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Abstract

This work is in the context of formal argumentation, a sub-field of Artificial Intelligence. Prob-
ably the most popular formalism in argumentation is abstract argumentation as introduced by
Dung [42]. So called abstract argumentation frameworks abstract from the actual content of
arguments and represent them as abstract entities and further abstract from the reasons of con-
flicts between arguments and represent them as a binary relation. Hence abstract argumentation
frameworks can be simply interpreted as directed graphs. On this abstract level one can study the
conflicts between arguments and identify coherent sets of arguments. There is a plethora of ap-
proaches when a set of arguments should be considered to be coherent, each of these approaches
is called a semantics for abstract argumentation.

In every argumentation system, towards conclusions, at some point we have to identify co-
herent sets of arguments. Hence we identify this as an important computational issue which
indeed can be studied on the abstract level. In this work we are doing a computational analysis
of evaluating abstract argumentation frameworks with semantics proposed in the literature.

The first part of this work is devoted to a classical complexity analysis of the associated
reasoning problems, using methods from classical complexity theory. We complement existing
results and it turns out that most problems are computationally intractable, i.e. NP-hard and in
some cases even harder.

In a second part we explore the range of tractable subclasses. We study tractable fragments,
i.e. graph classes that allow for an efficient evaluation of the argumentation framework. We
extend and complement existing results for acyclic, even-cycle free, symmetric and bipartite
Argumentation Frameworks. Moreover we consider the graph parameters tree-width and clique-
width to obtain Fixed-Parameter Tractability results. We call a problem fixed parameter tractable
if it can be solved by an algorithm, with a run-time that may highly increase with the value of
the parameter for a concrete instance but is polynomial in the size of the instance.

Finally we consider the intertranslatability of different argumentation semantics. We con-
sider a semantic σ to be translatable to a semantics σ′ if there is a (translation) function modify-
ing frameworks such that semantics σ on the original framework is in certain correspondence to
σ′ on the modified framework.
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Zusammenfassung

Diese Arbeit beschäftigt sich mit Formaler Argumentation, einem Teilgebiet der Künstlichen In-
telligenz. Einer der erfolgreichsten Formalismen in der Formalen Argumentation sind sogenann-
te Abstract Argumentation Frameworks, die 1995 von Dung eingeführt wurden. Das Konzept
der Abstract Argumentation Frameworks abstrahiert von dem konkreten Inhalt der Argumente
zu abstrakten Entitäten und einer Konfliktrelation zwischen diesen Entitäten. Diese Frameworks
kann man sich also als gerichtete Graphen vorstellen, wobei die Knoten des Graphen die Ar-
gumente repräsentieren während gerichtete Kanten Konflikte zwischen Argumenten darstellen.
Auf dieser abstrakten Ebene kann man nun die Konflikte zwischen Argumenten studieren und
kohärente Mengen von Argumenten identifizieren. Die Literatur kennt eine Vielzahl an unter-
schiedlichen Kriterien, sogenannte Semantiken, um solche kohärenten Mengen zu definieren.

Eine wichtige Aufgabe in computerunterstützten Argumentations-Systemen ist die Bestim-
mung von kohärenten Mengen von Argumenten oder allgemeiner die Auswertung des zugehö-
rigen Abstract Argumenation Frameworks mit der entsprechenden Semantik. Der Focus dieser
Arbeit liegt in der computationalen Analyse dieser Aufgaben für Abstract Argumenation Fra-
meworks und die unterschiedlichen Semantiken aus der Literatur.

Der erste Teil dieser Arbeit ist eine Komplexitätsanalyse dieser Probleme für beliebige Ab-
stract Argumentation Frameworks mit Methoden der klassischen Komplexitätstheorie. Wie sich
herausstellt ist ein Großteil der betrachteten Probleme schwierig im Sinne der Komplexitäts-
theorie, d.h. die Probleme sind NP-schwer und teilweise noch schwerer.

Daher werden in einem zweiten Teil sogennante tractable fragments untersucht. Das heißt
wir betrachten Abstract Argumentation Frameworks mit einer bestimmte Struktur und unter-
suchen ob diese mit weniger computionalen Aufwand ausgewertet werden können. Zu diesem
Zweck betrachten wir die Graph-Klassen von azyklischen Graphen, Graphen ohne Zyklen gera-
der Länge, symmetrischen Graphen und bipartiten Graphen. Desweiteren untersuchen wir meh-
rere Graph-Parameter, welche strukturelle Eigenschaften von Abstract Argumentation Frame-
works messen. Mit diesen Parametern wenden wir Methoden der Parametrsierten Komplexitäts-
theorie an, und zeigen, dass Abstract Argumentation Frameworks effizient ausgewertet werden
können wenn nur der dazugehörige Graph-Parameter nicht zu groß ist.

Der dritte Teil dieser Arbeit beschäftigt sich mit Übersetzbarkeit von verschiedenen Seman-
tiken für Abstract Argumentation Frameworks. Unter einer Übersetzung von einer Semantik A
in eine Semantik B versteht man in diesem Zusammenhang eine Funktion die jedem beliebi-
gen Abstract Argumentation Framework F ein Abstract Argumentation Framework G zuordnet
sodass die kohärenten Mengen von F bezüglich Semantik A den kohärenten Mengen von G
bezüglich Semantik B entsprechen.
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CHAPTER 1
Introduction

1.1 Argumentation in Artificial Intelligence

In recent years, starting with a seminal paper by Dung [42], Argumentation has become one
of the major fields in Artificial Intelligence (AI), which is mirrored by the fact that argumen-
tation nowadays appears as keyword at every important AI conference. Moreover, a multitude
of articles concerning argumentation in prestigious journals, a two annual dedicated conference
on the Computational Models of Argument, a workshop at Theory and Applications of For-
mal Argumentation, and the recently founded journal Argument & Computation underlines the
significance of this research direction.

Informally argumentation concerns building arguments, identifying conflicts between argu-
ments and then selecting coherent set of arguments to finally obtain a decision or conclusion.
This allows for a kind of defeasible reasoning and is indeed non-monotonic. The origin of
an argument setting can be of very different nature. For instance it may be by a single agent
evaluating her knowledge to make a decision or by a multi-agent scenario where several agents
negotiate. Argumentation was connected to existing work on non-monotonic reasoning by the
observation that many non-monotonic formalisms can realised as a kind of argumentation. Con-
structing arguments by as defeasible proofs in the formalism, identifying conflict between these
defeasible proofs and finally resolving conflicts. Such a correspondence was given for instance
for default logic [42], defeasible logic [75] and answer set programming [42]. For a survey on
argumentation in artificial intelligence the interested reader is referred to [14].

1.1.1 Abstract Argumentation

The core of resolving argumentation can be formalised by abstract argumentation frameworks
introduced by Dung [42]. Such frameworks consists of abstract entities representing arguments
and edges, so called attacks, representing conflicts between different arguments. However ab-
stract argumentation frameworks do neither take care of the arguments’ statements nor where
conflicts between arguments origin from. As these attacks have a direction one can interpret this
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frameworks as directed graphs. In abstract argumentation one works with this graph structure
and tries to identify sets of coherent arguments. Different definitions for a set of arguments being
coherent sets, so called semantics, have being proposed in the literature, each of them having
slightly different intuitions and properties [12, 22, 23, 42, 103] (see [7, 10] for an overview).
Abstract argumentation is nowadays one of the central formalisms in argumentation research.
An important part of the research concerning semantics for abstract argumentation frameworks
is dedicated to properties that semantics should satisfy and relations between semantics (see e.g.
[6, 8, 10, 72, 94]).

As indicated before abstract argumentation does not stand alone but typically appears as one
step in an entire argumentation process, which we will discuss next.

1.1.2 The Argumentation Process

Already in Dung’s seminal paper the concept of abstract argumentation frameworks was stated
together with several ways to instantiate such frameworks, i.e. ways to generate arguments and
identifying conflicts. In the following we illustrate our abstract view on the argumentation pro-
cess which is inspired by the work of Caminada and Amgoud [26].

We consider the overall argumentation process to consist of the following six steps:

1. Start with or build a knowledge base (KB)

2. Build arguments out of the KB

3. Identify conflicts between arguments

4. Abstract from the internal structure of the arguments

5. Resolve conflicts between arguments and select acceptable subsets of arguments

6. Draw conclusions (aggregate from the extensions)

For an illustration of these steps see Figure 1.1, where we sketch an instantiation of defeasible
logic in the spirit of the ASPIC [26, 99] system.

In general, to have an argument we have first to collect knowledge, where typically some
parts are defeasible. This can be either a set of logical rules / formulae or even the knowledge
of an expert. In a second step we need rules how to build arguments based out of the knowledge
base. Next we have to identify which arguments are in conflict with each other and whether this
conflict has a direction or goes in both directions. After that we can abstract from the concrete
contents of the arguments and just consider a framework of abstract arguments and conflicts
between them. On this abstract layer we can resolve conflicts and identify coherent sets of
arguments. Having these coherent sets of arguments at hand we can decide which arguments to
accept and finally we can draw conclusions by again considering the contents of the accepted
arguments.

However, in many instantiations of abstract argumentation frameworks these steps are not
clearly separated and may interact with each other. For example when not instantiating from a
logic knowledge base the construction of the argumentation framework might be by a “knowl-
edge engineer” who forms arguments and identifies conflicts from the accessible knowledge.
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⇒ x
→ ¬x
x→ y
⇒ y
⇒ ¬y

Knowledge Base

⇒ x → ¬x

⇒ x→ y

⇒ ¬y⇒ y

Building Arguments

⇒ x → ¬x

⇒ x→ y

⇒ ¬y⇒ y

Identify Conflicts

a b

c

de

Abstract

a b

c

de

Resolve Conflicts

prf ={{ b , d},
{ b , e}}

CS ={ ¬x }

Draw Conclusions

Figure 1.1: An illustration of the Argumentation Process

1.2 Computational Issues in Argumentation

As mentioned, evaluating arguments with respect to a semantics defining coherent sets of argu-
ments is one of the core issues of each argumentation system. As these semantics operate on
the abstract level, abstract argumentation frameworks are the right layer to study computational
problems.

Typical tasks for such an argumentation engine are: computing one (or all) coherent set of
arguments, deciding whether a specific argument is contained in one (or all) coherent set of
arguments, and deciding whether a given set of arguments is coherent. The general complexity
of abstract argumentation w.r.t. different semantics gained some interest in the literature [12, 31,
46, 48, 50]. However, there are still several open gaps which we attempt to close in this work.

As most of these problems turn out to be computationally intractable, that is NP-hard and
even harder, one is also interested in identifying tractable cases. One approach is to only con-
sider argumentation frameworks with a special kind of graph structure. Such investigations
have been undertaken in the work of Coste-Marquis et al. [31] on symmetric frameworks, the
work by Dunne and Bench-Capon [47] on even-cycle free frameworks, and an extensive study
by Dunne [44]. However, all these studies are limited to certain semantics.

Another promising approach for tackling in general intractable problems comes from pa-
rameterized complexity theory (see e.g. [93]). The idea behind parameterized complexity is that
the complexity of a problem typically does not merely depend on the entire size but on some
specific properties of the instance which can be measured by a parameter. For instance, in graph
theory there are several parameters measuring the structure of a graph, e.g. the parameter tree-
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width which intuitively measures how tree-like a graph is. Having such a parameter at hand one
can do a more fine-grained complexity-analysis and in the good case there are algorithms with a
runtime that might be exponential in the parameter but is only polynomial in the size of the in-
stance. If then one only considers instances where this parameter is bounded by a fixed constant
one has a polynomial time algorithm, we refer to such algorithms as fixed-parameter tractable.
First investigations for fixed-parameter tractability in abstract argumentation have been under-
taken in [44], where the graph parameter tree-width was considered. More recently Ordyniak
and Szeider [95] also considered another parameterisation for abstract argumentation, namely
the distance to known tractable graph classes.

A successful approach towards implementation of abstract argumentation systems is what
we call the reduction approach. That is, instead of designing and implementing new algorithms
for argumentation, one encodes argumentation problems in well studied formalisms with so-
phisticated solvers. There are several formalisms to which (abstract) argumentation reasoning
has been reduced. Most prominently there are the following approaches to reduce the compu-
tation of extensions or specific argumentation reasoning tasks to: SAT-solving [17] and resp. to
Quantified Boolean Formulae (QBF) [64]; Answerset-Programming (ASP) [65]; or a Constraint
Satisfaction Problem (CSP) [1]. In this work we study the possibilities of using the reduction
approach within abstract argumentation. That is, we study if and how reasoning with one argu-
mentation semantics can be reduced, by modifying the argumentation framework, to reasoning
with another semantics, for which we might have sophisticated tools.

1.3 Structure of the Thesis

This thesis is structured in six chapters, the first being this introduction. The remaining of this
work is structured as follows:

• In Chapter 2 we discuss the necessary background for our further investigations. First, we
introduce the concept of abstract argumentation frameworks and the different semantics
together with known properties of them. As well we provide some novel results con-
cerning semantics which we will make use of later on. Second, we briefly review the
necessary background from classical computational complexity theory as well as from
parameterized complexity theory. Finally, we discuss the background on direct graphs
and graph-parameters together with Meta-theorems for parameterized complexity results.

• The complexity analysis in Chapter 3 starts with an overview of existing work and then
contributes in the following directions:

– In Section 3.2 we study tractable reasoning problems and classify them w.r.t. com-
pleteness for the class of polynomial time decidable problems. Firstly, we show sev-
eral problems for the so called grounded semantics to be complete for polynomial
time. Secondly, we extend these results to another semantics, the resolution-based
grounded semantics. Finally, we show that several problems which are known to
be solvable in polynomial time, can be actually solved in logarithmic space and are
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thus (under typical complexity-theoretic) assumptions not complete for the class of
polynomial time.

– In Section 3.3 we study the complexity of semi-stable and stage semantics. Start-
ing from the complexity analysis for semi-stable semantics provided by Dunne and
Caminada [50], we first complement their results by presenting matching lower
bounds for credulous and skeptical reasoning. Secondly, we provide a complete
complexity analysis for the related stage semantics.

– In Section 3.4 we consider the complexity of ideal reasoning. That is we consider pa-
rameterized ideal semantics and give generic complexity results, i.e. upper and lower
complexity bounds for several reasoning tasks, using the complexity classification
of the base-semantics as parameter. Moreover we study all the semantics under our
considerations as base-semantics and give exact complexity characterisations for the
corresponding ideal semantics.

• Chapter 4 – Towards Tractability – addresses the issue of identifying tractable instances
of argumentation problems. The contributions are organised in three subsections and are
then finally summarised and discussed together with related work.

– Section 4.1 studies Tractable Fragments, i.e. graph classes on which argumenta-
tion problems are tractable which are intractable in the general case. Four classes
of argumentation frameworks, are considered, namely acyclic argumentation frame-
works, argumentation frameworks which are free of even-length cycles, bipartite
argumentation frameworks and symmetric argumentation frameworks. We review
and complement existing results from the literature and extend them to all of our
semantics. Finally we consider fragments that do not yield tractability but allow to
solve argumentation problems, which are in general hard for the second level of the
polynomial hierarchy, within the easier complexity classes NP or coNP.

– Section 4.2 provides Fixed-Parameter Tractability results concerning the graph pa-
rameters tree-width and clique-width. That is we show that the reasoning problems
under our considerations can be solved by algorithms whose worst-case runtime
highly increases with the parameter but only linear with the size of the instances. To
this end we first provide monadic second order logic encodings of the argumentation
semantics and then apply the meta-theorems.

– In Section 4.3 we prove Fixed-Parameter Intractability results for several param-
eters generalising the parameter tree-width for directed graphs. That is we prove
that argumentation problems remains hard on argumentation frameworks where the
parameter cycle-rank is bounded and then use a meta-theorem to extend these re-
sults to the parameters directed path-width, Kelly-width, DAG-width, and directed
tree-width.

• In Chapter 5 we study the intertranslatability of argumentation semantics. By a trans-
lation from a semantics σ to a semantics σ′ we understand a function modifying argu-
mentation frameworks such that semantics σ on the original argumentation frameworks
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is in correspondence with semantics σ′ on the modified argumentation frameworks. The
contributions in this chapter are as follows.

– In Section 5.1 we define properties for translations basically along the lines of Jan-
hunen [79]. In particular, we consider here as desired properties efficiency (the trans-
lation can be computed in logarithmic space w.r.t. the given argumentation frame-
works), modularity (the translation can be done independently for certain parts of the
framework) and faithfulness (there should be a clear correspondence between the ex-
tensions of the translated argumentation frameworks and the original argumentation
frameworks). However, we also consider some additional features which are needed
to deal with some of the argumentation semantics (for instance, the admissible se-
mantics always yields the empty set as one solution; thus filtering such an entire
solution is necessary).

– Section 5.2 contains our main results in this chapter, in particular we provide trans-
lations between grounded, stable, admissible, complete, preferred, semi-stable and
stage stage when possible. We analyse these translations w.r.t. the introduced prop-
erties using as minimal desiderata efficiency and (a particular form of) faithfulness.

– Section 5.3 then provides negative results, i.e. we show that certain translations be-
tween semantics are not possible. Some of these impossibility results make use of
typical complexity-theoretic assumptions together with results from Chapter 3; oth-
ers are genuine due to the different properties of the compared semantics.

• Finally, in Chapter 6 we conclude this work. We summarise and discus the results achieved
and give an outlook to possible future research directions.

1.4 Publications

Parts of this thesis where previously published in scientific articles.
The complexity analysis of semi-stable and stage semantics presented in Section 3.3 was

published in Information Processing Letters [54], and the complexity analysis of ideal reason-
ing has been partly presented at the prestigious IJCAI’11 Conference [59]. Moreover, Propo-
sitions 6 & 8 in Chapter 3 are based on results published in [56]. However, we also comple-
ment the already published complexity analysis by novel results, e.g. by Proposition 7 giving a
P-hardness result for resolution based grounded semantics and Theorem 26 studying the com-
plexity of ideal reasoning with stable semantics. In Chapter 4, Section 4.1 presents novel results
for tractable fragments, and Section 4.2 builds on observations presented at KR’10 [57] and
COMMA’10 [61], and on the technical side on MSO encodings of stage and semi-stable se-
mantics published in [54]. However, the given MSO1 encoding of resolution-based grounded
semantics (cf. Section 4.2.1) as well as the concrete encodings of the reasoning problems in
Section 4.2.2 are novel. In Section 4.3 we present intractability results, which where (for the
case of preferred semantics) previously presented at KR’10 [57]. Finally the results presented in
Chapter 5 were published in the Journal of Artificial Intelligence Research [56] (a short version
was presented at NONMON@30 [55]).
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Let us briefly mention work of the author, that is closely related but not included in this the-
sis. Firstly, there is a paper presented at the TAFA’11 workshop, which addresses computational
properties of determining the justification status of an argument in a labeling-bases setting [53].
This paper strongly builds on complexity results for extension-based semantics, some of them
presented in Chapter 3 of this thesis. Secondly, there is the work on dynamic programming
algorithms for abstract argumentation that build on certain graph-parameters. These algorithms
are based on fixed parameter tractability results presented in Section 4.2 of this thesis and where
presented at KR’10 [57] (for tree-width) and COMMA’10 [58] (for clique-width). The first one
also resulted in the system dynPARTIX1 first presented at INAP’11 [60]. Most recently there is
the work on complexity-sensitive decision procedures for Abstract Argumentation which builds
on complexity results of this thesis and will be presented at KR’12 [62].

1http://www.dbai.tuwien.ac.at/research/project/argumentation/dynpartix/
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CHAPTER 2
Background

In this chapter we briefly present the necessary background for the work presented in this thesis
and give purposive links to related literature for deeper insights.

In Section 2.1 we consider the field of abstract argumentation: the concept of abstract ar-
gumentation frameworks as introduced by Dung [42]; the plethora of argumentation semantics,
relevant properties of the semantics and relations between different semantics; and computa-
tional problems of interest in abstract argumentation.

In Section 2.2 we give an overview of complexity theoretic concepts we use in this work. In
particular we introduce the complexity classes we will need later on and their relations. More-
over towards the hardness proofs in Chapter 3 and Chapter 4, we present complete problems for
the relevant complexity classes. Finally we introduce the concept of fixed-parameter tractability
and related notions.

In Section 2.3 we discuss different kind of graph parameters. To this end we first recall the
necessary concepts from graph theory. Then we present the graph parameters tree-width, clique-
width and cycle-rank and discuss their properties and relations. Moreover we introduce monadic
second order logic and present useful meta-theorems for obtaining fixed-parameter tractability
results w.r.t. tree-width and clique-width, which are based on monadic second order logic.

2.1 Abstract Argumentation

In this section we first introduce (abstract) argumentation frameworks as defined by Dung [42],
give an overview of the most important semantics for such frameworks, discuss properties of
and relations between these semantics and finally present the reasoning problems of interest.

We start with the formal definition of Dung’s argumentation frameworks.

Definition 1. An argumentation framework (AF for short) is a pair F = (A,R) where A is
a finite1 non-empty2 set of arguments and R ⊆ A × A is the attack relation. For a given AF

1In principle AFs can be infinite but in this work we restrict ourselfs to finite AFs.
2For technical reasons we only consider AFs with A 6= ∅.
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F = (A,R) we use AF to denote the set A of its arguments and RF to denote its attack relation
R. If (a, b) ∈ R we say that a attacks b.

As one can see AFs can naturally be represented as a directed graphs, interpreting the ar-
guments as vertices and the attacks as edges (we will come back to this in Section 2.3). The
following example illustrates an AF by using a standard graphical representation of directed
graphs.

Example 1. Consider the AF F = (A,R), with A = {a, b, c, d, e} and R = {(a, b), (c, b),
(c, d), (d, c), (d, e), (e, e)}. The graph representation of F is given as follows.

a b c d e

For convenience we introduce some shorthands for denoting conflicts between arguments
and sets of arguments:

Definition 2. Given an AF F = (A,R). For arguments a, b ∈ A we may use the notation
a�R b instead of (a, b) ∈ R. For a set of arguments S ⊆ A and an argument a ∈ A, we also
write S �R a (resp. a�R S) in case there exists an argument b ∈ S, such that b�R a (resp.
a�R b). In case no ambiguity arises, we may use� instead of�R.

The main issue in argumentation scenarios is to identify in (some sense) coherent sets of
arguments. Thus one has to fix a notion of coherence for argument sets, the so-called semantics
of abstract argumentation.

