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Abstract

The experiment conducted in the scope of this thesis is a loophole-free Einstein-
Podolsky-Rosen (EPR) steering experiment, which implicitly includes the test
of Born’s rule since for one of the distant observers the assumption of local
quantum mechanics is made. The term steering goes back to Erwin Schrödinger
who responded to the paradoxical situation depicted in the EPR article, which
arose from the locality assumption together with the uncertainty principle. In
contrast to his colleagues he believed that the quantum mechanical description
by a wave function is correct but also had problems of giving up locality and
therefore allowing ”spooky actions at a distance”. These theoretical concepts
have later been formulated as a quantum information task, which made this
problem accesible experimentally. If the untrusted party Alice can convince
Bob that she can remotely steer his state, Bob is forced to believe Alice and
give up his assumtpion on local realism. To do so the steering value has to be
measured by coincidence counting of conclusive events and to be compared with
the bound of a local realistic model. In the performed experiment the measured
value was S = 1.049 ± 0.002 which was a violation compared to the bound 1
by more than 20 standard deviations by simultaneously closing all three major
loopholes through a proper space time arrangement and the implementation of
three measurement settings. In addition, specific attention has to be paid to the
quantum random number generators, which are also described in this thesis.
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Chapter 1

Theoretical Concepts

1.1 Probabilities and quantum mechanical states

The aim of either classical or quantum physics is to describe nature as accurately
as possible for any time t. Therefore predictions about the evolution of a physical
system play an important role. These predictions are tainted with uncertainties,
which leads to the concept of probabilities. At this point one has to differentiate
between classical macroscopic systems and quantum mechanical systems. For
the latter Heisenberg’s uncertainty principle [1] is an intrinsic property of the
theory and states that conjugate variables such as position and momentum
can not be simultaneously measured with arbitrary precision. In contrast to
that, a classical physical system evolves in general according to a well defined
trajectory in a 6N dimensional phase space, which is a function of coordinates
and momentum. In this case uncertainties can only arise by an insufficent
knowledge of the system.

1.1.1 Probability amplitudes

These short introductory remarks make clear that an adequate formulation of
quantum mechanics is firmly connected with the need of probabilistic methods.
In quantum theory probabilities are just secondary quantities, which can be cal-
culated by taking the squared modulus of probability amplitudes [2], which are
in general complex numbers. To emphasize the concept of probability ampli-
tudes and the resulting consequences a brief summary of the famous double slit
experiment will be given. As shown in figure (1.1) a particle which leaves the
source has two different ways to reach a point on the screen. The probability
amplitude in this case is just the sum of the probabiliy amplitudes for taking
either the upper or the lower slit:

P = |a1 + a2|2 = |a1|2 + |a2|2 + 2<a∗1a2 (1.1)

In classical statistical mechanics the result would just contain the first two terms.
Hence the result of one slit is independent of the existence of a second open slit
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8 CHAPTER 1. THEORETICAL CONCEPTS

Figure 1.1: Schematic illustration of the double-slit experiment. Particles em-
mited from a source can act as if they are travelling through one or both slits
depending on the present degree of which way information. (a) shows the prob-
ability distribution for the classical case where the individual probabilities just
add up. This probability distribution can also appear in quantum mechanics,
when the path the particle takes is observed. The quantum mechanical case
without path information (b) shows interference fringes caused by the third
term in equation 1.6 due to the addition of probability amplitudes (fig. taken
from [2]).

and, therefore, the particle bevahiour of this process is revealed. The quantum
mechanical probability can be greater or less than its classical counterpart,
depending on the phase relation of the complex quantity a∗1a2, which is due
to the superposition principle. The latter has to be considered since no path
information is available. In this case the path of the particle is said to be no
element of reality and a description in terms of probability waves has to be done.
This wave nature leads to an interference pattern which can be registered on a
photographic plate. In contrast, if the path is completely known, the collapse
of the wavefunction recovers the classical result.

1.1.2 Pure states

In the next step it is important to link the concept of probabilities to a quantum
state vector [3] (or a state operator) which is to some extent the quantum me-
chanical analogue to a trajectory in phase space. This can be done if one thinks
of a (classical) statistical experiment consisting of a preparation and a measure-
ment phase. For identical preparations of one particle the measurement results
will, in general, be different. However, if a long sequence of identical prepa-
rations and measurements is regarded, the relative frequencies of the various
possible outcomes approach a certain limit. This statement also holds for quan-
tum mechanics. Concerning these two phases of a statistical experiment it is
difficult to characterize the preparation by its effect, because identical prepara-
tions can lead to different measurement outcomes in subsequent measurements.
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On the other hand, the same measurement outcome can result from different
preparations. A specific preparation therefore determines the probabilities for
various possible measurement outcomes. Since the preparation and the follow-
ing measurement are independent of one other, the preparation process must
specify probability distibutions for all possible measurements. More physically
speaking, a state can be identified with the determination of a probability dis-
tribution for all observables. While this interpretation is based on the relative
frequencies of identical preparations of one system, the quantum mechanical
state can also be associated with an ensemble, which is an infinite set of sim-
ilarily prepared systems. The equivalence of these two interpretations follows
from the ergodic hypothesis.

The mathematical framework [4] of the quantum state vector is a complex
linear vector space V on which an inner product is defined. If this vector space
V is complete as well, this vector space is called a Hilbert space H. From the
last condition it follows that any pure state vector |Ψ〉 can be written as a linear
combination of basis vectors

|Ψ〉 =

N∑
n=1

an|Ψn〉 (1.2)

in a N-dimensional Hilbert space HN with complex coefficients an. If |Ψ〉 is
normalized and the states |Ψn〉 are orthogonal this leads to the condition

〈Ψ|Ψ〉 = 1 =

N∑
n=1

|an|2 (1.3)

which is consistent with the probability interpretation discussed in section 1.1.1
where the complex numbers an where associated with probability amplitudes
and their squared modulus with the probability of finding the system in the
state |Ψn〉 after a certain measurement when the originally prepared state was
|Ψ〉.

1.1.3 Born’s rule

Beside the quantum state vector, which determines the probability distributions
for all observables, the concept of operators is needed to fully describe a quantum
mechanical measurement process. These operators represent physically observ-
able quantities (such as photon polarization or electron spin) and determine the
outcome of a specific measurement. Since the measurement outcomes are real
values the oberservable quantities need to be described by Hermitain operators
for which A† = A is valid. Every Hermitain operator can be diagonalized and
therefore owns a spectral representation of the form

Â =
∑
i

Â|ai〉〈ai| =
∑
i

ai|ai〉〈ai| =
∑
i

aiPi (1.4)

whereas the eigenvalues ai correspond to different possible measurement out-
comes.
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According to the interaction of the wave function with its environement
there are two possible dynamical laws that are responsible for their evolution
[5]. If the system is closed and there is no interaction possible, the wave function
evolves according to the time dependent Schrödinger equation:

i~
∂Ψ

∂t
= HΨ (1.5)

In the second case, the quantum state vector gets distorted through the interac-
tion with a classical measurement apparatus. This process can be described by
the means of a projection operator Pi (see eq. 1.4) which projects the original
state |Ψ〉 onto an eigenvector of a Hermitain matrix Â which corresponds to
the measured observable. The probability that a measurement yields a certain
eigenvalue ai of Â is given by

P(ai) = |〈Ψ|ai〉|2 (1.6)

and is known as Born’s rule. Actually equation 1.6 is just the special case for
discrete, non degenrate eigenvalues such as it is the case for photon polarization
or spin measurements. Thus, Born’s rule which can be regarded as connection
between the mathematical formalism and the experiment, can be tested implic-
itly by evaluating the expectation value of a certain operator Â by the means
of quantum mechanics.

〈Â〉 = 〈Ψ|
∑
i

ai|ai〉〈ai|Ψ〉 =
∑
i

Pi(ai)ai (1.7)

After the measurement the preliminary undetermined value of Â has been fixed
to the measured eigenvalue ai hence the state changed abruptly to the corre-
sponding eigenfunction |ai〉. This single process which occurs completly ran-
domly is called collapse of the wave function or reduction of the state vector.
The latter term can be understood if one thinks of the state vector as a superpo-
sition; therefore, only one of these superposition states will survive the measure-
ment process. In general (as shown in section 1.1.1) the measurement outcomes
follow a probability distribution (with the transition probabilities given by eq.
1.6) which is given by the quantum state vector.

1.1.4 Density matrix formalism

Until now, only pure states, where the observer has perfect knowledge about
his state preparation device, have been taken into account. Unfortunately this
is just a special case of the state operator, also known as density matrix, where
one eigenvalue ai = 1 and all the other eigenvalues aj 6= ai are zero. The general
case assigns a classical probability pi to different pure states |Ψi〉. For the double
slit experiment, for example, one can assign the probability of 1

2 that either the
upper or the lower slit is masked. Therefore in half of the cases the particle
will travel through the upper slit and in half of the cases through the lower slit.
But when the system finally has been prepared it has been transferred to a pure
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state. The probability distribution for this case is the same as for the classical
case for both slits open (shown in fig. 1.1a).

The state operator ρ can be defined in the following way,

ρ̂ =

N∑
i=1

pi|Ψi〉〈Ψi| =
N∑
i=1

piρ̂i (1.8)

with
∑N
i=1 pi = 1. With the means of the state operator and the corresponding

algebra, it can be shown that the expectation value takes the form

〈Â〉ρ =

N∑
i=1

pitr[Âρ̂i] = tr[Âρ̂] (1.9)

which contains classical and quantum mechanical probabilities.

1.2 Photonic qubits

The fundamental building block of classical information theory is the bit, which
can either take the values 0 or 1 corresponding to a well defined on or off
state of a physical system. Its analogoue in the quantum world is the quantum
bit or qubit, which can represent both states simultaneously [6]. This tool of
quantum mechanics is known as quantum mechanical superposition (see eq.
1.2). Concerning photonic qubits possible implementations [7] are spatial-mode
qubits, time-bin qubits or even superpositions in higher dimensions, known as
qunits. The state vector of such a quantum mechanical two-level system can be
described in a two-dimensional Hilbert space H2:

|Q〉 = α|0〉+ β|1〉 (1.10)

with 〈Q|Q〉 = 1 = |α|2 + |β|2.
As mentioned in section 1.1.2 obeservables correspond to Hermitain matrices.

In the simple case of the two-dimensional qubit space the three Pauli matrices
together with the unit matrix in two dimensions form a complete set of unitary
2x2 matrices [2]. Therefore any matrix can be written as a linear combination
of these four matrices

Â = a1̂ + bσ̂x + cσ̂y + dσ̂z (1.11)

with

1̂ =

[
1 0
0 1

]
, σ̂x =

[
0 1
1 0

]
, σ̂y =

[
0 −i
i 0

]
, σ̂z =

[
1 0
0 −1

]
(1.12)

and real coefficients a, b, c and d. Because of these properties of any 2x2
Hermitain matrix Â, it is sufficient to know the algebra of the Pauli matrices:

(σ̂i)
2 = 1, σ̂iσ̂j = iεijkσ̂k (1.13)
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The information theoretical improvement of a qubit compared to a classical bit
can be visualized on the so called Bloch or Poincaré sphere (see fig. 1.2) depend-
ing on what kind of two-level system is used. In this work, an experiment with
polarization entangled photons is carried out, therefore, I will restrict myself to
the latter.

