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Abstract

One of the most fascinating aspects of quantum physics is particle-wave duality, lead-
ing to striking analogies in the behavior of light and matter. Wave-like phenomena
of matter on a macroscopic scale are especially pronounced in quantum-degenerate
atomic gases. In these, strongly populated matter-wave modes give rise to coher-
ence properties resembling those of laser light, enabling interferometry and homodyne
measurements with Bose-Einstein condensates. In recent years, numerous experiments
and theory proposals have been developed to extend this analogy into the realm of
quantum optics, highlighting the complex interplay of wave and particle aspects of a
degenerate atom gas. In quantum optics, a powerful theory framework is readily avail-
able, and numerous ground-breaking experiments with non-classical light have been
performed. The realization of similar experiments using matter waves holds promise
for both fundamental tests of quantum mechanics, and future metrology applications.
This approach is promoted by the intrinsic atom-atom interactions in a condensate,
that allow to efficiently access non-classical quantum states, without the need for
non-linear media as in light optics.
In this thesis, a scheme to generate twin-atom beams, confined to a one-dimensional

wave-guide geometry on an atom chip, was realized. The twin beams emerge from a
degenerate one-dimensional Bose gas, propagate as wave packets with opposite mo-
menta, and show quantum correlations that ideally lead to complete suppression of
relative population fluctuations (number squeezing). This process, which operates in a
strongly Bose-enhanced regime, is in close analogy to twin-photon beam generation in
an optical parametric oscillator, a key tool in both fundamental and applied photonics.
In our experiment, using time-of-flight fluorescence imaging, almost perfect number
squeezing between the twin beams is observed, for the first time in the regime of high
mode population. Furthermore, the dynamics of the stimulated twin-beam emission
is analyzed quantitatively, and good agreement with a newly developed theoretical
model is found.
In analogy to a pumped gain medium in optics, the starting point of the twin-beam

emission process is a population-inverted state in the transverse vibrational degree of
freedom of the elongated confinement. The preparation and characterization of this
source state, which resembles a Fock state of a single-particle system, is the second
main result of this thesis. To reach the pumped state, we apply a purely mechanical
technique, where the transverse wave function of the condensate is controlled by dis-
placement of the anharmonic trapping potential. The precise trajectory of the trap
motion is obtained from quantum optimal control theory, which has been applied to
the excitation of a condensate for the first time. By time-resolved observation of the
system response, excellent agreement between experiment and theory, and a near-unit
efficiency of the excitation process is obtained. Also, an effective two-level description
is developed, that allows to capture the dynamics in an intuitive way.
The availability of quantum-correlated twin-atom beams opens up a plethora of

research opportunities towards strongly entangled many-body states, enabling both
fundamental experiments, and quantum-enhanced metrology techniques.
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Zusammenfassung

Einer der faszinierendsten Aspekte der Quantenphysik ist der Teilchen-Welle-Dualis-
mus, der zahlreiche Analogien im Verhalten von Licht und Materie zur Folge hat.
Wellenartige Phänomene auf makroskopischer Skala treten insbesondere in quanten-
entarteten Atomgasen auf. Dort führen stark besetzte Materiewellen-Moden zu Ko-
härenzeigenschaften ähnlich denen eines Lasers, was Experimente wie Interferometrie
und Homodyn-Messungen ermöglicht. In den letzten Jahren wurden zahlreiche Ex-
perimente und Theorievorschläge entwickelt, um diese Analogie in den Bereich der
Quantenoptik auszudehnen, wo das komplexe Zusammenspiel zwischen Wellen- und
Teilchenaspekten des entarteten Atomgases besonders klar hervortritt. Die Quan-
tenoptik liefert hierzu mächtige Theoriewerkzeuge, und viele bahnbrechende Experi-
mente wurden mit nichtklassischem Licht durchgeführt. Die Umsetzung solcher Exper-
imente mit Materiewellen verspricht sowohl fundamentale Tests der Quantenmechanik,
als auch neuartige Messverfahren. Dieser Ansatz wird durch die intrinsichen Atom-
Atom-Wechselwirkungen in einem Kondensat begünstigt, die nichtklassische Zustände
zugänglich machen, ohne dass, wie in der Lichtoptik, ein nichtlineares Medium benötigt
wird.
In dieser Dissertation wurde ein experimentelles Schema zur Erzeugung von Strahlen

aus Zwillingsatomen, die in einer Wellenleiter-Geometrie gefangen sind, implemen-
tiert. Die Zwillingsstrahlen entstehen in einem entarteten, eindimensionalen Bose-
Gas, bewegen sich von dort aus mit entgegengesetztem Impuls, und weisen Quan-
tenkorrelationen auf, die im Idealfall zu vollständig unterdrückten Fluktuationen der
relativen Besetzung führen (Number Squeezing). Dieser stark Bose-verstärkte Prozess
verläuft analog zur Erzeugung von Zwillingsstrahlen aus Photonen in einem optischen
parametrischen Oszillator, einem zentralen Baustein der grundlegenden und ange-
wandten Photonik. Mit Hilfe von Flugzeit-Fluoreszenzabbildung wurde in unserem
Experiment, erstmals im Regime starker Modenbesetzungen, ein nahezu perfektes
Number Squeezing gezeigt. Weiterhin wurde die Dynamik des Emissionsprozesses un-
tersucht, und gute Übereinstimmung mit einem neu entwickelten Modell beobachtet.
Ähnlich einem gepumpten Lasermedium, ist der Anfangszustand der Zwillingsatom-

Erzeugung durch eine Besetzungsinversion gekennzeichnet, hier in den transversalen
Vibrationszuständen der elongierten Falle. Die Präparation und Charakterisierung
dieses Ausgangszustands ist ein zweites Hauptergebnis dieser Dissertation. Um die
Vibrationsanregung zu erreichen, wurde ein rein mechanisches Schema angewandt, bei
dem die transversale Wellenfunktion durch Bewegung des anharmonischen Fallenpo-
tentials kontrolliert wird. Die Bestimmung der genauen Trajektorie erfolgte mithilfe
der Theorie der optimalen Quantenkontrolle, die hierbei erstmals auf die Anregung
eines Kondensates angewandt wurde. Durch zeitaufgelöste Beobachtung der Reaktion
des Systems konnte exzellente Übereinstimmung zwischen Experiment und Theorie,
sowie eine Anregung mit nahezu perfekter Effizienz erreicht werden. Weiterhin wird
eine effektive Zweizustands-Näherung entwickelt, die die Dynamik der Anregung auf
intuitive Weise beschreibt.
Die Verfügbarkeit von quantenkorrelierten Zwillingsatom-Strahlen eröffnet eine Reihe

von Forschungsmöglichkeiten hin zu stark verschränkten Vielteilchenzuständen, die
sowie grundlegende Experimente, als auch Messverfahren jenseits der klassischen Lim-
its ermöglichen.
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1. Introduction

Figure 1.1.: Illustration of the experiment described in this thesis. A one-dimensional
Bose gas (blue) trapped on an atom chip (not drawn to scale), is excited by means of
fast transverse motion, which leads to longitudinal emission of a quantum-correlated
pair of twin-beams.

To a great extent, the appeal of ultracold atom experiments lies in their ability to
model and extend schemes and concepts known from other areas of physics, ranging
from simulation of condensed matter systems in lattice experiments [1–4] to universal
behavior at phase transitions and turbulence [5–7]. Their versatility is enabled by the
unique combination of tunability of fundamental parameters, abundance of manipu-
lation techniques, and the ability to observe the experiment result by simply taking
photographs [8].
In this thesis, two (at first sight) rather different ways of employing a gas of ultracold

atoms – quantum atom optics, and optimal quantum control – have been combined
in a chip-based experiment. The former relates to fundamental aspects of quantum
physics, highlighting particle-wave duality and the equivalence of light and matter,
but also holds promise for future high-precision metrology techniques. The latter is
concerned with how quantum systems in general can be driven in an efficient way,
to obtain a desired final state or operation; an approach which is rather known from
NMR or chemical physics.
Our main goal was to realize a bright source of single-mode twin-atom beams for

quantum atom optics experiments [9], similar to the well-known technique of producing
twin-photon beams using an optical parametric oscillator [10]. In the above figure,
which subsumes the implemented experiment, the twin beams are shown in red. They
are produced in a stimulated emission process, and emerge along the longitudinal

1



1. Introduction

direction x from a one-dimensional quasi-condensate (blue), which has been excited
to provide the necessary energy. Near-perfect quantum correlations between the beams
are demonstrated in this thesis.
The quantum control aspect came up when searching for a suitable way to prepare

an excited source state – the pumped gain medium in the language of the optics
analogy. It turned out that, given the specific abilities of our experimental setup, a
rather novel approach to tackle this problem was most efficient, the exploration of
which became a secondary objective of this thesis. To obtain the “pumped” state with
almost unit fidelity, we employ an all-mechanical scheme of spatially displacing the
condensate wave function along its transverse direction y. The protocol for achieving
efficient excitation has been derived from quantum optimal control theory [11], which
for the first time has been applied to an excitation process in an ultracold atom system.
In this brief chapter, building on some basic theory concepts that will be introduced

in chapter 2, the context of each of these two aspects is introduced, before the actual
experimental scheme is described.

1.1. Twin-atom beams as a resource for quantum atom optics

Particle-wave duality, the interplay between wave and particle aspects of both light and
matter, is at the heart of quantum physics. Soon after the wave character of matter
had been proposed by de Broglie [12], interference of electrons [13] and atoms [14] was
found, and matter-wave interferometry has now become a major field in physics [15].
From the viewpoint of matter-wave optics, a Bose-Einstein condensate is strongly
reminiscent of laser light. Both can appropriately be described as a macroscopically
occupied bosonic field mode, that behaves similar to a classical wave, coining the
term “atom laser” for a propagating BEC [16, 17]. Indeed, one of the first experi-
ments with Bose-Einstein condensates has been, to demonstrate interference of two
independent condensates [18], implying a collective (but random [19]) phase. Matter-
wave interferometry can benefit from using condensates due to their high brightness
and narrow momentum distribution, and phase-coherent beam splitters have been
implemented [20, 21], even though, at the relatively high densities in a condensate,
complications arise from inter-atomic interactions [19,22,23].
Conversely, the corpuscular nature of light is especially evident in typical quan-

tum optics experiments [24], that involve measurement of correlation functions as
introduced by Glauber [25]. In several key experiments, such as refs. [26–30], purely
classical (i.e., non-quantized) theories of light were ruled out by violation of classical
inequalities [31]. By now, quantum optics provides versatile tools for engineering all
kinds of exotic quantum states [24], which have reached the level of first applications.
Apart from the quest for quantum computing [32] and communication [33], where
non-classical light is a key ingredient to many proposed schemes, also metrology de-
vices such as interferometers can be enhanced to the sub-shot-noise level by quantum
correlations [34–37], which has e.g. recently been implemented for gravitational wave
sensing [38,39].

Quantum atom optics While the corpuscular nature of matter is hardly surpris-
ing, the toolbox of quantum optics can still be fruitfully applied to matter waves, in

2



1.1. Twin-atom beams as a resource for quantum atom optics

particular to ultracold atoms, where the quantum state populations are macroscopic,
and wave-like phenomena such as interference and diffraction prevail. In the formal-
ism of “second quantization”, indistinguishable particles are treated as quanta of a
matter-wave field, in complete analogy to a quantized light field. This means, that
in principle all the theoretical machinery of quantum optics can be readily applied
to matter waves, giving rise to the field of quantum atom optics [9], where (mostly)
atomic counterparts to quantum optics schemes are studied. One obvious first step is
to apply Glauber’s definition of coherence [25] to ultracold gases [40], and second-order
(or even higher) correlation measurements have become a standard tool of cold atom
physics by now. For instance, it has been shown, that second-order correlations of the
atomic field are changed drastically when crossing the condensation temperature, just
as light when the emitting medium is passing its lasing threshold [41–43].
One strong difference to light optics arises from the interactions of atoms in an

ultracold gas, making the system’s evolution non-linear in field amplitudes. In (light)
quantum optics, such non-linearites correspond to higher-order susceptibilities in me-
dia, that give rise to effective interactions between photons, which is the main build-
ing block for generation of non-classical states [24]. This suggests, that non-classical1

states of matter-wave fields can be obtained by setting up an appropriately conceived
experimental situation, and just have the system undergo its inherent non-linear evo-
lution. Indeed, in recent years an ever-increasing number of such schemes have been
proposed and implemented, with the goal of both studying fundamental quantum
effects, and achieving gain for metrology.

Spin squeezing One way of reaching quantum-correlated states in condensates is
that of spin squeezing [44–47]. There, a pair of conjugate collective variables, usually
population imbalance N̂− and relative phase ϕ̂ between two spatial modes or internal
states withN+ atom in total, are mapped to the components of an effective spin system
with spin length ≤ N+/2. The quantum uncertainty of a spin measurement is then
re-distributed between the two components, similarly to a squeezed interferometer in
optics [34] (where field quadratures correspond to the spin components). The most
common scheme to implement such a state in a condensate starts from a minimum-
uncertainty coherent spin state, where each atom is placed in the same single-particle
state, that is a superposition of the two modes. Then, the system evolves under an
evolution that is non-linear in one of the spin variables, e.g. using state-selective
interactions, giving rise to a term χN̂2

− in the total Hamiltonian, which deforms the
uncertainty distribution of the effective spin (one-axis twisting) [47]. This leads to a
final state, that is strongly non-separable in the single-atom basis [46], and can reduce
projection noise in the final readout of the interferometric signal below the shot-noise
level [45]. This scheme has been realized using numerous techniques, in both internal
(hyperfine) [48,49] and external [50–52] states of condensates. Similar states have been
produced in non-condensed atom clouds using interaction with non-classical light [53],
or one-axis twisting due to cavity-mediated interactions [54, 55]. Very recently, the
spin-squeezing concept was applied to a more complex three-component system [56].

1Here, as generally in quantum optics, “non-classical” refers to effects that arise from the particle
nature of quantum fields, which in the case of atomic matter-wave fields is somewhat contrary to
some typical notion of “quantum-ness”. In ref. [9], the term “quantum-correlated”, which will be
occasionally used in this thesis, is suggested as a more precise alternative.

3



1. Introduction
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Figure 1.2.: Illustration of twin-atom beam production in the two-mode limit with a
degenerate source mode (S = S′). (a) Initially, the system is prepared in a source state
(blue, represented by a field operator âS), which is unstable with respect to a two-
body relaxation process. The character of this source state differs among the various
schemes mentioned in the text. Then, driven by a two-body process as described
by eq. 1.1, pair-correlated atoms are emitted into the modes â1,2. For external-state
schemes, the source mode typically carries some kind of excess energy εS, which is
converted into kinetic energy, yielding twin beams moving in opposite direction. (b)
Typical temporal dynamics of the process, including the initial preparation of the
source state. The process stops, once the source state is depleted (as shown here), or
the overlap of the involved modes vanishes.

Twin-atom beams Another branch of quantum atom optics experiments is dealing
with correlated emission into paired modes, similar to photon pair creation in non-
linear crystals as used for down-conversion or four-wave mixing [57]. In the simplest
case of a single pair of correlated modes, the system is driven by a coupling term in
the Hamiltonian of the form

ĤTM = κ[â†1â
†
2âSâS′ + H.c.], (1.1)

where appropriately prepared source modes S,S′ (which may be identical, such as in
our experiment) emit population into the initially empty modes 1, 2 (signal and idler),
which acquire an exactly correlated population (two-mode squeezed state [57]). The
process is illustrated in fig. 1.2. In a realistic setting, often many more final modes
are accessible, and the dynamics of the process may become rather complex.
The proposed and experimentally realized schemes can be categorized following dif-

ferent criteria. One division can be made between schemes, where the two input modes
are either different (as in four-wave mixing) or identical (similar to down-conversion),2

which however is of limited importance for the properties of the correlated modes only.
Also, the involved modes may differ in either their internal (typically magnetization)
or external state, which leads to the process being governed by conservation of mag-
netization or momentum (phase-matching), respectively.
A key distinction is given by the number of paired modes and their typical (final)

populations, both of which depend on the specific setting of the experiment, concern-
ing e.g. length and time scales, and, crucially for the case of external states, the

2Of course, except for the case of molecular dissociation [58–60], still two source particles are ex-
tracted from the source instead of a single pump photon in down-conversion (also suggesting the
term degenerate four-wave mixing). However, this has little effect on the description otherwise.
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1.1. Twin-atom beams as a resource for quantum atom optics

geometry of the involved modes. One limiting case is that of only two (or very few)
twin modes, which acquire populations � 1, similar to the output of an optical para-
metric oscillator (OPO) in light optics, which is emitting a bright, quantum-correlated
pair of beams [10]. In this case, the emission is strongly stimulated, and depletion of
the source mode(s) may become perceivable. This regime has been reached in the
experiment presented in this thesis. Other experiments with motional states in the
stimulated regime have employed four-wave mixing processes generated by Bragg grat-
ings [61, 62] or RF outcoupling [63, 64], or dynamical instabilities in optical lattices,
where the modified dispersion relation allows to engineer appropriate phase-matching
conditions [65–68]. Analogous schemes have been developed for internal atomic states,
which provide direct means of mixing the twin-modes (using resonant radio-frequency
and microwave pulses), to study their properties at the quadrature level [56, 69–72].
At the other extreme there are experiments, where the modes, into which emission
can occur, are much less restricted, and many of them become weakly occupied. This
has been reached by collision of two condensates in free space [73–76], dissociation of
molecules [58, 59], or collisional de-excitation similar to this thesis, albeit in a two-
dimensional (and hence, less restricted) geometry [77]. In many of those experiments,
quantum correlations were detected, either by sub-binomial statistics of population
imbalances (number squeezing) [70–72,74,78], or stronger-than-classical second order
correlations [76]. Both approaches are employed in this thesis, to demonstrate the
strong quantum correlations in the twin-beam system we have implemented.

Applications for twin atoms As for spin-squeezed states, twin-atom states are can-
didates both for fundamental tests of quantum mechanics, and quantum-enhanced
interferometry. For the latter application, especially the case of a highly populated
two-mode system, which corresponds to a twin-Fock state |N+/2, N+/2〉 seems promis-
ing. Clearly, the framework of spin-squeezed states [45] is inappropriate here, as the
mean spin length of a twin-Fock state is zero due to the undefined relative phase:
The readout of the acquired phase in a twin-Fock interferometer, which is encoded
in the fluctuations of the signal, necessitates other means than observing fringes di-
rectly. However, interferometry approaching the Heisenberg sensitivity limit seems
feasible in this way [37,79]. Also for condensates, twin-Fock interferometers have been
proposed [80, 81], and recently implemented using internal-state twin-atoms [70]. A
generalized definition of “useful” many-body entanglement (which is equivalent to the
ability for sub-shot-noise interferometry) has been given in ref. [82], that is based on
quantum Fisher information, and encompasses, among others, both twin-Fock and
spin squeezed states.
On the other hand, strategies have been proposed to perform fundamental experi-

ments of quantum optics with atoms, such as preparation of EPR states [83, 84]. In
refs. [85,86], the use of spinor condensates has been discussed, where internal and ex-
ternal degrees of freedom are combined to obtain entanglement on the single-particle
level, in a way similar to polarization-entangled photons [87]. Another recently pro-
posed scheme in the weakly populated regime goes along the lines of classical two-
particle interference experiments [30, 88], to obtain an EPR state in momentum and
position of atom pairs [89].
In the opposite regime of large mode populations, continuous-variable (CV) entan-
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glement in the two-mode quadratures of the twin-modes [90, 91] is expected, again
leading to the generation of an EPR state. However, such a state cannot be detected
by density correlation measurements (as presented in this thesis) alone [92]: quadra-
ture measurements have to be performed, that necessitate some phase reference (local
oscillator). For internal states, such a measurement has been experimentally realized
in ref. [71], where the source state was also used as a local oscillator to probe the phase
of the twin modes by homodyning, and CV entanglement could be demonstrated. Sim-
ilar experiments with external-state twin beams have been proposed, using molecular
dissociation [60], or few-mode four-wave mixing with subsequent Bragg pulses [92],
which effectively are used as linear optical elements for recombination and homodyn-
ing.

Twin atoms on a chip In this thesis, we will present a promising novel technique
to produce external-state twin-atom beams in a few-mode one-dimensional geometry,
trapped on an atom chip. For the first time, quantum correlations in the strongly
populated regime are demonstrated, by observation of almost perfectly suppressed
population imbalance fluctuations between the twin beams. Furthermore, the Bose-
enhanced dynamics of the stimulated population growth, governed by eq. (1.1), is
studied in detail, and a theoretical description for the process is derived, that is able
to quantitatively explain our findings in an intuitive way. While further experimental
tools will be necessary to prove entanglement (e.g. following ref. [92]) or metrology
gain (similar to ref. [70]), such measurements seem feasible in the foreseeable future.

1.2. Preparing the source: optimal control of a condensate wave
function

One rather unique aspect of our recipe for twin-beam creation is the way the source
state is prepared. The basic principle is that of de-excitation from a transversely
excited vibrational state, by means of two-body collisions. In lower-dimensional ge-
ometries, the “frozen” degrees of freedom (see sec. 2.4) are usually eliminated from the
theoretical description as far as possible. For the one-dimensional case present in our
experiment, the Lieb-Liniger Hamiltonian (2.31), the transverse state affects a single
static parameter (the effective interaction constant g1d) only. The transverse levels
define the highest energy scale of the system, and the corresponding states strongly
resemble discrete single-particle states, with only weak modification due to atom-atom
interactions [93].

Vibrational de-excitation and twin atoms We exploit the approximate de-coupling
of transverse and longitudinal degrees of freedom, by using a condensate as a gain
medium, which is not in the transverse ground state, but has been transferred to
an excited eigenstate of its non-linear Hamiltonian [94], which in the non-interacting
limit is a Fock state of an oscillator (“vibrational inversion”). This does not change the
one-dimensional description: along the longitudinal direction, the “pumped” cloud re-
mains close to its equilibrium state, and the transverse excitation effectively represents
an internal degree of freedom. However, the total state is highly excited, obviously,
and will decay by inelastic collisions. If the transverse levels are energetically non-
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Figure 1.3.: Using vibrational de-excitation for twin-beam production. The potential
along the transverse coordinate y, which is perpendicular to the direction drawn in
fig. 1.2(a) and has a stronger confinement by orders of magnitude, is shown with its first
few energy levels (where the two indices count the levels along y and z, respectively).
Initially (left panel), the condensate is in its transverse ground state φ0. Then (center),
by means of an excitation pulse (inset), the condensate is transferred to the first excited
state φ1, which has an excess energy εS per atom and acts as the twin-beam source.
Finally (right), the atoms can decay back into the ground state, where they release
the excess energy into kinetic energy of twin atoms in the longitudinal direction.

equidistant with increasing level spacings (as e.g. for a box potential), and we have
populated the lowest-lying excited state, atoms can only be scattered into the trans-
verse ground state (vibrational de-excitation). Due to energy, momentum, and parity
conservation, this process must happen pair-wise, and a twin-beam emission process
will start, where longitudinal high-momentum modes will be populated strongly with
twin-atoms (fig. 1.3).
A typical way to address vibrational states in general is that of using sidebands

of optical or microwave transitions. Indeed, in ref. [77], collisional de-excitation has
been demonstrated in a two-dimensional condensate, where excited states along the
axial (strongly confined) direction have been populated using a Raman transfer. In our
experiment, we took a rather different approach, and achieved the vibrational inversion
using a modulation (translation) of the confinement potential, steering the dynamics
of the transverse wave function.3 After the modulation sequence, the condensate has
been “shaken” with near-unity efficiency into the first excited state, which does not
have any residual dynamics but that of de-excitation.

Optimal control of a quantum system The precise excitation protocol has been
obtained from quantum optimal control theory (OCT) [11, 95, 96]. OCT provides
a framework for determining optimized driving sequences to actively manipulate a
quantum system in any desired way with high fidelity. One typical task is the precise
control of spin evolution in an NMR spectroscopy experiment [97–99]. Other exciting
applications are the shaping of laser pulses for controlling chemical reactions [100–102],
or optimizing solid-state quantum gates [103–108]. While protocols exist, that opti-
mize the complete adiabaticity of parameter changes [109, 110], most optimal control
sequences are highly non-adiabatic. Typically, they either drive rapid transitions be-

3This transverse condensate mode is strongly populated; hence, in contrast to the quantized de-
scription of the previous section, it can be treated as a classical wave with mean-field interactions,
which is governed by the Gross-Pitaevskii equation (2.15).
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Figure 1.4.: Optimal control of the condensate wavefunction. (a) Optimized trajec-
tory of the transverse trap minimum along y, normalized to the typical oscillator
length ly. (b, c) Measured response of the system: Momentum distribution dynamics
ñk(y, t) shown as false-color and stacked plots, respectively.

tween different quantum states, or provide “shortcuts to adiabaticity”, where the sys-
tem ends up in its new ground state after a change of its parameters, even though this
change is performed too fast for the system to sustain an adiabatic evolution. Both
kinds of transformation usually involve complex quantum interference between many
transiently populated eigenstates, which however lead to the desired outcome in the
end. For the rapid transitions, the quantum speed limit [111–113] may be approached,
which sets the upper limit to how fast a system can evolve in its Hilbert space. This
may be highly relevant for quantum computation, where fast gate times are required
to outrun decoherence.
Ultracold atoms, due to their relatively large length and time scales and good isola-

tion from the environment, offer excellent means to dynamically control parameters, as
well as to probe the response to the applied control by the powerful imaging techniques
available. So far, most applications of optimized quantum control in condensates were
aiming for shortcuts to adiabaticity, e.g. to transport or deform condensates without
undesired excitation [110, 114–121]. On the theory side, these approaches are based
either on self-similar solutions for the evolution of a condensate [122,123], or numerical
solution of the Gross-Pitaevskii equation (2.15). However, also state preparation be-
yond the mean-field level has been proposed, including entanglement generation and
storage [124,125], number-squeezed states [126], or cooling [127].

Optimal control on a chip For the vibrational inversion we are aiming for in this
thesis, a mean-field Gross-Pitaevskii approach was appropriate, which has been devel-
oped initially to optimize fast splitting of a chip-trapped BEC [114]. However, instead
of reaching the new ground state of a transformed (split) system in a non-adiabatic
way, we now use the algorithm (see appendix A) to populate the first excited eigen-
state of the initial system, by means of a transient excitation, where the system is
driven by mechanical motion of the anharmonic trap, see fig. 1.4(a). The response
can be monitored in the experiment by measuring the momentum distribution using
time-of-flight imaging, see fig. 1.4(b,c). It will be demonstrated that we reach the
vibrational inversion state with an efficiency close to 100% , which to our knowledge
represents the first successful use of OCT for the preparation of exotic many-body
states of Bose-Einstein condensates. The dynamics of the process is studied in detail
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by means of time-of-flight imaging, and excellent agreement between experiment and
numerical simulations is found. Furthermore, we will deduce an approximate descrip-
tion, that allows to map the dynamics of the many-body wave function to a driven
two-level system, where the excitation process corresponds to a π-pulse that transfers
all population to the excited state.

1.3. Structure of this thesis

This thesis is structured as follows:

• In chapter 2, fundamental theoretical concepts are introduced that will be re-
lied on in the remainder of the thesis. This mainly comprises the basic de-
scription of Bose-Einstein condensates of interacting particles, with a focus on
one-dimensional systems.

• Chapter 3 starts by describing the hardware of the experiment setup this thesis
was carried out at, before explaining some of the key techniques that have been
used. The focus will be on aspects that have not been thoroughly described in
previous theses yet.

• The second part of the thesis specializes on the twin-beam emission and optimal
control experiments. It starts with chapter 4, where a theoretical description of
twin-beam production in general, and specifically for our case, is developed.

• Chapter 5, which is the central part of this thesis, describes in detail the novel
experiments performed, and their results.

• Finally, in chapter 6 some ideas for future experiments, extending the ones im-
plemented in this thesis, are sketched, together with some recently obtained
preliminary results.

• Various more technical explanations, including the derivation of the optimal
control sequence, are given in appendices.
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2. Theory of cold Bose gases

In this chapter, some basic theoretical concepts are introduced, which are fundamen-
tal for the more specific theory and experiments presented in part II of this thesis.
After introducing the phenomenon of Bose-Einstein condensation in its original ther-
modynamic formulation, the description is more and more extended up to the basic
formalism used for trapped, interacting Bose gases. A brief section recapitulates the
definition of correlation functions, which will be essential at various places. Finally,
the one-dimensional Bose gas is introduced, leading to the theoretical description of a
quasi-condensate, which is the main “raw material” for the experiments presented in
this thesis.

2.1. Ideal Bose gas

In 1924, a peculiarity of Bosonic statistics has been pointed out by Bose and Einstein,
namely, that under certain conditions even for non-zero temperatures T , almost all
particles occupy the single-particle ground state of the system [128]. Using the grand
canonical ensemble, the Bosonic occupation number for a single-particle state with
energy εi is given by

Ni(εi, µ, T ) =
1

eβ(εi−µ) − 1
=

ze−βεi

1− ze−βεi
, (2.1)

with the inverse temperature β = (kBT )−1. The chemical potential µ (or, equivalently,
the fugacity z = eβµ) is implicitly determined by the constraint of a fixed particle
number N :

N =
∞∑
i=0

Ni(εi, µ, T ). (2.2)

For decreasing temperatures, the occupation numbers rise, and µ has to increase ac-
cordingly, to keep N fixed. However, from eq. (2.1) it is evident, that the chemical
potential µ cannot exceed the lowest single-particle state εmin. Depending on the level
structure εi, at a sufficiently low temperature T , the occupation numbers may reach
their limit {exp[β(εi − εmin)] − 1}−1; the excited states are said to be saturated. To
still fulfill eq. (2.2), the occupation of the absolute single-particle ground state, which
is unlimited as µ → εmin, has to become macroscopic, giving rise to the phenomenon
of Bose-Einstein condensation (BEC).
In the thermodynamic limit of N →∞ and the system volume V →∞, keeping the

density N/V constant, one can smooth out the discrete level structure and replace the
summation by an integral. However, due to its divergence at µ → εmin, the absolute
ground state population N0 is not being accounted for properly in the continuous
approximation, and has to be separated, hence:

N −N0 =

∫ ∞
0

D(ε)N(ε, µ, T )dε, (2.3)
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with a density of states D(ε), which typically has a power-law dependence on ε, that
is determined by the confinement and dimensionality of the system. For cold atoms,
the most experimentally relevant case is that of a harmonically trapped gas, which
will be discussed in the following.1

2.1.1. BEC in a harmonic trap

Consider a harmonic potential in d dimensions with potential and energy levels as:

V =
m

2

d∑
i=1

ω2
i x

2
i ε{n} =

d∑
i=1

ni~ωi,

omitting the zero-point energy, which only adds a global offset. The thermodynamic
limit is now expressed by letting: ωh =

∏d
i=1 ω

1/d
i → 0, keeping Nωdh constant. For

this case the density of states can be written as [130]:

D(ε) =
εd−1

(d− 1)!
∏d
i=1 ~ωi

, (2.4)

indicating that the dimensionality of the system will have a strong impact on the
properties of eq. (2.3). To obtain the condition for Bose-Einstein condensation, we set
the chemical potential to its maximum allowed value µ = 0, insert (2.4) into (2.3) and
perform the integration. For d = 3, the integral converges and we obtain

N −N0 = g3(1)

(
kBT

~ωh

)
, (2.5)

with the Bose (or polylogarithm) function g3(1) ≈ 1.2, implying that for temperatures
T < T3d with

kBT3d = ~ωh[N/g3(1)]1/3 (2.6)

there is a ground state population N0 > 0 and, hence, Bose-Einstein condensation.
The condensed fraction is given by N0/N = 1 − (T/T1d)3. As we assumed the ther-
modynamic limit as Nω3

h being kept constant, T3d is independent of the system size.
It is thus equivalent to the intuitive notion of the degeneracy criterion n

1/3
0 λdB ∼ 1

being fulfilled for the peak density n0, where

λdB =

√
2π~2

mkBT
(2.7)

is the thermal de Broglie wave length, i.e. single-particle wave packets start to “over-
lap” near the trap center at T ∼ T3d.
On the other hand, a highly relevant case in this thesis is d = 1, where the density

of states (2.4) becomes independent of ε (as the harmonic trap level spacing does not
depend on the energy and there is no degeneracy). In that case, the integral (2.3)
diverges for µ = 0, implying the absence of condensation.2 However, this statement
remains valid only in the thermodynamic limit ωh → 0, N →∞, as will be explained
in the following section.

1See [129] for a more general treatment valid for different confinements.
2Note, that this does not hold for power-law potentials stronger than harmonic [131].
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2.1.2. Finite-size and anisotropic BEC

Despite being convenient to evaluate, ignoring the discreteness of energy levels in
the thermodynamic limit leads to deviations from the exact results at smaller atom
numbers (N ∼ 104 and below) and, even more crucially, strong anisotropy of the trap
geometry. In ref. [132], the continuous approximation (2.3) is omitted; instead the
chemical potential µ is obtained numerically from the implicit equation (2.2), allowing
to directly calculate N0. While there is strictly speaking no phase transition in a
finite-size system, the behavior in terms of the condensed fraction N0/N is found to
be very similar to the thermodynamic limit, apart from a (downwards) shift of T3d,
depending on the trap anisotropy:

δT3d

T3d
≈ 1− 0.73

ω̄

ωh
N−1/3, (2.8)

where ω̄ = (ω1 + ω2 + ω3)/3 may be very different from ωh for strongly anisotropic
traps.
However, when kBT � ~ω⊥ in an elongated trap with ω⊥ ≡ ω2 = ω3 � ω ≡ ω1, and

the perpendicular degrees are frozen out, in contrast to the result of the continuous
approximation, it is found that the ground state can be macroscopically populated.
As a critical temperature for this one-dimensional finite-size condensation,

kBT1d = ~ω
N

ln(2N)
(2.9)

is found. In the thermodynamic limit, T1d →∞, i.e. the absence of BEC in an infinite
one-dimensional system is restored. As will be discussed in sec. 2.4, physics in degener-
ate one-dimensional gases is mostly determined by inter-particle interactions, making
the finite-size condensation hard to observe for realistic experimental parameters [133].
Another remarkable property of the strongly elongated ideal gas is the presence of

a two-step condensation [134]. It is predicted, that in certain ranges of aspect ratio
and atom number where kBT3d > kBT1d, ~ω⊥, a transverse condensation can occur.
In this case, the ground state along the transverse directions becomes macroscopically
populated and a discontinuity in specific heat is observed at T3d, but many quan-
tum states remain occupied along the longitudinal direction, before full condensation
occurs as T1d. This constitutes a regime of effective dimensional reduction of the
system, despite kBT > ~ω⊥ (i.e., no actual “freezing out” of transverse degrees of
freedom). For realistic experimental parameters in an atom chip experiment, there is
a competition between two-step condensation and interaction-driven crossover effects
(quasi-condensation, see sec. 2.4), which has been studied in [135]. In the context of
our experiment as described below, this effect is important as it ensures that a mean-
field description of the excitation dynamics, which is a purely transverse process (see
appendix A and sec. 5.4), are satisfied even in the case of temperatures, which do not
ensure quasi-condensation in the entire system. There, for typical trap parameters
and N = 700 atoms, T3d ≈ 120 nK.

2.2. Interacting Bose gas

While the phenomenon of condensation is predicted already for non-interacting bosons,
even in three dimensions many of the crucial properties of a BEC are affected by the
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interactions of their constituents. In low-dimensional systems, for realistic experimen-
tal parameters, interactions play an even much stronger role; in fact, many of the rich
regimes of quantum degeneracy in such systems are completely absent for an ideal gas.
Thus, before studying the case of a one-dimensional Bose gas in more detail, we intro-
duce the general description of an interacting Bose gas and some typical approaches
to derive its behavior from theory.
In the occupation number representation (or “second quantization”) formalism, the

most general Hamiltonian for an interacting Bose gas writes:

Ĥtot =

∫
drΨ̂†(r, t)Ĥ0Ψ̂(r, t) +

1

2

∫∫
drdr′Ψ̂†(r, t)Ψ̂†(r′, t)V (r− r′)Ψ̂(r′, t)Ψ̂(r, t),

(2.10)

where Ĥ0 = −~2∇2/(2m) + Vext(r, t) is the single-particle Hamiltonian with the con-
finement potential Vext(r, t), and V (r − r′) denotes the two-particle interaction po-
tential as a function of particle distance. The Bose field operator can be written as
a sum of single-particle annihilation operators âi corresponding to modes with wave
functions ψi(r, t):

Ψ̂(r, t) =

M∑
i=1

ψi(r, t)âi(t). (2.11)

For low-energetic scattering as it appears in ultracold systems, only the s-wave scatter-
ing channel, characterized by the single parameter of the scattering length as, remains:
If na3

s � 1, and λdB � as, atoms are unlikely to encounter each other on a scale as,
which would allow txhem to probe the potential V (r−r′), and we only have to account
for the influence of scattering on the asymptotic scattering states at long distances,
which is a mere phase shift [130]. Thus, in most instances3 we can replace V (r − r′)
by a “pseudopotential”, that mimics the effect of the actual interaction by a contact
potential gδ(r− r′), with the interaction constant g = 4π~2a/m. Instead of eq. 2.10,
we obtain

Ĥtot =

∫
dr
[
Ψ̂†(r, t)Ĥ0Ψ̂(r, t) +

g

2
Ψ̂†(r, t)Ψ̂†(r, t)Ψ̂(r, t)Ψ̂(r, t)

]
, (2.12)

which will serve as starting point for most theoretical considerations in the remainder
of this manuscript.
Using the Heisenberg picture for time evolution, the Bose field operator Ψ̂ evolves

according to the Heisenberg equation as:

i~
∂

∂t
Ψ̂(r, t) =

[
Ψ̂(r, t), Ĥtot

]
(2.13)

= Ĥ0Ψ̂(r, t) + gΨ̂†(r, t)Ψ̂(r, t)Ψ̂(r, t).

Apart from particularly simple systems, such as the one discussed in sec. 4.2, the full
Heisenberg equation for the interacting Bose gas is non-linear and considered numer-
ically intractable. One very common approach to enable approximate solutions for

3see e.g. [130,136] for a discussion of cases, where this does not apply.
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(partially) condensed systems, is to separate a single, suitably identified condensate
mode Ψ̂0(r, t), that has a macroscopic population N0, from the rest of the field oper-
ator. Assuming N0 − 1 ≈ N0 (classical limit), one can replace the operator for that
mode by a classical complex field ψ0(r, t):

Ψ̂(r, t) = ψ0(r, t) + δ̂(r, t) (2.14)

=
√
n0(r, t) +

∞∑
i=1

ψi(r, t)âi(t),

where δ̂(r, t), which now holds all the remaining operators, is assumed to be small
and we used the condensate density n0(r, t) = |ψ0(r, t)|2 (we arbitrarily chose zero
global phase for the condensate). This ansatz, which is conceptually similar to the
identification of a condensed state in the ideal case, is known as the Bogoliubov ap-
proximation [137].4 We can now substitute eq. (2.14) into eq. (2.13), and expand the
result in increasing orders of δ̂, δ̂† [136]. The zeroth-order result, where Ψ̂ is completely
replaced by the classical field ψ0 leads to the famous Gross-Pitaevskii equation (GPE):

i~
∂

∂t
ψ0(r, t) =

[
− ~2

2m
∇2 + Vext(r, t) + g|ψ0(r, t)|2

]
ψ0(r, t), (2.15)

which is a non-linear Schrödinger equation, that appropriately captures the behavior
of the “condensate wave function” ψ0(r, t) [138] for a broad range of problems, and is
widely used throughout the field of ultracold Bose gases. It will serve as the main tool
to calculate the dynamics of a driven condensate in appendix A and sec. 5.4.
For a static system, the trivial time dependence ψ0(r, t) = ψ(r)e−iµt/~ with the

chemical potential µ can be eliminated to obtain the time-independent GPE:

µψ0(r) =

[
− ~2

2m
∇2 + Vext(r) + g|ψ0(r, t)|2

]
ψ0(r). (2.16)

In typical condensate experiments, where the chemical potential µ exceeds the trap
level spacing ~ωh, the kinetic energy term in the time-independent GPE can be safely
neglected, leading to the Thomas-Fermi (TF) approximation for the condensate den-
sity n0(r):

n0(r) =

{
g−1[µ− Vext(r)] : µ > Vext(r)
0 : otherwise

, (2.17)

which is the inverted parabola profile typical for a BEC. Its radius Ri along direction
i follows from the condition Vext(R) = µ, hence:

Ri =

√
2µ

mω2
i

= li

√
2µ

~ωi
� li, (2.18)

4Note, that this approximation breaks the phase symmetry of the initial problem [the fied operator
acquires a non-zero expectation value ψ0(r, t)], and hence allows violation of particle number
conservation. This will be a major limitation in the context of chapter 4, where the populations
of the modes described by δ̂ may become large, without the condensate population N0 being
depleted simultaneously.

