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Abstract

This thesis introduces and evaluates the Continuous Change Impact Analysis Process, short
CCIP, an extension to continuous integration.

Continuous integration (CI) is a well-established concept to automate building and testing
of software projects, with the goal of improving quality and time to delivery. Automated tests,
which are an integral part of CI, test whether a piece of software behaves according to its speci-
fication. However, the behavior of software is not defined by its code alone, but also by external
dependencies that provide part of the functionality and may be developed by outside organi-
zations or outside the engineering domain. Currently CI falls short of its potential because it
does not take into account changes to dependencies and therefore executes tests in an isolated
environment.

CCIP attempts to break up the isolation by introducing communication between CI servers.
If a dependency is modified, a notification is sent to its dependents, which import the changes,
run their own tests and send feedback. This provides quick feedback for dependency developers
and helps to discover regressions earlier.

This thesis uses a prototype CCIP implementation to answer research questions concern-
ing the costs and benefits of the extension, feedback quality and expected issues in large-scale
deployments. This prototype implementation has been evaluated with two sets of interdepen-
dent open source projects consisting of a total of 10 projects. One set of projects originates
from the Linux 3D driver and gaming stack, the other centers on the Apache Foundation’s OSGi
implementation.

The empirical evaluation showed that CCIP can discover additional regressions that slip
through the dependencies’ own tests, but API changes, false-positives and random test failures
severely reduce the usefulness of CCIP.

Keywords: software testing, software dependencies
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Kurzfassung

Diese Diplomarbeit beschreibt den Continuous Change Impact Analysis Process, kurz CCIP,
und untersucht und bewertet dessen Eigenschaften.

Der CCIP ist eine Erweiterung für den Prozess der kontinuierlichen Integration (engl. con-
tinuous integration oder CI). CI ist eine verbreitete Methode, um das Kompilieren und Testen
von Softwareprojekten zu automatisieren, mit dem Ziel die Softwarequalität zu verbessern und
Auslieferungszeiten zu verkürzen. Eine der tragenden Komponenten von CI sind automatisierte
Tests, die überprüfen, ob sich die Software entsprechend ihrer Spezifikation verhält. Das Ver-
halten der Software wird jedoch nicht nur vom Quellcode alleine bestimmt, sondern auch von
externen Komponenten, die importiert werden und wichtige Funktionen bereitstellen. Diese Ab-
hängigkeiten werden oft außerhalb des Projektteams entwickelt und entspringen manchmal von
einem gänzlich anderen Fachgebiet. Da CI Änderungen an Abhängigkeiten nicht betrachtet, wer-
den Tests in einer zu isolierten Umgebung ausgeführt, wodurch CI nicht sein ganzes Potential
entfalten kann.

CCIP versucht diese Isolation aufzubrechen, indem es CI-Server untereinander kommuni-
zieren lässt. Wenn eine Abhängigkeit aktualisiert wird, wird eine Benachrichtigung an die CI-
Server von abhängigen Projekten geschickt. Diese importieren die geänderten Artefakte, führen
ihre eigenen Tests aus und liefern das Ergebnis zurück. Dadurch erhalten Entwickler von Ab-
hängigkeiten frühzeitig automatisiertes Feedback darüber, wie sich ihre Änderungen in den von
ihnen abhängigen Projekten auswirken.

Diese Diplomarbeit verwendet eine prototypische Implementierung von CCIP um das Ver-
fahren zu testen und Forschungsfragen zu beantworten. Diese Forschungsfragen betreffen die
Kosten und Nutzen von CCIP, die Qualität des Feedbacks und den Umgang damit, sowie Frage-
stellungen und Herausforderungen bei großflächigem Einsatz von CCIP. Um diese Fragen zu be-
antworten, wird CCIP mit zwei Gruppen von Projekten aus unterschiedlichen Entwicklungsum-
gebungen und Ökosystemen getestet. Eine Gruppe stammt aus dem Umfeld des 3D-Renderings
unter Linux, die andere aus der OSGi-Implementierung der Apache Foundation.

Die empirische Evaluation zeigt, dass CCIP zusätzliche Fehler finden kann, die den Tests
eines Projekts entgehen. Jedoch bereiten Änderungen an den Programmierschnittstellen, falsche
Fehlermeldungen und zufällige Testfehler Probleme und reduzieren die Nützlichkeit von CCIP.

Schlüsselwörter: Softwaretest, Softwareabhängigkeiten
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CHAPTER 1
Introduction

This chapter provides an overview of the contribution of the thesis, the existing problem scenar-
ios that motivated the research and intended goals.

1.1 Overview

In today’s software engineering landscape, continuous integration (CI) is a well-established con-
cept to improve software quality and reduce time to delivery. Continuous integration automates
certain tasks, in particular code compilation and executing tests.

Testing is an important part of continuous integration, but testing happens in a kind of iso-
lated environment. Tests evaluate a specific code artifact and are written based on and according
to this code artifact’s specifications. However, the code of a software artifact is not isolated from
the rest of the world. Most software imports other software to provide a part of its functional-
ity. These dependencies are often developed outside the project’s organization or engineering
domain. Dependencies themselves may depend on other software, causing transitive depen-
dencies. Some software is imported by other projects (the software dependents). Figure 1.1
shows the dependencies of the Java Development Kit package in Gentoo Linux as an illustrative
example.

The first relationship is handled to a varying degree by build systems and package managing
software, while the latter has almost no tool support. Upgrading dependencies and finding prob-
lems introduced by those updates is a tedious and slow process that has to be done manually [13].
It is common for dependents to wait for final releases of dependencies before they update. As a
result, feedback from dependents arrives late and problems are not detected until after a release.
At this point, fixing a regression and delivering the fix to dependent projects requires more effort
than earlier in the development cycle.

To address these shortcomings, this thesis proposes, implements and evaluates the Contin-
uous Change Impact Analysis Process, or CCIP, an extension to continuous integration which
enables CI servers to enter a two-way communication. This communication allows them to no-
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Figure 1.1: Dependencies of the Java Development Kit package in Gentoo Linux

tify each other about dependency upgrades, transfer code artifacts and report back test results
for automated testing of changes beyond the project boundary.

1.2 Motivating Scenarios

This section describes real-world development scenarios that provided motivation for the re-
search topic of this work.

As virtually all software depends to some extend on other software, changes to the depen-
dencies can introduce problems for the software that depends on them, for example [18] or [40].
If this problem is detected after a new version of the dependency is released, removing the prob-
lem not only requires a fix to the dependency, but also necessitates waiting for a new release
of that dependency. This is highly inconvenient for the developers of the dependent software,
because they cannot upgrade to the new version to profit from improvements and new features.

To make matters worse, in some situations the developers of the dependent do not have
control over which version of the dependency is used, e.g. because it is controlled by a Linux
distribution (See chapter 3). In this case, the developers of the dependent software may have
to employ complicated workarounds for the problem, explain to disappointed users why their
software doesn’t work and why they can’t fix it or guide users through the complicated steps of
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installing a different version of the dependency. Neither of these options is particularly appeal-
ing.

To add insult to injury, the dependent’s developers might realize that their own conformance
tests recognize the bug, and could have provided an automated way to detect the problem much
sooner.

The developers of the dependency might realize that the regression occurs in a complicated,
but legitimate scenario, and that their own tests did not catch it because they either did not think
of this scenario, or because not all the components necessary to reconstruct the problem are
available to them. At the time when the problem is reported, it is often difficult to isolate the
change that caused it because a lot of time has passed since it was introduced.

1.3 Intended Benefits

The intended benefits of the contribution are threefold:

• Help find cross-project regressions earlier and with less manual work.

This benefits dependencies and dependents alike. Dependencies profit by receiving bug
reports from their dependents earlier, ideally minutes after a change introduced a regres-
sion. Dependents profit by being able to detect upcoming problems quickly and with little
or no manual effort.

• Give dependencies an easy way to extend their test coverage.

Ideally, a software project has automated tests that cover its entire codebase, and a con-
tinuous integration infrastructure that executes those tests on all supported platforms. In
practice, complete coverage requires a lot of effort to achieve, and some configurations or
conflicts with other software may slip through the net. Including the tests of dependent
projects helps close the gap in the test coverage and highlights problems the developers of
the dependency have not considered.

• Create a network of communicating CI servers.

With support for cascading updates, a large-scale deployment of communicating CI servers
is possible. Such a network of communicating servers could do testing on a huge set of
interdependent open source software for example.

1.4 Thesis Structure

The remainder of the thesis is structured as the following: Chapters 2-4 report on background
and related work regarding testing, software dependencies and impact management. Chapter 5
describes use cases to clarify the problem statement and presents research issues concerning the
effective and efficient handling on change impacts. Chapter 6 explains the main contribution
of the paper, while chapter 7 and 8 discuss the evaluation and its results. Finally, Chapter 9
concludes the paper and presents future work.
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CHAPTER 2
Testing and Continuous Integration

This chapter provides background information about the goals, methods and limitations of soft-
ware testing and continuous integration. State-of-the-art continuous integration concepts form a
basis for the ideas presented in this thesis.

2.1 Goals of Continuous Integration

The goal of continuous integration is to automate key parts of the software engineering process to
improve software quality, accelerate development and free developers from manually executing
repetitive tasks. Advantages of continuous integration are [24]:

• Reduced risk: Early testing helps detect problems earlier.

• Find bugs early: Constant testing and small changes pin down new bugs to the recently
changed areas of code.

• Fewer entangled bugs: Since bugs are detected and fixed early, complicated interactions
between multiple bugs are less likely.

• Faster deployment cycles: Changes can be shipped faster.

• It supports communication between developers (see chapter 4).

To achieve these goals, a few changes to the technical project setup and the development
process are required. The key parts of continuous integration are an automated build system,
automated tests, the use of a revision control system and the requirement that developers commit
changes to the central code repository early and often and regularly pull in changes from their
coworkers. Finally a continuous integration server is responsible for building and testing the
project whenever changes are committed [16].
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Figure 2.1: CI process overview [16, Fig. 1.1]

Figure 2.1 gives a high-level overview of the continuous integration process, described
briefly in the following: Developers commit their changes to a source code repository. The
continuous integration server polls the source code repository. Whenever it detects changes it
uses the build script to build and test the code. It generates a report which developers can receive
via different feedback mechanisms (e.g. e-mail, webpage).

2.2 Automated Building

The first requirement of continuous integration is an automated build system that is able to build
the entire project by executing one command without any manual intervention. This chapter
gives an overview over the topic and describes two major build systems used by software used
in the evaluation part of this thesis.

All major development platforms (e.g. Java, GNU/Linux, Microsoft Windows, Microsoft
.NET) provide such build systems with easy-to-use templates and strongly encourage their use.
It is up to the developers of the project to make use of them and integrate their custom build
tasks into the existing templates.

While build systems can be as simple as a platform-specific script performing a few compiler
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invocations, modern build systems provide a number of services like dependency management,
operating system abstraction, release management, etc. The build systems used by most of the
projects tested in this thesis are Apache Maven1 or the GNU Build System2, which are described
in more detail in the following subsections. Other popular build systems include Ant3, CMake4

and MSBuild5.

Apache Maven

Apache Maven is a Java-based build tool and is commonly used to build Java-based projects,
although it can be used with other programming languages as well. Maven is a highly modu-
larized tool - the main program is a simple container for numerous plugins which do the actual
work. As such, it is highly customizable. Since a big selection of tools is readily available, this
customization takes little effort [38].

Maven aims to limit the configuration burden by providing a reasonable default configuration
for every plugin and allowing the developer to adjust the defaults where needed. This process is
called Convention over Configuration [38].

One of the outstanding features of Maven is its repository concept and dependency manage-
ment. Library developers upload their releases to a public repository server. Developers who
wish to use these libraries only have to declare the dependency’s name and version in the maven
configuration files (by convention called ”pom.xml”), and Maven will automatically download
the dependencies from the remote repository and store them in a local cache. Locally compiled
artifacts are stored in the same local cache as well. Different versions of the same artifact can be
stored in the same repositories without conflicts.

Criticism [51] of Maven mainly claims that Maven fails to live up to its promises. Despite the
convention over configuration guidelines a substantial amount of configuration is still required
and the XML syntax of the configuration files makes this process more awkward than necessary.
The remote and local software artifact repository can introduce unnecessary side effects and hide
bugs (e.g. by accidentally linking against an outdated component rather than reporting an error)
and error messages are cryptic.

GNU Build System

The GNU Build System originates from the GNU/Linux operating system and its use is widespread
among open source software. It is usually used to compile C and C++ software on Unix-like
operating systems, although it can be used for other languages and non-Unix systems as well.

The GNU Build System provides operating system abstraction by checking for required
components and choosing a suitable compiler and compiler options. If properly configured, it
supports incremental builds where only changed source files are recompiled, which dramatically
improves compilation times for developers [19].

