279, Washington, DC, USA, 2010.
IEEE Computer Society.

K. Gottschalk, S. Graham, H. Kreger, and J. Snell. Introduction to web services
architecture. IBM Syst. J., 41(2):170-177, Apr. 2002.

M. N. Huhns and M. P. Singh. Service-oriented computing: Key concepts and
principles. IEEE Internet Computing, 9(1):75-81, Jan. 2005.

L. jie Jin, L. jie Jin, V. Machiraju, V. Machiraju, A. Sahai, and A. Sahai. Analysis
on service level agreement of web services. Technical report, HP Laboratories,
2002.

X. Jin and J. Liu. Resource optimization in heterogeneous web environments.
The 2005 IEEE/WIC/ACM International Conference on Web Intelligence (WI’05),
pages 4649, 2005.

85

http://www.eclipse.org/bpel/
http://www.eclipse.org/bpel/
http://maven.apache.org/download.html
http://maven.apache.org/download.html

[30]

[31]

[32]

[35]

[36]

[37]

86

A. Karve, T. Kimbrel, G. Pacifici, M. Spreitzer, M. Steinder, M. Sviridenko, and
A. Tantawi. Dynamic placement for clustered web applications. In Proceedings of
the 15th international conference on World Wide Web, WWW 06, pages 595-604,
New York, NY, USA, 2006. ACM.

J. O. Kephart and D. M. Chess. The vision of autonomic computing. Computer,
36(1):41-50, Jan. 2003.

A. Khiyaita, M. Zbakh, H. El Bakkali, and D. El Kettani. Load balancing cloud
computing: State of art. In Network Security and Systems (JNS2), 2012 National
Days of, pages 106 —109, april 2012.

E. Kiihn, R. Mordinyi, M. Lang, and A. Selimovic. Towards zero-delay recov-
ery of agents in production automation systems. In Proceedings of the 2009
IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelli-
gent Agent Technology - Volume 02, WI-IAT ’09, pages 307-310, Washington,
DC, USA, 2009. IEEE Computer Society.

E. Kiihn, R. Mordinyi, and C. Schreiber. An extensible space-based coordination
approach for modeling complex patterns in large systems,. In T. Margaria and
B. Steffen, editors, Leveraging Applications of Formal Methods, Verification and
Validation, volume 17 of Communications in Computer and Information Science,
pages 634-648. Springer Berlin Heidelberg, 2009.

T. Kurze, M. Klems, D. Bermbach, A. Lenk, S. Tai, and M. Kunze. Cloud fed-
eration. In Proceedings of the 2nd International Conference on Cloud Comput-
ing, GRIDs, and Virtualization (CLOUD COMPUTING 2011). IARIA, September
2011. Best Paper Award.

P. Leitner, W. Hummer, and S. Dustdar. Cost-based optimization of service com-

positions. IEEE Transactions on Services Computing, 2011.

H. Li and S. Venugopal. Using reinforcement learning for controlling an elastic
web application hosting platform. In Proceedings of the 8th ACM international
conference on Autonomic computing, ICAC 11, pages 205-208, New York, NY,
USA, 2011. ACM.

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

H. C. Lim, S. Babu, and J. S. Chase. Automated control for elastic storage. In

Proceedings of the 7th international conference on Autonomic computing, ICAC
"10, pages 1-10, New York, NY, USA, 2010. ACM.

H. C. Lim, S. Babu, J. S. Chase, and S. S. Parekh. Automated control in cloud
computing: challenges and opportunities. In Proceedings of the Ist workshop
on Automated control for datacenters and clouds, ACDC ’09, pages 13—18, New
York, NY, USA, 2009. ACM.

M. Litoiu, M. Woodside, J. Wong, J. Ng, and G. Iszlai. A business driven cloud
optimization architecture. In Proceedings of the 2010 ACM Symposium on Applied
Computing, SAC 10, pages 380-385, New York, NY, USA, 2010. ACM.

B. Ludiascher, M. Weske, T. Mcphillips, and S. Bowers. Scientific workflows:
Business as usual? In Proceedings of the 7th International Conference on Business
Process Management, BPM °09, pages 31-47, Berlin, Heidelberg, 2009. Springer-
Verlag.

H. Ludwig, A. Keller, A. Dan, R. King, and R. Franck. Web service level agree-
ment (wsla) language specification. IBM Corporation, pages 1-110, 2003.

P. Mell and T. Grance. The nist definition of cloud computing (draft) recommen-
dations of the national institute of standards and technology. 2011.

M. Michael, J. Moreira, D. Shiloach, and R. Wisniewski. Scale-up x scale-out: A
case study using nutch/lucene. In Parallel and Distributed Processing Symposium,
2007. IPDPS 2007. IEEE International, pages 1 —8, march 2007.

