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Deutsche Kurzfassung

In dieser Arbeit stellen wir zwei Methoden vor zur Detektion der Anfallsursprungs-
zone von epileptischen Anfällen basierend auf ECoG Daten. Neben einer Einführ-
ung in Epilepsie stellen wir die Grundlagen für die vorgestellten Methoden bereit.
Nach einer gr̈undlichen Analyse der Methoden wird deren Anwendung auf wirk-
liche Daten pr̈asentiert.

Epilepsie ist eine weit verbreitete neurologische Krankheit, die sich durchwieder-
kehrende unprovozierte Anfälle äußert. In dieser Arbeit werden wir uns mit einer
bestimmten Epilepsieform beschäftigen, der Temporallappen-Epilep-sie. In diesem
speziellen Fall gehen die epileptischen Anfälle von einer umschriebenen Region
im Temporallappen des Gehirns aus, der sogenanntenAnfallsursprungszoneoder
auchFokus. Eine chirurgische Resektion der Anfallsursprungszone kann zu einer
Heilung der Anf̈alle führen. Die genaue Lage der Anfallsursprungszone wird durch
eine visuelle Analyse der EEG Daten, oder besser von ECoG Daten (die direkt vom
Gehirn abgeleitet werden), ermittelt.
Die beiden vorgestellten Methoden sollen denÄrzten diese visuelle Analyse ver-
einfachen. Dadurch soll eine Optimierung des postoperativen Outcome erzielt wer-
den.

Die erste vorgestellte Methode basiert auf der kausalen Analyse der ECoGDaten,
diese Methode wird auch in Flamm et al. (2012a) beschrieben. In der vorliegenden
Arbeit verwenden wir vorwiegend das Konzept der Granger Kausalität, die Grund-
idee dieses Konzepts basiert auf der Vohersagbarkeit der Daten. DieNeuheit
und Besonderheit der vorgestellten Methode liegt in der Anwendung derGranger
Kausaliẗat auf Faktormodelle. Da die ECoG Daten viele gleiche Bewegungen
zeigen, eignen sich Faktormodelle gut zu deren Beschreibung.
Wir geben eine Einf̈uhrung in Faktormodelle und graphische Modelle sowie eine
Einführung in Kausaliẗat, siehe auch Flamm et al. (2012b). Basierend auf diesen
mathematischen Gebieten werden wir eine kausale Untersuchungsmethode vorstel-
len, die wirEinfluss-Analysenennen. Wir werden die Eigenschaften der Einfluss-
Analyse diskutieren und sie auf die Daten eines Patienten anwenden. Die Anfalls-
ursprungszone ist bei dieser Methode das Gebiet mit den einflussreichsten Elektro-
den.
Die mit dieser Methode errechnete Anfallsursprungszone deckt sich mit der An-
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iv DEUTSCHE KURZFASSUNG

fallsursprungszone aus der visuellen Analyse derÄrzte.
Die Einfluss-Analyse ist der wichtigste Teil dieser Arbeit.

Die zweite beschriebene Methode ist praktischer als die Erste, weil sie aufder
Segmentierung der Daten basiert. Die zweite Methode wird auch in Graef et al.
(2012a) beschrieben.
Die ECoG Daten sind nicht stationär, das bedeutet die Eigenschaften der Daten
ändern sicḧuber die Zeit. Wir unterteilen die Daten also in Segmente, in denen
sie gleichbleibende Eigenschaften haben. Wir verwenden dazu das sogenannte
Band-Leistungs-Maß, welches auf den physiologischen Frequenzbändern des men-
schlichen Gehirns basiert. Im nächsten Schritt klassifizieren wir den epileptischen
Charakter jedes einzelnen Segments. Rhythmischeϑ-Wellen sind charakteristisch
für Anfälle von Temporallappen-Epilepsie Patienten, deshalb werden Segmente,
die rhythmischeϑ-Aktivit ät zeigen, als epileptisch klassifiziert. Durch die Kom-
bination der beiden Schritte wird der Beginn der epileptischen Aktivität pro Kanal
festgestellt als der Beginn des ersten epileptischen Segments des jeweiligen Kanals.
Die Anfallsursprungszone enthält die Kan̈ale, die die erste epileptische Aktivität
zeigen.
Die Anwendung dieser Methode liefert ebenfalls Ergebnisse, die in guterÜberein-
stimmung mit der visuellen Analyse derÄrzte sind.
Das Band-Leistungs-Maß ist der zweite wichtige Beitrag dieser Arbeit.

Zusammenfassend ist zu erwähnen, dass beide vorgestellten Methoden vielver-
sprechende Ergebnisse liefern. Die durch die Methoden errechnetenAnfallsur-
sprungszonen stimmen mit der Anfallsursprungszone aus der visuellen Analyse
derÄrzte überein.



Abstract

In this thesis we present two mathematical methods for the detection of the epilep-
tic seizure onset zone based on the analysis of ECoG data. We give a stepby step
introduction to epilepsy and provide the background information for our methods.
The two methods are discussed in detail followed by an application to real world
data.

Epilepsy is a common neurological disease which is characterized by recurring
unprovoked seizures. A common sub-type of this disease is temporal lobe epilepsy.
In this special case the epileptic seizures emanate from a circumscribed area in the
temporal lobe, the so calledfocusor seizure onset zone. A surgical removal of the
seizure onset zone should render the patient seizure-free. The clinicians determine
the exact area of this focus by a visual inspection of EEG or preferablyECoG data
(which are recorded directly from the cortex).
The main aim of the two presented methods is to assist the clinicians in this visual
analysis in order to increase the chance of a seizure-free surgical outcome.

The first presented methodology is based on the casual analysis of the ECoG data,
it is also described in Flamm et al. (2012a). The causality concept we will use for
this analysis is Granger causality, which is based on the predictability of the data.
The particularity of the proposed method is the application of Granger causality to
factor models. This model class is used because it is well-fit for the ECoG data
which show co-movement.
We give an introduction to factor models and graphical models as well as an in-
troduction to causality, which is also described in Flamm et al. (2012b). Based on
these mathematical topics we propose our methodology, calledinfluence analysis,
and thoroughly discuss its mathematical properties. Then we apply the influence
analysis to real ECoG data of a patient. The seizure onset zone is found as the area
comprising the most influential electrodes.
The resulting seizure onset zone matches the result of the visual analysisperformed
by clinical experts.
The influence analysis is the main contribution of this thesis.

The second presented methodology is more practical in nature as it is basedon
the segmentation of the data. The methodology is also described in Graef et al.
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(2012a).
The ECoG data are non-stationary, that means the data’s properties change over
time. We partition the data into segments where the data have the same properties.
For this purpose we use a measure based on the physiological frequency bands
of the human brain, this measure is calledband power measure. After this first
step we classify each segment with respect to its epileptic character. Segments
showing rhythmicϑ-activity (which is characteristic for temporal lobe seizures)
are classified as epileptic. Combining the segmentation and the classification we
are able to derive the start of the epileptic activity per channel as the beginof the
earliest epileptic segment. The seizure onset zone is found as the area comprising
the channels showing the first epileptic activity.
The application of this methodology to the aforementioned ECoG data also yields
a result that correlates very well with the visual inspection of the clinicians.
The band power measure is the second major contribution of this thesis.

Summing up, both presented methods show promising first results as they both
detect the seizure onset zone matching the visual analysis of the clinicians.
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We advise reading chapter 3 before this joke.
It will help, maybe.
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Chapter 1

Introduction

This thesis is an interdisciplinary contribution in the fields of statistics and epilepsy
and should be regarded as such. The clear focus of this work is on statisticss as we
will use it to analyze and model electrical brain activity. In this thesis we present
two statistical methods for the detection of the epileptic seizure onset zone. The
necessary medical and mathematical foundations will be provided for the reader.

Epilepsy is a common neurological disease which is characterized by recurring
unprovoked seizures, see Baumgartner (2001). Seizures are characterized by ab-
normal synchronized brain activity in both hemispheres (generalized seizures) or
in a circumscribed area (focal seizures). In this work we focus on temporal lobe
epilepsy, where the seizures emanate from a circumscribed in the temporal lobe, the
so calledseizure onset zoneor the seizurefocus. If an anti-epileptic drug therapy
cannot suppress the seizures, a resective epilepsy surgery removing the seizure on-
set zone is a valuable treatment option, see Schuele and Lüders (2008) and Wiebe
et al. (2001). For this surgery the knowledge of the exact area of the seizure onset
zone is essential.

The focus is normally determined by a visual inspection of the EEG data by clinical
experts. If the scalp EEG does not provide sufficient information, subdural strip
electrodes (directly placed on the cortex) are implanted. This method is called
electrocorticography(ECoG), see Pondal-Sordo et al. (2007). Like in the EEG case
the seizure onset zone is determined by a visual inspection. This visual inspection
is currently regarded as the gold standard of ECoG analysis, see Götz-Trabert et al.
(2008) and Jenssen et al. (2011).

The aim of this thesis is to provide methods to aid the clinicians in the difficult
visual analysis. In other words we present statistical methods for the detection of
the seizure onset zone. These methods are meant as an objectivation andhelp for
the clinicians.

In this thesis we present methods for seizure onset zone detection as wellas their
application to real ECoG data of a patient.

1



2 CHAPTER 1. INTRODUCTION

The first method will be based on the causal analysis of factor models, called influ-
ence analysis, see chapter 6. The second method will be based on the segmentation
of the data and subsequent classification of the segments, see chapter 7.

This work is structured as follows:
In the remainder of this chapter we present the mathematical foundations.
In chapter 2 we introduce the reader to epilepsy. Especially we focus on temporal
lobe epilepsy and its characteristics. We also present the ECoG data of a patient,
which are analyzed in the later chapters.
The basics of causality are presented in chapter 3. We thoroughly discuss the con-
cept of Granger causality in the univariate and the multivariate case. Furthermore,
the most important dependence measures are discussed.
Graphical models are closely related to causality analysis and are presented in
chapter 4. They are an easy way to analyze the inner structure of a stochastic
process.
In chapter 5 we present factor models. The analysis of high-dimensionaltime
series is often problematic due to the curse of dimensionality. Factor models are
a useful tool for the analysis of such high dimensional systems as they reduce the
dimension of the parameter spaces of the models used to describe these data.We
also show how to use principal component analysis (PCA) for our purposes.
We present our first method for the detection of the epileptic seizure onsetzone
in chapter 6. The method is based on the causal analysis of factor models. All
preliminaries can be found in the previous chapters. This chapter signifiesthe
main contribution of this thesis as it merges the causal analysis, factor models and
the neurophysiological aspects.
In chapter 7 we present our second method, which is based on the segmentation of
the data. In this approach the data are segmented and subsequently classified. The
combination of these two steps yields the seizure onset zone. This chapter isthe
second major contribution of this work.
This work is concluded by a thorough discussion and suggestions for the next steps.

1.1 Mathematical introduction

In chapter 2 we discuss the properties of EEG and ECoG data. These ECoG data
are modeled as stochastic processes in this thesis.
In this thesis we distinguish between two different types of processes. In the
classic Granger causal analysis (chapter 3), the discussion of causality measures
(also chapter 3) and graphical modeling (chapter 4) we investigaten-dimensional
stochastic processes (y(t))t∈Z generated byn components. The mathematical prop-
erties of this kind of processes are discussed in this section.
In the factor model case we analyzen-dimensional stochastic processes (x(t))t∈Z,
whose latent variable processχ(t) is generated by a small numberq < n of compo-
nents, as is discussed in chapter 5 and 6.
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We discuss the main differences of these two types of processes and the resulting
influence on the causal analysis in section 6.1.
For notational purposes we simply writey when referring to the whole stochastic
process (y(t))t∈Z, this also applies for all other processes. For a single realiza-
tion/observation we will writey(t).

For the classic Granger causal analysis, we consider ann-dimensional stochastic
process (y(t))t∈Z, y(t) : Ω → Rn , which is weakly stationary with mean zero.
We refer to Hannan and Deistler (2012) and Brockwell and Davis (1991) for a
mathematical introduction to time series analysis.
The covariance function ofy is given byγ(s) = E y(t+ s)y(t)′. Although the covari-
ance function in general does not contain the full information about the underlying
stochastic process, the analysis presented here is based on the covariance only.
As is well known, see Rozanov (1967) and Hannan (1970), a stationary process
has a representation of the form

y(t) =
∫ π

−π
eitλ dz(λ) (1.1)

where (z(λ)|λ ∈ [−π, π]), z(λ) : [−π, π] → Cn is a random process with orthogonal
increments, which is uniquely defined byy.
The spectral distribution function F(λ) of y is defined byF(λ) = E z(λ)z(λ)∗,
where.∗ denotes the conjugate transpose. For convenience we will use the notation
dF(λ) = E dz(λ)dz(λ)∗. Note that dF(λ) describes the importance of a frequency
band in terms of its contribution to the overall variance.
Under the assumption

∑∞
s=−∞ ‖γ(s)‖ < ∞ the spectral distribution function is abso-

lutely continuous, and thespectral density functionis defined asfyy(λ) = dF(λ)/dλ
in the Radon Nykodym sense. In this case, there is a one-to-one relation between
the covariance function and the spectral density:

γ(s) =
∫ π

−π
fyy(λ)e

iλsdλ (1.2)

fyy(λ) =
1
2π

∞∑

s=−∞
γ(s)e−iλs. (1.3)

In this thesis we only consider linearly regular processes, see Rozanov(1967) and
Hannan (1970), i.e. processes where the best linear least squares forecasts tend to
zero if the forecast horizon tends to infinity. Linearly regular processes admit a
Wold representation

y(t) =
∞∑

m=0

K(m)ε(t −m) (1.4)

whereε(t) is n-dimensional white noise process, i.e.E ε(t) = 0, E ε(s)ε(t)∗ =
δstΣ and K(m) ∈ Rn×n,

∑∞
m=0 ‖K(m)‖2 < ∞. Furthermoreε are the innovations

of y, i.e. the one step ahead prediction errors of the best linear least squares
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forecast ofy(t) given its pasty(t − 1), where (for stationary processesy) y(t) =
closure(span({y(s)|s ≤ t})) denotes the space spanned by the past and present of
y(t) in the Hilbert space of all square integrable random variables. Timet represents
the present unless noted otherwise.
In addition we assume that the covariance matrix of the white noiseΣ is non-
singular.
An important special case of linearly regular processes are AR(∞) processes (AR
stands for autoregressive).

For the remainder of the thesis we assume, that the spectral density ofy is bounded
uniformly above and below, i.e. there exists a real constantc such that

c−1In ≤ fyy(λ) ≤ cIn1 for all λ ∈ [−π, π] (1.5)

holds. According to Wiener and Masani (1957), this assumption yields thaty has
anAR(∞) representation

∞∑

m=0

A(m)y(t −m) = ε(t) (1.6)

whereA(m) ∈ Rn×n,
∑∞

m=0 ‖A(m)‖2 < ∞ andA(0) = In holds. The right-hand side
ε is the same white noise process as in equation (1.4), see e.g. Geweke (1984).
Additionally we assume that even

∑∞
m=0 ‖A(m)‖ < ∞ in equation (1.6) holds, there-

fore we we also have
∑∞

m=0 ‖K(m)‖ < ∞ in equation (1.4), see e.g. Brillinger
(1981).
The interested reader may note, that assumption (1.5) ensures thatΣ is non-singular.

We usez to denote the backshift operator onZ: z(y(t)|t ∈ Z) = (y(t − 1)|t ∈ Z), as
well as a complex variable. Using this notation we may rewrite equation (1.6) in a
shorter fashion

a(z)y(t) = ε(t), (1.7)

wherea(z) =
∑∞

m=0 A(m)zm exists inside and on the unit circle. BecauseA(0) = In

and by using ˜a(z) = −∑∞
j=1 A(m)zm we rewrite equation (1.7) as

y(t) = ã(z)y(t) + ε(t). (1.8)

Furthermore, we assume that thestability conditiondeta(z) , 0 for |z| ≤ 1
holds.

1In this contextA < B meansB− A is a positive definite matrix.
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There are two important points we want to highlight here:

First, representation (1.4) is a unique weakly stationary solution of (1.6), and it is
called an AR(∞) process. For the sake of a simple notation we skip the (∞) sign
henceforth.

Second, if assumption (1.5) holds for the whole processy, it also holds for all sub-
processes, and therefore all sub-processes ofy also have an AR representation.
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Chapter 2

Epilepsy

Throughout this thesis we are interested in the temporal evolution of epileptic
seizures. For the reader we provide a step by step introduction to all important
terms and definitions of epilepsy.

2.1 Definition

According to Baumgartner (2001)epilepsyis a collective term for various diseases,
which are characterized by recurring unprovoked seizures. It is important that the
cause for these seizures remain between the seizures.
An epileptic seizureis the clinical manifestation of excessive hyper-synchronous
activity of nerve cells. Depending on the involved brain areas and the seizure type,
the clinical symptoms can range from impairment of consciousness to generalized
convulsions.
Epilepsy is very common and has a prevalence of 0.7%, that means 0.7% of the
general population suffers from epilepsy. The incidence, i.e. the number of new
afflictions, is about 4-5 per 10.000 persons per year in industrial countries, see
Hirtz et al. (2007) for further informations.

2.2 Electroencephalography

A commonly used and important tool in epilepsy research is electroencephalogra-
phy. The combination of electro-(referring to electrical brain activity) encephalo-
(referring to signals from the brain) and gram (or graphy, which meansdrawing)
to the termelectroencephalography(EEG)describes electrical neural activity of the
brain. In other words, the EEG measures the electrical potential difference between
two points on the scalp.
Richard Caton (1811-1926), an english scientist from Liverpool, used a galvanome-
ter with two scalp electrodes to successfully record brain activity in the formof
electrical signals in 1875.

7
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Axon
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bundle

Figure 2.1: Schematic picture of a neuron, adopted from Atwood and MacKay
(1989).

The discoverer of human EEG signals was Hans Berger (1873-1941),a german
psychiatrist. Berger found the first proof for cortical generated potentials on July
24th, 1924 during a surgery. Berger (1929) is a fundamental work regarding EEG.

The presented historical facts are taken from Sanei and Chambers (2009) and
Schneble (2003).

2.3 From cells to seizures

The central nervous system consists of a high number of nerve cells. Each of these
nerve cell consists of a cell body, axons and dendrites, compare figure 2.1 for the
scheme of a neuron. The axon is a long cylinder, which transmits electrical im-
pulses. The dendrites are linked with dendrites or axons of other cells andtransmit
or receive impulses. The main activity of the central nervous system is related with
the impulses traveling over the junctions (also called synapses) between dendrites
and-or axons.

The information between two nerve cells, or in other words the temporal change
in the membrane potential traveling along the axon, is calledaction potential. A
potential of 60-70mV may be recorded under the cell membrane, and this potential
changes with variations in the synaptic activities. The changes in these potentials
are recorded and displayed by the EEG.

The presented biological facts are taken from Sanei and Chambers (2009).

As we mentioned before an epileptic seizure is the clinical manifestation of exces-
sive hyper-synchronous activity of a continuum of nerve cells. This pathological
synchronous activity starts at a small localized brain area and spreads toits sur-
roundings, recruiting more and more cells in the process. This synchronization can
affect both hemispheres of the brain (generalized seizure) or a circumscribed area
in one hemisphere (focal seizure), see Baumgartner (2001).
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2.4 Epilepsy surgery

About one third of the epilepsy patients suffer from therapy-resistant epilepsy,
i.e. their epileptic seizures cannot be controlled by anti-epileptic drugs, seeEn-
gel (1996). A valuable treatment option for these patients is epilepsy surgery.
According to Baumgartner (2001)epilepsy surgeryis a neurosurgical intervention
in order to cure therapy-resistant epilepsy. The aim of this intervention is the re-
moval of the epileptic tissue and the elimination of the seizures’ cause.
The idea behind epileptic surgery is, that the seizures start from a localized area in
the brain, also called theseizure onset zoneor thefocus, and spread from this area.
The surgical extraction of this brain area should abolish the seizures.
Of course it is of highest importance to localize the seizure onset zone as exact
as possible before the surgery. On one hand the seizures shall be stopped by the
surgery, but on the other hand no neurological deficits shall be caused. Therefore, a
thorough presurgical examination has to determine the extent of the epileptogenic
tissue and the area of essential brain regions, like e.g. the motor cortex. Wedis-
tinguish two types of examination methods: non-invasive (phase 1) and invasive
(phase 2) ones, see Lüders (1992) and Engel (1996).
Non-invasive examination methods (phase 1) include:

• prolonged video-EEG-monitoring,

• structural imaging, e.g. magnetic resonance tomography (MRT),

• functional imaging, e.g. positron emission tomography (PET) and

• neuro-psychological tests, e.g. the Wada test.

If the non-invasive examination methods yield non-conclusive or inconsistent find-
ings, invasive methods have to be used for a better localization of the seizure onset
zone. These invasive methods are named after the types of intracranial electrodes
used for the examination, the most common invasive examination methods (phase
2) are:

• epidural peg electrodes,

• subdural strip electrodes,

• subdural grid electrodes and

• implanted depth electrodes.

The examination with subdural strip electrodes is also calledelectrocorticogra-
phy(ECoG). It yields similar results as the EEG, but the electrodes are directly
placed on the cortex. Therefore, the results from ECoG provide a betterspatial
resolution, see Behrens et al. (1994) or Zumsteg and Wieser (2000).
If phase 1 methods do not yield good results, ECoG is a good technique to localize
the seizure onset zone. This localization is done by a visual inspection of the raw
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ECoG data performed by the clinicians. Of course, this analysis is time-consuming
and has to be conducted by experienced clinicians, but it is still regardedas gold
standard, see G̈otz-Trabert et al. (2008) and Jenssen et al. (2011).

The first recorded epilepsy surgery was conducted by Wilder Penfield(1891-1976)
in Montreal, see Schneble (2003). He removed a tumor from an adolescent’s brain
and thereby cured the patient from his daily seizures. Penfield closely worked
together with Herbert Jasper (1906-1999), who was a specialist in the use of the
EEG developed by Berger in order to localize the seizure onset zone.

2.5 Mathematical ECoG analysis

The aim of this thesis is an objectivation of the visual seizure onset zone local-
ization as described in the previous section by mathematical methods. We want
to aid the clinicians in the difficult localization task. There has recently been an
increasing interest in the mathematical analysis of ECoG and EEG data, aiming at
the quantification of the aforementioned synchronous activity in order to detect the
seizure onset zone, see Kim et al. (2010) and Wilke et al. (2008).
We will present two mathematical methods for the localization of the seizure onset
zone based on ECoG data. First, we present a methodology for the causal analysis
of factor models, see chapter 6. Second, we propose a novel method based on the
temporal delays of rhythmicϑ-activity to detect the seizure onset zone, see chapter
7.

The mathematical analysis of EEG started early, when Berger and Dietsch applied
Fourier analysis to the EEG data, see Dietsch (1932). The invention of the Fast
Fourier Transformation algorithm promoted this field of research significantly.

