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Abstract

Die Umweltproblematik ist in den vergangenen Jahren stark in den Fokus der Öffentlichkeit
gerückt: Sowohl die Gesellschaft als auch Politik und Wissenschaft setzen sich heute
intensivst mit den Gefahren einer Ausbeutung der Umwelt auseinander, nicht zuletzt
wegen den äußerst realen Bedrohungen durch die globale Klimaerwärmung oder den
Rückgang der Ozonschicht. Das Bewusstsein um die Bedeutung des Umweltschutzes
ist immer mehr in den Köpfen der Menschen verankert. Möglichkeiten, Umweltver-
schmutzung zu kontrollieren und einzudämmen, gibt es mehrere. Diese Diplomarbeit
betrachtet eine Kombination aus einer vom Staat vorgegebenen Emissions-Vorschrift, an
die sich Firmen im Zuge der Produktion halten müssen, sowie handelbaren Emissions-
Zertifikaten, die gekauft, aber auch verkauft werden können. Die Arbeit basiert auf
einem Papier von M. Rauscher [2009] und einer an der TU Wien verfassten Diplomar-
beit von E. Moser [2010], entwickelt und analysiert aber ein eigenes Umweltmodell mit
Wirtschaftswachstum. Mithilfe des Pontryagin´schen Maximumsprinzip aus der Opti-
malen Kontrolltheorie, werden die Auswirkungen von umwelttechnischen Kontrollinstru-
menten auf das Verhalten von Firmen untersucht. Dabei wird besonders die Frage her-
vorgehoben, wie Firmen mit strengeren Umweltauflagen umgehen. Neben einem Pro-
duktionsrückgang stehen ihnen drei Alternativen zur Verfügung: Investition in grüne,
umweltfreundlichere Technologien, Kompensation durch sog. Abatement-Maßnahmen am
Ende des Produktionsprozesses und der Erwerb von Emissionszertifikaten.

Abstract

Environmental topics have become an important and highly discussed matter in soci-
ety, politics and science due to changes occurring on a global scale including scarcity of
resources, threat from the climate change and ozone depletion. More and more people
become aware of the dangers resulting from the depletion of nature. A possibility of pro-
tecting earth from environmental pollution resulting from economic production is to set
environmental standards which are not allowed to be exceeded by the firms of an economy.
Another approach is to admit a certain amount of pollution allowed by each firm and to
establish a market for tradeable pollution permits. This thesis considers a combination of
both control instruments and analyzes the impacts on firms behavior. It is based on works
of M. Rauscher [2009] and E. Moser [2010], but develops an own environmental model
of economic growth. The analysis with Pontryagin´s Maximum Principle from Optimal
Control Theory lays its focus on the question of firms reaction on stricter environmental
constraints. As alternatives to a decrease in output, they have the possibility to invest in
greener, more eco-friendly technologies, to invest in end-of-pipe abatement and to acquire
permission permits to augment the tolerance.
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Chapter 1

Introduction

1.1 The Topic

The environment serves humankind as a source as well as a sink. As a source, it provides
resources (such as land and water) indispensable to all life on earth and as a sink it absorbs
waste (by-products of modern technology such as air and water pollutants, asbestos, pes-
ticides and radioactive waste) also inseparably associated with human activity. In both
roles, it is limited since we live in a finite world, although mankind has long behaved as it
would not. Human activity has always had an impact on the environment, but on the one
hand, accepting that the world imposes restrictions on us means taking responsibility for
our actions, which normally makes life harder and more complicate. There would have
to be a rethinking of the whole economic behavior which has worked well for the past.
On the other hand there was no urgent need to pay attention. Humankind was simply
not forced to deal with nature in a responsible way because the environment has not yet
reached its limits and showed no warning signals. This has changed over the last decades
and the protection of the environment has become an important matter and a highly
discussed topic due to changes occurring on a global scale including scarcity of resources,
threat from the climate change and ozone depletion. Scientific research clearly outlined
the environmental dangers of climate change. More and more people are now aware of
the dangers resulting from depletion of nature as a source as well as a sink1. The term
“sustainability” has arisen. Sustainable development refers to a development “that meets
the needs of the present without compromising the ability of future generations to meet

1In 2007, the EU’s leaders endorsed an approach to climate and energy policy that aims to combat
climate change and increase the EU’s energy security. The goal was to transform Europe into a highly
energy-efficient, low carbon economy. In 2008, the European Commission proposed binding legislation to
implement the targets of 2007 (reducing greenhouse gas emissions by at least 20% below 1990 levels in
2020, increasing the share of renewable energy to 20% by 2020 and reducing primary energy use by 20%,
to be achieved by improving energy efficiency). The “Climate and Energy Package” was agreed by the
European Parliament and Council. It became law in 2009. http://ec.europa.eu/clima/policies/
package/index_en.htm
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CHAPTER 1. INTRODUCTION 6

their own needs”2. On the one hand overexploitation and abuse of the “waste container”
nature have already undesirable effects, on the other hand humankind has the ability and
at the same time the duty to think of the future and future generations which do also have
the right to live in a world which gives them the chance to live. Whereas the earth can
exist without humankind, this does not (yet) hold the other way round. As long as earth
is the only planet in our solar system that provides the requirements for life, humankind
should have a firm interest in conserving it. To destroy the environment means to destroy
its own livelihood. It is not only self-evident but necessary to think about impacts of
human activity on the welfare of nature since it is the source of life. It is a fact that
human activity and especially economic production harm the environment which is and
will not be without consequences. An irresponsible attitude concerning exploitation of
nature means a lack of interest on the welfare of humankind.

In the economic system, environmental protection does not happen automatically be-
cause of market failure in the field of environment. Taking care of the environment is
in most cases not rewarded with immediately monetary gains (but in contrary is expen-
sive). An efficient economic system does not suffice to protect the environment because
of externalities and environmental quality (e.g. a beautiful view) being a public good:

• The environment is subject to externalities of both consumption and production.
In this thesis production and its negative externalities (resulting from emissions
such as sulphur dioxide, carbon dioxide and other greenhouse gases) are considered.
Negative externalities are costs which accrue during the production process, but are
not reflected in the market price, because the producer does not have to bear the
costs himself, but they are accrued to the society as a whole. Externalities arise
when activities (production or consumption) of one entity has impacts on another
entity, which are outside the market mechanism. The behavior of economic agents
is therefore not efficient in a macroeconomic context, because the externalities are
not considered. In the case of negative production externalities (for example, when
there is air pollution during the production process), the firm produces too much
to be macroeconomic optimal, because it does not consider the costs of pollution.
Firms which pollute create a cost to society but not a cost to themselves. Because
the firm does not have an accurate view of its costs of production, it does not set
its production at the level that maximizes efficiency in the economy. Its environ-
mentally unfriendly products are too cheap. In the long term external effects could
become internal ones, but for now the government has to intervene in form of taxes
or standards to force firms to internalize negative production externalities.

• Being a public good (like the national defense) means that there is no rivalry (two
21987 United Nations Commission on Environment and Development- Brundtland Commission
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economic agents can consume/ use the good at the same time) as well as no pos-
sibility to exclude anyone (like excluding a class of population from having a car
by making the price too high for this class to afford it). Especially with the envi-
ronment goods clean air and clean water an exclusion is almost impossible: Acid
Rain falls also on confined areas and running water as well as the air do not stop
at a frontier. With non-exclusion there are no inconvenients due to irresponsible
consumption. There is no market price and it is hard to define a price for a public
good, because there is no incentive for consumers to pay for the good the value of
it. Everybody can consume it regardless of whether he paid for the production or
not. Firms will therefore not offer this good and it must be subsidized or provided
by the government.

These are the reasons which require general regulations and public intervention.

Nature gives warning signals, but it cannot protect itself from human exploitation. It
is therefore in the responsibility of humankind and especially of the world´s governments
to pay attention and to think about future generations. Developing and analyzing models
can be of help in this process, but unless political action is taken immediately, all scientific
efforts will be of little use.

1.2 A Review of selected Environmental Models

There are many ways to model the environment as well as policies to protect it. There
are also many ways to model the reaction possibilities of the private sector of an economy
to deal with these policies. Much in this field has already been discussed in the literature
(see for example Helfand [1991], Bréchet et al. [2010], Bretschger et al. [2007], Jørgensen
et al. [2010], Smulders [1995] and Brock et al. [2004]). Three of the already existing works
will be presented briefly in the following sections, because my work is based on them:

1. Green R&D versus End-of-Pipe Emission Abatement: A Model of Directed Techni-
cal Change (Rauscher [2009])

2. Optimal Controls in Models of Economic Growth and the Environment (Moser [2010])

3. Bankable Pollution Permits under Uncertainty and Optimal Risk Management Rules:
Theory and Empirical Evidence (Chevallier et al. [2008])

Chapter 5 will give an overview of differences and similarities with the basic model pre-
sented in this thesis which is an extension of the first two models and includes an idea of
the third work.



CHAPTER 1. INTRODUCTION 8

1.2.1 The Model of Rauscher: Green R&D versus End-of-Pipe

Abatement

Rauscher [2009] addresses the question whether strict environmental regulation fosters
innovation and economic growth with a dynamic model of directed technical change in
an environmental-economics context. In this model, firms can decide between two types
of capital for production which differ in their impact on the environment (in form of pol-
luting emissions). Whereas one production process is more efficient, the other one is less
environmentally harmful. Firms can abate emissions at the end of pipe, which means to
repair some of the generated damage to the environment with a part of the output, to
meet an environmental standard, set by the government. In the model of Rauscher, these
standards are binding and require abatement costs which are proportional to the stock
of conventional capital. The firm has therefore two possibilities to avoid pollution: pro-
ducing with cleaner technology and end-of-pipe-abatement. It can choose between more
expensive production with green capital (instead of conventional capital) and abatement
costs at the end of the production process.

The two capital stocks are denoted as K for conventional or brown capital and G

for green capital and form the state variables of the problem. They accumulate via the
decision variables investment in Research&Development (R&D), RK and RG. Existing
capital advances the accumulation of new capital, albeit at a decreasing rate. Additionally,
positive knowledge spillovers in the R&D sector are assumed which yields the following
processes of accumulation3:

˙K(t) = A(K(t), K∗(t), RK(t))

˙G(t) = B(G(t), G∗(t), RG(t))

with K∗(t) and G∗(t) standing for the economy-wide stocks of conventional and green
capital, respectively modeling knowledge spillovers. The stringency of environmental
regulation is exogenously given by ε. Conventional capital pollutes the environment when
used in production, whereas green capital does not. As a result, the abatement costs are
modeled as

χ(ε)K(t).

Costs also occur by spending resources on investement, the so-called opportunity costs
w(RK+RG) as well as the expenses on consumption C(t). Consumption in turn generates
utility, just like the state of the environment, approximated by ε. The utility function

3Dots above variables denote derivatives with respect to time.
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which has to be maximized is then given as

logC(t) + u(ε)

where logC(t) stands for the utility derived from consumption and u(ε) is the utility
due to an intact environment. The produced output F (K(t), G(t)) has to be divided
between consumption, opportunity costs of R&D investment in brown and green capital
and abatement yielding the budget constraint

F (K(t), G(t))− C(t)− w(RK(t) +RG(t))− χ(ε)K(t) = 0.

The initial levels of the two capital stocks, K(0) and G(0), are given historically. Summing
up, the whole optimization model with the discount rate being δ yields

max
RK(t),RG(t)

∫ ∞
0

(logC(t) + u(ε))e−δt dt

s.t. ˙K(t) = A(K(t), K∗(t), RK(t))

˙G(t) = B(G(t), G∗(t), RG(t))

F (K(t), G(t))− C(t)− w(RK(t) +RG(t))− χ(ε)K(t) = 0

The core results from solving the model are the following statements about the impact
of environmental regulation on the allocation of resources to conventional R&D, green
R&D and end-of-pipe abatement.

• Stricter environmental standards induce declines in the steady-state rates of invest-
ment in both conventional and green capital (related to the corresponding capital
stocks), but the share of green capital in conventional capital rises:

∂RK
K

∂ε
< 0

∂RG
G

∂ε
< 0

∂ G
K

∂ε
> 0.

The steady-state growth rate of the economy is negatively affected by stricter envi-
ronmental policy:

∂ K̇
K

∂ε
=
∂ Ġ
G

∂ε
< 0.

The economic explanation for these findings is straightforward. Tighter environmen-
tal standards raise the cost of using conventional capital which is therefore replaced
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by green capital. The higher cost of using conventional capital reduces the incentive
to accumulate this type of capital. Due to the shift from conventional to green
capital, the marginal productivity of green capital is reduced and this reduces the
incentive to invest in green capital as well.

• The effects of stricter environmental regulation on the R&D expenditures of K-type
capital as a share of GDP is the following:

∂ wRK
F (K,G)

∂ε
< 0.

The share of GDP spent on conventional R&D will unambiguously decline. The
effects on the R&D expenditure shares of G-type capital and on the share of end-of-
pipe abatement cost in GDP are ambiguous and depend on the parameters of the
model, in particular on the cost of using end-of-pipe abatement technologies and
the weight of knowledge spillovers. A shift from end-of-pipe to process-integrated
abatement is likely if the cost of end-of-pipe abatement measured as a share of GDP
is high and the spillovers in green R&D are large compared to those in conventional
R&D.

The model does not support the hypothesis, that stricter emission standards should be
used to spur R&D and accelerate innovation and economic growth. Instead of supporting
green R&D and long-term economic growth, tighter environmental standards rather retard
them.

1.2.2 The Model of Moser: A quantitative Version of the Model

of Rauscher

For her investigation, Moser [2010] uses also the endogenous growth model of Rauscher
with the modification that positive knowledge spillovers in the R&D sector are neglected
for the sake of simplicity. Whereas Rauscher considers the problem in a rather general
formulation, Moser investigates various scenarios with different model functions and state
dynamics.

The functional forms for the basic model of Moser, which will be subject to a compar-
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ison with the model formulated in this thesis, are given as

F (K,G) = bKα1Gα2

χ(ε) = aεβ

u(ε) = cεγ

A(K,RK) = dKδ1Rδ2
K − φK

B(G,RG) = eGσ1Rσ2
G − ψG.

The basic model of Moser is then

max
RK ,RG

∫ ∞
0

(ln(τ + bKα1Gα2 − w(RK +RG)− aεβK) + cεγ)e−rt dt

s.t. K̇ = dKδ1Rδ2
K − φK

Ġ = eGσ1Rσ2
G − ψG

0 ≤ RK

0 ≤ RG

0 ≤ bKα1Gα2 − w(RK +RG)− aεβK

where r denotes the discount rate and total utility, which consists of utility derived from
consumption, ln(τ + bKα1Gα2 − w(RK +RG)− aεβK), and utility due to an intact envi-
ronment, cεγ, is maximized.