2.1.1 Semantics

In the following we recapitulate the most popular semantics for abstract argumentation (see also
[7, 10] for an overview), but first we formalize what we consider to be an (extension-based)
semantics for abstract argumentation.

Definition 3. An extension-based semantics3 for abstract argumentation frameworks is a func-
tion σ mapping each AF F to a set of extensions σ(F ) ⊆ 2AF . If for each F , |σ(F )| = 1 then
we call σ a unique status semantics, otherwise multiple status semantics. For a unique status
semantics we denote the unique extension of F as Eσ(F ).

In the following we recall the most important semantics for abstract argumentation, starting
with the semantics introduced by Dung [42] and the related concepts. A very basic notion for
argumentation is conflict-freeness which underlies all of the semantics considered in this work.
It mirrors the observation that if one argument attacks another then these arguments should not
be accepted simultaneously.

3In the following we omit “extension-based“ and just talk about semantics, as we only deal with extension-based
semantics in this work. Some work has be done on defining semantics via 3-valued labelings [27], but as these
labelings can be computed easily from the corresponding extensions, labeling-based semantics are not of additional
interest from the computational point of view. Nevertheless such argument labelings can be useful for an algorithmic
purposes, see e.g. [57, 92, 104].
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Definition 4. Let F = (A,R) be an AF. A set S ⊆ A is conflict-free in F , if there is no argument
a ∈ S, such that S � a. We denote the collection of sets which are conflict-free (in F ) by cf (F ).

The conflict-free sets of the AF in Example 1 are {}, {a}, {b}, {c}, {d}, {a, c}, {a, d}
and {b, d}. Next we consider maximal conflict-free sets, which are still not interesting as a
semantics themselves, but can be used as basis for defining semantics and are thus often useful
on a technical level.

Definition 5. Let F = (A,R) be an AF. A set S ⊆ A is a naive set in F , if S is a ⊆-maximal
conflict-free set for F , i.e. S ∈ cf (F ) and for each T ∈ cf (F ), S 6⊂ T . We denote the collection
of all naive sets of F by naive(F ).

The naive sets in Example 1 are {a, c}, {a, d} and {b, d}. One can see that every argument
which is not in conflict with itself is in at least one naive extensions, which in most cases might
be unwanted.

Another important concept for Dung’s semantics is the notion of defense. The intuition of
this concept is that one would accept an argument a that is attacked by an argument b only if
there is an argument c that refutes b. Such an argument c disables b and thus defends a against
the attack from b.

Definition 6. Let F = (A,R) be an AF. An argument a ∈ A is defended by a set S if for each
argument b ∈ A with (b, a) ∈ R we have that S � b. Sometimes we may also say that the
argument a is acceptable w.r.t. S.

Based on the notion of conflict-freeness and defense, Dung defined admissible sets, i.e.
conflict-free sets that defend all of their arguments.

Definition 7. Let F = (A,R) be an AF. A set S ⊆ A is admissible for F , if S is conflict-free in
F and each a ∈ S is defended by S in F . We denote the collection of all admissible sets of F by
adm(F ).

For the AF in Example 1 we have the admissible sets {}, {a}, {c}, {d}, {a, c} and {a, d}.
Note that {b} and {b, d} are not admissible as b is not defended against the attack (a, b) ∈ R.

We observe that the empty set is always admissible, which makes admissible semantics
inapplicable for cautious reasoning modes. A problem with admissible sets is that we might
reject arguments without a reason, in particular we may reject arguments which are not attacked
or even not involved in a conflict at all.

To overcome this one can consider different kind of maximal admissible sets which leads
to complete, preferred and stable semantics. First let us consider a maximality where each
argument defended by an extension is already contained in the extension (we will introduce this
formally, later on, as reinstatement property).

Definition 8. Let F = (A,R) be an AF. A set S is a complete extension of F , if S ∈ adm(F )
and, for each a ∈ A defended by S (in F ), a ∈ S holds. We denote the collection of all complete
extensions of F by com(F ).

11



a b

c

Figure 2.1: An AF without stable extension

The complete extensions for the AF in Example 1 are {a}, {a, c} and {a, d}. Note that as a
is not attacked by any other argument it is contained in each complete extension,

Another approach for admissibility based semantics is to consider ⊆-maximal admissible
sets.

Definition 9. Let F = (A,R) be an AF. A set S is a preferred extension of F , iff S is a ⊆-
maximal admissible set for F , i.e. S ∈ adm(F ) and for each T ∈ adm(F ), S 6⊂ T . We denote
the collection of all preferred extensions of F by prf (F ).

For the AF in Example 1 we have that {a, c} and {a, d} are the only preferred extensions.
An even stronger maximality condition underlies stable semantics. Here we consider only

admissible sets that attack all arguments not contained in the set.

Definition 10. Let F = (A,R) be an AF. A set S is a stable extension of F , iff S is a conflict-
free set for F and for each b ∈ A we have that S � b. We denote the collection of all stable
extensions of F by stb(F ).

For the AF in Example 1 we have that {a, d} is the only stable extensions. We mention that
a conflict-free set that attacks all arguments that are not in the set is clearly an admissible set, as
it attacks all possible attackers. The pitfall with stable semantics is that there exists AFs without
an stable extension, e.g. the AF ({a, b, c}, {(a, b), (b, c), (c, a)}) illustrated in Figure 2.1.

Next we introduce an admissibility-based semantics which underlies a high level of skepti-
cism.

Definition 11. Let F = (A,R) be an AF. A set S is the grounded extension of F , if S is the
⊆-minimal complete extension. By a small abuse of notation we use grd(F ) to denote both, the
set containing the grounded extension as single element and the grounded extension itself.

For the AF F in Example 1 we have that grd(F ) = {a}.
So far, we have introduced semantics along the lines of Dung’s seminal paper [42]. We

proceed with two semantics based on a different kind of maximality, i.e. the maximality of the
so called range [103] of an extension.

Definition 12. Given an AF F = (A,R), for a set S ⊆ A, we define the range of S in F ,
denoted as S+

R , as the set S ∪ {b | S � b}. We write S+ instead of S+
R if R is clear from the

context and no ambiguity arises.
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Again consider our example AF and the sets S = {a, c}, T = {a, d}. The range S+ of
S is the set {a, b, c, d} and the range of T is the set of all argument, i.e. T+ = {a, b, c, d, e},
which mirrors the fact that T is a stable extension. Next we introduce some additional notation
concerning the range of extensions and related concepts, which will be useful later on.

Definition 13. Given an AF F = (A,R), we will use the following notation:

• For a set S ⊆ A, S⊕R to denote {b | S � b} 4

• For a set S ⊆ A, S	R to denote {b | b� S}

• For sets S, T ⊆ A we write S ≤+
R S

′ iff S+
R ⊆ T

+
R and S <+

R S
′ iff S+

R ⊂ T
+
R

In case no ambiguity arises we will omit the subscript R in the above notations.

We are now ready to introduce semi-stable semantics, which where first introduced by Ver-
heij [103] and later popularized by Caminada [22, 28].

Definition 14. Let F = (A,R) be an AF, and for a set S ⊆ A. A set S is a semi-stable extension
of F , if S is a ≤+

R-maximal admissible set for F , i.e. S ∈ adm(F ) and for each T ∈ adm(F ),
S 6≤+

R T . We denote the collection of all semi-stable extensions of F by sem(F ).

If we consider conflict-free sets instead of admissible and apply≤+
R-maximality we get stage

semantics [103].

Definition 15. Let F = (A,R) be an AF. A set S is a stage extension of F , if S is a ≤+
R-

maximal conflict-free set for F , i.e. S ∈ cf (F ) and for each T ∈ cf (F ), S 6≤+
R T . We denote

the collection of all stage extensions of F by stg(F ).

Both semantics semi-stable and stage are motivated by the fact that there are AFs without an
stable extension. It is easy to see that if an AF has an stable extension then stable, semi-stable
and stage semantics coincide, e.g. for the AF F in Example 1 we have that stb(F ) = sem(F ) =
stg(F ) = {{a, d}}. Further, for each AF, both semi-stable and stage semantics propose at
least one extension and thus somehow extend stable semantics to AFs where no stable extension
exists, but in a different ways. Consider again the AF F = ({a, b, c}, {(a, b), (b, c), (c, a)}) (see
Figure 2.1). We have that sem(F ) = {∅} while stg(F ) = {{a}, {b}, {c}}.

We proceed with two parametric approaches for defining semantics, that is using a arbitrary
semantics and build a new semantics in a certain way. A popular parametric approach is the
family of resolution-based semantics [12], with the resolution-based grounded semantics being
its most popular instance. Towards a definition of resolution-based semantics we first need the
concept of a resolution of an AF.

Definition 16. Given AF F = (A,R). A (full) resolution β ⊂ R of F is a ⊂-minimal set of
attacks such that for each pair {(a, b), (b, a)} ⊆ R with a 6= b either (a, b) ∈ β or (b, a) ∈ β.
We denote the set of all resolutions of an AF F by γ(F ).

4By definition we have that S+ = S ∪ S⊕.
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Intuitively a resolution eliminates all symmetric conflicts in an AF, by deleting one of the
attacks. On the basis of such resolved frameworks one can define resolution-based semantics.

Definition 17. Given an AF F = (A,R) and a semantics σ. We define the corresponding
resolution based semantics σ∗ as follows:

σ∗(F ) = min
⊆

⋃
β∈γ(F )

{σ((A,R \ β))}

We note that the resolution-based grounded semantics grd∗ satisfies many desirable proper-
ties [12] thus we will focus on this instantiation here. The following definition gives a simplified
characterization for resolution-based grounded semantics.

Definition 18. Let F = (A,R) be an AF. A set S ⊆ A is a resolution-based grounded extension
of F if

1. there exists a resolution β such that grd((A,R \ β)) = S and

2. there is no resolution β′ such that grd((A,R \ β′)) ⊂ S.

We denote the collection of all resolution-based grounded extensions of F by resGr(F ).

Next we consider parametrised ideal semantics. The concept of ideal semantics was origi-
nal stated as an alternative for skeptical reasoning w.r.t. preferred semantics [43] and later also
applied to semi-stable semantics [24]. Here we give a general definition of ideal semantics,
abstracting from the approaches in [24, 43], which is applicable to arbitrary semantics.

Definition 19. Let F = (A,R) be an AF and σ a semantics. The ideal sets w.r.t. base semantics
σ of F are those that satisfy the following constraints.

I1. S ∈ adm(F )

I2. S ⊆
⋂

E∈σ(F )

E if σ(F ) 6= ∅ and S = ∅ otherwise.

We say that S is an ideal extension of F w.r.t. σ, if S is a⊆-maximal ideal set (of F ) w.r.t. σ. We
use σidl to denote the collection of ideal sets w.r.t. σ and σie to denote the set of ideal extensions
w.r.t. σ.

For historical reasons we refer to prf idl , prf ie as standard-ideal semantics [43].

2.1.2 Properties

Here we consider basic properties of semantics as well as the relations between them. We start
with Dung’s famous fundamental lemma [42], which concerns the compatibility of admissible
sets and acceptable arguments.

Lemma 1 (Fundamental Lemma). Given an AF F = (A,R), a set S ∈ adm(F ) and two
arguments a, b ∈ A. If a, b are defended by S then
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cf (F ) = {S ⊆ A | ∀x, y ∈ S, (x, y) /∈ R}
naive(F ) = {S ∈ cf (F ) | S ⊂ T ⇒ T /∈ cf (F )}
grd(F ) = Fk(∅), for k such that Fk(∅) = Fk+1(∅)
adm(F ) = {S ∈ cf (F ) | S ⊆ FF (S)}
com(F ) = {S ∈ adm(F ) | F(S) ⊆ S}

stbF = {S ∈ adm(F ) | S+ = A}
prf (F ) = {S ∈ adm(F ) | S ⊂ T ⇒ T /∈ adm(F )}
sem(F ) = {S ∈ adm(F ) | S+ ⊂ T+ ⇒ T /∈ adm(F )}
stg(F ) = {S ∈ cf (F ) | S+ ⊂ T+ ⇒ T /∈ cf (F )}

resGr(F ) = min
⊆

⋃
β∈γ(F )

{grd((A,R \ β))}

Figure 2.2: Cheat-Sheet: Semantics for abstract argumentation (given AF F = (A,R)).

1. S′ = S ∪ {a} ∈ adm(F ) and

2. S′ defends b.

One direct consequence of the fundamental lemma is that each admissible set is contained in
a complete extension. Next we introduce a useful concept when dealing with admissibility-based
argumentation semantics, the characteristic function.

Definition 20. The characteristic function FF : 2A → 2A, of an AF F = (A,R), is defined as
FF (S) = {x ∈ AF | x is defended by S}.

Now we can give an alternative characterisation for the grounded extension, which allows
for an efficient computation. We have that the grounded extension of an AF F is the least fixed-
point of FF [42] and further that the complete extensions are the conflict-free fixed-points of
FF . The characteristic functions also allows for compacter characterisations of our semantics
(see Figure 2.2).

Now let us consider basic properties of semantics. First, immediate by the definitions, we
have that all semantics except stable semantics always propose at least one extension, although
it might be just the emptyset. Further we have that some semantics are refinements of others in
the sense that each extension w.r.t. one semantics is also an extension w.r.t. another semantics.
We summarise these relations in the following proposition.

Proposition 1. Given AF F = (A,R) then the following ⊆-relations hold:

1. stb(F ) ⊆ sem(F ), stb(F ) ⊆ stg(F )

2. sem(F ) ⊆ prf (F )

15



3. prf (F ) ⊆ com(F )

4. com(F ) ⊆ adm(F )

5. adm(F ) ⊆ cf (F )

6. stg(F ) ⊆ naive(F )

7. naive(F ) ⊆ cf (F )

8. resGr(F ) ⊆ com(F )

9. grd(F ) ⊆ com(F )

Proof. We prove each point separately:
(1) Consider E ∈ stb(F ). By definition E is conflict-free and as E attacks all arguments in
A \ E it is also admissible. Now we have that E+ = A and thus E is clearly ≤+-maximal and
thus E ∈ stg(F ) and E ∈ sem(F ).
(2) Towards a contradiction assume E ∈ sem(F ) and E 6∈ prf (F ). Then there exists S ∈
adm(F ) withE ⊂ S. AsE ⊂ S clearly alsoE+

R ⊆ S
+
R and there exists an argument x ∈ S \E.

We have that E ∪ {x} ⊆ S it is conflict-free and thus x 6∈ E+
R . As clearly x ∈ S+

R we obtain
E <+ S, a contradiction.
(3) Assume E ∈ prf (F ) and E 6∈ com(F ) then there exists an argument x ∈ A \ E and E
defends x. But then by the fundamental lemma E ∪ {x} ∈ adm(F ), a contradiction to the
⊆-maximality of E.
(4) & (5) Immediate by the definition.
(6) Towards a contradiction assume E ∈ stg(F ) and E 6∈ naive(F ). Then there exists
S ∈ cf (F ) with E ⊂ S. As E ⊂ S clearly also E+

R ⊆ S+
R and there exists an argument

x ∈ S \ E. We have that E ∪ {x} ⊆ S it is conflict-free and thus x 6∈ E+
R . As clearly x ∈ S+

R

we obtain E <+ S, a contradiction.

(7) Immediate by the definition.
(8) see [12].
(9) Immediate by the definition.

Notice that the ⊆-relations above are all that holds in general. For the remaining cases one
can easily constructs AFs where the ⊆-relation does not hold. We illustrate these ⊆-relations in
Figure 2.3. If two semantics are in ⊆-relation we may also say that one semantics preserves the
other one.

Definition 21. Let σ and θ be semantics. If for all AFs F = (A,R), σ(F ) ⊆ θ(F ), we call σ a
θ-preserving semantics.

We mention that that the preserving property is transitive, i.e. if σ is θ-preserving and θ is
τ -preserving then also σ is τ -preserving. For instance, all semantics under our considerations
are cf -preserving, but the cf , naive and the stg semantics are not adm-preserving. Moreover
we have that sem is prf -preserving, and stg is naive-preserving, which will be important later
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admissible

complete

preferred

semi-stable

grounded

res.b. grounded

Figure 2.3: Relations between argumentation semantics: An arrow from a semantics σ to an-
other semantics τ encodes that each σ-extension is also a τ -extension.

on when we consider the complexity of parametric ideal semantics. An overview of which
semantics preserves which semantics is given in Figure 2.3.

Next we formalise the property separating complete extensions and admissible sets.

Definition 22. A semantics σ satisfies the reinstatement property iff for every AF F = (A,R)
and E ∈ σ(F ) it holds that FF (E) ⊆ E.

In other words for a semantics that satisfies reinstatement we have that all arguments which
are acceptable w.r.t. an extension are already contained in the extension. Clearly complete se-
mantics satisfies the reinstatement-property and thus also all com-preserving semantics satisfy
the reinstatement-property (compare Figure 2.3). Furthermore, one can easily construct exam-
ples where the not com-preserving semantics under our considerations, i.e. cf ,naive, stg , adm ,
do not satisfy the reinstatement-property.

Properties of Parametric Ideal Semantics

First of all, we show that for all reasonable base semantics σ, and indeed for all semantics under
our considerations there is a unique ideal extension w.r.t. σ. To this end we need to following
lemma showing that each conflict-free set has a unique ⊆-maximal admissible subset.

Lemma 2. Given an AF F = (A,R) and a set S ∈ cf (F ) then there is a unique set E ⊆ S
such that E ∈ adm(F ) and for each E′ ⊆ S with E ⊂ E′ it holds that E′ 6∈ adm(F ).

Proof. It suffices to show that if D ⊆ S,D ∈ adm(F ) and E ⊆ S,∈ adm(F ) then also
D ∪ E ⊆ S,D ∪ E ∈ adm(F ), i.e. the admissible subsets of S are closed under set union.
First note that D ∪ E ∈ cf (F ) since D ∪ E ⊆ S and S ∈ cf (F ). It further holds that
D ∪ E ∈ adm(F ). We have that both D and E are admissible and thus any a ∈ (D ∪ E)	

either belongs to D	 (and so is counterattacked by some b ∈ D) or is in E	 (and, in the same
way, counterattacked by some b ∈ E).

Having Lemma 2 at hand we can give our result.
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Proposition 2. If a semantics σ is cf -preserving, then each AF F has a unique ideal extension
w.r.t. base semantics σ (σie is a unique status semantics).

Proof. First if the semantics does not propose an extension, by definition the emptyset is the
unique ideal extension. Now let us assume there is at least extension E′. We have that⋂
E∈σ(F ) E ⊆ E′ and as E′ ∈ cf (F ) also

⋂
E∈σ(F ) E is conflict-free. Finally by Lemma

2 we know that
⋂
E∈σ(F ) E ⊆ E′ has a unique ⊆-maximal admissible subset.

In following we use Eie
σ (F ) to denote the unique ideal extension w.r.t. base-semantics σ.

Proposition 3. If σ satisfies the reinstatement property and σ guarantees at least one extension,
then σie is comp-preserving.

Proof. Let F = (A,R) be an AF and E ∈ σie(F ). By definition E is admissible and it remains
to show that σie satisfies the reinstatement property i.e. that every argument defended by E
belongs to E,. Thus let a ∈ A be an arbitrary argument which is defended by E. As E is part of
every σ-extension we have that every σ-extension defends a and as σ satisfies the reinstatement
property a is contained in every σ-extension. By the fact that a is skeptically accepted and
defended by E we have that S ∪ {a} is an ideal set. But as E is already a maximal ideal set we
get that a ∈ E, which completes our proof.

Thus, if the base-semantics satisfies the reinstatement property (and proposes one exten-
sion) then the ideal extension is already a complete set. To see that ideal semantics with base-
semantics stable does not satisfy reinstatement consider the AF F = ({a, b, c}, {(a, b), (b, c),
(c, c)}) which has no stable extension. We then have that Eie

stb(F ) = ∅ while the argument a is
not attacked at all.

Furthermore for a base-semantics σ without the reinstatement property, the existence of a
complete set S which is also ideal w.r.t. σ is not guaranteed. For example, consider naive (or
stg) semantics and the AF F from above. This AF has two naive (resp. stage) extensions,
namely {a} and {b}, and thus none of the arguments is skeptically accepted. But the empty set
is not a complete extension, since FF (∅) = {a}.

Let us now consider the related case of using complete semantics as a base-semantics. We
have that the ideal extension w.r.t. complete semantics coincides with the grounded extension.

Proposition 4. For any AF (A,R), Eie
comp((A,R)) = Egr((A,R)) = grd(A,R).

Proof. It is known that the set of skeptically accepted arguments w.r.t. complete semantics coin-
cides with the grounded extension. Further as the grounded extension is also an admissible set,
the assertion follows.

Next as the base semantics we consider here, except stable, always yield a unique ideal ex-
tension, we investigate now how ideal extensions of different base semantics are related to each
other w.r.t. ⊆-inclusion. Caminada [24] has already shown that Eie

pr((A,R)) ⊆ Eie
sem((A,R))5

holds and that there exist frameworks (A,R), such that Eie
pr((A,R)) ⊂ Eie

sem((A,R)). With the

5sem ie is called the eager semantics in [24].
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following results we give a full analysis of the⊆ relations between the ideal extensions w.r.t. the
base semantics considered in this paper.

Theorem 1. For arbitrary AFs (A,R) the following ⊆-relations hold:

EIEcomp(F ) ⊆ EIEresGr (F ) ⊆ EIEpr (F ) ⊆ EIEsst(F )

⊆

EIEnaive(F ) ⊆ EIEstage(F )

Furthermore, these are all ⊆-relations that hold for arbitrary AFs.

Proof. Most of these ⊆-relations can be proven by considering the ⊆-relation of the corre-
sponding sets of skeptically accepted arguments. The relation Eie

pr((A,R)) ⊆ Eie
sem((A,R)) is

an immediate consequence of the fact that each extension E ∈ sem((A,R)) is also contained
prf ((A,R)); thus each argument skeptically accepted w.r.t. prf -semantics is also skeptically
accepted w.r.t. sem-semantics. Similarly, we have that each stg-extension is also a naive-
extension and thus Eie

naive((A,R)) ⊆ Eie
stage((A,R)).

