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Kurzfassung

In dieser Dissertation wird ein allgemeines Framework für die Modellierung und Regelung von
Biomasse-Fernwärmenetzen vorgestellt. Für die wichtigsten Komponenten eines Fernwärmenet-
zes (Rohrnetz, Verbraucher und Biomassekraftwerk) werden physikalische und datengetriebene
Modelle entwickelt sowie anspruchsvolle Regelalgorithmen entworfen.

Die Berechnung der Strömungsgeschwindigkeiten im Rohrnetz basiert auf einem effizienten
graphentheoretischen Ansatz, der mit dem iterativen Newton Algorithmus kombiniert wird.
Für die transient-thermische Modellierung wird QUICKEST, eine Finite-Differenzen-Methode 3.
Ordnung, herangezogen. Neben dem Finiten-Differenzen-Modell werden zusätzlich datengetriebene
bedingt-parametrische Modelle konstruiert, welche in ein prädiktives Regelkonzept eingebettet
werden um die Vorlauftemperaturen an kritischen Knoten im Netz zu regeln. Closed-Loop Sim-
ulationen belegen, dass diese Modellstruktur die inhärente Nichtlinearität in Fernwärmenetzen
auf Grund variabler Strömungsgeschwindigkeiten abbilden kann.

Es wird ferner gezeigt, dass der zyklische Wärmebedearf der Verbraucher mittels sogenannten
SARIMA Prozessen und Struktur-Modellen in geeigneter Weise beschrieben werden kann. Beide
Modellansätze können in eine Zustandsraumdarstellung überführt werden, in welcher eine On-
lineberechnung von Prognosewerten mittels klassischen Kalman-Filters möglich ist. Exogene
Einflüsse wie die Umgebungstemperatur werden durch eine stückweise lineare Funktion in beide
Modellansätze integriert. Desweiteren wird ein nichtparametrisches Regressionsverfahren ver-
wendet, um die Rücklauftemperatur an den Verbrauchern als Funktion der Umgebungstemper-
atur und einer sozialen Komponente zu modellieren.

Für die Beschreibung der wesentlichen Prozess-Charakteristika von Biomasse-Rostfeuerungen
wird neben einem Greybox-Modell, welches weitgehend auf Massen- und Energiebilanzen basiert,
auch ein datengetriebenes Takagi-Sugeno (TS) Fuzzy-Modell vorgestellt. Für die Wahl der
Fuzzy-Partitionierung wird auf ein achsen-orthogonales, inkrementelles Partitionierungsschema
zurückgegriffen. Die Modellvalidierung anhand von realen Messungen bestätigt die ausgezeich-
nete Performance beider Modelle. Die lokale Linearität von TS Fuzzy-Modellen erlaubt auch
eine Verwendung in einer linear parameter-variierenden Regelung. Konkret wird ein Fuzzy-
Modellprädiktiver Regelungsansatz vorgestellt, welcher gegenüber der klassichen modellprädik-
tiven Regelung signifikant bessere Resultate über den gesamten Betriebsbereich erzielt.
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Abstract

In this thesis, a general framework for modeling and control of biomass-fired district heating
networks is presented. For the main components of a district heating system (distribution
network, consumer stations, and biomass furnace) first-principles models and data-driven models
are developed as well as sophisticated control algorithms are designed.

Calculation of the hydraulic flow in the distribution network is accomplished efficiently by means
of a graph-theoretical approach in combination with a Newton-based iterative algorithm. For
modeling the thermal transients, the third order accurate QUICKEST finite-difference method
is successfully applied. In addition to the finite-difference model, a data-driven approach using
conditional parametric models is pursued. These models are embedded into an advanced pre-
dictive control scheme for the supply temperature at critical points in the network. Closed-loop
simulations prove that this modeling framework is capable of handling the inherent nonlinearity
in the response characteristics of district heating networks caused by varying flow rates.

It is further shown that the multi-periodic heat-demand of consumer stations can appropri-
ately be described by a SARIMA process and by a structural model. Both models can be
incorporated into the versatile state-space framework where classical Kalman recursion allows
convenient calculation of on-line forecasting values. Moreover, exogenous influences such as am-
bient temperature are accounted for by a piece-wise linear function. For modeling the required
return temperature at consumer stations a nonlinear static relationship between return temper-
ature and ambient temperature plus social load is identified using a nonparametric regression
framework.

To describe the process characteristics of the moving grate biomass furnace a simple grey-box
model, largely based on mass and energy balances, and a data-driven Takagi-Sugeno (TS) fuzzy
model are constructed. The fuzzy partitions of the individual TS fuzzy models are found by
a sophisticated axis-orthogonal, incremental partitioning scheme. Validations with real mea-
surements demonstrate good performance of the two proposed models. The local linearity of
TS fuzzy models also allows the use as a linear parameter-varying model in model predictive
control. In particular, a fuzzy model predictive control framework is introduced which provides
increased performance on the operating envelope compared to classical control schemes.
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ṁPA mass flow rate of the primary air supply kg/s
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Chapter 1

Introduction

1.1 Motivation

The worldwide concern about global warming due to the emission of CO2 and other greenhouse
gases and the limited availability of fossil fuels have increased the importance of renewables such
as biomass in energy production [218, 217]. It can be expected that power producers will have to
cope with an increasing number of EU-level regulations concerning emission levels in the future
[204]. Such regulatory actions and the general willingness to reduce emissions on the one hand
and increasing world energy consumption [41] on the other hand favour the use of biomass.

In particular, biomass-fired district heating has become more and more important over the
past decades [15]. The purpose of district heating networks is to provide adequate thermal
power (temperature and flow) to consumers from central or distributed heat sources through a
network of pipes containing hot water or steam. Such centralized biomass-fired district heating
plants provide more efficient combustion and better pollution control than localized installations
at the consumers [79]. Moreover, it was analyzed that district heating plants equipped with a
combined heat and power unit (CHP) are one of of most effective and efficient forms of power
generation [175].

In Austria the number of district heating plants increased from 266 in 1995 [161] to 1185
in 2005 [124]. However, it can be expected, that this rapid growth will not be seen in the near
future. Plant operators will have to face economic challenges such as increased biomass prices
which will also have a negative impact on the plants’ profitability. Biomass prices will likely rise
further due to the increasing demand for biomass resources on the market [54]. By 2020 forecasts
predict a biomass supply gap of around 24-40Mt within the EU [44]. Therefore, potential plant
operators have to carefully observe current biomass prices and their change and have to consider
if, under these market conditions, a biomass plant can be operated profitably.

One main problem is that small and medium-sized decentralized biomass power plants are
characterised by a low degree of automation, high losses in the furnace and an inefficient opera-
tion of the district heating networks. These plants are mostly equipped with very limited control
concepts, which are usually delivered by the plant suppliers themselves. This reduces initial in-
vestment costs and commissioning costs at the expense of increased operational costs. Plant
operators are often lacking the know-how for an integrated economic and ecological controller
optimization for the power plant and the distribution network. This motivates the use of more
advanced control schemes for optimization of biomass power plant in connection with district
heating networks. The aim is to reduce operational costs by increasing the plant efficiency and
thus to stay profitable in a more and more competitive market.

The optimal operation of such complex systems calls for consideration of the entire techno-
logical string “production, transport & distribution, and consumption” [10]. The optimization
problem on the production side is twofold: First, it consists of determining how the future heat
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CHAPTER 1. INTRODUCTION 2

load is allocated between the different heating plants in order to minimize the operational costs
[158]. Second, the heat production in each individual plant has to be done in such way to ensure
efficient combustion and to minimize emissions. The operational costs for the heat transport
are mainly related to pumping costs and heat loss costs. Therefore, the reduction of heat energy
losses and pump energy consumption is one of the most important tasks to reduce costs and im-
prove the efficiency of a district heating systems. On top of this, the varying heat consumption
of consumers introduces a time dependency to all these optimization problems. Hence, optimal
operation of such highly complex systems requires accurate modeling tools as well as advanced
control concepts to fully address the efficiency potential.

1.2 Literature Review, State-of-the-Art

The following literature overview is first focused on modeling and control of the distribution
network, then methods for prediction of heat-load are presented, and finally modeling and
control concepts for the biomass plant are reviewed.

For modeling hydraulic and thermal behaviour of district heating networks the quasi-dynamic
approach is typically applied [65, 193]. Quasi-dynamic means that a steady-state water flow
model and a dynamic thermal model is used. One of the first methods for calculating the flow
conditions in pipe networks iteratively is the Hardy Cross method. Nowadays, more advanced
approaches which utilize iterative solvers such as Newton-Raphson combined with Graph-Theory
are chosen [183, 192, 157]. The steady-state solution of the flow condition is then used as a basis
for prediction of the thermal transients.

The transient thermal behavior in district heating networks can be described by the convec-
tive transport partial differential equation [19, 132]. Due to the complexity of DHN numerical
schemes are often applied here [77]. Two numerical solution approaches are presented in [165],
namely the element method and the node method. The former is based on a first order upwind
discretization scheme, whereas the node method keeps trace of how long time a water mass
element which currently arrives at the outflow node has been on its way from the inflow node by
addressing the mass flow time histories between inflow and outflow nodes. The element method
was found to be inferior to the node method, both with respect to accuracy and computational
cost. The main reason for the poor performance of the element method was found to be problems
regarding artificial diffusion, which in turn could result in abnormal smoothing of sharp temper-
ature profiles. In [65], the node method approach and the commercial software TERMIS were
compared regarding the prediction of the temperature dynamics in the Naestved DHN. Results
indicated that discrepancies between the predicted and measured temperatures are pronounced
for consumers at distant pipelines containing numerous bends and fittings. Other implemen-
tations of the node method for prediction of the temperature transients have been tested in,
e.g., [64, 191]. Recently, a new thermal transient approximation was presented in [193], which
is based on a numerical scheme of third-order accuracy in space using Lagrange polynomials for
interpolation. The comparison of the calculated and measured temperature fronts at three con-
sumer substations showed good agreement. A finite-difference method, which is regarded to be
one of the best methods for modeling convective transport, is the third order accurate QUICK-
EST (Quadratic Upstream Interpolation for Convective Kinematics with Estimated Streaming
Terms) method derived by [129]. In [165] this scheme was briefly introduced and the possi-
ble application to modeling thermal transients in district heatings systems was discussed. It
was found that slight modifications to the original algorithm are necessary in order get correct
solutions at pipe junctions.

A novel data-driven approach for predicting the supply temperature at critical nodes in the
networks was introduced in [169, 158]. As modeling framework conditional parametric models
were used. These are classical linear regression models in which the coefficients are allowed to
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vary as smooth functions of some explanatory variables. It was shown that within this framework
it is possible to account for varying transport time delays in the distribution network.

The relevant control variable in district heating systems is considered to be the supply
temperature [76]. Today, in most DHN, open-loop control strategies are implemented which
conservatively guarantee that the supply temperatures at the consumer stations are maintained
within the contractual limits. In an early work on optimizing the supply temperature trajecto-
ries an iterative solution was proposed [15]. First, the transport time delays were determined
and the temperature propagation was simulated using the node-method, and second a linear
programming (LP) problem was solved. A good overview of simple operational models and sev-
eral operating strategies is given in [21]. Without quantitative analysis, it was already pointed
out that for optimal control the trade-off between pumping and heat loss costs has to be taken
into account. In [5] the optimal operations management of a DHN with a combined heat and
power plant of an Italian company was solved by means of Mixed Integer Linear Programming
(MILP). A custom simulation tool for DHN was developed in [211]. The software was written
in Java and was used to evaluate real-time control strategies. A concept for controlling the
supply temperature in district heating systems using stochastic modeling and prediction was
presented in [159]. An Extended Generalized Predictive Controller (EGPC) for predicting the
temperature at critical nodes in the network was derived there. Prediction uncertainties were
also considered in the control scheme. Robust predictive control of a DHN with two production
sites, valves, pumps and several consumers was addressed in [181]. Due to computational fea-
sibility issues, transport delays were held constant. Treating DHN as multi-agent based system
was done in [104]. Distributed policies for operational planning were implemented and evaluated
with respect to demand side management and resource management.

In general, the approach to model the heat demand may be classified into two categories:
physically motivated models based on the thermal causes for heat demand, and data-driven
models based on the analysis of historic heat-load data collected by a monitoring system [170].
A purely physical, deterministic model (white box model) for the heat demand based on or-
dinary differential equations was studied in [95]. A sophisticated grey-box model for the heat
consumption was proposed in [155]. The physical knowledge about heat transfer has been used
to select an initial model structure. Then data on heat consumption and climate is applied
in combination with statistical methods to establish an actual mathematical model of the heat
consumption. Simple time series models were presented in [52] and [106]. Here heat-load was
split into a temperature dependent part and social behavior of the consumer. In [52] the tem-
perature dependent part was assumed to vary as a piecewise linear function and the social part
was represented by a set of dummy variables comprising one week. A sophisticated recurrent
neural network model were proposed in [112]. They used (amongst others) the lowest and high-
est ambient temperature of a day as explanatory variables. Much work was also done on the
popular Box-Jenkins methodology [34, 33, 111]. Prediction of heat demand is treated in [34]
and [33] by first filtering off exogenous effects such as temperature from the original load series
and then identifying a SARIMA (seasonal autoregressive integrated moving average) model for
the filtrated series. A SARIMA model was also applied for electricity demand forecasting in
[111]. It is obvious that analogies between heat demand and electricity demand can be drawn.
For instance, a very comprehensive space-state approach for modeling hourly French national
electricity load, taking into account different levels of seasonality, calendar events and weather
dependence have been developed in [51, 49]. An extensive survey of forecast models for energy
demand in general was presented in [46]. They also discussed different types of seasonality as
well as demand data granularity and the level of data aggregation.

Numerous approaches to modeling biomass plants have been proposed in the literature (e.g.,
[163, 13, 184, 116, 178, 214]. Computational Fluid Dynamics (CFD) simulations for air staging
and flue gas recirculation in biomass grate furnaces was performed in [184]. Based on the
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simulation results flue gas burnout, furnace temperature distribution as well as combustion
efficiency could be improved. A comprehensive CFD investigation of the combustion process in
a 50 MW grate fired furnace was also done in [116]. The comparison of the CFD results with
available experimental data at the furnace outlet showed good agreement. Very detailed particle
size and species modeling was performed in [178, 214]. They investigated the combustion of four
biomass materials having different fuel properties and found that (amongst other things) burning
rate is mostly influenced by fuel size and smaller fuels result in higher combustion rate. Focusing
on real-time applications, a grate-firing biomass furnace was modeled in [163]. This model
combines analytical equations for the combustion, a grey-box model for oxygen concentration in
the exhaust gases, and a black-box model for steam generation in the boiler. The same furnace
model after linearization and reduction was utilized by the author for controlling the combustion
load and combustion position in [164]. Based on physical considerations a simple model for
a biomass grate furnace was developed in [13]. It only consists of two ordinary differential
equations, which makes it particulary suitable for control purposes. The same authors designed
a model based controller including an extended Kalman filter and a reference shaping filter in
[72]. They claimed that this is the first time ever that a model based control strategy was
developed and successfully implemented in a biomass grate furnace.

1.3 Main Contributions

The main contributions of the author were published in the following papers which are expanded
and linked together in this thesis.

Paper A

S. Grosswindhager, A. Voigt, and M. Kozek: Efficient physical modeling of district
heating networks. In modeling and Simulation. ACTA Press, 2011.

Paper B

S. Grosswindhager, A. Voigt, and M. Kozek: Linear Finite-Difference Schemes for En-
ergy Transport in District Heating Networks. In Proceedings of the 2nd International Conference
on Computer modeling and Simulation (CSSim2011), pp. 35–24, 2011.

Paper C

S. Grosswindhager, A. Voigt, and M. Kozek: Online Short-Term Forecast of System Heat
Load in District Heating Networks. In Proceedings of the 31nd Annual International Symposium
on Forecasting, 2011.

Paper D

S. Grosswindhager, A. Voigt, L. Haffner and M. Kozek: Predictive control of district
heating network using fuzzy DMC. In Proceedings of International Conference on modeling,
Identification & Control (ICMIC), pp. 241–346, 2012

Paper E

S. Grosswindhager, A. Voigt, L. Haffner and M. Kozek: Fuzzy Predictive Control
of District Heating Network. International Journal of modeling, Identification and Control,
accepted
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Paper F

S. Grosswindhager, A. Voigt, L. Haffner and M. Kozek: Fuzzy modeling of Moving
Grate Biomass Furnace for Simulation and Control Purposes. Mathematical and Computer
Modelling of Dynamical Systems, in review

In paper A an efficient physical model for simulation of flow and temperature transients in
district heating networks is proposed. For the hydraulic part a graph-theoretical approach is uti-
lized. In addition, proper orthogonal decomposition (POD) is applied for obtaining a simplified,
reduced hydraulic model. For calculating the thermal propagation a lumped parameter approach
is considered where each pipe element consists of ordinary differential equation describing its
total heat capacity.

Paper B presents an evaluation of linear explicit finite-difference schemes with different
order for solving the energy transport equation in DHN. All methods were put into the versatile
state space representation for the purpose of simulating the propagation of two benchmark
temperature profiles from the DHN plant to the distant consumers. In particular, it is shown that
the third order accurate QUICKEST method can be successfully applied for thermal modeling
DHN if algorithm modifications at pipe junctions or when pipe diameters change are performed.
It is further proposed to use velocity weighted right wall values to get a robust solution for
various flow conditions.

In paper C a seasonal autoregressive integrated moving average (SARIMA) processes is
constructed for modeling the system heat load of the DHN Tannheim (Austria). In addition,
exogenous influences such as temperature are accounted for by first filtering off these effects
from the original load series and then identifying a SARIMA process for the the filtrated series.
Furthermore, for the purpose of forecasting the estimated SARIMA model was incorporated into
the versatile state space framework and classical Kalman recursion were applied.

Paper D and paper E considers optimal operation of district heating systems by controlling
the supply temperature at the plant using a Fuzzy DMC. The local models were found by
means of an axis-orthogonal, incremental partitioning scheme. It is shown that the Fuzzy DMC
is capable of handling the inherent nonlinearity in the response characteristics of DHN by taking
the volume flow rate at the plant as fuzzy variable. Set-point strategies for the critical nodes
are carried out and evaluated with respect to operational costs such as pumping and heat loss
costs.

In paper F Takagi-Sugeno (TS) fuzzy models are developed for a moving grate biomass
furnace for the purpose of simulating and predicting the main process output variables, which
are the heat output, the oxygen concentration of flue gas and the temperature of the flue
gas. To approximate the process behaviour local linear ARX models were estimated at specific
operating regimes using linear and non-linear estimation techniques. The local validity of the
linear models was determined by a sophisticated axis-orthogonal, incremental scheme using
Gaussian membership functions. The comparison with real measurements obtained from the
biomass plant in Grossarl (Salzburg) showed good agreement. In particular, for the heat output
minimal simulation error on the validation dataset can be observed.

In addition to the above contributions, structural models in state-space form for modeling
the heat-load and the ambient temperature are presented in this thesis. The SARIMA(X) model
developed in paper C and the structural model are compared with respect to their prediction
performance. It is shown that the latter performs better for longer prediction horizons. Further-
more, to model the consumer stations a static mapping between return temperature and ambient
temperature plus social load is developed. The static mapping is estimated using a sophisticated
nonparametric regression framework. Moreover, for the control of the supply temperature at
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critical nodes in the network a novel supervisory predictive on-line set-point optimizer is intro-
duced, which tries to minimize the operational costs. A simple grey-box model for a biomass
grate furnace which is largely based on mass and energy balances is designed in this thesis as
well. The validation with real measurements shows good performance. This grey-box model
and the fuzzy model developed in paper F are utilized in a fuzzy model predictive control im-
plementation. Various simulation runs are performed and the results clearly demonstrate the
benefit of using advanced control schemes such as fuzzy MPC for control of biomass furnaces.

1.4 Structure of Work

This work is structured as follows: Chapter 2 gives a brief introduction to the main components
of a district heating network. Chapter 3 addresses the modeling of the distribution network
including simulation and validation results using real measurements. A finite-difference scheme
is introduced for physical modeling of the thermal transients as well as conditional parametric
models for estimating the supply temperature at critical nodes in the network. The following
Chapter 4 deals with the modeling of the heat consumption. In particular, statistical methods
are applied for predicting the heat-load and modeling the return temperature at consumer sta-
tions. The first part of Chapter 5 covers first-principles modeling of biomass combustion plant.
The second part gives a general introduction to the fuzzy methodology and demonstrates its
effectiveness by designing a fuzzy model for the biomass combustion plant using real measure-
ments. The main concept of state-space model predictive control as well as the extension to
fuzzy model predictive control is provided in Chapter 6. Simulation results concerning the pre-
dictive control of the supply temperature and of the moving grate biomass furnace are presented
in Chapter 7. A brief conclusion is drawn in Chapter 8.



Chapter 2

Main Components of a District
Heating Network

District heating systems are basically composed of heat production facilities, consumers stations
and a distribution network (see Fig. 2) The former produces heat which is carried via a network
of insulated pipes to each individual consumer where heat exchangers are used to transfer heat
from the primary side of the distribution pipes to the secondary side of the building. Con-
sumer installations then cause some return temperature and mass flow rates ṁ in the network
dependent on their space heating and tap-water heating demands. The cooled water is then
transported back to the plant where is is heated again.

2.1 Distribution Network

In general the distribution network consists of a finite set of edges representing insulated pipes
or valves and a set of nodes as well as pumps and pipe intersections [76, 182]. Note that due to
the imperfect insulation of the pipes and friction in the pipes there will always be heat losses as
well as pressure losses in the network. Any modeling approach for the distribution network has
to take account of this. Another important issue for modeling is the topology of the network.
According to the network topology the following groups may be distinguished [76]:

1. pure loop networks

2. tree networks with built-in closed loop structures

dp
dp

QP

Plant
∆p1 ∆p2QC1 QC2 QC3

TC1
s TC2

s TC3
s

TC1
r

TC2
r TC3

r

TP
s

TP
r

C1 C2 C3

Figure 2.1: Schematic drawing of a district heating network, with supply temperatures Ts, return
temperatures Tr, pressure differentials ∆p and heat Q.
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Figure 2.2: District heating network in Tannheim (Austria)

3. tree networks without loops

Pure loop networks consider both the supply line to the consumers and the return line
back to the plant. In tree -structured networks the plant represents the source node with
consumers acting as sinks. Here additional built-in loops should increase the security of supply.
For networks with loops hydraulic calculations are only possible if the flow rates or pressure
distributions are predicted simultaneously for the whole network [192]. In particular, iterative
procedures such as the Hardy-Cross [43] method or Newton-Raphson method have to be applied
[183, 157]. For illustration purposes the distribution network of Tannheim is shown in Fig. 2.1.
For such networks which have tree structure the flow rates in the networks are simply calculated
by solving a set of linear equations (see Sec. 3.1.1). Although, due to computational reasons, a
physically aggregated network is often considered instead of the original network. The equations
describing the flow and heat transport are then only constructed for the reduced network.

2.2 Consumer Stations

Consumers connected to the distribution network can either be modeled as heat exchangers
or radiator systems [91, 202, 181, 166]. The classical approach is to build the heat energy
balance between secondary and primary circuit and solve this for the primary return temperature
according to heat exchanger theory [9]. A schematic drawing of a heat exchanger is presented
in Fig. 2.2 with the main quantities which affect its design. The heat flow Q transported from
the primary side to the secondary side satisfies, if heat losses are neglected, [9, 29]

Q = cpṁ1(T
1
s − T 1

r )
︸ ︷︷ ︸

Primary Side

= cpṁ2(T
2
s − T 2

r )
︸ ︷︷ ︸

Secondary Side

(2.1)

where cp is the specific heat capacity of water, ṁ is the mass flow rate and Ts and Tr are the
supply and return temperature, respectively. Thus, the heat transfer is proportional to the
temperature difference between supply line and return line and to the mass flow rate. The
secondary supply temperature is often required to be at some predefined level and can therefore
assumed to be constant [188]. The primary return temperature, given some supply temperature
and heat flow, is then calculated using heat exchanger theory [166]. However, classical heat



CHAPTER 2. MAIN COMPONENTS OF A DISTRICT HEATING NETWORK 9

Primary Side Secondary SidekA

ṁ1

ṁ1

ṁ2

ṁ2

Q

T 1
s

T 1
r

T 2
s

T 2
r

Figure 2.3: Heat exchanger scheme, with the mass flow rate ṁi, supply temperatures T i
r , return

temperatures T i
r , heat flow Q and characteristic transfer capability kA (i = 1, 2)

exchanger theory might not be valid for district heating applications. In [179] it was concluded
that the main factors which have an influence on the return temperature are (see also Sec. 4.2):

1. ambient temperature

2. social pattern affecting the heat load.

For instance, for cold days when the space heating dominates the heat-load, higher return
temperatures can be anticipated. This is due the fact that the return temperature from the heat
exchangers to the radiator circuits is higher than the return temperature from tap water prepa-
ration because the water in the radiator circuit is never as cold as the cold water supplying the
tap water. On the other hand, when the ambient temperature increases, the tap water prepara-
tion becomes a bigger part of the total heat load, and hence decreases the return temperature
of the network. For really warm days, however, low consumer heat demand leads to very low
flow rates in the network. In order to keep the flow up, supply water might be by-passed to
the return line. Other factors mentioned in [179] which influence the return temperature are
malfunctions of heat exchangers as well as their efficiency. Heat exchangers are less efficient in
case of low supply temperature which result in a higher return temperature.

2.3 Biomass District Heating Plant

Basically, the biomass plants consist of biomass boilers supplying heating and hot water, con-
ventional gas- or oil-fired boilers for peak load demand and supply pumps to guarantee a certain
differential pressure in the network. The purpose of the plant is to provide sufficient thermal
power to meet consumer demands by maintaining the supply temperature and differential pres-
sure within the contractual limits irrespective of the return temperature and flow rates in the
network [147]. The energy conservation law for the district heating network can be formulated
as following [202]

Qbio +Qfoss + PPump
︸ ︷︷ ︸

Production

= cpṁ(Ts − Tr) +Qloss
︸ ︷︷ ︸

Consumption & Transportation

(2.2)

where Qbio is the heat input by biomass combustion, Qfoss heat input by existent conventional
furnaces, PPump is the required pump power to keep up the flow in the network and Qloss are
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the heat losses to the surroundings. From an operational point of view it is important that the
costs related to heat production are minimized. This also includes, for instance, optimal pump
management, when more than one pump is installed, or ensuring efficient combustion, reducing
emissions and boiler maintenance time. In the general form this can be considered as a classical
unit commitment problem [11, 195]. Note that the dual problem to minimizing production costs
(cf. Eq. (2.2)) is to reduce operational costs such as heat loss costs [22]. As concluded in [39]
heat loss costs can be reduced by lowering the supply temperature from the plant or increasing
the thermal insulation thickness of pipes. Lowering the supply temperature, however, could
result in unacceptable supply temperature levels at consumers and also increases the flow rates
in the network, resulting in higher pumping costs.



Chapter 3

Modeling of the Distribution
Network

3.1 Physical Models

Generally, the governing equations for describing fluid and heat flow in pipes are three coupled
partial differential equations (PDE) for the basic conservation laws of mass, momentum, and
energy [113]. Conservation of Mass (or the continuity equation) expresses the idea that mass
can neither be created nor destroyed, the momentum equation relates to Newton’s law of force
balances and the energy equation refers to the 1st law of thermodynamics. For modelling
hydraulic and thermal behaviour of district heating networks the following assumptions are
made which allows us to use a set of less complex governing equations:

• Constant density, viscosity, specific heat, and thermal coefficient of the media

• Quasi-dynamic approach

The first assumption formally allows us to restate the problem in an uncoupled thermo-hydraulic
form, where the mechanical and thermal properties of the fluid can be considered independently
[66]. Compressible media (i.e., nonconstant density) are important if the focus lies on modeling
fast transients such as waterhammer effects. On the other hand, if flow conditions in a pipe are
only changing slowly, it is reasonable to assume constant density [6]. The term quasi-dynamic
relates to a steady-state water flow model and a dynamic thermal model. This means that each
time instant the steady-state flow condition in the distribution network is calculated and used
as a basis for prediction of the temperature transients [65, 193]. Especially from an operational
optimization point of view this approach is appealing, since the thermal and hydraulic dynamics
have highly different response times. The flow is driven by pressure waves and reaches steady
state typically in a matter of seconds, whereas temperature changes at the plant may need hours
to reach consumer stations [76]. Hence, for long term control strategies the dynamics of the flow
in the network are of minor importance compared with the dynamics of the temperature changes
[193].

In the following sections the conservation of momentum, mass and energy for hydraulic and
thermal modelling of district heating pipes are presented.

3.1.1 The Hydraulic Model

The conservation of momentum can be derived by applying Newton’s second law of motion

Force = Mass×Acceleration (3.1)

11
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q

h1 h2H12 = ∆h12

dx

Qout

Qloss

Tin
Tout

Qin

dx

D

T (x, t)

Tg

Figure 3.1: Pipe differential elements showing the hydraulic (left) and thermal (right) physical
properties; H12 is the head difference between the pipe ends and Tg is the ground temperature

to a horizontal differential pipe element (see Fig. 3.1.1 left) which yields [30]

∂q

∂t
+ gA

∂h

∂x
+

f

2DA
q|q| = 0. (3.2)

Here h (m) denotes the piezometric head, q (m3/s) is the volume flow rate , g (m/s2) is the
acceleration of gravity, A (m2) and D (m) are the cross section and diameter of the pipe element,
respectively, and f is the so called Darcy friction factor. The latter depends on the Reynold
number and the pipe roughness and can be determined by the Law of Hagen-Pousseuille (in
case of laminar flows) or the Prandtl-Colebrook formula (in case of turbulent flows) for example
[212].