The key findings from the analysis are the following:

• A higher ε leads to a proportionally greater equilibrium accumulation of green cap-
ital, but in total, accumulated capital of both types as well as production output
decline towards zero.

• Utility has its maximum at a very low level of ε.

1.2.3 The Model of Chevallier: Pollution Permits

Completely new in the present work is the introduction of pollution permits as an environ-
mental regulation tool. Additionally to the trade-off between investment in clean capital
and end-of-pipe-abatement, firms have the possibility to buy or sell tradeable permits as
in the work of Chevallier et al. [2008].

Tradeable pollution permits represent the rights to emit or discharge a specific volume
of actual or potential pollution e.g. 100 units of Carbone Dioxide per year. They can be
sold and bought in artificially created markets4. Normally, the government of a country

4See http://stats.oecd.org/glossary/detail.asp?ID=2737
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determines the total acceptable level of pollution over the area concerned and sets a limit
on the amount of a pollutant that can be emitted. The amount of pollution permits
is allocated (depending for example on the sector) or sold to firms in form of emissions
permits. Firms are required to hold a number of permits equivalent to their emissions,
but they have the possibility to sell the balance of their permits to other firms if they can
reduce their emissions below the designated level or to buy some additionally from firms
who require fewer permits. The total number of permits cannot exceed the limit set by
the government, assuring that total emissions stay under that level5. In this thesis, firms
have no initial set of permits and there is no limit, it is assumed that every firm can buy
and sell as many permits as it wants. The government does not fix a certain amount of
available pollution rights but an environmental standard which the firms have to meet.
One goal of this thesis is to find out, what the optimal environmental regulation value
is. Furthermore, the price of a tradeable permit is constant and does not change due to
demand and supply at the market of permits.

With tradeable pollution permits the question arises, if companies really attempt to
reduce pollution or if they will simply bear the cost of pollution. It is likely, that those
firms who easily can avoid pollution, will sell their permits, so that in the long run, some
firms will pollute heavily and others will not, to the end that some areas of the world or
a country become highly polluted and other areas will be relatively clean. From a global
point of view, countries who pollute more than their quotas allow can simply buy permits
from other countries.

It also has to be said that there are difficulties to measure exactly how much a com-
pany is polluting. There is potential for hiding pollution emissions.

There are administration costs of implementing the scheme.

There is abuse as was in January 20116 when nearly half a million pollution permits
were stolen from a Czech carbon bank.

Nevertheless, pollution permits are widely considered as efficient instruments for reg-
ulating the emissions of pollutants by firms. One advantage of market-based approaches
such as emission permits that can be traded among firms is that it allows firms to re-
duce pollution at lowest cost (because only the firms which are able to reduce pollution
efficiently will do so- the others will buy permits from these firms), unlike emission taxes
or cumpolsory technologies which do not consider differences in firms production possi-

5See Stavins [2001]
6See http://www.newscientist.com/article/dn20012-black-market-steals-half-a-million-pollution-permits.

html
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bilities7. Such regulatory limits would impose very different costs in different industries.
Further, it is in the interests of firms to pollute as little as possible, because pollution
permits work by obliging polluters to pay for their noxious emissions. If they pollute at
a level higher than the government dictates, they have to buy additional permits. If they
pollute less than they are allowed to, they can sell their permits. Every firm then has
a clear incentive to make reductions and avoid the cost of buying the licenses. Those
for whom it is easiest do most, while those who find it harder have to pay. Through a
system of tradeable permits, firms that can easily and cheaply cut their emissions will
do so, because they can sell their remaining permits to other firms whose emissions are
harder to reduce. Accordingly, cleaner companies benefit, while polluters are forced to
pay to acquire additional permits. This puts them under pressure to cut back on their
emission levels in order to maintain their profitability and competitiveness. If the nature
of the production process makes it hard or very expensive for them to reduce emissions,
they still can trade with other firms that have already made cuts. So the environment
gains, either way, but firms which cannot reduce emissions are not closed down by strict
regulations and even light polluters have a financial incentive to reduce their emissions
even further.

There are active trading programs in several air pollutants. For greenhouse gases the
largest is the European Union Emission Trading Scheme8. In the United States there is
a national market to reduce acid rain and several regional markets in nitrogen oxides9.
Markets for other pollutants tend to be smaller and more localized. The Acid Rain Pro-
gram of the United States launched in 1995 allowed companies to trade permits in sulphur
dioxide, which is mainly produced by power generators burning high-sulphur coal. The
results have been better than planned. So far the initiative is ahead of target with par-
ticipating firms reducing compliance costs by up to 50 per cent10.

From a regulator’s point of view, tradeable pollution permits provide greater certainty
about pollution levels, provided the enforcement regime is sufficiently robust. The sys-
tem costs less to administer than traditional regulation, and provides a clear commercial
incentive on businesses to reduce emissions to the maximum amount that can be justified
in terms of commercial cost-benefit. In effect, the buyer is paying a charge for polluting,
while the seller is being rewarded for having reduced emissions.

Chevallier et al. model the costs of tradeable permits such that firms can decide if they
want to sell or buy, i.e. whether to stay below epsilon or above. For every time t, firms

7See Parry [2002]
8See http://www.decc.gov.uk/en/content/cms/emissions/eu_ets/eu_ets.aspx
9See http://www.epa.gov/airmarkets/

10See http://www.epa.gov/airmarkets/progsregs/arp/

http://www.decc.gov.uk/en/content/cms/emissions/eu_ets/eu_ets.aspx
http://www.epa.gov/airmarkets/
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choose how many pollution permits they want to use, denoted by Pt. P̄t are the permits
allocated to firms at time t and St the permits bank computed as the difference between
the initial permits endowment and the number of permits used by the firm, St = P̄t−Pt.
The gains or costs resulting from tradeable permits are described by the following term:

qt+1(P̄t+1 + St − Pt+1)

where qt+1 is the pollution permits price at time t+ 1.

Chevallier et al. analyze the behavior of firms facing uncertainty with respect to po-
litical decisions concerning the permits program (permit price, allocation rules). It can
happen that firms do not participate in tradeable permits markets due to the risk of po-
litical decision changes. It seems as if the performance of pollution permits is critically
linked to the clarity of political decisions. In this work, however, uncertainty is completely
neglected to concentrate on other things.

1.3 The Goal of this Thesis

This thesis tries to demonstrate different connections concerning firms production behav-
ior and the environment. It presents a way how reality can be formulated in theory. This
was one main task: to create a mathematical model that extends an already existing
and represents a firm´s profit maximization problem and its relationship with exogenous
variables such as the environmental standard imposed by government. A challenge was
to model the possibility to buy and sell tradeable permits. The newly created model has
furthermore another tool of control. The next goal was to analyze the model to learn
about the firm´s behavior and its dependence on the exogenous variables. Because the
problem is too complex to be solved analytically, efficient numerical methods were applied
to solve the optimality conditions resulting from Pontryagin´s Maximum Principle. For
a chosen set of parameter values, this leads to an unique equilibrium point which was
further analyzed in a bifurcation analysis. The bifurcation analysis helped to understand
and to describe the underlying relations. The results have been explained and compared
with already existing literature on the topic.

Note that this thesis follows a strictly theoretical approach and no exact data have
been used to derive the parameter values and functional forms so that reasonable results
are obtained but conclusions for actual quantitative policy cannot be drawn. Note also
that an economic as well as a mathematical model is always just a simple and abstract
representation of reality. For the modeling here, I tried to find a way between realistic
but at the same time not too complex to stay understandable and solvable. This was
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achieved by concentrating on the parts of interest and limiting the influencing factors by
eliminating the effects which are not important for the analysis of the concrete topic.

1.4 The Organization of this Work

The thesis is organized as follows.

In Chapter 2 the basic model is introduced. After the ideas are presented, the model
is formulated first in a rather general form and then with specified model functions, which
are explained in detail.

Chapter 3 explains the chosen approach, namely the approach after Pontryagin´s Max-
imum Principle which is used to solve the optimal intertemporal decision problem of the
firms. The canonical system is derived for different cases. Obtaining steady states and
checking the sufficiency condition is not possible analytically and therefore only illustrated
numerically.

Chapter 4 deals with the parameter values used for the numerical analysis and the nu-
merical results for the steady states and the bifurcation analysis obtained with Newton´s
method. Furthermore, the stability of the steady states are studied.

In Chapter 5, the basic model and its results from the numerical analysis are compared
to other models in literature.

Finally, Chapter 6 concludes the document and gives a brief summary and discussion
of the numerical results.



Chapter 2

The Basic Model

The here introduced basic model will be analyzed in the following chapters.

2.1 The Framework

The model considered is a microeconomic one. Not the economy as a whole, but the
behavior of a single firm is analyzed. The firms represent the supply side of the market
and concentrate on their profit. The firm is characterized by a production function which
describes the firm´s level of technology. The profit of a firm is given as the difference
between revenue and cost. The terms of the objective function are all monetary values.

Consider a perfectly competitive market1 economy consisting of identical profit-maximizing
firms run by capital-owning entrepreneurs using identical technologies to produce a single
homogeneous good at each instant of time.

The analysis is carried out in an economic growth framework, where economic growth
is driven by the accumulation of capital.

A single pollutant discharged into the environment is a by-product of the output
production process. The representative firm can accumulate and produce with two dif-

1The term Competitive Market refers to a theoretical construct in economics. It is a simplified model of
the market which should help to investigate and understand complex relationships. The main properties
of this fictitious market are the following:

1. Infinite number of buyers and sellers which are all price-takers (no participant is large enough to
have the market power to set the price of a certain product)

2. Free entry into and exit from the market for both buyers and sellers (zero entry and exit barriers
such as costs)

3. Perfect information concerning the conditions of transaction such as price and quality of the
products (transparency)

4. Homogeneous products (all units of products supplied by the different sellers are identical)

16
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ferent types of capital: conventional or “brown” capital and “green” capital, which is
less emission-intensive, but at the same time less productive and harder to accumulate
and therefore more expensive. Additionally, the firm can avoid emissions by end-of-pipe-
abatement, which means to clean up wastes after they have been generated, for example
with CCS (Carbon Dioxide Capture and Storage) technologies which trap and store emit-
ted CO2 (a possible abatement effort would be the investment in the development of such
technologies)2. The amount of pollution released into the atmosphere may therefore differ
from the amount produced during the production process. To provide an incentive for
pollution reduction (achieved by investement in green capital and abatement activities
which both are associated with monetary costs and would therefore not take place vol-
untarily), the firms have to meet some environmental constraint, in the form of emission
charges or emission limits, set by the government. Whereas in the model of Rauscher (see
Section 1.2.1) these standards are binding, here, the firms have the possibility to exceed
the standards and pay for the difference (in fact, they are forced to buy some tradeable
pollution permits in order to be in compliance) or they remain under the threshold and
increase their profit by selling allowances. The so-called end-of-pipe-abatement will ei-
ther make it possible to keep emissions within the specified limits or will reduce the total
amount paid for emissions. With the decision of the value of the abatement share the
entrepreneur decides himself, how much of the produced emissions he wants to abate. He
can clean up more than the government requires (in order to make profits with pollution
permits) or less, the abatement effort is completely in the hands of the entrepreneur.
How much of the two types of capital the firm wants to accumulate and use, it decides
through the Research&Development (R&D) expenses for the two types. Consequently,
the firms´s decision is the allocation of resources between conventional R&D, green R&D
and end-of-pipe-abatement, therefore the decision whether to concentrate on a clean pro-
duction process by adopting more expensive cleaner technologies (and to spend less on
end-of-pipe-abatement and tradeable permits to meet the standard) or to spend money
at the end of the process in the form of cleaning or abatement costs or to accept the
exceeding of the standard and spend money by buying permits. Summing up, the choice
of the firm follows two steps depending on each other:

1. First, the firm has to determine the extend of R&D investments that are made
for the two types of capital and the associated inputs, as well as production and
pollution level. In doing so, the firm has to decide if it prefers to invest more in
conventional or green capital or rather, which alternative is the better one in view

2At this point, it has to be mentioned that due to several reasons (e.g. unproven nature of the
technology concerning long term effects, limited number of suitable locations for storage) CCS is a
controversial technology. Another reason which opposes the use of CCS is the amount of R&D that
will be needed if these technologies are used more intensely in the near future. These R&D capacities
could instead be used for further development of renewable energy sources (e.g. making them more
cost-efficient) or to increase energy efficiency (e.g. in the industrial sector).
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of profit optimization. Conventional capital leads to more output (benefit), but also
to more pollution (costs). Therefore, the use of conventional capital requires more
abatement activity or pollution permits. Green capital produces less output and less
pollution. As one can see, there is a trade-off between more expensive production
with clean technologies and environmental costs (in form of abatement or permits)
at the end of the process due to the use of brown capital.

2. Second, the firm has to decide how to handle produced pollution. It has the choice
of internal emissions abatement efforts and tradeable pollution permits.

The stringency of environmental standard is as in Rauscher´s model still exogenous, but
there will be an analysis of the effects of environmental policy on the firm´s optimal
choices of productive and abatement inputs.

2.2 Mathematical Formulation

This section expresses the above formulated ideas in mathematical terms.

The problem considered is of the kind of an “optimal control model”, which means
that the decision-maker optimizes in a dynamic context- the decisions today (or at a cer-
tain moment) have an impact on the problem of tomorrow (and the whole future). The
system, described by so-called “state variables” which are functions of time, is dynamical
since it evolves over time (following the “state dynamics”) and the process of change often
depends on the decision variables. The decision variables are the decision-makers instru-
ment of controlling the problem. The goal is to optimize a certain objective function over
time (for example the utility of the decision-maker or the profit in case of a firm) with
the help of these variables, which can be chosen freely within a certain frame. Because
the problem is not a static one, it does not suffice to consider it at a certain moment in
time, but the whole period of time (for example a few years) has to be taken into account.
Therefore, the decision-maker has to keep not only the current impact of his decision
(increased value of the objective function) in mind, but also how the situation (the state
variables which describe the status of the system) changes because of his decision. The
state variables reflect the accumulation of all historical decisions and developments. They
start at a certain level (initial state) and change according to current levels of the control
variables and current levels of the state variables themselves. Capital, for example, grows
with investment (decision variable) and becomes less because of depreciation (depending
on the state variable capital level). The function describing this relationship can depend,
as well as the objective function, itself explicitly on the time variable. If they do not
(as in this thesis), the problem is called autonomous. The dynamics, which describe the
evolution of the state variables to be controlled, are formulated as differential equations,
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because we face a problem in continuous time (in discrete time they would be difference
equation). For the same reason, the objective function is modeled in form of an integral
(and not as a sum), summing up continuously the current utility or profit function over
the given time period (here: infinity). Because present value of the utility/ profit function
is normally seen as more worth than the value of the function at some future point, a
discount rate is included. This rate can be the rate of interest in the case of monetary
profit. Anyway it should reflect the time preference of the decision maker.

