
MSc Program
Engineering Management

A Master’s Thesis submitted for the degree of
“Master of Science”

supervised by

Agile Software Development Methodologies; an Approach to
achieve Quality in Software

Professor Peter Kopacek

Amirhassan Aliakbar

0927531

November 2010, Vienna, Austria

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Affidavit

I, AMIRHASSAN ALIAKBAR, hereby declare

1. that I am the sole author of the present Master’s Thesis, "Agile
Software Development Methodologies; an Approach to achieve
Quality in Software", 84 pages, bound, and that I have not used any
source or tool other than those referenced or any other illicit aid or
tool, and

2. that I have not prior to this date submitted this Master’s Thesis as an
examination paper in any form in Austria or abroad.

Vienna,

Signature

I

ACKNOWLEDGEMENT

I would like to express my sincere gratitude to professor Peter Kopacek for his

valuable insights, guidance and direction through the process of writing my theses as

my supervisor and overall guidance and continuous support as the Engineering

Management Program director. I would like to thank him for the priceless knowledge

he provided me with through the program, generously.

To my family, Mom and Dad, who have always been my supports in every stage of

my life. Nothing compares to their help and I believe nothing can compensate it.

I also would like to thank all my colleagues and friends in the Engineering

Management program. I gratefully enjoyed the collaboration and experience and

knowledge exchange them. I need to thank Mr. Franz Kaltseis for his help on giving

me a way to his colleagues at Autodesk, in Wels, Austria, and also his colleagues for

their indulgent experience sharing.

II

ABSTRACT

As the computers penetrate more and more in every aspect of man’s life, software

defects cause more than just inconvenience and latency. Software solutions are used

in bigger solutions, therefore the solution itself has grown explosively in size and

complexity. Lack of proper methods and management models result in inefficient

products with significant absence of quality, so reliability of the software products

goes under doubt. As a young topic, software engineering has evolved in a mutant

manner through a few decades. Software Development Models were introduced one

after another evolutionarily based on the predecessors’ shortcomings and problems

faced while employing. The Agile Software development methodologies are

categorized as one group of methodologies based iterative and incremental model,

were introduced in early 00s in the Agile Manifesto for Software Development. Data

analysis in this text, based on the surveys and results of employing these

methodologies by practitioners of different fields and team and project size world

wide, reveals the agile methodologies’ success in time and cost reduction and

improvement in quality and productivity. The study also shows that these

methodologies’ success is not limited to the project size, as some of the cons’

ssumptions and predictions have outlined a

III

Contents

1 INTRODUCTION 1
1.1 Thesis Structure 2
1.2 Motivation 2

2 PROBLEM DESCRIPTION 3

2.1 Research Approach 3
2.2 Data Collection 3

3 QUALITY: DEFINITION AND IMPORTANCE 4

3.1 Quality: The Definition 4
3.2 Quality: The Importance 7
3.3 Software Quality: The Definition 8
3.4 Software Quality: The Importance 11

3.4.1 The Economic Value of Software Quality 12

4 SOFTWARE QUALITY SYSTEM 16
4.1 Standards 18
4.2 Reviewing 19
4.3 Testing 19
4.4 Defect Analysis 20
4.5 Configuration Management 21
4.6 Security 21
4.7 Education 22
4.8 Vendor Management 23
4.9 Safety 24
4.10 Risk Management 24

5 SOFTWARE QUALITY SYSTEM IMPLEMENTATION 26

5.1 The Waterfall Process Model 29
5.1.1 High-level Design 31
5.1.2 Low-level Design 32
5.1.3 Code Stage 32
5.1.4 Unit Test 33
5.1.5 Component Test 33
5.1.6 System Level Test 34
5.1.7 Early Customer programs 36

5.2 The Prototyping Model 37
5.2.1 Rapid Throwaway Prototyping 40
5.2.2 Evolutionary Prototyping 40

5.3 The Spiral Model 41
5.4 The Object-Oriented Development Process Model 44
5.5 The Iterative Development Process Model 50
5.6 Extreme Programming 54
5.7 The Scrum 55

6 THE REVOLUTIONARY APPROACH 58

6.1 The Manifesto for Agile Software Development 59
6.2 Impact of Agile Development Methods on Quality and Productivity 61

IV

6.2.1 Knowledge Sharing 61
6.2.2 Active Participation of Stakeholders 62
6.2.3 Self-Organizing Teams 62
6.2.4 Reduced Documentation 63
6.2.5 Response to Change 63
6.2.6 Trainings 63
6.2.7 Refactoring 64

6.3 An Individual Survey Respond: Autodesk 64
6.4 Agile Development in Action: Results from practitioners 65

6.4.1 Member Size Growth 65
6.4.2 Purpose of employing Agile and Results 66

6.4.2.1 Manage Rapidly Changing Priorities 67
6.4.2.2 Accelerate Time-to-Market 68
6.4.2.3 Increase Productivity 69
6.4.2.4 Quality Improvement 71
6.4.2.5 Cost Reduction 72
6.4.2.6 Business Satisfaction 72

7 SUMMARY AND FUTURE WORK 74

7.1 Conclusion 74
7.2 Caveats 75
7.3 Future Work 75

REFERENCES 77

LIST OF FIGURES 80

	 1	

1 INTRODUCTION

Software engineering and its development methodologies as young areas do not have

a strong history of trial and error for development like construction industry.

However this field is rapidly wide spreading in all areas of human life, its evolution

is quickly grown.

The first modern digital computers creation dates back to early 1940s. Firstly, the

instructions to operate the machine were wired into it. Like other aspects of this

young field of science, which is growing and improving quickly, soon practitioners

realized it is necessary to divide this infant into hardware and software.

Then, programming languages were brought to existence in 1950s to deal with

scientific, algorithmic and business problems respectively. Ever since programming

has been improved to provide solutions to bigger and bigger problems. As the

problem gets bigger, the solution it needs gets more complex. So, to manage these

complex software solutions, software development methodologies appeared with

support of different tools and improvement of programming languages.

It has been almost a decade that, nowadays called, Agile Software Development

Methodologies, gained the name agile after publication of the Agile Manifesto. Since

then they were the hot topic of software development forums and communities and

received appraisal.

Agile methodologies are said to have all the good impacts on the software products,

which are developed, based on them. It is also so apparent that the population of

proponents of these methodologies is of a way bigger number compared to the

opposite group.

One of the impacts of agile methodologies is on quality and quality improvement.

This thesis will discuss it through literature, individual surveys and survey results

currently available in the literature.

	 2	

1.1 Thesis Structure

This thesis is divided in three sections:

 Fundamental of Quality and Software Quality

 Software Quality Systems definition, characteristics and Implementation

 Software Development Models

 Discussion on Agile Development Methodologies

1.2 Motivation

As a graduate and fan of software engineering, related issues especially in project

management and development approach model were of my interest. Many projects

fail to release on time or totally fail to release. This can be caused by lack of robust

management and/or shortcomings of methodologies employed and/or usage of wrong

method for specific projects.

After a brief review of approaches mainly used in the industry these days, I noted

agile methodologies are widely used and uniquely successful.

Since quality in software products is one of my concerns I decided to dedicate this

thesis to it in connection with the mostly used methodologies.

	 3	

2 PROBLEM DESCRIPTION
2.1 Research Approach

This thesis starts with quality definitions and its importance in general meaning and

specifically in software industry. Then it moves on to software quality systems and

the respective characteristics.

It continues to implementation of such systems and the methods used.

At last, it focuses on the Agile methodologies and discusses their impact on quality

and productivity by the means stated before.

2.2 Data Collection

All the statistical data provided in the thesis is referenced. The numbers provided are

either in absolute values or percentages that are calculated based on the absolute

values quoted from the respective references.

	 4	

3 QUALITY: DEFINITION AND IMPORTANCE

3.1 Quality: The Definition

Quality is a perceptual, conditional and subjective attribute and can be described

differently across different times, situations and individuals. Customers mostly focus

on the specification quality of a product and usually compare it to competitors’

products. Producers measure the conformance quality or degree to which the product

was produced correctly. The American Society for Quality defines quality as: ‘A

subjective term for which each person has his or her own definition’.

There are typically two types of view of quality: popular and professional. A popular

view of quality is an intangible trait which can be discussed, felt, and judged, but

cannot be weighed or measured. Terms such as good quality, bad quality, and quality

of life exemplify how people talk about something vague, which they don't intend to

define. This view reflects the fact that people perceive and interpret quality in

different ways. The implication is that quality cannot be controlled and managed, nor

can it be quantified. This view is in vivid contrast to the professional view held in the

discipline of quality engineering that quality can, and should, be operationally

defined, measured, monitored, managed, and improved. Another popular view is that

quality connotes luxury, class, and taste. Expensive, elaborate, and more complex

products are regarded as offering a higher level of quality than their humbler

counterparts. Therefore, a surround-sound hi-fi system is a quality system, but a

single-speaker radio is not. According to this view, quality is restricted to a limited

class of expensive products with sophisticated functionality and items that have a

touch of class. Simple, inexpensive products can hardly be classified as quality

products.

Numerous definitions and methodologies have been modified and various techniques

and concepts have evolved in order to effectively improve the management of

product or service quality. There are a number of quality-related functions within a

business of which the most common ones are quality assurance, which is the

	 5	

prevention of defects, and quality control, which is the detection of defects, most

commonly associated with testing.

Although, the definition may vary across different fields and through times, there are

a number of popular definitions in literature and practice. These definitions are

accepted and used commonly in different fields. Some of them are as follow:

• “Conformance to requirements”. (Crosby, 1979)

• “Fitness for use”. (Juran, 1974)

• “Must-be quality” and “attractive quality.” The former is near to "fitness for

use" and the latter is what the customer would love, but has not yet thought

about. (Kano, 1984)

• “Quality is an intangible trait; it can be discussed, felt, and judged, but cannot

be weighed or measured”, described as the “popular” view in contrast with

“professional” view. (Stephen H. Kan, 2003)

• “Quality in a product or service is not what the supplier puts in. It is what the

customer gets out and is willing to pay for.” (Drucker, 1985)

• “Degree to which a set of inherent characteristics fulfills requirements.” (ISO

9000:2005)

The misconceptions and vagueness of the popular views do not help the quality

improvement effort in the industries. To that end, quality must be described in a

workable definition. The two definitions by Crosby and Juran are related and

consistent. These definitions of quality have been adopted and used by many quality

professionals.

“Conformance to requirements” implies that requirements must be clearly stated

such that they cannot be misunderstood. Then, in the development and production

process, measurements are taken regularly to determine conformance to those

requirements. The non-conformances are regarded as defects, the absence of quality.

As an example, one requirement or specification for a certain radio may be that it

must be able to receive certain frequencies more than X miles away from the source

	 6	

of broadcast. If the radio fails to do so, then it does not meet the quality requirements

and should be rejected.

The “fitness for use” definition takes customers' requirements and expectations into

account, which involve whether the products or services fit their uses. Since different

customers may use the products in different ways, it means that products must

possess multiple elements of fitness for use. According to Juran, each of these

elements is a quality characteristic and all of them can be classified into categories

known as parameters for fitness for use. The two most important parameters are

quality of design and quality of conformance.

Quality of design in popular terminology is known as grades or models, which are

related to the spectrum of purchasing power. The differences between grades are the

result of intended or designed differences. Like in automobile industry, all cars

provide to the user the service of transportation. However, models differ in size,

comfort, performance, style, economy, and status. In contrast, quality of

conformance is the extent to which the product conforms to the intent of the design.

In other words, quality of design can be regarded, as the determination of

requirements and specifications and quality of conformance is conformance to

requirements. The two definitions of quality therefore, are essentially similar. The

difference is that the fitness for use concept implies a more significant role for

customers' requirements and expectations.

In industry it is commonly stated “Quality drives productivity.” Improved

productivity is a source of greater revenues, employment opportunities and

technological advances. Most discussions of quality refer to a finished part, wherever

it is in the process. Inspection, which is what quality insurance usually means, is

historical, since the work is done. The best way to think about quality is in process

control. If the process is under control, inspection is not necessary.

However, there is one characteristic of modern quality that is universal. In the past,

efforts to improve quality, typically defined as producing fewer defective parts, it

was done at the expense of increased cost, increased task time, longer cycle time, etc.

However, when modern quality techniques are applied correctly to business,

	 7	

engineering, manufacturing or assembly processes, all aspects of quality, customer

satisfaction and fewer defects or errors, cycle time and task time, productivity and

total cost, etc.- must all improve or, if one of these aspects does not improve, it must

at least stay stable and not decline. So modern quality has the characteristic that it

creates AND-based benefits, not OR-based benefits.

In other hand, another view of quality is that it is defined entirely by the customer or

end user, and is based upon that person's evaluation of his or her entire customer

experience. The customer experience is defined as the aggregate of all the

interactions that customers have with the company's products and services.