To show, Eie
resGr ((A,R)) ⊆ Eie

pr((A,R)), we use the fact that for each E ∈ prf ((A,R))
there exists a full resolution β such that E ∈ prf ((A,R \ β)). Such a resolution β can be
constructed as follows. For each symmetric attack (a, b), (b, a) with a ∈ E put (b, a) ∈ β and
make an arbitrary choice for all the other symmetric attacks. Clearly E+

R = E+
R\β and thus E is

still preferred in (A,R \ β).
Further the grounded extension of (A,R\β) is contained in each S ∈ prf ((A,R\β)). Hence

if an argument is not skeptically accepted w.r.t. prf -semantics, then it is also not skeptically
accepted w.r.t. resGr -semantics. By the observation that the grounded extension is contained in
every resolution-based grounded extension [12], we get that Egr((A,R)) = Eie

comp((A,R)) ⊆
Eie

resGr ((A,R)).
It remains to show Eie

naive((A,R)) ⊆ Eie
pr((A,R)). This relation is quite surprising and

in accordance with this the proof is also more involved. That is, it makes use of a elaborate
characterisation of Eidl

naive and Eidl
pr which we prove to be correct later on.

Let B ⊆ Eidl
naive((A,R)). Ww have the following characterisation of the skeptically ac-

cepted arguments w.r.t. naive semantics: Asa = {x : (x, x) 6∈ R, {x}	 ∪ {x}⊕ ⊆ {y : (y, y) ∈
R} (see Proposition 12). As by definition B ⊆ Asa, we get that all arguments a ∈ B	 are
self-conflicting, i.e. (a, a) ∈ R. Such self-conflicting arguments are not credulously accepted
w.r.t. prf -semantics; hence, as B is admissible by definition, by Proposition 10 (C1) we have
that B ∈ Eidl

pr ((A,R)). Now as each ideal set w.r.t. naive-semantics is also an ideal set w.r.t.
prf -semantics, we get the desired ⊆-relation for the ideal extensions.

It remains to show that there are no further ⊆-relations between the considered ideal exten-
sion that holds for arbitrary AFs. In what follows, we use the frameworks as given in Figure 2.4,
to show that these relations do not hold.

Eie
sem(.) 6⊆ Eie

pr(.) as Eie
sem(AFa) = {a} while Eie

pr(AFa) = ∅
Eie
pr(.) 6⊆ Eie

resGr (.) as Eie
pr(AFb) = {a} while Eie

resGr (AFb) = ∅
Eie

resGr (.) 6⊆ Eie
comp(.) as Eie

resGr (AFc) = {d} while Eie
comp(AFc) = ∅
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Figure 2.4: Counterexamples for possible ⊆-relations between ideal extensions.

Eie
stage(.) 6⊆ Eie

naive(.) as Eie
stage(AFa) = {a} while Eie

naive(AFa) = ∅
Eie
comp(.) 6⊆ Eie

stage(.) as Eie
comp(AFd) = {a} while Eie

stage(AFd) = ∅
Eie
naive(.) 6⊆ Eie

comp(.) as Eie
naive(AFc) = {a} while Eie

comp(AFc) = ∅
Eie
stage(.) 6⊆ Eie

sem(.) as Eie
stage(AFe) = {d} while Eie

sem(AFe) = ∅
Eie
pr(.) 6⊆ Eie

naive(.) as Eie
pr(AFb) = {a} while Eie

naive(AFb) = ∅
Eie
naive(.) 6⊆ Eie

resGr (.) as Eie
naive(AFf ) = {a} while Eie

resGr (AFf ) = ∅

The remaining cases follow by the transitivity of the ⊆-relation.

Properties of AFs

Here we introduce important properties of AFs that refer to semantics.
The first considers stable semantics. As mentioned before there are AFs which propose no

stable extensions, which can be interpreted as some kind of inconsistency in the AF w.r.t. stable
semantics. This leads us to the following definition.

Definition 23. We say that an F = (A,R) is stable-consistent if it proposes at least one stable
extension, i.e. stb(F ) 6= ∅.

In stable-consistent AFs we have that stable, semi-stable and stage semantics coincide. How-
ever as we will see later determining if an AF is stable-consistent is computationally hard.

Lemma 3. Let F be a stable-consistent AF then stb(F ) = sem(F ) = stg(F ).

Proof. We already know that stb(F ) ⊆ sem(F ) (resp. stb(F ) ⊆ stg(F )). It remains to show
stb(F ) ⊇ sem(F ) (resp. stb(F ) ⊇ stg(F )). Given that there is a stable extension E with
E+ = A we know that each range-maximal admissible (resp. conflict-free) set S satisfies
S+ = A and thus is a stable extension.
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Next we consider AFs where preferred and stable semantics coincide.

Definition 24. We say that an F = (A,R) is coherent if stable and preferred semantics coincide,
i.e. prf (F ) = stb(F ).

Again determining whether an AF is coherent is a computationally hard task – actually even
harder than testing for stable-consistency [48]. Next we extend the traditional coherence term to
semi-stable and stage semantics.

Lemma 4. Let F be an coherent AF. Then F is stable-consistent and prf (F ) = stb(F ) =
sem(F ) = stg(F ).

Proof. We have that arbitrary AFs propose at least one preferred extension and thus as F is
coherent it proposes at least one stable extensions, i.e. F is stable-consistent. From the coherence
we have that prf (F ) = stb(F ) and from stable-consistency that stb(F ) = sem(F ) = stg(F ).

Hence we have that an AF is coherent iff preferred, stable, semi-stable and stage coincide.

2.1.3 Computational Problems

We have that in general an argumentation semantics assigns several extensions to a single frame-
work, but at the end of the day we want to make a conclusion about an argument (or a set of
arguments). There are several ways to aggregate the acceptance status of an argument from the
set of extensions, which mirrors different levels of scepticism. First it is quite clear that an ar-
gument which is in no extension at all should not be accepted, but for some (brave) people it
might be alright to accept an argument if it appears in just one extension, this is what we will call
credulous reasoning. On the other hand cautious people may demand that an argument is in all
extensions, we refer to this as skeptical reasoning. Really cautious (or coward) people may not
only require that the argument itself es skeptical accepted but also the arguments defending the
argument, which gives rise to ideal reasoning. That is, we have three different reasoning modes
for abstract argumentation6, credulous, skeptical and ideal reasoning.

These reasoning modes give rise to the following computational problems for an argumen-
tation semantics σ.

• Credulous Acceptance Credσ: Given AF F = (A,R) and an argument a ∈ A. Is a
contained in some S ∈ σ(F )?

• Skeptical Acceptance Skeptσ: Given AF F = (A,R) and an argument a ∈ A. Is a
contained in each S ∈ σ(F )?

• Ideal Acceptance Idealσ: Given AF F = (A,R) and an argument a ∈ A. Is a contained
in the ideal extension w.r.t. base semantics σ?

6Wu and Caminada [105] recently proposed a more fine-grained concept of a justification status of arguments
for labeling-based semantics. The computational properties of their approach has been studied in [53], exploiting
results for extension-bases semantics and the introduced reasoning modes.
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If an AF has no stable extensions, according to our definition of skeptical acceptance, all argu-
ments are skeptically accepted. This may be unwanted and hence one might consider a variation
of the skeptical acceptance problem, let us call it Skept ′stb , asking whether an argument is con-
tained in all extensions and there exists at least one extension.

Beside these reasoning problems there are also several other computational problems in the
field of abstract argumentation. In this work we consider the three most prominent ones of them.
First of all one might be interested in verifying given extensions, which may come from another
agent or potential corrupted file, or simple as part of a (guess & check) reasoning algorithm.

• Verification of an extension Verσ: Given AF F = (A,R) and a set of arguments S ⊆ A.
Is S ∈ σ(F )?

Another task is deciding whether an AF provides any coherent conclusion. That can be
deciding whether it has at least one extensions, in the case of stable semantics, or whether it has
an extension different from the emptyset, for all the other semantics under our consideration.

• Existence of an extension Existsσ: Given AF F = (A,R). Is σ(F ) 6= ∅?

• Existence of a nonempty extension Exists¬∅σ : Given AF F = (A,R). Does there exist a
set S 6= ∅ such that S ∈ σ(F )?

Now considering these problems w.r.t. the introduced semantics gives rise to a large number
of problems. But as several semantics are closely related to each other some of these prob-
lems turn out to be just different formulations of the same problem. The following proposition
identifies such cases.

Proposition 5. The following holds:

• Credcf = Crednaive

• Credadm = Credcom = Credprf

• Credgrd = Skeptgrd = Skeptcom = Idealcom = Idealgrd

• Existsstb = Exists¬∅stb
7

• Exists¬∅adm = Exists¬∅com = Exists¬∅prf = Exists¬∅sem

• Exists¬∅cf = Exists¬∅naive = Exists¬∅stg

Proof. Credcf = Crednaive : Clearly an argument is contained in a conflict-free set iff it is
contained in a ⊆-maximal conflict-free set.

Credadm = Credcom = Credprf : By Lemma 1 we have that each admissible set is con-
tained in a complete extension, hence Credadm(F, a) ⇒ Credcom(F, a). As each complete
extension is also admissible we further have that each complete extension is contained in some

7Provided that we only consider AFs with at least one argument.

22



preferred extension, thus Credcom(F, a)⇒ Credprf (F, a). Finally we have that each preferred
extension is an admissible set and thus Credprf (F, a)⇒ Credadm(F, a).

Credgrd = Skeptgrd = Skeptcom = Idealcom = Idealgrd : First as grounded is a unique
status semantics we clearly have that Credgrd = Skeptgrd . Further we have that the grounded
extension is the ⊆-minimal complete extension and thus coincides with the skeptical accepted
arguments w.r.t. complete semantics, hence Skeptgrd = Skeptcom . Finally we have that the
grounded extension (resp. skeptical accepted arguments w.r.t. com) is an admissible set and thus
the ideal extension coincides with the grounded extension.

Existsstb = Exists¬∅stb : We have that the emptyset is never a stable extension, as it does not
attack anything and our AF contains at least one argument.

Exists¬∅adm = Exists¬∅com = Exists¬∅prf = Exists¬∅sem : By Lemma 1 we have that each ad-
missible set is contained in a complete extensions, hence Exists¬∅adm(F ) ⇒ Exists¬∅com(F ). As
each complete extension is still admissible it is contained in some preferred extension, hence
Exists¬∅com(F ) ⇒ Exists¬∅prf (F ). If there exists a nonempty preferred extension we have an ad-
missible set with nonempty range. Then each semi-stable extension has nonempty range and
thus contains at least one argument, i.e. Exists¬∅prf (F ) ⇒ Exists¬∅sem(F ). Finally we have that
each semi-stable extension is admissible and therefore Exists¬∅sem(F )⇒ Exists¬∅adm(F ).

Exists¬∅cf = Exists¬∅naive = Exists¬∅stg : By definition each conflict-free set is contained in a
naive set, hence Exists¬∅cf (F )⇒ Exists¬∅naive(F ). If there exists a nonempty naive set we have a
conflict-free set with nonempty range. Then each stage extension has nonempty range and hence
contains at least one argument, i.e. Exists¬∅naive(F ) ⇒ Exists¬∅stg(F ). Finally we have that each
stage extension is a conflict-free set and therefore Exists¬∅stg(F )⇒ Exists¬∅cf (F ).

We observe that we did not use any kind of (complexity theoretic) reduction in the above
proposition. Hence two problems shown to be equivalent can be seen as different formulations
of the same problem, that is an instance is valid for one problem iff it is for the other problem,
without modifying anything in the instance.

2.2 Computational Complexity Theory

Here we briefly recapitulate the most important concepts of computational complexity theory
(for a comprehensive introduction see e.g. [97]) and the complexity classes relevant for this
work. We start with introducing different kind of abstract machine models, which underlie the
definitions of our complexity classes.

2.2.1 Abstract Machines

Despite its weak and clumsy appearance, the Turing machine can simulate ar-
bitrary algorithms with inconsequential loss of efficiency. Papadimitriou [97]

One important concept for computability and complexity studies is the underlying machine
model; here we consider Turing machines, dated back to Turing [102]. In the following we
will distinguish deterministic, non-deterministic and oracle Turing machines.
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We start with deterministic Turing machines. The intuition behind a Turing machine is a
machine having a finite state register, several tapes (in the simplest case just one) with symbols
written on it and a read/write head for each tape to handle the symbols on the tapes. In one
computation step this machine reads all symbols under the read/write heads, may change them,
may move the heads one step, and may change the state stored in the register. A program for
such a machine defines for a given state and symbols read by the heads, how to modify the read
symbols, how to move the cursors, and the next state of the machine.

The following definition gives a formalisation of this intuition:

Definition 25. A (deterministic) k-string Turing machine (TM) is a tuple M = 〈S,Σ, δ, s〉, with

• S a finite set of states

• Σ the alphabet of M - a finite set of symbols

• δ a transition function : δ : S × Σk 7→ S ∪ {“yes”,“no”} × Σk × {→,←,−}k

• s ∈ S the initial state

The transition function δ plays the role of the program of the Turing machine. A computation
of such a machine starts in the initial state and an initial configuration of the tapes and read/write-
heads, encoding the input. In the following we call such a combination of a state and a tape
configuration, the configuration of a machine. In each computation step the machine modifies
the configuration according to the function δ and eventually holds if one of the halting states
“yes”, “no” is reached. In the first case we say the machine accepts the input otherwise we say
it rejects the input.

While this is a quite simple concept it is commonly believed that every effectively calcula-
ble function can be computed with a Turing machine, this is referred to as Church-Turing thesis.
Thus Turing machines are the appropriate tool to classify computable functions and as it turns
out also for classifying algorithms w.r.t. computational costs. To this end we introduce gen-
eralisations of Turing machines, namely non-deterministic Turing machines and oracle Turing
machines.

Definition 26. A non-deterministic k-string Turing machine (NTM) is a tuple, N = 〈S,Σ, δ, s〉
with:

• S a finite set of states

• Σ the alphabet of M - a finite set of symbols

• δ a transition relation: δ ⊆ (S × Σk)×
[
S ∪ {“yes”,“no”} × Σk × {→,←,−}k

]
• s ∈ S the initial state

The main difference between deterministic and non-deterministic machines is that: for a de-
terministic machine each configuration has at most one possible computation step, given by the
function δ, while for non-deterministic machines each configuration has several possible compu-
tation steps, given by the relation δ. Hence when starting with some input configuration we get

24



exactly one computation for deterministic machines and in general several for non-deterministic
machines. We say that a non-deterministic machine accepts an input if at least one of the possible
computations accepts it and respective that it rejects an input only if all possible computations
rejects it.

Next let us consider so-called oracle machines. By a C-oracle machine we mean a Turing
machine which can access an oracle that decides a given (sub)-problem C within one step.

Definition 27. For a language L , an L-oracle Turing machine is a (non-deterministic) k-string
Turing machine with an designated query string and three special states q?, qyes and qno. The
state q? is excluded from the function (resp. relation) δ. The transition step for a configuration
with state q? is handled by the L-oracle. We have that the state changes to qyes if the current
string on the query string is in L and qno otherwise. The strings as well as the heads positions
are not changed in this step.

Towards complexity measures we define time and space used by a computation on a Turing
machine. Let us start with time. For a deterministic computation we say that the computa-
tion time, the time required by the algorithm, is simple the number of computation steps needed,
starting from the initial configuration, until a halting state is reached. For non-deterministic com-
putations we define the computation time as the minimum time of all accepting computations
if such a computation exits and as the maximum time of all rejecting computations otherwise.
These definitions pass over to oracle machines. We mention that we count an oracle call just as
one step, that is the computation time for deciding whether the query string is in L or not, does
not add to the computation time of the oracle-machines computation.

To define the space used by Turing machine algorithms we consider a special kind of k-
string machine, namely these with an designated input and a designated output string. The
intuition behind this is that the space occupied by input or output should not be considered as
space used by the algorithm. On the other side we want to be sure that the algorithm does not
hide computational costs in the input or output. Thus we have the following restrictions: The
machine is not allowed to write on the input string (read only head), is not allowed to read from
the output string (write only head) and in the initial configuration all strings except the input
string are empty. The space used by a deterministic algorithm on a string is the number of string
positions visited by the read/write-heads. The space used by a deterministic algorithm is the
sum over the space used on the read/write strings. As before for non-deterministic machines we
define the used space as the minimum space of all accepting computations if such a computation
exits and as the maximum space used by any rejecting computations otherwise. Again these
definitions pass over to oracle machines.

We will use these concepts of time and space to actually define complexity classes, but
before doing so we have to introduce some basic concepts of complexity theory.

2.2.2 Basic Concepts

First of all we have to clarify that computational complexity theory deals with the asymptotic
worst case algorithmic complexity of problems. A few more words about this are appropriate. By
algorithmic complexity we mean the (time/space) resources used by an (Turing machine) algo-
rithm solving the problem. Further we consider the complexity of the hardest problem instances
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as the complexity of the problem, i.e. we consider some kind of worst case complexity. Finally
we only analyse the asymptotic behaviour of problems, i.e. how fast the resource requirements
increase with the input size.

First we want to formalise the concept of a complexity theoretic problem:

Definition 28. In complexity theory a problem specification, or problem for short, consists of
two parts. A criterion that defines an infinite set of instances and a question on these instances.

Usually the question is such that it can be either answered by yes or no. In this case we say
that the problem is a decision problem. An example for a decision problem is the REACHA-
BILITY problem in graph-theory. Here we have as instance a graph8 G = (V,E) and two nodes
v1, v2 ∈ V and the question is if there is a path from v1 to v2.

To classify a problem’s complexity we use the idea of reductions to order problems w.r.t.
their complexity and identify problems with the same complexity. The idea behind this is that if
a problem A can be easily reduced to another a problem B we can simple apply this reduction
and then us an algorithm for the second problem to solve any instance of the original problem
A. Hence one says that A is as most as hard as B and write A ≤ B. In this work, to reduce
decision problems, we use the concept of so called many-one reductions.

Definition 29 (Reduction). A decision problem A is many-one reducible to a decision problem
B if there is a reduction function R such that for each problem instance x of A we have that x
is a yes instance of A iff R(x) is a yes instance of B. We then call R a many-one reduction from
A to B.

As we will only consider many-one reductions in the following, we omit the “many-one”
and just talk about reductions. Next we consider the computational power of such reductions.

Definition 30 (log-Reduction). A decision problem A is log-reducible to a decision problem
B if there is a reduction function R computable by a deterministic Turing machine in space
O(log |x|) for each problem instance x of A.

Definition 31 (P-Reduction). A decision problem A is P-reducible to a decision problem B if
there is a polynomial p(.) and a reduction function R computable by a deterministic Turing
machine in time O(p(|x|)) for each problem instance x of A.

It is well known that each log-Reduction is also a P-Reduction, but it is commonly believed
that the converse does not hold (although it is not known yet). Further both reducibility concepts,
log-reducibility and P-reducibility, are transitive, i.e. if there are log-/P-reductions from A to B
and from B to C then there is also a log-/P-reduction from A to B.

Let us briefly point out things that can be done and things that can not be done within log-
space. First obviously we can not use copies of (large parts of) the input for our calculations. But
we can store a fixed number of integer counters as long as the values are polynomial bounded
in the input size (using binary encodings). Moreover one can also implement a fixed number of
cursors to parts of the input, for instance by using integer counters. So when giving log-space

8 For the formal definitions see Section 2.3.
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algorithms what we basically do is using a fixed number of cursors and and a fixed number of
counters to handle arbitrary instance.

As different reductions might yield different hardness relations we have to clarify which kind
of reduction should be used in which case. We will come back to this point in Section 2.2.4.

2.2.3 Complexity Classes

Here we briefly review the complexity classes used in this work and their relations. In the fol-
lowing we say that a machine decides a problem in polynomial time (resp. space) if there exists
an polynomial p(x) such that the machine decides to problem in time (resp. space) O(p(|x|)).
Moreover we will use the notion of exponential and logarithmic time / space in a similar manner.

We start with the complexity classes based on deterministic machines and different time
bounds for the computation.

Definition 32. The class P (polynomial time) is the class of problems that can be decided by a
deterministic Turing machine in polynomial time.

Definition 33. The class EXPTIME (exponential time) is the class of problems that can be
decided by a deterministic Turing machine in exponential time.

We consider problems in the class P to be (computationally) tractable. Towards a more
fine-grained complexity scale we (additionally) use space bounds.

Definition 34. The class L (deterministic logarithmic space) is the class of problems that can
be decided by a deterministic Turing machine in logarithmic space (and polynomial time).

The class L is the weakest complexity class in our considerations. Next we consider another
class based on space bounds, but which in contrast L characterises intractable problems.

Definition 35. The class PSPACE (deterministic polynomial space) is the class of problems that
can be decided by a deterministic Turing machine in polynomial space (and exponential time).

While the power and cost of the introduced deterministic complexity classes are quite clear,
it turned out that they do not match the exact complexity of many important combinatorial
problems (under usual complexity theoretic assumptions).

But most of these problems can be easily solved by non-deterministic algorithms and hence
the complexity of these problems is captured by non-deterministic complexity classes, with NP
and coNP being the most prominent.

Definition 36. The class NP (non-deterministic polynomial time) is the class of problems that
can be decided by a non-deterministic Turing machine in polynomial time.

It is strongly believed, but not shown yet, that non-deterministic time complexity is not
closed under complementing. This is caused by the asymmetry between “yes” and “no” in-
stances in the non-deterministic acceptance criterion. Hence one might be interested in the
complementary classes, in particular in the class coNP:
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Definition 37. The class coNP is the class of problems, where the negated question9 can be
decided by a non-deterministic Turing machine in polynomial time.

Next we define the class of problems that are, in some sense, combinations of NP and coNP
problems. We start with a class of problems that are conjunctions of a NP and a coNP problem.

Definition 38. A decision problem L is in the class DP iff L can be characterised as L1 ∩ L2

for decision problems L1 ∈ NP and L2 ∈ coNP.

Next we consider complexity classes defined via oracle machines (see Definition 27) and
using the above complexity classes. To this end let C denote some complexity class. By a
C-oracle machine we mean a oracle Turing machine which can access an oracle that decides
a given (sub)-problem in C within one step. We denote the class of problems decidable in
polynomial time when using such a C-oracle machine, as PC if the underlying Turing machine
is deterministic and NPC (resp. coNPC) if the underlying Turing machine is non-deterministic.
Moreover we consider deterministic oracle machines where the number of allowed oracle calls
is bounded by a function f(|x|), and denote the corresponding complexity classes as PC[f(|x|)].

We now turn to concrete complexity classes.

Definition 39. ΣP
2 denotes the class NPNP, i.e. the problems which can be decided by a non-

deterministic polynomial time algorithm that has access to an NP-oracle.