A. Michlmayr, F. Rosenberg, C. Platzer, M. Treiber, and S. Dustdar. Towards
recovering the broken soa triangle: a software engineering perspective. In 2nd
international workshop on Service oriented software engineering: in conjunction
with the 6th ESEC/FSE joint meeting, IW-SOSWE °07, pages 22-28, New York,
NY, USA, 2007. ACM.

B. Mutschler, M. Reichert, and J. Bumiller. Unleashing the effectiveness of
process-oriented information systems: Problem analysis, critical success factors,
and implications. Trans. Sys. Man Cyber Part C, 38(3):280-291, May 2008.

87

[47]

[57]

88

NetBeans Community. Developer guide to the bpel designer. http:
//www.netbeans.org/kb/60/soa/bpel-guide.html. [Online; ac-
cessed August-2012].

E. Newcomer and G. Lomow. Understanding SOA with Web Services (Independent
Technology Guides). Addison-Wesley Professional, 2004.

OASIS. Bpeldpeople. http://docs.oasis-open.org/bpeldpeople/
bpeldpeople—1.1-spec—cd-06.pdf. Accessed: 2013-01-21.

OASIS. Web services business process execution language version
2.0. http://docs.ocasis-open.orqg/wsbpel/2.0/0S/wsbpel-v2.
0-0S.htmll [Online; accessed August-2012].

OASIS. Business Process Execution Language 2.0 (WS-BPEL 2.0), 2007.

OpenStack. Openstack. http://www.openstack.org/. [Online; accessed
Januery-2013].

Oracle. Sun java jdk 1.6. http://www.oracle.com/technetwork/

Jjava/javase/downloads/index.html. [Online; accessed June-2012].

Oracle Corporation. Oracle bpel process manager. http://www.oracle.
com/technology/products/ias/bpel/index.html. [Online; ac-
cessed August-2012].

M. P. Papazoglou. Service -Oriented Computing : Concepts , Characteristics and
Directions. 2003.

M. P. Papazoglou, P. Traverso, S. Dustdar, F. Leymann, and B. J. Krdmer. Service-
oriented computing research roadmap. In Service Oriented Computing (SOC),
number 05462 in Dagstuhl Seminar Proceedings, pages 38—45. Internationales
Begegnungs- und Forschungszentrum fiir Informatik (IBFI), Schloss Dagstuhl,
Germany, 2006.

R. Rajamony and M. Elnozahy. Measuring client-perceived response times on the
www. In Proceedings of the 3rd conference on USENIX Symposium on Internet
Technologies and Systems - Volume 3, USITS’01, pages 1616, Berkeley, CA,
USA, 2001. USENIX Association.

http://www.netbeans.org/kb/60/soa/bpel-guide.html
http://www.netbeans.org/kb/60/soa/bpel-guide.html
http://docs.oasis-open.org/bpel4people/bpel4people-1.1-spec-cd-06.pdf
http://docs.oasis-open.org/bpel4people/bpel4people-1.1-spec-cd-06.pdf
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://www.openstack.org/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technology/products/ias/bpel/index.html
http://www.oracle.com/technology/products/ias/bpel/index.html

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

B. P. Rimal, E. Choi, and I. Lumb. A taxonomy and survey of cloud comput-
ing systems. In Proceedings of the 2009 Fifth International Joint Conference on
INC, IMS and IDC, NCM 09, pages 44-51, Washington, DC, USA, 2009. IEEE
Computer Society.

S. Rusitschka, K. Eger, and C. Gerdes. Smart grid data cloud: A model for uti-
lizing cloud computing in the smart grid domain. In Smart Grid Communications
(SmartGridComm), 2010 First IEEE International Conference on, pages 483 —
488, oct. 2010.

A. Sahai, A. Durante, and V. Machiraju. Towards automated sla management for
web services. Report HPL-2001-310 (R. 1), 310, 2002.

S. Schulte. Web Service Discovery Based on Semantic Information - Query Formu-
lation and Adaptive Matchmaking. PhD thesis, TU Darmstadt, September 2010.

J. E. Smith and R. Nair. The architecture of virtual machines. Computer, 38(5):32—
38, May 2005.

R. S. Sutton and A. G. Barto. Introduction to Reinforcement Learning. MIT Press,
Cambridge, MA, USA, Ist edition, 1998.

A. Tchana, L. Broto, and D. Hagimont. Approaches to cloud computing fault
tolerance. In Computer, Information and Telecommunication Systems (CITS), 2012

International Conference on, pages 1 —6, may 2012.

UDDl.org. Uddi technical white paper. http://www.uddi.org/pubs/
Iru_UDDI_Technical_White_Paper.pdf. [Online; accessed August-
2012].

B. Urgaonkar, P. Shenoy, A. Chandra, and P. Goyal. Dynamic provisioning of
multi-tier internet applications. In Autonomic Computing, 2005. ICAC 2005. Pro-
ceedings. Second International Conference on, pages 217 =228, june 2005.

