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Deutsche Kurzfassung

In dieser Arbeit stellen wir zwei Methoden vor zur Detektion der Anfaipaungs-
zone von epileptischen Aallen basierend auf ECoG Daten. Neben eineritinf
ung in Epilepsie stellen wir die Grundlagsdir idie vorgestellten Methoden bereit.
Nach einer gindlichen Analyse der Methoden wird deren Anwendung auf wirk-
liche Daten pasentiert.

Epilepsie ist eine weit verbreitete neurologische Krankheit, die sich duiexdher-
kehrende unprovozierte Aalfe aul3ert. In dieser Arbeit werden wir uns mit einer
bestimmten Epilepsieform besiftigen, der Temporallappen-Epilep-sie. In diesem
speziellen Fall gehen die epileptischen Altg von einer umschriebenen Region
im Temporallappen des Gehirns aus, der sogenardallsursprungszoneder
auchFokus Eine chirurgische Resektion der Anfallsursprungszone kann zu eine
Heilung der Anélle fuhren. Die genaue Lage der Anfallsursprungszone wird durch
eine visuelle Analyse der EEG Daten, oder besser von ECoG Daten (ghéwbm
Gehirn abgeleitet werden), ermittelt.

Die beiden vorgestellten Methoden sollen demten diese visuelle Analyse ver-
einfachen. Dadurch soll eine Optimierung des postoperativen Outcaiet efer-

den.

Die erste vorgestellte Methode basiert auf der kausalen Analyse der Ea@®@,
diese Methode wird auch in Flamm et al. (2012a) beschrieben. In dezgemden
Arbeit verwenden wir vorwiegend das Konzept der Granger Kaasatite Grund-
idee dieses Konzepts basiert auf der Vohersagbarkeit der Daten.Nddikeit

und Besonderheit der vorgestellten Methode liegt in der Anwendun@erger
Kausalifait auf Faktormodelle. Da die ECoG Daten viele gleiche Bewegungen
zeigen, eignen sich Faktormodelle gut zu deren Beschreibung.

Wir geben eine Einfhrung in Faktormodelle und graphische Modelle sowie eine
Einfuhrung in Kausaldt, siehe auch Flamm et al. (2012b). Basierend auf diesen
mathematischen Gebieten werden wir eine kausale Untersuchungsmettgide vo
len, die wirEinfluss-Analysaennen. Wir werden die Eigenschaften der Einfluss-
Analyse diskutieren und sie auf die Daten eines Patienten anwenden. faitsAn
ursprungszone ist bei dieser Methode das Gebiet mit den einflussexidblektro-
den.

Die mit dieser Methode errechnete Anfallsursprungszone deckt sichemir
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fallsursprungszone aus der visuellen AnalyseAtete.
Die Einfluss-Analyse ist der wichtigste Teil dieser Arbeit.

Die zweite beschriebene Methode ist praktischer als die Erste, weil sideauf
Segmentierung der Daten basiert. Die zweite Methode wird auch in Grakf et a
(2012a) beschrieben.

Die ECoG Daten sind nicht statian das bedeutet die Eigenschaften der Daten
andern sichilber die Zeit. Wir unterteilen die Daten also in Segmente, in denen
sie gleichbleibende Eigenschaften haben. Wir verwenden dazu desasoge
Band-Leistungs-MaRvelches auf den physiologischen Frequeématern des men-
schlichen Gehirns basiert. Indahsten Schritt klassifizieren wir den epileptischen
Charakter jedes einzelnen Segments. RhythmigeWéellen sind charakteristisch
fur Anfalle von Temporallappen-Epilepsie Patienten, deshalb werden Segmente,
die rhythmische’-Aktivit at zeigen, als epileptisch klassifiziert. Durch die Kom-
bination der beiden Schritte wird der Beginn der epileptischen Aktiyito Kanal
festgestellt als der Beginn des ersten epileptischen Segments des jewedigan. K
Die Anfallsursprungszone eréh die Karale, die die erste epileptische Aktiatt
zeigen.

Die Anwendung dieser Methode liefert ebenfalls Ergebnisse, die in Gierein-
stimmung mit der visuellen Analyse d&rzte sind.

Das Band-Leistungs-Mal ist der zweite wichtige Beitrag dieser Arbeit.

Zusammenfassend ist zu exlnen, dass beide vorgestellten Methoden vielver-
sprechende Ergebnisse liefern. Die durch die Methoden errechAetatisur-
sprungszonen stimmen mit der Anfallsursprungszone aus der visuell@ysgn
derArzte tiberein.



Abstract

In this thesis we present two mathematical methods for the detection of the epilep-
tic seizure onset zone based on the analysis of ECoG data. We givelay stigp
introduction to epilepsy and provide the background information for our oasth

The two methods are discussed in detail followed by an application to reéd wor
data.

Epilepsy is a common neurological disease which is characterized byrirgcur
unprovoked seizures. A common sub-type of this disease is temporaldidesy.

In this special case the epileptic seizures emanate from a circumscrilaeid #ne
temporal lobe, the so callddcusor seizure onset zon@ surgical removal of the
seizure onset zone should render the patient seizure-free. Thearigdetermine

the exact area of this focus by a visual inspection of EEG or prefeEE®DbG data
(which are recorded directly from the cortex).

The main aim of the two presented methods is to assist the clinicians in this visual
analysis in order to increase the chance of a seizure-free surgtcahoe.

The first presented methodology is based on the casual analysis of tit& d&fa,

it is also described in Flamm et al. (2012a). The causality concept we willars
this analysis is Granger causality, which is based on the predictability of the da
The particularity of the proposed method is the application of Granger lgguisa
factor models. This model class is used because it is well-fit for the ECtss da
which show co-movement.

We give an introduction to factor models and graphical models as well as an in
troduction to causality, which is also described in Flamm et al. (2012b).dBase
these mathematical topics we propose our methodology, dafleénce analysis
and thoroughly discuss its mathematical properties. Then we apply the cdluen
analysis to real ECoG data of a patient. The seizure onset zone is fetinel @area
comprising the most influential electrodes.

The resulting seizure onset zone matches the result of the visual anesfsisned

by clinical experts.

The influence analysis is the main contribution of this thesis.

The second presented methodology is more practical in nature as it is tiased
the segmentation of the data. The methodology is also described in Graef et al.

Vv
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(2012a).

The ECoG data are non-stationary, that means the data’s propertiegeohaar

time. We partition the data into segments where the data have the same properties.
For this purpose we use a measure based on the physiological frgguemids

of the human brain, this measure is callemhd power measureAfter this first

step we classify each segment with respect to its epileptic character. Ssgmen
showing rhythmicd-activity (which is characteristic for temporal lobe seizures)
are classified as epileptic. Combining the segmentation and the classification we
are able to derive the start of the epileptic activity per channel as the betie
earliest epileptic segment. The seizure onset zone is found as the arpasiog

the channels showing the first epileptic activity.

The application of this methodology to the aforementioned ECoG data also yields
a result that correlates very well with the visual inspection of the clinicians.

The band power measure is the second major contribution of this thesis.

Summing up, both presented methods show promising first results as they both
detect the seizure onset zone matching the visual analysis of the clinicians.
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We advise reading chapter 3 before this joke.
It will help, maybe.

T USED 10 THINK, THEN I TOOK A | | SOUNDS LIKE THE
CORRELATION lr’IPUED STATISTICS CLASS. cmss HELPED.
CAUSATION. Now I DON'T. VEL, MAYBE.

A1

Figure 1: Webcomic entitledorrelation Source: httg/xkcd.com552.
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Chapter 1

Introduction

This thesis is an interdisciplinary contribution in the fields of statistics and epileps
and should be regarded as such. The clear focus of this work is orissatiss we

will use it to analyze and model electrical brain activity. In this thesis wegntes
two statistical methods for the detection of the epileptic seizure onset zome. Th
necessary medical and mathematical foundations will be provided forakene

Epilepsy is a common neurological disease which is characterized byrinecur
unprovoked seizures, see Baumgartner (2001). Seizures agectdrared by ab-
normal synchronized brain activity in both hemispheres (generalizedres)zor

in a circumscribed area (focal seizures). In this work we focus on teahjmire
epilepsy, where the seizures emanate from a circumscribed in the temexrahe

so calledseizure onset zomw the seizurdocus If an anti-epileptic drug therapy
cannot suppress the seizures, a resective epilepsy surgery rertwiseizure on-
set zone is a valuable treatment option, see Schuele aders (2008) and Wiebe
et al. (2001). For this surgery the knowledge of the exact area okihars onset
zone is essential.

The focus is normally determined by a visual inspection of the EEG data byatlinic
experts. If the scalp EEG does not providdfigient information, subdural strip
electrodes (directly placed on the cortex) are implanted. This method is called
electrocorticography(ECoG}¥ee Pondal-Sordo et al. (2007). Like in the EEG case
the seizure onset zone is determined by a visual inspection. This vispatiitm

is currently regarded as the gold standard of ECoG analysis, &zel@bert et al.
(2008) and Jenssen et al. (2011).

The aim of this thesis is to provide methods to aid the clinicians in thdlit
visual analysis. In other words we present statistical methods for thetidetef
the seizure onset zone. These methods are meant as an objectivatioel@afat
the clinicians.

In this thesis we present methods for seizure onset zone detection aswiadir
application to real ECoG data of a patient.

1



2 CHAPTER 1. INTRODUCTION

The first method will be based on the causal analysis of factor modelg] aaflie-
ence analysis, see chapter 6. The second method will be based onrttentagipn
of the data and subsequent classification of the segments, see chapter 7.

This work is structured as follows:

In the remainder of this chapter we present the mathematical foundations.

In chapter 2 we introduce the reader to epilepsy. Especially we focusnpotal
lobe epilepsy and its characteristics. We also present the ECoG data ofra,patie
which are analyzed in the later chapters.

The basics of causality are presented in chapter 3. We thoroughly sligmuson-
cept of Granger causality in the univariate and the multivariate case.drombine,

the most important dependence measures are discussed.

Graphical models are closely related to causality analysis and are pcksente
chapter 4. They are an easy way to analyze the inner structure of astioch
process.

In chapter 5 we present factor models. The analysis of high-dimensiomal
series is often problematic due to the curse of dimensionality. Factor models are
a useful tool for the analysis of such high dimensional systems as thegerdide
dimension of the parameter spaces of the models used to describe thes&/elata.
also show how to use principal component analysis (PCA) for our jgeipo

We present our first method for the detection of the epileptic seizure aoset

in chapter 6. The method is based on the causal analysis of factor modetls. A
preliminaries can be found in the previous chapters. This chapter sigthifies
main contribution of this thesis as it merges the causal analysis, factor models a
the neurophysiological aspects.

In chapter 7 we present our second method, which is based on the satioreof

the data. In this approach the data are segmented and subsequenthedla$hifi
combination of these two steps yields the seizure onset zone. This chatbter is
second major contribution of this work.

This work is concluded by a thorough discussion and suggestions foexiheteps.

1.1 Mathematical introduction

In chapter 2 we discuss the properties of EEG and ECoG data. Thesg @&Ga
are modeled as stochastic processes in this thesis.

In this thesis we distinguish between twdtdrent types of processes. In the
classic Granger causal analysis (chapter 3), the discussion ofibaussasures
(also chapter 3) and graphical modeling (chapter 4) we investigdimensional
stochastic processeg))«.z generated by components. The mathematical prop-
erties of this kind of processes are discussed in this section.

In the factor model case we analyzalimensional stochastic process&f )z,
whose latent variable procegf) is generated by a small numbgk n of compo-
nents, as is discussed in chapter 5 and 6.
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We discuss the main fllerences of these two types of processes and the resulting
influence on the causal analysis in section 6.1.

For notational purposes we simply wrigevhen referring to the whole stochastic
process ¥(t))icz, this also applies for all other processes. For a single realiza-
tion/observation we will writey(t).

For the classic Granger causal analysis, we considerdimensional stochastic
process Y(t))iez, Y(t) : Q@ — R", which is weakly stationary with mean zero.
We refer to Hannan and Deistler (2012) and Brockwell and Davis (L891a
mathematical introduction to time series analysis.

The covariance function gfis given byy(s) = Ey(t + s)y(t)’. Although the covari-
ance function in general does not contain the full information about tdenying
stochastic process, the analysis presented here is based on themavariky.

As is well known, see Rozanov (1967) and Hannan (1970), a stayigmacess
has a representation of the form

y(t) = I " g dz(1) (1.1)

where @(1)|A € [-n, x]), Z(A) : [-n, x] — C"is a random process with orthogonal
increments, which is uniquely defined py

The spectral distribution function E1) of y is defined byF(1) = E z(1)z(1)*,
where.* denotes the conjugate transpose. For convenience we will use the notation
dF (1) = EdZ4A)dZ1)*. Note that d¢F(1) describes the importance of a frequency
band in terms of its contribution to the overall variance.

Under the assumptiof o, [ly(9)ll < oo the spectral distribution function is abso-
lutely continuous, and thepectral density functiois defined adyy(1) = dF(1)/da

in the Radon Nykodym sense. In this case, there is a one-to-one relativadn

the covariance function and the spectral density:

y(s) = f " fy(1)eSda (1.2)
f(1) = % PIRIC (1.3)

In this thesis we only consider linearly regular processes, see Ro¢h®®Y) and

Hannan (1970), i.e. processes where the best linear least sqoreessts tend to
zero if the forecast horizon tends to infinity. Linearly regular processhimit a

Wold representation

y(©) = > K(m)s(t - m) (1.4)
m=0

whereg(t) is n-dimensional white noise process, i.B.e(t) = 0, Eg(9e(t)* =
Ostz andK(m) € R™", Z‘;‘1’:0||K(m)||2 < oo. Furthermores are the innovations
of y, i.e. the one step ahead prediction errors of the best linear least square
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forecast ofy(t) given its pasty(t — 1), where (for stationary processgsy(t) =
closurgspar({y(s)|s < t})) denotes the space spanned by the past and present of
y(t) in the Hilbert space of all square integrable random variables. Tiegesents

the present unless noted otherwise.

In addition we assume that the covariance matrix of the white nbigenon-
singular.

An important special case of linearly regular processes ared\Rfocesses (AR
stands for autoregressive).

For the remainder of the thesis we assume, that the spectral dengig/tmunded
uniformly above and below, i.e. there exists a real constanth that

ctn < fy(2) < clyt for all A € [-n, 7] (1.5)

holds. According to Wiener and Masani (1957), this assumption yields/ thas
anAR(c0) representation

2 Amy(t=m) = () (1.6)
m=0

whereA(m) € R™", 3= ||A(M)||? < co andA(0) = I, holds. The right-hand side

¢ is the same white noise process as in equation (1.4), see e.g. Geweke (1984
Additionally we assume that eveif, , [IA(m)]| < o in equation (1.6) holds, there-

fore we we also havg > ([IK(m)|| < o in equation (1.4), see e.g. Brillinger

(1981).

The interested reader may note, that assumption (1.5) ensur&sghmain-singular.

We usez to denote the backshift operator @n z(y(t)|t € Z) = (y(t — )|t € Z), as
well as a complex variable. Using this notation we may rewrite equation (1.6) in a
shorter fashion

a(2)y(t) = &(t), 1.7)
wherea(z) = Y.»_, A(m)z" exists inside and on the unit circle. Becaug6) = I,
and by usinga(2) = - Z‘j";l A(m)Z™ we rewrite equation (1.7) as

y() = a@y(t) + £(1). (1.8)

Furthermore, we assume that thbility conditiondeta(z) # 0 for |4 < 1
holds.

1In this contextA < B meansB — A is a positive definite matrix.
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There are two important points we want to highlight here:

First, representation (1.4) is a unique weakly stationary solution of (In6)itas
called an ARéo) process. For the sake of a simple notation we skip ¢hesign
henceforth.

Second, if assumption (1.5) holds for the whole progeésalso holds for all sub-
processes, and therefore all sub-processgalso have an AR representation.
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Chapter 2

Epilepsy

Throughout this thesis we are interested in the temporal evolution of epileptic
seizures. For the reader we provide a step by step introduction to all importa
terms and definitions of epilepsy.

2.1 Definition

According to Baumgartner (200&pilepsyis a collective term for various diseases,
which are characterized by recurring unprovoked seizures. It isriaupicthat the
cause for these seizures remain between the seizures.

An epileptic seizuras the clinical manifestation of excessive hyper-synchronous
activity of nerve cells. Depending on the involved brain areas and theredizpe,

the clinical symptoms can range from impairment of consciousness to ¢ieedra
convulsions.

Epilepsy is very common and has a prevalence of 0.7%, that means 0.7% of the
general population sters from epilepsy. The incidence, i.e. the number of new
afflictions, is about 4-5 per 10.000 persons per year in industrial counsges
Hirtz et al. (2007) for further informations.

2.2 Electroencephalography

A commonly used and important tool in epilepsy research is electroencgpialo
phy. The combination of electro-(referring to electrical brain activityjegrhalo-
(referring to signals from the brain) and gram (or graphy, which meaasing)
to the termelectroencephalography(EE@gscribes electrical neural activity of the
brain. In other words, the EEG measures the electrical potentiiateince between
two points on the scalp.

Richard Caton (1811-1926), an english scientist from Liverpool] aggalvanome-
ter with two scalp electrodes to successfully record brain activity in the fifrm
electrical signals in 1875.
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Nerve impulse

Nucleus =~ [ QA
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Figure 2.1: Schematic picture of a neuron, adopted from Atwood and khacK
(1989).

The discoverer of human EEG signals was Hans Berger (1873-184fdrman
psychiatrist. Berger found the first proof for cortical generatedrgitis on July
24th, 1924 during a surgery. Berger (1929) is a fundamental wgdrding EEG.

The presented historical facts are taken from Sanei and Chambd)8) (20d
Schneble (2003).

2.3 From cells to seizures

The central nervous system consists of a high number of nerve cetls.dEthese
nerve cell consists of a cell body, axons and dendrites, compare fguifor the
scheme of a neuron. The axon is a long cylinder, which transmits electrical im-
pulses. The dendrites are linked with dendrites or axons of other celtsearsmnit

or receive impulses. The main activity of the central nervous system tedelath

the impulses traveling over the junctions (also called synapses) betwedritelen
and-or axons.

The information between two nerve cells, or in other words the temporabehan
in the membrane potential traveling along the axon, is callgtbn potential A
potential of 60-70mV may be recorded under the cell membrane, and thigtipbte
changes with variations in the synaptic activities. The changes in thesdiglsten
are recorded and displayed by the EEG.

The presented biological facts are taken from Sanei and Chamb@g)(20

As we mentioned before an epileptic seizure is the clinical manifestation of-exce
sive hyper-synchronous activity of a continuum of nerve cells. Ththglogical
synchronous activity starts at a small localized brain area and spre#dssto-
roundings, recruiting more and more cells in the process. This synchtmmizan
affect both hemispheres of the brain (generalized seizure) or a circuetseiiba

in one hemisphere (focal seizure), see Baumgartner (2001).
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2.4 Epilepsy surgery

About one third of the epilepsy patientsffar from therapy-resistant epilepsy,
i.e. their epileptic seizures cannot be controlled by anti-epileptic drugd:isee
gel (1996). A valuable treatment option for these patients is epilepsyrgurge
According to Baumgartner (200&pilepsy surgerys a neurosurgical intervention
in order to cure therapy-resistant epilepsy. The aim of this interventioreiseth
moval of the epileptic tissue and the elimination of the seizures’ cause.

The idea behind epileptic surgery is, that the seizures start from a latalieza in
the brain, also called theeizure onset zorar thefocus and spread from this area.
The surgical extraction of this brain area should abolish the seizures.

Of course it is of highest importance to localize the seizure onset zoneaat e
as possible before the surgery. On one hand the seizures shall pbedstopthe
surgery, but on the other hand no neurological deficits shall be dalikerefore, a
thorough presurgical examination has to determine the extent of the epdeptog
tissue and the area of essential brain regions, like e.g. the motor cortedisWe
tinguish two types of examination methods: non-invasive (phase 1) ansivava
(phase 2) ones, seditders (1992) and Engel (1996).

Non-invasive examination methods (phase 1) include:

e prolonged video-EEG-monitoring,

e structural imaging, e.g. magnetic resonance tomography (MRT),
o functional imaging, e.g. positron emission tomography (PET) and
e neuro-psychological tests, e.g. the Wada test.

If the non-invasive examination methods yield non-conclusive or inctamgifind-

ings, invasive methods have to be used for a better localization of theeseizset

zone. These invasive methods are named after the types of intraclaciabées

used for the examination, the most common invasive examination methods (phase
2) are:

e epidural peg electrodes,

e subdural strip electrodes,

e subdural grid electrodes and
e implanted depth electrodes.

The examination with subdural strip electrodes is also catledtrocorticogra-
phy(ECoG) It yields similar results as the EEG, but the electrodes are directly
placed on the cortex. Therefore, the results from ECoG provide a lspitdial
resolution, see Behrens et al. (1994) or Zumsteg and Wieser (2000).

If phase 1 methods do not yield good results, ECoG is a good techniquetizéoc
the seizure onset zone. This localization is done by a visual inspectioe ofth
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ECoG data performed by the clinicians. Of course, this analysis is time-comngu
and has to be conducted by experienced clinicians, but it is still regasigdld
standard, see @z-Trabert et al. (2008) and Jenssen et al. (2011).

The first recorded epilepsy surgery was conducted by Wilder Pel(figti-1976)
in Montreal, see Schneble (2003). He removed a tumor from an adotsdoexin
and thereby cured the patient from his daily seizures. Penfield closekedo
together with Herbert Jasper (1906-1999), who was a specialist insthefuthe
EEG developed by Berger in order to localize the seizure onset zone.

2.5 Mathematical ECoG analysis

The aim of this thesis is an objectivation of the visual seizure onset zoaé loc
ization as described in the previous section by mathematical methods. We want
to aid the clinicians in the dicult localization task. There has recently been an
increasing interest in the mathematical analysis of ECoG and EEG data, aiming at
the quantification of the aforementioned synchronous activity in ordertéztihe
seizure onset zone, see Kim et al. (2010) and Wilke et al. (2008).

We will present two mathematical methods for the localization of the seizuré onse
zone based on ECoG data. First, we present a methodology for thé analeis

of factor models, see chapter 6. Second, we propose a novel methed dathe
temporal delays of rhythmig-activity to detect the seizure onset zone, see chapter
7.

The mathematical analysis of EEG started early, when Berger and Dietslobcap
Fourier analysis to the EEG data, see Dietsch (1932). The invention ofaie F
Fourier Transformation algorithm promoted this field of research signtfican

2.6 Temporal lobe epilepsy

As the name indicatetgmporal lobe epilepsy (TLEgfers to an epilepsy syndrome
emanating from the temporal lobe, see figure 2.2. Depending on the ezacie
distinguish betweemesialandneocorticaltemporal lobe epilepsies.