2.6 Temporal lobe epilepsy

As the name indicates,temporal lobe epilepsy (TLE)refers to an epilepsy syndrome
emanating from the temporal lobe, see figure 2.2. Depending on the exact area, we
distinguish betweenmesialandneocorticaltemporal lobe epilepsies.
Mesial temporal lobe epilepsy (mTLE) is the most common epilepsy syndrome
among therapy-resistant patients. Therefore, it is important to improve mathemat-
ical methods for the localization of the seizure onset zone for TLE patients.It is
important to note that epilepsy surgery renders about 70-80% of the patients seizure
free in the TLE case, see Baumgartner (2001).

Different epilepsy syndromes have different characteristic EEG correlates. These
correlates are used for the localization of the epileptogenic zone. Temporal lobe
epilepsy is typically distinguished by a rhythmicϑ-activity (3-8 Hz) at the ictal
(ictal means during a seizure) onset zone, see Foldvary et al. (2001). Thismeans
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Figure 2.2: Schematic picture of the brain, adopted from Paulsen and Waschke
(2010).

thatϑ- waves at the beginning of the seizure are a strong indicator for the seizure
onset zone. Other indicators might also be possible.

For the remainder of this thesis we focus onϑ-oscillations, which are especially
important for TLE patients. The localization methods we will present in chapter6
and 7 will exploit this rhythmicϑ-activity.

2.7 Presentation of the data

In this thesis we will apply two proposed methods (see chapter 6 and 7) to ECoG
data taken from a patient (male, 43 years) suffering from focal epilepsy. During
the seizures he shows characteristicϑ-waves, which are normally associated with
temporal lobe epilepsy. We want the reader to get a grasp at the data and therefore
present them here.2

The patient underwent a presurgical long-term video EEG monitoring at the Hospi-
tal Hietzing with Neurological Center Rosenhügel. Three subdural strip electrodes
with a total of 25 channels were implanted. The electrode B1, which is far away
from the (conjectured) seizure onset zone, was chosen as reference. Compare the
magnet resonance image (MRI)in figure 2.3 for details. Because B1 is the refer-
ence electrode we have measurements of 24 channels available.
A MicromedR© system with a sampling frequency of 1024Hz was used for the
recording. Afterwards the data were preprocessed in MatlabR©. First, the line inter-
ference was removed using a notch filer at 50Hz. Second, a high-passfilter at 1Hz
got rid of physiologically irrelevant low-frequency contributions. Thenthe signals
were downsampled to 128Hz after the application of a low-pass filter at 64Hzto

2Up to the date of this thesis the exact lay of the seizure onset zone of the patient is not clear.
The clinicians initially conjectured the patient to have temporal lobe epilepsy due to the rhythmic
ϑ-activity, but the visual analysis of the ECoG data suggests that his onsetzone is rather temporo-
occipital or occipital. The results of our analysis confirm this visual finding.
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Figure 2.3: MRI picture of the brain including the electrode positions.

avoid aliasing.

During the examination time the patient had four epileptic seizures within 2 hours.
We analyze the first three seizures because the data quality of the fourth seizure is
bad. For a better understanding of the data, we will present the first 15 seconds of
each seizure here. As we have already mentioned in section 2.6, we analyze the
ϑ-activity in the initial seizure phase in order to draw conclusions regardingthe
seizure onset zone.
Seizure 1 is shown in figure 2.4, seizure 2 in figure 2.5 and seizure 3 in figure 2.6.
The most important time points of the seizures, like the exact starting and ending
times according to the visual analysis of the clinicians, are summarized in table
2.1.
Considering the visualization of the three seizures we see a common behavior. The
initial stage of each seizure contains the following phases:

• First signs: The occurrence ofhigh-frequency oscillations(HFOs)(75 Hz)
signifies the beginning of the epileptic seizure. These HFOs have a very
small amplitude and a short duration, which makes their visual detection
difficult. Recently high-frequency oscillations have seen a lot of interest,
because they also are used for the localization of the seizure onset zone.

• Paroxysmal activity: The blocks of high amplitude 30 Hz activity affect only
some channels. Their influence on the epileptic seizures for this patient is
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not clear as they also occur during the seizures.

• Intermediate phase: This is the time period between the paroxysmal activity
and the synchronization phase.

• Synchronization Phase: The beginning of the rhythmicϑ-activity (3-8 Hz)
signifies the beginning of this phase. The channels of the seizure onset zone
are the first to show the distinctϑ oscillations. As time progresses theϑ-
activity spreads to the other uninvolved channels, this behavior is called
seizure propagation. This characteristic behavior leads to a synchronization
of almost all observed channels.

This is the most important phase for our analysis, because the first channels
showing the distinctϑ-rhythm are said to be the seizure onset zone. We will
return to this point later in chapter 7.

• Distinct ϑ-activity: In this phase nearly all observed channels show a char-
acteristicϑ-activity. This phase has a very long duration compared to the
other ones. The clinical signs of the epileptic seizures shortly start after all
channels show the described distinctϑ-rhythm.

Seizures 1 and 2 exactly show the described behavior, whereas the highfrequency
oscillations are not present in seizure 3.

The focus of this thesis lies on the analysis of theϑ-activity, therefore the HFOs
and the paroxysmal activity will not be considered in this work. For the interested
reader we mention that HFOs also have a good localizing value, see e.g. Engel and
da Silva (2012) and Zijlmans et al. (2011).

In chapter 7 we will analyze all three presented seizures and in chapter 6we will
investigate the first seizure in detail.
In figure 7.4 the initial stage of the first seizure is shown, this figure also includes
the beginning of the epileptic activity per channel marked by three clinical experts.
The results of this figure are summed up in table 6.1.

2.8 Problems in ECoG data analysis

The ECoG data presented in section 2.7 are biological real world data. Therefore,
a lot of problems or rather challenges may occur in the data analysis.
In the works Graef (2008), Graef et al. (2008) and Schuster and Kalliauer (2009)
seizure onset zone localization was done based on ECoG data analysis. Three main
problem fields have been identified in these works:

• Stationarity: As aforementioned the ECoG data are biological data. We want
to apply stationary methods, but the data are non-stationary. The main ideas
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seizure time event

1 16:12:38 beginning
1 16:12:45 start of rhythmicϑ-activity
1 16:12:50 clinical start
1 16:14:18 clinical ending
1 16:15:07 ending

2 16:47:58 beginning
2 16:48:06 start of rhythmicϑ-activity
2 16:48:22 clinical start
2 16:49:46 clinical ending
2 16:50:33 ending

3 17:18:20 beginning
3 17:18:32 start of rhythmicϑ-activity
3 17:18:55 clinical start
3 17:20:28 clinical ending
3 17:21:20 ending

Table 2.1: Clinical findings of the three seizures, by a visual inspection ofthe
clinical experts.

to solve this problem include: Segmentation of the data into stationary seg-
ments, see e.g. Ombao et al. (2005) and Inouye et al. (1995), the use of
a sliding window, see e.g. Bodenstein and Praetorius (1977) or Gath et al.
(1992), or adaptive estimation, see e.g. An and Gu (1989).

• Dimension reduction: Due to the high correlation (caused by the spatial
proximity of the electrodes and the synchronization of theϑ-activity in ic-
tal periods) there occur problems in the estimation of the whole 24 channel
system. The main idea to solve this problem focuses on the reduction of the
information, i.e. to extract the important information out of the data. Ideas
to cope with this problem include: the use of factor models, see e.g. Deistler
et al. (2010), or the selection of important channels for the analysis, seee.g.
Graef et al. (2012b).

• Dependence (or causality) measures: The main idea behind the application
of dependence measures in seizure onset zone localization is the following:
Because the epileptic activity (i.e. theϑ-rhythm) spreads from the seizure
onset zone to the other channels, one could imagine that the seizure onset
zone influencesor causesthe other channels. The literature offers a wide
variety of such measures, see e.g. Baccala and Sameshima (2001) or Kamin-
ski and Blinowska (1991), but the question is, which measure is best fit for
seizure onset zone localization?

For more information on dependence measures see chapter 3.
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As aforementioned we will present two methods for the detection of the seizure
onset zone later on.
In chapter 6 we propose a methodology which is based on dimension reduction
and and dependence measures. In particular we conduct a causal analysis of factor
models.
A more practical approach is presented in chapter 7. The second proposed method-
ology is based on a segmentation method. For this segmentation we use a novel
measure based on the physiological frequency bands of the brain.



Chapter 3

Causality

In this thesis we are interested in the detection of the epileptic seizure onset zone
based on ECoG data. One possible approach for this detection is the use ofcausal
analysis in the context of time series. Following this idea we analyze the depen-
dencies between component processes of a multivariate stationary process.

It is important to distinguish between directed and undirected dependencies. Most
of the undirected dependence relations are symmetric in nature, but for our pur-
poses the directed relations are more important.
Furthermore, we distinguish between direct influences (between two component
processes) and indirect influences (mediated by other components).

A common and renown concept of causality in the context of time series is Granger
causality, which yields directed dependence relations. The idea behind Granger
causality is based on the predictability of a stochastic process.
The concept of Granger causality as well as its implementation by regular AR-
systems have been introduced in Granger (1969). The original definitionfocused
on the relation between univariate processes, but multivariate extensionshave also
been proposed. For our purposes we use the multivariate definition of Granger
causality introduced in Eichler (2007).

Besides the dependence structure of a stationary process itself, the strength of each
individual dependence relation is often important. There exist various ideas for
dependence measures in the literature, and we present the most important ones in
this chapter.

We give the exact definitions of the dependence measures. These definitions are
based on the (second order) population statistics. For the application to actual data
statistical testing is necessary, but this is not in the focus of this thesis and willonly
be discussed briefly.

19
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This chapter signifies the basis for the following parts of this thesis, where we will
extensively draw information from here. All definitions in this chapter are based
on the mathematical introduction in section 1.1.

We start with an historical introduction to causality in section 3.1. We present the
concept of Granger causality in section 3.3 and its multivariate extension in section
3.4. Undirected dependence measures are presented in section 3.2 as well as di-
rected ones in section 3.5. We briefly discuss the application of Granger causality
to actual data in section 3.6.

3.1 History

As causality is one of the main concerns of this thesis, we present a brief historical
summary concerning the evolution of the notion causality. The following informa-
tions are taken from the epilogue of Pearl (2000).

Every human has a basic thought what causality is or what the cause for an effect is.
But despite this fact the notion of causality is shrouded in mystery and controversy
when it comes to its definition for scientists and philosophers.
The urge to askwhy is a very old habit of humankind. In the bible God asks Adam
if he ate from the tree of knowledge. God wanted to know the facts and Adam
brought forth an explanation of his deeds. The statement of this anecdoteis clear:
causal explanation is a man-made concept.

In ancient times only gods, humans and animals could cause things to happen,
objects or events were not considered causes. This view of the world changed with
the rise of engineering. With a large enough lever Archimedes would have moved
the earth itself.
Archimedes considered the purpose of an event or object as its complete explana-
tion. He even called it the final cause.
In the renaissance God’s role as the final cause was taken over by human know-
ledge, and the notion of causality changed.

A drastic change in the way causality was considered and moreover a drastic
change for science itself happened, when Galileo published his bookDiscorsi in
1638. He proposed two rules for proper scientific investigations:

1. Description first, explanation second. This means that thehowprecedes the
why.

2. The description has to be done in mathematical language, namely equations.

This idea caused a lot of uproar among scientists and philosophers of this era, be-
cause why should nature be describable by mathematical equations. But weall
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know that mathematical equations prevailed as a good description tool for natural
observations and we all know what happened to Galileo.

Physicists embraced Galileo’s first maxim and it led to a lot of empirical laws in
physics, like Hooke’s law or Joule’s law. Philosophers discussed Galileo’s rules
thoroughly.
Hundred years after the Discorsi the philosopher David Hume argued that thewhy
is not second to thehow, but that thewhy is superfluous as it is subsumed by the
how. He also writes about the flame and the heat as cause and effect, and infers the
existence of the effect from that of the cause. Thus causal connections are solely a
product of human observation.
He was not aware that his definition was flawed, because as we today know: cor-
relation does not imply causation.

Bertrand Russell wrote in 1913 that causality is a relic of bygone ages. Hecom-
plained about physics where the laws were bi-directional but the often discussed
causality was not. The physicists did not pay attention to this discrepancy andhad
great success in splitting the atom.

In another discipline the need for the distinction between causal relations and other
relationships rose, namely statistics. In 1888 Francis Galton measured the length
of forearms and the size of people’s heads. He related these two quantitiesstrictly
based on data and conjectured that the occurring co-relation was due to acommon
cause.
Karl Pearson, one of Galton’s students, discarded the concept of cause and ef-
fect in 1911. He introduced so called contingency tables as the ultimate scientific
statement. Thus Pearson denied the need for an independent concept of causality
beyond correlation, he exterminated the notion causality from statistics before it
had a chance to take root.

In the year 1936 Sir Ronald Fisher formulated the randomized experiment. This is
the only scientifically proven method of testing causal relations from data andto
this day, the one and only causal concept permitted in mainstream statistics.

Today scientists and even statisticians have an ambivalent relation to causality. We
want to underline this by a quote of Terry Speed:

Considerations about causality should be treated as they have always
been treated in statistics: preferably not at all but, if necessary, then
with very great care.

In Pearl (2000) a novel concept for the causal analysis of temporallynon-ordered
data was introduced, based on the idea of interventions.
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In this thesis we are interested in the causal analysis of temporally ordered data,
namely time series. In a certain sense this is easier than the non-ordered case. We
use the causal concept proposed in Granger (1969) based on an idea in Wiener
(1956). The two basic principles of this concept are that the cause precedes the
effect, and that cause and effect are correlated. In other words, the knowledge of
the cause helps the prediction of the effect.

We hope to have given the reader a small glimpse at causality’s history and its
problems.
Considering all the aforementioned problems the causal analysis of a multivariate
system is not an easy task, especially not the causal analysis of brain structures
during an epileptic seizure.

3.2 Undirected dependence measures

In this section we present the most prominent undirected measures for the depen-
dence between component processes of ann-dimensional stationary processes.

3.2.1 Coherence

From the spectral representation of a stationary process (1.1) we obtaina measure
of the strength of linear dependence in the frequency domain. Letyi andy j be uni-
variate sub-processes ofy, with the corresponding orthogonal increment processes
zi(λ) andzj(λ) respectively.
The idea of thecoherenceis to measure the squared coefficient of correlation be-
tween dzi(λ) and dzj(λ)

C2
i j (λ) =

|E {dzi(λ)dzj(λ)}|2

E |dzi(λ)|2E |dzj(λ)|2
=
| fi j (λ)|2

fii (λ) f j j (λ)
(3.1)

where fi j is the (i, j)-element of the spectral densityfyy from equation (1.3). Thus,
the coherence is a frequency specific measure for the dependence betweenyi and
y j , which is bounded between 0 and 1. By construction it is a measure of the
strength of dependence between the frequency weights dzi(λ) and dzj(λ).

The coherence is a very simple measure, and sinceC2
i j (λ) is obviously symmetric,

it is not possible to detect a direction of influence fromC2
i j (λ).

The second disadvantage is its incapability to distinguish between direct and indi-
rect influences. This means ifC2

i j (λ) indicates linear dependence betweenyi and
y j , there might be a direct influence between the two channels or the dependence
could be mediated via a third channelyk (or via a path of other channels).
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3.2.2 Partial spectral coherence (PSC)

As the ordinary coherence is not capable to distinguish between direct and indirect
dependencies, we are searching for a measure which may do so. This leads us to
the partial spectral coherence (PSC). The idea of the PSC is simple, we remove the
influence of all other channels before considering the dependence betweenyi and
y j .

The partial spectral coherence is constructed in the following way: In order to mea-
sure the dependence betweenyi andy j (i , j) after removing the influence of all
other variables,yV\{i, j} = (yk|k , i, j)′ say, we projectyi as well asy j onto the
Hilbertspace spanned by past, present and futureyV\{i, j} in theL2 over the underly-
ing probability space. This projection leads to the residualsηi andη j

ηi(t) := ηi|V\{i, j}(t) = yi(t) −
∞∑

k=−∞
Di(k)yV\{i, j}(t − k) = yi(t) − di(z)yV\{i, j}(t) (3.2)

η j(t) := η j|V\{i, j}(t) = y j(t) −
∞∑

k=−∞
D j(k)yV\{i, j}(t − k) = y j(t) − d j(z)yV\{i, j}(t)

where the filtersdi(z) andd j(z) minimize the variance of the residuals. As a side
note this definition can simply be extended from component processes to multi-
variate sub-processes ofy as follows, for disjoint sub-setsA, B,C ⊂ V we have

ηA|C(t) = yA(t) −
∞∑

k=−∞
DA(k)yC(t − k) = yA(t) − dA(z)yC(t) (3.3)

ηB|C(t) = yB(t) −
∞∑

k=−∞
DB(k)yC(t − k) = yA(t) − dB(z)yC(t)

where the filtersdA(z) anddB(z) minimize the variance of the residuals.
We resume our analysis and now look at the spectrum of the process (ηi , η j)′ and let
fηiη j denote the corresponding cross-spectrum. This cross-spectrum is a frequency
specific measure for the dependence between betweenyi andy j given allyV\{i, j}.
Scaling leads to the definition of thepartial spectral coherence(PSC)

R2
i j |V\{i, j}(λ) =

| fηiη j (λ)|2

fηiηi (λ) fη jη j (λ)
. (3.4)

As has been shown, see e.g. Dahlhaus (2000), there exists a more convenient way
to compute the partial spectral coherence using the inverse of the spectral density
f −1
yy (λ) of the original processy:

R2
i j |V\{i, j}(λ) =

∣
∣
∣( f −1

yy (λ))i j

∣
∣
∣
2

( f −1
yy (λ))ii ( f −1

yy (λ)) j j
(i , j) (3.5)
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where (f −1
yy (λ))i j is the (i, j)-element off −1

yy (λ).

The partial spectral coherence is bounded between 0 and 1. Obviouslyit is a sym-
metric measure, so no dependence direction may be inferred by its use. Theclear
advantage of the PSC is, that it measures the direct influence fromyi to y j , be-
cause the indirect influences via other channels are filtered out. This property is
important and useful.
The PSC also has as another advantage: Given actual data, instead of fitting a
finite AR model, the partial spectral coherence can be estimated based on a non-
parametric spectral estimator using equation (3.5). For this procedure a test with
the null hypothesisH0 : R2

i j |V\{i j }(λ) = 0 has been described in Dahlhaus et al.
(1997). The interested reader may be referred to Brillinger (1981) fora thorough
theoretical discussion of the PSC.

3.3 Granger causality

There have been long and thorough discussions about causality throughout the last
decades, see section 3.1, and there exist various ideas how to define causality.
The causality concept we will mainly use in this thesis is Granger causality, as in-
troduced in Granger (1969). This section will heavily draw from this paper.

As already stated Granger causality is aconceptof causality and we also present
the framework for its application. The theoretical considerations are based on the
second population moments. For the application of Granger causality to actualdata
statistical testing is necessary as will be discussed in section 3.6.
Although the application of the Granger causality concept only yields a statement
whether one stationary process causes another or not, it is easy to derive a causality
measure based on Granger causality as we will see in subsection 3.5.1.

The basic idea behind Granger causality was introduced in Wiener (1956): A vari-
able (or time series) is calledcausalfor another variable if the prediction of the
second is improved by incorporating information about the first in the analysis.
However, Wiener lacked the framework for the application of the conceptin his
work.

Before moving further we introduce some helpful notations in order to present
the original definition of Granger causality. For a stationary processz, let z(t) =
closure(span({z(s)|s ≤ t})) denote the space spanned by the past and present ofz.
Time t represents the present unless otherwise noted. Lety1 andy2 be two uni-
variate stationary processes. Denote the optimal predictor ofy2(t + 1) using the set
of valuesy1(t) by P(t + 1;y2|y1). For instance,P(t + 1;y2|y2) will denote the best
linear predictor ofy2(t + 1) using past and present ofy2. Letσ2(y2|y1) denote the
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variance of the prediction errorε(t + 1) = y2(t + 1)− P(t + 1;y2|y1). Furthermore,
we useu(t) to denote all the information in the universe up to timet. The notation
u\y1 refers to all information in the universe apart from the information of process
y1. Using these notations we may state the following definition.

Definition 3.1 (Original definition of causality according to Granger). We say that
y1 is causingy2, if

σ2(y2|u) < σ2(y2|u\y1). (3.6)

Thusy1 is causal fory2 if the prediction from all information is better than the
prediction from all information apart fromy1.
As a side note we want to mention the implicit assumption that the information
represented iny1 is not included in other parts ofu. We will come back to this
point later.

Granger also gave the definition offeedbackandcausality lagin Granger (1969),
but they are of no importance to us. There is only one additional definition wewant
to list here.

Definition 3.2 (Definition of instantaneous causality according to Granger). We
say thaty1 is instantaneously causingy2, if

σ2(y2|u, y1(t + 1)) < σ2(y2|u) (3.7)

In other wordsy2(t + 1) is better predicted when additionally usingy1(t + 1) in the
prediction.

Granger made some restrictions in order to reach a testable form for his original
definition of causality.
First, the knowledge of all information in the universeu is unlikely, so we rather
use a stationary process representing the relevant informationd, wherey2 andy1

are component processes ofd. Thus the definition of causality is now relative tod.
Second, in practice it will usually not be possible to derive complete optimal (inthe
least squares sense) predictors, therefore we restrict ourselves tolinear predictors
only. In the Gaussian case the optimal predictors would be linear.
Third, it can be argued that the variance is not a proper criterion to measure the
difference between the predictorP(t + 1;y2, .) andy2(t + 1). However, the variance
seems to be a natural criterion, particularly in conjunction with linear predictors.
Taking all these restrictions into account, Granger called his definition of causality
the linear causality in mean with respect to d.

Although Granger proposed a concept for the causality between two univariate
processes with respect to a multivariate process, a lot of authors nowadays address
Granger causality as the special bivariate case of his definition.
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Definition 3.3 (Original definition of bivariate causality according to Granger). We
say thaty1 is causingy2, denoted byy1→ y2, if

σ2(y2|y2) > σ2(y2|y2, y1). (3.8)

Thusy1 is causal fory2 if the knowledge of the present and past ofy1 improves
the prediction ofy2(t + 1), i.e. the variance of the prediction error is smaller when
using the past and present of bothy2 andy1 compared to using only the past and
present ofy2 itself.
Criterion (3.8) can also be checked as follows. Lety(t) = (y1(t), y2(t))′ in the sense
of section 1.1, we then analyze the causal influence fromy1 to y2 by considering
the joint AR representation (1.8) at time pointt + 1, which exists according to the
assumptions made,

(

y1(t + 1)
y2(t + 1)

)

= ã(z)

(

y1(t + 1)
y2(t + 1)

)

︸            ︷︷            ︸

+

(

ε1(t + 1)
ε2(t + 1)

)

(3.9)

(∑∞
m=1 A11(m)y1(t + 1−m) +

∑∞
m=1 A12(m)y2(t + 1−m)

∑∞
m=1 A21(m)y1(t + 1−m) +

∑∞
m=1 A22(m)y2(t + 1−m)

)

where Cov((ε1(t), ε2(t))′) = Σ.
Because of the properties of AR representations, the lower line of equation (3.9)
represents the orthogonal projection of (y1(t + 1), y2(t + 1))′ onto its past, which is
its best linear predictor.
Therefore, we see thaty1 is non-causal for y2 if ã21(z) = 0 (i.e. A21(m) = 0 ∀m),
which is equivalent to an unchanged prediction error when usingy1(t) additional
to y2(t). Otherwisey1 is causal fory2.
Note that this alternative version of criterion (3.8) is based on non-causality rather
than causality. In the next section we will continue exploiting non-causality rela-
tions.