1http://maven.apache.org/
2http://www.gnu.org/software/autoconf/
3http://ant.apache.org/
4http://www.cmake.org/
5http://msdn.microsoft.com/en-us/library/0k6kkbsd.aspx/
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While the build system can check the availability of dependencies, it cannot install missing
ones automatically and usually reacts by aborting with an error or disabling features in the
compiled program. It is then up to the user to install the required dependencies in the correct
version.

The main criticism [37] [33] of the GNU Build System focuses on the complicated configu-
ration of the build system, the slow execution performance of the build scripts and the difficulty
to use it to build programs on Microsoft Windows.

Build Reproducibility

One often overlooked aspect of build systems is the ability to reliably reproduce builds, prefer-
ably even on different computers. To achieve this, all aspects of the build process have to be
controlled by the build system, including the versions of dependencies, the compiler, system
include files and build settings. Reproducibility is important to allow developers to reproduce
each other’s build or runtime issues and to retest past code versions. [17]

Unfortunately neither Maven nor the GNU Build System can reliably reproduce builds. Nei-
ther build system controls the compiler. The GNU Build System has limited control over depen-
dencies. While Maven has more control over dependencies, locally overwritten dependencies
and remotely downloaded snapshot versions can influence the build process, as can accidentally
used old versions of code artifacts that are available on one system but not the other.

A build system that addresses these issues has been proposed [17], but since it did not find
widespread adoption it is of little value to this thesis. As a result, it may be harder to perfectly
reproduce the evaluation results in chapter 7. Readers who attempt to do so may get different
results depending on their software versions. It is not known to the author why the build system
from [17] and [44] was not adopted broadly. A speculative reason is that it is considered too
complex because it demands fairly tight control over the host operating system. It is in effect a
GNU/Linux distribution6) and not just a build system.

2.3 Testing

This section describes the basics of testing that are relevant to continuous integration and this
thesis and provides further literature on the subject.

What is Testing?

According to Ian Sommerville, the intention of testing “is to show that a program does what it
is intended to do and to discover program defects before it is put to use” [50]. To do this, the
software is executed on artificial input data and the output is compared to expected results.

Testing can be done on different layers of the software using different test techniques. In a
typical software engineering project testing occurs at the following levels:

• Unit testing [7]:

6http://nixos.org/
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It tests the smallest possible components of a software system, e.g. on a function or class
level. If a class utilizes other objects these objects are usually replaced with mock objects
that have no program logic and return data controlled by the test. Unit tests are simple to
write and execute, but they cannot find bugs that result from incorrect interaction between
modules.

• Integration testing [32]:

Integration testing assembles all the parts of a software system to form the complete sys-
tem and tests it as a whole. No mock objects are used, but the testing is still confined to
the development environment. Integration tests are more complex than unit tests, but they
are able to detect problems that spread across multiple software modules.

• Release testing [50, Ch. 8.3]:

This is the final stage of testing before a software artifact is released for use outside of the
development team. External testers can participate in the testing and the system might be
installed on the production environment of a customer, but still operate on artificial data.

Design Test 
Cases

Compare Results 
to Test Cases

Run Program 
with Test Data

Prepare Test 
Data

Test 
Cases

Test 
Data

Test 
Results

Test 
Reports

Figure 2.2: A model of the software testing process [50, Fig. 8.3].

Figure 2.2 is an abstract model of the traditional test process. A test case is a specification
of the input to the test, the expected output and a statement of what is being tested. Test data
are inputs to the system being tested. Sometimes test data can be generated automatically, but
test cases cannot be generated automatically because people who understand the system have to
specify the expected test results. Test execution and comparing the test results to the expected
results can be done manually or automatically.

Test Automation

Continuous integration requires that the CI server is able to execute tests without human interac-
tion. This means that the tests have to be automated in the form of an executable program which
interacts with the tested program. The test program can interact with the tested code in a variety
of ways:

• Programming interfaces:
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The usually preferred way is to call the exported functions or methods of a module in the
same way the other modules in the assembled system would do. This requires a clean API
abstraction of the various modules, e.g. a separation of business logic and user interface
(UI).

• User interface:

If some testing goals cannot be achieved with API tests, e.g. because the business logic is
not separated from the UI or the UI itself is tested, then the test program has to interact with
the UI. This is more complicated than interacting with an API, but there are several tools
that aid in this process, e.g. Selenium7 (for websites), Abbot8 (Java) and AutoHotkey9

(Windows).

An automated test can be as simple as a stand-alone program that returns success or error
when exiting to indicate the test result. To structure tests test frameworks like JUnit10 can be
used. Test frameworks usually provide additional tools to organize test results.

Limitations

One important limitation of testing is that it is not a formal proof of correctness. As Edsger W.
Dijkstra eloquently stated, “Program testing can be used to show the presence of bugs, but never
to show their absence!” [11].

The reason for this is simple: Testing can only test a finite set of input parameters, and no
matter how extensive the testing is, there is still the theoretical possibility that some untested
inputs trigger a bug in the program, the compiler, the operating system, the processor hardware
or another dependency component.

Further reading

As far as continuous integration and the rest of this thesis are concerned, all that is needed is a
test program for each tested code artifact that returns true if the program behaves as intended and
false if it does not. Thus this section skips details on how to write tests, how to manage testing
and the role of testing in the software engineering process. The interested reader can find more
information on testing in [50, Ch. 8] and [57].

2.4 Source Code Repository

Continuous integration requires a central code repository to allow the CI server to access the
source code to make test builds and detect changes to the code.

While in theory this code repository could be as simple as a shared directory on a file server,
revision control systems [55] are more suitable for this task. In addition to giving the CI server

7http://seleniumhq.org/
8http://abbot.sourceforge.net/doc/overview.shtml/
9http://www.autohotkey.com/

10http://www.junit.org/
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access to the code, revision control systems also provide features that make collaboration be-
tween developers much easier, like access to previous versions of the code, finding out which
code lines were changed by which developer, branching and merging and many others. These
features are outlined in chapter 4.2.

Commonly used revision controls systems are Apache Subversion11, Git12, Mercurial13 and
CVS14. Which revision control system(s) are used and their precise inner workings are not im-
portant to CI or this thesis. The only aspect that matters is that the CI server can interact with
the revision control system.

2.5 Continuous Integration Servers

This section describes the role of the CI server and provides information about popular CI server
implementations and the OpenCIT CI implementation used in this thesis.

The CI server is the component in the CI process that brings the individual parts together. It
decides when to execute the build and test processes, it manages build results and built artifacts
and reports the results to the developers.

The CI workflow

The CI workflow as described by Fowler [24] is essentially a sequential automation of the man-
ual build process. Whenever a developer commits a change to the code artifact, the CI server
checks out the code and builds the artifact. After the build process the artifact’s tests are run.
Optionally, the produced artifacts can be deployed, for example to provide nightly builds on an
FTP server. Regardless of the outcome, the CI server sends a notification with the results to the
developer. Figure 2.3 visualizes the process.

Build Test Deploy
(Optional)

Developer

Feedback

Code

Figure 2.3: An outline of the CI workflow

11http://subversion.apache.org/
12http://git-scm.com/
13http://mercurial.selenic.com/
14http://www.nongnu.org/cvs/
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In the event of a build failure, the test and deploy steps are skipped and an error notification
is sent. The development team may have different notification rules depending on the outcome.
It may also make sense to reject or revert the change if it introduces build or test failures. State
of the art CI servers offer a wide range of customizations.

Popular CI servers

Among the most widely used CI servers are the CI servers Hudson15 and its fork Jenkins16. The
main features leading to their popularity are an easy to use browser-based user interface and a
vast amount of available plugins that allow using the build servers with virtually every available
build system and revision control system and add custom features to the build servers.

Hudson and Jenkins have basic support for dependency tracking17. However, this support
is limited to projects building on the same server, does not include a way to communicate with
other servers and works only with projects using Maven as their build system. Some remoting
support also exists, but it is aimed at load balancing and covering multiple build environments
only, similarly to BuildBot’s master/slave system18.

Another CI server is BuildBot19. Its strength is the master-slave system that separates the
user interface and build control processes (the master) from the actual build and test processes
(the slaves). This not only provides load balancing support, but also allows BuildBot to test the
tested code artifacts on multiple hardware platforms and operating, systems but still manage the
results in a central location.

The shortcoming of BuildBot’s remoting support in distributed development environments
is that the interface is not suitable to communicate with unknown remote parties. The setup
process to add a slave is complicated and the amount of control the master has over the slave
leads to security concerns if the master is not trusted [56, Sec. 2.6].

OpenCIT

The OpenCIT CI server20 is a very simple CI server that mainly serves as a demonstration of the
Open Engineering Service Bus (OpenEngSB) middleware21.

While OpenCIT is a quite limited build server for everyday uses compared to Hudson, Jenk-
ins or BuildBot, it has certain advantages for the purpose of this thesis. Its small codebase (about
5000 lines of Java code and XML configuration) makes it easy to modify.

Furthermore, the underlying OpenEngSB framework [39] provides all the infrastructure re-
quired for setting up message-based communication, workflow management and tool integra-
tion.

15http://www.hudson-ci.org/
16http://www.jenkins-ci.org/
17https://wiki.jenkins-ci.org/display/JENKINS/Dependency+Analyzer+Plugin
18https://wiki.jenkins-ci.org/display/JENKINS/Distributed+builds
19http://www.buildbot.org/
20http://opencit.openengsb.org/
21http://www.openengsb.org/
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Figure 2.4: Drools rendering of the OpenCIT workflow.

OpenCIT supports the Git revision control system and Maven build systems. The core CI
workflow is implemented as a JBoss Drools22 workflow (Figure 2.4). OpenEngSB provides the
necessary infrastructure to add plugins for other build systems and revision control systems.

2.6 Best Practices

In addition to the infrastructure and project changes, continuous integration requires the devel-
opers to follow a set of practices to achieve its full potential. Duval lists the following rules that
developers should follow [16, Ch. 2]:

• Commit code frequently!

Committing code frequently not only gives coworkers access to one’s work early, but it
also keeps changes small and easy to understand.

• Do not commit broken code!

If developers commit broken code, they break the build process for everyone else and
causing disruption in coworkers’ work. Therefore developers should build and test their
changes on their local workstations before committing. Recent CI developments also
allow CI servers to test incoming commits before they are persisted in the code repository
and reject them if they cause failures23.

22http://www.jboss.org/drools/
23http://wiki.hudson-ci.org/display/HUDSON/Gerrit+Plugin
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• Fix broken builds immediately!

If the CI server reports that the project is in a broken state, developers should address the
issue immediately. Otherwise they run the risk of always ignoring test failures, which
makes continuous integration useless. A possible policy to enforce this is to reject any
changes that do not fix a build or test failure, once such a failure is detected [29].

• Avoid getting broken code!

Developers should avoid checking out code from the code repository if the CI server
reports failures, unless they plan to find and fix the breakage. Otherwise it is better to wait
for the developer who caused the breakage to fix it.

2.7 Experiences

This section outlines scientific research that investigates if the practical experiences with CI live
up to the expectations and promises.

The available literature on the actual results of automated testing is thin, but Dudekula Mo-
hammad Rafi et. al. have written a comprehensive overview with a systematic literature review
and a practitioner survey [42]. Although their work focuses on test automation in general, the
results apply to continuous integration as well. Their key findings are:

• Automated testing reduces the effort required for testing. However, this effort reduction
should not be used to reduce the testing budget of a project, but to improve testing with
the available resources.

• Automated testing is most useful when multiple regression testing rounds are needed.

• Test automation increases test coverage, which means that it has benefits even when re-
peated testing is not required.

• A key limitation is the high initial cost in designing test cases, obtaining a test automation
tool and training the staff.

• Maintenance of automated test cases is perceived as problematic by practitioners.

• Automated testing cannot fully replace manual testing, only augment it. The skills and
intuition of testers are still required to detect new bugs.

The authors also bemoan that the available literature focuses on the strength of test automa-
tion and limitations are only reported by practitioners. They attribute this to a publication bias
towards papers describing benefits.
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CHAPTER 3
Software Dependencies

This chapter provides an outline of software dependencies: What dependencies are and why
they are necessary, ways of importing dependencies, distributed software engineering, common
dependency management systems and dependency anomalies.

3.1 What are Software Dependencies

Software dependencies are a result of software modularization and code reuse [10]. Using ex-
ternal libraries for performing common tasks instead of reimplementing everything from scratch
is an old [35] technique and considered good software engineering practice [50, Ch. 16]. Fur-
thermore software is split up into independent modules to make the code easier to manage and
make team coordination easier. As a consequence, the different modules and external libraries
have to be provided to the program in the correct version.