Mesial temporal lobe epilepsy (MTLE) is the most common epilepsy syndrome
among therapy-resistant patients. Therefore, it is important to improve mathe
ical methods for the localization of the seizure onset zone for TLE patiénits.
important to note that epilepsy surgery renders about 70-80% of the{sdiEzure

free in the TLE case, see Baumgartner (2001).

Different epilepsy syndromes havedfdient characteristic EEG correlates. These
correlates are used for the localization of the epileptogenic zone. Tehiploea
epilepsy is typically distinguished by a rhythmieactivity (3-8 Hz) at the ictal
(ictal means during a seizure) onset zone, see Foldvary et al. (2001)mEhiss



2.7. PRESENTATION OF THE DATA 11

Polus frontalis —

Sulcus centralis 2 s i
4 Fissura longitudinalis . _ =

Lobus frontalis A
\ ; Lobus parietalis cerebri

§ \477 4 > Sulcus parieto- Lobus frontalis -
~ N, / occipitalis
e o\

/ 1B 2 Sulcuscentmlisfff 3

A o) \l
J 3 \
7 "= — Polus Lobus parietalis ——4=— —

<4 | P,

‘L — T c’{v \)\‘\ occipitalis \
[ Lobus Lobus temporalis —— —¢

occipitalis

Polus — -
frontalis

P

Fossa lateralis ~
cerebri | | - Sulcus —— %
! Lobus temporalis  Incisura parietooccipitalis
preoccipitalis

Polus temporalis . y
P Sulcus lateralis Lobus occipitalis

Polus occipitalis =~

Figure 2.2: Schematic picture of the brain, adopted from Paulsen anchiéasc
(2010).

thatd- waves at the beginning of the seizure are a strong indicator for therseizu
onset zone. Other indicators might also be possible.

For the remainder of this thesis we focus dwoscillations, which are especially
important for TLE patients. The localization methods we will present in ch&pter
and 7 will exploit this rhythmias-activity.

2.7 Presentation of the data

In this thesis we will apply two proposed methods (see chapter 6 and 7) t6 ECo
data taken from a patient (male, 43 yearsfesing from focal epilepsy. During
the seizures he shows characterigtizaves, which are normally associated with
temporal lobe epilepsy. We want the reader to get a grasp at the dateeasit b
present them heré.

The patient underwent a presurgical long-term video EEG monitoring addispi-

tal Hietzing with Neurological Center Rosditel. Three subdural strip electrodes
with a total of 25 channels were implanted. The electrode B1, which is fay awa
from the (conjectured) seizure onset zone, was chosen as reder€éompare the
magnet resonance image (MR)figure 2.3 for details. Because Bl is the refer-
ence electrode we have measurements of 24 channels available.

A Micromed® system with a sampling frequency of 1024Hz was used for the
recording. Afterwards the data were preprocessed in M&tl&irst, the line inter-
ference was removed using a notch filer at 50Hz. Second, a higHpasat 1Hz

got rid of physiologically irrelevant low-frequency contributions. Thiea signals
were downsampled to 128Hz after the application of a low-pass filter at 6stHz

2Up to the date of this thesis the exact lay of the seizure onset zone of thetpstit clear.
The clinicians initially conjectured the patient to have temporal lobe epilepsytathe rhythmic
J-activity, but the visual analysis of the ECoG data suggests that his posetis rather temporo-
occipital or occipital. The results of our analysis confirm this visual finding
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Figure 2.3: MRI picture of the brain including the electrode positions.

avoid aliasing.

During the examination time the patient had four epileptic seizures within 2 hours.
We analyze the first three seizures because the data quality of the feinthesis

bad. For a better understanding of the data, we will present the firgcthds of
each seizure here. As we have already mentioned in section 2.6, weeatiayz
J-activity in the initial seizure phase in order to draw conclusions regaritieg
seizure onset zone.

Seizure 1 is shown in figure 2.4, seizure 2 in figure 2.5 and seizure 3 ire f6.

The most important time points of the seizures, like the exact starting and ending
times according to the visual analysis of the clinicians, are summarized in table
2.1.

Considering the visualization of the three seizures we see a common befiégor
initial stage of each seizure contains the following phases:

e First signs: The occurrence bfgh-frequency oscillations(HFOgY5 Hz)
signifies the beginning of the epileptic seizure. These HFOs have a very
small amplitude and a short duration, which makes their visual detection
difficult. Recently high-frequency oscillations have seen a lot of interest,
because they also are used for the localization of the seizure onset zone

e Paroxysmal activity: The blocks of high amplitude 30 Hz activifiget only
some channels. Their influence on the epileptic seizures for this patient is
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not clear as they also occur during the seizures.

Intermediate phase: This is the time period between the paroxysmal activity
and the synchronization phase.

Synchronization Phase: The beginning of the rhyththiactivity (3-8 Hz)
signifies the beginning of this phase. The channels of the seizure amset z
are the first to show the distinét oscillations. As time progresses tife
activity spreads to the other uninvolved channels, this behavior is called
seizure propagationThis characteristic behavior leads to a synchronization
of almost all observed channels.

This is the most important phase for our analysis, because the firstalhann
showing the distinc-rhythm are said to be the seizure onset zone. We will
return to this point later in chapter 7.

Distinct ¢-activity: In this phase nearly all observed channels show a char-
acteristic-activity. This phase has a very long duration compared to the
other ones. The clinical signs of the epileptic seizures shortly start difter a

channels show the described distittethythm.

Seizures 1 and 2 exactly show the described behavior, whereas thiedujgbncy
oscillations are not present in seizure 3.

The focus of this thesis lies on the analysis of thactivity, therefore the HFOs
and the paroxysmal activity will not be considered in this work. For the ésted
reader we mention that HFOs also have a good localizing value, see eg].dadg
da Silva (2012) and Zijlmans et al. (2011).

In chapter 7 we will analyze all three presented seizures and in chaptemél
investigate the first seizure in detalil.

In figure 7.4 the initial stage of the first seizure is shown, this figure aldodes
the beginning of the epileptic activity per channel marked by three clinigeenes
The results of this figure are summed up in table 6.1.

2.8 Problems in ECoG data analysis

The ECoG data presented in section 2.7 are biological real world dateefore
a lot of problems or rather challenges may occur in the data analysis.

In the works Graef (2008), Graef et al. (2008) and Schuster atichifer (2009)
seizure onset zone localization was done based on ECoG data anatysisniain
problem fields have been identified in these works:

e Stationarity: As aforementioned the ECoG data are biological data. We want
to apply stationary methods, but the data are non-stationary. The main ideas
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seizure time event

=

16:12:38 beginning

16:12:45 start of rhythmig@-activity
16:12:50 clinical start

16:14:18 clinical ending

16:15:07 ending

16:47:58 beginning

16:48:06 start of rhythmig@-activity
16:48:22 clinical start

16:49:46 clinical ending

16:50:33 ending

17:18:20 beginning

17:18:32 start of rhythmig@-activity
17:18:55 clinical start

17:20:28 clinical ending

17:21:20 ending

W WWWWINDNNNN|FPPEPPREPPRP

Table 2.1: Clinical findings of the three seizures, by a visual inspecticheof
clinical experts.

to solve this problem include: Segmentation of the data into stationary seg-
ments, see e.g. Ombao et al. (2005) and Inouye et al. (1995), the use of
a sliding window, see e.g. Bodenstein and Praetorius (1977) or Gath et al.
(1992), or adaptive estimation, see e.g. An and Gu (1989).

e Dimension reduction: Due to the high correlation (caused by the spatial
proximity of the electrodes and the synchronization of #hectivity in ic-
tal periods) there occur problems in the estimation of the whole 24 channel
system. The main idea to solve this problem focuses on the reduction of the
information, i.e. to extract the important information out of the data. Ideas
to cope with this problem include: the use of factor models, see e.g. Deistler
et al. (2010), or the selection of important channels for the analysig.gee
Graef et al. (2012b).

e Dependence (or causality) measures: The main idea behind the application
of dependence measures in seizure onset zone localization is the following
Because the epileptic activity (i.e. thlerhythm) spreads from the seizure
onset zone to the other channels, one could imagine that the seizure onset
zoneinfluencesor causesthe other channels. The literaturfers a wide
variety of such measures, see e.g. Baccala and Sameshima (2001) or Kamin
ski and Blinowska (1991), but the question is, which measure is best fit
seizure onset zone localization?

For more information on dependence measures see chapter 3.
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As aforementioned we will present two methods for the detection of the seizur
onset zone later on.

In chapter 6 we propose a methodology which is based on dimension reductio
and and dependence measures. In particular we conduct a caalyalsaf factor
models.

A more practical approach is presented in chapter 7. The secondsgpeethod-

ology is based on a segmentation method. For this segmentation we use a novel
measure based on the physiological frequency bands of the brain.



Chapter 3

Causality

In this thesis we are interested in the detection of the epileptic seizure omset zo
based on ECoG data. One possible approach for this detection is theamesaf
analysis in the context of time series. Following this idea we analyze the depen-
dencies between component processes of a multivariate stationarggroce

It is important to distinguish between directed and undirected dependehtoss
of the undirected dependence relations are symmetric in nature, butrfpuou
poses the directed relations are more important.

Furthermore, we distinguish between direct influences (between two cwmnpo
processes) and indirect influences (mediated by other components).

A common and renown concept of causality in the context of time series ig€ran
causality, which yields directed dependence relations. The idea behamh&r
causality is based on the predictability of a stochastic process.

The concept of Granger causality as well as its implementation by regular AR-
systems have been introduced in Granger (1969). The original defifutmsed

on the relation between univariate processes, but multivariate extemsioaslso
been proposed. For our purposes we use the multivariate definitionamig€&ir
causality introduced in Eichler (2007).

Besides the dependence structure of a stationary process itself, tigtstseeach
individual dependence relation is often important. There exist variowss it
dependence measures in the literature, and we present the most impoetirt on
this chapter.

We give the exact definitions of the dependence measures. These defiaite
based on the (second order) population statistics. For the application & data
statistical testing is necessary, but this is not in the focus of this thesis arahtyill
be discussed briefly.

19
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This chapter signifies the basis for the following parts of this thesis, whenillv
extensively draw information from here. All definitions in this chapter asell
on the mathematical introduction in section 1.1.

We start with an historical introduction to causality in section 3.1. We present th
concept of Granger causality in section 3.3 and its multivariate extensiontiorse
3.4. Undirected dependence measures are presented in section 3IR &sdire
rected ones in section 3.5. We briefly discuss the application of Grangsalds

to actual data in section 3.6.

3.1 History

As causality is one of the main concerns of this thesis, we present a biiaficas
summary concerning the evolution of the notion causality. The following informa
tions are taken from the epilogue of Pearl (2000).

Every human has a basic thought what causality is or what the causedibect is.

But despite this fact the notion of causality is shrouded in mystery and eensyo
when it comes to its definition for scientists and philosophers.

The urge to askvhyis a very old habit of humankind. In the bible God asks Adam
if he ate from the tree of knowledge. God wanted to know the facts and Adam
brought forth an explanation of his deeds. The statement of this angsdi¢ar:
causal explanation is a man-made concept.

In ancient times only gods, humans and animals could cause things to happen,
objects or events were not considered causes. This view of the wenhdjet! with

the rise of engineering. With a large enough lever Archimedes would havedno

the earth itself.

Archimedes considered the purpose of an event or object as its conyédaas

tion. He even called it the final cause.

In the renaissance God's role as the final cause was taken over by lunoa-

ledge, and the notion of causality changed.

A drastic change in the way causality was considered and moreover ticdras
change for science itself happened, when Galileo published his Dizakrsiin
1638. He proposed two rules for proper scientific investigations:

1. Description first, explanation second. This means thalhteprecedes the
why.

2. The description has to be done in mathematical language, namely equations.

This idea caused a lot of uproar among scientists and philosophers ofahlsee
cause why should nature be describable by mathematical equations. Ealit we
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know that mathematical equations prevailed as a good description toolttoaha
observations and we all know what happened to Galileo.

Physicists embraced Galileo’s first maxim and it led to a lot of empirical laws in
physics, like Hooke’s law or Joule’s law. Philosophers discussed Galitakes
thoroughly.

Hundred years after the Discorsi the philosopher David Hume argueththahy

is not second to thbow, but that thewhyis superfluous as it is subsumed by the
how. He also writes about the flame and the heat as causefaot, @nd infers the
existence of theféect from that of the cause. Thus causal connections are solely a
product of human observation.

He was not aware that his definition was flawed, because as we today koo
relation does not imply causation

Bertrand Russell wrote in 1913 that causality is a relic of bygone agesohie
plained about physics where the laws were bi-directional but the oftenstied
causality was not. The physicists did not pay attention to this discrepandyaahd
great success in splitting the atom.

In another discipline the need for the distinction between causal relatiorctlaer
relationships rose, namely statistics. In 1888 Francis Galton measured giie len
of forearms and the size of people’s heads. He related these two quasitititdy
based on data and conjectured that the occurring co-relation was dgertaaon
cause.

Karl Pearson, one of Galton’s students, discarded the conceptusé and ef-
fectin 1911. He introduced so called contingency tables as the ultimate scientifi
statement. Thus Pearson denied the need for an independent concapsality
beyond correlation, he exterminated the notion causality from statisticsebiefor
had a chance to take root.

In the year 1936 Sir Ronald Fisher formulated the randomized experimestisTh
the only scientifically proven method of testing causal relations from datacand
this day, the one and only causal concept permitted in mainstream statistics.

Today scientists and even statisticians have an ambivalent relation to caiality
want to underline this by a quote of Terry Speed:

Considerations about causality should be treated as they have always
been treated in statistics: preferably not at all but, if necessary, then
with very great care.

In Pearl (2000) a novel concept for the causal analysis of temparafiyordered
data was introduced, based on the idea of interventions.
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In this thesis we are interested in the causal analysis of temporally ordeteed da
namely time series. In a certain sense this is easier than the non-ordezetiMeas
use the causal concept proposed in Granger (1969) based onaaim itdiener
(1956). The two basic principles of this concept are that the causegesdhe
effect, and that cause anéfexct are correlated. In other words, the knowledge of
the cause helps the prediction of theeet.

We hope to have given the reader a small glimpse at causality’s history and its
problems.

Considering all the aforementioned problems the causal analysis of a mativa
system is not an easy task, especially not the causal analysis of braitusts
during an epileptic seizure.

3.2 Undirected dependence measures

In this section we present the most prominent undirected measures farphe-d
dence between component processes afdimensional stationary processes.

3.2.1 Coherence

From the spectral representation of a stationary process (1.1) we abteasure

of the strength of linear dependence in the frequency domairy; beidy; be uni-
variate sub-processesyfwith the corresponding orthogonal increment processes
7z (1) andzj(1) respectively.

The idea of theeoherencas to measure the squared €iogent of correlation be-
tween &;(1) and d;(1)

[E(dz()dzj())>  Ifij(YP

Bz ()PEIZ, (P - T T (Y (3-1)

Ch(A) =

wherefj; is the {, j)-element of the spectral densify, from equation (1.3). Thus,

the coherence is a frequency specific measure for the dependanezbg and

yj, which is bounded between 0 and 1. By construction it is a measure of the
strength of dependence between the frequency weigl{th @nd ().

The coherence is a very simple measure, and @ﬁa{&) is obviously symmetric,

it is not possible to detect a direction of influence frﬁﬁ‘(/l).

The second disadvantage is its incapability to distinguish between direct@dind in
rect influences. This means(ﬁﬁ(/l) indicates linear dependence betwsggand

yj, there might be a direct influence between the two channels or the dewende
could be mediated via a third channgl(or via a path of other channels).
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3.2.2 Partial spectral coherence (PSC)

As the ordinary coherence is not capable to distinguish between didotdinect
dependencies, we are searching for a measure which may do so. THuk
the partial spectral coherence (PSC). The idea of the PSC is simplemsea¢he
influence of all other channels before considering the dependetwediey; and

Y-

The partial spectral coherence is constructed in the following way:derdo mea-
sure the dependence betwegmndy; (i # ) after removing the influence of all
other variablesyy\ij; = (ylk # i, ])" say, we projecl; as well asy; onto the
Hilbertspace spanned by past, present and futugg;, in the L2 over the underly-
ing probability space. This projection leads to the residgadsdn;

[

ni® = mvii® =% = D Ditkywiit-K = % - d@yniit) (3-2)

k=—o0

7i® = v n® = Vi = D" DRIt = K) = Yj(t) - di@ywi.j (1)

k=—00

where the filtersli(z) anddj(z) minimize the variance of the residuals. As a side
note this definition can simply be extended from component processes to multi-
variate sub-processesphs follows, for disjoint sub-sets, B,C c V we have

nac(t) = Ya®) = > Da(Kiyc(t - k) = ya(t) - da@yc(t) (3:3)
k=—00

nec(t) = ya®) - D Da(Kiyc(t - K) = ya(t) - ds(2)yc(t)
k=—oc0

where the filtergla(2) anddg(2) minimize the variance of the residuals.

We resume our analysis and now look at the spectrum of the progesgg’(and let
fun; denote the corresponding cross-spectrum. This cross-spectrumeguaiicy
specific measure for the dependence between betyeenly; given allyy,; j;-
Scaling leads to the definition of thpartial spectral coherencéPSC)

L ()7
f77i77i (/l) f’7j'71' (/1) '
As has been shown, see e.g. Dahlhaus (2000), there exists a moeaieoway

to compute the partial spectral coherence using the inverse of the $jpgectsity
f,y+(4) of the original procesy:

RS i) = (3.4

(e[
(Fyt ()i (it (D)

Rivip () = (i #]) (3.5)
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where (,}(1));j is the (, j)-element off}(1).

The partial spectral coherence is bounded between 0 and 1. Obvibisslysym-
metric measure, so no dependence direction may be inferred by its usele@he
advantage of the PSC is, that it measures the direct influenceyirooy;, be-
cause the indirect influences via other channels are filtered out. Thpentyds
important and useful.

The PSC also has as another advantage: Given actual data, instetihgfafi
finite AR model, the partial spectral coherence can be estimated basedoor a n
parametric spectral estimator using equation (3.5). For this procedurevaittes
the null hypothesisHj R’sz\{ij}(/l) = 0 has been described in Dahlhaus et al.
(1997). The interested reader may be referred to Brillinger (19813 thorough
theoretical discussion of the PSC.

3.3 Granger causality

There have been long and thorough discussions about causality hordube last
decades, see section 3.1, and there exist various ideas how to deBaétga

The causality concept we will mainly use in this thesis is Granger causality; as in
troduced in Granger (1969). This section will heavily draw from this pape

As already stated Granger causality isanceptof causality and we also present
the framewaork for its application. The theoretical considerations aredb@séhe
second population moments. For the application of Granger causality to dataal
statistical testing is necessary as will be discussed in section 3.6.

Although the application of the Granger causality concept only yields a stateme
whether one stationary process causes another or not, it is easwmaledusality
measure based on Granger causality as we will see in subsection 3.5.1.

The basic idea behind Granger causality was introduced in Wiener (185@Yi-
able (or time series) is callethusalfor another variable if the prediction of the
second is improved by incorporating information about the first in the aisalys
However, Wiener lacked the framework for the application of the conicebis
work.

Before moving further we introduce some helpful notations in order toeptes
the original definition of Granger causality. For a stationary proeeks z(t) =
closurgspar{{z(s)|s < t})) denote the space spanned by the past and present of
Time t represents the present unless otherwise notedyiLehdy, be two uni-
variate stationary processes. Denote the optimal predictgi(iof 1) using the set
of valuesy (t) by P(t + 1;y,|[y1). For instanceP(t + 1;y»|y2) will denote the best
linear predictor ofy,(t + 1) using past and presentyf. Let o-2(y,|y7) denote the
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variance of the prediction erreft + 1) = y»(t + 1) — P(t + 1;y-|y1). Furthermore,
we useu(t) to denote all the information in the universe up to titn@he notation
u\y; refers to all information in the universe apart from the information of gssc
y1. Using these notations we may state the following definition.

Definition 3.1 (Original definition of causality according to Grangeyye say that
y1 is causingy, if L
o(Y2l) < o?(y2lulys). (3.6)

Thusy; is causal fory; if the prediction from all information is better than the
prediction from all information apart frory.

As a side note we want to mention the implicit assumption that the information
represented iry; is not included in other parts af. We will come back to this
point later.

Granger also gave the definition fefedbackand causality lagin Granger (1969),
but they are of no importance to us. There is only one additional definitiomamé
to list here.

Definition 3.2 (Definition of instantaneous causality according to Grangérg
say thaty; is instantaneously causinyg, if

a2 (yolU, ya(t + 1)) < o?(y,[t) (3.7

In other wordsy»(t + 1) is better predicted when additionally usingt + 1) in the
prediction.

Granger made some restrictions in order to reach a testable form for hisabrig
definition of causality.

First, the knowledge of all information in the universés unlikely, so we rather
use a stationary process representing the relevant informatieherey, andy;
are component processesthfThus the definition of causality is now relativedo
Second, in practice it will usually not be possible to derive complete optim#iéin
least squares sense) predictors, therefore we restrict oursellMesaopredictors
only. In the Gaussian case the optimal predictors would be linear.

Third, it can be argued that the variance is not a proper criterion to me#sea
difference between the predict®ft + 1;y-,.) andy,(t + 1). However, the variance
seems to be a natural criterion, particularly in conjunction with linear predictor
Taking all these restrictions into account, Granger called his definitionusiadigy
thelinear causality in mean with respect to d

Although Granger proposed a concept for the causality between twariaie
processes with respect to a multivariate process, a lot of authors agsvaddress
Granger causality as the special bivariate case of his definition.
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Definition 3.3 (Original definition of bivariate causality according to Grang&ve
say thaty; is causingy,, denoted by, — o, if

a(Yal¥z) > o221z, ). (3.8)

Thusys is causal fory, if the knowledge of the present and pastygfimproves
the prediction ofy,(t + 1), i.e. the variance of the prediction error is smaller when
using the past and present of bgthandy; compared to using only the past and
present ofy; itself.

Criterion (3.8) can also be checked as follows. Y&t = (y1(t), y2(t))’ in the sense

of section 1.1, we then analyze the causal influence fypto y, by considering
the joint AR representation (1.8) at time potnt 1, which exists according to the
assumptions made,

y(t+l)_~ yai(t+ 1) e1(t+1)
(yi(t + 1)) =4@ (yi(t N 1)) + (si(t + 1)) (3.9)

(Zm:l An(myi(t+1-m)+ X5 5 A(my(t + 1 - m))
Zme1 Aoa(Mmya(t+1—m) + 35 1 Aso(m)ya(t + 1 —m)

where Cov(£:1(t), £2(1))) = 2.