As aforementioned, the original bivariate definition of causality is often called
Granger causality in modern literature. Granger’s original definition is seldom
used as there are no (explicit) requirements onu or respectivelyd.
Different authors proposed multivariate extensions to Granger’s bivariatedefinition
of causality, but these extensions are not necessarily consistent with theoriginal
definition. A non-exhaustive list of extensions and modifications is Granger (1980),
Granger (1988), Hosoya (1977) and Florens and Mouchart (1985).
We will use the multivariate extension of Granger’s classic definition introduced in
Eichler (2007) as presented in the next section.
There have also been modifications to Granger’s definition in order to analyze non-
linear causality, see e.g. Freiwald et al. (1999) and Marinazzo et al. (2011).
We want to refer to Bressler and Seth (2011) for a good overview and additional
information regarding Granger causality.
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The interested reader may have noted, that there is a difference between the concept
of Granger causality and the framework for its application. For the remainder of
this thesis, we will address the application of the concept of Granger causality
rather than the concept itself when we speak of Granger causality.

3.4 Multivariate Granger causality

In this section we present a multivariate extension of Granger’s classic definition
of causality which was proposed in Eichler (2007). We also present two additional
equivalent criteria for this definition and discuss important facts regarding the mul-
tivariate extension.

For the remainder of this section let (y(t))t∈Z be ann-dimensional stationary process
satisfying the assumptions of section 1.1. LetV = {1, . . . ,n}, we associate the
elements ofV with the component processes ofy. We use the notationyV(t) for
y(t) to stress the fact that the elements ofV correspond to the one-dimensional
component processes ofy. To refer to a sub-process corresponding toS ⊆ V we
write yS(t) = (ys(t)|s ∈ S)′, for a component process we simply writeyi .
Deducted from the assumptions in section 1.1 each sub-processyS (S ⊆ V) of
yV satisfies the same assumptions asyV itself, and therefore it also has an AR
representation (corresponding to representation (1.7))

aS(z)yS(t) = εS(t), (3.10)

whereaS(z) is the respective AR power series andεS(t) is the corresponding white
noise process, Cov(εS(t)) = ΣS > 0. Analogously to representation (1.8)) we get

yS(t) = ãS(z)yS(t) + εS(t). (3.11)

Let A andB be disjoint subsets ofS ⊆ V, thenaS
BA(z) = (aS

ba(z)|a ∈ A,b ∈ B) refers
to the sub-matrices ofaS(z) corresponding to the influence fromyA to yB.
With these notations we may state the following definition.

Definition 3.4 (Definition of multivariate Granger non-causality according to Eich-
ler). Let A andB be disjoint subsets ofS ⊆ V. Then the processyA is Granger
non-causal for yB with respect to yS (denoted byyA9 yB|yS) if

ãS
BA(z) = 0, (3.12)

(⇔ AS
BA(m) = 0 ∀m) i.e. if the sub-matrices of the AR power series in representa-

tion (3.11) corresponding to the influence fromyA to yB is zero. Of course, this is
equivalent toaS

BA(z) = 0.
In other words, the past and the present ofyA(t) do not influence the linear predic-
tion of yB(t + 1) in the AR representation ofyS.
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Note that this definition is formulated in terms of non-causality, ifyA is notGranger
non-causal foryB with respect toyS, we say thatyA is causal for yB with respect to
yS, denoted byyA → yB|yS. If the relation (non-causality or causality) betweenyA

andyB with respect toyS has yet to be determined we will writeyA
?→ yB|yS.

This definition of causality is sometimes referred to asconditional Granger causal-
ity, because the causal effect ofyA onyB conditioned onyS\{A∪B} is analyzed.
Furthermore, we want to note that the coefficients inãS represent the (orthogonal)
projection coefficients ofyS(t + 1) ontoyS(t) in analogy to the bivariate case in
equation (3.9).

In the following we present two equivalent criteria, which were also proposed in
Eichler (2007).
Criterion (3.12) is based on the autoregressive coefficients and it is equivalent to

det(Σ(yB|yS)) = det(Σ(yB|yS\A)), (3.13)

whereΣ(yB|yS) denotes the covariance matrix of the prediction error when predict-
ing yB(t + 1) fromyS(t).
In other wordsyA is Granger non-causal foryB with respect toyS if the determi-
nant of the prediction error covariance matrix does not decrease whenusing yA

additional toyS\A for the prediction ofyB, i.e. it is unchanged.
This criterion relates to Granger’s original definition, which is also based on the
prediction error.
In Barrett et al. (2010) the use of the trace instead of the determinant is discussed.

Before we move to a third equivalent criterion we introduce the following notation.
For A, B,C ⊆ V we remove the influence ofyC(t) from yA(t) andyB(t), compare
equation (3.3),

ηA|C(t) = yA(t) −
∞∑

k=0

DA(k)yC(t − k) = yA(t) − dA(z)yC(t) (3.14)

ηB|C(t) = yB(t) −
∞∑

k=0

DB(k)yC(t − k) = yA(t) − dB(z)yC(t)

where the filtersdA(z) anddB(z) minimize the variance of the residuals. We use the
following abbrevation if the residuals are uncorrelated

yA(t)⊥yB(t)|yC(t) :⇐⇒ E ηA|C(t)ηB|C(t)′ = 0 for all t ∈ Z. (3.15)

Furthermore, we use

yA(t)⊥yB(t)|yC(t) :⇐⇒ yA(t)⊥z|yC(t) for all z ∈ yB(t), for all t ∈ Z. (3.16)
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A third equivalent criterion for Granger non-causality can be stated in terms of a
non-correlation relation,

yB(t + 1)⊥ yA(t)|yS\A(t) for all t ∈ Z. (3.17)

These non-correlation relations are often called conditional independence relations
due to their origin from the iid graphical model case. In our setting this name is
misleading because we only have non-correlation.
In criterion (3.17) we see why it is actually more convenient to work with non-
causality relations, because they signify non-correlation relations or rather condi-
tional independence relations. In chapter 4 we will further work with thesecondi-
tional independence relations.
Of course, these three criteria are equivalent, but depending on the circumstances
the effort for checking (in theoretical considerations or for statistical testing with
actual data) may differ.

For the sake of completeness, we also present the following definition, which is the
multivariate extension of Granger’s instantaneous causality.

Definition 3.5 (Definition of contemporaneous non-correlation). The processesyA

andyB arecontemporaneously uncorrelated with respect to yS (denoted byyA /

yB|yS) if
ΣS

AB = 0,

i.e. if the sub-matrix ofΣS corresponding to the setsA andB (in analogy to the
definition of aS

BA(z)) is zero. This criterion can also be formulated in terms of a
conditional independence relation

yA(t + 1)⊥ yB(t + 1)|yS(t) for all t ∈ Z. (3.18)

In our considerations we will rather focus on the non-causality relations than the
(contemporaneous) non-correlation relations.
In a certain sense the (contemporaneous) non-correlation relations areindepen-
dence relations, where the temporal sampling resolution is not sufficient to detect
the direction of the independence.
We conclude our thoughts concerning (contemporaneous) non-correlation relations
by the following fact. In the context of Granger causality analysis the leading AR
coefficientA(0) is always fixed as the identity. Therefore the covariance matrix of
the errors is also fixed, but there exist other causality definitions where the leading
AR coefficient does not need to be the identity, see Faes and Nollo (2010).

There are some important points we want to highlight in connection to the defini-
tion of Granger non-causality at this point.

The causality relation betweenyA to yB with respect toyS of course depends on
S. We emphasize this, because the causality relations could change for changing
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subsets. For example, ifyA → yB|yS holds,yA 9 yB|yS′ could hold forS′ ⊂ S.
At first this might sound counter-intuitive, but at second glance it is clear. We will
return to this problem in chapter 4. Granger also stressed the importance ofthe
information seriesd in his original definition, because a change ofd to d′ could
change the causal relations.

For a complete causal investigation of the stationary processy, one has to consider

all independence relations for all arbitrary sub-processes of the form yA
?→ yB|yS

(and all (contemporaneous) non-correlation relations). For a large numbern this
can be a huge effort, but a short and elegant way to gain more insights in the
structure of the process is graphical modeling, which will be discussed in chapter
4.
However, we restrict our analysis to one-dimensional setsA andB, i.e. we only
investigate the causality between two component processes given the information
of the whole process. In other words, we concentrate on relations of theform

yi
?→ y j |yV. This is reasonable, because these relations are the basis for graphi-

cal modeling, and therefore they can be used to infer relations for arbitrary sub-
processes, see chapter 4.
The analysis of the causality between two univariate component processesgiven
the whole process is straight forward using the three aforementioned criteria. How-
ever, for a better understanding we want to state the causality definition forthis
restricted case. Using the notations we introduced above we have the following.

Definition 3.6 (Definition of Granger non-causality). Let yi andy j (i , j) be two
component processes ofyV. Then the processyi is Granger non-causal for yj with
respect to yV (denoted byyi 9 y j |yV) if one of the three following equivalent
criteria holds

ã ji (z) = 0, (3.19)

σ2(y j |yV) = σ2(y j |yV\{i}) or (3.20)

y j(t + 1) ⊥ yi(t)|yV\{i}(t) for all t ∈ Z. (3.21)

The processesyi and y j are contemporaneously uncorrelated with respect to yV

(denoted byyi / y j |yV) if one the two following equivalent criteria holds

Σi j = 0 (3.22)

yi(t + 1) ⊥ y j(t + 1)|yV(t) for all t ∈ Z. (3.23)

Of course all aforementioned remarks concerning the general definitionalso ap-
ply to the restricted definition. Criterion (3.19) is based on the AR coefficients,
criterion (3.20) focuses on the variance of the prediction error and criterion (3.21)
signifies the respective conditional independence relation.
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The interested reader surely has noted one important fact. The definition of non-
causality according to criterion (3.20) equals non-causality in the sense ofGranger’s
classic definition if the relevant informationd equalsyV. In other words, if the im-
portant information comprises all observed processes the two definitions of causal-
ity are equal. Thus Eichler’s multivariate definition of (non-)causality is a reason-
able extension of Granger’s classic definition.

The above definitions and criteria for multivariate Granger causality are based on
regular AR systems. This means that the number of observations, i.e. the dimen-
sion ofy, equals the number of driving components, i.e. the dimension of the white
noise processε (with a regular covariance matrix). Therefore, Granger causality
analysis should be used for data satisfying this requirement. Typically observed
data can be modelled by a regular AR system, but in practical applications this
sometimes leads to ill-conditioned covariance matrices. This problem often occurs
with high-dimensional co-moving data such as EEG (or ECoG) data. In chapter
5 and 6 we will extract the co-moving parts of such data for further investiga-
tion. These co-moving parts are normally generated by a far smaller number of
components than the number of observations. A normal Granger causal analysis
according to the definitions presented in this section would yield misleading results
for such data.

For the remainder of this thesis, we will use the term Granger causality to refer to
the definition of multivariate Granger causality based on criteria (3.12), (3.13) and
(3.17). Of course the restricted case according to criteria (3.19), (3.20) and (3.21)
is included in this notion.

3.5 Directed dependence measures

In the last section we encountered the definition of Granger causality, its applica-
tion only yields a (non-)causality relation. Supposeyi is causal fory j (yi → y j |yV),
but this relation does not give any information about the strength of the causality.
We want to know howy j changes for changes ofyi (in our linear setting). It is
a naturally arising question how to measure the strength of the influence between
two processes.
Therefore, we present the most common dependence measures from neuroscience
literature in this section. In Blinowska (2011) a good overview over the mostcom-
mon dependence measures can be found.

The measures related to Granger causality could be called causality measures, but
the more common term, also including the measures not based on Granger causal-
ity, is simply dependence measures. Note that other definitions of causality are
viable too, so other measures could also be called causality measures. But inthis
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thesis we focus on Granger causality as our main concept of causality.

The measures gathered in this section are mainly from neuroscience literature, and
sometimes we will refer to single component processesyi of yV as channels.
When we speak of the dependence (or influence) fromyi to y j , yi is called the
source channelandy j is called thetarget channel. In this context we speak ofall
target channels, when we refer to the channelsym (m , i) with ami(z) , 0, i.e. we
mean all channels influenced byyi . Respectively we mean all channelsym (m, j)
with a jm(z) , 0 when we speak ofall source channels. This is a sloppy but intuitive
formulation.

Our presentation of these measures is theoretical in nature. The applicationof these
dependence measures to actual data requires statistical testing, but this is not in the
focus of this section.

3.5.1 Measure of conditional linear dependence

The first measure we want to present is directly related to Granger causality. It
was originally proposed in Geweke (1984), its predecessor, the measure of linear
dependence, was proposed in Geweke (1982).

For the motivation of this measure we recall the definition of non-causality ac-
cording to criterion (3.20), which readsσ2(y j |yV) = σ2(y j |yV\{i}). We then simply
construct the log ratio of these two terms.
The measure of conditional linear dependence from yi to yj with respect to yV is
defined as

Fi→ j|V\{i, j} = ln
σ2(y j |yV\{i})

σ2(y j |yV)
, (3.24)

whereσ2(y j |yV) denotes the variance of the prediction error when predictingy j(t+
1) fromyV(t).

Although it is called dependence measure, it actually measures Granger causality.
The measure (3.24) equals zero in case of non-causality, and yields positive values
in the case of causality. Further details regarding the properties of this measure can
be found in Geweke (1984) and Barrett et al. (2010).
The application of the measure of conditional linear dependence to actual data and
the corresponding statistical testing is briefly described in Geweke (1984).
The measure of conditional linear dependence is sometimes calledGranger causal-
ity index(GCI), see e.g. Winterhalder et al. (2005).

3.5.2 Directed transfer function (DTF)

The second directed dependence measure we want to present is the directed trans-
fer function as proposed in Kaminski and Blinowska (1991). Using the moving
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average coefficients of equation (1.4) we define thetransfer functionas k(z) =
∑∞

m=0 K(m)zm and note thatk(z) = a(z)−1 holds under the assumptions of section
1.1.
The transfer function itself measures the influence from the driving white noise
process to the observed variables, the DTF is a normalized variant of this influ-
ence. The question is, how do the influences from the transfer function translate to
the dependencies between component processes ofyV?

Thedirected transfer function(DTF) fromyi to y j (with respect toyV) is defined as

γ2
ji (λ) =

|k ji (λ)|2
∑n

m=1 |k jm(λ)|2 (3.25)

wherek(λ) is a short notation fork(e−iλ) (here we usedi =
√
−1) andk ji (z) is the

( j, i) element of the transfer functionk(z).

The directed transfer function is a directed dependence measure. Its denominator
provides a normalization, and therefore the DTF is bounded by 0 and 1. This
normalization is with respect to all source channels.
The nominator of the DTF measures the total information flow fromyi to y j . This
fact can be seen by expandingk(z) = a(z)−1 as a geometric series using the nota-
tions introduced in section 1.1

k(z) = a(z)−1 = (I − ã(z))−1 =

∞∑

m=0

ã(z)m = I + ã(z) + ã(z)2 + . . . .

Considering the off diagonal elements (i.e.i , j) we obtain

k(z) ji = (a(z)−1) ji = ã(z) ji +
∑

m

ã(z) jmã(z)mi +
∑

m,ℓ

ã(z) jmã(z)mℓã(z)ℓi + . . . .

This shows that the nominator is the sum of the direct and all indirect information
flows fromyi to y j .
The DTF measures the total information flow between two components in a multi-
variate system including direct and indirect influences. Therefore, noconclusions
may be drawn concerning the direct pathways of the information propagation. So
the DTF is not useful in cases when we want to find the causal structure of a mul-
tivariate system.
Following this line of thought, it was shown in Eichler (2006c) that the directed
transfer function does not detect Granger causal relations except inthe bivariate
case.

The properties of the directed transfer function are reviewed in the original paper
Kaminski and Blinowska (1991) and a thorough discussion can be foundin Kamin-
ski et al. (2001). The DTF is an often used and common dependence measure in
neuroscience literature.
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3.5.3 Direct directed transfer function (dDTF)

In order to overcome the problem of indirect information flows that we encoun-
tered when discussing the directed transfer function, Korzeniewska etal. proposed
a combination measure of the directed transfer function (DTF) and the partial spec-
tral coherence (PSC).
Thedirect directed transfer function(dDTF) fromyi to y j (with respect toyV) was
proposed in Korzeniewska et al. (2003) and is defined as

δ2ji (λ) = γ
2
ji (λ)R

2
ji |V\{i, j}(λ). (3.26)

The DTF is used to identify the direction of the information flow, and the PSC is
used to filter out the indirect flows, so the directed direct information flows are the
only remaining ones.
As has been pointed out in Eichler (2006a) the statistical properties of the dDTF
have not been investigated so far and an analysis of actual data based on the dDTF
could detect wrong relationships.

3.5.4 Partial directed coherence (PDC)

Another simple and yet efficient idea is to construct a frequency specific depen-
dence measure directly based on the AR coefficients. Thepartial directed co-
herence(PDC) fromyi to y j (with respect toyV) was introduced in Baccala and
Sameshima (2001) and is defined as

π2
ji (λ) =

|ã ji (λ)|2
∑n

m=1 |ãmi(λ)|2
, (3.27)

whereã(λ) is a short notation for ˜a(e−iλ) (here we usedi =
√
−1) andã ji (z) is the

( j, i) element of the AR power series ˜a(z).

The PDC can be seen as the direct information flow fromyi to y j normalized with
respect to all target channels. Due to the normalization the partial directed coher-
ence is bounded between 0 and 1.
The careful reader may have noted, that this normalization is different than the one
of the DTF. The DTF is normalized with respect to all source channels for one tar-
get channel. This is reasonable, because the original meaning ofk ji is the influence
from εi to the target channely j . In contrast, the PDC is normalized with respect
to all target channels for one source channel, so the partial directed coherence will
mark the strongest influences departing from a single channel. Of course other
normalizations would be conceivable too.

The partial as part of the PDC’s name stems from the derivation of the mea-
sure, where Baccala and Sameshima factorized the partial spectral coherence and
skipped some components. The word partial normally refers to the removal of the
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influences of all other components when considering the influence fromyi to y j , or
in other words the direct influence fromyi to y j . As the AR coefficients themselves
signify these direct influences and the PDC is based on these coefficients, the par-
tial directed coherence only shows direct effects.

Obviously the PDC is a directed measure. The partial directed coherence iswidely
used in neuroscience literature and a renown dependence measure. Itsproperties
are discussed in the original paper Baccala and Sameshima (2001), and amore
thorough discussion can be found in Schelter et al. (2005). There exist a lot of
extensions of the classic PDC, see e.g. Baccala et al. (2007) and Faes and Nollo
(2010).

The advantage of the partial directed coherence is the clear interpretationas the nor-
malized direct information flow. Furthermore, it has a clear connection to Granger
causality. Non-influence in terms of PDC is equivalent to Granger non-causality as
can be easily seen,

π2
ji (λ) = 0 ∀λ ∈ [0,2π] ⇐⇒ ã ji (λ) = 0 ∀λ ∈ [0,2π] ⇐⇒
⇐⇒ A ji (m) = 0 ∀m ⇐⇒ ã ji (z) = 0.

Thus dependence in the PDC sense is equivalent to Granger causality. Of course,
this is a theoretical connection.

For the practical implementation of the dependence analysis using the PDC statis-
tical testing is necessary. For further information on this topic we refer to Schelter
et al. (2005).

3.5.5 Generalized partial directed coherence (gPDC)

A disadvantage of the PDC is, that it is not scale invariant, meaning that it is not
invariant under different choices of the unit of measurement. To overcome this
problem an extension of the partial directed coherence was introduced inBaccala
et al. (2007).
Thegeneralized partial directed coherence(gPDC) fromyi to y j (with respect to
yV) is defined as

π̃2
ji (λ) =

Σ−1
j j |ã ji (λ)|2

∑n
m=1Σ

−1
mm|ãmi(λ)|2

(3.28)

whereΣ j j is the (j, j)-component of the error covariance matrix.
This modification turns out to be more robust than the PDC when processing actual
data.

The PDC is a widely used dependence measure and there exist a lot of modifica-
tions in literature, the gPDC is just one of its various extensions. There is onlyone
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extension beside the gPDC we want to mention here, it is the so called renormal-
ized partial directed coherence as introduced in Schelter et al. (2009).

3.5.6 Extrinsic-to-intrinsic-power ratio (EIPR)

In the discussion of the partial directed coherence we mentioned, that in thecal-
culation of the PDC fromyi to y j also the other channelsyV\{i, j} are involved via
the normalization. In Hartmann et al. (2008) a novel dependence measure, called
extrinsic-to-intrinsic-power ratio (EIPR), was proposed, where only the source and
the target channel are involved in the calculation of the measure.

For the derivation of the EIPR we rewrite the line of equation (1.8) corresponding
to y j in the following way

y j(t) =
n∑

i=1

ã ji (z)yi(t) + ε j(t) = ã j j (z)y j(t)
︸     ︷︷     ︸

µ j j (t)

+
∑

i∈V\{ j}
ã ji (z)yi(t)
︸     ︷︷     ︸

µ ji (t)

+ε j(t) =

= µ j j (t) +
∑

i∈V\{ j}
µ ji (t) + ε j(t),

where we callµ j j (t) the intrinsic contribution termandµ ji (t) thepartial extrinsic
contribution term.
Theextrinsic-to-intrinsic-power ratio(EIPR) fromyi to y j (with respect toyV) is
defined as

η2ji =
Var(µ ji (t))

Var(µ j j (t))
. (3.29)

The EIPR is physiologically motivated as it shows similarities to a signal-to-noise
ratio.
A thorough discussion of the EIPR’s properties can be found in Graef et al. (2012b).
In this article the relation between the EIPR and the PDC is described as well as
the connection between the EIPR and Granger causality.

3.5.7 Other dependence measures

In this section we gave a brief overview over the most common dependence mea-
sures in neuroscience literature. Of course there exists a very broad range of mea-
sures between two signals in the literature based on different ideas and models.
These measures differ in the kind of influence they observe, i.e. direct or indi-
rect influence, as well as the considered directionality, i.e. directed or symmetric
measures.
We presented only models based on the linear framework of section 1.1, butthere
are also non-linear approaches like e.g Freiwald et al. (1999) and Marinazzo et al.
(2011).
A lot of measures can also be found in information theory literature, see e.g.Gabor
(1946) and Schreiber (2000).
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3.6 Statistical Inference

In this section we want to answer the question, how to actually compute Granger
non-causality relations.
In practice we start by fitting an AR(p)-model to the observed datay(t),T = 1, . . .T
(instead of the theoretical AR(∞)-model). The orderp of the model is determined
by means of an information criterion like AIC or BIC. For further information on
the estimation we refer to Hannan and Deistler (2012) or Lütkepohl (2007). This
procedure yields an estimation of the AR polynomial ˆa(z).