As ΣP
2 is a non-deterministic class we can also define the complementary class ΠP

2 .

Definition 40. ΠP
2 denotes the class coNPNP, i.e. the problems where the complement can be

decided by a non-deterministic polynomial time algorithm that has access to an NP-oracle.

Let us briefly mention that the classes ΣP
2 ,Π

P
2 do not stand-alone, but are part of the so

called polynomial hierarchy [97, chapter 17]. The idea behind this hierarchy is, starting from
ΣP

1 = NP and ΠP
1 = coNP, recursively defining complexity classes ΣP

i ,Π
P
i as ΣP

i = NPΣPi−1

and ΠP
i = coNPΣPi−1 . We will consider NP and coNP as the first level and ΣP

2 ,Π
P
2 as the second

level of the polynomial hierarchy.
Now one can consider the analogon of the class DP on the second level of the polynomial

hierarchy:

Definition 41. A problem L is in the class DP
2 iff L can be characterised as L1∩L2 for L1 ∈ ΣP

2

and L2 ∈ ΠP
2 .

Next we consider a complexity class where the number of oracle calls is bounded.

Definition 42. ΘP
2 denotes the class PNP[log(|x|)], i.e. the problems which can be decided by a

deterministic polynomial time algorithm that is allowed to make a logarithmic number (w.r.t.
input size) of NP-oracle calls.

9The answer to the negated question is YES iff the answer to the original question is NO and vice versa.
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An alternative characterisation for a problem to be ΘP
2 is that it can be solved by a determin-

istic algorithm which is allowed to makeO(n) non-adaptive calls to the NP-oracle (ΘP
2 = PNP

‖ ).
In other words the exact formulation of a query does not depend on the answers of the previous
queries, and thus the answers to all queries can be computed in parallel (see, e.g., [67]).

Finally we give an overview of relations between the complexity classes used in this paper:

L ⊆ P ⊆ NP
coNP

⊆ DP ⊆ ΘP
2 ⊆

ΣP
2

ΠP
2
⊆ PSPACE ⊆ EXPTIME

When choosing a kind of reduction one usually wants that the complexity classes under
ones considerations are closed under these reductions. That is if one can reduce a problem A to
a problem in the complexity class C then also the problem A should be in the complexity class
C. We have that all the complexity classes introduced above are closed under log-reductions and
all except L are closed under P-reductions.

2.2.4 Complete Problems

In complexity analysis we are not that dependent on the actual definition of a complexity class,
but on “representative” problems for the class which are suitable for (nice) reductions. The con-
cept making a problem “representative” for a complexity class is the concept of completeness.
Next we give the definition for a problem being complete for a complexity class.

Definition 43. We say that a problem B is hard under τ -reductions (where τ stands for an
arbitrary type of reduction) for a complexity class C, if each problem A ∈ C can be τ -reduced
to B. If further B ∈ C we say that B is C-complete under τ -reductions.

We mention that any problem in the class P and in particular those in the class L would be
complete for P under P-reductions, because the complexity class does not add any computational
power to the reductions. That is one can solve the actual instance of a problem in P within
the reduction and then reduce it to a trivial accepting (resp. rejecting) instance. Hence in the
following we will use log-reductions when talking about P-completeness and P-reductions when
we consider complexity classes beyond P. However, probably most of the P-reductions we
present in this work are also log-reductions.

To show that a problemA is C-hard, by the transitivity of reductions, it suffices to reduce a C-
hard problem to A, instead of all problems in C. Hence for the complexity analysis in this work
we are interested in complete problems for the complexity classes under our considerations. To
this end we introduce the “canonical” complete problems for the complexity classes used in this
work.

P-complete problems: Here we present two P-complete problems, i.e. HORNSAT and the
circuit value problem (CVP); a nice compendium of P-complete problems can be found in [76].

Towards our first P-complete problem we introduce the concept of definite HORN-clauses
and definite HORN-formulas. A definite HORN-clause c is the disjunction over literals from a
countable domain U such that c contains exactly one positive literal. A definite HORN-formula
is the conjunction over definite HORN-clauses.
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For example consider the definite HORN-formula ϕ = x∧ (¬x∨¬y ∨ z)∧ (¬y ∨¬z ∨ x).
A more convincing way to denote definite HORN-formulas is as set of clauses and moreover
denoting clauses as (logical equivalent) rules. Thus, our example formula ϕ can be denoted as
ϕ = {→ x, x∧y → z, y∧z → x}. It is well known that a definite HORN-formula has a unique
minimal model which can be computed in polynomial time.

Definition 44. The definite Horn satisfiability problem (HORNSAT) is: Given a definite HORN
formula ϕ and an atom x. Deciding whether x is in the minimal model of ϕ.

Theorem 2 ([83]). Definite HORN SAT is P-complete.

Another source for P-complete problems are boolean circuits (see, e.g., [73, 87]) . Let us
start with a formal definition of these circuits.

Definition 45. A (boolean) circuit β is a sequence (βi)1≤i≤m where each βi is either a variable
x ∈ X or

βi =


∧(j, k) with j, k < i

∨(j, k) with j, k < i

¬(j) with j < i

We call the βi the gates of the circuit. A circuit is monotone if it does not contain a ¬(j) gate.
An assignment a for β is a function a : X 7→ {true, false}. The value v(βi, a) of a gate βi

w.r.t. an assignment a is recursively defined as follows:

v(βi, a) =


a(βi) if βi is a variable
a(βj) ∧ a(βk) if βi = ∧(j, k)

a(βj) ∨ a(βk) if βi = ∨(j, k)

¬(a(βj)) if ¬(j)

The value v(β, a) of the circuit β w.r.t. an assignment a is defined as v(β, a) = v(βm, a).

Definition 46. The circuit value problem (CVP) is: Given a circuit β and an assignment a(.)
for β. Deciding whether v(β, a) = true or not.

Definition 47. The monotone circuit value problem (MCVP) is: Given a monotone circuit β and
an assignment a(.) for β. Deciding whether v(β, a) = true or not.

Theorem 3. [73, 87] CVP and MCVP are P-complete (under log-reductions).

Complete problems for the first level of the polynomial hierarchy: One of the most promi-
nent NP-complete problems is deciding whether a propositional formula is satisfiable. Here we
use the version where the formulas are in conjunctive normal form (CNF). We denote such a
formula in CNF ϕ as a collection C of so called clauses, where a clause is a set of literals build
from atoms in a countable domain U . A clause is interpreted as a disjunction over its literals
while the set C is interpreted as conjunction over the clauses. For a variable y, we use ȳ to
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Figure 2.5: Illustration of boolean circuits.

represent its negation. We say that ϕ is satisfiable if there exists an interpretation I ⊆ U such
that for each c ∈ C, (

I ∪ {x̄ | x ∈ U \ I}
)
∩ c 6= ∅. (2.1)

We call such an I ⊆ U satisfying Equation 2.1 a model of ϕ. The corresponding decision
problem is the following:

Definition 48. The satisfiability problem (SAT) is: Given a formula in CNF ϕ. Deciding whether
ϕ is satisfiable.

Sometimes we also need restricted versions of SAT, where we only consider special kind of
propositional formulas but still have the full complexity.

Definition 49. The monotone satisfiability problem (MSAT) is: Given a formula in CNF ϕ
where each clause either contains only positive or only negative literals. Deciding whether ϕ is
satisfiable.

We can also consider the dual problems:

Definition 50. The unsatisfiability problem (UNSAT) is: Given a formula in CNF ϕ. Deciding
whether ϕ is unsatisfiable.

Definition 51. The monotone unsatisfiability problem (MUNSAT) is: Given a formula in CNF
ϕ where each clause either contains only positive or only negative literals.. Deciding whether ϕ
is unsatisfiable.

The complexity of these problems is given by the following theorem:
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Theorem 4. SAT is NP-complete. UNSAT is coNP-complete. MSAT is NP-complete. MUNSAT
is coNP-complete.

Towards an DP -hard problem we consider the SAT-UNSAT problem.

Definition 52. The combinded satisfiability - unsatisfiability problem (SAT-UNSAT) is: Given
two formulas in CNF ϕ,ψ. Deciding whether ϕ is satisfiable and ψ is unsatisfiable.

Theorem 5. SAT-UNSAT is DP -complete.

Complete problems for the second level of the polynomial hierarchy: Towards complete
problems for the second level of the polynomial hierarchy we require particular classes of quan-
tified Boolean formulas (QBFs) which we introduce next. A QBF 2

∃ formula is of the form
∃Y ∀ZC, while a QBF 2

∀ formula is of the form ∀Y ∃ZC, where Y and Z are sets of proposi-
tional atoms from a countable domain U , and C is a collection of clauses over literals built from
atoms Y ∪ Z. We say that a QBF ∃Y ∀ZC is true iff, there exists IY ⊆ Y such that for each
IZ ⊆ Z and c ∈ C, (

IY ∪ IZ ∪ {x̄ | x ∈ (Y ∪ Z) \ (IY ∪ IZ)}
)
∩ c 6= ∅. (2.2)

Analogous we say that a QBF ∀Y ∃ZC is true iff, for each IY ⊆ Y there exists an IZ ⊆ Z,
such that for each c ∈ C,(

IY ∪ IZ ∪ {x̄ | x ∈ (Y ∪ Z) \ (IY ∪ IZ)}
)
∩ c 6= ∅. (2.3)

Example 2. Consider the QBF 2
∀ formula

Φ = ∀y1y2∃z3z4{{y1, y2, z3}, {ȳ2, z̄3, z̄4)}, {ȳ1, ȳ2, z4}}

which we will use as a running example. It can be easily checked that Φ is true.

Note that we can also encode the SAT and the UNSAT problem as a QBF problem. To this
end let Y be the set of atoms occurring in a CNF-formula ϕ. Then we can write ∃Y ϕ(Y ) to
encode the satisfiability problem and ∀Y ¬ϕ(Y ) to encode the unsatisfiability problem.

Definition 53. The problem QSAT 2
∃ is: Given a QBF 2

∃ formula ϕ. Deciding whether ϕ is true.

Definition 54. The problem QSAT 2
∀ is: Given a QBF 2

∀ formula ϕ. Deciding whether ϕ is true.

Theorem 6. QSAT 2
∃ is ΣP

2 -complete and QSAT 2
∀ is ΠP

2 -complete.

Finally we consider complete problems based on subset-minimal models of a propositional
formula.

Definition 55. The problem Minimal Model Satisfiability (MINSAT) is: Given a propositional
formula ϕ in CNF and an atom x. Deciding whether x is contained in some ⊆-minimal model
of ϕ.

Theorem 7. [66] MINSAT is ΣP
2 -complete.

In contrast we have that deciding whether an atom x is in each ⊆-minimal model is just
coNP-complete as one does not have to consider ⊆-minimality when looking for a counter
model.
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2.2.5 Parameterized Complexity

Classical complexity theory deals with the complexity of problems w.r.t. the size of the instance.
However often the complexity of a problem do not mainly depend on the size of an instance but
on some (structural) properties of the instance. That is we can solve huge instances efficiently
as long some property is satisfied or the obstacles in the structure are bounded independent of
the size. The field of parameterized complexity theory deals with this observation. Here we just
briefly introduce the concepts we actually need in this work; for comprehensive introductions to
the field the interested reader is referred to the books of Flum and Grohe [69] and Niedermeier
[93].

In parameterized complexity theory one considers parameterized problems, i.e. in addition
to the ordinary problem description such a problem has designated parameter which is instanti-
ated by each problem instance.

Definition 56. A parameterized decision problem contains of a specification of problem in-
stances, an integer parameter and a decision question on these instances. The parameter may
occur in the description of the instance, in the question, or in both.

An example for a parameterized problem is given a graph G and an integer parameter k
deciding whether G has a clique of size k.

Definition 57. A parameterized (decision) problem is fixed-parameter tractable (or in FPT) if it
can be determined in time f(k) · |x|O(1) for a computable function f .

Now given that a problem is in FPT and just consider those instances where the parameter is
bounded by some constant then we can decide this instances with a polynomial time algorithm.
Only the constants in the polynomial time bound are affected by the parameter, but not the order
of the polynomial.

There is also a weaker form of tractability w.r.t. a parameter allowing the order of the poly-
nomial to depend on the parameter, which is actually not used in this work but might give further
insights on the value of FPT results.

Definition 58. A parameterized (decision) problem is in the class XP if it can be determined in
time f(k) · |x|g(k) for computable functions f, g.

A problem in XP can be solved in polynomial time if we bound the parameter, but dis-
tinguishing it from FPT the order of the polynomial may highly depend on the bound of the
parameter.

Let us briefly present the relations between the classes FPT, XP and P:

P ⊆ FPT ⊆ XP

When considering in principle unparameterized problems and talking about FPT we have to
mention the used parameter explicitly. Thus we say a problem P is fixed-parameter tractable
w.r.t. the parameter k iff the corresponding parameterized problem (P , k) is fixed-parameter
tractable.
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2.3 Graph Parameters

In this section we consider graph parameters measuring structural properties of graphs and have
been used to obtain FPT-results for several graph problems. Clearly, as argumentation frame-
works can be interpreted as directed graphs, these parameters also apply to AFs.

Firstly we introduce a formal definition of directed graphs and useful notation from graph
theory. Secondly we introduce three parameters, i.e. tree-width, clique-width and cycle-rank,
for directed graphs and discuss their properties and relations between them. Then we give a def-
inition of monadic second order logic (MSO) which we finally use to present quite strong meta-
theorems for classifying problems to be fixed-parameter tractable w.r.t. tree-width or clique-
width.

2.3.1 Directed Graphs

Here we briefly present the basic concepts concerning directed graphs, for an comprehensive
overview of the field see [4]. First of all we need a formal definition.

Definition 59. A directed graphG is a pair (V,E) where V is the set of vertices andE ⊆ V ×V
is the edge relation of the graph.

It is easy to see that the definition of abstract argumentation frameworks and directed graphs
are isomorphic, i.e. arguments correspond to vertices and attacks to edges. Hence, as mentioned
before, one can interpret AFs as directed graphs and use notation and methods from graph theory.

Next we introduce some useful notation from graph theory, which we may also apply to AFs.

Definition 60. Let G = (V,E), H = (V ′, E′) denote directed graphs.

• We write G ⊆ H if V ⊆ V ′ and E ⊆ E′. If G ⊆ H we say that G is a subgraph of H .

• We write G ⊂ H if G ⊆ H and either V ⊂ V ′ or E ⊂ E′

• G is an induced subgraph of H if G ⊆ H and E = E′ ∩ V × V .

• For S ⊆ V , G|S = (S,E ∩ S × S) is the subgraph of G induced by S.

• G ∪H = (V ∪ V ′, E ∪ E′).

• We say G and H are disjoint if V ∩ V ′ = ∅.

• If G and H are disjoint we may write G∪̇H instead of G ∪H .

An important concept in graph theory are paths between vertices and the concept of reacha-
bility.

Definition 61. Given a directed graph G = (V,E) and vertices v1, vn ∈ V A path from v1 to
vn is a finite sequence of vertices {vi}1≤i≤n such that (vi, vi+1) ∈ E for 1 ≤ i < n and vi 6= vj
for 1 ≤ i < j ≤ n. We say that a vertex a is reachable from a vertex b if there exists a path from
b to a. The length of a path {vi}1≤i≤n is n− 1.
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Definition 62. Given a directed graph G = (V,E) and vertices v1, vn ∈ V . A cycle is a finite
sequence of vertices {vi}1≤i≤n such that (vi, vi+1) ∈ E for 1 ≤ i < n as well as (vn, v1) ∈ E
and vi 6= vj for 1 ≤ i ≤ j < n. The length of a cycle {vi}1≤i≤n is n.

For directed graphs there are different concepts of (path) connectedness, one can choose
whether to take the orientation of the edges into account or not.

Definition 63. Given a directed graph G = (V,E) and vertices S ⊆ V . We say that

• S is weakly connected if for each a, b ∈ S there exists either a path from a to b and or
from b to a.

• S is strongly connected if for each a, b ∈ S there exists both a path from a to b and one
from b to a.

• G is weakly connected if V is weakly connected.

• G is strongly connected if V is strongly connected.

• S is a strongly connected component (SCC) of G if S is ⊆-maximal strongly connected.

It is well known that each graph can be partitioned into a unique set of disjoint SCCs. Next
we introduce some special graphs classes.

Definition 64. A directed graphG = (V,E) is a tree ifG is weakly connected,G has no directed
cycles and the underlying undirected graph (V,E′), with E′ = {{a, b} | (a, b) ∈ E}, has no
cycle.10

In other words a tree is a weakly connected graph free of undirected cycles.

Definition 65. A directed graph G = (V,E) is a (directed) acyclic graph (DAG) if it has no
directed cycles.

A DAG is a graph which is free of directed cycles, but if we ignore the orientation of the
edges it may contains cycles. Hence we have that each tree is a DAG, but not vice versa (see
Figure 2.6).

Definition 66. A directed graph G = (V,E) is a bipartite graph if there are sets L,R such that
V = L ∪ R and E ⊆ (L × R) ∪ (R × L). We may denote bipartite graphs also as (L,R,E)
where E ⊆ (L×R) ∪ (R× L).

Note that, in contrast to undirected graphs, there are directed acyclic graphs which are not
bipartite, see Figure 2.8. However a (directed) tree is clearly bipartite.

Definition 67. A directed graph G = (V,E) is called symmetric if whenever (a, b) ∈ E also
(b, a) ∈ E.

10That is G is the orientation of an undirected tree.
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Figure 2.6: Illustration of two acyclic graphs: On the left hand side a tree; and on the right hand
side a acyclic graph which is not a tree
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Figure 2.7: A bipartite graph, with vertex-partition L = {a, b, c, d} and R = {e, f, g}.
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Figure 2.8: An acyclic graph, which is not bipartite
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We mention that the above definition of symmetric graphs allows for loops on the graph, i.e.
edges (v, v) ∈ E for some v ∈ V .

We may also consider graphs where the vertices are labeled by numbers. In the following
[k] denotes the set of all positive integers less or equal to k, i.e. the set {1, . . . , k}.

Definition 68. A labeling of a graph G = (V,E) is a function L : V → [k]. We call (G,L) a
k-graph.

We consider an arbitrary graph (without labeling ) as a k-graph with all vertices labeled by 1.

2.3.2 Structural Graph Parameters

In this section we introduce parameters that measure the structure of graphs, namely the param-
eters tree-width, (directed) clique-width and cycle-rank.

Tree-Width

Maybe the most popular parameter for graph problems is tree-width [19, 101] (see also [93]),
which is original stated for undirected graphs but can be immediately applied to directed graphs.
The intuition behind tree-width is that one want to measures how tree-like a graph is. Towards
such a measure we define tree-decompositions of graphs.

Definition 69. Let G = (V,E) be a directed graph. A tree-decomposition of G is a pair (T ,X )
where T = (VT , ET ) is a tree and X = (Xt)t∈VT (we call Xt the bag of t) such that:

1.
⋃
t∈VT Xt = V , i.e. X is a cover of V ,

2. for each v ∈ V the subgraph of T induced by {t | v ∈ Xt} is connected,

3. for each edge (vi, vj) ∈ E there exists an Xt with {vi, vj} ⊆ Xt.

The width of a decomposition (T ,X ) is given by max{|Xt| : t ∈ VT } − 1.

Each graph has a tree-decomposition, one can simple choose a tree consisting of only one
vertex and put the whole graph into the corresponding bag. The pitfall of this would be the
high width of the decomposition. To get nice (tree-like) computational properties we seek for
tree-decompositions of low width. This brings us to the definition of the tree-width of a graph.

Definition 70. The tree-width of a graph G is the minimum width over all tree decompositions
of G.

37



c,d

c,d

b,c

a,b

c,d

d

d,e

Figure 2.9: A tree-decomposition for the AF in example 1.

Clique-width

The parameter clique-width builds up on k-graphs and operations on it. So we start with defining
so called initial k-graphs.

Definition 71. A k-graph is called initial k-graph, if it contains exactly one vertex. We denote
the initial k-graph consisting of a vertex v labeled by i as i(v).

Now k-graphs can be constructed from initial k-graphs by repeatedly using the following
graph operations:

• Disjoint union (denoted by ⊕);

• Relabeling: changing all labels i to j (denoted by ρi→j);

• Edge insertion: connecting all vertices labeled by i with all vertices labeled by j (denoted
by ηi,j); already existing edges are not doubled.11

A construction of a k-graphG using the above operations can be represented by an algebraic
term:

Definition 72. A cwd-expression is a term composed of constants i(v), the unary operations
ρi→j , ηi,j , and the binary operation ⊕ (i, j being integer, and v a vertex). A k-expression is a
cwd-expression in which at most k different labels occur. We denote the set of all k-expressions
by CWk.

We say that a cwd-expression defines a graph G when interpreting the algebraic operations
with the above described graph operations results in the graph G. Hence, each k-expression
corresponds to a unique k-graph, but a k-graph may correspond to several k-expressions as well
as there exist k-graphs which have no k-expression at all. Nevertheless each k-graph has a cwd-
expression that defines it, just thinking of giving each vertex a unique label and then applying
an edge insertion for each edge of the graph.

11Some authors postulate that i 6= j for the edge insertion ηi,j to prohibit loops, but as AFs may have self-
attacking arguments we do not.
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⊕
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(a) Parse tree of σ
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a1 b2

c1 d2
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(b) The corresponding graph construction

Figure 2.10: The parse tree and the corresponding graph construction process for the example
cwd-expression σ=η1,2(ρ1→3(η1,2(1(a)⊕2(b)))⊕η2,1(1(c)⊕2(d))). The subscript of a vertex
denotes the current label of the vertex, e.g. b2 denotes the vertex b with label 2.

Definition 73. The clique-width of a graph G, cwd(G), is the smallest integer k such that G
can be defined by a k-expression.

Comparing tree-width and clique-width

The graph parameters tree-width and clique-width are closely related. Thus we discuss prop-
erties of these parameters simultaneously, in particular we concentrate on properties which are
relevant for obtaining fixed-parameter tractability results.

We have that clique-width generalises tree-width in the sense that each graph class having
bounded tree-width also having bounded clique-width, but there are graph classes of bounded
clique-width, for instance complete graphs, which have arbitrary high tree-width [30, 35]. In
particular only sparse graphs have low tree-width while there are both sparse and dense graphs
with low clique-width.