Because of the properties of AR representations, the lower line of equati®)
represents the orthogonal projection vf(f + 1), y»(t + 1)) onto its past, which is
its best linear predictor.

Therefore, we see tha is non-causal for yif a1(2) = 0 (i.e. Ax3(m) = 0 Vm),
which is equivalent to an unchanged prediction error when ugi(ty additional
to yo(t). Otherwisey; is causal fory,.

Note that this alternative version of criterion (3.8) is based on non-tgusdher
than causality. In the next section we will continue exploiting non-causaliy re
tions.

As aforementioned, the original bivariate definition of causality is often @alle
Granger causality in modern literature. Granger’s original definition isogeld
used as there are no (explicit) requirementsi@n respectivelyd.

Different authors proposed multivariate extensions to Granger’s biveefigtion
of causality, but these extensions are not necessarily consistent wicigleal
definition. A non-exhaustive list of extensions and modifications is Grdi§&0),
Granger (1988), Hosoya (1977) and Florens and Mouchart {1985

We will use the multivariate extension of Granger’s classic definition intredirc
Eichler (2007) as presented in the next section.

There have also been modifications to Granger’s definition in order toznabn-
linear causality, see e.g. Freiwald et al. (1999) and Marinazzo et d11j20

We want to refer to Bressler and Seth (2011) for a good overview dditi@nal
information regarding Granger causality.
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The interested reader may have noted, that there t$aa@ice between the concept
of Granger causality and the framework for its application. For the remawofde
this thesis, we will address the application of the concept of Grangeanlitgus
rather than the concept itself when we speak of Granger causality.

3.4 Multivariate Granger causality

In this section we present a multivariate extension of Granger’s clashittide
of causality which was proposed in Eichler (2007). We also presentdditi@nal
equivalent criteria for this definition and discuss important facts reggutimmul-
tivariate extension.

For the remainder of this section Ig{1))i.z be am-dimensional stationary process
satisfying the assumptions of section 1.1. Met= {1,...,n}, we associate the
elements oV with the component processesyfWe use the notatiogp,(t) for
y(t) to stress the fact that the elements\btorrespond to the one-dimensional
component processes pf To refer to a sub-process correspondingta V we
write ys(t) = (ys(t)|s € S)’, for a component process we simply wrje

Deducted from the assumptions in section 1.1 each sub-prgeess C V) of
yv satisfies the same assumptionsyasitself, and therefore it also has an AR
representation (corresponding to representation (1.7))

a>(2ys(t) = es(t), (3.10)

whereaS(7) is the respective AR power series asyft) is the corresponding white
noise process, Cawé(t)) = =5 > 0. Analogously to representation (1.8)) we get

ys(t) = 8@)ys(t) + ss(b). (3.11)

Let AandB be disjoint subsets & c V, thenaz,(2) = (a5,(2)la € A, b € B) refers
to the sub-matrices @f®(2) corresponding to the influence froya to yg.
With these notations we may state the following definition.

Definition 3.4 (Definition of multivariate Granger non-causality according to Eich-
ler). Let A andB be disjoint subsets db C V. Then the procesg, is Granger
non-causal for g with respect to ¥ (denoted bya - yglys) if

a2 =0, (3.12)

(e A%A(m) = 0Vm) i.e. if the sub-matrices of the AR power series in representa-
tion (3.11) corresponding to the influence frgmto yg is zero. Of course, this is
equivalent taa3,(2) = 0.

In other words, the past and the preseng«(t) do not influence the linear predic-
tion of yg(t + 1) in the AR representation gt.
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Note that this definition is formulated in terms of non-causality,ifs not Granger
non-causal foyg with respect tg/s, we say thaya is causal for g with respect to
ys, denoted bya — yalys. If the relation (non-causality or causality) betwegn

andyg with respect tg/s has yet to be determined we will wriyg 3 yalYs.

This definition of causality is sometimes referred ta@asditional Granger causal-
ity, because the causdtect ofys onyg conditioned orys\(aug is analyzed.
Furthermore, we want to note that the fiagents ind® represent the (orthogonal)
projection coéficients ofys(t + 1) ontoys(t) in analogy to the bivariate case in
equation (3.9).

In the following we present two equivalent criteria, which were also psed in
Eichler (2007).
Criterion (3.12) is based on the autoregressivetaments and it is equivalent to

detE&(yslYs)) = det&(yslYs\a)). (3.13)

whereX(yglys) denotes the covariance matrix of the prediction error when predict-
ing yg(t + 1) fromys(t).

In other wordsyp is Granger non-causal fgg with respect toys if the determi-
nant of the prediction error covariance matrix does not decrease ugiegya
additional toys\ a for the prediction ofyg, i.e. it is unchanged.

This criterion relates to Granger’'s original definition, which is also basethe
prediction error.

In Barrett et al. (2010) the use of the trace instead of the determinantissdisd.

Before we move to a third equivalent criterion we introduce the followingtiarta
For A, B,C C V we remove the influence gt(t) from ya(t) andyg(t), compare
equation (3.3),

nac®) = ya(t) - Z Da(K)yc(t — k) = ya(t) - da(2)yc(t) (3.14)
k=0

Ne(®) = Ya(t) - > De(Klyc(t - k) = ya(t) - ds(2)yc(t)
k=0

where the filtergla(2) anddg(2) minimize the variance of the residuals. We use the
following abbrevation if the residuals are uncorrelated

YA()Lys(®lyc(t) := E nas(tnge(t)’ = 0forallt € Z. (3.15)
Furthermore, we use

ya() Lys(®)lyc(t) ;= ya(t)Lzyc(t) for all z € ya(t), for all t € Z. (3.16)
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A third equivalent criterion for Granger non-causality can be stated ms@f a
non-correlation relation,

ye(t + 1) L ya(t)lys\a(t) for all t € Z. (3.17)

These non-correlation relations are often called conditional indepeadelations

due to their origin from the iid graphical model case. In our setting this hame is
misleading because we only have non-correlation.

In criterion (3.17) we see why it is actually more convenient to work with non-
causality relations, because they signify non-correlation relations agrratmdi-
tional independence relations. In chapter 4 we will further work with tlveseli-
tional independence relations.

Of course, these three criteria are equivalent, but depending on tuensitances

the efort for checking (in theoretical considerations or for statistical testing with
actual data) may dtier.

For the sake of completeness, we also present the following definitionh vettice
multivariate extension of Granger’s instantaneous causality.

Definition 3.5 (Definition of contemporaneous non-correlatioije processeg
andyg arecontemporaneously uncorrelated with respect éagenoted bya +

yslys) if .
2 =0,

i.e. if the sub-matrix o&S corresponding to the sefsandB (in analogy to the
definition of agA(z)) is zero. This criterion can also be formulated in terms of a
conditional independence relation

ya(t+ 1) L yg(t+ 1)ys(t) forallt € Z. (3.18)

In our considerations we will rather focus on the non-causality relaticars tite
(contemporaneous) non-correlation relations.

In a certain sense the (contemporaneous) non-correlation relatiomsdepen-
dence relations, where the temporal sampling resolution is riicismt to detect
the direction of the independence.

We conclude our thoughts concerning (contemporaneous) norlatmnerelations

by the following fact. In the context of Granger causality analysis the lgaéliR
codficient A(0) is always fixed as the identity. Therefore the covariance matrix of
the errors is also fixed, but there exist other causality definitions wheidediing

AR codficient does not need to be the identity, see Faes and Nollo (2010).

There are some important points we want to highlight in connection to the defini-
tion of Granger non-causality at this point.

The causality relation betweegn to yg with respect toys of course depends on
S. We emphasize this, because the causality relations could change fgirghan
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subsets. For example, yh — yglys holds,ya -+ yglys' could hold forS’ c S.

At first this might sound counter-intuitive, but at second glance it is cl&erwill
return to this problem in chapter 4. Granger also stressed the importatice of
information seriedl in his original definition, because a changedaio d’ could
change the causal relations.

For a complete causal investigation of the stationary progesse has to consider

all independence relations for all arbitrary sub-processes of theer—?> yelYs
(and all (contemporaneous) non-correlation relations). For a langgern this

can be a hugefBort, but a short and elegant way to gain more insights in the
structure of the process is graphical modeling, which will be discusselkipter

4.

However, we restrict our analysis to one-dimensional seésd B, i.e. we only
investigate the causality between two component processes given thaatifor

of the whole process. In other words, we concentrate on relations dbthe

Vi 4 yjlyv. This is reasonable, because these relations are the basis for graphi-
cal modeling, and therefore they can be used to infer relations for agbgttén-
processes, see chapter 4.

The analysis of the causality between two univariate component progggsas

the whole process is straight forward using the three aforementioneicrit@w-

ever, for a better understanding we want to state the causality definitiaghigor
restricted case. Using the notations we introduced above we have theifgllow

Definition 3.6 (Definition of Granger non-causality) et y; andy; (i # j) be two
component processesWf. Then the procesg is Granger non-causal forjwith
respect to y (denoted byy; —+ yjlyv) if one of the three following equivalent
criteria holds

dij(2 = 0, (3.19)
FWYiw) = oA yilyvm) or (3.20)
yit+1) Ly forallte Z. (3.21)

The processeg andy; are contemporaneously uncorrelated with respect o y
(denoted byy; + yjlyv) if one the two following equivalent criteria holds

Zj = 0 (3.22)

yit+1) L1 yjt+1)w(t) forallteZ. (3.23)

Of course all aforementioned remarks concerning the general defiaitsonap-
ply to the restricted definition. Criterion (3.19) is based on the ARfTuments,

criterion (3.20) focuses on the variance of the prediction error andiorit€3.21)
signifies the respective conditional independence relation.
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The interested reader surely has noted one important fact. The defirfithamo
causality according to criterion (3.20) equals non-causality in the se@&@@anfer's
classic definition if the relevant informati@hequalsyy. In other words, if the im-
portant information comprises all observed processes the two definificasisal-
ity are equal. Thus Eichler’'s multivariate definition of (non-)causality isesoa-
able extension of Granger’s classic definition.

The above definitions and criteria for multivariate Granger causality asedoan
regular AR systems. This means that the number of observations, i.e. the-dimen
sion ofy, equals the number of driving components, i.e. the dimension of the white
noise process (with a regular covariance matrix). Therefore, Granger causality
analysis should be used for data satisfying this requirement. Typicallynaase
data can be modelled by a regular AR system, but in practical applications this
sometimes leads to ill-conditioned covariance matrices. This problem oftersoccu
with high-dimensional co-moving data such as EEG (or ECoG) data. Inehap

5 and 6 we will extract the co-moving parts of such data for further invastig
tion. These co-moving parts are normally generated by a far smaller nurhber o
components than the number of observations. A normal Granger canadgsia
according to the definitions presented in this section would yield misleadinigsresu
for such data.

For the remainder of this thesis, we will use the term Granger causality totoefe
the definition of multivariate Granger causality based on criteria (3.12)3)arid
(3.17). Of course the restricted case according to criteria (3.19),)(8r2D(3.21)
is included in this notion.

3.5 Directed dependence measures

In the last section we encountered the definition of Granger causality plicap
tion only yields a (non-)causality relation. Suppgses causal fory; (yi — Yjlw),

but this relation does not give any information about the strength of theatigu

We want to know howy; changes for changes gf (in our linear setting). It is

a naturally arising question how to measure the strength of the influencedretwe
two processes.

Therefore, we present the most common dependence measures traeaience
literature in this section. In Blinowska (2011) a good overview over the cmwst
mon dependence measures can be found.

The measures related to Granger causality could be called causality nsedsiire
the more common term, also including the measures not based on Grangd¥ caus
ity, is simply dependence measureslote that other definitions of causality are
viable too, so other measures could also be called causality measures.tiat in
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thesis we focus on Granger causality as our main concept of causality.

The measures gathered in this section are mainly from neuroscience lgegatidr
sometimes we will refer to single component procesggse$yy as channels.

When we speak of the dependence (or influence) fyptto y;, y; is called the
source channehndy; is called thetarget channel In this context we speak @l
target channels, when we refer to the changglém # i) with ani(2) # 0, i.e. we
mean all channels influenced lgy Respectively we mean all channgls(m % j)
with ajm(2) # 0 when we speak @ll source channels. This is a sloppy but intuitive
formulation.

Our presentation of these measures is theoretical in nature. The applafdtiese
dependence measures to actual data requires statistical testing, but this ithao
focus of this section.

3.5.1 Measure of conditional linear dependence

The first measure we want to present is directly related to Grangerlitausa
was originally proposed in Geweke (1984), its predecessor, the neeaklimear
dependence, was proposed in Geweke (1982).

For the motivation of this measure we recall the definition of non-causality ac-
cording to criterion (3.20), which readrsz(yj W) = o-z(yjlm). We then simply
construct the log ratio of these two terms.
The measure of conditional linear dependence frantoyy; with respect to y is
defined as o
o (YjlYwip)
o2(yjiw)
wherecrz(yj I¥v) denotes the variance of the prediction error when predigti(tg-
1) fromyy (t).

Fisivyij) = In (3.24)

Although it is called dependence measure, it actually measures Grangatia
The measure (3.24) equals zero in case of non-causality, and yieltsguaalues
in the case of causality. Further details regarding the properties of thisineezs
be found in Geweke (1984) and Barrett et al. (2010).

The application of the measure of conditional linear dependence to aetiazdild
the corresponding statistical testing is briefly described in Geweke (1984)
The measure of conditional linear dependence is sometimes Gatiedjer causal-
ity index(GCl), see e.g. Winterhalder et al. (2005).

3.5.2 Directed transfer function (DTF)

The second directed dependence measure we want to present is theddirens-
fer function as proposed in Kaminski and Blinowska (1991). Using theimgov
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average ca@écients of equation (1.4) we define th@nsfer functionask(z) =
Yo K(m)Z™ and note thak(z) = a(2)~! holds under the assumptions of section
1.1.

The transfer function itself measures the influence from the driving whitgen
process to the observed variables, the DTF is a normalized variant of this in
ence. The question is, how do the influences from the transfer funcéinsidte to
the dependencies between component processe® of

Thedirected transfer functio(DTF) fromy; toy; (with respect toy) is defined as
IKji (2)[?
anzl |kjm(/l)|2

wherek(2) is a short notation fok(e7'1) (here we used = V-1) andk;i(2) is the
(j, 1) element of the transfer functiddz).

Y5() = (3.25)

The directed transfer function is a directed dependence measurendishishator
provides a normalization, and therefore the DTF is bounded by O and I Th
normalization is with respect to all source channels.

The nominator of the DTF measures the total information flow fgpo y;. This
fact can be seen by expandik@) = a(2)~! as a geometric series using the nota-
tions introduced in section 1.1

kD =a@t=(1-a2)"= i aA2"=1+a2+82°+... .
m=0

Considering the fb diagonal elements (i.e@.# j) we obtain

k@)ji = (@™ = 8@ji + ) ADimE@mi + ) | 8D imB@DmADri + ... -
m m¢

This shows that the nominator is the sum of the direct and all indirect informatio
flows fromy; toy;.

The DTF measures the total information flow between two components in a multi-
variate system including direct and indirect influences. Thereforepnolusions
may be drawn concerning the direct pathways of the information propag&m

the DTF is not useful in cases when we want to find the causal strudtarenal-
tivariate system.

Following this line of thought, it was shown in Eichler (2006c) that the directed
transfer function does not detect Granger causal relations excépe inivariate
case.

The properties of the directed transfer function are reviewed in the atigaper
Kaminski and Blinowska (1991) and a thorough discussion can be fioutamin-
ski et al. (2001). The DTF is an often used and common dependencern@éas
neuroscience literature.
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3.5.3 Direct directed transfer function (dDTF)

In order to overcome the problem of indirect information flows that we enco
tered when discussing the directed transfer function, Korzeniewsitamioposed
a combination measure of the directed transfer function (DTF) and thelzpeie:
tral coherence (PSC).

Thedirect directed transfer functio@dDTF) fromy; toy; (with respect ton/) was
proposed in Korzeniewska et al. (2003) and is defined as

55(1) = 5 (DR j,(D- (3.26)

The DTF is used to identify the direction of the information flow, and the PSC is
used to filter out the indirect flows, so the directed direct information floedtee
only remaining ones.

As has been pointed out in Eichler (2006a) the statistical properties ofXhe d
have not been investigated so far and an analysis of actual data beteddDTF
could detect wrong relationships.

3.5.4 Partial directed coherence (PDC)

Another simple and yetficient idea is to construct a frequency specific depen-
dence measure directly based on the ARfiicients. Thepartial directed co-
herence(PDC) fromy; to y; (with respect toyy) was introduced in Baccala and
Sameshima (2001) and is defined as

1&i ()12

2 — vt
i =Sz e

(3.27)

whered(\) is a short notation foa(& 1) (here we usedl= vV-1) anddji (2) is the
(j,1) element of the AR power seriez).

The PDC can be seen as the direct information flow fgpio y; normalized with
respect to all target channels. Due to the normalization the partial diresied-c
ence is bounded between 0 and 1.

The careful reader may have noted, that this normalizatiorisrdint than the one
of the DTF. The DTF is normalized with respect to all source channelstertar-
get channel. This is reasonable, because the original meankjgsfhe influence
from g to the target channef;. In contrast, the PDC is normalized with respect
to all target channels for one source channel, so the partial dirediedertce will
mark the strongest influences departing from a single channel. Ofecotiner
normalizations would be conceivable too.

The partial as part of the PDC’s name stems from the derivation of the mea-
sure, where Baccala and Sameshima factorized the partial spectre¢imoda@nd
skipped some components. The word partial normally refers to the remioed o
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influences of all other components when considering the influenceyirtmy;, or
in other words the direct influence froyto y;. As the AR codicients themselves
signify these direct influences and the PDC is based on thes$iécoas, the par-
tial directed coherence only shows direffeets.

Obviously the PDC is a directed measure. The partial directed coherenitiely
used in neuroscience literature and a renown dependence measym@pégies
are discussed in the original paper Baccala and Sameshima (2001),raoick a
thorough discussion can be found in Schelter et al. (2005). Thereaki$ of
extensions of the classic PDC, see e.g. Baccala et al. (2007) andriebhB®io
(2010).

The advantage of the partial directed coherence is the clear interpretatioanor-
malized direct information flow. Furthermore, it has a clear connection togera
causality. Non-influence in terms of PDC is equivalent to Granger nasatity as
can be easily seen,

() =0Y1e[0,21] — &;(1)=0v1¢e[0,21] =
= Aj(mMm=0Ym < 4&;(2=0.

Thus dependence in the PDC sense is equivalent to Granger causélityurSe,
this is a theoretical connection.

For the practical implementation of the dependence analysis using the PDE statis
tical testing is necessary. For further information on this topic we referhelgs
et al. (2005).

3.5.5 Generalized partial directed coherence (gPDC)

A disadvantage of the PDC is, that it is not scale invariant, meaning that itis no
invariant under dferent choices of the unit of measurement. To overcome this
problem an extension of the partial directed coherence was introdu&atoala
et al. (2007).
The generalized partial directed coheren¢gPDC) fromy; to y; (with respect to
yv) is defined as

z:j_jllé-ji (/1)|2
o1 Zmin8mi(4)[2
whereX;; is the (j, j)-component of the error covariance matrix.
This modification turns out to be more robust than the PDC when procesdira a
data.

(3.28)

m5(4) =

The PDC is a widely used dependence measure and there exist a lot ofcaodifi
tions in literature, the gPDC is just one of its various extensions. There ioely



36 CHAPTER 3. CAUSALITY

extension beside the gPDC we want to mention here, it is the so called renormal-
ized partial directed coherence as introduced in Schelter et al. (2009).

3.5.6 Extrinsic-to-intrinsic-power ratio (EIPR)

In the discussion of the partial directed coherence we mentioned, that aatthe
culation of the PDC frony; to y; also the other channelg i j, are involved via
the normalization. In Hartmann et al. (2008) a novel dependence meaalled
extrinsic-to-intrinsic-power ratio (EIPR), was proposed, where ordystiurce and
the target channel are involved in the calculation of the measure.

For the derivation of the EIPR we rewrite the line of equation (1.8) coomding
toy; in the following way

yi) = D &i@yiM +ei) = &;@Qyi0+ > &i@yi)+&i(t) =
i=1 ieV\{j} )
.uJJ(t) lljl(t)
= wi®+ > uilt) + &),

ieVA{j)

where we callj;(t) theintrinsic contribution termandy;j (t) the partial extrinsic
contribution term
The extrinsic-to-intrinsic-power ratidEIPR) fromy; to y; (with respect toyy) is

defined as
o _ Var;i(V)
i = Var(u; ()
The EIPR is physiologically motivated as it shows similarities to a signal-to-noise
ratio.
Athorough discussion of the EIPR’s properties can be found in Gtagf@012b).

In this article the relation between the EIPR and the PDC is described as well as
the connection between the EIPR and Granger causality.

(3.29)

3.5.7 Other dependence measures

In this section we gave a brief overview over the most common dependerzce me
sures in neuroscience literature. Of course there exists a very kangd of mea-
sures between two signals in the literature based @ierdint ideas and models.
These measuresfthr in the kind of influence they observe, i.e. direct or indi-
rect influence, as well as the considered directionality, i.e. directednomsyric
measures.

We presented only models based on the linear framework of section 1 thebet
are also non-linear approaches like e.g Freiwald et al. (1999) and &#acret al.
(2011).

A lot of measures can also be found in information theory literature, seGatwpr
(1946) and Schreiber (2000).
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3.6 Statistical Inference

In this section we want to answer the question, how to actually compute Grange
non-causality relations.

In practice we start by fitting an ARj-model to the observed dagét), T = 1,... T
(instead of the theoretical AR{)-model). The ordep of the model is determined

by means of an information criterion like AIC or BIC. For further information o
the estimation we refer to Hannan and Deistler (2012)ittké&pohl (2007). This
procedure yields an estimation of the AR polynonaig).”

There are several ideas how to construct a statistical test for Graogearausality,
and we briefly present two of them.

Ouir first statistical test is directly based on the AR fGo&nts and is described
in Eichler (2005). According to criterion (3.19) is Granger non-causal fof;
(with respect toyy) if Aj(m) = 0 form = 1,...,p. In practice the estimations
A,—i (m) will not be exactly zero, so we have to apply a statistical test. If the obser-
vationsyy(t) are normally distributed, the AR estimatéﬁ(m) (computed by the
Yule Walker equations) are asymptotically jointly normally distributed with mean
Aji(m). Under the null hypothesis thgtis Granger non-causal fgy (with respect

to yv) (Ho : yi - Yjlyv), a simple test statisticSj; can be constructed based on
the estimations of the AR céicients. The statisticSji is then asymptotically?
distributed withp degrees of freedom.