Formally, a code artifact CArt0 depends on another code artifact CArt1 when it relies on it for
some of its functionality [41]. If CArt1 is not available or not functional, CArt0 does not work,
or works with reduced functionality only. A code artifact can depend on multiple other code
artifacts (its dependencies) and a code artifact can be used by multiple other code artifacts (its
dependents). Dependencies themselves can have dependencies (transitive dependencies). Taken
together, the individual code artifacts and their dependency relations form a dependency graph,
which Podgurski and Clarke [41] define as an acyclic directed graph. While the big majority of
dependency relations is indeed cycle-free, this is not true for all of them (section 3.4).

Dependencies are of particular interest in software engineering because the task of managing
external dependencies and dealing with library upgrades can be a major cost factor in software
evolution [47].
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3.2 Linking Types

This section describes common ways of interacting with dependencies, their advantages and
disadvantages, common uses and implications for software development.

Code Copy

The simplest way to include a dependency is to simply copy the dependency’s code into the
project that needs the dependency and instruct the build system to build it. To update the depen-
dency the source files have to be updated manually and the project has to be recompiled.

The advantages of this method are full control over the dependency version, the ability to
make modifications to the dependency and the guarantee that the dependency is available at
runtime.

The disadvantages are the difficult update process, the need to build the dependency, which
increases compile time and requires understanding of how to build it. The source code has to be
available and there may be licensing issues.

Situations where this technique are used are: If custom changes to the dependency are re-
quired, for code modules developed in the same development organization, for static data or
when only a minor part of an otherwise bigger library is used.

Static Linking

With static linking [28] the linker includes a compiled copy of the dependency in the generated
executable. Compiling the dependency is not necessary. Updating the dependency generally
requires a recompilation of the source code, although relinking is technically enough if precom-
piled object files of all parts of the code artifact are available.

The core advantage is that the dependency is guaranteed to be available in the correct version
at runtime without the requirement to build the dependency itself and making the dependency
easier to update compared to a source code copy. This method can be used even if the source
code of the dependency is not available. Furthermore multiple programs that require conflicting
versions of the same dependency can coexist without issues.

The disadvantages are the increased size of the executable, which matters if multiple ex-
ecutables using the same dependency are used, as every one of them contains a copy of the
dependency. Replacing the dependency is not practical without recompilation. Some libraries
like the GNU Lesser General Public License v2.1 place certain restrictions on static linking [25].

This way is used for internally developed dependencies or dependencies that are hard to
obtain by users. It is also used for system binaries that run early in the boot process of operating
systems, where external libraries may not be available and sometimes on embedded operating
systems without a dynamic loader.

Dynamic Linking

Dynamic linking [52, Appendix 7A] means that a dependency library is only referenced by its
name in the dependent program. The dependency artifacts are stored in a different file and loaded
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by the host system as needed.
This allows different programs to share common components, thus reducing the disk space

and runtime memory requirements. The dependencies can be upgraded easily by replacing the
library files, without the requirement to recompile or relink programs using them.

The main problems with dynamic linking are missing libraries and version conflicts. The
required libraries have to be provided somehow. Usually the libraries are a part of the host
operating system or runtime environment. If a required library is missing for some reason or
available in the wrong version, dependent programs fail to run or function properly. Especially
older versions of Microsoft Windows used to have major library management issues known to
users and system administrators as DLL Hell [3].

Dynamic linking is a widely used mechanism. It is used for linking against components of
the host operating system or runtime environment and often used for linking internal components
of a software system.

Remote Invocation

A more recent way to interact with dependencies is communicating with them over a network,
e.g. the Internet. Multiple communication patterns are used [53, Ch 4], the most commonly
used being remote procedure calls (RPC), message-oriented communication (MoM) or shared
resources. A contractual interface agreement defines the communication format. Ideally this
interface is independent of the service implementation, allowing clients to switch between dif-
ferent service providers.

Remote invocation is used by services that are distributed in nature, e.g. an online music
store or an online multiplayer game.

3.3 Dependency Management

This section describes various way of managing dependency artifact on different operating sys-
tems and software ecosystems.

GNU/Linux

On GNU/Linux systems managing dependencies is the job of package managers, which manage
programs and libraries in software packages. To install a program, the user requests the instal-
lation of the package containing the program. The package manager knows the dependency
requirements of all software packages known to it and installs the dependency together with the
packages that require it. When the user requests the uninstallation of a package, all dependen-
cies that were not explicitly installed by the user and are not required by other packages can be
removed again. System updates are also handled by the package managers.

There are numerous package managers, used by different GNU/Linux distributions: yum1

(Fedora), dpkg2 (Debian, Ubuntu and derivates), Portage3 (Gentoo) and others.
1http://fedoraproject.org/wiki/Yum
2http://www.debian.org/doc/manuals/debian-faq/ch-pkgtools.en.html
3http://www.gentoo.org/doc/en/handbook/handbook-x86.xml?part=2&chap=1
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When software is installed or built without using the package manager, the user is respon-
sible for providing the required dependencies, for example by instructing the package manager
to install the dependency The common build systems on Linux like the GNU build system (see
section 2.2) can only detect the absence of required dependencies and abort the build process
with a descriptive error.

The available software for GNU/Linux systems forms a big software ecosystem. This is
reflected by a huge amount of packages, forming a complex dependency tree. Figure 3.1 shows
an artistic rendering of the dependencies between packages on the Gentoo Linux system that
was used in the experimental evaluation in chapter 7. The picture was generated by the tool
Pacgraph4 written by Kyle Keen. The underlying data is the Portage tree from July 31st 2012.
This picture illustrates the number of packages a GNU/Linux distribution is built from and the
complexity of dependencies between them.

Figure 3.1: A visualization of the package dependencies on the test system.

The Gentoo installation is a desktop installation with both the KDE and Gnome desktops
installed. It also contains various C and Java development tools. The graph contains a total of
435 nodes. The installed packages occupy 4717.2 megabytes of disk space.

4https://github.com/keenerd/pacgraph
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Microsoft Windows

Microsoft Windows is a fairly monolithic system. Windows ships a lot of libraries that provide
common services needed by Windows applications, starting from basic things like file handling
and user interfaces to things like multimedia functionality and network communication. As
such, few external dependencies are needed.

There are however some libraries that are not always available. These libraries can be redis-
tributed by software vendors, so the installation software of the dependent program can make
sure they are available on the target system. The most commonly redistributed packages are
the Microsoft Visual C++ runtime 5, the .NET framework6 , the DirectX runtime7 , the Visual
Basic8 runtime and others.

Windows does not have a sophisticated system to manage conflicting versions of the same
library. Ideally libraries are backwards compatible and installers do not replace newer versions
with older libraries they may have bundled. Unfortunately this is not always the case, leading
to the aforementioned DLL Hell. Microsoft has tried multiple schemes to combat DLL Hell,
ranging from file protections to disallow overwriting of system libraries [9] and so-called Side-
by-Side Assemblies, which essentially allow library versioning [8].

Java Ecosystem

Java itself does not provide any dependency management support. However, dependency man-
agement is provided by build tools like Apache Maven.

Maven provides public online repositories where software developers can upload their code
artifacts. Code artifacts are uniquely identified by their publishing organization, name and ver-
sion. If a dependency is not available on the build system, it is downloaded and stored in a local
cache. Locally built artifacts are also stored in that cache.

When a program is packaged for distribution outside the Maven repository system, Maven
includes a copy of all dependencies in the packaged archive.

3.4 Dependency Anomaly: The Bootstrapping Problem

This section discusses an anomaly in the dependency graph that has to be considered.
The dependency graph is usually described as a directional, acyclic graph [41]. This is true

for almost all software packages, but it does not always hold up in low level components of an
operating system, especially concerning compilers.

For example, the GNU Compiler Collection (gcc, 9), a popular C compiler, is written in C
itself. As a consequence, a working C compiler binary is required to compile the compiler. Fur-
thermore, this host compiler requires a C runtime binary (e.g. GNU libc, 10). Thus the compiler

5http://www.microsoft.com/en-us/download/details.aspx?id=5555
6http://www.microsoft.com/en-us/download/details.aspx?id=17851
7http://www.microsoft.com/en-us/download/details.aspx?id=8109
8http://www.microsoft.com/en-us/download/details.aspx?id=20429
9http://gcc.gnu.org/

10http://www.gnu.org/software/libc/
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depends on the C runtime and itself. Because the C runtime is written in C and compiled by a C
compiler, it also depends on the compiler, forming a dependency cycle. A compiler that is able
to compile itself is called self-hosted.

The problem of compiling compilers that are implemented in the language they compile
is known as the bootstrapping problem [4]. The first challenge it presents is creating the first
executable binary of a compiler for a new language. There are various techniques to achieve
this, but they are not of concern for this thesis. The more relevant problems are how complex
systems like GNU/Linux handle compiler updates and the implications on dependency tracking.

Linux distributions that are compiled from source like Gentoo address this dependency cycle
by compiling the compiler and C runtime twice [26]. Likewise, when the GNU Compiler Col-
lection is compiled with its standard build scripts, it compiles itself three times - once with the
host compiler, then with the just-generated compiler and then with the 2nd compiler build. Ob-
viously a working compiler binary is needed to perform bootstrapping. This compiler is shipped
with a small precompiled host system. During the bootstrapping process, this host compiler is
replaced with the newly compiled compiler. The cyclic dependency between glibc and gcc is
represented in Gentoo’s packages: 11 and 12.

The main implication on dependency tracking is that dependency relationships are not guar-
anteed to be cycle-free.

11http://sources.gentoo.org/cgi-bin/viewvc.cgi/gentoo-x86/sys-libs/glibc/
glibc-2.15-r2.ebuild

12http://sources.gentoo.org/cgi-bin/viewvc.cgi/gentoo-x86/sys-devel/gcc/
gcc-4.6.3.ebuild
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CHAPTER 4
Impact Management

This chapter explores problems that occur when coordinating development work inside a team
or between separate teams as well as common solutions to these problems. This background
information provides understanding how the contributions of this thesis can be used to support
developers in their work.

4.1 Terms

This section gives a background of research literature on software development coordination,
with a focus on papers that define the problem and terms for it.

One of these papers, written by Cleidson R. de Souza et al [14], called the activities to handle
wanted and unwanted influence between developers impact management. Impact management
consists of three aspects: First, knowing your impact network, the people that are affecting
one’s work or are affected by one’s work. Second, forward impact management, making sure
others are aware of one’s changes and third, backward impact management, making sure one is
aware of others’ work. Their work concludes with an empirical study of two different software
development teams describing their impact management techniques.

Impact management becomes more difficult when the team is spread across the globe, like
in many open source projects. Halloran and Scherlis analyzed a number of open source projects
and documented their development approaches [29]. Their main goal was to find out how open
source projects coordinate, enforce quality standards, and what is necessary to have new devel-
opment practices or tools accepted by open source projects.

The contribution of this thesis can be used for all three aspects of impact management:
Notifications from dependencies to a project aid the project’s backward impact management.
Notifications from the project to its dependents help automate forward impact management.
And finally, the ability to subscribe to these updates helps clarify the impact network.
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4.2 Tool Support

This section outlines common tools that are used for development coordination.

Generic Communication Tools

The most important set of tools are those that allow basic communication: Meeting coworkers
in person, telephones, email, chat software, video telephony, etc. They provide unstructured
communication between humans.

Other software tools can send information and updates to developers by generating emails
using predefined templates. An example for this is a continuous integration server that sends an
email to the developers when a build fails. The reverse direction is also possible, but usually
more limited - e.g. a chat bot [27] that accepts commands via chat messages.

Revision Control

Revision control systems, already mentioned in section 2.4, not only provide a central storage
space to store one’s work and synchronize it with coworkers, they also provide essential func-
tionality to analyze other people’s work and parallelize development of different features.

A revision control software maintains a complete history of the development of the project.
For each modification to the project’s files it stores information about who changed the file,
when the change was made, which files were modified, as well as a message from the developer
describing the purpose of the change. Old versions can be retrieved from the repository at any
time to analyze potential regressions and changes can be reverted if necessary [34, Ch. 3].

Another central concept of modern revision control systems is that of branching and merg-
ing. A branch is a split of the development line [34, Ch. 7]. It can be used to develop a new
feature without affecting other developers, or to maintain an older version of the software, e.g.
for post-release maintenance.

To combine the development of two separate branches, a merge is used [34, Ch. 9]. A merge
unites two branches and the changes from both branches appear in the combined branch. If
conflicting changes were made during the separate development, conflict resolution is necessary.
To a certain extend conflict resolution can be automated, but in general manual intervention is
required to reconcile two conflicting changes.

Figure 4.1 shows an example of a development tree with extensive use of branches and
merges. The tree shows the development history of the Git tool, which is self-hosted and uses Git
as its revision control system. The graphical rendering is a screenshot of its built-in GUI gitk1.
Git is a distributed revision control tool, which means that users can make full copies of the entire
project history. This encourages heavy use of branches since users can make modifications in
their private trees and then send a pull request to the maintainers of the upstream tree, which
contains all changes, allows the maintainers to review the changes and merge them into the
upstream tree if they agree with the modifications.