All in all, the fact is organizations are at different stages on the journey towards

perfection, and at each stage they will have unique definitions of quality. Therefore,

the best definition is which is accurately defines quality, at each stage, for any

organization undertaking the continual improvement journey. It is necessary to

reflect the fact that, during each stage of the journey, the organization will be aiming

for something different from what was aimed for previously. So the definition of

quality needs to be variable, not fixed; this is in line with the spirit of Institute of

Quality Assurance’s own definition of quality: “A degree of excellence”.

	

3.2 Quality: The Importance

The simplest idea about the importance of quality in a business is quality product or

service is what customers are looking for. Like the definition of quality, which is not

absolute, there is not just one reason for importance of quality. Quality can be the

key to success in the competitive market but not only by gaining bigger number of

customers but also by reduction in costs of any possible kind and therefore more

efficiency and profitability.

Man instinctively responds to good quality product. A company that is reputed to

consistently provide quality products is bound to have a bigger share of the market

and this means high patronage and profits. The approach to achieve constant quality

is profitable itself. A quality product does not come out of an arbitrary system. The

whole life cycle must be managed through a quality management system.

	 8	

Quality management is a new phenomenon in production and service. However it

can be tracked back to the old age, the new concept was introduced in the 20th

century.

Traditionally, efforts to improve quality have centered on the end of the product

development cycle by emphasizing the detection and correction of defects. On the

contrary, the new approach to enhancing quality encompasses all phases of a product

development process from a requirements analysis to the final delivery of the product

to the customer and even further to after sales service. Every step in the development

process must be performed to the highest possible standard.

The relationship between quality and productivity may seem conflicting to many

individuals. Despite many managers think quality and improvement is almost

impossible without reduction in productivity and increase in costs, the modern

approach to quality is a way to reduce costs and increase productivity and therefore

profitability.

Production can be drawn as a measure of output from a production process, per unit

of input. Production is a process of combining various inputs in order to make

something for consumption, which is the output. The input resources needed to

produce a bad product is just equal to those needed to make a good one. The more

rework needed for the defects increases the value for the input so the productivity

faces reduction. If the product is made right first time, no rework is needed therefore

productivity grows. Quality improvement is a potential medium to increase

productivity by reducing defective outputs and resources used for rework.

3.3 Software Quality: The Definition

The question “What is software quality?” evokes many different answers. From the

previous discussion, quality is a complex concept in general itself, it means different

things to different people, and it is highly context dependent. Garvin (1984) Analysis

in “What Does “Product Quality” Really Mean” reveals how software quality is

	 9	

perceived in different ways in different domains, such as philosophy, economics,

marketing, and management. Kitchenham and Pfleeger’s (1996) article, “Software

Quality: The Elusive Target.”, gives a succinct exposition of software quality. They

discuss five views of quality in a comprehensive manner as follows:

• Transcendental View: It envisages quality as something that can be

recognized but is difficult to define. The transcendental view is not specific to

software quality alone but has been applied in other complex areas of

everyday life.

• User View: It perceives quality as fitness for purpose. According to this view,

while evaluating the quality of a product, one must ask the key question:

“Does the product satisfy user needs and expectations?”

• Manufacturing View: Here quality is understood as conformance to the

specification. The quality level of a product is determined by the extent to

which the product meets its specifications.

• Product View: In this case, quality is viewed as tied to the inherent

characteristics of the product. A product’s inherent characteristics, that is,

internal qualities, determine its external qualities.

• Value-Based View: Quality, in this perspective, depends on the amount a

customer is willing to pay for it.

The concept of software quality and the efforts to understand it in terms of

measurable quantities date back to middle of 1970s. McCall, Richards, and Walters’

(1977) “Factors in Software Quality” was the first study on the concept of software

quality in terms of quality factors and quality criteria. A quality factor represents a

behavioral characteristic of a system. Some examples of high-level quality factors

are correctness, reliability, efficiency, testability, maintainability, and reusability. A

quality criterion is an attribute of a quality factor that is related to software

development. Various software quality models have been proposed to define quality

	 10	

and its related attributes. The most influential ones are the ISO 9126(Quality

Management Systems, ISO 9004:2000) and the CMM.

The ISO 9126 quality model was developed by an expert group under the aegis of

the International Organization for Standardization. The document ISO 9126 defines

six broad, independent categories of quality characteristics: functionality, reliability,

usability, efficiency, maintainability, and portability.

The CMM was developed by the Software Engineering Institute (SEI) at Carnegie

Mellon University. In the CMM framework, a development process is evaluated on a

scale of 1 to 5, commonly known as level 1 through level 5. For example, level 1 is

called the initial level, whereas level 5, named optimized, is the highest level of

process maturity.

In terms of software engineering, software quality defines how well software is

designed, and how well the software conforms to that design. Whereas quality of

conformance is concerned with implementation, quality of design measures how

valid the design and requirements are in creating a worthwhile product.

Software quality may be defined as conformance to explicitly defined functional and

performance requirements, explicitly documented development standards and

implicit characteristics that are expected of all professionally developed software.

Software requirements are the foundations from which quality is measured. Lack of

conformance to requirement is lack of quality. Specified standards define a set of

development criteria that guide the manager is software engineering. If criteria are

not followed lack of quality will almost result. A set of implicit requirements often

goes unmentioned, like for example ease of use, maintainability etc. If software

confirms to its explicit requirement but fails to meet implicit requirements, software

quality is suspected.

A definition by Steve McConnell (1993) in his “Code Complete” divides software

into two pieces: internal and external quality characteristics. External quality

	 11	

characteristics are those parts of a product that face its users, where internal quality

characteristics are those that do not.

Conformance to requirements, completeness, absence of bugs and fault-tolerance,

and the most important, reliability, can be named as external quality characteristics.

Among the internal characteristics, source code quality is one of the most important

internal factors. Reliability is a high important facet, which increases software

quality importance in a significant pace as will be discussed in the next sections.

Although a computer has no concept of "well-written" source code, from a human

point of view, source code can be written in a way that has an effect on the effort

needed to comprehend its behavior. Many source code programming style guides

which often stress readability and usually language-specific conventions are aimed at

reducing the cost of source code maintenance. Readability, low complexity, low

resource consumption and robust error handling are some of characteristics of a

quality source code.

3.4 Software Quality: The Importance

With software embedded into many devices today, software failure has caused more

than inconvenience. Software errors have caused chaos and disorders in places like

train stations, production lines, services like banking, telecommunications and even

have caused human fatalities. The causes have ranged from poorly designed user

interfaces to direct programming errors.

As an example, between June 1985 and January 1987, a computer controlled

radiation therapy machine, called the Therac-25, massively overdosed six people.

Therac-25 was produced by Atomic Energy of Canada Limited (AECL) based on the

previous machines, Therac-6 and Therac-20 with some advantages and

improvements. It needed less mechanism required to accelerate the electrons and it

was also more economical to produce. Compared to Therac-20, Therac-25 is more

compact, more versatile, and arguably easier to use. The customer could also gain

	 12	

economic advantages, since only one machine was required for both treatment

modalities: electrons and photons.

In addition, Therac-25 software had more responsibility for maintaining safety than

the software in the previous machines. Therac-20 had independent protective circuits

for monitoring the electron-beam scanning plus mechanical interlocks for policing

the machine and ensuring safe operation. Therac-25 relied more on software for

these functions. AECEL took advantage of the computer’s abilities to control and

monitor the hardware and decided not to duplicate all the existing hardware safety

mechanisms and interlocks. The same Therac-6 package was used by the software

developers at AECL to start the Therac-25 software. Therac-20 and Therac-25

software programs were done independently starting from a common base. The reuse

of Therac-6 design features or modules explain some of the problematic aspects of

the Therac-25 software design. The whole story about the disaster made by Therac-

25 is well argued in Dr. Nancy Leveson’s (1993) paper, Medical Devices: The

Therac-25.

From the case Therac-25, the importance of reliability can be effortlessly derived.

One of the most significant quality issues can be reliability. Software reliability is an

important facet of software quality. It is defined as "the probability of failure-free

operation of a computer program in a specified environment for a specified time".

One of reliability's distinguishing characteristics is that it is objective, measurable,

and can be estimated, whereas much of software quality is subjective criteria. This

distinction is especially important in the discipline of Software Quality Assurance.

These measured criteria are typically called software metrics.

The need for a means to objectively determine software reliability comes from the

desire to apply the techniques of contemporary engineering fields to the development

of software. That desire is a result of the common observation, by both laypersons

and specialists, that computer software does not work the way it ought to. In other

words, software is seen to exhibit undesirable behaviors, up to and including outright

failure, with consequences for the data which is processed, the machinery on which

the software runs, and by extension the people and materials which those machines

	 13	

might negatively affect. The more critical the application of the software to

economic and production processes, or to life-sustaining systems, the more important

is the need to assess the software's reliability.

Regardless of the criticality of any single software application, it is also more and

more frequently observed that software has penetrated deeply into most every aspect

of modern life through the technology that is used. It is only expected that this

infiltration will continue, along with an accompanying dependency on the software

by the systems, which maintain the societies. As software becomes more and more

crucial to the operation of the systems on which man depends, the argument goes, it

only follows that the software should offer a concomitant level of dependability. In

other words, the software should behave in the way it is intended, or even better, in

the way it should.

The fundamental problem in the issue of measuring software reliability, which is the

difficulty of determining, in advance, exactly how the software is intended to

operate. The problem seems to stem from a common conceptual error in the

consideration of software, which is that software in some sense takes on a role,

which would otherwise be filled by a human being. This is a problem on two levels.

Firstly, most modern software performs work, which a human could never perform,

especially at the high level of reliability that is often expected from software in

comparison to humans. Secondly, software is fundamentally incapable of most of the

mental capabilities of humans, which separate them from mere mechanisms:

qualities such as adaptability, general-purpose knowledge, a sense of conceptual and

functional context, and common sense.

Nevertheless, most software programs could safely be considered to have a

particular, even singular purpose. If the possibility can be allowed that said purpose

can be well or even completely defined, it should present a means for at least

considering objectively whether the software is, in fact, reliable, by comparing the

expected outcome to the actual outcome of running the software in a given

environment, with given data. Unfortunately, it is still not known whether it is

possible to exhaustively determine either the expected outcome or the actual

	 14	

outcome of the entire set of possible environment and input data to a given program,

without which it is probably impossible to determine the program's reliability with

any certainty.

However, various attempts are in the works to attempt to rein in the vastness of the

space of software's environmental and input variables, both for actual programs and

theoretical descriptions of programs. Such attempts to improve software reliability

can be applied at different stages of a program's development. These stages

principally include: requirements, design, programming, testing, and runtime

evaluation.

Beside all discussed about software quality, it may seem to some that it is costly. As

mentioned in the section related to importance of product quality in general, quality

is equal to more cost to many. But in the modern concepts, quality management leads

to lower cost and input with better output and bigger profit. As software industry

itself is a young field, injecting new concept of quality was done in its early ages.

Many standards and methods and techniques have been, and some are still, used to

manage the development of quality software and improving it. These methods and

techniques, just like methods in other industries, reduce defect rate, cost and time and

increase efficiency and quality of the software.

3.4.1 The Economic Value of Software Quality

The economic value of software quality is not well covered in the soft- ware

engineering literature. There are several reasons for this problem. One major reason

is the rather poor measurement practices of the software engineering domain. Many

cost factors such as unpaid overtime are routinely ignored. In addition, there are

frequent gaps and omissions in software cost data, such as omission of project

management costs and the omission of part-time specialists such as technical writers.

In fact, only the effort and costs of coding have fairly good data available.

Everything else, such as requirements, design, inspections, testing, quality assurance,

project offices, and documentation tend to be underreported or ignored.

	 15	

The software engineering literature depends too much on vague and unpredictable

definitions of quality. The unscientific definitions slow down research on software

quality economics.

Two other measurement problems also affect quality economic studies. These

problems are the usage of two invalid economic measures: cost per defect and lines

of code. Cost per defect penalizes quality and achieves its lowest costs for the

buggiest applications. Lines of code penalizes high-level programming languages

and disguises the value of high-level languages for studying either quality or

productivity.

Software quality does have value, and the value increases, as application sizes get

bigger. In fact, without excellence in quality control, even completing a large

software application is highly unlikely. Completing it on time and within budget in

the absence of excellent quality control is essentially impossible.

	 16	

4 SOFTWARE QUALITY SYSTEM

Starting a software quality program from scratch is time consuming and a task often

doomed to failure before it is begun. Inadequate preparation, misused terms, lack of

planning, and failure to recognize the roles of all individuals in the organization are

only a few of the pitfalls waiting for the overanxious practitioner.

There are two goals of software quality systems. The first goal is to build quality into

the software from the beginning. This means assuring that the problem or need to be

addressed is clearly and accurately stated, and that the requirements for the solution

are properly defined, expressed, and understood. Nearly all the elements of software

quality systems are oriented toward requirements validity and satisfaction.