H. N. Van, E. D. Tran, and J.-M. Menaud. Autonomic virtual resource management
for service hosting platforms. In Proceedings of the 2009 ICSE Workshop on
Software Engineering Challenges of Cloud Computing, CLOUD ’09, pages 1-8,
Washington, DC, USA, 2009. IEEE Computer Society.

89

http://www.uddi.org/pubs/Iru_UDDI_Technical_White_Paper.pdf
http://www.uddi.org/pubs/Iru_UDDI_Technical_White_Paper.pdf

[68] H.N. Van, FE. D. Tran, and J.-M. Menaud. Sla-aware virtual resource management
for cloud infrastructures. In Proceedings of the 2009 Ninth IEEE International

Conference on Computer and Information Technology - Volume 02, CIT 09, pages
357-362, Washington, DC, USA, 2009. IEEE Computer Society.

[69] W. M. P. Van Der Aalst and A. H. M. T. Hofstede. Yawl: yet another workflow
language. Information Systems, 30(4):245-275, June 2005.

[70] W. M. P. Van Der Aalst, A. H. M. T. Hofstede, and M. Weske. Business process
management: a survey. In Proceedings of the 2003 international conference on
Business process management, BPM’03, pages 1-12, Berlin, Heidelberg, 2003.
Springer-Verlag.

[71] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner. A break in the
clouds: towards a cloud definition. SIGCOMM Comput. Commun. Rev., 39(1):50—
55, Dec. 2008.

[72] M. Verbeek. A Guide to Modern Econometrics. John Wiley & Sons, 2008.

[73] White Paper, Agilent Technologies Inc. Service level agreements - an emerging
trend in the internet services market, 1999.

[74] L. H. Witten and H. M. A. Frank, Eibe. Data Mining: Practical Machine Learning

Tools and Techniques. Morgan Kaufmann, Amsterdam, 3 edition, 2011.

[75] World Wide Web Consortium (W3C). Extensible markup language (xml). http:
//www.w3.org/XML/. [Online; accessed August-2012].

[76] World Wide Web Consortium (W3C). Simple object access
protocol 1.2 partO(soap). http://www.w3.0rg/TR/2007/
REC-soapl2-part0-20070427/. [Online; accessed August-2012].

[77] World Wide Web Consortium (W3C). Web service description language (wsdl).
http://www.w3.0rg/TR/wsdl. [Online; accessed August-2012].

[78] World Wide Web Consortium (W3C). Xml path language (xpath). http://
www.w3.0rg/TR/xpath/. [Online; accessed August-2012].

[79] World Wide Web Consortium (W3C). Xml schema. http://www.w3.0rg/
XML/ Schemal [Online; accessed August-2012].

90

http://www.w3.org/XML/
http://www.w3.org/XML/
http://www.w3.org/TR/2007/REC-soap12-part0-20070427/
http://www.w3.org/TR/2007/REC-soap12-part0-20070427/
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/xpath/
http://www.w3.org/TR/xpath/
http://www.w3.org/XML/Schema
http://www.w3.org/XML/Schema

[80]

[81]

J. Yu and R. Buyya. A novel architecture for realizing grid workflow using tu-
ple spaces. In Proceedings of the 5th IEEE/ACM International Workshop on Grid
Computing, GRID ’04, pages 119-128, Washington, DC, USA, 2004. IEEE Com-
puter Society.

Z. Zhang, H. Wang, L. Xiao, and L. Ruan. A statistical based resource allocation
scheme in cloud. In Proceedings of the 2011 International Conference on Cloud
and Service Computing, CSC 11, pages 266273, Washington, DC, USA, 2011.
IEEE Computer Society.

91

	Introduction
	Motivation
	Aim of the Work
	Organization

	State of the Art
	Service-Oriented Architecture
	Web Services
	Business Processes
	WS-BPEL
	Service Level Agreement

	Cloud Computing
	Cloud Layered Architecture
	X-as-a-Service
	Virtualization
	Fault Tolerance
	Interoperability

	Elastic Processes
	Resource Optimization

	Related Work
	Requirements Analysis & Design
	Introductory Example Scenario
	Requirements
	System Life-Cycle
	Component Description
	Workflow Management
	Service Deployment
	Communication & Shared Memory
	Optimization

	Implementation
	The Big Picture
	Business Process Management System VM
	Workflow Manager
	Load Balancer
	Reasoner

	Backend VM
	Service Deployment
	Action Engine

	Shared Memory
	Service Repository

	Evaluation
	Evaluation Scenario
	Scenario
	Arrival Functions
	Baseline & Scenario

	Measurement Metrics
	Results and Discussion
	Burst Arrival Scenario
	Linear Arrival Scenario
	Pyramid Arrival Scenario

	Summary

	Conclusion and Future Work
	Future Work

	List of Figures
	Evaluation Results
	Bibliography