1http://www.kernel.org/pub/software/scm/git/docs/gitk.html
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Figure 4.1: A development history with massive use of branches and merges.

Continuous Integration

Among the advantages of continuous integration listed in chapter 2 was improved team commu-
nication. Specific situations where the use of continuous integration improves team communi-
cation are [16]:

• Stupid mistakes are caught early.

If a developer accidentally commits defective code, or forgets to commit a newly added
file, the continuous integration process quickly notices the mistake and reminds the devel-
oper to correct his mistake. This avoids interrupting the work of other developers.

• Provide a reference build machine.

Having a dedicated build server makes it less likely that a single computer (e.g. a de-
veloper’s machine) becomes a “magic” system that is the only system able to build the
project. The central build server is in danger of becoming such a system, but this is un-
likely to happen if developers build and test their changes on their local systems before
committing.
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4.3 Collaboration Strategies

This section describes problems that occur in big and possibly globally distributed software
development teams and tactics used to overcome them.

Software companies can grow to sizes of hundreds or thousands of employees who may
even be distributed across the entire globe, but still attempt to work together on the same product.
Careful use of the previously described communication tools and a good team and code structure
are required to maintain a high level of productivity.

Challenges introduced by big team sizes include finding a proper separation of work, keeping
separately developed components compatible and spreading project knowledge inside the team
[46]. If, in addition, the team is geographically distributed, further issues like timezone offsets,
cultural differences, as well as slow and/or expensive communication are added [27]. Most of the
challenges in distributed development environments can be traced back to the lack of in-person
informal communication [46].

To address these challenges, organizational measures as well as tools to support distributed
teams have been proposed, implemented and analyzed.

Organizational measures aim at reducing the need for communication and improving infor-
mal communication, mutual understanding and strengthening the team. The need for commu-
nication can be reduced by splitting the development work into well-defined, isolated pieces of
work [6]. Possible examples are fixing well-understood bugs, writing documentation or porting
the application to a new platform.

Established strategies to improve informal communication include [6] regular conference
meetings and phone calls, offering employees to visit other branches of the company and week-
end team-building activities.

The tools described in the previous sections provide a formal communication framework to
uphold a certain quality of information exchange to keep the development on track.

4.4 Managing Open Source Software

This section describes how open source projects are managed on a small, per-project scale. The
specific focus is on team coordination and efforts to keep code quality high.

The central way of control over an open source project is limiting write access to the project’s
code [29]. Usually this means that only trusted developers have permissions to push their
changes to the projects revision control server. While open source licenses allow everyone to
obtain, study and modify the source code, as well as publish those changes as they see fit, the
official code remains under control of the project maintainers.

The same paper also found that open source projects rely heavily on computer-mediated
communication and tools [29]. Almost all communication takes place via mailing list, pub-
lic chatrooms and bug trackers rather than person-to-person communication. Contrary to pro-
prietary software, too much person-to-person communication can become a problem for open
source projects. The danger it poses is the creation of an exclusive circle of core developers
that make it difficult or impossible for new developers to join the project. These findings are
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mirrored by development guidelines, e.g. the Apache Foundation’s guide for new project pro-
posals [22, Sec. Known Risks].

The right to redistribute the open source software freely poses a danger to highly popular
projects that target the consumer market [5]. On occasion, modified versions of such projects
are made available on the Internet, with the malicious intent that a user downloads the modified
version instead of the original. Restricting commit access is useless against this because the
perpetrators never attempt to have their changes included. Those modifications may include ad-
ware or charging a fee for the download. Projects like Mozilla [20], Debian [48] and LibreOffice
[49] protect themselves against such tactics by registering the project’s name as a trademark and
disallowing the use of the name for modified versions.

4.5 Building GNU/Linux Distributions

GNU/Linux differs from commercially developed operating systems in the way that there is
no body exercising central control over the development of the software system. Furthermore,
GNU/Linux distributions are too large to manage them simply with the techniques from sec-
tion 4.4. This section explores how Linux distributions are built, work on system component is
shared, and how compatibility between distributions is preserved.

Eric S. Raymond has written a famous essay [43], in which he compared the development
of the Linux kernel and some other free software projects to a bazaar, and the development
of commercial software (and some free software, most notably then-current versions of gcc) to
building a cathedral. He elaborates that cathedral-style development is marked by central control
and micromanagement over the direction of the project, whereas on the bazaar no central control
exists and multiple solutions for one problem compete with each other. Yet, through mechanisms
similar to that of a free market, a certain order establishes itself and high-quality software is
written. Creators of Linux distributions select what they think are the best components to solve
given problems, and users judge their selection by picking the distribution that works best for
them. Eventually this market mechanism eliminates inferior software.

The bazaar model has not been without criticism [33] [12]. The criticism focuses on the
inhomogeneity of the GNU/Linux ecosystem and burdening the user with unnecessary decisions
and confusing differences between Linux systems. To fight incompatibility in a faster way than
just letting the market decide, various standardization organizations were formed, most notably
the Linux Standard Base2 and freedesktop.org3. Furthermore, platform independent industry
standards are used, like the C [30] and C++ [31] language standards or the OpenGL 3D API [45].

2http://refspecs.linuxbase.org/lsb.shtml
3http://www.freedesktop.org/
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CHAPTER 5
Research Issues

In distributed development environments with multiple independently developed projects, the
different projects are not sufficiently included into the testing process because the project man-
agement and testing techniques described in chapters 2-4 do not take into account the depen-
dency relations between projects.

This thesis describes a testing process that extends classic continuous integration. This pro-
cess improves testing effectiveness by extending testing to project dependencies and dependents.
This chapter describes the research issues that arise and the approaches used to answer them.

Figure 5.1 illustrates the problem space. It shows a setup with 5 engineering projects - for
simplicity reasons represented by code artifacts (CArt) - whereas CArt0 depends of CArt1 and
CArt2, and CArtM and CArtN depend on CArt0, and, implicitly, on CArt1 and CArt2. How-
ever, despite the dependency relationship between these projects, automated testing and most
of the development happens in isolation, i.e. without considering change effects on dependents
and ongoing changes to dependencies. The circled numbers describe problems that occur with
classic testing and management techniques in this setup:

1. Developers of dependencies do not know the impact of their changes on their dependents,
and might not even know that those dependents even exist. If they want to know the
impact, they have to test manually. This means high manual effort for the developers of
the dependencies, and usually the readiness to deal with dependent projects is low.

2. Communication between interdependent projects is done manually, or semi-automatic at
best. Aside of the manual effort, this further delays feedback for developers of depen-
dencies. Usually this communication consists of filing and commenting on bug reports,
writing on mailing lists or directly to developers, and sometimes automatically generated
human-readable mails when new releases are published.

3. Software is regularly updated, and developers of dependent projects want to consider new
dependency releases in the expectation that they add features or improve stability. How-
ever, they have to test new versions of their dependencies manually. As a result, they do
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Figure 5.1: Limitations of classic testing and management techniques in an environment with
multiple independently developed projects

not find regressions in the dependencies that affect their code until they decide to update,
usually after a new version of the dependency has been released.

4. Dependencies may depend on other dependencies. Some software faults are caused by
defects in transitive dependencies (for example [18], [40]). Since an intermediate project
is involved, debugging those kinds of dependencies and working with their developers
to get them fixed are difficult and time consuming. Due to the aforementioned manual
update and communication process those defects are discovered late.

The CCIP described in this thesis aims to break up the isolation by actively taking into
account the complexity of dependencies between code artifacts and automating update propa-
gation, testing and feedback reporting across project boundaries. The main stakeholders are the
developers, who benefit from higher testing effectiveness, as the concept provides automated
tool support and reduces manual work (e.g. communication with project dependencies and de-
pendents).

28



5.1 Research Issues

The key research issue is to evaluate whether automated update notifications, testing and feed-
back processing provide an advantage over the manual process (RI-1). Another issue is filtering
feedback to eliminate feedback with poor quality (RI-2). Finally, further issues need to be ad-
dressed that arise in large scale deployments (RI-3).

Costs and Benefits of the Automation

The first research issue is about evaluating the advantages and disadvantages of the new process
in comparison to the currently established ones:

RI-1.1 How much effort is required to implement the CCIP in existing continuous integration
implementations?

The CCIP is intended to be integrated in CI servers. While the communication proto-
col is implementation independent, the CCIP workflow has to be integrated in each CI
implementation separately.

RI-1.2 How much initial effort is required to deploy the CCIP initially in existing projects and
in case of dependency reconfiguration?

If a project’s CI server supports the CCIP, the project setup may have to be changed to
make use of it. When the project makes use of a different dependency, this setup may
need adjustments. What is the setup effort, if any, is required depending on metrics like
project size, number of dependencies, etc.

RI-1.3 How are costs and benefits distributed between dependencies and dependents?

Both projects in a dependency relation have to adopt the CCIP in their project setups to
make use of it. The setup costs, testing resource cost and benefits may be distributed
unevenly between the dependency and the dependent.

RI-1.4 How can the benefits of the CCIP be measured to justify the increased costs?

Objective metrics are needed to measure the advantages, or lack thereof, the CCIP pro-
vides to a projects development process.

Feedback Quality

Feedback from dependent projects is a cornerstone of the Continuous Change Impact Analysis
Process. The second research issue deals with requirements the dependent projects and their
feedbacks have to meet to provide useful, and how low quality feedback can be dealt with.

RI-2.1 How can developers deal with test results from other projects?

Developers of dependencies most likely do not know the code of their dependent projects
well enough to fully understand test failures reported to them. The test failure may be a
bug in the dependent project, and analysis of the failure report may turn out to be a waste
of time. How can developers use incoming feedback efficiently?
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RI-2.2 Are there guidelines that dependent projects can follow to ensure maximum usefulness
of their feedback for dependencies?

Scalability Concerns

The examples in this section consist of a small number of projects. When using the CCIP on a
larger scale additional issues have to be dealt with:

RI-3.1 How can large scale deployments be handled?

Projects at the top of the dependency tree will receive many update notifications, which
might trigger more test runs than the continuous integration server can handle. Which
strategies can be used to handle or reduce heavy load?

RI-3.2 How relevant are cascading notifications?

Cascading updates (changes to a dependency of a dependency) likely cause a lot of CI
server load, but are they likely to find regressions?

5.2 Use Cases

Figure 5.2 outlines the use cases for developers using CCIP:

1. Developers of dependent projects receive automatic notifications of dependency updates
together with testing results pointing out potential problems.

These passive notifications improve dependency management not only by pointing out
available dependency updates, but also by providing automated integration results.

2. Developers are automatically informed about the impact of their changes in dependent
projects.

Whenever a developer commits changes to his project’s source code repository, the CCIP
provides automatic test results of his changes in dependent projects. This increases the
developer’s confidence in his changes or points out potential problems early.

3. The system provides a way to expand test coverage in dependencies with little or no effort.

Developers can use the tests of their dependent projects to expand test coverage. This
is especially helpful in complex projects where complete test coverage is very hard to
achieve with conventional means.

5.3 Evaluation

The CCIP concept and research issues will be evaluated by writing a prototype implementation1

and using this implementation to monitor the development of selected open source projects.
Literature research and investigating the currently established manual processes will provide the
basic design of the prototype. The results of the evaluation can be found in chapter 7.

1https://github.com/stefand/opencit/tree/da-sdo
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Figure 5.2: Use cases of CCIP for developers

Figure 5.3 is a high-level overview of the Continuous Change Integration Process and the
additions it introduces:

1. CArt1 notifies its dependent project CArt0 about a new build.

2. CArt0 imports the new CArt1 build into its build system and runs its tests over the merged
system.

3. CArt0 reports the test results to its dependency CArt1.

4. If CArt0’s tests executed successfully, it announces the newly available build to its depen-
dents CArtN and CArtM.

5. CArtN and CArtM import the new CArt0 build and run their tests.

6. CArtN and CArtM report the test results to CArt0.

7. CArt0 forwards the feedback to the originator of the change, in this case CArt1. This way
a cascading update and feedback mechanism is realized.

31



develop

CArt1

Developers

develop

CArt2
Developers

CArt0

CArtN
Developers

CArtM
Developers

1

P
ro

ject 
D

ep
en

d
en

cies
P

ro
ject 

D
ep

en
d

en
ts

P
ro

ject

2

1

3

4
5 5

6

7

Figure 5.3: Solution overview

Prototype Implementation

To evaluate the concept, a prototype implementation of the CCIP will be written based on the
OpenCIT2 CI server. OpenCIT was chosen because of its small size, flexibility and adaptabil-
ity. It is free of features that are not relevant to the CCIP and would complicate a prototype
implementation. This prototype will be used to monitor selected open source projects and their
dependencies over a prolonged period of time.