Both computing the tree-width and clique-width of a graph is in general NP-hard [2, 68].
But as we are interested in FPT results we are more curious about the case where the width
is bounded by a fixed k. In that case for tree-width we can check whether the graph has tree-
width≤ k in polynomial time and in the positive case we also get a tree-decomposition of width
k [18]. For clique-width the best known algorithms work within an additive approximation error
in terms of k. That is there is a function f such that one can find an f(k)-expression for an
graph of clique-width k [82, 96]. Hence, given a graph of low tree-width, using tree-width
would be of advantage as we probably get lower values for the tree-width than for the actual
k-expression. For practical purposes we also can benefit from the fact that there are several
well studied heuristics for computing tree-decompositions [40], while we are not aware of such
heuristics for clique-width. On the other hand there are graphs of inherent high tree-width where
clique-width would be the better choice.
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Generalizations of tree-with

One pitfall of the parameter tree-width is that is original stated for undirected graphs and thus
does not take the orientation of edges into account. There are several promising approaches
around, that in some sense generalize tree-with to directed graphs: directed tree-width [81],
directed path-width [5], DAG-width [16] and Kelly-width [78]. As we do not explicitly require
the definitions of these graph parameters in this work, we omit the formal definitions here, and
refer the interested reader to the above mentioned papers.

Instead we introduce the closely related parameter cycle-rank [63], which we will use later
on also to obtain results for the above mentioned parameters.

Definition 74. Let G = (V,E) be a directed graph. The cycle rank of G, cr(G), is defined
as follows: An acyclic graph has cr(G) = 0. If G is strongly connected then cr(G) = 1 +
minv∈VGcr(G \ v). Otherwise, cr(G) is the maximum cycle rank of F|S among all strongly
connected components S of G.

Example 3. Consider our running example for AFs, F = (A,R), with A = {a, b, c, d, e} and
R = {(a, b), (c, b), (c, d), (d, c), (d, e), (e, e)}. We have the following SCCs {a}, {b}, {c, d}
and {e}. The induced subgraphs of the first two components are acyclic while the others are not.
But when removing one argument also the remaining SCCs become acyclic and thus cr(F ) = 1.

2.3.3 Monadic Second Order Logic (MSO)

Towards a nice tool for deciding whether a problem is fixed-parameter tractable w.r.t. treewidth
or clique-width we briefly recall the Monadic Second Order Logic (MSO). Informally MSO is
an extension of first order logic that allows for quantification over sets.

Next we give a formal definition of Monadic Second Order Logic basically following [93,
Section 10.6], the minor differences occur as we distinguish MSO (or MSO1) and MSO2. First of
all we have an infinite amount of individual variables x, y, z, . . . and set variables X,Y, Z, . . .
and some relation symbols. As we are only interested in graphs, respective argumentation frame-
works, we only consider the relation symbols V and E (resp. A and R) where the first is a unary
relation interpreted as the vertices and the second is a binary relation interpreted as the edges.

As usual MSO-formulas are defined in a recursive way starting from atomic formulas. The
atomic MSO-formulas are of the form x = y, V (x), E(x, y) and x ∈ X for individual variables
x, y and set variable X . General MSO-formulas are then built by applying the following rules:

• if ϕ ∈MSO then ¬ϕ ∈MSO;

• if ϕ,ψ ∈MSO then ϕ ∨ ψ ∈MSO, ϕ ∧ ψ ∈MSO and ϕ→ ψ ∈MSO;

• if ϕ ∈MSO then ∃xϕ ∈MSO, ∀xϕ ∈MSO, ∃Xϕ ∈MSO and ∀Xϕ ∈MSO.

Next let us consider the semantics of MSO-formulas. Given a graph G = (V,E), an assign-
ment α for an MSO-formula is a function mapping each individual variable to an element of V
and any set variable to a subset of V . We inductively define when an assignment α satisfies a
MSO-formula ϕ, and denote this as (G,α) |= ϕ.
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• (G,α) |= x = y iff α(x) = α(y);

• (G,α) |= V (x) iff α(x) ∈ V ;

• (G,α) |= E(x, y) iff (α(x), α(y)) ∈ E;

• (G,α) |= x ∈ X iff α(x) ∈ α(X);

• (G,α) |= ¬ϕ iff (G,α) 6|= ϕ;

• (G,α) |= ϕ ∨ ψ iff (G,α) |= ϕ or (G,α) |= ψ;

• (G,α) |= ϕ ∧ ψ iff (G,α) |= ϕ and (G,α) |= ψ;

• (G,α) |= ϕ→ ψ iff (G,α) |= ϕ implies (G,α) |= ψ;

• (G,α) |= ∃xϕ iff there exists an v ∈ V such that (G,αx→v) |= ϕ;12

• (G,α) |= ∀xϕ iff for each v ∈ V it holds that (G,αx→v) |= ϕ;

• (G,α) |= ∃Xϕ iff there exists an A ⊆ V such that (G,αX→A) |= ϕ;13

• (G,α) |= ∀Xϕ iff for each A ⊆ V it holds that (G,αX→A) |= ϕ.

It is easy to see that only the values of α for free variables are relevant for satisfying a MSO-
formula. We usually write ϕ(x1, . . . , xi, X1, . . . Xj) to denote that the free variables of ϕ are
x1, . . . , xi, X1, . . . Xj . For vk ∈ V and Ak ⊆ V we define that G |= ϕ(v1, . . . , vi, A1, . . . Aj)
iff for each assignment α with α(xk) = vk, 1 ≤ k ≤ i and α(Xk) = Ak, 1 ≤ k ≤ j holds that
(G,α) |= ϕ.

A natural way to extend MSO is to allow quantification over binary relations, i.e. quantifi-
cation over subsets of the edges of the graph, which leads us to the definition of MSO2. To this
end we introduce edge set variables XE , Y E , ZE , . . . and extend the syntax and semantics of
MSO in the straightforward way (we omit details here). The avoid misunderstandings in the
following we will use MSO1 to denote MSO without edge set variables and MSO2 to denote
MSO enriched with edge set variables.

2.3.4 Meta-Theorems

In this section we present meta-theorems which allow for a easy classification of problems which
are fixed-parameter tractable w.r.t. tree-width or clique-width. Further we present results that
allow to propagate hardness results for graphs of bounded cycle-rank to graph classes where
one of the parameters directed tree-width, directed path-width, DAG-width or Kelly-width is
bounded.

The first meta-theorem by Courcelle [32, 33] basically says that each graph property that can
be stated in MSO2 can be easily decided on graphs of bounded tree-width. In this work we us
the formulation from the book of Niedermeier [93].

12αx→v defined as: αx→v(x) = v and αx→v(y) = α(y) for all y 6= x as well as αx→v(Y ) = α(Y ).
13αX→A defined as: αX→A(X) = A and αX→A(Y ) = α(Y ) for all Y 6= X as well as αX→A(y) = α(y).
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Theorem 8 (Courcelle’s Theorem). [32, 33] Given anMSO2 formulaϕ(x1, . . . , xi, X1, . . . Xj ,
XE

1 , . . . X
E
l ) and an integer k. There is a linear time algorithm, given a graph G = (V,E),

vk ∈ V , Ak ⊆ V,Bk ⊆ E and a tree-decomposition for G of width at most k deciding whether
G |= ϕ(v1, . . . , vi, A1, . . . Aj , B1, . . . Bl).

A similar results for clique-width and MSO1 is by Courcelle, Makowsky, and Rotics [36].

Theorem 9. [36] Given an MSO1 formula ϕ(x1, . . . , xi, X1, . . . Xj) and an integer k. There
is a linear time algorithm, given a graph G = (V,E), vk ∈ V , Ak ⊆ V and a k-expression for
G deciding whether G |= ϕ(v1, . . . , vi, A1, . . . Aj).

Notice that both theorems require that a certain representation of the AF is given, i.e. a tree-
decomposition of with at most k or a k-expression, and thus those theorems leave one issue
open for obtaining fixed-parameter tractability. Fortunately, due to results in [20, 96], we have
that f(k)-expressions14 and tree-decompositions of with k can be computed in linear time if k
is bounded by a constant.

Now comparing tree-width and clique-width in the context of fixed-parameter tractability in
one sentence: We have that tree-width applies to a broader range of problems but to a strictly
smaller class of graphs than clique-width.

These meta-theorems are stated in terms of decision problems, which is perfectly fine for our
purposes, but they where also extended to work for counting problems [3, 37] and enumerating
solutions [70] (see also [98]).

The above meta-theorems provide positive results for tree-width and clique-width, we are
now interested in meta-results for negative results. That is one can propagate hardness for graphs
of bounded cycle rank to graphs of bounded directed tree-width, directed path-width, DAG-
width or Kelly-width.

Theorem 10. [16, 77, 78] If a problem is C-hard for graphs of bounded cycle-rank then it is
also C-hard for

• graphs of bounded directed tree-width;

• graphs of bounded directed path-width;

• graphs of bounded DAG-width; and

• graphs of bounded Kelly-width.

Moreover the relations depicted in Figure 2.11 hold.

Interpreting Theorem 10 one can see that it might be a good idea to state FPT-results for
directed tree-width and state hardness results for cycle-rank15.

Now given these meta-theorems as tools we are well prepared for studying fixed-parameter
tractability w.r.t. graph parameters for the reasoning problems in abstract argumentation (see
Section 4.2).

14The f(k) denoting that there is a approximation error in the number of colors used in the cwd-expression
provided by the algorithm.

15The thoughtful reader may already have a clue about which kind of results we are going to present.
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cycle-rank

directed path-width

DAG-width Kelly-width

directed tree-width

(a) Propagating Hardness

cycle-rank

directed path-width

DAG-width Kelly-width

directed tree-width

(b) Propagating FPT

Figure 2.11: Relation between directed graph measures (An arrow means that if a problem is
hard (resp. FPT) w.r.t. first parameter then is also hard (resp. FPT) w.r.t. second parameter)
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CHAPTER 3
Complexity Analysis

This chapter is dedicated to a careful complexity analysis of reasoning tasks in abstract argu-
mentation frameworks w.r.t. different semantics. Our motivation for doing complexity analysis
in this setting is manifold.

Firstly, following what one might call the computational point of view, we want to estimate
the (worst case) computational costs of solving problem instances. So given a complexity classi-
fication of a problem we are aware of the best worst case behaviour an algorithm can have, which
might prevent us wasting time with trying to improve algorithms in that direction. Obviously
from this point of view we gain for low complexity to get fast worst case algorithms.

Secondly, from the Knowledge Representation point of view, we are interested in the com-
plexity of reasoning problems to explore the expressiveness of the corresponding formalisms.
For instance if an formalism has too low complexity there would be a broad range of interesting
problems having inherent higher complexity that can not be expressed within the formalism.
Hence from this perspective a sufficient high complexity is an essential ingredient for a useful
formalism, in our case for a reasonable argumentation semantics.

Finally, we consider what we call the Practitioners point of view. An successful approach for
implementing reasoning tasks for a new formalisms is what we will call the reduction approach.
That is instead of designing and implementing complex algorithms from scratch, one reduces
the new reasoning tasks to related formalisms where sophisticated solvers already exist. Here
the complexity of the actual problem and target formalism are crucial as follows: Given that
an actual problem has higher complexity than the designated target formalism we know that
there is no efficient encoding of our problem and we might should consider a different target
formalism (or using worst case exponential time translations). On the other hand if the target
formalism is of higher complexity we may end up with unnecessarily high computational costs.
Then it might be a good idea to encode the problem within a restriction of the target formalism,
providing lower complexity.

There are several approaches for implementations of (abstract) argumentation reasoners fol-
lowing the reduction approach. Most prominent there are the approaches to reduce the com-
putation of extensions or specific argumentation reasoning task to: SAT-solving [17] and resp.
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to a Quantified Boolean Formula (QBF) [64]; Answerset-Programming (ASP) [65]; or a Con-
straint Satisfaction Problem (CSP) [1]. Moreover, in Chapter 5 we will exploit the possibilities
to reduce different argumentation semantics to each other, and indeed make heavily use of the
complexity results presented in this chapter to obtain some negative results.

This chapter is organised as follows:

• In Section 3.1 we summarise and discuss existing complexity results for the problems
under our consideration.

• In Section 3.2 we study P-completeness for argumentation reasoning problems. Firstly,
we show several problems concerning grounded semantics to be P-hard and thus complete
for P. Secondly, we extend these results to resolution-based grounded semantics and show
that verifying a resolution-based grounded extension is hard for P. Finally, we show that
several problems which are known to be solvable in polynomial time, can be actually
solved in L and are thus (under typical complexity-theoretic) assumptions not P-complete.

• In Section 3.3 we study the complexity of semi-stable and stage semantics. That is we
first complete the complexity analysis of semi-stable semantics started by Dunne and
Caminada [50], presenting matching lower bounds for credulous and skeptical reasoning.
Moreover we give the exact complexity classification of credulous and skeptical reasoning
w.r.t. stage semantics, as well as for verifying a stage extension.

• In Section 3.4 we consider the complexity of ideal reasoning. That is we give generic
complexity results, i.e. upper and lower complexity bounds for ideal reasoning using the
complexity of the base-semantics as parameter. Moreover we give exact complexity char-
acterisations for all base-semantics under our considerations.

• In Sections 3.5 we summarise the results obtained in this chapter and together with the
results from the literature we draw the complexity landscape of abstract argumentation.
Finally we discuss two problems that we have to leave open.

Parts of this chapter have been previously published: Section 3.2 builds on a P-hardness
result presented in [55, 56]; Section 3.3 presents results published in [54–56]; and the results
underlying Section 3.4 have been published in [59].

3.1 State-of-the Art

Here we summarise existing complexity results for abstract argumentation. For a good start-
ing point into the computational complexity of abstract argumentation the interested reader is
referred to [51]. Table 3.3 summarises the complexity results obtained from the literature. For
Dungs semantics the “in P” and “trivial“ results are well-known and follow immediately by prop-
erties of the corresponding semantics already shown in Dung [42]. The case of naive semantics
has been explicitly studied in [31].

The complexity results for stable, admissible and preferred semantics follow from results
by Dimopoulos and Torres [41] on logic programs, except the ΠP

2 completeness of Skeptprf
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which is due to Dunne and Bench-Capon [48] and the ΘP
2 -membership of Idealprf [46]. The

complexity of complete semantics has been studied by Coste-Marquis et al. [31]. The results for
semi-stable semantics are due to Dunne and Caminada [50], where they additionally to the re-
sults listed in Table 3.3 show that both Cred sem ,Skeptsem are ΘP

2 -hard. Finally the complexity
of resolution based grounded semantics has been studied by Baroni et al. [12].

Concerning the problem Idealprf , Dunne [46] has shown coNP-hardness, that a NP-hardness
proof would suffice for showing ΘP

2 -completeness, and moreover that Idealprf is ΘP
2 -complete

under so called randomized reductions.

σ Credσ Skeptσ Idealσ Verσ Existsσ Exists¬∅σ

cf in P trivial ? in P trivial in P

naive in P in P ? in P trivial in P

grd in P in P ? in P trivial in P

stb NP-c coNP-c ? in P NP-c NP-c

adm NP-c trivial ? in P trivial NP-c

com NP-c in P ? in P trivial NP-c

resGr NP-c coNP-c ? in P trivial in P

prf NP-c ΠP
2 -c in ΘP

2 coNP-c trivial NP-c

sem in ΣP
2 in ΠP

2 ? coNP-c trivial NP-c

stg ? ? ? ? ? ?

Table 3.1: State-of-the art complexity landscape for abstract argumentation (C-c denotes com-
pleteness for class C).

If an AF has no stable extensions, according to our definition of skeptical acceptance, all
arguments are skeptically accepted. This may be unwanted and hence one might consider a vari-
ation of the skeptical acceptance problem, let us call it Skept ′stb , asking whether an argument is
contained in all extensions and there exists at least one extension. Due to Dunne and Wooldridge
the problem Skept ′stb is complete for the class DP [51].

3.2 Tractable Problems

In this section we study the exact complexity of the argumentation problems within the class P.
That is we either show that a problems is P-complete under log-reductions or we show that it
can be solved within the class L.

We start with proving a lower bound for grounded semantics which, to the best of our knowl-
edge, have not been established yet.

Proposition 6. The problems Credgrd = Skeptgrd = Skeptcom as well as Vergrd are P-hard
(under L-reductions, i.e. reductions using logarithmic space).
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→ x x ∧ y → z y ∧ z → x

x y z

t

Figure 3.1: Argumentation framework Fϕ,z for ϕ = {→ x, x ∧ y → z, y ∧ z → x}.

Proof. We use a reduction from the P-hard problem HORNSAT. To this end let ϕ = {rl :
bl,1 ∧ · · · ∧ bl,il → hl | 1 ≤ l ≤ n} be a definite Horn theory over atoms X . We construct the
AF Fϕ,z = (A,R) as follows:

A = ϕ ∪X ∪ {t}
R = {(x, x), (t, x) | x ∈ X \ {z}} ∪ {(z, t)} ∪

{(rl, hl), (bl,j , rl) | rl ∈ ϕ, 1 ≤ j ≤ il)}

where t is a fresh argument. See Figure 3.1 for an example. Clearly the AF Fϕ,z can be con-
structed using only logarithmic space in the size of ϕ.

In the following we show that z is in the minimal model of ϕ iff t is in the grounded extension
of Fϕ,z iff grd(Fϕ,z) = {ϕ ∪ {t}}.

First we attend that t is in the grounded extension E of Fϕ,z iff E = {ϕ ∪ {t}}. Obviously
the if-direction holds. Thus let us assume t ∈ E, then each x ∈ X \ {z} is attacked by t
and as z attacks t we have that E also attacks z. Thus each r ∈ ϕ is defended by E. Hence
E = {ϕ ∪ {t}}.

It remains to show that z is in the minimal model of ϕ iff t is in the grounded extension
E of Fϕ,z . We recall the definition of the characteristic function FF of an AF F , defined as
FF (S) = {x ∈ AF | x is defended by S}, and that the grounded extension of F is the least
fix-point of FF . To show the only-if part, let us assume that z is in the minimal model of ϕ.
Thus there exists a finite sequence of rules (rli)1≤i≤k, such that (i) for each rule rli and each
atom bli,s there exists a rule rlj , j < i with hlj = bli,s and (ii) hlk = z. Clearly rl1 has empty
body and thus the corresponding argument has no attackers in Fϕ,z , i.e. rl1 ∈ E. We now claim
that for each i, 1 ≤ i ≤ k, rli ∈ E holds as well and prove this by induction. To this end, we
assume the claim holds for all m < i, i.e. rlm ∈ E, and thus E � hlm for m < i holds. Using
(i) we get that for each argument a ∈ A with a � rli , it holds that E � a. Hence rli ∈ E.
Now in particular rlk ∈ E and by (ii) we have that E � z. As z is the only argument attacking
t we also have that t ∈ E.

To show the if-part, let us assume that t is contained in the grounded extensions E of Fϕ,z .
Then by construction E � z and thus there exists an integer k, such that FkF (∅) � z and
for each m < k : FmF (∅) 6� z. We claim that for 1 ≤ m ≤ k and x ∈ X it holds that
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if FmF (∅) � x then x is in the minimal model of ϕ. The proof is by induction on m. As
induction base consider FF (∅). By construction FF (∅) is the set of arguments that correspond
to rules in ϕ having empty body. The arguments attacked by FF (∅) are the head atoms of these
rules, which are clearly in the minimal model. For the induction step assume that Fm−1

F (∅) only
attacks arguments corresponding to atoms in the minimal model. As Fm−1

F (∅) 6� z we have
t 6∈ Fm−1

F (∅). Let x ∈ X be an argument such that FmF (∅) � x, but Fm−1
F (∅) 6� z. Then

there exists an ri ∈ ϕ such that hi = x and ri ∈ FmF (∅). By construction of Fϕ,z we have that
the argument ri is defended by Fm−1

F (∅) iff each atom in the body of ri is attacked by Fm−1
F (∅).

Hence, by assumption each atom in the body of ri is contained in the minimal model of ϕ. But
then the head hi of ri is in the minimal model of ϕ. Hence, as FkF (∅) � z, we get that z is in
the minimal model of ϕ.

The above hardness result can be extended to resolution-based grounded semantics, by
”cleaning“ the Horn theory from redundant rules.

Proposition 7. The problem Ver resGr is P-complete.

Proof. The membership part was shown in [12]. Recall the reduction from the proof of Proposi-
tion 6, which shows P-hardness for Vergrd . Now we restrict ourselves to definite Horn theories
such that head and body are disjoint. Clearly such rules do not effect the models and we can
identify such rules in logarithmic space. For such Horn theories we have that Vergrd is P-hard on
AFs without symmetric attacks. On such frameworks grounded and resolution-based grounded
semantics coincide and therefore Ver resGr is P-hard.

Finally we show that several problems can be decided within L, and are thus most likely not
P-complete.

Theorem 11. The following Problems can be decided within L:

1. Cred cf , Cred naive , Skept naive

2. Ver cf , Ver naive

3. Ver stb , Ver adm , Ver com ,

4. Exists¬∅cf , Exists¬∅naive , Exists¬∅stg

5. Exists¬∅grd , Exists¬∅com

and are thus not P-complete (unless L = P).

Proof. In the following proofs we denote the AF we are interested in as F = (A,R).
Cred cf = Cred naive : An argument a that is self-attacking can not be in a conflict-free set.

But if a ∈ A is not self-attacking then the set {a} is a conflict-free set containing a. Thus we
can decide Cred cf = Cred naive by testing whether a is self-attacking which is certainly in L.

Skept naive : We have that an argument a ∈ A is skeptically accepted w.r.t. naive semantics iff
it is credulously accepted and none of its neighbours b ∈ {a}	 ∪ {a}⊕ is credulously accepted.
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So we can use a cursor to iterate over the neighbourhood and check whether these arguments are
credulously accepted, which we have already shown to be in L.

Ver cf : To check that a set S ⊂ A is conflict-free one can use two cursors iterating over all
pairs (a, b) for a, b ∈ S and testing whether they are in conflict.

Ver naive : To check that a conflict-free set S ⊂ A is⊆-maximal one can use a cursor iterating
over all arguments in A \ S and test whether they are in conflict with at least one argument in S
(using another cursor iterating over S).

Ver stb : To check that a conflict-free set S ⊂ A is stable, one can use a cursor iterating over
all arguments in A \ S and test whether they are attacked by at least one argument in S (using
another cursor iterating over S).