It is also interesting to note the analogy to electrical circuit theory, where the head difference
between two points corresponds to voltage, the electrical current is equivalent to volume flow
rate or mass flow rate and also all wires have some resistance to current like pipes have some
resistance to the flow.

The entire district heating network can basically be discretized into pipe elements as illus-
trated in Fig. 3.1.1. Hence, the conservation of momentum for the network can be written as a
set of ordinary differential equations (ODE) of form (3.2) with appropriate boundary conditions
at pipe inflow and outflow nodes. Graph theory [48, 86] allows us to formulate these boundary
conditions in an elegant way by utilizing the so called incidence matrix. This matrix will also
be used to describe the conservation of mass in the network, which is, due to the assumption
of incompressibility, based on the Kirchhoff laws. Before going any further, let us review some
graph-theoretic definitions:

Definition 3.1.1 (Diagraph). Given non-empty sets V and E with V ∩ E = ∅ together with
a map H : E → V × V . Then the triple (V,E,H) is called digraph (or directed graph) D =
(V,E,H). The elements of V are the vertices (or nodes, or points) of digraph D, the elements
of E are its edges.

Hence, the map H assigns to every edge ej ∈ E an initial vertex (tail) vi ∈ V and a terminal
vertex (head) vk ∈ V (h(ej) = (vi, vk)). An appropriate representation for this relation H is the
so called incidence matrix.

Definition 3.1.2 (Incidence Matrix). Given a diagraph D = (V,E,H). The matrix

Gi,j =







−1, if vertex j is initial vertex of edge i,

1, if vertex j is terminal vertex of edge i,

0, otherwise,

(3.3)
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v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

e1 e2

e3

e4

e5 e6

e7

e8

e9

e10

e11

D = (V,E,H),

V = {v1, v2, . . . , v10},
E = {e1, e2, . . . , e11},
H = {h(e1) = (v1, v2),
h(e2) = (v2, v3), . . . ,
h(e11) = (v7, v10)}.

Figure 3.2: Example diagraph

with i = 1, 2, . . . ,m and j = 1, 2, . . . , n is called incidence matrix of the diagraph D.

Note that each row of the incidence matrix can have maximum two non-zero entries, −1 and
1, since each edge has exactly one initial vertex and one terminal vertex. Therefore, the row
sums of the matrix will always be zero. The columns, on the other hand, can have any number
of non-zero entries greater than one, since in a directed graph many edges can be connected
to a single vertex. For instance, for the case of the directed graph as illustrated in Fig. 3.2 the
incidence matrix is populated as follows:

G =






















−1 1 0 0 0 0 0 0 0 0
0 −1 1 0 0 0 0 0 0 0
0 0 −1 1 0 0 0 0 0 0
0 0 0 −1 0 1 0 0 0 0
0 −1 0 0 1 0 0 0 0 0
0 −1 0 0 0 1 0 0 0 0
0 0 0 0 −1 0 1 0 0 0
0 0 0 0 0 −1 0 1 0 0
0 0 0 0 0 −1 1 0 0 0
0 0 0 0 0 −1 0 0 1 0
0 0 0 0 0 0 −1 0 0 1






















. (3.4)

The incidence matrix is a comfortable way to describe the topology of any district heating
network. If the network structure is once put into this matrix form, the solution to the flow
distribution can easily be obtained. Moreover, in [187] a specific composition of the incidence
matrix according to certain node boundary conditions was proposed. The following categoriza-
tion was suggested:

1. Discharge boundary nodes have an outflow (consumption) vector specified with time,
Q1(t), and an unknown head vector h1. These nodes are further called interior nodes.

2. Head boundary nodes have a head vector specified with time, h2(t), and an unknown
outflow vector Q2. These nodes are further called reservoirs nodes.

Note that the outflow vectors are the discharges drawn from the nodes and should not be
confused with the discharges through the pipes. Additional boundary conditions such as surge
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tanks could be added in a straightforward way (see [187] for details). Corresponding to the type
of nodes, a given (m×n) incidence matrix G, a given (n× 1) head vector h and a given (n× 1)
outflow vector can be arranged as follows:

G = [G1
n−r

G2
r
], h =

[
h1

h2

]n−r

r

, Q =

[
Q1

Q2

]n−r

r

. (3.5)

where r (r ≪ m) is the number of reservoir nodes.
In the next step the conservation of momentum for the entire network is formulated using the

incidence matrix. First assume that Eq. (3.2) has been set up and spatially discretized for each
pipe element such that the overall network can be described by an assembly of interconnected
equations. The stationary momentum equation can then be written in vector form as

H = R(q)q = G1h1 +G2h2 (3.6)

with

R(q) = diag

{
f1L1

2D1A2
1g

|q1|,
f2L2

2D2A2
2g

|q2|, . . . ,
fmLm

2DmA2
mg

|qm|
}

. (3.7)

and in which q is the discharge vector whose element qk, k = 1, . . . ,m is the discharge through
the kth pipe (edge), and Hk, the kth element of H is the head drop in the kth pipe. Note that
other hydraulic elements such as pumps or valves can be added in a straightforward way (see[6]
for details).

However, problem (3.6) is, from a mathematical point of view, under-determined since there
are m+ n− r unknowns (discharges trough the pipes plus head at the interior nodes) and only
m nonlinear equations. In order to get a well-posed formulation of the system the conservation
of mass at the interior nodes has to be taken into account. This can be written as follows

GT
1 q = Q1. (3.8)

By introducing a partitioned vector of the unknown variables x =
[
qT hT

1

]T
, i.e., discharges

through the pipes and head at the interior nodes, the solution to the system of equations of
(3.8) and (3.6) can be reduced to find the zeros of the following function [157]

f(x) =

[
R(x) G1

GT
1 0

]

x+

[
G2h2

−Q1

]

= 0. (3.9)

A reduction of the m+n− r primary unknowns can further be achieved by either expressing R
in terms of q or in terms of H resp. h (i.e., rearranging first part of Eq. (3.6)) which yields the
well-known loop and node equations, respectively [157]. For instance, the loop equations can be
derived by writing the complete solution to the continuity equation (3.8) in the form

q = qc +Cu (3.10)

where qc is any (m× 1) flow vector that satisfies (3.8), u is any (m− n+ r× 1) vector, and the
m × (m − n + r) matrix C satisfies GT

1C = 0 and C 6= 0, i.e., C is the kernel or null space of
GT

1 . The matrix C is also denoted as loop matrix and u as the loop flow vector. By multiplying
Eq. (3.6) by CT and substituting (3.10) for q one obtains

CTR(q)Cu+CTR(q)qc +C
TA2h2 = 0. (3.11)

This simply expresses the second Kirchhoff Law, that the accumulated head loss around each
closed loop is zero.
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The Hardy Cross method [43] was the first method for solving the nonlinear loop equations
(3.11) iteratively. This method determines the loop flow rate corrections u for each loop inde-
pendently and than calculates the corrected flow for each pipe. More efficient methods, such as
the Newton-Raphson algorithm, calculate the flow corrections simultaneously for each loop in
the whole network [183, 192]. Here the iterative update scheme can be written in the following
way [157]

[
CTR(qk)C

]
∆uk+1 = −CT [R(qk)qk +A2h2]

qk+1 = qk +
1

2
C∆uk+1.

(3.12)

In a similar way the node equations can be derived. First, R(x) is expressed in terms of the
head h1, i.e., R(h1) = R(x). Then the upper part of Eq. (3.9) can be solved for q under the
assumption that R(h1) is non-singular and be substituted into the lower part of (3.9) which
yields

GT
1R(h1)

−1G1h1 +G
T
1R(h1)

−1G2h2 = −Q1. (3.13)

This is a nonlinear system of n − r equations in the unknown head vector h1 which can again
be solved by applying the Newton-Raphson algorithm. The iterative update is given by [157]

h1,k+1 = h1,k − 2
[
GT

1R
−1
k G1

]−1 [
Q1 +G

T
1R

−1
r (G1h1,k +G2h2)

]
(3.14)

where Rk = R(h1,k) .

Example 3.1.1:

For exemplary purposes let us consider the diagraph shown in Fig. 3.2 with corresponding incidence
matrix (3.4). Node v1 should act as reservoir node (r=1) and the remaining nodes are treated as interior
nodes. The outflow vector of the interior nodes is given by

QT

1
=

[
0 0 0 0 0 0 1 1.5 2

]

and the resistive values for the pipes are randomly chosen as

R = diag
[
0.2 0.1 0.6 0.1 0.2 0.7 0.3 0.5 0.4 0.3 0.2.

]

The loop matrix for this network (i.e., null space of GT

1
) is given by

CT =

[
0 0 0 0 −1 1 −1 0 1 0 0
0 −1 −1 −1 0 1 0 0 0 0 0

]

.

The non-zero entries in the loop matrix are exactly the nodes which are arranged in the two closed
loops as shown in Fig. 3.2. The volume flow rate of the first 5 steps of the Newton-Raphson algorithm
is presented in the following table:

k Volume Flow Rate

0 4.5 0 0 0 2 2.5 2 1 0 1.5 2
1 4.5 2.25 2.25 2.25 1 1.25 1 1 1 1.5 2
2 4.5 1.482 1.482 1.482 1.659 1.360 1.659 1 0.342 1.5 2
3 4.5 1.348 1.348 1.348 1.716 1.436 1.716 1 0.284 1.5 2
4 4.5 1.344 1.344 1.344 1.719 1.437 1.719 1 0.281 1.5 2
5 4.5 1.344 1.344 1.344 1.719 1.437 1.719 1 0.281 1.5 2

Note that an initial solution q0 satisfying the conservation of mass condition (3.8) was obtained
by LU-factorization. As one can see, after four iterations the Newton-Raphson algorithm converges
to the steady-state flow distribution solution in the network.
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Remark. In district heating systems the supply network often has a tree structure (i.e., no
closed loops) with one reservoir node, the biomass plant. In that case, the matrix A1 has full
rank and the continuity equation (3.8) is sufficient to calculate the flow situation in the entire
network.

3.1.2 The Thermal Model

Energy Transport Equation

The modeling of energy transport in district heating pipes belongs to the class of convective
(or advective) transport models. A general formulation of the one-dimensional energy transport
equation for a scalar φ(x, t) with source term is given by the following partial differential equation
(PDE) [19, 132]

∂φ

∂t
+ v

∂φ

∂x
+ aφ = 0

φ(x, 0) = φ0(x), φ(0, t) = φi(t)
(3.15)

where a is a well defined source term (heat loss in case of DHN pipes), v = v(x) is the velocity,
and φ0(x), φi(t) represent some initial and boundary conditions, respectively. It should be noted
that the velocity v does not necessarily represent the physical velocity of the transport medium
as discussed in [165]. In particular, for district heating networks the thermal energy propagation
can be written as [65, 181]

∂T

∂t
+

4ṁ(t)

ρD2π

∂T

∂x
+

4a

cpρD
(T − Tg) = 0

T (x, 0) = T0(x), T (0, t) = Ti(t)

(3.16)

where T (x, t) (K) describes the temperature distribution along the pipe, ṁ (kg/s) (ṁ = ρq)
denotes the mass flow through the specific pipe segment, D (m) is the pipe diameter, ρ (kg/m3)
is the relative density of water, cp (J/kgK) is the specific heat of water, and T0(x) and Ti(t)
are appropriate initial and inflow conditions, respectively. Heat losses to the surroundings are
proportional to the temperature difference between fluid temperature and ground temperature
Tg (K), and are affected by an overall heat transfer coefficient a (W/m2K). The latter is com-
posed of the convective heat transfer coefficient between the flow and the pipe and the thermal
conductivities of the pipe, the insulation and the soil, respectively [191].

An analytic solution to the transport problem (3.16) is easily obtained and has the form
[181]:

Tout(t) = Tg + (Tin(t− τ(t))− Tg) exp
− 4a

cpρD
τ(t)

(3.17)

where Tout and Tin denote temperature of the fluid at the pipe outlet and inlet, respectively and
where the varying transport time delay τ(t) is defined by

∫ t

t−τ(t)

4ṁ(ζ)

ρD2π
dζ = L. (3.18)

As can be seen in (3.17) the temperature difference between pipe inlet and outlet depends
on the transport time delays. This means that the longer it takes the fluid particles to pass
through the pipe the more heat is emitted to the surroundings. In practical implementations
the calculation of the varying transport time delays is time consuming and a limiting factor for
real time simulation and optimization [181]. Numerical solution methods can therefore be used
which try to numerically approximate these transport time delays.
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Numerical Solution Methods

In general, two categories of numerical solution methods can be applied to solve partial dif-
ferential equations of type (3.15): Finite-Difference Methods [133, 132, 206, 122] and Galerkin
Methods [56, 99]. The implementation of finite-difference methods for the adjective transport
problem is demonstrated in [154, 215, 67]. The success of the finite-difference approach is mainly
due to its conceptual simplicity. This work also focuses on finite-differece schemes. One of these
schemes is dicussed in greater detail below.

Quickest. In this work the third order accurate QUICKEST (Quadratic Upstream Interpola-
tion for Convective Kinematics with Estimated Streaming Terms) method derived by [129] was
applied due to its excellent performance in terms of convective transport problems [165]. In
its original form Quickest used an explicit, Leith-type differencing and third-order upwinding
on the convective derivatives to yield a four-point upwinded scheme (cp. Fig. 3.3 and Tab. 3.1)
[190]. Numerical tests for pure advection in one-dimensional flow problems have shown that
this scheme gives in general better results (reduces the numerical diffusion) than second-order
schemes, e.g., Lax - Wendroff or Beam-Warming [67, 77]. However, as demonstrated in [130]
both second order schemes, third order schemes such as Quickest, and even higher order methods
are prone to small oscillations and/or overshooting, especially near sharp gradients. This limi-
tation is predicted by Godunov’s theorem [71], which states that any linear convection scheme
with the property of not generating new extrema (monotone scheme) can be at most first-order
accurate. To overcome this nonlinear schemes were proposed, which adjust themselves according
to the local solution. For an overview see [210].

Generally, finite-difference schemes are constructed by defining a discrete computational grid
in the x− t plane with time increments ∆t and spatial increments ∆xl,m between grid points l
and m. In the following the notation φn

j is used where the index j and n denote the discrete mesh
points of space and time, respectively (see Fig. 3.3 and Fig. 3.4). A conservative control-volume
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Table 3.1: Overview of Finite-Difference Schemes

Name Time Update Stencil Representation

First Order Upwind φn+1
j = f(φn

j , φ
n
j−1) r r

r

Lax - Friedrich φn+1
j = f(φn

j+1, φ
n
j−1) r

r

r

Lax - Wendroff φn+1
j = f(φn

j+1, φ
n
j , φ

n
j−1) r r

r

r

Beam Warming φn+1
j = f(φn

j , φ
n
j−1, φ

n
j−2) r r

r

r

Quickest φn+1
j = f(φn

j+1, φ
n
j , φ

n
j−1, φ

n
j−2) r r

r

r r

form of (3.15) can be written as (cp. Fig. 3.5 and Fig. 3.6) [130, 200]

φn+1
j = φn

j + (cj−1φ
∗
j−1 − cjφ

∗
j ) + ∆tS̄ (3.19)

where φ∗
j and φ∗

j−1 are the right- and left-face values of the transported scalar for the ith control

cell, and cr and cl are the right- and left-face values of the Courant number, and ∆tS̄ is the
time averaged source term. The Courant number plays also a crucial role in stability analysis
and is defined as [42]

c = v
∆t

∆x
. (3.20)

It indicates how fast temperature information travels on the computational grid. Specifically in
the Quickest scheme, as the name suggests, the right- and left-face values are calculated using
quadratic upstream interpolation. In mathematical terms this can be written as [129]

φ∗
j =

φn
j + φn

j+1

2
− ∆xj

2
cjGRADj −

∆x2j
6

(1− c2j )CURVj (3.21)

with

GRADj =
φn
j+1 − φn

j

∆xj
, CURVj =

GRADj −GRADj−1

(∆xj +∆xj−1)/2

and ∆xj = ∆x(j,j+1), i.e., the distance between nodes (j + 1, n) and (j, n). Note that the
original Quickest algorithm as formulated in [129] also allows for a non-uniform computational
grid, which is very convenient in case of district heating networks. An overview of different finite-
difference schemes including their stencil representation is presented in Tab. 3.1. By means of
the stencil one can easily determine the spatial order of the method. See [133, 77] for details.

Modified Quickest. Equation (3.19) represents a conservative form, which means that changes
in the flow velocity along the control volume will affect the temperature profile. However, for
district heating applications, this produces incorrect results at pipe junctions or when diameters
are changed [165]. To overcome this the problem can be formulated non-conservatively:

φn+1
j = φn

j +
2∆t

∆xj +∆xj−1
vj−1(φ

∗
j−1 − φ∗

j ) + ∆tS̄. (3.22)

Also in district heating networks the time averaged source term S̄ can be approximated by
a
2 (φ

n+1
j + φn

j ) [165]. Moreover, in [77] it was recommended to use velocity weighted right wall
values in the case of pipe junctions (see Fig. 3.4) to get a more robust scheme. More precisely, to
calculate φn+1

4 in Fig. 3.5 one could either use φ∗
4,1 or φ∗

4,2 as right-face value. A natural choice
would be to use the node which is connected to the “main” distribution pipe. For instance,
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Figure 3.5: Schematic representation of the finite-difference grid for the supply line with im-
posed boundary conditions: Dirichlet boundary condition plus mirror node upstream (UB); Zero
curvature condition downstream (DB)

some mass flow weighting of the potential right wall values would be appropriate. In [77]
weights corresponding to the velocity of the fluid in the pipe have been suggested, which worked
reasonably well in practice. Here φ∗

j and ∆xj in Eq. (3.22) are replaced by

φ̃∗
j =

∑N
l=1 vj,lφ

∗
j,l

∑N
l=1 vj,l

, ∆x̃j =

∑N
l=1 vj,l∆xj,l
∑N

l=1 vj,l
. (3.23)

where N is the number of pipes connected to the junction, vj,l is the velocity of the fluid and
xj,l is the spatial discretization in the lth pipe connected to the junction, respectively.

Similar arguments can be applied for the return line as illustrated in Fig. 3.6. Again special
treatment of pipes in junctions is necessary. For instance, the correct return mixing temperature
has to be calculated using steady-state energy balances [193]. It is suggested to not compute
the mixing temperature directly at the junction (node φ3 in 3.6) but rather to interpolate the
left-face values φ∗

1 and φ∗
2. Hence, φ

∗
j−1 and ∆xj−1 in Eq. (3.22) may be replaced by the following

expressions

φ̃∗
j−1 =

∑

l∈I ṁl,jφ
∗
l

∑

l∈I ṁl,j
, ∆x̃j−1 =

∑

l∈I ṁl,j∆xl,j
∑

l∈I ṁl,j
. (3.24)

where I is the index set of nodes affected by the junction and ṁl,j is the mass flow rate through
the lth pipe. The Quickest scheme, due to its third order accuracy, also utilizes the far left node
φj−2 for update of φj . Hence, as shown in Fig. 3.6 also φ4 is affected by the pipe junction. A
simple solution to this problem would be to use a linearly extrapolated hypothetical node as far
left node. This means that the curvature term is zero in formula (3.19) for approximating the
left-face value φ∗

3.

Remark. Note that the proposed modifications to the classical Quickest scheme are merely ad
hoc solutions to handle pipe junctions in district heating systems in practice. It is not claimed
that this approach is optimal from a fluid dynamics point of view.

Boundary Conditions. For the energy transport problem considered it is essential to impose
appropriate boundary conditions. In particular, in the case of the supply line where hot fluid is
transported from the plant to the consumers, the former acts as an upstream boundary condition
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and the latter as downstream boundary conditions. For the case of cold fluid flowing back to
the plant this situation is exactly reversed.

Leonard [129] suggested to treat upstream boundaries by introducing an imaginary node
value (i.e., a value at a hypothetical node ∆x/2 upstream of the boundary condition; cp. Fig. 3.5
and Fig. 3.6), and to specify the boundary condition to be a wall value rather than a node.
The value of the image node is then φn+1

0 = −φn
1 at each time instant of the computation.

Furthermore, for the outflow (downstream) numerical boundary conditions zero-curvature was
suggested.

Taking into account these boundary conditions and the modifications proposed for pipe
junctions, the time-update of an entire network with m interior nodes and r reservoir nodes
(plant in the case of supply line and consumers in the case of return line) can be written in the
matricial form as follows

φn+1 = Aφn +Bφn
i , (3.25)

with φn = [φn
1 , . . . , φ

n
m], (m × m) interior node matrix A and (m × r) reservoir node matrix

B. The initial condition is represented by φ0 and the inflow boundary condition by φn
i . The

matrices A and B contain the coefficients of the difference formulas (3.22). Note that with
varying flow in the network these matrices have to be updated at each time step.

Stability Analysis. A common method to prove stability of finite-differences schemes is the
von Neumann stability analysis which uses tools from Fourier analysis [189, 131]. Here the
solution to Eq. (3.22) is sought in the form

φn
j = gn exp(ıjθ) (3.26)

where θ = K∆x is the phase angle with K denoting the wave number, gn is the amplitude of
the Fourier component at n∆t, and ı is the imaginary unit. A numerical scheme is said to be
von Neumann stable if there is a constant c > 0 (independent of θ, ∆t, and ∆x) such that

|G(θ)| ≤ c∆t, for 0 ≤ θ < 2π (3.27)

where |G(θ)| = |gn+1/gn| is the modulus of the Fourier amplification factor. In practice, the
inequality (3.27) in the von Neumann condition will be replaced by the stronger condition [189]

|G(θ)| ≤ 1, for 0 ≤ θ < 2π. (3.28)
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Figure 3.7: Two-dimensional plot of the amplification factor modulus, G(θ, c), for the Quickest
scheme

The von Neumann criterion can now be applied to specify the stability region of the Quickest
scheme. First, for reasons of simplicity, assume uniform grid spacing and zero source term. Then
the time update for the jth node (Eq. 3.22) can be rewritten to

φn+1
j =−

[
1

6
c(1− c)(2− c)

]

φn
j+1 +

[
1

2
(1− c2)(2− c)

]

φn
j

+

[
1

2
c(1 + c)(2− c)

]

φn
j−1 −

[
1

6
c(1− c2)

]

φn
j−2

(3.29)

where c is the Courant number as defined in (3.20). Substituting (3.26) into (3.29) yields the
following amplification factor

G(θ, c) = 1 +

[
1

2
− 1

6
exp(ıθ)− 1

2
exp(−ıθ) +

1

6
exp(−2ıθ)

]

c3

+

[

−1 +
1

2
exp(ıθ) +

1

2
exp(−ıθ)

]

c2

+

[

−1

2
− 1

3
exp(ıθ)− 1

6
exp(−2ıθ) + exp(−ıθ)

]

c.

The modulus for different values of c and θ is depicted in Fig. 3.7. Is is evident that the Quickest
scheme satisfies the von Neumann stability condition (3.28) for 0 ≤ c ≤ 1. This restriction is
also well known as the Courant-Friedrichs-Lewy or CFL condition [42]. Although being difficult
to detect in Fig. 3.7, the Quickest scheme is also von Neumann stable for c = 2. The reader is
referred to the original work [129] for a detailed analysis of stability.

Besides the scalar case the von Neumann condition can also be stated for finite-difference
representation in matricial form:

Definition 3.1.3 (von Neumann stability). The finite-difference method (3.25) is said to satisfy
the von Neumann condition if there exists a constant c > 0 independent of ∆t, ∆x and n such
that

ρ(A) ≤ 1 + c∆t (3.30)

where ρ(A) denotes the spectral radius of matrix A.
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Theorem 3.1.1. The von Neumann criterion is necessary for stability of the finite-difference
method (3.25), and sufficient, if the following condition holds

a all Elements of A are bounded and all but one of the eigenvalues of A lie in a circle inside
the unit circle, that is, all but one eigenvalue λi are such that |λi| ≤ r < 1.

Proof. See Theorem 2.2 and Theorem 2.3 in [189].

For practical reasons, as mentioned above, the condition (3.30) is considered for the case
t → 0. In particular the method (3.25) is stable for ‖A‖ ≤ 1 where ‖A‖ is the L2-norm of the
matrix A. This can be seen from the following inequality (see [98, Ch. 5.6])

ρ(A) ≤ ‖Ak‖1/k ≤ ‖A‖, ∀k ∈ N. (3.31)

However, this condition is sufficient for stability but not necessary. In fact, as demonstrated in
[190] the norm of the matrix A is never less than one for the classical Quickest scheme with
imposed boundary conditions as suggested in the original work [129]. Moreover, it was shown
that the region enclosed by the condition ‖A48‖ = 1 is approximately the same as the von
Neumann stability region.

3.1.3 Simulations

System Description

The proposed hydraulic and thermal methods are applied to the test case of the Tannheim
DHN. Tannheim is located in Tyrol, Austria and is a typical tourist centre with about 1100
inhabitants. In 2009, 84 building objects, mainly consisting of private houses, a few hotels and
some guest houses, were connected to this system. The length of the entire distribution network
(supply plus return line) is about 8 km. For heat production a biomass boiler with a heat power
of 2.5MW is installed. During times of peak heat demand, an oil-fired boiler with 3MW can be
operated.

The distribution network itself, depicted in Fig. 3.8, has a tree structure with one root node,
the biomass plant. Thus, the flow condition in the network can be computed by solving the
linear system of equations (3.8) on page 14. The available data set consist of measurements
of supply temperatures at the plant and consumer stations, as well as heat-load and flow rates
with a resolution of 15 minutes. Furthermore, as the heat transport medium is water, a specific
heat capacity cp = 4184 J/kgK and a density ρ = 983 kg/m3 was chosen (see [212] and [29]).
The ground temperature has a seasonal cycle and depends on the depth below the surface [91,
p. 156]. In this work a seasonal cycle with an amplitude of 10 ◦C , i.e., Tq = 5 ◦C in the winter
months and Tq = −5 ◦C in the summer months was used.

Network Aggregation. To reduce the complexity of the process model a physically simpli-
fied, aggregated version of the real network is used (see Fig. 3.8). More precisely, the number of
pipes was reduced from 163 to 12 pipes, and only 7 aggregated consumers (AC) were used. For
the aggregation task it is essential that the most important physical properties of the network
are preserved, i.e.,

• Total heat-load, mass flow, water volume, and heat loss in the aggregated and original
network should be equal.

In [126] a sophisticated aggregation method is developed in which the complexity of the district
heating network is gradually reduced by changing a tree structure into a chain structure with
no branches. They transformed the various parameters which define the branches from the real
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Figure 3.8: Original and aggregated district heating network in Tannheim

network to equivalent parameters in the corresponding aggregated network using conservation
laws. Two main assumptions were made: The mass flows vary proportionally, i.e., there is a
constant ratio between mass flows, and the return temperatures on the primary side of all heat
exchangers are equal. Despite these very strong assumptions simulations have shown that the
original network can be reduced from 1079 to approximately 10 branches without affecting the
accuracy. Verification on the performance of aggregated networks is also done in [125]. They
compared the method proposed in [126] with another systematic method developed in [142].
They concluded that both aggregation methods work well.

For all these methods it is required that a total description of the network exist. This means
that the topology of the network and the physical properties of the pipe such as lengths, diameter
and insulation have to be known. In this work no exact information about the individual heat
loss coefficients of the pipes was available. Therefore, it was decided to estimate the heat loss
coefficient by minimizing the error between the simulation output of the model and the process
measurements. Theoretically, one could also estimate the pipe length and/or the pipe diameters
simultaneously as, for instance, done in [166]. For minimizing the error the Levenberg-Marquardt
least-squares algorithm [141] was attached (lsqnonlin command in MATLAB R©). The lengths
of the aggregated pipes were chosen in such a way to allow a uniform spatial grid spacing for
the finite-difference model. The pipe diameters are then calculated to satisfy the conservation
of the water volumes. The calculated and estimated parameters are given in Tab. 3.2. Two
points should be mentioned here: First, to further reduce the number of unknown parameters
equal heat losses were assumed for the pipes forming the main distribution line (P1, P3 and
P5), as well as for the pipes P6, P8 and P9, P10. Secondly, it was assumed that the pipes
in the return line have the same physical properties (length, diameter and heat loss) as the
corresponding pipes in the supply line. For reasons of clarity the performed “aggregation steps”
are summarized:

1. Find appropriate clusters by visual inspection and expert knowledge of the distribution
network topology. Each cluster is represented by one pipe element.

2. Determine the length for each of these pipes elements.

3. Calculate the diameter for each pipe so that the total water volume is preserved.

4. Build aggregated time series for the mass flow rate, supply and return temperature. For
the latter two use mass flow rate weighted averages.
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Table 3.2: Physical properties of the pipes of the aggregated district heating network; Length,
diameter are in m and heat loss in W/m2K

Pipe Length Diameter Heat Loss

P1 800 0.180 0.86
P2 400 0.095 0.90
P3 200 0.140 0.86
P4 100 0.095 1.11
P5 100 0.140 0.86
P6 300 0.135 2.15
P7 200 0.085 1.31
P8 300 0.130 2.15
P9 400 0.120 1.08
P10 400 0.115 1.08
P11 200 0.090 0.85
P12 600 0.140 1.21

5. Find the heat loss coefficient for each pipe element by minimizing some quadratic error
criterion using Levenberg-Marquardt.