Testing the implementation with open source projects

Open Source software provides a good testbed for the CCIP concept and prototype implementa-
tion because the revision control systems are publicly available and changes are generally pub-
lished as soon as they are committed by the developers. It is easily possible to set up a continuous
integration infrastructure for a private evaluation without interfering with the development of the
project.

2http://opencit.openengsb.org
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Thus the prototype implementation of the CCIP will be set up to monitor a set of projects
from different ecosystems. One of these projects is OpenCIT itself together with the Ope-
nEngSB framework3 it depends on and major Java-based technologies like Apache Karaf4,
JBoss Drools5, Apache Wicket6 and Google Guava7. Aside from the obvious goal of self-
hosting the OpenCIT build server these projects actively developed and widely accepted in the
software engineering industry.

The other set of projects is Wine8 together with the GNU/Linux graphics stack (Mesa9, the
X.org X server10 and GPU drivers). These projects were chosen because Mesa implements
OpenGL11, a complex yet stable realtime 3D graphics API, and runs on a wide range of plat-
forms, which makes testing with traditional approaches challenging. Wine has a big number of
3D rendering tests which have been used to find and isolate many OpenGL implementation bugs
in the past. To extend testing even more, free 3D game engines like Ogre12 and Irrlicht13 will be
run on top of Wine.

Literature Research

A thorough literature research will be conducted to identify related work and other attempts at
achieving similar goals. A study of currently established continuous integration and dependency
management processes will provide a starting point for the prototype implementation and its
communication protocols.

3http://www.openengsb.org
4http://karaf.apache.org
5http://www.jboss.org/drools
6http://wicket.apache.org
7http://code.google.com/p/guava-libraries
8http://www.winehq.org
9http://www.mesa3d.org

10http://www.x.org
11http://www.opengl.org
12http://www.ogre3d.org
13http://irrlicht.sourceforge.net
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CHAPTER 6
Proposed Solution Approach

This section describes the changes CCIP makes to the continuous integration workflow, the
artifact transfer and merging steps and the prototype implementation used for the evaluation.

6.1 The Continuous Change Impact Analysis Process Workflow

CCIP makes a number of modifications to the regular CI workflow (see section 2.5). The core
modifications are the addition of a dependency merge step and generation of update notifica-
tions. Furthermore, CCIP introduces feedback messages, but they are handled outside the core
workflow.

Figure 6.1 outlines the CCIP workflow. At the core of the CCIP is a publish-subscribe
message system to send update notifications and feedbacks. It introduces the following changes
to the standard CI workflow in circled numbers:

1. Merge: In addition to changes to the project’s own source code, the CCIP workflow can
be triggered by dependency update notifications. The dependencies have to be integrated
into the build environment. For more details please refer to section 6.3. The CI server
has to keep track of the origin of the change to be able to send the feedback to the correct
destination.

2. Build Database: In order to handle feedback correctly, the CI server has to store informa-
tion about old builds, most importantly which change triggered the build. Most CI servers
already do this for other reasons, like allowing the user to look up the build history.

3. Extended notification: On successful builds a notification message is sent via the update
notification topic. Other CI servers can subscribe to this topic to receive them. If the
build fails, no public notification is sent, but the regular project-internal build report is
still generated. See section 6.2 for details about these messages.
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4. Feedback handling: If a build was triggered by an update notification, the builds result
(positive or negative) is sent to the feedback queue of the CI server that sent the update
notification. For details see section 6.2.

To initiate the process, the CI server of the dependent code artifact has to make contact to
the CI servers of its dependencies. Ideally, the necessary information can be extracted from the
existing build system configuration if the build system supports dependency management and
automatic dependency downloading. Otherwise the administrator of the CI server has to provide
the necessary information manually.

The lines at the bottom and top of figure 6.1 symbolize the project boundaries to dependen-
cies and dependents. As the process is cascading, update notifications can be sent to dependents
when a dependency changes. Feedback from dependents is forwarded to dependencies if it con-
cerns an update originating from that dependency. One change can result in multiple update
notifications if there is more than one registered dependent and one update notification can lead
to more than one feedback message. Sections 5.1 and 8.2 discuss scalability concerns related to
this cascading operation.

Execution Example

This subsection provides an execution example to illustrate the operation.
To begin the process, a developer commits a change to CArt1. This starts the first iteration,

inside CArt1’s CI server:

1. Merge: No special steps are needed because no dependency was changed. Different ac-
tions are possible, see section 6.3.

2. Build, test: The regular build process is executed and passes successfully.

3. Deploy: CArt1’s CI server uploads the artifacts to a public location.

4. Store result: CArt1’s CI server generates a unique identifier for this build and stores it
with the build parameters.

5. Update notification: An update notification is published in the update notification topic.

6. Developer report: A build report may be sent to the developer as a regular CI server would
do.

The update notification triggers the second iteration, which runs inside CArt0’s CI server:

1. Merge: The CI server has to fetch the new build of CArt1 from the location provided in
the update notification and instruct the build system to use it.

2. Build, test, deploy: They are executed in the same way as in the first iteration.

3. Store result: The server has to store which dependency triggered the new build and the
unique build ID.
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4. Update notification, Developer report: Same as in the first iteration.

5. Feedback report: A feedback report is generated and sent to CArt1’s CI server.

Let us assume that a third code artifact CArtM exists, which imports CArt0. The update
notification from CArt0’s CI server triggers a third execution iteration, which is assumed to fail.
In this case, the merge, build, test and feedback steps are executed in the same way as in the
second iteration, and the deploy and update notification steps are skipped.

When CArt0’s CI server receives the feedback message from CArtM’s server, it proceeds to
process it:

1. Database lookup: The first step is to look up the build that the message refers to.

2. Developer notification: A notification email with the build and test reports is sent to
CArt0’s developers.

3. Cascading feedback: Because the build the feedback refers to was triggered by an update
of CArt1, a feedback message is sent to Cart1’s CI server.

CArt1’s server handles the feedback in the same way, except that the build of CArt1 was
triggered by a change to CArt1, so no further feedback messages have to be generated. At this
point, the CCIP execution finishes.

6.2 Communication Protocol

As described before the CCIP relies on communicating CI servers. Therefore, it is necessary to
clarify the type and amount of information exchanged between the various servers. An update
notification needs at least the following information:

• A unique build ID.

This is necessary to relate feedback to builds.

• The artifact name.

The CI servers receiving the update notifications need this information to know which
dependency has been changed and which projects have to be rebuilt. An alternative way
is to have one update topic per project.

• Information where to obtain the artifact.

This information depends on the build system and cannot be generalized. Considerations
regarding artifact transfer and merging are described in section 6.3.

• How to report feedback.

A feedback message from project dependents contains:

• The build ID to which this feedback is a response to.
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• The build result: Build failure, test failure, success or failure in a dependent project.

• Debugging information like logging output in the case of a failed build.

• Contact information of the feedback sender.

Obviously it is up to the receiver of an update notification which information he sends or if
he sends feedback at all. Privacy may be a concern here as test names or test output may reveal
confidential information.

6.3 Artifact Transfer and Merging

How artifacts are transferred and integrated depends on the kind of the artifact and the build
system the project uses. Some build systems like Apache Maven download dependencies au-
tomatically. In this case the only necessary information is the new version. To merge the new
version into the dependent project, the merge step merely has to adjust the version information in
the Maven configuration files. On the other hand, a dependency like an operating system kernel
or device driver may make a reboot of the test machine necessary.

As a consequence, it is not possible to define the layout of the download information and
the merge step in a way that will work for every software artifact. To keep the setup effort low
for average projects it may be conceivable to provide templates for popular build systems and
handle the remaining cases with user-written scripts.

Handling of Multiple Dependencies

There are multiple dependency configuration options if a project has multiple dependencies.
For example, consider a setup similar to figure 5.3, where CArt0 has two dependencies CArt1
and CArt2. Now the CCIP server receives an update notification from CArt1, followed by an
independent update notification from CArt2. When building CArt0 in response to the update of
CArt2, it can revert the version of CArt1 back to the version referenced in CArt0’s source code or
keep using the version from the most recent update notification. The prototype implementation
uses the first option.

Ideally, a CCIP implementation would support both ways and allows the user to choose the
desired behavior. If a user requests a manual rebuild, all available dependency versions should
be listed, with the ability to select an arbitrary combination for the build. In either case, the
versions used for the build must be recorded for reproducibility.

6.4 Prototype Implementation

The prototype implementation will be used to evaluate CCIP (Chapter 7. This section describes
how the concept from section 6.1 is implemented in the prototype.
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The prototype is based on the OpenCIT1 CI server introduced in section 2.5. This build
server was chosen because of its small size, which makes it easy to modify, and the strength and
flexibility of the OpenEngSB2 middleware it is built on.

As described in section 2.5, OpenCIT already supported the Git revision control system and
Maven build system. An additional connector calling arbitrary commands was written to support
other build systems via custom scripts.

Dependency domain and connectors

The first substantial modification to OpenCIT itself was the addition of the merge step. To
abstract different build systems, a new dependency domain was introduced. The domain’s Java
interface is given in listing 6.1:

1 p u b l i c i n t e r f a c e DependencyDomain ex tends Domain {
2 @Raises ( { MergeSuccessEven t . c l a s s , M e r g e F a i l E v e n t . c l a s s } )
3 void merge ( OpenEngSBFileModel pa th ,
4 S t r i n g dependencyLoca t i on , long p r o c e s s I d ) ;
5 }

Listing 6.1: Dependency Domain Interface

The domain has only one method, merge(), which accepts two main parameters: The path
to the project’s source code and a connector-specific string identifying the dependency location.
The processId parameter is used for interacting with the workflow engine. Following the general
OpenEngSB convention [54, Ch. III], the operation is asynchronous and raises a MergeSucces-
sEvent after successful completion, or a MergeFailEvent in case of an error.

The merge domain is invoked by the OpenCIT CI workflow (see figure 2.3) after checking
out the source and before invoking the build domain. See figure 6.2 for the modified workflow.

Two dependency connectors were written: MavenDep and DummyDep. MavenDep is used
for Maven projects. Its dependencyLocation parameter is the new version of the dependency.
A connector instance parameter set by the user specifies the path to the pom.xml file and the
attribute which defines the version of the dependency that should be used. The merge() method
replaces the existing version string with the new version string. Maven is responsible for the
actual artifact transfer.

The DummyDep connector is used for non-Maven projects. Its merge() method is a no-op
method that simply raises a MergeSuccessEvent. The artifact is installed into a common file
location by the deploy script of the dependency and the dependent’s build scripts are instructed
to source the artifact from this location. This works on one system only, unless the common
location is on a shared file system, but it is a simple and working solution for the evaluation.

1http://www.openengsb.org/
2http://opencit.openengsb.org/
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Update Notification

The notification and feedback mechanism is implemented with the Java Message Service (JMS).
OpenEngSB provides the Apache ActiveMQ3 JMS provider. OpenCIT spawns an ActiveMQ
server on startup to accept subscriptions from other OpenCIT instances. For each configured
project, a topic is created.

The update notifications are JMS ObjectMessages containing the object from listing 9.2:

1 p u b l i c c l a s s U p d a t e N o t i f i c a t i o n implements S e r i a l i z a b l e {
2 p r i v a t e UUID b u i l d I d ;
3 p r i v a t e S t r i n g a r t i f a c t L o c a t i o n ;
4 p r i v a t e S t r i n g feedbackQueue ;
5 p r i v a t e S t r i n g dependencyName ;
6

7 / / G e t t e r s and s e t t e r s removed
8 }

Listing 6.2: Update Notification Contents

Getters and setters exist in the class definition, but have been removed to keep the listing
short. To generate the notifications, an additional step was added to the workflow after the
successful execution of the deploy step. The string artifactLocation is generated by the deploy
connector and later passed to the dependency connector.

Feedback Handling

Feedback is accepted by a JMS queue. There is one global queue for each server instance. The
queues name is communicated to other servers in the update notifications. Feedback messages
contain the object defined in listing 18.3:

1 p u b l i c c l a s s Bui ldFeedback implements S e r i a l i z a b l e {
2 p u b l i c enum B u i l d R e s u l t {
3 SUCCESS ,
4 MERGEFAIL,
5 BUILDFAIL ,
6 TESTFAIL ,
7 DEPLOYFAIL ,
8 NESTEDFAIL / / A d e p e n d e n t p r o j e c t r e p o r t e d f a i l u r e
9 } ;

10

11 p r i v a t e UUID b u i l d I d ;
12 p r i v a t e B u i l d R e s u l t r e s u l t ;
13 p r i v a t e Bui ldFeedback n e s t e d F e e d b a c k ;
14 p r i v a t e S t r i n g i n f o ;
15 p r i v a t e S t r i n g c o n t a c t I n f o ;

3http://activemq.apache.org/
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16 p r i v a t e S t r i n g pro jec tName ;
17 }

Listing 6.3: Feedback Contents

BuildId contains the buildId from the update notification. Result contains the build result.
NestedFeedback contains the original feedback message if the feedback is forwarded from a
grandchild and is null otherwise. Info and contactInfo contain human-readable information
about the failure and contact information. OpenCIT currently uses the server administrator’s
email address as contact information.