Ver adm : As mentioned above we can check conflict-freeness in L. It remains to check that
each argument in S is defended. To this end we use a cursor that iterates over all arguments
a ∈ S and then tests each of these arguments as follows. We use a cursor to iterate over
arguments b ∈ {a}	 (the attackers of a) and test whether they are attacked by S (using another
cursor).

Ver com : To check that an admissible set is also a complete extension, one iterates over all
arguments a ∈ A \ S proving that there is at least one unattacked attacker of a. That is one
iterates over all attackers b ∈ {a}	 and tests whether b is attacked by S.

Exists¬∅cf = Exists¬∅naive = Exists¬∅stg : We have that there exists a nonempty conflict-
free set iff there exists an argument which is not self-attacking.

Exists¬∅grd = Exists¬∅com : The grounded extension is non-empty iff there exists an argu-
ment which is not attacked.

We have classified the complexity of almost all of the problems in the class P. We only have
to leave the exact complexity (w.r.t. log-reductions) of the problem Exists¬∅resGr open.

3.3 Complexity of Semi-Stable and Stage Semantics

In this section we complement existing complexity results for credulous and skeptical accep-
tance. That is we give exact complexity characterisations for semi-stable and stage semantics.
The complexity of semi-stable semantics has been studied in [50]. There the authors show the
problems Cred sem ,Skeptsem to be ΘP

2 -hard and that Cred sem ∈ ΣP
2 resp. Skeptsem ∈ ΠP

2 , but
they leave the exact complexity as an open problem. For the stage semantic the author is not
aware of any work addressing computational complexity 1.

Towards our results for credulous and skeptical reasoning we first address the problems of
verifying a semi-stable resp. stage extension. The former was studied in [50] and shown to be
coNP-complete. We provide the corresponding result for stage semantics.

In what follows we consider a countable set U of propositional atoms (we will use atoms
and arguments interchangeably). Moreover, we have the following pairwise disjoint sets of
arguments Ū = {ū | u ∈ U}, U ′ = {u′ | u ∈ U}, Ū ′ = {ū′ | u ∈ U}. For any set V ⊆ U ,

1While [25] introduces an algorithm for stage semantics there is no complexity analysis, neither of the reasoning
problems nor of the algorithm.
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ϕ

c1 c2 c3

y1 x̄1 x2 x̄2 x3 x̄3 x4 x̄4

b

s

Figure 3.2: AF F{c1,c2,c3} with c1 = {x1, x2, x3}, c2 = {x̄2, x̄3, x̄4}, c3 = {x̄1, x2, x4}.

we use V̄ , V ′, V̄ ′, also as renaming schemes in the usual way (for instance, V ′ denotes the set
{v′ | v ∈ V }). Finally, we use further new arguments ϕ, ϕ̄, b, s, . . . and {c1, c2, . . .}.

Proposition 8. Ver stg is coNP-complete.

Proof. Let us first consider the membership part: By definition, S is a stage extension of F iff (i)
S ∈ cf (F ) and (ii) ∀ T ⊆ A, T ∈ cf (F ) only if S+

R 6⊂ T
+
R . Given S, we can decide S ∈ cf (F )

in polynomial time. For the complement of (ii), we guess a set T and then we verify (again, in
polynomial time), whether S+

R ⊂ T+
R and T ∈ cf (F ). This yields membership in NP for the

complement of (ii), thus, given set S, (ii) is in coNP, and thus the entire problem is in coNP.
We show coNP-hardness by reducing the NP-hard problem 3-SAT to the complementary

problem of Ver stg . We assume that a 3-CNF formula is given as a set C of clauses, where each
clause is a set over atoms and negated atoms (denoted by x̄). For such a CNF ϕ over variables
X , define the AF Fϕ = (A,R) with

A = X ∪ X̄ ∪ C ∪ {s, ϕ, b}
R = {(x, x̄), (x̄, x) | x ∈ X} ∪ {(l, c) | l ∈ c, c ∈ C} ∪

{(c, ϕ) | c ∈ C} ∪ {(s, y), (y, s) | y ∈ A \ {s, b}} ∪ {(ϕ, b), (b, b)}

where X̄ = {x̄ | x ∈ X} and s, ϕ, b are fresh arguments. See Figure 3.2 for an illustrating
example. We show that ϕ is satisfiable iff {s} is not a stage extension of Fϕ. First let us assume
ϕ is satisfiable and let M be a model of ϕ. Then the set E = {ϕ} ∪M ∪ X \M is a stable
extension of Fϕ, i.e. E+

R = A, and since {s}+R = A \ {b}, {s} is not a stage extension of Fϕ.
Now let us assume that {s} is a stage extension. By the same argumentation as above, i.e. using
{s}+R ⊂ A, we get that Fϕ has no stable extension. But as we have seen before each model of ϕ
corresponds to a stable extension of Fϕ. Thus we can conclude that ϕ is unsatisfiable.
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Towards our main results in this section we introduce the following reduction from QBF 2
∀

formulas to AFs.

Reduction 1. Given a QBF 2
∀ formula Φ = ∀Y ∃ZC, we define FΦ = (A,R), where

A = {ϕ, ϕ̄, b} ∪ C ∪ Y ∪ Ȳ ∪ Y ′ ∪ Ȳ ′ ∪ Z ∪ Z̄
R = {(c, ϕ) | c ∈ C} ∪ {(ϕ, ϕ̄), (ϕ̄, ϕ), (ϕ, b), (b, b)} ∪

{(x, x̄), (x̄, x) | x ∈ Y ∪ Z} ∪
{(y, y′), (ȳ, ȳ′), (y′, y′), (ȳ′, ȳ′) | y ∈ Y } ∪
{(l, c) | l ∈ C, c ∈ C}.

Figure 3.3 illustrates the corresponding AF FΦ for Φ from Example 2. We first present several
technical lemmata concerning Reduction 1.

Lemma 5. For every stage (resp. semi-stable) extension S of an AF FΦ = (A,R), the following
propositions hold: (i) b 6∈ S, as well as y′ 6∈ S and ȳ′ 6∈ S for each y ∈ Y and (ii) x /∈ S ⇔
x̄ ∈ S for each x ∈ {ϕ} ∪ Y ∪ Z.

Proof. Let Φ = ∀Y ∃ZC and FΦ = (A,R) be the corresponding AF.

ad (i) Clear, since all these arguments are self-attacking.

ad (ii) Obviously, for each x ∈ {ϕ}∪Y ∪Z, {x, x̄} ⊆ S cannot hold, since S has to be conflict-
free in FΦ. It remains to show {x, x̄} ∩ S 6= ∅. Towards a contradiction, let us assume there
exists such an x, such that {x, x̄} ∩ S = ∅ holds for a stage (resp. semi-stable) extension S of
FΦ.

ϕ

c1 c2 c3

y1 ȳ1 y2 ȳ2 z3 z̄3 z4 z̄4

y′1 ȳ′1 y′2 ȳ′2

bϕ̄

Figure 3.3: Illustration of the AF FΦ, for the valid QBF 2
∀ Φ, taken from Example 2, that is

Φ = ∀y1y2∃z3z4{{y1, y2, z3}, {ȳ2, z̄3, z̄4)}, {ȳ1, ȳ2, z4}}.
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Let us first assume x = ϕ. Then the set T = S ∪ {ϕ̄} is conflict-free and we have S <+
R T .

The argument ϕ̄ defends itself and therefore T is admissible if S is. This already shows that S
then cannot be a stage or semi-stable extension.

Let us thus assume that x ∈ Y ∪ Z and let T = (S \ {c ∈ C | (x̄, c) ∈ R}) ∪ {x̄}. One can
check that T is conflict-free and that if S is admissible then T is admissible. Moreover, we again
have S <+

R T . In fact, for the removed arguments c ∈ C, we have c ∈ T+
R . Moreover, the only

argument attacked by such c is ϕ, but ϕ ∈ T+
R , since we can already assume {ϕ, ϕ̄} ∩ S 6= ∅.

This shows that S cannot be a stage (resp. semi-stable) extension.

Lemma 6. Let Y ∗ = Y ∪ Ȳ ∪ Y ′ ∪ Ȳ ′ and S, T be conflict-free sets in FΦ = (A,R). Then
S ∩ Y ∗ ⊆ T ∩ Y ∗ iff (S ∩ Y ∗)+

R ⊆ (T ∩ Y ∗)+
R and further S ∩ Y ∗ = T ∩ Y ∗ iff (S ∩ Y ∗)+

R =
(T ∩ Y ∗)+

R.

Proof. First, assume S ∩ Y ∗ ⊆ T ∩ Y ∗. By the monotonicity of (.)+
R we get (S ∩ Y ∗)+

R ⊆
(T ∩ Y ∗)+

R. So, assume now (S ∩ Y ∗)+
R ⊆ (T ∩ Y ∗)+

R and let l ∈ S ∩ Y ∗. By Lemma 5(i),
l is either of form y or ȳ. If l ∈ S ∩ Y ∗, then l, l̄, l′ ∈ (S ∩ Y ∗)+

R. Using our assumption
we get l, l̄, l′ ∈ (T ∩ Y ∗)+

R. But then, l ∈ T ∩ Y ∗ follows from l′ ∈ (T ∩ Y ∗)+
R. This

shows S ∩ Y ∗ ⊆ T ∩ Y ∗ iff (S ∩ Y ∗)+
R ⊆ (T ∩ Y ∗)+

R. By symmetry, S ∩ Y ∗ = T ∩ Y ∗ iff
(S ∩ Y ∗)+

R = (T ∩ Y ∗)+
R follows.

Lemma 7. Let Φ be a QBF 2
∀ formula. If Φ is true, then ϕ is contained in every stage and in

every semi-stable extension of FΦ.

Proof. Suppose Φ = ∀Y ∃ZC is true and let, towards a contradiction, S be a stage or a semi-
stable extension of FΦ = (A,R) with ϕ /∈ S. By Lemma 5 (ii), we know that for each y ∈ Y ,
either y or ȳ is in S. Let IY = Y ∩ S. Since Φ is true we know there exists an IZ ⊆ Z, such
that (2.3) holds, for each c ∈ C. Consider now the set T = IY ∪ IZ ∪ {x̄ | x ∈ (Y ∪Z) \ (IY ∪
IZ)} ∪ {ϕ}. We show that T is admissible in FΦ and that S <+

R T holds. This will contradict
our assumption in both cases, i.e. that S is a stage or a semi-stable extension of FΦ. It is easily
verified that T is conflict-free in FΦ. Next we show that each a ∈ T is defended by T in FΦ.
This is quite obvious for each a ∈ T except ϕ, since all those arguments defend themselves.
To have ϕ defended by T in FΦ, each argument c ∈ C has to be attacked by an element from
T . But this is the case since (2.3) holds and by the construction of FΦ, i.e. by the definition of
attacks {(l, c) | l ∈ c, c ∈ C}, each such attacker c is attacked by an argument x ∈ T . It remains
to show S <+

R T . By Lemma 6, (S∩Y ∗)+
R = (T ∩Y ∗)+

R, for Y ∗ = Y ∪ Ȳ ∪Y ′∪ Ȳ ′. Moreover,
by Lemma 5 (ii) either z or z̄ in S, for each z ∈ Z; the same holds for T , by definition. We
observe that S+

R ∩ (Z ∪ Z̄) = T+
R ∩ (Z ∪ Z̄) = Z ∪ Z̄. Moreover, we already have argued that

each c ∈ C is attacked by some argument in T . Let A− = A \ {ϕ, ϕ̄, b}. So far, we thus have
shown that S+

R ∩A− ⊆ T
+
R ∩A− = Y ∪ Ȳ ∪ I ′Y ∪ (Ȳ ′ \ Ī ′Y ) ∪Z ∪ Z̄ ∪C. We finally observe

that S+
R ∩ {ϕ, ϕ̄, b} = {ϕ, ϕ̄} ⊂ {ϕ, ϕ̄, b} = T+

R ∩ {ϕ, ϕ̄, b}, since ϕ /∈ S by assumption and
ϕ ∈ T by definition. This shows S <+

R T as desired.

We are now prepared to give our first main result.

Theorem 12. Skeptsem is ΠP
2 -hard.
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Proof. We use our reduction from QBF 2
∀ formulas to AFs and show that, for each such QBF

Φ, it holds that ϕ is contained in all semi-stable extensions of FΦ iff Φ is true. Since FΦ can be
constructed from Φ in polynomial time, the claim then follows.

Let Φ = ∀Y ∃ZC and FΦ = (A,R) be the corresponding AF. The if direction is captured
by Lemma 7. We prove the only-if direction by showing that if Φ is false, then there exists a
semi-stable extension S of FΦ such that ϕ 6∈ S.

In case Φ is false, there exists an IY ⊆ Y , such that for each IZ ⊆ Z, there exists a c ∈ C,
such that (

IY ∪ IZ ∪ {x̄ | x ∈ (Y ∪ Z) \ (IY ∪ IZ)}
)
∩ c = ∅. (3.1)

Consider now a maximal (wrt. ≤+
R) admissible (in FΦ) set S, such that IY ⊆ S (note that such a

set exists, since IY itself is admissible in FΦ). Using Lemma 6, one can show that S then has to
be a semi-stable extension of FΦ. To wit, let T be an admissible (in FΦ) set such that IY 6⊆ T .
By Lemma 6 it holds that (S∩Y ∗)+

R 6⊆ (T ∩Y ∗)+
R and therefore S+

R 6⊆ T
+
R . Putting this together

with the maximality of S in the set {T | T is admissible in FΦ and IY ⊆ T} we get that there is
no admissible (in FΦ) set T , such that S+

R ⊂ T
+
R . Hence, S is a semi-stable extension of FΦ.

It remains to show ϕ 6∈ S. We prove this by contradiction and assume ϕ ∈ S. As S
is admissible in FΦ, S defends ϕ and therefore it attacks all c ∈ C. As all attacks against
arguments in C come from Y ∪ Ȳ ∪Z∪ Z̄, the set U =

(
IY ∪(S∩(Z∪ Z̄))∪{ȳ | y ∈ Y \IY }

)
attacks all c ∈ C. By Lemma 5(ii), for each z ∈ Z, either z or z̄ is contained in S. We get an
equivalent characterization for U by U =

(
IY ∪ IZ ∪ {x̄ | x ∈ (Y ∪ Z) \ (IY ∩ IZ)}

)
with

IZ = S ∩ Z. Thus, for all c ∈ C,(
IY ∪ IZ ∪ {x̄ | x ∈ (Y ∪ Z) \ (IY ∪ IZ)}

)
∩ c 6= ∅,

which contradicts assumption (3.1).

We now turn our attention to the stage semantics.

Theorem 13. Skeptstg is ΠP
2 -hard.

Proof. We again use our reduction from QBF 2
∀ formulas to AFs and show that, for each such

QBF Φ, it holds that ϕ is contained in all stage extensions of FΦ iff Φ is true. Thus, let Φ =
∀Y ∃ZC and FΦ = (A,R) be the corresponding AF. The if direction is already captured by
Lemma 7. We prove the only-if direction by showing that, if Φ is false, then there exists a stage
extension S of FΦ such that ϕ 6∈ S.

If Φ is false, there is an IY ⊆ Y , such that for each IZ ⊆ Z, we have a c ∈ C with(
IY ∪ IZ ∪ {x̄ | x ∈ (Y ∪ Z) \ (IY ∪ IZ)}

)
∩ c = ∅. (3.2)

Consider the collection W = {S | IY ⊆ S, S is conflict-free in FΦ} of conflict-free sets in
FΦ. Using Lemma 6, we can show that for every conflict-free (in FΦ) set T , S ≤+

R T implies
IY ⊆ T . For verifying ≤+

R-maximality of a set S ∈ W we thus can restrict ourselves to sets
T ∈W .

It remains to show that there is a stage extension S in W with ϕ 6∈ S. We prove that (i) for
every set S ∈ W with ϕ ∈ S, there exists a c ∈ C, such that c 6∈ S+

R ; and (ii) existence of a set
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S ∈ W such that C ⊆ S+
R . Note that (i)+(ii) imply existence of a stage extension S of FΦ with

ϕ 6∈ S.
We prove (i) by contradiction and assume that C ⊆ S+

R . As S is conflict-free in FΦ and
ϕ ∈ S, we get C ∩ S = ∅. Since C ⊆ S+

R , S attacks all c ∈ C. As all attacks against C
come from Y ∪ Ȳ ∪ Z ∪ Z̄, the set U =

(
IY ∪ (S ∩ (Z ∪ Z ′)) ∪ {ȳ | y ∈ Y \ IY }

)
attacks

all c ∈ C. By Lemma 5(ii), for each z ∈ Z, either z or z̄ is contained in S and so we get
U =

(
IY ∪ IZ ∪ {x̄ | x ∈ (Y ∪ Z) \ (IY ∪ IZ)}

)
with IZ = S ∩ Z. Thus, for each c ∈ C,

U ∩ c 6= ∅, which contradicts assumption (3.2).
To show (ii) we just construct such a set S = U ∪ V using U = IY ∪ {ȳ ∈ Y \ IY } ∪ Z

and V = {c ∈ C | @u ∈ U with (u, c) ∈ R}. It is easy to verify that S is conflict-free in FΦ.
It remains to show c ∈ S+

R , for all c ∈ C. Note that for each c ∈ C we have that either c is
attacked by U or contained in V . In both cases, c ∈ S+

R is clear.

Given the results for skeptical reasoning we easily obtain the complexity of credulously
acceptance.

Theorem 14. Cred sem is ΣP
2 -hard.

Proof. In the proof of Theorem 12, we have shown that a QBF 2
∀ formula Φ is true iff ϕ is

contained in each semi-stable extension of FΦ. According to Lemma 5(ii), this holds iff ϕ̄ is not
contained in any semi-stable extension of FΦ. Thus, the complementary problem of Cred sem is
also ΠP

2 -hard. ΣP
2 -hardness of Cred sem follows immediately.

The following result is proven analogously to Theorem 14.

Theorem 15. Cred stg is ΣP
2 -hard.

Our hardness results can be extended to AFs without self-attacking arguments. To this end,
we adapt our reduction by replacing all self-attacking arguments in the framework FΦ by cycles
of odd length (for instance, of length 3). Figure 3.4 illustrates such a framework FmΦ for our
example QBF. In case of semi-stable extensions, we use the fact that the only admissible set of
an (unattacked) odd-length cycle is the empty set. Indeed, S is a semi-stable extension of FΦ iff
S is a semi-stable extension of FmΦ .

The same construction can be used to obtain hardness for stage semantics, although the argu-
mentation is slightly different: As stage extensions only require conflict-freeness and not admis-
sibility, the arguments of the introduced cycles may now be part of stage extensions. However,
to repair the correctness proofs for the modified reduction, we use the observation that for each
cycle of length 3 at most one argument can be in a stage extension S (see also Figure 3.3) and
at least one argument in the cycle is not attacked by S. Thus each such cycle contributes in
three different but incomparable ways to stage extensions. More formally, let Am be the set of
arguments in FmΦ , X = {b}∪Y ′∪ Ȳ ′ and denote by x− be the (unique) attacker of an argument
x ∈ X in the original framework FΦ = (A,R). Then, we get that (i) if S is a stage extension of
FΦ, then each S′ ⊆ Am, such that S′ ∩A = S and for each x ∈ X ,

card(S′ ∩ {x1, x2, x3}) =

{
1 if x− /∈ S
0 otherwise
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c1 c2 c3

y1 ȳ1 y2 ȳ2 z3 z̄3 z4 z̄4

y′1,1 ȳ′1,1 y′2,1 ȳ′2,1

y′1,2 ȳ′1,2 y′2,2 ȳ′2,2

y′1,3 ȳ′1,3 y′2,3 ȳ′2,3

b1

b2b3

ϕ̄

Figure 3.4: The modified framework FmΦ for Φ from Example 2.

is a stage extension of FmΦ ; and (ii) if S is a stage extension of FmΦ , then S ∩ A is a stage
extension of FΦ. This correspondence between extensions suffices to show that our hardness
results carry over to self-attack free AFs.

We summarize our results in terms of completeness results. The matching upper bounds for
semi-stable semantics have been reported in [50]; for the stage semantics we give them in the
proof of the following theorem.

Theorem 16. Cred stg and Cred sem are ΣP
2 - complete; Skeptstg and Skeptsem are ΠP

2 - com-
plete. For all problems, hardness holds even for AFs without self-attacking arguments.

Proof. Hardness is by Theorems 12– 15 and by the observations above.
For the matching upper bounds, we first recall that verifying a stage or semi-stable extension

is in coNP (see Proposition 8 and [50]).
We now can give algorithms for Cred stg and Cred sem as follows. Given an AF F = (A,R)

and an argument a ∈ A. We guess a set S ⊆ A with a ∈ S and then use an NP-oracle (we recall
that oracle calls are closed under complement), to check whether S is a stage (resp. semi-stable)
extension of F . Obviously this algorithm correctly decides the considered problems. Hence,
these problems are in ΣP

2 .
For Skeptstg and Skeptsem we argue as follows: Given an AF F = (A,R), to decide if

an argument a ∈ A is contained in each stage (resp. semi-stable) extension of F , we have to
prove that every set S with a 6∈ S is not a stage (resp. semi-stable) extension of F . Thus, for the
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complementary problem, we can guess a set S with a /∈ S and check whether S is a stage (resp.
semi-stable) extension of F . Again, this check can be done with a single call to an NP-oracle,
and thus the complementary problems of Skeptstg and Skeptsem are in ΣP

2 . ΠP
2 -membership of

Skeptstg and Skeptsem follows immediately.

3.4 The Complexity of Ideal Reasoning

In this section we, study the complexity of ideal reasoning for the semantics under our consider-
ations and moreover provide complexity results which go beyond specific semantics. That is, we
present two kind of complexity results for ideal reasoning. First we present generic complexity
bounds for ideal reasoning problems, i.e. complexity bounds which depend on the complexity
of other reasoning problems for the base semantics. Then we use these results to draw the com-
plexity landscape for the concrete base-semantics under our considerations. In the entire section,
we will assume the base semantics to be at least cf -preserving and thus guaranteeing a unique
ideal extensions (cf. Proposition 2).

For a given AF F = (A,R), the computational problems we are interested in here are the
following:

1. Ideal acceptance Ideal σ(F, x): (x ∈ A). Is there any S ∈ σidl (F ) for which x ∈ S?

2. Verifying ideal sets Ver idlσ (F, S): (S ⊆ A). Is it the case that S ∈ σidl (F )?

3. Non-emptiness Exists¬∅
idl

σ (F ): Is there any S ∈ σidl (F ) for which S 6= ∅?