17



2. Theory of cold Bose gases

where li =
√

~/mωi denotes the harmonic oscillator length.
Note, that in a low dimensional system as described above, the Thomas-Fermi

approximation may fail along the transverse directions, as ~ω⊥ > µ and kinetic energy
cannot be neglected or even becomes dominant. See refs. [93, 139] for a discussion of
this dimensional crossover.

2.2.1. Excitation spectrum of a condensate

We now take a very brief look at how to obtain the excitation spectrum of the conden-
sate at negligible temperature. See e.g. ref. [136] for a systematic overview of current
approaches that go far beyond the simple approximation shown here, and are also
valid for higher temperatures.
Collective modes can be obtained by adding a weak perturbation δψ on top of the

condensate wave function in eq. (2.15), and neglecting any terms that are non-linear in
δψ [140]. Equivalently, one can insert the field operator in Bogoliubov approximation
[eq. (2.14) ] into the system Hamiltonian (2.12), and neglect any terms higher than
quadratic in δ̂. While all linear terms in δ̂ vanish, the quadratic contribution writes

Ĥδ =

∫
dr
[
δ̂†(Ĥ0 + 2g|ψ0|2)δ̂ +

g

2
([ψ∗0]2δ̂δ̂ + ψ2

0 δ̂
†δ̂†)

]
, (2.19)

omitting arguments r, t for brevity. This expression can be diagonalized by expressing
δ̂ in terms of quasi-particle operators b̂i(t) instead of the single-particle operators âi(t):

δ̂(r, t) =
∞∑
i=1

[
ui(r)b̂i(t) + v∗i (r)b̂†i (t)

]
, (2.20)

where the functions u(r) and v(r) are determined by the Bogoliubov-de Gennes equa-
tions [140,141]: [

Ĥ0 + 2gn0(r)− µ
]
ui(r) + g[ψ0(r)]2vi(r) = εiui(r) (2.21)[

Ĥ0 + 2gn0(r)− µ
]
vi(r) + g[ψ∗0(r)]2ui(r) = −εivi(r).

For weakly interacting particles, the energy of the Bogoliubov excitations in a conden-
sate is then given by

Ĥδ =

∞∑
i=1

εib̂
†
i b̂i. (2.22)

Inserting de Boguliubov-de Gennes equations into the time-independent GPE (2.16)
for a uniform system (Vext = 0) yields the quasi-particle dispersion relation (i.e., energy
for a quasi-particle with momentum p ≡ |p|:

E(p) =

√
p2

2m

[
p2

2m
+ 2µ

]
=

√(
p2

2m

)2

+ (cp)2, (2.23)

with the speed of sound c =
√
µ/m. Hence, while low-momentum quasi-particles

behave as phonons with a linear dispersion E = cp, they change to free particles with
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quadratic dispersion at energies large compared to the chemical potential µ. Equiv-
alently, the crossover occurs, once the wavelength of excitations λi = ~/pi becomes
comparable to the correlation, or healing length ξh = ~/√mµ. Qualitatively, this
notion also holds for one-dimensional systems, see sec. 2.4.
For trapped systems, the lowest-lying collective modes have λi ∼ R and correspond

to bulk excitations [8, 141–144], such as a “sloshing” dipolar excitation (which corre-
sponds to a quasi-classical oscillation of the cloud in the trap, maintaining its shape),
or “breathing” modes, where the cloud width oscillates. It can be shown exactly,
that in a harmonically trapped system, for any kind of interactions, the dipolar ex-
citation decouples from the rest of the condensate dynamics, and leaves the system
unperturbed in an oscillating reference frame [145,146], a concept that will become im-
portant in sec. 5.4. At higher wavelengths λi � RTF, the excitations again correspond
to sound-like phonons or, at λi � ξh, free particles.

2.3. Correlation functions and coherence

In this section, we introduce the definition of correlation functions, which will be of
great importance in the following theory sections, as well as for the experiment analysis
in chapter 5. In quantum optics, correlation functions are among the most valuable
tools to access the coherence and quantum correlation properties of light, following
the definition of Glauber [25]. Of coarse, they can be readily applied to study the
coherence of matter wave fields, too [40]. In terms of a quantum field Ψ̂(x, t), a n-th
order correlation function, characterizing the n-th order coherence of a light or matter
wave can be written as5

G(n)(x1 . . . x2n) = 〈Ψ̂†(x1)Ψ̂†(x2) · · · Ψ̂(xn)†Ψ̂(xn+1)Ψ̂(xn+2) · · · Ψ̂(x2n)〉 . (2.24)

For light, the ability to detect single photons using photomultipliers or single-photon
counting photodiodes has made correlation functions experimentally accessible and
enabled unambiguous proofs for the quantum nature of light [24, 25]. Especially the
second-order correlation with creation and annihilation operators at corresponding
positions, G(2)(x1, x2) = 〈Ψ̂†(x1)Ψ̂†(x2)Ψ̂(x1)Ψ̂(x2)〉, is a simple and powerful tool to
characterize non-classical properties of fields. This includes photon anti-bunching [27],
and most prominently, the violation of inequalities that apply for classical field vari-
ables, such as the Cauchy-Schwarz [26,31] and Bell [28, 147,148] inequalities.
A fully coherent field is characterized by all its correlation functions factorizing into

products of the first-order coherence [149], e.g. for the second-order correlation:

G
(2)
coh(x1, x2) = G(1)(x1, x1)G(1)(x2, x2) = 〈n̂(x1)〉 〈n̂(x2)〉 , (2.25)

with the density n̂(x) = Ψ̂†(x)Ψ̂(x). More generally, a field is called coherent to
n-th order, if all correlation functions G(k) for k ≤ n factorize into densities. It is
natural then to make higher-order correlation functions independent of occupations,
by normalizing them to densities, defining:

g(n)(x1 · · ·x2n) =
G(n)(x1 · · ·x2n)∏2n

i=1

√
〈n̂(xi)〉

, (2.26)

5For the sake of brevity, here and in the following, the time-dependence of fields will not be explicitly
noted. The coordinates x hence shall be understood as points in space and time, x ≡ (r, t).
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2. Theory of cold Bose gases

or specifically:

g(2)(x1, x2) =
G(2)(x1, x2)

〈n̂(x1)〉 〈n̂(x2)〉
, (2.27)

hence, g(n)(x1 . . . x2n) = 1∀n, xi for a fully coherent state.
In a stationary and homogeneous (or locally approximated, sec. 2.4.3) system, it

is very common to write averaged correlation functions as a function of the distance
between points, e.g.:

g(1)(δx) =

∫
G(1)(x, x+ δx)dx∫ √
n̂(x) 〈n̂(x+ δx)〉dx

(2.28)

g(2)(δx) =

∫
G(2)(x, x+ δx)dx∫
〈n̂(x)〉 〈n̂(x+ δx)〉dx

(2.29)

The mean-field approximation, i.e. setting δ̂(x) = 0 and Ψ̂(x) = ψ0(x) in eq. 2.14,
is equivalent to assuming a coherent state for the matter-wave field, which is hence
described appropriately by the GPE, eq. 2.15. In density matrix expansion methods
such as that detailed in sec. 4.4, higher-order correlation functions are assumed to
factorize as in a coherent field, whereas more complex behavior is allowed for the first
(or first few) orders. On the other hand, a thermally distributed (i.e., incoherent) light
or matter wave field has g(2)(x, x) = 2, which corresponds to photon bunching in the
classical Hanbury Brown-Twiss (HBT) experiment [150,151].
For quasi-condensates, as relevant for this thesis, intermediate cases of g(2)(x, x) & 1

are typical (sec. 2.4.2), which in the Bogoliubov picture of eq. 2.14 correspond to ran-
dom interference of δ̂(x) with the condensate ψ0(x) and each other. For such systems,
second order correlation measurements have been performed in various configurations,
mostly focused on HBT-like bunching of particles, and its dependence on the temper-
ature and geometry of the matter wave field [41–43,64,152–154]. Note that, however,
HBT bunching can still be described in terms of second-order interference of par-
tially coherent classical fields, in contrast to anti-bunching or violations of classical
inequalities, where a quantum viewpoint has to be assumed.

2.4. One-dimensional degenerate Bose gas

Over the last years, improved atom trapping techniques such as optical lattices [155–
158] and atom chips (see sec. 3.1.2) have enabled detailed studies of Bose gases in
the one-dimensional regime, which is a remarkable example for an exactly solvable
many-body system [159–161]. The typical conditions for considering a system as
one-dimensional are defined by a “freeze-out” of both thermal and interaction energy
scales, which are small compared to the transverse trapping strength: µ, kBT � ~ω⊥.6
Along its tranversal directions y, z, the condition µ � ~ω⊥ invalidates the Thomas-
Fermi description, and the wave function approaches the single-particle ground state
of the confining potential φ0 [93], which for a harmonic trap is a Gaussian with radius

6However, as discussed in various experimental and theoretical works, also crossover regions having
µ ∼ ~ω [93, 162–164] and/or kBT ∼ ~ω [133, 135, 165, 166], can be described by slightly modified
one-dimensional theories.
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2.4. One-dimensional degenerate Bose gas

l⊥ =
√

~/(mω⊥). In most situations,7 the scattering length is well below that radius,
as � l⊥, implying that the interactions between atoms still have a three-dimensional
character [168]. One can then derive an effective one-dimensional interaction constant
g1d by integrating over the transverse wave functions φ(y) and φ(z):

g1d = g

∫
|φ(y)|4 dy

∫
|φ(z)|4 dz ≈ 2~ω⊥as, (2.30)

where the approximation is valid if the transverse wave functions are almost equal to
the single-particle harmonic oscillator ground states φ(x) ≈ φ0(x), φ(y) ≈ φ0(y). A
more general expression will be introduced in sec. 4.1.1.

2.4.1. Regimes of a 1d Bose gas

Compared to the 3d case, the ultra-cold 1d Bose gas shows a larger variety of physical
regimes. This is to some extent due to the absence of true condensation in the ther-
modynamic limit (see above), which would mask the rich interplay of interaction and
kinetic effects appearing in a degenerate, yet not condensed system. For the moment,
we consider the homogeneous case, i.e. a gas of infinite extent (or, somewhat less
fictitious, confined to a ring- or box-shaped potential). Its properties are fully de-
fined by the Lieb-Liniger Hamiltonian, which is essentially a one-dimensional version
of eq. (2.12):

Ĥ1d =

∫
dx

[
− ~2

2m
Ψ̂†(x)

∂2

∂x2
Ψ̂(x) +

g1d

2
Ψ̂†(x)Ψ̂†(x)Ψ̂(x)Ψ̂(x)

]
. (2.31)

The regime of a 1d gas can be characterized by two dimensionless parameters, γ
and t, which depend on the linear density n and the temperature T . First, we define
the Lieb-Liniger parameter γ that quantifies the interaction strength, by relating to
each other the typical interaction energy per particle g1dn, and the kinetic energy scale
associated with the density ~2n2/m:

γ =
g1dn

~2n2/m
=
mg1d

~2n
. (2.32)

The second parameter is the temperature T , which can be written in a dimensionless
way by defining:

t =
2~2kBT

mg2
1d

. (2.33)

Another crucial temperature scale is given by the degeneracy condition λdBn1d ∼ 1
(see eq. (2.7)). As a convention, the according degeneracy temperature Td is defined
using the energy ~2n2/(2m) associated with the density :

Td =
~2n2

2mkB
, td =

1

γ2
. (2.34)

Coarsely, three regimes are distinguished, which can be characterized in terms of
their correlation functions [169, 170], and have been studied both theoretically [170–

7See e.g. [167] for a notable exception.
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176] and experimentally [153, 156–158, 165, 166, 177–182] in quite some detail. Re-
markably, all of those are encompassed by the exact solution of the Lieb-Liniger
model [159, 160] and the Yang-Yang thermodynamic equations [183], the latter giv-
ing access to the equation of state, and the same-position second-order correlation
function [see eq. (2.29)] g(2) ≡ g(2)(δx = 0).

• For γ � 1, t� 1, we have a Tonks-Girardeau gas [184], which has been realized
in optical lattice experiments [156–158, 180], and approached in an atom chip
setup recently [182]. The physics here is dominated by strong interactions, lead-
ing to a phenomenon of “fermionization”, where the bosons avoid occupying the
same spatial position (anti-bunching), hence g(2) → 0 similar to ideal fermions.
The fact that a low density (as γ ∝ n−1) leads to this strong repulsion may seem
counterintuitive. It can be understood qualitatively by considering, that avoid-
ing atom overlap becomes favorable, once the required kinetic energy ~2n2/m
falls below the interaction energy g1dn that would be caused by overlapping
atoms.

• For t > γ−3/2 (or, equivalently, T > Tco =
√
γTd) and γ � 1, we are in the near-

ideal [169], or decoherent [170] regime. Here, interactions play a much weaker
role, and as in a thermal Bose gas (or, equivalently, in a thermal light field),
g(2) ≈ 2. The near-ideal regime further divides into a classical and a degenerate
range, where the border lies at the degeneracy temperature Td. These sub-
regimes differ strongly in their first-order coherence properties: For the classical,
near-ideal gas, the first-order correlation functions g(1)(δx) [see eq. (2.28)] drops
off as a Gaussian on the scale of the thermal de Broglie wave length. For a
degenerate gas, first-order coherence spreads out further, and g(1)(δx) decays
exponentially on a scale given by nλ2

dB, i.e. enhanced by the degeneracy nλdB

compared to the classical range.

• At γ � 1, t � tco = γ−3/2 one enters the quasi-condensate regime [185]. It is
characterized by suppressed density fluctuations, hence g(2) = 1 +T/(2Tco) ≈ 1,
whereas g(1)(δx) still decays exponentially due to a fluctuating phase [186,187],
preventing true coherence, or long range order (see below). However, the scale of
the decay given by the coherence length λT is now longer and exceeds the healing
length: λT � ξh = ~/√mng1d. The chemical potential of a quasi-condensate is
positive and simply given by µ = g1dn. At very low temperatures t � γ−1, or
kBT < µ, also the contribution of quantum fluctuations may become significant
on short length scales [175]. In this thesis, we will mostly be concerned with
quasi-condensates (with a brief exception in sec. 5.6), which will be discussed in
more detail in the following.

2.4.2. Quasi-condensates

Given the suppression of density fluctuations in the quasi-condensate regime, the field

operator is often written in the form ψ̂(x) =

√
n(x) + δ̂n(x)exp[iθ̂], where density

fluctuation and phase operator are conjugate: [δ̂n(x), θ̂(x′)] = iδ(x−x′). See ref. [188]
for a rigorous definition of the operators. In that paper, this approach was used to
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2.4. One-dimensional degenerate Bose gas

extend the Bogoliubov theory of elementary excitations (as sketched in sec. 2.2.1) to
quasi-condensates, where a similar dispersion relation for quasi-particles is found. In
agreement with the thermodynamic result [170], it indeed turns out that the con-
tribution of both phononic and free-particle excitations to density fluctuations are
suppressed by a factor 〈δ̂n2〉 /n2 ≈ T/Tco.
The exponential decay of the first-order coherence is hence mostly due to fluctuations

of the phase. Integrating over contributions from thermally populated modes,8 the
decay of phase coherence can be expressed as:〈

[θ̂(x)− θ̂(x+ δx)]2
〉
≈ δx

lφ
, lφ =

~2n

mT
. (2.35)

If we neglect density fluctuations, and assume Gaussian phase fluctuations, the result-
ing first-order coherence decay can be expressed as

g(1)(δx) = e−
1
2〈[θ̂(x)−θ̂(x+δx)]2〉 ≈ e−

δx
λT , λT =

2~2n

mT
= 2lφ, (2.36)

with the thermal coherence length λT, which is by construction much larger than the
healing length: ξh � λT . R.
Th expression (2.36) also predicts the momentum distribution ñ(k) (with p = ~k) of

the quasi-condensate. The Wiener-Khinchine theorem states that the power spectral
density of a function (the randomly fluctuating wave function, in our case) equals the
Fourier transform of its autocorrelation, and thus:

ñ(k) = F
[
g(1)(δx)

]
≈ 1

2π

∫
dδxe

− δx
λT
−ikδx

=
λT/π

1 + λ2
Tk

2
, (2.37)

i.e., the momentum distribution, which has been studied e.g. in refs. [165,166,189,190]
follows a Lorentzian shape.9

2.4.3. Trapped 1d gas

Up to now, we have been discussing the one-dimensional Bose gas in the homogeneous
case. To date, experimental realizations have been using (approximately) harmonic
confinement, yielding an inhomogeneous density. In the next section, a direct deriva-
tion of g(1)(x, x′) for a harmonically trapped quasi-condensate will be given. Before,
we briefly introduce the more general local density approximation (LDA), which can
account for the changing values of parameters, including the regime-changing γ, µ, Td

and Tco. Assuming that the density varies slowly on the relevant length scales, the
basic approach of the LDA is to consider the gas locally homogeneous, and apply the
treatment as given above, varying the parameters accordingly. Still, the entire gas
is in thermal equilibrium with temperature T and the global chemical potential µ0.
Locally, properties are determined by a local chemical potential, that is shifted by the

8As a consequence, this treatment does not comprise the regime of quantum-noise driven phase
fluctuations [179], which however only becomes relevant at very short length scales [175].

9Obviously, this can only hold up to a certain cutoff momentum, as otherwise the kinetic energy
density, given by the variance or ñ(k), would be infinite. Indeed, at k ∼ l−1

⊥ , excitations lose their
one-dimensional character, which invalidates the quasi-condensate approach.
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Figure 2.1.: Phase diagram of a weakly interacting one-dimensional Bose gas, as func-
tion of γ−1, t (lower and left axes) and n, T (upper and right axes), the latter assum-
ing trapping frequencies ωx = 16.3Hz, ω⊥ = 2140Hz, 87Rb and n being the peak
density. Black lines: homogeneous/LDA crossover lines, dashed: Td, solid: Tco, dot-
ted µ/kB. Red lines: finite-size crossover lines. Solid: Tφ (assuming a TF profile),
dashed: T1d (assuming a single-particle ground state profile) Solid blue lines: di-
mensional crossovers kBT = ~ω⊥ (horizontal) and g1dn = ~ω⊥ (vertical). Dashed
blue lines: LDA validity/finite-size condensation temperature limit (horizontal) and
µ = ~ωx, lx = ξh (vertical). Green line: Estimated range for twin-beam source at
N = 800, T = 25 nK. Markers correspond to the peak density and densities that are
exceeded by 50% and 95% of the atom population, respectively.
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2.4. One-dimensional degenerate Bose gas

trapping potential: µ(x) = µ0 − Vext(x). As a simple example, a quasi-condensate
with equation of state µ = g1dn acquires a Thomas-Fermi density profile with radius
R =

√
2µ0/mω2

x ∝ N1/3, and n(x = 0) ∝ N2/3, similar to the 3d case (sec. 2.2).
However, at the edges where n(x) → 0, the gas leaves the quasi-condensate regime,
invalidating µ(x) ∝ n(x), and smoothing out the discontinuity at the edges of the TF
parabola.
In ref. [133], a detailed analysis of both the validity limit of the LDA, and the

crossover from interaction-induced quasi-condensation to finite-size ideal condensation
(see sec. 2.1.2) is given. It is found that both are equivalent (essentially given by the
condition that lx � ξh), and that for realistic parameters in an atom-chip experiment
using 87Rb (see fig. 2.1) reaching finite-size ideal condensation seems elusive, and the
LDA holds. Furthermore it is found, that the criterion for quasi-condensation in a
harmonic trap reads:

Nco ≈
T

~ωx
ln

(
~2T

mg2
1d

)1/3

(2.38)

In a trapped quasi-condensate, another characteristic temperature is introduced by
the condition, that the first-order coherence length λT [eq. 2.36] may exceed the typical
condensate radius R. In this case, long-range order (in the sense of g(1)(δx) = 1∀δx) is
approached over the entire system size. One can speak again of a finite-size condensate,
even though this effect is very different from the ideal one-dimensional condensation
in a finite system (sec. 2.1.2). The condition λT ∼ R leads to the definition:

Tφ =
2n~2

mkBR
∼ ~2

√
2µ0ω2

x

mg2
1d

. (2.39)

In fig. 2.1, the crossover conditions discussed are shown for parameters used in the
experiments presented in this thesis. The green markers represent the source cloud
for twin-beam production, assuming a LDA viewpoint: the leftmost point indicates
the density, that is exceeded by 95% of the total population, whereas the rightmost
point is the peak density µ0/g1d. It is observed, that almost the entire cloud can be
considered as a quasi-condensate with thermal phase fluctuations.

2.4.4. Single-particle density matrix and Penrose-Onsager mode

Having found that the gas we will have to deal with is almost entirely in the quasi-
condensate regime, we can use the true finite-size (i.e., non-LDA) quasi-condensate
theory developed in ref. [191]. There, the phase operator θ̂(x) as defined above is
decomposed into thermally occupied eigenmodes. Those are given by Legendre poly-
nomials Pj(x), having an energy spectrum εj as given below. The coherence properties
are defined in terms of the single-particle density matrix ρ(x, x′) = 〈Ψ̂(x) ˆΨ(x′)〉 [192,
193], which is equivalent to Glauber’s non-normalized first-order correlation function
G(1)(x, x′) as defined in eq. (2.24). Moreover, it can be seen as a restricted density
matrix, where all but one particle in the system have been traced out (see sec. 4.4). By
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construction, its diagonal is equal to the line density: n1d(x) = ρ(x, x). One obtains:

ρ(x, x′) =
√
n(x)n(x′) exp

[
−〈[θ̂(x)− θ̂(x′)]2〉 /2

]
, (2.40)

〈[θ̂(x)− θ̂(x′)]2〉 =
∞∑
j=1

g1d(j + 1/2)

2εjR

[
Pj(x/R)− Pj(x′/R)

]2
(1 + 2N

(B)
j )

≈ 4Td

3~ωx

∣∣∣∣log

[
(1− x′/R)(1 + x/R)

(1 + x′/R)(1− x/R)

]∣∣∣∣ ,
εj = ~ωx

√
j(j + 1) N

(B)
j = [exp(εj/T )− 1]−1 .

R and µ are Thomas-Fermi radius and chemical potential, respectively. In the third
line, an approximation has been made, where quantum fluctuations are neglected
(i.e., only thermal fluctuations remain), which is well satisfied for length scales of
interest [175]. The single-particle density matrix is directly related to g(1)(δx) as
discussed above [eq. (2.36)], but, crucially, instead of δx = |x − x′| only, it is now
explicitly defined for two arbitrary points x, x′ in the inhomogeneous system.

An alternative notion to that of the quasi-condensate as a phase-fluctuating BEC,
is provided by decomposing the total system into the eigenmodes of its single-particle
density matrix, also known as natural orbitals [193]. In this picture, quasi-condensation
is equivalent to the appearance of a macroscopic eigenvalue of the single-particle den-
sity matrix, generalizing the notion of condensation of an ideal gas into a single-particle
eigenstate. The corresponding mode, called Penrose-Onsager (PO) mode [136, 183,
194], now comprises the first-order coherent, long-range-ordered part of the system,
and can be split from the rest of the field:

ρ(x, x′) = Ncψ
∗
c (x)ψc(x

′) + ρth(x, x′). (2.41)

Its population Nc is always lower than that that of the quasi-condensate Nqc; the
latter is defined by the part of the system that has suppressed density fluctuations,
i.e., for a system sufficiently below Tco, we have Nqc ≈ N , see sec. 2.4.2. In eq. (2.41),
ρth(x, x′) denotes the “thermal” component of the quasi-condensate, however, it shall
be noted, that this is a very different concept from e.g. a (transversely excited) thermal
cloud around a (quasi-)condensate, or the non-degenerate “thermal” portions of a one-
dimensional gas (sec. 2.4.1).

For our system, if the parameters are known, one can numerically compute popula-
tion Nc and wave function ψc(x) of the PO mode (and higher modes). The decompo-
sition of the system into a long-range-ordered and an incoherent part will be the key
to quantitatively understand twin-beam emission in sec. 5.5.

Some results for typical values are shown in fig. 2.2. There, it has been used that the
single-particle density matrix can be easily transformed into momentum space [193],
or propagated in free expansion for a certain time of flight ttof , during which the cloud
expands ballistically [174]:
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Figure 2.2.: Single-particle eigenmodes (natural orbitals) of quasi-condensate density
matrix, shown in (a) real space, (b) momentum space, (c) real space after 46ms of
ballistic propagation. Note that the shown spatial range in (c) corresponds to the
shown momentum range in (b) as xmax = ~kmaxttof/m. Parameters are N = 800, T =
25 nK. Black lines: total density. Blue lines: PO mode density. Red lines: non-PO
density. Other lines: densities of three largest non-PO modes.

ρ̃(k, k′) ∝
∫∫

e−ikxe−ik
′x′ρ(x, x′)dxdx′, (2.42)

ρ(x, x′; ttof) ∝
∫∫

ei(kx−~ttofk
2/2m)ei(k

′x′−~ttofk′2/2m)ρ̃(k, k′)dkdk′ (2.43)

∝
∫∫

e
i m
2~ttof

(x−x′′)2
e
i m
2~ttof

(x′−x′′′)2
ρ(x′′, x′′′)dx′′dx′′′.

It can be observed, that while the PO mode spreads over most of the condensate
length spatially, its momentum distribution is very narrow compared to the total quasi-
condensate, corresponding to the absence of a fluctuating phase. In time of flight at
ttof = 46ms, an intermediate case is reached.
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3. Experimental implementation

In this chapter, a brief description of the experimental setup (Rb-II) at which the
measurements presented in this thesis have been performed, will be given. The focus
will be on aspects that are of particular importance for the excitation and twin-beam
emission scheme, and on recent updates that are not sufficiently covered in previous
theses. While sec. 3.1 focuses on the different hardware parts, some experimental
techniques typically used are sketched in sec. 3.2. For more detailed information,
the reader is referred to the following theses, which have been carried out both in
Heidelberg (from 2002 to 2006) and in Vienna (starting from 2007), and spawned a
large series of publications [21,78,153,179,195–206]:

• The initial design of the Rb-II machine, and a lot of practical aspects concern-
ing atom chip experiments are covered in the PhD theses of Peter Krüger [207]
and Stephan Wildermuth [208]. Some more specific information can be found in
diploma theses written by Harald Gimpel [209], Christiane Becker [210], Sebas-
tian Haupt [211], and Sebastian Hofferberth [212].

• In Thorsten Schumm’s [213] and Sebastian Hofferberth’s [214] PhD theses, radio-
frequency dressed potentials have been implemented for the first time, which
are a key technique for the experiments in the present work. Also, extensive
information on different trap geometries can be found there.

• Manufacturing techniques for atom chips, including that in our experiment [200],
have been discussed by Sönke Groth [215].

• After the move to Vienna, several changes have been made to the setup, includ-
ing a new atom chip. The upgrades performed alongside the reconstruction are
detailed in PhD theses by Stephanie Manz [216] and Thomas Betz [217], and
the author’s diploma thesis [218], that are specifically recommended for infor-
mation about the general setup, radio-frequency dressing, and imaging systems,
respectively.

• The experiment control system is described in the diploma theses of Mihael
Brajdic [219] andWolfgang Rohringer [220], the latter including a novel approach
for automatized experiment optimization, using a genetic algorithm.

3.1. Hardware of the Rb-II machine

In the following, the several hardware parts of the Rb-II setup will be described, with
some more details and characterizations at points that are particularly relevant for
the experiments in this thesis.
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3. Experimental implementation

Figure 3.1.: Picture of the Rb-II setup. Left: front view, right: side view. a: science
area, surrounded by Helmholtz coil pairs, b: chip mounting flange, c: Ti-sublimation
pump, d: LIAD viewport, e: cluster flange with vacuum valve and ion gauge, f (behind
panel): ion getter pump, g: NEG pump, h: light sheet illumination oxptics, j: light
sheet objective (facing upwards), k: various fiber couplers for optical pumping beams,
m: fiber coupler for absorption imaging, n (behind panel): absorption imaging camera.
Inset: science area (octagon) with viewports and dispenser current feedthrough (left),
photograph taken before assembly of the experiment setup.
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3.1. Hardware of the Rb-II machine

3.1.1. Vacuum chamber and atom source

Compared to previous setups, the basic design of the experiment apparatus was sim-
plified by using a single vacuum chamber only; all steps of the experimental sequence
(see sec. 3.2.3) take place at the same position. The stainless steel chamber as de-
picted in fig. 3.1 can be roughly separated in a large-volume upper area, that mostly
contains devices to maintain vacuum, and a lower part where the actual science takes
places. The upper part contains a large-volume ion getter pump,1 a water-cooled
tube containing Titanium filaments (Titanium sublimation pump, TSP) which are
heated every few weeks, a passive non-evaporative getter (NEG) pump,2 an ion vac-
uum gauge, a valve to attach a turbo molecular pump, and a large viewport with a
rubidium dispenser directly behind, to be used as a light-induced desorption source
(LIAD), which however has not been implemented yet. A large flange allows to insert
the chip mounting (see sec. 3.1.2), which places the chip hanging upside-down into the
lower (science) area of the chamber. There, it is surrounded by an octagon-shaped
chamber (see inset of fig. 3.1), containing anti-reflection coated viewports with at least
1" of clear aperture on seven of its faces, and Rubidium dispensers on the eights. The
viewports provide optical access for the magneto-optical trap (MOT), optical pump-
ing, and imaging beams. At the bottom of the chamber, a large window provides
further optical access for fluorescence imaging and MOT beams.
For experiments with Bose-Einstein condensates, a low background pressure of the

order of 10−11mbar is required to prevent loss and heating during evaporative cooling
due to collisions with room-temperature background atoms. On the other hand, for
efficient loading of the magneto-optical trap, a higher Rubidium vapor pressure (on
the order of some 10−9mbar) is necessary. This is achieved by pulsing of the Rubidium
dispensers at the beginning of each experiment cycle, emitting Rubidium vapor at a
few 100◦ C.
The low-velocity tail of this thermal distribution can be captured by the MOT.

After typically 17 s, the dispensers are switched off, and the MOT is held for another
1.5 s to allow the vacuum pumps to capture the remaining Rubidium vapor. At this
point, the actual cooling sequence starts, which will be described in sec. 3.2.3.

3.1.2. Atom chip

At the heart of the Rb-II setup lies a double-layer gold atom chip [221], which will
be described in the following. More general remarks on trapping and manipulation
techniques for atom chips can be found in secs. 3.2.1 and 3.2.2.

Rb-II chip design The atom chip which is in use at Rb-II since the move to Vienna
has been designed and manufactured in collaboration with the group of I. Bar-Joseph
at the Weizmann institute. It provides gold wires on two layers, that are insulated
from each other to allow wire crossings. Details on the manufacturing technology
are explained in ref. [200] and the thesis of Sönke Groth [215]. Characterization in
the actual experiment, including an assessment of its practical performance is given
in Stephanie Manz’ PhD thesis [216]. The basic layout is sketched in fig. 3.2, some

1Varian StarCell, 500L/s
2SAES Getters
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Figure 3.2.: Chip wire schematic, viewed along z. Left: overview. Connection pads
are placed all around the chip, with central regions spared to avoid obstruction of
imaging beam paths. The red, green, blue, and black pads and wires correspond to
the wires used for the experiments in this thesis. Faint green wires connect to the
inner part of the lower chip layer which contains electron-beam lithographed sub-
micron structures. Right: inner part, where the actual experiment takes place. Black:
main trapping wire. Green: longitudinal confinement wires. Red: radio-frequency
wires. Blue: trap position modulation wire.

photos are shown in fig. 3.3. As the main structure for trapping, it uses a straight
wire (along x) of 80 µm width on the upper chip layer in conjunction with a pair
of perpendicular (along y) wires on the lower layer, of 500 µm width. The latter
provide weak longitudinal confinement along x. Wires running alongside the trapping
wire can be used as antennae for radio-frequency dressing (see sec. 3.2.2), as well as
additional modulations. Both will be key ingredients to the experiments performed in
the present thesis. In addition to the wide longitudinal confinement wires, the lower
chip layer contains an area manufactured by electron beam lithography, comprising
sub-micron structures for creation of versatile potential landscapes. Of those, only
two 18 µm wide wires have been actually used, that allow to prepare crossed-wire
dimple traps for traps with low, tunable aspect ratio, allowing to span both three-
and one-dimensional regimes of Bose gases (see sec. 2.4), as in ref. [43]. Also, they
can be used to excite collective longitudinal modes for trap characterization, as will
be described below. All DC chip wires are driven by custom-designed current sources,
the supply voltages of which are provided by car batteries to reduce noise that might
be introduced from the power network.

Chip mounting and copper wires The chip mounting structure as shown in fig. 3.3(a-
c) is hanging upside down in the vacuum chamber. It is based on a vacuum flange with
feedthroughs for high-current (up to 60A) copper wires, a 36-pin connector for low-
current chip wires, and cooling water. Connected to the feedthroughs are rigid copper
rods and thin, Kapton-insulated wires, that lead to the upper (or, once mounted in
the experiment, lower) part of the mounting. There, chip wire connection pins and
big copper wire structures (see panel c) are embedded into a block machined from a
ceramic material (Shapal), that provides good heat conductivity while being electri-
cally insulating. The chip is glued on top of this block, and connected using aluminum
wires that have been attached using ultrasonic bonding, to minimize mechanical and
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Figure 3.3.: Photos of the atom chip and its mounting. (a) Chip mounting structure.
At the bottom, the vacuum flange with feedthroughs for high-current copper rods and
chip wires is seen. The steel tube in the center can be used for water cooling. Near
the top, the copper rods and chip connection pins are guided by a custom-machined
ceramic (Shapal) block. (b) Atom chip, glued to ceramic mounting block. Near the
edges of the atom chip, bond wires between connection pins and pads on the chip are
seen. (c) Copper structures underneath the atom chip. Z-, U- and outer confinement
wires are traced in green, blue, and red, respectively. (d) SEM image of the chip
center, where the central trap wire (width 80 µm) and parallel 10 µm-wires cross the
electron-beam lithographed area. (e) Picture of chip built into the vacuum chamber,
taken from below. Coils for magnetic fields are surrounding the chamber; in the top
right corner the imaging objective for fluorescence imaging is seen, which is placed
close to the vacuum window when operating.
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3. Experimental implementation

thermal stress during the connection process.
The copper wires embedded in the mounting block are used to provide inhomoge-

neous magnetic fields as needed during different parts of the experimental sequence
(sec. 3.2.3):

• The largest structure has an H-shape with a broad (1 cm) central part [blue
lines in fig. 3.3(c)] along the x-direction. Its shape is optimized for creating a
quadrupole field as needed for the magneto-optical trap (MOT) next to the chip
surface. This is achieved by connecting the structure in a U-shaped geometry,
and superimposing an external homogeneous field in the yz-plane [195, 210].
Moreover, the structure is used as an antenna for radio-frequency evaporation.

• In the central part, a smaller Z-shaped structure is placed, separated from the H-
structure by a thin gap (green line). In conjunction with external fields along y
and x, running current through it creates a Ioffe-Pritchard field configuration [8]
for the first stage of magnetic trapping and evaporative cooling.

• On each side of the Z-structure, straight wires running along y are placed, that
can be used for a multitude of tasks, such as providing additional longitudinal
confinement, or pulsed application of an inhomogeneous field for Stern-Gerlach-
type separation of magnetic states during expansion.

3.1.3. Laser system

While in an atom chip experiment the trapping and evaporative cooling of atoms
is achieved solely by magnetic means, lasers are still needed for pre-cooling, optical
pumping, and imaging of the atoms. In our setup, two principal laser sources are used,
the frequencies of which are tuned next to the resonances between the two hyperfine
states F = 1, 2 of the electronic ground state 52S1/2, with the electronic excited state
52P3/2, respectively. Hence, the frequencies of both lasers differ by the hyperfine level
spacing of νhf = 6.83GHz. The hyperfine level separations of the electronic excited
state are small enough to be addressed by frequency-shifting elements later in the beam
paths. Both lasers are external cavity diode lasers (ECDLs). While for the F = 1
source (“repumper”) a simple high-power diode laser3 is sufficient, the F = 2 source
(“cooler”), which has to drive the main cooling transition of the MOT, uses a master
oscillator/powered amplifier (MOPA) configuration,4 where a relatively weak ECDL
laser seeds a high-power tapered amplifier (TA). Both lasers are independently locked
to Doppler-free saturation spectroscopies using Rubidium vapor cells, and coupled into
single-mode fibers. At the fiber output, we typically obtain ∼ 50mW of optical power
from the repumper laser, and ∼ 500mW from the cooler.
Subsequently, both lasers are distributed between different paths by half-wave plates

and polarizing beam splitters. Each path is then guided through acusto-optical modu-
lators (AOMs) that allow to shift the frequency, and rapidly switch the power of each
beam. For the cooler and imaging paths, double-pass AOMs are used for shifting the
frequency over some tens of MHz during the experimental cycle, without the need for
geometrical readjustment. In fig. 3.4, the optical setup is shown schematically; fig. 3.5

3Toptica Photonics, DL100
4Toptica Photonics, TA100
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Figure 3.4.: Laser setup (updated version of fig. 2.2 in ref. [218]). Red and orange lines
indicate F = 2 (cooler) and F = 1 (repumper) beam paths, respectively. The greyed-
out parts belong to the former longitudinal imaging, which is not in use currently. The
upper part of the drawing shows the laser spectroscopy setups for the F = 1 (left) and
F = 2 (right) lasers, which are placed in a separate box to provide better thermal and
acoustic isolation from the environment. The F = 2 laser uses a dual spectroscopy
setup to simultaneously provide a normal Doppler-free spectroscopy and an additional
path for Pound-Drever-Hall locking using an EOM for sideband modulation [209].
Both lasers are coupled into single-mode polarization-maintaining fibers and brought
to the AOM and beam distribution setup shown in the lower part. Finally the beams
are guided to their destinations by free-field beam lines (MOT) or single-mode fibers
(imaging, optical pumping).
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Figure 3.5.: Hyperfine levels of the Rubidium-87 D2 line. Red lines indicate the tran-
sitions addressed by the different laser beam paths. (updated version of fig. 3.3 in
ref. [216]).

depicts the frequencies of the beam paths. In sec. 3.2.3 the application of each of the
beams will be explained.

3.1.4. External fields

During all phases of the experimental sequence, homogeneous offset fields are needed
to complement the inhomogenoeus fields created by the chip and copper structure
wires. Those are provided by external Helmholtz coil pairs.

Coil setup Around the science area of the chamber, two complete sets of coil pairs
along each spatial direction are mounted (amounting to 12 coils in total, see fig. 3.1).
One of those sets is fabricated from thick (cross sections of tens of mm2) wires and
allows to create homogeneous offset fields up to some tens of Gauss. The second set
uses thin wires and is used to provide small offset fields up to a few Gauss. Having two
sets of coils is convenient especially during points in the experiment cycle, where fast
switching between field configuration (both in magnitude and direction) are required
on a time scale that cannot be met by the output regulation of the current sources,
given the high inductive load. Also, it allows to use unipolar supplies,5 and a good
matching of their voltage and current ranges to the requirement for the respective coil.
A fast switch-off time of the coils (typically below 0.1ms) is achieved using additional
solid-state (FET) switches [222], which can stand up to 60A of continuous current,
and induced voltages up to 400V during rapid switch-off.

5HP/Agilent 65xx series, with the exception of the small vertical coil, where a bipolar supply (High-
Finesse BCS-5/5) is still advantageous.
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Figure 3.6.: Stabilization of the Ioffe field. Left: trap bottom spectroscopy measure-
ment (see sec. 3.2.2), taken with direct current stabilization at the power supply (i.e.,
without using the external test resistor), and binned according to the power network
phase during the short (1ms) radio-frequency pulse (dots). For each bin, the points
are normalized and re-scaled; their vertical base line shift corresponds to the phase of
the power network that the bin is centered on. The black dashed lines with circles in-
dicates the peak position of atom loss, as determined from Gaussian fits (solid lines).
The x-axis is given in magnetic field corresponding to the applied radio frequency,
shifted by an arbitrary amount. Right: schematic of the stabilization circuit finally
used in the experiment. Empty round and hexagonal symbols represent analog and
digital control connectors, respectively.

Ioffe field stabilization Most of the coil (and copper wire) power supplies run in
current-stabilized mode, with set points controlled by analog inputs of the power
supplies. At the expense of potentially increased low-frequency noise, this provides
direct control and good drift stability of the magnetic fields (that would be affected
by thermal drifts and the non-ohmic resistance of the solid-state switches otherwise),
and thus reproducibility of experiments over a long time span.