Workflow

Figure 6.2: CCIP workflow implemented in JBoss Drools.

Figure 6.2 shows the implementation of the CCIP workflow in JBoss Drools. The main
differences from the original CI workflow (Figure 2.4), marked in red, are:

1. Keeping track of the reason for the build:

The reason for the build is passed to the workflow. The BuildReason object is later added
to notifications sent to developers and stored in the build database. Possible reasons for
triggering builds are updates to the project’s own code, updates to a dependency or a
manual rebuild requested by the user. The commit ID or dependency build ID are stored
inside the BuildReason object.
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2. Merge step:

If a rebuild is triggered by a dependency update, the dependency connector is invoked to
perform a merge.

3. Build database:

Successful builds are recorded in the build database.

4. Update Notification

5. Feedback:

If the rebuild was triggered by a dependency update, a feedback notification is sent re-
gardless of the build outcome.

Like in the original CI workflow, error handling is accomplished by accepting the failure
events that are defined in the tool domains used by the workflow. The gateway nodes mergeSuc-
cess, buildSuccess, testSuccess and deploySuccess are used to react to errors and create appro-
priate feedback messages.
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CHAPTER 7
Evaluation

This chapter describes the evaluation of CCIP by presenting selected projects, their dependency
relationships, the test setup and test results.

7.1 Evaluated Projects

To evaluate CCIP, 8 projects have been selected. These projects form two separate dependency
trees. The prototype implementation has been used to monitor their development. Reported
test failures were recorded and investigated. This section describes the tested projects, their
dependency relationships and the quality assurance measures used by those projects.

The first dependency tree consists of OpenCIT itself, and the OpenEngSB middleware it
is based on. OpenEngSB itself depends on Apache Karaf1, which in turn uses Apache Aries2

and JLine 23. These projects were selected because they are direct and indirect dependencies of
OpenCIT. Figure 7.1 shows the dependency tree.

The second set of projects consists of projects forming the 3D rendering stack of the GNU/Linux
operating system. The bottom project is Mesa 3D4. Two dependents of Mesa are tested, the Ir-
rlicht Engine5, and Wine6, a reimplementation of the Microsoft Windows API. On top of Wine,
Ogre 3D7, another open source 3D engine, is tested. Figure 7.2 illustrates the dependency tree.
These projects were selected because the author’s experience with Wine development and deal-
ing with regressions introduced by graphics driver updates was a major motivation for this the
research topic.

1http://karaf.apache.org/
2http://aries.apache.org/
3https://github.com/jline/jline2
4http://www.mesa3d.org/
5http://irrlicht.sourceforge.net/
6http://www.winehq.org/
7http://www.ogre3d.org/
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Figure 7.1: OpenCIT, OpenEngSB and their dependency tree

Mesa 3D

Mesa 3D is an open source implementation of the OpenGL [45] real-time 3D rendering API.
Mesa provides software rendering8 as well as hardware acceleration for popular GPUs from
NVidia9, AMD10, Intel11 and other vendors.

Mesa is part of the larger Linux graphics stack. Other components of this graphics stack are:

• Direct Rendering Manager:

The direct rendering manager is part of the Linux kernel and provides subroutines and
drivers necessary to initialize the graphics hardware, detect attached display devices and
configure them. It also provides video memory management.

• The X.Org X11 server:

The X.Org server is a display server that implements the X11 display protocol [23]. It
communicates with applications that wish to show a window on the screen and manages
input devices like mice, keyboards and joysticks.

• The DDX drivers:

The DDX drivers are hardware-specific modules that allow the X.Org server to talk to
the graphics hardware and the modesetting components in the kernel. The DDX drivers

8http://www.mesa3d.org/llvmpipe.html
9http://nouveau.freedesktop.org/wiki/

10http://dri.freedesktop.org/wiki/Radeon
11http://dri.freedesktop.org/wiki/Intel

46

http://www.mesa3d.org/llvmpipe.html
http://nouveau.freedesktop.org/wiki/
http://dri.freedesktop.org/wiki/Radeon
http://dri.freedesktop.org/wiki/Intel


Mesa 3D

Wine
Irrlicht

(Linux Build)

Ogre3D
(Win32 Build)

Figure 7.2: OpenCIT, OpenEngSB and their dependency tree

are fairly small since most of their functionality is provided by the kernel. Their main
responsibility is providing acceleration for 2D operations.

No formal documentation other than the source code exists that describes these components,
but a blog post by Jasper St. Pierre12 gives a good overview over the above and other compo-
nents.

Mesa only provides 3D rendering support. It is a good candidate for testing because it
can be replaced without any special system permissions or setup steps. To replace the Mesa
version provided by the system, it is enough to point the application using the OpenGL API to a
different libGL.so implementation by adjusting the environment variable LD_LIBRARY_PATH.
Unlike Mesa, the X.Org server and DDX drivers requires special permissions to initialize the
hardware, so they can only be modified and restarted by the root user. To replace the modesetting
infrastructure the kernel has to be replaced and the system rebooted. Since a reboot terminates
every application on the test system, including the CI server, those components are very difficult
to test by continuous integration.

Mesa has an extensive testsuite, the Piglit OpenGL driver testing framework13. However,
Piglit is not easy to execute. No rendering backend passes all tests14. As a result, developers
have to remember which tests used to pass on their own their system and compare the results
after their changes to the results before. Because of this, and the high diversity of platforms
supported by Mesa, no continuous integration system is used by Mesa. Instead, Mesa relies on

12http://blog.mecheye.net/2012/06/the-linux-graphics-stack/
13http://people.freedesktop.org/~nh/piglit
14http://people.freedesktop.org/~nh/piglit/results/all/problems.html
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a large number of developers and users who follow the day-to-day development to provide basic
quality assurance.

Irrlicht

Irrlicht is an open source game engine. It provides a rich set of features15, ranging from setting
up 2D and 3D rendering to character animations, particle effects, resource management and
many more. Irrlicht is in use by a number of open source and proprietary games16. As a platform
independent engine, it runs on Microsoft Windows, MacOS, Linux and other systems. It can use
OpenGL as well as Microsoft’s Direct 3D as rendering backends. Figure 7.3 shows one of
Irrlicht’s tech-demos.

Figure 7.3: Irrlicht tessellation tech-demo. Source: Irrlicht website17

Irrlicht has a set of regression tests that are provided to developers for pre-commit testing18.
The use of a continuous integration server is not documented.

15http://irrlicht.sourceforge.net/features/
16http://irrlicht.sourceforge.net/projects
17http://sourceforge.net/apps/gallery/irrlicht/index.php?g2_itemId=1384
18http://irrlicht.svn.sourceforge.net/viewvc/irrlicht/trunk/tests/

tests-readme.txt
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For the evaluation, Irrlicht and its tests were compiled to Linux binaries and the OpenGL
rendering backend was used. Irrlicht uses SVN to store the sourcecode. Because OpenCIT does
not have a working SVN backend, a static revision of Irrlicht was used for the evaluation. This
is an acceptable compromise because Irrlicht is a leaf of the dependency tree and regressions
caused by code changes to leaf projects are not relevant to the evaluation of CCIP.

Wine

The goal of Wine is to execute applications written for Microsoft Windows on GNU/Linux,
Apple’s OS X and other Unix-based systems. Therefore, it provides a reimplementation of the
APIs provided by Windows. Among the interfaces implemented by Wine are DirectDraw and
Direct3D, which are 2D and 3D programming interfaces used by the majority of Windows-based
games. Figure 7.4 shows a Linux desktop with two Windows applications and one of Wine’s
builtin tools running.

Figure 7.4: MS Visio, Trackmania Nations and Wine’s registry editor on a GNU/Linux desktop

Wine contains a big amount of conformance tests19 for all components. These tests not only
serve as regression tests, but also document the behavior of Windows for technical and legal

19http://wiki.winehq.org/ConformanceTests
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reasons. All conformance tests have to pass on Windows.
Wine uses continuous integration, but with a few modifications. Instead of using a continu-

ous integration server, Wine employs a management model where only one developer (currently
Alexandre Julliard) has write access to the public repository. As part of the commit process,
patches have to pass the tests on his test systems to be accepted20.

Additionally, Wine uses a CI-like server infrastructure called Wine Test Bot21 to test a subset
of patches, namely those that modify tests, to verify that new or modified tests execute correctly
on different versions of Windows.

The Testbot does not wait for patches to be applied to the project’s Git repository. Instead
it tests new patches as soon as they are submitted to the patch submission mailing list. Further-
more, it allows developers to upload patches for testing manually. The main intention of the
Testbot is to make it easier for developers to test on the full range of Windows versions, starting
from Windows NT 4.0 up to Windows 7. It also runs the tests as 32 bit and 64 bit executables,
and as 32 bit executables on 64 bit Windows.

Wine is currently working22 on extending its Testbot to pretest all patches and include testing
on GNU/Linux, OS X and other target platforms. At the time of the writing of this thesis, this
work was in progress and not yet used for development.

Ogre3D

Ogre3D is a game engine similar to Irrlicht. Like its competitor, it provides23 a comprehen-
sive framework for 3D rendering, including multiple rendering backends, material, geometry
and animation management, as well as helper functions for managing game data in a platform
independent way. Figure 7.5 shows a screenshot of one of Ogre’s example programs.

Ogre contains a number of tests that are used in a continuous integration setup24. The tests
render a number of simple and complex scenes to detect regressions.

One aspect of Ogre’s tests worth mentioning is that the tests do not know if the rendering
output is correct or not. Instead, it is necessary to generate one reference rendering for each
test. When the tests are run, their output is compared to this reference rendering. Any difference
(with some wiggle room for precision issues) is interpreted as a test failure.

Because neither OpenGL [45][App. A] nor Direct3D require pixel-exact rendering, the refer-
ence images have to be generated by the system under test. To make sure this the initial rendering
is correct, the reference images were manually compared to images generated on Windows.

JLine 2

JLine is a small (about 8000 lines of code) Java library for handling command line input. It
allows Java programs to provide usability features like retrieving previously entered commands,
editing commands and tab completion.

20http://wiki.winehq.org/SubmittingPatches
21https://testbot.winehq.org/
22http://wiki.winehq.org/BuildBot
23http://www.ogre3d.org/about/features
24http://www.ogre3d.org/tikiwiki/Visual+Unit+Testing+Framework
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Figure 7.5: Ogre water rendering sample

JLine was included in the evaluation because Apache Karaf imported the current develop-
ment snapshot. This required building JLine locally rather than downloading a binary version
from the public Maven repository. It was also an easy opportunity to add another project to the
evaluation set.

Apache Karaf

Apache Karaf is an OSGi [2] runtime implementation. Karaf bundles Apache Felix, an OSGi
container, and Apache Aries, which implements core OSGi services and libraries, into a con-
venient to use distribution. In addition to the bundled components, it provides convenience
functions like a more comfortable administration shell (compared to Felix) and branding utili-
ties.

Figure 7.6: Karaf component overview [21]
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Figure 7.6 shows the components forming Karaf. The OSGi box (the container) is pro-
vided by Apache Felix, although it can be replaced by other OSGi containers. The Blueprint
implementation is provided by Apache Aries. The rest of the components in this figure are
implemented in Karaf itself.

The Karaf source code contains unit and integration tests, which are executed by default
when building Karaf with Maven. The Karaf project uses the Jenkins CI server to monitor the
development. The build reports are publicly available at https://builds.apache.org/
job/Karaf/.

Unfortunately, the Karaf tests do not pass successfully if a separate instance of Karaf is
running. Since the prototype build server uses Karaf, the tests had to be skipped. Build errors
introduced by changes to Karaf or its dependencies were still detected.

Apache Aries

Apache Aries implements OSGi services, libraries and the Blueprint dependency injection con-
tainer. It is bundled by Apache Karaf to form a complete OSGi runtime implementation. Aries
was easy to include in the evaluation because the evaluated Karaf versions import the develop-
ment snapshot of Aries.

The Aries project uses continuous integration. The build results can be found at https://
builds.apache.org//job/Aries/. Aries’ tests are executed during the build process
by default and worked correctly when run by the prototype CCIP implementation.

Open Engineering Service Bus

The Open Engineering Service Bus (OpenEngSB) describes itself as an easy-to-use and easy-to-
adapt platform for tool integration25. Its core is a middleware framework that provides services
commonly used in enterprise software like workflows and persistence.

The unique feature of the OpenEngSB are tool domains and connectors. A tool domain
defines an abstract interface for a certain family of tools, for example an interface for notification
tools. Tool-specific connectors implement this interface, for example notification connectors for
emails, IRC, Facebook26 or Twitter27. A business logic can be implemented as a set of workflows
that react to events generated by connectors and invoke connectors to perform actions. The
workflows use the interface provided by the domains and are independent of the actual connector
implementation.