4. Verifying the ideal extension Ver ieσ (F, S) (S ⊆ A): Is it the case that S = Eie
σ (F )?

For cf -preserving semantics, ideal acceptance could be equivalently defined by checking
whether x ∈ Eie

σ (F ) (since the ideal extension is the maximal ideal set). Note that we do
not consider variants of skeptical acceptance here. Since ideal extensions are unique for our
base-semantics, there is no need to distinguish between credulous and skeptical acceptance in
terms of the ideal extensions. Moreover skeptical acceptance in terms of ideal sets would be
a trivial problem, since the empty set is always an ideal set and thus no argument could be
accepted. Finally, let us mention that asking whether there exists a non-empty ideal set is clearly
equivalent to asking whether the ideal extension is non-empty.

3.4.1 Algorithms for Parameterised Ideal Reasoning

We first consider algorithms for constructing the ideal extensions. As the decision problems
can be easily answered as soon as the ideal extension is available this gives us immediate up-
per bounds for the complexity of the decision problems. Here we present two algorithms for
computing the ideal extension w.r.t. to a given base semantics σ.

The first is a generalisation of an algorithm presented in [46] and relies on the credulous
acceptance problem for σ. We will show that such an algorithm can be used for any base seman-
tics σ, as long as each extension S ∈ σ(F ) is also a preferred or naive extension. Our second

57



algorithm is closer to the original definition of ideal sets and thus makes use of skeptical accep-
tance in σ. In contrast to the first algorithm this algorithm is applicable to any cf -preserving
base semantics σ. Having these two algorithms at hand clearly is also of practical value. In fact,
whenever both algorithms are applicable, then one can now select in view of the computational
complexity of credulous acceptance and skeptical acceptance for the base semantics.

Before actually giving the algorithms we address a sub-problem, i.e. computing the maximal
admissible subset of a conflict-free set. To this end we define a variation of the characteristic
function (cf. Definition 20).

Definition 75. Let F = (A,R) be an AF. We define the restricted characteristic function F̂F as
F̂F (E) = FF (E) ∩ E for each E ⊆ A. In case no ambiguity arises we omit the subscript and
just write F̂ .

Using the above definition we obtain a nice characterisation of the maximal admissible sub-
set of a conflict-free set (cf. Lemma 2).

Lemma 8. Let F = (A,R) be an AF and C ⊆ A a conflict-free set. For the ⊆-maximal set
S ⊆ C admissible in F , it holds that A = F̂ |C|(C).

Proof. Obviously F̂ is a monotone operator and the series ( F̂ i(C) )i≥0 is non-increasing. Fur-
ther, the empty set is a lower bound and thus a fixed-point is reached after at most |C| steps. We
claim that this fixed point is also the desired ⊆-maximal admissible set S, i.e. A = F̂ |C|(C).

By definition, the fixed point F̂ |C|(C) defends all its arguments and is conflict-free (since
F̂ |C|(C) ⊆ C and by assumption that C is conflict-free). Hence it holds that F̂ |C|(C) is an
admissible set. To complete the proof we consider maximality and show that A ⊆ F̂ i(C) for
i ≥ 0. As A is admissible we have that F̂(S) = S and further for each set B with S ⊆ B that
S ⊆ F̂(B). Moreover S ⊆ C and thus for i ≥ 0 it holds that S ⊆ F̂ i(C). Hence we have that
S = F̂ |C|(C).

We mention that Lemma 8 is basically a restatement of algorithms used for reasoning in
bipartite AFs (see [44]) making them more convenient for our purposes.

Proposition 9. Let F = (A,R) be an AF and S ⊆ A a conflict-free set. The ⊆-maximal set
A ⊆ S admissible in F can be computed in polynomial time.

Proof. We can compute the setA by applying the characterisation in Lemma 8. Further applying
the function F̂ is clearly in polynomial time and as we apply it just linearly often the whole
procedure is in polynomial time.

We are now prepared to present the characterisation of ideal sets (resp. the ideal extension)
which underlies our first algorithm.

Proposition 10. If σ is prf -preserving, then for each AF F = (A,R) with |σ(F )| ≥ 1 the
following relations hold:

C1. S ∈ σidl (F ) ⇔ S ∈ adm(F ) & ∀y ∈ S	¬Cred σ(F, y)
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C2. x ∈ Eie
σ (F ) ⇔ ∀y ∈ {x}	

(
¬Cred σ(F, y) & {y}	 ∩ Eie

σ (F ) 6= ∅
)

Proof. For (C1), suppose first that S ∈ σidl (F ). Certainly S ∈ adm(F ) (by definition), so
consider any y ∈ S	. If, in contradiction to the claim, we have Cred σ(F, y) then there is some
set T ∈ σ(F ) for which y ∈ T . We must, however, have S ⊆ T (since S is an ideal set w.r.t.
σ), leading to S ∪ {y} ⊆ T which contradicts T ∈ prf (F ) (since T would fail to be conflict-
free). On the other hand, suppose S is such that S ∈ adm(F ) and every y ∈ S	 satisfies
¬Cred σ(F, y). We show that this leads to S ∈ σidl (F ). If this failed to be the case we can
find T ∈ σ(F ) for which S \ T 6= ∅. Consider the set S ∪ T : this must be conflict-free since
S ∈ adm(F ), T ∈ prf (F ) so that S ∪ T 6∈ cf (F ) would imply the presence of arguments
s ∈ S, t ∈ T with (s, t) ∈ R or (t, s) ∈ R. From the premises the latter is ruled out since
it would lead to the contradiction ¬Cred σ(F, t); the former possibility, however, is also ruled
out since from T ∈ prf (F ), (s, t) ∈ R yields u ∈ T with (u, s) ∈ R and, again, we obtain a
contradiction. It follows that S ∪ T ∈ cf (F ) and also S ∪ T ∈ adm(F ). The set T , however, is
also in prf (F ) so that S ∪ T = T , i.e. S ⊆ T as required.

For (C2), if x ∈ Eie
σ (F ) then no y ∈ {x}	 can have Cred σ(F, y) (from C1) and, trivially

from the fact Eie
σ (F ) ∈ adm(F ) we obtain, for each y ∈ {x}	, that {y}	 ∩ Eie

σ (F ) 6= ∅. For
the converse direction consider any x ∈ A for which each y ∈ {x}	 has ¬Cred σ(F, y) and
{y}	 ∩ Eie

σ (F ) 6= ∅. The set T = {x} ∪ Eie
σ (F ) is admissible (by similar arguments to those

used in C1), and furthermore, any y ∈ T	 is such that ¬Cred σ(F, y) (that this is the case for
{x} holds via the premise, and that it holds for Eie

σ (F ) is immediate from C1). We deduce that
T = {x} ∪ Eie

σ (F ) ∈ σidl (F ) and, since Eie
σ (F ) is ⊆-maximal, we obtain x ∈ Eie

σ (F ) as
required.

In the case of standard ideal semantics the characterisation of Proposition 10 has previously
been shown in [43, 46]. In addition, we now see that it holds also for the case when semi-stable
semantics are employed as base semantics for ideal reasoning. If we consider stable-consistent
AFs then the characterisation of Proposition 10 also applies when considering stable as base-
semantics.

However, the above characterisation does not apply to semantics which are not based on
admissibility, for instance if stage semantics is considered. Thus our next step is to give a
similar characterisation for semantics which are naive-preserving. The only subtle difference
is due to the fact that naive semantics do not take the orientation of attacks into account. Thus,
we have to add S⊕ (resp. {x}⊕) to the conditions from Proposition 10. The proof then proceeds
quite similar to the one of Proposition 10.

Proposition 11. If σ is naive-preserving, then for each AF (A,R) with |σ(F )| ≥ 1 the following
relations hold:

C1’. S ∈ σidl (F ) ⇔ S ∈ adm(F ) & ∀y ∈ S	 ∪ S⊕¬Cred σ(F, y)

C2’. x ∈ Eie
σ (F ) ⇔ ∀ y ∈ {x}	 ∪ {x}⊕

(
¬Cred σ(F, y) & {y}	 ∩ Eie

σ (F ) 6= ∅
)

Proof. For (C1’), suppose first that S ∈ σidl (F ). Certainly S ∈ adm(F ) (by definition), so
consider any y ∈ S	 ∪ S⊕. If, in contradiction to the claim, we have Cred σ(F, y) then there is
some set T ∈ σ(F ) for which y ∈ T . We must, however, have S ⊆ T (since S is an ideal set
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w.r.t. σ), leading to S∪{y} ⊆ T which contradicts T ∈ naive((A,R)) (since T would fail to be
conflict-free). On the other hand, suppose S is such that S ∈ adm(F ) and every y ∈ S	 satisfies
¬Cred σ(F, y). We show that this leads to S ∈ σidl (F ). If this failed to be the case we can find
T ∈ σ(F ) and x ∈ S such that x /∈ T . By assumption we have that {x}	 ∪ {x}⊕ ∩ T = ∅ and
thus that the set T ∪ {x} is a conflict-free set. As T is defined as ⊆-maximal conflict-free set
this leads to the desired contradiction.

For (C2’), if x ∈ Eie
σ (F ) then no y ∈ {x}	 ∪ {x}⊕ can be credulously accepted. From the

fact Eie
σ (F ) ∈ adm(F ) we obtain, for each y ∈ {x}	, that {y}	 ∩ Eie

σ (F ) 6= ∅. Further as
by assumption x ∈ Eie

σ (F ) we have that ∀y ∈ {x}⊕, {y}	 ∩ Eie
σ (F ) 6= ∅. For the converse

direction consider any x ∈ A for which each y ∈ {x}	 ∪ {x}⊕ has ¬Cred σ(F, y) and {y}	 ∩
Eie
σ (F ) 6= ∅. The set T = {x}∪Eie

σ (F ) is conflict free and defends x, i.e. the set is admissible.
Furthermore, any y ∈ T	∪T⊕ is such that ¬Cred σ(F, y). We deduce that T = {x}∪Eie

σ (F ) ∈
σidl (F ) and, since Eie

σ (F ) is maximal, obtain x ∈ Eie
σ (F ) as required.

We mention that combining the proofs of Proposition 10 and Proposition 11, one can show
that (C1’) and (C2’) also hold for semantics which are neither purely prf -preserving nor purely
naive-preserving but satisfying σ(F ) ⊆ prf (F ) ∪ naive((A,R)). That is, it is sufficient that
each σ-extension is at least a preferred or naive extensions.

The characterisations (C2) and (C2’) from above results suggest how to compute the ideal
extension w.r.t. a semantics σ, in case we have given a function that decides credulous acceptance
for σ. Algorithm 1 describes this idea.

Algorithm 1. Input: AF F = (A,R), function Cred σ deciding credulous acceptance.

1. Determine the following subset of A:

APSA = { x ∈ Cred σ(F ) | {x}	 ∪ {x}⊕ ∩ Cred σ(F ) = ∅}

with Cred σ(F ) being the set of credulously accepted arguments w.r.t. σ.

2. Return E = (F̂F )n(APSA) where n = |APSA|.

Notice that even the formulation of the algorithm is quite different to that in [45]. Our algo-
rithm, when instantiated with preferred semantics, essentially does the same, we just avoid the
reduction to bipartite AFs [44] and directly apply the corresponding techniques. The correct-
ness of this algorithm (for appropriate base semantics as outlined above) is an consequence of
Propositions 10 and 11.

Theorem 17. For any semantics σ which is prf -preserving or naive-preserving and AF F with
|σ(F )| ≥ 1, Algorithm 1 constructs the ideal extension Eie

σ .

Proof. By Proposition 10 and Proposition 11 we have that Eie
σ ⊆ APSA. Next we show that

APSA is conflict free. Towards a contradiction let us assume that a, b ∈ APSA and (a, b) ∈ R.
By definition of APSA, a, b ∈ Cred σ(F ) and as a ∈ {b}	 also a 6∈ Cred σ(F ), a contradiction.
Thus, by Lemma 8 the maximal admissible subset of APSA is given by F̂F

n
(APSA)
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a b c d

Figure 3.5: Ideal semantics w.r.t. resGr .

Although Algorithm 1 is already applicable to a wide range of base semantics, it does not
work when considering resolution-based grounded as base semantics. For instance, consider the
AF F = ({a, b, c, d}, {(a, b), (b, a), (b, c), (c, c), (c, d), (d, c)}) illustrated in Figure 3.5. In this
we have resGr(F )={{a}, {b, d}} so that the Eie

resGr = ∅. However, the conditions from above
propositions apply for the set {d}, i.e. {d} is admissible and none of its neighbours is credulously
accepted w.r.t. resGr . In fact, {d} is the standard ideal extension, i.e. using preferred as base
semantics.

Hence Proposition 10 and Proposition 11 fail to hold for base semantics which are resolution
based. Thus, Algorithm 1 is not fully satisfying, as it cannot capture all base semantics under
our considerations. This motivates Algorithm 2 which follows the definition of ideal semantics
more closely: it first computes the set of all skeptically accepted arguments and then iteratively
computes the maximal admissible subset.

Algorithm 2. Input: AF F = (A,R), function Skept σ deciding the skeptical acceptance.

• Compute the set Asa = { x : Skept σ(F, x)}

• Return E = F̂F
n
(Asa) where n = |Asa|.

We next show that this algorithm is correct for every reasonable base semantics, i.e. for
base semantics that are cf -preserving. The following lemma captures the correctness of the
fixed-point iteration in the algorithm.

Theorem 18. For any semantics σ which is cf -preserving and AF F with |σ(F )| ≥ 1, Algorithm
2 constructs Eie

σ (F ).

Proof. Since σ is cf -preserving, the set Asa is also conflict-free. Thus by Lemma 8, Eie
σ (F ) =

F̂F
|Asa|

(Asa).

Theorem 18 is more general than Theorem 17 in the sense that whenever a base semantics
σ satisfies the conditions to apply Algorithm 1 one can also apply Algorithm 2. However, Al-
gorithm 1 becomes valuable if deciding credulous acceptance is easier than deciding skeptical
acceptance (a situation which holds for standard ideal semantics, as already mentioned earlier).

3.4.2 Instantiations

Here we consider concrete base semantics for ideal reasoning, briefly recall relevant results from
Section 2.1.2 and present results which will be helpful in the following complexity analysis.
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First let us mention that for semantics that always include the empty-set as an extension the
ideal extension is clearly the empty-set, and reasoning problems become trivial. Hence, we do
not consider adm and cf as base-semantics here. Moreover, let us recall that for base semantics
σ ∈ {grd , com}, we have that the ideal extension coincides with the grounded extension (see
Proposition 5). Thus the complexity results for grounded semantics carry over.

Hence, we are interested in the computational complexity of ideal semantics w.r.t. base se-
mantics, resGr , prf , sem , naive , stg , and stb. Since all these semantics σ are cf -preserving,
we know that σie is a unique status semantics (cf. Proposition 2). Moreover, for semantics
σ ∈ {prf , sem, resGr}, σ has the reinstatement property, and thus by Proposition 3, we know
that for these base semantics, the ideal extension is a complete set for any AF. In general, this
does not hold for σ ∈ {naive, stage}.

Let us next have a closer look on the ideal extension w.r.t. naive semantics. We can give the
following characterisation of naive ie .

Proposition 12. For any AF F = (A,R),

Eie
naive(F ) = max{A : A ∈ adm(F ), A ⊆ Asa}

with Asa = {x : (x, x) 6∈ R, {x}	 ∪ {x}⊕ ⊆ {y : (y, y) ∈ R}.

Proof. It suffices to show that the setAsa is the set of skeptically accepted arguments w.r.t. naive
extensions. It is easy see to that for all x ∈ A with (x, x) 6∈ R, Crednaive(F, x) holds, as the
set {x} is clearly conflict-free (cf. proof of Theorem 11). It follows that only those arguments
neither attacked by nor attacking such arguments can belong to every set in naive(F ).

For AFs without self-attacking arguments this characterisation simplifies as follows.

Corollary 1. For any AFs (A,R) without self-attacking argumentsEie
naive(F ) matches the set of

skeptically accepted arguments w.r.t. naive semantics; i.e.Eie
naive(F ) = { x : {x}	∪{x}⊕ =

∅}.

Proof. Follows from Proposition 12 when {y : (y, y) ∈ R} = ∅ is assumed.

So we have that for naive semantics, the usage of self-attacking arguments gives us additional
expressive power, in particular for ideal reasoning. This is in contrast to admissibility based
semantics where self-attacking arguments can always be replaced by odd length cycles without
changing the extensions of the framework.

3.4.3 Generic Complexity Results

We first exploit the fact that the decision problems under our considerations are easy, as soon we
have computed the ideal extension. That is we can use the algorithms given in Section 3.4.1 to
get upper bounds for the complexity of these problems.

Theorem 19. For any semantics σ which is prf -preserving or naive-preserving, the problems
Ideal σ, Ver idlσ , Exists¬∅

idl

σ , and Ver ieσ can be decided in PC||, where Cred σ,Existsσ ∈ C.
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Proof. An algorithm would first use the oracle to test whether there exists an extension for the
base-semantics. If not then, by definition, the ideal extension is empty, otherwise, by Theorem
17, we can use Algorithm 1 to compute Eie

σ . Moreover the set APSA in Algorithm 1 is directly
constructed in FPC|| and further the maximal admissible set can be found in polynomial time (see
Proposition 9). Hence, Algorithm 1 is a PC|| algorithm constructing Eie

σ . Given Eie
σ one can

clearly decide all the mentioned problems in polynomial time.

Theorem 20. For any semantics σ which is cf -preserving, the problems Ideal σ, Ver idlσ ,

Exists¬∅
idl

σ , and Ver ieσ can be decided in PC||, where Skept σ,Existsσ ∈ C.

Proof. An algorithm would first use the oracle to test whether there exists an extensions for the
base-semantics. If not then, by definition, the ideal extension is empty, otherwise, by Theorem
18, we can use Algorithm 2 to compute Eie

σ . The set Asa can be directly constructed in FPC||.
Further the maximal admissible set can be found in polynomial time (see Proposition 9). Hence
Algorithm 2 is a PC|| algorithm. Again given having constructed Eie

σ one can decide all the
mentioned problems in polynomial time.

Note that for all the semantics under our considerations, except stable semantics, the problem
Existsσ is trivial and therefore the condition Existsσ ∈ C in the above theorems can be omitted.

We have that upper bounds for constructing the ideal extension immediately lead to upper
bounds for decision problems, but in general this is not the most efficient way. The following
theorem provides more sophisticated upper bounds for the complexity of the decision problems
we are interested in. To this end, we make use of the complexity of the verification problem for
the base semantics.

Theorem 21. Let σ be a cf -preserving semantics with |σ(F )| ≥ 1 for each AF F , and let V be
the complexity of the problem Ver σ. Then the following holds:

i. Ideal σ ∈ coNPV

ii. Ver idlσ ∈ coNPV

iii. Exists¬∅
idl

σ ∈ coNPV

iv. Ver ieσ ∈ NPV ∧ coNPV

Proof. Given a framework (A,R), a base semantics σ, an argument x ∈ A and a set S ⊆ A.
We prove (i) by providing an NPV algorithm for disproving x to be in the ideal extension.

1. Guess extensions E1, . . . , En (for n = |A|)

2. Verify extensions using the V-oracle

3. compute Ssa :=
⋂n
i=1Ei

4. compute the ⊆-maximal admissible set A ⊆ Ssa.

5. accept iff x /∈ A
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Note that since σ is cf -preserving, Lemma 8 shows that A in Step 4 can be computed in poly-
nomial time.

A few words about the correctness of the above algorithm: First we have that the extensions
E1, . . . , En are not necessarily different (there may not exist n different extensions). However,
for at least one guess the set Ssa coincides with the set of skeptical accepted arguments, i.e.⋂n
i=1Ei =

⋂
E∈σ((A,R))E. This is by the fact the number of guessed extensions is equal to the

number of arguments in framework. Moreover, for every guess it holds that
⋂
E∈σ((A,R))E ⊆

Ssa. If x ∈ Eie
σ ((A,R)), i.e. there is an admissible set S′ ⊆

⋂
E∈σ((A,R))E with x ∈ S′, then for

every such guess, we have S′ ⊆ Ssa and thus x ∈ A. Hence the algorithm does not accept such
an instance. Let us now consider the case that x /∈ Eie

σ ((A,R)), i.e. for S′ being the maximal
admissible set of

⋂
E∈σ((A,R))E we have x /∈ S′. Then x is accepted by the computation where

Ssa =
⋂
E∈σ((A,R))E. This thus solves the complementary problem to Ideal σ as desired.

We get (ii) by a simple adaptation of the above algorithm: instead of testing x /∈ A one tests
whether S 6⊆ A, which disproves the set S to be an ideal set.

For (iii) we use another adaptation of the above algorithm, now one tests for A = ∅, which
proves that Eie

σ = ∅.
(iv): To verify that Eie

σ = S one can first use the coNPV -algorithm to verify that S ∈
E idlσ ((A,R)). Then one can use the above NPV -algorithm to disprove the ideal acceptance for
all arguments R \ S. As Eie

σ = S iff both of these algorithms accept S we have that Ver ieσ ∈
NPV ∧ coNPV .

Again the above theorem only applies to semantics σ satisfying |σ(F )| ≥ 1 for arbitrary
AFs. However, we can generalise the complexity bounds taking the complexity of deciding
whether there exists an extension of the base-semantics into account.

Corollary 2. Let σ be a cf -preserving semantics, and let V be the complexity of the problem
Ver σ. Then the following holds:

i. Ideal σ ∈ NPV ∧ coNPV

ii. Ver idlσ ∈ NPV ∧ coNPV

iii. Exists¬∅
idl

σ ∈ NPV ∧ coNPV

iv. Ver ieσ ∈ NPV ∧ coNPV

Proof. We have that Existsσ ∈ NPV as Existsσ can be decided by guessing an extension and
verifying it. Combining this additional check with the results of Theorem 21 yields the above
complexity bounds.

In the following we give generic lower bounds, i.e. generic hardness results, for the problems
Ver idlσ and Ideal σ depending on the complexity of the problem Cred σ. To this end, we introduce
the mutual attack property of a semantics:

64



y a b c

Figure 3.6: Example illustrating that sem and stg do not have the mutual attack property.