The single exception is the small x-directed coil (“Ioffe” coil), which serves to control
the offset field, and hence the atomic Larmor frequency νL, of the chip trap (see
sec. 3.2.1). For this coil, long-term stability and rejection of low-frequency noise at
the sub-Milligauss level are of utmost importance, especially when using dressed traps,
where the potential shape is defined by the detuning of the radio frequency with respect
to the Larmor frequency (see sec. 3.2.2). While the former goal would be achievable
using output current stabilization (as for the other fields), the latter is compromised
due to the inductive load and the output capacity of the supply forming a resonant
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circuit with quality factor

Q =
1

R

√
L

C
≈ 1

3.3 Ω

√
4.5mH
550 µF

≈ 0.9, (3.1)

that may lead to ringing of the stabilization electronics, specifically at the 50Hz power
network frequency. This quality factor exceeds the specification of the used power
supply of Q ≤ 0.5. Indeed, when measuring the low-frequency noise spectrum in the
coil circuit, a dramatic peak at 50Hz is found, that disappears when stabilizing the
clamp voltage of the supply instead. First runs of the optimal control excitation (see
sec. 5.4) yielded unsatisfying results due to poor shot-to-shot stability of the dressed
potential (see fig. 3.11), that stems from the random relative phase of the power
network at the time where the excitation sequence is applied. Also, running short-
pulsed trap bottom (Larmor frequency) measurements (see sec. 3.2.2) when recording
the power network phase at the end of each experimental cycle revealed a phase-
dependent shift of ∼ 10mG peak-to-peak amplitude (fig. 3.6).
To mitigate this issue while keeping good long-term reproducibility, we chose to

insert a high-precision test resistor6 in series with the coil and the switch, and feeding
back the voltage drop over the resistor into the voltage sensing port of the power
supply. The supply is set to stabilize the voltage drop, effectively restoring a current
stabilization, which was found to be much less prone to ringing, presumably due to the
large test resistance of 1 Ω. Using this method, and analog (CV) control of the voltage
set point, a decrease of the ringing peak at 50Hz by −22 dB was achieved, sufficient
to run the excitation sequence successfully. Later, this scheme was improved further,
by disabling the analog voltage control circuit entirely, and instead programming the
power supply set point digitally (using a GPIB connection), see fig. 3.6 (left).7 A
further reduction by −18 dB was found, leading to a rejection of ringing similar to
that achieved with clamp voltage stabilization. Due to insufficient resolution of the
digital control, an additional amplification (of the order of 10) of the resistor voltage
drop had to be introduced, using a low-noise pre-amplifier,8 and yielding an effective
set point resolution of ∼ 1mG. During early phases of the experiment, where offset
fields lower than the final one are required but low-frequency noise is acceptable, the
current is stabilized by the power supply directly, in order to avoid re-programming
the supply during the cycle.
To ensure proper operation and long-term stability, the test resistor voltage drop is

monitored during the final phase of the cycle using a multimeter.9 In each experiment
cycle, 100 measurements of 6ms averaging time each are taken in rapid succession.
Mean and standard deviation of the outcomes are automatically recorded, where a
magnitude of the latter of more than some tens of ppm (or, in absolute numbers, tens
of Microgauss) indicates a malfunction. Additionally, the phase of the power network
at the end of the experiment is recorded in each cycle. A data set is considered invalid,
if any significant correlation between this value and a single-shot observable (such as
atom number, temperature or shape of the cloud) is found in post-processing.

6Isabellenhütte RUG-Z, temperature coefficient < 1 ppm/K
7This second scheme has been used in all measurements presented in chapter 5, except for data set
Sqz.

8Stanford SR560, or Femto DLPVA
9Keithley 2000
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3.1. Hardware of the Rb-II machine

3.1.5. AC electronics

In the experiment, modulated currents are needed for various purposes; for the exper-
iments presented in this thesis, this comprises radio-frequency fields for evaporative
cooling (0.5 − 20 MHz) and dressed potentials (∼ 800 kHz), as well as chip currents
for trap position modulation (DC− 4 kHz).

Signal generation As initial signal sources for all modulated currents in the experi-
ment, digital arbitrary waveform generators10 are used. They are set to a sequenced
mode: once a TTL trigger is received, a programmed series of arbitrary wave forms is
played back with a given number of loops at each step. In this way, even for long and
complex sequences, such as the radio-frequency ramp for evaporative cooling which
lasts several seconds, each single sample at the output (at a sampling rate of tens
of MHz) is explicitly defined. The way the sequence is composed differs among the
various applications:

• For radio-frequency dressing, the sequence consists of short waveforms, contain-
ing a single sinusoidal cycle each, that are looped to fill a given time with a
constant signal, and longer waveforms, e.g. containing amplitude ramps at the
beginning and end of the dressing field application. The phase of the wave can be
defined arbitrarily, affecting the behavior after switching off the potential [217].
In this way, also complex sequences of trap deformations with various interme-
diate ramps can be realized, as e.g. needed for interferometry schemes [223]. A
two-channel generator with independent waveform sequences, but locked sam-
ple clocks is used, to be able to address the two dressing antenna wires (see
sec. 3.2.2) independently in terms of phase and amplitude.

• The radio-frequency signal needed for evaporative cooling cannot be synthesized
in this way, as the frequency is constantly changing for several seconds, and the
internal memory of the generator is not sufficient to store each single sample
during this time.

Instead, we program a sequence of cosine waveforms, that span the appropriate
frequency range, creating a ramp of discrete frequency steps, where the length
of each step is determined by the number of loops. Over most of the range, the
frequencies of the waves are distributed roughly exponentially, i.e. keeping the
relative step size constant. For the lowest frequencies (few hundreds of kHz), the
step size is decreased further, down to a value of ∼ 0.5 kHz, below the typical
transverse level spacing of elongated traps. The final evaporation frequency,
which controls atom number and temperature of the prepared gas, can be set
to arbitrary accuracy, using a slight adjustment of the sample clock. While this
sequenced scheme requires some rather complex programming (especially given
certain restrictions of the generator that shall not be discussed here), it allows
for completely arbitrary frequency ramp shapes, that are of crucial importance
to achieve efficient cooling (see sec. 3.2.3).

• For trap position modulation such as the excitation sequence in the experiments
presented in part II of this thesis, a simple sequence of two waveforms is sufficient,

10Tabor Electronics, WonderWave series
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Figure 3.7.: Sketch of imaging systems (modified version of fig. 3.9 in ref. [216]).
Having been released from the chip trap, the cloud falls in −z-direction. For expansion
times roughly between 1.5ms and 25ms, the attenuation of an absorption beam due
to the atoms can be imaged. If fluorescence imaging is used, after an expansion time
of 46ms, the atoms pass a thin light sheet in the xy-plane, and start emitting photons.
They are imaged using an objective sitting underneath the vacuum chamber, facing
upwards. (The different parts shown are not drawn to scale.)

the position modulation (“shaking”) sequence itself being the first, and a constant
value corresponding to the final position of the trap being the second. The latter
is looped for the remainder of the experiment cycle time.

Signal transmission Each output of the dressing generator is driving its respective
chip wire without further amplification. The connection is made through additional
RF-switches,11 and 1:1 isolation transformers,12 the latter providing a floating ground
for the chip wires. On the secondary side of the transformer, inductive current probes13

are placed, allowing to monitor the AC current through the chip wires. The evapo-
ration RF signal is fed to the copper U-structure [fig. 3.3(c)] capacitively, achieving a
current of up to 200mA peak-to-peak amplitude. For the modulation wire, the gener-
ator signal is fed through a custom-made DC isolation amplifier into the control input
of a battery-driven current source identical to those used for the DC chip wires. The
isolation amplifier is necessary for galvanic isolation of the generator output from the
chip wire, but limits the bandwidth of the applied signal to . 4 kHz. The impact of
this filtering will be discussed in sec. 5.4.1.

3.1.6. Cameras

Besides an auxiliary camera to image the fluorescence of the MOT and optical mo-
lasses, two independent imaging systems are implemented in the experiment, see
fig. 3.7. Detailed technical information about both can be found in the author’s
diploma thesis [218], and only few basic characteristics shall be repeated here. In
sec. 5.1, some more practical aspects of using the two systems are discussed.
11MiniCircuits ZX80-DR230-S+
12MiniCircuits T1-1T
13Tektronix CT-6
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3.1. Hardware of the Rb-II machine

Absorption imaging A high-resolution absorption imaging system is placed along the
y-axis, allowing to take images at expansion times extending from roughly 1.5ms to
25ms. At even shorter times, reflections of the imaging light at the chip surface cause
distortions (which could possibly be mitigated using a tilted imaging beam [224]).
The objective is composed of two stock doublet lenses, each operating at near-infinite
conjugate ratio. Using one-inch optics at ∼ 100mm working distance, it reaches a
numerical aperture (NA) of 0.12. The focal lengths are arranged to obtain a magni-
fication of ×3.78 and an object space pixel size of 3.44 µm. Calibration of the pixel
size, which is crucial for quantitative image analysis (see sec. 3.2.4) is performed using
the light sheet beams as a ruler, which are made visible by fluorecence from ther-
mal background atoms. A cooled, back-illuminated CCD camera14 with 1024× 1024
pixels resolution provides a field of view of ∼ 3mm edge length, which is sufficient
to image warm thermal clouds at the beginning of evaporation after short expansion
times. Also, the CCD supports frame-transfer readout, allowing to take two images
(absorption and reference) in rapid succession (tens of ms).

Fluorescence imaging The system mainly used for the experiments presented below
uses a unique fluorescence scheme, where atoms fall through a thin (20 µm waist
radius) light sheet after tens of ms of expansion [202]. Some of the emitted fluorescence
photons are captured by an objective placed underneath the vacuum chamber. This
method avoids the problem of blurring due to finite depth of field, that would occur
if the entire (expanded) cloud was imaged simultaneously with a high-NA objective.
Also, it becomes possible to take slice images by pulsing the sheet only briefly [43].
Given the NA of the objective of 0.34, the transmission of all surfaces, and the quantum
efficiency of the used EMCCD camera,15 about 2% of the emitted photons are detected.
For typical parameters, this gives us ∼ 12 detected photons per atom, which, given the
extremely low background of the system, is sufficient for single-atom sensitivity [202].
The intensity of the light sheet is stabilized using a photodiode (see fig. 3.4), that
receives some light separated off the beams going to the light sheet launchers (via
single-mode fibers), which is read out in each experimental cycle, feeding back on the
RF power setting of the respective AOM.
Compared to the first version as presented in ref. [218], the imaging objective has

been modified to adapt to more recent experiment requirements, doubling the magni-
fication to ×4, to yield an object-space pixel size of 4 µm. At the expense of a smaller
field of view, the reduced pixel size provides a higher oversampling of the inherent
resolution limit (see sec. 3.2.4), simplifying several analysis schemes (such as shot-
noise rejection, see appendix C). Some characteristics of the objective are collected
in fig. 3.8. The main change with respect to the initial ×2 version is the last lens in
the beam path. In the first version, a positive meniscus lens close to the CCD was
used to reduce magnification. This lens has been replaced by a negative meniscus lens
closer to the front group of elements, which changes the system from a retro-focus to a
(weak) tele-photo configuration, doubling magnification, while leaving the rest of the
design unchanged. As becomes clear from the lower left panel in fig. 3.8, the depth
of field of the objective matches the light sheet thickness well: within the defocus

14Roper Scientific MicroMax 1024 BFT
15Andor iXon+ 897
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60 mm 187 mm

Figure 3.8.: Design and simulated performance of updated light sheet objective with
×4 magnification. Upper left: layout of the objective. Apart from the last lens in the
beam path, the design is near-identical to the ×2 magnification version as explained
in detail in ref. [218]. The image plane is located at ∼ 187mm distance from the last
lens. All plots are given in image-space units. Upper right: geometric (ray-tracing)
RMS spot size of a point source in the conjugate plane, as a function of distance from
the optical axis within the field of view. Over most of the field of view, the spot size
remains below the camera pixel size of 16 µm (blue line), and is comparable to the
diffraction limit (Airy disk radius, black line). Lower left: geometric spot size of point
sources at three different field positions (blue, red and green: 0, 0.5, and 1 mm from
optical axis in object space), as a function of focus position. The horizontal blue line
indicates the pixel size. Vertical lines represent the waist (1/e2 radius) of the light
sheet, transferred to image space. Lower right: modulation transfer function (MTF)
for the three field positions (including diffraction effects). For each field position, the
sagittal (S) and tangential (T) function is shown (see e.g. [218] for further explanation).
Black line is the diffraction limit. The upper limit of the frequency axis corresponds
to the Nyquist frequency of the pixel grid.
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Figure 3.9.: Screenshots of principal experiment control interfaces. Left and center:
sequencer control. Each of the colorful rows represents a single analog or digital
channel, with columns corresponding to time steps. For analog steps, constant values
or ramps are allowed. Grey windows contain variables that can be used to modify
the cycle at multiple points consistently in a programmed way, and enable automatic
parameter scans. Right: data acquisition, displaying images taken in the previous
cycle, and several data extracted from the images or other signal sources.

range corresponding to the sheet thickness (blue vertical lines), the ray-tracing spot
size mostly remains below the CCD pixel size (blue horizontal line), which in turn is
matched to the best achievable resolution considering atom diffusion (see sec. 3.2.4).

3.1.7. Computer control

The central control device of the experiment is a stand-alone real-time computer,16

equipped with 32 analog (16 bit, up to ±10V) and 64 digital (TTL) output channels.
For each experiment cycle, the sequences for all channels are transmitted from a con-
trol computer via an Ethernet connection; after transmission, the system is running
independently. A time resolution of 25 µs step size is achieved, with negligible jitter.
The only devices to some extent independent from the central sequencer are the arbi-
trary waveform generators (see sec. 3.1.5), which only receive a single TTL trigger to
start their stored sequences. It has been found, that the jitter between the generator
clocks and the main sequencer clock is negligible on the sub-microsecond level for the
required sequence lengths of few seconds.
Programming the main sequencer, waveform generators, and several other devices

that are read out or initialized via digital connections, as well as image acquisition,
storage and simple processing is handled by various specifically written Matlab pro-
grams. Those run distributed over a couple of computers, and communicate via shared
folders and UDP messages in an internal lab network. Most of the functionality is ac-
cessible by two complex graphical user interfaces for sequence programming, and data
acquisition (fig. 3.9). Functions to run automated parameter scans are included, hence,
the experiment can run unattended for an arbitrary time, which is practically limited,
among others, by the stability of the laser locks, and the capacity of the car batteries
used for chip currents.

16Jäger ADwin Pro. Details of adopting the ADwin system for our experiment can be found in theses
by Mihael Brajdic [219] and Wolfgang Rohringer [220].
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3.2. Condensate preparation, manipulation and detection

In this section, some key techniques needed for the experiments presented in chapter 5
are outlined; references to more in-depth discussions will be given at appropriate
points.

3.2.1. Magnetic trapping on a chip

Soon after first proposals and realizations of atom trapping using free-standing wires
[225–230], it was realized that micro-fabricated wires on chip provide even better
control over potential landscapes, and stronger confinement due to high current densi-
ties [231,232]. First demonstrations of Bose-Einstein condensation were achieved soon
after [233,234]. By now, atom chips have become one of the major approaches to trap-
ping and manipulating neutral atoms, enabling both fundamental and applied research
by virtue of their versatility and robustness. Besides some earlier reviews [235, 236],
an exhaustive overview over basic concepts, wire geometries, and the numerous appli-
cations of atom chips is given in a recently published book [221], which also includes
a chapter about experiments using dressed potentials performed at the Rb-II setup.

Static chip traps At magnetic field strengths |B|, where the Zeeman shift is small
compared to the hyperfine level splitting, nuclear and electronic spin of the Rubidium
atoms remain coupled to a total angular momentum F. The motion of an atom can
then be described by the Hamiltonian

Ĥ =
p̂2

2m
+ gFµBF̂ ·B(r̂) (3.2)

with the momentum p, mass m, Bohr magneton µB, and the g-factor gF character-
istic for the internal state of the atom. The Larmor, or precession frequency of an
atom at position r is then given by νL = h−1gFµB|B(r)|. If the relative change rate
of the magnetic field strength remains small compared to the Larmor frequency, i.e.:
Ḃ/|B| � νL, the precession of the atoms can follow the external field adiabatically.
In quantum terms, the atoms remain in their magnetic state mF, whereas the quan-
tization axis with respect to which the state is defined, continuously adjusts itself to
the local field. Eq. (3.2) then simplifies to:

Ĥ =
p̂2

2m
+ Vmag(r̂) (3.3)

Vmag(r̂) = mFgFµB|B(r̂)|. (3.4)

As Maxwell’s equations rule out maxima of magnetic field strength in free space [237],
only magnetic states with a positive value of the product mFgF (weak-field seekers)
can be trapped. For 87Rb, this restricts the choice to the states |F = 1,mF = −1〉,
|F = 2,mF = 1〉, and |F = 2,mF = 2〉, the first of which is usually used in our exper-
iment. It has mFgF = 1/2, and hence a magnetic moment of mFgFµB = 0.70MHz/G.
An important consequence of the adiabaticity condition Ḃ/|B| � νL is, that points

of zero field have to be avoided, as spin flips (Majorana losses [238]) may occur there.
For an ultracold cloud of atoms, which has a high density near the trap minimum,
this rules out a simple quadrupole field, which has a linear dependence of the field
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Figure 3.10.: Main figure: Schematic of the atom chip layout (see ref. [200] for details).
The waveguide potential is formed by the current It through the trap wire along −x
and a static bias field By, adding up to quadrupole field (bent bent arrows). On a
separate chip layer, currents IH in broad wires along y (not shown, see fig. 3.2) provide
weak longitudinal confinement and a constant field along x. An external offset field
along Bx, perpendicular to the figure plane, is added, to define the Larmor frequency
at the trap minimum νL. The radio frequency dressing currents IRF are applied to
wires (RF) in parallel to the trapping wire, leading to a RF field along z (red arrows).
The resulting anisotropic transverse potential is shown as ellipse in the center of the
quadrupole. Finally, the modulation of the trap position is accomplished by a current
in an auxiliary wire (M), leading to a magnetic field, aligned at ∼ 19◦ with respect to
the z-axis (blue arrow). Inset: Field configuration for trap position modulation. The
transverse trap position is defined by cancellation of the chip wire field (black) and
the bias field (green). Adding a weak field along z (blue) tilts the bias field slightly,
leading to a horizontal shift of the trap minimum.
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on all spatial directions, and hence vanishes at the center. However, several other
solutions have been found [8], the most popular of which is the Ioffe-Pritchard config-
uration [239], which is realized in our atom chip traps.
The standard configuration for the radial gradient part of a Ioffe-Pritchard field is

a single current-carrying wire (shown blue in figs. 3.10 and 3.2), the inhomogeneous
field of which is canceled by an external field (bias) in the yz-plane at exactly one
position. Assuming an infinitely thin wire carrying a current It, and a bias field along
y, its distance d along z from the wire is given by the relation:

By =
µ0

2π

I

d
= 2000G× It/A

d/µm
. (3.5)

Around this minimum, a two-dimensional quadrupole configuration with axes tilted
by 45◦ with respect to y, z is created (black arrows in fig. 3.10), with a field gradient
dB/dr = µ0/(2π)It/d

2. By adding a homogeneous field along x, which lifts the mag-
netic zero in the center of the quadrupole, a two-dimensional harmonic confinement is
obtained, which e.g. can be used to guide atoms [240–242]. The transverse trapping
frequencies νy, νz achieved in this way are typically in the kHz range, which is beyond
what can be conveniently achieved with external coils.
To obtain a complete Ioffe-Pritchard configuration, confinement along x has to be

added. In our experiment, this is done by means of a H-configuration, where two wires
along y (shown as green stripes in fig. 3.2) cross the trapping wire on a separate chip
layer. A simpler option would be a single wire bent into a Z-shape, which has been
used previously in our experiment, and which we still implement for the macroscopic
trapping wires (see sec. 3.1.2). In principle, the H-configuration allows to adjust
the transverse and longitudinal confinement of the atoms independently; however,
this turned out to be mostly superfluous due to wire corrugation effects (see below).
Alternatively, using a single thin wire along y near the chip center (dimple), which
runs current in opposite direction to the H-wires, crossed-wire traps with stronger
confinement along x can be built. This ability has been used to vary the aspect ratio
of traps over a large range in ref. [43]. In either case, a certain constant offset field
along x is already created by the longitudinal confinement, which however can be
further adjusted using an external (“Ioffe”) field Bx (see sec. 3.1.4). The total field
(“trap bottom”) defines the Larmor frequency at the trap center νL, which must be high
enough to fulfill the adiabaticity criterion as explained above. The finally resulting
potential landscape can be calculated numerically using a finite-element simulation,
with the wire currents and external fields as input parameters.

Trap position modulation For the experiments presented in this thesis, the ability
to rapidly move the potential minimum in the yz-plane along an optimized trajectory
λ(t), in order to excite vibrational states, is crucial. In an atom chip trap, this can
be achieved easily by running small modulated currents through wires, changing the
field configuration and position of the trap minimum. The simplest possible solution
would be to put a slight modulation on the main trapping wire, which shifts the
position of the trap minimum along z, following eq. 3.5. Indeed, this scheme has been
implemented successfully. However, preparation of higher vibrational states along z
has the disadvantage, that the excitation dynamics cannot be monitored using the light
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sheet imaging system, which integrates over the z-direction. Furthermore, additional
electronics connected to the chip wire is necessary, which may contribute to technical
noise, and thus, undesirable heating of the atoms.
Instead, the movement is accomplished by applying a current to an auxiliary wire

running parallel to the main trapping wire at a distance of 140 µm (shown in blue in
figs. 3.2 and 3.10), creating a field mostly aligned along z for typical trap distances.
As depicted in the inset of fig. 3.10, the additional magnetic field along z causes a
slight tilt of the Bias field By. The trap minimum position, which is given by the
point where the bias field cancels that of the trapping wire, is displaced along y. Still,
the y-component of the modulation field causes a slight proportional movement along
z. However, as confirmed by two-dimensional simulations of the excitation process
(see sec. 5.4), the anisotropy of the transverse potential suppresses any significant
influence on the excitation along y. For the field geometry which has been used in the
final experiment, the movement of the trap minimum caused by the current can be
calculated from simulations as 26 nm/mA along y and 9 nm/mA along z.

Potential corrugation A severe limit on the versatility of chip-based trapping poten-
tials is imposed by the inhomogeneity of current flow through the trap wire, typically
caused by imperfection of the wire edges or the grain size of the wire material [243–246].
Specifically for our chip [200], additional modulation is caused by the height “jumps” of
the trap wire at the crossing points with wires on the lower chip layer [see fig. 3.3(d)],
which are necessary to make room for insulating pads. All those contributions become
more significant for traps placed in close proximity to the chip, which are desirable
especially for experiments with one-dimensional systems (see sec. 2.4) due to the high
achievable field gradients, and hence, transverse trap frequencies.17 In practice, the
inhomogeneities cause an irregular, but temporally stable corrugation of the trapping
potential, most significantly along the longitudinal (x) axis. In images of trapped
atom clouds, this effect can be clearly observed as a correspondingly modulated den-
sity distribution, up to a complete fragmentation [196,203,249,250].

For the atom clouds used in this thesis, temperature and chemical potential are on
the order of the typical modulation depth of corrugations on the micrometer length
scale. At such low energies, the effective longitudinal potential is mostly given by
corrugation effects, and the condensate forms in the lowest-lying potential “dip” in the
irregular landscape. This results in a significantly stronger longitudinal confinement
near the end of the cooling sequence than expected from the chip current configuration.
The remaining effect of the H-wires (see above) becomes less important; in fact, the
final condensate remains trapped even without any current sent through them. A more
detailed characterization of corrugation effects in our chip can be found in Stephanie
Manz’ PhD thesis [216]; practically, longitudinal confinement weaker than νx ∼ 15Hz
seems elusive to achieve in a simple wire trap even at only moderate (νy,z ∼ 2 kHz)
transverse trap frequencies.

17One possibility to mitigate this issue is to use temporally modulated field configurations [166,182,
247,248]. However, this forbids the usage of external offset fields (which could not be modulated
at high enough frequencies), complicating the chip design.
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3.2.2. Potential preparation using radio-frequency dressing

The experiment presented in part II of this thesis relies on the ability to excite non-
classical (Fock) states of the transverse confinement potential. However, in a quan-
tum harmonic oscillator, all states that can be addressed by simple displacement of
the potential are quasi-classical coherent states [57]. This statement also holds for a
harmonically trapped interacting many-body system, where a quasi-classical collective
oscillation at the trap frequency fully decouples from more complex internal dynam-
ics [145,146,251]. Hence, transferring the condensate population into an excited, sta-
tionary state necessitates an anharmonic potential along the displacement direction y,
where the decoupling of collective and internal dynamics breaks down. Furthermore,
to be robust against excitation in the perpendicular direction z, anisotropy in the
transverse plane of the potential is required, causing a detuning of trap levels between
the directions.

Initially, the Ioffe-Pritchard field configuration as created by the chip wires (plus
external offset fields, see fig. 3.10) is rotationally symmetric in the yz-plane, and
provides harmonic trapping transversely, as discussed before. To choose appropriate
parameters for the static field trap, we tested various configurations of chip currents
and external fields, and judged them in terms of observed fragmentation, confinement
strength, and heating rate. The trap finally implemented uses wire currents of It = 1A
and IH = 0.5A, with a Bias field of By ≈ 34G and a Ioffe field of Bx ≈ 1G. For an
atom in state |F = 1,mF = −1〉, this yields a transverse trap frequency of ν0 = 4.1 kHz
in both directions, and a trap position of d ∼ 49 µm. The longitudinal confinement is
strongly affected by corrugations, see sec. 3.2.1 and has a frequency on the order of
30Hz.

To introduce anharmonicity and anisotropy, we apply radio-frequency dressing [21,
197, 198, 252–254]. This technique, which was pioneered at the Rb-II machine [21],
is typically used for splitting of the transverse potential into a double well, enabling
interferometry [21, 223], homodyne detection of phase fluctuations [179, 198, 255], or
studying Bosonic Josephson junctions [204]. Detailed explanations of this technique
and its implementation at Rb-II can be found in previous theses [213, 214, 217]. In
brief, the atoms are irradiated by a radio-frequency (RF) near field BRF(r) with linear
magnetic polarization, the frequency νRF of which is red-detuned by tens of kHz with
respect to the atomic Larmor frequency νL. The RF field mixes the Zeeman levels
(quantum numbersmF) of the hyperfine manifold, coupling them to dressed states with
effective quantum numbers m̃F, that adiabatically connect to the initial (bare) states.
Once dressing is applied, the momentary decomposition into bare states depends on
detuning from the local Larmor frequency ∆(r) and coupling strength (Rabi frequency)
Ω(r). Both quantities are position-dependent, the latter because of the changing
RF polarization with respect to the local magnetic field that modulates the coupling
strength. Similarly to the adiabatic approximation for static fields introduced above,
the state decomposition follows the momentary position of the atoms, giving rise to a
spatially dependent energy shift. In rotating-wave approximation [254], the resulting
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Figure 3.11.: Effects of RF dressing on the transverse trapping potential. (a) Poten-
tial along the y (displacement) direction, as a function of RF Rabi frequency. The
detuning with respect to the minimum Larmor frequency νL is ∆0 = −55 kHz. At
dressing strengths above Ω0 ∼ 180 kHz, splitting of the single potential into a double
well occurs. (b) Shift of single-particle trap levels vs. dressing strength. Solid and
dashed lines correspond to perpendicular (y) and parallel (z) directions with respect
to the RF polarization, respectively. Blue: frequency of harmonic part, as defined
in eq. (3.6). Black, red: first and second level spacing of single-particle eigenstates.
Inset: initial (grey) and dressed (black) potential, each with their first three energy
levels. The green lines in both panels mark the setting used for the experiments.

potential landscape up to a constant is given by:

VRF(r)/h =
√

Ω(r)2 + ∆(r)2

∆(r) = νRF − Vmag(r)/h

Ω(r) =
1

2
µBm̃FBRF,⊥(r),

where BRF,⊥(r) = |B(r) × BRF(r)|/|B(r)| denotes the RF field component perpen-
dicular to the local static field. To emit the radio-frequency field, we use two chip
wires running in parallel to the trapping wire as antennae (see red lines in figs. 3.10
and 3.2). The dressing is most effective along the direction perpendicular to the RF
polarization; in our case, applying a polarization along the vertical axis z leads to a
deformation mostly along y.
In Fig. 3.11(a), the potential along y is shown as a function of dressing strength,

expressed as coupling Ω0 near the trap center. At sufficiently strong coupling, splitting
of the potential into a double well occurs. However, at lower coupling, this technique
also allows for the introduction of anharmonicity and anisotropy to a single trap, as
needed for our scheme. In the experiment, we apply an RF field of BRF = 0.84G peak-
to-peak amplitude, leading to a coupling Ω0 = 147 kHz, at a frequency red-detuned by
∆0 = −54 kHz near the trap minimum with νL = 824 kHz. The procedure to obtain
these parameters will be explained below.
The resulting potential is shown as a green line in fig. 3.11(a). Even though the
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rotating-wave approximation holds well for the used dressing strength [198], the high
sensitivity of the excitation protocol to the exact potential shape calls for an exact
calculation by means of a Floquet analysis [256]. Along the transverse directions the
result can be approximated by a sixth-order polynomial of the form

V6(y, z)/h =
νy

2

(
y

ly

)2

+ σy

(
y

ly

)4

+ ξy

(
y

ly

)6

(3.6)

+
νz

2

(
z

lz

)2

+ σz

(
z

lz

)4

+ ξz

(
z

lz

)6

. (3.7)

In this expression, the lengths ly,z =
√
h/(mνy,z)/(2π) correspond to the characteristic

length of the harmonic part. The parameters are given by:

νy = 1655Hz; νz = 2751Hz (3.8)
σy = 78.2Hz σz = −69.6Hz
ξy = −0.96Hz ξz = 9.1Hz
ly = 265 nm lz = 206 nm.

Along y, the sixth-order term ξy is negligibly small, and the description reduces to a
Duffing oscillator [257].
By solving the Schrödinger equation for a single atom trapped in the dressed po-

tential, the single-particle trap levels of the dressed potential can be obtained. The
first two level spacings ν1,2 along y and z are shown in fig. 3.11(b). For the used
parameters (as marked by a green line), the initial degeneracy of the level spac-
ings is lifted, and we obtain the excitation energies (zero-point energy subtracted)
[E10, E20, E01, E02, E11] /h = [1.84, 3.83, 2.58, 5.21, 4.42] kHz with Eij denoting the
i-th and j-th state along y and z, respectively. The relevant level spacings along y
will be denoted by ν1 = 1.84 kHz, ν2 = 1.99 kHz, ν3 ≈ 2.10 kHz, the first level spacing
along z is ν(z)

1 = 2.58 kHz.
To apply the theory of one-dimensional Bose gases (sec. 2.4), the eigenfunctions

of the Schrödinger equation can be inserted into the equation for the 1-dimensional
interaction constant. (2.30). We obtain g1d = h · 0.023Hz µm, or, equivalently, an
effective transverse trap frequency of ω⊥ = g1d/(2~as) = 2π · 2.14 kHz.

Trap characterization In the laboratory, compliance with the simulated potential
has to be ensured, given the limited accuracy to which experimental parameters, such
as field strengths and currents, can be set, and the extreme sensitivity of our exci-
tation scheme (sec. 5.4.1). The initial static trap can be characterized in terms of
its transverse trap frequency ν0, and the central Larmor frequency νL (trap bottom).
The former is measured by observation of a collective dipole mode (sloshing), which
is excited by a brief kink in the trap wire current (less than 1% of its normal value of
It = 1A), see fig. 3.12(a). The horizontal position of the cloud in absorption images
oscillates at the trap frequency, which can be fit with high precision. As a second char-
acteristic, the trap bottom νL can be measured using RF spectroscopy, where a weak
radio frequency pulse (Rabi frequency . 1 kHz, duration typically . 20ms) is applied
while the cooled cloud is held in the trap. If the RF pulse frequency matches νL, strong
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Figure 3.12.: Trap characterization. (a) Blue points: measured peak transverse mo-
mentum of a condensate excited by a brief displacement of the harmonic (static) trap,
and released after some hold time t. The frequency of the collective mode equals the
trap frequency, from a fit (red line) we obtain ν0 = 4.105(10) kHz. (b) Longitudinal
sloshing mode in the dressed trap, measured in the light sheet after excitation using
the dimple wire. The fit yields νx = 16.35(20)Hz. (c) RF spectroscopies in the static
(red) and dressed (black) traps, indicating the Larmor frequency νL, and the effective
trap bottom νeff .

atom loss occurs due to transfer into untrapped magnetic states, see fig. 3.12(c). Of
the four parameters which determine the transverse shape and position of a static
trap, It, IH, By, Bx, the two currents are known to high accuracy in the experiment.
Hence, the two fields can be uniquely inferred, once νL and ν0 have been measured,
such that experiment and finite-element simulation can be matched. The obtained
values are used as input to the Floquet dressed potential calculation.

Concerning the RF parameters, while νRF can be directly set, the RF field strength
is determined by the AC current in the RF wires. This current is not measurable with
sufficient precision due to the specifications of the used AC current probes, and the
signal generator running in voltage-stabilized mode. However, similarly to the static
case, using a weak probe RF, transitions to untrapped states can be driven [fig. 3.12(c)],
which are much more numerous in a dressed trap due to higher-order transitions to
different dressed manifolds [198, 258]. Selecting the first transition above νL, which
will also be used for evaporative cooling (see sec. 3.2.3) yields an effective dressed trap
bottom νeff , which can be compared to simulations. Using this procedure, it is easy to
reach a trap that roughly matches the simulation. However, in contrast to the static
strap, a more precise characterization using a collective mode cannot be performed.
Unlike for harmonic confinement, no stable dipole mode which maintains the internal
mode structure is supported in an anharmonic potential [146, 251], and dephasing
occurs. The resulting frequencies are significantly modified by many-body effects
(see sec. 5.4.2) and cannot directly be related to the initial trap potential. Instead,
we take a somewhat more pragmatic approach, and adjust the relevant experiment
parameters directly, by comparing the observed response to the excitation ramp used
in our experimental scheme to the one determined numerically, as shown in sec. 5.4.1.
Once all other values have been set as good as possible using the methods shown in
fig. 3.12, excellent agreement can be reached by fine-tuning IRF or Bx, which have
very similar influence on the potential shape [see eq. (5.29) and fig. 5.14].
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Along the longitudinal x-axis, the trap confinement is strongly affected by wire
imperfections (see previous section), which are not accounted for in simulations (which
would predict a frequency of 7.7Hz due to the H-wire current). However, we can apply
a similar method as for the static transverse trap frequency, and excite a collective
mode along the longitudinal direction. This is accomplished most conveniently by
sending a brief current pulse through the dimple wire running along y. In light sheet
images, sloshing oscillations of the trapped quasicondensate are observed. We obtain
νx = 16.4Hz, as shown in fig. 3.12(b).

3.2.3. Experiment sequence

We will now briefly go through the steps necessary to prepare a degenerate gas trapped
near the chip, which is the starting point for all experiments shown in chapter 5. More
detailed analysis of the sequence parts can be found in a previous thesis [214]. The
cycle time of the experiment is usually set to 36 s, which is mostly limited by the
collection of atoms in the pulsed magneto-optical trap.

Magneto-optical trap As in virtually all experiments with cold atoms, a magneto-
optical trap (MOT) serves as a starting point to collect and pre-cool atoms [259]. In
our case, the MOT is loaded directly from background gas, while the partial pressure
of Rubidium in the chamber is increased by running current through pulsed thermal
dispensers, which are placed in the science area, close to the chip (fig. 3.1). In contrast
to the usual configuration using six beams and a quadrupole magnetic field, a mirror
U-MOT [195] is implemented. Two of the beams are replaced by reflections from the
gold chip surface, creating a beam alignment tilted by 45◦ with respect to the chip
surface. Furthermore, the quadrupole field is substituted by a homogeneous (external)
field in the yz plane, together with current through a U-shaped structure [fig. 3.3(c)].
While the light field is typically quite distorted by scattering off the chip wires, iterative
optimization of beam positions and field strengths allows to obtain a regularly shaped
MOT with large diameter, that provides a stable starting point of the experimental
cycle over several weeks of operation. Typically, the MOT is run with ∼ 220mW of
cooler light in the four beams, at a ∼ −20MHz detuning from the F = 2 ↔ F ′ = 3
(cycling) transition (fig. 3.5). Repumping light resonant with the F = 1 ↔ F ′ = 2
transition is superimposed before beam distribution (see fig. 3.4). The MOT is loaded
for typically 18 s. For the last 2 s, the current in the dispensers is extinguished, to allow
them to cool down (aided by water cooling) and to reduce the background pressure
in the chamber, enabling high life times of the magnetic traps. During this time, the
power in the cooling beams is reduced, to suppress light-induced collisions.

MOT transfer and molasses After loading of the MOT is finished, the fields and
cooler detuning are ramped within 200ms, to compress and move the MOT to a
position closer to the chip, which is matched in position and size (mode-matching) to
the first stage of magnetic trapping. Then, the external magnetic fields used for the
MOT are extinguished within less than 100 µs. Simultaneously, the detuning is ramped
to ∼ −70MHz for sub-Doppler polarization gradient cooling (optical molasses, [259]).
As the experiment has no dedicated set of ambient field compensation coils, the small
coil set (see sec. 3.1.4) is used during molasses, to cancel all remaining fields. Still,
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at any position close enough to the chip to enable loading to the magnetic trap, the
molasses light field is heavily affected by chip structures, visible as a shadow pattern
in the molasses. This causes rapid loss of atoms, limiting the duration of the molasses
phase to ∼ 4ms.

Magnetic trap loading After optical cooling, atoms reside in the F = 2 manifold at
random magnetic orientation. To pump them into |F = 1,mF = −1〉, we apply a weak
field along y as quantization axis, and irradiate the atoms simultaneously with two
pumping beams for . 1ms. The first contains light near F = 2↔ F ′ = 2 (“pumping
F = 2” in figs. 3.4 and 3.5), and is sent along x circularly polarized, i.e. containing
all polarizations with respect to the magnetic quantization axis. After few scattered
photons, atoms will fall into the F = 1 manifold and become dark for this beam.
The second beam (“pumping F = 1”) is tuned to F = 1 ↔ F ′ = 1 and sent with
σ− polarization (with respect to the quantization field) along y. This pumps atoms
into |F = 1,mF = −1〉, where they will go dark for both beams. Should the atoms
fall back into F = 2 before, they get repumped by the first beam, and the process is
restarted.
Finally, all light is switched off, and the first magnetic trap field configuration is

ramped up within 5ms. This first “Z-trap” does not yet use the atom chip (which
could achieve a rather small trap volume only), but the free-standing Z-shaped wire
beneath it (see sec. 3.1.2), in conjunction with external fields in y (Bias) and −x (anti-
Ioffe) direction. The anti-Ioffe field counteracts the offset field of the Ioffe-Pritchard
configuration created by the Z-wire and Bias field alone, to obtain a sufficiently deep
trap. The initial values of the Z-current and field are set to enable good mode-matching
with the molasses. They are ramped to their final values, which correspond to a
confinement of νy,z ∼ 200Hz, νx ∼ 20Hz, within 2 s. During this ramp, for 10ms, a
strong laser pulse on the F = 2↔ F ′ = 3 transition is applied, to kick any remaining
atoms in F = 2 out of the trap.
After compression of the Z-trap, evaporative cooling [260] starts, using an RF “knife”

that induces spin flips to untrapped states at a trap position where the local Lar-
mor frequency is resonant with the RF radiation [8], effectively regulating the trap
depth. See sec. 3.1.5 for the technical implementation. Starting from a cloud of
N ∼ 5× 106 atoms at a temperature of T ∼ 100 µK, evaporation in the Z-trap re-
duces both by approximately a factor of 2 (see fig. 3.13), increasing the phase space
density n0λ

3
dB (see sec. 2.1.1) by a factor ∼ 3.5 within ∼ 4 s.

Chip trap Within 650ms, the gas is now transferred into the chip trap, which still
has trap parameters comparable to the Z-trap (νx ≈ 18Hz, νy,z ≈ 800Hz). The anti-
Ioffe field and Z-wire current are ramped down during this time, while the Bias field
is strongly decreased and the Ioffe field for the chip trap is ramped up. The latter is
created by the small coil pair and points along +x, in order to increase the offset field
of the chip H-trap. Within the first 100ms of the transfer, the chip wires are ramped
up to their final values. After the transfer, evaporation continues for another 3 s down
to ∼ 20 µK (fig. 3.13). Finally, the trap is transformed into the final static trap. The
high transverse frequencies of several kHz enable very efficient evaporation, where the
central density n0 [fig. 3.13(c)] increases rapidly (runaway cooling), and a unit phase
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Figure 3.13.: Analysis of evaporative cooling of atoms down to slightly above degen-
eracy. Data has been derived from stopping the experiment sequence at a time t
after beginning evaporation, and taking absorption images after 1.5ms and 10ms of
expansion. (a-d) Temperature T , total atom number N , peak density n0, and peak
phase-space density n0λ

3
dB during the evaporation process. Red and blue lines indi-

cate the chip loading and chip compression, respectively. (e) False-color plot of the 3d
density in the trap center n(x; y = z = 0), as a function of the longitudinal position
x, measured after 1.5ms of expansion. The color scale is logarithmic and spans the
same range as panel (c). (f) Transverse line density n1d(z), logarithmic color scale
(a.u.). (g) Path of evaporative cooling, as a function of central density n0 and thermal
de Broglie wavelength λdB. Red and blue ranges correspond to chip loading and com-
pression, respectively. Green lines indicate phase space densities of 10−6, 10−4, 10−2,
and 1.
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3.2. Condensate preparation, manipulation and detection

space density is approached. Depending on the particular experiment, the cloud is
either evaporated further and a condensate forms, or the trap is deformed once more
using RF dressing (sec. 3.2.2), in which the final cooling occurs. For the experiments
presented in this thesis, mostly the latter scheme has been used, to avoid excitation
of collective modes of the condensate during the final deformation.
To achieve the highest possible phase space densities after evaporation, it is crucial to

adjust the shapes of the cooling ramps. Using the sequenced RF generators (sec. 3.1.5),
this is easy to implement. Typically, curves that interpolate between a linear and
exponential decay are used, where a more exponential shape is especially useful near
the crossover to a one-dimensional system (sec. 2.4), where near-integrability slows
down thermalization [203,261,262].