In order for quality to be built into the software system from its inception, the

software requirements must be clearly understood and documented. Until the actual

requirements, and the needs of the user that they fulfill, are known and understood,

there is little likelihood that the user will be satisfied with the software system that is

delivered. Whether they are all known before the start, or some will be learned as it

goes, all requirements must be known and satisfied before getting through the

project.

The second goal of software quality systems is to keep that quality in the software

throughout the software life cycle.

The elements of software quality systems are standards, reviewing, testing, defect

analysis, configuration management, security, safety, risk management.

While each element can be shown to contribute to both goals, there are heavier

relationships between some elements and one or the other of the two goals.

Every software life cycle model has divisions, or periods of effort, into which the

work of developing and using the software is divided. These divisions or periods are

given various names depending on the particular life-cycle paradigm being applied.

For this discussion, the following periods of effort, together with their common

names, are defined:

	 17	

 Recognition of a need or problem.

 Definition of the software solution to be applied.

 Development of the software that solves the problem or satisfies the need.

 Proving that the solution is correct.

 Implementing the solution.

 Using the solution.

 Improving the solution.

Regardless of their names, each division represents a period of effort directed at a

particular part of the overall life cycle. They may be of various lengths and be

applied in various sequences, but they all exist in successful projects.

There are also associations between certain elements and the various divisions or

periods of the software life cycle. Figure 4.1 displays the ten elements as a cube

supporting the goals of software quality and the periods of the software life cycle

with which each element is most closely associated.

Figure 4.1: Quality tasks, life-cycle periods, and goals (Horch, 2003)

	 18	

4.1 Standards

The old days of free-form creativity in the development of software are gradually

giving way to more controlled and scientific approaches. Software is moving from an

arcane art to a visible science.

Standards are intended to provide consistent, rigorous, uniform, and enforceable

methods for software development and operation activities. The development of

standards, whether by professional societies such as the Institute of Electrical and

Electronics Engineers (IEEE), international groups such as International

Organization for Standardization/International Electrotechnical Commission Joint

Technical Committee One (ISO/IEC JTC1), industry groups, or software

development organizations for themselves, is recognizing and furthering that

movement.

Standards cover all aspects of the software life cycle, including the very definition of

it itself. More, probably, than any of the other elements, standards can govern every

phase of the life cycle. Standards can describe considerations to be covered during

the concept exploration phase. They can also specify the format of the final report

describing the retirement of a software system that is no longer in use.

Standards come into being for many reasons. They might document experience

gained in the day-to-day running of a computer center, and the most efficient

methods to be used. Laws and government regulations often impose standard

procedures on business and industry. Industries can band together to standardize

interfaces between their products such as in the communications areas. Contracts

often specify standard methods of performance. And, in many cases, standards arise

out of good common sense.

Standards have several characteristics such as necessity; because no standard will be

observed for long if there is no real reason for its existence, feasibility; as common

sense states, if it is not possible to comply with the tenets of a standard, then it will

be ignored and, measurability, It must be possible to demonstrate that the standard is

being followed.

	 19	

Software standards should be imposed so that the developer of a software product or

component can pay attention to the technical aspects of the task, rather than to the

routine aspects that may be the same for every task. Standards, such as those for

document formats, permit the producer to concentrate on technical issues and content

rather than format or layout details.

Standards, while worthwhile, are less than fully effective if they are not supported by

policies that clearly indicate their imposition. Specific practices for standard

implementation are often useful. In this way, adherence to the standard may be more

uniform.

4.2 Reviewing

Reviews permit ongoing visibility into the software development and installation

activities.

Product reviews, also called technical reviews, are examinations of products and

components throughout the development phases of the life cycle. They are conducted

throughout the software development life cycle. Informal reviews generally occur

during development life cycle phases, while formal reviews usually mark the ends of

the phases.

4.3 Testing

Tests provide increasing confidence and, ultimately, a demonstration that the

software requirements are being satisfied. Test activities include planning, design,

execution, and reporting.

Test planning begins during the requirements phase and parallels the requirements

development. As each requirement is generated, the corresponding method of test for

that requirement should be a consideration. A requirement is faulty if it is not

testable. By starting test planning with the requirements, non-testability is often

avoided. In the same manner that requirements evolve and change throughout the

	 20	

software development, do the test plans evolve and change. This emphasizes the

need for early, and continuing, configuration management of the requirements and

test plans.

Test design begins as the software design begins. Here, a parallel effort with the

software development is appropriate. As the design of the software takes form, the

test cases, scenarios, and data are developed that will exercise the designed software.

Each test case also will include specific expected results so that a pass-fail criterion

is established. As each requirement must be measurable and testable, so must each

test be measurable. A test whose completion is not definitive tells little about the

subject of the test. Expected results give the basis against which the success or

failure of the test is measured.

Actual testing begins with the debugging and early unit and module tests conducted

by the programmer. Formal test execution generally begins with integration tests in

which modules are combined into subsystems for functional testing. In larger

systems, it is frequently advisable to begin formal testing at the module level after

the programmer has completed his or her testing and is satisfied that the module is

ready for formal testing.

4.4 Defect analysis

Defect analysis is the combination of defect detection and correction, and defect

trend analysis. Defect detection and correction, together with change control,

presents a record of all discrepancies found in each software component. It also

records the disposition of each discrepancy, perhaps in the form of a software

problem report or software change request.

Each needed modification to a software component, whether found through a walk-

through, review, test, audit, operation, or other means is reported, corrected, and

formally closed. A problem or requested change may be submitted by anyone with

an interest in the software. The situation will be verified by the developers, and the

configuration activity manager will agree to the change. Verification of the situation

is to assure that the problem or need for the change actually exists. Configuration

	 21	

manager may wish to withhold permission for the change or delay it until a later

time; perhaps because of concerns such as interference with other software, schedule

and budget considerations, the customer's desires, and so on. Once the change is

completed and tested, it will be reported by configuration manager to all concerned

parties, installed into the operational software by the developers or operations staff,

and tested for functionality and compatibility in the full environment.

4.5 Configuration management

Configuration management is a three-fold discipline. Its intent is to maintain control

of the software, both during development and after it is put into use and changes

begin.

Configuration management is, in fact, three related activities: identification, control,

and accounting. Each of the activities has a distinct role to play. As system size

grows, so does the scope and importance of each of the activities. As systems grow

and become more complex, or as changes to the system become more important,

each activity takes on a more definite role in the overall management of the software

and its integrity.

4.6 Security

Another frequent damager of the quality of output of an otherwise high-quality

software system is data that has been unknowingly modified. If the data on which the

system is operating has been made inaccurate, whether intentionally or by accident,

the results of the software will not be correct. To the user or customer, this appears to

be inadequate software.

Additionally, though not really a software quality issue per se, is the question of theft

of data. The security of stored or transmitted data is of paramount concern in most

organizations. From the theft of millions of dollars by interception of electronic

	 22	

funds transfers to an employee who just changes personnel or payroll records, data

security is a major concern.

Finally, the recent onslaught of hackers and software attackers and the burgeoning

occurrences of viruses also need to be considered. These threats to software quality

must be recognized and countered.

The software quality practitioner is responsible for alerting management to the

absence, or apparent inadequacy, of security provisions in the software. In addition,

the software quality practitioner must raise the issue of data center security and

disaster recovery to management's attention.

4.7 Education

Education assures that the people involved with software development, and those

people using the software once it is developed, are able to do their jobs correctly.

It is important to the quality of the software that the producers be educated in the use

of the various development tools at their disposal. Different programming languages,

the use of operating systems, data modeling techniques, debugging tools, special

workstations, and test tools must be taught before they can be applied beneficially.

The proper use of the software once it has been developed and put into operation is

another area requiring education. In this case, the actual software user must be taught

proper operating procedures, data entry, report generation, and whatever else is

involved in the effective use of the software system's capabilities. This is one of the

issues got challenged in Dr. Nancy Leveson’s (1993) paper, Medical Devices: The

Therac-25.

The data center personnel must be taught the proper operating procedures before the

system is put into full operation. Loading and initializing a large system may not be a

trivial task. Procedures for recovering from abnormal situations may be the

responsibility of data center personnel. Each of the many facets of operating a

	 23	

software system must be clear so that the quality software system that has been

developed may continue to provide quality results.

The software quality practitioner is not usually the trainer or educator. These

functions are normally filled by some other group or means. The role of the software

quality practitioner is, as always, to keep management attention focused on the needs

surrounding the development and use of a quality software system. In this case, the

software quality practitioner is expected to monitor the requirements for, and the

provision of, the education of the personnel involved in the software life cycle.

Lastly, the support personnel surrounding software development must know their

jobs. The educators, configuration managers and software quality practitioners,

security and database administrators, and so on must be competent to maintain an

environment in which quality software can be built, used, and maintained.

4.8 Vendor management

When software is purchased, the buyer must be aware of, and take action to gain

confidence in, its quality. Not all purchased software can be treated in the same way,

as will be demonstrated here. Each type of purchased software will have its own

software quality system approach, and each must be handled in a manner appropriate

to the degree of control the purchaser has over the development process used by

producer. The following are three basic types of purchased software (Horch, 2003):

 Off-the-shelf;

 Tailored shell;

 Contracted.

Off-the-shelf software is a package that is bought at the store. Microsoft Office,

Adobe Photoshop, virus checkers, and the like are examples. These packages come

as they are with no warrantee that they will do what you need to have done. They are

also almost totally outside the buyer's influence with respect to quality.

	 24	

The second category may be called the tailored shell. In this case, a basic, existing

framework is purchased and the vendor then adds specific capabilities as required by

the contract. This is somewhat like buying a stripped version of a new car and then

having the dealer add a stereo, sunroof, and other extras. The only real quality

influence is over the custom-tailored portions.

The third category is contracted software. This is software that is contractually

specified and provided by a third-party developer. In this case, the contract can also

specify the software quality activities that the vendor must perform and which the

buyer will audit. The software quality practitioner has the responsibility in each case

to determine the optimum level of influence to be applied, and how that influence

can be most effectively applied. The purchaser's quality practitioners must work

closely with the vendor's quality practitioners to assure that all required steps are

being taken.

Attention to vendor quality practices becomes extremely important when the

developer is offshore or remote.

4.9 Safety

As computers and software grow in importance and impact more and more of our

lives, the safety of the devices becomes a major concern. The literature records

overdoses of medicines, lethal doses of radiation, space flights gone astray, and other

catastrophic and near-catastrophic events. Every software project must consciously

consider the safety implications of the software and the system of which it is a part.

The project management plan should include a paragraph describing the safety issues

to be considered. If appropriate, a software safety plan should be prepared.

4.10 Risk management

There are several types of risk associated with any software project. Risks range

from the simple, such as the availability of trained personnel to undertake the project,

	 25	

to more threatening, such as improper implementation of complicated algorithms, to

the deadly, such as failure to detect an alarm in a nuclear plant. Risk management

includes identification of the risk; determining the probability, cost, or threat of the

risk; and taking action to eliminate, reduce, or accept the risk. Risk and its treatment

is a necessary topic in the project plan and may deserve its own risk management

plan.

It is hard to achieve quality software products without a quality system within an

environment.

	 26	

5 SOFTWARE QUALITY SYSTEM IMPLEMENTATION

The elements of a software quality system must be assembled into a manageable

whole. As it begins to implement the individual elements into the software quality

system, each organization must select the method and order of implementation and

ensure that sufficient support is present for a successful implementation and that the

software quality system will become part of the new quality culture.

The planning of a software quality system should involve consideration of all the

elements discussed. Prior to beginning any actual implementation, careful

consideration must be given to each step that will be taken. Those software quality

system elements that are already in place or that are partially implemented must be

recognized and built on to the maximum extent compatible with the overall system.

Each activity must be assigned to the appropriate organizational entity for execution.

Inclusion of each group to be monitored in the planning process will benefit the

overall system by instilling a sense of system ownership in the whole organization.

The actual implementation of the software quality system plan requires careful

planning and scheduling. Starting with the definition of the charter of the software

quality practitioners and ending with the software quality system implementation

strategy and execution, each step must be laid out and accomplished with the

maximum involvement of the affected groups.

There are several strategies for implementing a software quality system. Probably the

least effective methods are the ones that impose the software quality system on the

whole development organization without regard to which stage each project is at in

its software development life cycle.

First is the all-at-once approach. Each project is expected to stop what it is doing and

to bring the project in line with the new software quality system requirements,

whether or not every requirement is meaningful. The result is usually a period of

confusion and a corresponding antagonism toward the software quality system and

the software quality group. Faced with this negative attitude, the software quality

group has a very difficult time establishing itself and often fails and is disbanded.

	 27	

Another poor method is the one-element-at-a-time approach. In this case, a particular

element is chosen for organization-wide implementation, again without regard to the

status of the various ongoing projects. Since there is varied success based on the

position of each project in its software life cycle, the element tends to fade away due

to decreasing application. When it is realized that element is ineffective, the decision

is made to try one of the others. It fails eventually. As each element is tried in turn,

each faces the same fate. Finally, the decision is made to scrap the software quality

system because it is obviously not effective.