There are several ideas how to construct a statistical test for Grangernon-causality,
and we briefly present two of them.
Our first statistical test is directly based on the AR coefficients and is described
in Eichler (2005). According to criterion (3.19)yi is Granger non-causal fory j

(with respect toyV) if A ji (m) = 0 for m = 1, . . . , p. In practice the estimations
Â ji (m) will not be exactly zero, so we have to apply a statistical test. If the obser-
vationsyV(t) are normally distributed, the AR estimatesÂ ji (m) (computed by the
Yule Walker equations) are asymptotically jointly normally distributed with mean
A ji (m). Under the null hypothesis thatyi is Granger non-causal fory j (with respect
to yV) (H0 : yi 9 y j |yV), a simple test statisticsS ji can be constructed based on
the estimations of the AR coefficients. The statisticsS ji is then asymptoticallyχ2

distributed withp degrees of freedom.

We have seen in subsection 3.5.4 that non-dependence in the PDC sense for all
frequencies is equivalent to Granger non-causality. Therefore, wecan statistically
test if the PDC is zero for all frequencies in order to yield a Granger non-causality
relation. In Schelter et al. (2005) this procedure and the statistical properties of its
test are discussed thoroughly.

As we will see in chapter 6 an F-test on the coefficientsâ(z) is also possible to
determine Granger causal relations.

3.7 Partial Granger causality

The identification of causal structures in biological systems can be confounded
by exogenous inputs. This means that the recorded variables are likely to be in-
fluenced by unrecorded variables. A novel variant of the measure ofconditional
linear dependence from subsection 3.5.1 was introduced in Guo et al. (2008) in
order to cope with these influences.
The idea of this novel measure called partial Granger causality is to first calculate
the prediction errors and then to partialize out the instantaneous effects ofyi on
y j . The log ratio of the partialized prediction errors is the considered measureof
causality.
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Before giving the definition we repeat the definition of the measure of conditional
linear dependence from equation (3.24) for a better understanding

Fi→ j|V\{i, j} = ln
σ2(y j |yV\{i})

σ2(y j |yV)
= ln

Var(y j |yV\{i})

Var(y j |yV)
.

The causality measurepartial Granger causalityfrom yi to y j (with respect toyV)
is defined as

F P
i→ j|V\{i, j} =

= ln
Var(y j |yV\{i}) − Cov(y jyV\{i, j}|yV\{i})Var(yV\{i, j}|yV\{i})−1Cov(yV\{i, j}y j |yV\{i})

Var(y j |yV) − Cov(y jyV\{i, j}|yV)Var(yV\{i, j}|yV)−1Cov(yV\{i, j}y j |yV)
,

where Var(y j |yV) denotes the variance of the prediction error when predictingy j(t+
1) from yV(t) and Cov(y jyV\{i, j}|yV) denotes the covariance of the prediction errors
when predictingy j(t + 1) (or respectivelyyV\{i, j}(t + 1)) fromyV(t).
In this definition we see that the instantaneous effects ofyi ony j are partialized out.
We already encountered a partialization in subsection 3.2.2 in a dynamic context,
but for the partial Granger causality it is just a static partialization.

Due to the removal of these instantaneous effects, the measure shows positive fea-
tures when applied to data with exogenous inputs. The properties of this measure
are discussed in detail in the original paper Guo et al. (2008) and are revisited in
Barrett et al. (2010).

The interested reader may have noted, that the nomination partial Granger causality
is sloppy for a measure of causality, because it is misleading in regard to the def-
initions of sections 3.3 and 3.4. It should rather refer to a type of (non-)causality
where partialized prediction errors are compared following the idea of criterion
(3.13).

If there is no correlation between the components of the prediction errors,the par-
tial Granger causality equals the measure of conditional linear dependence, in this
case it would measure (Granger) causality. In case of correlations the connec-
tion to Granger causality is more difficult, but as mentioned in the last paragraph
partial Granger causality could be the basis for the definition of a novel type of
(non-)causality.

3.8 Additional information

In this chapter we presented the concept of Granger causality as well asundirected
and directed dependence measures. There are further important topicsin this con-
text we want to mention.
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On one hand we introduce ideas, which we will revisit in later chapters, andon the
other hand we present additional information for the interested reader.

3.8.1 Granger causality

The framework for the application of Granger causality is based on regular AR
systems, i.e. the covariance matrixΣ of the errors has full rank. In this case the
three criteria (3.12), (3.13) and (3.17) are equivalent, or respectively criteria (3.19),
(3.20) and (3.21). Especially the projection (fromy(t+1) onyV(t + 1)) coefficients
in criterion (3.19), which are displayed ina(z), are unique. A zero projection coef-
ficient signifies a Granger non-causality relation.
In applications with high-dimensional co-moving data, such as e.g. EEG or ECoG
data, the error covarianceΣ will be almost singular. IfΣ is singular the projection
coefficients are not necessarily unique (although the projection itself is). If the
projection coefficients are not unique, the contribution of e.g.yi(t) to y j(t+1) is no
longer well defined and therefore the notion of Granger causality itself is no longer
well defined in this case.
In chapter 6 we present a methodology for the causal analysis of a singular AR
system, i.e. the covariance matrixΣ of the errors is singular. The idea will be to
rewrite the singular AR representationa(z)y(t) = ε(t) into an MA representation
y(t) = w(z)ε(t), wherew(z) is a tall transfer function. By analyzing selections of
w(z) we will yield influence statements for the whole process.
To our knowledge the first Granger causal analysis of a process via an MA repre-
sentation was proposed in Sims (1972).

As we mentioned in the discussion of the multivariate Granger causality, it is very
important to specify the conditioning set for the causal relations. This meansthat

the relationyi
?→ y j |yV could change when we consider a sub-systemS of V (S ⊂

V). This can be extended to a second sub-systemR ⊂ S where the relation could
change again, and so on. These changing causality relations are called spurious
causalities, they were first mentioned in the original paper Granger (1969) and the
trivariate case was analyzed in Hsiao (1982). If we know the original system, we
will see in chapter 4 how to retrieve non-causality relations for sub-systems.
The other direction is much more sophisticated. If we have only observed a sub-
system, is it possible to state causal relations for the original system? But the more
pressing question is, how do we notice that we have only observed a sub-system?
Especially when working with real data we can never be sure to have included all
important variables in our investigation. But at least there are some indicators for
the presence of a larger original system.
In all our considerations (apart from chapter 4) we assume that all important vari-

ables are included in the analysis. This implicates that the relationsyi
?→ y j |yV

really indicate direct relations. IfV would be the sub-set of a larger original sys-
tem U, these relations could include direct as well as indirect effects. If not all
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important variables are included in the analysis, we refer to Eichler (2005)and
Eichler (2009).

When speaking of causality in neuroscience literature there are two prevalent con-
cepts. We thoroughly discussed Granger causality, which is based on a linear time-
discrete model. The second renown causality concept is calleddynamic causal
modelingand was proposed in Friston et al. (2003). Its framework is based on a
non-linear time-continuous model.

3.8.2 Dependence measures

We presented spectral and non-spectral dependence measures, where the spectral
measures are dependent on the frequencyλ. Both types of measures have advan-
tages and disadvantages.
Spectral dependence measures can be evaluated for each frequency. On one hand
this is an advantage if you are interested in the dependence of specific frequency
bands, e.g. the dependence between channels in theϑ-band in EEG data. But on
the other hand a rule has to be defined for the calculation of an overall dependence
statement (summing up the information for all frequencies), and this rule couldbe
an error source.
Non-spectral dependence measures normally yield only a single number to quan-
tify the strength of the dependence.

As aforementioned there exist a lot of different dependence measures in neuro-
science literature. A good comparison of the most important measures can be
found in Florin (2010). In this work the application of the measures to actualdata
via statistical testing is described thoroughly.

Up to this point we only talked about the stationary case. This means that the
dependence betweenyi andy j does not change over time. Of course, this assump-
tion is not reasonable for real world data, especially for EEG and ECoG data. A
simple idea to cope with instationarities is the use of a sliding window, where the
data are assumed to be stationary within a single window, see e.g. Bodenstein and
Praetorius (1977). Another interesting idea is the use of state space modeling as
described in Sommerlade et al. (2012).

The main goal of this thesis is the analysis of the dependence structure of EEG/
ECoG data. As we mentioned before a lot of dependence measures have been
invented in the neuroscience context. For the interested reader we present a list of
selected publications regarding the application of dependence measures toEEG/
ECoG data: Chavez et al. (2003), Matysiak et al. (2005), Osterhage et al. (2007)
and Florin et al. (2011).



Chapter 4

Graphical modeling

The goal of our considerations is the analysis of theinner structureof ann-dimen-
sional stationary process. As we have discussed in chapter 3, the analysis of the
whole process as well as of all sub-processes is necessary in orderto fully under-
stand the underlying structure. Of course this kind of analysis would be computa-
tionally intensive. In this chapter we present an easy and elegant way for gaining
more insights in the structure of a process. This approach is called graphical mo-
deling.
In general graphical modeling refers to the use of graphs and graph theory in order
to analyze the causal structure of a multivariate stochastic variable. The basic idea
of graphical modeling is to find a connection between the conditional indepen-
dence relations of the variable, i.e. orthogonality relations (in the corresponding
spaces), and the separation properties of a graph corresponding to the structure of
the variable.
In the last decades there has been a substantial interest in graphical modeling and a
lot of research has been conducted. Most of this research has beenfocused on the
dependence structure in the iid case. A not exhaustive list of surveys on this topic
is Lauritzen (1996), Whittaker (2000), Edwards (2000), Pearl (2000) and Cowell
et al. (2007).

In this thesis we are concerned with the causal analysis of ECoG data, i.e. tempo-
rally ordered data. Therefore, we focus on graphical modeling for time series. To
the best of our knowledge this kind of analysis was introduced in Brillinger (1996)
and Dahlhaus (2000). A good overview concerning the topic of graphical modeling
for time series is Eichler (2006a).

Although other types of graphical models are conceivable, we limit ourselves to
graphs where the vertices correspond to the one-dimensional component processes
of a multivariate stationary process, see Dahlhaus and Eichler (2003). In this con-
text the edges will signify dependence between the components.
It is important to note that graphical models are more than mere graphs wherethe

41
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dependencies between the components are depicted. Based on the properties of
the graphical model and the underlying stationary process, conclusionsregarding
sub-processes can be drawn in an easy way.
This is the main reason we are presenting graphical models in this thesis, they are
an easy way to analyze the inner structure of a regular AR model.

In this chapter we present two types of graphical models for time series andtheir
use. First, the partial correlation graphs, which are undirected graphical models,
and second Granger causality graphs, which are mixed graphs, because they con-
tain directed and undirected edges.
We thoroughly discuss Granger causality graphs and their properties. Furthermore,
we briefly consider statistical inference and how to address systems with unob-
served variables.

Throughout this chapter we analyzen-dimensional stationary processes satisfying
the assumptions of section 1.1 and use the definitions from chapter 3.
We introduce some notations from graph theory in section 4.1. The partial correla-
tion graphs are discussed in section 4.2 and the Granger causality graphsin section
4.3. The practical application of graphical models is discussed in section 4.5. In
section 4.4 we talk about the treatment of unobserved variables.

4.1 Graph theory

In this section we compile useful definitions and notations from graph theory.
A graphG = (V,E) consists of avertex set V= {1, . . . ,n} and anedge set E. Ac-
cording to the types of edges inE we distinguish between undirected, directed and
mixed graphs. Undirected graphs contain only undirected edges, directed graphs
contain only directed edges and mixed graphs contain both types. With the intro-
duction of the vertex setV we see where the notationyV for y stems from.
We can easily draw a graphical representation of a graphG = (V,E) by display-
ing the vertices with circles and drawing the edges ofE. For undirected graphs we
draw an edgea b in the graphical representation ifa b ∈ E (the second edge
for b a ∈ E is omitted). For directed graphs we draw an edgea b in the
graphical representation ifa b ∈ E. Figure 4.1 shows an exemplary undirected
and a mixed graph. Mixed graphs show a combination of directed and undirected
edges.

A path in a graphG = (V,E) is a sequenceπ = (e1, . . . ,ek) of edgesei ∈ E and a
corresponding sequence of vertices (v0, . . . , vk) whereei connectsvi−1 andvi . The
verticesv0 andvk are theendpointsof the path, the remaining verticesv1, . . . , vk−1

are calledintermediate vertices.
In undirected graphs, for setsA, B,S ⊂ V (pairwise disjoint) we say thatC sepa-
rates AandB, if every path from an element ofA to an element ofB contains at



4.1. GRAPH THEORY 43

1

2

3 1

2

3

(a) (b)

Figure 4.1: (a) Example of an undirected graph. (b) Example of a mixed graph
containing a direct and an undirected edge.

least one element of the separation setS. This is an intuitive definition.

For mixed graphs, which contain directed and undirected edges , we
have to go into more detail for the definition of separation. There exist different
types of separation definitions for mixed graphs. For our purposes we will use the
notation of m-separation as introduced in Richardson (2003), which we explain in
the following.
Given a pathπ, an intermediate vertexc of the path is called acollider of the path
if the edges preceding and succeedingc on the path both have an arrowhead or a
dashed tail atc, i.e. c , c , c or c , otherwisec is a
non-colliderof the path. LetS be a subset ofV and leti and j be two vertices not
in S. Then a pathπ between the verticesi and j is calledm-connectinggivenS if

(i) every non-collider of the path is not inS and

(ii) every collider of the path is inS,

otherwise the path ism-blockedgivenS. If all paths betweeni and j are m-blocked
givenS, theni an j are calledm-separatedgivenS. In analogy two disjoint sub-
setsI and J are calledm-separatedgiven S if for every pair i ∈ I and j ∈ J the
verticesi and j are m-separated givenS.
At first glance this definition might seem complicated, but actually it is very in-
tuitive. To check the separation between two sets we have to consider all paths
between the components of these sets. All of these paths have to be m-blocked
in order that the sets are m-separated, only one m-connecting path betweentwo
components of the sets will unseparate them. For each path we have to checkthe
two aforementioned criteria, or equivalently we could look for a non-collider in S
or a collider not inS in order for the path to be m-blocked.
In non-mathematical terms a non-collider lets information pass through, a collider
blocks the information on a path and the setS switches colliders and non-colliders.
With this easy interpretation you simply have to check if any path between two sets
lets the information flow unblocked.

For clarification purposes we give a short example of m-separation. Consider the
mixed graph in figure 4.2. We want to analyze the separation relations between the
vertices 1 and 4.



44 CHAPTER 4. GRAPHICAL MODELING

1

2

3

(a) 4

1

2

3

(b) 4

1

2

3

(c) 4

Figure 4.2: Example of a mixed graph for the illustration of m-separation. (a)
S = {2}, vertices 1 and 4 are connected. (b)S = {3}, vertices 1 and 4 are m-
separated . (c)S = {2,3}, vertices 1 and 4 are connected .

If S is the empty set the path 1 3 4 is m-connecting, therefore 1 and 4 are not
separated. In the case thatS = {2}, as seen in figure 4.2 (a), the path 1 3 4
is m-connecting and the vertices 1 and 4 are not separated. In both caseswe simply
found an m-connecting path which yielded the separation relation.

The analysis is more interesting ifS = {3}, as seen in in figure 4.2 (b). In order to
check the separation between vertex1 and 4 we have to consider all pathsbetween
them. The most obvious paths are 1 2 4, 1 3 4, 1 2 3 4
and 1 3 2 4. Vertex 2 is a collider not inS of the path 1 2 4,
therefore the path is m-blocked. Vertex 3 is a non-collider inS of the path 1 3

4, hence the path is m-blocked. In both paths 12 3 4 and 1 3 2
4 the vertex 2 is a collider not inS, therefore both paths are m-blocked. Look-

ing at these 4 paths is not enough since for the analysis we have to check all possible
paths also including self-intersecting paths. We choose another approach for the
reasoning. Every path passing through vertex 2 contains it as an collider, for this
reason all these paths are m-blocked since 2 is not inS. The only path between
vertex 1 and 4 not containing vertex 2 is 1 3 4, which is m-blocked since
vertex 3 is a non-collider inS. It follows that all paths between vertices 1 and 4
are m-blocked givenS = {3} and therefore vertices 1 and 4 are m-separated given
S = {3}.

In the caseS = {2,3}, as seen in figure 4.2 (c), the path 1 2 4 is m-
connecting vertices 1 and 4 because the vertex 2 is a collider inS, therefore the
vertices 1 and 4 are not m-separated givenS = {2,3}.

For our purposes we need one last definition. A pathπ between verticesi and j is
called j-pointing if it has an arrowhead at the endpointj. More generally, a path
betweenI andJ is J-pointing if it is j-pointing for at least onej ∈ J.

A pathπ between verticesi and j is calledbi-pointingif it has an arrowhead at both
endpoints. A path betweenI andJ is bi-pointing if it is bi-pointing for at least one
pair (i, j) ∈ I × J.
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4.2 Partial correlation graph

As the name suggests, the partial correlation graph is based on the partial spectral
coherence (PSC), see subsection 3.2.2 . It is an undirected graph andwas intro-
duced in Dahlhaus (2000).
The vertices in the partial correlation graph signify the components ofyV and the
edges are characterized by the PSC. The idea behind the partial correlation graph
is, that an edgei j is missing, if the componentsyi andy j are uncorrelated
conditional on the other components of the process.

We want to establish a connection between the separation relations of the partial
correlation graph and conditional independence relations of the process. For this
reason we introduce some notations. We recall the definition of the residualηi (and
η j , see subsection 3.2.2), which signifiesyi removed by the influences of all other
(past, present and future) components apart fromyi andy j , see equation (3.2). Then
we define the following relation

yi⊥y j |yV\{i, j} :⇐⇒ Cov(ηi(t)η j(t + s)) = 0 ∀s. (4.1)

Of course, this relation is also equivalent to the PSC being zero,R2
i j |V\{i, j}(λ) = 0∀λ.

The definition of the relation⊥ can be extended for arbitrary multivariate sub-
processes ofyV using the multivariate extension of the partial spectral coherence.
We have

yA⊥yB|yC ⇐⇒ Cov(ηA|C(t)ηB|C(t + s)) = 0 ∀s⇐⇒ R2
AB|C(λ) = 0 ∀λ. (4.2)

In general relations of the formyA⊥yB|yC are called conditional independence re-
lations. They are interpreted as orthogonality relations in the corresponding prob-
ability spaces.
Using relation (4.1) we may define the partial correlation graph.

Definition 4.1. Let yV be a multivariate stationary process satisfying the assump-
tions of section 1.1. Thepartial correlation graphassociated withyV is a graph
GPC = (V,E) with vertex setV = {1, . . . ,n} and edge setE such that fori, j ∈ V
(i , j) the edgei j < E if and only if yi⊥y j |yV\{i, j}.

This means an edgei j is missing ifyi andy j are uncorrelated given the re-
maining componentsyV\{i, j}. From the alternative definition of the partial spectral
coherence via the inverse of the spectral density, see subsection 3.2.2,we see that
the missing edges in the graph can be identified by the zeros in the rescaled inverse
of the spectral density.
With the aforementioned notations we are able to state the connection between
the separation relations of the partial correlation graphGPC and the conditional
independence relations of the form (4.2) foryV.
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1 32

Figure 4.3: Partial correlation graph of system (4.3). Vertex 2 separates 1 and 3

Theorem 4.1. Let yV be a multivariate stationary process satisfying the assump-
tions of section 1.1 and let GPC = (V,E) be the corresponding partial correlation
graph. Let A, B,S ⊂ V where S separates A and B. Then we have

yA⊥yB|yS.

Proof. See Dahlhaus (2000). �

The use of this theorem is clear. We construct the partial correlation graph for
a multivariate stationary process based on the bivariate conditional independence
relations, i.e. the non-correlation relations, of the component processes. Then
the application of theorem 4.1 yields the independence relations for arbitrary sub-
processes. So this is an easy and effective way for the analysis of the dependence
structure of a process.
For clarification purposes we give a short example for the application of the last
theorem. Consider the following AR process





y1

y2

y3




(t) =





0 αz 0
0 0 0
0 βz 0









y1

y2

y3




(t) +





ε1
ε2
ε3




(t) (4.3)

with Σ = Cov(ε) = I3. Simple calculations yield the spectral densityfyy and its
inverse

f −1
yy (λ) = 2π





1 −αe−iλ 0
−αeiλ 1+ α2 + β2 −βeiλ

0 −βe−iλ 1




. (4.4)

Based on the zeros off −1
yy we can draw the partial correlation graph in figure 4.3.

We see that vertex 2 separates the vertices 1 and 3 in the partial correlationgraph,
and therefore the application of theorem 4.1 yieldsy1⊥y3|y2, i.e. y1 and y3 are
uncorrelated after the influence ofy2 is removed from both.
This statement is trivial, looking at the system (4.3), but it shall serve as anex-
ample for the application of the partial correlation graph. In more complex and
higher dimensional systems the computation of sub-systems would be more time-
consuming, therefore the partial correlation graph is an effective way to gain in-
sights into the structure of a process.

As already discussed in subsection 3.2.2 one advantage of the partial spectral co-
herence or respectively the partial correlation graph is that in practicalapplications
the spectral density can be estimated via a non-parametric estimator. The AR repre-
sentation of the investigated time series is not needed for the analysis. A statistical
test for the practical application of the PSC can be found in Dahlhaus (2000).
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4.3 Granger causality graph

In this section we extend the idea of the partial correlation graph given above to
Granger causality. First we draw a graph based on Granger causalitiesbetween
the component processes and then we can infer non-causalities for arbitrary sub-
processes. As Granger causality is a directed property we have to change the defi-
nitions accordingly.
To the best of our knowledge this kind of graphical model or rather this type of
analysis was introduced in Eichler (2007). For the explanations of this section we
will heavily draw from Eichler (2006a).

It is an intuitive idea to depict the Granger causalities in a graph. In order to
incorporate all independence relations in the analysis (and the graph respectively)
we also include the (contemporaneous) non-correlation relations. Following these
ideas we define the following graph.

Definition 4.2. Let yV be a multivariate stationary process satisfying the assump-
tions of section 1.1. Thepath diagramassociated withyV is a graphG = (V,E)
with vertex setV and edge setE such that fori, j ∈ V (i , j)

(i) i j < E⇐⇒ A ji (m) = 0 ∀m,

(ii) i j < E⇐⇒ Σi j = 0.

In other words the path diagrams contains an edgei j if yi is Granger causal for
y j with respect toyV. An edgei j is present ifyi andy j are contemporaneously
correlated with respect toyV. The conditions in (i) and (ii) can be replaced by
equivalent criteria as described in section 3.4.
The associated path diagram shows Granger causalities, therefore it is often called
Granger causality graph, see e.g. Dahlhaus and Eichler (2003).

Following the idea presented in section 4.2 we want to state a connection be-
tween the graph separation relations of the associated path diagram and thecondi-
tional independence relations ofyV. Now the considered graph is a mixed graph
and we will use the notion of m-separation as introduced in section 4.1. The
conditional independence relations now consist of non-causality relations of the
form yB(t + 1) ⊥ yA(t)|yS\A(t) for all t ∈ Z (which are non-correlation relations
in the right spaces) and (contemporaneous) non-correlation relations of the form
yA(t + 1) ⊥ yB(t + 1)|yS(t) for all t ∈ Z, compare criteria (3.17) and (3.18). Using
the associated path diagram we are able to state the following theorem.