Finite-Difference Model. For the finite-difference model a uniform spatial discretization
with ∆x = 100m was chosen. To guarantee von Neumann stability for all flow conditions the
time increments ∆t were set to 60 s. Note that software tools used today in practice allow for
adaptive mesh refinement (AMR) to guarantee stability and achieve high accuracy [137]. AMR
automatically refines grids in regions where high resolution is required, as could be the case for
pipes with high flow rates. The resulting finite-difference model for the supply line with the
proposed discretization and network given by Fig. 3.1.3 + Tab. 3.2 is written for the supply line
as

T s,t+1 = As,t +Bs,tT
Plant
s,t +Es,tTg

TAC
s,t = CT s,t

(3.32)

with As ∈ R
40×40, Bs ∈ R

40×1, Cs ∈ R
7×40 and Es ∈ R

40×1. And the model for the return
line is given by

T r,t+1 = Ar,t +Br,tT
AC
r +Er,tTg

TPlant
r,t = CT r,t

(3.33)

with Ar ∈ R
41×41, Br ∈ R

41×7, Cr ∈ R
1×41 and Er ∈ R

41×1. For simulation of the return line
the measured aggregated return temperatures acts as input to the system. This means that the
individual consumer stations (heat exchangers) are not explicitly modeled here. Furthermore,
as the time resolution of the measurement data is 15min and the finite-difference models are
time discretized with 1min, the data were up-sampled using zero-order-hold.

Results

To validate the accuracy of the finite-difference models (3.32) and (3.33) one week (19.-26. Dec.
2008) of real data are considered. More precisely, the simulation output at the boundary nodes
representing AC5 and AC7 is compared with the corresponding aggregated supply temperature
measurements. For performance assessment of the return line model measured return temper-
atures at the plant are available. Note that at each simulation time step, first the stationary
flow distribution has to be calculated based on the available measurements of the flow rate at
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Figure 3.9: Aggregated volume flow rates for AC5 and AC7 between 19.-26. Dec. 2008

the aggregated consumers, and then the matrices in (3.32) + (3.32) have to be updated. Mea-
surements of aggregated flow rates for the validation time period are depicted in Fig. 3.9. It can
be observed that the flow rates vary proportionally with the corresponding heat demand of the
consumers, with low demand during night and peaks in the morning hours and late afternoon
(cf. Sec. 4.1.1).

The simulation results for the supply line are shown in Fig. 3.10. It can be seen that the
model is able to capture the transient fluctuations in the supply temperature in spite of the fact
that a strongly aggregated network was used. In particular for AC7 a good consistency between
measurements and simulation can be observed. One reason for this are the high flow rates of
AC7 and thus low transport time delays. This implies that significant discrepancies between
simulated and measured temperatures can be anticipated for consumers located at distant pipes
having low flow rates (cf. [65]). An interesting point worth mentioning here is that the rising
edges of the supply temperature occur shortly after midnight. This can be explained by the
implemented control strategy for the supply temperature at the biomass plant. Often plant
operators “preheat” the distribution line in order to be able to provide sufficient heat in the
peak time for the consumers.

The comparison of the simulation output with measured data for the return line in Fig. 3.11
shows very good agreement. One reason for this is that the return temperature is much smoother
in contrast to the supply temperature due to the mass flow rate averaging (see Eq. (3.24)).

Of course, several actions can be taken to improve both the results for the supply and return
line. Just to mention a few: aggregate the network to only a modest level, create denser spatial
finite-difference grid, use more accurate heat loss coefficients for the pipes and take the heat
transfer between supply pipes and return pipes into account, as it is done in [166].

For the purpose of demonstrating the effect of the finite-difference method different temper-
ature profiles at the plant inlet node are considered, namely, a unit step and a single and double
Gaussian hill (cf. [215]). The unit step represents a discontinuity in the temperature profile and
is a standard benchmark test for every numerical scheme. The Gaussian hills, on the other hand,
serve as an indicator on how a numerical scheme can resolve the interference of various peaks and
valleys. The results are depicted in Fig. 3.12. Note that constant mass flow rate was given and
Tq = 0, otherwise the temperature profile would never be zero due to continuous heat transfer.
This figure clearly illustrates the transport time delays differences and resulting heat losses for
AC5 and AC7. It also gives a good interpretation of the behavior of higher order finite-difference
schemes, that is producing unphysical oscillations near discontinuities. First order schemes, on
the other hand, are free from under and over estimations, but would produce strong artificial
diffusion effects. It is referred to [77] for a detailed comparison of finite-difference schemes with
different order.



CHAPTER 3. MODELING OF THE DISTRIBUTION NETWORK 26

Sat Sun Mon Tue Wed Thu Fri
82

83

84

85

86

87

88

89

90

 

 

Sat Sun Mon Tue Wed Thu Fri
82

84

86

88

90

92

 

 

Data

Data

Model

Model

T
A
C
5

s
(◦
C
)

T
A
C
7

s
(◦
C
)

Figure 3.10: Performance comparison of the finite-difference model of the supply temperature
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Figure 3.12: Different benchmark temperature profiles
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3.2 Conditional Parametric Models

3.2.1 General Model Structure

Conditional parametric models are a special case of the varying-coefficient models which were
introduced in [92]. Varying-coefficient models are considered to be linear regression models in
which the coefficients are allowed to vary as smooth functions of individual explanatory variables.
They are natural extensions of classical parametric models and are becoming more and more
popular owing to their good interpretability and flexibility [58]. Parametric statistical inference
always necessitates some model assumptions, such as linearity. Although their properties are
very well established, linear models are often unrealistic in real applications [153, 57]. Varying-
coefficient models, on the other hand, relax the conditions imposed on classical parametric
models and try to explore the hidden structure in the data. Basically, varying-coefficient models
can be considered as locally parametric models. That is why one also speaks about the class of
semiparametric models [58]. In particular, conditional parametric models are varying-coefficient
models in which all terms are modeled conditionally on the same argument [36]:

yk = xT
k β(zk) + ǫk, k = 1, . . . , N, (3.34)

where yk is the response, xk = [xk,1, . . . xk,p] and zk = [zk,1, . . . zk,m] are a set of explanatory
variables, β( · ) is the vector of coefficient functions to be estimated and ǫk is some random noise
term. In general, m, the dimension of zk, should be chosen low (1 or 2) for practical purposes
[156]. Since (3.34) represents a linear model for a given zk, methods like locally weighted least
squares (WLS) are a natural way to fit these types of models [93] (see Sec. 3.2.2). Note that
in [102] varying-coefficient models are defined as given in Eq. (3.34), which is different from
the original work [92] where the coefficients are explicitely allowed to depend on individual
explanatory variables.

Specifically, for predicting the supply temperature in district heating networks a conditional
parametric ARX (cARX) and a conditional parametric FIR (cFIR) model was proposed in [158]
and [169], respectively. It is well-known that the response characteristics in district heating
networks are heavily influenced by varying transport delays as a result of varying flow rates
[76]. Within the framework of conditional parametric models this nonlinear influence is natu-
rally accounted for by varying-coefficient functions. More precisely, the idea is to predict supply
temperature values at particular nodes in the network, the critical nodes, based on supply tem-
perature values at the plant depending on the flow rate. Mathematically, this can be formulated
as cARX model as follows [158]

yt = a1(qt−1)yt−1 +

τmax∑

j=τmin

bj(qt−1)xt−j + ǫt, ∀t. (3.35)

Here, yt is the supply temperature at the considered point in the network, qt−1 denotes the
volumetric flow rate at the plant, xt−j are the lagged values of the supply temperature at the
plant, τmin, τmax are minimum and maximum values for the time delay, respectively, and a1,
bτmin...τmax are coefficient functions, which have to be estimated. Obviously, the coefficients in
(3.35) depend on the flow rate in the network. This means that for different flow situations,
e.g., high flow rate in winter months and low flow rate in summer months, a different set of
parameters is used for modeling the temperature response. In this context the fitting points
can also be considered as operating points and for different operating points different process
behavior can be assumed.

In both publications, [158] and [169], it was demonstrated that the proposed class of con-
ditional parametric models produce highly accurate results for simulation and prediction of
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temperature transients in a district heating system. In [79, 75] the cFIR model was also suc-
cessfully integrated into a fuzzy predictive control scheme. This topic will further be pursued in
Sec. 7.1.

Conceptually similar models to the conditional parametric models are commonly referred to
in literature as local linear model networks (LLMs) [151, 153], linear parameter-varying (LPV)
systems [1], neuro-fuzzy models [153] or Takagi-Sugeno fuzzy models [177]. The last method
will be introduced in Sec. 5.2 and the equivalence to the conditional parametric framework will
be discussed.

3.2.2 Estimation

Problem Formulation

A common way to estimate conditional parametric models is by defining fitting points z(i), i =
1 . . . r and estimate linear models in regions local to these fitting points [93]. Localization
is achieved via a weighting kernel Kh, and individual observations zk, k = 1, . . . , N receive
weights Khi

(z(i), zk). The size of the local neighbourhood around each fitting point is defined
by the bandwidth, h, of the weighting kernel. Besides the identification of the set of relevant
explanatory variables z and the optimal functional form of the conditional parametric model,
the estimation problem can be considered to be threefold:

1. Selecting the fitting points

2. Selecting kernel type and bandwidth

3. Fitting the local linear models

First, the number and the placing of the fitting points has to be decided. In [153] this part is
called partitioning of the premise input space, where the premise input space is denoted as the
space spanned by z. This notation relates to the rule structure of fuzzy models discussed in
Sec. 5.2. The second point comprises the choice of the optimal type of kernel function and the
selection of its bandwidth [89]. The trade-off in the bandwidth is well known as bias-variance
dilemma [57]. For instance, if the bandwidth goes to zero, the estimates approach a piecewise-
linear function that interpolates the training data. On the other hand, if the bandwidth gets
infinitely large, the fit approaches the global linear least-squares fit of the data [93]. Finally, in
step 3 the coefficient functions are estimated using least-squares methods.

Theoretically, these three steps can be combined, i.e., the learning of the parameter set
{z(i), hi,β(i)}r1 is done simultaneously. This leads to a nonlinear global optimization problem,
in which the objective function is in general non-convex with multiple local minima [93, 1].
Therefore, in practice, the first two steps and the third step are often treated separately. Several
strategies for proper partitioning of the input space have been proposed in the literature (e.g.,
[169], [2], [138], [139]). In [169] a method based on the nearest neighbourhood (NN) principle
was used. This approach requires knowledge of the empirical distribution function and more
fitting points are located where the data are more dense. A comprehensive overview of clustering
methods for fuzzy model identification is presented in [2]. They introduced a specific clustering
algorithm for obtaining both the centers of the Gaussian membership (kernel) functions, and
their standard deviations. Optimal kernel bandwidth selection may also be performed by cross-
validation techniques [93, 89]. An approach which combines all three steps in an incremental
way is the local linear model tree (LOLIMOT) algorithm proposed in [153].

Local Polynomial Estimates

The coefficient functions β( · ) in (3.34) are estimated in a nonparametric framework by using
local polynomial regression [37]. The only assumption on the coefficient functions is that they are
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sufficiently smooth for being locally approximated with polynomials. The estimation problem
is reduced to locally fitting linear models at a number of fitting points z(i), i = 1 . . . r, where
the local neighbourhood is determined by using Kernel functions. Following the description in
[156] the problem can be formulated as a classical weighted least-squares problem

φ̂(i) = arg min
φ(i)

N∑

k=1

Khi
(z(i), zk)(yk − uT

kφ(i))
2, (3.36)

with

φ(i) = φ(z
(i)) =

[

φT
1,(i) φT

2,(i) . . .φ
T
p,(i)

]T
, (3.37)

uT
k =

[
x1,kp

T
d x2,kp

T
d . . . xp,kp

T
d

]
(3.38)

where φ(i) is the vector of local coefficients at z(i) and the element φT
j,(i) is the vector of local

coefficients related to the local polynomial approximation of the j-th explanatory variable. Fur-
thermore, pd = pd(zk) is the column vector corresponding to the d-order polynomial evaluated
at zk. If, for instance, zk = [zk,1 zk,2]

T (d = 2) the polynomial can be obtained as

p2(zk) =
[
1 zk,1 zk,2 zk,1zk,2 z2k,1z

2
k,2

]T
. (3.39)

Moreover, the weighting kernel can be written in the form

Khi
(z(i), zk) = D(‖zk − z(i)‖/hi), ∀k, i, (3.40)

where ‖ ·‖ is a appropriate norm, D( · ) denotes the kernel function and hi is the bandwidth for
the particular fitting point. Two most commonly used norms are the Euclidean norm and the
Mahalonobis norm [153]. Popular kernel functions are, for instance, the non-compact Gaussian
density function and the compact tricube kernel [57]:

D(u) =
1√
2π

e−
1
2
u2
, D(u) =

70

81
(1− |u|3)31|u|≤1, (3.41)

where 1|u|≤1 denotes the indicator function. For the Gaussian kernel h is equivalent to the
standard deviation, whereas for the tricube kernel it determines the radius of the support region
[93]. The multidimensional weighting kernel in case of axis-orthogonal Gaussians can also be
written in compact form using the product operator [153]

Khi
(z(i), zk) =

r∏

j=1

1√
2π

e
− 1

2

(

zk,j−zj,(i)
hi,j

)2

. (3.42)

Here it was assumed that hi is a vector of bandwidths hi = [hi,1, . . . hi,r]. This means that a
possibly different bandwidth parameter for each dimension of z(i) can be applied. The consid-
eration of different bandwidths for different directions increases the model flexibility and is an
essential part of the partition strategy of the LOLIMOT algorithm. LOLIMOT will be further
examinded in Sec. 3.2.3. From (3.42) it is easy to see that the fitting point z(i) can be interpreted
as the centre of the multidimensional, axis-orthogonal Gaussian kernel function.

The estimates of the coefficient functions obtained as described above are called local poly-
nomial estimates. For the special case of constant polynomial approximation the term local
constant estimates is used [156]. The vector of the coefficient function values β(z(i)) is finally
calculated from

β̂(i) = β̂(z(i)) = p
T
d (z(i))φ̂(i), i = 1, . . . , r. (3.43)
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Coefficient function values evaluated at other points than the fitting points can be obtained by
interpolation. Let w̃(i) be the normalized weights for the ith model, i.e,

w̃(i) = w̃(zk, z(i), hi) =
Khi

(z(i), zk)
∑r

j=1Khj
(z(j), zk)

(3.44)

then the interpolated coefficients at point zk may be calculated from [153]

β̃j(zk) =

r∑

i=1

w̃(i)β̂j,(i), j = 1, . . . , p. (3.45)

Following the same idea, the approximation of the overall model output can be written as the
sum of contributions of the individual local model outputs

ŷk =
r∑

i=1

w̃(i)

[
xk,1β1,(i) + xk,2β2,(i) + · · ·+ xk,pβp,(i)

]

︸ ︷︷ ︸

ŷk,(i)

, k = 1, . . . , N. (3.46)

In conclusion, it should be mentioned that although higher order polynomial approximation
such as second order might, from a statistical point of view, be beneficial, e.g., reducing bias at
the boundaries [93], in this work local constant estimates are considered. This is due to the fact
that the conditional parametric models are used for predictive control purposes in a closed-loop
setting where parsimonious models are desired.

Adaptive Estimation

On-line estimation of the coefficient function is particular useful if the identified model is utilized
for controller purposes [1, 213]. Here a new model will be identified within each sampling
instant exploiting the new information contained. Hence, model mismatch due to possible time-
varying behaviour of the process can be successfully eliminated. The weighted recursive least-
squares method (WRLS) is well suited for this task. Using exponential forgetting and assuming
observations at time t = 1, . . . , k are available, the weighted batch least-squares problem (3.47)
for the ith model can be reformulated to obtain the WRLS estimates of φ(i) as follows [156, 169]

φ̂k,(i) = arg min
φ(i)

k∑

t=1

αk−tKhi
(z(i), zt)(yt − uT

t φ(i))
2, (3.47)

where λ ∈ (0, 1] is called the forgetting factor. Now, by substituting ũT
k,(i) = uT

k

√

Khi
(z(i), zk)

and ỹk,(i) = yk
√

Khi
(z(i), zk), the adaptive estimates in (3.47) can be found by a classical

recursive least squares scheme. Note that in the remainder of this section the subscript (i) for
the ith model is dropped for notational simplicity. The RLS algorithm presented in [219] is
given as

φ̂k = φ̂k−1 + gk

(

ỹk − ũT
k φ̂k−1

)

gk = P k−1ũk

(
λ+ ũT

kP k−1ũk

)−1

P k =
1

λ

(
P k−1 − gkũT

kP k−1

)
.

(3.48)

The matrix P k is proportional to the covariance matrix of the parameter estimates. Hence, if
little prior knowledge about the initial parameter values φ0 is available, the initial value of P k

is usually chosen as P 0 = αI with large values for α. This reflects the high uncertainty in the
initial parameter values. Note that I represents the identity matrix.
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The forgetting factor is in most cases between 0.9 and 1 and is considered to be a tuning
parameter. It specifies the trade-off between robustness against disturbances (large λ) and fast
tracking capability (small λ) [153]. This trade-off can also be made dynamically by choosing
a variable forgetting factor. For instance, in the case of no persistent or low excitation of the
ith model the covariance matrix will grow exponentially, since then ũT

kP k−1 approaches zero in
(3.48), and thus P k ≈ 1

λP k−1. To overcome this, one can apply an effective forgetting factor
for each local model as introduced in [156]:

λeff
k = 1− (1− λ)Kh, (3.49)

where Kh denotes the weighting kernel as defined in (3.40). Hence, only the the active, persis-
tently excited local models are adapted. Similar arguments lead to the variable forgetting factor
discussed in [153, p. 715 f.]:

λk = 1−
(
1− ũT

k gk
) e2k
Σ0

Kh, (3.50)

where ek = ỹk − ũT
k φ̂k−1 is the local model error for the corresponding local model and Σ0

is proportional to the assumed noise variance and is considered for tuning. The idea is that
the squared model error ek in (3.50) should slow down the adaptation if the error is small.
Furthermore, the quantity

(
1− ũT

k gk
)
is a measure for the current excitation of the process

[62]. Additionally, it was proposed to bound the forgetting factor, i.e., λmin < λ < λmax for this
approach. In general, one can also apply the rule to only update parameter values if the weight
Kh exceeds some predefined threshold. This makes sense if kernels with non-compact support
such as Gaussian Kernels are used.

Regularization. The proposed model architecture will be used to produce multi-step-ahead
forecasts in a predictive control setup. Hence, in order to improve the generalization ability,
regularized estimates can be considered [169, 93, 141, 103]. This can be done, for instance, by
introducing an normalization step after the update of the matrix P k in (3.48) [83]:

P̄ k = P k(I+ αP k)
−1 (3.51)

where α ≥ 0 denotes the regularization parameter. The normalization step (3.51) requires a ma-
trix inversion and the multiplication of two full rank matrices, and therefore simpler algorithms
were proposed. For an overview see [83] and the references therein.

Constrained Estimation. Often a priori knowledge about the process to be modeled such
as process gains, settling times or open-loop stability is available. A straightforward approach
to include this knowledge into the adaptive estimation scheme (3.48) is by defining linear in-
equalities on the parameter set of the local linear models [1]. To be more specific, the equality
and inequality constraints for each local model can be formulated as

Mφ = k

Lφ ≤ c. (3.52)

For details see [199]. The constrained solution of the WRLS identification can now be obtained
by the optimal projection of the unconstrained solution:

φ̂
con

k = φ̂k − P kM
Tµ− P kL

Tν, (3.53)

where φ̂
con

k denotes the constrained solution, φ̂k and P k are obtained from (3.48) and µ,ν are
vectors of Lagrange multipliers associated with equality and inequality constraints, respectively.
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Figure 3.13: First four iterations of LOLIMOT algorithm for a two-dimensional input space
(m = 2)

These vectors can be determined by quadratic-programming techniques such as complementary
linear programming (CLP). Here the CLP to be solved takes the form [199]:

[
σ

ς

]

=

[
MP kM

T MP kL
T

LP kM
T LP kL

T

] [
µ

ν

]

+

[
k −Mφ̂k

c−Lφ̂k

]

(3.54)

with the conditions
σ = 0, ς ≥ 0, ν ≥ 0

σTµ+ ςTν = 0
(3.55)

and where σ and ς are the slack variables for the imposed constraints (3.52).

Remark. It is important to mention that the constraints formulated in (3.52) only make sense
if local constant estimates are used.

3.2.3 Local Linear Model Tree (LOLIMOT)

The local linear model tree (LOLIMOT) algorithm combines a heuristic strategy for input
space (the space spanned by z) decomposition with weighted least squares optimization [153].
In LOLIMOT Gaussian kernel functions are fitted to a rectangular partitioning of the input
space performed by a decision tree with axis-orthogonal splits at the internal nodes. Each local
model belongs to one hyper-rectangle in which center the fitting point is placed. The standard
deviations (i.e., kernel bandwidths) are set proportional to the size of the hyper-rectangle. This
allows one model to be valid over a wide operating range of one variable but valid only in a
small area of another one [94]. New hyper-rectangles are found by testing the possible splits in
all dimensions and taking the one with the highest performance improvement. The algorithm
stops when reaching a predetermined modeling error or maximum size of the tree. For a better
overview the basic algorithmic concept of LOLIMOT is summarized below (for details see [153,
p. 365f]):

1. Fit an initial local model network with given input space decomposition by weighted least
squares. If no input space partitioning is available a priori then start with a global linear
model.
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Figure 3.14: Interpretation of Fig. 3.13 as a decision tree

2. Find the worst local linear model by calculating the local loss function for each model.

3. The hyper-rectangle of the worst local linear model is split into two halves by doing an
axis-orthogonal split. Divisions in all dimensions are tried.

4. Fit local linear models for all possible alternative splits by weighted least squares.

5. Compare the alternative fits and implement the one split with the highest performance
improvement.

6. If the termination criterion is met then stop, else go to Step 2.

The calculation of the error in Step 2 is based on the local sum of squared error loss function and
not their mean is utilized. Hence, splits are preferred in regions that contain more data samples.
Thus, the local model quality depends on the distribution of the training data. This consequence
is desired because more data allow to estimate more parameters at the same accuracy. In
particular, as argued in [153], two intrinsic features make LOLIMOT extremely fast: First, at
each iteration only the worst local model is considered for division. Second, in Step 3 only the
parameters of the local models that are newly generated by the division have to be estimated.
Figure 3.13 illustrates four iterations of the LOLIMOT algorithm for a two-dimensional input
space. This can also be represented as a decision tree as shown in Fig. 3.2.3. For instance, in
the second iteration the local model 2.2 is found to be the worst and is therefore considered for
a further split.

As mentioned in [94], the tree construction algorithm of LOLIMOT to determine the centres
and standard deviations of the weighting functions exploits ideas from CART [25] and MARS
[63, 93]. A method based on decision trees for identification is also proposed in [2]. Here fuzzy
clustering is used for the effective partitioning of the input domains of decision trees. The work
presented in [121] for identification of radial basis function networks shows also analogies to
LOLIMOT. In both methods the incremental building of the trees makes splits, which always
halve the rectangular partitioning and which are sensitive to the distribution of the data.

3.2.4 Identification Results

For estimating and validation purposes the aggregated time series of supply temperature and flow
of the district heating network in Tannheim was used. The time horizon of the data considered
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Figure 3.15: Original and aggregated district heating network in Tannheim

for identification is from 1.1.2008 - 31.12.2009 with a resolution of 15 minutes. The first half of
the data was used as training data and the second half for validation.

In this work the concept of critical nodes is followed, i.e., if supply temperature and pressure
is maintained within the contractual limits at this particular node, than it is satisfied at all
other points in the network (cf. [169]). On the one hand, of course, this approach reduces the
number of models which have to be estimated, since only the supply temperature at the critical
node is of interest. On the other hand, this also has practical relevance, as typically only some
points in the network are monitored and measurements are not available for all consumers. In
this work three points (aggregated consumers) of the reduced distribution network as depicted
in Fig. 3.2.4 were considered to be critical, namely CP1 and CP2 which are the most distant
consumers, and CP3 which accounts for approximately 35% of the heat consumption in the
network.

Data analysis. First, the data set was visually checked for outliers and missing values. Then,
in order to obtain a valid data set, all these observations were treated by using robust local re-
gression [37] as suggested in [155]. To be more precise, the time series was first robustly smoothed
using local regression (command smooth in Matlab) and afterwards the missing values and out-
liers of the original time series were replaced with the corresponding smoothed observations.
Another way to treat missing values is by simple linear interpolation or by excluding the af-
fected data samples from the identification data set. The time series were also down-sampled to
half-hourly averages since 30 minutes represents a typical time frame for operational control of
DHN [191]. In Sec. 7.1 the conditional parametric models will be incorporated into a predictive
control scheme for controlling the supply temperature at the critical nodes.

Table 3.3 summarizes the statistics of the individual supply temperature time series as well
as the overall percentage of valid data. As one can see the average supply temperature is much
lower for consumers which are connected to distant pipes. Also it seems that there is more
volatility in the temperature at aggregated consumer 3 and 5. The minimal supply temperature
for these consumers is about 30 ◦C. This could be explained such that during summer except
for tap water no heat is required, and therefore the resulting flow rates are almost zero and thus
the transport time delays and heat losses increase. In addition, the density of the volume flow
rate at the plant is depicted in Fig. 3.16, since the distribution of the training data has a strong
influence on the behavior of the LOLIMOT algorithm.
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Table 3.3: Summary of the supply temperature statistics of the identification data set

Data Min 1. Qu. Median Mean 3. Qu. Max NA’s

TPlant
s 76.1833 88.204 90.167 89.8698 91.817 97.433 1.46%

TAC3
s (CP1) 32.95 79.033 83.567 80.4995 85.65 92.5667 3.00%

TAC5
s (CP2) 35.333 77.883 82.55 79.4136 84.633 90.683 1.83%

TAC7
s (CP3) 76.333 85.9 87.2 87.0616 88.433 94.1 2.29%
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Figure 3.16: Histogram plus estimated density of the volume flow rate

Modeling and Identification. For predicting the supply temperature at the three critical
points cARX models and cFIR models were constructed. The following cARX model was chosen
for all critical points

TACi
s,t = a1(qt−1)T

ACi
s,t−1 +

8∑

j=1

bj(qt−1)T
P
s,t−j + ct(qt−1) + ǫt, t = 1, . . . , N, (3.56)

where TACi
s is the supply temperature at critical point i and TP

s is the supply temperature at
the plant. For the maximal order of the lagged supply temperature at the plant 4 hours was
considered to be sufficient. In [76] the mean transport time delays for distant consumers in
Tannheim were calculated to be around 70min. Of course, one can also choose different orders
for different critical points. Here expert knowledge may be incorporated. Theoretically, different
model types for different flow rates can be constructed. See also [153, p. 694], where it was argued
that for high flow rates, transport processes typically have a pure dead time behaviour. The
cFIR model for all three critical points is given by

TACi
s,t =

16∑

j=1

bj(qt−1)T
P
s,t−j + ct(qt−1) + ǫt, t = 1, . . . , N. (3.57)

In both models the term ct(qt−1) represents the offset term in which Fourier harmonics of 24
hours period are embedded in order to take account of the diurnal variation of the heat-load,
i.e.,

ct(qt−1) = c0(qt−1) + c1(qt−1) sin

(
2πht
48

)

(3.58)

+ c2(qt−1) cos

(
2πht
48

)

,
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Figure 3.17: Root mean squared simulation error for the training dataset and the validation
dataset against the number of local models. Results are shown for the cARX model and CP3

where ht = 0, . . . , 47 is the actual half-hour of the day. The trigonometric offset term was
motivated from the social behavior of consumers (cf. [169]). It can be assumed that each
critical point (aggregated consumer) has its own individual daily supply temperature pattern
and the offset term (3.58) should take account of this. Similar arguments can be applied to the
modeling of the heat-load as it is done in Sec. 4.1. Further note that the coefficient functions of
all models were estimated by using local constant polynomials.

Remark. The volume flow rate qt−1 could additionally be filtered by, for instance, exponen-
tial smoothing as suggested in [158]. Theoretically, the filter should average over past values
with varying horizon owing to the varying transport time delays. The node method mentioned
in Sec. 3.1 uses a similar concept. Here the number of volume flow elements filling a pipe is
calculated [64].

To find the optimal number of local linear models r the simulation error can be calculated.
In Fig. 3.17 the root mean squared error (RMSE) for the cARX model at critical point 3 (AC7)
is plotted against the number of local linear models. Similar results can be expected for the
other critical points and the cFIR model. Theoretically, a minimum of the curve of simulation
error for the validation data set should indicate the optimal number of local linear models. This
implies that the model produces a good fit but does not overfit the training data. In this case it
was found that 8 local models are adequate. This number was taken for both cARX and cFIR
models and for all critical points. Of course, one could also use information criteria such as AIC
to determine the optimal number of local models and to avoid overfitting. For more details on
this topic, see, e.g., [153, p. 158 f.].

Figure 3.18 illustrates the partitioning of the volume rate in different regions determined by
the LOLIMOT algorithm. On the y-axis the degree of memberships are plotted which are the
normalized weights calculated from (3.44). It can be observed that the membership functions
are denser for lower volume flow rates. This reflects the fact that first, the nonlinearity of the
process is stronger in this operating regime, and second that LOLIMOT utilizes the local sum
of squared error loss function for performance comparison. Hence, splits are preferred in regions
that contain more data samples (cf. Fig. 3.16).

Validation. One way to validate the estimation results is by calculating the stationary gain
for different flow conditions as shown in Fig. 3.19. Recall that the heat losses in the network
are proportional to the flow rates. These heat losses can be expressed as the stationary gain of
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the individual local model. The stationary gain for the cARX model is given by (neglecting the
trigonometric offset)

KcARX(q) =

∑8
j=1 bj(q)

1− a1(q)
T p
s +

c0(q)

1− a1(q)
(3.59)

and for the cFIR model by

KcFIR(q) =

16∑

j=1

bj(q)T
p
s + c0(q). (3.60)

In Section 7.1 heat losses are related to operational costs in district heating networks. In this
section the gain curves presented in Fig. 3.19 are utilized for generating the optimal set-point
for the predictive controller by minimizing the operational costs.