In summary, the problem consists of (three) control or decision variables (which are
chosen by the decision maker), (two) state variables (which describe the system), (two)
constraints in form of differential equations for the state variables (one for each), the so-
called state equations, an objective function (which should be maximized by the decision-
maker) and (two) initial conditions for the state variables (which give the state at starting
time). In the following, these variables and functions will be introduced and discussed.

2.2.1 State Variables

The system is described by two state variables: the amount of conventional capital at
time t, K(t), and the amount of green capital at time t, G(t).

One may expect that it becomes easier to accumulate capital, the higher the already
existing stock of capital is on the one hand, and the greater the investment effort of
R&D for this type of capital is on the other hand. Both types are therefore influenced
by themselves and by the decisions of the decision maker (for more details see Section
2.2.4). The use of capital is necessary to produce an output (benefit)3, but also produces
pollution, which comes at a cost due to the required environmental standard set by the
government. Per definition there are differences between the two types concerning both
the output and the emission production. Whereas conventional capital produces more
output than the cleaner, green type (and is therefore cheaper in production), its damages
to the environment are higher. Furthermore, conventional capital is easier to accumulate
than green capital. This makes sense insofar that conventional capital is more likely to
be established in the economy. These differences are shown graphically in Figures 2.1-2.3.
The production function can change due to changes in K and G as shown in Figure 2.1,
where the dashed curve shows the impact of changes in G to F with a constant level of K
and the other curve vice versa. F grows more with an increase of K as with an increase
of G. Figure 2.2 depicts the dependences of emissions E on K and G which are similar
to the dependences of F . The dashed line in Figure 2.3 shows the growth path of green
capital plot against the current level of green capital, the other line shows the growth

3It is a common assumption that without input no output can be produced.
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path of conventional capital as a function of conventional capital.

K constant

G constant

K, G

F

Figure 2.1: Dependence of the production function F on K and G.

K constant

G constant

K, G

E

Figure 2.2: Dependence of the produced emissions E on K and G.

dK�dt

dG�dt

K, G

dK�dt, dG�dt

Figure 2.3: Growth paths of conventional and green capital with constant levels of investment.

2.2.2 Control Variables

The decision-maker has three variables to choose: RK(t), the investment for R&D to gen-
erate new capital of type K which can be positive or zero, RG(t), the investment in green
capital which has to be positive or zero too, and a(t), the share of abatement in the total
amount of produced emissions E(K(t), G(t)): 0 ≤ a ≤ 1. With the production input
factors K and G, the firm not only generates output, but also pollution. To decrease
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the produced amount of emissions, investment in abatement is possible. How much the
firm wants to reduce, it can decide by choosing a value of a. The abatement level a is a
percentage and therefore takes values between 0 and 1 with 0 meaning that the firm does
not abate anything and 1 that it abates all the pollution generated.

The implications of the taken decisions are modeled in the following subsections and
are shortly explained here. Investments in the two types of capital increase the levels of K
and G and therefore the production output (benefit) as well as the emission level (cost in
form of pollution permits). Some further costs of investment which reduce the profit are
opportunity and adjustment costs. Abatement a reduces the level of emissions released
into the atmosphere (and therefore the amount of required pollution permits), but is not
free of cost either. The abatement costs can be interpreted as some sort of opportunity
costs too. With the resources spent on abatement, investment in capital could have been
financed.

2.2.3 Terms of the Objective Function

The objective function, which has to be maximized by the decision-maker, is an integral
over infinite time of the discounted total sum of the firm´s profit. A firm´s profit is calcu-
lated as the difference between revenues (here from production together with the potential
benefit from selling tradeable permits, in case the firm has after the process of abatement
a smaller level of emissions than allowed) and costs (here opportunity costs of research,
adjustment costs of research, abatement costs and the costs of tradeable permits, if the
firm has to buy some).

The discount rate r can take any value greater than zero and is exogenously given.

The production function F with its input factors K(t) and G(t) should be a well-
behaved, neoclassical production function, satisfying the Inada conditions4 to guarantee
an interior equilibrium (in fact, they guarantee first, that capital is highly productive when
scarce and barely productive when abundant and second, that both types of capital are
necessary to produce an output)5. Per definition, conventional capital is more productive

4

lim
K→0

FK(K,G) =∞, limK→∞ FK(K,G) = 0, F (0, G) = 0

lim
G→0

FK(K,G) =∞, limG→∞ FK(K,G) = 0, F (K, 0) = 0

5See Prettner [2010]
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than green capital:

F = F (K(t), G(t)),
∂F

∂K
> 0,

∂2F

∂K2
< 0,

∂F

∂G
> 0,

∂2F

∂G2
< 0,

∂F

∂K
>
∂F

∂G
.

Firms use therefore conventional and green capital to produce an output and they can
decide how much of each type of capital they want to adopt.

The total amount of produced emissions E is modeled as a function of K(t) and G(t),
which means that both types of capital produce emissions, whereas the production with
the less pollution-intensive technology G(t) leads per assumption to less emissions than
the use of conventional technology K(t):

E = E(K(t), G(t)),
∂E

∂K
>
∂E

∂G
> 0.

The produced emissions E(K(t), G(t)) can be reduced by the abatement percentage
rate a(t). The amount of pollution abated is given by a(t)E(K(t), G(t)) and the total
amount of “net emissions” (cf. Xepapadeas [1991]) is therefore

R(a(t), E(K(t), G(t))) = (1− a(t))E(K(t), G(t))

with a positive first derivate with respect to E and a negative first derivative with respect
to a

∂R

∂E
= 1− a > 0,

∂R

∂a
= −E < 0.

The remaining emissions R (which are always positive) increase with an increasing E

for constant a and decrease with an increasing a (see Figure 2.4(a) and Figure 2.4(b)).
The level of the remaining emissions has to be compared with the given standard ε. The
environmental quality ε determined by the government due to their required standards
is considered as an exogenous given positive parameter of the total amount of allowed
emissions, ε > 0. ε = 0 would mean the complete ban of pollution, which could lead to a
high environmental quality, but makes production too costly for firms to be realistic. The
emissions which are left after abatement activity, R, can be above or below ε. As the case
may be, firms have to either pay for permission permits or they get a reward. Consider
therefore the difference between ε and R

D(a,E) = ε−R = ε− (1− a)E
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with first partial derivatives

∂D

∂E
= −(1− a) < 0,

∂D

∂a
= E > 0.

Figure 2.4(a) and Figure 2.4(b) show the evolution of the remaining emissions in de-
pendence of E, respectively a (the other variable is always set constant), as well as the
constant parameter ε. The distance between these two curves gives the difference D for
a certain level of E, respectively a. For a small E, the difference is positive (but for
every level of E diminishing) until E reaches the level, where R equals ε (denoted with
E ′). For E ≥ E ′, the difference becomes negative- the firm produces more emissions then
allowed. With a it is the other way round. A small a implies a negative difference, but the
difference increases as a increases. For a ≥ a′ (with a′ denoting the level, where R = ε),
the difference is positive and still increasing. In Figures 2.5(a) and 2.5(b) the difference
itself is plotted against E and a and the situation described above can be seen clearly.
Given the definition of the difference D, one can formulate the “permits term” (with an
exogenous positive scaling parameter p)

P (D) = pD3 = p(ε− (1− a)E)3.

It gives either the penalty costs (one kind of costs in the objective function) which the
firm has to pay if its remaining emissions are above ε (and the difference as well as the
permits term is negative), or a monetary reward (which adds to the revenues of the profit)
for a positive difference (in case the amount of remaining emissions is below the standard,
which means that investments in green R&D and abatement are great enough to not only
meet the norm but to even stay under the allowed pollution level). In this case, firms do
not have to buy additional permits, but they can sell the ones they do not need and get
a reward (the permits term is positive). The permits term has the following first partial
derivatives

∂P

∂D
= 3pD2 > 0,

∂P

∂E
= −3pD2(1− a) < 0,

∂P

∂a
= 3pD2E > 0

which means that P increases with an increasing difference and becomes positive (and
therefore a reward) for D ≥ 0 (Figure 2.7). It decreases with an increasing E, changing
sign for E = E ′, and increases with an increasing a, changing from negative to positive for
a = a′ (see Figures 2.6(a)-2.6(b)). The cubic form makes the reward (the costs) infinitely
high with the difference approaching ∞ (−∞): The second partial derivative of P with
respect to the difference D is given by

∂2P

∂D2
= 6pD
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which is positive (and the function therefore convex) for a positive difference and vice
versa for a negative difference D. For D between 0 and 1 (in case of a positive difference),
the cubic term D3 is less than D (in contrary to D > 1 where D3 > D), which means that
small deviations from the environmental standard are tolerated and only little penalized.

D>0

D<0

Ε HconstantL

R for constant a

E'
E

Ε, R

(a) Dependence of the Remaining Emissions R on
E.

D>0

D<0

E HconstantL

Ε HconstantL

R for constant E

a' 1
a

Ε, R,E

(b) Dependence of the Remaining Emissions R on
a.

Figure 2.4: Dependence of the Remaining Emissions R on its input factors.

D for constant a

D<0

D>0

E'
E

D

(a) Dependence of the Difference D on E.

D for constant E

D>0

D<0
a' 1

a

D

(b) Dependence of the Difference D on a.

Figure 2.5: Dependence of the Difference D on its input factors.

Other costs are the opportunity costs of research which reflects the fact, that resources
spend on investment in R&D could be used profitably otherwise. They are modeled as
a fraction of the expenditures for R&D, w(RK(t) + RG(t)), with w being an exogenous
given parameter between 0 and 1, w ∈ (0, 1).

Furthermore, there are so-called adjustment costs (costs of making changes in the
control variables RK(t) and RG(t)) cK and cG, which are increasing functions of RK(t)
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E'
E

P

(a) Dependence of the Permits Term P on E.

a' 1
a0

P

(b) Dependence of the Permits Term P on a.

Figure 2.6: Dependence of the Permits Term P on its input factors.

D

P

Figure 2.7: Dependence of the Permits Term P on D.

and RG(t):

cK = cK(RK),
∂cK
∂RK

> 0;

cG = cG(RG),
∂cG
∂RG

> 0.

The total abatement costs are given as χ, an increasing function of the firms´s effort of
abatement a(t) and produced emissions E(K(t), G(t)) (abatement becomes more expen-
sive not only with increasing abatement effort, but also with a higher level of produced
emissions which means it is more costly to abate the half of a big amount of emissions
than the half of a small amount), which should be convex in a, so that the costs approach
∞ as the abatement effort a gets near 1:

χ = χ(a,E),
∂χ

∂E
> 0,

∂χ

∂a
> 0,

∂2χ

∂a2
> 0.

The first unit abated is the cheapest one and every additional unit of abatement effort
is less effective which is a quite realistic assumption. For a graphical demonstration, see
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Figure 2.8 which shows the dependencies of χ on a and E.

E constant

a constant

a, E

Χ

Figure 2.8: Dependence of abatement costs χ on a and E.

Consequently, the profit is given as

F (K(t), G(t))− w(RK(t) +RG(t))− cK(RK(t))− cG(RG(t))−

χ(a(t), E(K(t), G(t))) + p(ε− (1− a(t))E(K(t), G(t)))3

and since the objective is the maximization of the discounted profit over time, the objective
function is∫ ∞

0

e−rt(F (K(t), G(t))− w(RK(t) +RG(t))− cK(RK(t))− cG(RG(t))−

χ(a(t), E(K(t), G(t))) + p(ε− (1− a(t))E(K(t), G(t)))3) dt

with r being the discount rate.

2.2.4 Terms of the Constraints

The process of capital accumulation is modeled such, that existing capital levels and
investment in Research&Development (R&D) have a positive feedback on the accumu-
lation of new capital and are necessary to accumulate new capital. Investment has an
even greater positive feedback than capital which has additionally a negative feedback too
in form of depreciation. Figure 2.9 shows the evolution of conventional capital due to a
change in investment with constant level of capital and vice versa. Naturally, the growth
path of green capital is similar, only with a flatter slope due to smaller partial elasticities.
Moreover, brown capital is easier to accumulate than green capital. The model dynamics
are described by the following differential equations6:

˙K(t) = A(K(t), RK(t))

6 ˙K(t) stands for the derivative of K(t) with respect to time t: ˙K(t) = ∂K(t)
∂t
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K constant

RK constant

K, RK

dK�dt

Figure 2.9: Growth path of conventional capital.

˙G(t) = B(G(t), RG(t))

with A(., .) and B(., .) being again well-behaved, neoclassical production functions, satis-
fying the Inada conditions7. Because the production function of capital accumulation is
assumed to depend only on two input factors (capital and technological process) and the
third one (labor) is neglected in this approach assuming that it is exogenous or predeter-
mined, decreasing instead of constant returns to scale are required.

2.2.5 The General Model

Summing up, an infinite-horizon model of a profit-maximizing firm facing emission limits
and tradeable permits is formulated. The representative capitalist-entrepreneur maxi-
mizes the present value of future profit∫ ∞

0

e−rt(F (K(t), G(t))− w(RK(t) +RG(t))− cK(RK(t))− cG(RG(t))−

χ(a(t), E(K(t), G(t))) + p(ε− (1− a(t))E(K(t), G(t)))3) dt

where F (K(t), G(t)) denotes the production function, w(RK(t) +RG(t)) the opportunity
costs, cK(RK(t)) and cG(RG(t)) the adjustment costs, χ(a(t), E(K(t), G(t))) the abate-
ment costs and p(ε− (1− a(t))E(K(t), G(t)))3 the permits term.

The optimization takes place subject to the constraints concerning the development
of the state variables

7

lim
K→0

AK(K,RK) =∞, limK→∞AK(K,RK) = 0

lim
RK→0

ARK
(K,RK) =∞, limRK→∞ARK

(K,RK) = 0

lim
G→0

BG(G,RG) =∞, limG→∞BG(G,RG) = 0

lim
RG→0

BRG
(G,RG) =∞, limRG→∞BRG

(G,RG) = 0
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˙K(t) = A(K(t), RK(t)),

˙G(t) = B(G(t), RG(t)),

the non-negativity conditions for the controls

RK(t) ≥ 0,

RG(t) ≥ 0,

a(t) ≥ 0

and the considered initial values K0 and G0 of state variables

K(0) = K0,

G(0) = G0.