3.2.4. Detection and image analysis

Besides their superior controllability, one major asset of ultracold atoms as an exper-
imental system is the ability to detect the outcome of experiments by simply taking
photographs. The typically interesting length scales of several micrometers requires
imaging optics of only modest complexity (see e.g. [218]). Furthermore, alkali atoms
(or any other laser-coolable species) provide near-closed optical transitions with high
scattering cross sections, enabling strong signals in absorption or fluorescence detec-
tion, with visibility down to the single-atom level [263–267]. Also, non-optical imaging
methods, such as electron microscopy [268] and micro-channel plates with meta-stable
atoms [269] have been used. As mentioned in sec. 3.1.6, at the Rb-II both absorp-
tion [224] and light sheet fluorescence imaging [202] systems are available, see fig. 3.7
for a sketch of the geometry. In this thesis, absorption imaging is mainly used for
calibration and characterization measurements, whereas the actual results are all ob-
tained using the light sheet. We will first discuss how to obtain reliable atom numbers
from absorption imaging, before compiling a few relevant characteristics of the light
sheet system, which has been described in much more detail in the author’s diploma
thesis [218] and a more recent publication [202].

Measuring density in absorption imaging Absorption imaging has become the work-
horse technique for imaging of cold atoms, due to its good signal-to-noise ratio and
straightforward implementation. An excellent general discussion of absorption imaging
in the context of a very similar atom chip experiment can be found in the PhD thesis
of Michael Gring [270]; the resolution of time-of-flight absorption imaging is derived
in appendix A.3 of ref. [202].
When taking an absorption image, the atom cloud is illuminated from behind by

a brief (∼ 50 µs, typically) pulse of light, resonant with the cycling transition (F =
2 ↔ F ′ = 3). Each atom scatters a few hundreds of photons, attenuating the beam
(which in our case travels along y and has an intensity profile Iin(x, z)) following
Beer-Lambert’s law:

Iout(x, z)

Iin(x, z)
= e−σsn(x,z), (3.9)

where n(x, z) denotes the column density of the (expanded) atom cloud and σs the
resonant scattering cross section of the used transition. The attenuated beam profile
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Iout(x, z) is then imaged on a CCD chip using some objective optics.
In the experiments presented below, the most important application of absorption

imaging is to accurately determine atom numbers. Assuming that the imaged density
of atoms is constant over the area A covered by a single camera pixel i (with A defined
in object space), it follows, that the number of atoms Ni imaged on that pixel can be
calculated as

Ni =
A

σs
ln

(
S0,i

Si

)
, (3.10)

where Si and S0,i correspond to the number of counts (in arbitrary units) detected
in that pixel in the presence or absence of atoms, respectively; A

σs
equals the num-

ber of atoms in the pixel column needed to achieve unit optical density. As men-
tioned in sec. 3.1.6, the object-space pixel size

√
A can be very accurately determined

in the experiment, giving A = 11.8 µm2. The value of σs is complex to evaluate
in general, as pumping processes between magnetic sub-levels occur [271]. Reduc-
ing the problem to a two-level description can be achieved by applying a magnetic
quantization field along the optical axis, and using circularly polarized light, which
quickly pumps the atoms into a maximally polarized state. If the Larmor frequency
of the quantization field exceeds the coupling to the imaging light (with a Rabi
frequency of typically a few MHz), the atoms remain fluorescing on the transition
|F = 2,mF = 2〉 ↔ |F = 3,mF = 3〉 (for σ+-polarized light), and the process can be
described in terms of simple optical Bloch equations [272]. In the limit of low intensity,
we then have σs = 3λ2/(2π) ≈ 0.291 µm2 [271], and hence A/σs ≈ 40.8. Once the light
intensity approaches the saturation intensity of Isat = 1.67mW/cm2, the response of
the atoms becomes non-linear, which has to be avoided for absorption imaging.18 To
properly set all parameters in the experiment, it is helpful that any other possible sub-
level configuration will result in lower scattering rates. Thus, maximizing the observed
absorption signal, varying polarization and power of the imaging light, and strength
of the quantization field, ensures validity of this analysis.
Practically, to obtain the images, four shots are taken in each cycle. The first

one is the actual absorption image, containing the attenuated beam with signal Si
on each pixel. As the atoms are initially in the F = 1 hyperfine state, also some
repumping light is switched on, that runs perpendicular to the optical axis, and hence
does not directly enter the camera. This imaging process is destructive, due to the
recoil imposed on the atoms by each scattered photon. Tens of ms after, a second
image of the illumination beam is taken, however, the atoms have moved away from
the field of view by now, so that the initial beam profile Iin(x, z) is observed as pixel
signals S0,i. Once, camera readout is finished (which typically takes ∼ 2 s), a second
pair of images is taken, where the imaging light is switched off. These images are used
to subtract background signal originating from the camera baseline, and stray light
which mostly originates from scattering of the repumper beam at the chip wires.

Calibration of light sheet images Most measurements at the Rb-II experiment are
performed using light sheet fluorescence imaging [202], mainly for two reasons: Firstly,

18An alternative approach explicitly using high intensities, which allows imaging of very dense clouds
with high precision, has been developed in ref. [273].
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Figure 3.14.: Atom number calibration. (a) Influence of quantization field on ab-
sorption imaging. Red and black points correspond to images of identically prepared
clouds, imaged with σ+ light without and with quantization field, as a function of
imaging frequency (arbitrary zero point). An increase of detected atom number by
∼ 25% is found, if a field of 4.2G is applied. Further increase of the field does not
lead to any change. Lines are Lorentzian fits. (b-e) Images of quasicondensates with
∼ 4600 atoms, taken with absorption imaging after 6ms expansion time (b,c) or light
sheet imaging (d,e). (b,d) Show averages over 7 shots each, (c,e) are typical single
images. The light sheet images are shown on a logarithmic color scale. A set of such
images can be used to calibrate the number of photons m detected from each atom
during fluorescence imaging.
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Figure 3.15.: Light sheet camera calibration and focusing. Figures taken from
ref. [202] (C1, B1). Left: Histogram of pixel counts for an image taken without light.
In the linear plot (inset), only a broadened baseline (readout noise) is visible. How-
ever, in the logarithmic plot, the exponential tail due to single-photoelectron events is
visible. Its slope yields the gain factor g of the EM amplification. Right: focusing of
the light sheet. The ratio ∆Ŝ2/S for a large thermal cloud (covering almost the entire
field) is slightly above 2 due to photon shot noise ∆snŜ and residual inhomogeneous
density. Near the focus of the system, the value rises due to visibility of atom shot
noise, i.e. the “grain” that is caused by the discreteness of atom detection. This coin-
cides with the visibility of the atom shot noise peak in measured correlation functions,
see sec. 5.3.

the long expansion of ttof = 46ms allows to approach the far field (see 5.1), allowing
to estimate the initial momentum distribution of the clouds. This is crucial for the
experiment scheme used in this thesis. Absorption imaging at such long expansion
times would be impractical due to the high sensitivity and depth of field required.
Secondly, the high dynamic range of the system, which ranges from single atoms to
dense condensates, allows to work with very low atom numbers, typically less than
1000. Thus, even at moderate trap anisotropy (aspect ratios of νy,z/νx ∼ 150 are typi-
cally achievable), clouds deep in the one-dimensional regime with negligible population
of transverse states (sec. 2.4) can be worked with.
To infer column densities n(x, y) from pictures taken by the EMCCD camera, it is

necessary to calibrate the raw signal. This is done in three steps:

• First, the number of photons which have impinged on each pixel P̂ is derived from
the number of digital counts Ĉ. As the gain factor g of the electron multiplying
unit of the camera may drift over time [274], we calibrate it for each single shot.
This is done by taking a second (calibration) picture without any light, directly
after the actual fluorescence image, which hence contains technical noise only.
In an EMCCD camera, this is mainly given by clock-induced charges (CIC),
which cannot be distinguished from actual photons, whereas readout noise is
negligible. As the probability of two CIC events in the same pixel on a single
shot is negligible, one can make a histogram of Ĉ for the calibration picture,
and fit it by an exponential g−1 exp(−Ĉ/g) (see appendix C in ref. [202]), which
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3.2. Condensate preparation, manipulation and detection

is expected for the number of counts caused by a single photoelectron after
amplification [275], to obtain g. The gain factor g, relating counts in one pixel
to the most probable number of photons, can be inferred from the exponential
decay constant.

• Apart from the fluorescence light emitted by the atoms, a background offset
signal b̂ is caused by CIC, as well as stray light from the light sheet beams,
and fluorescence photons which have been reflected by the atom chip. As this
background is homogeneous over the entire image, it can be calibrated from the
image edges, outside the range where atoms are detected.

• Finally, the estimated photon density has to be converted into an estimation
for the column density of the expanded atom cloud. This is done by regularly
running calibration scans, where pictures of identically prepared clouds are taken
using absorption and fluorescence imaging alternately [see fig. 3.14(b-e)] and
deriving the expected number of detected photons m from a single atom. For
typically chosen settings (resonant light, peak intensity of the light sheet ∼ Isat),
this value is typically around m ≈ 12.

Noise of light sheet imaging Both the number of photons detected from each atom,
and the number of counts caused by each photon are random variables, the distribution
of which needs to be taken into account when analyzing correlations as done in sec. 5.2
and 5.3. Especially for the central result of this thesis, near-perfect number squeezing
between two atomic wave packets (fig. 5.4), it is crucial to precisely know the amount of
additional fluctuations due to detection noise. Fortunately, the derivation is relatively
easy.
Neglecting additional fluctuations due to spatial diffusion (see below), the variance

of detected photons is simply given by photon shot noise. As emission from each atom
is independent, this means, that for P̂ being a random variable for the number of
primary photons detected on a certain area of the CCD with expectation value P , the
variance due to shot noise is ∆snP̂

2 = P . In the electron-multiplication (EM) register
of the EMCCD, which sits between photosensors and readout, the signal sequentially
passes R ∼ 500 amplification stages, where an impact ionization probability of p ∼ 1%
leads to an electron avalanche growing as (1 + p)R. In the limit of low p and large R,
the distribution at the output of the register is well understood; the simple outcome is,
that the variance of the initial photon shot noise is doubled by the amplification process
(excess noise [275]). Here and in the following chapters, we will work with an “effective”
photon number Ŝ, which is actually a best-guess inferred from the signal after the
stochastic EM amplification, i.e. Ŝ = Ĉ/g with the digital counts Ĉ and the gain factor
g. Its expectation value is simply S = P . Hence, it can be treated just as a normal
photon number, with the exception, that its shot noise is increased by excess noise:
∆snŜ

2 = 2S. The second contribution to detection noise is that from background
signal b̂, which becomes dominant especially for regions with very low density. As
mentioned above, background signal (CIC and stray light) is indistinguishable from
actual signal. Hence, from analogous considerations, we expect a variance ∆b̂2 ≈
∆snb̂

2 = 2b, where the actually measured ∆b̂2 is slightly higher (2.14 × b, typically)
which might be due to residual readout noise. For the total detection noise, we arrive
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at

∆nŜ
2 = 2S + ∆b̂2. (3.11)

This relation motivates, why for small atom numbers fluorescence imaging is much
more sensitive than absorption: while for absorption imaging, the ultimate limit is
defined by the shot noise of imaging light, and the noise is only weakly dependent on
the actual signal, in fluorescence imaging the main contribution of noise scales with
the signal itself, and single-atom visibility is only limited by background. In our case,
the single-atom signal-to-background ratio can be calculated to be on the order of
10 [202].

Resolution In contrast to absorption imaging, where the resolution is limited by
optical effects (diffraction and finite depth of field), the resolution of the light sheet
imaging is fundamentally limited by the diffusion of atoms while being detected. Each
atom interacts with the light sheet for ∼ 100 µs, during which (depending on the
sheet intensity, which is typically similar to Isat), it scatters up to 1000 photons.
This imposes a random walk in momentum space due to the recoil of vr ≈ 6mm/s
transferred by each absorbed or emitted photon. Emission is assumed to be into full
solid angle, whereas photons are absorbed from the two counter-propagating elliptical
beams forming the light sheet. Hence, the diffusion of each atom is expected to
be stronger along the direction of light sheet propagation, which is at an 45◦ angle
with respect to the y and x axes, which is indeed observed in both Monte Carlo
simulations and experiments (see e.g. fig. 5 in ref. [202]). Another subtlety arises
from the effect, that unlike in usual imaging systems, where the response to a single
emitter (point spread function, PSF) always has the same shape (apart from shot
noise), the fluorescence patterns of the single atoms are highly irregular. This has the
consequence, that the centroid of each single fluorescence pattern, which has a typical
RMS size of ra ∼ 6 µm, may be displaced with respect to the initial unperturbed
position by a typical amount of rc ∼ 3 µm (centroid deviation, see fig. 1(b) in ref. [202]).
The actual resolution of the system is hence worse than what could be expected from
the size of fluorescence patterns.
These characteristics become very apparent when working with second-order cor-

relation functions (see secs. 2.3 and 5.3) derived from light sheet images, where both
the atom shot noise peak and other correlation features are observed, see fig. 3.16.
The atom shot noise peak originates from correlations between photon pairs scattered
by the same atom, and hence has a width19 r̃a =

√
2ra. On the other hand, for

correlation features that arise from photon pairs scattered by different atoms, the
centroid deviation does contribute to the resolution. In ref. [43], where HBT correla-
tions (sec. 2.3) have been measured for clouds close to condensation, this distinction
has been observed nicely: here, the width of the atom shot noise peak is significantly
smaller than that of certain atom-atom correlation features, which would have negli-
gible width without imaging. This latter width corresponds to the resolution relevant
for all imaging analysis; in fact, measuring HBT correlations is up to now the most
reliable way to characterize the light sheet resolution in the experiment itself.
19We assume a Gaussian shape of the peak, in which case the width of the auto-correlation is enhanced

by a factor
√

2
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Figure 3.16.: HBT bunching peak in g̃(2)(δx, δy) of a thermal cloud just before con-
densation, observed with light sheet imaging. Data as in fig. 2(a) from ref. [43]. See
e.g. sec. 5.3 for definitions and more explanation on how to derive this function. In
the center, a large peak due to atom shot noise is given, the width of which [see blue
profile in (b)] is determined by the RMS size of single atom fluorescence patterns.
Note the sligly elliptic shape, which is elongated in the propagation direction of the
light sheet beams. Underneath the shot noise peak, the actual HBT bunching effect
is visible, which is strongly anisotropic due to the geometry of the initial trap – any
finite size along δx is due to imaging resolution. A longitudinal cut through it [red
line in (b)] reveals, that the width of the HBT peak is increased with respect to the
shot noise peak, which is due to the centroid deviation as described in the text.
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4. Twin-beam production in a matter-wave

In this chapter, relying on the general theory of cold Bose gases outlined in chapter 2,
several approaches to theoretically capture the emission of twin-atom beams in our
specific experimental situation will be explained.

4.1. General formulation of the problem

As mentioned above, the interactions of condensate matter waves can be exploited to
provide the non-linearity to populate the twin-mode (which we will equivalently refer
to as “twin beams”, highlighting the analogy to propagating light wave packets). This
can be seen if we start from the Hamiltonian (2.12) for a Bose gas with point-like
interactions in second quantization:

Ĥtot =

∫
d3rΨ̂†(r, t)

[
−~2∇2/(2m) + V (r, t)

]
Ψ̂(r, t)

+
g

2

∫
d3rΨ̂†(r, t)Ψ̂†(r, t)Ψ̂(r, t)Ψ̂(r, t), (4.1)

and assume our bosonic matter-wave field Ψ(r, t) to be comprised of M modes, which
can be written in real space as (2.11):

Ψ̂(r, t) =
M∑
i=1

ψi(r, t)âi.

Instead of using the Bogoliubov approximation as in eq. (2.14), which is not necessarily
applicable (see below), we now directly insert this equation into the interaction term
of the Hamiltonian (4.1), and obtain

Ĥint =
1

2

∑
ijlm

κijlmâ
†
i â
†
j âlâm, (4.2)

where the summation runs from 1 to M for each of the indices i, j, l,m, and we have
defined state-specific coupling constants:

κijlm(t) = g

∫
d3rψ∗i (r, t)ψ

∗
j (r, t)ψl(r, t)ψm(r, t). (4.3)

We will drop the explicit time dependence in the following, unless stated.
Terms containing the same combination of states in the creation and annihilation

operators, respectively (irrespective of order, due to symmetrization), represent elastic
scattering within that pair of states, effectively leading to energy shifts:

Ĥel =
1

2

∑
i

κiiiiN̂
2
i + 2

∑
i<j

κijijN̂iN̂j , (4.4)
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with N̂ = â†â being the particle number operator of each mode, respectively. The
other terms correspond to inelastic scattering between the states, i.e. contain unequal
pairs of modes in the creation and annihilation operators, respectively:

Ĥsc =
1

2

∑
{i,j}6={l,m}

κijlmâ
†
i â
†
j âlâm, (4.5)

and inelastic scattering that may occur in the system solely depends on the coupling
constants κ.
Let us assume the modes to be plane waves with wave vectors ki. Then, the in-

tegrand in eq. (4.3) has an oscillating phase factor: exp(−i∆ijlmr), where ∆ijlm =
ki + kj − kl − km. For an infinite, homogeneous system, the integration leads to a
non-zero κijlm only for

∆ijlm = 0⇒ ki + kj = kl + km, (4.6)

enforcing momentum conservation, also known as phase matching in quantum optics.
In finite-size (or otherwise inhomogeneous, e.g. phase-fluctuating, see sec. 2.4.2) sys-
tems, the integration in eq. (4.5) runs over finite limits only, weakening this restricition.
Similarly, energy conservation is required to enable population transfer during the

evolution of the system:

εi + εj ≈ εl + εm, (4.7)

where in the case of free particles with massm in identical internal states εi = |ki|2/2m,
neglecting energy shifts arising from Ĥel. However, a strict conservation is only valid
in the limit of vanishing coupling κijlm. For finite coupling, the scattering will occur
on a timescale of 1/(κijlmN), where N denotes the typical mode population. From
energy-time uncertainty, a power broadening of energy conservation on the order of
κijlmN is expected, and indeed obtained when solving the equations of motion for the
system, as will be detailed in the following sections of this chapter.

4.1.1. One-dimensional twin beam system

In the following, we will narrow the description to the case of twin-beam emission
from a single source state (labeled by index S) in a one-dimensional geometry along
direction x: ki = kiêx. The twin-beam modes φi(x), the number and type of which
is not restricted at this point, are labeled by i, j. If we neglect inelastic scattering
within the twin-beam modes, the inelastic scattering Hamlitonian (4.5) can now be
simplified for multi-mode twin-beam dynamics:

ĤMM =
1

2

∑
i,j

κij â
†
i â
†
j â

2
S + H.c., (4.8)

where we introduced the shorthand notation κij ≡ κijSS .
As outlined in the introduction, in our experiment, the source mode is a one-

dimensional quasi-condensate (sec. 2.4), which is in the first transversely excited state
along y (vibrational inversion) with a transverse wave function φ1(y)φ0(z). We denote
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its longitudinal wave function as ψS(x).1 On the other hand, the twin-beam modes
are in the transverse ground state φ0(y)φ0(z). Scattering into other combinations of
transverse states (which would be allowed by momentum and parity conservation) is
inhibited due to the anharmonicity of the potential (see sec. 3.2.2): The increasing
level spacings make all other processes energetically inaccessible. After defining the
transverse overlaps

αmn =

∫
|φ0(z)|4|φm(y)|2|φn(y)|2dydz (4.9)

βmn =

∫
|φ0(z)|4[φ∗m(y)]2[φn(y)]2dydz.

we obtain coupling constants

κij = gβ01

∫
ψ∗i (x)ψ∗j (x)[ψS(x)]2dx. (4.10)

In this chapter, for the transverse states, we assume the single-particle eigenstates of
the anharmonic potential prepared as described in sec. 3.2.2, neglecting the deforma-
tion due to interactions (as opposed to the treatment in sec. 5.4). As these functions
are real-valued, we have αmn = βmn, and from solving the Schrödinger equation for
the potential (3.6), we obtain α00 = 2.96 µm−2, α11 = 2.31 µm−2, α01 = 1.54 µm−2,
independent of the actual occupation of the transverse states.2 The chemical potential
of the excited source cloud (with zero-point energy subtracted) is then given by the
single-particle level spacing, plus the mean field energy of a quasi-condensate at peak
(line) density n1d(0) (see sec. 2.4.1):

µ1 = hν1 + gα11n1d(0). (4.11)

The multi-mode inelastic scattering Hamiltonian (4.8) retains products of four field
operators from the general many-body Hamiltonian (4.1). This makes the result-
ing Heisenberg equation of motion non-linear in field operators, and thus numerically
intractable. A classical mean field approximation [such as the Gross-Pitaevskii equa-
tion (2.15)] is unable to include empty or weakly occupied modes [136], as for scattering
into those, quantum fluctuations arising from commutators of field operators (which
vanish in classical theories) have to be included.

4.1.2. Overview of approximations

In the remainder of this chapter, several beyond-mean-field approaches to approxi-
mating a solution and describing the experiment will be discussed:

• In sec. 4.2 we analyze the case of only a single pair of resonant twin-beam
modes, which provides qualitative insight, and allows for an exact solution that
is compared to the approximated results.

1We generally define the transverse wave functions to be normalized to unity, whereas the longitu-
dinal wave functions are normalized to their population.

2Note, that in this nomenclature, g1d = αnng for a condensate in state n, generalizing eq. (2.30).
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• Sec. 4.3 describes how the system can be treated within the Bogoliubov approx-
imation, eq. 2.14. Only the twin-beam modes are retained as quantum fields,
allowing for linearized equations of motion for the field operators in the spirit
of sec. 2.2.1, that can be solved numerically even in the multi-mode case. This
allows for a comprehensive description of the quantum properties of the twin
beams (including second-order correlations), but is limited to weak emission
only, until depletion of the source mode, which is not accounted for, becomes
relevant.

• Sec. 4.4 will introduce an alternative approach that concentrates on the single-
particle density matrix (see sec. 2.4.4) of the twin-beam modes, the dynamics
of which is determined by a hierarchy of correlation functions of increasing or-
der, which can be approximated at an appropriate level by factorization into
lower-order correlations. The total number of particles is conserved. While the
predictions of this theory are currently limited to single-particle properties (most
notably, the population growth of the twin beams), it accounts completely for
source depletion and even can include the vibrational excitation dynamics in our
experiment. As will be shown in chapter 5, this theory is able to quantitatively
describe our observations with only few free paramters.

Apart from those approaches, several techniques based on stochastic numerics have
been developed. This includes positive-P and positive-P-Bogoliubov theories [60, 75,
76, 276–281], which were able to predict results in experiments with weak mode pop-
ulations with high accuracy [74–76]. For the opposite regime of very high final mode
populations, truncated Wigner simulations have been proposed [282–284]. Up to now,
attempts to apply either of those methods to our (somewhat intermediate) situation
have failed, positive-P being too prone to divergence of atom numbers at long emission
times [285], and truncated Wigner requiring even higher populations.

4.2. Two-mode model

If we select only one pair of modes (directly labeled as k, k′) from the multi-mode
system as described in the previous section, eq. (4.8) becomes equal to the Hamiltonian
for parametric down-conversion:

ĤTM = κâ†kâ
†
k′ â

2
S + H.c., (4.12)

where κ ≡ κkk′ is only non-vanishing for k′ = −k. If initially, only state S is populated
with NS = N atoms, twin atoms will be emitted into k, k′ on a timescale on the order
of 1/κN . If we neglect any time-dependent shifts in the total mean-field energy due to
elastic scattering 〈Ĥden〉, i.e., we only regard the dynamics induced by ĤTM itself, we
can solve the equation of motion for the populations NS and Nk = Nk′ numerically in
the Schrödinger picture. For that, we expand the many-body state in terms of bosonic
Fock states (permanents):

|ψ(t)〉 =

N/2∑
m=0

Cm(t)
(
â†kâ
†
−k

)m (
â†S

)N−2m
|0〉 , (4.13)
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Figure 4.1.: Population dynamics for the two-mode model driven by the coupling of
eq. (4.12). In each panel, the respective values of the total atom number N and the
detuning δ between source state and twin modes (normalized as defined in the text)
are given. False color (logarithmic scale): population of bosonic Fock states as defined
in eq. (4.13) from exact solution, normalized to N . Solid lines: expectation value
〈N+〉 of twin beam population from exact solution. Dashed lines: 〈N+〉 from density
matrix approximation (section 4.4). Dotted lines 〈N+〉 from Bogoliubov (undepleted)
approximation (section 4.3) .

where |0〉 denotes the vacuum state. Assuming all levels to be energetically degenerate,
we can now numerically propagate this state using Hamiltonian (4.12) with initially
Cm(0) = δm0 [205].
The result for the populations of the Fock states |Cm(t)|2, along with the expectation

value of the total twin-beam population N+ = 〈ψ(t)| â†kâk + â†k′ âk′ |ψ(t)〉, is shown in
the leftmost panels of fig. 4.1. The natural time scale for the process is given by the
effective coupling Ω ≡ κN , where N = N+ +NS denotes the total atom number. One
observes an initial slow rise, followed by the onset of strong bosonic amplification that
rapidly redistributes the population towards the twin beams, up to complete depletion.
Subsequently, a net back-scattering into the source mode occurs, however, the state
vector acquires a more complex, branched structure and even exhibits interference
phenomena between branches in Fock space.
Additionally, a detuning of the twin beam kinetic energy with respect to the excess

energy of state S can be introduced, and defined in a normalized way as δ = (εS −
~2k2/2m)/Ω, where m denotes the particle mass. This is easily accomplished by
adding a term Ĥδ = δ · Ω · â†SâS to the total Hamiltonian. In the resulting plots in
fig. 4.1, a weaker emission is observed, which completely vanishes at δ = 1, which is
consistent with the broadening expected from energy-time uncertainty.
Also, the prediction for the two-mode case from the Bogoliubov and density matrix
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4. Twin-beam production in a matter-wave

approximations are shown. For the former, the twin-beam population can be simply
written as [see eq. (4.26) below]3

N
(Bog)
+ = 2

sinh2(
√

1− δ2Ωt)

(1− δ2)
, −1 < δ < 1. (4.14)

All three curves show excellent agreement at early times. While the Bogoliubov
description fails already at less than 20% of scattered atoms due to negligence of
source depletion, the density matrix expansion agrees satisfactorily up to the point of
maximum emission, and qualitatively also accounts for the backscattering.

4.3. Bogoliubov approximation

In this section, instead of keeping products of four field operators as in eq. (4.8), we will
derive the twin-beam creation dynamics using the Bogoliubov approximation (2.14):
Ψ̂(r, t) ≈ ψ0(r, t) + δ̂(r, t). Here, the source cloud is considered as the (c-number)
condensate ψ0, whereas only the twin beams are contained in the quantum field δ̂. As
already mentioned in sec. 2.2, in the Bogoliubov approximation, scattering in and out
of the twin beams does not change the amplitude of |ψ0|2, i.e. the condensate is not
depleted accordingly. This is known as undepleted pump approximation in quantum
optics and can be safely used for pair generation in optical devices [24], where the
yield of the twin-beam emission is negligibly small due to the limited interaction time.
Also, this approach has been widely applied to twin-atom creation [278,279,286–288],
and has been successful in describing numerous experiments [73–76, 280], where the
depletion of the source state is small.
In our case, the interaction time can in principle be arbitrarily long, and the conver-

sion into twin beams is mostly limited by depletion. This means, that the Bogoliubov
approximation will yield divergent results, and is only valid at the very beginning
of the emission process. Still it provides a particularly simple description, that also
correctly predicts some basic features (such as the twin-beam kinetic energy and band-
width). Furthermore, in contrast to the more quantitative theory described below, one
obtains the full field operators for the twin-beam modes, giving access to not only the
twin-beam populations, but also higher-order correlation functions (as discussed in
sec. 2.3).
Our starting point is the Heisenberg equation for δ̂ that is derived from the quadratic

excitation Hamiltonian (2.19):

i~
∂δ̂

∂t
= [Ĥ0 + 2g|ψ0(r, t)|2]δ̂ + gψ2

0 δ̂
†, (4.15)

with the single-particle Hamiltonian Ĥ0 as introduced in eq. (2.10). The second term
in brackets can be understood as an effective potential for the excitations due to the
condensate mean field (with the factor of 2 implicitly arising from symmetrization).
The last term allows for production of twin beams. For simplicity, we do not consider
a trapped source cloud, but assume a homogeneous one-dimensional gas with line

3Compared to eq. (4.26), the notation is slightly different here, which can be resolved by recognizing,
that N+ = 2Nk, δ = ∆/Ω.
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4.3. Bogoliubov approximation

density n1d in a box of length L. The source cloud is in vibrational inversion along
y, whereas the twin-beam modes, which are assumed as plane waves, reside in the
transverse ground state. Thus, we can write:4

ψ0(r, t) =
√
n1dφ1(y)φ0(z) exp[−i(µ1/~)t] (4.16)

δ̂(r, t) = φ0(y)φ0(z)L−1/2
∑
q

exp[−iqx]âq(t).

We insert those functions into eq. (4.15), multiply the result with φ∗0(y)φ∗0(z)L−1/2 ·
exp(ikx), and integrate over all spatial directions. As the mode coupling strengths
κk,k′ are non-zero only for k′ = −k in an infinite system, we obtain:

i~
∂âk
∂t

=

(
~2k2

2m
+ 2gn1dα01

)
âk(t) + gn1d exp[−2i(µ1/~)t]β01â

†
−k(t). (4.17)

We now take the time derivative of (4.17), substitute ∂â−k/∂t and â−k(t) (by solving
eq. (4.17) for those). This gives a second-order differential equation for the dynamics
of âk(t):

∂2âk
∂t2

+ 2i
µ1

~
∂âk
∂t

(4.18)

+ ~−2

[(
~2k2

2m
+ 2gn1dα01

)(
~2k2

2m
+ 2gn1dα01 − 2µ1

)
− g2n2

1d|β01|2
]
âk(t) = 0.

At this point, let us define some characteristic frequencies/energies of the twin-beam
system:

Mode kinetic energy: εk = ~2k2/(2m) (4.19)
Source excess energy: εS = µ1 − 2gn1dα01 (4.20)

= hν1 − gn1d(2α01 − α11)

Mode detuning: ∆k = (εk − εS)/~ (4.21)
Emission rate: Ω = gn1d|β01|/~. (4.22)

Eq. (4.20) describes the source excess energy (which is shifted from ν1 by mean field
effects [63, 68, 75]) that will be converted into the twin-beam peak kinetic energy.
The typical rate of twin-beam production is given by Ω. We further define âk(t) ≡
b̂k(t) exp[−i(µ1/~)t] (corresponding to a shift of the energy zero point), and finally
write eq. (4.18) in a more meaningful way as:

∂2b̂k
∂t2

+ (∆k + Ω)(∆k − Ω)b̂k(t) = 0. (4.23)

For |∆k| < Ω, the solution reads:

b̂k(t) = Â cosh[ωkt] + B̂ sinh[ωkt], (4.24)

4In this section, as we will be concerned with plane-wave states with well-defined momenta, we will
use the direct notation âk, instead of the (enumerated) âi.
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4. Twin-beam production in a matter-wave

where we defined ω2
k = |Ω2

k−∆2
k|. For |∆k| > Ω, the hyperbolic functions are replaced

by cos and sin, giving an oscillating solution, leading to negligible mode populations.
This implies, that the amplification bandwidth, i.e. the (kinetic) energy range around
εS where twin beams are produced, is given by Ω (power broadening). The coefficients
Â, B̂ can be determined from initial conditions, and we finally obtain for modes within
the bandwidth:

b̂k(t) = âk(t)e
i(µ1/~)t = âk(0) cosh[ωkt]− iω−1

k [∆kâk(0) + Ωâ−k(0)†] sinh[ωkt]. (4.25)

Thus, if the modes are empty initially, the population dynamics is

Nk(t) = 〈â†k(t)âk(t)〉 =

(
Ω

ωk

)2

sinh2[ωkt], (4.26)

which is obtained from the commutation relations for the âk(0). See fig. 4.1 for a
comparison to the exact result for two modes (in the figure, δ = ∆/Ω). The peak
production rate of twin beams is reached if ∆k = 0, at a momentum k0 =

√
2mεS.

Similarly, one can derive non-local and higher correlation functions, such as G(1)

(or, equivalently, ρ, see sec. 4.4) and the anomalous density M :

G
(1)
k,k′(t) ≡ ρk,k′(t) = 〈â†k(t)âk′(t)〉 = δk,k′Nk (4.27)

Mk,k′(t) = 〈âk(t)âk′(t)〉 = [−i
√
Nk cosh[ωkt]− (∆k/Ω)Nk]δk,−k′ , (4.28)

the latter being nonzero only for modes with opposite momenta. For initially empty
modes, Wick’s theorem states that the second-order correlation function behaves as
G

(2)
k,k′ = NkNk′ + |G

(1)
k,k′ |

2 + |Mk,k′ |2, and thus:

g
(2)
k,k′(t) = 1 + δk,k′ + [N−1

k cosh[ωkt] + (∆/Ω)2]δk,−k′ , (4.29)

indicating excess second-order correlations only at identical same (Hanbury Brown-
Twiss bunching) and opposite (back-to-back pair correlations) momenta [286].
As demonstrated in refs. [287, 288], in contrast to the two-mode model, the theory

explained in this section can be extended to inhomogeneous systems by choosing ap-
propriate wave functions for ψ0 and δ̂. In fig. 4.2, numerical results of such calculations
for our system, that have been obtained in collaboration with Jan Chwedeńczuk and
Tomasz Wasak, are shown.

4.4. Density matrix expansion

While the Bogoliubov approximation provides complete information about the state
of the emitted twin beams, it fails to quantitatively describe the experiments pre-
sented in this thesis: Quickly after the onset of twin-beam emission, the depletion
of the source population becomes dominating, whereas at short times its continuous
pumping from the ground state have to be considered. Both is hard to achieve when
treating the source state as a classical field. Instead of splitting the matter-wave into
a classical part and quantum perturbations, we now describe the system in its en-
tirety in terms of reduced density matrices of increasing order [192, 193], in analogy
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4.4. Density matrix expansion
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Figure 4.2.: Numerical results obtained from finite-size Bogoliubov calculation. (a)
False-color plot (a.u.) of G(2)

k,k′ at . 1ms after starting the emission process with
N = 800 atoms in the source cloud. The superimposed black line indicates the density
distribution. Note that the back-to-back peaks at k = −k′ = k0 are significantly
higher than the bunching peaks at k = k′ = k0, indicating violation of the Cauchy-
Schwarz inequality (see sec. 5.3.4). (b) Total population of twin-beam modes for
N = 350 (black) and N = 800 (red). As depletion is not accounted for, the twin-beam
population grows rapidly, and assumes unphysical values > 1 after few milliseconds.

to a classical BBGKY hierarchy.5 We start from the single-particle density matrix
ρ[≡ G(1)], which corresponds to tracing out all but one particle from the total system.
It is sufficient for describing single-particle observables, such as distribution functions
in real or momentum space, single-particle eigenmodes, and their populations. In con-
trast to symmetry-breaking approaches, the particle number is strictly conserved [289],
allowing to treat depletion appropriately.
Using the density matrix description, meaningful approximations can be made by

truncating the hierarchy of correlations of increasing order, at some point appropriate
for the system under study. This relies on the assumption that those higher cor-
relations become less and less important and can be factorized into densities [as in
eq. (2.25)]. Initially developed for approximating problems in classical kinetic theory,
this method has been extended to quantum problems early on. A treatment of bosonic
Josephson dynamics in a quantum gas beyond mean fields has been demonstrated in
ref. [290]; the application to our system, which is formally similar to the one demon-
strated in ref. [291], has been conceived by Ulrich Hohenester, and will be outlined in
the following.

4.4.1. Equations of motion

Primarily, we want to study the amplified population growth of the twin beams, so
we are directly interested in the entries of the single-particle reduced density matrix,
expressed in terms of basis states i, j:

ρij = 〈â†i âj〉 (4.30)

5The concept of reduced density matrices is essentially equivalent to increasing-order non-normalized
Glauber correlation functions (sec. 2.3), using a language related rather to statistical physics than
quantum optics. For example, the single-particle density matrix ρ, as already used in the context
of quasi-condensates [eq. (2.36)] is analogous to the G(1) function.
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4. Twin-beam production in a matter-wave

which has the populations of twin-beam modes i, j on its diagonal, and off-diagonal
coherences between them. The source population will be denoted as NS ≡ ρSS =
〈â†SâS〉. An extended description, that also includes the absolute ground state of the
system will be given in chapter 5. The Heisenberg equation of motion for â†i âj and the
multi-mode Hamiltonian (4.8), plus free evolution (which contains the total twin-beam
mode energies ε′i, see below) Ĥ0 =

∑
i ε
′
iâ
†
i âi + µ1â

†
SâS leads to the expressions (with

~ ≡ 1):

ρ̇ij = −i
〈[
â†i âj , Ĥ0 + ĤMM

]〉
(4.31)

= −i
[
ε′iρii − ε′jρjj

]
+
∑
m

(κim∆mj −∆∗imκmj)

ρ̇SS ≡ ṄS = −
∑
i

ρii,

depending on the two-particle density matrix entries:

∆ij ≡ ∆ijSS = 〈â†i â
†
j(âS)2〉. (4.32)

Truncating the density matrix hierarchy at this level by e.g. factorizing ∆ij ≈√
NiNjNS would correspond to a mean-field theory, where correlation functions higher

than first order are assumed to be that of a coherent state [290]. It can immediately be
seen by inserting this approximation into eq. 4.31, that such a description would fail
in our case, as Ni = 0 for any i in the initial (empty) state, and hence ρ̇ii = 0 for all i.
Thus, we have to derive an approximate set of equations of motion for the entries ∆ij .
Proceeding one step further in the density matrix hierarchy, the Heisenberg equation
for ∆̇ij will contain three-particle correlations. We factorize those into products of
lower-order density matrices,6 e.g.:

〈
â†i â
†
j â
†
SâlâmâS

〉
≈ ρilρjmNS, (4.33)

finally leading to

i∆̇ij ≈− κijNS(NS − 1) + (2NS + 1)
∑
m,l

κmlρimρjl

−NS(NS − 1)
∑
m

(κimρmj + κjmρmi) (4.34)

+ ∆ij [2µ1 − ε′i − ε′j ] .

This expression now allows for growth of the twin-beam mode populations ρii, due to
the first term, which does not depend on any elements ρij and hence can account for

6The best way to concatenate the field operators is not obvious a priori, and it has been suggested
that all possible combinations have to be averaged [289]. However, for our case, factorizing the
source population NS out of the three-particle correlation gave satisfactory results.
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Figure 4.3.: Density matrix elements for the two-mode problem at different detunings
δ. Parameters are as in the upper row of fig. 4.1. Black dashed line: twin-beam
population N+ = 2Nk. Red dotted line: source population NS. Blue dash-dotted line:√
NkNS. Green solid line:

√
|=∆|. Note, that |=∆| > NkNS = 0 initially, allowing

for growth of twin beams.

spontaneous scattering into empty modes. The last term ensures energy conservation,
and acts similarly to the detuning ∆k in the Bogoliubov picture. We can now solve
the equations of motion for the single-particle density matrix (4.31). Some results for
our system will be presented below.
Before, it is instructive to revisit the two-mode case from sec. 4.1 using the density

matrix formalism. In this case, using the nomenclature introduced in that section,
eq. 4.34 reduces to:

∆̇ ≈ iκ
[
NS(NS − 1)(2Nk + 1)− 2N2

k (2NS + 1)
]
, (4.35)

with Nk = ρkk = ρk′k′ . The second term in brackets accounts for the backscattering of
population into the source state, as also observed in the exact solution (sec. 4.2), even
though there are quantitative deviations. For εS = εk, eq. (4.31) becomes Ṅk = 2κ=∆,
resulting in the dashed curves in the left column (δ = 0) of fig. 4.1. Initially, Nk = 0
and NS = N � 1, and eq. (4.35) reduces to ∆̇ ≈ iκN2. Consequently, the emitted
population grows quadratically as Nk ≈ (Ωt)2 (with Ω = κN), which for short times t
is consistent with the two-mode Bogoliubov approximation, eq. (4.14). If a detuning is
present, standard free evolution terms have to be included, leading to the data shown
in the δ 6= 0 panels in fig. 4.1, which show good agreement with the exact solution. In
fig. 4.3, the matrix elements from the two-mode density matrix model are shown for
different detunings.