Figure 1.2: Illsutration of the Poincaré sphere for polarization qubits. Coherent
superpositions of the states |0〉 and |1〉 lie on the shell of this sphere with radius
R = 1. All states located on oppposite sides of the sphere form an orthonormal
basis of the two-dimensional qubit space (fig. taken from [2]).

A classical bit can just occupy the states on the north and on the south pole
of the sphere corresponding |H〉 = |0〉 and |V 〉 = |1〉. A coherent superposition
of these states on the other hand can occupy any arbitrary state

|Ψ〉 = cos
θ

2
|0〉+ eiϕ sin

θ

2
|1〉 (1.14)

on the shell of this sphere. In contrast to that, decoherence effects can cause
transitions to incoherent states, which are located closer to the origin of the
sphere.

Beside the two elementary polarization directions |H〉 and |V 〉 also the most
common other directions, e.g. basis vectors for polarization qubits, are shown
in figure 1.2. The relations between these three bases are shown in table (1.1).
These polarization bases can be converted into each other with the help of
retarding wave plates, which can represented by 2x2 matrices in the so-called
Jones calculus [8].
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Polarization state Linear combination Name Polarization angle
|H〉 |H〉 horizontal 0◦

|V 〉 |V 〉 vertical 90◦

|D〉 1√
2

(
|H〉+ |V 〉

)
diagonal 45◦

|A〉 1√
2

(
|H〉 − |V 〉

)
anti-diagonal 135◦

|R〉 1√
2

(
|H〉+ i|V 〉

)
right-circular

|L〉 1√
2

(
|H〉 − i|V 〉

)
left-circular

Table 1.1: Common polarization measurement bases of the Poincaré sphere.
The linear polarization states are assigned with linear polarization angles.

N qubits can be combined to a quantum register with the advantage of a
superposition of all 2N states compared only to a linear gain (2N) in the case
of a classical computer.

1.3 Entanglement

The property of entanglement, which is a very powerful tool in quantum infor-
mation processing, can be regarded as a generalization of the quantum mechan-
ical superposition principle to composite systems, constisting of two or more
subsystems (particles). For the following considerations, I will restrict myself to
the bipartite case [5] because it nicely reveals the aspects of the theory without
being too complex.

A bipartite system consisting of two qubits S1 and S2 can be described
in a four-dimensional Hilbert space H4, which is the tensor product of the
two subspaces H2

1 ⊗ H2
2. In the case where the two systems S1 and S2 were

independently prepared in pure states |λ〉1 ∈ H2
1 and |ψ〉2 ∈ H2

2 the composite
system S1 + S2 can be written as the product state:

|Ψ0〉 = |λ〉1 ⊗ |ψ〉2 (1.15)

In the general case, especially when an interaction between the two subsystems
took place for a finite time, the wave vector of the total system can not be
written in this simple form anymore. However a pure state of the composite
system can be written as a weighted sum with respect to two orthonormal
systems of the two subspaces. This phenomenon is known as biorthogonal or
Schmidt decomposition [9] and can be written in the form

|Ψ〉 =

2∑
i=1

ai|ζi〉1 ⊗ |ηi〉2, {|ζi〉} ∈ H2
1, {|ηi〉} ∈ H2

2 (1.16)

where the summation index i goes until two. The system S1 + S2 is said to be
in an entangled state if the sum consits of more than one term.

The probability interpretation of this result states that it is impossible to
make statements about the individual systems. Only the overall system is found
to be in the state |ζi〉1 ⊗ |ηi〉2 with probability |ai|2.
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For the two qubit systems there are four different combinations which can
contribute to the sum in equation 1.16, namely |0〉1⊗|0〉2, |0〉1⊗|1〉2, |1〉1⊗|0〉2
and |1〉1⊗|1〉2. These states now can be combined to four maximally entangled
qubit states or Bell-states:

|Φ±〉 =
1√
2

(|0〉1 ⊗ |0〉2 ± |1〉1 ⊗ |1〉2) (1.17)

|Ψ±〉 =
1√
2

(|0〉1 ⊗ |1〉2 ± |1〉1 ⊗ |0〉2) (1.18)

Which of these states finally gets prepared depends on the source and the kind
of interaction. Photons of an atomic SPS collision cascade, for example, have
the same polarization due to symmetry considerations [10]. Such processes are
parity conserving as well, therefore the state of the system is characterized by
the |Φ+〉 state.

1.4 The Einstein-Podolsky-Rosen paradox

1.4.1 EPR’s claim

In their famous paper Einstein, Podolsky and Rosen asked the question whether
a quantum mechanical description of physical reality can be considered complete
[11]. To understand their way of thinking it is necessary to specifiy the defini-
tions of completness, physical reality and also a third statement which is known
as Einstein locality:

• Completeness: ”every element of the physical reality must have a counter-
part in the physical theory”

• Physical reality: ”if, without in any way disturbing a system, we can pre-
dict with certainty (i.e. with probability equal to unity) the value of a
physical quantity, then there exists an element of physical reality corre-
sponding to this physical quantity”

• Einstein locality: ”since at the time of measurement of the two systems
no longer interact, no real change can take place in the second system in
consequence of anything that might be done to the first system”

For further considerations they regarded a system consisting of two particles
which were able to interact for a finite time (between t = 0 and t = T ). After this
interaction process the state vector of this entangled system can be calculated
by the means of Schrödingers equations:

Ψ(x1, x2) =

∫ +∞

−∞
e

i
~ (x1−x2+x0)pdp (1.19)

In this case, x1 and x2 correspond to the positions of the two particles and x0

is some constant. Since this is an entangled state only assumptions about the



1.4. THE EINSTEIN-PODOLSKY-ROSEN PARADOX 15

total system can be made (according to section 1.3) unless the wave function is
forced to collapse through additional measurements.

Let’s assume that some of these, namely p2, the momentum of the second
particle, and x1 or p1 corresponding to the first particles position or momentum,
are made. If one measures p1 = p it can easily be shown that p2 = −p with cer-
tainty, since the momentum operator P̂ is proportional to the partial derivative
of the spacial coordinate of the respective particle. Hence the momentum of the
second particle is said to be an element of physical reality. This argument holds
as well for x2 if the position of the first particle is measured.

Now the question arises, what happens if conjugate variables, for example x1

on the first system and p2 on the second system, are measured? A measurement
of x1 has the direct consequence that due to Heisenberg’s uncertainty princi-
ple no predictions about p1 can be made with certainty. Therefore quantum
mechanics is also not able to make any predictions for p2. The same situation
occurs for p1 and x2. The paradox about this whole situation now is the follow-
ing: Since the systems are spatially separated, the choice of measurement on
the first system can not affect the outcome of the second system unless super-
luminal signalling is permitted. Thus, a momentum measurement performed
on the second particle should also yield p2 = −p. Therefore both measurement
outcomes (x2 and p2) of the second particle have to be simultaneous elements of
physical reality, determined right after the separation of the two systems. This
argument is obvoiusly in cotradiction with Heisenberg’s uncertainty principle.

This result let Einstein, Podolsky and Rosen conclude: ”While we thus have
shown that the wave function does not provide a complete description of the
physical reality, we left open the question of whether or not such a description
exists. We believe, however, that such a theory is possible.”

But they also remarked that their definition of physical reality leaves a mar-
gin for different interpretations: ”Indeed, one would not arrive at our conclusion
if one insisted that two or more physical quantities can be regarded as simulta-
neous elements of reality only when they can be simultaneously measured or
predicted.”

1.4.2 Bohr’s reply

Shortly after the publication of the EPR article, it was Bohr who commented
and mainly critizised some arguments of EPR’s claim [12]. He agreed on the
fact that each experimenter has a free will and therefore has the freedom of
choice of determing whether the one or the other physical quantity is measured.

On the other hand, he offered criticism on their definition of physical reality,
because after his interpretation there is no doubt that there is a disturbance
of the measured system through an interaction with the measuring device. Ac-
cording to this influence he concluded that there have to be restrictions on what
kind of predictions one can make about the system.

In order to corroborate the belief that the quantum mechanical description of
physical reality through a physical wave function is complete he introduced the
principle of complementarity which was based on the following two assumptions:
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• Mutual exclusiveness: ”in fact, it is only the mutual exclusion of any two
experimental procedures, permitting the unambiguous definition of comple-
mentary physical quantities”

• Joint completion: ”the combination of which characterizes the method of
classical physics, and which therefore in this sense may be considered as
complementary to one another”

In other words, the first argument refers to a specific experimental situation.
Bohr explained that the measuring apparatus for a position measurement is to-
tally different than the one used for a momentum measurement. Therefore only
one of these quantities can be measured in a specific experimental environment.

The second argument refers to the case of classical physics, where position
and momentum can indeed be measured simultaneously with arbitrary precision
and therefore provide a complete description of the particles motion in the sense
of a well defined trajectory in phase space [13].

1.4.3 Schrödinger’s reply

Beside Bohr Schrödinger also was very interested in the EPR thought experi-
ment, which is reflected in several publications [14, 15, 16] concerning the para-
doxical situation. Probably the most famous of these is his review article [14]
about the ”present situation of quantum mechanics” where he has primarily
coined the term entanglement: ”A measurement on one [system] can impossi-
bly be an indication of what to expect from the other. If ”entanglement of the
predictions” exists, it can just be affiliated to the fact, that the two solids had
formerly built one system, e.g. that they were affected by each other and that
this interaction has left its traces.”

In another publication he also pointed out the importance of that feature: ”I
would not call that one but rather the characteristic trait of quantum mechanics,
the one that enforces its entire departure from classical lines of thought.” [15]

The second important remark Schrödinger made was the ability to affect the
state on one side of the system by the choice of measurement on the other side.
This phenomenon is kown as EPR steering: ”It is rather discomforting that the
theory should allow the system to be steered or piloted into one or the other type
of state at the experimenter’s mercy in spite of his having no access to it.” [15]

In contrast to EPR, he believed that the description by the means of a quan-
tum mechanical wave function is complete for a localized and isolated system.
Like Einstein, Schrödinger had a problem of giving up local causality for delo-
calized entangled systems. But if steering is possible and the description by a
quantum mechanical wave function is complete, this is the only way to explain
the resulting correlations.
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1.5 Bell’s inequalities

1.5.1 Bohm’s version of the EPR paradox

For further considerations, especially the derivation of Bell’s inequalities, it
is more convenient to consider Bohm’s version of the EPR paradox [17, 18],
which contains discrete boolean observables, such as particle spin or photon
polarization, with eigenvalues ai = ±1 rather than continuous variables like
position and momentum as in the original EPR paper.

Bohm considered a molecule consisting of two atoms with total spin S = 0.
Therefore the spin of the individual atoms has to point in opposite directions.
After a seperation process, which per definition does not affect the spin of the
systems, the atoms cease to interact and are still in the entangled singlet state:

|Ψ−〉 =
1√
2

(| ↑〉1 ⊗ | ↓〉2 − | ↓〉1 ⊗ | ↑〉2) (1.20)

According to EPR’s claim the measurement of a certain spin component of the
first system will predict the value of the same component of the second system
with certainty. In the case of the |Ψ−〉 state these values will be perfectly
anticorrelated. According to EPR every spin component of the second system is
simultaneously an element of physical reality which is in contrast to the quantum
mechanical result since the Pauli spin matrices do not commute with each other
(see eq. 1.13). Hence it is only possible to measure one component of the
spin vector with arbitrary precision. Measurements in complementary bases
compared to the measuring apartus of the first system therefore yield random
results.