The optimal control model then is given as follows8:

max
RK ,RG,a

∫ ∞
0

e−rt(F (K,G)− w(RK +RG)− cK(RK)− cG(RG)−

χ(a,E(K,G)) + p(ε− (1− a)E(K,G))3) dt

(2.1)

s.t.:

K̇ = A(K,RK) (2.1a)

Ġ = B(G,RG) (2.1b)

RK ≥ 0 (2.1c)

RG ≥ 0 (2.1d)

a ≥ 0 (2.1e)

K(0) = K0 (2.1f)

G(0) = G0 (2.1g)

All definitions of introduced variables can be found in Table 2.1.
8Note that as of here, the time argument t is often omitted (if there is no ambiguity) for the ease of

notation.
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Variable Name Description Constraints

K conventional capital function of time t
RK investment in conventional capital function of time t RK ≥ 0
G green capital function of time t
RG investment in green capital function of time t RG ≥ 0
a percentage rate of abatement function of time t 0 ≤ a ≤ 1
λ1 costate associated with K function of time t
λ2 costate associated with G function of time t
F production function function of K and G
w opportunity cost of R&D exogenous parameter 0 < w < 1
cK adjustment costs of RK function of RK

cG adjustment costs of RG function of RG

χ abatement costs function of a and E(K,G)
p scaling parameter of the permits term exogenous parameter p > 0
ε total amount of “allowed” emissions exogenous parameter ε > 0
E emission function function of K and G
r discount rate exogenous parameter r > 0
A accumulation function of K function of K and RK

B accumulation function of G function of G and RG

Table 2.1: Overview of introduced variables.

2.3 Functional Forms

In this section, the functions of the basic model formulated in the previous section will
be specified satisfying the necessary properties from above. Additionally, the properties,
the parameters of the functions have to fulfill, will be established.

Table 2.2 shows all the introduced functions and their specified forms. In the following,
there is an explanation of how the functional forms are chosen.

Function Form Name

F (K,G) fKα1Gα2 production function
χ(a,E) c a

1−aE(K,G) abatement costs
A(K,RK) dKδ1Rδ2

K − φK accumulation function of K
B(G,RG) bGσ1Rσ2

G − ψG accumulation function of G
E(K,G) κK + γG emission function
cK(RK) kR2

K adjustment costs of RK

cG(RG) gR2
G adjustment costs of RG

Table 2.2: Functional forms in the basic model.
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2.3.1 Objective Function

For the production function F a strictly concave9 (the second unit of input should be
less productive than the first) Cobb-Douglas function is taken, because it satisfies all the
requirements. Inputs are the two types of capital. Each of them is therefore essential to
produce a positive output and has positive, but diminishing returns.

F (K,G) = fKα1Gα2 with f > 0, 0 < α2 ≤ α1 < 1, α1 + α2 ≤ 1

α1 and α2 specify the partial elasticities of production10. Conventional capital is consid-
ered to be more productive than green capital (reflected by the assumption α2 ≤ α1),
see Figure 2.1. This means that the output increases more or the same, if the input of
conventional capital increases by one percent, as if the input of green capital is raised by
one percent. Returns to scale11 can be both constant or decreasing. The term Returns to
Scale describes how an output changes if all inputs increase by a constant factor. Constant
returns to scale means that output increases by the same proportional change, decreasing
returns to scale describe an output which increases by less than that proportional change.
Returns to scale faced by a firm are purely technologically imposed and not influenced
by economic decisions, therefore exogenously given in this model. The constant f is only
a scale parameter12 and has to be greater than 0, f > 0, so that output cannot become
negative or zero, without one of the input variables being zero.

The total amount of produced emissions is modeled linear as

E(K,G) = κK + γG with 0 < γ < κ < 1

The emission intensities κ and γ should both be positive, because both types of capital
produce emissions during the production process. However, brown capital is considered
to be more pollutive (κ > γ), see Figure 2.2. This is the main difference between the two
types of capital- they are differently pollutive. Furthermore, they are differently produc-
tive and differently easy to accumulate.

For the adjustment costs a quadratic function is used, as usual, with positive scaling
9

FKK = fα1(α1 − 1)Kα1−2Gα2 < 0, because α1 < 1

FGG = fα2(α2 − 1)Kα1Gα2−2 < 0, because α2 < 1

10The Elasticity of a function f(z) is defined as ∂f(z)
∂z

z
f(z) and indicates how many percents the output

changes, if the input increases by one percent.
11F (ζK, ζG) = fζα1+α2Kα1Gα2 ≤ ζF (K,G) = fζKα1Gα2 , because α1 + α2 ≤ 1
12Scaling parameters only determine the absolute level of a function and have no qualitative influence.
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parameters k respectively g. Note that the controls are integrated in the objective function
in a nonlinear way. Otherwise, the model (2.1) would be a singular control problem and
a so-called bang-bang solution, where the controls jump from one boundary to another,
would be optimal.

cK(RK) = kR2
K with k > 0

cG(RG) = gR2
G with g > 0

The abatement costs, χ, depending on a and E(K,G), are set as

χ(a,E(K,G)) = c
a

1− a
E(K,G) with c > 0 (2.2)

c is again a scaling parameter, which has to be positive. Note that, as required, χ is
increasing in a and E(K,G) and convex in a13. Furthermore, the abatement costs are
linear in E14, so that the costs increase proportional with the level of produced emissions,
and the cross-derivation is positive15. Note, that the function χ(a,E) is not defined for
a ≥ 1. For a > 1, the costs would be negative which makes no sense and for a = 1, the
denominator would be zero. Thus, there are no boundary arc solutions with a = 1 and
the search for solutions can be limited to the interior.

13

χa(a,E(K,G)) = c
1

(1− a)2
E(K,G) > 0

χE(a,E(K,G)) = c
a

1− a
> 0

χaa(a,E(K,G)) = 2c
1

(1− a)3
E(K,G) > 0

14

χEE(a,E(K,G)) = 0

15

χEa(a,E(K,G)) = χaE(a,E(K,G)) = c
1

(1− a)2
> 0

which means that the marginal cost of E increases with an increase of a and vice versa.
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2.3.2 Constraints

To model the R&D output I assume again a strictly concave16 Cobb Douglas production
function with decreasing returns to scale (δ1 +δ2 < 1, σ1 +σ2 < 1) for the same reasons as
above for the production function F . Here capital stock and investment are the production
factors (and both necessary to produce capital17). The controls RK and RG are assumed
to be positive, so that no disinvestment in capital is possible. Whereas the already
existing amount of conventional respectively green capital and the expenditure for R&D
increase the capital stocks (whereas investments in R&D increase the capital more than
the existing stock of capital do, taken into account by the assumptions δ1 ≤ δ2 and σ1 ≤ σ2

and shown graphically in Figure 2.9), at the same time they are reduced by the constant
and positive depreciation rates φ and ψ. Depreciation of capital is a popular and very
realistic assumption for all kinds of capital (human capital, monetary capital, technical
capital etc.). It yields the fact that without investment the capital stock decreases18. To
summarize, capital accumulates via investments and depreciates at rate φ, respectively
ψ. The result of all the described assumptions are the following differential equations for
the state dynamics.

K̇ = A(K,RK) = dKδ1Rδ2
K − φK with d > 0, 0 < φ < 1, 0 < δ1 ≤ δ2 < 1, δ1 + δ2 < 1

Ġ = B(G,RG) = bGσ1Rσ2
G − ψG with b > 0, 0 < ψ < 1, 0 < σ1 ≤ σ2 < 1, σ1 + σ2 < 1

Per definition of the differences between the two types of capital, brown capital K is easier
to accumulate than green capital. The requirements δ1 ≥ σ1 and δ2 ≥ σ2 take this into
account.

16

AKK = dδ1(δ1 − 1)Kδ1−2Rδ2K < 0, because δ1 < 1

ARKRK
= dδ2(δ2 − 1)Kδ1Rδ2−2K < 0, because δ2 < 1

BGG = bσ1(σ1 − 1)Gσ1−2Rσ2

G < 0, because σ1 < 1

BRGRG
= bσ2(σ2 − 1)Gσ1Rσ2−2

G < 0, because σ2 < 1

17

A(0, RK) = 0, A(K, 0) < 0, B(0, RG) = 0, B(G, 0) < 0

18

A(K, 0) < 0, B(G, 0) < 0
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2.3.3 The General Model with Specified Functions

The optimal control model- including the specified functional forms- is given as follows:

max
RK ,RG,a

∫ ∞
0

e−rt(fKα1Gα2 − w(RK +RG)− kR2
K − gR2

G−

c
a

1− a
(κK + γG) + p(ε− (1− a)(κK + γG))3) dt

(2.3)

s.t.:

K̇ = dKδ1Rδ2
K − φK (2.3a)

Ġ = bGσ1Rσ2
G − ψG (2.3b)

RK ≥ 0 (2.3c)

RG ≥ 0 (2.3d)

a ≥ 0 (2.3e)

K(0) = K0 (2.3f)

G(0) = G0 (2.3g)



Chapter 3

Analysis of the Basic Model

Solving the problem means to find an admissible control (RK , RG, a) maximizing the ob-
jective function (2.3) subject to the state dynamics (2.3a)-(2.3b), the non-negativity con-
straints (2.3c)-(2.3e) and the initial conditions (2.3f)-(2.3g). The discounted autonomous
model with infinite planning horizon will be solved with Pontryagin´s Maximum Principle
which can be applied to dynamic, time continuously, nonlinear optimization problems as
this one. The qualitative analysis includes the computation of steady states as well as the
determination of stability. It provides a valuable structural insight into the shape of the
optimal paths.

3.1 Canonical System

Because the optimal control problem does not consist only of the objective function (2.3)
and the state dynamics (2.3a)- (2.3b) but there are also inequality constraints in form of
non-negativity conditions (2.3c)-(2.3e), the Lagrangian L instead of the Hamiltonian H
has to be considered in a first step:

L = H + µC

where H denotes the current value1 Hamiltonian, µ the Lagrangian multiplicator and
C the non-negativity constraint. The Hamiltonian summarizes all effects incurred by a
change of the control. These are the direct effect resulting from a change in the objective
function (current benefit) and the indirect one given by the state constraint (benefit in the
future). The second effect is weighted by the so-called costate (also called adjoint variable
and shadow price) which also changes over time t and measures the value of a marginal
increment in the associated state at time t when moving along the optimal trajectory.
It therefore expresses the highest (hypothetical) price that the decision-maker is willing

1The present value Hamiltonian evaluates the optimal behavior at the time the optimization is actually
done. All future effects are therefore discounted contrary to the current value Hamiltonian.

34
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to pay in the optimum for an additional unit of the state variable at time t (see Grass
et al. [2008], p.118). The current value Hamiltonian H with costate variables (λ1, λ2) is
formulated as

H(K,G,RK , RG, a, λ1, λ2) = F (K,G)− w(RK +RG)− cK(RK)− cG(RG)− χ(a,E(K,G)) +

p(ε− (1− a)E(K,G))3 + λ1A(K,RK) + λ2B(G,RG)

= fKα1Gα2 − w(RK +RG)− kR2
K − gR2

G −

c
a

1− a
(κK + γG) + p(ε− (1− a)(Gγ +Kκ))3 +

λ1
(
dKδ1Rδ2

K − φK
)

+ λ2 (bGσ1Rσ2
G − ψG)

which yields the Lagrangian L (in current-value notation)

L(K,G,RK , RG, a, λ1, λ2, µ1, µ2, µ3) = F (K,G)− w(RK +RG)− cK(RK)− cG(RG)−

χ(a,E(K,G)) + p(ε− (1− a)E(K,G))3 +

λ1A(K,RK) + λ2B(G,RG) +

µ1RK + µ2RG + µ3a

= fKα1Gα2 − w(RK +RG)− kR2
K − gR2

G −

c
a

1− a
(κK + γG) + p(ε− (1− a)(κK + γG))3 +

λ1
(
dKδ1Rδ2

K − φK
)

+ λ2 (bGσ1Rσ2
G − ψG) +

µ1RK + µ2RG + µ3a.

The necessary First Order Conditions2 can be stated as

LRK (K,RK , λ1, µ1) = −w − 2kRK + λ1δ2dK
δ1Rδ2−1

K + µ1 = 0 (3.1a)

LRG(G,RG, λ2, µ2) = −w − 2gRG + λ2σ2bG
σ1Rσ2−1

G + µ2 = 0 (3.1b)

La(K,G, a, µ3) = −c 1

(1− a)2
E(K,G) + 3pE(K,G)(ε− (1− a)E(K,G))2 + µ3 = 0

(3.1c)

λ̇1(K,G,RK , a, λ1) = rλ1 − LK(K,G,RK , a, λ1) = rλ1 − (fα1K
α1−1Gα2 − c a

1− a
κ−

3p(ε− (1− a)E(K,G))2(1− a)κ+ λ1(dδ1K
δ1−1Rδ2

K − φ)) (3.1d)

λ̇2(K,G,RG, a, λ2) = rλ2 − LG(K,G,RG, a, λ2) = rλ2 − (fα2K
α1Gα2−1 − c a

1− a
γ−

3p(ε− (1− a)E(K,G))2(1− a)γ + λ2(bσ1G
σ1−1Rσ2

G − ψ)) (3.1e)

2The necessary conditions only imply that the resulting control is an extremum. That it is optimal
indeed the Sufficiency Condition has to hold as well, see Section 3.4.
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where subscripts denote partial derivatives of multivariate functions and dots the deriva-
tive with respect to time. The Complementary Slackness Conditions are

µ1 ≥ 0, µ1RK = 0 (3.2a)

µ2 ≥ 0, µ2RG = 0 (3.2b)

µ3 ≥ 0, µ3Ra = 0 (3.2c)

To derive the canonical system it has to be distinguished between the case of an interior
arc and the case of a boundary arc. The first case describes a solution in which all of
the non-negativity constraints are inactive, whereas in the second case at least one of the
constraints is active which means that either RK or RG or a or two or all three of them
are 0. Since it is easier to understand, I start with the interior arc first.