4.4.2. Results for our system

We now discuss some results obtained from numerically solving the dynamics of the
multi-mode single-particle density matrix, eq. 4.31, for the parameters of the exper-
iments shown in this thesis. For the longitudinal source state in eq. (4.10), instead
of the homogeneous system in sec. 4.3, we assume a Thomas-Fermi profile corre-
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4. Twin-beam production in a matter-wave

sponding to the longitudinal confinement Vext(x): ψS(x) = ψTF(x) ≡
√
nTF(x),7 i.e.

κij = gβ01

∫
ψ∗i (x)ψ∗j (x)nTFdx. We neglect the phase fluctuations present in a realistic

quasi-condensate at temperatures T > Tφ (sec. 2.4.2).
For the longitudinal modes of the twin beams, we can assume trapped eigenstates

ψi(x), which can be inferred from solving the time-independent Schrödinger equation
analogous to eq. (4.15):

ε′iψi(x) =
1

2m
∇2ψi(x) + [Vext(x) + 2gα01nTF(x)]ψi(x). (4.36)

The effective potential term within the TF radius is rather flat, as there nTF(x) =
nTF(0) − (gα00)−1Vext(x), and 2α01 ≈ α00. Hence, near the density peak (where the
twin beams are mostly emitted) the solutions closely resemble plane waves with kinetic
energy εi ≈ ε′i−2gα01n1d(0), restoring the situation of the Bogoliubov approximation.
As a basis set for the calculation, we choose a sufficient number of states around ε′i ≈ µ1

to cover the expected amplification bandwidth Ω = gβ01nTF(0). Alternatively, we will
also consider the case of plane, running waves with periodic boundaries (i.e., ring
topology) of length L:

ψ′i(x) =
1√
L

exp(ikix), (4.37)

similar to the treatment shown in the previous section. In this case, we directly assign
energies ε′i = εi + 2gα01nTF(0) in the simulation.
This assumption of stationary basis states (and hence, coupling coefficients κ) only

holds for the very onset of emission, where the mean field is mostly given by atoms in
the transversely excited state. Currently, the density matrix simulation is limited to
static wave functions and energies, however, as 2α01−α11 � εS we expect the impact
of changing mean fields to be small.
In fig. 4.4, the time evolution of the twin-beam populations predicted by the density

matrix expansion are shown for plane waves and trap eigenstates. From the simulated
single-particle density matrix entries ρij(t), real and momentum space distributions
can be inferred as:

n(x, t) =
∑
i,j

ψ∗i (x)ψj(x)ρij(t), ñ(k, t) =
∑
i

ψ̃∗i (k)ψ̃j(k)ρij(t) (4.38)

ψ̃i(k) =

∫
ψi(x)e−ikxdx.

It is observed that twin-beams wave packets are created near the center of the TF
distribution, and then propagate outwards with a peak momentum k0 =

√
2mεS ≈

5.5 µm−1, with εS ≈ hν1 − gnTF(0)[2α01 − α11] as derived above. While in the plane-
wave case, the momentum distribution remains constant and matter-wave packets
propagate across the periodic boundaries (as in a ring geometry), for the trapped

7As the longitudinal wave function does not have sufficient time to relax according to the changed
interaction constant after excitation, we assume a TF potential that is derived from the ground
state chemical potential before excitation (i.e., which contains α00, not α11).
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Figure 4.4.: Twin beam evolution in momentum space (top) and real space (middle)
for N = 350 atoms. Grey lines indicate the Thomas-Fermi radius R of the source
cloud. On the bottom, the total population of the twin beams (black, solid), and the
populations of the first (red, dotted) and second (blue, dashed) pair of one-body eigen-
states are shown. Left: plane-wave basis with periodic boundaries. Right: effective
potential eigenstate basis.

states the momentum distribution soon broadens and shifts inwards when the packets
approach the turning points of the potential. Near the turning points, the real space
density temporarily narrows due to the strong anharmonicity of the mean-field effective
potential, and the packets travel inwards again. The bottom panel shows that the total
population of the twin beams N+ remains constant after ≈ 6ms, which corresponds
to the time when the twin-beam packets leave the region of the source cloud. This
can be estimated as τmax ∼ R · (~k0/m)−1 ≈ 4.5ms for the TF radius R ≈ 17 µm.
As can be expected, the population dynamics and initial shape of the wave packets
are not noticeably affected by the choice of the twin-beam basis set. After a half
oscillation (or round-trip, in the travelling-wave case), the two packets encounter each
other, causing a slight modulation in their total population, and a net transfer into
the second-largest pair of eigenmodes (see sec. 4.4.3).

4.4.3. Single-particle density matrix and fragmentation

We now take a brief look at the first-order coherence properties predicted for the twin
beams by the density matrix calculation. From a statistical mechanics viewpoint, the
single-particle density matrix ρ as introduced in eq. (4.30) has all but one of the N
particles traced out from the many-body density matrix of the full system [193]:

ρ = Tr(2...N){ρtot}. (4.39)

Even if the total system, represented by ρtot, is closed and undergoes a unitary evolu-
tion governed by the von-Neumann equation, the single-particle sub-system described
by ρ may evolve from a pure state (which we have prepared initially) into a mixed
state with respect to single-particle properties. Indeed, once the matrix elements ρij
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4. Twin-beam production in a matter-wave

acquire non-zero values, we observe several macroscopic eigenvalues of ρ. They are
composed of pairs with equal populations in each, where one pair has significantly
larger population than the others (see fig. 4.4, red dotted line). When using the plane-
wave basis [fig. 4.4, left panel, and eq. (4.37)], and neglecting all but the largest pair
of eigenvalues, we have in momentum space:

ρ0(k, k) =
N+

2
|ψL(k)|2 +

N+

2
|ψR(k)|2, (4.40)

where the orbitals ψL, ψR are peaked around momenta k0 and −k0, reflecting momen-
tum conservation. Also the less-populated pairs retain this symmetry. The first-order
correlation functions is then given by

g
(1)
0 (k, k′) =

{
1, k, k′ ∈ L or k, k′ ∈ R
0, otherwise.

, (4.41)

where L and R denote the regions in momentum space covered by each of the orbitals.
This result is equivalent to that obtained from the Bogoliubov approximation (4.27),
taking into account that the latter assumes a homogeneous system, where momentum
conservation is strictly obeyed and the mode pairs decouple.8 In other terms, we move
from a single condensate in the Penrose-Onsager sense (sec. 2.4.4) to a fully fragmented
state [193], where each of the twin-beams is an independent condensate with respect to
single-particle properties. The relative phase between these condensates is undefined
(as expected for a twin-Fock state). As the total evolution of the system is unitary, this
process must be accompanied by a buildup of higher-order correlations, as predicted
by the Bogoliubov approximation [fig. 4.2(a)]. This relation becomes obvious from the
viewpoint of each single particle (as represented by ρ), where the other N−1 particles
act as an environment, and the correlation buildup is perceived as a decoherence
process [290]. In our case, while their relative phase is undefined, number squeezing
between the twin-beams (which is a two-particle property) is present. However, as
the density matrix theory at its current stage of development is limited to calculating
single-particle quantities, only the former can be predicted.

8Also, in the finite-size Bogoliubov calculations (fig. 4.2), the same pair-wise appearance of eigen-
states is observed.
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5. Analysis of the experimental results

5.1. Overview

In this chapter, a detailed qualitative and quantitative analysis of experimental data
will be presented. As introduced in chapter 1, the two main goals of the investiga-
tions are, to prove stronger-than-classical correlations in the twin-atom beams, and to
understand the dynamics of the excitation and emission process.

Sequence for twin-beam production All our experiments start with the preparation
of a quasi-condensate as laid out in sec. 3.2.3. The final evaporation ramp, which cools
the cloud to quantum degeneracy, is performed in the dressed anharmonic trap (see
sec. 3.2.2). For the following steps, the anharmonicity of the transverse confinement
is crucial for two reasons. First, in a harmonic trap, the quasi-classical center-of-mass
motion and the internal dynamics of a cloud completely decouples, even in presence
of arbitrary two-body interactions [145,146]. The desired wave function, which is the
first excited solution of the Gross-Pitaevskii equation (GPE), has a different symmetry
(odd vs. even parity) and internal structure than the ground state (such as a non-
positive Wigner function). Hence, it could not be reached by displacement of the
trap, even for an optimized trajectory [251]. The second reason for the anharmonicity
relates to the emission process: for our potential, the level spacings are increasing
(ν1 = 1.84 kHz, ν2 = 1.99 kHz, see sec. 3.2.2). This means, that two-particle scattering
into combinations of transverse states, other than both atoms going to the ground
state, are energetically unfavorable.
Atom numbers in the final trap range between N ∼ 300 and N ∼ 2000 (see table 5.1

below), where most data has been taken at around N ∼ 800, which corresponds to
the non-linearity set in the excitation sequence optimization (appendix A). Assuming
longitudinal Thomas-Fermi profiles and transverse single-particle states, this latter
value corresponds to a Thomas-Fermi peak density of nTF(0) ≈ 25 µm−1, a chemical
potential µ0 ≈ h · 600 Hz, and a radius R ≈ 23 µm. The temperature of the final
clouds is hard to obtain precisely in the experiment, as no thermal cloud is visible in the
images, and the temperatures and densities are too low to apply density correlation
thermometry [153]. From the cloud width after expansion (appendix B) and the
emission dynamics (sec. 5.5), a temperature T ∼ 25 nK ≈ (h/kB) · 510 kHz for most
of the data sets is estimated. Hence, the conditions for a 1d description µ0, T < ν1 =
1.84 kHz are fulfilled, and we are in a quasi-condensate regime, as can be read off
fig. 2.1.
Having prepared the quasi-condensate in the anharmonic potential, we start the

excitation process that transfers the atoms into the source state. In fig. 5.1, the entire
twin-beam production sequence is depicted in various experimental and theoretical
results. All experimental data has been obtained by switching off all confinement
potentials at time t, and taking a time-of-flight image using the light sheet system,
as shown in fig. 5.2. At t = 0, the motion of the trap along y is started. In panel
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5. Analysis of the experimental results

(b), the trajectory λ(t), along which the trap travels until t = T = 5ms, is shown.
λ(t) has been derived from the optimal control calculation explained in appendix A.
The response of the transverse wave function can be obtained by solving the GPE
with an additional driving term [eq. (5.27)], the resulting momentum distribution is
shown in panel (c). Using the two-level driving model derived in sec. 5.4.3, we can
extract effective populations of ground and source state (panel d) from the numer-
ical solution. Experimental data for the transverse momentum distribution of the
source is shown in panel (e), which has been derived from time-of-flight fluorescence
images, see fig. 5.2. Up to t ∼ 7ms, the agreement with GPE numerics is excellent (a
quantitative comparison is presented in sec. 5.4.1), but degrades at later times due to
second-order collisions of the source cloud with the emitted twin-beam atoms not cap-
tured by the GPE. In panel (f), the numerically derived (see sec. 4.4) in-situ density
distribution of the twin-beam packets is shown, which are produced near the peak of
the initial condensate, and then propagate outwards. Finally, panel (g) displays ex-
perimentally obtained time-of-flight profiles along the longitudinal direction (note the
logarithmic color scaling). Soon after starting the excitation sequence, the twin-beam
peaks become visible at a position that corresponds to the momentum k0 =

√
2mεS

(see sec. 4.3). Also, the population of the twin-beams is shown and compared to results
of the density matrix expansion model developed in sec. 4.4.

Interpretation of fluorescence images With very few exceptions, all data shown in
this thesis have been acquired in expansion, as shown in fig. 5.2, using the light sheet
fluorescence imaging system of our experiment (see secs. 3.1.6 and 3.2.4 for details).
Even though changing the time-of-flight expansion time is possible by making hardware
adjustments, ttof = 46ms has been used throughout all measurements. The capability
to take slice images by pulsing the light-sheet beams briefly [43,202] is not used, which
means that the density distribution of the clouds is fully integrated over the transverse
z direction. The vertical extent of the cloud implies a dependence of the detection
time of each atom on its position along z with respect to the center of mass of the
falling cloud. While this should cause an additional blur of the images in regions
corresponding to high velocities in the lateral xy-plane, a straightforward calculation
for typical parameters shows, that this effect is negligible compared to the effect of
diffusion of atoms within the light sheet.
For a one-dimensional degenerate gas, as considered here, the fast transverse expan-

sion of the cloud causes atom interactions to vanish rapidly after release from the trap,
and the ensuing expansion can be considered ballistic [292]. Along y (i.e., integrat-
ing over x), the resulting image represents the initial momentum distribution, as the
transverse cloud size before expansion is negligible (far field). If we express momenta
as wave numbers ky, a distance δy in the image hence corresponds to δky = α δy with
α = m/~ttof ≈ 0.030 µm−2. The object space pixel size of our camera of 4 µm is then
equivalent to momentum space pixels of 0.12 µm−1 length.
Along the longitudinal direction x, the far field condition is not fully reached due

to the initial condensate radius of R ≈ 20 µm and the typical momenta in the quasi
condensate as given by the thermal coherence length λT (2.36) kφ = λ−1

T ∼ 0.1 µm−1 ≈
αL (see fig. 2.2). On the other hand, the center momentum of the emitted atoms is
k0 ≈ 5.5 µm−1 � (αL, kφ), hence the longitudinal overlap of the source cloud and the
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Figure 5.1.: Twin-atom beam production sequence. (a) Illustration of the process (as
fig. 1.1). (b) Excitation ramp λ(t), which is the displacement of the transverse trapping
potential. As a reference, the typical radius of the wave function is ly = 0.265 µm
(see sec. 3.2.2). (c) Numerically obtained transverse momentum density ñ(ky, t) as
a function of time, calculated for realistic experimental parameters. The momentum
axis is scaled to k0 =

√
2mεS (see sec. 4.3). (d) Relative population of transverse

ground and excited state, as calculated from the two-level model (sec. 5.4.3). (e)
Experimental transverse momentum density, obtained from time-of-flight images as
depicted in fig. 5.2. (f) Theoretical longitudinal density distribution of the twin-beam
modes, calculated as in fig. 4.4. The grey shaded area represents the linear Thomas-
Fermi density of the trapped condensate; the dashed lines correspond to the TF-radius
R. (g) Longitudinal profile of time-of-flight images, shown on a logarithmic color scale.
The vertical axis is scaled to equivalent momenta, as explained in the text. The black
solid line (which refers to the right axis) indicates the fraction of atoms emitted into
the twin beams as observed in the experiment, the dotted line shows the result of the
corresponding calculation as explained in sec. 5.5.
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x

y

Light sheet
plane200 µm

10.4 mm
ttof = 46 ms

Figure 5.2.: Detection of the source and twin-beam clouds in time of flight. At a time
t after starting the excitation sequence, all trapping potentials are switched off, and
the cloud expands freely while falling down a distance of ∼ 10.4mm, corresponding to
ttof = 46ms. After this time, the cloud reaches the light sheet (see fig. 3.7), where it
is detected by fluorescence. Along the transverse direction y, the distribution of the
source cloud (blue) corresponds to the excited state. The twin beams (shown in red),
which carry a momentum k0 that is large compared to the other momentum scales
present along x, separate during expansion, and their population can be detected, at
only minimal overlap with the source cloud.
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Figure 5.3.: Example image and profiles. Average over 12 experimental runs with
identical settings. (a) False-color image as obtained from the light sheet camera. Axes
are in real space at detection time, the scale bar indicates the spacing corresponding to
the typical twin-beam momentum. Dotted blue lines correspond to the regions defined
for the source cloud and the twin beams. (b) Longitudinal profile of (a). Top and
bottom x-axes correspond to real and equivalent momentum space units, respectively;
y-axis refers to real space. (c) Transverse profiles of (a) for source region (black dots)
and twin-beam regions (red dots), respectively; y-axis refers to momentum space. The
blue dashed line is a Gaussian fit to the twin-beam profiles (as used to extract the
co-oscillating coordinate systems in fig. 5.20).

emitted beams is negligible in the images for most of the data sets. However, this does
not imply strict equivalence of twin-beam peak momentum and time-of-flight position,
due to the in-situ propagation of the twin-beam wave packets. In sec. 5.5.3, this issue
will be addressed quantitatively. In fig. 5.3, a typical experimental image, averaged
over a few runs with identical settings, and the corresponding profiles are shown. The
calibration to absolute densities has been performed as described in sec. 3.2.4. In the
profile plots, both real-space and equivalent momentum-space units are given. False-
color plots that are used throughout this chapter to depict especially the dynamics of
the transverse momentum distribution ñ(ky, t) as shown e.g. in fig. 5.1(d), are derived
from profiles as the black one in panel (c). In those, usually we normalize each column
to its integral.

Analysis approach Quite generally, our approach for understanding the experiment
relies on separating the excitation (vibrational inversion) and twin-beam emission
dynamics as far as possible. While the time scales of excitation and emission overlap,
as seen in fig. 5.1, a clear distinction between both parts can be made in terms of
their spatial direction and, hence, length scales. The excitation occurs along the
transverse direction y (with ground state size ly ∼ 0.25 µm), whereas the twin-atom
beams are emitted longitudinally (with TF radius R ∼ 20 µm). We thus reduce the
complex three-dimensional dynamics to two one-dimensional descriptions, that have
been developed largely independently, and are coupled by some effective parameters
only.
With respect to the excitation process, the twin-beam emission acts as a decay

channel of the excited state. However, this does not affect the excitation dynamics
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5. Analysis of the experimental results

too much, as for t < T , the number of “decayed" twin-beam atoms typically remains
small. Also, as long as the criteria for a one-dimensional gas are fulfilled, thermal
effects play no role for the excitation – the phase fluctuations of the quasi-condensate
have a purely longitudinal nature. We can consider the condensate as a single-mode
system, and a rather simple mean-field description is appropriate. This justifies the
use of the GPE as underlying theory for the numerical simulations, which has been
extended by a simple driving term, see eq. (5.27). From comparing panels c and e in
fig. 5.1, it becomes evident that this approach is working quite well. In appendix A,
it is briefly described how, based on GPE simulations, the optimal control trajectory
for the excitation process was found.
Conversely, with respect to the emission process, the vibrationally excited source

state acts as an effective internal state of the atoms, which is collisionally unstable
and releases energy into the twin-beam momenta. To describe emission, we apply
the (essentially one-dimensional) theory developed in chapter 4, where the transverse
degree of freedom only appears in the definition of the overlap parameters in eq. (4.9),
and the time-dependent population of the source state. This population [fig. 5.1d]
constitutes the connection point between the theories, and will be eventually captured
by the two-mode model for the transverse excitation that is developed in sec. 5.4.3.
It allows to reduce the excitation dynamics to a simple continuous driving model,
which is fully characterized by three parameters, and can be easily used as input to
the emission calculations, which eventually agree well with the data [fig. 5.1(g)].

In this chapter After this quick review of the experiment sequence, the following
analyses will be presented in this chapter:

• The observation of strongly sub-binomial number fluctuations (squeezing) be-
tween the emerging twin beams, which is the principal result of this thesis, is
presented in some detail in sec. 5.2.

• A complementary analysis, based on second-order correlation functions, is laid
out in sec. 5.3, which will also lead to alternative means to estimate number
squeezing. Briefly, position-resolved correlations will be discussed.

• The dynamics of the transverse excitation into the source state (vibrational
inversion) is studied and compared to theory in sec. 5.4.

• The dynamics of emission into the twin beams is analyzed in sec. 5.5, using
the excitation dynamics results as an effective input parameter, along with the
theory developed in sec. 4.4.

• In sec. 5.6, preliminary data on the effects of finite temperature of the source on
the emission process is presented and discussed qualitatively.

While specific parameters like timing, atom number, temperature, or number of re-
alizations vary among the different taken data sets, to accommodate the requirements
of the various observables of interest, the basic experimental scheme largely remains
that described above. In table 5.1, all data sets which have been used in the data
treatment are listed for reference, their respective labels will be used in the remainder
of this chapter for quick identification.
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5.2. Twin-beam atom number squeezing

Table 5.1.: Data sets used for the results presented in this thesis. Ktot,Kset denotes
the total number of shots, and the typical number of realizations per parameter setting,
respectively.
Label Date Ktot Kset t(ms) N Used in Remarks

Sqz 23/08/10 1395 1395 6.5 700 5.2, 5.3 Big number squeezing set

DynA 30/05/11 5571 11 2.5. . . 12 790 5.4, 5.5 Scaled exc. pulses (I-V)

DynB 05/06/11 2061 11 2.5. . . 18 890 5.4 Scaled exc. pulses (B-I, B-II)

Corr 01/06/11 1400 130 5, 6.5 240. . . 2400 5.3 RF knife varied

VarT 06/12/11 1062 7 2.5. . . 15 680 5.6 RF knife varied (compensated)

VarN 04/07/11 1841 7 2. . . 8.5 300. . . 2000 5.4 Plain evap. time varied

Long 07/12/11 550 5 2.5. . . 100 400 5.5 Long holding time after emission

Pot 19/08/10 1300 8 0.1. . . 8 600 5.4 Offset field varied

5.2. Twin-beam atom number squeezing

In this section, we will analyze twin-beam data sets in the most simple way: in terms
of atom numbers N̂L and N̂R, that fall within two appropriately defined longitudinal
regions in momentum space on each single shot:

N̂L =

∫ −xmin

−xmax

n̂(x)dx N̂R =

∫ xmax

xmin

n̂(x)dx. (5.1)

In the following analysis, N̂L, N̂R, N̂+ = N̂L + N̂R, and N̂− = N̂L− N̂R denote cor-
responding random variables of a stochastic process. Expectation value and variance
of a variable X̂ will be equivalently denoted as E(X̂) ≡ 〈X̂〉 ≡ X and Var(X̂) ≡ ∆X̂2,
respectively.

Number squeezing factor The signature for twin-atom wave packets are suppressed
fluctuations of the number imbalance N̂− = N̂L − N̂R, also termed number squeezing.
To quantify this, we will analyze the variance of the number imbalance ∆N̂2

− = 〈N̂2
−〉,

assuming that 〈N̂−〉 = 0. For a symmetric, but uncorrelated emission processes into
both twin beams, one would expect a binomial distribution, similar to a fair coin flip.
The variance of such a process, denoted by ∆bN̂

2
−, is

∆bN̂
2
− = E(Varb(N̂−|N̂+)) + Varb(E(N̂−|N̂+))

= E(Varb(2N̂L − N̂+|N̂+)) + 0

= 4 · E(Varb(N̂L|N̂+)) (5.2)

= 4 · E
(
p (1− p) N̂+

)
= N+

with the law of total variance invoked in the first line and the success probability p =
NL/N+ = 1/2. To quantify the degree of number squeezing, the imbalance variance
is normalized to its binomial expectation, yielding the number squeezing factor :
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ξ2
− ≡

∆N̂2
−

∆bN̂
2
−

=
∆N̂2

−
N+

, (5.3)

which will be the main quantity of interest in this section.

Estimating number squeezing from photon numbers In the experiment, what we
measure is not directly the atom numbers N̂L, N̂R within the regions defined by
kmin, kmax, but the number of (effective, see sec. 3.2.4) photons ŜL, ŜR registered
on the EMCCD camera during fluorescence imaging. Assuming that we detect ex-
actly m photons from each imaged atom (i.e., neglecting any imaging noise), we
can write the sum and difference photon numbers as Ŝ± = mN̂±. As for a con-
stant a, Var(aX̂) = a2 Var(X̂), the binomial expectation for the imbalance variance
is ∆bŜ

2
− = m2∆bN̂

2
− = m2N+ = mS+, and we can write the uncorrected number

squeezing factor as:

ξ̃2
− ≡

∆Ŝ2
−

∆bŜ
2
−

=
∆Ŝ2
−

mS+
. (5.4)

This simple relation needs to be modified, if we take into account the additional noise
introduced by fluorescence imaging, as discussed in sec. 3.2.4, comprising detection
background and photon shot noise, the latter effectively leading to a stochastic value
of m for each atom. We can decompose the variance of the difference signal as:

∆Ŝ2
− = Var(E(Ŝ−|N̂−)) + E(Var(Ŝ−|N̂−))

= ξ2
−∆bŜ

2
− + ∆nŜ

2
− (5.5)

= ξ2
−mS+ + ∆nŜ

2
−,

the last term representing detection noise. As we assume the noise contributions to
ŜL and ŜR to be independent, we have ∆nŜ− = ∆nŜ+, and can directly apply the
expression for imaging noise derived in sec. 3.2.4, eq. (3.11):

∆nŜ
2
− = 2S+ + ∆b̂2. (5.6)

With this expression at hand, we can write:

∆Ŝ2
− = ξ2

−mS+ + 2S+ + ∆b̂2 (5.7)

ξ2
− =

∆Ŝ2
− −∆nŜ

2
−

∆bŜ
2
−

=
1

m

[
∆Ŝ2
− −∆b̂2

S+
− 2

]
, (5.8)

the latter equation allowing to estimate the number squeezing factor from experimental
data. In sec. 5.3.4 an alternative means to obtain the amount of detection noise will
be introduced, that yields compatible values.
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Figure 5.4.: Statistics of twin-beam data set of ≈ 1500 realizations. (a) Histogram of
signal imbalances Ŝ−. Lines represent normal distributions with variances ∆bŜ

2
− =

mS+ (black, dashed), ∆nŜ
2
− (red, dashed), ∆bŜ

2
−+∆nŜ

2
− (blue, solid), and ξ2

−mS+ +

∆nŜ
2
− with ξ2

− = 0.11 (black, solid). (b) Scatter plot of Ŝ− vs Ŝ+ for all experimental
realizations. Lines indicate 1σ ranges for the distributions as shown in panel (a).
Data points that lie outside the 1σ range for uncorrelated emission are shown in
blue. Note, that panels (a) and (d) represent projections of this plot on along its
horizontal and vertical axis, respectively. (c) Measured imbalance variances ∆Ŝ2

− for
bins of Ŝ+, divided by the mean photon number per atom m. Lines correspond to the
distributions from panel (a), as functions of S+. The red box corresponds to the total
data set, as shown in panel (a). (d) Measured corrected total signal in twin-beam
regions Ŝe = Ŝ+ − rŜ. Dashed line: Poissonian expectation for pair-wise, shot-noise
limited emission from an undepleted source [205]. Solid line: normal distribution with
variance exceeding shot noise by a factor of ξ2

+ = 4.7.
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In fig. 5.4, the results for Ŝ± obtained from a data set comprising ≈ 1500 experimen-
tal realizations with identical settings are shown in various representations. The total
evolution time of t = 7ms (i.e., 2ms additional holding time after excitation) has been
chosen as a compromise between high population of the twin beams, and little broad-
ening of twin beams and source cloud due to higher-order scattering (see sec. 5.5). In
the data set, the mean fraction of emitted atoms was r = N+/N = S+/S = 0.27, at
a mean total atom number of N = S/p = 710.
As is immediately seen in the histogram shown in panel (a), the distribution of

observed Ŝ− is much narrower then expected for a binomial distribution with width
∆bŜ− = mS+ (black dashed line). In fact, its width almost reaches the lower bound,
defined by detection noise ∆nŜ− (red solid line). Invoking eqs. (5.4) and (5.8), we
can directly compute the uncorrected and corrected squeezing factors observed in the
experiment:

ξ̃2
− =

∆Ŝ2
−

∆bŜ
2
−

= 0.37(3)

ξ2
− =

∆Ŝ2
− −∆nŜ

2
−

∆bŜ
2
−

= 0.11(2),

which is one of the main results of this thesis.
To estimate the given uncertainties, we propagated the standard errors for ∆b̂2, S+,

∆Ŝ2
−, and m, the latter obtained from an independent measurement as described in

sec. 3.2.4. The standard error of the variance ∆Ŝ2
− = (K − 1)−1

∑K
k=1(Ŝ

(k)
− − S−)2,

whereK denotes the number of experimental runs, is estimated as ∆Ŝ2
−·(2/(K−1))1/2.

In sec. 5.3.4, similar results for other data sets (with varied parameters and smaller
realization numbers) will be reported.

Ŝ+-dependent analysis To further analyze the outcome of the measurement, e.g.
with respect to the small but finite value of ξ2

−, we now investigate the signal statistics
within bins of the total signal in the twin-beam regions S+, which is proportional to the
emitted atom number. In fig. 5.4(b), a scatter plot of Ŝ− vs. Ŝ+ is shown, each point
corresponding to a single observation. Lines indicate 1σ-widths for the distributions
as shown in panel (a), i.e., the range within which 68% of the observations should lie
if the distribution applies, as a function of S+. Here, number squeezing is observed in
only ≈ 7%� (100−68)% of the observations lying outside the range for uncorrelated
emission (blue points). We now bin the observations with respect to Ŝ+, and calculate
∆Ŝ2

+ and S+ independently for each bin. The result is shown in fig. 5.4(c), again
together with lines corresponding to the variances of the distributions in panels (a)
and (b) as a function of S+. The data points are compatible with having a constant
distance from the line for detection noise only, suggesting that the nonzero value of
ξ2
− arises from a constant noise contribution, as opposed to uncorrelated emission.
A plausible reason would be a residual overlap of uncorrelated source atoms into
the analysis regions; a root-mean-square fluctuation of

√
ξ2
−N+ ≈ 4.5 atoms (with

N+ = S+/m) would suffice to explain the value. However, as even slight position
fluctuations of the entire cloud would cause a strongly super-binomial distribution
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5.2. Twin-beam atom number squeezing

near the steep edges of the source cloud peak, this value rather constitutes an upper
limit.

Emitted atom number fluctuations In figure 5.4(d), a histogram of the corrected
signal in the analysis regions Ŝe = Ŝ+ − rŜ is given. Here, Ŝ denotes the total flu-
orescence signal (including the source cloud), which corresponds to the total atom
number; r is the average emitted atom fraction S+/S = N+/N (with the total atom
number N). Using Ŝe instead of Ŝ+ for the analysis of fluctuations in the number of
atoms emitted into twin beams eliminates the influence of total atom number fluc-
tuations [205]. The variance of Ŝe exceeds its expected value for pair-wise shot-noise
limited emission from an undepleted source (following a Poissonian distribution) by a
factor of ξ2

+ ≈ 5. Furthermore, the distribution is strongly asymmetric (and, hence,
non-normal).

Analysis region definition A crucial question for the analysis presented in this section
has been the definition of the twin-beam regions [positions xmin, xmax in eq. (5.1)]. We
proceeded by finding values that minimize the obtained value of ξ2

−, while keeping the
range reasonably small, so that the necessary background correction is kept moderate.
Due to the sufficient, but small spacing between the twin beams and the source cloud
in the images, the definition of xmin is much more critical for the final results. In
fig. 5.5(a), the added density profiles of both twin beams (from outer to inner edge, i.e.
right twin beam mirrored) are shown, along with cumulative profiles, corresponding to
S+ and ∆Ŝ2

− in regions from the outer edge of the plot to the position on the horizontal
xmin-axis. The squeezing factor obtained in a region defined to a given xmin can be
obtained by dividing the two curves, or equivalently subtracting them, if plotted on
a logarithmic scale. The result is shown in panel (b). It is observed that, after a
steep rise (presumably due to finite imaging resolution) there is a relatively constant,
sub-binomial plateau, up to the strong twin-beam peaks. Somewhat unexpectedly, ξ2

−
first rises at this position, which is likely due to position fluctuations of the peaks.
Afterwards, it sharply drops to a minimum, the position of which corresponds to
the optimal value for the inner limit xmin. The dashed line indicates the value of
xmin = 112 µm=̂28 pixels chosen for further analysis. It roughly corresponds to the
density minimum between twin beams and source cloud. Choosing the outer limit
xmax is less critical, in panels (c) and (d) corresponding plots are shown, where the
previously determined value of xmin has been used as lower integration limit.
In the plots, a peculiar feature is visible in the density profiles: outside the twin-

beam peaks, very weak (∼ 1 atom per twin beam) second peaks can be observed on
each side. These are likely to be due to emission from higher excited states, that
have been inadvertently excited in the mechanical excitation process. In sec. 5.3.5 it
will be demonstrated, that the second peaks indeed are strongly correlated to each
other, by means of a second-order correlation analysis. Note, that in other data sets
taken later (that have been measured with some technical improvements done in the
meantime, see sec. 3.1.4), the second peaks are absent. In panel (d) it is seen, that
the number squeezing is improved, if the second peaks are included into the analysis.
The (within its errors) constant value of ξ2

− beyond the second peaks indicates, that
the background variance ∆b̂2 has been estimated appropriately.
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Figure 5.5.: Analysis region definition, note the logarithmic scales in all panels. (a)
Black line: (momentum) density profile (in photons per pixel of 4 µm width) of both
twin-beams added (right peak inverted), starting from the outer edges of the total
density profile, and running towards the central peak (source cloud). Red line: cu-
mulative profile, corresponding to S+ in a region defined by the outer edge and the
position on the horizontal axis. Blue line: cumulative imbalance variance, normalized
to m. Number squeezing is present for values of xmin where the blue line lies below
the red. (b) Number squeezing factor corresponding to inner limit positions given on
the horizontal axis. Grey lines are standard errors. Red dashed line: binomial level
ξ2
− = 1. Black dashed line: inner limit value corresponding to the xmin chosen for
analysis. (c) Analogous to (a). However, integration for the cumulative functions is
now running from the value for xmin given in panel (b) to the position on the horizontal
xmax axis. (d) Analogous to (c).
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5.3. Second-order correlation functions of twin beams

A more general approach of analyzing number squeezing, without having to define
arbitrary regions, will be presented within the context of second-order correlation
functions in sec. 5.3.5.

5.3. Second-order correlation functions of twin beams

We now apply a complementary approach of analyzing the correlation between twin
beams, which, instead of atom numbers, is based on second-order correlation func-
tions as introduced in sec. 2.3. The signature of stronger-than-classical correlations
in second-order correlation functions is the violation of the Cauchy-Schwarz inquality
(CSI) [26, 31], which has recently been demonstrated in matter waves [76], albeit in
a strongly multi-mode regime. For twin beams with identical populations, this viola-
tion is equivalent to number squeezing (see below) and thus should be present in our
experiment. However, the behavior of both approaches with respect to the structure
and population of the twin-beam modes differs strongly [293]. For the high popula-
tions present in a few-mode scheme based on stimulated emission, number squeezing is
the more common measure [10], even though also Cauchy-Schwarz violation has been
shown in this regime [294]. Still, for projected experiments extending those presented
in this thesis (see sec. 6) more sophisticated means for correlation detection than sim-
ple number squeezing might be required, and even for present data some additional
insight is obtained. The feasibility of performing such measurements, the relation to
number squeezing as found in sec. 5.2, and some first results will be discussed in this
section.

5.3.1. The Cauchy-Schwarz inequality for correlation functions

For any pair of variables Â, B̂, the correlation between them 〈ÂB̂〉 cannot exceed their
respective autocorrelations 〈Â2〉 , 〈B̂2〉. This is easy to see by considering that for the
maximally correlated case Â ≡ B̂, all those correlations are exactly equal. As an
example, if we consider the intensity I(x) of a field (where x is a point in space and
time) at two different positions, this writes

| 〈I(x1)I(x2)〉 |2 ≤ 〈I(x1)I(x1)〉 〈I(x2)I(x2)〉 . (5.9)

This Cauchy-Schwarz inequality (CSI) also holds for commuting quantum observables,
such as the density n̂(x) = 〈Ψ̂†(x)Ψ̂(x)〉 of a matter wave field.
However, this is not true for coincidences as measured in a quantum optics experi-

ment along the lines of [26], which are given by the higher-order correlation functions
as introduced in sec. 2.3. The underlying reason is the quantized nature of the de-
tection process. The definition of quantum correlation functions has to be normally
ordered (all annihilation operators are on the right side), to appropriately capture the
coincidence probability of two (or more) quantized events [24, 25]. The second-order
correlation function is hence not given by a product of commuting operators, and a
commutation relation has to be applied before the CSI. We discuss the simplest case of
second-order correlations between two modes, the annihilation operators of which will
be denoted as â1, â2, with populations N̂i = â†i âi. The modes shall be symmetric, such
that N = 〈N̂1〉 = 〈N̂2〉, and 〈N̂2

1 〉 = 〈N̂2
2 〉. From the bosonic commutation relation, it

follows, that:
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G
(2)
11 ≡ 〈â

†
1â
†
1â1â1〉 = 〈N̂2

1 〉 −N, G
(2)
12 ≡ 〈â

†
1â1â

†
2â2〉 = 〈N̂1N̂2〉 , (5.10)

where the shot noise of magnitude N distinguishes the same-position coincidence prob-
ability (autocorrelation) from the mean squared population. The CSI (5.9) can be
applied to the commuting populations N̂1,2 to obtain

〈N̂1N̂2〉 ≤ 〈N̂2
1 〉

G
(2)
12 ≤ G

(2)
11 +N (5.11)

g
(2)
12 ≤ g

(2)
11 + 1/N,

with the normalized second-order correlation g(2) as introduced in eq. (2.27). Thus,
due to the quantized nature of detection, second-order correlation functions g(2) can
violate the CSI by a margin given by 1/N , restoring eq. (5.9) only in the classical case
N →∞.
The number squeezing factor for two symmetric modes ξ2

− = 〈(N̂1 − N̂2)2〉 /N+,
N+ = 2N as introduced in sec. 5.2 can be written in terms of second-order correlation
functions as:

ξ2
− = 1 +N(g

(2)
11 − g

(2)
12 ), (5.12)

which has the remarkable consequence, that for a symmetric two-mode system, number
squeezing is equivalent to a violation of the CSI. However, the strength of CSI violation,
which can be quantified by

v =
g

(2)
12√

g
(2)
11 g

(2)
22

= 1 +
1− ξ2

−

g
(2)
11 N

(5.13)

will be decreasing with the mode population N . For the case of twin-beams in the
undepleted source approximation (sec. 4.3 and [278]), one expects g(2)

11 = 2, so eq. 5.13
reduces to

v = 1 +
1− ξ2

−
2N

, (5.14)

which will be a benchmark for the experimental results shown below.

5.3.2. Measuring second-order correlations

A typical experimental scheme used to measure second-order correlations in a light
beam is shown in 5.6(a). Here, an incoming beam is split in two using a beam splitter,
and coincidences between detection events are recorded as a function of lag time δt
between them. It can be shown [25,31], that the normalized coincidence rate is equal to
the temporal, averaged g(2)(δt) function, as defined in eq. (2.29). Analogously, matter-
wave experiments using single-atom detectors (such as micro-channel plates), where
each detected atom causes a discrete event, can directly measure normally ordered
correlation functions [42, 64, 73, 152, 154]. Here, typically, coincidences are counted
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Figure 5.6.: Measurement of second-order correlation functions. (a) Typical mea-
surement setup for the second-order coherence of an incoming light beam [31], using a
beam splitter (BS), two single-photon-sensitive photodiodes (PD), and a coincidence
counter (CC). (b) Setup for measurement of relative coincidences between two beams
originating from a twin-beam source (TBS), allowing to demonstrate violation of the
CSI. All beam are sent into a coincidence counter, and second-order correlations are
calculated for each combination of input ports. (c) Simplified scheme for measuring
the second-order correlation function for one of the twin-atom beams, as described in
the text. For each non-adjacent combination of the four transverse bins, coincidences
are detected. In the actual experiment, the number of bins corresponds to the number
of transverse pixels, which is of the order of 200.

as a function of the spatial distance δx between two detection events, which for long
expansion time is equivalent to momenta δk (similar to fig. 5.3).