Theorem 4.2. Let yV be a multivariate stationary process satisfying the assump-
tions of section 1.1 and let G= (V,E) be the corresponding associated path dia-
gram. Let S⊆ V and let I and J be disjoint subsets of S . If every J-pointing path
between I and J is m-blocked given S\I, then yI is Granger non-causal for yJ with
respect to yS.
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Proof. See Eichler (2007). �

A similar theorem can be stated for the contemporaneous non-correlation relations.

Theorem 4.3. Let yV be a multivariate stationary process satisfying the assump-
tions of section 1.1 and let G= (V,E) be the corresponding associated path dia-
gram. Let S⊂ V and let I and J be disjoint subsets of S . If

(i) i j < E for all i ∈ I and j ∈ J, and

(ii) every bi-pointing path between I and J is m-blocked given S ,

then yI and yJ are contemporaneously uncorrelated with respect to yS.

Proof. See Eichler (2007). �

With these theorems we are able to derive the conditional independence relations,
including non-causality and contemporaneous non-correlation relations,for arbi-
trary sub-processesyS of yV. These conditional independence relations can again
be depicted in a graph̃GS = (S,ES) for the sub-systemyS. It is important to note,
that this new graph for the sub-system generally is not the associated pathdiagram
for yS. Besides the conditional independence relations foryS (derived from the
associated path diagram) displayed inG̃S, there could be additional ones. In other
words, not all arrows inG̃S indicate Granger causality, as they would in the as-
sociated path diagram. Thus, theorems 4.2 and 4.3 provide only sufficient and not
necessary conditions for Granger non-causality relations in sub-processesyS of yV.

For a better understanding of the application of theorems 4.2 and 4.3 we present an
example. This example is taken from Eichler (2006a). Consider the followingAR
system





y1

y2

y3

y4





(t) =





0 0 0 αz2

0 0 βz γz
0 0 0 0
0 0 0 0









y1

y2

y3

y4





(t) +





ε1
ε2
ε3
ε4





(t) (4.5)

with Σ = Cov(ε) = I4. The associated path diagram of system (4.5) is shown in
figure 4.4 (a).
We want to analyze the non-causality relations between two component processes
with respect to arbitrary sub-processesyS using the associated path diagram (figure
4.4(a)) ofyV. For this analysis it is easier to consider the (not necessary) causal
relations than the non-causality relations. In other words, which edges can be
drawn in the sub-graph. We will sloppily sayyi is Granger causal fory j with
respect toyS, denoted byyi → y j |yS, if the relationyi 9 y j |yS is not inferred from
the associated path diagram ofyV.
We will start with the three dimensional sub-processes.
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Figure 4.4: (a) Associated path diagram ofyV from system (4.5). (b) The use of
theorem 4.2 yields the path diagram fory{1,2,3}.

In the caseS = {1,2,3} we infer the following relations: Clearly we havey3 →
y2|y{1,2,3} because of the direct path 3 2. Via the path 1 4 2 we have
y1 → y2|y{1,2,3}, y2 → y1|y{1,2,3} and y2 ∼ y1|y{1,2,3} because vertex 4 is a non-
collider of this path. Considering the path 3 2 4 1 we gety3→ y1|y{1,2,3},
because the vertex 2 is a collider inS and the vertex 4 is a non-collider. To infer
a causality relation from vertexi to vertex j we need a path ending with an
edge pointing toj. In the aforementioned relations we already used all edges,
therefore there are no additional relations in this sub-system. Figure 4.4(b) shows
the derived independence relations for the sub-processy{1,2,3}.
The caseS = {1,2,4} is simple as we only havey1 → y2|y{1,2,4}, y2 → y1|y{1,2,4}
andy2 ∼ y1|y{1,2,4}.
Similarly the caseS = {2,3,4} yields onlyy3→ y2|y{2,3,4} andy4→ y2|y{2,3,4}.
In the caseS = {1,3,4} we have the relationy4 → y1|y{1,3,4}, as the vertex 2 (as a
collider) separates the vertices 3 from 1 and 4.
We get the causality relations for a 2-element setS by considering only the paths
ending with an edge. Therefore, we havey4 → y1|y{1,4}, y4 → y2|y{2,4} and
y3 → y2|y{2,3}. Additionally we havey1 → y2|y{1,2}, y2 → y1|y{1,2} andy2 ∼ y1|y{1,2}
as vertex 4 is a non-collider of the path 1 4 2.

In this example we have seen that the associated path diagram encodes conditional
independence relations for arbitrary sub-processes. It is possible toconstruct other
graphs that encode other independence relations, e.g. the bivariate Granger causal-
ity graph, see Eichler (2006a). If a mixed graphG (containing and edges)
encodes certain conditional independence relations of a processyV, we say thatyV

satisfies a Markov property with respect to the graphG.

Definition 4.3. We say that a stationary processyV (satisfying the assumptions of
section 1.1) satisfies theglobal Granger causal Markov propertywith respect to a
mixed graphG if for all S ⊆ V and all disjoint sub-setsI andJ of S the following
conditions hold

(i) yI is Granger non-causal foryJ with respect toyS whenever in the graphG
everyJ-pointing path betweenI andJ is m-blocked givenS\I ,

(ii) yI andyJ are contemporaneously uncorrelated with respect toyS whenever
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in the graphG the setsI andJ are not connected by an undirected edge
and every bi-pointing path betweenI andJ is m-blocked givenS.

In other words, all conditional independence relations that can be derived from the
graphG also have to be found in the process itself. So the graph itself may encode
fewer conditional independence relations than can be found in the process itself.
We want to emphasize the construction of this definition, a process satisfies aprop-
erty with respect to a graph. So the graph is given and we check whetherthe
process satisfies the property or not.
With definition 4.3 theorems 4.2 and 4.3 state that a stationary process (satisfying
the assumptions of section 1.1) satisfies the global Granger causal Markov property
with respect to its associated path diagram.
A saturated graph, i.e. a graph that includes all possible edges, trivially satisfies
the global Granger causal Markov property for all stationary processes, because it
does not entail any separation relations.

To conclude this section we want to mention that different associated path diagrams
encode different conditional independence relations. So there do not exist two
different associated path diagrams that encode the same conditional independence
relations. This is a property of associated path diagrams, this property (generally)
does not hold for more general types of graphs.

4.4 Unobserved variables

In Granger’s original definition he assumed that all important information is known.
In modern data analysis it is a valid question whether all important variables are
taken into account, or if an important variable, i.e. a component process, is un-
observed. It is very difficult to answer this question. The application of graphical
modeling yields indications for unobserved variables in certain cases and provides
a tool to (partially) cope with this problem. The ideas discussed in this section are
taken from Eichler (2009).
The termunobserved variablenormally refers to an unobserved component in a
system, which is only partially observed. In our considerations we know theorigi-
nal process and simply leave out one or more component processes, which is nor-
mally not the case in practical applications.

To explain the problem of unobserved variables we continue the example ofsystem
(4.5). We consider the case thaty4 is unobserved. As shown in Eichler (2006a) a
representation ofy{1,2,3} is given by





y1

y2

y3




(t) =





0 αβ

1+β2 z αβγ

1+β2 z2

0 0 γz
0 0 0









y1

y2

y3




(t) +





ε̃1
ε̃2
ε̃3




(t) (4.6)
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1 3
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Figure 4.5: Changing causality relations when considering sub-processes
(a) Associated path diagram for the full process of system (4.5),y4 is unobserved.
We infery39 y1|y{1,3}. (b) Granger causalities for sub-systemy{1,2,3} derived from
representation (4.6). (c) In the 2-dimensional sub-systemy{1,3} we have:y3 is non-
causal fory1.

with




ε̃1
ε̃2
ε̃3




(t) =





1 − αβ1+β2 z 0 α
1+β2 z2

0 1 0 βz
0 0 1 0









ε1
ε2
ε3
ε4





(t). (4.7)

The Granger causal relations indicated by this representation are displayed in figure
4.5(b). Figure 4.5(a) shows the associated path diagram of the full process, and the
application of theorem 4.2 yields the relationy3 9 y1|y{1,3} for the bivariate sub-
systemy{1,3}. This relation can be found in the data, but it cannot be derived from
the diagram 4.5(b).
This is an example for changing causality relations when considering sub-systems,
in particular this phenomenon is called spurious causality of type I, where causality
relations with respect to the full process vanish when considering a sub-process, see
Hsiao (1982).
The change of causality relations when analyzing sub-systems is an indicator for
unobserved variables as can be seen in this example.

The literature suggests two different approaches to cope with the problem of un-
observed variables in the iid case. The first approach suggests to include the unob-
served variables as nodes in the graph, see e.g. Pearl (2000). The second approach
focuses on the conditional independence relations of the observed variables. In
Eichler (2006b) the second approach has been discussed for the time series case.

For the interested reader we want to briefly explain the second approachfollowing
Eichler (2006b) and Eichler (2009). By the introduction of an additional type of
edge we extend the class of considered graphs, so called general path diagrams
contain , and edges. In the class of general path diagrams we are able
to display more causality relations, but we loose the unique identifiability of the
graph, i.e two different graphs may yield the same set of independence relations.
To solve this problem we restrict ourselves to graphs calleddynamic ancestral
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graphs, which are uniquely identifiable in the class of general path diagrams. These
ancestral graphs are associated with ARMA processes in comparison to the normal
associated path diagrams, which are associated with AR processes.
The main aim of graphical modeling (in this approach) is to display the causal-
ity structure of a process as good as possible, i.e. to depict as much conditional
independence relations as possible in a single graph.

4.5 Statistical inference

So far we have only talked about the theoretical aspects of graphical modeling.
Now we want to briefly discuss the application of graphical models to actual data.
Graphical models are used to display the causality structure of observed processes.

The first and straightforward idea is to draw the associated path diagram for the ob-
served datayV(t), t = 1, . . . ,T. In section 3.6 we explained that normally an AR(p)
model is fitted to the data using the Yule-Walker equations. The components of
the estimated AR polynomial̂A ji (m) are statistically tested if they are jointly zero

by anF-test, in order to derive the bivariate Granger causal relationsyi
?→ y j |yV.

Based on these relations we are able to draw the associated path diagram.

The associated path diagram often is a very good description for the causal struc-
ture of an observed multivariate system. But in the case of unobserved variables
we will encounter changing causality relations when analyzing sub-systems. In
section 4.4 we discussed the problem that these changes in the causal relations are
indicators for unobserved variables. For a better representation of thecausality
structure of observations with unobserved variables general path diagrams are in-
troduced.

Following the ideas in Eichler (2005) we briefly describe the practical application
of general path diagrams, which include , and edges. Suppose that
observationsyS(t) are available, which are a part of a larger systemyV(t). We are
searching for a graphG = (S,E) that describes the causality structure ofyS as best
as possible, and of course the graph should not imply any independencerelations
that do not hold inyS.

Definition 4.4. A general path diagramG is consistentwith yS if yS satisfies the
global Granger causal Markov property with respect toG.

So our aim is to determine a consistent graph that depicts the Granger causal re-
lations of the observations as good as possible. A smaller number of edges inthe
graph leads to a larger set of related conditional independence relations. There-
fore, we search for aminimal consistentgraph in the sense, that the set of related
conditional independence relations is maximal (but does not contain independence
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relations that are not found inyS). The idea of minimal consistent graphs in the iid
case was introduced in Pearl (2000).
In practice the determination of the minimal consistent graph is based on the pair-
wise comparison of different consistent graphs by a statistical test on the causality
relation distinguishing them.
Unfortunately two different general path diagrams might imply the same set of
conditional independence relations. Therefore, the minimal consistent graph in
general is not unique.
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Chapter 5

Factor models

Analysis and forecasting of high-dimensional multivariate time series is an impor-
tant issue in various disciplines. A common and well-understood tool for modeling
and analysis of these systems is (regular) autoregressive modeling. Up tothis point
we talked talked about AR-(∞), but for applications you have to use finite order
AR-systems. The arising problem when using regular finite order AR-systems is
calledcurse of dimensionality:
Let n denote the cross-sectional dimension, letT be time dimension of the observed
time seriesx and let the AR-orderp be fixed. Then the dimension of the parameter
space (for unrestricted regular autoregressive modeling) is proportional ton2, but
the number of data points is only linear inn for fixed T, which leads to numerical
problems for largen.
The idea to solve this problem is to compress the information and to extract the
important information from the data. This compression is not only in the time
axis but also in the cross section, and leads to a reduction of the dimension ofthe
parameter space.
Nowadays factor models are a widely used technique for dimension reduction.

The main idea behind factor models is to separate theobservations x(t) into the
latent variablesχ(t) and the noiseη(t)

x(t) = χ(t) + η(t), (5.1)

where the latent variables include thecommoninformation concerning the obser-
vations and the noise is simply the rest. In our applications the common parts
will reflect the important information of the observations, i.e in ECoG data the
co-movement is considered the important information. The aforementioned di-
mension reduction is accomplished because the latent variables are generated by a
small number of factors, therefrom the termfactor model.

Our main interest in high-dimensional time series is their causal analysis. The curse
of dimensionality also impairs this causal analysis, because the causal analysis is
usually based on a regular AR model, as discussed in chapter 3.

55
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We are especially interested in the analysis of EEG and ECoG data, see chapter 2.
As the EEG data represent potential changes of spatially neighboring electrodes,
the data are highly correlated and show co-movement. These properties lead to the
aforementioned numerical problems. In chapter 6 we will return to these problems
and discuss how we can use Granger causality for factor models.

In the section 5.1 we detail theoretic results concerning factor models and how the
separation (5.1) can be carried out, whereas in section 5.2 we discuss a practical
method for the aforementioned separation. For the following elaborations weex-
tensively use material from Deistler et al. (2010) .

5.1 Generalized dynamic factor models (GDFMs)

For our purposes we consider generalized dynamic factor models (GDFMs), which
have been introduced in Forni et al. (2000) and Forni and Lippi (2001), and in a
slightly different form in Stock and Watson (2002a) and Stock and Watson (2002b).
The idea of GDFMs is to combine and generalize linear dynamic factor models
with strictly idiosyncratic noise, as discussed in Sargent and Sims (1977) and
Scherrer and Deistler (1998), and generalized linear static factor models, as in-
troduced in Chamberlain (1983) and Chamberlain and Rothschild (1983).

The basic idea of GDFMs is to separate then-dimensional observationxn(t) as in
equation (5.1) into3

xn(t) = χn(t) + ηn(t), (5.2)

where this time, the latent variablesχn are strongly dependent in the cross-sectional
dimension, and the noiseηn is weakly dependent in the cross-sectional dimension.
The exact definition of these terms is given below.

For the remainder we assume thatχn andηn are weakly stationary with absolutely
summable covariances, have mean zero and

Eχn
t η

n
s
′
= 0 ∀s, t (5.3)

holds, this means that they are uncorrelated. Thus, the spectral densitiescorre-
sponding to (5.2) can be written as

f n
xx(λ) = f n

χχ(λ) + f n
ηη(λ). (5.4)

The class of GDFMs is constituted via a set of assumptions. These assumptions
are technical in nature and are not important in detail for our final goal, the causal
analysis of a factor model. The whole list of constituting assumptions including

3In this section we want to emphasize the cross section dimensionn of the observationsx(t) by
writing n as a superscript:xn(t). Later the superscript will be omitted.
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additional informations can be found in Deistler et al. (2010) and Anderson and
Deistler (2008).

Assumption 5.1. There is an n0 such that for all n> n0 the spectral density of the
latent variables fnχχ is rational and has constant rank q< n on[−π, π].

For the mathematical analysis a sequence of GDFMs (5.2) is considered. Wehave
the following assumptions.

Assumption 5.2. The sequence(yi(t)|i ∈ N, t ∈ Z) corresponds to a nested se-
quence of models, in the sense thatχi(t) andηi(t) do not depend on n for i≤ n.

Assumption 5.3. The rank q and the McMillan degree,2ν say (see Hannan and
Deistler (2012) for further information), of fn

χχ is independent of n (n≥ n0).

In the following we useωηη,r to denote ther-th largest eigenvalue off n
ηη and define

strong and weak dependence according to Forni and Lippi (2001).

Assumption 5.4(weak dependence). ωn
ηη,1 is uniformly bounded inλ and n.

Assumption 5.5(strong dependence). The q largest eigenvalues of fn
χχ diverge to

infinity for all frequenciesλ as n→ ∞.

The problem with GDFMs is, that they are not identifiable for any fixedn, no
matter how largen is. This means, that the separation in (5.2) cannot be achieved
for finite n. In the idiosyncratic case, wheref n

ηη is diagonal the identification (and
thus the separation) is possible generically forq sufficiently small in relation to
n. Nevertheless, the elements ofχn andηn are uniquely determined fromxn for
n→ ∞ as shown in Forni and Lippi (2001).
From now on we will omit the superscriptn for the sake of simplicity.

Our final goal is the causal analysis of a factor model in chapter 6. Therefore, the
most important theoretic result for our considerations is the fact, that (theoretically)
the separation (5.1) is possible under technical assumptions.
In section 5.2 we will suggest a method for the practical separation.

As already mentioned we commence from assumption 5.1 for a spectral factoriza-
tion of fχχ. The results of this procedure will be used in the next chapter for the
causal analysis.
For the remainder of this thesis we assume thatn is large enough, so thatfχχ is
of rank q < n. We commence from the population spectral density of the latent
variablesfχχ. Then, according to Hannan (1970) or Rozanov (1967) we have the
following result.
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Theorem 5.1(Spectral factorization). Every n× n rational spectral density fχχ of
constant rank q for allλ ∈ [−π, π] can be factorized as

fχχ(λ) = w(e−iλ)w(e−iλ)∗, (5.5)

where w(z) (z ∈ C) is an n× q real rational matrix of full column rank which has
no poles and no zeros for|z| ≤ 1.

Proof. See Rozanov (1967). �

It is easy to show, thatw(z) is unique up to post-multiplication by constant orthog-
onal matrices.

By using the notationw(z) =
∑∞

m=0 W(m)zm, W(m) ∈ Rn×q, we can write the latent
variablesχ as

χ(t) = w(z)ε(t) =
∞∑

m=0

W(m)ε(t −m), (5.6)

where theq-dimensional inputε is white noise withCov(ε) = Iq. The components
of ε are calleddynamic factors. As can be seen from this representation (5.6) the
q-dimensional dynamic factorsε generate then-dimensional latent variablesχ. As
can be easily seen, (5.6) corresponds to the Wold representation.

GDFMs are a large model class and offer a lot of versatility. However, for the
causal analysis we will present in chapter 6, we will only need a small portion of
the theoretical background from GDFMs. Our causal analysis will be based on the
tall transfer functionw(z) derived from the spectral factorization (5.5) and shown
in equation (5.6). For the practical implementation of our method matters will
simplify even more.

5.2 Principal component analysis (PCA)

In this section we want to present a practical method for the separation (5.1) and
respectively the derivation of the latent variables in contrast to the theoretic ap-
plication of factor models in section 5.1. For this reason we use theprincipal
component analysis(PCA).
The PCA is a tool for the estimation of the static factorsz. Then the static factors
are are modeled as a regular AR process.
First, we briefly explain how the PCA functions and give a short introduction using
material from Filzmoser (2010). Second, we show its application for our purposes.
Third, we model the static factors as a regular AR process.

The principal component analysis roots on Pearson (1901) and was developed by
Hotelling (1933). In the analysis the data are linearly transformed in such a way,
that the resulting components comprise the most important information of the data
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in descending order. In this way the dimension of the data can be reduced tothe
number of the most important components. For further informations we referthe
interested reader to Jackson (2004).

We explain this procedure for the iid case, the time series case will function analo-
gously. Our theoretic considerations are based on the population covariance matrix
Ω. Of course, for practical applications the covariance matrix of the observations
has to be estimated. Accordingly, the AR polynomial for the modeling of the latent
variables has to be fitted in the posterior part of this section.
In the following we discuss how the PCA works.

Let x = (x1, . . . , xn)′ be ann-dimensional random vector with mean zero, covari-
ance matrixΩ = Cov(x) = Exx′ andΩ > 0. For the explanation of the PCA we
usex as a normal multivariate random vector, not a stationary process.
Furthermore, letO = (o1, . . . ,on) be an orthogonaln× n matrix with fixed compo-
nents, i.e.O−1 = O′. We consider the following linear transformation

z= O′x (5.7)

or written component-wise

zi = o′i x for i = 1, . . . ,n . (5.8)

The transformation (5.7) yields a newn-dimensional random vectorz. The variance
of its components is

Var(zi) = E o′i xx′oi = o′iΩoi for i = 1, . . . ,n . (5.9)

We want to construct the transformation matrixO from (5.7) in such a way, that
the variances (5.9) are maximized under the constraint that theoi have length 1
(or o′i oi = 1). Mathematically this can be written as a Lagrangian maximization
problem with a side constraint

ϕi = o′iΩoi − λi(o
′
i oi − 1) for i = 1, . . . ,n . (5.10)

The derivation with respect to the unknownoi are set equal to zero, yielding

∂ϕi

∂oi
= 2Ωoi − 2λioi = 0 for i = 1, . . . ,n . (5.11)

A slight recalculation leads to

(Ω − λi In)oi = 0 for i = 1, . . . ,n (5.12)

or written in matrix notation
ΩO = OΓ, (5.13)
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whereΓ = diag(λ1, . . . λn). This result is well known under the name eigenvalue
problem. Theoi are the eigenvectors ofΩ and theλi are the corresponding eigen-
values. The covariance matrixΩ is positive definite and therefore all eigenvalues
are real positive numbers. Furthermore, we sort the eigenvalues:λ1 ≥ λ2 ≥ . . . ≥
λn > 0.
With these definitions the linear transformation (5.7) is known asprincipal compo-
nents transformation, thei-th component ofz is called thei-th principal component.
The principal components have expectation zeroE z = 0 and their covariance is
Cov(z) = O′ΩO = Γ = diag(λ1, . . . λn). Therefore, the variance ofzi is equal toλi ,
the i-th eigenvalue ofΩ. The total variance of all principal components is equal to
the sum of all eigenvalues, which is obviously equal to the total variance ofx.

Now we return to the time series case andx will denote a stationary process from
now on. We use the PCA onΩ = E xx′ to derive the static factorszas follows

Ω = E xx′ = OΓO′

= (O1 O2)

(

Γ1 0
0 Γ2

) (

O′1
O′2

)

= O1Γ1O′1 +O2Γ2O′2,

whereΓ = diag(λ1, . . . , λn) contains the ordered eigenvaluesλ1 ≥ λ2 ≥ . . . ≥ λn >

0 andO is an orthogonal matrix.
As the latent variables include the important information of the observations, we
assume that the important information is contained in theq-dimensional space ex-
plaining the most variance of the data. Therefore, we only use the information in
the q first principal components of the data. So our transformation matrix from
(5.7) will not be square:O1 contains the firstq columns ofO corresponding to the
q largest eigenvalues, respectivelyO2 the remainingn− q columns.

The latent variablesχ(t) are obtained by projecting the observationsx(t) onto the
space explaining most of the variance, this space is spaned by the columns of O1.