1.5.2 Bell’s theorem

When Bell commented on the EPR paradox [19] he wanted to explain perfect
correlations in a local realistic world view. He was therefore regarding a similar
system to that proposed by Bohm as an experimental test of the EPR paradox.
The only extension he made was the possibility of rotating the two detecting
stations (Stern-Gerlach magnets) in a plane perpendicular to the travelling di-
rection of the spin 1

2 particle.
If, as suggested by Einstein, Podolsky and Rosen, variables like the three

spin components correspond simultaneously to three elements of physical reality,
there should be some hidden variable, which tells the particle how to react
depending on the kind of measurement performed on the distant system (see
sec. 1.4.1).

Assuming that the measurement ~σ1 · ~a yields the value +1, a measurement
along the same direction on the distant particle ~σ2·~amust yield−1 due to perfect
anti-correlations of the |Ψ−〉 state. For different directions of the measurement
devices one can only say that a measurement performed on system A (system
B respectively) will yield one of the eigenvalues ±1 depending on the hidden
variable λ:

A(~a, λ) = ±1, B(~b, λ) = ±1 (1.21)
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The crucial point regarding these two equations is that the value of A does not
depend on ~b and vice versa B is independent of ~a. Due to this property the
joint measurement on the expectation value of (~σ1 · ~a)(~σ2 ·~b) factorises in the
following way

Elhv(~a,~b) =

∫
ρ(λ)A(~a, λ)B(~b, λ)dλ (1.22)

with the normalized probability distribution
∫
ρ(λ)dλ = 1. This expectation

value should be equivalent to the one predicted by quantum mechanics:

Eqm(~a,~b) = 〈Ψ−|(~σ1 · ~a)⊗ (~σ2 ·~b)|Ψ−〉 = −~a ·~b = − cos θ (1.23)

The last equal sign follows from the fact that ~a and ~b are unit vectors.
As shown above A(~a, λ) = −B(~a, λ), therefore the expectation value in the

local hidden variable model can be rewritten as:

Elhv(~a,~b) = −
∫
ρ(λ)A(~a, λ)A(~b, λ)dλ (1.24)

Considering a third direction ~c yields:

Elhv(~a,~b)− Elhv(~a,~c) = −
∫
ρ(λ)A(~a, λ)A(~b, λ)dλ+

∫
ρ(λ)A(~a, λ)A(~c, λ)dλ

(1.25)
Utilization of A2 = 1 leads to:

Elhv(~a,~b)− Elhv(~a,~c) =

∫
ρ(λ)A(~a, λ)A(~b, λ)[A(~b, λ)A(~c, λ)− 1]dλ (1.26)

Building the modulus of this quantity together with a further estimation with
respect to the triangle inequality results in

1 + Elhv(~b,~c) ≥ |Elhv(~a,~b)− Elhv(~a,~c)| (1.27)

which is known as Bell’s inequality. Inserting the values ~a ·~b = ~b · ~c = 1√
2

and

~a · ~c = 0 for the quantum mechanical expectation value maximally violates this
inequality as can be seen in the following equation:

1− 1√
2
≥ 1√

2
(1.28)

Therefore Bell has shown that the correlations produced by quantum theory are
stronger than in any local hidden variable model.

1.5.3 Clauser-Horne-Shimony-Holt inequality

The CHSH inequality [20] can be understood as a generalization of Bell’s in-
equality. Since Bell’s derivation was based on a two outcome system with perfect
anti-correlations in the case of a two spin 1

2 particles it is rather less applicable
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to real experimental systems with imperfect measurement devices. Another ex-
perimental problem is the adjustment of a perfectly pure |Ψ−〉 state in the case
of entangled photon pairs. To overcome this difficulties only average values of
the measured quantities A and B

|Ā(~a, λ)| ≤ 1, |B̄(~b, λ)| ≤ 1 (1.29)

can be taken into account.
Inserting this ansatz into the correlation functions of the local hidden vari-

able model yields:

Elhv(~a,~b)− Elhv(~a, ~b′) =

∫
ρ(λ)Ā(~a, λ)B̄(~b, λ)dλ−

∫
ρ(λ)Ā(~a, λ)B̄(~b′, λ)dλ

=

∫
ρ(λ)Ā(~a, λ)B̄(~b, λ)[1± Ā(~a′, λ)B̄(~b′, λ)]dλ

−
∫
ρ(λ)Ā(~a, λ)B̄(~b′, λ)[1± Ā(~a′, λ)B̄(~b, λ)]dλ

(1.30)

Utilization of equation (1.29) and of the triangle inequality results in an expres-
sion similar to Bell’s original inequality:

|Elhv(~a,~b)− Elhv(~a, ~b′)| ≤
∫
ρ(λ)[1± Ā(~a′, λ)B̄(~b′, λ)]dλ

+

∫
ρ(λ)[1± Ā(~a′, λ)B̄(~b, λ)]dλ

(1.31)

This finally leads to the CHSH inequality:

|Elhv(~a,~b)− Elhv(~a, ~b′)| ≤ 2± [Elhv(~a′, ~b′) + Elhv(~a′,~b)] (1.32)

For the special case of ~a′ = ~b′ this just yields the original Bell inequality (1.27).
Again, the quantum mechanical expectatian value can violate this inequality
for certain angles. For α = 0◦, β = 45◦, α′ = 90◦, β′ = 135◦ this results in a
maximal violation ∣∣∣∣− 1√

2
− 1√

2

∣∣∣∣+

∣∣∣∣− 1√
2
− 1√

2

∣∣∣∣ = 2
√

2 ≥ 2 (1.33)

which is known as Tsirelson bound [21].

1.5.4 Experimental loopholes

In their thought experiment [11] the assumption of Einstein, Podolsky and
Rosen, that any theory in nature has to obey locality and realism led to a para-
dox situation under the consideration of entangled states and therefore let them
conclude that quantum mechanics was incomplete. Nevertheless they thought
that a completion might be possible. Such theories are based on ”local hidden
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variables” or in the specific case of EPR steering on ”local hidden states”, which
determine the particles properties at any time regardless of whether an obser-
vation occurs or not. As shown in section 1.5 the conflict between (classical)
local realistic theories and quantum theory has been controversially discussed
from a theoretical viewpoint. Not until three decades later the derivation of
mathematical inequalities [19, 20] made this question accesible experimentally.
Since then, strong experimental evidence has been collected to rule out local
realistic theories [22, 23, 24, 25, 26]. Unfortunately imperfections in the exper-
imental setup open ”loopholes” for local realistic models, which could not be
simultaneously closed in a single experiment until our EPR steering experiment
[27].

The underlying principles of the three major loopholes, which will be dis-
cussed in the following, are influences on or of the choices of measurements, a
possible hidden communication and a low detection efficiency, which are not
representative for the whole ensemble.

• Freedom of choice:

In Bell’s original derivation there was no explicit assumption made con-
cerning the dependence of the choice of measurement settings on a hidden
variable λ. Only in a latter work [28] he stressed the importance of that
by formulating the following hypothesis: ”The variables a and b can be
considered to be free or random.” Therefore

~a 6= ~a(λ), ~b 6= ~b(λ) (1.34)

the measurement settings are independent of any hidden variable and vice
versa.

From an experimental point of view this loophole is closely related to
the locality loophole (which will be discussed next) and can therefore be
closed by a proper space time arrangement of the experimental setup. The
crucial point concerning this issue is, that the measurement choices might
be influenced by hidden variables which are produced at the photon pair
production in the source or the other way round. Therefore the random
devices which are responsible for the setting choices have to be outside
the future lightcone of the source [29].

In his work, Bell was thinking of an idealized Einstein-Podolsky-Rosen-
Bohm experiment: ”Then we may imagine the experiment done on such
a scale, with the two sides of the experiment seprated by a distance of
order light minutes, that we can imagine these settings being freely chosen
at the last second by two experimental physicists, or some other random
devices.” [28]

As mentioned above in a perfect experiment choices will be made by hu-
man beings and of course free will will not depend on any hidden vari-
able. This seems feasible in space experiments with entangled photon
pairs which are already in preparation. Unless they are not realized they
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are unfortunately not more than a nice theoretical concept. Thus, a non-
deterministic hardware random number generator, which exploits the ob-
jective randomness of a quantum mechanical effect, is the best source to
generate reliable random numbers at a high operational speed.

• Locality:

The locality loophole can arise if some form of hidden communication
can take place between the whole measurement processes (including the
random decision on the setting, the implementation of this setting and the
registration at the detector) on either side of the system, since one vital
assumption of Bell was local causality

A(B,~a,~b, λ) = A(~a, λ), B(A,~a,~b, λ) = B(~b, λ) (1.35)

which bears in mind that after the interaction between the two subsystems
stopped ”the real factual situation of system S2 is independent of what is
done with the first system S1, which is spatially seperated from the former”
[30]. To be more precise a differenciation between setting and outcome
independence is made:

A 6= A(~b), B 6= B(~a)

A 6= A(B), B 6= B(A)
(1.36)

In the framework of special relativity this means, that the timescale on
which the whole measurement process takes place must be much smaller
than L

c , so that any form of mutual influence by subluminal signals can
be excluded. In this case L corresponds to the distance between the two
observers Alice and Bob and c is the speed of light.

• Detection:

The effect of an imperfect detection efficiency, e.g. particle losses on either
one or both sides of the total system or double detections (two clicks on
one side), can be included in theoretical descriptions by considering a third
inconclusive outcome [31], denoted as 0. Therefore the CHSH inequality
gets modified by the conditional probability η, which is the probability
of measuring ±1 on the second system, when ±1 was the outcome of the
first system. If η becomes larger than 82.8% the corresponding inequallity
can be violated. Later, Eberhard showed that this threshold value can be
lowered further to 67% if non maximally entangled states of the form

|Ψ〉 =
1√

1 + |ε|2
(|H〉 ⊗ |V 〉 ± ε|V 〉 ⊗ |H〉) (1.37)

are used [32].

Otherwise the so called fair saimpling assumption, which states that the
efficiency is independent of the microstate of the system, has to be made.
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In this case the detected sub-ensemble can be regarded as a representative
sample of the real ensemble.

For EPR steering the whole situation is different and because Bob trusts
his local measurement device and therefore only reports the binary oucomes
-1 and +1. Alice on the other hand is the untrusted party and has to re-
port a guess for Bob’s measurement outcome, whenever he has registered
a click. Hence inconclusive events can not be discarded. This asymmetry
in the steering setup results in a lowered detection efficiency for conclusive
events. From an experimental point of view coincidence count detection
now demands a low dark count detection rate on Bob’s side, whereas Alice
needs a high detection efficency so that no coincidence signal gets lost.

1.6 Steering

One of the most powerful but also most controversial tools of quantum mechan-
ics is entanglement (cf. section 1.3). Even Einstein could not believe that a
mechanism exists, that can instantaneously influence a correlated particle no
matter how far away this second particle is. This was clearly in contradiction
with his theory of special relativity. In the EPR paper they revealed the paradox
situation that ”as a consequence of two different measurements performed upon
the first system, the second system may be left in states with two different wave
functions” [11], which was in conflict with local realism and let them conclude
that quantum mechanics was incomplete (cf. section 1.5.1).