The social component (trigonometric offset) of the three critical points considered is shown
in Fig. 3.20. It can be observed that the social influence on the supply temperature is more
pronounced for AC3 and AC5. Also, as mentioned above, the amplitude is higher during summer
time. This makes it somewhat difficult to produce accurate forecasts, since forecast errors will be
dominated by the social component which is considered to be a measurable disturbance acting
on the process.

For illustration purposes, the impulse response function of the cARX model for AC7 is
plotted in Fig. 3.21. This figure clearly demonstrates the influence of the flow rate on the local
parameter estimates. Whereas for low flow rates the “rock mass” occurs near higher lag terms,
it is reversed for high flow rates.

Forecasting. To assess the forecasting performance of the cARX and cFIR models multi-step-
ahead prediction errors for the period between 1.1.2009 and 31.3.2009 (≈ 4300 samples) were
calculated. Here, in particular, only the winter months are used. This was found to be necessary
due to the strong social consumer pattern, which is considered to be a disturbance, of AC3 and
AC5 in summer (cp. Fig. 3.20). Otherwise a fair performance comparison would not be possible.
Another argument for this was that the focus lies on evaluating the predictive performance of the
models with regard to future process behaviour and not disturbances. As prediction performance
measure, the root mean squared error and the mean absolute error (MAE) are taken which are
defined for a k-step-ahead prediction as follows:

RMSE(k) =

√
√
√
√ 1

N

N∑

t=1

(ŷt+k − yt+k)
2, (3.61)

MAE(k) =
1

N

N∑

t=1

|ŷt+k − yt+k| . (3.62)

The average of all these k-step-ahead prediction errors is then calculated and used to deter-
mine the overall k-step-ahead prediction performance. Note that for multi-step forecasts both
the flow and future values of the supply temperature and volume flow at the plant have to be
treated as unknown. The supply temperature, on the one hand, acts as control input in the
predictive control framework introduced in Sec. 7.1 and can be assumed to be known. Future
flow rate values, on the other hand, cannot be exactly known and therefore an appropriate model
has to be constructed. In [169] an ARX model was suggested:

qt =

p
∑

j=1

ajqt−j + ǫt, ∀t (3.63)
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Table 3.4: Prediction results of cFIR models with observed flow rate measurements as input

CP1 (AC3) CP2 (AC5) CP3 (AC7)

k RMSE MAE RMSE MAE RMSE MAE
1 1.0381 0.7465 1.0109 0.6963 0.7799 0.5051
4 1.0709 0.7952 1.0507 0.7470 0.8001 0.5294
8 1.0712 0.8014 1.0633 0.7624 0.8038 0.5332
12 1.0728 0.8029 1.0631 0.7620 0.8040 0.5339
16 1.0723 0.8002 1.0656 0.7592 0.8065 0.5354

Table 3.5: Prediction results of cARX models with observed flow rate measurements as input

CP1 (AC3) CP2 (AC5) CP3 (AC7)

k RMSE MAE RMSE MAE RMSE MAE
1 0.5558 0.4292 0.4924 0.3776 0.4294 0.3335
4 1.1753 0.8904 1.0859 0.8116 0.7297 0.5600
8 1.2016 0.9123 1.2286 0.9108 0.7136 0.5469
12 1.2637 0.9605 1.3026 0.9659 0.7147 0.5481
16 1.2686 0.9672 1.3431 0.9884 0.7168 0.5486

with order p = 48, i.e., 24 h. An interesting alternative approach to this ARX model is utilized
in Sec. 7.1. Knowing that the varying flow rate is caused by the varying heat demand of the
consumers, one could directly predict the heat load and calculate back to the flow rate using the
thermodynamic relationship (2.1) presented on page 8. Such a sophisticated heat-load model is
proposed in Sec. 4.1.

The results for the averaged errors of the k-step-ahead prediction with k = 1, . . . , 16 are
summarized in Tab. 3.4 - 3.7. Prediction errors for the cARX models and for the cFIR models
are calculated using both predicted flow rate and measured flow rate as input. For computing
future flow rates the ARX model (3.63) with coefficients a1, . . . ap estimated by least-squares is
used. Note that the parameters of the local models were reestimated at each time step using
weighted recursive least-squares and the concept of variable forgetting factor (3.49) proposed on
page 31 with λ = 0.985. Additionally, a regularization term of form (3.51) with α = 0.01 was
imposed.

Comparing the results, one can clearly observe that the prediction performance deteriorates
with the length of the prediction horizon. Furthermore, as expected, the errors are smaller when
measured volume flow rate values are used as input to the model. For k = 1 the error is the same,
since in both cases measured flow rates are used. Also, due to the error accumulation caused
by the autoregressive component, the performance of the cFIR is better than the performance
of the cARX for longer prediction horizons.

It could be argued that, because only three months of validation data are used with only a
few local models being in fact “active”, the error differences between measured and predicted
flow rate scenarios might be bigger. For this reason, the prediction errors for critical point 3
based on the entire year 2009 are presented in Tab. 3.8. Here the prediction performance for the
case of measured, predicted and constant future flow rates as inputs are compared. A significant
performance difference between the latter two can be observed. This further motivates the use
of accurate models to calculate future volume flow rates.
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Table 3.6: Prediction results of cFIR models with predicted flow rate measurements as input

CP1 (AC3) CP2 (AC5) CP3 (AC7)

k RMSE MAE RMSE MAE RMSE MAE
1 1.0381 0.7465 1.0109 0.6963 0.7799 0.5051
4 1.0869 0.8076 1.0804 0.7686 0.7931 0.5395
8 1.1019 0.8270 1.1266 0.8160 0.8075 0.5634
12 1.1104 0.8363 1.1366 0.8290 0.8229 0.5796
16 1.1090 0.8339 1.1359 0.8246 0.8358 0.5859

Table 3.7: Prediction results of cARX models with predicted flow rate measurements as input

CP1 (AC3) CP2 (AC5) CP3 (AC7)

k RMSE MAE RMSE MAE RMSE MAE
1 0.5558 0.4292 0.4924 0.3776 0.4294 0.3335
4 1.1815 0.8974 1.1029 0.8200 0.7346 0.5658
8 1.2259 0.9391 1.3333 0.9680 0.7548 0.5827
12 1.2968 0.9921 1.4598 1.0666 0.7898 0.6024
16 1.3014 0.9991 1.4890 1.1015 0.8093 0.6185

Table 3.8: Prediction results of cARX model for CP3 using observed/predicted/constant future
flow rates as input

cARX cFIR

k RMSE RMSE RMSE RMSE RMSE RMSE
1 0.3805 0.3805 0.3805 0.7154 0.7154 0.7154
4 0.6628 0.6903 0.7151 0.7344 0.7518 0.7786
8 0.6713 0.7152 0.8132 0.7399 0.7632 0.8542
12 0.6835 0.7503 0.9336 0.7409 0.7736 0.9299
16 0.6926 0.7749 1.0055 0.7427 0.7798 0.9551



Chapter 4

Modeling of Heat Consumption

4.1 Modeling and Prediction of Heat-Load

As outlined in the introductory chapter to this work, due to the large operational costs involved,
efficient operation of a district heating system is highly desirable. In particular, the stochastic
nature of consumer heat demand has a major impact on the operation, as return temperature
and flow rates in the network depend on consumers’ space heating and tap-water heating de-
mand [147]. Systems without demand forecasts require constant adjustment of the optimization
computations inducing heavy computation load [167]. Hence, the incorporation of prediction
methods to the optimization system is necessary for efficient operation and scheduling. Based
on the forecasts for heat demand, future operational plans can be constructed as well as optimal
resource allocation for energy production can be done by the optimization system.

In general, the heat load, which is excerted by the consumer installation on the network,
depends on the following [147]

• meteorology (the weather)

• temperature demand (the behavior) of the occupants

• dynamics of the installation and, above all, of the building itself

• control instrumentation, its settings and programming.

Taking account of this a very reproducible demand pattern can be generated. In general there
are many different types of consumer installations (apartments, hotels, school,... ) connected to
the network, so a separate forecast model has to be constructed for each individual installation.
This problem could be tackled by, for instance, using clustering methods [32, 55, 31]. In these
works, the electricity consumption patterns of customers were identified and customers exhibit-
ing similar load diagrams were grouped by means of clustering. However, the main problem is
the lack of sufficient measurement data for most consumers, thus most of the research is focused
around building one global model for the total load at the plant [78, 82]:

Qp(t) = Ql +
∑

i

Qc,i(t+ τi(ṁ)) (4.1)

where Qp stands for the heat produced at the plant, Ql for the heat loss, Qc,i denotes heat
consumption at consumer i and τi is the transport delay as a function of the mass flow rates ṁ
in the network.

In this work a seasonal autoregressive integrated moving average process with exogenous
variables (SARIMAX) as well as a structural model in state-space form is presented for modeling

44
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Figure 4.1: Multi-year record of system heat-load of DHN in Tannheim

the system heat-load of DHN Tannheim (Austria). The direct forecast of consumer load is not
examined, due to the highly stochastic nature of the available consumer data. The exogenous
influences of the ambient temperature on the heat-load are accounted for by a piece-wise linear
function.

4.1.1 Heat-Load Characteristics

To give a better understanding of the characteristics of annual heat consumption, 4 years of
heat-load data from the DHN Tannheim are shown in Fig. 4.1. One can clearly observe the
typical yearly cycles with high values occurring in winter months and low values in summer
months. As listed in [95] approximately 80% of the total heat demand can be attributed to
ambient temperature. Other exogenous variables that have minor effect on the heat-load are
cold-water temperature of the return line, solar radiation, wind speed and humidity [155, 52].
In general, it can be stated that the following four load components shape the total system
heat-load [95]

• space heating for buildings

• domestic hot tap water preparation

• heat losses in the network

• additional work-day loads.

Space heating ensures thermal comfort in buildings by maintaining the indoor temperature at
a desired level. It is naturally the predominant part of the total load in cold days. Domestic
hot tap water preparation relates to satisfying hot-water demands. As pointed out in [95],
hot-water demand shows large fluctuations and variations between different consumers and is
therefore difficult to model. Heat losses result from the distribution network and are typically
in the range of 5% to 20% of the total heat load [95, 85]. Additional work-day loads refer to the
weekly pattern of the heat-load. Hence, beside the annual season, also a weekly periodicity as
well as a daily of the heat load exist.

Real measurements of one week of heat demand for a cold and warm period are depicted in
Fig. 4.1. In general it can be assumed that the shape of the heat demand differs between working
days and weekends [52, 198, 46]. However, considering Fig. 4.1 it is difficult to say if a weekly
pattern exists in that data snapshot. One possible reason for this is that Tannheim is a typical
tourist centre. Hence, the winter tourism usually with many hotel guests on the weekend has a
significant impact on the shape of the heat-load demand curve.
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Figure 4.2: Weekly season of system heat-load of DHN in Tannheim for winter (top) and summer
(bottom)
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Figure 4.3: Daily heat-load profile for summer (left) and winter (right)
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In addition, the intra-day periodicity is depicted in Fig. 4.3. Here clear differences between
summer and winter days can be observed. Note that the red lines are constructed by building
the temperature averages for all days where the mean daily temperature was higher than 15 ◦C
for summer and lower than -2 ◦C for winter. For the years 2008 and 2009 this summed up to
107 and 110 days, respectively. Both heat profiles have in common that the demand abruptly
increases between 6am and 8am, decreases afterwards slowly and increases again in the later
afternoon with a peak at about 7pm. It seems that for summer days the two peaks are more
narrow than for winter days and that the heat demand increase in the afternoon starts at 4pm,
whereas for winter days it begins alread at 2pm.

To sum up, heat-load has in general a yearly, weekly, and daily pattern. This pattern is highly
correlated with ambient temperature and the social behavior of the consumers. In conclusion,
any forecast technique applied has to deal with this multi-periodicity.

4.1.2 Statistical Methods

SARIMA(X)

First some important concepts related to time series analysis that are used throughout this
section are recalled. The following definitions are given from Chapter 2 and 3 of [27].

Definition 4.1.1 (Stationarity). The time series {Yt, t ∈ Z}, with index set Z = {0,±1,±2, . . .}
is said to be stationary if, for t ∈ Z, E[Y 2

t ] < ∞, E[Yt] = m and, for all, s, t ∈ Z, E[YtYs] =
E[Yt−sY0].

Remark. Stationarity as just defined is also referred to as weak stationarity [26, 27]. For the
remainder the term stationarity always refers to the properties specified by Definition 4.1.1.

Definition 4.1.2 (ACF). Let {Yt} be a stationary time series. The autocorrelation function
(ACF) ρ associated with {Yt} is defined, for all t ∈ Z, as

ρ(t) =
γ(t)

γ(0)
(4.2)

where the autocovariance function γ(t) = E[YtY0]− E[Yt]E[Y0].

The autocorrelation function is extremely useful for assessing the degree of dependence in
the data and to select a model for the data that reflects this. As it will be discussed later,
the autocorrelation function together with the partial autocorrelation function (PACF) can be
used to identify the appropriate order of the polynomials of an autoregressive moving average
(ARMA) process. Note that the PACF at lag k may be regarded as the correlation between Y1
and Yk+1 adjusted for the intervening observations Y2, . . . , Yk (see [27, p. 98] for details).

Definition 4.1.3 (ARMA(p,q) Process). Let {Yt, t = 0,±1,±2, . . .} be a stationary time series
with zero mean. It is said to be an ARMA(p,q) process if, for every t ∈ Z,

Yt −
p

∑

k=1

φkYt−k = ǫt +

q
∑

k=1

θkǫt−k (4.3)

where {ǫt} is a white noise process with variance σ2 > 0.

Equation 4.3 can be written symbolically in the more compact form

φp(B)Yt = θq(B)ǫt, t = 0,±1,±2, . . . (4.4)
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where φ and θ are the pth and qth degree polynomial

φp(z) = 1− φ1z − φ2z
2 − · · · − φpz

p (4.5)

and
θq(z) = 1 + θ1z + θ2z

2 + · · ·+ θqz
q, (4.6)

and B is the backward shift operator defined by

BjYt = Yt−j , j = 0,±1,±2, . . . . (4.7)

The polynomials φ( · ) and θ( · ) are referred to as the autoregressive and moving average poly-
nomials, respectively. Note that if φ( · ) and θ( · ) have no common zeros and the characteristic
equation (4.5) has all its roots outside the unit circle then the ARMA(p,q) process (4.3) is said
to be causal. Similarly, the roots of θ( · ) in (4.6) must lie outside the unit circle if the process
is to be invertible [27, 45, 23].

Remark. It can be shown that a causal and invertible ARMA(p,q) has both the infinite moving
average and infinite autoregressive representation. See [27, 23] for details.

To model nonstationary time series with trends and seasonal patterns the seasonal autore-
gressive integrated moving average processes have been introduced [27, 26, 23]. In particular,
{Yt} is said to follow a SARIMA(p, d, q) × (P,D,Q)s process with period s if, for every t ∈ Z,
the differenced process Xt := ∇d∇D

s Yt is a causal ARMA process,

φp(B)ΦP (B
s)Xt = θq(B)ΘQ(B

s)ǫt, ǫt ∼ N (0, σ2) (4.8)

according to the Definition 9.6.1 of [27], where the polynomials are defined, for all z ∈ C, as

φp(z) = 1−
p

∑

k=1

φkz
k, ΦP (z) = 1−

P∑

k=1

Φkz
k (4.9)

θq(z) = 1 +

q
∑

k=1

θkz
k, ΘQ(z) = 1 +

Q
∑

k=1

Θkz
k

and where
∇d = (1−B)d, ∇D

s = (1−Bs)D (4.10)

denote the non-seasonal and seasonal differencing operator of order d and D, respectively. In or-
der to make the time series stationary the non-seasonal differencing operator is used to eliminate
polynomial trends and the seasonal operator is used to eliminate seasonal (periodic) patterns
of length s. Note that the differenced process {∇d∇D

s Yt} is causal if and only if φp(z) 6= 0
and ΦP (z) 6= 0 for |z| ≤ 1 [27]. To estimate the coefficients of the AR- and MA-polynomials
maximum likelihood can be applied [23].

As outlined in the beginning of this section the ambient temperature has a major influ-
ence on the heat-load. It is therefore reasonable to also include these exogenous effects in the
model representation. For a SARIMA model with exogenous variables the term SARIMAX is
generally used [17]. One way to construct SARIMAX models is by first filtering off the exoge-
nous dependent part from the original time series and treat the residuals as SARIMA process
[17, 34, 78].

Definition 4.1.4 (SARIMAX). A time series {Yt} is said to follow a SARIMAX(p, d, q) ×
(P,D,Q)s process if, for every t ∈ Z, it satisfies
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Yt = x
T
t β + Vt

φp(B)ΦP (B
s)∇d∇D

s Vt = θq(B)ΘQ(B
s)ǫt

(4.11)

where xt ∈ R
m is the vector of explanatory variables with corresponding parameter vector β ∈

R
m.

Hence, fitting SARIMAX models can basically be separated into two stages (cp. [17]):

1. Filter off the exogenous influence from the original time series by linear regression using
ordinary least squares

2. Identify and fit a SARIMA model for the filtered series (i.e., residuals of Step 1) using
maximum likelihood estimation

For forecasting of the time series {Yt} both the contributions of the SARIMA model and the
exogenous effects have to be considered. This also implies that predicted values of the exogenous
variables are needed.

State-Space Model

Recall that a representation of a time series {Yt} in classical decomposition form can be written
as [53, 90]

Yt = mt + st + ǫt t = 1, . . . , n. (4.12)

where mt is a slowly changing function known as the trend component, st is a function with
known period d referred to as the seasonal component, and ǫt is random noise or disturbance
component.

As discussed in the first part of Sec. 4.1.2, the Box-Jenkins approach tries to eliminate these
trend and seasonal components through differencing in order to obtain a stationary time series.
The state-space approach, on the other hand, is based on a structural analysis of the problem
[90]. Here the different components that make up the series, such as the aforementioned trend
and seasonal terms, but also cycle, calender variations, explanatory variables or interventions, are
modeled separately before being put together in the state-space model. Following the notation
of [53] a linear Gaussian state-space model can be formulated as

yt = Ztαt + ǫt, ǫt ∼ N (0,Ht),

αt+1 = T tαt +Rtηt, ηt ∼ N (0,Qt), t = 1, . . . , n,

α1 ∼ N (a1,P 1),

(4.13)

where αt is the m × 1 unobserved state vector, yt is the p × 1 observation vector and the
matrices Zt,T t,Rt,Ht and Qt are referred to as the state-space system matrices, which are
initially assumed to be known. Furthermore, the error terms ǫt and ηt are assumed to be serially
independent and independent of each other at all time points. The initial state vector is denoted
as α1 and has mean a1 and variance matrix P 1 and is also assumed to be independent of the
error terms at all time points. The first equation of (4.13) is referred to as the observation
equation and has the structure of a linear regression model. The second equation is called the
transition equation and basically has the form of a first order vector autoregressive model.

There has also been much interest in the embedding of (S)AR(I)MA processes into the frame-
work of state-space models for purposes of forecasting, as well as for specification and maximum
likelihood estimation of parameters [23]. Classical state-space representations of ARMA models
are presented in [26, 23, 105]. With minor adaptations SARIMA models can also be put into
state-space form (see, e.g., [97, 78]). The basic idea is to construct an ARMA state-space model
for the stationary differenced series ∇d∇D

s yt and augment the state vector by the nonstationary
variables such as yt−i and (1−B)dyt−i.
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Kalman Recursions. The Kalman filter produces the minimum mean squared linear es-
timator of the state vector αt+1 based on the observations Yt = {y1,y2, . . . ,yt}, that is,
at+1 = E [αt+1|Yt] and the corresponding variance matrix of the estimator at+1, denoted as
P t+1 = Var(αt+1|Yt) for t = 1, . . . , n [109]. The Kalman filter for the state-space model given
by (4.13) can be formulated as [53, 4]

vt = yt −Ztat, F t = ZtP tZ
T
t +Ht,

Kt = T tP tZ
T
t F

−1
t Lt = T t −KtZt, t = 1, . . . , n,

at+1 = T tat +Ktvt, P t+1 = T tP tL
T
t +RtQtR

T
t

(4.14)

for a given mean vector a1 and variance matrix P 1 of the initial state vector α1. The one-
step-ahead prediction error (innovation) of the observation vector is vt = yt − E[yt|Yt−1] with
variance matrix F t = Var(yt|Yt−1). The matrix Kt is also called the Kalman gain matrix.

Estimation. The state-space model (4.13) is linear and driven by Gaussian disturbances and
can therefore be treated by standard time series methods based on the Kalman filter [53, 90, 4].
Assuming that a1 and P 1 are known the log-likelihood function is given by [97]

logL = log p(y1, . . . ,yn;ψ) =
n∑

t=1

log p(yt|y1, . . . ,yt−1;ψ)

− n

2
log(2π)− 1

2

n∑

t1

(
log |F t|+ vTt F−1

t vt
)
,

(4.15)

where ψ is the vector of (hyper)parameters under consideration and vt are the innovations with
variances F t. For a fixed vector ψ the innovations vt and their variances F t are computed via
the Kalman filter (4.14). The unknown parameter vector ψ can be estimated numerically by
maximizing (4.15) via some quasi-Newton optimization routine. For computational details it is
referred to [53].

Diffuse Initialization. In most practical applications some elements of the mean vector a1
and variance matrix P 1 of the initial state vector α1 are not known. In such cases the state vector
α1 can generally be composed of a constant component, stationary component and nonstationary
component as follows [53]

α1 = a+Aδ +R0η0, δ ∼ N (0, κI), η0 ∼ N (0,Q0), (4.16)

where a is the known constant, δ is the nonstationary component, η0 is a stationary component
and κ → ∞. The variance matrix P 1 is then written as

P 1 = κP∞ + P ∗ (4.17)

with P∞ = AAT and P ∗ = R0Q0R
T
0 . Note that a vector δ with distribution N (0, κI) as

κ → ∞ is said to be diffuse. For partially diffuse initial state vectors modifications to the
classical Kalman filter recursions are required. The initial phase of the Kalman filter is then
called diffuse initialization [47, 118, 53]. For instance, the SARIMA state-space model has a
nonstationary component, therefore diffuse initialization techniques are necessary.

Forecasting. Each time a new observation is made the system is updated using the Kalman
procedure. Multi-steps-ahead forecasts are then recursively obtained by applying the Kalman
filter (4.14) with Kt = 0 [53]. Hence, for l-step-ahead predictions one gets

at+k = T t+k−1at+k−1, k = 1, . . . , l (4.18)
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Table 4.1: Summary of the statistics of the training data set

Data Min 1. Qu. Median Mean 3. Qu. Max

Heat Load (kW) 336 946 1474 1606 2264 3631
Ambient Temperature (◦C) -20.785 -2.0852 3.168 3.9283 10.804 29.209

with variance matrix generated from

P t+k = T t+k−1P t+k−1T
T
t +Rt+k−1Qt+k−1R

T
t+k−1, k = 1, . . . , l. (4.19)

These are equivalent to the classical state-space prediction formulas.

4.1.3 Modeling and Identification

For modeling purposes of the proposed forecasting methods the system heat load of Tannheim
DHN was considered. The entire available data consist of measurements of the system heat load
between 18.05.2006 and 22.09.2010 with a resolution of 15 minutes. The time series was resam-
pled to 30min, which is the time discretization used for the design of the predictive controller
in Sec. 7.1.

Due to computational issues 6 months of data (1. Jan. - 30. Jun. 2009) were considered to
be a sufficiently sized training data set. The second half of the year 2009 is used for validation.
A statistical summary of the training data set is presented in Tab. 4.1. Of course, the esti-
mated parameter values depend on the chosen training data. As discussed above, pronounced
differences between the heat-load shape in the summer months owing to tap-water heating and
winter months, where space-heating dominates, can be expected. To overcome this one might
use periodic models, as suggested in [97], or construct some type of varying coefficient models
(cf. Sec. 3.2).

First of all, obvious outliers (i.e., extreme values) in the data were identified and the corre-
sponding values are treated as missing values. There is no further need for special treatment of
missing values, since the state-space approach can handle missing observations in a straightfor-
ward manner (see [53, Sec. 2.7]). Next, the exogenous influence of the ambient temperature was
modeled as piecewise linear function fp(Ta,t) (cf. [52, 34]). As illustrated in Fig. 4.4 a function
with five segments is used, but the number can, of course, be chosen arbitrarily. In general, the
basis set for a piecewise-polynomial of order M with knots ζj , j = 1, . . . ,K would be [93]

hj(X) = Xj−1, j = 1, . . . ,M,

hM+l(X) = (X − ζl)
M−1
+ , l = 1, . . . ,K.

(4.20)

For the SARIMAX model procedure these temperature effects were subtracted from the original
time series, i.e., Vt = yt − fp(Ta,t) ∀t. In the state-space modeling approach the basis functions
of the piecewise fit were directly included as regressor variables.

All modeling and identification was done in MATLAB R© using the SSM Toolbox [168]. This
toolbox also provides procedures for incorporating SARIMA models into the state-space frame-
work for the purpose of estimating (e.g., correct diffuse initialization) and forecasting.

SARIMAX

As illustrated in Fig. 4.5 the autocorrelation of the ambient temperature corrected residuals
have local maxima at lag multiples of 24 and 48 which supports the hypothesis of seasonal
autocorrelations. The latter indicates high correlation between observations 24 h apart, due to
a sampling period of 30min. This implies that differencing has to be applied, in order to make
the time series stationary.
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Figure 4.4: System heat load against ambient temperature plus piecewise linear function de-
scribing the dependency
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Figure 4.6: ACF (left) and PACF (right) of the seasonal differenced time series {∇48V̂t} with
95% confidence interval

Stationarity. To check for stationarity of the residuals {Vt} the KPSS test [123] and the ADF
test [180] were considered (cf. [17]). The KPSS test (command kpsstest in MATLAB R©),
suggests that, in the six months of training data, {∇V̂t}, {∇48V̂t} and {∇∇48V̂t} are stationary,
whereas the ADF test (adftest) does not reject stationarity for all combination of differencing
and even for the non-differences series. Note that the ADF test only checks for unit roots and
might not be able to correctly identify seasonal unit roots. For further discussion on this see,
e.g., [128]. Based on these test results it was difficult to determine the appropriate order of
the differencing operator. However, considering Fig. 4.6 and Fig. 4.7 it was decided that the
residuals {Vt} may be represented by a SARIMA process with seasonal differences of order one
(D = 1) and non-seasonal differences of order one or zero (d = 0/1).

Modeling. Theoretically, the sample ACF and PACF of the differenced series should help to
determine the correct order of the seasonal and non-seasonal MA and AR part. According to
Fig. 4.6 the sample ACF has the form of a damped sine wave with one spike at lag 48 and the
sample PACF seem to have an exponential decay and several significant spikes at multiples of
48. Furthermore, the sample ACF of the doubled differenced series as illustrated in Fig. 4.7
does not show the damped sine wave anymore and the sample PACF indicates similar behaviour
with spikes at lags at 48. Following the guideline of [23, Ch. 6] a set of candidate models were
specified. For all of these competing models the Bayesian information criterion was calculated
(BIC) (see [53, p. 152]:

BIC = n−1
[

−2 logLd(y|ψ̂)
]

+ (q + w) logn (4.21)

where logLd(y|ψ̂) is the value of the diffuse log-likelihood, q is the number of diffuse initial
elements and w, the dimension of ψ̂, is the number of parameters to be estimated. The
three models with the lowest scores were (in increasing order): SARIMA(2, 1, 1) × (0, 1, 1)48,
SARIMA(1, 1, 1)× (0, 1, 1)48 and SARIMA(2, 0, 0)× (0, 1, 1)48. It was decided to take the best
model in terms of BIC value for further analysis.

In particular the estimated coefficients of the SARIMA(2, 1, 1) × (0, 1, 1)48 model are as
follows

(1 + 0.4142B − 0.09673B2)(1−B)(1−B48)Vt = (1− 0.8813B)(1− 0.9045B48)ǫt, (4.22)

with ǫt ∼ N (0, 1.163 · 104). The proposed model also satisfies the causality and invertibility
condition. (i.e. all roots of AR and MA characteristic polynomials lie outside the unit circle).
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Figure 4.7: ACF (left) and PACF (right) of the double differenced time series {∇∇48V̂t} with
95% confidence interval

Diagnostic checking. After having specified a tentative model the (standardized) residu-
als should be inspected for outliers and checked for normality, heteroscedasticity and serial
correlation. Some suspiciously large std. residuals could be observed. The corresponding ob-
servations were treated with dummy variables (see [40]) and the chosen SARIMA model was
reestimated. To investigate normality of the residuals the Jarque-Bera Test [100] (command
jbtest in MATLAB R©) can be used. The test rejects the null hypothesis that the distribution is
normal (p = 0.001). The reason might be that the residuals have a skewness of 0.12 (i.e., skewed
to the right) and kurtosis of 3.8 (i.e, distribution is more outlier-prone than the normal distri-
bution), which can also be confirmed be inspecting the histogram and the QQ-Plot in Fig. 4.8.
Heteroskedasticity of the residuals was checked with the test statistic proposed in [53, p. 34] (see
also [117]), and for serial correlation the Box-Ljung statistic [140] (lbqtest) was applied. The
former does not not reject the null hypothesis of homoscedasticity (0.0568 at a 5% significance
level). On the other hand, the null hypothesis of no autocorrelation is clearly rejected (p ≈ 0).
Although in Fig. 4.8 the absolute value of the autocorrelation is always smaller than 0.05. Thus,
it seems, at least visually, that the model has captured the essential dependencies in the series.
Note that the two other SARIMA models produced quantitatively the same test results.