We have seen in subsection 3.5.4 that non-dependence in the PDC @enlle f
frequencies is equivalent to Granger non-causality. Thereforeawestatistically
test if the PDC is zero for all frequencies in order to yield a Grangeraausality
relation. In Schelter et al. (2005) this procedure and the statistical piegpef its
test are discussed thoroughly.

As we will see in chapter 6 an F-test on the fméentsd(z) is also possible to
determine Granger causal relations.

3.7 Partial Granger causality

The identification of causal structures in biological systems can be codéolu
by exogenous inputs. This means that the recorded variables are likedyite b
fluenced by unrecorded variables. A novel variant of the measucerdfitional
linear dependence from subsection 3.5.1 was introduced in Guo et @8)(20
order to cope with these influences.

The idea of this novel measure called partial Granger causality is to ficstiate
the prediction errors and then to partialize out the instantaneffest® ofy; on

yj. The log ratio of the partialized prediction errors is the considered mea$ure
causality.
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Before giving the definition we repeat the definition of the measure ofitondl
linear dependence from equation (3.24) for a better understanding

o2 (YY) _ InVar(yj IYWi)
a2(yjlw) Var(yjiyv)

Fisiviiigy =

The causality measuggartial Granger causalitfrom y; to y; (with respect toy,)
is defined as

P _
Fil i =
Var(yj[yw) — Covlyjywi.jy i Var (i, j ¥wi) 2 Covlyni.jYi¥a)
Var(yjlyv) — Coviyjyw i, jy W) Var(yv i, jy ) -2 Coviyn i, j i)

’

where Vary;|yv) denotes the variance of the prediction error when predigtifig

1) fromyy(t) and Covgjywi.j;I7v) denotes the covariance of the prediction errors
when predictingy;j(t + 1) (or respectivelyii j;(t + 1)) fromyy ().

In this definition we see that the instantaneoflisas ofy; ony; are partialized out.

We already encountered a partialization in subsection 3.2.2 in a dynamic ontex
but for the partial Granger causality it is just a static partialization.

Due to the removal of these instantaneofieas, the measure shows positive fea-
tures when applied to data with exogenous inputs. The properties of thisiraeas
are discussed in detail in the original paper Guo et al. (2008) and \ésited in
Barrett et al. (2010).

The interested reader may have noted, that the nomination partial Grangatity

is sloppy for a measure of causality, because it is misleading in regard tefthe d
initions of sections 3.3 and 3.4. It should rather refer to a type of (nanslity
where partialized prediction errors are compared following the idea ofiorite
(3.13).

If there is no correlation between the components of the prediction etinerpar-
tial Granger causality equals the measure of conditional linear depemdertbis
case it would measure (Granger) causality. In case of correlationsotivec-
tion to Granger causality is morefficult, but as mentioned in the last paragraph
partial Granger causality could be the basis for the definition of a novel ¢fp
(non-)causality.

3.8 Additional information

In this chapter we presented the concept of Granger causality as weltiascted
and directed dependence measures. There are further importantinoghisscon-
text we want to mention.
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On one hand we introduce ideas, which we will revisit in later chaptersoartide
other hand we present additional information for the interested reader.

3.8.1 Granger causality

The framework for the application of Granger causality is based on mregita
systems, i.e. the covariance matkof the errors has full rank. In this case the
three criteria (3.12), (3.13) and (3.17) are equivalent, or respéctixieeria (3.19),
(3.20) and (3.21). Especially the projection (frg(h+ 1) onyy(t + 1)) codficients

in criterion (3.19), which are displayed &tz), are unique. A zero projection coef-
ficient signifies a Granger non-causality relation.

In applications with high-dimensional co-moving data, such as e.g. EEG 0GEC
data, the error covarian&will be almost singular. I& is singular the projection
codficients are not necessarily unique (although the projection itself is). If the
projection co€ficients are not unique, the contribution of eydt) to yj(t+1)isno
longer well defined and therefore the notion of Granger causality itseif isrmger
well defined in this case.

In chapter 6 we present a methodology for the causal analysis of aainR
system, i.e. the covariance matBixof the errors is singular. The idea will be to
rewrite the singular AR representatia(@)y(t) = £(t) into an MA representation
y(t) = w(2e(t), wherew(2) is a tall transfer function. By analyzing selections of
w(2) we will yield influence statements for the whole process.

To our knowledge the first Granger causal analysis of a process1\W&larepre-
sentation was proposed in Sims (1972).

As we mentioned in the discussion of the multivariate Granger causality, itys ver
important to specify the conditioning set for the causal relations. This nibahs

the relationy; 3 yjlyv could change when we consider a sub-sys&ai V (S c
V). This can be extended to a second sub-sy$emS where the relation could
change again, and so on. These changing causality relations are qalféals
causalities, they were first mentioned in the original paper Granger  5@@the
trivariate case was analyzed in Hsiao (1982). If we know the originstesy, we
will see in chapter 4 how to retrieve non-causality relations for sub-systems
The other direction is much more sophisticated. If we have only observeld-a s
system, is it possible to state causal relations for the original system? But the mo
pressing question is, how do we notice that we have only observed systdm?
Especially when working with real data we can never be sure to have atthid
important variables in our investigation. But at least there are some indidator
the presence of a larger original system.

In all our considerations (apart from chapter 4) we assume that all tengiorari-
ables are included in the analysis. This implicates that the relayion?s Yilyv

really indicate direct relations. ¥ would be the sub-set of a larger original sys-
tem U, these relations could include direct as well as indiréfgats. If not all
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important variables are included in the analysis, we refer to Eichler (2&0&)
Eichler (2009).

When speaking of causality in neuroscience literature there are twdgmecan-
cepts. We thoroughly discussed Granger causality, which is based @aatime-
discrete model. The second renown causality concept is cdifedmic causal
modelingand was proposed in Friston et al. (2003). Its framework is based on a
non-linear time-continuous model.

3.8.2 Dependence measures

We presented spectral and non-spectral dependence measuzes tiehspectral
measures are dependent on the frequendgoth types of measures have advan-
tages and disadvantages.

Spectral dependence measures can be evaluated for each freqarmye hand
this is an advantage if you are interested in the dependence of spedifierfiey
bands, e.g. the dependence between channels iftblaed in EEG data. But on
the other hand a rule has to be defined for the calculation of an overaihdepce
statement (summing up the information for all frequencies), and this rule beuld
an error source.

Non-spectral dependence measures normally yield only a single numbeare g
tify the strength of the dependence.

As aforementioned there exist a lot offfégrent dependence measures in neuro-
science literature. A good comparison of the most important measures can be
found in Florin (2010). In this work the application of the measures to acdtial

via statistical testing is described thoroughly.

Up to this point we only talked about the stationary case. This means that the
dependence betwegnandy; does not change over time. Of course, this assump-
tion is not reasonable for real world data, especially for EEG and EGd&
simple idea to cope with instationarities is the use of a sliding window, where the
data are assumed to be stationary within a single window, see e.g. Bodenstein a
Praetorius (1977). Another interesting idea is the use of state space ngoaelin
described in Sommerlade et al. (2012).

The main goal of this thesis is the analysis of the dependence structureGsf EE
ECoG data. As we mentioned before a lot of dependence measuresd&ve b
invented in the neuroscience context. For the interested reader watpadist of
selected publications regarding the application of dependence measEESto
ECoG data: Chavez et al. (2003), Matysiak et al. (2005), Osterhaaje (2007)
and Florin et al. (2011).



Chapter 4

Graphical modeling

The goal of our considerations is the analysis ofitimer structureof ann-dimen-
sional stationary process. As we have discussed in chapter 3, theiaralyhe
whole process as well as of all sub-processes is necessary intoffdéy under-
stand the underlying structure. Of course this kind of analysis would ivgcta-
tionally intensive. In this chapter we present an easy and elegant wagifting
more insights in the structure of a process. This approach is called gahpioe
deling.

In general graphical modeling refers to the use of graphs and graphytim order
to analyze the causal structure of a multivariate stochastic variable. Siweidea
of graphical modeling is to find a connection between the conditional indepen
dence relations of the variable, i.e. orthogonality relations (in the comelspg
spaces), and the separation properties of a graph correspondirgggioibture of
the variable.

In the last decades there has been a substantial interest in graphiedingaahd a
lot of research has been conducted. Most of this research hasdoesed on the
dependence structure in the iid case. A not exhaustive list of survefssotopic
is Lauritzen (1996), Whittaker (2000), Edwards (2000), Pearl @2@nhd Cowell
et al. (2007).

In this thesis we are concerned with the causal analysis of ECoG datanmijgo-te
rally ordered data. Therefore, we focus on graphical modeling for teries To
the best of our knowledge this kind of analysis was introduced in Brillinb@@6)
and Dahlhaus (2000). A good overview concerning the topic of graphiodeling
for time series is Eichler (2006a).

Although other types of graphical models are conceivable, we limit owgsely
graphs where the vertices correspond to the one-dimensional contjpooeesses
of a multivariate stationary process, see Dahlhaus and Eichler (200®islcon-

text the edges will signify dependence between the components.

It is important to note that graphical models are more than mere graphs thieere

41
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dependencies between the components are depicted. Based on thtigeajfe
the graphical model and the underlying stationary process, conclusigasding
sub-processes can be drawn in an easy way.

This is the main reason we are presenting graphical models in this thesisrehey a
an easy way to analyze the inner structure of a regular AR model.

In this chapter we present two types of graphical models for time seriethaind
use. First, the partial correlation graphs, which are undirected gedphicdels,
and second Granger causality graphs, which are mixed graphs skettay con-
tain directed and undirected edges.

We thoroughly discuss Granger causality graphs and their properntigheFRnore,
we briefly consider statistical inference and how to address systems vati un
served variables.

Throughout this chapter we analymalimensional stationary processes satisfying
the assumptions of section 1.1 and use the definitions from chapter 3.

We introduce some notations from graph theory in section 4.1. The pantial@o
tion graphs are discussed in section 4.2 and the Granger causality graglton
4.3. The practical application of graphical models is discussed in sectionr4.5
section 4.4 we talk about the treatment of unobserved variables.

4.1 Graph theory

In this section we compile useful definitions and notations from graph theory

A graphG = (V, E) consists of avertex set V= {1,...,n} and anedge set EAc-
cording to the types of edges ihwe distinguish between undirected, directed and
mixed graphs. Undirected graphs contain only undirected edges, dirgetphs
contain only directed edges and mixed graphs contain both types. With the intro
duction of the vertex s&f we see where the notatigg for y stems from.

We can easily draw a graphical representation of a g@pgh (V, E) by display-

ing the vertices with circles and drawing the edgek oFor undirected graphs we
draw an edge — bin the graphical representatioreif— b € E (the second edge
for b — a € E is omitted). For directed graphs we draw an edge- b in the
graphical representationdf— b € E. Figure 4.1 shows an exemplary undirected
and a mixed graph. Mixed graphs show a combination of directed and otatire
edges.

A pathin a graphG = (V,E) is a sequence = (ey,..., &) of edgess € Eand a
corresponding sequence of verticeg (.., vk) whereg connectss_1 andv;. The
verticesvg andyy are theendpointsof the path, the remaining vertices, ..., w_1

are calledntermediate vertices

In undirected graphs, for sefs B, S c V (pairwise disjoint) we say tha sepa-
rates AandB, if every path from an element & to an element oB contains at
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(a)

®

Figure 4.1: (a) Example of an undirected graph. (b) Example of a mixgzhgra
containing a direct and an undirected edge.

least one element of the separationSeThis is an intuitive definition.

For mixed graphs, which contain directed—~ and undirected edges-- , we
have to go into more detail for the definition of separation. There exifgrdnt
types of separation definitions for mixed graphs. For our purposesilivese the
notation of m-separation as introduced in Richardson (2003), which plaiaxn

the following.

Given a pathr, an intermediate vertexof the path is called aollider of the path

if the edges preceding and succeediman the path both have an arrowhead or a
dashed tail at, i.e. —c+—, —C---, ---C+«— Or ---C---, otherwisecis a
non-colliderof the path. LeS be a subset d¥ and leti and j be two vertices not

in S. Then a pathr between the verticdsand j is calledm-connectingyivenS if

(i) every non-collider of the path is not B and
(ii) every collider of the path is it$,

otherwise the path im-blockedgivenS. If all paths betweenandj are m-blocked
givenS, theni an j are calledm-separatedjiven S. In analogy two disjoint sub-
setsl andJ are calledm-separatedjiven S if for every pairi € | andj € J the
verticesi and j are m-separated giveh

At first glance this definition might seem complicated, but actually it is very in-
tuitive. To check the separation between two sets we have to considetttal pa
between the components of these sets. All of these paths have to be mdblocke
in order that the sets are m-separated, only one m-connecting path bewzeen
components of the sets will unseparate them. For each path we have tatleheck
two aforementioned criteria, or equivalently we could look for a non-callialé&

or a collider not inS in order for the path to be m-blocked.

In non-mathematical terms a non-collider lets information pass through, a collide
blocks the information on a path and the Sedwitches colliders and non-colliders.
With this easy interpretation you simply have to check if any path between two sets
lets the information flow unblocked.

For clarification purposes we give a short example of m-separationsi@arthe
mixed graph in figure 4.2. We want to analyze the separation relations betiaee
vertices 1 and 4.
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Figure 4.2: Example of a mixed graph for the illustration of m-separation. (a)
S = {2}, vertices 1 and 4 are connected. @)= {3}, vertices 1 and 4 are m-
separated . (¥ = {2, 3}, vertices 1 and 4 are connected .

If Sisthe empty setthe path-1- 3+ 4 is m-connecting, therefore 1 and 4 are not
separated. In the case tt&at {2}, as seen in figure 4.2 (a), the pathk+ 3 —4

is m-connecting and the vertices 1 and 4 are not separated. In botiweasiesply
found an m-connecting path which yielded the separation relation.

The analysis is more interestingSf= {3}, as seen in in figure 4.2 (b). In order to
check the separation between vertex1 and 4 we have to consider albpatheen
them. The most obvious pathsare2+«—4,1+—3+«—4,1—2---3—4
and 1— 3---2«— 4. Vertex 2 is a collider not irs of the path 1— 2 — 4,
therefore the path is m-blocked. Vertex 3 is a non-collide® iof the path — 3
<4, hence the path is m-blocked. In both pathsi2---3«—4and 1—3---2
— 4 the vertex 2 is a collider not i8, therefore both paths are m-blocked. Look-
ing at these 4 paths is not enough since for the analysis we have to dhmadsible
paths also including self-intersecting paths. We choose another apgarabe
reasoning. Every path passing through vertex 2 contains it as an colodéhnis
reason all these paths are m-blocked since 2 is n&t iThe only path between
vertex 1 and 4 not containing vertex 2 is-+ 3 «— 4, which is m-blocked since
vertex 3 is a non-collider its. It follows that all paths between vertices 1 and 4
are m-blocked givels = {3} and therefore vertices 1 and 4 are m-separated given
S ={3}.

In the caseS = {2,3}, as seen in figure 4.2 (c), the path-+ 2 «— 4 is m-
connecting vertices 1 and 4 because the vertex 2 is a collid8r therefore the
vertices 1 and 4 are not m-separated giSea {2, 3.

For our purposes we need one last definition. A palbietween verticesand j is
called j-pointingif it has an arrowhead at the endpointMore generally, a path
between andJ is J-pointingif it is j-pointing for at least ong € J.

A pathn between verticesand j is calledbi-pointingif it has an arrowhead at both
endpoints. A path betwedrandJ is bi-pointingif it is bi-pointing for at least one
pair (i, j) € | x J.
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4.2 Partial correlation graph

As the name suggests, the partial correlation graph is based on the paatiabs
coherence (PSC), see subsection 3.2.2 . It is an undirected graptaanidtro-

duced in Dahlhaus (2000).

The vertices in the partial correlation graph signify the componenys aihd the

edges are characterized by the PSC. The idea behind the partial tonrglaph

is, that an edge — | is missing, if the componentg andy; are uncorrelated
conditional on the other components of the process.

We want to establish a connection between the separation relations of tiad par
correlation graph and conditional independence relations of the gro€es this
reason we introduce some notations. We recall the definition of the regidaad

1, see subsection 3.2.2), which signifigsemoved by the influences of all other
(past, present and future) components apart fycandy;, see equation (3.2). Then
we define the following relation

Y LYl = CoMm (Bt + 9) = 0Vs (4.2)

Of course, this relation is also equivalent to the PSC being ﬁ[\%’”(ﬂ) =0Vva.

The definition of the relation. can be extended for arbitrary multivariate sub-
processes oy using the multivariate extension of the partial spectral coherence.
We have

yalyslyc & CoMnac(t)nsc(t +9) = 0¥s e Rigc(d) =0V (4.2)

In general relations of the foriyn Lyg|yc are called conditional independence re-
lations. They are interpreted as orthogonality relations in the corresgpptii-
ability spaces.

Using relation (4.1) we may define the partial correlation graph.

Definition 4.1. Let yy be a multivariate stationary process satisfying the assump-
tions of section 1.1. Theartial correlation graphassociated witlyy is a graph
Gpc = (V, E) with vertex setv = {1,...,n} and edge sefE such that foi, | € V

(i # j) the edge — j ¢ Eif and only if yi Ly;IWw\i,j)-

This means an edge— j is missing ify; andy; are uncorrelated given the re-
maining componentgy\;i j). From the alternative definition of the partial spectral
coherence via the inverse of the spectral density, see subsectiorvEeZee that

the missing edges in the graph can be identified by the zeros in the rescalesinv

of the spectral density.

With the aforementioned notations we are able to state the connection between
the separation relations of the partial correlation grépia and the conditional
independence relations of the form (4.2) gt
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OO0

Figure 4.3: Partial correlation graph of system (4.3). Vertex 2 segataded 3

Theorem 4.1. Let y be a multivariate stationary process satisfying the assump-
tions of section 1.1 and letgg = (V, E) be the corresponding partial correlation
graph. Let AB,S c V where S separates A and B. Then we have

yaLyglys.
Proof. See Dahlhaus (2000). |

The use of this theorem is clear. We construct the partial correlatiorh goap

a multivariate stationary process based on the bivariate conditional indiepee
relations, i.e. the non-correlation relations, of the component proce§den
the application of theorem 4.1 yields the independence relations for aylstrar
processes. So this is an easy afféaive way for the analysis of the dependence
structure of a process.

For clarification purposes we give a short example for the applicationeolatt
theorem. Consider the following AR process

V1 0 az O Y1 &1
[yz] 1) = [0 0 0] [yz] )+ {82] (1) (4.3)
Y3 0 Bz 0J\ys £3

with £ = Cov(g) = I3. Simple calculations yield the spectral densijy and its
inverse

1 —ae 1 0
fiy' () = 2r[—a€? 1+02+p2 —pet|. (4.4)
0 —pe 1 1

Based on the zeros d)f,’yl we can draw the partial correlation graph in figure 4.3.

We see that vertex 2 separates the vertices 1 and 3 in the partial corrglatim

and therefore the application of theorem 4.1 yigjgdsyaly», i.e. y; andys are
uncorrelated after the influence wfis removed from both.

This statement is trivial, looking at the system (4.3), but it shall serve a&xan
ample for the application of the partial correlation graph. In more complex and
higher dimensional systems the computation of sub-systems would be more time-
consuming, therefore the partial correlation graph is f@céve way to gain in-
sights into the structure of a process.

As already discussed in subsection 3.2.2 one advantage of the partitthkpe-
herence or respectively the partial correlation graph is that in praefgdications

the spectral density can be estimated via a non-parametric estimator. Thpr&R re
sentation of the investigated time series is not needed for the analysis. A sihtistic
test for the practical application of the PSC can be found in Dahlhau©)200
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4.3 Granger causality graph

In this section we extend the idea of the partial correlation graph giveveatioo
Granger causality. First we draw a graph based on Granger caushétigsen
the component processes and then we can infer non-causalities itoarsrbub-

processes. As Granger causality is a directed property we have tgectiandefi-
nitions accordingly.

To the best of our knowledge this kind of graphical model or rather this tfp
analysis was introduced in Eichler (2007). For the explanations of thimsete

will heavily draw from Eichler (2006a).

It is an intuitive idea to depict the Granger causalities in a graph. In order to
incorporate all independence relations in the analysis (and the grapdctiesly)

we also include the (contemporaneous) non-correlation relations. Fofjdivése
ideas we define the following graph.

Definition 4.2. Let yy be a multivariate stationary process satisfying the assump-
tions of section 1.1. Thpath diagramassociated witlyy is a graphG = (V, E)
with vertex set and edge sdE such that foii, j e V (i # )

(i) i— j¢ E e Aj(m)=0vm,
(i) i--- ¢ E =3 =0.

In other words the path diagrams contains an eédge j if y; is Granger causal for
yj with respect toa,. An edgei - - - j is present ify; andy; are contemporaneously
correlated with respect tg,. The conditions in (i) and (ii) can be replaced by
equivalent criteria as described in section 3.4.

The associated path diagram shows Granger causalities, thereforéiénisalled
Granger causality graphsee e.g. Dahlhaus and Eichler (2003).

Following the idea presented in section 4.2 we want to state a connection be-
tween the graph separation relations of the associated path diagram aoddie
tional independence relations pf. Now the considered graph is a mixed graph
and we will use the notion of m-separation as introduced in section 4.1. The
conditional independence relations now consist of non-causality redatibthe
formyg(t+1) L MWS\A(t) for all t € Z (which are non-correlation relations

in the right spaces) and (contemporaneous) non-correlation relatidghe torm

ya(t + 1) L yg(t + Dlys(t) for all t € Z, compare criteria (3.17) and (3.18). Using
the associated path diagram we are able to state the following theorem.

Theorem 4.2. Let y be a multivariate stationary process satisfying the assump-
tions of section 1.1 and let G (V, E) be the corresponding associated path dia-
gram. Let SC V and let | and J be disjoint subsets of S. If every J-pointing path
between | and J is m-blocked giveRlSthen y is Granger non-causal forjywith
respect to y.
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Proof. See Eichler (2007). ]
A similar theorem can be stated for the contemporaneous non-correlddtans.

Theorem 4.3. Let y, be a multivariate stationary process satisfying the assump-
tions of section 1.1 and let G (V, E) be the corresponding associated path dia-
gram. Let Sc V and let | and J be disjoint subsets of S.. If

(i---j¢Eforallieland je J,and
(ii) every bi-pointing path between | and J is m-blocked given S,
then y and yj are contemporaneously uncorrelated with respectgo y

Proof. See Eichler (2007). m|

With these theorems we are able to derive the conditional independentiensla
including non-causality and contemporaneous non-correlation relatmmarbi-
trary sub-processeg of yy,. These conditional independence relations can again
be depicted in a grapBs = (S, Es) for the sub-systengs. It is important to note,
that this new graph for the sub-system generally is not the associatediapgithm

for ys. Besides the conditional independence relationsy§o(derived from the
associated path diagram) displayedsig, there could be additional ones. In other
words, not all arrows irGs indicate Granger causality, as they would in the as-
sociated path diagram. Thus, theorems 4.2 and 4.3 provide offilyisat and not
necessary conditions for Granger non-causality relations in sulegsess of yy.