Both these implementation methods can work if consideration is given to each

project to which they will be applied. There must be recognition that each project

will be in a different portion of its life cycle and thus will have differing abilities, or

needs, to comply with a new software quality system. Provisions for deviations from,

or waivers of, specific requirements of the software quality system based on the

projects' needs must be allowed, which will make either method of implementation

much more likely to succeed.

The all-at-once approach can be successful when the software quality system is to be

applied only to new projects.

A combination of the two methods can be the best answer in most cases. As is the

case in any discussion of methods or approaches, there is no single, always correct

situation.

The single-project and single-element approaches are clearly the extremes of the

implementation method spectrum. The single-project approach would be successful

in the information systems organization that had no ongoing development projects to

consider. The single-element approach could be the best answer if there is no new

project activity. Neither of these situations is likely to be the case in most

organizations. The answer, obviously, is to fit the implementation method, or

combination of implementation methods, to the actual experience of the particular

organization and to the specific projects being affected.

For new projects, it is almost always best to implement as much of the total system

as possible. Only those elements that, in a given organization, would conflict with

	 28	

ongoing projects should be delayed. An example might be a new form of database

security system that would seriously impact an ongoing development effort. In most

cases, however, new projects can be started using the full software quality system

with little or no impact on the rest of the development activity.

Ongoing projects can be the subject of various subsets of the full software quality

system, depending on their status and needs. Projects late in the development life

cycle probably would be unaffected by the imposition of new programmer training

but could benefit from increased user training requirements. A project early in the

development life cycle can be placed under more stringent configuration

management procedures without much impact on completed work. Each project must

be evaluated against the full software quality system, and those elements that are

feasible should be implemented.

As the software quality system is implemented and experience is gained with it, it

should be evaluated and modified as appropriate. The experiences of each project

should be considered and changes, additions, and deletions made. Provisions for

deviations and waivers will make the actual implementation of each element to each

project as smooth as possible. A study of the waivers and deviations will show the

modifications that may be needed in the overall system.

Once a quality system is implemented, there is a need in lower levels to inject quality

in developments of the software products.

Software metrics and models cannot be discussed in a vacuum; they must be

referenced to the software development process.

An overview of and discussion on the well-known process models seems necessary

in order to derive a better approach. The waterfall process life-cycle model, the

prototyping approach, the spiral model, the object-oriented development process and

the iterative development process, Extreme Programming and Scrum are as follows.

	 29	

5.1 The Waterfall Process Model

In the 1960s and 1970s software development projects were characterized by

massive cost overruns and schedule delays; the focus was on planning and control.

The emergence of the waterfall process to help tackle the growing complexity of

development projects was a logical event. The Waterfall Process Model was first

introduced in an article written by Winston Royce (1970), primarily intended for use

in government projects. It encourages the development team to specify what the

software is supposed to do, in other means, gather and define system requirements,

before developing the system. It then breaks the complex mission of development

into several logical steps with intermediate deliverables that lead to the final product.

To ensure proper execution with good quality deliverables, each step has validation,

entry, and exit criteria.

Figure 5.1 - The Waterfall Process Model.

The divide-and-conquer approach of the waterfall process has several advantages. It

enables more accurate tracking of project progress and early identification of

possible slippages. It forces the organization that develops the software system to be

more structured and manageable. This structural approach is very important for large

organizations with large, complex development projects. It demands that the process

generate a series of documents that can later be used to test and maintain the system.

The bottom line of this approach is to make large software projects more manageable

	 30	

and delivered on time without cost overrun. Experiences of the past several decades

show that the waterfall process is very valuable. Many major developers, especially

those who were established early and are involved with systems development, have

adopted this process. This group includes commercial corporations, government

contractors, and governmental entities.

Although a variety of names have been given to each stage in the model, the basic

methodologies remain more or less the same. Thus, the system-requirements stages

are sometimes called system analysis, customer-requirements gathering and analysis,

or user needs analysis; the design stage may be broken down into high-level design

and detail-level design; the implementation stage may be called code and debug; and

the testing stage may include component-level test, product-level test, and system-

level test.

Figure 5.2 shows an implementation of the waterfall process model for a large

project. The requirements stage is followed by a stage for architectural design. When

the system architecture and design are in place, design and development work for

each function begins.

This consists of high-level design, low-level design, code development, and unit

testing. Despite the waterfall concept, parallelism exists because various functions

can proceed simultaneously. As shown in the figure, the code development and unit

test stages are also implemented iteratively. Since unit testing is an integral part of

the implementation stage, it makes little sense to separate it into another formal

stage.

Before the completion of the high-level design, low-level design, and code, formal

reviews and inspections occur as part of the validation and exit criteria. These

inspections are called I0, I1, and I2 inspections, respectively.

When the code is completed and unit tested, the subsequent stages are integration,

component test, system test, and early customer programs.

The final stage is release of the software system to customers.

	 31	

Figure 5.2, An Example of the Waterfall Process Model. (Kan, 2002)

The following sections describe the objectives of the various stages from high-level

design to early customer programs.

5.1.1 High-Level Design

High-level design is the process of defining the externals and internals from the

perspective of a component. Its objectives are as follows:

 Develop the external functions and interfaces, including:

	 32	

o External user interfaces

o Application programming interfaces

o System programming interfaces: intercomponent interfaces and data

structures.

 Design the internal component structure, including intracomponent interfaces

and data structures.

 Ensure all functional requirements are satisfied.

 Ensure the component fits into the system/product structure.

 Ensure the component design is complete.

 Ensure the external functions can be accomplished or possibility of doing the

requirements

5.1.2 Low-Level Design

Low-level design is the process of transforming the high-level design into more

detailed designs from the perspective of a part (modules, macros, includes, and so

forth). Its objectives are as follows:

 Finalize the design of components and parts (modules, macros, includes)

within a system or product.

 Complete the component test plans.

 Give feedback about high-level design and verify changes in it.

5.1.3 Code Stage

The coding portion of the process results in the transformation of a function's low-

level design to completely coded parts. The objectives of this stage are as follows:

	 33	

 Code parts (modules, macros, includes, messages, etc.).

 Code component test cases.

 Verify changes in high-level design and low-level design.

5.1.4 Unit Test

The unit test is the first test of an executable module. Its objectives are as follows:

 Verify the code against the component's

o High-level design and

o Low-level design.

 Execute all new and changed code to ensure

o All branches are executed in all directions,

o Logic is correct, and

o Data paths are verified.

 Exercise all error messages, return codes, and response options.

 Give feedback about code, low-level design, and high-level design.

The level of unit test is for verification of limits, internal interfaces, and logic and

data paths in a module, macro, or executable include. Unit testing is performed on

nonintegrated code and may require scaffold code to construct the proper

environment.

5.1.5 Component Test

Component tests evaluate the combined software parts that make up a component

after they have been integrated into the system library. The objectives of this test are

	 34	

as follows:

 Test external user interfaces against the component's design documentation,

user requirements.

 Test intercomponent interfaces against the component's design

documentation.

 Test application program interfaces against the component's design

documentation.

 Test function against the component's design documentation.

 Test intracomponent interfaces (module level) against the component's design

documentation.

 Test error recovery and messages against the component's design

documentation.

 Verify that component drivers are functionally complete and at the acceptable

quality level.

 Test the shared paths (multitasking) and shared resources (files, locks,

queues, etc.) against the component's design documentation.

 Test ported and unchanged functions against the component's design

documentation.

5.1.6 System-Level Test

The system-level test phase comprises the following tests:

 System test

 System regression test

 System performance measurement test

	 35	

 Usability tests

The system test follows the component tests and precedes system regression tests.

The system performance test usually begins shortly after system testing starts and

proceeds throughout the system-level test phase. Usability tests occur throughout the

development process, it can be prototyping during design stages, formal usability

testing during system test period.

 System test objectives

o Ensure software products function correctly when executed

concurrently and in stressful system environments.

o Verify overall system stability when development activity has been

completed for all products.

 System regression test objective

o Verify that the final programming package is ready to be shipped to

external customers.

o Make sure original functions work correctly after functions were

added to the system.

 System performance measurement test objectives

o Validate the performance of the system.

o Verify performance specifications.

o Provide performance information to marketing.

o Establish base performance measurements for future releases.

 Usability tests objective

o Verify that the system contains the usability characteristics required

for the intended user tasks and user environment.

	 36	

5.1.7 Early Customer Programs

The early customer programs include testing of the following support structures to

verify their readiness:

 Service structures

 Development fix support

 Electronic customer support

 Market support

 Ordering, manufacturing, and distribution

In addition to these objectives, a side benefit of having production systems installed

in a customer's environment for the early customer programs is the opportunity to

gather customers' feedback so developers can evaluate features and improve them for

future releases. Collections of such data or user opinion include:

 Product feedback: functions offered, ease of use, and quality of online

documentation

 Installability of hardware and software

 Reliability

 Performance which is measure throughput under the customer's typical load

 System connectivity

 Customer acceptance

As the preceding lists illustrate, the waterfall process model is a disciplined approach

to software development. It is most appropriate for systems development

characterized by a high degree of complexity and interdependency. Although

expressed as a cascading waterfall, parallelism and some amount of iteration among

process phases often exist in actual implementation. During this process, the focus

should be on the intermediate deliverables like design document, interface rules, test

	 37	

plans, and test cases rather than on the sequence of activities for each development

phase. In other words, it should be entity-based instead of step-by-step based.

Otherwise the process could become too rigid to be efficient and effective.

The essence of waterfall model is that complex software systems can be built in a

sequential, phase-wise manner where all of the requirements are gathered at the

beginning, all of the design is completed next, and finally the master design is

implemented into production quality software. This approach holds that complex

systems can be built in a single pass, without going back and revisiting requirements

or design ideas in light of changing business or technology conditions.

It equates software development to a production line conveyor belt. Requirements

analysts compile the system specifications until they pass the finished requirements

specification document to software designers who plan the software system and

create diagrams documenting how the code should be written. The design diagrams

are then passed to the developers who implement the code from the design.

Under the waterfall approach, traditional IT managers have made valiant efforts to

craft and adhere to large-scale development plans. These plans are typically laid out

in advance of development projects using Gantt or PERT charts to map detailed tasks

and dependencies for each member of the development group months or years down

the line. However, studies of past software projects show that only 9% to 16% are

considered on-time and on-budget. (Standish Group International Inc, 1994) This

article attempts to summarize current thinking among computer scientists on why

waterfall fails in so many cases.

5.2 The Prototyping Approach

The first step in the waterfall model is the gathering and analysis of customers'

requirements. When the requirements are defined, the design and development work

begins. The model assumes that requirements are known, and that once requirements

are defined, they will not change or any change will be insignificant. This may well

be the case for system development in which the system's purpose and architecture

	 38	

are thoroughly investigated. However, if requirements change significantly between

the times the system's specifications are finalized and when the product's

development is complete, the waterfall may not be the best model to deal with the

resulting problems. Sometimes the requirements are not even known. In the past,

various software process models have been proposed to deal with customer feedback

on the product to ensure that it satisfied the requirements. Each of these models

provides some form of prototyping, of either a part or all of the system. Some of

them build prototypes to be thrown away; others evolve the prototype over time,

based on customer needs.

A prototype is a partial implementation of the product expressed either logically or

physically with all external interfaces presented. The potential customers use the

prototype and provide feedback to the development team before full-scale

development begins. Seeing is believing, and that is really what prototyping intends

to achieve. By using this approach, the customers and the development team can

clarify requirements and their interpretation.

As Figure 5.3 shows, the prototyping approach usually involves the following steps:

 Gather and analyze requirements.

 Do a quick design.

 Build a prototype.

 Customers evaluate the prototype.

 Refine the design and prototype.

 If customers are not satisfied with the prototype, loop back to step 5.

 If customers are satisfied, begin full-scale product development.

	 39	

Figure 5.3 – The prototyping approach. (Kan, 2002)

The critical factor for success of the prototyping approach is quick turnaround in

designing and building the prototypes. Several technologies can be used to achieve

such an objective. Reusable software parts could make the design and

implementation of prototypes easier. Formal specification languages could facilitate

the generation of executable code. Fourth-generation languages and technologies

could be extremely useful for prototyping in the graphical user interface domain.

These technologies are still emerging, however, and are used in varying degrees

depending on the specific characteristics of the projects.

The prototyping approach is most applicable to small tasks or at the subsystem level.

Prototyping a complete system is difficult. Another difficulty with this approach is

knowing when to stop iterating. In practice, the method of time boxing is being used.

This method involves setting arbitrary time limits for each activity in the iteration

	 40	

cycle and for the entire iteration and then assessing progress at these checkpoints.