This ”spooky action at a distance” - termed steering - goes back to Schrödinger
[16]: ”quantum mechanics obliges us to admit not only that by suitable measure-
ments, taken on one of the two parts only, the state (or representative or wave
function) of the other part can be determined without interfering with it, but
also that, in spite of this non-interference, the state arrived at depends quite
decidedly on what measurements one chooses to take - not only on the result
they yield.” In his work he even took the EPR thought experiment one step
further by generalizing it to more than two measurements and showed that ”it
does not only know these two answers but a vast number of others” with the
only limitation on one virgin state measurement. Therefore steering might be
an interesting tool in the context of quantum information theory.

1.6.1 Operational definitions

Wiseman et al. [33] primarily defined such a quantum information task, whose
description contains beside the two individual parts Alice and Bob also a third
party Charley (for the case of non-separability this would be an entanglement
witness) to derive the smallest subset of non-seperable states, which are Bell
non-local states.

• Non-separability: First, let us assume that Alice and Bob can prepare
a bipartite entangled state under reproducible conditions and a trustful
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communication between them is established. In this case they can freely
exchange their individual measurement outcomes and do state tomogra-
phy. Based on the reconstructed bipartite state they can determine if they
truly shared a non separable state.

• Steerability: The steering task is more restrictive according to the precon-
ditions made for non-separability, since Bob does not trust Alice. There-
fore the initial effective one party task for non-separability became a real
two party task. Now the distrustful party Alice claims that she can pre-
pare a bipartite entangled state. Again this process can be repeated sev-
eral times and both are measuring their factual parts and report their
results through a classical channel. Bob, who accepts quantum mechan-
ics, will only be convinced that they really shared an entangled state if no
local hidden state description is possible. This means that Alice’s cheat-
ing strategy of sending a pre-existing pure state of a local hidden state
ensemble and anouncing her result according to the knowledge of Bob’s
state and measurement basis has to fail.

• Bell nonlocality: In this case a third sceptical party Charley, who believes
in quantum mechanics but trusts neither Alice nor Bob, has to be con-
vinced that they really share an entangled state. Therefore they have to
demonstrate Bell nonlocality and violate the CHSH inequality experimen-
tally. Since, in contrast to non-separability and steerability no further
assumptions about Alice and Bob can be made, the resulting correlations
might also be explained by a hidden variable model (instead of hidden
states). Only if such a description fails, Charley will be convinced that
they shared an entangled state.

1.6.2 Mathematical definitions

From a mathematical point of view these three different kinds of non separability
(in the case of mixed states) can be described in the sense of joint probabilites.

• Non-separability: As shown above the weakest form of non-locality is the
case of non-separability. Since both parties trust each other and accept
quantum mechanics as complete, the joint probability can be written as

P (a, b|A,B) =
∑
λ

P (λ)Tr[ΠA
a ρα(λ)]Tr[ΠB

b ρβ(λ)] (1.38)

whereas ΠA,B
a,b are projection operators, projecting onto subspaces which

are defined by the measurement outcomes A (B) and the measurement
settings a (b). The state operators ρα,β ∈ Hα,β correspond to the mixture
of local quantum states on each side of the system. If the description by
the joint probability (1.38) fails, the state is said to be non separable and
therefore it can not be written in the product form.
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• Steerability: EPR-steering can be seen as an intermediate option between
non-separability and Bell-nonlocality. In this case Bob (like Schrödinger)
accepts that the quantum mechanical description of his local state is cor-
rect, whereas on the other hand for Alice no further restrictions are made.
Therefore the joint probability reads

P (a, b|A,B) =
∑
λ

P (λ)P (A|a, λ)Tr[ΠB
b ρβ(λ)] (1.39)

which reflects the inherent asymmetry of the steering task, in contrast
to Bell nonlocality and non-separability. Alice succeeds in the steering
task if a local hidden state description (1.39) from Bob’s point of view
fails, therefore she could remotely prepare Bob’s state by forcing it to
collapse into a certain ensemble of states which just depends on her choice
of measurement.

• Bell nonlocality: This is the strongest form of nonlocality known by quan-
tum mechanics and occurs if the resulting correlations between a and b
can not be explained by a local hidden variable model. Thus, states of
this kind violate Bell’s inequality, where one fundamental assumption was
based on a factorizing joint probability:

P (a, b|A,B) =
∑
λ

P (λ)P (A|a, λ)P (B|b, λ) (1.40)

In summary, it can be said, that steerable states are a subset of non separable
states and a superset of Bell nonlocal states.

1.6.3 The EPR steering task

As already mentioned it is convenient to formulate EPR steering as a quantum
information task between two distant observers Alice and Bob. Alice claims that
she is able to remotley affect and therefore steer Bob’s state. To prove this, Bob,
who believes in local quantum mechanics but is sceptical about any nonlocal
effects, has to be convinced. Therefore Alice sends a state to him, which he
regards as an unknown local quantum state, since it is not physically acessible to
her anymore and he did not yet measure it. Now Alice succeeds in her task if she
can convince Bob that the state he received is part of a polarization entangled
photon pair and therefore the measured correlations can not be described by any
local hidden state model. To do so, Bob randomly chooses a certain polarization
basis out of a predefined set of mutually unbiased bases. In the next step he
announces his choice of measurement basis to Alice and records his measurement
outcome, which he keeps secret. Since Bob’s photon of the entangled photon
pair is already on the way to his laboratory Alice has no chance to influence
it with the means of any local mechanism. The second photon which is stored
locally in Alice’s laboratory is delayed so that she can measure it in the basis
predefined by Bob’s random choice. According to her result, Alice is now able



1.6. STEERING 25

to make predictions on the measurement outcomes of Bob. If the correlations
violate an EPR steering inequality Bob will be convinced that she succeeded in
the steering task or give up his assumption on a local quantum state.

The EPR steering inequality was derived by Wiseman and his colleagues [33]
and reads

S = TX + TY + TZ ≤ 1, (1.41)

whereas
TX =

∑
r

P (r|XA)[〈XB〉|XA=r]
2, r = −1, 0,+1 (1.42)

and TY and TZ are formulated in a similar way. P (r|XA) in this case is the
probability of getting the outcome r when Alice performs a measurement in
the basis X. 〈XB〉|XA=r on the other hand is the expectation value for Bob’s
measurement result, if he measures in the same basis and Alice has measured
the result r.
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Chapter 2

Quantum random number
generation

2.1 Different types of randomness

First of all I want to start with a rather heuristical definition of randomness
[34], which therefore works without any formulas: ”A random event is an event
which has a chance of happening, and probability is a numerical measure of
that chance” This defintion seems to be generally valid, however to explore all
underlying effects a differentiation between two different types of randomness
has to be made:

• Subjective randomness: This type of randomness occurs when the underly-
ing parameters of some kind of physical effect are not sufficiently known.
Typical factors of these class are games of chance such as Roulette or
Craps. The latter game can be reduced to the throw of two dice. Consid-
ering only one die, each individual throw is independent from the previous
or the next one. Hence the result seems random. According to the pre-
vious definition every number has the same chance of happening, namely
p = 1

6 . Considering two or more dice just changes the probabilities for
different numbers but not the random character of the event, therefore
in this case it is sufficient to remain at the example of throwing one die.
The question arises what the reason for this random behaviour is. In
fact the throw of a die is a deterministic process, whose number could in
principle be predicted with probability p = 1 if all underlying parameters
which influence the result of a throw, such as rotation speed, angle of in-
cidence, roughness of the surface and many more, are well known. Since
the throw of a die is a rather complex physical process, this is impossible
and therefore the process is regarded as random.

• Objective randomness: In contrast to subjective randomness, which is
due to insufficient knowledge of the parameters of a physical effect the

27
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character of objective randomness is different. The nature of this kind of
processes is inherently random, therefore the result can not be predicted
with certainty even though we have profound knowledge about the system.
Quantum mechanical processes like radioactive decays or the path of a
photon passing through a 50:50 beam splitter fall into this category.

2.2 Random number generation

There are several different ways to produce a sequence of random numbers,
which can be categorized into pseudo random number generators (PRNG) or
true, physical random number generators (TRNG).

The first kind of them is based on certain algorithms, which strongly depend
on their starting point, the so called seed, and some other parameters as will
be shown in the next section. Since these generators show a certain periodicity,
after a suitable number of random bits the sequence can be predicted and is
therefore not trustable anymore. According to the types of randomness, as the
name already indicates, generators of this kind are deterministic and therefore
only produce subjective randomness. In principle algorithmic randomness would
be predictable if the computing power would be high enough. Nevertheless they
have several advantages such as the ease of implementation and their low costs.
One also has to keep in mind that they are sufficient for a variety of applications.
Since nearly everyone has a personal computer at home also the distribution is
not a problem.

The second kind are true random number generators which exploit the in-
trinsic randomness of some physical, mostly quantum mechanical effect. These
generators are more complex than pseudo random number generators but guar-
antee objective randomness, which is needed in the framework of quantum infor-
mation processes or quantum cryptography. Underlying effects of such physical
random number generators are noise, radioactive decays as well as certain opti-
cal properties.

Also a third not so common alternative should be mentioned at this point,
namely a hybrid form which combines the methods of pseudo and true random
number generators. In general, these hybrid generators follow the approach
that a slow physical, truly random effect is utilized to determine the seed for a
pseudo random number generator.

2.2.1 Pseudo random number generators

Above already some of the general advantages and disadvantages of pseudo
random number generators have been mentioned. In this subsection a more
detailed description of certain algorithms will be given considering the basic
groups [35] consisting of linear congruental, multiple recursive congruental and
inversive congruental generators. From a historical point of view these all go
back to John von Neumann’s pioneering work in this field, starting with the
middle square method to produce a sequence of random numbers.
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Linear congruental generators

The basic principle of linear congruental generators (LCGs) is a recurrence
formula which depends on four parameters

Xn+1 = (aXn + c) mod m, n ≥ 0 (2.1)

whereas X0 is the starting value, the so called seed, a the multiplier, c the
increment and m the modulus. The choice of these parameters is very impor-
tant for the performance of the PRNG, for example the sequence length before
periodicity occurs is bounded by the value of m.

Depending on the value of the increment c, generators can either be multi-
plicative congruental for the case of c = 0 or mixed congruental for c 6= 0. Pure
multiplicative generators have the advantage that they are faster compared to
mixed ones. On the other hand it is impossible to achieve the maximum period
length.

Multiple recursive congruental generators

Multiple recursive congruental generators represent a generalization of linear
congruental methods, which only depend on the former object of the sequence
as seen in equation 2.1. In this case the next object of a sequence can depend
on k others of the form:

Xn = (a1Xn−1 + · · ·+ akXn−k) + c mod m (2.2)

Depending on the increment a differentiation between homogeneous and inho-
mogeneous multiple recursive congruental generators can be made, whereas for
theoretical considerations it is sufficient to take homogenious generaters into
account since every inhomogeneous generator can be transformed to a homo-
geneous one by subtracting two subsequent objects. A well known member of
this family are the Fibonacci and the lagged Fibonacci generators, which de-
pend only on two objects of the sequence. Lagged in this case just means that
the object Xn+1 does not necessarily depend on Xn and Xn−1 but on any two
arbitrary previous objects Xn−i and Xn−j of the sequence.

Inverse congruental generators

Several approaches were made to overcome characteristic difficulties such as the
occuring lattice structure of finite sequences of overlapping d-tuples
xn = (xn, xn+1, · · · , xn+d−1) or non-overlapping d-tuples that can be written
as xn = (xnd, xnd+1, · · · , xnd+d−1) in a d-dimensional unit cube. One of these
just combines the output of two individual RNGs to increase the period length
to the product of the individual period lengths. Even tough this method was
an improvement, the results were not satisfying at all.