State-Space Model

In the following, a univariate state-space model for the heat load as well as the temperature is
constructed. The state-space approach also allows easy extension to the multivariate case as
demonstrated in [117, 53, 40]. For instance, in [50] the dependent hourly univariate electricity
load is represented as a daily multivariate state-space model with 24 regression equations, i.e.,
one regression equation for each hour of the day. Furthermore, to reduce the number of unknown
parameters a factor model approach was pursued.

For modeling the heat-load, different state-space variants were compared (i.e., different sea-
sonal terms, stochastic vs. deterministic regressors; cf. [117]). Based on the lowest BIC score
the following model was chosen:

Qt = µt + γt + β1x1,t + β2x2,t + β3x3,t + β4x4,t + β5x5,t
︸ ︷︷ ︸

Temperature effects

+ β6x6,t
︸ ︷︷ ︸

Weekend Dummy

+ǫt ∀t (4.23)

Here a weekend dummy was included as it is assumed that heat-load differs between weekdays
and weekends. Of course, one might also include dummies for holidays or calender effects such as
Christmas and Easter. Furthermore, a trend component µt as well as a trigonometric seasonal
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Table 4.2: Maximum Likelihood estimation results for the state-space heat load model

Component Variance

µt+1 = µt + ζt ζt ∼ N (0, 1443)
γt+1 = γt + ωt ωt ∼ N (0, 0.1087)
β1,t+1 = β1,t + ξ1,t ξ1,t ∼ N (0, 0.4137)
β2,t+1 = β2,t + ξ2,t ξ2,t ∼ N (0, 1.86 · 10−4)

component γt with a period of 48 samples were included. The nonlinear ambient temperature
effects are accounted for by the piecewise linear function as depicted in Fig. 4.4. The regressors
x1,...,5,t stand for the corresponding basis functions. The maximum likelihood estimate for the
variance of the irregular component is σ̂2

ǫ = 8098 and the other estimates are summarized in
Tab. 4.2. Note that in particular the seasonal component and some of the temperature effects
are formulated in a stochastic way, i.e., they are allowed to change over time. The state vector
for this specific model has dimension 54 and is composed as follows

αt =
(
µt γt γt−1 · · · γt−46 x1,t x2,t · · · x6,t

)T
. (4.24)

Hence, both the trigonometric offset and the coefficient of the exogenous variable are placed into
the state vector.

Diagnostic checking. The same test statistics as for the SARIMA model were applied. The
test for homoscedasticity is satisfactory (p = 0.80), whereas independence is not satisfied (p =
0.017) and also the assumption of normality (p = 0) is clearly violated. These test results can
also be verified in the diagnostic plots Fig. 4.9. As one can see there is highly significant short
term correlation in the prediction errors. To overcome this one might include lagged variables
of the output as additional explanatory variables to (4.23).

Temperature Model. As discussed before the temperature has a major influence on the
heat-load. Consequently, the accuracy of the prediction will strongly be correlated with the
quality of the estimates of the future ambient temperature. In real applications exact weather
forecasts can be obtained from meteorological services. In this work a very simple structural
model for the temperature series is proposed, which is basically composed of a trend component
and a trigonometric seasonal component:

Ta,t = µt + γt + ǫt, ǫt ∼ N (0, σ2
ǫ ),

µt+1 = µtαt + ζt, ζt ∼ N (0, σ2
ζ ), t = 1, . . . , n.

(4.25)

This type of model is also called local level model [53]. The maximum likelihood estimates for
variance terms are σ̂2

ǫ = 1.331 · 10−7 and σ̂2
ζ = 0.2121.

4.1.4 Validation

To assess the performance of the proposed models different prediction accuracy measures for
observations between 1. Nov. 2009 - 1. Feb. 2010 were computed. More precisely, the RMSE,
MAE and the MAPE (mean absolute percentage error [46]) for rolling k-steps-ahead prediction
(k = 1, . . . , 16) were considered. The 16-step-ahead prediction equals 8 h due to half hourly
measurements. This was also chosen as prediction horizon for the predictive controller in Sec. 7.1.

The predictive performance for the temperature model are summarized in Tab. 4.3. The
average mean absolute error for 16-step-ahead prediction is only about 2.7 ◦C, despite the very
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Table 4.3: Prediction performance for the state-space temperature model; prediction accuracy
measures are in ◦C

k RMSE MAE σ̂ǫ

1 0.4433 0.3255 0.4480
4 1.4617 1.1148 1.4630
8 2.3662 1.8531 2.3671
12 2.9546 2.3600 2.9553
16 3.3249 2.6777 3.3254

Table 4.4: Prediction performance comparisons of heat-load with observed ambient temperature;
prediction accuracy measures are in kW

SARIMAX State-Space

k RMSE MAE MAPE RMSE MAE MAPE

1 96.3910 75.1324 7.7289 112.3568 87.9796 8.8025
4 138.3906 106.7152 10.8636 134.6611 104.1640 10.3422
8 153.1478 118.6062 12.0378 145.4309 111.6266 10.8882
12 162.4168 126.5970 12.9925 150.1913 116.2737 11.4213
16 167.1573 131.0025 13.5311 148.3943 114.3652 11.3284

simple forecast model. At this point a comparison with weather forecasts obtained by profes-
sional services would be interesting.

Results for heat-load predictions are presented in Tab. 4.4 and Tab. 4.5. In the former table
it was assumed that future ambient temperature values were known and in the latter predicted
values were used instead. As one can see there is a significant performance difference between
simulations using the observed ambient temperature and predicted ambient temperature. This
underlines the fact that accurate future temperature estimates are very important. Furthermore,
one can see that the SARIMAX model compared to the state-space models yields better results
in terms of the one-step ahead prediction error. Which can be explained by the autocorrelation
component of the SARIMAX model. For longer prediction horizons, however, the state-space
model clearly outperforms the SARIMAX model. To demonstrate the actual modeling perfor-
mance 16-step-ahead estimates for the case of higher heat demand is shown in Fig. 4.10 and for
the case of lower heat demand in Fig. 4.11, respectively. In-sample, in contrast to out-of-sample,
means that at each time step a new observation comes in and the Kalman filter can be applied.

Table 4.5: Prediction performance comparisons of heat-load with predicted ambient tempera-
ture; prediction accuracy measures are in kW

SARIMAX State-Space

k RMSE MAE MAPE MSE MAE MAPE

1 97.0447 75.3374 7.6981 110.2977 85.9392 8.7821
4 150.9600 116.3761 11.3744 140.8308 108.1882 10.7629
8 191.5365 147.6779 14.0467 167.8475 126.6016 12.1214
12 220.9623 170.5754 16.2791 186.8227 141.5765 13.4487
16 239.9274 184.1929 17.4938 194.8436 147.5003 13.8549
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Figure 4.10: 16-step-ahead forecasts of system heat-load during winter, including their 90%
confidence interval; the full black line are the heat-load observations
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Figure 4.11: 16-step-ahead forecasts of system heat-load during summer, including their 90%
confidence interval; the full black line are the heat-load observations
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As discussed above, the daily heat-load has in general different pattern during summer where
tap water heating dominates as opposed to cold winter days where space heating dominates.
Nonparametric or semiparametric modeling frameworks such as conditional ARX models (cf.
Sec. 3.2) where coefficients vary with the ambient temperature might be an appealing alternative
to global parametric models. This was also motivated in [155] where a grey box model for heat
consumption was proposed and the statistical part was described by a varying coefficient model.
In the next section a sophisticated nonparametric regression approach is briefly introduced which
is then used for modeling the primary return temperature at consumer stations.

4.2 Modeling of Return Temperature

Recall that consumer stations can be represented by heat exchangers which take the necessary
heat from the primary supply side by cooling the primary return temperature. Knowledge of the
primary return temperature is needed for calculating the volume flow rates in the network which
are required for the determining the corresponding transport time delays. Often these return
temperatures vary only smoothly and be can assumed to be constant. A physically motivated
approach, modeling the consumer as heat exchangers, was mentioned on in the introduction
chapter (see page 8). For this approach details about the heat exchanger such as total surface
area and heat-transfer coefficient as well as the secondary side supply and return temperature
must be known. Although classical heat exchanger theory is not valid for district heating
applications as concluded in [179]. It was argued that the return temperature mainly depends
on the ambient temperature and the social load. For this reason and because no technical data
sheets of the installed heat exchangers and no information about the secondary side setup was
available, it was decided to describe the return temperature at the aggregated consumer by the
following nonlinear mapping:

TAC
r = f(TAC

s , Ta, c
︸︷︷︸

QAC

) (4.26)

where c is the trigonometric offset representing the social component. As indicated here, heat-
load was modeled in a similar way by utilizing the ambient temperature and a trigonometric
seasonal term. From (4.26) the flow rates at the aggregated consumer can now be calculated
using the thermodynamic relationship

qAC =
QAC

cpρ(TAC
s − TAC

r )
. (4.27)

With these flow rates the flow distribution in the entire network can be determined using the
techniques discussed in Sec. 3.1.1.

In Fig. 4.12 the scatterplot of supply temperature and ambient temperature is depicted.
There is a break point at an ambient temperature of approximately 1 ◦C for aggregated consumer
4 and at 18 ◦C for aggregated consumer 7 where the return temperature has its lowest value.
For higher ambient temperatures, the return temperature increases again. As discussed in [179]
this can be explained by the fact that for cold days when space-heating dominates the return
temperature increases with the ambient temperature. For warm days, however, the total load
in the system is small, leading to very low flow rates in the system. To overcome this and keep
the flow up, supply water might be by-passed to the return line.

4.2.1 Multivariate Adaptive Regression Splines (MARS)

A sophisticated method for nonlinear regression problems is Multivariate Adaptive Regression
Splines technique (MARS) developed by [63]. MARS was, for instance, also successfully applied
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Figure 4.12: Supply temperature against ambient temperature for AC4 (top) and AC7 (bottom)
plus piecewise linear fit

for modeling of nonlinear time series phenomena [136, 135]. MARS fits a model in the form of
an expansion in product spline basis functions of explanatory variables. The basis functions are
chosen during a forward and backward recursive partitioning strategy. More precisely, MARS
uses as basis functions two-sided truncated functions of order q of the form (x− t)q+ and (t−x)q+
[63]. The idea is to create such pairs for each input variable xj with knots at each observed
value xij of that input. This gives the following collection of basis functions

C =
{
(xj − t)q+, (t− xj)

q
+

}
, t ∈ {xij , . . . , xNj} , j = 1, . . . , p (4.28)

The MARS model for an output variable y, and M terms, can be presented in the following
equation [93]

y = β0 +
M∑

m=1

βmhm(x) (4.29)

where each hm(x) is a function in C, or a product of two or more such functions. For a given
hm the coefficients βm in (4.29) can be estimated by standard linear regression. The challenging
part, however, is the construction of the functions hm(x). Here a forward and backward recursive
partitioning strategy is applied. Basically, the algorithm consists of the following steps:

1. Start with the simplest model involving only the constant function h0(x) = 1

2. Search the set of all candidate functions C, and add those which produce the largest
decrease in training error

3. Apply step 2 recursively until a model of pre-determined maximum complexity is derived

4. In the last stage, a pruning procedure is applied where those basis functions are removed
that contribute least to the overall goodness of fit.
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Figure 4.13: Regression surface for the return temperature estimated by MARS for AC4

Note that as measure of the goodness of fit the generalized cross validation-error (cf. Eq. (5.38)) is
used taking into account both the residual error and the model complexity. For more algorithmic
details the interested reader is referred to [63, 93].

4.2.2 Estimation Results

For estimation purposes the aggregated time series of (primary) supply temperature, return
temperature and the ambient temperature at all seven aggregated consumers are considered. The
time frame of the data is the year 2009. The nonlinear mapping (4.26) was estimated by MARS
using the MATLAB R© toolbox ARESLab [101]. For the configuration parameters the default values
were used (i.e., maximal basis interaction is one, piecewise cubic models, maximal number of
basis function in forward phase is 21). The results for aggregated consumer 4 and aggregated
consumer 7 are shown in Fig. 4.13 and Fig. 4.14, respectively. The aforementioned effects of the
ambient temperature are clearly observable. There is also a recognizable relationship between
supply temperature and return temperature. Considering Fig. 4.13 it seems that higher supply
temperature implies lower return temperature. This fact is also confirmed by classical heat
exchanger theory.
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Figure 4.14: Regression surface for the return temperature estimated by MARS for AC7



Chapter 5

Modeling of the Biomass
Combustion Plant

5.1 First-Principles Model

5.1.1 Introduction

Due to the worldwide concern about global warming due to the emission of CO2 and other
greenhouse gases and the limited availability of fossil fuels the importance of renewables, such as
biomass, in energy production has increased [218, 217]. Grate firing is a state-of-the art technique
that is currently used in biomass combustion for heat and power production [217, 163, 119].

In the following a simple grey-box model for a biomass plant is proposed which is largely
based on mass and energy balances. Only for the relationship describing the rate of combustion
was expert knowledge used. First, a brief process description is given.

5.1.2 Process Description of a Moving Grate Biomass Furnace

Modern grate-fired boilers consist generally of four key elements: a fuel feeding system, a grate
assembly, an intelligent air supply system (primary and secondary air) and the freeboard which
enables a complete combustion system [163, 161]. For the heat production a steam generator
with either natural or forced circulation is chosen. Optionally, a steam turbine can be added
for power production. A schematic sketch of a grate-fired boiler is given in Figure 5.1. Biomass
is fed into the furnace from the left side and moved onto the moving grate by hydraulically
operated pushers. Then the fuel is transported on the moving grate from left to right with grate
speed vg and the residual ashes are removed from the rightmost side.

The following input variables were used for the grey-box model which were identified by
expert knowledge:

1. Biomass input feed (ṁin in kg/s)

2. Mass flow rate of the primary air supply (ṁPA in kg/s)

3. Mass flow rate of the secondary air supply, (ṁSA in kg/s)

4. Mass flow rate of recycle gas (ṁrec in kg/s).

It is important to note that the speed of the moving grate is assumed to be proportional to
the biomass input feed. According to experts, this is a reasonable assumption and works well in
practice.

The thermal power Qth and the flue gas temperature Tf are the main operating parameters in
biomass furnaces [72]. Monitoring and the ability to simulate the oxygen concentration O2 of the

64
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fuel feed ṁin
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Figure 5.1: Schematic drawing of the moving grate biomass furnace. The fuel is fed to the left
side of the grate and is transported to the ash conveyor on the far right side (reproduced with
modifications from [164])

flue gas is also considered to be essential, since it has a significant impact on the efficiency of the
combustion [119]. For instance, incomplete combustion can lead to high emissions of unburned
pollutants such as Carbon monoxide [160]. For safe and secure operation it is also important to
determine the position of the highest rate of combustion Cpos which should be approximately at
the center of the grate [164]. Hence, the relevant output variables of the process are defined as:

1. Combustion position (Cpos in %)

2. Heat output (thermal power) (Qth in kW)

3. Oxygen concentration (O2 in %)

4. Flue gas temperature (Tf in
◦C).

Relevant disturbances of the process are the moisture content of biomass fuel and the varying
grate speed. The latter is a result of the varying heat demand which requires adjustment of
the grate speed. Furthermore, the agglomeration and break-up of the fuel particles on the fuel
bed occurs in a highly stochastic manner. Due to these characteristics the global behavior of a
moving grate biomass furnace within its operational envelope is nonlinear and has to be modeled
adequately. For this purpose a simple grey-box model is proposed in the following as well as an
alternative data-driven modeling approach in Sec. 5.2.

5.1.3 First-Principles Modeling

Combustion position. The combustion position Cpos can be calculated from the fuel mass
on the grate mg and the grate velocity vg:

τpos
dCpos

dt
= kposvgmg − Cpos, (5.1)

where kpos is some constant and τpos is a given time constant. Due the assumption of a fixed
relationship between input feed and grate speed, the latter is determined by the biomass input
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feed ṁin as follows
vg = kinṁin (5.2)

where kin is the proportional factor between fuel input and the grate velocity. Furthermore, the
fuel mass on the grate is given by the following mass balance

dmg

dt
= ṁin − ṁc (5.3)

with ṁc denoting the mass reduction due to drying and combustion. The mass reduction is the
amount of a biomass material that undergoes drying or combustion over a period of time and is
determined empirically by

ṁc = kc (vg + v̄g) ṁPAmg (5.4)

were ṁPA is the primary air mass flow, kc is an appropriate factor, and v̄g is an offset term with
regard to the grate velocity. The latter guarantees that the combustion rate is not zero in case
of a stop of the moving grate.

Thermal Power. The thermal output Qth of the plant is computed from the mass reduction
and the heat value of the biomass input kth

τth
dQth

dt
= kthṁc −Qth. (5.5)

The time constant τth is given by

τth =
mbcp,b

cp,f (ṁPA + ṁSA + ṁrec)
(5.6)

where mb denotes the mass of the biomass boiler, ṁSA is the mass flow rate of secondary air
supply, ṁrec is the mass flow rate of recycle gas, cp,b and cp,f are the specific heat capacity of
the boiler and flue gas, respectively.

Oxygen Concentration. A common stoichiometric approach can be applied to determine
the O2 concentration in the flue gas [110, 163]:

τO2

dO2

dt
= 21

(λ− 1)

λ
−O2 (5.7)

where τO2 is some time constant and λ is the stoichiometric air to fuel ratio. The latter repre-
sents the quotient between real air supply and the minimum required air supply for complete
combustion and can be written as follows [110]

λ =
(ṁPA + ṁSA)

kLminṁc
. (5.8)

where kLmin is some factor related to the minimum required air supply for complete combustion.

Flue Gas Temperature. Finally, the flue gas temperature is computed from (cf. [72])

τth
dTf

dt
=

Qth

ṁfcp,f
+ TFA − Tf (5.9)

where TFA denotes the temperature of fresh air, ṁf is flue gas mass flow and τth is computed
from (5.6). The flue gas mass flow is given by

ṁf = ṁc + ṁPA + ṁSA + ṁrec (5.10)

where ṁrec is the mass flow rate of recycle gas.
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Table 5.1: Nominal parameter values for the moving grate biomass furnace model

Variable Value Variable Value

cp,b 2.5 kJ/kgK kin 5/3600m/kg
cp,f 1.3 kJ/kgK kpos 1800 s/mkg
mb 200 kg kc 3.6 s/mkg
TFA 15 ◦C kth 10MJ/kg
v̄g 2.5/3600 m/s kLmin 4.54
τO2 60 s τpos 120 s

5.1.4 Model Verification

To verify the proposed first-principle model real measurements from the biomass plant in
Grossarl (Salzburg) are utilized. In Grossarl two biomass boilers with a heat power of 3.5MW
and 1.5MW are installed. Additionally, for peak heat demand and as a reserve boiler a conven-
tional oil-fired boiler with 5.7MW can be operated. Here the data from the 3.5MW boiler is
considered for validation purposes. Unfortunately, no reliable measurements of the combustion
position have been made. The attempt to reconstruct data using measurements from temper-
ature sensors located along the grate was not successful. Further note that the input data of
primary air, secondary air and recycle gas were given in percent of the total ventilator speed
and it was therefore necessary to use the corresponding characteristic curves of the ventilators
to get the individual mass flow rates.

The parameter values for the model are summarized in Tab. 5.1. These values were partly
determined by expert knowledge and by fitting the model to the real data using the Levenberg-
Marquardt optimization technique. The comparison of simulated output with real process mea-
surements in Fig. 5.2 shows good agreement. In particular, the simulated thermal power as well
as oxygen concentration indicates minimal error. However, for flue gas temperature the dynamic
pattern cannot be adequately reproduced. Nevertheless, the results are acceptable and allow to
use this validated grey-box model as “plant model” in the predictive control setup in Sec. 7.2.

5.2 Data-Driven Model

5.2.1 Introduction to Fuzzy Models

As human knowledge and expertise often comes in terms of verbal rules, it is attractive to
integrate such linguistic information into the modeling process by using a fuzzy system [1, 196,
153, 7]. The basic element of a fuzzy system is a set of fuzzy inference rules which is also called
the knowledge base. In general, each inference rule consists of two elements: the IF-part, called
the antecedent of a rule, and the THEN-part, called the consequent of the rule. The structure
of a single rule can be presented as follows:

IF an antecedent proposition THEN a consequent proposition. (5.11)

The antecedent defines the condition, and the consequent the conclusion which will only be
implemented if the condition is true. The antecedent of a fuzzy rule can include logical operators
such as conjunction (and), disjunction (or) and negation (not) [196, 153]. For instance, it can
take the following form:

IF z1 is A1 and z2 is (notA2) · · · or zm is Am THEN a consequent proposition. (5.12)
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Figure 5.2: Comparison of simulated output of the first-principle plant model with process
measurement data for 15.8.2012
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Figure 5.3: Illustration of a linguistic variable “temperature” with tree linguistic terms: low,
medium, and high

Here z1, . . . , zm are the linguistic variables or fuzzy variables being input to the fuzzy system,
and A1, . . . , Am are fuzzy sets described by membership functions (MSFs) µAj

(zj) :→ [0, 1], j =
1, . . . ,m. The consequent proposition can generally take one the following forms [196]

1. Crisp consequent:
IF an antecedent proposition THEN y = ya (5.13)

where ya is a numerical value or a symbolic value,

2. Fuzzy consequent:
IF an antecedent proposition THEN y is Yk (5.14)

where y is a fuzzy variable (linguistic) and Yk is a fuzzy set,

3. Functional consequent:

IFz1 is A1 and z2 is A2 · · · and zm is Am THEN y = f(z1, z2, . . . , zm) (5.15)

where f is a certain function with input variables (z1, z2, . . . , zm).

Fuzzy systems which have rules with functional consequents are also called Takagi-Sugeno
fuzzy systems or simply TS fuzzy systems [194]. This type of fuzzy model allows effective
modeling of nonlinear relations using a small number of rules and is described in greater detail
in the next subsection.

For illustrative purposes consider Fig. 5.3 (cf. [7, 153, 196]). Here temperature is the lin-
guistic input variable quantified by the linguistic terms low, med and high. These linguistic
terms are defined by their associated membership functions µl(T ), µm(T ) and µh(T ) which have
trapezoidal shape in this example. Triangle or Gaussian membership function shapes are also
popular [1]. These MSFs define the degree of membership for a specific temperature value to
the fuzzy sets. For instance, in case of T = 18 ◦C the degree of memberships are: µl(18) = 0.7,
µm(18) = 0.3 and µh(18) = 0, respectively. This means that 18 ◦C is considered low with weight
of 0.7, medium with 0.3 and high with 0. The procedure which calculates from a crisp input the
degree of membership for the fuzzy sets is called fuzzification [153]. Further suppose that there
are more linguistic input statements, e.g., temperature and wind speed with given membership
functions. The degree of membership of each input variable can be combined by appropriate
operators. The result is then called the degree of rule fulfillment or firing strength [153].
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5.2.2 Takagi-Sugeno (TS) Fuzzy Models

Structure of TS Fuzzy Models

Complex dynamical system can often be represented by an nonlinear ARX (NARX) model
structure [1]. In general, this structure can be considered as a nonlinear relation between past
inputs and outputs and the predicted output of the system:

ŷ(k + 1) = f (y(k), . . . , y(k − ny + 1), u(k − nd), . . . , u(k − nu − nd + 1)) , (5.16)

where ny and nu are the maximum lags considered for the output and input terms, respectively,
nd is the discrete dead time, and f represents the nonlinear mapping. TS fuzzy models are
proved to be suitable for approximation of such systems by interpolating between local (affine)
linear, time-invariant (LTI) ARX models [150, 1]. For each rule Rj the following structure holds:

Rj : IF z1 is Aj
1 and · · · and zm is Aj

m

THEN yj(k + 1) =

ny∑

i=1

ajiy(k − i+ 1) +

nu∑

i=1

bjiu(k − i− nd + 1) + cj .
(5.17)

Here z = [z1, . . . , zm] is the vector of input fuzzy variables and Aj
1, . . . , A

j
m are the antecedent

fuzzy sets or regions for the jth rule Rj with corresponding membership functions µj
A1

, . . . , µj
Am

.
The elements of the fuzzy vector are usually a subset of the past inputs and outputs [1]:

z ∈ {y(k), . . . , y(k − ny + 1), u(k − nd), . . . , u(k − nu − nd + 1)}. (5.18)

In the special case that the elements of z are only external variables the term parameter schedul-
ing is used which is closely related to gain scheduling [153]. Note that only single-input, single-
output (SISO) dynamical systems are considered here. The extension to multiple input, single
output (MISO) or multiple input, multiple output (MIMO) TS fuzzy models is straightforward
(see, e.g., [1, p. 102 f]).

The antecedent propositions in TS fuzzy models are in conjunctive form. Hence, the degree
of fulfillment of the jth rule can be computed using the product operator [7, 153]:

µj(z) =
m∏

i=1

µj
Ai
(zi). (5.19)

Furthermore, by denoting the normalized degree of fulfillment with

wj(z) =
µj(z)

∑r
i=1 µ

i(z)
(5.20)

the overall output of the fuzzy model can be written as

y(k + 1) =
r∑

j=1

wj(z)yj(k + 1) (5.21)

where r denotes the number of rules. Hence, the model domain will be divided into r fuzzy
sub-domains each corresponding to a local process model. Further if, all consequents of the
rules have identical structure, the TS model can be expressed as a pseudo-linear model with
input-dependent parameters [7]

y(k + 1) =

ny∑

i=1

ai(z)y(k − i+ 1) +

nu∑

i=1

bi(z)u(k − i− nd + 1) + c(z) (5.22)
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where

ai(z) =
r∑

j=1

wi(z)aji , bi(z) =
r∑

i=1

wi(z)bji c(z) =
r∑

i=1

wi(z)cj . (5.23)

It is worth mentioning that for some applications the interpolation properties of the TS model
can be improved by replacing the weighted mean interpolation (5.21) by another function. For
instance, using the max-function s(z) = max(0, z), z ∈ R, as proposed in [7, p. 36], the inter-
polation formula for two rules becomes

y(k + 1) = y1(k + 1) + s
[
y2(k + 1)− y1(k + 1)

]
. (5.24)

In [220] it was further suggested to replace the max-function by a smooth piece-wise polynomial
to eliminate the drawback of non-differentiability at z = 0.

It is obvious that there are systematic similarities between conditional parametric models
introduced in Sec. 3.2 and TS fuzzy models. In the context of conditional parametric models
the local neighborhood around each fitting point is determined by Kernel functions where as for
fuzzy models the term membership functions is used . In both approaches the product operator
can be used to calculate the overall model output. Also both modeling frameworks can basically
be reduced to the concept of parameter-varying models.

Optimization

The optimization of TS fuzzy models comprises several different aspects. Since fuzzy models
are closely related to conditional parametric models some of these points were already discussed
in Sec. 3.2. Generally spoken, the components which can be optimized are the following (for
details see [153, pp. 93 ff.]):

• Consequent Parameters

• Antecedent Parameters

• Rule Structure

For fuzzy models of TS type the consequent proposition is a linear parametrized function. There-
fore, the consequent parameters can be optimized by standard least-squares techniques. Formal
descriptions of different least-squares approaches are pursued below. Antecedent parameters are
related to the input membership function characteristics such as partitions and widths. They
can either be chosen by expert knowledge or be optimized by nonlinear optimization techniques.
However due to the high computational burden of nonlinear optimization techniques it is com-
mon to optimize only the rule consequent parameters. The optimal complexity of the fuzzy
model is determined by optimization of the fuzzy rule structure. This is a combinatorial prob-
lem and nonlinear global search methods are necessary. An alternative to direct rule selection
are heuristic construction algorithms such as the LOLIMOT algorithm (see Sec. 3.2.3).

Least-Squares Optimization. The identification of the consequent parameters in TS fuzzy
models (5.17) can be formulated as a classical linear regression problem under the assumption
that the membership functions are known. In general, two different approaches can be dis-
tinguished: global and local estimation [153, 1, 151, 7]. In the global approach one compact
least-squares problem is solved in which the consequent parameters of all rules are estimated
simultaneously. Whereas in the local estimation problem the parameters for each rule are esti-
mated separately resulting in r (weighted) least-squares problems.
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In both methods, first, the training data set {y(k), u(k), z(k)}, k = 1, . . . , N has to be
arranged into a design matrix X, process output vector y and weight matrix W j as follows

X =








x(1)T

x(2)T

...
x(N)T







, y =








y(1)
y(2)
...

y(N)







, W j =








wj
1 0 · · · 0

0 wj
2 · · · 0

...
...

. . .
...

0 0 · · · wj
N







, (5.25)

with the regression vector

x(k) = [y(k − 1), . . . , y(k − ny), u(k − nd − 1), . . . , u(k − nd − nu), 1]
T (5.26)

and where wj
k denotes the normalized degree of fulfillment of the j th rule which is calculated

from (5.20) with the use of z(k) ∈ x(k). Next, the consequent parameter vector of the j th rule
is concatenated into a single parameter vector θj :

θj =
[

aj1, . . . , a
j
ny
, bj1, . . . , b

j
nu
, cj

]

. (5.27)

Finally, the rule consequent parameters θj , j = 1, . . . , r for given process data X,y and corre-
sponding weight matrices W j , j = 1, . . . , r have to be estimated.