5.2.1 Rapid Throwaway Prototyping

The rapid throwaway prototyping approach of software development, made popular

by Gomaa and Scott (1981), is now used widely in the industry, especially in

application development. It is usually used with high-risk items or with parts of the

system that the development team does not understand thoroughly. In this approach,

"quick and dirty" prototypes are built, verified with customers, and thrown away

until a satisfactory prototype is reached, at which time full-scale development begins.

Some people are of the opinion that rapid prototyping is not effective because they

believe it fails in replication of the real product or system. It could so happen that

some important developmental steps could be omitted to get a quick and cheap

working model.

 Another disadvantage of rapid prototyping is one in which many problems are

overlooked resulting in endless rectifications and revisions. Suitability of this

approach is challenged and under question for large size applications.

5.2.2 Evolutionary Prototyping

In the evolutionary prototyping approach, a prototype is built based on some known

requirements and understanding. The prototype is then refined and evolved instead of

thrown away. Whereas throwaway prototypes are usually used with the aspects of

the system that are poorly understood, evolutionary prototypes are likely to be used

with aspects of the system that are well understood and thus build on the

development team's strengths. These prototypes are also based on prioritized

requirements, sometimes referred to as chunking in application development. For

complex applications, it is not reasonable or economical to expect the prototypes to

be developed and thrown away rapidly.

As of rapid prototyping, criticism on shortcomings of its evolutionary cousin is

	 41	

illustrated, in some manner can be called fairly illustrated. The two major

disadvantages discussed in the literature are the rare possibility to set a release date

and also usage of lethal code-and-fix development technique.

5.3 The Spiral Model

The spiral model of software development and enhancement, developed by Barry W.

Boehm (1988), is based on experience with various refinements of the waterfall

model as applied to large government software projects. Relying heavily on

prototyping and risk management, it is much more flexible than the waterfall model.

The spiral concept and the risk management focus have gained acceptance in

software engineering and project management.

Figure 5.4 shows Boehm's spiral model. The underlying concept of the model is that

each portion of the product and each level of elaboration involve the same sequence

of steps, or in other words, cycles. Starting at the center of the spiral, one can see that

each development phase involves one cycle of the spiral. The radial dimension in

Figure 5.4 represents the cumulative cost incurred in accomplishing the steps. The

angular dimension represents the progress made in completing each cycle of the

spiral. As indicated by the quadrants in the figure, the first step of each cycle of the

spiral is to identify the objectives of the portion of the product being elaborated, the

alternative means of implementation of this portion of the product, and the

constraints imposed on the application of the alternatives. The next step is to evaluate

the alternatives relative to the objectives and constraints, to identify the associated

risks, and to resolve them. Risk analysis and the risk-driven approach, therefore, are

key characteristics of the spiral model, in contrast to the document-driven approach

of the waterfall model.

	 42	

Figure 5.4. The Spiral Process Model. (Boehm, 1988)

In this risk-driven approach, prototyping is an important tool. Usually prototyping is

applied to the elements of the system or the alternatives that present the higher risks.

Unsatisfactory prototypes can be thrown away; when an operational prototype is in

place, implementation can begin. In addition to prototyping, the spiral model uses

simulations, models, and benchmarks in order to reach the best alternative. As

indicated in the illustration, an important feature of the spiral model, as with other

models, is that each cycle ends with a review involving the key members or

organizations concerned with the product.

For software projects with incremental development or with components to be

developed by separate organizations or individuals, a series of spiral cycles can be

used, one for each increment or component. A third dimension could be added to

Figure 3.4 to represent the model better.

Boehm provides a candid discussion of the advantages and disadvantages of the

	 43	

spiral model. Its advantages are as follows:

 Its range of options accommodates the good features of existing software

process models, whereas its risk-driven approach avoids many of their

difficulties. This is the primary advantage. Boehm also discusses the primary

conditions under which this model becomes equivalent to other process

models such as the waterfall model and the evolutionary prototype model.

 It focuses early attention on options involving the reuse of existing software.

These options are encouraged because early identification and evaluation of

alternatives is a key step in each spiral cycle. This model accommodates

preparation for life-cycle evolution, growth, and changes of the software

product.

 It provides a mechanism for incorporating software quality objectives into

software product development.

 It focuses on eliminating errors and unattractive alternatives early.

 It does not involve separate approaches for software development and

software enhancement.

 It provides a viable framework for integrating hardware-software system

development. The risk-driven approach can be applied to both hardware and

software.

On the other hand, difficulties with the spiral model include the following:

 Matching to contract software: Contract software relies heavily on control,

checkpoint, and intermediate deliverables for which the waterfall model is

good. The spiral model has a great deal of flexibility and freedom and is,

therefore, more suitable for internal software development. The challenge is

how to achieve the flexibility and freedom prescribed by the spiral model

without losing accountability and control for contract software.

 Relying on risk management expertise: The risk-driven approach is the

	 44	

backbone of the model. The risk-driven specification addresses high-risk

elements in great detail and leaves low-risk elements to be elaborated in later

stages. However, an inexperienced team may also produce a specification just

the opposite: a great deal of detail for the well-understood, low-risk elements

and little elaboration of the poorly understood, high-risk elements. In such a

case, the project may fail and the failure may be discovered only after major

resources have been invested. Another concern is that a risk-driven

specification is people dependent. In the case where a design produced by an

expert is to be implemented by non-experts, the expert must furnish

additional documentation.

 Need for further elaboration of spiral steps: The spiral model describes a

flexible and dynamic process model that can be used to its fullest advantage

by experienced developers. For non-experts and especially for large-scale

projects, however, the steps in the spiral must be elaborated and more

specifically defined so that consistency, tracking, and control can be

achieved. Such elaboration and control are especially important in the area of

risk analysis and risk management.

5.4 The Object-Oriented Development Process

The object-oriented approach to design and programming, which was introduced in

the 1980s, represents a major paradigm shift in software development. Different

from traditional programming, which separates data and control, object-oriented

programming is based on objects, each of which is a set of defined data and a set of

operations that can be performed on that data. Like the paradigm of structural design

and functional decomposition, the object-oriented approach has become a major

cornerstone of software engineering. In the early days of object-oriented technology

deployment, which was from late 1980s to mid 1990s, much of the object oriented

literature concerned analysis and design methods, therefore there was little

information about its development processes. In recent years the object-oriented

technology has been widely accepted and object-oriented development is now so

pervasive that there is no longer a question of its viability.

	 45	

Branson and Herness (1992) proposed an object oriented development process for

large-scale projects that centers on an eight-step methodology supported by a

mechanism for tracking, a series of inspections, a set of technologies, and rules for

prototyping and testing.

The eight-step process is divided into three logical phases:

 The analysis phase focuses on obtaining and representing customers'

requirements in a concise manner, to visualize an essential system that

represents the users' requirements regardless of which implementation

platform (hardware or software environment) is developed.

 The design phase involves modifying the essential system so that it can be

implemented on a given set of hardware and software. Essential classes and

incarnation classes are combined and refined into the evolving class

hierarchy. The objectives of class synthesis are to optimize reuse and to

create reusable classes.

 The implementation phase takes the defined classes to completion.

The eight steps of the process are summarized as follows:

1. Model the essential system: The essential system describes those aspects of

the system required for it to achieve its purpose, regardless of the target

hardware and software environment. It is composed of essential activities and

essential data. This step has five sub steps:

o Create the user view.

o Model essential activities.

o Define solution data.

o Refine the essential model.

o Construct a detailed analysis.

This step focuses on the user requirements. Requirements are analyzed, dissected,

	 46	

refined, combined, and organized into an essential logical model of the system. This

model is based on the perfect technology premise.

2. Derive candidate-essential classes: This step uses a technique known as

"carving" to identify candidate-essential classes and methods from the

essential model of the whole system. A complete set of data-flow diagrams,

along with supporting process specifications and data dictionary entries, is

the basis for class and method selection. Candidate classes and methods are

found in external entities, data stores, input flows, and process specifications.

3. Constrain the essential model: The essential model is modified to work

within the constraints of the target implementation environment. Essential

activities and essential data are allocated to the various processors and

containers. Activities are added to the system as needed, based on limitations

in the target implementation environment. The essential model, when

augmented with the activities needed to support the target environment, is

referred to as the incarnation model.

4. Derive additional classes: Additional candidate classes and methods specific

to the implementation environment are selected based on the activities added

while constraining the essential model. These classes supply interfaces to the

essential classes at a consistent level.

5. Synthesize classes: The candidate-essential classes and the candidate-

additional classes are refined and organized into a hierarchy. Common

attributes and operations are extracted to produce superclasses and

subclasses. Final classes are selected to maximize reuse through inheritance

and importation.

6. Define interfaces: The interfaces, object-type declarations, and class

definitions are written based on the documented synthesized classes.

7. Complete the design: The design of the implementation module is completed.

The implementation module comprises several methods, each of which

provides a single cohesive function. Logic, system interaction, and method

invocations to other classes are used to accomplish the complete design for

	 47	

each method in a class. Referential integrity constraints specified in the

essential model are now reflected in the class design.

8. Implement the solution: The implementation of the classes is coded and unit

tested.

The analysis phase of the process consists of steps 1 and 2, the design phase consists

of steps 3 through 6, and the implementation phase consists of steps 7 and 8. Several

iterations are expected during analysis and design. Prototyping may also be used to

validate the essential model and to assist in selecting the appropriate incarnation.

Furthermore, the process calls for several reviews and checkpoints to enhance the

control of the project. The reviews include the following:

 Requirements review after the second substep of step 1 (model essential

system)

 External structure and design review after the fourth substep (refined model)

of step 1

 Class analysis verification review after step 5

 Class externals review after step 6

 Code inspection after step 8 code is complete

In addition to methodology, requirements, design, analysis, implementation,

prototyping, and verification, Branson and Herness assert that the object-oriented

development process architecture must also address elements such as reuse, CASE

tools, integration, build and test, and project management. The Branson and Herness

process model, based on their object-oriented experience at IBM Rochester,

represents one attempt to deploy the object-oriented technology in large

organizations. It is certain that many more variations will emerge before a commonly

recognized object-oriented process model is reached.

Finally, the element of reuse merits more discussion from the process perspective.

Design and code reuse gives object-oriented development significant advantages in

quality and productivity. However, reuse is not automatically achieved simply by

	 48	

using object-oriented development. Object-oriented development provides a large

potential source of reusable components, which must be generalized to become

usable in new development environments. In terms of development life cycle,

generalization for reuse is typically considered an add-on at the end of the project.

However, generalization activities take time and resources. Therefore, developing

with reuse is what every object-oriented project is aiming for, but developing for

reuse is difficult to accomplish. This reuse paradox explains the reality that there are

no significant amounts of business-level reusable code despite the promises object-

oriented technology offers, although there are many general-purpose reusable

libraries. Therefore, organizations that intend to leverage the reuse advantage of

object-oriented development must deal with this issue in their development process.

Henderson-Sellers and Pant (1998) propose a two-library model for the

generalization activities for reusable parts. The model addresses the problem of

costing and is quite promising. The first step is to put "on hold" project-specific

classes from the current project by placing them in a library of potentially reusable

components. Thus the only cost to the current project is the identification of these

classes. The second library, the library of generalized components, is the high-quality

company resource. At the beginning of each new project, an early phase in the

development process is an assessment of classes that reside in the these two libraries

in terms of their reuse value for the project. If of value, additional spending on

generalization is made and potential parts in library of potentially reusable

components can undergo the generalization process and quality checks and be placed

in library of generalized components. Because the reusable parts are to benefit the

new project, it is reasonable to allocate the cost of generalization to the customer.

As the preceding discussion illustrates, it may take significant research, experience,

and ingenuity to piece together the key elements of an object-oriented development

process and for it to mature. In the late 1990s, the Unified Software Development

Process, which was developed by Jacobson, Booch, and Rumbaugh (1998) and is

owned by the Rational Software Corporation, was published. The process relies on

the Unified Modeling Language (UML) for its visual modeling standard. It is

usecase driven, architecture-centric, iterative, and incremental. Usecases are the key

components that drive this process model. A usecase can be defined as a piece of

	 49	

functionality that gives a user a result of a value. All the usecases developed can be

combined into a usecase model, which describes the complete functionality of the

system. The usecase model is analogous to the functional specification in a

traditional software development process model. Usecases are developed with the

users and are modeled in UML. These represent the requirements for the software

and are used throughout the process model. The Unified Process is also described as

architecture-centric. This architecture is a view of the whole design with important

characteristics made visible by leaving details out. It works hand in hand with the

usecases. Subsystems, classes, and components are expressed in the architecture and

are also modeled in UML. Last but not least, the Unified Process is iterative and

incremental. Iterations represent steps in a workflow, and increments show growth in

functionality of the product. The core workflows for iterative development are:

 Requirements

 Analysis

 Design

 Implementation

 Test

The Unified Process consists of cycles. Each cycle results in a new release of the

system, and each release is a deliverable product. Each cycle has four phases:

inception, elaboration, construction, and transition. A number of iterations occur in

each phase, and the five core workflows take place over the four phases.