For a better understanding of the application of theorems 4.2 and 4.3 venpaes
example. This example is taken from Eichler (2006a). Consider the follodihg
system

V1 0 0 0 o7 V1 &1
Y2l _ |0 0 Bz yz|ly2 £2
Ya 0 0 0 0/\ys £4

with £ = Cov(g) = l4. The associated path diagram of system (4.5) is shown in
figure 4.4 (a).

We want to analyze the non-causality relations between two componeiSgesc
with respect to arbitrary sub-procesgesising the associated path diagram (figure
4.4(a)) ofyy. For this analysis it is easier to consider the (not necessary) causal
relations than the non-causality relations. In other words, which edgebea
drawn in the sub-graph. We will sloppily say is Granger causal foy; with
respect to/s, denoted by — yjlys, if the relationy; - yjlys is not inferred from

the associated path diagramygf

We will start with the three dimensional sub-processes.
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@ (3)
O

Figure 4.4: (a) Associated path diagramyoffrom system (4.5). (b) The use of
theorem 4.2 yields the path diagram o123

In the caseS = {1, 2, 3} we infer the following relations: Clearly we hayg —
Yolyi1.2.3) because of the direct path-3- 2. Via the path — 4 — 2 we have
y1 — YolYii23, Y2 — Yilyjizs andys ~ yilyi123 because vertex 4 is a non-
collider of this path. Considering the path-3 2«4 — 1 we getyzs — y1ly(1.23;,
because the vertex 2 is a collider$and the vertex 4 is a non-collider. To infer
a causality relation from verteixto vertex j we need a path ending with anr—
edge pointing tg. In the aforementioned relations we already used-all edges,
therefore there are no additional relations in this sub-system. Figure 4htjlvs
the derived independence relations for the sub-progess;.

The case5 = {1, 2,4} is simple as we only hav, — Yoly1.24, Y2 = Yaly1.2.4)
andyz ~ y1ly1,2.4-

Similarly the cas& = {2, 3,4} yields onlyys — yoly(234; andys — Yalyi2.3.4).

In the case5 = {1, 3,4} we have the relatiogs — yily;134), as the vertex 2 (as a
collider) separates the vertices 3 from 1 and 4.

We get the causality relations for a 2-elementSély considering only the paths
ending with an— edge. Therefore, we haye — Yyilyi1.4), Y4 — Yoly24 and
Y3 — Yaly(2.3). Additionally we haveys — yaly(1.2), Y2 — Yily12) andyz ~ yilyja.2)
as vertex 4 is a non-collider of the path+ 4 — 2.

In this example we have seen that the associated path diagram encodi¢isicah
independence relations for arbitrary sub-processes. It is possitbastruct other
graphs that encode other independence relations, e.g. the bivaratgebrausal-
ity graph, see Eichler (2006a). If a mixed graplicontaining— and - - - edges)
encodes certain conditional independence relations of a prpgesa® say thaty,
satisfies a Markov property with respect to the gr&ph

Definition 4.3. We say that a stationary procegs(satisfying the assumptions of
section 1.1) satisfies thgobal Granger causal Markov propertyith respect to a
mixed graphG if for all S € V and all disjoint sub-setisandJ of S the following
conditions hold

() yi is Granger non-causal fgy with respect toys whenever in the grap&
everyJ-pointing path betweehandJ is m-blocked giverB\|I,

(i) y; andy; are contemporaneously uncorrelated with respegt tawhenever
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in the graphs the setd andJ are not connected by an undirected edge
and every bi-pointing path betweémndJ is m-blocked givers.

In other words, all conditional independence relations that can beeddiriom the
graphG also have to be found in the process itself. So the graph itself may encode
fewer conditional independence relations than can be found in thegzraself.

We want to emphasize the construction of this definition, a process satigfieg-a
erty with respect to a graph. So the graph is given and we check whiiber
process satisfies the property or not.

With definition 4.3 theorems 4.2 and 4.3 state that a stationary process (sgtisfyin
the assumptions of section 1.1) satisfies the global Granger causaMmd{erty

with respect to its associated path diagram.

A saturated graph, i.e. a graph that includes all possible edges, trivadibfiss

the global Granger causal Markov property for all stationary pseEgdecause it
does not entail any separation relations.

To conclude this section we want to mention théftedent associated path diagrams
encode dferent conditional independence relations. So there do not exist two
different associated path diagrams that encode the same conditional insleqend
relations. This is a property of associated path diagrams, this propertgréily)
does not hold for more general types of graphs.

4.4 Unobserved variables

In Granger’s original definition he assumed that all important informationasv.

In modern data analysis it is a valid question whether all important variabdes ar
taken into account, or if an important variable, i.e. a component process; is u
observed. It is very diicult to answer this question. The application of graphical
modeling yields indications for unobserved variables in certain casesravidgs

a tool to (partially) cope with this problem. The ideas discussed in this secton ar
taken from Eichler (2009).

The termunobserved variabl@ormally refers to an unobserved component in a
system, which is only partially observed. In our considerations we knowrige

nal process and simply leave out one or more component processels,isvhor-
mally not the case in practical applications.

To explain the problem of unobserved variables we continue the examgystefn
(4.5). We consider the case thatis unobserved. As shown in Eichler (2006a) a
representation ofj1 23, is given by

Y1 0 ﬁgzz 1(:[37222 Y1 &1
y2[)=]0 0 yz ||Yz2|(®) +|&2[(t) (4.6)
Y3 0 O 0 J\ys £3
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unobserved

@Gy ® ©
) © O ©®

Figure 4.5: Changing causality relations when considering sub-pexess

(a) Associated path diagram for the full process of system (¥4593, unobserved.
We inferys - yilyj13. (b) Granger causalities for sub-systgfp 3, derived from

representation (4.6). (c) In the 2-dimensional sub-sysjgsy we have:ys is non-

causal fory;.

with
- af a €1
i)l 1 - TBZ Z 0 1+ﬁ2 22 £
&g{h=[o 1 0 gz en (t). 4.7)
£3 0 0 1 0 &

The Granger causal relations indicated by this representation are @idjtefjgure
4.5(b). Figure 4.5(a) shows the associated path diagram of the futgspand the
application of theorem 4.2 yields the relatigy —+ y1|y;1.3) for the bivariate sub-
systemy;1 3;. This relation can be found in the data, but it cannot be derived from
the diagram 4.5(b).

This is an example for changing causality relations when consideringysiknrss,
in particular this phenomenon is called spurious causality of type |, whesatty
relations with respect to the full process vanish when considering praless, see
Hsiao (1982).

The change of causality relations when analyzing sub-systems is an imdimato
unobserved variables as can be seen in this example.

The literature suggests twoftirent approaches to cope with the problem of un-
observed variables in the iid case. The first approach suggests todribkidnob-
served variables as nodes in the graph, see e.g. Pearl (2000 cdmelsapproach
focuses on the conditional independence relations of the observiedblear In
Eichler (2006b) the second approach has been discussed for the tiesecsese.

For the interested reader we want to briefly explain the second appiabeting
Eichler (2006b) and Eichler (2009). By the introduction of an additionaé tgf
edge- - » we extend the class of considered graphs, so called general patndgagr
contain---, — and--» edges. In the class of general path diagrams we are able
to display more causality relations, but we loose the unique identifiability of the
graph, i.e two dferent graphs may yield the same set of independence relations.
To solve this problem we restrict ourselves to graphs callgaamic ancestral
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graphs which are uniquely identifiable in the class of general path diagramseThes
ancestral graphs are associated with ARMA processes in comparis@rtorthal
associated path diagrams, which are associated with AR processes.

The main aim of graphical modeling (in this approach) is to display the causal-
ity structure of a process as good as possible, i.e. to depict as much coealditio
independence relations as possible in a single graph.

4.5 Statistical inference

So far we have only talked about the theoretical aspects of graphicadlimgd
Now we want to briefly discuss the application of graphical models to acaial d
Graphical models are used to display the causality structure of obsenesbpes.

The first and straightforward idea is to draw the associated path diagrahefob-
served datgy(t),t = 1,..., T. In section 3.6 we explained that normally an AR(p)
model is fitted to the data using the Yule-Walker equations. The components of
the estimated AR ponnomiaﬁji (m) are statistically tested if they are jointly zero

5
by anF-test, in order to derive the bivariate Granger causal relagiprs y;lyy.
Based on these relations we are able to draw the associated path diagram.

The associated path diagram often is a very good description for thel G-
ture of an observed multivariate system. But in the case of unobserviathies
we will encounter changing causality relations when analyzing sub-systéms
section 4.4 we discussed the problem that these changes in the cauEaiselee
indicators for unobserved variables. For a better representation afatisality
structure of observations with unobserved variables general pattadiagre in-
troduced.

Following the ideas in Eichler (2005) we briefly describe the practical squbic
of general path diagrams, which include-», --- and --» edges. Suppose that
observationys(t) are available, which are a part of a larger systgift). We are
searching for a grapB = (S, E) that describes the causality structurgyefas best
as possible, and of course the graph should not imply any indepencidatiens
that do not hold irys.

Definition 4.4. A general path diagrar® is consistenwith ys if ys satisfies the
global Granger causal Markov property with respedbto

So our aim is to determine a consistent graph that depicts the Grangel rausa
lations of the observations as good as possible. A smaller number of edipes in
graph leads to a larger set of related conditional independence relafibese-
fore, we search for aninimal consistengraph in the sense, that the set of related
conditional independence relations is maximal (but does not contain indepee
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relations that are not found ¥z). The idea of minimal consistent graphs in the iid
case was introduced in Pearl (2000).

In practice the determination of the minimal consistent graph is based on the pair
wise comparison of dierent consistent graphs by a statistical test on the causality
relation distinguishing them.

Unfortunately two diferent general path diagrams might imply the same set of
conditional independence relations. Therefore, the minimal consistaph gn
general is not unique.
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Chapter 5

Factor models

Analysis and forecasting of high-dimensional multivariate time series is an impor
tant issue in various disciplines. A common and well-understood tool for limgde
and analysis of these systems is (regular) autoregressive modelingihippoint

we talked talked about ARe{), but for applications you have to use finite order
AR-systems. The arising problem when using regular finite order ARB)sis
calledcurse of dimensionality

Letndenote the cross-sectional dimensionTidte time dimension of the observed
time seriesx and let the AR-ordep be fixed. Then the dimension of the parameter
space (for unrestricted regular autoregressive modeling) is propartion?, but

the number of data points is only linearnrfor fixed T, which leads to numerical
problems for largen.

The idea to solve this problem is to compress the information and to extract the
important information from the data. This compression is not only in the time
axis but also in the cross section, and leads to a reduction of the dimengtua of
parameter space.

Nowadays factor models are a widely used technique for dimension realuctio

The main idea behind factor models is to separateotteervations ) into the
latent variablesy(t) and the noise(t)

X(t) = x(t) + n(t), (6.1)

where the latent variables include tbemmoninformation concerning the obser-
vations and the noise is simply the rest. In our applications the common parts
will reflect the important information of the observations, i.e in ECoG data the
co-movement is considered the important information. The aforementioned di-
mension reduction is accomplished because the latent variables aretgengra
small number of factors, therefrom the tefactor model

Our main interest in high-dimensional time series is their causal analysis uf$® c
of dimensionality also impairs this causal analysis, because the causaisisly
usually based on a regular AR model, as discussed in chapter 3.
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We are especially interested in the analysis of EEG and ECoG data, se¢erchap
As the EEG data represent potential changes of spatially neighborirtgoeles,
the data are highly correlated and show co-movement. These properti¢s tea
aforementioned numerical problems. In chapter 6 we will return to thesdgong
and discuss how we can use Granger causality for factor models.

In the section 5.1 we detail theoretic results concerning factor models anthbo
separation (5.1) can be carried out, whereas in section 5.2 we discusstiag)
method for the aforementioned separation. For the following elaboratiomexwe
tensively use material from Deistler et al. (2010) .

5.1 Generalized dynamic factor models (GDFMS)

For our purposes we consider generalized dynamic factor models (GD#Hish

have been introduced in Forni et al. (2000) and Forni and Lippi 1208nd in a
slightly different form in Stock and Watson (2002a) and Stock and Watson (2002b)
The idea of GDFMs is to combine and generalize linear dynamic factor models
with strictly idiosyncratic noise, as discussed in Sargent and Sims (194d7) an
Scherrer and Deistler (1998), and generalized linear static factor madela-
troduced in Chamberlain (1983) and Chamberlain and Rothschild (1983).

The basic idea of GDFMs is to separate thdimensional observatiox'(t) as in
equation (5.1) inté

X'(t) = x"(t) + n"(V), (5.2)
where this time, the latent variablg$are strongly dependent in the cross-sectional

dimension, and the noisg is weakly dependent in the cross-sectional dimension.
The exact definition of these terms is given below.

For the remainder we assume thdtandn" are weakly stationary with absolutely
summable covariances, have mean zero and

Exi ns =0 Vst (5.3)

holds, this means that they are uncorrelated. Thus, the spectral deosities
sponding to (5.2) can be written as

£ = £1.(0) + (). (5.4)

The class of GDFMs is constituted via a set of assumptions. These asswnption
are technical in nature and are not important in detail for our final goalcdsal
analysis of a factor model. The whole list of constituting assumptions including

3In this section we want to emphasize the cross section dimensiéthe observations(t) by
writing n as a superscripk”(t). Later the superscript will be omitted.
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additional informations can be found in Deistler et al. (2010) and Andeasal
Deistler (2008).

Assumption 5.1. There is an g such that for all n> ng the spectral density of the
latent variables jX is rational and has constant rank<¢n on[-x, x].

For the mathematical analysis a sequence of GDFMs (5.2) is considerdthwd/e
the following assumptions.

Assumption 5.2. The sequencégyi(t)i € N,t € Z) corresponds to a nested se-
guence of models, in the sense thdt) andz;(t) do not depend on n for< n.

Assumption 5.3. The rank g and the McMillan degre2y say (see Hannan and
Deistler (2012) for further information), of?f is independent of n (& no).

In the following we usev,,,, to denote the-th largest eigenvalue o‘g‘n and define
strong and weak dependence according to Forni and Lippi (2001).

Assumption 5.4(weak dependence)ofm’l is uniformly bounded i and n.

Assumption 5.5(strong dependenceYhe q largest eigenvalues gfxfdiverge to
infinity for all frequenciest as n— co.

The problem with GDFMs is, that they are not identifiable for any firedho
matter how largen is. This means, that the separation in (5.2) cannot be achieved
for finite n. In the idiosyncratic case, whelfgiq is diagonal the identification (and
thus the separation) is possible generically dosuficiently small in relation to

n. Nevertheless, the elements @df andn" are uniquely determined fro' for

n — oo as shown in Forni and Lippi (2001).

From now on we will omit the superscriptfor the sake of simplicity.

Our final goal is the causal analysis of a factor model in chapter 6.efdrer, the
most important theoretic result for our considerations is the fact, thatrétieally)
the separation (5.1) is possible under technical assumptions.

In section 5.2 we will suggest a method for the practical separation.

As already mentioned we commence from assumption 5.1 for a spectralfaetor
tion of f,,. The results of this procedure will be used in the next chapter for the
causal analysis.

For the remainder of this thesis we assume thit large enough, so thdt, is

of rankg < n. We commence from the population spectral density of the latent
variablesf,,. Then, according to Hannan (1970) or Rozanov (1967) we have the
following result.
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Theorem 5.1(Spectral factorization)Every nx n rational spectral density,{ of
constant rank g for alk € [-x, 7] can be factorized as

f () = (e w(e )", (5.5)

where W2) (z € C) is an nx q real rational matrix of full column rank which has
no poles and no zeros fig < 1.

Proof. See Rozanov (1967). m|

It is easy to show, that/(2) is unique up to post-multiplication by constant orthog-
onal matrices.

By using the notatiomv(z) = > o W(m)z", W(m) € R™9, we can write the latent
variablesy as

x() = WD) = ) W(me(t - m). (5.6)
m=0

where theg-dimensional input is white noise withCo\¢) = |q. The components

of ¢ are calleddynamic factors As can be seen from this representation (5.6) the
g-dimensional dynamic factoesgenerate the-dimensional latent variablgs As

can be easily seen, (5.6) corresponds to the Wold representation.

GDFMs are a large model class anfiep a lot of versatility. However, for the
causal analysis we will present in chapter 6, we will only need a small poofio
the theoretical background from GDFMs. Our causal analysis will kedan the

tall transfer functionw(z) derived from the spectral factorization (5.5) and shown
in equation (5.6). For the practical implementation of our method matters will
simplify even more.

5.2 Principal component analysis (PCA)

In this section we want to present a practical method for the separatigna¢tdl
respectively the derivation of the latent variables in contrast to the thean
plication of factor models in section 5.1. For this reason we usetheipal
component analysi@®CA).

The PCA is a tool for the estimation of the static factmr3hen the static factors
are are modeled as a regular AR process.

First, we briefly explain how the PCA functions and give a short introdoaiging
material from Filzmoser (2010). Second, we show its application for ogrgses.
Third, we model the static factors as a regular AR process.

The principal component analysis roots on Pearson (1901) and weakped by
Hotelling (1933). In the analysis the data are linearly transformed in suciya w
that the resulting components comprise the most important information of the data
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in descending order. In this way the dimension of the data can be redutieel to
number of the most important components. For further informations we treder
interested reader to Jackson (2004).

We explain this procedure for the iid case, the time series case will functalo-an
gously. Our theoretic considerations are based on the population cwariaatrix

Q. Of course, for practical applications the covariance matrix of the sasens

has to be estimated. Accordingly, the AR polynomial for the modeling of the latent
variables has to be fitted in the posterior part of this section.

In the following we discuss how the PCA works.

Let X = (X1,...,X,) be ann-dimensional random vector with mean zero, covari-
ance matrix2 = Cov(x) = ExX andQ > 0. For the explanation of the PCA we
usex as a normal multivariate random vector, not a stationary process.
Furthermore, leO = (04, ..., 0,) be an orthogonat x n matrix with fixed compo-
nents, i.eO! = O’. We consider the following linear transformation

z=0'x (5.7)
or written component-wise
z=o0x for i=1...,n. (5.8)

The transformation (5.7) yields a neadimensional random vectar The variance
of its components is

Var(z) = Eo/xXo =0/Qo; for i=1,...,n. (5.9)

We want to construct the transformation mat@xrom (5.7) in such a way, that
the variances (5.9) are maximized under the constraint thad;thave length 1
(or o/oj = 1). Mathematically this can be written as a Lagrangian maximization
problem with a side constraint

¢i =0/Q0; — Ai(0joi—1) for i=1,....,n. (5.10)
The derivation with respect to the unknownare set equal to zero, yielding

%:Zﬁoi—z/iioizo for i=1,...,n. (5.11)
i

A slight recalculation leads to
(Q-2ailp)oy=0 for i=1,...,n (5.12)

or written in matrix notation
QO =0T, (5.13)
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wherel’ = diag(y, ... An). This result is well known under the name eigenvalue
problem. Theo; are the eigenvectors 6f and thel; are the corresponding eigen-
values. The covariance matriX is positive definite and therefore all eigenvalues
are real positive numbers. Furthermore, we sort the eigenvalyes:i, > ... >

An > 0.

With these definitions the linear transformation (5.7) is knowprascipal compo-
nents transformatiorthei-th component otis called the-th principal component.
The principal components have expectation Zém= 0 and their covariance is
Cov(@ = O'Q0 =T = diag(l1, ... 1,). Therefore, the variance afis equal tol;,
thei-th eigenvalue of2. The total variance of all principal components is equal to
the sum of all eigenvalues, which is obviously equal to the total variange of

Now we return to the time series case amill denote a stationary process from
now on. We use the PCA ai = E xX to derive the static factorsas follows

Q=ExxX oro

ooif; 2B

= 011“10’1 + 021"20’2,

wherel” = diags, ..., 4,) contains the ordered eigenvaluls> A, > ... > An >

0 andO is an orthogonal matrix.

As the latent variables include the important information of the observatioms, w
assume that the important information is contained ingdgémensional space ex-
plaining the most variance of the data. Therefore, we only use the informiatio
the g first principal components of the data. So our transformation matrix from
(5.7) will not be squareO; contains the firsj columns ofO corresponding to the

g largest eigenvalues, respectiv€ly the remainingn — g columns.

The latent variableg(t) are obtained by projecting the observatioy onto the
space explaining most of the variance, this space is spaned by the coli®@ns o

x(t) = O1(0;01) O1x(1) . (5.14)
Iq At)

We use the more common notatianfor O; and rewrite the last equation into the
system

YO = Az (5.15)
2) = A'X), (5.16)

whereA is termedfactor loading matrixand theg-dimensional principal compo-
nentsz(t) are calledstatic factors Expression (5.15) is calledstatic factor model
because the factor loading matrix is static, i.e. constant. We clearly see, &hat th
n-dimensional latent variablgsare driven by the-dimensional static factos
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The second part of the system, equation (5.16), is used for the actaplitation
of the static factorg(t).

As is well known, one could generate other (minimal) static factors by pre-riwultip
cation with a regular matrix

x(t) = AzZ(t) = AUTT UZ(t) = AX().
Ao

However, this does not impair our causality analysis, because the spmoased
by zandZare equal.

The most important dierence between modeling the latent variables via equation
(5.6) or via equation (5.15) is the fact, that equation (5.15) uses a staticdne.
stant) factor loading matrix.

The next step is to model the derived static facioas a regular AR process.
Normally the static factorg are modeled by a singular AR-model, which means
that the number of dynamic factors is smaller than the number of static factors.
For our purposes we assume the number of static factors to equal the moimbe
dynamic factors.

In order to reach a from similar to equation (5.6) we assume the static factors
to satisfy the assumptions of section 1.1. Therefore, they can be modeled as a
regular AR process. This is a strong assumption, but data analysi$s;eines it

is reasonable for the ECoG data we want to analyze.

The approach to model the latent variables with a static factor model and tice sta
factors as a regular (finite) AR process is sometimes cajleabsi-static factor
mode] see Deistler and Zinner (2007).

Following this line of thought we get a regular AR model for the static factors

a@)t) = &(t), (5.17)

wherea(0) = Iq and Cové(t)) = X > 0.
Equations (5.15), (5.17) and the causal invertabilita(@j together yield

x(©) = Az(t) = Aa 1 (2)s(t). (5.18)

In this PCA-based approach it can be easily seen,ARat(z) in equation (5.18)
is the transfer functiom(z) from equation (5.6) from section 5.1. Therefosan
equation (5.18) are the dynamic.