3.1.1 Interior Arc

If the controls RK , RG and a are all strictly greater than zero, the complementary slackness
conditions (3.2a)-(3.2c) imply that the Lagrangian multiplicators µ1, µ2 and µ3 have to be
zero, µ1 = µ2 = µ3 = 0, and the Lagrangian L reduces to the Hamiltonian H. Therefore,
the Hamiltonian will be maximized

(R∗K , R
∗
G, a

∗) = arg max
RK ,RG,a

H

HRK (K,RK , λ1) = −w − 2kRK + dλ1δ2K
δ1Rδ2−1

K = 0 (3.3a)

HRG(G,RG, λ1) = −w − 2gRG + bλ2σ2G
σ1Rσ2−1

G = 0 (3.3b)

Ha(K,G, a) = −c 1

(1− a)2
(κK + γG) + 3p(κK + γG)(ε− (1− a)(κK + γG))2 = 0

(3.3c)

λ̇1(K,G,RK , a, λ1) = rλ1 −HG(K,G,RK , a, λ1) = rλ1 − (fα1K
α1−1Gα2 − c a

1− a
κ−

3p(ε− (1− a)E(K,G))2(1− a)κ+ λ1(dδ1K
δ1−1Rδ2

K − φ)) (3.3d)

λ̇2(K,G,RG, a, λ2) = rλ2 −HG(K,G,RG, a, λ2) = rλ2 − (fα2K
α1Gα2−1 − c a

1− a
γ−

3p(ε− (1− a)E(K,G))2(1− a)γ + λ2(bσ1G
σ1−1Rσ2

G − ψ)) (3.3e)
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Because a maximum is required, the Legendre-Clebsch Condition3 must hold, which
says that the Hessian matrix

D2H(K∗, G∗, R∗K , R
∗
G, a

∗, λ∗1, λ
∗
2) =

 HRKRK HRKRG HRKa

HRGRK HRGRG HRGa

HaRK HaRG Haa

 =

 HRKRK 0 0

0 HRGRG 0

0 0 Haa


has to be negative semidefinite. Sylvester’s criterion gives necessary and sufficient condi-
tions for a matrix being negative-definite. It says that a Hermitian matrix H is negative-
definite if and only if the leading principal minors are alternately negative and positive.
The leading principal minors are the determinants of the following sub-matrices:

S1 =
(
HRKRK

)
S2 =

(
HRKRK 0

0 HRGRG

)

S3 =

 HRKRK 0 0

0 HRGRG 0

0 0 Haa

 .

For the determinants, respectively the minors, should hold:

M1 = HRKRK < 0 (3.4a)

M2 = HRKRKHRGRG > 0 (3.4b)

M3 = HRKRKHRGRGHaa < 0. (3.4c)

From Equation (3.4a) it follows that HRGRG < 0 must hold to fulfill Equation (3.4b).
With HRKRK < 0 and HRGRG < 0, Haa < 0 must hold too for assuring Equation (3.4c).
A maximum is therefore assured by the following equations

HRKRK = −2k + λ∗1δ2(δ2 − 1)d(K∗)δ1(R∗K)δ2−2 < 0 (3.5a)

HRGRG = −2g + λ∗2σ2(σ2 − 1)b(G∗)σ1(R∗G)σ2−2 < 0 (3.5b)

Haa = −2c
1

(1− a∗)3
(κK∗ + γG∗) + 6p(κK∗ + γG∗)2(ε− (1− a∗)(κK∗ + γG∗)) < 0.

(3.5c)

From Equation (3.3a) λ∗1(K,RK) can be obtained,

λ∗1(K,RK) =
Kδ1R1−δ2

K (2kRK + w)

dδ2
,

3See Grass et al. [2008], p. 113
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which is positive for every admissible parameter set (k > 0, 0 < w < 1, d > 0, 0 < δ2 < 1).
Since δ2 < 1, Equation (3.5a) is satisfied for all admissible parameter sets. Solving
Equation (3.3b) for λ∗2(G,RG) yields

λ∗2(G,RG) =
Gσ1R1−σ2

G (2gRG + w)

bσ2
,

which is also positive. It is assumed that σ2 < 1 too and therefore Equation (3.5b) is
satisfied for all admissible parameter sets. Equation (3.3c) is of fourth degree in a, whereas
two solutions can be excluded (see Appendix). The remaining two are:

a∗2(K,G) = 1−
ε−

√
ε2 − 4

√
c√

3p
(κK + γG)

2(κK + γG)
,

a∗4(K,G) = 1−
ε+

√
ε2 + 4

√
c√

3p
(κK + γG)

2(κK + γG)
.

Inserting a∗(K,G) into Equation (3.5c) yields

Haa(a
∗
2) = − 8(κK + γG)3(

ε−
√
ε2 − 4

√
c√

3p
(κK + γG)

)3
(

4cE −
√

3cpε

(
ε−

√
ε2 − 4

√
c√

3p
(κK + γG)

))
< 0

(3.6a)

Haa(a
∗
4) = − 8(κK + γG)3(

ε+
√
ε2 + 4

√
c√

3p
(κK + γG)

)3
(

4cE +
√

3cpε

(
ε+

√
ε2 +

4
√
c√

3p
(κK + γG)

))
< 0.

(3.6b)

Whereas Equation (3.6b) is fulfilled for every parameter set, Equation (3.6a) has to be
checked for every solution obtained. However, note that (3.5c) can be satisfied only for
a < 1 (which is always true for a∗4), since E and ε are positive. This makes sense in so
far, as the abatement costs (2.2) are not defined for a ≥ 1.

Normally, the canonical system is derived in the state-costate-space. The approach
would be the following:

1. Solving the first order conditions (3.3a)-(3.3c) for the controls RK , RG and a. The
controls are then given as functions of the states (K, G) and costates (λ1, λ2):

HRK (K,RK , λ1) = 0⇒ RK(K,λ1)

HRG(G,RG, λ2) = 0⇒ RG(G, λ2)

Ha(K,G, a) = 0⇒ a(K,G)
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2. Inserting these functions into the state (Equations (2.3a) and (2.3b)) and costate
dynamics (Equations (3.3d) and (3.3e)) yields the four-dimensional canonical system
in the state-costate-space

K̇(K,RK(K,λ1)) = K̇(K,λ1)

Ġ(G,RG(G, λ2)) = Ġ(G, λ2)

λ̇1(K,G,RK(K,λ1), a(K,G), λ1) = λ̇1(K,G, λ1)

λ̇2(K,G,RG(G, λ2), a(K,G), λ2) = λ̇2(K,G, λ2)

Because the Equations (3.3a)-(3.3b) appear to involve the control variables RK and RG

in an essentially non-algebraic way, it is not possible to eliminate them explicitly and to
generally formulate the canonical system in the state-costate-space. Since the number of
controls (three) is not the same as the number of states (two) and therefore as the number
of costates, it is neither possible to derive the canonical system in the state-control-space
by replacing the costate dynamics with control dynamics. Instead, the canonical system
has to be considered in the state-costate-control-space with four differential equations (for
the state and costates) and three algebraic equations.

State-Costate-Control-Space

The canonical system consists of seven differential algebraic equations: the two state
dynamics (2.3a)-(2.3b), the two costate dynamics (3.3d)-(3.3e) and the three algebraic
Equations (3.3a)-(3.3c). The seven-dimensional canonical system is given as

K̇(K,RK) = dKδ1Rδ2
K −Kφ (3.7a)

Ġ(G,RG) = bGσ1Rσ2
G −Gψ (3.7b)

λ̇1(K,G,RK , a, λ1) = rλ1 − (fα1K
α1−1Gα2 − c a

1− a
κ−

3p(ε− (1− a)E(K,G))2(1− a)κ+ λ1(dδ1K
δ1−1Rδ2

K − φ)) (3.7c)

λ̇2(K,G,RG, a, λ2) = rλ2 − (fα2K
α1Gα2−1 − c a

1− a
γ−

3p(ε− (1− a)E(K,G))2(1− a)γ + λ2(bσ1G
σ1−1Rσ2

G − ψ)) (3.7d)

HRK (K,RK , λ1) = −w − 2kRK + dλ1δ2K
δ1Rδ2−1

K = 0 (3.7e)

HRG(G,RG, λ1) = −w − 2gRG + bλ2σ2G
σ1Rσ2−1

G = 0 (3.7f)

Ha(K,G, a) = −c 1

(1− a)2
(κK + γG) + 3p(κK + γG)(ε− (1− a)(κK + γG))2 = 0

(3.7g)
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The canonical system together with the non-negativity conditions

RK ≥ 0

RG ≥ 0

a ≥ 0

describe the economic system.

State-Costate-Space: Special Case δ2 = σ2 = 1
2

For the special case of δ2 = σ2 = 1
2
in K̇ = dKδ1Rδ2

K − φK and Ġ = bGσ1Rσ2
G − ψG

which means that RG has the same production elasticity in Ġ as RK in K̇, the controls
can be eliminated from (3.3a)-(3.3c) and the canonical system can be formulated in the
state-costate-space. The procedure is the following: Express RK and RG in terms of the
states and costates λ1 and K, respectively λ2 and G by solving (3.3a) and (3.3b) for RK

and RG. Three solutions are obtained, but two of them are complex, so the admissible
controls as function of states and co-states are well-defined as:

R∗K(K,λ1) =
1.67989w2

k 3

√
6912d2kλ21K

2δ1 + 3762.42
√
kKδ1λ1d

√
3.375d2kλ21K

2δ1 + w3 + 1024w3

+

0.0165354 3

√
6912d2kλ21K

2δ1 + 3762.42
√
kKδ1λ1d

√
3.375d2kλ21K

2δ1 + w3 + 1024w3

k
−

0.333333w

k
(3.8)

R∗G(G, λ2) =
1.67989w2

g 3

√
6912b2gλ22G

2σ1 + 3762.42
√
gGσ1λ2b

√
3.375b2gλ22G

2σ1 + w3 + 1024w3

+

0.0165354 3

√
6912b2gλ22G

2σ1 + 3762.42
√
gGσ1λ2b

√
3.375b2gλ22G

2σ1 + w3 + 1024w3

g
−

0.333333w

g
. (3.9)
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Solving Equation (3.3c) for a yields four solutions:

a∗1(K,G) = 1−
ε+

√
ε2 − 4

√
c√

3p
(κK + γG)

2(κK + γG)
, (3.10a)

a∗2(K,G) = 1−
ε−

√
ε2 − 4

√
c√

3p
(κK + γG)

2(κK + γG)
, (3.10b)

a∗3(K,G) = 1−
ε−

√
ε2 + 4

√
c√

3p
(κK + γG)

2(κK + γG)
, (3.10c)

a∗4(K,G) = 1−
ε+

√
ε2 + 4

√
c√

3p
(κK + γG)

2(κK + γG)
. (3.10d)

Solution (3.10a) and (3.10c) are not admissible, because the first one cannot be real and
a maximum at the same time and the third is not a maximum if it is less than 1, as
required (see Appendix).

The optimal intertemporal evolution of the system is given by the dynamic system
formed by the four differential Equations (2.3a), (2.3b), (3.3d), (3.3e), taking into account
the temporary equilibrium conditions (3.8), (3.9), (3.10b) or (3.10d),

K̇(K,R∗K(K,λ1)) = dKδ1R∗K(K,λ1)
δ2 −Kφ

Ġ(G,R∗G(G, λ2)) = bGσ1R∗G(G, λ2)
σ2 −Gψ

λ̇1(K,G,R
∗
K(K,λ1), a

∗(K,G), λ1) = c
a∗(K,G)

1− a∗(K,G)
κ− fα1G

α2Kα1−1 + rλ1+

3(1− a∗(K,G))pκ(ε− (1− a∗(K,G))(κK + γG))2−

λ1
(
dδ1K

δ1−1R∗K(K,λ1)
δ2 − φ

)
λ̇2(K,G,R

∗
G(G, λ2), a

∗(K,G), λ2) = c
a∗(K,G)

1− a∗(K,G)
γ − fα2G

α2−1Kα1 + rλ2+

3(1− a∗(K,G))pγ(ε− (1− a∗(K,G))(κK + γG))2−

λ2
(
bσ1G

σ1−1R∗G(G, λ2)
σ2 − ψ

)
The two canonical systems with inserted a(K,G) (two possibilities), RK(K,λ1) and
RG(G, λ2) are shown in Appendix.

3.1.2 Boundary Arc

If one of the multiplicators gets greater than zero, the corresponding optimal control has
to take its boundary value and does not necessarily maximize the Hamiltonian, but the
Lagrangian. To demonstrate the derivation of the canonical system in the boundary arc
case, assume that all multiplicators can be greater than zero and there is zero investment
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in conventional capital, RK = 0, zero investment in green capital, RG = 0, and zero
investment in abatement, a = 0.

The necessary conditions (3.1a)-(3.1e) become then

∂L
∂RK

= −w + µ1 = 0 (3.11a)

∂L
∂RG

= −w + µ2 = 0 (3.11b)

∂L
∂a

= −χa(0, E(K,G)) + 3pE(K,G)(ε− E(K,G))2 + µ3 =

= −cE + 3pE(ε− E)2 + µ3 = 0 (3.11c)

λ̇1 = rλ1 − LK = rλ1 − (FK(K,G)− χE(0, E(K,G))EK(K,G)−

3p(ε− E(K,G))2EK(K,G) + λ1AK(K, 0)) =

= rλ1 − FK(K,G) + 3p(ε− E)2κ+ λ1φ (3.11d)

λ̇2 = rλ2 − LG = rλ2 − (FG(K,G)− χE(0, E(K,G))EG(K,G)−

3p(ε− E(K,G))2EG(K,G) + λ2BG(G, 0)) =

= rλ2 − FG(K,G) + 3p(ε− E)2γ + λ2ψ. (3.11e)

The canonical system reduces to

K̇(K, 0) = −φK, (3.12a)

Ġ(G, 0) = −ψG, (3.12b)

λ̇1 = rλ1 − FK(K,G) + 3p(ε− E)2κ+ λ1φ, (3.12c)

λ̇2 = rλ2 − FG(K,G) + 3p(ε− E)2γ + λ2ψ. (3.12d)

3.2 Steady States

Steady states denote equilibrium solutions (also called fixed points, stationary points or
critical values)4 of the canonical system, which means that the controls and states do not
change (any more), but stay constant forever. If the system starts exactly at one of these
special points, it will remain there. If it starts elsewhere, it will converge into a steady
state and do not change any more from the moment on, the system reaches the steady
state. The term steady state refers therefore to the long-run (asymptotic) behavior of
the dynamical system. The stationary solution(s) (K̂, Ĝ, R̂K , R̂G, â) of the system (2.3),
if existing, are obtained by setting all the equations of the canonical system zero and

4See Grass et al. [2008], p.12
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solving them simultaneously for states and controls.