During inception, a good idea for a software product is developed and the project is

started. A simplified usecase model is created and project risks are prioritized. Next,

during the elaboration phase, product usecases are specified in detail and the system

architecture is designed. The project manager begins planning for resources and

estimating activities. All views of the system are delivered, including the usecase

model, the design model, and the implementation model. These models are

developed using UML and held under configuration management. Once this phase is

complete, the construction phase begins. From here the architecture design grows

	 50	

into a full system. Code is developed and the software is tested. Then the software is

assessed to determine if the product meets the users' needs so that some customers

can take early delivery. Finally, the transition phase begins with beta testing. In this

phase, defects are tracked and fixed and the software is transitioned to a maintenance

team.

5.5 The Iterative Development Process Model

The iterative enhancement approach, or the iterative development process, was

defined to begin with a subset of the requirements and develop a subset of the

product that satisfies the essential needs of the users, provides a vehicle for analysis

and training for the customers, and provides a learning experience for the developer.

Based on the analysis of each intermediate product, the design and the requirements

are modified over a series of iterations to provide a system to the users that meets

evolving customer needs with improved design based on feedback and learning.

The iterative development process model combines prototyping with the strength of

the classical waterfall model. Other methods such as domain analysis and risk

analysis can also be incorporated into the iterative development process model. The

model has much in common with the spiral model, especially with regard to

prototyping and risk management. Indeed, the spiral model can be regarded as a

specific iterative development process model, while the term iterative development

process is a general rubric under which various forms of the model can exist. The

model also provides a framework for many modern systems and software

engineering methods and techniques such as reuse, object-oriented development, and

rapid prototyping.

Figure 5.5 shows an example of the iterative development process model used by

IBM. With the purpose of "building a system by evolving an architectural prototype

through a series of executable versions, with each successive iteration incorporating

experience and more system functionality," the example implementation contains

eight major steps:

	 51	

Figure 5.5 An Example of the Iterative Development Process Model. (Luckey, 1992)

1. Domain analysis

2. Requirements definition

3. Software architecture

4. Risk analysis

5. Prototype

6. Test suite and environment development

7. Integration with previous iterations

8. Release of iteration

	 52	

As illustrated in the figure, the iteration process involves the last five steps; domain

analysis, requirements definition, and software architecture are pre-iteration steps,

which are similar to those in the waterfall model. During the five iteration steps, the

following activities occur:

 Analyze or review the system requirements.

 Design or revise the solution that best satisfies the requirements.

 Identify the highest risks for the project and prioritize them. Mitigate the

highest priority risk via prototyping, leaving lower risks for subsequent

iterations.

 Define and schedule or revise the next few iterations.

 Develop the iteration test suite and supporting test environment.

 Implement the portion of the design that is minimally required to satisfy the

current iteration.

 Integrate the software in test environments and perform regression testing.

 Update documents for release with the iteration.

 Release the iteration.

Test suite development along with design and development is extremely important

for the verification of the function and quality of each iteration. Yet in practice this

activity is not always emphasized appropriately.

The development of IBM's OS/2 2.0 operating system is a combination of the

iterative development process and the small team approach. Different from the last

example to some extent, the OS/2 2.0 iterative development process involved large-

scale early customer feedback instead of just prototyping. The iterative part of the

process involved the loop of subsystem design to subsystem code and test and to

system integration to customer feedback and back to subsystem design. Specifically,

the waterfall process involved the steps of market requirements, design, code and

test, and system certification. The iterative process went from initial market

	 53	

requirements to the iterative loop, then to system certification. Within the one-year

development cycle, there were five iterations, each with increased functionality,

before completion of the system. For each iteration, the customer feedback involved

a beta test of the available functions, a formal customer satisfaction survey, and

feedback from various vehicles such as electronic messages on Prodigy, IBM

internal e-mail conferences, customer visits, technical seminars, and internal and

public bulletin boards. Feedback from various channels was also statistically verified

and validated by the formal customer satisfaction surveys. More than 30,000

customers and 100,000 users were involved in the iteration feedback process.

Supporting the iterative process was the small team approach in which each team

assumed full responsibility for a particular function of the system. Each team owned

its project, functionality, quality, and customer satisfaction, and was held completely

responsible. Cross-functional system teams also provided support and services to

make the subsystem teams successful and to help resolve cross-subsystem concerns.

The OS/2 2.0 and later versions are still used in the professional computing of

different businesses and also embedded systems.

It was widely used in Brazilian banks. Banco do Brasil had a peak 10,000 machines

running OS/2 Warp in the 1990s. OS/2 was used in automated teller machines until

2006. The workstations and automated teller machines have been migrated to Linux.

OS/2 is still used in the banking industry. Suncorp bank in Australia still ran its ATM

network on OS/2 as late as 2002. ATMs in Perisher Blue used OS/2 as late as 2009,

and even the turn of the decade.

OS/2 is still used to control the SkyTrain automated light rail system in Vancouver,

Canada.

It is also still used by the Stop & Shop supermarket chain and has been installed in

new stores as recently as March 2010.

	 54	

5.6 The Extreme Programming

One very controversial object oriented process that has gained recognition and

generated vigorous debates among software engineers is Extreme Programming

proposed by Kent Beck (2000). This lightweight, iterative and incremental process

has four cornerstone values: communication, simplicity, feedback, and courage. With

this foundation, extreme programming advocates the following practices:

 The Planning Game: Development teams estimate time, risk, and story order.

The customer defines scope, release dates, and priority.

 System metaphor: A metaphor describes how the system works.

 Simple design: Designs are minimal, just enough to pass the tests that bound

the scope.

 Pair programming: All design and coding is done by two people at one

workstation. This spreads knowledge better and uses constant peer reviews.

 Unit testing and acceptance testing: Unit tests are written before code to give

a clear intent of the code and provide a complete library of tests.

 Refactoring: Code is refactored before and after implementing a feature to

help keep the code clean.

 Collective code ownership: By switching teams and seeing all pieces of the

code, all developers are able to fix broken pieces.

 Continuous integration: The more code is integrated, the more likely it is to

keep running without big hang-ups.

 On-site customer: An onsite customer is considered part of the team and is

responsible for domain expertise and acceptance testing.

 40-hour week: Stipulating a 40-hour week ensures that developers are always

alert.

 Small releases: Releases are small but contain useful functionality.

	 55	

 Coding standard: Coding standards are defined by the team and are adhered

to.

According to Beck, because these practices balance and reinforce one another,

implementing all of them in concert is what makes Extreme Programming extreme.

With these practices, a software engineering team can "embrace changes." Unlike

other evolutionary process models, it discourages preliminary requirements

gathering, extensive analysis, and design modeling. Instead, it intentionally limits

planning for future flexibility, which emphasizes fewer classes and reduced

documentation. It appears that the Extreme Programming philosophy and practices

may be more applicable to small projects. For large and complex software

development, some of its principles become harder to implement and may even run

against traditional wisdom that is built upon successful projects. Beck stipulates that

to date Extreme Programming efforts have worked best with teams of ten or fewer

members.

5.7 The Scrum

Scrum is an iterative, incremental methodology for project management. Although

Scrum was intended for management of software development projects, it can be

used to run software maintenance teams, or as a general project management

approach.

Hirotaka Takeuchi and Ikujiro Nonaka (1986) described a new holistic approach that

would increase speed and flexibility in commercial new product development. They

compared this new holistic approach, in which the phases strongly overlap and the

whole process is performed by one cross-functional team across the different phases,

to rugby, where the whole team "tries to go the distance as a unit, passing the ball

back and forth". The case studies came from the automotive, photo machine,

computer, and printer industries.

DeGrace and Stahl (1991), in "Wicked Problems, Righteous Solutions", referred to

this approach as Scrum, a rugby term mentioned in the article by Takeuchi and

	 56	

Nonaka. In the early 1990s, Ken Schwaber (1995) used an approach that led to

Scrum at his company, Advanced Development Methods. At the same time, Jeff

Sutherland, John Scumniotales, and Jeff McKenna (1995) developed a similar

approach at Easel Corporation and were the first to call it Scrum.

Later, Sutherland and Schwaber (1995) jointly presented a paper, describing Scrum,

its first public appearance. Schwaber and Sutherland collaborated during the

following years to merge the above writings, their experiences, and industry best

practices into what is now known as Scrum.

Although the word is not an acronym, some companies implementing the process

have been known to spell it with capital letters as SCRUM. This may be due to one

of Ken Schwaber’s (2004) early papers, which capitalized Scrum in the title.

Scrum is a process skeleton that contains sets of practices and predefined roles. The

main roles in Scrum are:

 The Scrum Master, who maintains the processes, typically the project

management.

 The Product Owner, who represents the stakeholders and the business

 The Team, a cross-functional group of about 7 people who do the actual

analysis, design, implementation, testing, etc.

As depicted in figure 5.6, during each sprint, typically a two to four week period,

with the length being decided by the team, the team creates a potentially shippable

product increment. The set of features that go into a sprint come from the product

backlog, which is a prioritized set of high level requirements of work to be done.

Which backlog items go into the sprint is determined during the sprint planning

meeting. During this meeting, the Product Owner informs the team of the items in

the product backlog that he or she wants completed. The team then determines how

much of this they can commit to complete during the next sprint. During a sprint, no

one is allowed to change the sprint backlog, which means that the requirements are

frozen for that sprint. Development is time-boxed such that the sprint must end on

time; if requirements are not completed for any reason they are left out and returned

	 57	

to the product backlog. After a sprint is completed, the team demonstrates how to use

the software.

Figure 5.6 – The Scrum Model. (en.wikipedia.org, 2010)

Scrum enables the creation of self-organizing teams by encouraging co-location of

all team members, and verbal communication across all team members and

disciplines that are involved in the project.

A key principle of Scrum is its recognition that during a project the customers can

change their minds about what they want and need, often called requirements churn,

and that unpredicted challenges cannot be easily addressed in a traditional predictive

or planned manner. As such, Scrum adopts an empirical approach, accepting that the

problem cannot be fully understood or defined, focusing instead on maximizing the

team’s ability to deliver quickly and respond to emerging requirements.

Scrum can be implemented through a wide range of tools. Many companies use

universal software tools, such as spreadsheets to build and maintain artifacts such as

the sprint backlog. There are also open-source and proprietary software packages

dedicated to management of products under the Scrum process. Other organizations

implement Scrum without the use of any software tools, and maintain their artifacts

in hard-copy forms such as paper, whiteboards, and sticky notes.

	 58	

6 THE REVOLUTIONARY APPROACH

All these development process models are precious and useful. As time passes,

models and methods evolve. It was implicitly derived from the few models reviewed

that they are founded upon the lessons and experiments learned from using the

predecessor ones. The evolutions happened to improve the overall efficiency of the

models to improve the products in as many aspects as possible. They all intend to

reduce the time, cost, risk and increase the quality and reliability, in other words,

reduce the bad and increase the good.

Among these models, Scrum and Extreme Programming sound reasonably efficient

and they can be named as the most efficient models, but they still have some

shortcomings that applicability and their success is not implementable for any

possible software development project in any environment.

There are many critics on pair programming issue in extreme programming.

“The only constraint that extreme programming puts on you is that any production

code has to be [sic] written by a pair. Your preferences and comfort do not supersede

the delivery of quality to the project, or your participation [sic] in the team.” As

Robert C. Martin (2001) says.

“Having a number of years of programming experience, I place a pretty high value

on peace, quiet, and space to think in. According to a study from IBM’s

SantaTeresaLaboratory, putting programmers in private offices with doors that

closed instead of cubicles resulted in a huge boost to productivity. So the idea of all

the programmers in a big, noisy room seems like it would be a huge detriment to

productivity. It would figure to drive many people nuts.” (Stephens and Rosenberg,

2003)

“The affordability of pair programming is a key issue. If it is much more expensive,

managers simply will not permit it. Skeptics assume that incorporating pair

programming will double code development expenses and critical manpower needs.”

As Alistair Cockburn and Laurie Williams (2003) state in their paper, “The Costs

and Benefits of Pair Programming.”

	 59	

Scrum model is not safe from critics’ complaints. It has been brought to challenge in

many issues. It can be one of the leading causes of scope creep. If there is no definite

end date, therefore the project management stakeholders may be tempted to keep

demanding new functionality is delivered.

In other way, if a task is not well defined, estimating project costs and time will not

be accurate. In such a case, the task can be spread over several sprints.

Many critics believe scrum is only suitable for teams of experienced members. Lack

of enough experience causes the project to not be completed on time.

Scrum and Extreme Programming and some other iterative methodologies like

Crystal Clear, Feature Driven Development and Dynamic Systems Development

method are now typically referred as Agile Methodologies since 2001 that Agile

Manifesto published.

However these critics are in some manners fair, but in practice success and benefits

from using these two models are significantly ahead the failures and shortcomings.