In cold atom experiments using fluorescence or absorption imaging, atoms are not
detected as discrete events, but their density n, integrated along the viewing direc-
tion, is inferred from the (usually large) number of photons that is scattered from the
imaging light. If the smallest optically resolvable distance is larger than the typical
separation of atoms in the image, which is usually the case, it is not possible to uniquely
assign the measured detection events (scattered photons) to individual particles. This
impedes a direct coincidence measurement. Instead, one obtains a density-density cor-
relation function [43,153,178]; if we denote by N̂(x, y) =

∫ x+l/2
x−l/2

∫ y+l/2
y−l/2 n̂(x′, y′)dx′dy′

the number of atoms1 seen in a camera pixel of size l, centered at (x, y), it is defined
as:

G̃(2)(x, y, x′, y′) = 〈N̂(x, y)N̂(x′, y′)〉 ; g̃(2)(x, y, x′, y′) =
G̃(2)(x, y, x′, y′)

N(x, y)N(x′, y′)
,

(5.15)

where we used the notationN(x, y) ≡ 〈N̂(x, y)〉. As becomes clear from eq. (5.10), this
function is not generally equivalent to the second-order correlation, as in a quantum
description with N̂(x, y) = â†(x, y)â(x, y), the annihilation and creation operators

1In contrast to sec. 5.2, we will – for the moment – neglect detection noise, and assume that we
can measure atom numbers directly. For our fluorescence imaging this amounts to assuming
N̂(x, y) = Ŝ(x, y)/m. This will be justified and discussed further in sec. 5.3.4.
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have anomalous order in g̃(2):

g̃(2)(x, y, x′, y′) =

〈
â†(x, y)â(x, y)â†(x′, y′)â(x′, y′)

〉
N(x, y)N(x′, y′)

(5.16)

= g(2)(x, y, x′, y′) + gsn(x, y, x′, y′).

The shot-noise term gsn(x, y, x′, y′) is given by a peaked function of δx, δy, with an
area defined by the inverse of the mean atom number at a position x+/2, y+/2 with
x+ = x + x′, y+ = y + y′, and a width r̃a determined by the auto-correlation of the
single-atom fluorescence pattern (sec. 3.2.4). Moreover, detection noise adds a sharp
(single pixel) peak at δx = δy = 0 (see sec. 5.3.4). Thus, for close-lying points the
density-density correlation deviates from the second-order correlation, and the latter
cannot directly be obtained. Also, as g̃(2) is defined by a product of commuting
observables, it obeys the CSI.
In [43], the same detection has been used as for the experiments in this thesis.

There, the second-order correlation g(2)(δx, δy) for small ranges has been inferred from
assuming, that in the analyzed clouds, the second-order coherence length along the
transverse direction spreads a distance δy � r̃a and only varies slowly on that scale.
This is shown to be fulfilled for gases close to or below the condensation threshold.
Moreover, in the limit of a perfectly one-dimensional system (see sec. 2.4 and 2.1.2),
the occupation of a single transverse mode leads to a coherent transverse correlation
function, and hence:

G(2)(x, y, x′, y′) = N(y)N(y′) ·G(2)(x, x′), (5.17)

where the interesting information is only contained in the longitudinal G(2)(x, x′). For
both cases, G(2) can be recovered from G̃(2) by extrapolating the region affected by
shot noise from the transversely adjacent region with δy > r̃a (see fig. 5.7). The
exact procedure applied is explained in appendix C. As illustrated in figure 5.6(c),
this approach is somewhat similar to the measurement of correlation functions with
beam splitters and multiple photo detectors, which in this case correspond to multiple
transverse domains. In the following, we discuss the application of this method to the
twin-beam data.

Notation and normalization The most general density correlation function of four
coordinates [eq. (5.15)] is hard to work with practically, due to the required amount of
data. In general, our main interest in considering the transverse y-direction is to cut
out the shot noise at δy . r̃a, as described above. As this procedure does not depend
on y and y′ separately, it seems reasonable to start the analysis from the transversely
integrated function:

G̃(2)(x, x′, δy) =
∑
y

G̃(2)(x, x′, y, y + δy). (5.18)

This function takes sufficiently little memory, while still allowing to obtain correlations
between arbitrarily defined longitudinal regions without recalculating (as opposed to
e.g. directly calculating G̃(2)(δx, δy) for some pre-defined region).
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5.3. Second-order correlation functions of twin beams

As a convention, capital letters G(2) and G̃(2) indicate non-normalized functions,
the absolute values of which depend on the atom number integrated over, and are
largely irrelevant. On the other hand, without explicit definition, small letters g(2)

and g̃(2) designate the corresponding normalized functions as in eq. (5.15). The ap-
propriate normalization factor for a given correlation function is obtained by replacing
all occurrences of N̂(x) with N(x), and performing the same summations, e.g.:

G̃(2)(δx, δy) =
∑
x,y

〈N̂(x, y)N̂(x+ δx, y + δy)〉

C(2)(δx, δy) =
∑
x,y

N(x, y)N(x+ δx, y + δy) (5.19)

g̃(2)(δx, δy) = [G̃(2)(δx, δy)/C(2)(δx, δy)]/g̃
(2)
tot,

where the additional normalization to g̃(2)
tot = 〈N̂2〉 /N2 with the total atom number N

cancels the direct influence of total atom number fluctuations between experimental
shots [43]. To correctly account for inhomogeneous densities, all summations have to
be performed on the non-normalized functions. However, unless otherwise noted, all
figures show the physically more relevant normalized functions.

5.3.3. Two-dimensional averaged correlation

Integrating diagonally (with respect to the longitudinal coordinates) over G̃(2)(x, x′, δy),
yields the two-dimensional averaged density-density correlations:

G̃
(2)
cl (δx, δy) =

∑
x

G̃(2)(x, x+ δx, δy), G̃
(2)
bb (x+, δy) =

∑
x

G̃(2)(x, x+ − x, δy),

(5.20)

which differ from each other with respect to the summing direction: The collinear (cl)
function is detects HBT-like bunching effects, as has been discussed in great length
in [43]. The back-to-back (bb) function, on the other hand, is sensitive to correlations
between opposite longitudinal positions (with respect to the symmetry axis defined by
the source cloud peak), with a center-of-mass offset x+/2 = (x + x′)/2 with respect
to the symmetry axis at x = 0, see fig. 5.7(e). It is typically used for detection of
twin-beams in higher-dimensional configurations [73,76].2

If calculated from the entire fluorescence image, the integrated functions are in-
sensitive to locally changing correlation properties, that are present only in certain
position combinations, i.e. those only relating one twin-beam peak to the other. In
fig. 5.7(a-d), a typical function g̃(2)

cl (δx, δy) is shown (data set Corr-III), that has been
derived from the full images, i.e. including source cloud and twin beams. Also, the

2Note, that eq. (5.20) differs from the typical definition in these studies, in that the transverse
direction is still integrated collinearly (i.e., over y+) even in the back-to-back correlation. Two-
dimensional back-to-back integration only is appropriate for point-symmetric two-dimensional
correlations as in such collision experiments. In our case, any two-dimensional correlation features
might e.g. arise from the transversely asymmetric source cloud or position fluctuations. They
should be mirror-symmetric with respect to the x-axis, which is appropriately accounted for by
integrating over y+, not δy.
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Figure 5.7.: Two-dimensional averaged correlation function, data set Corr-III. (a) Av-
eraged correlation function g̃(2)

cl (δx, δy), calculated from the entire images, including
source cloud and twin beams. (b) Zoom of (a) into central region with shot noise peak,
axes are equally scaled. Yellow dotted lines: region chosen for shot noise removal (rsn).
Green dashed lines: region used to interpolate the shot noise region (rint, rfit), see ap-
pendix C. (c) Same as (b), with shot noise peak removed. (d) Difference of (c) and
(b), color scale shifted by 1. (e) Illustration of variables x+, δx. In collinear and
back-to-back correlation functions, x+ or δx are summed over, respectively. Dashed
lines represent xmin, xmax, as in fig. 5.3.
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Figure 5.8.: Two- and one-dimensional averaged correlation functions of twin-beam
peaks, data set Corr-III. (a,b) Two-dimensional functions g(2)

tb (δx, δy), and g(2)
LR(x+, δy),

respectively. Calculation is performed for regions outside the source, see e.g. dashed
lines in figure 5.7(e). (c,d) Longitudinal (c) and transverse (d) correlation functions,
for collinear (red) and back-to-back (black) summation, obtained from the same ranges
as in panels (a,b). Dotted lines are normalizations, representing the density. The blue
dotted line in (c) indicates g̃(2)

tb .

decomposition into second-order correlation g(2)
cl (δx, δy) and shot noise is shown (pan-

els b-d), as explained in appendix C. Along the longitudinal direction, for small δx, an
oscillating structure is visible, that is typical for expanding quasi-condensates [43,153].
Further outwards (at a distance approximately corresponding to to the twin-beam mo-
mentum k0), peaks are observed, that correspond to correlations between source and
twin beams, resulting in transverse structure. At twice that distance the correlation
between both twin-beams causes another set of peaks; their large magnitude is caused
by the strong fluctuations of the overall emitted fraction [see e.g. fig. 5.4(d)]. Along
the transverse direction δy, characteristic double-peak patterns are observed for all
peaks involving the source cloud, corresponding to its excited state.
In fig. 5.8, using the same data set, second-order correlations have been derived from

twin beam regions [see sec. 5.2, or fig. 5.7(d)] only. Collinear functions G(2)
LL(δx, δy)

and G(2)
RR(δx, δy) can be obtained from integrating G̃(2)(x, x′, δy) collinearly over each

of the two twin-beam peaks (x, x′ > xmin;x, x′ < −xmin), respectively, in analogy to
eq. (5.20). Next, shot noise is removed as described above. The geometric average
G

(2)
tb (δx, δy) = [G

(2)
LL(δx, δy) · G(2)

RR(−δx, δy)]1/2 is shown (as normalized function) in
fig. 5.8(a). A clear longitudinal peak (bunching) is visible, that is expected for twin-
beam emission in the undepleted limit [73, 278]. Transversely, a slight drop-off is
observed (red line in panel d), that might be caused by position fluctuations.
On the other hand, the cross-correlation G(2)

LR(x+, δy) is derived from back-to-back
integration of G̃(2)(x, x′, δy) in the region x < −xmin, x

′ > xmin. No shot noise sub-
traction is necessary, as regions with small δx do not contribute. For the data shown
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Figure 5.9.: Bulk CSI violation and number squeezing. (a) Amount of Cauchy-
Schwarz violation v − 1 vs inverse population per twin beam peak N+/2 for different
data sets Corr-I-IV (diamond, square, circle, star) and Sqz (cross). Lines: Two-mode
expectation v − 1 = (1− ξ2

−)/N+ for perfect squeezing (red) and ξ2
− = 0.5 (blue). (b)

Number squeezing for the same data sets, with noise correction as described in the
text. Black: uncorrected squeezing factor ξ̃2

−. Red: corrected squeezing factor ξ2
−.

Blue: corrected by −2/m (as arising from fluctuations of photons emitted per atom).
Green: value obtained for set Sqz as in sec. 5.2.

in fig. 5.8(b), only little structure is observed, i.e., there are no significant coincidences
of atoms with exactly opposite momenta within the twin beams. This is contrast to
the findings of ref. [68], where the correlations have been detected in momentum space,
however.
Panels c and d show the corresponding one-dimensional averaged functions g(2)

LR(x+),
g

(2)
LR(δy) (black), and g(2)

tb (δx), g
(2)
tb (δy) (red). In panel (c) it can be clearly observed,

that, outside the bunching peak, the back-to-back function exceeds the collinear one,
yielding a larger value on average.3 This corresponds to a violation of the Cauchy-
Schwarz inequality, which will be discussed more quantitatively in the next section.

5.3.4. Full twin-beam correlations and number squeezing

Now, we reduce the problem to a two-mode (left and right twin beam) analysis, by
discarding most spatial information in G̃(2)(x, x′, δy). As strong number squeezing
has been shown for such an analysis in sec. 5.2, also a violation of the CSI should
be present. Also we discuss an alternative means to determine the number squeezing
factor ξ2

−.

CSI violation of full twin beams Starting from a shot-noise-free G(2)(x, x′, δy), we
could simply obtain the “bulk” cross- and autocorrelation functions between the twin
beams, by binning over longitudinal regions L, R, similar to those used above:

G
(2)
LL =

∑
δy

∑
x∈L
x′∈L

G(2)(x, x′, δy), G
(2)
LR =

∑
δy

∑
x∈L
x′∈R

G(2)(x, x′, δy). (5.21)

3Indeed, near the center it approaches the theoretical maximum of g̃(2)tb = (〈N̂2
1 〉 〈N̂2

2 〉)1/2/(N1N2)
as imposed by the CSI for atom numbers (blue dotted line).
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Table 5.2.: Values shown in fig. 5.9, with total atom number N and hold time t for
each data set. Errors for ξ2

− have been estimated as in sec. 5.2. For data set Sqz, the
result from sec. 5.2 was ξ2

− = 0.11(2).
Set t(ms) N N+/2 v − 1(10−3) ξ̃2− ξ2−

Corr-I 5 235 9 59 0.86(13) -0.02(12)

Corr-II 6.5 235 17 27 0.52(8) -0.03(7)

Corr-III 5 845 62 6.9 0.43(6) 0.15(5)

Corr-IV 6.5 845 112 3.7 0.44(6) 0.18(5)

Sqz 6.5 700 89 4.8 0.37(2) 0.09(2)

On the other hand, when starting from G̃(2)(x, x′, δy), which contains atom shot
noise, it is easier to first compute GLL(δx, δy), GRR(δx, δy), and GLR(x+, δy) as de-
scribed above, and then fully integrate over them. While this yields the same result, it
allows to remove shot noise at the intermediate stage of the averaged two-dimensional
functions. We obtain the correlations g(2)

LL , g
(2)
RR, g

(2)
LR, and finally the two-mode Cauchy-

Schwarz violation v = g
(2)
LR/g

(2)
tb , with G(2)

tb = [G
(2)
LLG

(2)
RR]1/2. The calculated values for

different data sets are shown in fig. 5.9(a). Even though the violation in a realis-
tic setting is not at all straightforward to estimate [76, 293], the two-mode relation
v − 1 = (1− ξ2

−)/N+, assuming ξ2
− = 0 (red line), approximates the data surprisingly

well. The agreement is best for small twin-beam populations, which may be due the
fact that in those data the overlap between twin beams and source is the least, and a
near-perfect sectioning of the twin-beam regions can be made (see below).

It has to be noted, though, that none of the data sets shown has been taken with the
explicit goal of measuring second-order correlations. Especially for the most interesting
sets with low populations of the twin beams, too little shots (∼ 100) are available to
allow for a more robust shot noise rejection, and properly estimating the errors of v−1
and hence the confidence in CSI violation. Still, the result is clearly compatible with
the expected behavior, suggesting validity of the taken approach, and encouraging
further measurements in that direction. Especially for weakly populated twin beams,
where v can grow large, or for local measurements (see below), the CSI approach might
be superior to the direct number squeezing analysis.

Detection noise, and correction of ξ2
− Up to now, we have neglected detection

noise, as discussed in the context of number squeezing in sec. 5.2. All noise due to
fluctuations of the atom distribution is spatially correlated on a scale at least given
by the shot noise peak radius r̃a. Conversely, detection noise (i.e., photon shot noise)
between each pair of pixels is uncorrelated (white noise), and thus only contributes to
same-pixel fluctuations. If we explicitly consider the two-dimensional averaged photon
signal correlations S̃(2)(δx, δy) as directly derived from the photon numbers Ŝ(δx, δy)
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5. Analysis of the experimental results

in the images, we hence obtain similarly to eq. (5.5):

S̃(2)(δx, δy) =
∑
x,y

〈Ŝ(x, y)Ŝ(x+ δx, y + δy)〉 (5.22)

=
∑
x,y

{
m2〈N̂(x, y)N̂(x+ δx, y + δy)〉+ δ(δx, δy)∆nŜ(x, y)2

}
= m2G̃(2)(δx, δy) + δ(δx, δy)∆nŜ

2,

where we applied the law of total covariance in the second line. Thus, by correcting
for (atom) shot noise in a region δx, δy < r̃a as described, also the detection noise at
δx = δy = 0 is rejected, and we can safely replace N̂ by Ŝ/m to apply the relations
for G(2) functions to experimental data.
Moreover, this relation enables us to directly obtain the detection noise ∆Ŝ2 to

correct imaging noise when calculating ξ2
− using eq. (5.5), without any assumptions

about the imaging system as made in sec. 5.2. To split off detection noise, we have
to interpolate the central pixel from the rest of the function; ∆nŜ

2 is then given by
the residual. Shot noise removal as described above does not have to be performed
before necessarily. However, the most convenient recipe for interpolation is to fit
an appropriate peak function to the isolated atom shot noise peak g

(2)
sn (δx, δy) =

g̃
(2)
tb (δx, δy) − g(2)

tb (δx, δy) (see appendix C), excluding the central pixel. Despite the
greater complexity, this method of obtaining ∆Ŝ2 should be advantageous especially
for low twin beam populations, where the background correction term ∆b̂2 in eq. (5.8)
becomes important and gives rise to a strong uncertainty of the result.4 In fig. 5.9(b)
and table 5.2 results of this noise correction method are shown. Values compatible
with perfect squeezing ξ2

− = 0 are obtained for sets Corr-I and -II, where the overlap
between source cloud and emitted twin beams in the images is vanishing. At the same
time, the uncorrected value is high for those, due to the large relative contribution
of background photons (which could be mitigated by choosing smaller integration
regions, though). For the data set Sqz, which has been analyzed in sec. 5.2, we find
agreement with the value found there, corroborating the validity of the assumptions
made about detection noise.

5.3.5. Longitudinally resolved correlations

We finally proceed to the more general approach of keeping spatial resolution in the
longitudinal direction. That is, instead of collinear or back-to-back averaging we will
now work with both coordinates (x, x′), or equivalently (δx, x+), explicitly. Most
crucially, this makes the results completely independent of choosing arbitrary cutoff
regions in the images, such as the border between source and twin beams at xmin.
Thus, it also allows for analyzing more complex phenomena that are likely to arise
in future measurements (see sec. 6), where the correlation behavior is strongly inho-
mogeneous, but ascribing certain properties to different longitudinal ranges a priori is
too restrictive.

4Note, that this technique, even though based on information extracted from correlation functions,
is not related to the two-mode model v − 1 = (1− ξ2−)/N+.
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5.3. Second-order correlation functions of twin beams

Second-order correlations in (x, x′) First we will have a look at the second-order
correlation functionG(2)(x, x′). In contrast to the previous section, we do not explicitly
consider the dependence on the averaged transverse coordinate δy, but still apply
shot noise correction. The exact method as discussed in appendix C is somewhat
simplified as compared to the previous section, and at the current stage does not
warrant quantitative validity of the results to better than ∼ 20% for Cauchy-Schwarz
violation. Still, qualitative features are captured well, and will be discussed in the
following.
It often makes sense, to slightly average over small bins (super-pixels) of size ∆ in

x, x′; especially given, that for small-scale behavior, the imaging resolution r̃a will be
dominant. We can write this binned function as:

G
(2)
∆ (x, x′) =

∆/2∑
ξ=−∆/2

∆/2∑
ξ′=−∆/2

G(2)(x+ ξ, x′ + ξ′). (5.23)

In the limit of bins encompassing the entire twin-beam peaks, the analysis of the
previous sec. 5.3.4 based on G(2)

LR and G(2)
tb is recovered.

In fig. 5.10 (left column), the normalized function g(2)
∆ (x, x′) is shown as false-color

image for different settings of ∆.5 The auto- and cross-correlations of the twin beams
show up as peaks near each combination of their coordinates (see green lines). Con-
sistently with fig. 5.8, while the auto-correlation peaks are narrow along the δx (i.e.,
x+x′ = const.) direction, the cross-correlation peaks along x+ are much broader, and
no significant sub-structure can be observed.
In fig. 5.10 (center column), the local Cauchy-Schwarz violation ratio

v(x, x′) = g
(2)
∆ (x, x′)/

√
g

(2)
∆ (x, x)g

(2)
∆ (x′, x′) (5.24)

is shown. The peaks having v(x, x′) > 1 at low and intermediate ∆ show a slightly
elongated structure along the x−x′ = const. collinear diagonal, which is explained by
bulk position fluctuations of the entire cloud. Also here, no sub-structure is observed
that would indicate correlations between atoms of exactly opposite position within the
twin beams.
In constrast to higher-dimensional schemes [73, 76], where many transverse modes

are available, the lack of such a sub-structure is not surprising for our one-dimensional,
“longitudinal-only” scheme. Even in presence of back-to-back correlations, that in a
naive picture would arise from the well-defined time and correlated momenta of each
pair-collision event, they would be blurred on the scale of the initial cloud size due
to the expansion time not being sufficient to reach the far field (sec. 5.1). Also,
finite-temperature effects might destroy such correlations, which is however beyond
the scope of our current theoretical understanding. In sec. 6, first results from an
enhanced scheme, which enforces back-to-back correlations by emission time encoding
will be presented.

5To connect to the previous sections, it is instructive to note, that the averaged one-dimensional
correlations shown in fig. 5.8(c,d) correspond to integrating G(2)(x, x′) over appropriate regions
along the diagonals x− x′ = const. (collinear: red lines) and x+ x′ = const. (back-to-back: black
lines).
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Figure 5.10.: g(2)
∆ (x, x′) (left column), local CSI violation v(x, x′) (center column),

and local squeezing ξ2
−(x, x′) (right column) for data set Cor-III and different binning

lengths ∆. Note the logarithmic (dB) color scale for ξ2
−(x, x′). Green lines are the

mean longitudinal density profile. Yellow dashed lines indicate the edges of the cross-
correlation averaging bin (x0,−x0) that is centered on the twin-beam peaks. In the
titles, ∆, v(x0,−x0), and ξ2

−(x0,−x0) are given, respectively. In the lowest row, the
binning region is similar to that used for the fully integrated analysis in sec. 5.3.4 and
sec. 5.2.
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Figure 5.11.: Local CSI violation and number squeezing for data set Sqz. (a-c) Similar
to fig. 5.10 (center column), with different values of ∆. Magenta dashed lines indicate
the binning range around the second twin-beam peaks. In the title, CSI violations are
given for the normal and second twin-beam peaks. (d) CSI violation v at center of
first (black) and second (red) peak, where the red line reports the value reached for
integration over the full twin beams as in sec. 5.3.4. Filled points indicate the values
of ∆ of the data shown in (a-c).

One notable exception from the lack of sub-structure in current data is present in
the data set Sqz. As has been shown in fig. 5.5(a), small second twin-beam peaks, pre-
sumably originating from emission from higher vibrational states, are present. Their
population is vanishingly weak and hidden in the tails of the first twin-beam peaks,
making them less accessible to techniques working on the profiles directly, such as
number squeezing detection. On the other hand, by virtue of their weak population,
but strong correlation, they create a very large signal in the CSI violation ratio, as
seen in fig. 5.11(a-d). This indicates that indeed there have been two independent
emission processes present, both populating twin-modes. More importantly, this ob-
servation highlights the ability of full second-order correlation functions to detect even
tiny sub-structures with non-local correlations, making this method highly attractive
for proposed, more complex schemes, e.g. involving superpositions of source states or
temporal chirps (sec. 6).

Number squeezing As discussed above, the violation of CSI is equivalent to number
squeezing in the case of two balanced modes. In a similar fashion to the longitudinally
resolved second-order correlation function, we can analyze the number squeezing be-
tween each combination of longitudinal positions (x, x′). In fig. 5.10 (right column),
the result is shown for data set Corr-III. At a bin size ∆ that fits the width of the
twin-beam peaks, the minimum achievable value at the twin-beam peak positions of
ξ̃2
−(x, x′) = 0.13 is found, compatible with that obtained in sec. 5.3.4.
As the analysis regions may have a strong mean imbalance N−(x, x′) = N(x) −

N(x′), the expression for the binomial expectation of its variance deduced in eq. (5.2)
is not applicable anymore, as the second term would become non-zero and dependent
on fluctuations of the total emitted number ∆N̂2

+(x, x′). To retain a simple expression
for the binomial expectation (i.e., which only depends on expectation values), instead
of N̂−(x, x′) = N̂(x) − N̂(x′), we subtract the mean imbalance, and analyze the
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5. Analysis of the experimental results

quantity6

N̂ ′− = N̂− − p̃N̂+, p̃ =
N−
N+

.

The binomial variance for N̂ ′− can now easily be derived analogously to the balanced
case, eq. (5.2):

∆bN̂
′2
− = E(Varb(N̂ ′−|N̂+)) + Var(E(N̂ ′−|N̂+))

= E(Varb(2N̂(x)− N̂+|N̂+)) + Var(p̃N̂+ − p̃N̂+)

= 4 · E(Varb(N̂(x)|N̂+)) + 0 (5.25)

= 4 · E(p (1− p) N̂+)

= (1− p̃2)N+,

where we used the relation p = (p̃ + 1)/2 for the binomial success probability.7 It is
straightforward to derive that this expression can be written in terms of G̃(2)(x, x′):

∆bN̂
′2
− = (1− p̃)2G̃(2)(x, x) + (1 + p̃)2G̃(2)(x′, x′)− 2(1− p̃2)G̃(2)(x, x′).

The local number squeezing factor is then given by:

ξ2
−(x, x′) =

∆N̂ ′−
(1− p̃2)N+

=
1

2

[
(1− p̃)G̃

(2)(x, x)

N(x)
+ (1 + p̃)

G̃(2)(x′, x′)

N(x′)
− 4

G̃(2)(x, x′)

N+

]
.

(5.26)

Correcting detection noise can be accomplished in a manner similar to that introduced
in the previous section, see appendix C. As for correlation functions, binning over a
range ∆ has to be applied on each of the G̃(2)(x, x′) and N(x) independently. Some
results are shown in fig. 5.10 (right column) and sec. 6.

5.4. Excitation dynamics

Having analyzed, the correlation properties of the emitted twin beams, we now focus
on the dynamics of the creation process. As outlined in sec. 5.1, our approach is to split
the full dynamics as far as possible into descriptions for the (transverse) excitation
and (longitudinal) emission dynamics. For the first part, the goal is to experimentally
implement the “shaking” scheme for state transfer with the optimized trajectory (see
appendix A), compare the results to theory and find a description for the excitation
which is suitable as input for the emission calculation. This will be tackled in the
following section.
We will approach the problem of understanding the transverse dynamics in two

largely independent, complementary ways, motivated by the goal of developing an ef-
fective mapping of the many-body dynamics to a driven two-level system. In sec. 5.4.1

6In the following derivations, unless explicitly needed, we will omit the arguments (x, x′), which
apply to all used quantites.

7Note, that this model does not take into account that p̃ itself may fluctuate due to technical insta-
bilities between different experimental realizations (e.g. of total atom number or temperature),
that do not necessarily affect both considered points proportionally. Hence, points with strong
imbalance are much more prone to effects of technical noise, increasing ξ2−.
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Figure 5.12.: Typical transverse momentum distribution dynamics ñ(ky, t), shown as
false-color plots (data set Pot). (a) and (c) Experiment. (b) and (d) 1d GPE numerics,
including finite bandwidth effects (see text). In (a) and (b), the offset field is detuned
by ∼ 1mG, in (c) and (d) by ∼ 2mG with respect to the optimal value, which has
been found by minimizing the difference between experimental and numerical result
at times before 5ms. Each single time corresponds to an average of ∼ 10 experimental
runs, and is normalized to unity.

we will start by comparing GPE numerical results for the time-dependent momen-
tum distribution of the driven condensate wave function to experimental observations.
While the excellent agreement indicates, that the theory used to obtain the optimized
ramp (appendix A) is accurate, it gives only limited insight into how the excitation
process can be understood qualitatively. In sec. 5.4.2 a more phenomenological analy-
sis is performed on the experimental data, which will give hints about how to develop
a semi-quantitative understanding that provides more insight than the pure numeri-
cal result. In sec. 5.4.3 the GPE simulations are investigated in more detail, using a
description based on Wigner quasi-probability functions, and displaced Fock states.
It will become evident that all approaches lead to conceptually similar and quanti-
tatively compatible interpretations, which can finally be unified to obtain a two-level
interpretation as sought after initially.

5.4.1. Comparison of experiment and numerics

Compared to other driven quantum systems, where optimal control techniques may be
applicable, a rather unique advantage of cold atoms is the accessibility of the system
response, enabled by the relatively large time and length scales and the abundance
of powerful imaging techniques. Probing the performance of a control strategy is
not restricted to the final outcome, but the driven system can be monitored even
while it is being driven, providing direct means to compare experiment and numerical
simulations. As explained in sec. 5.1, the light sheet imaging system gives us direct
access to the momentum distribution of the gas along its transverse axis. In fig. 5.12(a),
a typical momentum distribution dynamics plot as obtained from the experiment is
shown.

Numerical solution The numerical simulations shown in this section have been per-
formed using the GPE (2.15), which acquires a time-dependent potential term for
the excitation problem, just as in the approach for optimization in appendix A.
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5. Analysis of the experimental results

Alternatively to the time-dependent potential, we can define the condensate wave
function φ(y) in a frame that is co-moving with the optimized trajectory λ(t) [fig.
5.13(d)]. Then, the driving arises from the time-dependent displacement ψ(y, t) =
exp[−iλ(t)∂/∂y]ψ0(y, t), where ψ0(y, t) is defined in a fixed frame, and the GPE reads:

i~
∂

∂t
φ(y, t) =

[
− ~2

2m

∂2

∂y2
− λ̇(t)

∂

∂y
+ Vext(y) + gy|φ(y, t)|2

]
φ(y, t) (5.27)

where Vext(y) is now time-independent, and the interaction constant gy is derived
similarly to eq. (2.30), averaging over a TF condensate along x:

gy = g

∫
nTF(x)2dx

∫
|φ(z)|4 dz (5.28)

As a convention, we will denote the first two GPE eigenstates as φ′0, φ′1, as opposed to
the single-particle (Schrödinger) eigenstates φ0, φ1 as used in chapter 4.

Finite bandwidth effects To compare the experimental data to those obtained from
numerical propagation of the GPE, we first need to account for the slight modification
of the control sequence imposed by the finite bandwidth of the electronics used in
our experiment. The main contribution to this filtering is the isolation amplifier that
was used to have a galvanic isolation between the (grounded) waveform generator
output and the (floating) chip electronics.8 The measured transfer function modulus
|M(ν)| at a frequency ν can be approximated by an exponential |M(ν)| ≈ eν/νco with
cutoff frequency νco ≈ 4.4 kHz. Furthermore, a frequency-dependent phase shift is
imposed. Effectively, filtering mainly causes a reduction of the driving amplitude near
the resonant frequency ν1 ≈ 1.8 kHz by a factor |M(ν1)|−1 ∼ 1.6, and a time delay on
the order of 0.1ms (fig. 5.13d). In fig. 5.13 it is shown, that the filtering due to the
electronics can be largely canceled by rescaling and shifting the control sequence by
these factors. The difference in the outcome of the simulated momentum distribution
is only small and largely given by a slightly enhanced collective oscillation, which does
not affect the emission dynamics (see sec. 5.4.3). For more recent experiments (sec. 6),
the bandwidth has been greatly improved using a new electronics setup.

Robustness against experiment inaccuracy In OCT, an aspect of high relevance is
the sensitivity of the excitation dynamics to deviations of experimental parameters
from the ones used for optimization. In our case, this predominantly applies to pa-
rameters affecting the trapping potential. We consider small changes of the harmonic
and quartic potential parameters νy, σy in eq. (3.6). In the experiment such deviations
arise from variation of the dressing parameters Ω0, ∆0, which, in turn, are caused by
inaccuracy of the current in the RF antenna wires δIRF, and of the external offset field
along x (defining the atomic Larmor frequency) δBx, respectively (see sec. 3.2.2).
We can linearize the dependence of the potential parameters along y as given in

eq. (3.6) around the optimum and write [in units of Hz,mG,mA]:

νy = 1655 + 19× δBx − 106× δIRF (5.29)
σy = 78.1− 2.3× δBx + 8.6× δIRF.

8Recently, the setup has been changed to a waveform generator having floating outputs, that lifts
this restriction and allows for faster control ramps (see sec. 6).

106



5.4. Excitation dynamics

0

0.1

λ
 (

µ
m

)

a

k
/k

0 b−1
1

t (ms)
k
/k

0 c

0 1 2 3 4 5 6

−1
1

Figure 5.13.: Effect of filtering due to finite electronics bandwidth. (d) Control ramps
λ(t). Red: original control ramp. Black: control ramp after applying the electronics
filtering. Blue: rescaled, filtered and time-shifted control ramp. (b) GPE momentum
distribution, simulated without accounting for finite bandwidth. (c) GPE momentum
distribution, simulation including finite bandwidth, amplitude rescaling of the control
ramp by a factor of 1.6 and a time shift of 0.08ms.

Fig. 5.12(a,c) shows experimental momentum dynamics for two sets with slightly dif-
ferent offset fields Bx. By comparison with numerical results (panels b,d), a difference
of ∼ 1mG is found, which already yields a clearly distinguishable result, especially
regarding times t > 5ms where the strength of residual dynamics indicates a decrease
in excitation fidelity. It is rather elusive to independently characterize the trap (e.g.
using RF spectroscopy, see sec. 3.12) at this level of precision, rendering observation of
the excited momentum dynamics itself the only sufficiently sensitive tool to optimize
the experimental parameters.
Numerical results for a range of parameters are shown in Fig. 5.14. Panels (c-

f) correspond to deviations caused by an offset field misalignment of ±2mG (b,c)
and ±7mG (e,f) leading to weaker (positive values) or stronger RF dressing, respec-
tively. It is observed that any deviation leads to a decrease in excitation efficiency,
which is defined here as time-averaged overlap with the desired wave function φ′1,
η = 〈| 〈φ′1|φ(t)〉 |2〉t>5ms. The similarly defined population of higher excited states ζ
becomes strong at trap modifications with weaker dressing δνy > 0 and δσy < 0. This
effect can be expected, as the protection against excitation to higher states fades with
decreasing anharmonicity, while the excursion of the trap relative to the typical length
ly increases. In panel (d), on top of an offset field mismatch of +3mG, the current
in the RF wire has been adjusted to cancel the effect on νy. The weak mismatch in
σy and ξy only leads to a slight reduction of efficiency. Consequently, optimizing the
experimental parameters for a strong excitation (e.g. by minimizing residual dynam-
ics at t > T = 5ms) may lead to slightly shifted values, which however compensate.
Using this method, a sensitivity of better than 1mG (or an equivalent mismatch of
the dressing current) can be reached.

Many-body effects Along the transverse directions, confinement is strong enough
(hν1 � µ0) to make interaction-induced effects comparatively small. Still, to achieve
the highest possible fidelity of the excitation, it is crucial to keep the nonlinear term
in eq. 5.27 for optimization. In fig. 5.15, the excitation dynamics is shown for a data
set (VarN), where the atom number has been varied before starting the excitation
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Figure 5.14.: Stability of the excitation sequence against inaccuracy of the trapping
potential (numerical result). In each plot, the deviation of the potential terms δνy, δσy

are given (in units of Hz), as well as the efficiency η and the spurious excitation to
higher states ζ as defined in the text.

sequence, by keeping a fixed RF knife for a variable time, which causes plain evapo-
ration. A possible temperature change should be largely irrelevant for the excitation,
as long as there is no significant thermal population of transversely excited states.
The data is compared to simulations, where the parameter gy in eq. (5.27) has been
calculated using TF profiles matching the respective total atom number N . Especially
for high atom numbers, this might not be completely adequate, as the wave function
along z, and consequentially the chemical potential and TF radius may be affected by
interactions [93].
It is observed, that effective excitation is achieved for a nonlinearity corresponding

to an atom number N ∼ 900, which is close to what has been used in the optimiza-
tion. For all other atom numbers, stronger residual dynamics after the end of the
sequence (t > T = 5ms) is found, indicating decreased fidelity, as the desired state is
stationary. While the GPE simulations reproduce the general tendencies found in the
experiment, the agreement is not as good as e.g. for scaled excitations (see below).
For the highest atom number, only rather poor qualitative agreement is reached, indi-
cating insufficiency of a mean-field model such as GPE (necessitating e.g. a MCTDHB
ansatz [126, 295]) and strong effects of the rapid decay of the excited state into twin
beams.

Scaled excitations In fig. 5.16 the momentum distribution dynamics is shown for
data sets DynA/DynB, which will be the main subject of analysis in the remainder
of this and the following (sec. 5.5) sections. To achieve different efficiencies, the ex-
citation ramp has been scaled in amplitude by factors s with respect to the optimal
control result, resulting in strongly varying wave function dynamics. The approach
of simple amplitude scaling has been chosen over using separately optimized ramps
for different efficiencies, to allow for easier comparison due to the well-defined rela-
tion between the used control sequences. Furthermore, our analysis will show that
the main spurious effect of this strategy are collective oscillations at reduced scalings.
Comparison between GPE and experimental result (average over ∼ 12 realizations)

108



5.4. Excitation dynamics

N = 1950

κ = 550

η = 85%

k
/k

0 −1

1

N = 500

κ = 222

η = 97%

k
/k

0 −1

1

N = 900

κ = 328

η = 97%

k
/k

0 −1

1

N = 300

κ = 158

η = 94%

k
/k

0

t (ms)

0 2 4 6 8

−1

1

t (ms)

0 2 4 6 8

Figure 5.15.: Effect of varied atom numbers on excitation (data set VarN). In each
pair of plots (top: experiment, bottom: numerics), the typical experimental atom
number is shown alongside the non-linearity κ ≡ gyN (in Hz µm, ordinary frequency).
The efficiency η is defined in the text.

shows excellent agreement at early times.9 At later times, decay of the excited state
into twin beams, which is not accounted for in theory, becomes significant (see bottom
right panel) and for high values of s, agreement is reduced due to inelastic collisions
with the twin beams which reside in a different transverse state. However, for weak
excitation, even the shape of single “beating peaks” after the end of the excitation
pulse is precisely captured by numerics. Along the k-axis, the GPE result has been
convolved with a Gaussian of m/(~ttof) · 40 µm ≈ 1.20 µm−1 rms width to account for
finite imaging resolution and bulk position fluctuations. Apart from a small shift of
the t-axis and a slight re-scaling of the ky-axis,10 the scaling factor s is the only free
input parameter of the simulation.
Having established the detection method, and verified that the outcome is consistent

with the numerics on which the control optimization has been founded, we now proceed
to a more qualitative analysis of the experimental result.

5.4.2. Analysis of experimental momentum dynamics

In this and the following section we will analyze the momentum distribution dynamics
beyond a simple comparison to numerical results, focusing on data set DynA/DynB
which covers the largest range of parameters, allowing to derive a rather general de-
scription. The notion underlying the discussion will be that of a few-level system,
comprised by the ground, first and occasionally second excited state of the confinement
potential along the excitation direction, with the final goal to reduce the anharmonic

9Note that s has been defined including the necessary re-scaling due to finite electronics bandwidth
(see Fig. 5.13).

10The shift in t is well below the experimental time resolution, and is very probably due to the inac-
curacy of the filtering circuit characterization. The necessity for the re-scaling of ky (of the order
of 10%) might arise from interaction effects causing weak hydrodynamic effects in expansion [203].
The values of both adjustment are consistent among all sets shown.
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Figure 5.16.: Experimental and numerical results for the transverse momentum dis-
tribution dynamics ñ(ky, t), data set DynA/DynB. Mean atom number is 770 for sets
I-V, and 856 for sets B-I and B-II. For each of the seven sub-sets, the upper image (red
false-color) is the experimental result, normalized separately for each time step. The
middle image (red false-color) shows the numerical GPE result, including low-pass
filtering and scaling by the factor s as given. The bottom image shows the deviation
between experiment and theory, expressed as imbalance ñex − ñth; the color scale for
the imbalance is enhanced by a factor 3. The bottom right inset shows the relative
amount Ndec/N of atoms that have decayed from the excited state into twin atom
pairs.
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oscillator to a closed two-level system.11 This approach may seem inappropriate, as
it relies on the superposition principle, which requires a linear equation of motion
and is hence not applicable to a mean-field wave-function as described by the GPE.
However, in our case the nonlinearity is weak compared to the oscillator energy, and
so is the modification of the dynamics due to many-body effects (see fig. 5.15), sug-
gesting that a description in terms of single-particle states may still provide significant
insight. A more involved, but conceptually similar approach, which is directly based
on stationary states of the GPE can be found in refs. [94,251,309].