In the inner case this would mean to solve the seven-dimensional system of equations

0 = dKδ1Rδ2
K −Kφ

0 = bGσ1Rσ2
G −Gψ

0 = rλ1 − (fα1K
α1−1Gα2 − c a

1− a
κ− 3p(ε− (1− a)E(K,G))2(1− a)κ+

λ1(dδ1K
δ1−1Rδ2

K − φ))

0 = rλ2 − (fα2K
α1Gα2−1 − c a

1− a
γ − 3p(ε− (1− a)E(K,G))2(1− a)γ+

λ2(bσ1G
σ1−1Rσ2

G − ψ))

0 = −w − 2kRK + dλ1δ2K
δ1Rδ2−1

K

0 = −w − 2gRG + bλ2σ2G
σ1Rσ2−1

G

0 = −c 1

(1− a)2
E(K,G) + 3pE(K,G)(ε− (1− a)E(K,G))2

for the controls RK , RG and a, the statesK and G and the costates λ1 and λ2, respectively
the four-dimensional system of equations

0 = dKδ1RK(K,λ1)
δ2 −Kφ

0 = bGσ1RG(G, λ2)
σ2 −Gψ

0 = c
a(K,G)

1− a(K,G)
κ− fα1G

α2Kα1−1 + rλ1+

3(1− a(K,G))pκ(ε− (1− a(K,G))(κK + γG))2−

λ1
(
dδ1K

δ1−1RK(K,λ1)
δ2 − φ

)
0 = c

a(K,G)

1− a(K,G)
γ − fα2G

α2−1Kα1 + rλ2+

3(1− a(K,G))pγ(ε− (1− a(K,G))(κK + γG))2−

λ2
(
bσ1G

σ1−1RG(G, λ2)
σ2 − ψ

)
for the special case of δ2 = σ2 = 1

2
. Both systems cannot be solved analytically and have

therefore be considered with concrete parameter values to get a numeric solution (see
Chapter 4).

In the boundary arc case, steady states can be found easily by setting the state dy-
namics and the adjoint equations zero and solving for K,G, λ1 and λ2 simultaneously.
From the state dynamics (Equation (3.12a) and (3.12b)), it follows that

K̂ = Ĝ = 0
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in the steady state. The adjoint Equations (Equation (3.12c) and (3.12d)) yield

λ̂1 = −3pε2κ

φ+ r

λ̂2 = −3pε2γ

ψ + r
.

From the First Order Conditions (3.11a)-(3.11c), the steady state values of the Lagrange
multiplicators can be derived: µ̂1 = w, µ̂2 = w, µ̂3 = 0. Note that all of them are greater
or equal 0 as required.

3.3 Stability

The local stability of an equilibrium point refers to its qualitative behavior and can be
read off the eigenvalues of the Jacobian evaluated at the equilibrium. In the case of the
canonical system in the state-costate-space, the Jacobian has the following form:

J =


K̇K K̇G K̇λ1 K̇λ2

ĠK ĠG Ġλ1 Ġλ2

λ̇1K λ̇1G λ̇1λ1 λ̇1λ2
λ̇2K λ̇2G λ̇2λ1 λ̇2λ2

 =


K̇K 0 K̇λ1 0

0 ĠG 0 Ġλ2

λ̇1K λ̇1G λ̇1λ1 0

λ̇2K λ̇2G 0 λ̇2λ2


The Eigenvalues are determined by solving the characteristic polynomial

D(J − ζE4) = 0

for ζ, where E4 denotes the four-dimensional identity matrix and D the determinant of
the matrix

J − ζE4 =


K̇K 0 K̇λ1 0

0 ĠG 0 Ġλ2

λ̇1K λ̇1G λ̇1λ1 0

λ̇2K λ̇2G 0 λ̇2λ2

− ζ


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 =


K̇K − ζ 0 K̇λ1 0

0 ĠG − ζ 0 Ġλ2

λ̇1K λ̇1G λ̇1λ1 − ζ 0

λ̇2K λ̇2G 0 λ̇2λ2 − ζ

 .
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For the boundary arc case, the following eigenvalues are obtained:

J∗ − ζE4 =


−φ− ζ 0 0 0

0 −ψ − ζ 0 0

−6pεκ2 −6pεκγ r + φ− ζ 0

−6pεκγ −6pεγ2 0 r + ψ − ζ


D(J∗ − ζE4) = (−φ− ζ)(−ψ − ζ)(r + φ− ζ)(r + ψ − ζ)

ζ1 = −φ

ζ2 = −ψ

ζ3 = r + φ

ζ4 = r + ψ

with J∗ being the Jacobian valuated at the considered steady state. The unique equilib-
rium where all three controls are at their boundaries is therefore a saddle point with a
two-dimensional stable manifold, since the number of positive eigenvalues as well as the
number of negative eigenvalues are greater than zero5 and equal.

Since for the inner case, the equilibrium cannot be computed analytically, the stability
will only be determined numerically in the next chapter.

3.4 Sufficiency Conditions

The First Order Conditions only yield candidates for an optimal solution. To be sure,
that a candidate is in fact an optimal solution, one has to check the Sufficiency Condi-
tion6, which requires that the maximized Hamiltonian H∗, i.e. the Hamiltonian with the
maximizing control, is concave in the state variable(s). In the multidimensional case as
here, this means that the Hessian matrix of H∗

D2H∗ =

(
H∗KK H∗KG
H∗GK H∗GG

)
5see Grass et al. [2008], p.45
6In fact, it is called “The Arrow Sufficiency Conditions for Infinite Time Horizon”, see

Grass et al. [2008], p. 159.
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has to be negative semidefinite. Applying again Sylvester’s criterion, this is assured by
the following conditions:

H∗KK = 6(1− a∗)2pκ2(ε− (1− a∗)E) + d (δ1 − 1) δ1λ1K
δ1−2R∗K

δ2 + f (α1 − 1)α1G
α2Kα1−2 < 0,

H∗GG = 6(1− a∗)2pγ2(ε− (1− a∗)E) + d (σ1 − 1)σ1λ2G
σ1−2R∗G

σ2 + f (α2 − 1)α2G
α2−2Kα1 < 0,

H∗KKH∗GG > (H∗KG)2 ⇔(
6(a∗ − 1)2pκ2((a∗ − 1)E + ε) + dλ1 (δ1 − 1) δ1K

δ1−2R∗K
δ2 + f (α1 − 1)α1G

α2Kα1−2
)

(
6(a∗ − 1)2pγ2((a∗ − 1)E + ε) + bλ2 (σ1 − 1)σ1G

σ1−2R∗G
σ2 + f (α2 − 1)α2G

α2−2Kα1
)
>(

6(a∗ − 1)2pγκ((a∗ − 1)E + ε) + fα1α2G
α2−1Kα1−1

)
2

To summarize, analytically only in the boundary arc case an equilibrium could be
obtained for which the stability was determined. For the inner case, the analysis follows
numerically in the next chapter.



Chapter 4

Numerical Results

Because the canonical system (both the seven-dimensional as well as the four-dimensional)
cannot be solved analytically, I searched for solutions numerically with Newton´s method.
Newton´s method is a method for finding approximations to the roots of a real-valued
function.

4.1 Parameter Values

To investigate the behavior of the model (steady states, local stability) and to carry out
bifurcation analysis, the values for the parameters have to be specified. The parameter
values used in a first analysis are listed in Table 4.1. They are chosen in view of the values
used in the thesis of Moser [2010] in order to allow a comparison (see Section 5.2). Note
that all of the chosen parameter values satisfy the necessary requirements, formulated in
the previous subsection and listed also in Table 4.1.

4.2 Steady States

The steady states of the problem are determined by solving

K̇(K,RK) = 0 (4.1a)

Ġ(G,RG) = 0 (4.1b)

λ̇1(K,G,RK , a, λ1) = 0 (4.1c)

λ̇2(K,G,RG, a, λ2) = 0 (4.1d)
∂H
∂RK

(K,RK , λ1) = 0 (4.1e)

∂H
∂RG

(G,RG, λ2) = 0 (4.1f)

∂H
∂a

(K,G, a) = 0 (4.1g)

47
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Parameter Value Description Constraints

b 1 scale parameter of B b > 0
c 1 scale parameter of χ c > 0
d 1 scale parameter of A d > 0
f 1 scale parameter of F f > 0
k 1 scale parameter of cK k > 0
g 1 scale parameter of cG g > 0
p 1 scale parameter of the permits term p > 0
r 0.05 discount rate r > 0
w 0.1 opportunity cost of research 0 < w < 1
α1 0.7 production elasticity of K in F 0 < α2 ≤ α1 < 1, α1 + α2 ≤ 1
α2 0.3 production elasticity of G in F 0 < α2 ≤ α1 < 1, α1 + α2 ≤ 1

δ1 0.3 production elasticity of K in K̇ 0 < δ1 ≤ δ2 < 1, δ1 + δ2 < 1, σ1 ≤ δ1
δ2 0.5 production elasticity of RK in K̇ 0 < δ1 ≤ δ2 < 1, δ1 + δ2 < 1, σ2 ≤ δ2
σ1 0.3 production elasticity of G in Ġ 0 < σ1 ≤ σ2 < 1, σ1 + σ2 < 1, σ1 ≤ δ1
σ2 0.4 production elasticity of RG in Ġ 0 < σ1 ≤ σ2 < 1, σ1 + σ2 < 1, σ2 ≤ δ2
φ 0.05 depreciation rate of K̇ 0 < φ < 1

ψ 0.05 depreciation rate of Ġ 0 < ψ < 1
κ 0.7 emission intensity of K 0 < γ < κ < 1
γ 0.1 emission intensity of G 0 < γ < κ < 1
ε 10 total amount of "allowed" emissions ε > 0

Table 4.1: Parameter values in the basic model.

simultaneously. The functional forms are shown in Equations (3.7a)-(3.7g). From Equa-
tion (4.1a) RK can be expressed as a function of K, from Equation (4.1b) RG as a function
of G:

dKδ1Rδ2
K − φK = 0⇒ RK(K) =

(
φK1−δ1

d

) 1
δ2

(4.2)

bGσ1Rσ2
G − ψG = 0⇒ RG(G) =

(
ψG1−σ1

b

) 1
σ2

(4.3)

From HRK = 0 and HRG = 0, λ1(K,RK) and λ2(G,RG) are obtained. Inserting RK(K)

and RG(G) yields the following functions of K and G:

λ1(K) =
K

1−δ1
δ2

(
φ
d

) 1−δ2
δ2

(
2k
(
φK1−δ1

d

)
1
δ2 + w

)
dδ2

(4.4)

λ2(G) =
G

1−σ1
σ2

(
ψ
b

) 1−σ2
σ2

(
2g
(
ψG1−σ1

b

)
1
σ2 + w

)
bσ2

(4.5)
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Solving Ha = 0 for a(K,G) yields four solutions for a. Two of them are not admissible
(see Appendix). The other two are:

a∗2(K,G) = 1−
ε−

√
ε2 − 4

√
c√

3p
(κK + γG)

2(κK + γG)
,

a∗4(K,G) = 1−
ε+

√
ε2 + 4

√
c√

3p
(κK + γG)

2(κK + γG)
.

The remaining equations from the canonical system are Equation (4.1c) and (4.1d). Com-
bining these two with Equations (4.2)-(4.5) yields two systems (one for each a(K,G)),
each with two equations depending on the state variables K and G. The first system is
given as:

λ̇1(K,G) = cκ

 2E

ε−
√
ε2 − 4

√
c√

3p
E
− 1

+
κ
√

3cp

2

(√
ε2 − 4

√
c√

3p
E + ε

)
−

fα1K
α1−1Gα2 +

K
1−δ1
δ2

(
φ
d

) 1−δ2
δ2

(
2k
(
φK1−δ1

d

)
1
δ2 + w

)
dδ2

(r + φ− δ1φ) = 0

λ̇2(K,G) = cγ

 2E

ε−
√
ε2 − 4

√
c√

3p
E
− 1

+
γ
√

3cp

2

(√
ε2 − 4

√
c√

3p
E + ε

)
−

fα2K
α1−Gα2−1 +

G
1−σ1
σ2

(
ψ
b

) 1−σ2
σ2

(
2g
(
ψG1−σ1

b

)
1
σ2 + w

)
bσ2

(r + ψ − σ1ψ) = 0

The second system (with a4(K,G)) is

λ̇1(K,G) = cκ

 2E

ε+
√
ε2 + 4

√
c√

3p
E
− 1

+
κ
√

3cp

2

(√
ε2 +

4
√
c√

3p
E − ε

)
−

fα1K
α1−1Gα2 +

K
1−δ1
δ2

(
φ
d

) 1−δ2
δ2

(
2k
(
φK1−δ1

d

)
1
δ2 + w

)
dδ2

(r + φ− δ1φ) = 0

λ̇2(K,G) = cγ

 2E

ε+
√
ε2 + 4

√
c√

3p
E
− 1

+
γ
√

3cp

2

(√
ε2 +

4
√
c√

3p
E − ε

)
−

fα2K
α1−Gα2−1 +

G
1−σ1
σ2

(
ψ
b

) 1−σ2
σ2

(
2g
(
ψG1−σ1

b

)
1
σ2 + w

)
bσ2

(r + ψ − σ1ψ) = 0

Figure 4.1 shows the second systems graphically for the parameters in Table 4.1.
The first system has no admissible solution. For the parameters in Table 4.1, only
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Figure 4.1: Contour Plot of λ̇1(K,G) = 0 and λ̇2(K,G) = 0 for the second system.

one steady state can therefore be found which lies at K̂ = 12.9027, Ĝ = 33.6878,
â = 0.139488, R̂K = 0.089721, R̂G = 0.263331, λ̂1 = 0.0777256, λ̂2 = 0.244925. The terms
of the objective function take the following values: F (K̂, Ĝ) = 17.2075, w(R̂K + R̂G) =

0.0353052, cK(R̂K) = 0.00804985, cG(R̂G) = 0.0693431, χ(â, E(K̂, Ĝ)) = 2.01014 and
p(ε − (1 − â)E(K̂, Ĝ)3 = −0.302028. The profit is then F (K̂, Ĝ) − w(R̂K + R̂G) −
cK(R̂K) − cG(R̂G) − χ(â, E(K̂, Ĝ)) + p(ε − (1 − â)E(K̂, Ĝ)3 = 14.7827. In the steady
state, the produced emissions are E(K̂, Ĝ) = 12.4007 and the emissions released into the
atmosphere (net or remaining emissions) are (1 − â)E(K̂, Ĝ) = 10.6709. The eigenval-
ues of the Jacobian are given as: ζ1 = 0.647362, ζ2 = −0.604724, ζ3 = 0.167452 and
ζ4 = −0.0941876. Since the number of eigenvalues with a positive real part as well as
the number of eigenvalues with a negative real part are both positive and equal (two),
the equilibrium is a saddle point with a two-dimensional stable manifold. For a better
overview, all results are listed in Table 4.2.