Global Least-Squares Method. In the global approach the consequent parameter of all
r rules are estimated with one least-squares problem [7]:

min
θ

J =
1

N

(

y − X̃θ
)T (

y − X̃θ
)

(5.28)

where the matrix X̃ is composed as follows:

X̃ =
[
W 1X,W 2X, . . . ,W rX

]
(5.29)

and the parameter vector θ is given by

θ =
[
(θ1)T , (θ2)T , . . . , (θr)T

]T
. (5.30)

When the matrix X̃ has full rank, there is a unique solution to (5.28) which can be written as
[108]

θ̂ =
(

X̃
T
X̃

)−1
X̃

T
y. (5.31)

Although the global least-squares yields a minimal prediction error [7], its computational load
increases cubically with the number of rules [153, 1]. Thus, it is not suited for fuzzy systems
with many rules.

Local Least-Squares Method. In the local estimation approach the parameters of the
rules are estimated separately. This means that the interactions between the different rules, i.e.,
the overlaps between the membership functions (cf. Fig. 5.3) are neglected. Formally, the local
approach can be written as r weighted least-squares problems [1]:

min
θj

J =
1

N

(
y −Xθj

)T
W j

(
y −Xθj

)
, j = 1, . . . , r, (5.32)

where the corresponding weighted least-squares estimates are computed by [108]

θ̂
j
=

(
XTW jX

)−1
XTW jy. (5.33)
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Compared to global least-squares, the computational burden of the local least-squares approach
grows only linearly with the number of rules [153]. However, this comes at the cost of introducing
a systematic error due to the neglected interactions between the different rules.

As shown in [151] the local estimation implements an inherent regularization effect. This
means it reduces the degrees of freedom of the model by decreasing the number of effective
parameters of the model. This results on the one hand in an increased bias error and on the other
hand in a reduced variance error as predicted by the famous bias-variance dilemma [93]. Hence,
local estimation may improve the overall performance, if the additional bias error is compensated
or even over-compensated by a reduction in the variance error. Other benefits of local learning
are the possibility to locally interpret the estimated parameters. This is very important in the
process industry, where one wants to gain insight into the physical process behavior locally
at particular operating points. Another advantage is regarding adaptive learning which was
introduced in Sec. 3.2.2. If changes in the estimates are only anticipated for specific rules, it
makes no sense, from a computational point of view, to apply the global least-squares approach,
i.e, estimate the consequent parameter of all rules. For a thorough discussion of global versus
local learning see [151] and [153, Sec. 13.2]. Interestingly, it was also proposed in the literature
to combine the global (5.28) and local optimization problem (5.32) to generate models with good
tradeoff in terms of global fitting and local interpretation. For further details on this subject
the reader is referred to [216] and [1].

Note that the global model output can be written as follows (see Eq. (5.21) and (5.33))

ŷ =
r∑

j=1

W jXθ̂
j
= Sy (5.34)

where S is defined as

S =
r∑

j=1

W jX
(

XTW jX
)−1

XTW j . (5.35)

The matrix S is also called the smoothing matrix [151]. The effective number of parameters
(also known as the effective degrees-of-freedom) is now calculated from [151, 93, 38]

neff = tr(S) (5.36)

where tr(S) denotes the trace of the matrix S, that is, the sum of its diagonal elements. The
smoothing matrix can be used to calculate the leave-one-out cross-validation (LOOCV) score
[209, 93]

LOOCV =
1

N

N∑

k=1

[
y(k)− ŷ(k)

1− Skk

]2

(5.37)

where Skk is the kth element of S or the leave-one-out generalized cross-validation score

LOOGCV =
1

N

N∑

k=1

[
y(k)− ŷ(k)

1− tr(S)/N

]2

. (5.38)

For instance, the LOOCV was used by the author to determine the optimal width of the MSFs
in [79].

Output-Error Optimization Until now, it was assumed that the dynamical process is rep-
resented by a nonlinear ARX model structure and can be approximated locally by linear, time-
invariant ARX models. In such a setting the parameters can be estimated with least-squares,
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minimizing the one-step ahead prediction error, if the process output and relevant input vari-
ables are measured during operation. This setting is also called series-parallel model in the
identification literature [153].

In contrast, if the focus lies on simulation rather than prediction, the so called parallel model
configuration minimizing the output-error might be preferred. Simulation here simply means
that on the basis of previous process inputs, only the model simulates future outputs. Due to
the feedback of the process output a nonlinear output-error model structure (NOE) is obtained:

ŷ(k + 1) = f (ŷ(k), . . . , ŷ(k − ny + 1), u(k − nd), . . . , u(k − nu − nd + 1)) , (5.39)

Similar to the NARX approach, (5.39) can be approximated by a TS fuzzy model using output-
error (OE) models as consequent propositions. Output-error models are nonlinear in their pa-
rameters and consequently nonlinear optimization techniques, such as the Levenberg-Marquart
algorithm, have to be utilized [153]. As with local ARX models, the training of the local OE
models can be carried out globally or locally [153]. In the following only the global approach is
discussed. Consider the following nonlinear least-squares problem

min
θ

J =
1

N
(y − ŷ(θ))T (y − ŷ(θ)) (5.40)

where ŷ(θ) = [ŷ(1,θ), . . . , ŷ(N,θ)]T is the global output of the fuzzy model with

ŷ(k,θ) = ffuzzy (θ, ŷ(k − 1,θ), . . . , ŷ(k − ny,θ) ,

u(k − nd + 1), . . . , u(k − nu − nd), w
1(zk), . . . , w

r(zk)
) (5.41)

and θ =
[
(θ1)T , . . . , (θr)T

]T
is the stacked vector of the consequent parameters. Note that ffuzzy

represents the fuzzy relationship given in (5.22). The Levenberg-Marquardt update step for this
problem can now be written as follows [141, 153]

θi+1 = θi − ηi
(
J (θi)

TJ (θi) + αiI
)−1

J (θi)
T (y − ŷ(θi)) . (5.42)

where J (θi) represents the Jacobian at iteration step i, ηi is the stepsize, and αi is the reg-
ularization parameter. Hence, the Hessian is approximated with J TJ in combination with a
regularization term. The regularization parameter and the step size are considered for tuning.
Detailed strategies are discussed, e.g., in [153, 141]. The tricky part is now calculating the Ja-

cobian efficiently. Starting with given initial values ∂ŷ(k,θi)
∂θi

k = 1, . . . , ny the Jacobi matrix J

is recursively obtained at each iteration step i as follows [153, p. 566]:

∂ŷ(ny + 1,θi)

∂θi
=

∂ffuzzy( · )
∂θi

+

ny∑

j=1

∂ffuzzy( · )
∂ŷ(ny + 1− j,θi)

∂ŷ(ny + 1− j,θi)

∂θi

∂ŷ(ny + 2,θi)

∂θi
=

∂ffuzzy( · )
∂θi

+

ny∑

j=1

∂ffuzzy( · )
∂ŷ(ny + 2− j),θi)

∂ŷ(ny + 2− j,θi)

∂θi

...

∂ŷ(N,θi)

∂θi
=

∂ffuzzy( · )
∂θi

︸ ︷︷ ︸

static term

+

ny∑

j=1

∂ffuzzy( · )
∂ŷ(N − j,θi)

∂ŷ(N − j,θi)

∂θi
︸ ︷︷ ︸

dynamic term

.

(5.43)

Note that for building the derivatives of the global fuzzy model output (5.22) with respect to
the parameters it can be assumed that the degrees of fulfillment are constant and therefore do
not depend on the parameters.
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5.2.3 Identification and Validation

In order to verify the proposed fuzzy model architecture real measurements from the biomass
plant in Grossarl (Salzburg) are utilized. In Grossarl two biomass boilers with a heat power of
3.5MW and 1.5MW are installed. Here in particular data of the biomass boiler with 3.5MW
are considered for identification of the fuzzy models. The time frame of the available data is
04.08.2012 - 24.08.2012 with a resolution of 5 s. About 80% of the data were used for training
and the remaining part for validation. Unfortunately, for the combustion position no reliable
data were available. To generate sufficient identification data, simulated model output from the
grey-box model developed in Sec. 5.1 was used. The following results were also published by the
author in [74].

y(k + 1) =

ny∑

i=1

ai(z)y(k − i+ 1) +

nu∑

i=1

bi(z)u(k − i+ 1) + c(z). (5.44)

Model Structures

For identification purposes it is reasonable to decompose the MIMO structure of the biomass
furnace model into multiple MISO fuzzy models, i.e, to construct one fuzzy model for each
output separately. This makes the modelling approach not only simpler but also more flexible,
since a different model architecture can be applied to each MISO subproblem [153, 7]. More
precisely, the following models were found to be appropriate:

Cpos = ffuzzy(Cpos, ṁin, ṁPA|Qth), ny = 2, nu1...2 = 2

Qth = ffuzzy(Qth, ṁin, ṁPA|Qth), ny = 3, nu1...2 = 3

O2 = ffuzzy(O2, ṁin, ṁPA, ṁSA|Qth), ny = 4, nu1...3 = 4

Tf = ffuzzy(Tf , ṁin, ṁPA, ṁSA, ṁrec|Qth, Tf), ny = 5, nu1...4 = 5

(5.45)

where ffuzzy again represents the fuzzy relationship (5.22) with the respective input fuzzy vari-
ables indicated after the vertical line and ny and nui

indicate the order of the output and ith
input, respectively. The input fuzzy variables were partly determined by expert knowledge and
by considering the overall fitting performance. Theoretically, the LOLIMOT algorithm could
also be applied directly with a set of candidate input fuzzy variables. Then only those variables
would have been considered for the final model representation where axis-orthogonal splits at
the internal nodes occur.

Model Fitting

For fitting of the fuzzy models a staged optimization approach as illustrated in Fig. 5.4 was used
(cf. [153]). To be more precise, in a first step the LOLIMOT procedure is run with weighted
least-squares estimation of the consequent parameters minimizing the one-step ahead prediction
error. Then in a subsequent phase the fuzzy model is improved with respect to its simulation
performance by using the output error optimization approach. Note that in the second step
the least-squares parameter estimates are taken as initial parameter values for the iterative
Levenberg-Marquart algorithm. This staged approach has the main advantage of being able to
define the focus of the fuzzy model already in the training phase. If the fuzzy model is intended
to be used for predictive purposes e.g, in a predictive control setup, the training procedure could
be stopped after the first step, thus reducing the computational effort.

To determine the optimal number of fuzzy rules the convergence curve of LOLIMOT can be
used as depicted in Fig. 5.5. Here the normalized root-mean-square simulation error (NRMSE)
is plotted against the number of rules for the training and validation dataset. The NRMSE is
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Figure 5.4: Illustration of the staged optimization approach

simply the classical root-mean-square error divided by the amplitude of the output, i.e., max(y)−
min(y). The strong decrease in the model error compared with the linear model obtained in the
first few iterations reveals the highly nonlinear process characteristics. Theoretically, a minimum
of the curve for the validation data set should indicate the optimal number of fuzzy rules. This
implies that the model produces a good fit but does not overfit the training data. The selected
model complexity for each individual fuzzy model is marked by the arrows in Fig. 5.5.

The partitioning of the fuzzy model for the combustion position, oxygen concentration of the
flue gas, and the heat output is shown in Fig. 5.6. On the y-axis the degrees of membership or
fulfilment are plotted which are obtained from normalizing the Gaussian membership functions.
In general, two issues have a significant influence on the partitioning procedure: First, the
nonlinearity of the process in the specific operating regime, and second that LOLIMOT utilizes
the local sum of squared error loss function for performance comparison. Hence, splits are
preferred in regions that contain more data samples. The latter is confirmed by inspecting
the result for flue gas temperature shown in Fig. 5.7. In particular, for high thermal power
and low flue gas temperature no training data was available. This clearly demonstrates the
limitation of algorithms based on axis-orthogonal construction and further motivates the use of
more advanced methods which allow for axis-oblique splits (see, e.g., [87, 88]).

Model Validation

The simulated model output for the validation data set is presented in Figures 5.8 to 5.11.
All models were trained with the output error optimization approach using the Levenberg-
Marquardt algorithm with 20 iterations. For step sizes η = 0.08 and for the regularization
parameter α = 1 was chosen. Aside from the process noise of the measured data (except for
the combustion position where noise-free simulated output data are utilized), good agreement
between measured output and simulated output can be found. In particular, for the oxygen
concentration (see Fig. 5.10) dominant process noise can be observed. This is one reason for
the relatively poor model performance with respect to the simulation error. Contrary, the fuzzy
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Figure 5.7: Fuzzy space decomposition constructed by LOLIMOT for flue gas temperature; the
gray points are the training data samples

model for heat output shows minimal error and produces nearly a perfect fit. For the combustion
position also a perfect fit is obtained which is due to the noise-free data.

Dimension Reduction via PCA

A clear relationship between the observations of flue gas temperature and thermal power can be
seen in Fig. 5.12. This fact could be exploited to construct a lower dimensional fuzzy input space
by using dimension reduction techniques such as principal component analysis (PCA) [93]. The
basic idea of PCA is to build linear combinations of the original variables that capture most of
the information, and using a subset of these transformed variables (principal components) [73].
The extension to nonlinear principal component analysis (NLPCA) generalizes the principal
components from straight lines to principal curves that approximate the nonlinear relationship
between a set of two variables [120]. For instance, Kernel-PCA finds principal components which
are nonlinearly related to the original input variables by performing PCA in the so called feature
space H produced by a nonlinear mapping Φ: x → H [69]. Note that Kernel-PCA utilizes the
so called kernel matrix to approximate the nonlinear mapping. The size of the kernel matrix is
square with the number of observations in the data set and is thus useful when there are much
more input variables than observations [203].

To evaluate the performance with reduced fuzzy input space, identification runs using PCA
and NLPCA were carried out. For the latter the following scheme is proposed:

• Fit a quadratic polynomial function through the standardized data

• Project the data points onto the fitted quadratic curve

• Calculate the arc-lengths between the projected data points and the origin
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lation error for the validation dataset (bottom)

1.5

2

2.5

3

3.5

 

 

10 20 30 40 50 60 70 80

−5

0

5

10

Q
th

(M
W

)
S
im

u
la
ti
on

E
rr
or

(%
)

Time (h)

Process
Model

Figure 5.9: Heat output: comparison between process and model output (top); simulation error
for the validation dataset (bottom)



CHAPTER 5. MODELING OF THE BIOMASS COMBUSTION PLANT 81

4

6

8

10

12

 

 

10 20 30 40 50 60 70 80

−40

−30

−20

−10

0

10

20

S
im

u
la
ti
o
n
E
rr
o
r
(%

)
O

2
(%

)

Time (h)

Process
Model

Figure 5.10: Oxygen concentration: comparison between process and model output (top); sim-
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Figure 5.12: Scatterplot of flue gas temperature versus heat output plus linear and quadratic
function describing the dependency

Table 5.2: Comparison of the fitting performance using PCA and NLPCA

Classic PCA NLPCA

#Dim z 2 1 1
#LM (rules) 8 4 4

RMSE Training 8.720 5.993 5.732
RMSE Validation 11.826 7.473 6.930

The arc-length here can be regarded similar to the score variable in PCA that represents the
distance of the projected data point from the origin. (cf. [120]). The RMSE for the training and
validation data set after output error optimization is summarized in Tab. 5.2. For both the PCA
and NLPCA case the number of local models in the LOLIMOT algorithm was reduced to four
and only the first principal component/curve is considered as fuzzy input space. The results
are highly unexpected. The training and validation error using NLPCA could be decreased by
about 34% and 41% respectively, compared to the 2-dimensional fuzzy input space with eight
local models. This also motivates to apply NLPCA for future problems in different settings.



Chapter 6

Model Predictive Control

Model predictive control (MPC) is a general methodology for solving control problems in the
time domain and is well suited for constrained and multivariate process applications [28, 207,
171, 80, 152]. Some of the popular names associated with MPC are Dynamic Matrix Control
(DMC), Model Algorithmic Control (MAC), Generalized Predictive Control (GPC), etc. While
these algorithms differ in certain details, the main ideas behind them are very similar [12]. All
approaches are based on the following main concepts:

1. An explicit process model is used to predict the process output at future discrete time
instants, over a prediction horizon.

2. A sequence of future control actions is computed over a control horizon by minimizing a
given objective function.

3. Only the first control action in the sequence is applied, the horizons are moved one sample
towards the future and the entire calculation is repeated at subsequent control intervals.
This is called the receding horizon principle.

In the next section the basic concepts of predictive control are reviewed in more detail and
the mathematical formulation for the MPC using state-space models is presented.

6.1 Basic Concept

Process Model. An accurate model of the process is vitally important in MPC. A good
process model should fully capture the process dynamics, should be capable of allowing the pre-
dictions to be computed, to be intuitive, and to permit theoretic analysis [28]. In the framework
of predictive control the process model is a necessity to predict the process output at future
instants ŷ(k + i|k) i = 1, 2, . . .. Due to the general structure of MPC, various types of process
models can be applied to represent the relationship between the outputs and the measurable
inputs. In general, the methods for constructing the process model can be classified into two
categories: First-principles or white-box models which use physical principles such as energy or
mass balances to construct a model, and black-box models which use measured data to deter-
mine parameters (system identification) of a mathematical equation describing the input-output
behaviour.

The relationship between inputs and outputs is in many cases modeled linearly, although
real processes are often inherently nonlinear. Such nonlinear systems can be handled with,
for instance, Fuzzy MPC [7] which is introduced in Sec. 6.3. For more details about general
nonlinear MPC the reader is referred to [3].

83
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Figure 6.1: Principle of predictive control

Prediction and Control Horizons. The future process outputs are predicted over the so
called prediction horizon Np using the aforementioned process model. The predicted output
values ŷ(k+ i|k), i = 1, . . . , Np, depend on the current state of the process at time instant k and
on the future input control signals u(k+i), i = 0, . . . , Nc−1, where Nc ≤ Np denotes the control
horizon. It is further assumed that the control signal is only manipulated within the control
horizon and is kept constant afterwards, i.e., u(k + 1) = u(k + Nc − 1) for i = Nc, . . . , Np − 1
[7, 207] (cp. Fig. 6.1). There is no general rule for determining the optimal prediction and
control horizons. Both parameters are considered to be tuning parameters in the predictive
control setup. Note that the prediction horizon has a direct influence on the condition of
the optimization problem [207] and the control horizon determines the number of manipulated
variables and thus affects the computing time.

Objective Function. The sequence of future control signals u(k + i), i = 0, . . . , Nc − 1 is
computed by optimizing a given objective (cost) function. The aim is to bring and keep the
process output as close as possible to the given reference trajectory or set-point signal r. A
typical objective function has the following quadratic form [35]

Jk =

Np∑

i=1

qi[r(k + i)− ŷ(k + i)]2 +

Nc∑

i=1

ri∆u(k + i− 1)2. (6.1)

The first term accounts for minimizing the variance of the process output from the reference
trajectory, while the second terms penalizes excessive control actions. Note also that the control
input u itself can be included in the objective function, or other filtered forms of u [7]. The
parameters qi and ri define the weighting of the output error and the control effort with respect
to each other. These weighting terms are considered to be tuning parameters for the desired
closed-loop performance [207]. Now each time instant the following optimization problem has
to be solved

min
∆u(k|Nc)

Jk

with respect to linear constraints on ∆u, u and y.
(6.2)

Here, additionally, constraints on the control input, the control input increments, and the model
output are imposed to guarantee that physical limits are not violated. Optimization problems
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of this type can efficiently be solved by quadratic programming techniques [70]. In the absence
of constraints, due to the quadratic nature of the cost function, an explicit analytical solution
can be obtained. Generally, any other suitable cost function can be used. For instance, in the
context of robust MPC, infinity norms l∞ are used [28]. This leads to min-max problems which
can be solved with methods of linear programming.

Receding Horizon Principle. Although the output of the optimization problem contains
future control increments ∆u(k + i), i = 0, . . . , Nc − 1, only the first sample of this sequence
is applied to the process, while disregarding the rest of the sequence. At the next sampling
instant, the process output y(k + 1) is measured and the optimization and prediction can be
repeated with the updated values. This procedure is called the receding horizon principle. The
control action ∆u(k + 1) computed at time step k + 1 will be generally different from the one
computed at time step k, since more up-to-date information about the process is available. As
there will always be some mismatch between real process and process model [8], this feedback
not only allows to update the current system, but also to re-identify the process model.

A common multilayer control structure in managing process plants is depicted in Fig. 6.2
[196, 197]. The MPC is here vertically placed in the so called advanced control layer trying to
operate the process efficiently and safely at the desired steady state. The basic control layer is
typically equipped with simple controllers for maintaining the process in a safe operation mode.
The optimization layer generates optimal set-point values for the MPC by trying to minimize
an overall economic profit function.

6.2 State-Space MPC

This section is dedicated to the design of a model predictive controller with the main focus lying
on plant processes which can be represented by state-space models. The use of a state-space
model should not pose any restriction, since other process model structures such as FIR or ARX
can be put into state-space form as demonstrated in the end of this section. For more details
about, e.g, DMC which use FIR process models or GPC see [28, 196].
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6.2.1 Augmented Model Design

Consider the following form of the process state-space equations

x(k + 1) = Ax(k) +Bu(k) +Ez(k) + Fw(k) (6.3)

y(k) = Cx(k), (6.4)

where u(k) is the vector of input variables or manipulated variables with dimension nu, y(k) is
the process output with dimension ny, x(k) is the state vector with dimension nx, z(k) is the
vector of measurable input disturbances with dimension nz, w(k) denotes the unknown input
disturbances and A, B, C, E and F are the state matrix, input matrix, output matrix and
input disturbance matrices with appropriate dimension, respectively. Further assume that the
non-measurable input disturbance w(k) follows an integrated white noise process. This means
that w(k)−w(k − 1) = ǫ(k), where ǫ(k) is a zero-mean, white noise sequence.

In the next step the state-space model is formulated with respect to the increments of the
control signals, which are the variables to be optimized (decision variables) in the MPC problem
(6.2). This is done by embedding an integrator which also allows offset free control. The
following derivations and notation are largely based on that used in [207]. Taking the difference
on both sides of (6.3) one gets

∆x(k + 1) = A∆x(k) +B∆u(k) +E∆z(k) + Fǫ(k) (6.5)

where ∆x(k + 1) = x(k + 1) − x(k) denote the difference of the state variables and ∆u(k)
and ∆z(k) denote the difference of the input variables and measurable disturbance vector,
respectively. Next the process output differences ∆y(k) are linked to ∆x(k) using (6.4) as
follows

∆y(k) = C∆x(k + 1) = CA∆x(k) +CB∆u(k) +CE∆z(k) +CEǫ(k). (6.6)

Putting together (6.5) with (6.6) leads to an augmented state-space model:

ξ(k+1)
︷ ︸︸ ︷
[
∆x(k + 1)
y(k + 1)

]

=

A
︷ ︸︸ ︷
[
A 0T

CA I

]

ξ(k)
︷ ︸︸ ︷
[
∆x(k)
y(k)

]

+

B
︷ ︸︸ ︷
[
B

CB

]

∆u(k) +

E
︷ ︸︸ ︷
[
C

CE

]

∆z(k) +

F
︷ ︸︸ ︷
[
C

CF

]

ǫ(k) (6.7)

y(k) =

C
︷ ︸︸ ︷
[
0 I

]
[
∆x(k)
y(k)

]

(6.8)

where the 0 symbol denotes zero matrices and the I symbol the identity matrices with appro-
priate dimension, respectively. The triplet (A,B,C) (quadruplet (A,B,C,E)) with state vector
ξ(k) is called the augmented model, which will be used in the design of the predictive controller.

Controllability, Observability and Minimal Realization Important concepts in the con-
text of predictive control are controllability and observability of the state-space triplet (A,B,C)
in (6.3) and (6.4). Controllability is a prerequisite for the MPC to achieve the desired closed-
loop control performance and observability is a pre-requisite for the design of an observer [207].
A system is said to be state controllable if it is possible to transfer the system from any arbi-
trary initial state x(0) to any desired arbitrary state in a finite time period. That is, a control
system is controllable if every state variable can be controlled in a finite time period by some
unconstrained input signal. On the other hand, a system is said to be completely observable if
every initial state x(0) can be determined from the observation of y(k) over a finite number of
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sampling instances k = 1, . . . , N [162]. Mathematically, these conditions can be formulated in
terms of the controllability matrix C(B,A) and observability matrix O(C,A):

C(B,A) =
[
B AB A2B · · · Anx−1B

]
∈ R

nx×(nxnu), (6.9)

O(C,A) =










C

CA

CA2

...
CAnx−1










∈ R
(nynx)×nx . (6.10)

The system (A,B,C) is called controllable if the matrix C(B,A) has full rank (i.e., is nonsin-
gular) and observable if the matrix O(C,A) has full rank. Since the MPC design is performed
on the basis of the augmented state-space model, it is important that the augmented model is
both controllable and observable [207]. First, recall the definition of minimal realization (see
[207, p. 24]):

Definition 6.2.1 (Minimal Realization). A realization of transfer function G(z) is given by
any state-space triplet (A,B,C) such that G(z) = C(zI −A)−1B. If such system (A,B,C)
exists, then G(z) is said to be realizable. A realization (A,B,C) is called a minimal realization
of a transfer function if no other realization of smaller dimension of the triplet exists.

In other words, a realization (A,B,C) is minimal (i.e., the smallest number of state vari-
ables) if there exist no other triple (Ã, B̃, C̃) with Ã having smaller dimension than A and such
that C̃(zI− Ã)−1B̃ = C(zI−A)−1B [107]. Furthermore, as shown in [107, p. 127], a realiza-
tion is minimal if the denominator a(z) = det(zI−A) and numerator b(z) = CAdj(zI−A)B
are relatively prime where Adj( · ) denotes the adjugate matrix. A minimal realization has the
following important property:

Theorem 6.2.1. A minimal realization is both controllable and observable.

Proof. See Theorem 2.2-4, 2.2-5 and 2.2-6 in [107].

Based on this it can now be shown (see Theorem 2.1 in [207]) that if the plant state-space
model is both controllable and observable and has the transfer function Gm(z) with minimal
realization, then the augmented model (6.7) is both controllable and observable if and only if
the plant model Gm(z) has no zero at z = 1.

Classical Models in State-Space Representation. The basic idea is to put the feedback
variables that have been used in the classical predictive control scheme into the state vector of
the state-space model [207]. First, assume that the process model has the following MIMO-ARX
representation

y(k + 1) =

ny∑

i=1

F iy(k − i+ 1) +

nu∑

i=1

H iu(k − i+ 1) + c, (6.11)

then one way to obtain a state-space representation is by choosing the state vector x(k) as
[207, 150]

x(k)T =
[
y(k)T . . . y(k − ny + 1)T u(k − 1)T . . . u(k − nu + 1)T 1

]
. (6.12)

Hence, the state vector accomodates the previous outputs and inputs of the system as well as
the one as last element which is required for offset terms. The corresponding state-space system
matrices are defined as the block matrices

A =

[
A1 A2

A5
A3 A4

]

; B =

[
B1

B2

]

; C =
[
I 0 · · · 0

]
(6.13)
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A1 =










F 1 F 2 · · · F ny−1 F ny

I 0 · · · 0 0
0 I · · · 0 0
...

. . .
. . .

. . .
...

0 0 · · · I 0










; A2 =








H2 H3 · · · Hnu−1 Hnu

0 0 · · · 0 0
... · · · · · · · · · ...
0 0 · · · 0 0







;

A4 =










0 0 . . . 0 0
I 0 . . . 0 0
0 I . . . 0 0
...

. . .
. . .

. . .
. . .

0 0 . . . I 0










; A5 =










c

0
...
0
1










B1 =
[
H1 0 . . . 0

]T
; B2 =

[
I 0 . . . 0

]T
;

(6.14)

where A3 is a zero matrix. For offset free control the resulting state-space triplet can be aug-
mented as shown in (6.7). Notice that in this case the offset term vanishes from (6.12) due to
the representation in deviation form.

In a similar way the state-space representation for MIMO-FIR models is obtained. Here all
terms related to the previous outputs of the process vanish from the state vector (6.12) which
is then written as

x(k)T =
[
u(k − 1)T . . . u(k − nu + 1)T

]
. (6.15)

Thus, the state-space matrix A reduces to a pure shift matrix with ones only on the subdiagonal
and zeroes elsewhere. On the other hand, the C matrix accommodates all the FIR coefficients
as well as the offset terms. In order to be able to cover the dynamic response of the process the
order nu of FIR models is typically large. Hence, also the state vector x(k) has large dimension.
In such cases a more parsimonious predictive controller such as the classical DMC might be
preferable.

It is important to mention that the state-space triplet (A,B,C) obtained as above is in
general not a minimal realization [207]. Such models are also termed non-minimal state-space
realizations (NMSS) [207]. This further means, according to (6.2.1), that the state-space model
is not observable or/and not controllable. Although with this special choice of state variables
as given in 6.12, the entire state vector is available through measurements. Hence, there is
no need to design an observer where observability would be a prerequisite. Furthermore, state
controllability can be extended to output controllability which describes the ability of an input
to move the output from any initial condition to any final condition in a finite time period [162].
Output controllability is equivalent to CC(B,A) having full rank. There also exist methods to
eliminate uncontrollable or unobservable states (e.g., command minreal in MATLAB R©). For
detailed discussion on this see [186].

6.2.2 Prediction of Process Output

The goal is here to predict future state variables and output variables based on the current
state vector ξ(k), the future set of control moves ∆u(k+ i− 1), i = 1, . . . , Nc and future known
disturbance increments ∆z(k+i−1), i = 1, . . . , Np. Note that it is assumed here that the entire
state vector is available through measurements or can be estimated with appropriate observers
[196, 205]. Furthermore, due to the assumption that ǫ(k) is zero-mean, white noise sequence, the
predicted value of ǫ(k + i|k) at any future time instant k is zero. Hence, for the sake of clarity,
future noise effects to the predicted variables are eliminated by considering the expectation of
the respective variables. For notational simplicity, let ξ̂(k + i), i = 1, . . . , Np denote future
expected state variables and ŷ(k + i), i = 1, . . . , Np future expected output variables.
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Mathematically, future values are computed by iterating the model (6.7) as follows [207]

ξ̂(k + 1|k) = Aξ(k) +B∆u(k) + E∆z(k)

ξ̂(k + 2|k) = Aξ(k)(k + 1|k) +B∆u(k + 1)

= A2ξ(k) +AB∆u(k) +B∆u(k + 1) +AE∆z(k) + E∆z(k + 1)

...