χ(t) = O1 (O′1O1)
︸  ︷︷  ︸

Iq

O1x(t)
︸ ︷︷ ︸

z(t)

. (5.14)

We use the more common notationΛ for O1 and rewrite the last equation into the
system

χ(t) = Λz(t) (5.15)

z(t) = Λ′x(t), (5.16)

whereΛ is termedfactor loading matrixand theq-dimensional principal compo-
nentsz(t) are calledstatic factors. Expression (5.15) is called astatic factor model,
because the factor loading matrix is static, i.e. constant. We clearly see, that the
n-dimensional latent variablesχ are driven by theq-dimensional static factorsz.
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The second part of the system, equation (5.16), is used for the actual computation
of the static factorsz(t).
As is well known, one could generate other (minimal) static factors by pre-multipli-
cation with a regular matrixU

χ(t) = Λz(t) = ΛU−1
︸︷︷︸

Λ̃

Uz(t)
︸︷︷︸

z̃(t)

= Λ̃z̃(t).

However, this does not impair our causality analysis, because the spacesspanned
by z andz̃ are equal.

The most important difference between modeling the latent variables via equation
(5.6) or via equation (5.15) is the fact, that equation (5.15) uses a static (i.e.con-
stant) factor loading matrix.

The next step is to model the derived static factorszas a regular AR process.
Normally the static factorsz are modeled by a singular AR-model, which means
that the number of dynamic factors is smaller than the number of static factors.
For our purposes we assume the number of static factors to equal the number of
dynamic factors.
In order to reach a from similar to equation (5.6) we assume the static factorsz
to satisfy the assumptions of section 1.1. Therefore, they can be modeled as a
regular AR process. This is a strong assumption, but data analysis reveals, that it
is reasonable for the ECoG data we want to analyze.
The approach to model the latent variables with a static factor model and the static
factors as a regular (finite) AR process is sometimes calledquasi-static factor
model, see Deistler and Zinner (2007).
Following this line of thought we get a regular AR model for the static factors

a(z)z(t) = ε(t), (5.17)

wherea(0) = Iq and Cov(ε(t)) = Σ > 0.
Equations (5.15), (5.17) and the causal invertability ofa(z) together yield

χ(t) = Λz(t) = Λa−1(z)ε(t). (5.18)

In this PCA-based approach it can be easily seen, thatΛa−1(z) in equation (5.18)
is the transfer functionw(z) from equation (5.6) from section 5.1. Therefore,ε in
equation (5.18) are the dynamic.

The interested reader may have noticed, that up to this point we assumedq, the
number of (static) factors, to be known. For theoretical purposesq is determined
via the number of diverging eigenvalues off n

χχ asn→ ∞, see assumption 5.5. In
practical applications often the number of static factors is estimated first, followed
by an estimation of the number of dynamic factors.



62 CHAPTER 5. FACTOR MODELS

A well known method for the determination of the number of factors is the scree
test, which was introduced in Cattell (1966). This test is based on a graphical
comparison between the explained variance per factor and the number of the factor,
this graph is called scree plot, an example is figure 6.5 in section 6.5.
Another simple method is to set a threshold for the explained variance you want to
achieve and choose the number of factors accordingly.

For the conclusion we sum up the model described in this section. The latent
variablesχ, the factor loading matrixΛ and the static factorsz are derived via the
PCA from the observationsx. Then the static factors are modeled by a regular AR
process, which leads to the following system

χ(t) = Λz(t), (5.19)

a(z)z(t) = ε(t), (5.20)

with a(0) = Iq andΣ = Cov(ε) > 0.



Chapter 6

Influence analysis

In this chapter we discuss the causal analysis of high-dimensional time series and
the associated problems. In particular we are interested in the causal analysis of
ictal ECoG data in order to gain insights concerning the seizure onset zone.

As we will see this causal analysis is not straight forward. To overcome the arising
problems we propose a method that is based on the Granger causal analysis of fac-
tor models. The application of this methodology to the ECoG data yields results
which are in very good accordance with the clinical findings.

In section 6.1 we discuss the problems concerning the causal analysis of co-moving
data. To deal with these problems we elaborate the statistical framework for the ap-
plication of Granger causality to factor models in section 6.2 (based on the knowl-
edge of GDFMs from section 5.1). The practical application of Granger causality
to factor models is based on the PCA approach (from section 5.2) as described in
section 6.3.

With the gathered knowldege we propose our causal investigation method in sec-
tion 6.4. To assess our proposed methodology we apply it to simulated data in
subsection 6.5.1. The most interesting part of section 6.5 is the application of our
proposed method to the ECoG data.

The chapter is concluded by a thorough discussion of the methodolgy and the
results in section 6.6. The discussion will highlight the statistical-technical pro-
perties of the proposed methodology as well as the clinical view of the results.

This chapter signifies the main contribution of this thesis as it merges the causal
analysis, factor models and the neurophysiological aspects. Parts of thischapter
have been published in Flamm et al. (2012a).

For background information and notation we refer to chapter 1 for the mathematical
introduction, to chapter 3 for Granger causality and to chapter 5 for factor models
and the PCA approach.

63
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6.1 Challenge

What is the challenge in using Granger causality for the analysis of high dimen-
sional co-moving data, in particular ECoG data? The naı̈ve approach would be to
fit ann-dimensional (regular) AR model to then-dimensional observationsx(t). In
practice we typically encounter two problems:

First, the curse of dimensionality impairs the AR-estimation, compare chapter 5.
The fitting of ann-dimensional AR(p) model requires the estimation ofn2p param-
eters, but the number of observations is only linear inn. Thus, in order to obtain
reliable estimation results a sufficient number of data samplesx(t), t = 1, . . . ,T
is required, i.e. very long data samples are needed for a large cross-sectional di-
mensionn. Normally neurological signals (in particular ECoG and EEG) show a
highly non-stationary behavior (the second moments vary significantly within long
data windows), so the stationarity assumption for the required long data windows
would be violated. Of course, this impairs the estimation of the AR model for the
Granger causal analysis.

Second, the ECoG data show strong signs of co-movement, which can be seen
visually. This clearly indicates that then-dimensional observations are originally
generated by a small number of factors. Mathematically speaking, the most im-
portant part of the observations, the latent variables, is generated onlyby a small
number of factors. As Granger causality analysis is usually based on regular AR
estimation, where the number of observations is equal to the number of generat-
ing components (see section 3.4), this leads to a poor AR-estimation for the ECoG
data. The subsequent causal analysis would also yield misleading results.

In order to cope with these problems we consider factor models. As we haveseen
in chapter 5, factor models are a useful tool for modelling high-dimensionalco-
moving systems. The important question is, which causalities can reasonably be
analyzed in this context. The price to be paid when using factor models instead
of regular AR modeling for data description is that the causal analysis becomes
more difficult. A classic Granger causal investigation does not make sense for fac-
tor models, because by the definition of a factor model a regular AR-model isnot
applicable.

In this thesis we assume that the dependence structure of the latent variables χ
properly reflects the causal structure of the observationsx. Therefore, a causal
analysis of the latent variables will reveal the dependencies between the observa-
tions themselves. This is a very strong assumption, but it seems meaningful despite
the seperation (5.1) into noise and latent variables. We will thoroughly discuss this
assumption in section 6.6. This assumption is reasonable, because in ECoG analy-
sis we expect the most important dependencies between the components explaining
the most important features of the signal, i.e. the latent variables.
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The first idea for a causal analysis in the factor model case would be to consider
relations of the form

χi
?→ χ j |χV. (6.1)

In other words, how doesχi influenceχ j with respect toχV. However, the use of the
exhaustive setV as the conditioning set leads to problems: Relation (6.1) signifies
the contribution ofχi(t) toχ j(t+1) in the projection ofχ j(t+1) ontoχV(t), compare
criterion (3.12). Although the projection itself is unique, the projection coefficients
are not. This means that the contribution ofχi(t), χi(t − 1), . . . to the explanation of
χ j(t+1) is not uniquely determined. This is due to the fact that only a small number
of components is needed to spanχV(t). As these contibutions are not unique the
application of criteria (3.12), (3.13) and (3.17) is not reasonable. Thusan analysis
involving relations of the form (6.1) is not meaningful and would yield misleading
results.
It is very important to note that we consider the general case, because inspecial
cases the above problem might not arise.

Therefore we restrict the conditioning set, instead ofV we usechannel selections
I ⊂ V where we consider onlyq channels, i.e. #I = q < n.4 Thus we consider
relations of the form

χi
?→ χ j |χI i, j ∈ I . (6.2)

Of course we are searching for channel selctionsI where the projection coefficients
from χI (t + 1) ontoχI (t) are unique, compare the aforementioned problem. In the
following we will discuss the choice of the channel selectionI , such that relations
of the type (6.2) yield reasonable results in the causal analysis. For a theoretical
discussion on the choice ofI we refer to section 6.2, for the practical PCA-based
approach we refer to section 6.3.

As we have discussed in chapter 4, all conditional independence relations be-
tween arbitrary sub-processes (including non-causality and contemporaneous non-
correlation relations) have to be considered for the complete causal description of
a system. However, as the bivariate causal relations with respect to the whole pro-
cess have a special role among the non-causality relations (see section 4.3) our
proposed method will be solely based on relations of the form (6.2).

6.2 Theoretical framework

As mentioned in section 6.1 we are interested in causality relations of the form
(6.2). Here we discuss the choice of the channel selectionI in order to yield rea-
sonable results in the causal analysis.

4In this context # denotes the number of elements in a set.
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In particular we are interested inq-dimensional selectionsI ⊂ V, whereχI drives
all latent variablesχV. We propose this kind of channel selections because a simple
Granger causal anlysis is possible in this case.
We start our causal considerations by continuing at the end of section 5.1. By
reordering (5.6) we obtain

(

χI (t)
χJ(t)

)

=

(

wI (z)
wJ(z)

)

ε(t) (6.3)

whereχI is aq-dimensional andχJ is a (n− q)-dimensional process, sowI (z) is a
q× q rational matrix.
We only consider channel selectionsI , wherewI (z) is causally invertible, i.e. all
its zeros and poles lie outside the unit circle. ThenwI (z)−1 exists inside and on the
unit circle, andε can be expressed as

ε(t) = wI (z)
−1χI (t). (6.4)

Using equation (6.4) we rewrite (6.3) as
(

χI (t)
χJ(t)

)

=

(

I
wJ(z)wI (z)−1

)

χI (t), (6.5)

which shows thatχI generates the whole processχV. In more mathematical terms
this meansχI andε span the same space, which is of course equal to the space
spaned by the whole process

χI (t) = ε(t) = χV(t). (6.6)

We note, that in the general case it might not always be possible to find a selection
I of driving latent variables, e.g. consider the following system

(

χ1(t)
χ2(t)

)

=

(

w1(z)
w2(z)

)

ε(t) =

(

1+ ρ1z
1+ ρ2z

)

ε(t) (6.7)

where|ρ1|, |ρ2| > 1, ρ1 , ρ2. In this example neitherw1(z) nor w2(z) are causally
invertible.
In this example it would be possible to rewriteχ1 (or alternativelyχ2) asχ1(t) =
w̃1(z)ε̃(t) with w̃1(z) causally invertible and ˜ε1 white noise, butχ2 could not be
causally generated byχ1 in this case.
It is important to note that we only consider the transfer functionw(z) derived by
the spectral factorization (5.5) according to theorem 5.1. Therefore, we only con-
sider square selectionswI (z) of this transfer function.

Our main reason for requiring channel selections with a corresponding causally
invertible transfer function is the following: If there exists a channel selection I ,
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wherewI (z) is causally invertible, we may investigate conditional Granger causal
relations inχI (t) in an easy way.
Interpretation of equation (6.4) as an AR model and premultiplication withwI (0)
(i.e. the leading coefficient ofwI (z)) gives

wI (0)wI (z)
−1

︸         ︷︷         ︸

ă(z)

χI (t) = wI (0)ε(t)
︸    ︷︷    ︸

ε̆(t)

,

ă(z) χI (t) = ε̆(t) , (6.8)

with ă(0) = Iq. This is a regular AR model of the form (1.7) forχI . Therefore,
the Granger causal relations (6.2) are simply derived by the application ofcriterion
(3.12), which reads the following in this context

ă ji (z) = 0 ⇐⇒ χi 9 χ j |χI .

This relation signifies the influence ofχi to χ j with respect toχI .

An important aspect we have to consider for our analysis is the following:
If there exist two channel selectionsI ⊃ i, j and Ĩ ⊃ i, j, with I , Ĩ , where both
wI (z) andwĨ (z) are causally invertible, the naturally arising question is, whether

the causal relationsχi
?→ χ j |χI andχi

?→ χ j |χĨ are equal. In other words, how does
the choice of the channel selectionI influence the causal relation betweenχi and
χ j?
Due to the fact thatχI (t) = ε(t) = χĨ (t) (because they span each other, see equation
(6.6)) one could conjecture that the aformentioned causality relations are equal.
This would mean that the causal relations (6.2) between channeli and j are inde-
pendent of the choice of a valid channel selection. This would have the advantage
that a single arbitrary channel selectionI ∗ ⊃ i, j (with wI ∗(z) causally invertible) is
sufficient to explore the causality between the considered channelsχi andχ j .
However, unfortunately this is not the case. The causal relationχi 9 χ j |χI can
also be checked via criterion (3.17) which reads

χ j(t + 1)⊥χi(t)|χI\{i}(t)

in this context. This shows, that the conditioning set isI\i (not I !). Even though
χI (t) = χĨ (t) holds, in generalχI\{i}(t) , χĨ\{i}(t), i.e. the conditioning spaces
are not equal. Thus, the conditional Granger causal relations are notthe same (in
general).
We want to emphasize the importance of this statement a second time. The causal

relationχi
?→ χ j |χI strongly depends on the channel selectionI , because it is (in

general) different from the relationχi
?→ χ j |χĨ for valid I , Ĩ .
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Figure 6.1: Associated path diagrams for the sub-processesχ{1,2,3} andχ{1,2,4} of
system (6.9). Different causality relations betweenχ1 andχ2 depending on the
considered channels: (a)χ1 → χ2|χ{1,2,3} holds in sub-system (6.10), but (b)χ1 9

χ2|χ{1,2,4} holds in sub-system (6.11).

For the interested reader we have a simple example showing that the causality
relations depend on the channel selections. We want to investigate the causality
from χ1 to χ2 in the following system





χ1

χ2

χ3

χ4





(t) =





1 0 0
αz2 1 βz
0 0 1
α
β
z 0 1









ε1
ε2
ε3




(t), (6.9)

with α , β, α, β , 0 and Cov(ε) = I3. Simple calculations show that the sub-
processx{1,2,3} has the following AR representation





1 0 0
−αz2 1 −βz

0 0 1









χ1

χ2

χ3




(t) =





ε1
ε2
ε3




(t). (6.10)

For the sub-processx{1,2,4} we have





1 0 0
0 1 −βz
−α
β
z 0 1









χ1

χ2

χ4




(t) =





ε1
ε2
ε3




(t). (6.11)

Figure 6.1 shows the associated path diagrams of these two sub-processes display-
ing their causality structure.
According to criterion (3.12), in sub-system (6.10)χ1 is Granger causal forχ2 due
to a21(z) , 0, hence

χ1→ χ2|χ{1,2,3}.

On the contrary, in sub-system (6.11) we havea21(z) = 0, thusχ1 is Granger non-
causal forχ2, hence

χ19 χ2|χ{1,2,4}.

So in one sub-systemχ1 is Granger causal forχ2 and in the other sub-system it
is not. This short example illustrates the fundamental fact that the causal relations
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depend on the channel selectionI .

For the sake of completeness we want to mention, that the proposed causalanalysis
between two sub-processesχi andχ j is not possible, if there does not exist a set
J ⊃ i, j with a causally invertiblewJ(z). In this case an analysis ofw(z) might give
further informations about the connection between these two processes.

Due to the fact that we only consider channel selectionsI where the corresponding

χI generates the whole process, the observed causal relationsχi
?→ χ j |χI signify

direct causality relations, see chapter 3. That means that the causal effects are di-
rect effects and not mediated via a third variable (or a path of variables). This is a
huge advantage of the considered causality relations (6.2).

At the end of this section we want to sum up its most important statements. In order
to analyze the causality between two latent variablesχi andχ j we choose a chan-
nel selectionI ⊃ i, j where the corresponding transfer functionwI (z) is causally
invertible. In the context of a simple regular AR model forχI we can analyze the

desired relationχi
?→ χ j |χI . For different channel selections the resulting causal

relation between the two latent variables might differ.

6.3 PCA-based approach

Now we are interested in the practical derivation of the causal relationsχi
?→ χ j |χI

discussed in section 6.1. This practical approach is based on the PCA approach
presented in section 5.2. We commence from equation (5.18), which reads

χ(t) = Λz(t) = Λa−1(z)ε(t),

wherea(z) is the AR polynomial of the static factorsz.
For a channel selectionI ⊃ i, j ,#I = q we consider the corresponding sub-system

χI (t) = ΛI z(t) = ΛI a
−1(z)ε(t), (6.12)

whereΛI is the square sub-matrix ofΛ correponding to the selected components
χI .

As before, we have to search for meaningful channel selectionsI . In contrast to
the previous section this problem simplifies significantly here. In this approach we
only consider channel selectionsI whereΛI is regular.
This criterion is (in this PCA approach) equivalent to the channel selectionrestric-
tion to causally invertiblewI (z) from section 6.2. IfΛI is regular,ΛI a−1(z) = wI (z)
is causally invertible, and vice versa. As a side note we mention that obviously
χI (t) = χV(t) holds in this approach, in other wordsχI generates the whole process
χV.
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For the remainder of this section we call channel selectionsI admissibleif ΛI is
regular.

By rewriting (6.12) as an AR representation we obtain

ΛI a(z)Λ−1
I

︸      ︷︷      ︸

ă(z)

χI (t) = ΛIε(t)
︸︷︷︸

ε̆(t)

(6.13)

ă(z)χI (t) = ε̆(t),

where det(ΛI ) , 0. Note that we premultiply withΛI in order that the leading
coefficient of the left-hand side polynomial becomes the identity, ˘a(0) = Iq.

The Granger causal relations for the AR system in representation (6.13)can easily
be checked by criterion (3.12), which reads

χi 9 χ j |χI ⇐⇒ ă ji (z) = 0 i, j ∈ I ; i , j

in this context. So in this PCA-based approach it is easy to derive the desired causal
relations.

We want to emphasize, that the PCA-based approach is a special case ofthe gen-
eral case discussed in section 6.2. It also holds in this case, that distinct channel
selectionsI and Ĩ (in general) yield different causal relations betweenχi andχ j ,
which can be seen in the following example.
Consider the following system





χ1

χ2

χ3

χ4





(t) =

Λ
︷      ︸︸      ︷




1 0 0
0 1 0
0 0 1
1 1 1





a(z)−1

︷        ︸︸        ︷




1 0 αz
0 1 0
0 0 1









ε1
ε2
ε3




(t) =

=





1 0 −αz
0 1 0
0 0 1
1 1 1− αz









ε1
ε2
ε3




(t) (6.14)

with Cov(ε) = I3. The sub-processχ{1,2,3} has the following AR representation




1 0 −αz
0 1 0
0 0 1









χ1

χ2

χ3




(t) =





ε1
ε2
ε3




(t), (6.15)

and for sub-processχ{1,2,4} we have




1− αz −αz αz
0 1 0
−αz −αz 1+ αz









χ1

χ2

χ4




(t) =





ε̆1
ε̆2
ε̆3




(t), (6.16)
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Figure 6.2: Associated path diagrams for the sub-processesχ{1,2,3} andχ{1,2,4} of
system (6.14). Different causality relations betweenχ1 andχ2 depending on the
considered channels: (a)χ2 9 χ1|χ{1,2,3} holds in sub-system (6.15) (b)χ2 →
χ1|χ{1,2,4} holds in sub-system (6.16)

with

Cov(ε̆) =





1 0 1
0 1 1
1 1 3




. (6.17)

According to criterion (3.12), in sub-system (6.15),χ2 is Granger non-causal for
χ1 due toa12(z) = 0. In sub-system (6.16)a12(z) , 0, thusχ2 is Granger causal for
χ1. Compare figure 6.2 for a graphical representation of these two sub-systems.

To conclude this section we want to mention one advantage of this PCA-basedap-
proach, it is computationally efficient. After the PCA computation only one AR
systema(z) for the static factorsz has to be fitted. Linear transformations accord-
ing to (6.13) are sufficient for determining the AR systems for all possible channel
selections.

For the remainder of this chapter we are interested in a practical causal analysis
of high-dimensional co-moving systems. Therefore, the following sectionswill all
be based on the practical PCA approach discussed in this section rather than the
theoretical approach discussed before.

6.4 Methodology

As we have seen in the previous section, a Granger causal investigation between
channelsi and j depends on the chosen channel setI . Different channel selections
I and Ĩ (in general) lead to different results. However, we are interested in a single
overall statement, whether channeli influences channelj or not.
For this purpose we propose an intuitive methodology, which is based on theideas
the PCA-based approach of section 6.3.
Our methodology consists of three steps. First, we use PCA to separate the obser-
vations into the latent variables (explaining the co-movement) and the noise, see
section 5.2.
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Second, for fixedi and j we analyze the conditional Granger causality relation

χi
?→ χ j |χI , given a fixed channel selectionI ⊃ i, j.

Third, we perform this analysis for all admissible channel selectionsĨ ⊃ i, j and
derive a heuristic statement for the influence fromχi to χ j , condensing the infor-
mation of all sub-systems.

In detail we proceed as follows:
Initially we perform a PCA on the observationsx in order to obtain the factor
loading matrixΛ and the static factorsz. The dimension of the static factorsq is
determined via a Scree plot, see Cattell (1966).
Now let i, j, I be fixed. The straightforward application of the PCA approach from
section 6.3 yields two problems:
While in theory we can easily distinguish regular and singular matricesΛI in equa-
tion (6.12) by considering the determinant, the estimatorΛ̂I will typically yield
det(Λ̂I ) , 0. The causality relations drawn from systems with very small values
of |det(Λ̂I )| are not meaningful, which is due to the fact that ˘a(z) in (6.12) cannot
be estimated reliably. The term|det(Λ̂I )| is a measure for the similarity of the se-
lected channels. Therefore, we only consider channel selectionsI with |det(Λ̂I )|
exceeding a thresholdτ.
A similar challenge arises in the estimation ofˆ̆a ji (z) (which has a finite order now).
In theoryĂ ji (m) = 0 ∀m signifies thatχi is Granger non-causal forχ j . However,

in estimation we typically havê̆A ji (m) , 0, so we have to statistically test whether

the polynomial coefficients ˆ̆A ji (m) (for all lagsm) are significantly jointly different
from zero. For this purpose we use anF-test (H0 : Ă ji (m) = 0 ∀ m), which is
implemented in theGCCA toolbox, in Seth (2010) the toolbox and the test are
described. We consider the p-value of the test as a measure for Granger causality:
Rejection ofH0 (p < 0.03) signifies Granger causality, acceptance means non-
causality. The threshold valuep0 = 0.03 was chosen empirically.
In order to sum up, for each channel selectionI (for fixed i, j) we obtain two val-
ues: |det(Λ̂I )| as a similarity measure of the channels inI and the p-value as an
indicator for the causality fromχi to χ j .