Note, that all required conditions are satisfied:

• The found equilibrium is admissible, since the control variables are all positive and
a is additionally less than 1.

• The complementary slackness conditions (3.2a)-(3.2c) are fulfilled, since all Lagrange
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Variable/ Term Name Value

K̂ conventional capital 12.9027

Ĝ green capital 33.6878
â percentage rate of abatement 0.139488

R̂K investment in conventional capital 0.089721

R̂G investment in green capital 0.263331

λ̂1 costate associated with K 0.0777256

λ̂2 costate associated with G 0.244925

F (K̂, Ĝ) production function 17.2075

w(R̂K + R̂G) opportunity cost of R&D 0.0353052

cK(R̂K) adjustment costs of brown R&D 0.00804985

cG(R̂G) adjustment costs of green R&D 0.0693431

χ(â, E(K̂, Ĝ)) abatement costs 2.01014

p(ε− (1− â)E(K̂, Ĝ)3 permits term −0.302028
profit term profit 14.7827

E(K̂, Ĝ) produced emissions 12.4007

(1− â)E(K̂, Ĝ) net emissions 10.6709
ζ1 first eigenvalue 0.647362
ζ2 second eigenvalue −0.604724
ζ3 third eigenvalue 0.167452
ζ4 fourth eigenvalue −0.0941876

Table 4.2: Steady State Values of the Standard Parameter Set.

multipliers are zero. They can be computed from Equations (3.1a)-(3.1c):

LRK (K̂, R̂K , λ̂1, µ̂1) = −w − 2kR̂K + λ̂1δ2dK̂
δ1R̂K

δ2−1
+ µ̂1 = 0⇒

µ̂1 = w + 2kR̂K − λ̂1δ2dK̂δ1R̂K

δ2−1
= 0

LRG(Ĝ, R̂G, λ̂2, µ̂2) = −w − 2gR̂G + λ̂2σ2bĜ
σ1R̂G

σ2−1
+ µ̂2 = 0⇒

µ̂2 = w + 2gR̂G − λ̂2σ2bĜσ1R̂G
σ2−1

= 0

La(K̂, Ĝ, â, µ̂3) = −c 1

(1− â)2
E(K̂, Ĝ) + 3pE(K̂, Ĝ)(ε− (1− â)E(K̂, Ĝ))2 + µ̂3 = 0⇒

µ̂3 =
cÊ

(1− â)2
− 3pÊ(ε− (1− â)Ê)2 = 0

• Because the equilibrium is obtained with the solution a4(K,G), the Legendre-
Clebsch Condition is fulfilled and the equilibrium is actually a maximum.

• The Hessian matrix of H

D2H =

(
HKK HKG

HGK HGG

)
=

(
−1.48241 −0.20035

−0.20035 −0.0330695

)
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is negative semidefinite and the Sufficiency Condition is fulfilled too.

4.3 Bifurcation Analysis

For a deeper insight into the subject, bifurcation analysis is used. Bifurcation theory
serves to analyze the possible changes in the dynamical behavior of the model due to
some variation of the parameters. It measures therefore the sensitivity of the system with
respect to changes in the parameters. The unique steady state, found in the previous
section, is considered for different parameter values. The changes concerning equilib-
rium values of the states, costates, controls and function values as well as changes in
the stability are presented in a table as well as in several figures. Because the main fo-
cus of this thesis is the investigation of the implications of climate policy on the firm´s
investment decisions and on economic growth, I start with ε being the subject of variation.

Note that 0 and 1 are model inherited boundaries for a; thus the solutions are consid-
ered only within this range.

4.3.1 Variation of Environmental Standard Parameter ε

A higher ε means a less strict environmental policy, because the government allows more
pollution. ε = 0 reflects the strictest standard possible, no emissions at all are allowed,
which is economical not reasonable and therefore excluded.

Figures 4.2(a) - 4.5(a) illustrate the impact of a variation of ε on the steady state
values of K, G, F , RK , RG and a. The influence of an increasing ε on the accumulation of
capital and hence on production (Figure 4.2(a)) is not surprising. As the environmental
standard gets laxer, capital and therefore production too grows due to falling abatement
and permit costs. That means that environmental standards are a drawback to economic
growth. WhereasK grows nearly constantly, G(ε) is concave and dominant in production-
it lies above K for the whole range. The greatest difference between green and brown
capital is at approximately ε = 23.5, as can be seen in Figure 4.3(a). Increasing ε also
results in an augmentation of investment in capital of both types (Figure 4.2(b)). The
difference between the two types of investment are shown in Figure 4.3(b) and is positive
for all parameter values. The maximum lies at approximately ε = 35.7, i.e. later than
for the capital stocks. The share of green capital in the total amount of capital decreases
with increasing ε (Figure 4.4(a)) which is obvious since brown capital is more productive.
Nevertheless, the share is always greater than 0.5 which means that green capital staying
dominant is optimal for all considered values of ε. The share of investment in green capital
first increases, takes its maximum at ε = 9.9 and then decreases (Figure 4.4(b)). The in-
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fluence of the required environmental standards on the abatement share a (Figure 4.5(a))
is as expected. The greater ε is, which means the more emissions are allowed, the lesser
are the abatement efforts. Figure 4.5(b) depicts the change of the steady state values of
emissions E (dashed line), the emissions that remain after the abatement-process (1−a)E

(thick line) and the difference between the compulsory environmental standard ε and the
remaining emissions: ε − (1 − a)E. Emissions grow of course since both “emissions pro-
ducer” K and G grow. The remaining emissions are nearly the same as the emissions
without abatement since the abatement effort a is rather low, but always chosen in a way
that the remaining emissions are slightly above the required standard and the difference
is constant over ε. The permits term is therefore negative and the firm is punished in
form of costs for exceeding the standards. The evolution of all cost terms can be seen
in Figure 4.6. The thick line depicts the abatement costs χ, the dashed line the permits
term which forms costs resulting from an exceeding of the environmental standard and
the other ones are the adjustment and opportunity costs of investment. For a very high
ε, the abatement costs become zero, but before, they are rather large compared to other
costs and therefore the main source of costs. The permits costs as well as the oppor-
tunity costs stay small, whereas the adjustment costs rise, which is clear since they are
quadratic in investments and investments grow with increasing ε. The abatement costs
maximum lies at ε = 19.7. The profit also increases with ε (Figure 4.7), which affirms
the assumption that a lower ε is worse for the firms. Note that both costates grow too
(Figure 4.8), whereas the costate referring to the state G (dashed line) grows faster than
that referring to K. The eigenvalues are all real (Figure 4.9) and for all values of ε the
number of positive eigenvalues as well as the number of negative eigenvalues are greater
than zero and equal. The stability of the steady state does not change therefore and the
equilibrium point stays a saddle point. The numerical results of state variables, control
variables, costate variables, the terms of the objective function and eigenvalues for se-
lected values of ε are listed in Table 4.3.

In summary, in this model, decreasing environmental standards (a stricter policy) re-
sult in diminishing production inputs as well as outputs and an increasing share of green
capital in total capital. Nevertheless, produced emissions are always greater than ε and
even the emissions left after abatement are greater which yields to penalty costs.

Note, that all required conditions are satisfied:

• The found equilibrium is admissible, since the control variables are all positive and
a is additionally less than 1 (Figures 4.2(b) and 4.5(a)).

• The Complementary Slackness Conditions (3.2a)-(3.2c) are fulfilled, since all La-
grange multipliers are zero, even for the boundary arc a = 0 (for ε = 46.957).
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(a) Steady state levels of K, G and F .
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(b) Steady state levels of RK an RG.

Figure 4.2: Bifurcation diagrams for steady state levels of K, G, F and RK and RG with respect
to ε.

0 10 20 30 40
Ε0

5

10

15

20

25

30
G-K

(a) Steady state levels of G−K.

0 10 20 30 40
Ε0.0

0.1

0.2

0.3

0.4

0.5
RG-RK

(b) Steady state levels of RG −RK .

Figure 4.3: Bifurcation diagrams for steady state levels of G−K and RG −RK with respect to ε.
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(a) Steady state levels of G/(G+K).
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(b) Steady state levels of RG/(RG +RK).

Figure 4.4: Bifurcation diagrams for steady state levels of G/(G + K) and RG/(RG + RK) with
respect to ε.
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Figure 4.5: Bifurcation diagrams for steady state levels of a and E, (1−a)E and ε− (1−a)E with
respect to ε.
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Figure 4.6: Bifurcation diagram for steady state levels of the cost components with respect to ε.
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Figure 4.7: Bifurcation diagram for steady state level of the profit and overall costs with respect
to ε.
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Figure 4.8: Bifurcation diagram for steady state level of λ1 and λ2 with respect to ε.
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Figure 4.9: Bifurcation diagram for steady state levels of the eigenvalues with respect to ε.

• Because the equilibrium is obtained with the solution a4(K,G), the Legendre-
Clebsch Condition is fulfilled and the equilibrium is actually a maximum.

• The Hessian matrix of H (shown for selected values of ε in Table 4.4) is always
negative definite and the Sufficiency Condition is fulfilled too.

4.3.2 Variation of Scale Parameter p

Next to varying the environmental standards parameter ε, a governmental institution
could make the reward or penalty of selling, respectively buying, permission permits
higher. In the following, the parameter p, the scaling parameter of the permits term, is
varied. The change of the equilibrium values are considered in Figures 4.10-4.16. Since
(1− a)E > ε (see Figure 4.12(b)), the permits term represents costs to pay and a greater
scaling parameter means more expensive costs.

Figure 4.10(a) shows the impact of a change in the scaling parameter on the steady
state values of K, G and F : As exceeding the environmental standard ε becomes more
costly, less input is used to produce less output. The same happens with investment RK

and RG (Figure 4.10(b)). Figures 4.11(a) and 4.11(b) depict the change of the ratios
G/(G+K) and RG/(RG +RK). They are constant except for small p, since G and K as
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Variable/ Term ε = 0.001 ε = 16 ε = 31.5 ε = 46.957

K̂ 0.825 20.265 39.144 56.939
Ĝ 2.468 46.105 65.472 76.777
â 0.163 0.116 0.055 0
R̂K 0.002 0.169 0.424 0.717
R̂G 0.003 0.456 0.842 1.113
λ̂1 0.010 0.146 0.411 0.773
λ̂2 0.006 0.501 1.148 0.687
F (K̂, Ĝ) 1.146 25.980 31.462 62.281
w(R̂K + R̂G) 0 0.063 0.127 0.183
cK(R̂K) 0 0.029 0.180 0.514
cG(R̂G) 0 0.209 0.710 1.239
χ(â, E(K̂, Ĝ)) 0.160 2.463 1.984 0
p(ε− (1− â)E(K̂, Ĝ)3 -0.328 -0.278 -0.228 -0.192
profit term 0.658 22.938 42.446 60.152
E(K̂, Ĝ) 0.824 18.831 33.948 47.535
(1− â)E(K̂, Ĝ) 0.690 16.653 32.072 47.535
ζ1 3.470 0.488 0.334 0.277
ζ2 -3.314 -0.436 -0.261 0.205
ζ3 1.025 0.168 0.189 -0.189
ζ4 -0.955 -0.070 -0.053 -0.048

Table 4.3: Steady State values for selected values of ε.

ε 0.001 16 31.5 46.957

D2H
(
−1.78 −0.09
−0.09 −0.07

) (
−1.51 −0.21
−0.21 −0.03

) (
−1.61 −0.23
−0.23 −0.04

) (
−1.70 −0.24
−0.24 −0.04

)
Table 4.4: Hessian Matrix for selected values of ε.

well as RG and RG change with the same rate. As p grows, abatement grows too, which
can be intuitively explained: the more expensive ε− (1− a)E becomes, the greater a will
be in order to diminish the difference(depicted in Figure 4.12(a)). As already noticed, the
difference is diminishing too in K and G and therefore E (Figure 4.12(b)). The difference
stays negative nevertheless. The costates are also diminishing (Figure 4.13) as well as the
permits term −P (Figure 4.14), although p is increasing. Figure 4.14 also shows, that the
steady state abatement costs χ are nearly constant and the other costs (adjustment and
opportunity costs) are negligible small. An increasing p leads to a decreasing profit, as
can be seen in Figure 4.15. Because the permits term are always costs, this is quite clear.
The eigenvalues behave smoothly (Figure 4.16) and assure a saddle point for all values of
p. The numerical results for steady state values of the variables of the model for different
values of p are listed in Table 4.5.
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Variable/ Term p = 0.001 p = 0.103 p = 0.201 p = 0.3

K̂ 36.088 14.642 13.912 13.582
Ĝ 63.048 37.027 35.661 35.026
â 0.065 0.134 0.136 0.137
R̂K 0.379 0.107 0.100 0.096
R̂G 0.789 0.312 0.291 0.282
λ̂1 0.360 0.092 0.086 0.083
λ̂2 1.049 0.303 0.278 0.267
F (K̂, Ĝ) 42.663 19.342 18.452 18.046
w(R̂K + R̂G) 0.117 0.042 0.039 0.038
cK(R̂K) 0.143 0.011 0.010 0.009
cG(R̂G) 0.622 0.097 0.085 0.079
χ(â, E(K̂, Ĝ)) 2.186 2.161 2.101 2.073
p(ε− (1− â)E(K̂, Ĝ)3 -7.440 -0.925 -0.666 -0.547
Profit Term 32.155 16.105 15.551 15.300
E(K̂, Ĝ) 31.566 13.952 13.305 13.010
(1− â)E(K̂, Ĝ) 29.522 12.081 11.490 11.222
ζ1 0.297 0.574 0.602 0.616
ζ2 -0.227 -0.529 -0.588 -0.572
ζ3 0.183 0.165 0.166 0.166
ζ4 -0.052 -0.085 -0.088 -0.090

Table 4.5: Steady State Values for selected values of p.

Note, that also for varying p all required conditions are satisfied:

• The found equilibrium is admissible, since the control variables are all positive and
a is additionally less than 1 (Figures 4.10(b) and 4.12(a)).

• The Complementary Slackness Conditions (3.2a)-(3.2c) are fulfilled, since all La-
grange multipliers are zero.

• Because the equilibrium is obtained with the solution a4(K,G), the Legendre-
Clebsch Condition is fulfilled and the equilibrium is actually a maximum.

• The Hessian matrix of H (shown for selected values of p in Table 4.6) is always
negative definite and the Sufficiency Condition is fulfilled too.

p 0.001 0.103 0.201 0.3

D2H
(
−0.06 0

0 0

) (
−0.49 −0.06
−0.06 −0.01

) (
−0.68 −0.09
−0.09 −0.02

) (
−0.82 −0.11
−0.11 −0.02

)
Table 4.6: Hessian Matrix for selected values of p.
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(b) Steady state levels of RK and RG.