ξ̂(k + np|k) = ANpξ(k) +

Nc∑

i=1

ANp−iB∆u(k + i− 1) +

Np∑

i=1

ANp−iE∆z(k + i)

From the predicted state variables, the predicted output variables are easily obtained through

ŷ(k + 1|k) = CAξ(k) + CB∆u(k) + CE∆z(k)

ŷ(k + 2|k) = CA2ξ(k) + CAB∆u(k) + CB∆u(k + 1) + CAE∆z(k) + CE∆z(k + 1)

ŷ(k + 3|k) = CA3ξ(k) + CA2B∆u(k) + CAB∆u(k + 1) + CB∆u(k + 2)

+ CA2E∆z(k) + CAE∆z(k + 1) + CE∆z(k + 2)

...

ŷ(k +Np|k) = CANpξ(k) + C

Nc∑

i=1

ANp−iB∆u(k + i− 1) + C

Np∑

i=1

ANp−iE∆z(k + i)

Now, the stacked vector of predicted outputs can be written in compact matrix form as

Ŷ = Φu∆U
︸ ︷︷ ︸

forced response

+F ξ(k) +Φz∆Z
︸ ︷︷ ︸

free response

(6.16)

with

Ŷ =
[
ŷ(k + 1|k)T ŷ(k + 2|k)T . . . ŷ(k +Np|k)T

]T

∆Z =
[
∆z(k)T ∆z(k + 1)T . . . ∆z(k +Np − 1)T

]T

∆U =
[
∆u(k)T ∆u(k + 1)T . . . ∆z(k +Nc − 1)T

]T
.

The matrices F and Φ are calculated as

F =










CA

CA2

CA3

...

CANp










, Φu =










CB 0 0 · · · 0
CAB CB 0 · · · 0
CA2B CAB CB · · · 0

...
. . .

...

CANp−1 CANp−2B CANp−3 · · · CANp−Nc










(6.17)

Φz =










CE 0 0 · · · 0
CAE CE 0 · · · 0
CA2E CAE CE · · · 0

...
. . .

...

CENp−1 CENp−2B CENp−3 · · · CE










(6.18)

The forced response is related to the current and future control input changes which are decision
variables of the controller optimization problem, whereas the free response depends only on the
current state vector and the future disturbance increments. In other words, the free response is
the output of the system if there is no future control action.
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6.2.3 Constraints

The ability to efficiently handle constraints gives a strong advantage to MPC compared to
standard linear controllers, such as PID (proportional-integral-derivative) [134] or LQR (linear-
quadratic-regulator) control [80]. Especially in process industry, the constraint handling ability
is of significant importance. This is motivated by the fact that the most profitable operation is
often obtained when a process is running at or close to a constraint [143]. Often these constraints
can be directly associated with costs. Hence, intelligent constraint handling not only guarantees
that process limitations are not violated, but can also improve the overall performance.

In general the following categories may be introduced according to the type of constraint:

• Constraints on the control input variable incremental variation

• Constraints on the amplitude of the control input variable

• Output constraints

The rate of change constraints can be used to impose directional movement constraints on the
control variables, such as limited slew rate of valves or actuators. Constraints on the amplitude
of the control signal most often emerge in the form of saturation characteristics: valves with a
finite range of adjustment, flow rates with maximum values due to fixed pipe diameters. Output
constraints can be used, for instance, to ensure that the process output is of a certain quality
or quantity. However, output constraints often cause large changes in both the control and
incremental control variables when they are enforced. Therefore output constraints are often
formulated as “soft” constraints by introducing slack variables (see [207, p. 48 f]). The set of
constraints can formally be written as

∆umin ≤ ∆u(k + i) ≤ ∆umax, i = 0, . . . , Nc − 1

umin ≤ u(k + i) ≤ umax, i = 0, . . . , Nc − 1

ymin ≤ y(k + i) ≤ ymax, i = 1, . . . , Np

or in compact vector notation

∆Umin ≤ ∆U ≤ ∆Umax

Umin ≤ U ≤ Umax

Y min ≤ Y ≤ Y max.

In the next step all constraints are formulated as lower inequalities in terms of the control
increments which are the decision variables in the quadratic programming problem. For ∆U
itself this relation becomes

[
−I
I

]

︸ ︷︷ ︸

M1

∆U ≤
[
−∆Umin

∆Umax

]

︸ ︷︷ ︸

N1

(6.19)

The control variables are linked with the control increments by the following expression










u(k)
u(k + 1)
u(k + 2)

...
u(k +Nc − 1)










=










I
I
I
...
I










u(k − 1) +










I 0 0 · · · 0
I I 0 · · · 0
I I I · · · 0
...
I I · · · I I



















∆u(k)
∆u(k + 1)
∆u(k + 2)

...
∆u(k +Nc − 1)










(6.20)
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Rewriting (6.20) in matrix form gives

[
−C2

C2

]

︸ ︷︷ ︸

M2

∆U ≤
[
−Umin +C1u(k − 1)
Umax −C1u(k − 1)

]

︸ ︷︷ ︸

N2

. (6.21)

where C1 and C2 corresponds to the appropriate matrices in (6.20). Finally, the output is
expressed in terms of ∆U as (cp. Eq. (6.16))

[
−Φu

Φu

]

︸ ︷︷ ︸

M3

∆U ≤
[
−Y min + Fξ(k) +Φz∆Z
Y max − Fξ(k)−Φz∆Z

]

︸ ︷︷ ︸

N3

(6.22)

For reason of compactness, the constraints are represented as

M∆U ≤ γ, (6.23)

with

M =





M1

M2

M3



 , γ =





N1

N2

N3



 . (6.24)

Here it was implicitly assumed that the constraints are time-invariant. Theoretically, they can
also be formulated as time dependent and be updated at each time instant.

6.2.4 Optimization

Now the control objective for the MPC can be formulated by the following cost function

min
∆U

J = ‖Rs − Ŷ ‖2Q + ‖∆U‖2R
s. t. M∆U ≤ N

(6.25)

where the vector Rs contains the set-point information

Rs =
[
r(k + 1)T r(k + 2)T . . . r(k +Np)

T
]T

(6.26)

and Q and R are positive semidefinite weighting matrices which allow for tuning. As discussed
in the beginning of this chapter the typical objective in control applications is to penalize values
of squared predicted output deviations from some reference signal and excessive control actions.
In the unconstrained case an analytical solution to (6.25) can be obtained [207]. First, substitute
(6.16) into the cost function (6.25) which gives

J = (Rs − Fξ(k)−Φz∆Z)TQ(Rs − Fξ(k)−Φz∆Z)

− 2∆UTΦT
uQ(Rs − Fξ(k)−Φz∆Z) + ∆UT (ΦT

uQΦu +R)∆U .
(6.27)

From the first derivative of (6.27) the necessary condition for the minimum of the cost function
is obtained as

∂J

∂∆U
= −2ΦT

uQ(Rs − Fξ(k)−Φz∆Z) + 2(ΦT
uQΦu +R)∆U = 0 (6.28)

from which the optimal solution for the control signal can be found as

∆Û = (ΦT
uQΦu +R)−1ΦT

uQ(Rs − Fξ(k)−Φz∆Z), (6.29)
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with the assumption that the Hessian matrix (ΦT
uQΦu+R) is nonsingular. Equation (6.29) also

allows a good interpretation of the role of the weighting matrices. Since (6.29) can be considered
as the solution of a weighted least-squares problem with weights Q combined with a Tikhonov
regularization added through R [24].

For constrained control problems quadratic programming (QP) solvers are necessary [207,
196, 143]. In general, a convex optimization problem is called a quadratic program if the objective
function is (convex) quadratic, and the contraint functions are affine [24, p. 152]. This can be
expressed in the form

minimize
1

2
xTPx+ xTq + r

subject to M∆U ≤ γ
(6.30)

where P , M , q, r and γ are compatible matrices and vectors with P being symmetric and
positive semidefinite. It can easily be seen that the MPC control objective can be reformulated
in terms of quadratic programming problem. Several efficient solution techniques for quadratic
programs exist in literature. For an overview see [61, 24, 70]. In this work, in particular, the
command quadprog in MATLAB R© is used with the active set method.

6.3 Fuzzy Models in MPC

6.3.1 Introduction

Linear MPC refers to a class of control algorithms that compute a manipulated variable by
utilizing a linear process model [152]. Many systems are, however, in general inherently nonlinear
[59]. This motivates the use of nonlinear model predictive control. Here a nonlinear and generally
non-convex optimization problem has to be solved online at each sampling period even without
any active constraint [96, 3, 16]. The computational burden needed to solve this problem online
may make this approach infeasible in practical implementations. Moreover, the solution itself,
even if found, may be only a local extremum. To avoid non-convex optimization, a set of local
linear models can be extracted from a TS fuzzy model which are then utilized by the MPC
algorithm [1, 150, 196, 7].

6.3.2 Linear Model Extraction

There are basically two approaches to extract a linear model from a given fuzzy model at a
certain operating point [1, 2]. In the first approach linear models are obtained by interpolating
the parameters of the local models in the TS model (see Eq. (5.22)+ Eq. (5.23) on page 71). The
second approach extracts the parameters of the linear model by Taylor expansion. In this work
only the first approach is considered.

The goal is to locally represent a TS fuzzy model by a linear state-space model

x(k + 1) = Akx(k) +Bku(k)Ekz(k) (6.31)

y(k) = Ckx(k) (6.32)

in which system matrices Ak, Bk, Ck and Ek are considered to be non-constant. To arrive at
this representation, assume that the MIMO TS fuzzy model can be regarded as a multivariable
linear parameter-varying (LPV) system [1]

y(k + 1) =

ny∑

i=1

F i(z)y(k − i+ 1) +

nu∑

i=1

H i(z)u(k − i+ 1) + c(z) (6.33)
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in which parameter matrices frozen at a certain operating point z are calculated as

F i(z) =
r∑

j=1

W j(z)F j
i , i = 1, . . . , ny

H i(z) =
r∑

j=1

W j(z)Hj
i , i = 1, . . . , nu

c(z) =
r∑

j=1

W j(z)cj . (6.34)

where W j is the diagonal weight matrix whose entries are the normalized degrees of fulfillment
of the jth rule. In this approach the linear parameter-varying system obtained at each operating
point tries to track the nonlinear process dynamics in a way similar to using a linear adaptive
model to track nonlinear dynamics [148]. Moreover, for each operating point the model (6.33)
can be put into state-space form as shown in Eq. (6.13) and (6.14).

Predictive Control

In order to predict the trajectory of the controlled outputs the LPV system (6.33) can be

used, i.e., the set of models extracted along the future operating points {M(k + i)}Np

i=1 with
M(k) = {Ak,Bk,Ck,Ek} denoting the linear state-space model obtained at the kth step. As
above, the linear extracted state-space models can be augmented to provide offset free control.
Let ξ(k) denote the augmented state vector at time step k, then future process outputs are
computed from [148]

ŷ(k +Np|k) = Ck+Np

0∏

j=Np−1

Ak+jξ(k) + Ck+Np

Nc−1∑

i=0

i+1∏

j=Np−1,j≥i+1

Ak+jBk+i∆u(k + i)

+ Ck+Np

Np−1
∑

i=0

i+1∏

j=Np−1,j≥i+1

Ak+jEk+i∆z(k + i)

(6.35)

where
∏0

j=Np−1Ak+jξ(k) = Ak+Np−1Ak+Np−2 · · ·Ak. Or in compact matrix form this can be

written as (cp. (6.16))
Ŷ = F (k)ξ(k) + φu(k)∆U + φz(k)∆Z (6.36)

with

F (k) =










Ck+1Ak

Ck+2Ak+1Ak

Ck+3Ak+2Ak+1Ak
...

Ck+Np
Ak+Np−1 · · ·Ak










, (6.37)
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Φu(k) =











Ck+1Bk 0 · · · 0
Ck+2Ak+1Bk Ck+2Bk+1 · · · 0

Ck+3Ak+2Ak+1Bk Ck+3Ak+2Bk+1 · · · ...
...

. . .

Ck+Np

∏1
j=Np−1Ak+jBk · · · Ck+Np

∏Nc

j=Np−1Ak+jBk+Nc−1











,

(6.38)

Φz(k) =











Ck+1Ek 0 · · · 0
Ck+2Ak+1Ek Ck+2Ek+1 · · · 0

Ck+3Ak+2Ak+1Bk Ck+3Ak+2Ek+1 · · · ...
...

. . .

Ck+Np

∏1
j=Np−1Ak+jEk · · · Ck+Np

Ek+Np−1











(6.39)

These matrices have to be calculated at each time step and are then used in the quadratic
program (6.25) for determing the optimal future control sequence.

Now, depending on how the calculation of {M(k+ i)}Np

i=1 is done, two conceptual approaches
exist: Non-iterative and iterative methods [150, 148, 196]. A representative of the former is
the so called Single-model method. Here, as the name suggests, only a single linear state-space
modelM(k) is extracted at the current operating point z(k) ∈ {y(k),u(k)} and used throughout
the entire prediction horizon. Such approach is feasible for weakly nonlinear processes, or when
operating close to certain equilibrium points during longer time periods. However, the prediction
accuracy might significantly deteriorate for strongly nonlinear processes. A way to circumvent
this is by applying iterative methods such as the Multi-models method [150]. This approach can
be summarized in the following steps:

1. Use the obtained linear model M(k) at the current operating point z(k) and compute the
control signal u(k) for the whole control horizon

2. Simulate the TS fuzzy model over the prediction horizon

3. Freeze the TS Fuzzy model along each point in the predicted operating point trajectory
z(k + i) and obtain M(k + i) for i = 1, . . . , Np.

4. Use M(k + i), i = 1, . . . , Np to construct MPC matrices (6.37)-(6.39) and compute the
new control sequence u(k)

Steps 3 and 4 are repeated until u converges. Of course, if the operating points are independent
of input and ouput terms such as in pure gain-scheduling applications, iterative methods are
obsolete.

6.3.3 Internal Model Control

Disturbances acting on the process, plant-model mismatch, and measurement noise cause dif-
ferences in the behavior of the process and of the model and can lead to an error between the
reference trajectory and the process output [7]. Two ways to compensate for this are: Adaptive
estimation as introduced in Sec. 3.2.2 and the internal model control (IMC) scheme [68, 176, 60].

In classical feedback control the current process output or an estimate from an observer
is used at each time instant to update the controller state [207]. The direct update of the
state of the controller, however, might not be desirable in the presence of measurement noise
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Figure 6.3: Internal model control (IMC) scheme

or significant plant-model mismatch. This could lead to oscillations or instability especially for
highly nonlinear processes [7]. The IMC scheme, on the other hand, utilizes an internal model
which runs in parallel with the process. The ouput of the internal model is then used to update
the state of the controller instead of the measured process output. To eliminate modeling errors
the difference between the outputs of the process and of the internal model is fed back. As
illustrated in Fig. 6.3, the IMC scheme consists, in general, of three parts [68]: (1) An internal
model (e.g., fuzzy model) to predict the process output, (2) a feedback filter to achieve robustness
and (3) a controller (e.g., fuzzy MPC) to compute future values of the manipulated variables.
If the predicted ouput from the internal model and the measured process output are equal, the
error e is zero and the controller works in an open-loop setup. If a disturbance d is present, the
error equals d and this influence is then subtracted from the original reference signal.

The two main properties of IMC are inherent stability and perfect control [68]. Inherent
stability means that when the model is perfect, stability of both controller and plant is sufficient
for close-loop stability. Perfect control means that if the controller is an exact inverse of the
model, and the closed-loop is stable, then the control is error free. Although in practise, a
perfect model does not exist and thus the feedback signal contains both the effect of unmeasured
disturbances and of the modeling error. Note that for large modeling errors stability problems
can even occur [7]. To stabilize the closed-loop system and to filter out measurement noise a
feedback filter is introduced. A simple exponential filter was proposed in [68]. For nonlinear
systems and models the design of alternate, more complex filters might be necessary in order to
achieve sufficiently large robustness [7].

6.3.4 Stability

Although TS fuzzy models provide, in general, a good approximation of the process there will
always be a certain plant-model mismatch present, which eventually can also destabilize the
closed-loop system. Hence, tools for the design of robustly stable, constrained predictive con-
trollers are of significant importance and therefore part of active research [146, 172]. Classical
concepts for ensuring closed-loop system stability of nonlinear processes with constraints are
[197, 114, 146, 172]:

• an additional set constraining terminal states

• a cost on the terminal state

• a stabilizing linear state-feedback controller, designed for a considered equilibrium point
of the nonlinear process
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Figure 6.5: Sketch of a predictive controller with robust stability constraints (reproduced with
modifications from [149])

In particular, for stabilizing fuzzy predictive controllers dual-mode strategies were proposed
(e.g., [145, 14, 127]. The concept of this strategy is as follows: First, a constrained predictive
contoller with a finite horizon should bring the state of the process, in a finite number of steps,
to a (convex) target set or terminal region Ω (see Fig. 6.4). Then inside this set a second local
stabilizing linear controller is used bringing the process to the desired equilibrium state. This
also motivates the name dual-mode. The main disadvantage of this technique is that there is
no guarantee that the controller drives the systems into the terminal region [115].

Robust stability techniques for fuzzy systems based on the small gain theory are proposed in
[149]. Here constraints on the control input and its increments are calculated at each sampling
instant which guarantees robust stability (see Fig. 6.5). The drawback of this method is that
it can only be used for open loop bounded-input-bounded-output (BIBO) stable processes and
that the added constraints lead to slower response.

Recently, a new concept for stability of fuzzy systems was introduced in [115]. The concept
is based on two ideas: First, an added constraint on the applied control action is used to
ensure the decrease of a quadratic Lyapunov function, and so guarantee Lyapunov exponential
stability of the closed-loop system. Second, the feasibility of the finite-horizon optimization
problem with added constraint is ensured based on an offline solution of a set of linear matrix
inequalities (LMIs). For further details and a good overview about stability of unconstrained
and constraind fuzzy MPC the reader is referred to [196].



Chapter 7

Model Predictive Control
Implementations

7.1 Predictive Control of Supply Temperature

7.1.1 Problem Formulation

The primary goal of control scheme in district heating systems is to provide adequate thermal
power to consumers while not violating any physical or technological constraints. A secondary
goal is to achieve the primary goal in such way that the overall operational costs are minimized.
Recall that the thermal power is proportional to the product of the mass flow rate and the
temperature difference between supply and return line. Hence, district heating systems may
be controlled by two different principles. Either the temperature Ts is kept constant while the
flow q is varied in order to respond to the changing consumer heat demand, or the flow is
fixed and the temperature varies. Due to the much faster response characteristic of the flow to
changes in demand, the supply temperature is typically considered as the important variable to
be manipulated [76] .

A possible approach for optimizing the control strategy is by minimizing the operational
costs for time instant t: (cf. [21, 75])

min
∆Ts(t)

Jop(t) = celecPpump(t) + cfuelQloss(t)

with respect to constraints on Ts(t) and q(t).
(7.1)

Here Qloss denotes the heat loss defined as the difference between produced and delievered heat
power, Ppump is the pump power and celec and cfuel are the corresponding costs per kWh. The
pump power can be calculated from [18]

Ppump(t) =
ρgq(t)H(t)

ηmηpηv
(7.2)

where g is acceleration due to gravity, H is the pressure head and ηm, ηp and ηv are the
motor, pump efficiency and the efficiency of the variable speed drive. Pressure heads and pump
efficiencies for various flow conditions are provided by the characteristic curves which can be
found in the manufacturer’s data.

The objective function (7.1) reflects the trade-off between costs related to the supply tem-
perature and costs related to keeping up the flow rates in the network. To understand the
underlying problem of finding a solution to (7.1) one has to inspect the causalities with respect
to a changes in supply temperature and volume flow rate on the operational costs. On the one
hand, higher pump pressure results in higher flow rates in the network and, of course, increases
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the pumping costs as can be seen in (7.2). However, on the other hand, higher flow rates mean
less transport time delays and thus reduce the costs related to heat losses. Similiar arguments
can be applied to the supply temperature. Hence, efficient control strategies have to take both
parts of the costs and possible constraints into account. One possible strategy is introduced in
this section.

7.1.2 Set-Point Strategies

Predictive control schemes require appropriate set-point or reference trajectories for the output
variables. In district heating the set-point for the supply temperature is typically conservatively
chosen in order to guarantee that the consumers are satisfied. Also due to technical reasons
there is a minimal allowable supply temperature at heat exchangers which limits the supply
temperature. Traditionally, the supply temperature is determined by so called heating curves
or control curves [188, 84]. Such curves capture the general heating characteristics of consumer
stations which naturally depend on the ambient temperature (see Fig. 7.1). A disadvantage of
such static mappings is that operational costs such as pumping costs and heat loss costs are
not explicitly taken into account. Nowadays, advanced control schemes are becoming more and
more important [21]. For instance, the supply temperature could be dynamically controlled in
such way that the return temperature has a certain level or that the overall operating costs are
minimized. The latter is considered in this work by introducing a novel supervisory predictive
on-line set-point optimizer. The idea follows the classical multilayer control approach [197, 144]
in which the desired set-points are calculated in an optimization layer and then are applied to
the model predictive controller (cf. Fig. 6.2 on 85).

Heating-Curves

In the context of predictive control of the supply temperature heating curves can be used for
generating set-point values which define the minimal allowable supply temperature at the re-
spective point in the network. More precisely, increasing supply temperature with decreasing
ambient temperature reflects the limited capacity in the consumers space heating installations,
whereas the minimum is determined by the hot tap water installations [159]. However, since
the quadratic optimization problem (6.25) does not discriminate between realizations below or
above the set-point, it is nessesary to add an extra safety margin to ensure that the actual
supply temperatures do not fall far below the heating curve set-point values. The idea is that
instead of directly imposing output constraints on the supply temperature which are given by
the heating curves, the referece trajectory should by chosen in an exact way to not violate these
contraints. First, assume that future values of the supply temperature at the consumers and
the ambient temperature can be formulated as the sum of predictions and predictions errors

TAC
s (t+ k) = T̂AC

s (t+ k|t) + ǫTs(t+ k|t), (7.3)

Ta(t+ k) = T̂a(t+ k|t) + ǫTa(t+ k|t), k = 1, . . . , Np (7.4)

where the corresponding error terms are assumed to be mutually independent Gaussian dis-
tributed: (

ǫTs(t+ k|t)
ǫTa(t+ k|t)

)

∼ N
(

0,

[
σ2
Ts
(k) 0

0 σ2
Ta
(k)

])

. (7.5)

The idea presented in [158] is to ensure that future supply temperature values belong to
some admissible area Ω2 for some predetermined probability p (see Fig. 7.1), i.e.,

P{(T̂ SP
s (t+ k|t) + ǫTs(t+ k|t), T̂a(t+ k|t) + ǫTa(t+ k|t))

∈ Ω2} = p, k = 1, . . . , Np

(7.6)
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Figure 7.1: Schematic heating curve with characteristic break-points (reproduced with modifi-
cations from [159]).

Here the predicted temperature T̂AC
s (t+k|t) was substituted by the set-point value T̂ SP

s (t+k|t),
since it is assumed that the process is controlled according to the model used to obtain this
predictor. Now Eq. (7.6) has to be solved with respect to T̂ con

s (t+ k|t), k = 1, . . . , Np which can
be achieved by a combination of Simpson integration and minimization algorithms. For details
the reader is referred to [158].

Remark. In [158] it was additionally proposed to filter the ambient temperature before con-
structing the relationship between heat load and ambient temperature. This was motivated due
to the ability to store heat in the mass of buildings.

Minimize Operational Costs

The control strategy based on heating curves, although being widely used, might not be op-
timal in terms of minimizing operational costs. As discussed previously the major sources of
operational costs in district heating networks are heat loss costs and pumping costs. Heat loss
costs can be reduced by lowering the supply temperature from the plant and by increasing the
thermal insulation thickness in pipes [39]. This, however, results in higher pumping cost due
to increased flow rates in the network assuming that the delivered heat to the consumers and
the return temperature is kept constant. Due to this trade-off, choosing the optimal supply
temperature is a complicated task and efficient strategies are highly desirable.

In the following one possible approach is described which tries to find optimal set-points
(cp. [144, 197]) for the critial point considered by solving a (stochastic) nonlinear optimization
problem at each time instant. First, the assumptions as listed below are made (cp. Fig. 7.2)

• The entire network is reduced to one supply pipe to the aggregated consumer and one
return pipe from the aggregated consumer

• Return temperature TP
r at the plant is known and system heat load QP can be predicted
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• Heat losses in the supply pipe can be approximated using the stationary gains estimated
by the fuzzy models

• Supply pipe and return pipe have the same stationary gains

Under these assumptions the entire stationary heat loss can be expressed as the sum of the heat
losses of the supply and return pipe as follows ([29])

Qloss(t) = Qloss,s(t) +Qloss,r(t) (7.7)

with
Qloss,s(t) = cpρq(t)[1−K(q(t))]TP

s (t)

Qloss,r(t) = cpρq(t)[1/K(q(t))− 1]TP
r (t)

(7.8)

and where 0 < K( · ) ≤ 1 represents the stationary gain of the cFIR/cARX model at flow rate
q(t) (cp. Fig. 3.19 on page 38 ). It is important to ensure that K( · ) is monotonically increasing
and reasonably smooth.

The optimization problem itself can be formulated as

min
∆TP

s

J(T P
s ,T

SP
s , q) = E

{
Nc∑

k=1

cfuelQloss(t+ k) + celecPpump(t+ k)

}

s. t. cpρq(t+ k)[TP
s (t+ k)− TP

r (t+ k)] = Q̂P(t+ k|t)
P{q(t+ k) ≤ qmax} ≥ p

P{q(t+ k) ≥ qmin} ≥ p

Tmin
s,1 ≤ Ts(t+ k) ≤ Tmax

s,1

Tmin
s,2 ≤ T SP

s (t+ k) ≤ Tmax
s,2

T SP
s = F (q)ξ(t) +Φ(q)∆T P

s

(7.9)

where T s, T
SP
s and q are vectors of plant supply temperature, set-point supply temperature at

critical nodes, and volume flow rates, respectively. The matrices F and Q are related to the
forced and free response and are given in Eq. (6.37). The first constraint in (7.9) links the volume
flow rate in the network to the predicted heat-load, supply temperature, and return temperature
at the plant. The other constraints are related to input and ouput restrictions, and upper and
lower bounds on the volume flow rate. The latter has to be formulated in a probabilistic manner,
due the uncertainty in the heat load predictions. In particular, the minimum flow rate must
be ensured in order to avoid rapid evaporation phenomena, possible malfunctions and pipe
restrictions [202].

The return temperature at the plant is assumed to be known at time instance t and is further
assumed to be constant over the prediction horizon, since in general it varies only smoothly (cp.
Fig. 4.13 on 62).

To reduce the computational complexity of (7.9) two steps were taken. First, it was decided
to disregard the ouput and input constraints, which could alternatively be implemented in a
more efficient way in the MPC control problem, and second, the (nonlinear) constraints on
the volume flow rate is reformulated by using penalty function methods [70]. Note that a
deterministic counterpart to the flow contraints can be written as follows [20, 158]

q(t+ k) ≤ qmax − σ(t+ k|t)2
cpρ[TP

s (t+ k)− TP
r (t+ k)]

Φ(p),

q(t+ k) ≥ qmin +
σ(t+ k|t)2

cpρ[TP
s (t+ k)− TP

r (t+ k)]
Φ(p)

︸ ︷︷ ︸

saefty term

k = 1, . . . , Nc
(7.10)
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Figure 7.2: Simplified district heating network with one consumer

where Φ(p) is the p-quantile of the standard normal distribution. Thus the stochastic nonlinear
optimization problem with constraints was reduced to a deterministic unconstrained problem.
A minimal allowable flow rate of 5 ·10−3m3/s and a maximal allowable flow rate of 25 ·10−3m3/s
are used in the simulations.

7.1.3 Controller Setup

The setup of the fuzzy model predictive controller used in this work is depicted in Fig. 7.3. It was
decided to use the internal model control scheme as well as constrained WRLS to handle plant-
model mismatch and disturbances. The control sequence can be summarized in the following
steps:

1. If process data is available the estimates of the coefficient functions are updated via con-
strained WRLS.

2. The fuzzy model (cARX/cFIR) is linearized around the current operating point, then the
internal state-space model and the MPC matrices are updated.

3. The reference trajectory for the supply temperature at the critical node is constructed
using heating curves or set-point optimization.

4. In case of multi-model mode Algorithm 1 on page 102 is used to compute a sequence
of future supply temperature increments otherwise (i.e., SM - mode), the classical MPC
problem is solved. In both cases the first element of the optimal sequence is then applied
to the plant.

Note that in the internal model control scheme the state vector of the (fuzzy) MPC is updated
using the output of the internal model only, and the internal model in turn has its own internal
state vector. To account for disturbances and plant-model mismatch the difference between the
outputs of the internal model and the process model is subtracted from the generated reference
trajectory. The fuzzy model itself is given by the conditional ARX and conditional FIR model
developed in Sec. 3.2. The trigonometric offset was packed into the input disturbance matrix E.