Center-of-mass dynamics As the simplest possible observable derivable from the
momentum dynamics, we start by analyzing the transverse center-of-mass of the ex-
perimental images, corresponding to the momentum expectation value K(t) ≡ 〈ky(t)〉,
see black lines in fig. 5.17 (left panels). In the power spectra of K(t) (center pan-
els), two strong peaks are observable near the first two transverse level spacings (see
sec. 3.2.2) ν1 = 1.84 kHz and ν2 = 1.99 kHz, and a weak third at ν3 ≈ 2.10 kHz.
Assuming a single-particle level picture, these peaks can be interpreted as beat-

ing frequencies between populations of the first three levels of the oscillator, where
mean-field effects are causing frequency shifts, as described below. Consequently, the
magnitude of oscillations is the strongest for intermediate excitation efficiencies (sets
II, III, B-I), where the levels are populated most evenly, maximizing the beating con-
trast [see below, fig. 5.18(a)].
A crucial observation is, that also the transverse profiles of the twin-beam peaks,

which are separated in the images longitudinally (see fig. 5.3), exhibit strong oscilla-
tions of Kt(t) ≡ 〈k(t)

y (t)〉 (see red lines in fig. 5.20). Meanwhile, they fully maintain
their near-Gaussian shape.
In fig. 5.17, oscillations of the relative center-of-mass Kr(t) = K(t) −Kt(t) (left),

and their power spectrum (center) f(ν) = |F [Kr(t)](ν)|2, are shown as blue lines. It is
observed that, while the oscillations are similarly strong as in a fixed frame, all peaks
in the power spectrum, except that near ν1 are suppressed. This suggests, that in a
reference frame co-oscillating with Kt(t), the dynamics can be understood in terms of
two transverse levels, motivating an approach of decomposition into a quasi-classical
oscillation, and “internal” dynamics, which remain unaffected by the bulk oscillation.12

This interpretation is consistent with our understanding of the twin-beam emission
process (sec. 5.5), where the transverse state of the twin beams, a Gaussian state
displaced by Kt(t), defines the appropriate ground state for the internal dynamics. In
sec. 5.4.3, a more rigorous formalism for the co-oscillating frame will be given, and its
position will be independently derived from numerical results.
In the right column of fig. 5.17, spectra are shown which are derived from the

oscillations at times t > 5ms only, i.e., where no driving occurs anymore. Hence,
they provide a characterization of the final state that is reached after the excitation.
Qualitatively, the same features are observed as in the full time spectra, however, peaks
11In the literature on quantum control strategies, this problem is occasionally discussed as that of

leakage-suppression in a two-level system [106–108,296].
12This decomposition is exactly valid for harmonically confined many-body systems [145, 146]. Ob-

viously, this does not hold for an anharmonic oscillator, which is exactly why our excitation to
a non-classical state by displacement can work at all. Being aware of the inconsistency, we still
apply the decomposition approach to qualitatively understand the dynamics.
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Figure 5.17.: Momentum space center-of-mass dynamics for data set DynA/DynB, as
shown in fig. 5.16. Left column: center-of-mass momentum of the source cloud with
respect to a fixed frame (K(t), black) and relative to the twin-beam center-of-mass
(Kr(t), blue). (See Fig. 5.20 for the twin-beam center-of-mass.) In the background, the
full dynamics is shown (see Fig. 5.16). Middle column: corresponding power spectra
f(ν), taken over the entire time span shown. Right column: spectra, taken over a time
span starting from t > T = 5ms, i.e., after the end of the excitation. Grey dashed
lines in the background indicate the harmonic frequency νh, and the first three level
spacings, as defined in the previous section. All spectra are in arbitrary units, but
normalized identically for each of the columns.
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Figure 5.18.: Analysis of post-excitation beating spectra shown in the right column
of fig. 5.17. (a) Integrated power of oscillations P . The experimental points have
been scaled for best fit to η(1 − η) (red line). η has been derived as described in
the previous section. The shading of each point indicates the corresponding scaling s
(white is highest). (b) Peak position (black, left axes) and cosine of averaged phase
(green, right axes). Red and blue lines correspond to the single-particle level spacing
ν1, and the mean-field-shifted level spacing ν ′1, respectively.

at ν2 are smaller, which is consistent with theory, as will be shown below. Also, in
the relative center-of-mass spectrum, the observation of a single-peak structure, with
a minimal amplitude for the most efficient excitation is even more evident. However,
the observation of a single-peak structure, with a minimal amplitude for the most
efficient excitation is even more evident. In Fig. 5.18(a), the integrated power of the
oscillations P ∝

∫
f(ν)dν, measuring the stationarity of the final state, is shown as

a function of the numerically obtained excitation efficiency η (see previous section).
Apart from the strongest driving, where higher states may become excited more easily,
P shows fair agreement with a curve given by η(1−η), which is the squared amplitude
of the interference term in the momentum-space density of a two-level system with
momentum-space wave functions φ̃0, φ̃1:

ñ(ky, t; η) =
∣∣∣√1− ηφ̃0(ky) +

√
ηφ̃1(ky)

∣∣∣2 (5.30)

= (1− η)|φ̃0(ky)|2 + η|φ̃1(ky)|2

+ 2
√
η(1− η)<[φ̃∗0(ky)φ̃1(ky)] cos(2πν1t).

The positions of the beating peak (obtained from a Gaussian fit) are shown in
fig. 5.18(b). For high efficiency, the frequency is shifted downwards from the oscillator
level spacing ν1 (red line). Somewhat similarly to the discussions in chapter 4 and
sec. 5.5.3, this is explained by the mean field term in the GPE (5.27). For the boundary
case of near-unity efficiency, the shift can be calculated rather easily. As the ground
state population is negligible, it does not contribute to the interaction energy, and the
chemical potential µe for an atom in the excited state is given by the second eigenvalue
of the time-independent GPE. The according wave function φ′1(y) can now be used to
calculate the chemical potential µg of a single atom in the ground state φMF

0 , using a
Schrödinger equation with effective potential arising from the mean field of the excited
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state:

µgφ
MF
0 (y) =

[
− ~

2m

∂2

∂y2
+ Vext(y) + 2gy|φ′1(y)|2

]
φMF

0 (y), (5.31)

where the factor of 2 arises from exchange symmetry, similarly to the Bogoliubov-
de Gennes equations (2.21).13 The beating frequency is now given by the difference in
chemical potential. Instead of the oscillator level spacing ν1 ≈ 1.831 kHz, we obtain
ν ′1 = (µe − µg)/(2π~) ≈ 1.724 kHz (blue line).14 Given the uncertainty in the input
parameters of the calculation (such as the assumption of an equilibrium Thomas-Fermi
shape longitudinally), this value agrees well with the experimentally obtained one for
maximum efficiency (set IV), νIV = 1.709(1) kHz.
Finally, we can have a look at the phase of the (relative) center-of-mass oscillation.

When comparing the value of Kr(t) for different scalings at a fixed time in fig. 5.17,
it is apparent, that the phase inverts at the point of maximum efficiency. We take
the averaged phase from the Fourier transform result, weighted by the Lorentzian fit
of the peak, and obtain the curve shown in fig. 5.18(b, right axes). The inversion
is reminiscent of a two-level system subject to a Rabi driving, where the phase of
precession inverts after passing the pole of the Bloch sphere at a pulse area larger
than π. As will be shown in the following section, the excitation process can be
understood analogously.

5.4.3. Two-level driving model

To understand the physical mechanism governing the optimal excitation protocol, in
the following we analyze the time evolution of the condensate wave function in the
Wigner quasi-probability representation [57]:

W (y, k, t) =

∫
e−iksφ(y +

s

2
, t)φ∗(y − s

2
, t) ds , (5.32)

which provides a mixed position-momentum distribution. Integration over all mo-
menta k gives the spatial probability distribution |φ(y, t)|2. Likewise, integration over
y gives the momentum probability distribution.
In fig. 5.19 the Wigner function of the condensate is shown for different times during

the excitation sequence. Initially, it approximately corresponds to the ground state of
the harmonic oscillator, with equal uncertainty in position and momentum.
The distribution is slightly elongated along y due to the nonlinear atom-atom in-

teractions. The final state (bottom right panel), corresponds to the first excited state
of the GPE in the anharmonic trap, φ′1. It has positive and negative values (giving
a node at y = 0 upon integration over all momenta), and thus differs from a genuine
classical distribution function.
13Note, that φMF

0 is quite different from φ′0, which is the mean field wave function (GPE solution) of
the entire cloud in the ground state.

14To a fair approximation, this shift can also be derived by neglecting the deformation of the oscillator
eigenstates due to the mean field. Using their density overlaps γij =

∫
|φi(y)|2|φj(y)|2dy, we can

simply write: ν′1 ≈ ν1 + gyN(γ11 − 2γ01)/(2π~) ≈ 1.705 kHz. Note also, that this latter value is
close, but not equal to that derived in chapter 4 for the mean-field shift of the twin-beam kinetic
energy εS, as the latter has been calculated near the peak of the longitudinal TF parabola, whereas
here (in computing gy) we average over it.
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Figure 5.19.: Time evolution of Wigner function. Each panel displays a false-color
plot of a Wigner function at the displayed time of the excitation sequence. Red and
blue ranges correspond to positive and negative values, respectively. Lines indicate the
trapping potential: the harmonic part ∝ νy(y/ly)2 is shown in red, the anharmonic
part ∝ σy(y/ly)4 is shown in blue. The dashed line corresponds to the total potential.
The trap center is marked as black cross, whereas the green diamond indicates the
origin Y0(t),K0(t) of the co-moving frame.
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We observe, that the excitation first brings the condensate into quasi-classical col-
lective oscillations, whose frequency is determined by the harmonic part of the con-
finement potential. In the Wigner function, they appear as a circling motion around
the center. For a large enough displacement, the condensate wave function is brought
into the region where the anharmonicity of the confinement becomes significant (see
red/blue lines). Now, the internal structure of the wave function (and not just its
displacement in phase space) can be modified, and on top of the collective oscillation,
the transfer from the ground to the first excited state occurs. Finally, at the terminal
time T = 5ms, the control process brings the condensate to a complete halt.
Motivated by the observation of the Wigner function behavior and the findings of

the previous section, we next suggest a procedure to approximately map the excitation
dynamics onto a genuine two-level description of ground and excited condensate states.
As in sec. 5.4.2, the main idea is to separate the wave function dynamics into (i) a
collective, quasi-classical oscillation, which is needed to bring the condensate into the
anharmonic part of the trap, and (ii) an internal conversion between the ground and
first excited state, defined in a co-moving frame. The latter conversion is governed by
the anharmonic part of the trap, as explained above.
We define wave functions ϕg(y) and ϕe(y) as single-particle eigenfunctions of the

harmonic part of the trap potential only, i.e. Eq. (3.6) with σy and ξy set to zero. Also,
any modifications due to the nonlinear atom-atom interactions are neglected. This
simplification allows us to analyze the dynamics in terms of displaced Fock states [297],
that capture well the notion of the separation approach. Let D̂[α(t)] = exp[α(t)â† −
α(t)∗â] denote the displacement operator of the harmonic oscillator [57], where α(t) =
[l−1

y Y0(t) + ilyK0(t)]/
√

2 determines the position and momentum of the displacement
at time t, and â denotes the annihilation operator. For a given displacement α(t), we
can compute the overlap between the displaced ground and excited states with the
condensate wave function according to

χ(t) =

∣∣∣∣∫ [D̂[α(t)]ϕg(y)
]∗
φ(y, t) dy

∣∣∣∣2 +

∣∣∣∣∫ [D̂[α(t)]ϕe(y)
]∗
ψ(y, t) dy

∣∣∣∣2 . (5.33)

Determining the value α(t) which gives the largest overlap at time t allows us the
aforementioned decompositions into (i) center-of-mass coordinates Y0(t) and K0(t),
and (ii) probability amplitudes 〈D̂[α(t)]ϕg|φ(t)〉 and 〈D̂[α(t)]ϕe|φ(t)〉 for the ground
and excited state within the displaced frame. In all cases we find an overlap χ(t)
well above 90%, which thus justifies the wave function decomposition. In fig. 5.20,
the obtained values for K0(t) are shown as red lines, and compared to experimentally
obtained values, as described below. In fig. 5.21 we compare χ(t) and the obtained ex-
cited population η′(t) = [〈D̂[α(t)]ϕg|φ(t)〉|2 to results from direct projection of φ(y, t)
on the GPE states φ′i(y). The direct projection leads to strong transient population of
higher excited states, and a sudden jump near the end of the excitation [fig. 5.21(a)],
where they are depopulated again. This is reminiscent of the fixed-frame center-of-
mass spectra (black lines in fig. 5.17), where a peak near ν2 is present when regarding
the entire sequence (center column), but mostly vanishes after t = T (right column). In
contrast, the two-level approximation in the system displaced by α(t) yields a smooth
transition [fig. 5.21(b)], consistent with the continuous appearance of negative values
of the Wigner function (fig. 5.19). In the momentum dynamics derived from the two-
level model in a similar manner to eq. (5.30) as shown in fig. 5.21(d), a continuous
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Figure 5.20.: Reference frame for two-level model. Underlying data are the same
as shown in Figs. 5.16 and 5.17. Red lines are the momentum-space displacement
K0(t) of the two-mode basis states, as obtained from applying Eq. (5.33) to the GPE
result. Black points indicate the experimentally found center-of-mass position of twin
beams that have decayed from the excited state Kt, defining the reference frame for
the emission process (see sec. 5.4.2). Similar to the momentum space dynamics as
shown in Fig. 5.16, agreement reduces at later times, where decay into twin beams
becomes strong. Data set I has been omitted due to the emission of twin beams being
insufficient to determine Kt.

transfer to the excited state is observed, with strong beating at intermediate excited
population. Again, this is consistent with the experimental relative center-of-mass
spectra (blue lines in fig. 5.17), where only a single peak near ν ′1 persists, even during
the excitation. Similar to a Rabi pulse with area larger than π, the excited population
η′(t) is decreasing towards t = T for scaling parameters s > 1.
As laid out in sec. 5.4.2, the appropriate ground state for the internal conversion

dynamics can also be determined in the experiment from the center-of-mass position
Kt(t) of the twin-atom beams which the excited state is decaying into continuously.
For times t, where the decayed fraction becomes perceivable, we can compare the
experimentally found Kt(y) to K0(y) as in fig. 5.20, and find good agreement without
any free parameter over a large range of settings. Together with the absence of decay
products from higher excited states in the experiment, this result confirms the validity
of the decomposition approach.
In the next section, it will be shown, that the obtained populations of the excited

state allow for a quantitative description of the ensuing twin-beam emission process.
To facilitate the inclusion of the two-level result η′ into the emission dynamics cal-
culation, we approximate the excitation process by a constant, near-resonant Rabi
coupling with coupling strength Ω, detuning δ and initial time delay t0:

η̃(t) =


(

Ω
Ω′

)2
sin2 [Ω′(t− t0)] : t0 ≤ t ≤ T(

Ω
Ω′

)2
sin2 [Ω′(T − t0)] : t > T

0 : t < t0

(5.34)

where Ω′ =
√

Ω2 + δ2. fig. 5.21 (dashed lines) shows, that eq. (5.34) is an appropriate
approximation to the numerically obtained η(t), if Ω,∆ and t0 are left as fit parame-
ters. These will be inserted into eq. (5.39) to conveniently include continuous pumping
into the density matrix theory (as described in sec. 4.4).
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Figure 5.21.: State populations during the excitation process. (a) Populations η(t)
of excited states of the full anharmonic potential [Eq. (3.6)] as arising from direct
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population of the first excited state, dotted lines represent the ground (black) and
first and second excited (red, blue) states. (b) Corresponding momentum dynamics
(identical to Fig. 5.16-IV). (c) Population of first excited state in co-oscillating frame
within the two-mode model η′(t). Solid thick line: data set IV, corresponding to solid
line in (a). Solid, colored lines: sets I (black), II (red), III (blue), and V (green).
The dash-dotted line indicates the total overlap of the two-level model with the GPE
result χ(t) [see Eq. (5.33)], which exceeds a value of 0.95 at all times t. Dotted lines:
corresponding Rabi driving fits, following eq. (5.34). (d) Momentum dynamics arising
from time-dependent superposition of φ0, φ1 in the co-oscillating frame, data set V.
Note the strong beating at intermediate times/excited fractions.
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Figure 5.22.: Emission dynamics curves for various modifications of the density ma-
trix theory. All curves are for N = 800 atoms. Blue, dashed: instantaneous pumping,
zero temperature. Red, dashed: instantaneous pumping, T = 25 nK, corresponding to
Nc ≈ 350. Blue, solid: finite-time pumping (optimal excitation in 5ms, see sec. 5.4),
zero temperature. Red, solid: finite-time pumping, T = 25 nK. Black, solid: finite-
time pumping, T = 25 nK, with excess scattering Γ = 0.4 s−1. Dots with errorbars:
experimental result for optimal excitation.

5.5. Emission dynamics

In this section we will discuss the dynamics of the twin-beam emission process, i.e.,
how the time-dependence of the twin-beam properties after starting the excitation
sequence, can be understood. In contrast to sections 5.2 and 5.3, where two-particle
observables (that depend on products of four field operators) have been discussed, the
analysis will be limited to the most accessible of single-particle observables, that is,
the mean population of the twin beams N+. This allows for comprehensive quantita-
tive analysis, as the density matrix theory detailed in sec. 4.4 can be applied, whereas
there is currently no theory available that can predict two-particle quantities in the
regime of strong depletion and long emission times present in our experiment. More-
over, estimation of mean populations only does not necessitate many experimental
realizations, allowing to cover a large parameter range while keeping measurement
times reasonable. Before experimental results are presented, some extensions of the
general density matrix method from sec. 4.4 as required by the peculiarities of our
experiment will be discussed.

5.5.1. Extensions of the density matrix theory

In the density matrix theory as laid out in sec. 4.4, several assumptions have been
made, that are not necessarily fulfilled in the experiment, but quantitatively alter the
emission dynamics:

• It has been assumed, that at t = 0, all atoms are already pumped into the
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source state S. As discussed in the previous section, in the actual experiment,
the pumping from the ground state takes non-negligible time and causes an
overlap of excitation and emission time scales. The theoretical treatment of
excitation and emission, however, are completely separated, necessitating an
effective description to connect them.

• Thermal effects have been neglected entirely. As in an elongated system, thermal
effects can be understood as a depletion of the condensate mode (see sec. 2.4.4),
this approximation is effectively equivalent to taking for granted, that all atoms
in the vibrationally excited state directly take part in a single emission process.
Indeed, the populations of the excited state, Ne ≈ η′N , and the source state,
NS, cannot a priori be expected to be equal: NS ≤ Ne.

• It is assumed, that the twin-beam modes are completely empty initially, and
that there is no other process other than the amplified emission described by
the density matrix theory, that can populate them over time. The extreme
sensitivity of the population dynamics on the state of the final mode at early
times (which triggers Bosonic enhancement) amplifies any spurious effects, even
if they appear to be very weak.

• The quantum modes that are relevant for the emission process have been as-
sumed to be static. However, the redistribution of population causes a back-
action on the energy of the modes themselves due to changing mean-field shifts,
see sec. 4.4.2.. However, as discussed there, this effect is weak quantitatively, as
the decreased density overlap between source and twin beams is almost exactly
canceled by the bosonic enhancement for elastic scattering between different
modes (α11 ≈ α00 ≈ 2α01).

• Any higher-order inelastic scattering between twin-beam atoms and the trans-
versely excited cloud are neglected. Especially at longer times, this will lead to
exchange of particles between the transverse states in the twin beams, transfer of
longitudinal momentum due to the finte temperature of the source, and eventu-
ally the relaxation of the system towards thermal equilibrium. Those effects are
beyond the scope of current theoretical description, despite being of fundamen-
tal interest, especially as questions on integrability in a one-dimensional system
arise [261,262,298–301]. They should not affect the initial population dynamics
of the twin beams, which depends only on the initial inelastic scattering out
of the source state. However, it is conjectured that this approximation leads
to the underestimation of the twin-beam width compared to the experiment
(sec. 5.5.3).

It has been found, that the first three of those approximations strongly impact the
calculation results and have to be accounted for using some effective theories that will
be described in the following. For a quick overview, in fig. 5.22 emission curves are
shown, where none, some, or all of the three modifications have been applied.

Thermal source depletion Direct application of the density matrix theory leads to
a huge overestimation of both the initial growth rate, and the saturation value that is

120



5.5. Emission dynamics

reached at longer times, with respect to the experimentally obtained data (blue dashed
line).15 The reason that was found to be the likely cause for the discrepancy are the
longitudinal phase fluctuations present in a finite-temperature quasi-condensate (see
sec. 2.4.2).
In our theory in sec. 4.4, we assumed all atoms to populate a single source mode

with population NS, which is the only non-zero entry of the single-particle density
matrix ρ = ρSS ⊗ ρij , before emission starts. This is clearly incompatible with the
single-particle density matrix of a phase-fluctuating quasi-condensate ρ(x, x′), which
is given by eq. (2.40). As described in sec. 2.4.4, using the Penrose-Onsager criterion,
a true condensate can be defined as the mode corresponding to the largest eigenvalue
of ρ(x, x′), and as a consequence writing the quasi-condensate single-particle density
matrix as:

ρ(x, x′) = Ncψ
∗
c (x)ψc(x

′) + ρth(x, x′). (5.35)

We now make the somewhat radical step, to completely neglect the thermally excited
part ρth. Hence, in the mode couplings of our theory, eq. (4.10) we replace:

ψTF(x)→ ψc(x) (5.36)

and, at the same time set the initial source population to ρSS = Nc, or, if we include
the excitation process (see below), ρgg = Nc, where ρgg is the initial ground state
population. We also assume, that the excitation process does not depend on the
longitudinal mode structure, and hence:

NS

Nc
=
Ne

N
. (5.37)

Note that, however, for the calculation of mean-field effects, such as the effective
potential of the twin-beam modes (4.36), we keep the full quasi-condensate density
nTF = |ψTF|2.
In fig. 5.23(a), emission curves for different temperatures at otherwise identical

parameters are shown. While the onset time of emission does not strongly depend
on the temperature, slope and saturation value are heavily affected. For the num-
bers considered, a slight oscillation of population back into the source state is only
observed at T = 0. As a comparison, emission curves based on the second-largest
eigenmode of ρ(x, x′) are shown. Note however, that in a full theory for emission
from quasi-condensates, the dynamics for emission from each mode would not at all
be independent.
Obviously, the PO-mode simplification is only justified in the limit of low temper-

atures, where the eigenvalues of ρth(x, x′) remain small enough to prevent significant
emission from the respective modes. However, it allows to keep the theoretical descrip-
tion compact and numerically tractable. Moreover, minor contributions of scattering
from higher modes can be phenomenologically accounted for by adjusting the excess
scattering rate as described below.

15As density matrix and Bogoliubov theories agree well at early times for the case of instantaneous
pumping, the same should be true for a prospective modified Bogoliubov theory that can include
the excitation dynamics and/or source depletion.
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5. Analysis of the experimental results

Continuous pumping To handle the overlapping time scales of excitation and emis-
sion, we can take advantage of the effective two-mode approximation for the transveral
states that has been developed in sec. 5.4.3. The reduction of the complex dynamics
of a driven many-body system to a simple Rabi coupling allows for a straightforward
inclusion of the pumping dynamics into the emission calculation. All we have to do
is to add a coupling term to the Hamiltonian in the Heisenberg equation (4.31) that
transfers atoms into the transversely excited source state:

Ĥtot = Ĥ0 + ĤMM + ĤP(t). (5.38)

In this Hamiltonian, Ĥ0 accounts for free evolution terms of all involved states,
which are the twin-beam modes âi, the source mode âS, and the initial ground state âg.
The two latter correspond to the single-particle two-state approximation in sec. 5.4.3,
and the twin-beam states correspond to the functions ψi(x) as derived in eq.(4.36).
Following the sinusoidal fits of the transverse two-level approximation, eq. (5.34), we
can write the pumping Hamiltonian as:

ĤP(t) =
~Ω̃

2
·
{
â†Sâg + H.c. : t0 ≤ t ≤ texc

0 : otherwise

Ω̃ = Ω · exp [−i (µ1/~ + δ) (t− t0)] , (5.39)

which is the simple Hamiltonian for a near-resonantly driven two-level system [24].
The parameters δ,Ω, t0 have been obtained from fits as described in sec. 5.4.

For the modified Hamiltonian (5.38), we can again solve the Heisenberg equation for
the single-particle density matrices ρij , ρSS and ρgg = 〈â†gâg〉, in analogy to eq. (4.31).
Results are shown in fig. 5.23(b). It is observed that at an excitation duration of

5ms (blue lines), there is a significant overlap of excitation and emission time scale,
indicated by the peak of the population NS not reaching the total PO mode (true
condensate) population Nc ≈ 400. For the total emitted population N+, the main
effect of finite-time pumping is a time delay. However, slope and saturation value are
only weakly affected.
Note, that ĤP only couples ground and source state. Hence, it is assumed, that the

excitation process does not affect the atoms that have already been emitted into the
twin-beam modes. This seems justified from experimental observations (the measured
transverse momentum distributions of the twin beams are found to be close to that
of a ground state), and the fact that at early times during the excitation process, the
final state still resembles a quasi-classical coherent state.

Excess scattering When comparing the calculated twin-beam population, arising
from the two-state pumping and thermal source depletion approximations, the satu-
ration value and slope of the emission curve are well captured [red line in fig. 5.22(a)].
However, there is a time delay of . 2ms in the theory. It is likely, that several factors
contribute to this delay:

• While scattering from higher quasi-condensate eigenmodes would not cause a
strong contribution to the total twin-beam populations at times considered here,
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Figure 5.23.: Influence of the theory modifications outlined in this section on the
twin-beam emission dynamics. (a) Emission dynamics for N = 800 and different tem-
peratures ranging from T = 0 (black) to T = 50 nK (purple) in steps of 10 nK. Solid
lines: emission from Penrose-Onsager (PO) mode, as considered for our simulations.
Dashed lines: emission calculated for second-largest eigenmode (without emission from
PO mode) of ρ(x, x′), magnified by a factor of 40. (b) Emission dynamics for N = 800
atoms at T = 20 nK (Nc ≈ 400), for various excitation times ranging between instan-
taneous excitation (black) and a Rabi π pulse with length 10ms (cyan). Dashed lines:
source population NS . Solid lines: twin-beam population N+. (c) Emission rate into
twin-beams for N = 800 atoms at T = 20 nK, and excess scattering strength Γ = 0
(black) to Γ = 0.35 s−2 (green). Dashed lines: excess emission rate. Solid lines: total
emission rate.
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5. Analysis of the experimental results

it still can have an effect on the dynamics. At early times, where the twin-beam
mode population is still below or of the order of unity, even a slight additional
population can contribute to trigger strong, stimulated emission, and thus shift
its onset in time significantly.

• We have neglected any thermal population of both the source state and the twin-
beam modes. For the source state, an estimation following a modified Yang-Yang
theory as described in ref. [165], yields ∼ 3.2 atoms in the transversely excited
state at T = 25 nK, which, however, should be negligible compared to the popu-
lation caused by the pumping. More crucially, the quasi-condensate momentum
distribution, that can be estimated e.g. directly from a Fourier transform of the
single-particle density matrix, eq. (2.40), or from more sophisticated numerical
techniques [166] still has a finite value of ∼ 1/µm−1 at typical twin-beam mo-
menta ∼ 5.5 µm−1 and T ∼ 25 nK. At early times some of that population is
still in the transverse ground state and, hence, could contribute to premature
seeding.

• As seen in fig. 5.23(a), a change in the excitation dynamics mostly causes a
shift in time, but hardly affects slope and final value. So, any inaccuracy of
the two-level excitation model and its fit (sec. 5.4), e.g. an underestimation of
source population at early times during excitation, is likely to manifest itself in
a temporal shift. The same is true for a non-thermal population of the source
state due to technical noise.

As all these effects are hard to capture in terms of both theory and independent
experimental characterization, we decided to introduce an additional, weak scattering
channel, that spontaneously transfers atoms from the source into the twin-beam states
ψi, with an empirically determined rate Γ. They act as an additional seed in excess
of vacuum fluctuations.
Technically this is implemented as an additional term in the equation of motion for

the density matrices ρij :

ρ̇ij = −i
〈[
â†i âj , Ĥtot

]〉
+ ΓηijN

2
S , (5.40)

ηij =
√
f(εi) · f(εj)

κij
Tr(κ)

(5.41)

where f(ε) is a normalized distribution function for the energy of the twin-beam modes,
peaked around µ1, and having a width of the order of the twin-beam emission rate
Ω (see sec. 4.3). For typical parameters,

∑
i ηii ≈ 0.5, so that the resulting absolute

scattering rate is ∼ ΓN2
S . If we assume NS ≈ Nc, for Γ ≈ 0.4 s−1 and N = 400, this

yields a maximum scattering rate of . 30ms−1. Realistically, NS < Nc at all times,
and the rate stays below that value [see fig. 5.23(c)]. Similarly to the excitation driving
strength, the excess scattering value mostly shifts the emission onset time, but does
not affect saturation value and slope of the emission dynamics (see fig. 5.22).

5.5.2. Emission dynamics: matching experiment and theory

With the extensions to the density matrix theory described above, we can now compare
experiment and theory results on the population dynamics. Detailed experimental
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5.5. Emission dynamics

data have been taken for five different excitation sequences as described in sec. 5.4:
one optimized sequence that achieves near-uni efficiency, as well as rescaled excitation
ramps, that transfer only a limited amount of atoms into the vibrationally excited
state. All data (data set DynA) has been acquired in a single measurement session,
and the same data is used for both the transverse excitation (sec. 5.4) and longitudinal
emission analysis, ensuring consistency between both parts of the full description.16

Several input parameters to the theory are needed to obtain quantitative results,
most of which are known from independent characterization:

• The total atom number N an be obtained from fluorescence images, which in
turn have been calibrated using resonant absorption imaging (see sec. 3.2.4).

• As described in sec. 5.4, the transverse trapping potential (and, hence, the ex-
cess energy of the source state) is well-defined due to the extreme sensitivity
of the excitation process, which would detect any deviation from the expected
potential.

• The longitudinal confinement frequency is known from sloshing measurements
(see sec. 3.2.2). The excellent agreement of the long-time twin-beam oscillation
period (see sec. 5.5.3) to theory corroborates the value obtained by this method.

• The temperature T of the source cloud can be roughly estimated from fits, which
is however challenging at the low temperatures and atom numbers used in the
experiment; even more so, as the shape of the source cloud drastically changes
during emission (see sec. 5.6).

• From the fits of the effective source state population 5.4.3, the excitation param-
eters Ω, δ, t0 needed as input to eq. (5.39) are known within the approximation
of the transverse two-state model.

• The excess scattering parameter Γ, which has been introduced ad hoc into our
theory to effectively cancel some of its limitations, is inherently inaccessible to
direct measurements.

Hence, Γ and, within certain limits, T are left as free parameters of the theory. As
explained above, the effects of those quantities are rather independent of each other;
while Γ shifts the emission onset, T can adjust the saturation value and slope of the
emission curve. For fitting the theory to experimental data, it has been enforced, that
both T and Γ are consistent among all of the different excitation sequences, which is
justified, as all experimental data has been taken in interleaved order during a single
measurement session. Apart from the modifications introduced in the previous section,
the simulation now follows the technique detailed in sec. 4.4, where we use a basis set
of 41 Hartree-Fock potential eigenstates [eq. (4.36)] at energies ε′i centered around µ1.
In fig. 5.24, experimental results for the relative twin-beam population N+/N are

shown with their standard errors, obtained from typically 12 realizations at each of
the recorded times. For the weakest (set I), strongest (set V) and optimal (set IV)
excitation sequences, good theory agreement (solid lines) is reached for T = 25 nK,
16Data set DynB (curves B-I and B-II in sec. 5.4) is not analyzed in this section, as it has been taken

in another measurement session with higher atom numbers, and somewhat worse stability.
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Figure 5.24.: Population of twin beams for different excitation sequences. Dots with
error bars: experimental results for N+/N Thick solid lines: theory curves obtained
from the modified density matrix model. Thin solid lines: population of source state
NS assumed for the simulations. Dashed lines: theory curves for data sets II and
III obtained from directly using the fitted excitation dynamics. Dash-dotted line:
relative population of the PO mode. The last panel shows all excitation curves for
easy comparison.

126



5.5. Emission dynamics

and Γ = 0.4 s−1, and the excitation parameters obtained from fitting the transverse
momentum dynamics (sec. 5.4.3). At this temperature and an atom number of 800,
the population of the PO mode is Nc/N ≈ 0.44, setting an upper limit to the fraction
of emitted atoms within our model. It is observed that for the strongest excitation (set
V), the onset of emission is faster, than for the optimal excitation (set IV), but the
saturation value is lower, due to the smaller population of the source state at the end
of the excitation. Furthermore, even for optimal excitation, the emitted fraction does
not reach the maximum possible value of Nc/N , which is similar to the observation
for the unmodified density matrix model (fig. 4.4) and likely due to the decreasing
overlap between source and twin beams.
However, for the intermediate sequences (II and III), using the the directly ob-

tained excitation parameters led to poor agreement (green and red dashed lines). We
attribute this to the extreme sensitivity on details of the excitation, if the system is
just on the verge of strong stimulated emission. For this case, the accuracy of the
transverse two-level approximation might not be sufficient. To be able to still apply
our theory, we left the excitation parameters as free parameters for fitting curves II and
III (keeping T and Γ fixed). Such, we could obtain results that match the experiment
well, but still have excitation curves not too different from the directly fitted ones,
further underlining the extreme sensitivity of the emission on a precise knowledge of
the excitation.

5.5.3. Twin-beam momentum and long-time behavior

Apart from the twin-beam population, the single-particle density matrix ρij also di-
rectly allows to infer distribution functions, by invoking eq. (4.38). Apart from density
and momentum distribution, it is also possible to obtain the distribution functions for
the intermediate case of long, but finite expansion time, similarly to the expansion of
multi-mode quasi-condensates, eq. (2.43). As discussed in sec. 5.1, on a large momen-
tum scale the obtained density profiles almost correspond to momentum distributions.
However, a small deviation due to the real space distribution is still present, for the
case of twin beams mostly because of the finite propagation length of the wave pack-
ets while still being trapped. At t = 10ms the real-space peaks are already at 13 µm
distance from the trap center, which adds to the time-of-flight position of the peaks
according to their momentum. We can account for this by directly calculating the
time-of-flight distribution from ρij(t) as in eq. (2.43). Using momentum wave func-
tions ψ̃(k) (4.38), this reads:

n(x, t; ttof) =
∑
i,j

ψ∗i (x; ttof)ψj(x; ttof)ρij(t), (5.42)

ψi(x; ttof) =

∫
ψ̃i(k)ei[kx−~k

2ttof/(2m)]dk

≈
∫
ψ̃i

(
mx

~ttof
+ κ

)
e−i

~ttof
m

κ2dκ.

In the last line the exponent has been expanded around its maximum at k = mx
~ttof ,

where the contribution to the integral is the largest due to the oscillations of the
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Figure 5.25.: Twin-beam momenta vs time. Solid black line: absolute momentum
expectation value of twin beams (410 atoms). Solid red line: twin-beam position
after 46ms time-of-flight, normalized to ~ttof/m. Black dots: experimental three-peak
fit results for data set Long (410 atoms). Dotted lines: analogously for 800 atoms.
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(800) atoms following eq. (4.20). Blue line: expected initial momentum without mean
field shift

√
2mhν1.

exponential at higher |κ|.17 Note, that inserting the definition of ψ̃(k) [eq. (4.38)] into
the equation would again recover the Green’s integral for free motion for the in-situ
real space function ψ(x) [again, as in eq. (2.43)]. In fig. 5.25, the expectation value for
the longitudinal momentum (black), and the spatial position (red) of the twin beams
is shown for short times and the parameters considered below. The initial twin-beam
momentum corresponds well to what is expected from the transverse level spacing and
the mean field of the source cloud (magenta), see sec. 4.3.
In fig. 5.26, longitudinal time-of-flight and in-situ distributions n(x, t; ttof), n(x, t)

are shown and compared to an experimental data set (Long), where the spatial dy-
namics have been measured to longer times. In comparison to the data shown earlier,
the atom number is reduced further (N ≈ 410) to minimize inelastic scattering with
the central cloud, and also to achieve a lower temperature. The experimental in-situ
distribution has been obtained by taking absorption images along the y-direction at
a short expansion time of 1ms. Qualitatively, both in-situ and time-of-flight distribu-
tions agree to the theory. However, as both still include the source cloud, quantitative
comparison is difficult. Also, secondary scattering leads to thermalization with the
transversely excited source cloud, which mostly reside in the higher thermal states of
the quasi-condensate, as the PO mode has been depleted. This manifests itself in an
increasing broadening of both twin-beams and source. As seen from panel (e), the os-
cillation frequency of in-situ (νis = 15.2(14)Hz) and time-of-flight (νtof = 15.7(8)Hz)
data agree to the theory value of νt = 15.86(2)Hz, even though there is a slight phase

17For states with a momentum wave function that is only slowly changing on a scale δk �√
m/(~ttof), this restores the far field limit n(x, t; ttof) ∝ n(k, t). However, the single-particle

twin-beam eigenstates do not fulfill this criterion, as they have rapid oscillations in momentum
space due to their spatial offset.
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Figure 5.26.: Twin beam spatial dynamics, data set Long (410 atoms). (a), (b), (f)
Time-of-flight distributions in analogy to fig. 5.27. (c) In-situ density distribution
measured by absorption imaging 1ms after trap switch-off. (e) Normalized density
distribution variance. Black, solid: time-of-flight experimental data. Blue, dashed:
time-of-flight theory data. Red, solid: in-situ experimental data.

mismatch (for time-of-flight data) of 9(6)◦. This can also be observed more quantita-
tively in the twin-beam peak position as obtained from three-peak fits at early times
(fig. 5.25). In time-of-flight images, twin-beam peaks are still clearly observed after a
half and a full oscillation, even though strongly broadened in the latter case.
In fig. 5.27 a similar analysis is shown for data set DynA-IV (optimal excitation).

This data set uses a larger atom number and higher temperature, and is measured with
a higher time resolution for short times. It is observed, that, while the peak position of
the twin beams is correctly predicted, confirming the twin-beam momentum predicted
by the theory, their width is underestimated. Also, in contrast to the model which
even predicts an initially increasing distance from the source cloud due to the in-situ
movement of the twin-beam packets (see fig. 5.25), in the experiment it is observed,
that the twin-beam peaks are even shifting to lower distances. Both effects again
hint at inelastic secondary scattering processes with atoms in the transversely excited
state.

5.6. Finite-temperature effects

In this section, we briefly discuss some experimental results on twin-beam emission
using clouds of identical atom number, but different temperatures. As currently nei-
ther a sufficiently versatile thermometry method for the regime under study, nor a
quantitative emission theory for higher temperatures are available, the discussion will
remain mostly qualitative.
To prepare the initial state, the final values of the evaporation radio frequency (RF)
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Figure 5.27.: Twin beam spatial dynamics in time-of-flight images, data set DynA-
IV (800 atoms). (a) Experimentally obtained longitudinally integrated densities vs.
time. (b) Corresponding theory calculation as obtained from the simulated ρij(t) and
eq. (5.42). Furthermore, the imaging resolution has been accounted for by convolving
with the imaging PSF (see sec. 3.2.4). (c) Longitudinal time-of-flight distribution
around one of the twin-beam peaks. Solid line: experiment, dashed line: theory.
Times correspond to the lines in panels (a) and (b).

νf has been increased from its normal value, in six steps of 0.5 kHz ≈ 0.3ν1 each. The
resulting increase in atom number has been compensated by decreasing the power of
the evaporation RF during an earlier phase (copper Z trap) of the experiment cycle,
degrading the cooling efficiency and ensuring a constant atom number among the
settings (N ∼ 680). After evaporation and dressed trap preparation, the standard
excitation sequence has been run.
In fig. 5.28, longitudinal profiles are shown for different times t and RF frequencies νf ,

together with an independently measured set of reference profiles without excitation.
For the coldest cloud (νf = 957.5 kHz), the usual appearance of twin-beam peaks after
several milliseconds is observed, as well as a broadening and inwards motion at longer
times. For higher values of νf , the peaks become less pronounced and hidden in the
(now broader) source cloud distribution, until for the highest νf , twin-beam emission
is mostly reflected in a distinctive broadening up to the typical momentum range.
In qualitative agreement to the assumption of twin-beam emission being strongly
dependent on the coherence (and hence, thermal) properties of the source (sec. 5.5),
the effect of twin-beam emission is much weaker here. In fig. 5.29(a,b), two observables
readily available from longitudinal profiles are presented: in (a), a corrected emitted
fraction r′ = (N+ −N (0)

+ )/N is shown. Here, N+ has been counted in the usual twin
beam ranges (see sec. 5.2), and corrected for the atom number N (0)

+ , which is present
in that range already without any excitation and emission. For the highest value of νf ,
this value reaches N (0)

+ /N = 0.1, whereas it is negligibly small for the coldest cloud.
It is observed, that the excess population in the twin-beam range grows significantly
less for the initially warmer clouds than for the coldest, the latter reaching its typical
value of N+/N . 0.4. In (b), as a more model-independent measure, the RMS width
w = [

∫
n(x)x2dx/N ]1/2 is shown, normalized to the width w0 of the reference profiles

(grey areas in fig. 5.28). Here, it is observed also that the impact of the excitation
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Figure 5.29.: Twin-beam emission for sources at different temperatures. Colors cor-
respond to values νf = 957.5 kHz (black), νf = 958 kHz (red), νf = 958.5 kHz (blue),
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(0)
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distributions (see fig. 5.28, normalized to values for reference measurements. (c) Tem-
peratures obtained from fits to the center and the far-out tails of the momentum
distributions. Dotted lines are values for the reference data set. Black dashed lines
indicate the temperatures corresponding to the first transversely excited states.
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on initially cold clouds exceeds by far the excess excitation imposed on the initially
warmer clouds. An interpretation of this value as the increase of average longitudinal
kinetic energy (or, in that case, its square root) is not strictly valid, as the far-field
condition is not fulfilled (see sec. 5.1).
In fig. 5.29(c), approximate temperatures of non-excited source clouds for each νt are

shown as dashed lines, which have been obtained from fitting the density distribution
after expansion using a quasi-condensate model (appendix B). Note, however, that an
appropriate fitting method for the entire temperature range (which actually extends
beyond a quasi-condensate regime) still has to be developed, and especially for the
higher temperatures, the given values should be understood merely as a very rough
estimate. Furthermore, similar fits were applied to the twin-beam profiles in fig. 5.28,
where the twin-beam region has been excluded from the fits and the obtained density
is re-scaled to compensate for the emitted atoms. While this approach may even be
less valid quantitatively than the fits to the reference clouds (e.g. given the breathing
oscillations that should be excited due to the rapidly changing mean fields), it allows
to qualitatively capture the rapid heating of the source cloud once the emission starts.
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6. Future directions

The experiments presented in this thesis rather mark the beginning of several new
research directions at the Rb-II machine. First proof-of-principle results have been
obtained in the fields of both quantum atom optics, and condensate optimal control:

• We have shown, that using optimal control theory and experimental tools readily
available in an atom chip experiment, it is possible to bring a condensate wave
function into an exotic, vibrationally inverted state. A simple, semi-quantitative
model has been developed to intuitively understand the dynamics of this process.