Inverse congruental generators which were first described by Eichenauer and
Lehn [36], were the solution to this problem. Depending on whether only the
inverse of the object Xn or of the whole element before the modulo operation
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is taken a differentiation between ”normal” and explicit inverse congruental
generators is made. The first of them is defined in the following way:

Xn+1 = aX−1
n + c mod p (2.3)

In this case the modulus is taken to be a prime number p.
The explicit generators are of the form:

Xn+1 = (a(Xn + n) + c)−1 mod p (2.4)

Even though inverse congruental generators are slower than linear congruental
ones, they have the advantage of larger sample sizes and fewer correlations
between consecutive numbers.

2.2.2 True random number generators

Random number generation by radioactive decays

A simple, but rather ”dangerous” method to generate true random numbers
is the utilization of radioactive decays, since there is a trade-off between the
operational speed of the random number generator and the activity of the decay
products. The working principle of this kind of generators exploits the quantum
nature of a radioactive decay of an atom. Therefore one can just specifiy the
half life, meaning, the time when on average the half of the atoms decayed,
but not the time when a particular decay will occur. Considering a one-atom
picture, this means that this particular atom has a probability of p = 1

2 of being
decayed after this period of time or not.

One random number generator which makes use of this principle is the Hot-
Bits generator of the Fourmilab in Switzerland [37]. For the following description
I will restrict myself to the first generation of the HotBits generator of 1996 since
the decay process is less complicated and all effects can be revealed properly.
The radioactive element used for this generator was Krypton 85, which decays
with a half life of 10.73 years via β− decay into Rubidium 85

85Kr −→ 85Rb+ β− + γ (2.5)

whereas the β− ”particle” consists of an electron and an electron anti-neutrino.
This transition occurs due to a weak interaction process. In the third generation
instead of Krypton 85 Caesium 137 with an activity of 5µCi and a half life of
30.2 years is used. In this case there is an additional intermediate state of
metastable Barium 137. With an activity like this, streams of random numbers
with a frequency in the order of 1 kilobit per second can be produced.

The assignment of zero and one bits is made by time bit encoding. Therefore
the time intervals between two consecutive gamma ray detection events have to
be measured and compared afterwards. For example if ∆T2 is larger (smaller)
than ∆T1 the bit is attributed a zero (one). To avoid any bias this definition is
switched after each registered bit.
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Noise based random number generation

The second family of true random number generators are noise based generators.
One approach is to use the Johnson noise [38] in an electric conductor. In
contrast to shot noise this effect even arises if no voltage is applied. Since
a conductive material is considered, there is always a certain amount of free
electrons available. In the case of T > 0K these can be treated in a model similar
to the one of the electron gas. Interactions among themselves and with atoms
of the material cause a random movement of these electric charge carriers. A
non uniform charge distribution across the conductor then results in a randomly
varying potential difference which can be amplified and measured afterwards.

Another method to generate a randomly variying noise signal is the utiliza-
tion of the Zener effect in a Zener diode. An applied voltage to such a reversed
biased p-n diode results in a shift of the energy bands. Hence the tunnel proba-
bility increases and for a certain voltage the avalanche effect occurs. The second
effect that occurs is the shot noise, which is due to the discrete nature of electric
charge and takes into account that each electron has its own random velocity
and separation. Therefore a noise current gets superimposed with a steady state
current. In principle a sufficiently low steady state current will register the tun-
neling process of individual electrons resulting in perfectly random pink noise
[39].

The generation of random numbers is done afterwards by a comparison with
a certain threshold value. If this threshold is exceeded (deceeded) a one (zero)
is produced. This means that the threshold value has to be tuned very carefully,
so that the bias of the sequence can be kept as low as possible.

Summarizing these two methods one can say that both are not well isolated
effects, which makes it difficult to use them as TRNGs. The occurence of a
memory effect, meaning a dependence on a voltage in the past, results in a
correlation in the output bit sequence. Another disadvantage is that the low
signals have to be amplified, which adds to the distortion of the signal. Also
thermal stability is an issue, since a small drift in the average voltage signal will
result in a large bias of the random number sequence.

Optical random number generators

A good overview concerning non-deterministic optical hardware random num-
ber generators is given by the survey articles [39, 40] written by Mario Stipcevic.
In general there are two different kinds of operation, namely generators which
exploit the inherent randomness of a single unpolarized photon impinging on
a (polarizing) beam splitter (be it in fibre or free space), or generators that -
similarly to the generators based on radioactive decays - make use of a ran-
dom spontaneous emission process. In the first case, since unpolarized light
can be regarded as a superposition of two orthogonal polarization directions,
the photon impinging on the beamsplitter can either transmitted or reflected.
Hence the path taken by the photon and the resulting click of the respective
detector generate a binary sequence. This principle can be extended to the uti-
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lization of diagonal polarized light, which has the advantage that the bias of the
sequence can be adjusted very accurately by rotating the polarizer. Recently
also experiments with entangled photon pairs have been carried out. This has
the advantage that instead of attenuated laser pulses a continous wave laser
can be used. The gating by the detection of the idler photon provides a well
localized single photon state for the signal photon, which can either be trans-
mitted or reflected at a semitransparent mirror [41]. Therefore a higher bit rate
should be possible, as well as a better understanding for undesirable electro-
magnetic interference effects can be gained through coincidence detection. A
second entanglement based quantum random number generator takes advan-
tage of photon-number path entangled photons produced in a BBO crystal [42].
This non-colinear downconversion scheme results in a two photon interference
on a fibre beam splitter. Thus, both photons get either transmitted or reflected.
These photons are then separated again at a second beam splitter and registered
via coincidence detection. Depending on the coincidence signal of detectors 1
and 2 or 3 and 4, a zero or a one bit is produced.

In the second case, the quantum nature of the spontaneous emission of a
LED or a continuous wave laser and therefore the unpredictability in time of a
single emission process can be exploited to generate time intervals of random
length between two consecutive events [40, 43]. A comparison of the ratio of
these then leads to a binary output sequence. Also attenuated pulsed sources,
where each pulse can in principle contain zero or more photons can be used [44].
Another implementation which makes use of spontaneous emission are random
number generators based on a measurement of the phase noise. Regarding to [45]
this can be done with a stabilized in-fibre Mach-Zehnder interferometric setup.
The binary random sequence is then produced by comparing single events at a
certain sampling frequency with the mean value of the whole sequence as the
threshold.

Both methods have their own advantages and disadvantages concerning their
operation. In general, generators, that work with two detectors have a higher
operating speed but are more difficult to calibrate and to keep in a stable oper-
ation mode. Therefore a fast and precise feedback control system is crucial to
take small efficiency deviations of the different paths and of the photon detectors
into account. On the other hand generators working with just one detector save
the trouble of an extensive calibration of the system but they are limited in their
operational speed, since the discretization of time intervals (due to counting of
a high frequency periodic signal or a time to amplitude conversion) is more fa-
vorable to lead to time intervals of equal length, which are then discarded by
the comparison algorithm.

2.2.3 Hybrid random number generators

There exist also two different types of hybrid random generators, which are
a combination of true and pseudo random number generators. The first type
of this kind compares the two produced bit sequences and performs an XOR
operation, which yields a zero if the bits are the same and a one if they are
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different. The second more common alternative is to use a physical random
number generator to produce the initial values of a deterministic random number
generator. In the first case a continous stream of random numbers is produced,
whereas in the second random numbers are only trusted until the maximum
period length of the algorithmic generator is reached. Afterwards a new seed,
produced by the TRNG, has to restart the random number generation process
again.

2.3 Randomness tests

Over the last decades several techniques have been developed to test if a se-
quence of ”random” numbers is truly random or not. The particular test suites
with the containing test classes will be discussed later in this section.

In general there are three criteria a random sequence has to fulfil. Since
perfectly unbiased sequences will only be generated by pseudo random number
generators these following criteria are valid only in a certain range of validity.
Primarily all bits of a sequence should be nearly equally distributed for suf-
ficiently long sequences. Since the bits are independent they should also be
unpredictable. The third criterion is irreproducibility.

It is also important to introduce the concept of a reference level α [46], which
specifies the probability that one of these tests fails even though the sequence is
completely random (for example produced by a radioactive decay). Considering
a binary sequence of 1000 bits, there are several different combinations of zeros
and ones possible but each bit has p = 1

2 of being either a zero or a one. In
general zeros and ones are mixed but they should yield a uniform distribution
for sufficiently long sequences. For a small sample such as 1000 bits a random
sequence can also consist of 1000 identical bits. This does not seem pretty
random at first sight. If one flips a coin for example one would assume some
kind of trick or a certain preparation if it comes up heads 1000 times in a row.
In fact, there is a very small probability that this happens, namely p = 2−999.
A statistical test would also reject the underlying hypothesis for this biased
sample. The probability that such an error occurs even tough the sequence is
completely random is the significance level1 α.

For the evaluation of random numbers, there are three different approaches
[47]:

• Threshold values: In this case the sequence complexity of a binary ran-
dom sequence is computed and compared to a certain threshold value.
According to their relation the test might be passed or failed.

• Range of validity: Again the complexity of a sequence is computed. The
decision criterion now is specified by certain range depending on the sig-
nificance level α. Therefore whenever one changes the significance level
the range has to be recomputed.

1Typical values for the significance level are 0.01, 0.03 or 0.05.
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• P-values: The probability for a certain test statistic is computed. These
p-values hold for abitrary significance levels.

Since the latter of these guarantees the highest degree of flexibility - even though
the computation might be more complex - only this approach will be considered
in the next subsection.

2.3.1 General test procedures

The χ2 test

The χ2 test is one of the best known statistical tests to test random sequences
and is therefore as well implemented in the software programme of our quantum
random number generator (QRNG). More explicitly spoken the quality of the
produced random numbers is displayed in ”real time” at the input screen. The
term real time has been put in quotation marks, because it is always a sequence
of random numbers has to be considered. This argument is valid since the
response time of the human eye is much greater than the sampling time of the
QRNG.

In general, a sequence of n independent observations can be categorized into
k different cases, which occur with a certain probability pk. Our random number
generator just generates a binary sequence of zeros and ones. Hence there are
only two categories with probability p0 = p1 = 1

2 for each independent event.
The expected number of zero and one events therefore is np. Getting back to
classical coin tossing with n = 1000 repetitions a perfectly uniform distribution
yields 500 times heads and 500 times tails. The constraint that only finite
sequences can be taken into account lead to a certain bias, for example 505
times zero and only 495 times one. The sum of the squares of the differences
between the number of expected events and observed events is then the χ2 value,
which should be low but according to [48] not too low. This simply means that
perfect randomness without any bias is ”too good to be true”. If the χ2 value
is still between 95 and 90 percent or 10 and 5 percent, these values are also
suspicious.

Another point which is missing in this example is the possibility of different
probabilities for different categories. For example considering a craps game,
where the player has to throw two dice [48]. Here the probability p2 = 1

36 of
throwing a two is much smaller than the probability p7 = 1

6 of throwing a seven.
Therefore a bias in the latter case would contribute more to the χ2 value. The
solution of this problem is a description by a weighted sum of the form

χ2 =

k∑
i=1

(Yi − npi)2

npi
(2.6)

with the observed numbers Yi. Since the equations

k∑
i=1

Yi = n,

k∑
i=1

pi = 1 (2.7)
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hold one can easily see that the observed events are not completely independent
anymore. This is important for the evaluation of the obtained χ2 value since
look up tables [49, 50] depend on the degrees of freedom of the χ2 distribution.
The first part of equation 2.7 reduces the degrees of freedom by one. In general
the number of degrees of freedom is ν = k−1. For convincing results the length
of the sequence should be sufficiently long that the expected number of every
class is npi ≥ 5.