In the last chapter research and surveys reveal this point out based on literature using

large scale of organizations’ responses.

6.1 The Manifesto for Agile Software Development

In 2001, 17 software developers gathered in Utah, The United States, to discuss

lightweight development methodologies. They published the Manifesto for Agile

Software Development to define the approach now known as agile software

development. As stated in the Agile Manifesto it contains 12 principles, which are as

follow:

 Our highest priority is to satisfy the customer through early and continuous

delivery of valuable software.

 Welcome changing requirements, even late in development. Agile processes

harness change for the customer's competitive advantage.

	 60	

 Deliver working software frequently, from a couple of weeks to a couple of

months, with a preference to the shorter timescale.

 Business people and developers must work together daily throughout the

project.

 Build projects around motivated individuals. Give them the environment and

support they need, and trust them to get the job done.

 The most efficient and effective method of conveying information to and

within a development team is face-to-face conversation.

 Working software is the primary measure of progress.

 Agile processes promote sustainable development. The sponsors, developers,

and users should be able to maintain a constant pace indefinitely.

 Continuous attention to technical excellence and good design enhances

agility.

 Simplicity, the art of maximizing the amount of work not done, is essential.

 The best architectures, requirements, and designs emerge from self-

organizing teams.

 At regular intervals, the team reflects on how to become more effective, then

tunes and adjusts its behavior accordingly

Many development methodologies are considered as agile development methods,

including previously discussed, Scrum and Extreme Programming. Agile software

development methodologies are widely accepted these days. Traditional software

development methods are not efficient enough to convene with the rapid change in

requirements and short iterations that are required for efficient product delivery.

Agile software practices achieve agility by promoting self-organizing teams,

customer collaboration, higher quality, less documentation and reduced time to

market. Traditional software development practices relied heavily on documentation.

Project managers were of the view that by getting as much specification as possible

	 61	

early in the planning and design phase would save a lot of time, cost and resources

for the software project as changes later on in the development process would result

in setbacks and increase in cost, time and scope. The traditional practices did not

allow changes late in the implementation and verification phases, but even then,

many software projects failed to meet their objectives due to the quantum of required

specifications and bulk of documentation demand. Agile software practices solve

these problems by encouraging changes integration and close customer interaction

with software developing teams. Agile supports iterations that can integrate any

change in the user requirements during the implementation phase.

Agile development methodologies are transforming the way development teams

work. Agile development enables organizations to deliver products to market faster

and to respond more rapidly to changing market priorities by enabling more effective

processes. In fact, Agile helps turn software development organizations into software

delivery organizations.

6.2 Impact of Agile Development Methodologies on Quality and

Productivity

Many studies and literatures on agile methodologies identify the parameters, which

impact on productivity and quality of software projects. These parameters are

identified based on surveys, research and interviews with experienced professionals

practicing agile. A few of the parameters from the current literature are discussed in

this text.

6.2.1 Knowledge Sharing

Knowledge sharing is an activity in software projects by which information and

knowledge is shared amongst members. It is a constituent part of agile development

environment, normally done with the help of a knowledge management system.

Discussion with some of the senior professionals in the field of software engineering

	 62	

has revealed that there are regular knowledge sharing session in organizations

practicing agile and senior and experienced resources are provided with a chance to

share their knowledge and experience. Knowledge sharing amongst team members

helps in solving tough problems, rather spending time individually. Individuals who

are new to the team get an opportunity to learn from knowledge sharing sessions.

Survey results have shown that almost all organizations practice knowledge sharing

as an essential constituent of agile methodologies.

6.2.2 Active Participation of Stakeholders

Agile methodologies emphasize on a strong customer and developer relationship.

With the expanding Internet technology and development of integrated solutions, the

business demands faster delivery of projects to its clients and it can be best achieved

with continuous involvement of the stakeholders who have a stake in the project

completion. In order to facilitate dynamic changes in requirements even late in the

implementation phase requires active participation from customers.

Most of the organizations practicing agile methodologies have their business analysts

associated with clients. The business analysts keep an active contact with clients,

ensuring faster delivery of releases to the end users and improving productivity.

According to the Agile Manifesto, which was discussed earlier, the most efficient

and effective method of conveying information to and within a development team is

face-to-face conversation.

6.2.3 Self-Organized Teams

Teams are organized to handle complexity and pressures of deadlines during project

development, and to bring the project to completion. They take decisions on their

own and adapt accordingly with changing situations. Self-organized teams do a much

better job of utilizing the talents of the team because more minds are involved in any

activity. Self-organizing teams are better than command and control teams because

	 63	

they it provides are chance for personal development, having responsibility placed on

the shoulders of individuals working in a team solely for the successful completion

of the project.

6.2.4 Reduced Documentation

Agile development methodologies emphasize more towards completion and delivery

of the project to the customer in short time span than emphasizing on documentation.

The main objective of the development teams is to deliver a working release when

needed complying with quality standards. New releases are produced at frequent

intervals, in some approaches even hourly or daily. The developers are urged to keep

the code simple, straightforward, and technically as advanced as possible, thus

lessening the documentation burden to an appropriate level.

6.2.5 Response to Change

Agile advocates that changes are welcome even late in the implementation phase,

and this is one of the major reasons of increase in productivity. Changes are

managed, analyzed and implemented by the development teams even on short

notices. It is only possible if the organization is using agile development

methodology and it is mature enough to welcome dynamic changes.

Researches show that more than 90 percents organizations practicing agile welcome

dynamic changes in requirements even late in the implementation phase for their

projects. (A. Ahmed, et al., 2010)

6.2.6 Trainings

To face the challenging environment offered by fast changing technological

scenarios, it is necessary for an organization to have its people up to date with the

latest tools and technologies. Especially for organization practicing agile method of

	 64	

development training of resources is essential for keeping the development process

up to the mark, satisfying customers and business expectations. Training of

professionals always has a positive and significant impact on productivity.

6.2.7 Refactoring

Refactoring is a programming technique used to improve quality, including source

code quality. When done by changing the code in smaller chunks in a disciplined

manner, improves the quality of the code without affecting the external functionality.

Code refactoring and database refactoring is done in order to attain make the source

code maintainable and database design more flexible.

6.3 An Individual Survey Respond: Autodesk

Autodesk as a leading software company in computer-aided design software

production response is worthy. The survey was on comparison of their development

projects before and after employing agile methodologies. The following is the result

of using agile in Autodesk Ges.M.B.H. located in Wels, Austria.

Benefit derived from going agile is described as huge for being able to engage

development much earlier in the cycle using the Agile Process in comparison with

the former waterfall approach,	 with less accumulated technical and design debt.

Overall quality is improved prior to the system test phase as a result of addressing

critical bugs during the sprint instead of allowing them to accumulate to the end

game.

Provided earlier and longer focus of development team on core business projects as

opposed to other side projects. The side projects like extra bug fixing and

development of anticipated long lead work are not of value anymore and the focus to

what the business objectives are of more value.

Amplified communication and collaboration across teams with different functions

	 65	

like product design, development and quality assurance, which were not in contact of

such close level and frequency before, leads to improvement in quality and

productivity.

The process changes unlock focusing on higher priority customer requests. This

focus also provided less surprise at the end as iterations with customers inject

feedback throughout the cycle.

6.4 Agile Development in action: Results from practitioners

This chapter is dedicated to agile development within today’s software organizations,

why Agile is being implemented and the value realized by doing so. The results are

based on the literature published upon working with thousands of agile teams around

the world.

6.4.1 Members Size Growth

Surveys show that organizations practicing agile development methodologies are

now larger and more distributed than ever before: 39 percents of organizations

surveyed deploying agile development practices have 101 or more total employees

responsible for the delivery of software with 27 percents even having over 250

employees.

Figure 6.1 - Size of Software Organization Adopting Agile Process.

0%	
5%	
10%	
15%	
20%	
25%	
30%	
35%	
40%	

9%	

24%	
17%	

12%	 12%	

39%	

27%	

	 66	

6.4.2 Purposes of Employing Agile and the Results in them

Business environment is simply faster paced and more distributed and fluid than ever

before. This competitive landscape requires software development organizations to

be more flexible and adaptive to create and maintain a competitive advantage.

Surveys have found that the four most critical needs for software delivery

organizations are:

 Need to manage rapidly changing priorities.

 Need to accelerate time-to-market.

 Need to increase productivity.

 Need to improve quality.

 Need to decrease costs or to prevent its growth

 Need to improve business satisfaction

These factors are the foundations for companies looking to implement agile

practices, as depicted in figure 6.2.

Figure 6.2 Reasons for going Agile.

0%	

10%	

20%	

30%	

40%	

50%	

60%	

44%	

54%	 55%	

40%	
33%	

23%	

45%	

27%	 24%	

36%	

23%	 20%	

Highest	 Important	

Very	 Important	

	 67	

While managing changing priorities was the most important reason cited for

implementing Agile and was recognized as the most improved, all four critical needs

were identified as having been either improved or significantly improved in majority

of cases.

6.4.2.1 Ability To Manage Rapidly Changing Priorities

Agile development inherently welcomes change throughout the development

lifecycle. Agile teams plan and prioritize requirements at each iteration. This

iterative planning process gives them the ability to change, adapt or remove

requirements throughout the project timeline as priorities change. The majority of

traditional processes restrict flexibility to a serial planning phase prior to coding,

testing and deployment.

Iterations within an agile process contain each element of a traditional process, from

planning and coding to testing and deployment. The team’s focus remains on

prioritized work items and they limit re-prioritizing and planning of additional

functionality until the next iteration.

By better management of changing priorities, agile methods allow software teams

and their projects to closely align with business need and value. As shown in Figure-

6.3, 91 percents of respondents indicated that the implementation of agile

development either improved or significantly improved their ability to manage

changing priorities.

	 68	

Figure 6.3 – Managed Changing Priorities.

4.4.2.2 Accelerate Time-To-Market

The most notable factor in decreasing time-to-market is the ability to deliver working

software prior to the end of a project. Traditional development’s big bang method is

characterized by development running through silos of individual work groups:

planning leads to coding, coding leads to testing, testing leads to deployment. In

contrast, agile methods work within frequent iterations that result in working

software. These iterations are time-boxes of typically two to four weeks and

constrain the team to a fixed period of time for delivery. The highest priority items

with the most complexity and risk are developed first, giving the team the ability to

deploy the product to the customer, whether internally or externally, prior to low

value items being completed. As expected the results are shown in Figure 6.4.

0%	

10%	

20%	

30%	

40%	

50%	

60%	

Signi>icantly	 Improved	 Improved	

40%	

52%	

	 69	

Figure 6.4 Accelerated Time-to-Market.

As shown in Figure 6.5, 60 percents practitioners estimated a 25% or greater

improvement in time-to-market.

Figure 6.5 Time-to-Market Improvement.

4.4.2.3 Increase Productivity

The action of breaking work into manageable chunks also allows the development

team to keep the finish line in sight. A greater sense of urgency and purpose is

created when there is a definitive time-box of a reasonably short duration. This

0%	

10%	

20%	

30%	

40%	

50%	

60%	

Signi>icantly	 Improved	 Improved	

20%	

51%	

0%	
10%	
20%	
30%	
40%	
50%	
60%	
70%	
80%	
90%	

≥10%	 Improvement	 25%	 Imrpovement	

87%	

55%	

	 70	

frequent delivery of working software provides a consistent reward and reminder of

accomplishment throughout the entire project timeline. When a delivery date is six or

twelve months out it is easy to lose this sense of urgency and can provide more risks

for teams to be sidetracked by lower value priorities. The constant reprioritization of

work items at each iteration also acts as a control mechanism limiting the amount of

unnecessary or low value scope creep. The inability to let workload accumulate

contributes to agile teams needing less overtime. Figure 6.6, depicts this result.

Figure 6.6 Productivity Improvement.

As illustrated in Figure 6.7, 55 percents of respondents reported a 25% or greater

improvement in productivity.

Figure 6.7 Productivity Improvement, detailed.

0%	
10%	
20%	
30%	
40%	
50%	
60%	

Signi>icantly	 Improved	 Improved	

17%	

58%	

0%	
10%	
20%	
30%	
40%	
50%	
60%	
70%	
80%	
90%	

≥10%	 Improvement	 25%	 Imrpovement	

87%	

55%	

	 71	

4.4.2.4 Quality Improvement

Each Agile team includes a cross-section of a traditional development project. This

includes quality assurance or testing personnel who are moved up-front as the

development is actually taking place. This allows the testing environment to gain the

same advantage of constraining overall complexity. As Agile teams work together,

testing is done alongside or prior to development, therefore test-driven development

goes hand-in-hand with agile methods. Continuous testing and integration allows

teams to catch, report and fix defects early in the delivery process rather than

allowing them to compound when the cost and complexity is much higher. Quality

improves significantly, also shown in Figure 6.8

Figure 6.8 Quality Improvement.