As a global influence statement fromχi to χ j is our goal, we want to condense
the different conditional causality statements based on distinct channel selections
I into a single one. For this purpose we propose an intuitive rule: If all statements
for distinct channel selections match, we conclude a global influence statement.
In other words: ifχi → χ j |χI for all I with |det(Λ̂I )| > τ, we say thatχi influences
χ j . On the other hand, ifχi 9 χ j |χI for all I with |det(Λ̂I )| > τ, we say thatχi

does not influenceχ j . In case of non-conclusive Granger causality statements we
do not derive any global influence statement.
Finally, as the causality structures of the observations and the latent variables are
equal by assumption, compare section 6.1, we sayxi influences xj if χi influences
χ j . The analog reasoning holds in case of non-influence.
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Figure 6.3: Visualization of the proposed method. Analysis for all causality rela-
tionsχi → χ j |χI for distinct channel selectionsI ⊃ i, j. In each plot a point shows
the p-value (as a measure of causality) and|det(Λ̂I )| (as a measure of channel sim-
ilarity) for the respective channel selectionI . Only points with|det(Λ̂I )| > τ are
considered in the analysis (numerical reasons). (a) All relevant pointshave an asso-
ciatedp-value< 0.03, i.e. indicate causality (for each respectiveI ). We conclude
that xi influences xj . (b) All relevant points have an associatedp-value> 0.03,
i.e. indicate non-causality (for each respectiveI ). We conclude thatxi does not
influence xj . (c) For differentI , causality as well as non-causality statements are
indicated. We do not conclude any influence statement.

For a better understanding we want to visualize the described methodology:For
i, j fixed we plot a point for each distinct channel selectionI ⊃ i, j into the plane
spaned by|det(Λ̂I )| on the x-axis and the p-value on the y-axis. This procedure
yields graphs such as shown in figure 6.3. In such a plot we only consider points
with |det(Λ̂I )| > τ, in other words points which are located to the right of the dashed
vertical threshold line. Points to the left of this determinant threshold line are
ignored, because the corresponding p-values are not meaningful due to numerical
instabilities.

A point situated below the dotted line represents a p-value< 0.03 and therefore
indicates Granger causality. Consequently a point lying above the dotted lineindi-
cates Granger non-causality.

Figure 6.3 shows three plots constructed in the aforementioned way, it illustrates
the three cases we distinguish:

In plot (a) all relevant points are situated below the dotted line, i.e. each point
individually indicates causality (H0 of non-causality rejected due top < 0.03),
thus we have global influence.

We observe the opposite situation in plot (b), where all relevant points areabove
the dotted line, i.e. each point individually indicates non-causality, so we speak of
global non-influence.

Plot (c) illustrates a situation where distinct channel selections lead to causality
as well as non-causality statements. In this case, we refrain from concluding on
global influence.
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6.5 Results

In this section we apply our proposed method to data. First, we assesss ourmethod-
ology with a signal model. Second, we apply the proposed method to the ECoG
data. In a subsequent step we use the results to draw conclusions concerning the
seizure onset zone.

6.5.1 Simulated data

In order to assess the proposed methodology we apply it to simulated data where
we know the imposed dependence structure. In the first part of this subsection
we explain the signal model and in the second part we present the results of the
application of our methodology to the simulated data.
Consider the following signal model

x(t) = Λz(t) + η(t) (6.18)

a(z)z(t) = ε(t).

First we simulate the 3-dimensional static factorsz as an AR(2) process with the
following AR polynomial

a(z) =





1− 0.2z 0 0
−0.3z2 1− 0.5z 0
−0.7z2 0 1− 0.5z





andCov(ε) = I3.5 For the construction ofx we choose the factor loading matrix

Λ =





1 0 0
0 1 0
0 0 1
1 0 0
0 1 0
0 0 1
1 0 0
0 1 0
0 0 1





and the variance of the noise

Cov(η) = diag(0.15,0.15,0.61,1.37,

0.61,0.15,1.37,1.37,0.61).

The Granger causal structure of the simulated 3-dimensional static factors(z1∗ ,z2∗ ,

z3∗)′ is depicted in figure 6.4(a), the resulting influence structure of the 9-dimension-
al system (x1, . . . , x9)′ is shown in figure 6.4(b). Due to the simple structure of the



6.5. RESULTS 75

7

4

1

2 5 8

3

6

9

1*

2*

3*

1*

2*

3*

(a) (b)

Figure 6.4: Illustration of the imposed dependence structure of signal model(6.18).
(a) Associated path diagram for the static factorsz. (b) Graph depicting the influ-
ence structure of the simulated observations (arrows indicate influence).
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Figure 6.5: Scree plot of the principal component analysis of the simulated data
from signal model (6.18). Three factors explain the majority of the variance.

loadings matrixΛ we get a simple influence structure in figure 6.4(b).

We now apply our proposed methology to the simulated data from the signal model
(6.18).
For the initial calculation of the PCA, we determine the number of static factors
q by considering the Scree plot, see figure 6.5. This figure shows the percentage
of the explained variance per factor. We observe that three factors explain the
majority of the variance, thus we chooseq = 3. Furthermore, by application of the
BIC criterion we obtain an AR-model order ofp = 2 (matching the imposed model
order).
Proceeding according to our methodology, for fixed sourcei and targetj we obtain
causality relations for all channel selectionsI ⊃ i, j. They are represented as points

5Simulation is done using the function arsim of the MatlabR© package arfit, described in Schneider
and Neumaier (2001).
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Figure 6.7: Inferred influence structure of the simulated data of signal model
(6.18). The influence structure matches the imposed influence structure depicted
in figure 6.4(b).

in a graph as described in section 6.4. Hereby points with p-values> 0.4 are dis-
played with p-value= 0.4, because this does not change the results of the analysis
and facilitates the visualizaton.
In figure 6.6 all these plots are arranged in a 9× 9 matrix plot, where the columns
indicate the source channelsxi and the rows the target channelsx j . Thus, the (j, i)-
sub-plot quantifies the influence fromxi to x j . Diagonal elements are not displayed.

Let us consider the interpretation of three selected sub-plots in figure 6.6 indetail:
In sub-plot (3,1) all points to the right of the determinant threshold line are located
below the dotted line, and therefore represent p-values smaller than 0.03 (i.e. the
null hypothesis of non-causality is rejected). This means that for all admissible
channel selectionsI , we haveχ1→ χ3|χI . Thus we sayx1 influencesx3.
In sub-plot (3,2) all points to the right of the determinant threshold line are located
above the dotted line. Thus we sayx2 does not influencex3.
In sub-plot (4,1) all points are located to the left of the determinant threshold line,
therefore we do not draw any conclusions. The reason for this behavior is thatx1

andx4 are both generated byz1∗ and therefore are highly correlated.

Summing up the information of figure 6.6 we retrieve the influence structure as de-
picted in figure 6.7. This is exactly the imposed influence structure of system (6.18)
as shown in figure 6.4(b). Channelx1 influences channelsx2, x3, x5, x6, x8, x9, so
do channelsx4 andx7.
For the simulated data the proposed methodology performed very well.

6.5.2 ECoG data

In order to demonstrate the practicability of our proposed methodology we apply
it to the ECoG data described in section 2.7. In this thesis we are interested in the
seizure onset zone of an epileptic seizure. Therefore, we analyze thedependence
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Figure 6.9: Results of the influence analysis of the ictal ECoG data. Six selected
channels (out of the whole 24 channel set) are dsiplayed. Columns indicate the
source channels and the rows the target channels. Interpretation of each sub-plot
as in figure 6.3 yields (a part of) the influence structure depicted in figure6.10.

structure of the data at the beginning of the seizure. In particular we process a 4
second time window at the beginning of the first recorded seizure of the patient.
The starting time is indicated by the clinicians, and the data are shown in figure
6.8.
As we will see, the influence structure of the data at the beginning of the seizure
will give indications about the seizure onset zone.

In the first step we calculate the PCA of the data. The number of static factorsis
determined by a Scree plot as before in subsection 6.5.1. In order to achieve an
explained variance greater than 80 % we chooseq = 5. Furthermore, in accor-
dance with the survey paper Tseng et al. (1995), we set the AR-model order for the
Granger causal analysis of the ECoG data top = 8.

In the second step we fix the source channeli and the target channelj and com-
pute the causal relations for all channel selectionsI ⊃ i, j. Following our proposed
methodology we obtain a 24×24 matrix plot. Figure 6.9 shows a 6×6 sub-matrix,
corresponding to the channels A9, A12, B8, B5, C5, C2. The whole 24×24 matrix
plot would have been to large to properly display it here. For explanatorypurposes
the 6× 6 sub-plot will suffice.

We briefly want to discuss 4 sub-plots of figure 6.9 in detail to highlight important
characteristics:
Sub-plot (2,3) describes the causality relations from B8 to A12. All points tothe
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Figure 6.10: Results of the influence analysis of the ictal ECoG data. Illustration of
the influence structure of the ECoG data, displayed in figure 6.8. MRI scanof the
patient’s brain together with the subdural electrode strip positions. Arrowsindicate
influence between the respective electrodes. Electrodes with the highestnumber of
departing arrows are considered to represent the seizure onset zone (B8, A12, A11,
A10), compare the out-degree histogram in figure 6.11.

right of the determinant threshold are located below the dotted line, thus we say
channel B8 influences channel A12.

In sub-plot (5,3) all points located to the right of the determinant threshold are
above the dotted line. Therefore B8 does not influence C5.

An interesting case occurs in sub-plot (3,2). We have admissible points above and
below the dotted line. In this case we refrain from any influence statement.

Finally in sub-plot (4,2) all points are located to the left of the determinant thresh-
old. We do not draw any conclusion in this case, as there are no admissible channel
selections.

By interpreting each sub-plot in the 24× 24 matrix in this way, we obtain all influ-
ence relations. In particular we are interested in the (source, target) channel pairs,
where the source does influence the target channel. Figure 6.10 showsthe derived
influence structure of the ECoG data. For a better understanding the arrows (which
indicate influence) are drawn into a MRI scan of the patient’s brain togetherwith
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Figure 6.11: Results of the influence analysis of the ictal ECoG data. Histogram of
the out-degree of the electrodes shown in figure 6.10. Electrodes with the highest
number of departing arrows are considered to represent the seizure onset zone (B8,
A12, A11, A10)

the electrode positions.

In this thesis we are interested in the seizure onset zone, in other words thebrain
area that triggers the epileptic seizure. Analyzing figure 6.10 we see that the chan-
nels B8, A12, A11 and A10 have the highest number of outgoing arrows.This can
also be seen in figure 6.11, which shows the out-degree per channel. This obser-
vation suggests that the seizure onset zone comprises these four electrodes, which
is in good accordance with the visual analysis of the clinicians. Of course this is
a fundamental statement and in section 6.6 we will discuss the neurophysiological
aspects of this result.

6.6 Discussion

In this chapter we proposed a procedure for deriving influence relations in high-
dimensional co-moving time series using PCA and Granger causality. In this sec-
tion we discuss various aspects of this approach. We start with a discussion of
the proposed methodology followed by a discussion of its application to simulated
data and ECoG recordings.

6.6.1 Theory and methodology

A key assumption of this method is that the latent variables reflect the causality
structure of the observations. In other words, we can infer the dependencies be-
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tween the channels based on the dependencies from the latent variables,the noise
is assumed not to contain any causal information. Altough this is a strong assump-
tion, it seems reasonable to us: This assumption is very similar to the one that the
important causal information is contained in the high amplitude wave forms, not
in the small background noise. We believe that in particular in neurophysiological
applications this is meaningful, as we expect these high-amplitude oscillations to
carry substantial information about the causality structure of the generating cortical
mechanisms.
To assess this assumption we compared the relations based on the observations
with the causal relations based on the latent variables. Altough small changes in
the influence structure occured, the seizure onset zone did not change. This shows
that this assumption is justified in this context.

In our approach we investigate all dependencies in allq-dimensional sub-systems
of the latent variables. By the application of the PCA we perform this analysis ina
computationally efficient way, as we only have to compute one PCA and estimate
one single AR-model. Of course it would also be possible to refrain from theuse of
factor models. In this case one would fit an AR model for eachq-dimensional sub-
process of the observations, which would result in a higher computationaleffort.
In contrast, the proposed methodology yields a simple mathematical method for
the causal analysis of the whole multivariate system. Another advantage of our
method lies in the simple measure for the channel similarity of a channel selection
I , |det(Λ̂I )|, which allows for a straightforward comparison for different channel
selections.

As mentioned in subsection 6.4, our methodology consists of three steps: PCA,
Granger causality analysis for fixed channel selectionI and derivation of an influ-
ence statement. This modular design allows for an easy adaptation of each single
step, i.e. alternative methods could be used in each step independently of theoth-
ers.
First, the use of sparse PCA would enforce additional zeros in the loadingmatrix
Λ. Thurstone (1947) suggested five criteria for a simple structure and d’Aspremont
et al. (2007) gave a direct formulation for sparse PCA.
Furthermore, we proposed the use of a static PCA in this chapter. The application
of a dynamic PCA would also be conceivable, see Brillinger (1981). Especially
in connection with the physiological frequency bands of the brain this wouldbe a
very interesting idea.
In the second step we use two central indicators in the Granger causal analysis for
a fixed channel selection:|det(Λ̂)I | as a measure of channel similarity and thep-
value of anF-test as an indicator for Granger causality. We employ the latter due
to its well-established theory. Note that in neuroscience literature various other di-
rected dependence measures are used. Prominent ones include the lineaer measure
of conditional dependence introduced by Geweke (1984), the partial directed co-
herence (PDC) introduced by Baccala and Sameshima (2001), its numerous mod-
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ifications and the directed transfer function (DTF) proposed by Kaminski and Bli-
nowska (1991). Compare section 3.5 and Flamm et al. (2012b) for an overview
and a discussion of these measures with regard to Granger causality.
Other measures for the channel similarity would also be conceivable, e.g. the de-
terminant of the covariance matrix of the errors|det(Σ̂(ε̆))| in (6.13). However, we
note that|det(Λ̂I )| revealed good numerical properties in the simulations.
Third, in this chapter we propose an intuitive rule for the derivation of influence
statements: Ifχi → χ j |χI for all admissibleI , we say thatxi influencesx j . One
could imagine other rules depending on specific applications. For example only
the channel selection with the largest|det(Λ̂)I | could be taken into account for the
influence statement. Another possible rule for influence statements might be based
on the comparison of the number of points above and below the dotted line, e.g.
the majority or a certain percentage.
We focused our attention on the PCA-based approach. It would also be possible
to base the proposed methodology on the causal relations directly derivedfrom the
transfer functionw(z) as described in section 6.2.

A naturally arising question is whether and to which extent our definition of influ-
ence is meaningful. In our opinion it is an intuitive and workable procedurefor
causality analysis in high-dimensional co-moving systems: Intuitively one expects
a certain kind of dependence betweenxi andx j if χi is causal forχ j for all (admis-
sible) channel selections. In other words the most important parts ofxi are causal
for the most important parts ofx j .
A potential weakness of our definition of influence is the fact that in practical ap-
plications one is often confronted with the case where no influence statementcan
be inferred. Compare sub-plot (3,2) in figure 6.9, where causality as well as non-
causality relations are symbolized. In such cases we recommend a more precise in-
vestigation which particular channel selections yield causality relations and which
do not.
If, in applications, the conditioning on channels of a specific (brain) region yields
non-causality between channelsi and j, but the conditioning on all other regions
indicates causality, further investigation could be performend to explain this.One
might conjecture that there is a separating region betweeni and j.
Furthermore, there could be some clustering in the inference plots. This fact might
also yield additional information over the system.
Due to the existence of the aforementioned undecidable cases we avoid the term
causalityand refer to the derived dependence statement asinfluence.

We want to conclude this first part of the discussion with two remarks.
First, the problem of high-dimensional co-moving data often occurs in practical
applications. We propose a methodology connecting Granger causal analysis and
factor models.
One of the most prominent ideas to cope with co-movement is to analyze only a
manually selected sub-system (where the number of observations equals the num-
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ber of driving components). Another method would be the causal analysisof so
called extracted atoms, which represent condensed information of the system, see
Eichler (2005).
The selection of such low-dimensional sub-systems can also be performedin an
automatic way, e.g. the channel selection method proposed in Graef et al. (2012b)
based on the the An-algorithm described in An and Gu (1989).
Another possibility is to use penalized regression for an estimation of the AR-
model including all observations, e.g. LASSO as in Tibshirani (1996). This method
enforces additional zeros in the AR polynomial and avoids numerical problems.
Only recently, Chiang et al. (2009) successfully applied this approach toneural
data, calculated the PDC and visualized the indicated brain connectivity.
The idea behind most of these approaches is to compress the information of the
data. But in a subsequent causal analysis one has to be careful how toconclude
causal statements for the observations from the causal statements of the com-
pressed information. In our methodology we explained each step and the reasoning
behind it thoroughly.

Second, for a Granger causal analysis the AR representation of a process is some-
how a natural starting point, because the causalities can be easily checkedvia cri-
terion (3.12). However, in the factor model case a representation in the form of
(1.6) is often not meaningful (high number of observations, low number ofdriving
components). For the latent variables an MA representation of the form (5.6) is
more natural. Our methodology suggests to rewrite parts of this MA representa-
tion in order to use the classic AR representation theory. In simple cases causal
conclusions can be drawn from MA representations, see Sims (1972).
We based our methodology on regular AR models for sub-processes. However, it
is conceivable to use a singular AR model for the whole process. In this case one
has to check the uniqueness ofa(z) in order that the use of Granger causality makes
sense.
In this thesis we use the concept of Granger causality as the basic concept of causal-
ity. This is reasonable because Granger causality is intuitive, workable and well
understood. However, for the causal analysis of high-dimensional co-moving sys-
tems other definitions of causality might be conceivable.

6.6.2 Results

In this subsection we discuss the results obtained by our method. Especially we
are interested in the clinical interpretation of our results.
Our methodology correctly identifies the dependence structure of the signal model
(6.18). During this analysis we encountered the challenges discussed in subsection
6.6.1.

The application of our methodology to ictal ECoG data shows promising results.
We succesfully localize the seizure onset zone of the analyzed patient byidenti-
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Table 6.1: Onset zone and initial propagation of the analyzed seizure according to
the visual inspection by clinicians.

Investigator Initial Electrodes Close follow-up

Expert 1 B8 A10, A11, A12
Expert 2 A11, A12, B8 A9, A10, B7
Expert 3 A10, A11, A12 B8

fying the zone with the highest number of outgoing arrows. In this manner we
define the area comprising the electrodes B8, A12, A11 and A10 as the seizure
onset zone, compare the MRI scan in figure 6.10 and the out-degree histogram in
figure 6.11.
This result correlates very well with the visual inspection of the raw ECoG data by
the clinicians. In chapter 7 figure 7.4 shows the initial time of the first seizure,this
figure includes the beginning of the epileptic activity per channel marked bythree
clinical experts. Table 6.1 summarizes the findings of the three clinical experts
who independently marked the electrodes initially involved in the epilpetic activity,
which characterize the seizure onset zone.
For each of the three investigations the electrodes identified by our methodology
are comprised in the set of initial and follow-up electrodes. Electrodes B8,A12 and
A11 are specified as initial in two out of three cases and as follow-up in the third
case. Inversively, electrode A10 is indicated as initial in one case and asfollow-up
in two cases.

In our opinion the reason for this good correlation between our results and the
clinical findings is the following:
In case of focal epilepsy, the pathological synchronous activity (characterizing the
epilepetic seizure) starts at a circumscribed brain area. From this seizureonset zone
ictal activity spreads to its immediate vicinity recruiting more and more parts of the
neural network. This leads to distinct co-movement of the observations. One could
imagine afocuslocated in the seizure onset zone driving the surrounding channels
by imposing its oscillatory frequency in the course of the recruiting process. This
could be interpreted as a kind of information transfer or causal interaction. The
electrodes in the focus causally influence the behavior of the surrounding elec-
trodes in the initial phase of the seizure.
Therefore, we expect to obtain indications for the seizure onset zone by applying a
Granger causal analysis to factor models during the initial seconds of the seizure.
We think that the aformentioned results strengthen this hypothesis.

In the course of this recruiting process we obviously expect feedbackmechanisms
between the channels (besides unidirectional dependence). This can be observed
in figure 6.10, consider e.g. channels A9↔ A10, A10↔ A12 and B6↔ A12.
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However, in the seizure onset zone the departing arrows dominate, in other words
the channels in the conjectured seizure onset zone have a high out-degree. This
situation is reflected in the out-degree histogram in figure 6.11. Channels withthe
highest out-degrees coincide with the seizure onset zone (as indicated by the clin-
ical experts), and with increasing distance to the seizure onset zone the respective
out-degree decreases. Channel A8 with an out-degree of zero is an exception, as we
cannot infer any influence statement for this source channel (only non-admissible
channel selections for all target channels).

6.7 Conclusion

In this chapter we proposed a causal analysis of high-dimensional co-moving data,
connecting the topics of Granger causality and factor models. The application
of Granger causality to factor models is not straightforward, and we proposed a
natural extension termed influence. Besides the theoretical considerations we also
applied our methodology to ECoG data.
The application of our proposed method shows good first results in the detection of
the seizure onset zone, because the results correlate well with the visualinspection
of the clinicians.
Concluding we think that our proposed methodology might have the potential to
assist clinicians in the presurgical evaluation by objectivating their visual ECoG
examination.



Chapter 7

Band power measure

In this chapter we present an alternative method for the detection of the seizure
onset zone of epileptic seizures. In chapter 6 we presented a rather theoretical-
based approach with an application to the ECoG data, whereas in this chapterthe
introduced methodology will be more applied.
The seizure onset zone will be determined by the channels showing the first rhyth-
mic ϑ-activity (4-9Hz). The application of this method yields results which are in
good accordance with the visual characteristics of the ECoG data as well as the
clinical findings based on the visual analysis of the clinicians.

After we motivate the method in section 7.1, we explain its two steps in section
7.2. Then we apply the procedure to the ECoG data in section 7.3 and discussthe
results in section 7.4.

In contrast to the preceding chapters this methodology is only meant for application
to ECoG data, there will be no theoretical discussions. Parts of this chapterhave
been published in Graef et al. (2012a).

7.1 Motivation

As we mentioned in section 2.4 the ECoG analysis in order to locate the seizure
onset zone is done visually by the clinicians. Our methodology is partly basedon
the ideas of this visual analysis, therefore we will explain its basic concepts.
In the first step the clinicians temporally locate the seizure and mark its beginning
and ending. Then they backtrace the beginning of the epileptic activity on each
channel. For a patient suffering temporal lobe epilepsy (TLE) this normally means
to backtrace theϑ-activity to its temporal origin on each channel. Following this
procedure the clinicians get the temporal onset of the epileptic activity for each
observed channel. This information shows the propagation of the epileptic seizure.
The seizure onset zone is considered as the area containing the channels with the
earliest epileptic activity in this context.