The Kolmogorov-Smirnov test

In contrast to the χ2 test, which can be applied if the sequence can be divided
into several classes k, the Kolmogorov-Smirnov or for short KS test, works for
continous samples. For example if a mapping to the interval [0,1) is made, there
are infinitely many values lying in between.

In this case the distribution function for different values of a random quantity
X is defined in the following way

F (x) = p(X ≤ x) (2.8)

where x lies in the intervall [0,1).
Now the hypothesis that the random variables X really follow this distri-

bution has to be tested. This can be done by a comparison to an empirical
distribution function Fn(x) of the form:

Fn(x) =
#{Xj : Xj ≤ x}

n
(2.9)

#Xj is the number of the obtained random quantities Xj and n is the number of
all independent observations. Since Fn(x) can be greater or smaller than F (x)
the KS test consists of the two parts K+

n and K−n :

K+
n =

√
n max
−∞<x<+∞

(Fn(x)− F (x))

K−n =
√
n max
−∞<x<+∞

(F (x)− Fn(x))
(2.10)

Similar to the χ2 method these values can be looked up in mathematical for-
mularies to get a feeling for the quality of the produced random numbers. The
difference for the KS test is that these values are not approximations only valid
for large n but exact values. Nevertheless the choice of n remains crucial since
an overly large number of n averages out local nonrandom effects, whereas on
the other hand a large number of observations is desirable for the differentiation
between two similar probability distributions. To overcome these difficulties
another KS test has to be made from the obtained results. This works in the
following way: K+

n and K−n values are calculated for a mid-level size of obeser-
vations such as 1000. This yields

K+
1000,1 K+

1000,2 . . . K+
1000,r
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r different values for K+
1000. Now a KS test for these values is compared to the

distribution function

F∞(x) = 1− e−2x2

(2.11)

with x ≤ 0.
This approximation is valid for the case of sufficiently large n and then

applies to K−1000 as well, because the two empirical functions should behave in
the same way. Hence this approach is able to rule out nonrandom behaviour on
a local as well as on a global scale.

2.3.2 Empirical tests

In the following, empirical tests contained in the dieharder test suite [51] will
be grouped together and discussed according to their test properties.

Bit distribution tests

One of the easiest ways to evaluate whether a series appears to be random or not
is the so called monobit test. Hence this kind of test investigates the frequency
of the occuring classes k. For a binary sequence zeros and ones should be equally
distributed.

The series test considers non-overlapping pairs (Y2i+1, Y2i+2) of a sequence.
In the binary case this corresponds to the four outputs produced by our two
QRNGs, namely (00), (01), (10) and (11), which each appear with the probabil-
ity p = 1

4 . The number of classes increases with k = 2d where d is the number
of consecutive bits. Hence the probability of such pairs, triples and so on, of
lying in a certain class is pk = 1

2d . The subsequent analysis can be done by a
χ2 test. Since only independent non-overlapping pairs and so forth are taken
into account also the sequence of random bits has to grow if one will not discard
higher orders from a meaningful χ2 test. The generalization from single bits or
pairs to n-tuples is called a bit distribution test.

Matrix rank tests

This subcategory of randomness tests forms random binary NxM matrices as
well as their special case of quadratic matrices with N=M. After the rank deter-
mination of the respective matrices they are organized in categories according
to their rank with the exception of low rank matrices. Because of their low
probabilites these are categorized together until a certain threshold value which
depends on the dimension of the matrix. Finally to prove their distribution a
χ2 test is performed.

Overlapping n letter words tests

The Bitstream, the Overlapping Pairs Sparse Occupance (OPSO) test, the Over-
lapping Quadruple Sparse Occupance (OQSO) test and the DNA test are based
on the distribution of missing n letter words using a specific alphabet. The
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difference between them is the amount of letters in the corresponding alphabet
and the word length. The two most extreme cases are the Bitstream test (20
letter words in a 2 letter alphabet) and the OPSO test (2 letter words in a 1024
letter alphabet). The number of missing words should in the end be normally
distributed around a certain mean value with a test dependent variance.

Minimum distance tests

This test produces random points lying inside a cube. Around each of these
points a sphere, that is just as large that the next point can be reached is
centered. The smallest volume of such a sphere and therefore also r3 should
be exponentially distributed around a certain mean value. Subtracting this
distribution from one then leads to uniform variables that can be tested with a
KS test.

Also an alternative version of this test is included in the dieharder test suit.
In the two-dimensional case the spheres are substituted by circles.

Permutation test

This test divides the input sequence into several subsequences (U0, U1, ..., Ut) of
length t. Afterwards the frequency of the t! permutations of this subsequence
is analyzed by a χ2 test.

2.4 Experimental realization

2.4.1 Source of random numbers

The quantum random number generator which is used in our EPR steering
experiment is a modification of the one developed by Thomas Jennewein and
other colleagues from our quantum information and quantum optics group [52].
According to the previous section 2.2.2 the underlying mechanism of this op-
tical random number generator is the inherent randomness of a single photon
impinging on a 50:50 or a polarizing beam splitter. In the second case the pho-
tons preliminarily have to get polarized at 45◦ with respect to the orientation
of the optical axis of the beam splitting crystal. This can be done by putting
an additional polarization foil into the photon path between the LED output
and the polarizing beam splitter and has the advantage that any desired bias
between the two detectors can be adjusted. According to which detector fires,
a binary random sequence is produced.

The electric circuit diagram as shown in figure 2.1 shows the electric com-
ponents involved in the random number generation process. In the beginning
single photons of a red light emitting diode (LED) source with a very low coher-
ence time are guided to the beam splitter where each photon randomly decides
which of the two paths it will take. The low coherence time together with the
photon production rate in the source guarantee no disturbing interference effects
while a sufficiently high operating speed can be maintained. In the second step
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Figure 2.1: Electric circuit diagram of the optical quantum random number
generator. Both configurations either with a beam splitter (BS) or a polarizing
beam splitter (PBS) in combination with a polarizer (POL) are shown. After the
registration (”click”) at one of the two photomultiplier tubes (PM1, PM2) the
signals are post processed, combined at the flip-flop (MC10EL31) and finally a
binary random sequence is generated (figure taken from the original pubilcation
[52]).

the photon gets detected in one of the two photomultiplier tubes (PM1, PM2),
where additionally to the detection itself a first amplification occurs. Fine ad-
justments of the tube voltages and therefore of the pulse rates and amplitudes
can be done by potentiometers (TV1, TV2). After an additional amplification
stage (A) the signals have to be converted to a certain kind of logic family before
they can be fed into the RS flip-flop. This conversion to a high speed emitter
coupled logic (ECL) signal is done by two comparators (MC1652). The RS
flip-flop is the core of our random number generator, where the binary random
sequence finally gets produced. The letters RS in this context just refer to ”set”
and ”reset” of the output signal which corresponds to a one and a zero bit at
the output Q. The operating principle now is as follows: if detector one, which
corresponds to the set input, fires, a high voltage signal is produced. As long as
this detector clicks no change in the output signal will take place. If detector
two regsiters a photon, the reset input of the flip-flop receives a signal. Hence
the high signal is reset to low again. In the end it is convenient to convert the
ECL signal into a transistor transistor logic (TTL) pulse, which is less power
consuming and also less sensitive to discharge effects. To get a continous 32 bit
stream of random numbers for the further usage on a personal computer the
random sginal is stored in a shift register and read out according to the cycling
time of an internal (old configuration) or external clock.

2.4.2 Operation of the QRNG

Now this is the point where our implementation differs from the original con-
figuration since an external clock was not provided at that time. The external
clock needs to be built in to tap the output signal of the QRNG before it gets
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processed by the FPGA board. This has the advantage of a low internal delay
time (45 ns) while the internal regulation cycle keeps running. Therefore the
clock output port was converted into a clock input port which triggers the rate
of random numbers loaded into the shift register. The additional clock output
port at the front panel of our QRNG is responsible for the speed of the read-
out mechanism. In both input ports square wave signals produced by arbitrary
function generators are fed in.

Figure 2.2: Illustration of the different parameter settings inside the TRNG
software (version 1.4).

Figure 2.2 shows the input possibilities concerning the different types of op-
eration which are determined by the TestRunAsync parameter. If it is equal to
one then only the regulation cycle (intensity, symmetry and quick test of ran-
domness) is triggered internally. The second adjustment option is zero, which
states that the output can be triggered internally by the internal sampling fre-
quency.

Another extension of the TRNG software is the symmetry parameter added
to the menu. This feature is of great importance regarding the fine tuning of
the occurence of the three measurement settings before each measurement run.
Since any bias at least perturbs the measurement results, it has to be ruled out
carefully by comparison of the number of appearances of the individual bases
in the coincidence counting logic. Although it is rather difficult to control the
functional interaction of two QRNGs our implementation has the advantage
that these quantities can be directly read out from the coincidence counting
software and therefore guarantee mutually unbiased bases.

The behaviour for a given parameter set can be viewed in the measurement
control tab (fig. 2.3). Thereof there are two quantities from special interest,
namely the symmetry and the χ2 value, since it takes some time until the QRNG
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Figure 2.3: The measurement control tab of the TRNG software shows real time
information of the operation of the QRNG for a given parameter set.

has reached the values which have been defined in the parameter menu. These
values are updated according to the number of calibration cycles per millisecond
(fig. 2.2).

The symmetry value gets computed by counting the one bits of one cycle
and dividing this number through the total amount of bits from the last cycle.
The rating of the quality of the generated random numbers is done by a bit
occurrence test, which counts the occurrence of n-zero bit and n-one bit blocks
of 32 bit random number sequences. According to the laws of probability the
occurence of these n-bit blocks should approximately drop linearly. To prove
this behaviour a χ2 test, comparing the expected occurence and the actual
occurence of blocks, is performed.

If finally all of these settings behave according to the set parameters either
an experiment can be performed or a random file can be recorded and tested
afterwards by the dieharder test suite. For the file generation there is a separate
tab in the TRNG software (fig. 2.4), where the file name and the file size can
be specified. Also an alternative option concerning the file type can be chosen
if the output as a binary sequence is not desired. In the text type option, each
byte gets converted into a number between 0 and 255 in decimal representation.

2.5 Test results

2.5.1 Execution of the dieharder test suite

After recording a randomxxx.dat file the dieharder test suite has to be executed
to check the random properties of the generated sequence. In contrast to the
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Figure 2.4: The generate file tab specifies the file name and length as well as
the output format.

TRNG software dieharder (version 3.31.1) does not have such a nice graphical
representation but is rather straightforward to use in the Linux terminal since
there is very detailed online documentation [51] available. If one prefers to get
the possible input options in the terminal directly this can be easily done as well
by simply executing the command dieharder in the respective subfolder. The
corresponding comand line regarding our tests is

dieharder -a -q -g 201 -f randomxxx.dat > outputfilexxx.txt

which has the following meaning: a tells the programm that all tests should
be performed, q specifies how the output is illustrated (passed, weak, failed),
g 201 is the file input raw and f is simply there to declare the filename of the
inputfile.