The interested reader may have noticed, that up to this point we assyrtiesl
number of (static) factors, to be known. For theoretical purpgdesietermined
via the number of diverging eigenvaluesfff asn — o, see assumption 5.5. In
practical applications often the number of static factors is estimated first, tdlow
by an estimation of the number of dynamic factors.
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A well known method for the determination of the number of factors is the scree
test, which was introduced in Cattell (1966). This test is based on a gedphic
comparison between the explained variance per factor and the numbeifactbr,

this graph is called scree plot, an example is figure 6.5 in section 6.5.

Another simple method is to set a threshold for the explained variance yduavan
achieve and choose the number of factors accordingly.

For the conclusion we sum up the model described in this section. The latent
variablesy, the factor loading matri and the static factorzare derived via the
PCA from the observations Then the static factors are modeled by a regular AR
process, which leads to the following system

x(t)
a(2)z(t)

with a(0) = Iq andX = Cov(g) > 0.

AZ(Y), (5.19)
&(t), (5.20)



Chapter 6

Influence analysis

In this chapter we discuss the causal analysis of high-dimensional time aade
the associated problems. In particular we are interested in the causaliarly
ictal ECoG data in order to gain insights concerning the seizure onset zone

As we will see this causal analysis is not straight forward. To overcomariking
problems we propose a method that is based on the Granger causaisaniaiys-

tor models. The application of this methodology to the ECoG data yields results
which are in very good accordance with the clinical findings.

In section 6.1 we discuss the problems concerning the causal analysismiing
data. To deal with these problems we elaborate the statistical frameworlefapth
plication of Granger causality to factor models in section 6.2 (based on thé-kno
edge of GDFMs from section 5.1). The practical application of Grangesality
to factor models is based on the PCA approach (from section 5.2) asbaekitr
section 6.3.

With the gathered knowldege we propose our causal investigation methodtin se
tion 6.4. To assess our proposed methodology we apply it to simulated data in
subsection 6.5.1. The most interesting part of section 6.5 is the applicatiam of o
proposed method to the ECoG data.

The chapter is concluded by a thorough discussion of the methodolgy and th
results in section 6.6. The discussion will highlight the statistical-technical pro
perties of the proposed methodology as well as the clinical view of the results

This chapter signifies the main contribution of this thesis as it merges the causal
analysis, factor models and the neurophysiological aspects. Parts chdpger
have been published in Flamm et al. (2012a).

For background information and notation we refer to chapter 1 for the mattical
introduction, to chapter 3 for Granger causality and to chapter 5 forrfauddels
and the PCA approach.
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6.1 Challenge

What is the challenge in using Granger causality for the analysis of high dimen
sional co-moving data, in particular ECoG data? Thiv@approach would be to

fit ann-dimensional (regular) AR model to tlredimensional observationgt). In
practice we typically encounter two problems:

First, the curse of dimensionality impairs the AR-estimation, compare chapter 5.
The fitting of ann-dimensional AR(p) model requires the estimatiom& param-
eters, but the number of observations is only lineamn.iThus, in order to obtain
reliable estimation results a fficient number of data samplest),t = 1,..., T

is required, i.e. very long data samples are needed for a large ciigsiaedi-
mensionn. Normally neurological signals (in particular ECoG and EEG) show a
highly non-stationary behavior (the second moments vary significantly withg lo
data windows), so the stationarity assumption for the required long datawsndo
would be violated. Of course, this impairs the estimation of the AR model for the
Granger causal analysis.

Second, the ECoG data show strong signs of co-movement, which carethe se
visually. This clearly indicates that thredimensional observations are originally
generated by a small number of factors. Mathematically speaking, the most im-
portant part of the observations, the latent variables, is generatedbpm@ysmall
number of factors. As Granger causality analysis is usually based atare®R
estimation, where the number of observations is equal to the number ofagener
ing components (see section 3.4), this leads to a poor AR-estimation for ti@ ECo
data. The subsequent causal analysis would also yield misleading results.

In order to cope with these problems we consider factor models. As weskave

in chapter 5, factor models are a useful tool for modelling high-dimensiomal
moving systems. The important question is, which causalities can reasomably b
analyzed in this context. The price to be paid when using factor models instead
of regular AR modeling for data description is that the causal analysisnesco
more dificult. A classic Granger causal investigation does not make sense for fac
tor models, because by the definition of a factor model a regular AR-modset is
applicable.

In this thesis we assume that the dependence structure of the latent \&yiable
properly reflects the causal structure of the observation3herefore, a causal
analysis of the latent variables will reveal the dependencies betweehdkeva-
tions themselves. This is a very strong assumption, but it seems meaninggitede
the seperation (5.1) into noise and latent variables. We will thoroughly skdbis
assumption in section 6.6. This assumption is reasonable, because in E&lgpG an
sis we expect the most important dependencies between the compondsitsiegp
the most important features of the signal, i.e. the latent variables.
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The first idea for a causal analysis in the factor model case would bengidey
relations of the form

Xi —?>)(jl)(v. (6.1)

In other words, how doeg influenceyj with respect toyy. However, the use of the
exhaustive se¥ as the conditioning set leads to problems: Relation (6.1) signifies
the contribution of(t) to xj(t+1) in the projection of j(t+1) ontoyy (t), compare
criterion (3.12). Although the projection itself is unique, the projectiorfioccents

are not. This means that the contributiong(t), yi(t — 1),. .. to the explanation of
xj(t+1) is not uniquely determined. This is due to the fact that only a small number
of components is needed to spaf(t). As these contibutions are not unique the
application of criteria (3.12), (3.13) and (3.17) is not reasonable. @ahwnalysis
involving relations of the form (6.1) is not meaningful and would yield mislegdin
results.

It is very important to note that we consider the general case, becaspedral
cases the above problem might not arise.

Therefore we restrict the conditioning set, instea® afle usechannel selections
| ¢ V where we consider onlg channels, i.e. = q < n.* Thus we consider
relations of the form

2 .
Xi = xil Ljel (6.2)

Of course we are searching for channel selctiowbere the projection cégcients
from x| (t + 1) ontoy, (t) are unique, compare the aforementioned problem. In the
following we will discuss the choice of the channel selectipsuch that relations

of the type (6.2) yield reasonable results in the causal analysis. For r@ticab
discussion on the choice bfwe refer to section 6.2, for the practical PCA-based
approach we refer to section 6.3.

As we have discussed in chapter 4, all conditional independence rsldign
tween arbitrary sub-processes (including non-causality and contangamrs non-
correlation relations) have to be considered for the complete causaipdiescof

a system. However, as the bivariate causal relations with respect to the prio-
cess have a special role among the non-causality relations (see secjiauid.3
proposed method will be solely based on relations of the form (6.2).

6.2 Theoretical framework

As mentioned in section 6.1 we are interested in causality relations of the form
(6.2). Here we discuss the choice of the channel selettinrorder to yield rea-
sonable results in the causal analysis.

“4In this context # denotes the number of elements in a set.
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In particular we are interested qadimensional selectionlsc V, wherey, drives

all latent variablegy. We propose this kind of channel selections because a simple
Granger causal anlysis is possible in this case.

We start our causal considerations by continuing at the end of sectionBy.1

reordering (5.6) we obtain
(i)~ )0 ©3

wherey is ag-dimensional ang; is a (h — g)-dimensional process, sq(2) is a
g x g rational matrix.

We only consider channel selectiohswherew, (2) is causally invertiblei.e. all
its zeros and poles lie outside the unit circle. The(z) ™ exists inside and on the
unit circle, ande can be expressed as

&(t) =wi @t ). (6.4)
Using equation (6.4) we rewrite (6.3) as
xi(t) _ |

(xﬂ(t)) - (wJ(z)w. (z)-l)"' © (©:9)

which shows thay, generates the whole process. In more mathematical terms
this meansgy, ande span the same space, which is of course equal to the space
spaned by the whole process

x1(®) = &(®) = xv(©. (6.6)

We note, that in the general case it might not always be possible to findcticele
| of driving latent variables, e.g. consider the following system

xa(t)) _ (wi(2 1+p1z

(Xz(t)) - (wZ(z)) o0 = (1 + pzz) “0 6.7)
where|pa|, |o2] > 1,01 # p2. In this example neitheni(2) nor wy(2) are causally
invertible.
In this example it would be possible to rewrjte (or alternativelyy>) asyi(t) =
W1(2)£(t) with Wy(2) causally invertible and{ white noise, buj, could not be
causally generated by in this case.
It is important to note that we only consider the transfer functigz) derived by

the spectral factorization (5.5) according to theorem 5.1. Therefa@&nly con-
sider square selectiong (2) of this transfer function.

Our main reason for requiring channel selections with a correspondingpty
invertible transfer function is the following: If there exists a channel $ieled,
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wherew, (2) is causally invertible, we may investigate conditional Granger causal
relations iny, (t) in an easy way.

Interpretation of equation (6.4) as an AR model and premultiplication wii(B)

(i.e. the leading cd&cient ofw, (2)) gives

wiOW @™ ) = w0,
3(2) ()
ad ) = &, (6.8)

with &(0) = Iq. This is a regular AR model of the form (1.7) fer. Therefore,
the Granger causal relations (6.2) are simply derived by the applicatiiterion
(3.12), which reads the following in this context

3ji(d=0 <= xi—»xj.
This relation signifies the influence gf to y; with respect toy,.

An important aspect we have to consider for our analysis is the following:
If there exist two channel selectiohs i, j andl > i, j, with | # I, where both
w;(2) andwj(2) are causally invertible, the naturally arising question is, whether

the causal relationg —?>Xj|)(| andy; —?>Xj|)(,~are equal. In other words, how does
the choice of the channel selectibinfluence the causal relation betwegnand
Xi?

Due to the fact thag, (t) = (t) = x;(t) (because they span each other, see equation
(6.6)) one could conjecture that the aformentioned causality relationsjaed. e
This would mean that the causal relations (6.2) between chaiamelj are inde-
pendent of the choice of a valid channel selection. This would have tlsntahe
that a single arbitrary channel selectioro i, j (with w;-(2) causally invertible) is
suficient to explore the causality between the considered chapnaily ;.
However, unfortunately this is not the case. The causal relatiom yjly| can
also be checked via criterion (3.17) which reads

Xi(t+ 1)Lyi®hn @)

in this context. This shows, that the conditioning selt\is(not I'!). Even though

xit) = xi(t) holds, in generak\(t) # xi\;(®), i.e. the conditioning spaces

are not equal. Thus, the conditional Granger causal relations atbeneame (in
general).

We want to emphasize the importance of this statement a second time. The causal

? , o

relationy; — xjlyi strongly depends on the channel seleclipbecause it is (in
? ~

general) diterent from the relatiog; — xjlx for valid I # I.
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Figure 6.1: Associated path diagrams for the sub-procesgses; andy 124 of
system (6.9). Oferent causality relations betwegn and y» depending on the
considered channels: (&) — x2lx(1.23 holds in sub-system (6.10), but () »
x2lx(1.2.4) holds in sub-system (6.11).

For the interested reader we have a simple example showing that the causality
relations depend on the channel selections. We want to investigate thadityaus
from y1 to y2 in the following system

Y1 1 0 O .

o2 1 Bz !
o=l o [sz](t), 69
4 ¢z 0 1 &3

with @ # B, @, # 0 and Covg) = l3. Simple calculations show that the sub-
processx1 23 has the following AR representation

1 0 0)\(xn1 &1
—aZZ 1 -Bz||x2| ) =|e2|(®). (6.10)
0O 0 1 3 &3
For the sub-process; 2.4y we have
1 0 0 X1 &1
0 1 -Bz||lx2|@) =|e2](®). (6.11)
—%Z 0 1 4 €3

Figure 6.1 shows the associated path diagrams of these two sub-psodisgtay-
ing their causality structure.

According to criterion (3.12), in sub-system (6.3Q)is Granger causal for, due
to ax1(2) # 0, hence

X1 = x2lx123)-

On the contrary, in sub-system (6.11) we haygz) = 0, thusy1 is Granger non-
causal fory,, hence
X1 xalx.2.4-

So in one sub-systewy is Granger causal fgg, and in the other sub-system it
is not. This short example illustrates the fundamental fact that the calesidme
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depend on the channel selection

For the sake of completeness we want to mention, that the proposedaaailyais
between two sub-processgsandy is not possible, if there does not exist a set
J o i, j with a causally invertiblev;(2). In this case an analysis w{z) might give
further informations about the connection between these two processes.

Due to the fact that we only consider channel selectlombere the corresponding

X1 generates the whole process, the observed causal relgtie?ns)(jm signify
direct causality relations, see chapter 3. That means that the cé#iesss are di-

rect egfects and not mediated via a third variable (or a path of variables). This is a
huge advantage of the considered causality relations (6.2).

At the end of this section we want to sum up its most important statements. in orde
to analyze the causality between two latent variajpleandy; we choose a chan-

nel selectionl o i, j where the corresponding transfer functier(2) is causally
invertible. In the context of a simple regular AR model fgrwe can analyze the

5
desired relationyi — xjlxi. For different channel selections the resulting causal
relation between the two latent variables mighteti

6.3 PCA-based approach

?
Now we are interested in the practical derivation of the causal relaggiorsy |y
discussed in section 6.1. This practical approach is based on the PCdaeabpp
presented in section 5.2. We commence from equation (5.18), which reads

x(t) = AzZ(t) = Aa (e t),

wherea(2) is the AR polynomial of the static factors
For a channel selectidno i, j ,#1 = q we consider the corresponding sub-system

xi(t) = A z(t) = Aja (2e(), (6.12)

whereA, is the square sub-matrix @f correponding to the selected components
XI-

As before, we have to search for meaningful channel selectiois contrast to

the previous section this problem simplifies significantly here. In this apbneac
only consider channel selectiohsvhereA, is regular.

This criterion is (in this PCA approach) equivalent to the channel selestgiric-

tion to causally invertiblev, (z) from section 6.2. IfA, is regular,Aja1(2) = w;(2)

is causally invertible, and vice versa. As a side note we mention that obviously
x1(t) = xv(t) holds in this approach, in other worgsgenerates the whole process

XV-
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For the remainder of this section we call channel selecticadmissibleif A, is
regular.

By rewriting (6.12) as an AR representation we obtain

Aa@AT (M) = Aet) (6.13)
A(2) £(t)

a2 = &,

where detd|) # 0. Note that we premultiply with\; in order that the leading
codficient of the left-hand side polynomial becomes the iderdif@) = I.

The Granger causal relations for the AR system in representation (&a3asily
be checked by criterion (3.12), which reads

Xi P Xl = 8i(d=01ijel;i#]

in this context. So in this PCA-based approach it is easy to derive thedleaisal
relations.

We want to emphasize, that the PCA-based approach is a special ¢hsegeh-
eral case discussed in section 6.2. It also holds in this case, that distaroted
selectiond andi (in general) yield dierent causal relations betwegnandyj,
which can be seen in the following example.

Consider the following system

,__..f\\_.ﬁ a@™!
—_——
A1 écl)OlOaZ &
X2l = 0 o 101 Offe2|®=
A3 0 0 1)les
4 111
1 0 -az .
01 O !
= loo 1 [SZJ (t) (6.14)
1 1 1-az)\%3

with Cov(g) = I3. The sub-procesg2 3 has the following AR representation
1 0 -az\(x1

0 1 O ||x

3

0O 0 1
{1—@2 -z az

€1
) = [82] ), (6.15)

€3

X1 £1
xz | () =[&2| ), (6.16)
4 £3

and for sub-procesg.2.4 we have

0 1 0
-z -—-az l+az
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(@) @

Figure 6.2: Associated path diagrams for the sub-procegses; andy 124 of
system (6.14). Dferent causality relations betwegn and y» depending on the
considered channels: (& - xily(123 holds in sub-system (6.15) (hp —
x1ly(1.2.4) holds in sub-system (6.16)

with

10 1
COV(é):[O 1 1]. (6.17)
11 3

According to criterion (3.12), in sub-system (6.1%),is Granger non-causal for
x1 due toag2(2) = 0. In sub-system (6.1&h2(2) # 0, thusy» is Granger causal for
x1- Compare figure 6.2 for a graphical representation of these two sibrsy.

To conclude this section we want to mention one advantage of this PCA-bpsed
proach, it is computationallyficient. After the PCA computation only one AR
systema(z) for the static factorg has to be fitted. Linear transformations accord-
ing to (6.13) are sfiicient for determining the AR systems for all possible channel
selections.

For the remainder of this chapter we are interested in a practical cawggsian
of high-dimensional co-moving systems. Therefore, the following sectidhall
be based on the practical PCA approach discussed in this section rathehgh
theoretical approach discussed before.

6.4 Methodology

As we have seen in the previous section, a Granger causal investigativedn
channels andj depends on the chosen channellséifferent channel selections

| andi (in general) lead to dlierent results. However, we are interested in a single
overall statement, whether channé@ifluences channglor not.

For this purpose we propose an intuitive methodology, which is based ddethe

the PCA-based approach of section 6.3.

Our methodology consists of three steps. First, we use PCA to separatestre o
vations into the latent variables (explaining the co-movement) and the nogse, se
section 5.2.
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Second, for fixed and j we analyze the conditional Granger causality relation

Xi —?>Xij|, given a fixed channel selectidr i, |.

Third, we perform this analysis for all admissible channel selectionsi, j and
derive a heuristic statement for the influence frgnto yj, condensing the infor-
mation of all sub-systems.

In detail we proceed as follows:

Initially we perform a PCA on the observatiomsin order to obtain the factor
loading matrixA and the static factora The dimension of the static factogds
determined via a Scree plot, see Cattell (1966).

Now leti, j, | be fixed. The straightforward application of the PCA approach from
section 6.3 yields two problems:

While in theory we can easily distinguish regular and singular matrigés equa-
tion (6.12) by considering the determinant, the estimatomill typically yield
det(A,) # 0. The causality relations drawn from systems with very small values
of | det(A,)| are not meaningful, which is due to the fact thé)in (6.12) cannot

be estimated reliably. The terrdet(A,)| is a measure for the similarity of the se-
lected channels. Therefore, we only consider channel seledtiwits | det(A;)|
exceeding a threshotd

A similar challenge arises in the estimatiorfaqz(z) (which has a finite order now).

In theoriji(m) =0Vm signifigs thaty; is Granger non-causal far;. However,

in estimation we typically havéji (m) # 0, so we have to statistically test whether

the polynomial coﬁcientsA,—i (m) (for all lagsm) are significantly jointly diferent
from zero. For this purpose we use Brtest (Hp : A,-i (m) = 0¥ m), which is
implemented in the5CCA toolbox in Seth (2010) the toolbox and the test are
described. We consider the p-value of the test as a measure for Graugality:
Rejection ofHy (p < 0.03) signifies Granger causality, acceptance means non-
causality. The threshold valy®g = 0.03 was chosen empirically.

In order to sum up, for each channel selectidifor fixedi, j) we obtain two val-
ues: | det(A,)| as a similarity measure of the channeld iand the p-value as an
indicator for the causality frong; to yj.

As a global influence statement frop to y; is our goal, we want to condense
the diferent conditional causality statements based on distinct channel selections
| into a single one. For this purpose we propose an intuitive rule: If all statisme
for distinct channel selections match, we conclude a global influencensate

In other words: ify; — xjlyi for all I with |det(A;)| > 7, we say thay; influences

xj- On the other hand, ifi - xjlx for all I with |det(\))| > 7, we say thay;
does not influencg;. In case of non-conclusive Granger causality statements we
do not derive any global influence statement.

Finally, as the causality structures of the observations and the latentlearaie
equal by assumption, compare section 6.1, wexsayfluences xif x; influences

xj- The analog reasoning holds in case of non-influence.
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Figure 6.3: Visualization of the proposed method. Analysis for all causaliay r
tionsyi — xjlyi for distinct channel selectioriso i, j. In each plot a point shows
the p-value (as a measure of causality) adet(A,)| (as a measure of channel sim-
ilarity) for the respective channel selectibnOnly points with|det(A,)| > T are
considered in the analysis (numerical reasons). (a) All relevant gmantsan asso-
ciatedp-value< 0.03, i.e. indicate causality (for each respectiyeWe conclude
that x; influences x (b) All relevant points have an associatgdalue> 0.03,

i.e. indicate non-causality (for each respectiye We conclude thak; does not
influence x. (c) For diterentl, causality as well as non-causality statements are
indicated. We do not conclude any influence statement.

For a better understanding we want to visualize the described methoddiogy:

i, j fixed we plot a point for each distinct channel selectian i, j into the plane
spaned by det(A,)| on the x-axis and the p-value on the y-axis. This procedure
yields graphs such as shown in figure 6.3. In such a plot we only cornsidets

with | det(A,)] > , in other words points which are located to the right of the dashed
vertical threshold line. Points to the left of this determinant threshold line are
ignored, because the corresponding p-values are not meaningfdb cumerical
instabilities.

A point situated below the dotted line represents a p-valu®@03 and therefore
indicates Granger causality. Consequently a point lying above the dottdddine
cates Granger non-causality.

Figure 6.3 shows three plots constructed in the aforementioned way, it itesstra
the three cases we distinguish:

In plot (a) all relevant points are situated below the dotted line, i.e. each poin
individually indicates causality/fy of non-causality rejected due f < 0.03),
thus we have global influence.

We observe the opposite situation in plot (b), where all relevant pointatzree
the dotted line, i.e. each point individually indicates non-causality, so waksgfe
global non-influence.

Plot (c) illustrates a situation where distinct channel selections lead tolitausa
as well as non-causality statements. In this case, we refrain from camglad
global influence.
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6.5 Results

In this section we apply our proposed method to data. First, we assessstbiad-
ology with a signal model. Second, we apply the proposed method to the ECoG
data. In a subsequent step we use the results to draw conclusionsniogdke
seizure onset zone.

6.5.1 Simulated data

In order to assess the proposed methodology we apply it to simulated data whe
we know the imposed dependence structure. In the first part of thiectidrs

we explain the signal model and in the second part we present the refsthits o
application of our methodology to the simulated data.

Consider the following signal model

X(t) = AZ(t) + n(t) (6.18)
a(2z(t) = &(t).

First we simulate the 3-dimensional static factoias an AR(2) process with the
following AR polynomial

1-02z O 0
a(z)=|-032 1-05z O
~0.77 0 1-05z

andCoVe) = |3.° For the construction of we choose the factor loading matrix

1 0 0
010
0 01
1 00
A={0 1 O
0 01
1 00
010
0 0 1

and the variance of the noise

Covn) = diag(Q15,0.150.61 1.37,
0.61,0.15,1.37,1.37,0.61).

The Granger causal structure of the simulated 3-dimensional static fénitozs,
z3-)" is depicted in figure 6.4(a), the resulting influence structure of the 9-diorens
al systemxa, ..., Xg)’ is shown in figure 6.4(b). Due to the simple structure of the
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Figure 6.4: lllustration of the imposed dependence structure of signal rfed8).
(a) Associated path diagram for the static factoré) Graph depicting the influ-
ence structure of the simulated observations (arrows indicate influence).