87
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However, the visual analysis is not straightforward due to practical reasons. The
finding and the identification of epileptic activity (ϑ-activity for TLE patients) on
each channel is a difficult and time-consuming task. Especially marking the tem-
poral beginning of the epileptic activity is complicated, because there are a variety
of different characteristics for the epileptic activity. Furthermore, the starting point
is often not clearly identifiable because the normal brain activity interfereswith
the first epileptic signs and therefore impairs the analysis. Due to these reasons the
visual analysis has to be carried out by experienced persons.
In the case of TLE the visual analysis simplifies slightly because the main epilep-
tic activity areϑ-waves, compare section 2.6 for more information on on temporal
lobe epilepsy. The temporal onset ofϑ-activity is easier to identify than in the gen-
eral case.

As we already mentioned our aim is to identify the seizure onset zone for TLE
patients. Therefore, we propose a method that is based on the ideas of thevisual
analysis. It is physiologically motivated and focuses on the propagation ofthe
ϑ-waves.
Our method consists of two consecutive steps:

1. In the first step we segment the ECoG data based on relative frequency con-
tributions. The ECoG data and especially their spectral frequency contribu-
tions show instationary behavior. We propose a statistics, termed band power
measure (BPM), which we employ for the segmentation. In subsection 7.2.1
we explain the segmentation in detail.

2. Based on this segmentation we classify each segment with respect to its
epileptic character. Segments showing dominantϑ-activity are said to be
epileptic.

The temporal delay of the onset of epileptic activity on the different channels
is an indicator for the seizure propagation. Therefore, the channels showing
the first epileptic activity are said to belong to the seizure onset zone. In
subsection 7.2.2 we detail the segment classification and the analysis of the
onset zone.

So in the first step we segment the data, whereas in the second step we classify the
segments and infer the seizure onset zone. The first step is called segmentation and
the second step is called onset zone analysis in the following.

For both steps or rather the concepts behind them, the literature offers a wide vari-
ety of related ideas:
In order to cope with the instationarities of EEG and ECoG signals, various seg-
mentation methods have been developed in the last decades: The prominentspec-
tral error measure (SEM)was introduced in Bodenstein and Praetorius (1977), a
non-linear energy operator was used in Wu and Gotman (1998) and a general-
ized Kolmogorov-Smirnov-statistics in Brodsky et al. (1999). Other segmentation
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approaches involve the use of information criteria in Inouye et al. (1995)or the
Itakura distance in Kong et al. (1997). The various segmentation methods are
normally rooted on a statistics based on ECoG properties. Large changes inthe
statistics indicate the beginning of a new segment.
The classification of the epileptic character is closely related to seizure detection
analysis. This term refers to the temporal detection of epileptic seizures in long-
term EEG recordings by evaluating the epileptic character of the combined chan-
nel set. For our purposes we evaluate each segment individually, then we infer the
seizure onset zone. We refer to van Putten et al. (2005) and Khamis et al. (2009) for
an overview of common detection approaches. Other methods include non-linear
approaches like entropies in Acharya et al. (2011) or the recurrencequantification
analysis (RQA) in Thomasson et al. (2001).

7.2 Methodology

In our analysis we consider multivariate signalsx(t), t = 1, . . . ,T (t denotes the
time index) consisting ofK channelsxk(t), k = 1, . . . ,K. We refrain from making
rigorous assumptions on the data like in the previous chapters, we only assume the
signals to be zero-mean and stationary in a sufficiently short data window.
The multivariate signals we are going to analyze with our methodology are the data
presented in section 2.7. For a recapitulation the data consist of three seizures of
a 43 year old male patient obtained during a long term ECoG monitoring. The
multivariate signal consists ofK = 24 channels and has a sampling frequency of
128Hz.

As aforementioned our methodology consists of two consecutive steps: theseg-
mentation of the ECoG data, see subsection 7.2.1, and the classification of the seg-
ments’ epileptic character followed by the seizure onset analysis, see subsection
7.2.2.
As the segmentation and classification are applied channel-wise, we will explain
them for an arbitrary single channelxk(t) in the following.

7.2.1 Segmentation

A simple idea for the segmentation of a channelxk(t) is to derive a statistics based
on the properties of the channel and segment according to it. We follow this idea
and construct an univariate statistics based on the spectral properties of the (uni-
variate) channelxk(t) and from its temporal evolution we derive the segments.
Now we detail the construction of the statistics, in the following sections we present
the results of the application and discuss its advantages and shortcomings.

The ECoG data are only stationary over short time periods and in order to analyze
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the temporal evolution of a statistics we have to define how to deal with the tempo-
ral changes. We simply use a sliding window approach, where a window oflength
Twin seconds is moved over the data inTres second-steps. Within these windows
we assume the data to be stationary.

The considered statistics is based on the spectral properties of the channel. There-
fore, we calculate the spectral density of the channelxk for each window, (f (λ))(τ)
say, whereτ is the new time index associated with the new temporal resolution
1/Tres. The spectral density of a window is associated with the window center on
the time axis.
Due to neurophysiological considerations we consider the following frequency
bands:

• theδlow-band from 1.0 - 1.5 Hz,

• theδup-band from 2.0 - 3-5 Hz,

• theϑ-band from 4.0 - 8.5 Hz,

• theα-band from 9.0 - 13.5 Hz and

• theβ-band from 14.0 - 30.0 Hz.

These are the most important frequency bands for EEG signals and therefore they
are also important for ECoG analysis. The split of theδ-band was due to technical
reasons.
For each window, i.e. each time-stepτ in the new temporal resolution, we calculate
the power of these bands, e.g. the power of theα-band is calculated by

Fα(τ) =
∫ 13.5

9.0
( f (λ))(τ) dλ, (7.1)

as well as the total power

F(τ) =
∫ 64.0

1.0
( f (λ))(τ) dλ.

In order to analyze the temporal evolution of a statistics we can either look at the
absolute statistics itself or its changes relative to a reference point. Both methods
have their advantages, but for our considerations we compare the statistics at a run-
ning point to the statistics at a reference point.

Our segmentation method is based on the temporal changes of the relative fre-
quency contributions of the aforementioned physiological bands. We choose an
initial reference pointτ∗, and for increasing time-stepsτ > τ∗ we calculate our
segmentation statistics termedband power measure (BPM)as
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B(τ) =

(

Fδlow(τ)
F(τ)

− Fδlow(τ∗)
F(τ∗)

)2

+ . . . +

(
Fβ(τ)

F(τ)
−
Fβ(τ∗)

F(τ∗)

)2

. (7.0)

If the band power measure exceeds a given thresholdth, i.e. B(τ) > th, we start a
new segment by updating the reference pointτ∗ = τ + 1 and continue the calcula-
tion ofB(τ) for increasingτ. The set of reference points obtained by this algorithm
are the boundary points of our segments, i.e. each resulting segment is limited by
two subsequent reference points.

We will discuss the properties of the BPM in the discussion section. Right nowwe
emphasize only one important point. As we already discussed in section 2.6, ictal
ECoG data of temporal lobe epilepsy patients are often characterized by distinct
rhythmicϑ-activity according to Foldvary et al. (2001). As our algorithm tends to
yield segments with one predominant frequency band by construction, we consider
it to be appropriate for the segmentation of the ictal ECoG signals of TLE patients.

7.2.2 Onset zone analysis

In the second step we decide whether the data in a segment show epileptic activity
or not. For this purpose we propose a simple and intuitive rule which focuses on
neurophysiological aspects of TLE patients: A segment is classified as epileptic if
ϑ-activity is dominant within this segment. We say that theϑ-activity is dominant
within a segment, i.e. we classify a segment as epileptic, if one of the following
two requirements is fulfilled:

• theϑ-contribution is the largest among the frequency contributions in more
than half of the time-steps of the segment or

• the maximal spectral peak occurs in theϑ-band more often than in each other
single spectral band.

This procedure is based on the good localizing value ofϑ-activity, see Foldvary
et al. (2001). Following this line of thought the start of the epileptic activity ona
single channel is indicated by the beginning of the first epileptic segment.

In order to draw conclusions on the initial seizure propagation we apply theseg-
mentation and subsequent classification channel-wise to all channels. Thetempo-
ral delay of the start of the epilepticϑ-activity over the different channels is used
for describing seizure propagation. The first channels showing epileptic ϑ-activity
indicate the seizure onset zone.

7.3 Results

As we are interested in the initial spread of the rhythmicϑ-activity, we investigate
the first 20 seconds of the three seizures presented in section 2.7. We start the in-
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vestigation one second prior to paroxysmal fast activity (30Hz) or high-frequency
oscillations (75Hz), which are in a certain sense the first signs of the seizures. The
synchronization phase and the rhythmicϑ-activity start approximately 10 seconds
after these first signs.

We apply our methodology to the full 24-channel setxk(t), k = 1, . . . ,24, of all
three seizures. Instead of presenting the segmentation and classification results
for all seizures, we want to focus on the results of seizure 1 and discuss them
thoroughly. This discussion will deepen the understanding of the methodology.

7.3.1 Segmentation

For the segmentation we use the following set of parameters:Twin = 1.5s,Tres =

1/16s. Power spectral densities are estimated using the non-parametric Welch
method. Furthermore, we employ an empirically determined thresholdth = 0.07
and an initial reference pointτ∗ at 0.75s.

In figure 7.1 we display the segmentation of an exemplary channel in detail. For
presentation purposes we choose the channel A11 from seizure 1, thischannel will
also occur in the other figures.

On top, figure 7.1(a), the ECoG data are shown. For a better understanding of the
band power measure we display the temporal evolution of the relative frequency
contributions in the middle, figure 7.1(b). The corresponding BPM statistics is
shown at the bottom, figure 7.1(c). A new segment starts when the statistics ex-
ceeds the threshold. The resulting segment boundaries are marked in all three
graphs by vertical lines.

In this example a significant change of the BPM statistics can be observed in case
of frequency shifts from one physiological band into another, e.g. at 16:12:50 when
a rise of theα-contribution disrupts theϑ-contribution.

In figure 7.2 we show the segmentation of all channels of seizure 1 for the reader
to get a grasp how the segmentation algorithm behaves. The different phases dis-
cussed in section 2.7 can clearly be found and we note that the length of the seg-
ments is largest in the phase of distinctϑ-activity. Furthermore, we see that (spa-
tially) adjacent channels show a similar behavior.

As it will turn out in the next section, the most interesting channels with respect
to the seizure propagation are A9, A10, A11, A12, B8, B7 and B6. Therefore, we
show an enlarged graph of these 7 channels in figure 7.3. Theϑ-activity seems to
start at around 16:12:45 at all of these channels.
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Seizure Investigator Initial Electrodes Close follow-up

1

Algorithm B8 A10, A11, A12
Expert 1 B8 A10, A11, A12
Expert 2 A11, A12, B8 A9, A10, B7
Expert 3 A10, A11, A12 B8

2

Algorithm A10, A11, A12 B6, B8
Expert 1 A11, A12 A9, A10
Expert 2 A11, A12 A10
Expert 3 A11, A12 B8

3

Algorithm A10, A11, A12 B6, C1, C2, C5
Expert 1 A9, A10 A8, A11, A12,

B6, B7, B8, C1,
C4, C5

Expert 2 A9 A1, A2, A3, C2,
C3

Expert 3 A8, A9 A1, C3, C4, C5

Table 7.1: Onset zone of all three seizures. Results based on our method and the
visual inspection by clinicians

7.3.2 Onset zone analysis

Subsequent to the segmentation we classify the segments as epileptic or not ac-
cording to the rules discussed in subsection 7.2.2. This allows us to investigatethe
initial propagation of theϑ-activity and derive the localization of the seizure on-
set zone. The channels showing the firstϑ-waves are considered the seizure onset
zone.

Following up the last subsection we present our findings for seizure 1 in figure
7.4. The figure shows a 4-second-zoom of the channels displayed in figure 7.3.
The epileptic segments are drawn with a bold line, non-epileptic segments with a
normal line. The depicted channels show the earliest epileptic activity among all
considered channels of seizure 1.
In figure 7.4 channel B8 shows the first occurrence of dominantϑ-activity, closely
followed by electrodes A10, A11 and A12. Therefore, we consider these channels
the seizure onset zone in seizure 1.
Furthermore, we mark the beginning of the epileptic activity according to the vi-
sual analysis of three experts, see the legend in figure 7.4. The comparison of these
times with the computed start of the epileptic activity serves as an assessment for
our methodology.

We applied the segmentation and classification to all three seizures and table 7.1
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SB1
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A12
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B4

B5

B6
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B8

Figure 7.5: MRI scan with electrode positions. The electrodes of the seizure onset
zone indicated by the proposed methodology are marked.

summarizes our findings as well as the visual analysis. Our algorithm indicates
that the seizure onset zone comprises the electrodes B8, A10, A11 and A12. This
coincides well with the visual analysis of the experts. In figure 7.5 we marked the
electrodes of the seizure onset indicated by our proposed methodology.

7.4 Discussion

In this section we discuss the properties of the segmentation and the onset zone
analysis of our methodology.

7.4.1 Segmentation

The design goal of our segmentation method was to achieve long segments during
ictal periods and short segments in non-ictal periods. The BPM-based segmenta-
tion method has shown to achieve this requirement.
In figure 7.1 we see the characteristics of the BPM statistics: Prior to the rhythmic
ϑ-activity (starting at 16:12:45) we observe quickly interchanging frequency con-
tributions, see plot (b). This results in a BPM statistics with high variations and
frequent threshold exceedings, see plot (c). Therefore, our algorithm yields short
segments in this period. On the other hand, during the distinct rhythmic activity,
only small power shifts occur within the physiological frequency bands. Thus, the
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frequency contribution of the respective bands show a constant behavior, namely
theϑ-band on a high level. This results in longer segments.
As can be seen in the segmentation overview in figure 7.2, the segments are long
in ictal periods, i.e. during the phase with distinctϑ-activity, and short otherwise.
This is exactly the desired behavior.

The segmentation behavior is rooted on the construction of the BPM in formula
7.2.1. Our first segmentation approach involved a statistics of the form

∫

(( fxx(λ))(τ)
−( fxx(λ))(τ∗))dλ, but as it turned out, this statistics was too sensitive to shifts within
frequency bands, therefore we introduced the frequency contributionsF..
Furthermore, we initially used absolute differences of the relative frequency con-
tributions, e.g.|Fα(τ)/F(α) − Fα(τ∗)/F(τ∗)|, in contrast to the squared differences
in the final statistics. As the squared differences showed a better segmentation be-
havior, they are now used in the BPM statistics.

The results of the segmentation depend on the parameters used in the segmentation
algorithm:

• the window lengthTwin,

• the time-stepsTres,

• the parameters for the calculation of the spectral density within the sliding
windows,

• the initial reference pointτ∗ and

• the thresholdth.

The parameters can be arranged in two groups. The window lengthTwin, time-steps
Tres and the spectral density parameters belong to the first group. These parame-
ters have to be adjusted in order for the spectral estimation and its temporal change
to yield reasonable results. They are in a certain sense independent of the param-
eters in the second group, which signify the main segmentation parameters: the
thresholdth and the starting pointτ∗. We call the first group the spectral estimation
parameters and the second group the segmentation parameters.
We want to briefly discuss the segmentation parameters. Due to the low threshold
th = 0.07 we obtain a reactive segmentation behavior and short segments. As a
consequence of this fact the influence of the initial reference pointτ∗ is almost
negligible in this setting.
Furthermore, the presented segmentation is robust in respect to the segmentation
parameters. Small parameter changes ofth andτ∗ only lead to slightly different
segments. This is an advantage of the method.
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7.4.2 Onset zone analysis

In this study we assume that the initialϑ-spread represents a valid indicator (among
others) for seizure propagation in TLE, in particular for the determination of the
seizure onset zone. The proposed method delivers a conclusive seizure onset zone
for the three seizures. Furthermore, the resulting onset zone is in good accordance
with the clinical findings, see Table 7.1, which supports our assumption thatϑ-
activity is a good indicator for epileptic TLE activity.

As we mentioned in the previous subsection the proposed segmentation method is
robust with respect to the segmentation parameters. The seizure onset zone iden-
tification inherits the robustness, because the segmentation is the first step in the
methodology. This means that small changes ofth andτ∗ do not change the result-
ing seizure onset zone. This is a very good property of the proposed methodology
and we want to emphasize it.

Although the proposed methodology is capable of identifying the first channel
showing epileptic activity, this channel should not be called the focus of theseizure.
The identification of this first channel is not robust, and even the expertopinions
differ on the first epileptic channel, see table 7.1. Therefore, it is far more reason-
able to speak of a channel set showing the first epileptic signs, we call thischannel
set the seizure onset zone.

In our analysis we intentionally limit ourselves to trackingϑ-activity as an indi-
cator of epileptic activity. However, the observed patient also shows intermittent
epilepticα-activity. The segments showing thisα-activity are not characterized as
epileptic, see figure 7.4 (channels A9, A10, A11 at 16:12:47). For future works
we would propose patient-specific epileptic frequency bands indicated bythe clin-
icians to enhance the onset zone analysis.
Another possible amelioration of the proposed methodology would be the improve-
ment of the classification rules. The additional consideration of the signal ampli-
tude or the entropy as measures of rhythmicity, see e.g. van Putten et al. (2005),
could enhance the segment classification and therefore the whole seizureonset
zone analysis.

To conclude the discussion we want to say it is remarkable that the combination
of two simple ideas delivers results which are well correlated with the clinical
findings. This might be due to the close relation between the method and neuro-
physiology.

7.5 Conclusion

In this chapter we proposed a novel method for the detection of the seizureonset
zone of epileptic seizures based on the segmentation and subsequent classification
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of ictal ECoG data. The application shows promising first results in tracking the
initial propagation of ictalϑ-activity as an indicator for seizure propagation. The
identified seizure onset zone correlates well with the visual inspection of the clini-
cians.
It therefore has the potential for an objectivation in the presurgical clinical evalu-
ation of therapy-resistant patients. However, this requires further research and an
application to a broader data basis.
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Chapter 8

Conclusion

The main contribution of this thesis are two methods for the detection of the epilep-
tic seizure onset zone. The method presented in chapter 6 has a detailed theoretic
background and focuses on the causal analysis of the most important parts of the
observations. In chapter 7 we propose a method closely connected to the visual
analysis performed by the clinicians.
In this chapter we conclude this work. We present a general discussionas well as
ideas how to enhance the proposed methods. We focus on aspects of the methods
going beyond the scope of their description. Furthermore, we propose possible
next steps.

8.1 General discussion

Although both of our methods yield good results we have to keep some limiting
factors for ECoG analysis in mind.
ECoG data are normally obtained by surgically implanted subdural strip electrodes.
There is no default scheme for the placement of these electrodes, like the 10-20
system for the EEG electrodes. Thus the placement of the electrodes as well as the
corresponding electrical referencing scheme is unique for each patient. Therefore,
a generalization or automatization of our methods for a larger data basis will be
difficult.
The proposed methods are intended for the use with ECoG data obtained by sub-
dural strip electrodes. Of course it is possible to apply the methods to regular (i.e.
surface) EEG data. As the processed ECoG data of the analyzed patientdid not
show (technical or natural) artifacts, we do not know if our methods are robust
with respect to data artifacts. This means it is unclear if the proposed methodsalso
yield good results in the case of disturbing artifacts. In fact the band power mea-
sure was originally developed for the use with EEG and we expect it to be robust
for EEG data.

Summing up, both methods yield results which are in good accordance with the

103
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clinical findings. But we have to consider the methods as what they are. The
proposed methods are useful tools to aid the clinicians in the visual analysis.The
best analyzer for the data is still a human.

8.2 Outlook

Both presented methods show promising first results. The logical next stepis to
apply the methods to a larger data basis.
In this section we discuss ways to possibly enhance the proposed methods and to
develop them further.

8.2.1 Band power measure

The methodology presented in chapter 7 is a very simple and yields surprisingly
good results.
One of the main problems of the method is its dependency on theϑ-band. Although
rhythmicϑ-activity normally is an indicator for epileptic activity in TLE, the ictal
activity could also comprise faster waves, e.g.α-activity (9-13 Hz), or slower
activity, e.g.δ-activity (1-3 Hz). In fact we had a lot of problems with the processed
ECoG data because some channels showed epileptic activity at 9 Hz (which is
faster than normalϑ-activity). We propose two enhancements of the method to
cope with this problem.
First, we propose to use patient specific frequency bands, which can differ from the
physiological frequency bands presented in section 7.2. These new bands are used
for the segmentation as well as the classification.
Second, in addition to the two classification rules for the epileptic character ofa
segment we propose a third rule based on rhythmicity. If a segment shows distinct
rhythmic activity it is also classified as epileptic.

8.2.2 Influence analysis

In the proposed method only one static 4 seconds data window is considered. Based
on this investigation we draw conclusions regarding the seizure onset zone. The
naturally arising question is, whether it is also possible to draw conclusions regard-
ing the seizure propagation using the proposed causal analysis. The simplest idea
would be to use a sliding data window and conduct the proposed methodologyfor
each data window. The temporal change of the influences could give indications
over the seizure propagation. Unfortunately there is no clear interpretation for this
procedure like in the case of the detection of the seizure onset zone (comprising the
channels with the highest out-degrees). Perhaps the temporal change of the zones
with the highest in-degrees and the zones with the highest out-degrees might give
indications which zones emit information and which zones receive information.
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As we already mentioned in section 6.6 it would be possible to use different causal-
ity measures to quantify the strength of causality for the influence analysis. In this
point we see the largest potential for an enhancement of the method.

Another promising way to develop the influence analysis further is the application
of graphical models. In chapter 4 we discussed the application of graphical models
to regular AR systems. In the authors opinion it should be possible to incorporate
graphical models to infer the influences between the latent variables. It has to be
checked whether it is reasonable to apply graphical models to sub-systems(analog
to the original influence analysis) or if graphical models should be applied tothe
whole system. For the latter approach a generalization of graphical models to the
singular AR case would be necessary. From a theoretical point of view this is the
most challenging enhancement.

8.2.3 General outlook

The logical next step is the application of our methods to a broader data basis. Up
to this point the influence analysis was applied to one seizure and the band power
measure was applied to three seizures.

In the previous subsections we discussed ways to enhance the proposed methods,
but their original purpose is to aid clinicians in the visual analysis of the ECoG(or
EEG) data. They shall serve as a second opinion in the difficult visual analysis,
because the proposed methods provide an objective view on the data.
In the authors opinion the implementation of these methods in a clinical environ-
ment is more important than the further development of the methods. The most
sophisticated methods are useless if they are not used by the clinicians. Therefore,
the next step after the application of the methods to a broader data basis should be
the implementation in clinical software.

8.3 Concluding remarks

Both presented methods show promising first results and in the authors opinion
they should be pursued further. The authors see the most benefit for the patients in
the implementation of the proposed methods in clinical software.
Seizure propagation analysis is an interesting and challenging topic. It will stay a
vital research topic in the future, because the understanding of epileptic seizures
and their mathematical description is far from complete.

The main aim of this thesis was to develop methods which aid clinicians in the
visual analysis in order raise the chance of a seizure-free surgical outcome for
patients. In other words we wanted to help curing epilepsy. We hope to have
contributed a small part to reach this goal by providing this thesis.
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Furthermore, we hope to have given the reader new insights and an enjoyable time
reading this work.
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