Figure 4.10: Bifurcation diagrams for steady state levels of K, G, F , RK and RG with respect to
p.
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(a) Steady state levels of G/(G+K).
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(b) Steady state levels of RG/(RG +RK).

Figure 4.11: Bifurcation diagrams for steady state levels of G/(G+K) and RG/(RG + RK) with
respect to p.
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Figure 4.12: Bifurcation diagrams for steady state levels of a and E, (1 − a)E and ε − (1 − a)E
with respect to p.
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Figure 4.13: Bifurcation diagram for steady state level of λ1 and λ2 with respect to p.
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Figure 4.14: Bifurcation diagram for steady state levels of the cost components with respect to p.

Profit

Costs

0.05 0.10 0.15 0.20 0.25 0.30
p0

5

10

15

20

25

30

Profit, Costs

Figure 4.15: Bifurcation diagram for steady state level of the profit and overall costs with respect
to p.
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Figure 4.16: Bifurcation diagram for steady state levels of the eigenvalues with respect to p.
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4.3.3 Variation of Emission Intensity Ratio κ
γ

The ratio κ
γ
denotes how much capital of type K pollutes in proportion to capital G.

A small ratio implies that K is not much more pollutive than G. With increasing κ
γ
, K

becomes more and more pollutive. Since 1 < κ < γ < 0, the domain is given as κ
γ
∈ (0, 10).

Figure 4.17(a) depicts the variation of K, G and F , if the ratio κ
γ
changes. All three

of them are decreasing. For κ
γ

= 2, more brown capital than green capital is accumulated
in the steady state, but it decreases faster than G, so that for κ

γ
> 3 K is lower than

G. If the pollution intensity of K is high enough compared to that of G, a movement of
production factors from brown capital to green capital takes place. The same happens
with investment in K and G (Figure 4.17(b)): For κ

γ
= 3 RK is dominated by RG. The

share of G on total capital (Figure 4.18(a)) as well as the share of RG on total invest-
ment (Figure 4.18(b)) increases. a (Figure 4.19(a)) becomes smaller since less emission
is produced (Figure 4.19(b)). The remaining emissions as well as the difference to ε stay
constant for all values of the ratio. The costates decreases too (Figure 4.20) and also
the abatement costs χ are diminishing (Figure 4.21), since E diminishes. Because the
difference ε− (1− a)E stays constant, the permits term does too and the other costs are
again negligible small. The profit decreases (Figure 4.22), because the output decreases.
The number of positive eigenvalues as well as the number of negative eigenvalues is al-
ways positive and equal (Figure 4.23) and the equilibrium point stays a saddle point. The
numerical results for steady state values of the variables of the model for different values
of κ

γ
are listed in Table 4.7.

Summarizing, a more pollutive K, respectively a less pollutive G, leads to greener
production.

Note, that also for varying κ
γ
all required conditions are satisfied:

• The found equilibrium is admissible, since the control variables are all positive and
a is additionally less than 1 (Figures 4.17(b) and 4.19(a)).

• The Complementary Slackness Conditions (3.2a)-(3.2c) are fulfilled, since all La-
grange multipliers are zero.

• Because the equilibrium is obtained with the solution a4(K,G), the Legendre-
Clebsch Condition is fulfilled and the equilibrium is actually a maximum.

• The Hessian matrix of H (shown for selected values of κ
γ
in Table 4.8) is always

negative definite and the Sufficiency Condition is fulfilled too.
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Figure 4.17: Bifurcation diagrams for steady state levels of K, G, F , RK and RG with respect to
κ/γ.
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(a) Steady state levels of G/(G+K).
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(b) Steady state levels of RG/(RG +RK).

Figure 4.18: Bifurcation diagrams for steady state levels of G/(G+K) and RG/(RG + RK) with
respect to κ/γ.
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Figure 4.19: Bifurcation diagrams for steady state levels of a and E, (1 − a)E and ε − (1 − a)E
with respect to κ/γ.
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Figure 4.20: Bifurcation diagram for steady state level of λ1 and λ2 with respect to κ/γ.
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Figure 4.21: Bifurcation diagram for steady state levels of the cost components with respect to
κ/γ.
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Figure 4.22: Bifurcation diagram for steady state level of the profit and overall costs with respect
to κ/γ.
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Figure 4.23: Bifurcation diagram for steady state levels of the eigenvalues with respect to κ/γ.
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Variable/ Term κ/γ = 2 κ/γ = 4.3 κ/γ = 6.62 κ/γ = 9

K̂ 74.299 25.883 13.966 9.072
Ĝ 59.201 41.393 34.458 30.543
â 0.467 0.293 0.158 0.054
R̂K 1.041 0.238 0.100 0.055
R̂G 0.706 0.378 0.274 0.222
λ̂1 1.222 0.211 0.086 0.051
λ̂2 0.902 0.390 0.258 0.197
F (K̂, Ĝ) 69.404 29.798 18.312 13.058
w(R̂K + R̂G) 0.175 0.062 0.037 0.028
cK(R̂K) 1.083 0.057 0.010 0.003
cG(R̂G) 0.500 0.143 0.075 0.049
χ(â, E(K̂, Ĝ)) 18.183 6.333 2.382 0.643
p(ε− (1− â)E(K̂, Ĝ)3 -1.269 -0.544 -0.322 -0.228
profit term 48.197 22.661 15.485 12.107
E(K̂, Ĝ) 20.780 15.295 12.691 11.219
(1− â)E(K̂, Ĝ) 11.083 10.816 10.686 10.611
ζ1 0.203 0.370 0.605 0.879
ζ2 0.199 -0.312 -0.561 -0.840
ζ3 -0.102 0.177 0.168 0.163
ζ4 -0.075 -0.088 -0.094 -0.096

Table 4.7: Steady State Values for selected values of κ/γ.

p 2 4.3 6.62 9

D2H
(
−0.08 −0.03
−0.03 −0.02

) (
−0.47 −0.10
−0.10 −0.03

) (
−1.30 −0.19
−0.19 −0.03

) (
−2.69 −0.29
−0.29 −0.04

)
Table 4.8: Hessian Matrix for selected values of κ/γ.



Chapter 5

Comparison of the Models

In this chapter, connections and differences of the basic model with the models presented
in Section 1.2.1 and 1.2.2 are summarized.

5.1 Rauscher

The model presented in this thesis is an extension of the model of Rauscher [2009]. The
main modifications of Rauscher´s model are the following.

• In Rauscher´s work, the environmental standards are binding. In my work, the
firms have the possibility to exceed the standards and to be punished (in fact, they
are forced to pay for the difference) or they remain under the threshold and as a
reward, increase their profit by selling the difference. An additional term, called the
“permits term”, is introduced which stands for either costs or gains. Thus, the firm
does not have to abate enough emissions to satisfy the environmental regulation-
it can choose freely how much it wants to abate. With the activity of cleaning up,
firms can reduce their total amount of emissions. This benefit, though, comes at a
cost (so-called abatement costs), which reduces the total profit.

• There is, next to the decision of how great the investments in brown and green
capital are, a third decision variable, namely the share in produced emissions which
is abated, a. The abatement costs do no longer depend on ε, but amongst other
things on a.

• Contrary to Rauscher, not only brown capital pollutes but green capital as well
(even though it pollutes less than conventional capital). The actual amount of
produced emissions, E, is explicitly modeled and next to the abatement share a,
the other factor determining the abatement costs. Whereas in Rauscher´s model
end-of-pipe-abatement depends on the exogenous given stringency of environmental
standard and the amount of brown capital and therefore exclusively on the decision

65
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of allocation between brown and green capital, here it depends on the share in
produced emissions which the entrepreneur decides to abate, a, and the total amount
of emissions produced during the production process.

• The present value of future profit instead of utility is maximized. The problem is
considered at firm-level.

• The environmental standard ε gives the negative environmental quality. The smaller
ε, the cleaner the environment will be and the higher the environmental quality will
be. Rauscher assumes that next to the burden, an environmental standard imposes,
the decision maker does also benefit from it. He considers utility derived from ε.
Here, this approach is totally neglected. Firms do only have costs associated with
ε.

• Adjustment costs are considered, which makes investment a bit more expensive.
Rauscher models only opportunity costs.

• Positive knowledge spillovers in the R&D sector as considered in Rauscher´s model
are neglected in this analysis for the sake of simplicity.

Summing up, the main difference is, that firms do no longer have just two, but three
possibilities to avoid, respectively handle pollution:

1. Producing with cleaner, but more expensive (in accumulation and production) tech-
nology G (process-integrated abatement),

2. investing in end-of-pipe abatement after the production process,

3. accepting a punishment in form of permits costs.

Although the model in this thesis is much more complex than Rauscher´s model and
considers additional effects, it supports the results of Rauscher: Stricter environmental
standards (a smaller ε) reduce capital investment in both types of capital (Figure 4.2(b)),
whereas the share of green capital in the total amount of capital rises (Figure 4.4(a)).

5.2 Moser

The model of Moser only differs from Rauscher´s model in the way of modeling the ac-
cumulation processes. As in my work, knowledge spillovers in the R&D sector taken into
account by Rauscher are neglected. Therefore, Moser´s model is closer to the one in
this work, but still differs in several ways: Similar to Rauscher, she assumes two decision
variables and the allocation of resources to conventional R&D, green R&D and end-pf-
pipe-abatement. The environmental standards are still binding and require abatement



CHAPTER 5. COMPARISON OF THE MODELS 67

costs proportional to the polluting type of capital K, but influences the objective func-
tion also positive. There are no adjustment costs and additionally, the objective function
still denotes the utility of the firm instead of the profit as in my work.

Nevertheless, because the functional forms and parameter values in this work are
chosen similar to Moser´s assumption whenever possible, the results can be compared
meaningfully. Note that in my model, the term environmental quality refers to −ε!

• K and G: In both models, the steady state values of K as well as G decline with
increasing environmental quality, but whereas in my model G is dominant in pro-
duction over the whole period (Figure 4.2(a)), in the model of Moser, brown capital
is dominant for small ε (whereas ε refers to environmental quality in contrary to this
work, where ε is the amount of pollution allowed) but declines more than G with
increasing ε until green capital gets dominant over brown capital.

• RK and RG: The steady states values of investment behave just the same as K and
G in both models (Figure 4.2(b)).

• F : In both models, the output F is decreasing with a better environmental quality
(Figure 4.2(a)).

• Objective function: Whereas in my model the profit declines constantly (Figure 4.7),
the steady state utility of Moser´s model first rises up to a peak before it decreases
due to the trade-off between consumption and environmental quality.

• Share of G: In both models, the share of G in total capital, G/(G + K), aug-
ments with increasing environmental quality. In my model, this increase is constant,
whereas in Moser´s model the ratio follows a convex-concave shape.

• Share of RG: Also this ratio increases in the models. In Moser´s model the devel-
opment of RG/(RG + RK) is similar to the development of G/(G+K), whereas in
my model it first increases and then decreases.



Chapter 6

Summary

In order to investigate the impact of different policy options, namely environmental stan-
dards and permission permits, an optimal control model was formulated in Chapter 2. Its
analysis (analytically in Chapter 3 and numerically in Chapter 4) showed how firms react
optimally on exogenous given standards. To test the sensitivity of the system, bifurcation
analysis was applied. The results are compared to two other models of the literature in
Chapter 5.

The investigation of the environmental economic-growth model has produced the fol-
lowing insights:

• For all considered variations of ε, p and κ
γ
, the steady state remaining emissions

(1 − a)E are always (slightly) above the environmental standard ε. As a result,
firms pay a (marginal) punishment for the exceeding.

• The cleanest production (where G
G+K

has its maximum) is found at the lowest ε, the
highest p and the highest ratio κ

γ
.

• For a stricter environmental policy (decreasing ε and increasing p), production out-
put as well as profit and investment decline. Economic growth is therefore rather
repressed, but both policies have a positive impact on the accumulation of green
capital and green R&D, so that they are an adequate tool to turn production greener.
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Appendix
Canonical System in the
State-Costate-Space

Solving Ha = 0 for a yields four solutions for a, since Ha is an equation of fourth degree
in a. These are the following:

a∗1(K,G) = 1−
ε+

√
ε2 − 4

√
c√

3p
(κK + γG)

2(κK + γG)
,

a∗2(K,G) = 1−
ε−

√
ε2 − 4

√
c√

3p
(κK + γG)

2(κK + γG)
,

a∗3(K,G) = 1−
ε−

√
ε2 + 4

√
c√

3p
(κK + γG)

2(κK + γG)
,

a∗4(K,G) = 1−
ε+

√
ε2 + 4

√
c√

3p
(κK + γG)

2(κK + γG)
.

Solution a1 and a3 are not admissible, because the first one cannot be real and a maximum
at the same time and the third is not a maximum if it is less than 1 as required:

• a1(K,G): For a1 being real, the discriminant ε2− 4
√
c√

3p
(κK + γG) has to be positive,

which means ε2 > 4
√
c√

3p
(κK + γG). For a1 being a maximum, the second derivate
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Haa(K,G, (a1(K,G)) has to be negative:

2E

(
− c

(1− a1(K,G))3
+ 3pE(ε− (1− a1(K,G))E)

)
< 0

− c ε+

√
ε2− 4
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c√
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E

2E

3 + 3pE
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E

2E
E
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− 8E3c(
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3p
E
)3 + 3pE
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2
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3p
E

2
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E

)(
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√
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√
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E
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E
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4
√
c√

3p
E
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√
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√
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√
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E
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−16E2c+ 6p
4
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3p
E − 2

√
c√
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E
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ε2 − 4
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3p
E <

4
√
c√
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which cannot be, if a1 is real: ε2 > 4
√
c√

3p
E.
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• a3(K,G): a3 < 1 yields

ε−
√
ε2 + 4

√
c√

3p
(κK + γG)

2(κK + γG)
> 0

ε−
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4
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Haa(K,G, (a3(K,G)) < 0 yields
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The two resulting canonical systems (one for each remaining solution of a) are given by

K̇(K,RK(K,λ1)) =

(
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Ġ(G,RG(G, λ2)) =

(
1.67989w2

g 3

√
6912b2gλ22G

2σ1 + 3762.42
√
gbλ2Gσ1

√
3.375b2gλ22G

2σ1 + w3 + 1024w3

+

0.0165354 3

√
6912b2gλ22G

2σ1 + 3762.42
√
gbλ2Gσ1

√
3.375b2gλ22G

2σ1 + w3 + 1024w3

g
−

0.333333w

g

)σ2
bGσ1 −Gψ



CHAPTER 6. SUMMARY 73
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