2.5.2 Tests with fixed frequencies

Even though the main focus in testing our quantum random number generator
is the operating speed, there are several other parameters which have to be de-
termined, before it makes sense to test which frequency is ideal to trigger the
read out mechanism of the produced random numbers. Therefore several pa-
rameters, such as the file size or the elapsed time between when the QRNG was
switched on and the random number file generation, have been tested for fixed
frequency inputs (30 MHz sampling frequency and 1 MHz read out frequency).

The test results regarding different sizes of the input file have not only an
effect on the tested sequence itself but are also important for the further test
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procedure, since the generation of files that are larger than 1 GB is a rather time
consuming process. As shown in figure 2.6 there is a significant difference of the
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Figure 2.5: Test statistics depending on the file size of the input file.

test results concerning the 100 MB and the 500 MB file, while afterwards only
small changes occur when the file size gets further increased. This result can
be understood in the following way: on one hand the 100 MB file might be too
small that some tests, which need a very large number of consecutive bits, can
not be repeated sufficiently often and therefore suffer from worse test statistics.
On the other hand an ideal infinite random sequence should not suffer from
any bias. Since only the limit for large n can be treated, it is natural that the
test results get better for larger file sizes even though the performance of such
randomness tests itself is limited to finite samples. From a functional point
of view it can be said that 500 MB files do not suffer from any test specific
behaviour and can therefore be regarded as trustable samples.

The second question adressed in this section is whether the QRNG has to
warm up for a certain time until a stable operation can be ensured. To answer
this question five files with different time delays, starting with ∆t = 0 until
∆t = 120 after two hours of operation, have been recorded. According to the
results of figure 2.6 there are two possible explanations. The first one is simply
that no characterisic behaviour is shown since the first result and the result
obtained after 90 minutes of operation are very similar. Because of the fact
that the test results shown for 60 minutes of operation are better than the ones
for 90 minutes one could believe that this behaviour is caused only by statistical
fluctuations. On the other hand there is strong experimental evidence, especially
for the adjustment of two QRNGs, that a stable operation is reached only after a
certain warm up time. This suggests that the test results for ∆t = 90 should be
attributed to statistical fluctuations while the bad behaviour in the beginning
is real and not such an artefact.
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Figure 2.6: Test performance depending on the time of operation.

2.5.3 Determination of the ideal read out frequency

The read out frequency is the most crucial part about the operation of our
QRNG, since it ideally has to pass all the tests contained in the dieharder
test suite and simultaneously operate as fast as possible to meet experimental
demands. According to the toggle rates reached in [52], the sampling frequency
was again set to 30 MHz, ensuring a low autocorrelation time. To get the most
precise results only 1.5 GB files have been recorded and tested. As shown in
figure 2.7 it is favorable to use small read out frequencies around 1 MHz since the
test results for a faster read out are not good enough. Nevertheless the lowest
frequencies tested also do not pass all the tests. On one hand this is due to some
tests contained in the dieharder test suite, which are known to let all random
number generators fail. On the other hand this is rather a philosophical question
about the definition of ”perfect” randomness, if such a definition is possible. As
already mentioned in the beginning of this chapter random numbers too good to
be true are also suspicious. Therefore, to conclude, one should not be bothered
that a small amount of tests (< 5%) fails.
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Chapter 3

Experimental EPR-Steering
Setup

3.1 Principles of the individual modules

3.1.1 Nonlinear optics, spontaneous parametric downcon-
version and phase matching

The origin of an induced polarization in a nonlinear crystal is the interaction
of an electric field with its atoms. The resulting force on the electron cloud
disturb the equilibrium position of the core-electron system and induces a spatial
separation of the respective charge concentrations [53].

For small electric fields the relation between the polarization P and the
electric field E is linear

Pi = ε0χ
(1)
ij Ej (3.1)

whereas ε0 is the vacuum permittivity and χ
(1)
ij is the linear term of the electric

suceptibility. This approximation is valid as long as the applied electric fields
are small compared to the field strengths in interatomic processes, which are
approximately around 105−108 V/m. If the laser power is increased the electric
field strengths get close to this regime and the nonlinear expansion coefficients
are not negligible anymore.

Pi = ε0[χ
(1)
ij Ej + χ

(2)
ijkEjEk + χ

(3)
ijklEjEkEl + . . . ] (3.2)

For the further description I will restrict myself to second order nonlinear pro-
cesses [54], since these are relevant for our Sagnac source.

Two linearly polarized monochromatic plane waves travelling along the z-
direction create the following electric field:

E = [E1 cos(k1z − ω1t+ Φ1) + E2 cos(k2z − ω2t+ Φ2)] (3.3)

45
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Inserting this superposition into the lowest order non linear term in the expan-
sion for the polarization this yields

P (2) = ε0χ
(2)[

1

2
E2

1 cos[2(k1z − ω1t+ Φ1]

+
1

2
E2

2 cos[2(k2z − ω2t+ Φ2]

+
1

2
(E2

1 + E2
2)

+E1E2 cos[(k1 + k2)z − (ω1 + ω2)t+ (Φ1 + Φ2)]

+E1E2 cos[(k1 − k2)z − (ω1 − ω2)t+ (Φ1 − Φ2)]]

(3.4)

which gives raise to several parametric effects. The first two terms describe the
second harmonic generation (SHG) of ω1,2. The third term is known as optical
rectification (OC). The last two terms describe the sum frequency generation
(SFG, upconversion) and the difference frequency generation (DFG, downcon-
version).

Another - from an experimental point of view - interesting process is miss-
ing in this classical description, namely the process of spontaneous parametric
downconversion (SPDC). Until now only processes with two incident photons
have been taken into account. Quantum mechanically also processes with only
the pump photon present can result in difference frequency generation. The
origin of the signal input is in this case the zero point fluctuation of the vacuum
state.

A proper description has to be done in the context of a quantized field theory,
where the interaction Hamiltonian takes the form [55]:

H = ε0

∫
V

d3rχ(2)E(−)
p E(+)

s E
(+)
i + h.c. (3.5)

With

E
(+)
j = εj

∫
V

d3ra†j,k(ωj)e
i(kj ·r−ωjt) (3.6)

whereas a†j,k is the creation operator and the index j refers to the signal or idler
field and the index k to the ordinary or extraordinary mode.

The energy and momentum conservation conditions of such three wave mix-
ing processes are called phase matching conditions and guarantee that the waves
produced at different positions in the crystal interfere constructively. The en-
ergy uncertainty is negligible hence the corresponding equation can be easily
written down:

~ωp = ~ωs + ~ωi (3.7)

In the case of momentum conservation the finite crystal length is responsible for
a phase missmatch ∆~k, which reduces the maximum intensity. Therefore the
condition reads

~∆~k = ~~kp − ~~ks − ~~ki (3.8)
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in the most general case. The case where all wave vectors are parallel is called
collinear phase matching. Considering this situation in a birefrigent crystal
it can be shown that depending on the polarization modes of the three waves
phasematching can be achieved [54]. Thus, the vector of the pump photon needs
to be shrunken while at least the vector of the signal or the idler photon has to
get streched. These parameters mainly depend on the propagation direction in
the crystal.

In positive uniaxial crystals ne > no is valid and therefore the k-vector of
the extraordinary beam is larger. Phase matching can be reached if the pump
beam is ordinarily polarized, where at least one of the two other beams has to be
extraordinarily polarized. If both beams are parallel (extraordinarily polarized)
the process is called type I phase matching. In the case where the signal and
idler beam are orthogonally polarized the type II phase matching condition can
be fullfiled. For negative uniaxial crystals these conditions get changed since
no > ne.

Recent developments in nonlinear optics came up with the idea of quasi
phase matching, where phase matching can be reached even in presence of a
certain phase mismatch ∆k. This mismatch gets compensated by periodically
changing the phase of the non-linearity during the crystal growth. One big
advantage of this technique is that the crystals can be tailored in such a way
that the coefficients of the non-linearity are much stronger than in birefringent
crystals and therefore the down conversion efficiency gets higher. The quasi
phase matching condition now depends on the poling period Λ:

~kp(λp, np(λp, T )) = ~ks(λs, ns(λs, T )) + ~ki(λi, ni(λi, T )) +
2π

Λ(T )
(3.9)

3.1.2 Electro-optics

The electro-optical effect is understood to mean that the refractive index of a
transparent material gets changed if a certain voltage is applied. Hence the
refractive index becomes a function of the electric field n = n(E) and the index
ellipsoid of the crystal gets modified. Since this quantity is slowly varying over
E it can be expanded into a Taylor series around E = 0. For this expansion
it is convenient to rewrite it in terms of the electric impermeability η which is
directly proportional to the electro-optic coefficents r and s, which are tensors
of third respectively fourth order [56]:

ηij(E) = ηij +
∑
k

∂ηij
∂Ek︸︷︷︸
rijk

Ek +
∑
k,l

1

2

∂2ηij
∂Ek∂El︸ ︷︷ ︸
sijkl

EkEl + . . . (3.10)

The relation between the refractive index n and the electric impermeability η is
given by:

η =
1

n2
(3.11)
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In most materials the term linear proportional to the electric field is dominating
and higher order terms become negligible. This second term in (3.10) is known
as Pockels effect and is mainly used for phase or amplitude modulation. De-
pending on the direction of the electric field lines a differentiation between the
longitudinal (parallel to the direction of propagation) and the transversal (per-
pendicular) Pockels effect is made. For centrosymmetric crystals n(−E) = n(E)
and therefore the linear term vanishes. These media, where the refractive index
depends on E2, are called Kerr media.

In our experiment two Pockels cells are used to manipulate the phase of hor-
izontally or vertically polarized photons produced in our Sagnac source. They
therefore act as retarding wave plates. A decomposition of the light beam into
eigenfunctions of the ordinary and extraordinary crystal axis leads to the fol-
lowing transformation of the polarization state [8]:(

V ′e
V ′o

)
= e−iΦ

(
e−i

Γ
2 0

0 ei
Γ
2

)
︸ ︷︷ ︸

W0

(
Ve
Vo

)
, R(θ) =

(
cos θ sin θ
− sin θ cos θ

)
(3.12)

The phase retardation of Γ is due to different phase velocities of the ordinary
and extraordinary beam

Γ = (ne − no)kd (3.13)

whereas d is the thickness of the wave plate. The polarization state in the
laboratory coordinate system can be obtained by a retransformation by the
means of two rotation matrices R(θ).(

V ′x
V ′y

)
= R(−θ)W0R(θ)

(
Vx
Vy

)
(3.14)

For a half wave plate (HWP) the phase retardation becomes Γ = π. In the
case of a quarter wave plate (QWP) it is Γ = π

2 . Hence the thickness of the
crystal becomes

dHWP =
λ

2

1

(ne − no)
, dQWP =

λ

4

1

(ne − no)
(3.15)

The question now is how this properties can be achieved by an electro-optic mod-
ulator. As already mentioned above the index elipsoid gets modified through the
presence of an additional static electric field applied to the crystal. Considering
the longitudinal Pockels effect with E = Ez, the x and y axes of the ellipsoid
aquire an additonal term depending on the electric field whereas nz = ne [57]:

nx′ = n0 −
1

2
n3
or63Ez, ny′ = n0 +

1

2
n3
or63Ez (3.16)

Thus the phase retardation

Γ = (ny′ − nx′)kd =
2π

λ
n3
or63V (3.17)
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depends on the applied voltage V (E = V
d ). The voltage where the Pockels cell

acts as a half (quarter) wave plate is therefore:

VHWP =
λ

2

1

n3
or63

, VQWP =
λ

4

1

n3
or63

(3.18)

3.1.3 Avalanche photo diodes

The single photon counting modules used in our experiment are avalanche photo
diodes (APDs) which are silica semiconductor devices that make use of the
photoelectric effect for which Albert Einstein received the Nobel prize in 1921.
Since single photon events need to be registered, an amplification is needed to
work with the resulting electronic signal. This can be done by the utilization
of the right working point which is biased near the breakdown voltage. An
impinging photon on the detector then causes free charge carriers and in the
nonlinear Geiger region, both free electrons and holes contibute to the ionization
process and guarantee a sufficiently high electric signal [58]. Quenching and
recharge circuitries are necessary so that on one hand the diode doesn’t heat up
too much and gets destroyed and on the other hand the dead time can be kept
low.