• It has been demonstrated, that the inverted state can be efficiently used as
a source for the production of twin-atom beams by means of collisional de-
excitation. Using time-of-flight fluorescence imaging, we found strong quantum
correlations between the twin beams.

• The production dynamics of the twin-beams was described quantitatively, using
a newly developed theoretical model.

With those results at hand, several promising directions of prospective research can
be imagined; for some of those, first results have been obtained already.

Vibrational state engineering

In the context of the experiments presented above, the modulated dressed trap scheme
has been developed with the goal of achieving vibrational state inversion. However,
the possibilities of the method reach far beyond that, especially considering that up
to now we have been using only a single degree of freedom out of many more that are
readily available, such as two-dimensional motion, confinement strength modulation
(up to brief repulsive periods) or rotation of the trap eigenaxes. Apart from significant
interest in using the cold atom system (with the excellent control and detection means
it offers) as a test bed for optimal control schemes [11], the final states themselves
may open up a whole range of interesting physics [94, 251]. One may e.g. wonder,
if a (transverse) GPE eigenstate exists, that is stable against collisional decay; one
idea would be a two-dimensionally excited state in the yz-plane carrying angular mo-
mentum, similarly to a Laguerre mode in beam optics. An imaging system that will
give access to the full transverse momentum distribution is currently being planned.
Furthermore, schemes going beyond the mean-field level, e.g. for generation of entan-
glement [124,125], cooling [127] or squeezed states [126] seem an exciting perspective.
Recently, using specifically developed electronics, the bandwidth of the control mod-

ulation (see secs. 3.1.5 and 5.4.1) could be increased to ∼ 100 kHz, and bipolar ramps
have been enabled. Also, other than depicted in fig. 3.2, the modulation can now be
applied to the symmetric RF wires on top of the dressing current, which eliminates the
residual motion along z, enabling much larger excursions of the trap without spurious
excitation. In fig. 6.1, some preliminary results obtained with the new setup are shown.
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Figure 6.1.: Recent results on fast vibrational state optimal control. Top row: mea-
sured momentum distribution dynamics, bottom row: displacement λ(t). (a,d) Fast
vibrational inversion ramp, T = 1.1ms. (b,e) 50/50 “beam splitter” ramp. (c,f)
π/2 “Ramsey” ramp, applied 0.25ms after 50/50 ramp. Note, that the amplitude of
the ramps is larger by a factor ∼ 10 compared to the previous T = 5ms inversion
ramp (fig.5.13).

In contrast to the excitation sequence mostly used in this thesis (see appendix A), the
control ramps λ(t) have been obtained using a stochastic optimization (CRAB [302])
in collaboration with Antonio Negretti. Panels (a,d) shows a vibrational inversion
sequence, which (using significantly higher frequencies and amplitude) achieves near-
unity fidelity in just T = 1.1ms, albeit with slightly increased collective oscillations
in the final state. In contrast to the T = 5ms ramp used up to now, twin-beam
emission during the excitation process shown in fig. 6.1 is negligible, simplifying the
theoretical description considerably. Especially, it allows measuring correlations in the
regime of very weakly populated twin beams (N+ � NS), where the Bogoliuov de-
scription (sec. 4.3) remains valid, and strongly non-classical second-order correlations
are expected (sec. 5.3.4).
In panels (b,e), another fast sequence is presented, which is optimized to prepare a

state with equal projections on ground and excited state, similar to a superposition
state in a non-interacting system. As in the scaled ramps in sec. 5.4.2, strong beating
peaks are visible. Panels (c,d) show a pulse, which can act on the state created by
(b,e) in a phase-sensitive manner, where the final outcome state depends on the phase
of the beating pattern, completing a sequence similar to a Ramsey or Mach-Zehnder
interferometer, but acting on a mean-field wave function. This last pulse is a first
step towards a different class of optimal control schemes, that implement evolution
operators instead of state transfers [11,107,296].

Designing correlations

Up to now, correlation measurements with twin-atoms in motional states have either
operated in the regime of multi-mode scattering with weak populations and a distinct
spatial correlation structure [73–75], or with few strongly populated modes [64,67,68]
having a rather fixed structure imposed by the specific production process. However,
to employ schemes such as time-based entanglement [303, 304], or higher-order inter-
ference [30,89], it would be desirable to have more control over the mode structure of
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the emitted twin beams, without going to an unrestricted multi-mode situation. Also
the relation between number squeezing, entanglement, and correlation functions in a
controlled multi-mode system would be of theoretical interest [293]. In our experi-
ment, one way of doing so would be to prepare more complex transverse source states
with multiple decay channels, which inadvertently happened in one data set (Sqz),
and indeed produced structured spatial correlations (fig. 5.11). Considering the recent
progress in transverse state control (see above), this seems a promising scheme.
Another approach that has already been implemented, is to invert the conden-

sate using the fast excitation pulse [fig. 6.1(a,d)], and then chirp the transverse level
spacings in a (transversely) near-adiabatic way, by decreasing the dressing strength
(fig. 3.11). This corresponds to steadily going left from the green lines in fig. 3.11,
continuously shifting the parameters of the emission process as introduced in chap-
ter 4. Specifically, the source excess energy εS follows the level spacing, yielding a
time-dependent energy profile of the amplification process. Obviously, the dynamics
of the process gets much more complex: For example, there is a competition between
stimulated emission into the modes populated in the beginning, and emission near the
momentary point of highest coupling, and it is not trivial to estimate the maximum
rate of change at which stimulated emission can persist at all. Still, the problem seems
tractable in Bogoliubov approximation.
In fig. 6.2, averaged longitudinal profiles are shown. Total emission time after fast

excitation [as in fig. 6.1(a)] was 5ms in all cases, with a linear chirp of the trap to
zero dressing, i.e. degenerate transverse level spacings of ν0 = 4.1 kHz. The chirp
was done during the first phase tc of the emission time, as given in the figure. It can
be observed that the twin beam peaks lie somewhere between the limits given by the
energies ∼ ν1 and ∼ ν0, where the fastest chirp (black line) has its peak shifted the
furthest towards higher momenta. Interestingly, overall emission is the weakest for the
intermediate chirp time (red line), suggesting, that on its time scale the stimulated
emission process is affected the most by the continuously changing situation. In all sets,
significant residual population is found at momenta corresponding to energies ∼ 2ν0,
indicating that other relaxation channels are open, either due to non-adiabaticity of
the chirp, or the finally degenerate level spacings allowing higher-order processes.
The intuitive notion, that the kinetic energy of each atom pair within the twin

beams is correlated (and encodes the emission time) appears to be corroborated
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Figure 6.3.: Correlations in the chirped cloud for 2.5ms hold time (red line in fig. 6.2),
shown in a way similar to fig. 5.10.

by first experiments. In fig. 6.3 it can be observed, that in the longitudinally re-
solved correlations v and ξ2

− (see sec. 5.3.5), structures on the anti-diagonal appear.
For the latter, it remains to be investigated, to which extent this is determined by
technical fluctuations (see footnote on pg. 104), or actual non-local squeezing. The
high values of g(2) near the outer edges indicate strong shot-to-shot fluctuations in
the outer regions. Note the high value of the relative second-order correlation (left)
v = g(2)(x, x′)/[g(2)(x, x)g(2)(x′, x′)]1/2 (Cauchy-Schwarz violation) near x . 100 px,
corresponding to emission with energy ∼ 2ν0; again indicating that higher-order vi-
brational de-excitation is occuring.
Modifying the transverse levels along specifically optimized paths (possibly even

using non-adiabatic schemes), together with a sufficient understanding of the creation
dynamics might allow to design the structure of the second-order correlations between
the twin beams. One objection here is, that this kind of correlations will appear in
momentum space only, and the relatively short expansion time in our experiment will
impose a blur due to the finite initial size of the cloud. This may be less of a concern for
matter-wave optics elements operating in actual momentum space, as will be sketched
next.

Twin-beam optics

Now that a source of twin-atom beams is available, the logical next step would be
to perform actual matter-wave quantum optics experiments with it, as sketched in
sec. 1.1. Many schemes to construct linear optics elements for matter waves, such as
mirrors and beam splitters are known [15,259]. The most important tools necessary to
build e.g. a Mach-Zehnder setup with our twin-beam source would be mirrors to reflect
the twin-beam packets back towards each other, beam splitters to mix them, and some
means to shift their relative phase. In this case, one could e.g. implement a twin-Fock
state interferometer [80, 81], essentially an external-state equivalent of the internal-
state experiment presented in ref. [70]. Probing continuous-variable entanglement of
the twin-beams [71, 91] could possibly be performed along the lines of ref. [92]. Also,
a combination of such schemes with controlled creation of multi-mode beams (see
previous paragraph) would be of high interest, addressing fundamental questions on

136



entanglement in a many-mode system.
The most obvious solution for a simple reflection would be to leave the twin beams

trapped, and have them propagate back towards each other, such as in the data shown
in fig. 5.26. However, this is hindered by the presence of the residual source cloud in
its strongly non-equilibrium state, the interaction of which with the twin beams is
not yet understood. As becomes clear from the red line in fig. 5.26(f), even after the
first half-oscillation the twin-beam peaks become strongly smeared out. Attempts to
selectively remove the source cloud, e.g. using a microwave transition to the F = 2
hyperfine manifold (where the discrete transverse levels show up as side bands) had
only limited success so far. Even if the source cloud could be disposed, a longitudinal
in-situ beam-splitter is not readily available in our experiment; schemes implementing
a simple central barrier (as in ref. [52]) might be possible, however.
An alternative way to achieve recombination of the twin-beam packets would be to

run only the production sequence in the trap, and then perform all further operations
during expansion of the cloud. In this case, one could use a pair of far-detuned
laser beams along x as a Bragg grating [305, 306], to perform momentum-sensitive
manipulations, before the cloud is detected in the light sheet. The recoil momentum of
e.g. a Nd-YAG laser (λ = 1064 nm, 2π

λ = 5.9 µm−1 ≈ k0) could mirror and recombine
twin-beam packets using a simple standing wave, if a slightly increased twin-beam
momentum is produced. Using a slight detuning between the beams would allow to
resolve the momentum distribution of the gas [189,190], and specifically, removing the
source cloud, which is localized near kx = 0. Also, the mode properties of the twin-
beams themselves could be studied in more detail. While a suitable laser is available in
the lab, practical integration of Bragg beams in the experiment will require some major
rearrangements of optics around the vacuum chamber, due to optical access becoming
more and more scarce. Also, the presence of the reflecting atom chip surface might
give rise to stray light issues.

Amplification using a multi-mode source

In the main theoretical model of this thesis – the density matrix expansion – the
problem of the multi-mode nature of the quasi-condensate source has been dealt with
in a rather radical way, by effectively reducing the description to a single mode with
reduced atom number. While this worked satisfactory at the level of the twin-beam
population dynamics (though necessitating the ad-hoc parameter Γ to account for the
omission of other modes), correlation properties of the twin beams may be strongly
affected [293]. At the current stage, this is acceptable, as the density matrix theory
makes no statement about higher-order correlations anyway. For future theory devel-
opments, be it in the direction of a higher-order density matrix expansion, a number-
conserving version of the linearized Bogoliubov approach, or stochastic methods, the
multi-mode source will almost with certainty become an important, and potentially
interesting, issue. The most promising approach might be, to couple the emission
calculation to a numerical result for the initial system [166,175,307,308].

On the experimental side, finite-temperature measurements, which are at a rather
preliminary stage still (see sec. 5.6) will have to be taken in a more systematic way, and
with sufficient statistics to allow for correlation measurements. Even more urgently,
a more reliable and consistent thermometry technique than that given in appendix B
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will have to be found.

Probing thermalization with high-momentum atoms

One of the most intriguing theoretical aspects of the one-dimensional Bose gas is the
integrability of the Lieb-Liniger model, eq. (2.31) [159], which in principle should
preclude the relaxation of such a system from non-equilibrium to a thermal state.
Indeed, for the case of a strongly interacting gas (γ � 1, see sec. 2.4.1) a persistent
“Newton’s cradle” state has been observed [298]. The dynamics of thermalization
in the weakly interacting case has been a major subject of experimental [199, 255]
and theoretical [261,299–301] study in our group. The twin-atom system is in a well-
defined, strongly out-of-equlibirium state, and observing its thermalization (or absence
thereof on accessible time scales) would be an excellent scheme to probe the involved
relaxation mechanisms.1 Apart from the momentum distribution, also the dynamics
of the non-classical correlations present in the initial state should give deep insight
into the process.
Again, the problem here is the remaining source cloud, impeding a proper one-

dimensional description. Other than removing the source cloud somehow (see above),
a way around this could be to perform a very weak excitation only, which places
only few atoms in the transverse state and the twin-beams. One might also consider
constructing an optimal control for a transient population of transverse states only
(not dissimilar to a low-efficiency version of the “Ramsey”-scheme in fig. 6.1). While
such a system would not be as far from equilibrium as the pure twin-beam states, the
high sensitivity of the light sheet imaging should still make it possible to observe the
ultimate fate of the twin-beam packets.

1In earlier experiments, where population of transverse states (and their decay) was caused by
technical noise, indeed a persisting non-thermal distribution was found [216], which however has
not been investigated further, yet.
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A. Optimization of the excitation ramp

The excitation trajectory used for pumping the condensate into the first excited GPE
state (sometimes referred to as nonlinear coherent mode [94, 309]) has been derived
using an optimal control theory [11, 95, 96] algorithm, which will briefly be described
here. The explanation closely follows that given in refs. [114,206].
In contrast to the rest of this thesis, only dimensionless coordinates will be used

in this section, which are matched with the typical scales of the problem, defining
~ ≡ 1 µm ≡ m ≡ 1.1 Furthermore, as compared to eq. (5.27), we will define all
wavefunctions in a fixed frame, and normalize them to one instead of the atom number
N , which leads to an interaction constant κ ≡ gyN . The transverse Gross-Pitaevskii
equation [equivalent to eq. (5.27)] then reads

i
∂φ(y, t)

∂t
=

(
−1

2

∂2

∂y2
+ Vλ(y, t) + κ |φ(y, t)|2

)
φ(y, t) . (A.1)

The anharmonic confinement potential is now moving as Vλ(y, t) = V6(y−λ(t), 0) (see
secs. 3.2.1, and 3.2.2). The objective of the control problem can now be formulated as
follows. Let λ0 be the control parameter at the initial time t = 0, and λ1 the control
parameter at the final time t = T of the control process. Likewise, we denote the
initial ground state of the GPE with φ′0(y). The desired final wave function is the first
excited state of the GPE φ′1(y). The OCT algorithm then seeks for the optimal time
variation of λ(t) that brings the final wave function as close as possible to φ′1.
To gauge the success of the excitation process for a given control field λ(t), we define

a cost function

J(φ(T ), λ) =
1

2

[
1−

∣∣〈φ′1|φ(T )〉
∣∣2]+

γ

2

∫ T

0

[
λ̇(t)

]2
dt . (A.2)

The first term of the cost function becomes minimal when the final wave function
precisely matches the desired wave function, apart from a global (irrelevant) phase.
The second term favors smooth control fields and is needed to make the OCT problem
well posed [310]. γ is a parameter that weights the relative importance of the two
control objectives of smooth control fields and of wave function matching. As our
experimental implementation allows fast and precise control of λ(t) (see sec. 3.2.1), the
parameter γ can be set such that the control penalization is always much smaller than
the first term in eq. (A.2). OCT is now seeking for an “optimal control” that minimizes
the cost function J(φ(T ), λ), under the condition that the final wave function φ(T ) has
to be obtained from the Gross-Pitaevskii equation of Eq. (A.1) with the initial wave
function φ′0(y). There exists a multitude of approaches to perform the optimization
(see e.g. ref. [11] for a recent review). For the vibrational inversion problem, we
use a (deterministic) Lagrangian framework, in contrast to the stochastic methods
[99,302,311] which were used for some more recent experiments (sec. 6).

1It follows, that times are measured in units of 1.37ms, and energies in units of ~ · (1.37ms)−1 =
h · 116Hz.
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A. Optimization of the excitation ramp

In this approach, to turn the constrained minimization problem into an uncon-
strained one, one introduces a Lagrange function [11]:

L(φ, p, λ) = J(φ, λ) + <
∫ T

0

〈
p

∣∣∣∣∣i∂φ∂t −
(
−1

2

∂2

∂y2
+ Vλ(y, t) + κ |φ|2

)
φ

〉
dt , (A.3)

where the adjoint function p(y, t) acts as a generalized Lagrange parameter. Here
and in the following we will, for the sake of brevity, often omit parameters y and
t. At the minimum of J(φ, λ) the Lagrange function has a saddle point, where all
three derivatives δL/δψ, δL/δp and δL/δλ must vanish. Performing the usual func-
tional derivatives, we obtain after some variational calculation the following optimality
system:

i
∂φ

∂t
=

(
−1

2

∂2

∂y2
+ Vλ + κ|φ|2

)
φ (A.4a)

i
∂p

∂t
=

(
−1

2

∂2

∂y2
+ Vλ + 2κ|φ|2

)
p+ g φ2 p∗ (A.4b)

γλ̈ = −<〈φ|∂Vλ
∂λ
|p〉 , (A.4c)

which has to be solved together with the initial condition φ(0) = φ′0, as well as with
the constraints on the control field λ(0) = λ0 and λ(T ) = λ1. To obtain the equation
for the adjoint function p, we have performed an integration by parts for the term
involving the time derivative of φ prior to working out the functional derivative δL/δφ.
This procedure gives, in addition to eq. (A.4b), the terminal condition

ip(y, T ) = −〈φ′1|φ(T )〉φ′1(y) . (A.5)

Quite generally, the Lagrange parameter determines the sensitivity of the system with
respect to the external control. In our case, the dynamic equation (A.4b) describes
the propagation of fluctuations around the Gross-Pitaevskii solution and has the same
form as a Bogoliubov-de Gennes equation (2.21).
In most cases of interest it is impossible to guess λ(t) such that eqs. (A.4a–c) are

fulfilled simultaneously, and one has to employ a numerical solution scheme. Suppose
that λ(t) is some guess for a viable control field. We can now solve Eq. (A.4a) forward
in time to obtain the final wave function φ(T ), which, in turn, allows us to compute
the adjoint function p(T ) from eq. (A.5). In the ensuing step, the time evolution of
p(t) is solved backwards in time. Since λ(t) is not the optimal control, eq. (A.4c) is
no longer fulfilled. However, the functional derivative

δL

δλ
= −γλ̈−<〈φ|∂Vλ

∂λ
|p〉 (A.6)

provides us with a search direction for λ(t). Adding a fraction of δL/δλ to λ(t) leads
to a control that performs better and brings the final wave function φ(T ) closer to
the desired one. The improved control field is then used in the next iteration. In our
simulations we typically perform a time discretization of the interval [0, T ] and use a
generic optimization routine, such as the nonlinear conjugate gradient [312, 313] or a
quasi-Newton method, together with eq. (A.6) for computing the appropriate search
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directions. One shortcoming of Eq. (A.6) is that in general δL/δλ does not vanish
at the boundary points of the time interval, although the control field is fixed to the
values of λ0 and λ1 there. To overcome this problem, one rewrites the penalization
term of the control field (γ/2)

(
λ̇, λ̇

)
L2 as (γ/2)

(
λ, λ

)
H1 , where the definition of the H1

inner product is (u, v)H1 = (u̇, v̇)L2 [295]. It is important to realize that this different
norm does neither affect the value of the cost function nor the Gross-Pitaevskii or
adjoint equations. However, it does affect the equation for the control field in case of
a non-optimal λ(t), which now satisfies a Poisson equation

− d2

dt2
δL

δλ
= −γd2λ

dt2
−<

〈
ψ
∣∣∂Vλ
∂λ

∣∣p〉 . (A.7)

The advantages of Eq. (A.7) are that the boundary conditions for λ(t) are automati-
cally fulfilled and that changes due to large values of the second term on the right-hand
side are distributed, through the solution of the Poisson equation, over the whole time
interval. In all our OCT calculations we use Eq. (A.7) instead of Eq. (A.6).
Our OCT implementation relies on a numerical optimization routine and a differ-

ential equation solver. As for the optimization routine, one can use any generic code
that, starting from some initial guess for the control field, requires a function value
(the cost function) together with the derivative of the evaluated function δL/δλ to
compute a new, improved λ(t). When using the H1 norm of eq. (A.7) one must en-
sure that all inner products in the generic code are evaluated as (u, v)H1 rather than
(u, v)L2 . In general we observed the best performance for the quasi-Newton BFGS
optimization [314], which outperforms the nonlinear conjugate gradient method for
larger number of iterations in the optimization loop. As for the differential equation
solver, we usually employ a split operator technique [114] because of its robustness
and simplicity.
With increasing iterations, the cost function J(φ, λ) and the derivative measure
|δL/δλ| decrease. Note that the “optimal control” corresponds to a minimum of the
control landscape, associated with a derivative equal to zero, but it is generally not
guaranteed that also the cost is small there. However, there are indications that under
quite broad conditions the OCT loop will come up with a λ(t) that fulfills the control
objective of wave function matching almost perfectly [315]. In our simulations we
typically stop after a given number of iterations or when the derivative has become
sufficiently small. The resulting λ(t) sequence, as shown e.g. in fig. 5.1(b), is then
called the optimal control. With the control we closely match the desired wave function
at the terminal time, with a fidelity of |〈φ′1|φ(T )〉|2 ≈ 1 − 3 · 10−3. Up to a global
phase, the wave function remains stationary for t > T .
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B. Fits of finite-temperaure data

An obvious prerequisite for a more quantitative analysis of the temperature depen-
dence of emission dynamics as in sec. 5.6 is a reliable and accurate thermometry
method for the regime under consideration. For our case, which is characterized by
low temperatures and unusually low atom numbers, methods developed in previous
works on thermometry in one-dimensional Bose gases [153,165,166,202,307,308] fail.
Due to the low temperature and chemical potential, there is little population of trans-
versely excited states (∼ 100 atoms even for the warmest clouds), which would allow
fitting a thermal cloud around the source [202]. Measuring density-density correlations
after intermediate expansion times [153, 216] would necessitate higher temperatures
and densities; for the coldest clouds, characteristic density ripples, from which tem-
peratures can be inferred, are hardly present. On the other hand, at higher temper-
atures, the quasi-condensate regime, in which this method is valid, is left. Focusing
techniques as used in various experiments to reveal the momentum distribution of the
gas [165, 166] will be challenging to implement due to the poor control of longitudi-
nal confinement in our experiment (sec. 3.2.1). Once temperatures get large enough
to make the deviation of the in-situ density profile discernible from a Thomas-Fermi
parabola, a fit of a Yang-Yang model [183] could be used [165]. However, such in-situ
images have poor signal-to-noise ratio due to the low atom number and distortions
due to the adjacent chip surface [224], impeding a sufficiently precise measurement.
Developing a truly appropriate thermometry technique for our situation is beyond

the scope of this thesis. To still obtain a very coarse estimate to the temperature
range of the analyzed data, we deduce an approximation to the finite-temperature
time-of-flight distribution as seen in light sheet imaging. We proceed by combining an
in-situ density profile nYY(x;N,T ) as obtained from solving the Yang-Yang integral
equations [183] with a simple estimation of the momentum distribution of a quasi-
condensate. For a homogeneous one-dimensional Bose gas in the quasi-condensate
regime (i.e., having suppressed density fluctuations), the expression for the expo-
nentially decaying first-order correlation function leads to a Lorentzian momentum
distribution [see eq. (2.36)]:

ñ(k;n, T ) = F [g(1)(δx)] =
λT/π

1 + λ2
Tk

2
, λT =

2~2n

mkBT
. (B.1)

Using the local density approximation (LDA), we can average ñ(k) over the initial
density nYY(T,N, x) and directly account for the broadening due to finite expansion
time:

n(x; ttof) ∝
∫
n(x− x′) · ñ

(
mx′

~t

)
dx′. (B.2)

Additionally, population of transversely excited states is accounted for as thermal gases
with chemical potential shifted by the appropriate transverse energy, which expand
freely and are added on top of the density distribution [165].

145



B. Fits of finite-temperaure data

n
 (

µ
m

−
1
)

957.5 kHz
11.8 nK

0

5

10

15

20

958 kHz
38.6 nK

958.5 kHz
58 nK

x (µm)

n
 (

µ
m

−
1
)

959 kHz
67.1 nK

−200 0 200

0

5

10

15

20

x (µm)

959.5 kHz
80.2 nK

−200 0 200

x (µm)

960 kHz
83.4 nK

−200 0 200

Figure B.1.: Fits of the model explained in the text to time-of-flight longitudinal
profiles of non-excited reference clouds, which have been prepared in the same way as
those in sec. 5.6. Dotted lines are the contribution from thermally populated higher
transverse states. The given values correspond to dotted lines in fig. 5.29(d).

This strategy is somewhat inconsistent, as in regions, where the Yang-Yang profile
actually deviates from an inverted parabola (arising from a quasi-condensate equation
of state), the quasi-condensate theory is obviously not applicable anymore. However it
gave more reasonable results compared to a direct propagation of a quasi-condensate
density matrix (fig. 2.2). Still, the agreement with experimental data as shown in
fig. B.1 is rather poor and does not warrant any truly quantitative interpretation.
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C. Shot-noise rejection in correlation functions

Two-dimensional averaged function To exclude the shot noise peak in the two-
dimensional (2d) averaged density correlation functions g̃(2)(δx, δy), a region with
|δy|, |δx| ≤ rsn (yellow box in fig. C.1(a) and yellow dotted lines in fig. 5.7) is replaced
by interpolated values. As outlined in sec. 5.3, this strategy relies on the function being
slowly changing along the δy axis, and factorizing the correlation function within
the region affected by shot noise into functions, that depend only on δx and δy,
respectively. The basic protocol is performed as follows (note, that 1 px ≈ 4 µm):

• As a source for interpolation, a “stripe” along the longitudinal axis g̃(2)
int (δx)

is extracted from averaging the (normalized) correlation function transversely
over regions directly adjacent to shot noise, rsn < |δy| ≤ rint (vertical green
dashed lines in fig. 5.7). It is assumed, that up to a scalar factor, the δx-
dependence of g̃(2) in that range matches that in the range δy ≤ rsn. A trade-off
between the validity of this assumption and noise in g̃(2)

int (δx) has to be made when
determining the range rint. Depending on the transverse correlation behavior,
rint can extend up to ∼ 4 pixels beyond rsn without distorting the result.

• To interpolate the region with δy ≤ rsn, g̃
(2)
int (δx) is scaled to account for the slow

transverse variation of g(2), with a scaling factor F (δy) that is dependent on the
transverse offset. This factor is found by minimizing the mean square deviation
〈[g̃(2)(δx, δy) − F (δy)g̃

(2)
int (δx)]2〉, taken over a domain |δy| ≤ rint, and rsn <

|δx| ≤ rfit.1 That means, that the scaling of the interpolation source function at
position δy is determined from a range that lies outside (but close to) the shot
noise region longitudinally (horizontal green dashed lines in fig. 5.7). Similarly
to rint, values of rfit ∼ rsn + 4 px lead to satisfying results. For data with little
noise (e.g. high atom numbers or many experimental runs), the optimization
can be run independently for each pixel along δy. However, especially when
calculating the correlation between weakly populated twin beams in sec. 5.3, it
is helpful to require some smoothness of the function F (δy), e.g. by adding a
term ∝ 〈[∂/∂(δy)F (δy)]2〉 to the cost function that penalizes discontinuities.

• Finally, we can estimate the second-order correlation function using:

g(2)(δx, δy) =

{
F (δy)g̃

(2)
int (δx) : δx ≤ rsn ∧ δy ≤ rsn

g̃(2)(δx, δy) : otherwise
, (C.1)

G(2)(δx, δy) = g(2)(δx, δy)/g̃(2)(δx, δy) · G̃(2)(δx, δy) (C.2)

i.e., by applying an interpolated “patch” on the region affected by atom shot
noise. The residuum of the interpolation in the central region corresponds to

1While in principle a fit up to |δy| ≤ rsn would suffice, extending the range slightly simplifies ensuring
consistency at the boundaries of the shot noise region.
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C. Shot-noise rejection in correlation functions
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Figure C.1.: Shot noise rejection, data set Corr-III. (a) Two-dimensional averaged
g̃

(2)
cl (δx, δy) between twin beams, same data as in fig. 5.8(a). Yellow dotted box:
shot noise range. Green boxes: interpolation source range rsn < |δy| ≤ rint. White
boxes: fitting range rsn < |δx| ≤ rfit. (b) Points: shot noise peak (difference between
original and interpolated function), summed diagonally, i.e., along the eigen-axes of
the light sheet. Lines: fits as described in the text. In this plot, the central pixel
(including detection noise) has a value of ∼ 0.75. (c) Dependence of full twin-beam
auto-correlation (g

(2)
11 g

(2)
22 )1/2 on rsn for rint = 2 px (black), 4 px (red), 6 px (blue). The

dashed line indicates g(2)
12 .

the shot noise peak g(2)
sn (δx, δy) ≈ g̃(2)(δx, δy)− g(2)

int (δx, δy), see fig. C.1(b) and
fig. 5.7(d). It has an elliptical shape with eigen-axes that are rotated by 45◦ with
respect to the trap axes, due to the geometry of the light sheet illumination (see
sec. 3.2.4).

In the ideal one-dimensional case, where only a single transverse mode is occupied
and eq. (5.17) holds, this technique gives a fully correct result, and F ≡ 1. This
is not completely valid under experimental circumstances, e.g. when calculating the
correlations in the entire images, which contain both twin beams and source, or if
position fluctuations occur. Still, F (δy) usually varies slowly enough to allow for
finding a set of parameters rsn, rfit, rint that leads to a function which is insensitive to
small changes of these parameters, and varies smoothly in both directions.
For the estimation of the detection noise ∆nŜ

2 as described in sec. 5.3.4, we can fit
a two-dimensional peak function to the obtained shot noise g(2)

sn (δx, δy), excluding the
central pixel. Comparing various peak shapes it was found that a generic product of
Gaussian and Lorentzian distributions of the form a·exp[−δx2/(2w2

x)−δy2/(2w2
y)]/[1+

δx2/u2
x + δy2/u2

y] models the data well. Using the fit coefficient a, we can write:

∆nŜ
2 = [g̃(2)

sn (0, 0)− a] · C(2)(0, 0).

with C(2)(δx, δy) as defined in eq. (5.19).

Longitudinally averaged function Obtaining the longitudinally resolved function
G(2)(x, x′) from the non-corrected G̃(2)(x, x′, δy) relies on connecting to the results
found in the previous section. To this end it is convenient to parametrize the trans-
versely averaged functions such as G(2)(x, x′, δy) as G(2)(x+, δx, δy) ≡ G(2)(x ≡
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(x+ + δx)/2, x′ ≡ (x+ − δx)/2, δy). We start by defining:

G̃(2)(x+, δx, δy) = g(2)
sn (x+, δx, δy) · C(2)(x+, δx, δy) +G(2)(x+, δx, δy) (C.3)

g(2)
sn (x+, δx, δy) ≡ N · F (x+, δx, δy)

N(x+/2)
g(2)

sn (δx, δy). (C.4)

As the shot noise peak in the normalized functions is expected to scale withN(x+/2)−1

while retaining its shape, the function F (x+, δx, δy) should ideally be a constant.
Furthermore, we can require the relation:∑

x+

G(2)(x+, δx, δy) = G(2)(δx, δy) (C.5)

to be fulfilled, where G(2)(δx, δy) is known from eq. (C.2).
For the data shown in this thesis, we take the simplest possible approach and set

F (x+, δx, δy) ≡ F0, where F0 is obtained from minimizing
∑

δx,δy P (δx, δy)2 with

P (δx, δy) = G(2)(δx, δy)−
∑
x+

[
G̃(2)(x+, δx, δy) (C.6)

− N · F0

N(x+/2)
g(2)

sn (δx, δy) · C(2)(x+, δx, δy)

]
,

where the central pixel (which is affected by detection noise) has to be excluded.
Detection noise is finally corrected similarly to eq. 3.11 by subtracting δ(δx, δy) ·
(2mN(x+/2) + ∆b̂2)/m2 from G(2)(x+, δx, δy), where the background variance ∆b̂2

for one full transverse pixel row has to be used.
The values for gtb − 1 xfrom summing over appropriate regions differ from those

obtained by specifically fitting the shot noise in the twin-beam regions (as described
above) by typically ∼ 5%, leading to a mismatch of ∼ 15% in v − 1. Within the
qualitative discussion in sec. 5.3.5 this may be acceptable, however, quantitative con-
clusions will require a more involved scheme, where the requirement of a constant
F0 is lifted. One possible approach to do so would be consider various ranges of x+

separately, and using appropriately determined functions for g(2)
tb (δx, δy), respectively.
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E. List of symbols

Physical constants
h Planck constant (6.63× 10−26 Js)
~ Reduced Planck constant (1.06× 10−26 Js)
kB Boltzmann constant (1.38× 10−23 J/K)
µB Bohr magneton (9.27× 10−28 J/T)
m Mass of a 87Rb atom (1.44× 10−25 kg)
as Scattering length of 87Rb in F = 1 (5.31× 10−9 m)

Lengths and momenta
λdB Thermal de Broglie wave length
λT Quasi-condensate coherence length
lφ Quasi-condensate phase correlation length
ξh Healing (correlation) length
R Thomas-Fermi radius
li Harmonic oscillator length along i-th direction
l⊥ Transverse oscillator length
k0 Peak twin beam momentum
λ(t) Excitation trajectory

xmin, xmax Edges of counting regions for twin beams in time of flight
K,Kt,Kr Transverse center-of-mass momenta: source, twin-beams, and relative
Y0,K0, α Origin of co-oscillating frame along y in two-level model (sec. 5.4.3)

Energies/frequencies and coupling constants
µ Chemical potential (general)

µ0, µ(x) Global and local chemical potential in LDA
µ1 Global chemical potential of condensate in vibrational inversion

µe, µg Chemical potentials of transverse two-level model (sec. 5.4.2)
ωi Trap (angular) frequency along i-th direction
ωh Geometrically averaged trap (angular) frequency
ω̄ Arithmetically averaged trap (angular) frequency
ω⊥ Mean transverse trap (angular) frequency
εS Source excess/twin beam peak kinetic energy
εi Total (chapter 2)/kinetic (chapter 4) energy of i-th longitudinal mode
ε′i Total energy of i-th longitudinal mode (chapter 4)
Enm Energy of n-th/m-th single-particle transverse state along y/z, respectively

νx, νy, νz Frequency of harmonic contribution to trapping potentials
σy,z, ξy,z Quartic and sixth-order contributions to trapping potentials
νi, ν

(z)
i i-th transverse potential level spacing along y or z

ν0 Level spacing of static (harmonic) trap
ν′i Transverse mean-field shifted level spacing
g 3d interaction constant
g1d Longitudinal 1d interaction constant
gy Transverse (along y) 1d interaction constant
κ General mode coupling constant (relating to populations, not densities)
κij Coupling of longitudinal mode pair i, j to source mode S
δ Relative detuning of twin-beam modes (sec. 4.2)
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E. List of symbols

Ω Twin-beam emission rate (chapter 4)
∆k, ωk Detuning and effective emission rate for twin-beam mode k (sec. 4.3)

Γ Excess scattering rate for twin-beam emission model (sec. 5.5)
V Potential (general)
Vext Trap potential (general)
Vmag Static field trap potential
VRF Dressed potential
V6 Polynomial approximation to dressed potential

Populations
N Total atom number
N0 Condensate (ideal)
NS Source state
Ni Longitudinal mode i
Nc Penrose-Onsager mode
Ne Transversely excited state

NL, NR Population in each of the twin beams
N+ Twin-beam total population NL +NR

N− Twin-beam imbalance NL −NR

p̃ Normalized imbalance N+/N− (sec. 5.3.5)
S, S+, . . . Fluorescence signal corresponding to N,N+, . . .

Wave functions and densities
ψTF(x) Thomas-Fermi wave function (total, or longitudinal)

ψi(x), ψ̃i(k) Wave function of mode i (total, or longitudinal)
ψ0(x) Condensate wave function
ψc(x) Wave function of Penrose-Onsager mode

φn(y), φm(z) Wave function of n-th/m-th transverse single-particle state
φ′n(y) Transverse GPE eigenfunction
φMF

0 (y) Single-particle ground state, affected by mean field in φ′1
ϕe, ϕg Transverse harmonic-oscillator wave functions (sec. 5.4.3)

αmn, βmn Normalized transverse density overlaps
n(. . .) Density (general)
n0 3d peak density

n1d(x), ñ1d(k) Line density (longitudinal)
N(x, y), S(x, y) Atom number/photons detected in pixel at (x, y) (sec. 5.3)

Correlation functions
ρ(x, x′), ρ̃(k, k′) Single-particle reduced density matrix (long.)

ρij Single-particle density matrix expressed in modes i, j (long.)
ρiS Single-particle density matrix between mode i and source mode

∆ij ≡ ∆ijSS Two-particle density matrix between modes i, j and source mode
G(n)(. . .) Non-normalized n-th order correlation function
g(n)(. . .) Normalized n-th order correlation function
M Anomalous density (sec. 4.3)

G̃(2)(. . .), g̃(2)(. . .) Density-density correlations (non-normally ordered)
g

(2)
sn Shot-noise peak in density-density correlations

G̃
(2)
cl , G̃

(2)
bb Collinear and back-to-back averaged density-density correlations

G
(2)
LL , G

(2)
RR, G

(2)
LR, G

(2)
tb Second-order correlation within/between twin-beam peaks

Operators
Ĥtot Total Hamiltonian (in various contexts)
ĤP Pumping Hamiltonian
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Ĥ0 Single-particle Hamiltonian
Ĥδ Effective quadratic Hamiltonian for excitations

Ĥel, Ĥsc Elastic and inelastic scattering Hamiltonian
ĤMM, ĤTM Multi-mode and two-mode twin-beam Hamiltonian

Ψ̂(r, t) Total field operator
δ̂ Bogoliubov excitation field operator
âi Annihilation operator for (longitudinal) field modes

âS, âg Annihilation operators for source mode and initial ground state
D̂ Harmonic oscillator displacement operator

Temperatures
T Temperature (general)
β Inverse temperature (µBT )−1

T3d 3d ideal gas critical
T1d 1d ideal gas critical
t Normalized for 1d
Td 1d degneracy
Tco Quasi-condensate crossover
Tφ Finite-size condensate crossover

Others
c Speed of sound
γ Lieb-Liniger parameter
v Cauchy-Schwarz violation ratio
ξ2
− Number squeezing factor
ξ̃2
− Uncorrected number squeezing factor

∆X̂2 Variance of random variable X̂
∆bŜ

2
− Binomial twin-beam imablance variance

∆nŜ
2
− Detection noise contribution to twin-beam imbalance variance

η Transverse excitation efficiency, from overlap with φ′1
η′ Transverse excitation efficiency, from two-level model (sec. 5.4.3)
s Scaling factor of excitation ramp
T Total duration of excitation ramp

Ω, δ,Ω′, t0 Effective results of two-level driving model
J, L, p Cost, Lagrange, and adjoint function for the OCT algorithm (appendix A)

Experimental quantities
ttof Time of flight
νL Larmor frequency at trap minimum
νeff Effective trap bottom for dressed trap
νf Final frequency of evaporation RF knife

F,mF, gF Hyperfine and magnetic quantum number, Landé factor
It, IH, IRF Currents in trap, H, and RF wires
Bx, By External offset fields (Ioffe, Bias)
νRF, BRF Parameters of RF dressing field

Ω,∆ Rabi frequency and detuning of RF dressing (sec. 3.2.2)
ra, r̃a Typical imaging PSF, and typical radius of the PSF auto-correlation
Isat Saturation intensity
vr Recoil velocity
b̂ Light sheet background signal
m Average number of fluorescence photons per atom
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