OpenCIT

The build server the prototype implementation is built on was included in the evaluation. See
section 6.4 for more details.

OpenCIT contains a small number of unit tests that verify the functionality of its compo-
nents. The main contribution of these tests is to check that the Drools workflow that imple-

25http://www.openengsb.org
26https://www.facebook.com
27http://www.twitter.com
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ments the CI process deploys and runs correctly and that the scheduling service starts builds.
OpenCIT’s tests are integrated into its Maven-based build system.

7.2 Evaluation Setup

This section describes the hardware and software environment in which the evaluation was con-
ducted.

Hardware

The test system was a PC system with an Intel R© Core i7 R© CPU, an AMD R© Radeon R© HD 5770
GPU and 8 GB of memory. All components were consumer-grade hardware. Memtest86+28 was
used to perform a basic reliability test of the core system components. The hardware was in use
as a development and performance test machine since March 2010 and has performed reliably
since then.

The Radeon HD 5770 GPU was deliberately chosen because Mesa’s r600g driver, which is
used for this hardware, was known to successfully pass the Wine tests. No special criteria were
used to select the other hardware, other than the fact that they provided adequate performance
and were available for testing.

Software

The software was a 64 bit installation of Gentoo Linux, the initial versions of software relevant
to the test were: Linux 3.2.12-gentoo (kernel), IcedTea6 1.11.1 (Java SDK), Apache Maven
3.0.4, X.Org X Server 1.11.4, libdrm 2.4.34, LLVM 2.9, xf86-video-ati 6.14.3.

During the evaluation, software updates were installed as they were released by the Gentoo
developers. This was necessary because some Mesa changes required updates to the kernel and
libdrm. The kernel was upgraded to version 3.4 and eventually version 3.5. The X.Org server
was upgraded to version 1.13.0, LLVM to 3.1 and libdrm to 2.4.40.

To simplify the evaluation, only one OpenCIT instance was used, and all tested projects were
handled by it. The build server ran in an unprivileged user account. Bash scripts were used to
invoke the build and tests systems of Mesa, Wine, Irrlicht and Ogre. OpenCIT generated one
email report for every build and feedback messages. A dedicated email account was created to
receive and archive these mails.

Regression Analysis

Once a regression was reported, a manual analysis was performed to classify the regression and
find out more details. This analysis included:

• Attempt to reproduce the failure.

• Isolate the change causing the regression with the help of git-bisect.
28http://www.memtest.org/
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• A quick read of the localized change to assess the nature of the failure.

• Scan the project’s mailing lists and bug trackers for reports indicating the same problem.

• Once the regression was fixed, use git-bisect again to isolate the change fixing it.

7.3 Evaluation Results

This section describes the results of the evaluation. It lists the tested range of commits and all
reported regressions. Finally, it gives a closer description of imported regressions and looks at
how CCIP performed for each project.

Raw Data

Table 7.1 lists the commit ranges tested for each project, the number of commits, the number of
regressions caused by the project and the number of regressions found by the project.

Project Start End No. Commits Bugs in Bugs Found Ratio
Mesa 50b91aa3 1d0c6211 5362 16 10 0.30%
Wine 7123e441 003622c0 3054 0 8 0.00%
Irrlicht r4233 r4233 1 0 2 -
Ogre 3D 6e912506 6e912506 1 0 0 -
JLine 2 7f0091fc d7c9a348 9 0 0 0.00%
Aries 8186fe5b 5b9ff639 357 5 6 1.40%
Karaf 8141000e 64cbd994 283 2 1 0.71%
OpenEngSB 5eff4bf1 28d2f611 485 1 4 0.21%
Host system 3 0 -

Table 7.1: Commit ranges tested and regressions found

Start states the first tested commit, end the last. No. Commits gives the number of commits
that were tested. Bugs in is the number of regressions caused by the project. Bugs found is the
number of regressions found by the project. Ratio is Bugs in divided by No. Commits.

Note that some regressions were reported by more than one project, so the sum of the bugs
found column is larger than the sum of the bugs in column. False positives are not counted in
this table. Table 7.1 does not count false positives, but it does count random bugs if they could
be attributed to a project and detected problems in the host system.

Figure 7.7 shows the number of regressions found for each project, and where they were
located. The number in the ellipse shows the number if build or test errors discovered in the same
project that caused them. An outgoing arrow symbolizes regressions found by the project where
the arrow originates that were caused by the project the arrow points at. Transitive dependencies
with a regression discovery count of 0 are excluded from the figure. The Host project is a pseudo
project symbolizing the host system.

Table 7.2 lists the regressions reported by CCIP. The table contains the following informa-
tion:
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01
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Figure 7.7: Regressions found

• Id: Gives each line a unique identifier.

This identifier is referenced in the later subsections describing the results in more detail.

• Buggy Proj.: The project which contains the regression.

• Detecting Proj.: The project which detected the regression. Can be the same as the buggy
project.

• Class.: Classifies the regression as good, neutral or bad for the merits of CCIP. See below
for a closer description.

• Detect Commit: The first 4 bytes of the SHA1 checksum of the commit where the regres-
sion was detected.

• Detect Time: The time when the regression report was generated.

• Causing Commit: The commit which introduced the regression.

• Cause Time: The time when the commit was pushed to the public repository.
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This time states the git committer time, not the author time. The author time states when
the commit was written, which may be well before it was pushed to the repository.

• Fix Commit: The commit which fixed the regression.

• Fix Time: The committer time of the fix commit.

• Discovery Time: The time when the regression was discovered by or reported to the de-
velopers.

This can be a bug report that was filed, a mail sent to the mailing list or a message on the
project’s IRC channel. Sometimes a bug report is stated in the fixing commit, other reports
were found by searching the mailing list archives and bug trackers. Not all regressions had
such a record.

• Description: A short description of the regression.

A regression is classified as good if it is a valid regression that has been discovered by CCIP,
but would have remained hidden with classic CI. This applies to all valid regressions where the
detecting project differs from the buggy project.

A regression is classified as neutral if it is a valid regression that was discovered by normal
CI operation. This applies to regressions where the detecting project is the project that contains
the bug.

A regression is classified as bad if it is a false positive or a random, unreproducible issue.
The consideration behind this is that false positive reports waste the dependency’s developer’s
time, and random issues are likely to reproduce erroneous reports, even if they are valid bugs.

Lines where the buggy project is host are failures due to bugs in the host system, or caused
by mistakes during maintenance of the host system. Such lines are classified as bad. Eliminated
from the table are errors generated during the initial setup. The consideration behind this is that
a sensible administrator would test his setup before taking reporting to dependencies live.

The timezone of the times in the table is UTC+0.
If a field is not relevant to the regression (e.g. a fix for a false positive) contains x. If some

information could not be found, the table field contains a question mark. See the following
subsections for a more detailed elaboration. A regression with a found date of self-reported was
reported to the project developers by the author of this thesis. This was done if a fix for the bug
was required to proceed with the evaluation. A discovery date of history denotes bugs that were
discovered during the testing of old Mesa commits. The comparison of the CCIP discovery time
and the time it was found by classic development is meaningless in this case.
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In total 5168 reports were generated, 511 of which indicated a build or test failure. The
difference in the number of failure reports and number of regressions listed in table 7.2 occurs
because table 7.2 lists a regression only once, even if it persisted for more than one test run, and
because one failure email was generated for each involved project. E.g. table entry 27 generated
one mail for the test failure in Ogre, mail for the negative feedback sent to Wine and one mail
for the negative feedback sent to Mesa.

Mesa and Wine Results

CCIP performed fairly well with Mesa and Wine. There were a total of 14 regressions in Mesa,
8 of which were found by Mesa itself, and 6 which were discovered by Wine (1, 2, 7, 8, 9, 11).
The remaining regressions were compile errors that slipped into the Mesa code, were caught by
classic continuous integration and fixed after a short time (5, 12-15, 19, 25, 26).

Wine triggered three reports marked as bad, 6, 29 and 30. 6 was a random failure that could
not be reproduced. 29 were random test delays that could not be clearly isolated and was fixed
by an unidentified update. 30 is a setup issue and in a way a follow-up problem to 29: Test runs
were not properly isolated, and if a test crashed or was still running, an unexpected screen setup
caused the following tests to fail.

Irrlicht

Irrlicht identified some Mesa regressions also found by Wine (9, 11), but did not report any other
regressions.

Ogre 3D

Ogre 3D flagged two Mesa updates as erroneous (27, 28). These were false positives caused by
correct precision changes.

Ogre compares the test rendering to a reference rendering and tolerates a certain number of
pixels with different colors. However, it counts a pixel as different even on the slightest color
change.

Figure 7.8: Ogre 3D false positive
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Figure 7.8 shows the test rendering, the reference image and the comparison. Visually, the
test and reference images are identical. A close investigation shows that that some pixels in the
light green border are off by one, e.g. one pixel has the color 68/157/128 in the test rendering
and 67/156/128 in the reference rendering (the numbers are red/green/blue, ranging from 0 to
255). These pixels are highlighted in dark red in the image diff to the right.

It is worth noting that the second patch (28) is a partial revert of the first (27). The reason for
this is outlined in the bug report it fixes29. However, both reports are considered false positives
because the reason for the test failure was unrelated to the cause of the bug 28 fixes.

OpenCIT and OpenEngSB

The attempt to use OpenCIT with the development version of OpenEngSB failed because of
API changes (31). The build server was set up to use the stable development branch instead.
This worked, but no development was done on this branch and hence no test data was produced.
Using the development versions of Drools and Wicket with OpenEngSB produced similar results
(32, 33).

During later testing of the OpenEngSB development branch with Karaf and Aries, one test
failure in OpenEngSB was spotted (21). The initial build of OpenEngSB with the development
branch of Karaf failed because of bugs in Karaf (10). These bugs were reported to Karaf devel-
opers and fixed. A later change to OpenEngSB broke the build setup, which resulted in a false
positive error report being sent to the Karaf project (4).

Karaf

Aside of the initial fault in Karaf found by OpenEngSB (10), one regression in the Karaf code
occurred and was found by the Karaf build system (18).

Aries

Aries had a number of build errors which were found by the Aries build and test system. One
of them (20) is a reproducible test failure. 23 was a build failure caused by a JDK update. The
same failure was also spotted by OpenEngSB.

A number of errors (16, 17, 22) were caused by incorrect internal linking and Maven repos-
itory update delays. Specifically, there are a number of subprojects in the source code where
a subproject Foo-API declares a programming interface, and Foo-Impl implements said inter-
face. On a number of occasions, Foo-API’s version was bumped from 1.0-SNAPSHOT to 1.0,
and immediately afterwards to 1.0.1-SNAPSHOT. Foo-Impl originally imported Foo-API v1.0-
SNAPSHOT and was changed to import Foo-API v1.0. When building the code after all those
changes, Foo-API v1.0.1-SNAPSHOT was built, but Foo-API v1.0 was not available. The Aries
developers uploaded prebuilt packages to the Maven repositories, so those code revisions started
building after a delay of a few days and the failures cannot be reproduced any more. Investiga-
tions whether the Aries developers intended this behavior were inconclusive.

29https://bugs.freedesktop.org/show_bug.cgi?id=54877
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At or shortly before commit 546f50f1, the Aries tests started failing randomly (24). Using
the same code, the test executions sometimes succeeded and sometimes failed.

JLine

No error reports were generated for JLine. No major development work was done on JLine
during the test period. Three releases were published and tested, JLine 2.7, JLine 2.8 and JLine
2.9.
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CHAPTER 8
Discussion

This chapter discusses the findings from the evaluation and provides answers to the research
issues defined in chapter 5. It discusses how well CCIP met the expectations.

8.1 Findings

A number of findings can be deduced from the data gathered during the evaluation:

1. The QA measures of all tested projects are effective in preventing compile errors and test
failures from entering the codebase.

The number of commits causing regressions remained below 1.5% in all tested projects.
Especially outstanding in this regard is Wine, which had the 2nd highest number of changes
and no regression of its own.

2. Regressions affecting dependent projects were committed to Mesa and Karaf and not de-
tected by their tests, but their number is small.

This confirms the observations that motivated the thesis topic, but it puts into question if
the effort needed for an automated testing approach is warranted.

3. Intentional API changes render CCIP ineffective.

An intentional API change will result in a build failure and negative feedback, which just
reports the obvious fact that the dependent is no longer compatible with the changed API.
From this point onwards, real regressions are hidden by the existing build failure. To fix
this, the dependent’s developers have to adjust their code to fit the new API. There are
good reasons not to do this immediately, like the possibility that the API is changed a
couple of times before the developers are happy with the changes, or the desire to remain
compatible with the current stable release of the dependency.