Depending on the quantum information task we want to perform, there are
different experimental demands on these photon detection modules.

3.2 Experimental realization

3.2.1 Entangled photon pair production

As described in section 3.1.1 spontaneous parametric downconversion is a non-
linear process of lowest order and can be used to produce pairs of entangled
photons. The scheme used in our experiments is a polarization Sagnac inter-
ferometer (PSI) where in contrast to schemes using BBO crystals no additional
compensation crystals are needed. The core of this configuration is a 10 mm
periodically poled KTP crystal which is attached to a Peltier oven. This alows
a temperature stable operation within ∆T = ±0.1◦C. Quasi phase matching
for type II downconversion and therefore indistinguishability between the wave-
lengths of signal and idler photon can be reached if the temperature gets fixed
to a certain (crystal dependent) value. The functional principle of the bidirec-
tionally pumped Sagnac loop can be easily explained by the means of figure
3.1. Fig.3.1(a) shows the vertical component of the blue 405 nm pump beam
which corresponds to a clockwise run through the Sagnac loop. The vertically
polarized component gets reflected at the polarizing beam splitter (PBS) and
then passes through a dual wavelength half wave plate (dHWP) oriented at π

4 .
This rotates the polarization from vertical to horizontal. Next - after hitting
a mirror - the downconversion process in the PPKTP crystal takes place and
produces two 810 nm photons one horizontally polarized the other vertically
polarized. Due to different group velocities the horizontally polarized photon
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Figure 3.1: Schematic illlustration of the polarization entangled Sagnac source.
(a) shows the vertical component of the pump light which propagates in clock-
wise direction. In (b) the horizontally polarized component, which gets trans-
mitted at the first PBS and therefore propagates counterclockwise, is shown
(figure adapted from[59]).

propagates faster through the crystal. At a mirror both polarizations get re-
flected and afterwards separated by the same polarizing beam splitter as in the
beginning.

Fig.3.1(b) refers to the counter clockwise direction of the Sagnac loop and
initially horizontally polarized pump light. This time the polarizing beam split-
ter is passed and after hitting the mirror the pump photons interact with the
nonlinear crystal. Again the horizontally polarized photon is faster and hits the
mirror first. The difference in group velocity then gets compensated by the dual
wavelength half wave plate. Finally the polarizing beam splitter separates the
different linear polarization directions.

If the polarization direction of the pump beam is diagonal half of the photons
will get reflected and half of them will get transmitted at the polarizing beam
splitter. This yields the entangled state

|Ψ〉 =
1√
2

(|Hs〉3 ⊗ |Vi〉4 + eiΦ|Vs〉3 ⊗ |Hi〉4) (3.19)

whereas the phase can be adjusted by a half wave and a quarter wave plate
in the pump beam to get a proper |Ψ−〉 state that is needed for the steering
experiment.

3.2.2 Switching of the Pockels cells

The steering inequalities can be violated more easily if the number of measure-
ment bases gets increased [60]. In our setup with avalanche photo diodes (APDs)
as single-photon detectors with typical photon detection efficiencies1 η ≤ 60%

1At 810 nm.



3.2. EXPERIMENTAL REALIZATION 51

the only way of violating these inequalities loophole free, is the implementation
of three different measurement bases in which the entangled photon pairs of the
Sagnac source are measured. In our steering experiment these bases are H/V,
D/A and R/L. The relations between them are shown in table 1.1. The simul-
taneous closure of the locality and freedom of choice loophole requires a fast
switching process between them. This is done by two consecutive Pockels cells,
one acting as half wave plate at 22.5◦, the other as a quarter wave plate at 45◦.
The switching time of the Pockels cells is 22 ns and consits of an internal elec-
tric delay of 18 ns and of 4 ns rise time until the high voltage signal is reached
[59]. According to the binary outcome of our two quantum number generators
(QRNGs) there are four combinations (00), (10), (01) and (11) possible, which
trigger the voltage supply for the Pockels cells:

PC1 PC2 Polarization Transformation Measurement

0 0 H/V 1̂ σ̂z
VHWP 0 D/A 1√

2
(σ̂x + σ̂z) σ̂x

0 VQWP R/L 1√
2
(1̂ + iσ̂x) σ̂y

VHWP VQWP L/R 1
2 (i1̂ + σ̂x − σ̂y + σ̂z) −σ̂y

Table 3.1: Illustration of the four possible outcomes produced by the quantum
random generators and their effect on the Pockels cells and therefore on the
measured polarization.

In order to avoid double counting of σ̂y regarding the steering inequality
(1.41) the last one of these settings is discarded but has been written down here
for completeness.

3.2.3 Coincidence counting logic

According to the steering task (c.f. section 1.6) and equation (1.42) the steering
value can be evaluated by counting the coincidence results of the two distant
observers Alice and Bob.

Thus, a coincidence counting logic is needed, whose key ingredient is a Xilinx
field programmable gate array (FPGA), which performs a logical AND opera-
tion. Therefore the logic module assigns to each rising edge of a detection pulse
a time bin of 1.56 ns length. The coincidence window now has to be set accord-
ing to the timing jitter of the respective detectors. On Alice’s side the Perkin
Elmer SPCM-AQRH silicon photon detectors have a timing jitter of 1.5 ns,
therefore the corresponding coincidence window has to be at least 2*1.56 ns.
Since the laser components COUNT-series detectors in Bob’s laboratory have a
higher timing resolution of 800 ps and the fact that accidental coincidence rates
resulting from dark counts on Bob’s side should be kept as low as possible, the
total window of four bins is divided into three on Alice’s side and one on Bob’s
side.
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3.3 Space-time arrangement

As mentioned in section 1.5.4 a proper space-time arrangement is the key to the
simultaneous closure of the locality and the freedom of choice loophole.

The three main criteria for the closure of the locality loophole are a space-
like separation between Alice and Bob, fast switching electro-optical modulators
(EOMs) triggered by a quantum random number generator (QRNG) and an
independent data aquisition of the two parties with a high timing resolution.

In the EPR-Bohm thought experiment [18] as well as in first theoretical
considerations only symmetric space-time arrangements, in the sense of an EPR
source in the center and two equally distant measurement apparata, were taken
into account. Actually this restriction is not essential for the closure of the
locality loophole but as we will see an asymmetric setup has some advantages
concerning the closure of the freedom of choice loophole. The quintessence of this
loophole was that the settings do not depend on hidden variables produced in the
source and the other way around. Hence the asymmetric configuration, where
the source is located in Alice’s laboratory and the quantum random numbers
are produced on Bob’s side is the most suitable experimental situation. This
argumentation is valid only under the assumption that the photon kept at the
source has a sufficently long delay fiber and that the electronic signal produced
by the QRNG is transmitted over a classical channel that is not influenceable
by local hidden variables anymore.

Another limitation concerning the space-time arrangement is the operating
speed of certain components. The electronic signal of the QRNG needs to be
converted so that it can be further used to establish a certain measurement
setting. This is done by a so called splitter box and takes 30 ns (including
all cables). The Pockels cells driver afterwards takes another 22 ns to switch
between our three measurement bases. The time delay caused by the measure-
ment itself is 20 ns. This consists of the time it takes from the impinging on the
detector until a classical click can be registered (10 ns) and of further 10 ns time
for the setting validity window . Further 18 ns are caused by electronic delays
(amplification and signal processing) in the coincidence logic. In the best case
the timing considerations are equal on both sides of the experiment. Since on
Bob’s side the switching speed of the Pockels cells is not crucial, also a slower
driver could be used, as it was done in our experiment.

The setting independence window only depends on the distance between the
two measurement apparata. For a spatial separation by 48 m the resulting time
window is 2L

c = 320 ns. The computation of the outcome independence window
is more difficult to treat since all delays on Alice’s side have to be taken into
account. The vital assumption to ensure outcome independence thereby is that
the time when she reports her result to Bob lies outside of the future lightcone of
Bob’s measurement. Otherwise subluminal communication between them could
not be excluded and Bell’s assumptions are not valid anymore. The sooner
Alice’s reporting occurs, the bigger the outcome independence window gets and
therefore also the overlap between setting and outcome independence windows
increases.
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Summarizing these considerations the following delays come into play on
Alice’s side. First of all Alice has to wait 90 ns until the QRNG produced a
trustworthy random number. Afterwards she has to delay her photon until the
setting choice has been transmitted through a BNC cable to her laboratory.
This process causes a delay of 205 ns. So, in principle after 295 ns the Pockels
cells switching process, which takes another 22 ns, could be initiated by a signal
conversion process done by the splitter box (30 ns). For the setting validity
window and the detection process another 20 ns have to be added. After the
signal processing in the coincidence counting logic (18 ns) Alice’s measurement
can in principle be regarded as completed. However it is convenient to introduce
a further 20 ns delay to increase the experimental visibility.

All in all, Alice’s measurement process could be finished after 405 ns. Sub-
tracting 160 ns (Lc ) for any hypothetical influence from the Bob side and building
the difference with the setting independence window results in a window of 75 ns
for Bob’s measurement. To make sure that outcome and setting independence
are fullfilled simultaneously a buffer of 25 ns at the beginning and in the end
has been introduced. This leads to a trusted measurement window of 20 ns.

3.4 Results and conclusion

Analysis of the single and coincidence counts over 360 runs (each integrated over
30 s) led to a measured steering value of Sexp = 1.049±0.002 [27], which clearly
violates the steering inequality 1.41 (by more than 20 standard deviations) which
is bound to S = 1, since a pure state vector must lie on the surface of a unit
Bloch sphere. Nevertheless this value is far away from the theoretical bound of
3 which can be understood if the steering inequality is rewritten in terms of a
conclusive probability and the visibility. The connection between the measured
experimental and the theoretical steering values then simply is:

Sexp = SthηV
2 (3.20)

The main factor for the reduction of the theoretical value therefore is the prob-
ability of getting conclusive results, which was 38.3 ± 0.1%. This value takes
into account the total arm efficiency of the source as well as losses caused by
the delay fibre and the two electro-optic modulators. The visibility V on the
other hand only gets minimally reduced to 95.05 ± 0.06% in the worst case by
the fact of a not perfect source visibility as well as due to imperfections in the
polarization analyzer modules and fibres. Due to the asymetric steering setup
and the implementation of three measurement bases the performed experiment
did not suffer from any loopholes and therefore could rule out an important
subclass of local realistic theories.

This result can be further regarded as a test of Born’s rule since Bob locally
accepts quantum mechanics and therfore his photon of the entangled pair is
measured via a projective measurement as shown in equation 1.7.
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job and making it possible to finish my thesis on time.

Thanks to Morgan Russell and his cat Albert (partly named after the well-
known physicist) for correcting my bad English.

Last but not least, I want to thank my family and friends for supporting me
throughout my whole studies.

61