In addition to the standard recursive least squares procedure, constraints on the stationary
gain were implemented. Due to heat losses in the distribution network the stationary gain is
naturally not allowed to exceed one (cp. Fig. 3.19). The finite-difference models construced
in Sec. 3.1 were taken as plant process model. Here again the data was up-sampled for the
plant model using zero-order-hold, since the MPC operates in 30 min time frames and the
finite-difference model was time discretized with 1min. Furthermore, the return temperatures
at the consumer stations are given by the estimated nonlinear, static mappings as illustrated in
Fig. 4.13 on page 62.
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Figure 7.3: Block diagram of the Fuzzy MPC (SP: set point generation/optimization)

Algorithm 1 incorporates the forecast of the heat load into the FMPC control scheme. The
idea is to iteratively update the volume flow rate based on future heat load values and optimized
supply temperature values. Since the return temperature only varies smoothly, it was assumed
that it can be held constant over the prediction horizon. Further it was assumed that Ts(t+k|t) =
Ts(t + Nc|t) for k = Nc + 1 . . . Np − 1. Experiments have shown that the algorithm converges
quite quickly in practice, so maxit = 5 was a reasonable choice.

Due to safety reasons, two constraints on the plant supply temperature are imposed:

• The rate of change for the supply temperature is restricted to 2◦C per time instant (30
min).

• Minimum and maximum supply temperature values are set to 75◦C and 105◦C, respec-
tively.

Algorithm 1 Fuzzy MPC multi-model iterative scheme.

1: Initialize T
(1)
s (t+ k|t) and T

(1)
r (t+ k|t), k = 0 . . . Np − 1

2: Predict heat load Q̂(t+ k|t), k = 1 . . . Np − 1

3: repeat
4: Calculate current and future volume flow rates

q̂(i)(t+ k|t) = Q̂(t+k|t)

cpρ(T
(i)
s (t+k|t)−T

(i)
r (t+k|t))

, k = 0 . . . Np − 1

5: Use FMPC to determine future supply temperature

T
(i+1)
s (t+ k|t) = fFMPC(q̂

(i)), k = 1 . . . Nc

6: until ||T (i+1)
s − T

(i)
s || < tol or #Iteration ≥ maxit

Although for the simulations considered, the constraints were hardly ever active. In fact, if
the reference tajectory is chosen appropriately and the tuning of the weighting matrices is done
well, the role of constraints is less important during normal operations. For the prediction hori-
zon Np = 16 (8 h) and control horizon N = 6 (3 h) were found to be adequate. With this choice



CHAPTER 7. MODEL PREDICTIVE CONTROL IMPLEMENTATIONS 103

of prediction horizon the crucial process dynamics could be captured. The weight for penalizing
the control effort is chosen constant as R = 10. In [75] it was found that higher penalties on
the control increments for lower flow rates result in a significant performance increase. Hence,
different weights for different flow conditions may be considered. For the output weights the
concept of active critical node is introduced. Here positive weights are imposed (e.g., Q = 1)
for the active critical node and all other outputs are weighted with zero weights (i.e., Q = 0).
This means that practically only the temperature at the active critical node is controlled.

A detailed stability analysis is not done in this work. No stability problems were encountered
during the simulations. For open-loop BIBO stable processes robust stability can always be
guaranteed by choosing appropriate time-varying constraints on the input and input increments
[149].

7.1.4 Simulation Results

Set-Point Tracking and Disturbance Rejection. First, to motivate the use of fuzzy meth-
ods, a convential MPC is compared with the fuzzy MPC for both the cARX and cFIR as under-
lying process model. For the design of the MPC the operating point q = 0.008m3/s was chosen.
As performance measures for the tracking ability and the disturbance rejection the integrated
absolute error (IAE):

IAE =
N∑

t=1

|y(t)− ySP(t)| (7.11)

and the integrated control effort (ICE):

ICE =

N∑

t=1

|∆u(t)| (7.12)

were taken. The reference signal is represented by the step signal as illustrated in Fig. 7.4.
The disturbances are modeled as simultaneous heat demand jumps of all aggregated consumers.
More precisely, first all consumers start with constant low heat demand and then at certain
time steps the heat demand is increased by about 50%. This test procedure is repeated for all
three critical aggregated consumers where each time one was considered to be the active critical
point. The performance results are summarized in Table 7.1. It can be seen that the FMPC
clearly outperforms the conventional MPC for both the cARX and cFIR model. The maximum
performance increase is achieved for AC5 with a 18.2% reduction in terms of ICA (7.1% ICE) for
the cARX process model and 32.7% IAE reduction ( 43.1% ICE ) for the cARX process model.
This can be explained mainly by the poor performance of the conventional MPC for very low
flow rates as depicted in Fig. 7.4. Thus the MPC has problems in handling large transport time
delays, whereas the FMPC shows good performance over the entire operating envelope.

In addition, the stepwise volume flow profile plus corresponding membership functions are
shown in Fig. 7.5. Obviously, if consumer supply temperature is kept constant, the required heat
demand can only be accomplished by higher flow rates and thus less heat loss in the network.
Reduced heat losses also allow the supply temperature at the plant to be decreased as seen in
Fig. 7.4.

Heating Curve Set-Points. To show the effects of utilizing heating curves for set-point
genereration ten days of real measurements of heat-load and ambient temperature between
29.01.2009 and 07.02.2009 (Period I) and between 30.06.2009 and 09.Jul.2009 (Period II) are
taken (see Fig. 7.6). In general, it can be assumed that in warmer months the heat losses are
disproportionately high due to lower heat demand and consequently lower flow rates at constant



CHAPTER 7. MODEL PREDICTIVE CONTROL IMPLEMENTATIONS 104

Table 7.1: Performance index comparison of set point tracking under MPC and fuzzy MPC

cARX-(F)MPC cFIR-(F)MPC

Error MPC FMPC MPC FMPC

AC3
IAE 164.6161 150.0188 166.61 163.02
ICE 38.5639 34.4808 38.90 32.67

AC5
IAE 278.5856 226.71 346.94 233.47
ICE 48.1366 44.74 71.89 40.94

AC7
IAE 111.5350 95.6119 106.30 96.38
ICE 25.0531 23.0911 25.14 22.14
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Figure 7.4: Performance comparison of set point tracking and step disturbance rejection under
cFIR-MPC and cFIR-FMPC with AC5 being active
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local models for the cFIR-FMPC with AC5 being active; the thick full line represents the volume
flow rate; the gray shaded areas reflect the individual local models

Table 7.2: Control Curve Specification in ◦C

Tmax Tmin Ta,L Ta,U

AC3 (CP1) 83.6169 55.9583 0.4324 15.4962
AC5 (CP2) 83.0846 61.9933 -1.5288 11.2344
AC7 (CP3) 85.3809 83.4613 4.7425 9.3541

supply temperatures. For constructing the individual heating curves for the critical points the
steps discussed in [159] are being followed:

1. The ambient temperature observations are divided into a number of sub-intervalls

2. After grouping the obserations of supply temperature and ambient temperature into these
above defined sub-intervalls, the quantile of the supply temperture distribution correspond-
ing to 1− p is established for each intervall

3. Finally, the heating curves are fitted to the observed quantiles

Note that the number of observations in each sub-intervall should be large enough to provide
reliable estimates. The heating curves as shown in Fig. 7.1 can be written in functional form as

T SP
s = β0 + β1 [(Ta − ζ1)+ − (Ta − ζ2)+] . (7.13)

where the parameters β0, β1 and the knots ζ1, ζ2 were estimated by nonlinear least-squares
techniques (lsqnonlin in MATLAB R©). The estimation results for the three cricital nodes AC3,
AC5 and AC7 are presented in Table 7.2. Here the 10%-quantiles were chosen, i.e., 10% of the
observations lie below the fitted heating curves.

The fitted heating curve for AC5 is depicted in Fig. 7.7 for illustration purposes. One can
clearly identify the characteristic knots in the scatterplot which were also found by the nonlinear
least-squares estimation approach.

Simulation results for Period I are shown in Fig. 7.8 and for Period II in Fig. 7.9. In both
cases the FMPC with cARX process model is considered. Further it was decided to increase the
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Figure 7.8: Simulation results for Period I using heating curves. The shaded areas correspond
to the currently active critical point

weight of penalizing the control effort to Q = 20 for Period II where flow rates in the network
are low.

The active critical point is determinded as follows: Predict future output at each critical
point using Eq. (6.36) on page 93. Then build the differences between future reference trajectory
and predicted output. The active critical node is the one where the biggest differences can be
observed. In both plots the typical diurnal variation in the volume flow rate can be seen. The
peaks in the supply temperature during night are due to the static mappings between supply-
and ambient temperature of the heating curves. From an operational point of view this might
not be optimal, since high temperatures are imposed on the network when heat-load is low.

Set-Point Optimization (SPO). In the following the performance of the primary supply
temperature based control strategy using heating curves versus set-point optimization is evalu-
ated. The cost function (7.1) for various supply temperature values is shown in Fig. 7.10. The
figure on the left side assumes system heat-load of 2MW and on the right a system heat-load of
3MW is assumed. Hence, for higher heat demand the minimum of the cost function moves in
the direction of higher supply temperatures. Note that for the electricity price 0.15 e/kWh was
used and for biomass fuel 0.04 e/ kWh. In Tannheim three pumps of type CR45-7 Grundfos
[81] (30kW) are installed in parallel. The speed of each pump is controlled through the use of a
frequency converter. Pressure heads and flow rates for different pump operating points can be
derived from affinity laws [212].

The simulation results plotted in Fig. 7.11 clearly show that the controlled supply tempera-
ture at AC3 with set-points obtained from SPO follows the diurnal variation of the heat-load.
This means that peaks are produced in the morning hours and late afternoon and low supply
temperature is imposed on the network during night. This stands in contrast to the results
obtained when using static heating curves for set-point construction. From an operational point
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Figure 7.9: Simulation results for Period I using heating curves. The shaded areas correspond
to the currently active critical point
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Table 7.3: Daily operating costs in e for set-points generated by heating curve and by set-point
optimization, respectively

Costs Heating Curve SPO

Heat Loss 449.58 433.62
Pumping 32.72 32.10

Overall 482.30 465.72
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Figure 7.11: Simulation results for AC3 with set-points generated by heating curve and by
set-point optimization, respectively

of view the heating curves are not optimal since the overall costs can be reduced by 3.44% when
using the SPO strategy.

7.2 Predictive Control of Moving Grate Biomass Furnace

7.2.1 Problem Formulation

Although present-day grate-fired biomass boilers for heat and power production are usually well
designed and sufficiently equipped with monitoring systems, the use of modern control strategies
is still not very widespread [163]. Existing automation systems are widely based on individual
SISO-control loops with rudimentary decoupling features and hence require substantial operator
interaction [164]. The optimization in operation using advanced control concepts can greatly
increase efficiency, lower emissions (e.g., the pollutants as a result of incomplete combustion),
and mitigate other related problems [218, 119].

Model predictive control (MPC) [28] and its variants such as nonlinear model predictive
control (NMPC) [3] or fuzzy model predictive control (FMPC) [7] are advanced control schemes
especially suited for (nonlinear) multivariate process applications with constraints [185].
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ṁrec

Cpos

Qth

O2

DV ′s

Tf

Biomass
Plant
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In this section a fuzzy controller for the biomass plant is designed which is based on the
fuzzy model constructed and identified in Sec. 5.2.

7.2.2 Process Description

A detailed process description of the considered moving grate biomass furnace is presented in
Sec. 5.1. Figure 7.12 again summarizes the input and output variables of the MIMO fuzzy model.
Hence, the relevant manipulated variables of the fuzzy MPC are (cf. Sec. 5.1)

1. Biomass input feed (ṁin)

2. Mass flow rate of the primary air supply (ṁPA)

3. Mass flow rate of the secondary air supply (ṁPA)

4. Mass flow rate of recycle gas, (ṁrec)

and the important output variables are

1. Combustion position (Cpos)

2. Heat output (thermal power) (Qth)

3. Oxygen concentration (O2)

4. Flue gas temperature (Tf)

The heat output and flue gas temperature are in general considered to be the main output
variables. However, for safe and secure operation it is also crucial to position the main fuel
combustion approximately at the center of the grate [164]. Thus, there is need to actively
control the combustion by the distribution of the primary air supply. Similar arguments hold
for the oxygen concentration. Since incomplete combustion can lead to high emissions of unburnt
pollutants such as Carbon monoxide [160], control of the oxygen concentration can effectively
increase the efficiency of the combustion plant [119]. Moreover, disturbance variables affecting
the combustion process are, for instance, the moisture content of biomass fuels or the varying
grate speed. The latter is also influenced by the heat load needed to satisfy the varying consumer
heat demand.

The process dynamics of the biomass plant fuzzy model for a specific operating point is
depicted in Fig. 7.13. Recall that the partitioning variables of the MISO fuzzy models introduced
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Figure 7.13: Step responses of the MIMO fuzzy model for operating point (Qth = 2.5MW,
Tf = 900 ◦C) with a sampling time of 5 s

in Sec. 5.2 are the heat output and the flue gas temperature. As one can see, the overall heat
output is mainly influenced by the level of the input feed. The primary air supply has no net
effect on the heat output because the amount of fuel burning remains constant. The combustion
position depends positively on the input feed due to the fixed relationship between input feed
and grate velocity and it depends negatively on the level of the primary supply. The latter can
be explained by the fact that increasing the oxygen concentration results in a better combustion.
Thus, the combustion position of the biomass bed on the grate is moved towards the fuel feed.
Furthermore, primary and secondary air have a positive static gain on oxygen because more
oxygen is provided for the same amount of fuel to be combusted. On the other hand, increased
input feed has a negative effect on the oxygen concentration because more fuel will be combusted
with the same amount of air, the resulting oxygen concentration in the flue gas will drop (cf.
[119, p. 162]. For the flue gas temperature the exact opposite behavior can be observed. The
input feed has a positive effect on the flue gas temperature because the amount of fuel burning
increases. On the contrary, primary air, secondary air, and recycle gas have a negative static
gain on the flue gas temperature due to the cooling of the flue gas.

7.2.3 Controller Specification

For control of the biomass furnace a setup similar to the control of the supply temperature in
the network (see Sec. 7.1) is used. More precisely, the internal model control scheme (IMC) as
illustrated in Fig. 7.14 is applied. Here, in each sample time, first the MIMO fuzzy model of
the moving grate biomass furnace is linearized around the current operating point (heat output
and flue gas temperature) and then the internal model and fuzzy MPC matrices plus states
are updated. The first-principles model developed in Sec. 5.1 represents the real process. For
the feedback filter a simple exponential filter with a filter parameter of 0.95 for all outputs was
chosen. Other values for the relevant tuning parameters are:

• prediction horizon Np = 160
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• control horizon Nc = 20

• weights reference error Q = diag
[
8 · 10−4 7 · 10−1 3 · 10−2 3 · 10−5

]

• weights control increments R = diag
[
200 1 1 0.1

]

• constraints control increments: ∆ṁin: 0 - 0.5 kg/s; ∆ṁPA, ∆ṁSA, and ∆ṁrec: 0% - 100%

Note that the input variables primary supply air, secondary supply air, and recycle gas are
given in percent of total fan speed. Furthermore, the prediction horizon was chosen to be equal to
about 90% of the maximal rise time of the system (cp. Fig. 7.13). Moreover, for calculating the
forced and free response the non-iterative Single-model method was used. This means that the
state-space triplet obtained from the current linearized MIMO fuzzy model is used throughout
the entire prediction horizon. This was found necessary due to the long prediction horizon. Here
iterative methods would significantly increase the computational burden.

7.2.4 Simulation Results

Fuzzy MPC

To study the closed-loop behavior of the fuzzy controller a set-point change in the heat output
and the flue gas temperature was considered. Both the combustion position, and the oxygen
concentration were kept constant at the center of the grate (i.e., 50%), and at 6%, respectively.
The simulation results for the output variables are depicted in Fig. 7.15 and for the manipulated
variables in Fig. 7.16. The fuzzy controller was compared with a conventional MPC with state-
space triplet obtained at the operating point: Qth = 2.5MW, Tf = 900 ◦C. Since from a
visual point of view only minor differences between fuzzy MPC and conventional MPC are
observable, the integrated absolute errors (IAE) are summarized in Tab. 7.4. The fuzzy controller
performs slightly better except for flue gas temperature where practically no difference exists.
One reason for that is the coarse partitioning of the fuzzy domain and hence low number of local
models which leads to a similar response characteristics for a wide operating range. It is further
worth analyzing the simulation results for the manipulated variables presented in Fig. 7.16. For
instance, the input feed, being proportional to the heat output, decreases. On the other hand,
the MPC uses the primary supply air to keep the combustion position at 50% and the secondary
supply air to keep the oxygen concentration at the 6% level. The amount of recycle gas controls
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Table 7.4: Integrated control error of set-point tracking under MPC and fuzzy MPC

FMPC MPC

Combustion position 808.24 830.27
Heat output 50.11 56.33
Oxygen concentration 143.46 146.49
Flue gas temperature 4.986 · 103 4.967 · 103

the flue gas temperature and has to be increased at the last quarter of the simulation horizon
in order to trigger the flue gas temperature drop.

Reduced Fuzzy MPC

The simulations above are time consuming due to the long control horizon and the large number
of manipulated variables. Each time instant the MPC optimization problem with dim(u)×Np =
30×4 decision variables has to be solved. Hence, more efficient algorithms and techniques which
reduce the computational burden and ensure performance in real-time applications are highly
desirable (see, e.g., [201, 208]).

One concept, the predictive functional controller (PFC), was first introduced by Richalet
[173, 174]. The PFC is characterized by two distinctive features: The future control signal is
assumed to be composed of a priori known functions, and the idea of coincidence points to
evaluate the cost function along the horizon [28]. In mathematical terms this means that future
control increments are described as linear combinations of basis functions ωm, m = 1, . . . , nΩ

∆u(k + i) =

nΩ∑

m=1

= µm(k)ωm(i) i = 0, . . . , Nc − 1 (7.14)

and the predicted output is only considered at certain instants (coincidence points) hj , j =
1, . . . , nH . Taking account of this, the original MPC cost function (6.25) on page 91 is modified
by substituting ∆U = Ωµ to

min
µ

J =
(

R†
s − Ŷ

†
)T
Q†

(

R†
s − Ŷ

†
)

+ µTΩTRΩµ

s. t. MΩµ ≤N
(7.15)

with

Ŷ
†
=

[
ŷ(k + h1|k)T ŷ(k + h2|k)T . . . ŷ(k + hnH

|k)T
]T

,

Ω =
[
ω1 ω2 . . . ωnΩ

]

and corresponding set-point information R†
s and weighting matrix Q†.

Popular basis functions are, for instance, polynomial functions [174, 28] or Laguerre functions
[207]. The latter are obtained in an iterative way and are calibrated with the pole a of the
Laguerre network. For details the reader is referred to Chapter 3 in [207].

To illustrate the role of the pole a, third-order Laguerre functions for a = 0.6 and a = 0.8,
respectively, are depicted in Fig. 7.17. As one can see with a = 0.6 the functions decay to zero
in less than 25 samples. In contrast to the case with a = 0.8, the Laguerre functions decay to
zero at a much slower speed.

To measure the performance of the reduced FMPC compared to the classical FMPC a set-
point change in each output variable is considered (see Fig. 7.18). For the reduced FMPC



CHAPTER 7. MODEL PREDICTIVE CONTROL IMPLEMENTATIONS 114

100 200 300 400 500 600 700 800 900 1000
40

45

50

55

 

 

100 200 300 400 500 600 700 800 900 1000

2

2.5

3

100 200 300 400 500 600 700 800 900 1000
5

5.5

6

6.5

100 200 300 400 500 600 700 800 900 1000
840

860

880

900

920

MPC
FMPC

Reference

Samples

C
p
o
s
(%

)
Q

th
(M

W
)

O
2
(%

)
T
f
(◦
C
)

Figure 7.15: Performance comparison of set-point change in heat output and flue gas temperature
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Figure 7.16: Manipulated variables of set-point change in heat output and flue gas temperature
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Figure 7.17: Third-order Laguerre functions with a = 0.6 (left) and a = 0.8 (right)

Table 7.5: Performance of set-point tracking of reduced FMPC and classical FMPC

#Decision Variables 80 ( = Nc × 4) 24 12 12
#Coincidence Points 160 ( = Np) 160 160 16
Avg. Exec. Time 85.79 s 58.30 s 51.19 s 42.96 s

IAE IAE IAE IAE

Combustion Position 1.41 · 103 1.44 · 103 1.25 · 103 1.34 · 103
Heat Output 59.2 59.8 56.5 56.7
Oxygen Concentration 206.8 209.5 216.7 249.9
Flue Gas Temperature 7.69 · 103 7.73 · 103 7.96 · 103 8.33 · 103

third-order Laguerre functions with a = 0.6 were used as basis functions for each input variable.
Here the decay to zero of the functions is at about 20 samples. This corresponds to the chosen
control horizon in the previous simulations.

Results such as average execution time (averaged over three runs) and integrated absolute
error for each output are given in Table 7.5. For the reduced MPC with 12 (= 3 × dim(u))
decision variables and 16 coincidence points the execution time can be reduced by 50% compared
to the classical FMPC, and this without negatively affecting the performance of the controller.
Note that for the last setup the coincidence points were equally distributed over the prediction
horizon. The closed-loop results depicted in Fig. 7.18 also show that the differences between the
classical FMPC and the “most reduced” FMPC are negligibly small.

First Implementation Results

The proposed fuzzy control strategy for the moving grate biomass furnace was implemented in
the biomass plant in Grossarl (Salzburg) between 14.8.2012 and 17.8.2012. On the first day
it was tried to extract sufficient real measurement data from the process in order to be able
to estimate the fuzzy models. However, due to technical problems the historical database was
not accessible during the entire implementation period. After a brief discussion, it was decided
to use the first-principles model developed in Sec. 5.1 for generating a training data set which
actively excites the process over the entire operating envelope. This training data were then
used to estimate the fuzzy models as described in Sec. 5.2. The workflow is summarized in the
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Figure 7.18: Comparison of set-point tracking of reduced FMPC with classical FMPC
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following steps:

1. Calibrate the first-principle plant model using a small set of process measurement data

2. Generate representative input-output training data using the calibrated first-principle
plant model

3. Construct and estimate the fuzzy models based on these training data

4. Incorporate the estimated fuzzy model into the fuzzy predictive control scheme

Since all modeling and control design was done in MATLAB R© R2010a on a standalone
machine and the FMPC was running on this machine, it was necessary to set up a communication
between MATLAB R© and the real process This was realized with the help of an OPC (Open
Process Control) Server. Using the commands from the OPC Toolbox in MATLAB R© it was
possible to directly communicate and interact with the plant. At each time step the following
steps are carried out:

1. Read current process output (combustion position, thermal power, oxygen concentration,
flue gas temperature) via OPC protocol

2. Update FMPC state plus matrices and solve the quadratic programming problem

3. Send the results (i.e., control variables: input feed, primary air, secondary air, and recycle
gas) to the real process via OPC protocol

4. Synchronize MATLAB R© FMPC simulation with process interface sampling time (5 s)

The last step was realized with a simple pause command in MATLAB R©. Unfortunately, no
reliable measurements for the combustion position were available. Therefore it was necessary
to run the first-principle model in parallel to the process and use the calculated combustion
position from the first-principle model to update the controller states.

It took nearly two days to set up the communication and the interface correctly. For controller
tuning and testing only one-half day remained. Nevertheless, the results of the first closed-loop
run are shown in Fig. 7.19. Unexpected results were obtained with regard to the primary air
supply. Primary air supply was moved towards the lower constraint of 70%. Despite this
strong decrease of about 30%, there was practically no effect on the combustion position. After
analyzing these results, it was found out that the internal model of the combustion position
was not initialized correctly. To be more specific, the fuel mass on the grate (cf. Eq. (5.3) on
page 66) was initially assumed to be 300 kg, which was too high. Hence, the simulation did
not start with a stationary value of the fuel mass. Consequently, the fuel mass on the grate
decreased slowly and had a significant influence on the combustion position. In response, the
FMPC unsuccessfully tried to control the combustion position by means of the primary air
supply. This fact, in combination with large weights on the combustion position reference error,
could be the reason for these test results. Unfortunately, there was no more time for further
simulation runs and the implementation had to be stopped at this point.
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Figure 7.19: Results of output variables for the first closed-loop run; FMPC is active after the
vertical dashed line
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Chapter 8

Conclusion

8.1 Summary of the Main Results

In this work, a general framework for modeling and control of biomass-fired district heating net-
works has been proposed. The main components of a district heating system are the distribution
network, the biomass combustion plant and the consumer stations. For the distribution network
and the biomass combustion plant, physical models as well as data-driven models have been
presented. For modeling the consumer behavior statistical methods were applied. Advanced
predictive control concepts have been developed for the supply temperature at critical points in
the network and for a moving grate biomass furnace.

In detail, it was shown that the hydraulic flow situation in distribution networks can effi-
ciently be determined by means of a graph-theoretical approach in combination with a Newton-
based iterative algorithm. The effectiveness of this method was demonstrated on a simple
diagraph with two internal loops. For modeling the thermal transients in the district heating
networks a modification of the well-known QUICKEST finite-difference scheme was proposed.
To overcome the problem of incorrect solutions at pipe junctions or when diameters change
it was suggested to use a non-conservative formulation of the original QUICKEST approach.
Moreover, it was recommended to use velocity weighted right wall values in case of pipe junc-
tions to get a more robust scheme. The performance of the finite-difference was demonstrated
by simulating the DHN in Tannheim (Austria) and comparing the simulation results with real
measurements. To reduce the computational effort a physically simplified, aggregated version
of the real network was used.

In addition to the physical models for the distribution network, a data-driven approach using
conditional parametric models was pursued. For the three considered critical points in the DHN
of Tannheim, conditional FIR models as well as a conditional ARX models were estimated.
Validation results have shown that this modeling framework is capable of handling the inherent
nonlinearity in the response characteristics of DHN caused by varying flow rates. Furthermore, a
detailed analysis of multi-steps-ahead prediction errors was carried out which indicates that the
quality of the forecasts strongly depend on the accuracy of future volume flow rate estimates.

It was demonstrated that the varying heat demand of consumers can be well described by
SARIMAX and structural models in state-space form. It was further shown that exogenous
influences such as the ambient temperature which attributes approximately 80% to the total
heat-load can be accounted for by piece-wise linear functions. A predictive performance com-
parison pointed out that reliable weather forecasts are essential for accurate load predictions.
For an overall simulation of the distribution network, the primary return temperature has to be
known or computed. For that purpose, a nonlinear mapping describing the return temperature
as a function of ambient temperature and the social load was introduced. Estimation results
obtained by a sophisticated nonparametric framework illustrate that classical heat exchanger
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theory is not always valid for district heating applications.
For modeling the biomass plant a simple grey-box model was introduced which is largely

based on mass and energy balances. The model was designed in such way to be easily calibrated
with a small set of tuning parameters using real measurements. The validation with real data
from a biomass plant in Grossarl (Austria) showed acceptable performance. Beside the grey-box
model, Takagi-Sugeno fuzzy models were developed for a moving grate biomass furnace. The
main variables responsible for the nonlinearity of the process were identified to be the heat
output and flue gas temperature. For locally approximating the process linear and nonlinear
estimation techniques were introduced. The comparison with real measurements obtained from
the biomass plant in Grossarl (Salzburg) showed good agreement.

The concept of fuzzy model predictive control was introduced for control of the supply tem-
perature at critical nodes in the network. For this purpose a novel approach was proposed which
iteratively determines a future fuzzy trajectory based on heat load forecasts. The comparison
with a conventional MPC clearly demonstrates the performance improvement of this approach,
especially in regions of low volume flow rates and thus large transport time delays. Additionally,
set-point generation tools based on heating curves as well as a set-point optimizer minimizing
operational costs were studied. With the latter the overall costs can be reduced by 3.44% in
contrast to the results with set-points constructed by heating curves.

In the final section a fuzzy model predictive control scheme for a moving grate biomass
furnace was developed. The effectiveness of this approach is demonstrated by simulating set-
point changes in heat output and flue gas temperature. Furthermore, possible reduction in the
computational burden of fuzzy controller was discussed using basis functions for future control
increments and the idea of coincidence points to evaluate the cost function along the prediction
horizon. Simple case studies have shown that this reduces the execution time significantly with-
out affecting the overall performance. In the final part of this work first implementation results
were summarized and discussed. Due to technical issues and incorrect model initialization, the
implementation was only partly successful.

8.2 Outlook

The contributions presented in this work unveil interesting and challenging future research op-
portunities: For instance, to increase the applicability of the physical modeling framework, a
general approach for aggregating complex district heating networks could be defined. Such an
approach may even reach the point of software tools which are able to read, for example CAD
drawings of the distribution network and automatically construct aggregated networks with cor-
responding incidence matrix and pipe parameters. In the context of modeling and predicting
heat-load the classical Box-Jenkins methodology has reached its limits. To take into account the
seasonal variations, extensions such as periodic SARIMA models [97], varying coefficient models
[155] or nonparametric estimation techniques like MARS [63] might be considered.

Optimal control of the biomass plant and the distribution network was addressed separately
in this work. To obtain a global optimum it is necessary to link both, the production side and the
distribution side. Due to highly different response times multi-sampling (Fuzzy) MPC have to
be designed for that purpose. The consideration of more than one biomass plant, co-generation
plants or heat storages in DHN poses another challenging task. Such processes can easily reach
a complexity which exceeds the capacity of current algorithmic and computational resources.
Hence, to ensure performance in real-time applications efficient algorithms have to be designed.

The ultimate goal of such advanced control concepts is to be implemented into existing dis-
trict heating systems. This is not only challenging from a technical point of view, as experienced
by the author, but also considerable time has to be invested to convince plant operators of of
its additional benefit compared to conventional control schemes.
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