Illustration in Figure 6.9 shows 55 percents of parishioners enjoyed a 25% or greater

reduction in software defects.

Figure 6.9 Reduced Software Defects.

0%	
10%	
20%	
30%	
40%	
50%	

Signi>icantly	 Improved	 Improved	

24%	

50%	

0%	

20%	

40%	

60%	

80%	

100%	

≥10%	 Improvement	 25%	 Imrpovement	

86%	

60%	

	 72	

4.4.2.5 Cost Reduction

Across respondents, more than 48 percents believed that development costs were

reduced. Including the responses that indicated that costs were unchanged, a

whopping 95 percents believe agile processes have either no effect or a cost

reduction effect.

Figure 6.10 Cost Reduction

4.4.2.6 Business Satisfaction

An interesting result of analyzing the surveys reveals business satisfaction of better

or significantly better was a phenomenal 83 percents for respondents. Only 1 percent

believe it has had a negative effect, as shown in Figure 6.11.

0%	
5%	
10%	
15%	
20%	
25%	
30%	
35%	
40%	
45%	
50%	

Signi>icantly	 Improved	 Improved	

5%	

49%	

	 73	

Figure 6.11 Business Satisfaction Improved.

A survey made by Shine Technologies Pty. Ltd. (2003) on agile methodologies

resulted in impressive answer by majority of the respondents. Survey asked the

practitioners if they intend to use or adopt agile methodologies in the upcoming year.

An overwhelming 94.7 percents of all respondents would continue to use or would

adopt agile methodologies. This rises to 96.4 percents when limited to

knowledgeable respondents.

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

Signi>icantly	
Improved	

Improved	 Negative	 Effect	

26%	

83%	

1%	

	 74	

7 SUMMARY AND FUTURE WORK

7.1 Conclusion

There is no software development available with guaranteed success for any type of

software project. Since the very first introduced development models, one after

another came to existence with improvements and advantages based on the

experience gained from their predecessors, focusing on their weakness and strength.

After publication of the Agile Manifesto in the early days of the current decade, agile

software development methodologies came into center of attention, like never before,

as they had already existed with specific names.

The agile development methodologies are believed to be a better choice for majority

of software projects. The followings support the very last statement:

 They do not tend to fail as size of the developing team grows as their

predecessors acted other way, in significant portion of the experiences.

 They respond quickly to the changes in such a ever changing environment of

needs and requirements.

 As they respond timely to the changes, they defend the project from delays

and failure in release time. In other words they improve the Time-to-Market.

 They improve the overall productivity.

 They reduce the number of defects and improve quality.

 They do not impose additional costs to the projects, even they cause in cost

reduction in majority of projects.

 They improve business satisfaction.

The stated reasons are based on the result derived from employing agile development

methodologies based on what practitioners reported from all across the planet,

	 75	

involved in projects with wide range of number of team members

7.2 Caveats

The following restrictions are necessary to be noted:

 This thesis does not focus on the tools and means used in the development

projects

 The type of development projects and their usage is not considered.

 The results and statistics are based on the experience of those practitioners

responded to the surveys.

 The study focuses on quality of software in general not detailed issues.

 Respondents to the surveys, from which data is used, are not categorized

based on their knowledge level of agile methodologies.

7.3 Future Work

The potential and opportunities for further studies in agile development

methodologies are huge.

Specifically focused research and study on agile is recommendable for the following

reasons:

 Study on agile development on specific software product fields.

 Comparison between tools and methods used in projects of specific size of

members as it is absent in the literature.

 Study concerning the knowledge level of agile methodologies of respondents.

 Scrutiny on cost reductability of methods, tools and means and research for

amplification of reduction.

	 76	

Also further work on quality improvement driving factors, such testing tools and

techniques with combination of working field and programming frameworks is

highly recommendable.

	 77	

REFERENCES

Afjehi-‐Sadat	 A.,	 M.N.	 Durakbasa,	 P.H.	 Osanna,	 J.M.	 Bauer	 (2004).	 Quality	
Management	 Systems	 in	 European	 Industry	 and	 the	 Importance	 of	 Modern	
Technology	 and	 Metrology.	

Ahmed,	 A.,	 et	 al.	 (2010).	 Agile	 Software	 Development:	 Impact	 on	 Productivity	
and	 Quality,	 Proceedings	 of	 the	 2010	 IEEE	 ICMIT.	

Baker,	 Simon	 (2005).	 INTRODUCTION	 TO	 AGILE	 AND	 SCRUM,	 Think	 Pad.	

Beck,	 Kent	 (2000).	 Extreme	 Programming	 Explained:	 Embrace	 Change,	
Addison-‐Wesley.	

Boehm,	 B.	 (1988).	 A	 Spiral	 Model	 of	 Software	 Development	 and	 Enhancement,	
ACM	 SIGSOFT	 Software	 Engineering	 Notes.	

Branson,	 M.	 J.,	 and	 E.	 N.	 Herness	 (1992).	 Process	 for	 Building	 Object-‐Oriented	
Systems	 from	 Essential	 and	 Constrained	 System	 Models:	 Overview,	
Proceedings	 of	 the	 Fourth	 Worldwide	 MDQ	 Productivity	 and	 Process	 Tools	
Symposium.	

Cockburn	 A.	 and	 Laurie	 Williams	 (2002).	 “The	 Costs	 and	 Benefits	 of	 Pair	
Programming,”	
http://collaboration.csc.ncsu.edu/laurie/Papers/XPSardinia.PDF,	 Visited	 on	
Ocotober	 2010	

Crosby,	 Philip	 (1979).	 Quality	 is	 Free.	 New	 York:	 McGraw-‐Hill.	

DeGrace,	 Peter;	 Stahl,	 Leslie	 Hulet	 (1990).	 Wicked	 problems,	 righteous	
solutions.	 Prentice	 Hall.	 	

Drucker,	 Peter	 (1985).	 Innovation	 and	 entrepreneurship.	 Harper	 &	 Row.	 	

Garvin,	 David	 A.	 (1984).	 What	 Does	 “Product	 Quality”	 Really	 Mean?	 ,	 Harvard	
Business	 Review.	

Gomaa,	 H.,	 and	 D.	 Scott,	 (1981).	 Prototyping	 as	 a	 Tool	 in	 the	 Specification	 of	
User	 Requirements"	 Proceedings	 5th	 IEEE	 International	 Conference	 on	
Software	 Engineering	

Henderson-‐Sellers,	 B.,	 and	 Y.	 R.	 Pant,	 (1998).	 Adopting	 the	 Reuse	 Mindset	
Throughout	 the	 Lifecycle:	 When	 Should	 We	 Generalize	 Classes	 to	 Make	
Them	 Reusable?,	 Object	 Magazine,	 Vol.	 3,	 No.	 4.	

Jacobson,	 I.,	 G.	 Booch,	 and	 J.	 Rumbaugh	 (1998).	 The	 Unified	 Software	
Development	 Process,	 Reading,	 Mass.:	 Addison-‐Wesley.	

	 78	

Juran,	 J.	 M.,	 and	 F.	 M.	 Gryna,	 Jr.	 (1970).	 Quality	 Planning	 and	 Analysis:	 From	
Product	 Development	 Through	 Use,	 New	 York:	 McGraw-‐Hill.	

Kan,	 Stephan	 H.	 (2002).	 Metrics	 and	 Models	 in	 Software	 Quality	 Engineering,	
Second	 Edition,	 Addison	 Wesley.	

Kano,	 Noriaki	 (1984).	 "Attractive	 quality	 and	 must-‐be	 quality".	 The	 Journal	 of	
the	 Japanese	 Society	 for	 Quality	 Control.	

Kitchenham	 B.	 and	 Pfleeger	 Sh.	 L.	 (1993).	 "Software	 Quality:	 The	 Elusive	
Target,"	 IEEE	 Software,	 vol.	 13.	

Leveson,	 Nancy	 (1993).	 Medical	 Devices:	 The	 Therac-‐25,	 University	 of	
Washington.	

Luckey,	 P.	 H.,	 R.	 M.	 Pittman,	 and	 A.	 Q.	 LeVan	 (1992).	 "Iterative	 Development	
Process	 with	 Proposed	 Applications,"	 Technical	 Report,	 IBM	 Owego.	

McCall,	 J.	 A.,	 Richards,	 P.	 K.	 and	 Walters,	 G.	 F.	 (1977).	 Factors	 in	 Software	
Quality,.	 Volumes	 I,	 II,	 andIII,	 US.	 Rome	 Air	 Development	 Center	 Reports.	

McConnell,	 Steve	 (1993).	 Code	 Complete:	 A	 Practical	 Handbook	 of	 Software	
Construction.	 Redmond,	 Wa.:	 Microsoft	 Press.	

Miller,	 Ade	 (2008).	 Distributed	 Agile	 Development	 at	 Microsoft	 patterns	 &	
practices,	 Microsoft	 Press.	

Nienaber,	 R.	 C.	 and	 A.	 Barnard	 (2005).	 Software	 Quality	 Management	 Supported	
by	 Software	 Agent	 Technology,	 Issues	 in	 Informing	 Science	 and	 Information	
Technology.	

Paschall,	 E.	 (2009).	 Guidelines	 of	 the	 Scrum	 Development	 Process,	 White	 Paper	
–	 scrumtime.org.	

Robert	 C.	 Martin	 posting	 to	 the	 newsgroup	 comp.object,	 subject:	 “Pair	
Programming—Yuck!”	 October	 28,	 2001.	 Visited	 Ocotober	 2010.	

Royce,	 Winston	 (1970).	 Managing	 the	 Development	 of	 Large	 Software	 Systems,	
Proceedings	 of	 IEEE	 WESCON.	

Rusk,	 John	 (2009).	 Earned	 Value	 for	 Agile	 Development,	 Optimation	 Ltd.	

Schwaber,	 Ken	 (2004).	 Agile	 Project	 Management	 with	 Scrum.	 Microsoft	 Press.	

Schwaber,	 Ken	 (2004).	 Agile	 Project	 Management	 with	 Scrum.	 Microsoft	 Press.	 	

Shine	 Technologies	 Pty	 Ltd.	 (2003).	 Agile	 Methodologies:	 Survey	 Results.	

Stephens	 M.	 and	 Doug	 Rosenberg	 (2000).	 Extreme	 Programming	 Refactored:	
The	 Case	 Against	 XP.	

	 79	

Stephens,	 Matt	 and	 Doug	 Rosenberg	 (2003).	 Extreme	 Programming	 Refactored:	
The	 Case	 Against	 XP.	

Sutherland,	 Jeff	 (1995).	 "Agile	 Development:	 Lessons	 learned	 from	 the	 first	
Scrum.	

Szalvay,	 V.	 (2004).	 An	 Introduction	 to	 Agile	 Software	 Development,	 Danube	
Technologies,	 Inc.	

Taguchi,	 G.	 (1992).	 Taguchi	 on	 Robust	 Technology	 Development.	 ASME	 Press.	

Takeuchi,	 Hirotaka;	 Nonaka,	 Ikujiro	 (1986).	 The	 New	 New	 Product	
Development	 Game.	 Harvard	 Business	 Review.	 	

TC	 176/SC	 (2005).	 ISO	 9000:2005,	 Quality	 management	 systems	 -‐-‐	
Fundamentals	 and	 vocabulary.	 International	 Organization	 for	
Standardization.	

Tian,	 Jeff	 (2007).	 Software	 Quality	 Engineering,	 	 IEEE	 Computer	 Society.	

VersionOne	 (2006).	 Agile	 development:	 Results	 Delivered.	

VersionOne	 (2008).	 3rd	 Annual	 Survey:	 2008	 “The	 State	 of	 Agile	 Development”.	

	 80	

8 LIST OF FIGURES

Figure 4.1 Quality tasks, life-cycle periods, and goals, p.17

Figure 5.1 The Waterfall Process Model, p.29

Figure 5.2 An Example of the Waterfall Process Model, p.31

Figure 5.3 the prototyping approach, p.39

Figure 5.4 The Spiral Process Model, p.42

Figure 5.5 An Example of the Iterative Development Process Model, p.51

Figure 5.6 The Scrum Model, p.57

Figure 6.1 - Size of Software Organization Adopting Agile Process, p.65

Figure 6.2 Reasons for going Agile, p.66

Figure 6.3 – Managed Changing Priorities, p.68

Figure 6.4 Accelerated Time-to-Market, p.69

Figure 6.5 Time-to-Market Improvement, p.69

Figure 6.6 Productivity Improvement, p.70

Figure 6.7 Productivity Improvement, detailed, p.70

Figure 6.8 Quality Improvement, p.71

Figure 6.9 Reduced Software Defects, p.71

Figure 6.10 Cost Reduction, p.72

Figure 6.11 Business Satisfaction Improved, p.73

	EM_Form_CoverPage_E-1
	Affidavit_E-1
	ack abs tab
	MAIN PART+REF+TABLE OF FIGURES