I 2 3 4 s 6 71 8 9

number of factors
Figure 6.5: Scree plot of the principal component analysis of the simulatad da
from signal model (6.18). Three factors explain the majority of the vaeianc

loadings matrixA we get a simple influence structure in figure 6.4(b).

We now apply our proposed methology to the simulated data from the signal mode
(6.18).

For the initial calculation of the PCA, we determine the number of static factors
g by considering the Scree plot, see figure 6.5. This figure shows thermage

of the explained variance per factor. We observe that three factptaiexhe
majority of the variance, thus we choage- 3. Furthermore, by application of the
BIC criterion we obtain an AR-model order pf= 2 (matching the imposed model
order).

Proceeding according to our methodology, for fixed sousre targef we obtain
causality relations for all channel selectidrs i, j. They are represented as points

5Simulation is done using the function arsim of the MaBgdackage arfit, described in Schneider
and Neumaier (2001).
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Figure 6.6: Results of the influence analysis of signal model (6.18) in mdbiXgm. Columns indicate the source channgland
the rows the target channelg, the (j, i)-sub-plot quantifies the influence frorto x;. Interpretation of each sub-plot as in figure 6.3
retrieves the imposed influence structure illustrated in figure 6.7.
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Figure 6.7: Inferred influence structure of the simulated data of signakimod
(6.18). The influence structure matches the imposed influence strucpictede
in figure 6.4(b).

in a graph as described in section 6.4. Hereby points with p-valu24 are dis-
played with p-value= 0.4, because this does not change the results of the analysis
and facilitates the visualizaton.

In figure 6.6 all these plots are arranged in:x@a 9 matrix plot, where the columns
indicate the source channedsand the rows the target channg|s Thus, the |, i)-
sub-plot quantifies the influence fraxnto x;. Diagonal elements are not displayed.

Let us consider the interpretation of three selected sub-plots in figure @efai:
In sub-plot (3,1) all points to the right of the determinant threshold line aeéal
below the dotted line, and therefore represent p-values smaller thani @.08hé
null hypothesis of non-causality is rejected). This means that for all adiess
channel selectionls we havey; — yalyi. Thus we say; influencesxs.

In sub-plot (3,2) all points to the right of the determinant threshold line aeaéal
above the dotted line. Thus we sgydoes not influences.

In sub-plot (4,1) all points are located to the left of the determinant thtedine,
therefore we do not draw any conclusions. The reason for this meHavhatx;
andx4 are both generated tzy- and therefore are highly correlated.

Summing up the information of figure 6.6 we retrieve the influence structure-as d
picted in figure 6.7. This is exactly the imposed influence structure of systdd)(

as shown in figure 6.4(b). Channel influences channels;, x3, Xs, Xg, X, Xg, SO

do channelx, andx;.

For the simulated data the proposed methodology performed very well.

6.5.2 ECo0G data

In order to demonstrate the practicability of our proposed methodology plg ap
it to the ECoG data described in section 2.7. In this thesis we are interested in the
seizure onset zone of an epileptic seizure. Therefore, we analyzepeadence
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Figure 6.8: Ictal ECoG data. Four second segment from the initial pHake first seizure.
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Figure 6.9: Results of the influence analysis of the ictal ECoG data. Sixtelec
channels (out of the whole 24 channel set) are dsiplayed. Columns tediea
source channels and the rows the target channels. Interpretationlo$ea-plot
as in figure 6.3 yields (a part of) the influence structure depicted in figda

structure of the data at the beginning of the seizure. In particular wegsar 4
second time window at the beginning of the first recorded seizure of tienpa
The starting time is indicated by the clinicians, and the data are shown in figure
6.8.

As we will see, the influence structure of the data at the beginning of therseiz
will give indications about the seizure onset zone.

In the first step we calculate the PCA of the data. The number of static fastors
determined by a Scree plot as before in subsection 6.5.1. In order to@acme
explained variance greater than 80 % we chopse 5. Furthermore, in accor-
dance with the survey paper Tseng et al. (1995), we set the AR-muatiglfor the
Granger causal analysis of the ECoG datp te 8.

In the second step we fix the source chanraid the target channg¢land com-
pute the causal relations for all channel selectiong, j. Following our proposed
methodology we obtain a 2424 matrix plot. Figure 6.9 shows a® sub-matrix,

corresponding to the channels A9, A12, B8, B5, C5, C2. The wholeZ¥matrix

plot would have been to large to properly display it here. For explangtmgoses
the 6x 6 sub-plot will siffice.

We briefly want to discuss 4 sub-plots of figure 6.9 in detail to highlight impbrta
characteristics:
Sub-plot (2,3) describes the causality relations from B8 to A12. All pointkdo
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Figure 6.10: Results of the influence analysis of the ictal ECoG data. Iliostiaf
the influence structure of the ECoG data, displayed in figure 6.8. MRIaictue
patient’s brain together with the subdural electrode strip positions. Ariricate
influence between the respective electrodes. Electrodes with the higimeiser of
departing arrows are considered to represent the seizure onsdB&rA12, A1l
A10), compare the out-degree histogram in figure 6.11.

right of the determinant threshold are located below the dotted line, thusywe sa
channel B8 influences channel A12.

In sub-plot (5,3) all points located to the right of the determinant thresh@d a
above the dotted line. Therefore B8 does not influence C5.

An interesting case occurs in sub-plot (3,2). We have admissible points abbad
below the dotted line. In this case we refrain from any influence statement.

Finally in sub-plot (4,2) all points are located to the left of the determinansiire
old. We do not draw any conclusion in this case, as there are no admidsaleat
selections.

By interpreting each sub-plot in the 2824 matrix in this way, we obtain all influ-
ence relations. In particular we are interested in the (source, target)ehaairs,
where the source does influence the target channel. Figure 6.10 gfedasrived
influence structure of the ECoG data. For a better understanding thesgmwhich
indicate influence) are drawn into a MRI scan of the patient’s brain togetitier
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Figure 6.11: Results of the influence analysis of the ictal ECoG data. Histogir
the out-degree of the electrodes shown in figure 6.10. Electrodes witlgthesh
number of departing arrows are considered to represent the seizgezone (B8,
Al2, Al1, Al10)

the electrode positions.

In this thesis we are interested in the seizure onset zone, in other wordsathe
area that triggers the epileptic seizure. Analyzing figure 6.10 we see &hethém-
nels B8, A12, A1l and A10 have the highest number of outgoing arrdtis.can
also be seen in figure 6.11, which shows the out-degree per channglobder-
vation suggests that the seizure onset zone comprises these fourdgecwhich

is in good accordance with the visual analysis of the clinicians. Of couisésth
a fundamental statement and in section 6.6 we will discuss the neurophysablog
aspects of this result.

6.6 Discussion

In this chapter we proposed a procedure for deriving influence refatiohigh-
dimensional co-moving time series using PCA and Granger causality. In this se
tion we discuss various aspects of this approach. We start with a distusfsio
the proposed methodology followed by a discussion of its application to simulated
data and ECoG recordings.

6.6.1 Theory and methodology

A key assumption of this method is that the latent variables reflect the causality
structure of the observations. In other words, we can infer the depeie$ be-
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tween the channels based on the dependencies from the latent vatiadlesise

is assumed not to contain any causal information. Altough this is a strongnpssu
tion, it seems reasonable to us: This assumption is very similar to the one that the
important causal information is contained in the high amplitude wave forms, not
in the small background noise. We believe that in particular in neurophgsiallo
applications this is meaningful, as we expect these high-amplitude oscillations to
carry substantial information about the causality structure of the gergcatitical
mechanisms.

To assess this assumption we compared the relations based on the obs®rvatio
with the causal relations based on the latent variables. Altough small change
the influence structure occured, the seizure onset zone did notechiimig shows

that this assumption is justified in this context.

In our approach we investigate all dependencies ig-g@iimensional sub-systems

of the latent variables. By the application of the PCA we perform this analysis in
computationally ficient way, as we only have to compute one PCA and estimate
one single AR-model. Of course it would also be possible to refrain fromraghef
factor models. In this case one would fit an AR model for egdimensional sub-
process of the observations, which would result in a higher computatfingt

In contrast, the proposed methodology yields a simple mathematical method for
the causal analysis of the whole multivariate system. Another advantage of ou
method lies in the simple measure for the channel similarity of a channel selection
|, |det(,)|, which allows for a straightforward comparison foffdrent channel
selections.

As mentioned in subsection 6.4, our methodology consists of three steps: PCA
Granger causality analysis for fixed channel selectiand derivation of an influ-
ence statement. This modular design allows for an easy adaptation of egleh sin
step, i.e. alternative methods could be used in each step independentlyoti-the
ers.

First, the use of sparse PCA would enforce additional zeros in the loauhtigx

A. Thurstone (1947) suggested five criteria for a simple structure arepdnont

et al. (2007) gave a direct formulation for sparse PCA.

Furthermore, we proposed the use of a static PCA in this chapter. Theajgplic

of a dynamic PCA would also be conceivable, see Brillinger (1981). d&albe

in connection with the physiological frequency bands of the brain this woeld
very interesting idea.

In the second step we use two central indicators in the Granger caadgdiarior

a fixed channel selectiomdet(f\)|| as a measure of channel similarity and e
value of anF-test as an indicator for Granger causality. We employ the latter due
to its well-established theory. Note that in neuroscience literature varioasdith
rected dependence measures are used. Prominent ones include grentieasure

of conditional dependence introduced by Geweke (1984), the pairtiaiteld co-
herence (PDC) introduced by Baccala and Sameshima (2001), its nigmaoaid
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ifications and the directed transfer function (DTF) proposed by KamimekBdi-
nowska (1991). Compare section 3.5 and Flamm et al. (2012b) for axiewe
and a discussion of these measures with regard to Granger causality.

Other measures for the channel similarity would also be conceivable, e.geth
terminant of the covariance matrix of the errbdet(i(é))l in (6.13). However, we
note tha det(f\|)| revealed good numerical properties in the simulations.

Third, in this chapter we propose an intuitive rule for the derivation of erfte
statements: If; — xjly, for all admissiblel, we say thatx; influencesx;. One
could imagine other rules depending on specific applications. For examigle on
the channel selection with the largédet(A),| could be taken into account for the
influence statement. Another possible rule for influence statements mighééd ba
on the comparison of the number of points above and below the dotted line, e.g.
the majority or a certain percentage.

We focused our attention on the PCA-based approach. It would alsodsibfe

to base the proposed methodology on the causal relations directly dedwethe
transfer functioow(z) as described in section 6.2.

A naturally arising question is whether and to which extent our definition af-infl
ence is meaningful. In our opinion it is an intuitive and workable proceéture
causality analysis in high-dimensional co-moving systems: Intuitively oneatsp
a certain kind of dependence betwegandx; if y; is causal foy for all (admis-
sible) channel selections. In other words the most important passawé causal
for the most important parts of.

A potential weakness of our definition of influence is the fact that in praictip-
plications one is often confronted with the case where no influence statearent
be inferred. Compare sub-plot (3,2) in figure 6.9, where causality 4saweon-
causality relations are symbolized. In such cases we recommend a mase jprec
vestigation which particular channel selections yield causality relations arothw
do not.

If, in applications, the conditioning on channels of a specific (brain) regields
non-causality between channéland j, but the conditioning on all other regions
indicates causality, further investigation could be performend to explain@imes.
might conjecture that there is a separating region betweaed j.

Furthermore, there could be some clustering in the inference plots. Thiwifgtat
also yield additional information over the system.

Due to the existence of the aforementioned undecidable cases we avoidihe te
causalityand refer to the derived dependence statememflagnce

We want to conclude this first part of the discussion with two remarks.

First, the problem of high-dimensional co-moving data often occurs intipghc
applications. We propose a methodology connecting Granger cau$adiaraand
factor models.

One of the most prominent ideas to cope with co-movement is to analyze only a
manually selected sub-system (where the number of observations ecuaisih
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ber of driving components). Another method would be the causal analysis
called extracted atoms, which represent condensed information of tieers\see
Eichler (2005).

The selection of such low-dimensional sub-systems can also be perfamnaed
automatic way, e.g. the channel selection method proposed in Graef €1 2b2
based on the the An-algorithm described in An and Gu (1989).

Another possibility is to use penalized regression for an estimation of the AR-
model including all observations, e.g. LASSO as in Tibshirani (1996is Miethod
enforces additional zeros in the AR polynomial and avoids numericalgrah
Only recently, Chiang et al. (2009) successfully applied this approadeucal
data, calculated the PDC and visualized the indicated brain connectivity.

The idea behind most of these approaches is to compress the informatian of th
data. But in a subsequent causal analysis one has to be careful rondode
causal statements for the observations from the causal statements ofnthe co
pressed information. In our methodology we explained each step andigunieg
behind it thoroughly.

Second, for a Granger causal analysis the AR representation ot@sgris some-
how a natural starting point, because the causalities can be easily chvézked
terion (3.12). However, in the factor model case a representation in titedb
(1.6) is often not meaningful (high number of observations, low humbdriaihg
components). For the latent variables an MA representation of the faGié&b
more natural. Our methodology suggests to rewrite parts of this MA refeesen
tion in order to use the classic AR representation theory. In simple casgal cau
conclusions can be drawn from MA representations, see Sims (1972).

We based our methodology on regular AR models for sub-processegevdn it

is conceivable to use a singular AR model for the whole process. In théesarze
has to check the uniquenessa@f) in order that the use of Granger causality makes
sense.

In this thesis we use the concept of Granger causality as the basic tohcapsal-

ity. This is reasonable because Granger causality is intuitive, workablsvalh
understood. However, for the causal analysis of high-dimensioralaong sys-
tems other definitions of causality might be conceivable.

6.6.2 Results

In this subsection we discuss the results obtained by our method. Espeaally w
are interested in the clinical interpretation of our results.

Our methodology correctly identifies the dependence structure of thd sigaiz|
(6.18). During this analysis we encountered the challenges discusagusecsion
6.6.1.

The application of our methodology to ictal ECoG data shows promising results.
We succesfully localize the seizure onset zone of the analyzed patiedéy-
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Table 6.1: Onset zone and initial propagation of the analyzed seizuvedaug to
the visual inspection by clinicians.

Investigator Initial Electrodes Close follow-up

Expert 1 B8 Al10, A11, A12
Expert 2 All, A12, B8 A9, A10, B7
Expert 3 A10, A11, A12 B8

fying the zone with the highest number of outgoing arrows. In this manner we
define the area comprising the electrodes B8, A12, A11 and A10 as theeseiz
onset zone, compare the MRI scan in figure 6.10 and the out-degregraistin
figure 6.11.

This result correlates very well with the visual inspection of the raw ECd& lola

the clinicians. In chapter 7 figure 7.4 shows the initial time of the first seithise,
figure includes the beginning of the epileptic activity per channel marketrieg
clinical experts. Table 6.1 summarizes the findings of the three clinical tsxper
who independently marked the electrodes initially involved in the epilpetic activity,
which characterize the seizure onset zone.

For each of the three investigations the electrodes identified by our metggdolo
are comprised in the set of initial and follow-up electrodes. ElectrodeAB3and
All are specified as initial in two out of three cases and as follow-up in tite th
case. Inversively, electrode Al0 is indicated as initial in one case datll@s-up

in two cases.

In our opinion the reason for this good correlation between our resudtsran
clinical findings is the following:

In case of focal epilepsy, the pathological synchronous activityréerizing the
epilepetic seizure) starts at a circumscribed brain area. From this seisetzone
ictal activity spreads to its immediate vicinity recruiting more and more parts of the
neural network. This leads to distinct co-movement of the observatiamsc@uld
imagine afocuslocated in the seizure onset zone driving the surrounding channels
by imposing its oscillatory frequency in the course of the recruiting procHsis
could be interpreted as a kind of information transfer or causal interaclibe
electrodes in the focus causally influence the behavior of the surraymdic-
trodes in the initial phase of the seizure.

Therefore, we expect to obtain indications for the seizure onset z0apdlying a
Granger causal analysis to factor models during the initial seconds oéithee.

We think that the aformentioned results strengthen this hypothesis.

In the course of this recruiting process we obviously expect feedinackanisms
between the channels (besides unidirectional dependence). Thie cdosérved
in figure 6.10, consider e.g. channels A9 A10, A10 & Al2 and B6« Al2.
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However, in the seizure onset zone the departing arrows dominate, invaihds
the channels in the conjectured seizure onset zone have a high oaedddris
situation is reflected in the out-degree histogram in figure 6.11. Channelsheith
highest out-degrees coincide with the seizure onset zone (as indigatied tlin-
ical experts), and with increasing distance to the seizure onset zonesthetive
out-degree decreases. Channel A8 with an out-degree of zeroXsgtien, as we
cannot infer any influence statement for this source channel (onhadonissible
channel selections for all target channels).

6.7 Conclusion

In this chapter we proposed a causal analysis of high-dimensional emgntata,
connecting the topics of Granger causality and factor models. The appticatio
of Granger causality to factor models is not straightforward, and weogeapa
natural extension termed influence. Besides the theoretical considsraoalso
applied our methodology to ECoG data.

The application of our proposed method shows good first results in thetidetef

the seizure onset zone, because the results correlate well with theinspadtion

of the clinicians.

Concluding we think that our proposed methodology might have the potential to
assist clinicians in the presurgical evaluation by objectivating their visQalGc
examination.



Chapter 7

Band power measure

In this chapter we present an alternative method for the detection of theeseiz
onset zone of epileptic seizures. In chapter 6 we presented a ratbeetibal-
based approach with an application to the ECoG data, whereas in this ctiapter
introduced methodology will be more applied.

The seizure onset zone will be determined by the channels showing tiréyils

mic J-activity (4-9Hz). The application of this method yields results which are in
good accordance with the visual characteristics of the ECoG data assnibik a
clinical findings based on the visual analysis of the clinicians.

After we motivate the method in section 7.1, we explain its two steps in section
7.2. Then we apply the procedure to the ECoG data in section 7.3 and diseuss
results in section 7.4.

In contrast to the preceding chapters this methodology is only meant flicatpm
to ECoG data, there will be no theoretical discussions. Parts of this chepter
been published in Graef et al. (2012a).

7.1 Motivation

As we mentioned in section 2.4 the ECoG analysis in order to locate the seizure
onset zone is done visually by the clinicians. Our methodology is partly ased
the ideas of this visual analysis, therefore we will explain its basic concepts

In the first step the clinicians temporally locate the seizure and mark its beginning
and ending. Then they backtrace the beginning of the epileptic activity dm ea
channel. For a patient fiering temporal lobe epilepsy (TLE) this normally means
to backtrace the¥-activity to its temporal origin on each channel. Following this
procedure the clinicians get the temporal onset of the epileptic activityaion e
observed channel. This information shows the propagation of the epileptias.

The seizure onset zone is considered as the area containing the lshaitin¢he
earliest epileptic activity in this context.

87
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However, the visual analysis is not straightforward due to practicabrea The
finding and the identification of epileptic activity+activity for TLE patients) on
each channel is a fiicult and time-consuming task. Especially marking the tem-
poral beginning of the epileptic activity is complicated, because there ageyw

of different characteristics for the epileptic activity. Furthermore, the startiimg po
is often not clearly identifiable because the normal brain activity interferes

the first epileptic signs and therefore impairs the analysis. Due to thesmsghg
visual analysis has to be carried out by experienced persons.

In the case of TLE the visual analysis simplifies slightly because the main epilep-
tic activity ared-waves, compare section 2.6 for more information on on temporal
lobe epilepsy. The temporal onset®bactivity is easier to identify than in the gen-
eral case.

As we already mentioned our aim is to identify the seizure onset zone for TLE
patients. Therefore, we propose a method that is based on the ideasviHuhle
analysis. It is physiologically motivated and focuses on the propagatidheof
J-waves.

Our method consists of two consecutive steps:

1. Inthe first step we segment the ECoG data based on relative frgocmmc
tributions. The ECoG data and especially their spectral frequency centrib
tions show instationary behavior. We propose a statistics, termed band powe
measure (BPM), which we employ for the segmentation. In subsection 7.2.1
we explain the segmentation in detail.

2. Based on this segmentation we classify each segment with respect to its
epileptic character. Segments showing domingatctivity are said to be
epileptic.

The temporal delay of the onset of epileptic activity on tHéedent channels

is an indicator for the seizure propagation. Therefore, the channmisrgi

the first epileptic activity are said to belong to the seizure onset zone. In
subsection 7.2.2 we detail the segment classification and the analysis of the
onset zone.

So in the first step we segment the data, whereas in the second step \ifg ttlass
segments and infer the seizure onset zone. The first step is called satjomeaind
the second step is called onset zone analysis in the following.

For both steps or rather the concepts behind them, the literafiers a wide vari-

ety of related ideas:

In order to cope with the instationarities of EEG and ECoG signals, vari@is se
mentation methods have been developed in the last decades: The prospieent
tral error measure (SEMyvas introduced in Bodenstein and Praetorius (1977), a
non-linear energy operator was used in Wu and Gotman (1998) andesagien
ized Kolmogorov-Smirnov-statistics in Brodsky et al. (1999). Other setgtien
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approaches involve the use of information criteria in Inouye et al. (168%)e
Itakura distance in Kong et al. (1997). The various segmentation metheds a
normally rooted on a statistics based on ECoG properties. Large chantfes in
statistics indicate the beginning of a new segment.

The classification of the epileptic character is closely related to seizuretidatec
analysis. This term refers to the temporal detection of epileptic seizuresgn lon
term EEG recordings by evaluating the epileptic character of the combiraed ch
nel set. For our purposes we evaluate each segment individually, therfev the
seizure onset zone. We refer to van Putten et al. (2005) and Khanhi§2§G9) for

an overview of common detection approaches. Other methods include ean-lin
approaches like entropies in Acharya et al. (2011) or the recurcprengification
analysis (RQA) in Thomasson et al. (2001).

7.2 Methodology

In our analysis we consider multivariate signa($),t = 1,...,T (t denotes the
time index) consisting oK channels«(t),k = 1,..., K. We refrain from making
rigorous assumptions on the data like in the previous chapters, we onimasse
signals to be zero-mean and stationary inficently short data window.

The multivariate signals we are going to analyze with our methodology arethe da
presented in section 2.7. For a recapitulation the data consist of threeeseifu

a 43 year old male patient obtained during a long term ECoG monitoring. The
multivariate signal consists &€ = 24 channels and has a sampling frequency of
128Hz.

As aforementioned our methodology consists of two consecutive stepseghe
mentation of the ECoG data, see subsection 7.2.1, and the classificationedthe s
ments’ epileptic character followed by the seizure onset analysis, seectian
7.2.2.