63



4. Despite the best efforts to prevent them, there was a considerable number of false positives
compared to the number of legitimate errors.

5. CCIP performed considerably better for Mesa and Wine than for the other projects.

6. Contrary to the expectations, only fairly simple errors have been found.

All regressions found by CCIP appear to be results of developer sloppiness. They were
found swiftly by users, manual testers or the developers themselves. None of the regres-
sions were in danger of being shipped within a stable release.

7. Not a single valid regression was discovered by a second-level dependent.

It is unclear if finding 1 is a result of good QA or insufficient test coverage. The low rate of
testsuite breakages can occur because a low number of regressions occurred, or because a low
number of regressions was detected by the tests. To separate these possibilities, a comparison
between regressions reported by automated testing and regressions reported by users is needed.
Unfortunately, none of the tested projects except Wine offer a way to systematically search the
bug tracker for reported regressions [36].

A search for Wine bugs1 filed between June 1st 2012 and October 17th 2012 marked with
the “regression” keyword and concerning the component “directx-d3d” confirms that no bugs
related to the Ogre engine or any game that uses it have been filed during the time the evaluation
was active. This indicates that Wine’s QA successfully prevented regressions affecting Ogre
from entering the codebase, but this is just one data point and cannot be generalized.

Finding 4 presents a big challenge. The overall rate of false positives and random errors
is reasonably small, only 0.44% of all builds produced a false warning. There is room for
improvement, but reducing this number becomes increasingly difficult the closer it gets to zero.
However, because the number of legitimate errors found by CCIP, but not by CI, is small as well,
the false positive rate has to be lowered considerably for CCIP to be a useful addition.

The evaluation offers no explanation for finding 5. One speculative reason why the Mesa-
Wine duo is different may be that Mesa employs the weakest testing regime among the evaluated
projects, while Wine’s testing is arguably the best. As table 7.1 shows, Wine had second highest
number of changes and not a single test failure was caused by them. The constellation of a high-
quality project using a comparably low quality project may seem strange. However, Wine does
not depend on Mesa per se. It depends on having any OpenGL implementation available, and
Mesa is just one out of many OpenGL implementations. Other common OpenGL implementa-
tions are the proprietary drivers from NVidia2 and AMD 3 or Apple4. Unfortunately, the source
code of these drivers is not publicly available and no development snapshots are published, ren-
dering them useless for this work. A hypothesis to test in future work is that CCIP works better
for projects implementing a standardized, backward compatible and widely accepted program-
ming interface than for projects introducing their own API.

1http://bugs.winehq.org/
2http://www.nvidia.com/object/unix.html
3http://support.amd.com/us/gpudownload/linux/Pages/radeon_linux.aspx
4https://developer.apple.com/devcenter/mac/resources/opengl/
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8.2 Answers to Research Issues

This section provides answers to the research issues defined in chapter 5.

RI-1: Costs and Benefits

Research issue 1 asks how costs and benefits of CCIP can be measured and how they are dis-
tributed between the dependency and dependent.

The implementation costs (RI-1.1) of CCIP are small: adding the prototype CCIP features
to OpenCIT took about 160 hours of work, including some preparatory work, implementing the
additional connectors and testing. This is a one-time effort for each CI server CCIP support is
implemented for. To make the implementation solid enough to be used by everyday users, more
work is required, but it remains a one-time effort.

Setting up a project dependency relation to migrate from CI to CCIP (RI-1.2) requires little
effort in the prototype and is a matter of minutes. Handling low quality feedback is the biggest
cost concern (see section 8.2).

The cost distribution question (RI-1.3) is answered as follows: The computational costs
(increased CI server load) affect the dependent project because it performs additional build and
test runs. The developer effort required to analyze generated reports in on whoever performs
this task. Presumably this is the dependency, since they introduced the change. The immediate
benefit is on the dependency’s side as well, but the dependent is expected to profit as well from
improvements to its dependencies.

The main benefit (RI-1.4) is discovering regression faster, and potentially discovering ad-
ditional regressions. However, due to findings 1 and 4, the benefits of CCIP were limited. All
tested projects are very good at avoiding regressions. In all projects, less than 1.5% of changes
caused a regression. Furthermore, the majority of those regressions were caught by classic CI,
not CCIP.

RI-2: Feedback Quality

Research issue 2 concerns the quality of feedback, how to handle low quality feedback and how
to improve quality.

At the current state of the CCIP implementation, manual effort is required to analyze nega-
tive feedback and extract useful information from it (RI-2.1). A specific example are the steps
described in section 7.2. Analyzing a regression report took an average of 30 minutes of manual
work, which makes this task the most labor-intensive aspect of using CCIP. The obvious concern
is that any false positive reports waste the developer’s time and render CCIP useless.

The evaluation did bring up a large amount of false positive or otherwise useless reports
(Figure 8.1). Which ratio of good and bad reports is acceptable cannot be answered in general,
but the closer it is to zero bad reports, the better CCIP performs.

The dependent project can take a few steps to improve feedback quality (RI-2.2):

• Eliminate random test failures.
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Figure 8.1: Ratio of report types

If the tests are run repeatedly without any source code or parameter changes, they should
always produce the same result.

• Descriptive error messages.

Feedback is easier to understand if the error messages communicate what went wrong
without requiring knowledge of the test’s source code.

• Log calls to dependency libraries.

If dependency developers see which functions of their code were called prior to the test
failure, they will be able to localize the problem faster. This step can be as simple as
turning on the dependencies’ debugging facilities.

• Document the test environment.

E.g. state which operating system was used, even if the dependency uses a platform
independent development environment like Java. Which information makes sense depends
on the project. For Mesa, knowing the graphics card used during the test is an important
piece of information, while it barely matters for Apache Karaf.

The impact of false positives on the cost-benefit analysis depends on the cost of a false
positive. The CI guidelines warn against allowing test failures to stay in the codebase for too
long (see section 2.6) because developers soon start to ignore the constant complaints generated
by the automated systems. However, the main CI literature like [24] and [16] does not provide
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any numbers regarding the acceptable ratio of false positives, and [42] does not discuss the topic
either.

The need for high quality feedback from dependent projects puts into question how willing
dependencies are to listen to feedback from projects they do not know about. Thus the expec-
tation that CCIP is a useful tool to discover one’s impact network is unwarranted. For the same
reason, it is unlikely that big networks of CCIP servers will be formed.

RI-3: Scalability

During the evaluation, not a single valid regression was discovered by a second-level dependent
(finding 7). This provides an answer to RI-3.2: Cascading notifications are of minor importance.

By extension, this provides an answer to RI-3.1: Load can be reduced in large-scale de-
ployments by limiting update propagation to a depth of two or maybe even one. The individual
projects are likely to have an influence on this, so it makes sense to let the CI server administra-
tors control this. A depth limit also avoids endless recursions if there is a dependency cycle in
the setup, either due to actual cyclic dependencies (section 3.4) or a setup mistake.

There are certainly examples of regressions that were discovered by transitive dependents
[18] [40], but the evidence so far suggests that they are too rare to justify the effort required for
an automated test setup to discover them.
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CHAPTER 9
Conclusion and Future Work

This chapter provides a short summary of the thesis and its central results and outlines further
research and engineering topics.

9.1 Conclusion

This thesis presented the Continuous Change Impact Analysis Process, or CCIP, a concept for
communicating continuous integration servers for improved testing of interdependent projects.
An implementation concept and prototype implementation were presented. This prototype was
used to evaluate the research concept to answer research issues concerning the advantages and
costs of CCIP, feedback quality as well as challenges posed by large-scale deployments.

The evaluation confirmed that dependency updates introduce regressions into dependent
projects. It also demonstrated that automatic testing can be used to detect these regressions,
and that CCIP can detect such regressions faster than manual testing does.

However, the evaluation uncovered a number of challenges that hinder the adoption of CCIP.
Despite catching some regressions, the overall regression to commit ratio of the tested projects
was low, putting the need for additional testing into question. The main issues are changes to
the API of a dependency, which prevent meaningful automated testing, and false positive error
reports, which waste developer time and increase the cost of using CCIP.

9.2 Future Work

This section presents research questions that arose during the implementation and evaluation of
CCIP, as well as additional features for the implementation that may improve its usefulness.

Research: Percentage of Bugs Found by CCIP

In the evaluation, dependent projects found a number of regressions in Mesa and Karaf, but it is
not known how the number of found regressions compares to the actual number of introduced
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regressions. The main challenge to answering this question is finding a way to determine the
number of regressions introduced into the code. Regressions reported by users may be a good
approximation, but as discussed in section 8.1, only Wine offers an automated way of finding
such reports. For other projects, a systematic manual reading of all bugreports filed during the
evaluation may yield useful results, assuming such a manual task is feasible.

This research topic may provide clues as to why the overall number of regressions found
during the CCIP evaluation was small - whether that the number is a result of poor regression
detection by the tests, or indeed a low number of regressions that is introduced in the code.

Research: Evaluate Other Libraries That Implement Stable Standards

The evaluation indicated that CCIP performed considerably better for Mesa, Irrlicht and Wine
than it did with Karaf, Aries and OpenEngSB. The possible, but unconfirmed explanation given
in the discussion was that Mesa implements an open standard with a stable API (OpenGL), and
Wine is a mature project with a big testsuite that does not depend on Mesa per se, but can work
with any OpenGL implementation.

If other projects with similar properties can be found and the evaluation repeated, then this
will confirm or reject the explanation. Potential candidates are low-level components of the
GNU/Linux system that have more than one implementation, for example the C runtime (GNU
libc, uclibc) and the C compiler (gcc, llvm).

Research: Investigate Cultural Impact

Some developers may dislike the idea of sending their changes immediately to outside projects,
where they will be tested and in a way criticized by automated testing systems. Research if
developers harbor such concerns, and which influence they have on CCIP and automated testing
in general.

Research: Automatic Dependency Extraction

The Maven build system knows the download location of all its dependencies, and in some cases
even the type and address of the revision control system. Using this technique, a big network
of interdependent projects can be automatically imported into one or more CCIP servers for an
extended evaluation of CCIP. Together with support for automatic bisects, this would enable
automated testing of CCIP with entire software ecosystems.

Research the impact of false positives

For a better estimationof the costs of CCIP, further knowledge about the impact of false posi-
tives is needed. Unfortunately, there seems to be no literature on this topic concerning regular
continuous integration. A future investigation should start with the effect of false positives on
regular continuous integration and later on extend the research to CCIP.
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Stable and Experimental Branches

Some projects, for example OpenEngSB, employ a versioning scheme called Semantic Version-
ing [1]. The basic idea is to limit API changes to major releases (v1.0, v2.0, ...), and keep the
API backwards compatible in minor releases (v1.1, v1.2, v.2.1, ...). By keeping track of stable
and unstable branches, CCIP implementations can provide automatic testing for stable branches
of projects that do not consistently maintain a backwards compatible API.

This requires additional information about the branch an update belongs to in the update
notification. The CCIP implementation also has to know for every dependency which branch is
used to be able to react only to compatible updates.

Implement Automatic Bisects

As part of the CCIP evaluation, a manual git bisect was performed for each test failure to isolate
the change that caused the problem. This task consumed the majority of manual work time, and
it may be possible to automate it.

The simplest way is to send one update notification for each change that is committed to
the revision control system. Currently, if a developer commits 10 changes at once, only one
update notification is sent for a build that contains all 10 changes. By separating those changes,
a change that causes a regression can be isolated in a simple way, but at an increased runtime
cost. An alternative approach is a binary search performed after a regression is reported. The
search would be controlled by the CCIP server of the dependency, which generates intermediate
builds and passes them to the dependent’s CCIP server for testing.

The goal of this is to present to the developer the exact change that caused the regression by
the time the regression is reported.
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APPENDIX A
Tools Used and Copyright Attribution

In addition to the sources of information listed in the bibliography and programs listed in chap-
ter 7, the following tools have been used extensively in the writing of this thesis:

• The LATEX typesetting system.

• Microsoft Visio 20101 for figures 2.1, 2.2, 2.3, 5.1, 5.2, 5.3, 6.1, 7.1, 7.2 and 7.7. The
cliparts and Calibri font2 in these figures are therefore c© Microsoft Corporation.

• The Eclipse IDE3 and the JBoss Drools4 workflow editor. Figures 2.4 and 6.2 are screen-
shots of the workflow editor.

• The Git5 revision control system and GitHub6 service for storing the source code of the
prototype implementation.

• The Apache Subversion7 revision control system and server infrastructure provided by
the Institute of Software Technology and Interactive Systems of the Vienna University of
Technology for storing the thesis and related material.

1http://office.microsoft.com/en-us/visio/
2http://www.microsoft.com/typography/fonts/family.aspx?FID=287
3http://www.eclipse.org/
4http://www.jboss.org/drools/
5http://git-scm.com/
6https://github.com/
7http://subversion.apache.org/
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