As the segmentation and classification are applied channel-wise, we wilirexpla
them for an arbitrary single channegl(t) in the following.

7.2.1 Segmentation

A simple idea for the segmentation of a chanxét) is to derive a statistics based
on the properties of the channel and segment according to it. We follow #as id
and construct an univariate statistics based on the spectral propérities(ani-
variate) channex(t) and from its temporal evolution we derive the segments.
Now we detail the construction of the statistics, in the following sections weptes
the results of the application and discuss its advantages and shortcomings.

The ECoG data are only stationary over short time periods and in ordealyzan
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the temporal evolution of a statistics we have to define how to deal with the tempo-
ral changes. We simply use a sliding window approach, where a windtemgth

Twin S€CONds is moved over the dataTiRs second-steps. Within these windows
we assume the data to be stationary.

The considered statistics is based on the spectral properties of theethbinere-
fore, we calculate the spectral density of the champébr each window, {(1))(7)

say, wherer is the new time index associated with the new temporal resolution
1/Ties. The spectral density of a window is associated with the window center on
the time axis.

Due to neurophysiological considerations we consider the followinguéecy
bands:

e thedow-band from 1.0 - 1.5 Hz,

e thedyp-band from 2.0 - 3-5 Hz,

thed-band from 4.0 - 8.5 Hz,

thea-band from 9.0 - 13.5 Hz and

theg-band from 14.0 - 30.0 Hz.

These are the most important frequency bands for EEG signals antbtiediey
are also important for ECoG analysis. The split of leand was due to technical
reasons.

For each window, i.e. each time-stem the new temporal resolution, we calculate
the power of these bands, e.g. the power ofatH®and is calculated by

135
Fo(r) = fg RUOCL (7.1)

as well as the total power
64.0
F(r) = fl . (f())(r)dA.

In order to analyze the temporal evolution of a statistics we can either look at th
absolute statistics itself or its changes relative to a reference point. Bothasetho
have their advantages, but for our considerations we compare the statistioun-
ning point to the statistics at a reference point.

Our segmentation method is based on the temporal changes of the relative fre
quency contributions of the aforementioned physiological bands. Wesehan
initial reference point*, and for increasing time-steps> t* we calculate our
segmentation statistics termbdnd power measure (BPMp
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(7.0)

B(s) = (Es.ow(r) ) Es.oww))z . (Pﬂ(r) _ Fﬁ(r*))z.
F(r) F(r*) F(r)  F(r)

If the band power measure exceeds a given thredhpice. B(r) > th, we start a

new segment by updating the reference peint v + 1 and continue the calcula-

tion of B(r) for increasingr. The set of reference points obtained by this algorithm

are the boundary points of our segments, i.e. each resulting segment is ligited b

two subsequent reference points.

We will discuss the properties of the BPM in the discussion section. Righiveow
emphasize only one important point. As we already discussed in sectiontal6, ic
ECoG data of temporal lobe epilepsy patients are often characterizedtincidis
rhythmicd-activity according to Foldvary et al. (2001). As our algorithm tends to
yield segments with one predominant frequency band by constructiorgnegder

it to be appropriate for the segmentation of the ictal ECoG signals of TLE patien

7.2.2 Onset zone analysis

In the second step we decide whether the data in a segment show epilepiig acti
or not. For this purpose we propose a simple and intuitive rule which fecuse
neurophysiological aspects of TLE patients: A segment is classifiedlaptepif
¥-activity is dominant within this segment. We say that #hactivity is dominant
within a segment, i.e. we classify a segment as epileptic, if one of the following
two requirements is fulfilled:

e they-contribution is the largest among the frequency contributions in more
than half of the time-steps of the segment or

o the maximal spectral peak occurs in théand more often than in each other
single spectral band.

This procedure is based on the good localizing valué-attivity, see Foldvary
et al. (2001). Following this line of thought the start of the epileptic activityaon
single channel is indicated by the beginning of the first epileptic segment.

In order to draw conclusions on the initial seizure propagation we applgee
mentation and subsequent classification channel-wise to all channelserpe-
ral delay of the start of the epileptit-activity over the diferent channels is used
for describing seizure propagation. The first channels showing épilé@ctivity
indicate the seizure onset zone.

7.3 Results

As we are interested in the initial spread of the rhythivactivity, we investigate
the first 20 seconds of the three seizures presented in section 2.7. tNaesia-
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vestigation one second prior to paroxysmal fast activity (30Hz) or figipency
oscillations (75Hz), which are in a certain sense the first signs of theresiZlihe
synchronization phase and the rhythnii@activity start approximately 10 seconds
after these first signs.

We apply our methodology to the full 24-channel sgit),k = 1,..., 24, of all
three seizures. Instead of presenting the segmentation and classifieesiots r
for all seizures, we want to focus on the results of seizure 1 and dithem
thoroughly. This discussion will deepen the understanding of the methmpdolo

7.3.1 Segmentation

For the segmentation we use the following set of paramelgfig:= 1.5, Tres =

1/16s. Power spectral densities are estimated using the non-parametric Welch
method. Furthermore, we employ an empirically determined threghotd0.07

and an initial reference point at 0.75s.

In figure 7.1 we display the segmentation of an exemplary channel in detail. Fo
presentation purposes we choose the channel A11 from seizure dhanisel will
also occur in the other figures.

On top, figure 7.1(a), the ECoG data are shown. For a better undergjaridhe

band power measure we display the temporal evolution of the relativeeinegu
contributions in the middle, figure 7.1(b). The corresponding BPM statistics is
shown at the bottom, figure 7.1(c). A new segment starts when the statistics ex
ceeds the threshold. The resulting segment boundaries are marked ireall th
graphs by vertical lines.

In this example a significant change of the BPM statistics can be observadean ¢
of frequency shifts from one physiological band into another, e.g6:42150 when
a rise of thex-contribution disrupts thé-contribution.

In figure 7.2 we show the segmentation of all channels of seizure 1 foe#uer

to get a grasp how the segmentation algorithm behaves. Teeatit phases dis-
cussed in section 2.7 can clearly be found and we note that the length &ghe s
ments is largest in the phase of distifeactivity. Furthermore, we see that (spa-
tially) adjacent channels show a similar behavior.

As it will turn out in the next section, the most interesting channels with réspec
to the seizure propagation are A9, A10, All, Al12, B8, B7 and B6. afbe, we
show an enlarged graph of these 7 channels in figure 7.3 97dwtivity seems to
start at around 16:12:45 at all of these channels.



™
(e}

7.3. RESULTS

'sydelb aaiy) |e ul saul| [eaNIaA AQ paredipul asewsmepawbas f(panop) pjoysalyl pasodwl pue ainses| lamod pueg (2)
‘spueq Asuanbalj eaibojoisAyd ayj Jo suonnguuod anifg)derep 9093 (B) T ainzias ‘TTV [duueyd Jo uoneiuawbas 17/ ainbi4

1G¢1:9) GG:¢l:91 €G:¢l-9L LGC¢L:9L 6v:¢1:91 Ly:cl:9L Sv-¢l:9l €v:cl9l Lich:9l 6€:¢L:91 1€C1:9L
I I 1 I I 0

—<0°0

—¥0°0

—190°0

— —180°0

— —10

| | | | | | | | | 210

LSTI91 SCTI91 €CTI91 162191 ov:CI91 LY C191 SYCI91 erTI9l 192191 6¢:CI91 LETI9T
T T - - - 0

eI e L inbeeiniant® [T esaseneformosaenten s e SRR

—C0

—¥0

—19°0

LSTI:91 Al €5:CI91 162191 6¥-C1:91 Ly-C1:91 SrT19l £v:Clol I¥:C1:91 6¢:CI91 LETIO1
, , , , , , , , , 009-

— — 00%-

—00¢-

< Mg

— —00T
— —100¥%

009




CHAPTER 7. BAND POWER MEASURE

94

U U RS —

A2

A3 ....1._—-_...:...» WAAN A “.A: W 4>h \.
|t S otn - |

Ad I" I

A5k

A6 iz

f
| | RSN YR
A7 - oAU LB

A8 } et eI T , P W _._.,__..“.__”._m—:..._;
| S

All g N

A12 powmoedmJ o o | orefretupbaiinpiia _(_.:_:L;:_ﬁ_::ﬂ :__::_:z:::z:;_: l E :: ::E:
BS E,\%Eié%siiféi{i(:_;::.:___.:_____ ot r Ml
i L o L e s e oy Y BRI SRV M |

N I Lo B g R B e B Nindan i aarte Lt BN TR T S TR
T B B e R o CARVEP _ Y

T e e e i O B R s aaa e v we N IRV EVEN YR VA AV O
B3 e I e e S e Rantts MR _

s m Lo L e T A M e T Arrnsand

cl !I?l—iﬁi&%!.—if_lz/T;_\(l_(SIf{th*}%Tiii rit...t..s...dL:.:i,,.,._.:... AR

C2 _

C3

e et 41 1 1 B A

= | | | | | | |

16:12:37 16:12:39 16:12:41 16:12:43 16:12:45 16:12:47 16:12:49 16:12:51 16:12:53 16:12:55 16:12:57

Figure 7.2: Segmentation of all channels, seizure 1. Segment bounaarieslicated by vertical lines.



95

7.3. RESULTS

"Saul| [eantan Ag paredipul aseiseqypawbas 'T ainzIas ‘sjpuuryd Paldg|as / Jo uoneuawbas (g, ainbi4

LSTI91 SS9l €691 16:C1:91 61-C1:91 Ly-TI91 Sy-C1-91 V-9l I7:C1:91 6€CI91 LETI91
I I I I I I I I I

94

g — A

i s

I WA L Y

._._

|

———




CHAPTER 7. BAND POWER MEASURE

96

T T T T T
A9
K A4
Al0
All
H v
Al2
| v [
B8
legend:
non-epileptic . v
epileptic
B7 v prep g}}igi/%?\f})z%
start of epileptic activity
according to:
WV expert 1 . v
B expert2 ®
ks T I e A A e g Y WV P "o WANPVAN ?{5{2/)
Bo . expert 3
|
| | | | |
16:12:43 16:12:44 16:12:45 16:12:46 16:12:47
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lines. Epileptic segments according to our classification are highlighted.tatimg time of the epileptic activity per channel according
to the visual analysis of the experts are marked.
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Seizure Investigator Initial Electrodes Close follow-up

Algorithm B8 Al10, Al1, A12
1 Expert 1 B8 A10, A11, Al12
Expert 2 All, Al2, B8 A9, A10, BY
Expert 3 Al10, A11, Al12 B8
Algorithm Al0, Al11, A12 B6, B8
5 Expert 1 All, Al12 A9, A10
Expert 2 Al1l, Al12 Al10
Expert 3 All, A12 B8
Algorithm Al10, A11, Al12 B6, C1,C2,C5
3 Expert 1 A9, A10 A8, Al1, A12,
B6, B7, B8, C1,
C4,C5
Expert 2 A9 Al, A2, A3, C2,
C3
Expert 3 A8, A9 Al,C3,C4,C5

Table 7.1: Onset zone of all three seizures. Results based on our methduka
visual inspection by clinicians

7.3.2 Onset zone analysis

Subsequent to the segmentation we classify the segments as epileptic or not ac
cording to the rules discussed in subsection 7.2.2. This allows us to inveskigate
initial propagation of the?-activity and derive the localization of the seizure on-
set zone. The channels showing the fitstaves are considered the seizure onset
zone.

Following up the last subsection we present our findings for seizure Dumefi

7.4. The figure shows a 4-second-zoom of the channels displayedine frg3.

The epileptic segments are drawn with a bold line, non-epileptic segments with a
normal line. The depicted channels show the earliest epileptic activity anlong a
considered channels of seizure 1.

In figure 7.4 channel B8 shows the first occurrence of domitiaanttivity, closely
followed by electrodes A10, A1l and Al12. Therefore, we considesgtiohannels

the seizure onset zone in seizure 1.

Furthermore, we mark the beginning of the epileptic activity according to the vi-
sual analysis of three experts, see the legend in figure 7.4. The coompafihiese
times with the computed start of the epileptic activity serves as an assessment fo
our methodology.

We applied the segmentation and classification to all three seizures and table 7.1
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Figure 7.5: MRI scan with electrode positions. The electrodes of the sainset
zone indicated by the proposed methodology are marked.

summarizes our findings as well as the visual analysis. Our algorithm inslicate
that the seizure onset zone comprises the electrodes B8, A10, Al1l1&ndrAis
coincides well with the visual analysis of the experts. In figure 7.5 we ndate
electrodes of the seizure onset indicated by our proposed methodology.

7.4 Discussion

In this section we discuss the properties of the segmentation and the onset zo
analysis of our methodology.

7.4.1 Segmentation

The design goal of our segmentation method was to achieve long segments dur
ictal periods and short segments in non-ictal periods. The BPM-baggdesita-

tion method has shown to achieve this requirement.

In figure 7.1 we see the characteristics of the BPM statistics: Prior to themnfg/th
J-activity (starting at 16:12:45) we observe quickly interchanging fraqueon-
tributions, see plot (b). This results in a BPM statistics with high variations and
frequent threshold exceedings, see plot (c). Therefore, ouritdgoyields short
segments in this period. On the other hand, during the distinct rhythmic activity,
only small power shifts occur within the physiological frequency bandsisTthe
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frequency contribution of the respective bands show a constanvibehaamely
thed-band on a high level. This results in longer segments.

As can be seen in the segmentation overview in figure 7.2, the segmentsare lon
in ictal periods, i.e. during the phase with distifeactivity, and short otherwise.
This is exactly the desired behavior.

The segmentation behavior is rooted on the construction of the BPM in formula
7.2.1. Our first segmentation approach involved a statistics of the f«rm((/l))(r)
—(fxx())(r*))dA, but as it turned out, this statistics was too sensitive to shifts within
frequency bands, therefore we introduced the frequency contnitaiio

Furthermore, we initially used absolutefdrences of the relative frequency con-
tributions, e.g.|F,(r)/F(a) — F,(v*)/F(r*)], in contrast to the squaredfifirences

in the final statistics. As the squaredtfdrences showed a better segmentation be-
havior, they are now used in the BPM statistics.

The results of the segmentation depend on the parameters used in the sigmenta
algorithm:

o the window lengthT yin,

the time-stepT s,

the parameters for the calculation of the spectral density within the sliding
windows,

the initial reference point* and

the thresholdh.

The parameters can be arranged in two groups. The window |&pgthtime-steps

Tres and the spectral density parameters belong to the first group. Thesagar

ters have to be adjusted in order for the spectral estimation and its tempanglech

to yield reasonable results. They are in a certain sense independeatpardm-

eters in the second group, which signify the main segmentation parameters: the
thresholdth and the starting point*. We call the first group the spectral estimation
parameters and the second group the segmentation parameters.

We want to briefly discuss the segmentation parameters. Due to the low tldresho
th = 0.07 we obtain a reactive segmentation behavior and short segments. As a
consequence of this fact the influence of the initial reference poim almost
negligible in this setting.

Furthermore, the presented segmentation is robust in respect to the sipnen
parameters. Small parameter changethaindr* only lead to slightly diferent
segments. This is an advantage of the method.
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7.4.2 Onset zone analysis

In this study we assume that the initizkspread represents a valid indicator (among
others) for seizure propagation in TLE, in particular for the determinaticdheo
seizure onset zone. The proposed method delivers a conclusiveeseirset zone
for the three seizures. Furthermore, the resulting onset zone is in goortance
with the clinical findings, see Table 7.1, which supports our assumptionfthat
activity is a good indicator for epileptic TLE activity.

As we mentioned in the previous subsection the proposed segmentation method is
robust with respect to the segmentation parameters. The seizure onsétien-
tification inherits the robustness, because the segmentation is the first step in th
methodology. This means that small changethaindz* do not change the result-

ing seizure onset zone. This is a very good property of the propostmhdutogy

and we want to emphasize it.

Although the proposed methodology is capable of identifying the first @iann
showing epileptic activity, this channel should not be called the focus ciizere.
The identification of this first channel is not robust, and even the exypémtons
differ on the first epileptic channel, see table 7.1. Therefore, it is far maseme
able to speak of a channel set showing the first epileptic signs, we cathidumsel
set the seizure onset zone.

In our analysis we intentionally limit ourselves to trackittgactivity as an indi-
cator of epileptic activity. However, the observed patient also showsnittent
epileptica-activity. The segments showing thisactivity are not characterized as
epileptic, see figure 7.4 (channels A9, A10, All at 16:12:47). Fordutworks
we would propose patient-specific epileptic frequency bands indicatétklwmtin-
icians to enhance the onset zone analysis.

Another possible amelioration of the proposed methodology would be the improv
ment of the classification rules. The additional consideration of the sigmali-a
tude or the entropy as measures of rhythmicity, see e.g. van Putten etC#H),(20
could enhance the segment classification and therefore the whole seizee
zone analysis.

To conclude the discussion we want to say it is remarkable that the combination
of two simple ideas delivers results which are well correlated with the clinical
findings. This might be due to the close relation between the method and neuro-

physiology.

7.5 Conclusion

In this chapter we proposed a novel method for the detection of the seirse
zone of epileptic seizures based on the segmentation and subsequsfitatam
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of ictal ECoG data. The application shows promising first results in trackiag th
initial propagation of ictal?-activity as an indicator for seizure propagation. The
identified seizure onset zone correlates well with the visual inspectiore afithi-
cians.

It therefore has the potential for an objectivation in the presurgical elirealu-
ation of therapy-resistant patients. However, this requires furthearels and an
application to a broader data basis.
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Chapter 8

Conclusion

The main contribution of this thesis are two methods for the detection of the epilep-
tic seizure onset zone. The method presented in chapter 6 has a detalatithe
background and focuses on the causal analysis of the most importébpthe
observations. In chapter 7 we propose a method closely connected tistia¢ v
analysis performed by the clinicians.

In this chapter we conclude this work. We present a general discussiaell as
ideas how to enhance the proposed methods. We focus on aspects ottibesne
going beyond the scope of their description. Furthermore, we propassibe

next steps.

8.1 General discussion

Although both of our methods yield good results we have to keep some limiting
factors for ECoG analysis in mind.

ECoG data are normally obtained by surgically implanted subdural strip edestro
There is no default scheme for the placement of these electrodes, lik@-2@ 1
system for the EEG electrodes. Thus the placement of the electrode8 as the
corresponding electrical referencing scheme is unique for each pdatieerefore,

a generalization or automatization of our methods for a larger data basis will be
difficult.

The proposed methods are intended for the use with ECoG data obtainat-by s
dural strip electrodes. Of course it is possible to apply the methods to régela
surface) EEG data. As the processed ECoG data of the analyzed [kidiermtt
show (technical or natural) artifacts, we do not know if our methods alast
with respect to data artifacts. This means it is unclear if the proposed metlsods
yield good results in the case of disturbing artifacts. In fact the band posa-
sure was originally developed for the use with EEG and we expect it tokhesto

for EEG data.

Summing up, both methods yield results which are in good accordance with the

103
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clinical findings. But we have to consider the methods as what they are. Th
proposed methods are useful tools to aid the clinicians in the visual analyss.
best analyzer for the data is still a human.

8.2 Outlook

Both presented methods show promising first results. The logical nexisstep
apply the methods to a larger data basis.

In this section we discuss ways to possibly enhance the proposed mettibts a
develop them further.

8.2.1 Band power measure

The methodology presented in chapter 7 is a very simple and yields surpyising
good results.

One of the main problems of the method is its dependency oft-tiend. Although
rhythmicd-activity normally is an indicator for epileptic activity in TLE, the ictal
activity could also comprise faster waves, egractivity (9-13 Hz), or slower
activity, e.g.s-activity (1-3 Hz). In fact we had a lot of problems with the processed
ECoG data because some channels showed epileptic activity at 9 Hz (which is
faster than normad-activity). We propose two enhancements of the method to
cope with this problem.

First, we propose to use patient specific frequency bands, whichi€anfdom the
physiological frequency bands presented in section 7.2. These mels bee used
for the segmentation as well as the classification.

Second, in addition to the two classification rules for the epileptic character of
segment we propose a third rule based on rhythmicity. If a segment shstwsed
rhythmic activity it is also classified as epileptic.

8.2.2 Influence analysis

In the proposed method only one static 4 seconds data window is consiBesst
on this investigation we draw conclusions regarding the seizure onset Zdre
naturally arising question is, whether it is also possible to draw conclustgasd-
ing the seizure propagation using the proposed causal analysis. THestiildpa
would be to use a sliding data window and conduct the proposed methodology
each data window. The temporal change of the influences could giveatiatis
over the seizure propagation. Unfortunately there is no clear interpretatithis
procedure like in the case of the detection of the seizure onset zoner{smgphe
channels with the highest out-degrees). Perhaps the temporal cHahgezones
with the highest in-degrees and the zones with the highest out-degreasgmigh
indications which zones emit information and which zones receive information
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As we already mentioned in section 6.6 it would be possible to Ukerelint causal-
ity measures to quantify the strength of causality for the influence analpdisis|
point we see the largest potential for an enhancement of the method.

Another promising way to develop the influence analysis further is the applica

of graphical models. In chapter 4 we discussed the application of gedphadlels

to regular AR systems. In the authors opinion it should be possible to in@tepo
graphical models to infer the influences between the latent variabless totze
checked whether it is reasonable to apply graphical models to sub-sy(steahsg

to the original influence analysis) or if graphical models should be applidieto
whole system. For the latter approach a generalization of graphical modess to th
singular AR case would be necessary. From a theoretical point of vievistthe
most challenging enhancement.

8.2.3 General outlook

The logical next step is the application of our methods to a broader data basis
to this point the influence analysis was applied to one seizure and the baed po
measure was applied to three seizures.

In the previous subsections we discussed ways to enhance the ptopet®ds,

but their original purpose is to aid clinicians in the visual analysis of the E@0G
EEG) data. They shall serve as a second opinion in tiiewdt visual analysis,
because the proposed methods provide an objective view on the data.

In the authors opinion the implementation of these methods in a clinical environ-
ment is more important than the further development of the methods. The most
sophisticated methods are useless if they are not used by the cliniciamsforag

the next step after the application of the methods to a broader data badi Isbou
the implementation in clinical software.

8.3 Concluding remarks

Both presented methods show promising first results and in the authorsropinio
they should be pursued further. The authors see the most benefi¢ foatients in

the implementation of the proposed methods in clinical software.

Seizure propagation analysis is an interesting and challenging topic. Itaylbs
vital research topic in the future, because the understanding of epileioreas

and their mathematical description is far from complete.

The main aim of this thesis was to develop methods which aid clinicians in the
visual analysis in order raise the chance of a seizure-free surgitebroe for
patients. In other words we wanted to help curing epilepsy. We hope to have
contributed a small part to reach this goal by providing this thesis.
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Furthermore, we hope to have given the reader new insights and araklgdyne
reading this work.
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