Definition 76. A pair ((A,R), x) of an AF (A,R) and an argument x ∈ A satisfies the mutual
attack property w.r.t. a semantics σ iff

Cred σ((A,R), x)⇒ Cred σ((A ∪ {y}, R ∪ {(x, y), (y, x)}), x)

(where y 6∈ A).2 Further we say that a semantics σ satisfies the mutual attack property iff each
((A,R), x) has the mutual attack property w.r.t. σ.

Proposition 13. Sematics adm, comp, prf , stb, resGr , and naive all have the mutual attack
property.

Proof. Consider an AF F = (A,R) and E ∈ adm(F ) and an argument x ∈ E. If we extend
the AF F with a new argument y and attacks (x, y), (y, x), denoted by F ′ = (A ∪ {y}, R ∪
{(x, y), (y, x)}), then y attacks E and also E attacks y. Thus E is still an admissible set, i.e.
E ∈ adm(F ′). Next as x ∈ E we have that adding y would cause a conflict and thus that
E ∈ σ(F )⇒ E ∈ σ(F ′) for σ ∈ {comp, pr}. Further if E ∈ stb(F ) then clearly E ∈ stb(F ′)
as E attacks the new argument y. For the naive semantics, we have that Cred (F, x) holds iff
(x, x) /∈ R. Thus adding the argument y does not change anything, as well.

Finally let us consider resGr semantics. For each full resolution we either keep the attack
(x, y) or (x, y). First it is easy to see that if the argument x is not credulously accepted in (A,R),
the additional argument does not help and also it is not credulously accepted in (A ∪ {y}, R ∪
{(x, y), (y, x)}). Let us assume there exists E ∈ resGr((A,R)), and further let β be such that
E = Egr((A,R\β)). First if we keep (x, y) we have thatE = Egr((A∪{y}, R\β∪{(x, y)}))
and thus that E is still a candidate for a resGr -extension. What remains to show is that E is still
⊆-minimal. But as y /∈ E and y ∈ Egr((A∪{y}, R \ β′ ∪{(y, z)})) for arbitrary β′ this is also
satisfied.

To see that sem and stg semantics do not have the mutual attack property let us once
again consider the AF (A,R) of the form ({a, b, c}, {(a, b), (b, c), (c, c)}) (see also Figure 3.6):
Cred σ((A,R), a) holds for both sem and stg . But when adding an argument y together with
a mutual attack to a, then a is no longer credulously accepted, neither for sem nor for stg
semantics.

The following theorem exploits the mutual attack property to provide generic hardness re-
sults. It follows from a more general observation which we give below in Proposition 14.

2 In terms of the work by Cayrol et al. [29], the pair ((A,R), x) satisfies the mutual attack property iff adding
({y}, {(x, y), (y, x)}) to the AF (A,R) is partial monotone for x.
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Theorem 22. If a semantics σ satisfies the mutual attack property, is prf -preserving (resp.
naive-preserving), for each AF F it holds that |σ(F )| ≥ 1, and Cred σ is C–complete for some
complexity class C which is closed under ∪ then:

a. Ver idlσ is coC–complete.

b. Ideal σ is coC–hard.

As mentioned above, some semantics σ in general do not satisfy the mutual attack property
(e.g. sem-semantics) and thus the above theorem does not directly apply to them. But there
may exist a infinite class of pairs ((A,R), a) satisfying the mutual attack property w.r.t. σ.
Such a class of pairs is in particular interesting if credulous reasoning for these pairs has the
same complexity as for arbitrary instances. We will exploit this fact — which is proven in the
forthcoming result — in the next subsection.

Proposition 14. If a semantics σ satisfies the mutual attack property, is prf -preserving (resp.
naive-preserving), for each AF F it holds that |σ(F )| ≥ 1, Cred σ ∈ C for some complex-
ity class C which is closed under ∪, and there exist C–hard instances of the Cred σ problem
satisfying the mutual attack property then:

a. Ver idlσ is coC–complete.

b. Ideal σ is coC–hard.

Proof. We show (a). The proof for part (b) uses an identical reduction. The complementary
problem ¬Ver idlσ is in C: using Proposition 10 (resp. Proposition 11) S 6∈ σidl if it is either
not admissible or some y ∈ S	 (resp. y ∈ S	 ∪ S⊕) is credulously accepted wrt σ. From
Cred σ ∈ C and C closed under ∪ the latter condition can be tested in C. For the lower bound
given an instance (A,R, x) of Cred σ form the instance (A ∪ {y}, R ∪ {(x, y), (y, x)}, {y}) of
Ver idlσ . This is accepted if and only if (A,R, x) fails to be accepted as an instance of Cred σ.

3.4.4 Exact Complexity for Instantiations

We finally provide exact bounds for computational problems of ideal reasoning w.r.t. to base
semantics semi-stable, stage, resolution-based grounded, naive and stable, partly exploiting the
generic results from the previous subsection.

We start with our results for semi-stable and stage semantics.

Theorem 23.

i. Ver idlsem , Ver idlstg are ΠP
2 –complete.

ii. Ideal sem , Ideal stg are ΠP
2 –complete.

iii. Exists¬∅
idl

sem , Exists¬∅
idl

stg are ΠP
2 –complete.

iv. Ver iesem , Ver iestg are DP
2 –complete.
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Proof. The membership part for i–iv follows directly by Theorem 21 and the fact that Ver sem ,
Ver stg are in coNP.

To prove the desired hardness results we use Reduction 1 from the ΠP
2 –hard problemQBF ∀2

to the problems Skept sem , Skept stg , coCred sem and coCred stg . That is for a given QBF 2
∀ Φ

we construct the AF FΦ as defined in Reduction 1. For illustration, we depict an example in
Figure 3.7 (for the moment ignore the dotted addition with argument y). As shown in Section
3.3 the argument ϕ is skeptically accepted (for stg and sem) iff ϕ̄ is not credulously accepted
(for stg and sem) iff Φ is valid. One can see that the pairs (FΦ, ϕ̄) are ΣP

2 –hard instances for
Skept sem and Skept stg and moreover satisfy the mutual attack property (for the argument Ψ).
Thus by Proposition 14 we immediately get the desired ΠP

2 lower bounds for Ver idlsem , Ver idlstg ,
Ideal sem , and Ideal stg .

To show (iii), we consider a restricted class ofQBFs, namely thoseQBFsΦ where
∧
c∈C c

has a model M , with M ∩Z = ∅ and a model M ′, with Z ⊆M ′. The QBF ∀2 problem remains
ΣP

2 -hard for those formulas. To show this we give a reduction from an arbitrary QBF ∀2 to a
restricted one. Given a QBF formula Φ = ∀Y ∃Z

∧
c∈C c, one can build the the restricted

QBF Φ′ = ∀Y ∪ {u}∃Z
∧
c∈C′ c, with C ′ = {c ∪ {u} : c ∈ C}. On can see that Φ is valid

iff Φ′ is valid. Further {u} is a partial model of
∧
c∈C′ c and thus one can find both a model M ,

with M ∩ Z = ∅ and a model M ′, with Z ⊆M ′.
We extend FΦ by a “mutual attack“ argument y, i.e. we ebuild F ′Φ = (AFΦ

∪ {y}, RFΦ
∪

{(y, ϕ̄), (ϕ̄, y)}) (see Figure 3.7 again). By Propositions 10 and 11 we have that y is ideal
accepted iff Ψ is not credulously accepted iff Φ is skeptically accepted. In the next step we
identify the arguments of GΦ = (A,R), which are possibly ideal accepted. Obviously the self-
attacking arguments Y ′∪ Ȳ ′∪{b} are not ideal accepted. Further in Section 3.3 we showed that
for every argument x ∈ Y ∪ Ȳ there exists a semi-stable (resp. stage) extensions E such that
x̄ ∈ E and thus x /∈ E. Hence none of the arguments Y ∪ Ȳ is skeptically accepted. Moreover
it was shown that each model of Φ corresponds to a semi-stable (resp. stage) extension and thus
by the existence of the models M , M ′ we conclude that none of the arguments z ∈ Z ∪ Z̄ is
skeptically accepted. The arguments c ∈ C, ϕ are not defended by ideal accepted arguments
and thus they are not ideal accepted. Further as the CNF is satisfiable we have that ϕ is always
in at least one semi-stable extension and thus ϕ̄ is not ideal accepted. Thus the only argument
that can be ideal accepted is y. Hence for G′Φ, it holds that Eie

sem 6= ∅ iff y is ideal accepted iff
Φ is a valid QBF.

To show (iv), we reduce an instance (¬Φ1,Φ2) of the restricted QBF ∃2 -QBF ∀2 problem to
an AF (A,R) and a set S ⊆ A such that S = Eie

σ ((A,R)) iff (¬Φ1,Φ2) is a yes-instance of the
restrictedQBF ∃2 -QBF ∀2 problem. By the observations in (iii) we get that for the AFG′Φ1

∪̇G′Φ2

it holds that {y2} is the ideal extension iff (¬Φ1,Φ2) is a positive instance of the QBF ∃2 -QBF ∀2
problem.

We continue with ideal semantics w.r.t. resolution-based grounded semantics, resGr . Since
resGr does neither preserve prf nor naive we cannot make direct use of Proposition 14. How-
ever, the main ideas of the proofs are similar as for the previous result.
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ϕ

c1 c2 c3

y1 ȳ1 y2 ȳ2 z3 z̄3 z4 z̄4

y′1 ȳ′1 y′2 ȳ′2

bϕ̄y

Figure 3.7: An example for the AFs GΦ, G′Φ used in the proof of Theorem 23, using the QBF
Φ = ∀Y ∃Z{{y1, y2, z3}, {ȳ2, z̄3, z̄4}, {ȳ1, y2, z4}}.

Theorem 24.

i. Ver idlresGr is coNP–complete.

ii. Ideal resGr is coNP–complete.

iii. Exists¬∅
idl

resGr is coNP–complete.

iv. Ver ieresGr is DP –complete.

Proof. The membership part for i–iv follows by Theorem 21 and the fact that Ver resGr can be
decided in polynomial time [9] (we recall that coNPP = coNP). (i) To prove the coNP hardness
we reduce the UNSAT-problem to Ver idlresGr . To do so we construct the AF Gϕ as follows: given
a CNF formula ϕ(X) =

∧
c∈C c with each clause c ∈ C a disjunction of literals from Z,

A = {ϕ, ϕ̄} ∪ C ∪X ∪ X̄
R = {(c, ϕ) | c ∈ C} ∪ {(x, x̄), (x̄, x) | x ∈ X} ∪ {(ϕ, ϕ̄), (ϕ̄, ϕ)} ∪

{(x, c) | x occurs in c} ∪ {(x̄, c) | ¬x occurs in c}

See Figure 3.8 for an illustration of the construction on a concrete example formula ϕ. We
claim that {ϕ̄} is an ideal extension w.r.t. resGr semantics iff ϕ is unsatisfiable. Thus first let
us assume that ϕ is satisfiable and thus there exists a truth assignment τ such that τ(ϕ) = true.
Now consider the full resolution β and the resolved AF (A,Rβ) (where Rβ = R \ β) with
(zi, z̄i) ∈ Rβ ⇔ τ(zi) = true and (Φ,Ψ) ∈ Rβ . The grounded extension of this resolution is
given by the set {x ∈ X : τ(x) = true} ∪ {x̄ ∈ X : τ(x) = false} ∪ {ϕ}. Hence ϕ̄ is not
skeptically accepted and thus not ideal accepted.
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ϕ

c1 c2 c3

z1 z̄1 z2 z̄2 z3 z̄3 z4 z̄4

ϕ̄

Figure 3.8: An example for the AF GΦ used in the proof of Theorem 24, using the formula
ϕ = C1 ∧ C2 ∧ C3 with C1 = {z1, z2, z3}, C2 = {z̄2, z̄3, z̄4}, C3 = {z̄1, z2, z4}.

Now let us assume that ϕ is unsatisfiable. As the set {ϕ̄} defends itself it suffices to show
that {ϕ̄} is skeptical accepted, i.e. for every full resolution β the argument ϕ is in the grounded
extension of the resolved AF (A,Rβ). First if (ϕ̄, ϕ) ∈ Rβ then ϕ̄ is unattacked and thus
clearly in the grounded extension. Now let us consider a full resolution β such that (ϕ, ϕ̄) ∈
Rβ and towards a contradiction ϕ̄ 6∈ grd(A,Rβ). As β is a full resolution we have for each
x ∈ X that either (x, x̄) ∈ Rβ or (x̄, x) ∈ Rβ holds but not both of them. Thus each argument
x, x̄ is either in the grounded extension or attacked by the grounded extension. The arguments
ci are only attacked from arguments x, x̄ and therefore each argument ci is either part of the
grounded extension or attacked by the grounded extension. Further if there is an ci such that
ci ∈ grd(A,Rβ) then grd(A,Rβ) attacks ϕ and thus ϕ̄ ∈ grd(A,Rβ), a contradiction. If there
is no such ci we have that grd(A,Rβ) defends ϕ and thus ϕ ∈ grd(A,Rβ). But then the truth
assignment τ defined by τ(x) = true ⇔ x ∈ grd(A,Rβ) satisfies ϕ, which is in contradiction
to the unsatisfiability of ϕ.

(ii) Immediate by the fact that ϕ̄ is ideal accepted iff {ϕ̄} is an ideal set.
(iii) We have that for each argument x (resp. x̄) there is a full resolution β such that x /∈

grd(A,Rβ) (resp. x̄ /∈ grd(A,Rβ) ) and thus none of them is skeptical accepted. Hence none
of the arguments ci as well as the argument ϕ can be in an ideal set. So we have that there is a
non-empty ideal set iff ϕ̄ is ideal accepted which is coNP–hard.

(iv) By the observations in (iii) we get that for the AF Gϕ ∪̇ Gψ it holds that {ϕ̄} is the
ideal extension Eie

resGr iff the pair (ϕ,ψ) is a positive instance of the DP -complete SAT-UNSAT
problem.

We continue with the naive semantics, where all problems remain tractable. We note that
hardness for P only holds in case of frameworks where self-loops are allowed. If this is not the
case, the ideal extension coincides with the set of skeptical accepted arguments (we recall that
Skeptnaive is in L, see Theorem 11).
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Theorem 25.

i. Ver idlnaive is in L.

ii. Ideal naive is P–complete.

iii. Exists¬∅
idl

naive is P–complete.

iv. Ver ienaive is P–complete.

Proof. By Theorem 20 and the fact that Vernaive ∈ L we can compute the ideal extension in
polynomial time. Hence the mentioned reasoning tasks can be clearly decided in P. Using the
characterization from Proposition 12 we get an better upper bound for the problem Ver idlnaive . To
verify that a set S ⊆ A is an ideal set, one has to check if S ∈ adm(F ) and further if for each
argument x ∈ S	 ∪ S⊕ it holds that (x, x) ∈ R. Clearly both can be done in logarithmic space.

To show P-hardness we use a reduction from the P-hard problem to decide, given a proposi-
tional definite Horn theory T and an atom x, whether x is true in the minimal model of T . Let,
for a definite Horn theory T = {rl : bl,1 ∧ · · · ∧ bl,ml → hl | 1 ≤ l ≤ n} over atoms X and an
atom z ∈ X , (AT,z, RT,z) be an AF with

AT,z = X1 ∪ T1 · · · ∪X|T | ∪ T|T | ∪X|T |+1 ∪X ∪ {t}
RT,z = {(xi, xi) | xi ∈ X1 ∪ · · · ∪X|T |+1} ∪

{(xi, rl,i) | xi ∈ Xi, rl,i ∈ Ti, x ∈ {bl,1, . . . , bl,ml}} ∪ (3.3)

{(rl,i, xi+1) | x ∈ Xi+1, rl,i ∈ Ti, x = hl} ∪
{(x|T |+1, x) | x|T |+1 ∈ X|T |+1} ∪
{(t, rl,i) | rl,i ∈ T1 ∪ · · · ∪ T|T |} ∪ {(t, t), (z, t)}

where t is a fresh argument (see Figure 3.9 for an example of the reduction).
Clearly the AF (AT,z, RT,z) can be constructed using only logarithmic space in the size of T .

One can show that z is in the minimal model of T iff z is in the ideal extension of (AT,z, RT,z)
iff the ideal extension of (AT,z, RT,z) contains at least one argument.

We start with proving the first equivalence. First we mention that for the set of skeptical
accepted arguments Asa it holds that Asa = T1∪· · ·∪T|T |∪X . This is by the fact that these ar-
guments are conflict-free and all the other arguments attack themselves. Notice that the argument
z is in the minimal model of T iff there exists a sequence of Horn rules rk1 , . . . , rkn such that
hkn = z and for 1 ≤ i ≤ n it holds that the rule body {bki,1, · · · , bki,mki} ⊆ {hk1 , . . . , hki−1

}.
Given such a proof for z we can define the set E = {z} ∪ {rki,j | 1 ≤ i ≤ j ≤ n} By the
construction of (AT,z, RT,z), in particular by the attacks defined in (3.3), we have that the set E
is an admissible set and thus part of the ideal extension. Hence z is ideal accepted.

To show the ”only if“ part let E be the ideal extension and z ∈ E. To construct a proof for
z we start with the following sequence R1 = {rl : rl,1 ∈ E}, R2 = {rl : rl,2 ∈ E}, . . . , Rn =
{rl : rl,n ∈ E ∧ hl = z}. By the structure of (AT,z, RT,z) we have that the set {rl,i+1 ∈ E}
is defended by the set {rl,i ∈ E} (except against argument t which is attacked by z). But
by construction we have that for every rule (b1 ∧ · · · ∧ bm → h) ∈ Ri+1 there exists rules
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x y z

x4 y4 z4

r1,3 r2,3 r3,3

x3 y3 z3

r1,2 r2,2 r3,2

x2 y2 z2

r1,1 r2,1 r3,1

x1 y1 z1

t

Figure 3.9: An illustrative example of the AF (AT,z, RT,z), as defined in the proof of Theo-
rem 25, for the definite Horn theory T = {→ x, x ∧ y → z, y ∧ z → x}.

rk1 , . . . rkm ∈ Ri such that hki = bi for1 ≤ i ≤ m. Thus we get a proof for z by using
an arbitrary ordering ≺ over the horn rules and concatenating the sequences R≺1 , . . . R

≺
n (R≺i

denotes the sequence corresponding to the set Ri ordered by ≺). Hence z is in the minimal
model iff z is ideal accepted.

Next, as the argument t attacks all arguments y ∈ Asa and is only attacked by the argument
z we have that the ideal extension is non-empty iff z is ideal accepted. Hence Exists¬∅

idl

naive is
P–hard.

To show P-hardness of Ver ienaive , we consider the AF (AT,z ∪ {u}, RT,z) where u is a fresh
argument. Now we have that {u} is the ideal extension iff the ideal extension of (AT,z, RT,z)

is empty. Thus we have an reduction from coExists¬∅
idl

naive to Ver ienaive and thus Ver ienaive is
P-hard.

We conclude our results with the stable semantics, where we in addition have to check
whether there exists an extension of the base semantics – which adds another source of com-
plexity.

Theorem 26.

i. Ver idlstb is DP –complete.

ii. Ideal stb is DP –complete.
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iii. Exists¬∅
idl

stb is DP –complete.

iv. Ver iestb is DP –complete.

Proof. The memberships in DP follows by Corollary 2 and the fact that Ver stb ∈ L.
For the hardness part we use the following two constructions: Given a propositional formula

ϕ =
∧
c∈C c over variables X we define the AFs F 1

ϕ = (A1, R1), F 2
ϕ = (A2, R2) with:

A1 = {ϕ, ϕ̄} ∪ C ∪X ∪ X̄
R1 = {(c, ϕ) | c ∈ C} ∪ {(x, x̄), (x̄, x) | x ∈ X} ∪ {(ϕ, ϕ̄), (ϕ̄, ϕ)} ∪

{(l, c) | l ∈ c, c ∈ C}

A2 = C ∪X ∪ X̄
R2 = {(x, x̄), (x̄, x) | x ∈ X} ∪ {(c, c) | c ∈ C}

{(l, c) | l ∈ c, c ∈ C}

Notice that the first one is a simplification of the construction presented in [46], showing
hardness results for standard ideal semantics. It is easy to verify that this variation does not
effect the proofs there and thus we can use that ϕ is unsatisfiable iff {ϕ̄} is an ideal set w.r.t. prf
in F 1

ϕ iff {ϕ̄} is the ideal extension w.r.t. prf in F 1
ϕ. Now as the AF does not contain any odd

length cycle it is coherent [42], and thus the results turn over to stable semantics.
The idea behind the construction of F 2

ϕ is that it is stable-consistent iff ϕ is satisfiable. We
prove this as follows: First, let M be a model of ϕ then E = M ∪ X \M is a conflict free
set in F 2

ϕ = (A2, R2) and by construction of E each argument in X ∪ X̄ is either contained
in E or attacked by E. Moreover as M is a model, for each clause c ∈ C E contains at least
one literal which is in the clause, hence each c ∈ C is attacked. Thus E is a stable extension
and F 2

ϕ = (A2, R2) is stable-consistent. Now let us assume F 2
ϕ = (A2, R2) is stable-consistent

ϕ

c1 c2 c3

z1 z̄1 z2 z̄2 z3 z̄3 z4 z̄4

c′1 c′2

x1 x̄1 x2 x̄2

ϕ̄

Figure 3.10: An illustration of the AF F 1
{c1,c2,c3}∪̇F

2
{c′1,c′2}

, as defined in proof of Theorem 26,
with c1 = {z1, z2, z3}, c2 = {z̄2, z̄3, z̄4}, c3 = {z̄1, z2, z4}, c′1 = {x̄1, x̄2}, c′2 = {x1, x2} .
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σ Ver idlσ Ideal σ Exists¬∅
idl

σ Ver ieσ

comp P-c P-c in L P-c

prf coNP-c in ΘP
2 in ΘP

2 in ΘP
2

naive in L P-c P-c P-c

stb DP -c DP -c DP -c DP -c

resGr coNP-c coNP-c coNP-c DP -c

sem ΠP
2 -c ΠP

2 -c ΠP
2 -c DP

2 -c

stg ΠP
2 -c ΠP

2 -c ΠP
2 -c DP

2 -c

Table 3.2: Complexity of ideal reasoning

and E being a stable extension as the arguments c ∈ C are self-attacking none of them can be
contained in E. But then E attacks all c ∈ C and E ∩X is a model of ϕ.

To show DP - hardness we reduce an instance (ϕ,ψ) of the SAT-UNSAT to our reasoning
problems

Ver idlstb : We build the AF F = F 1
ψ∪̇F 2

ϕ (illustrated in Figure 3.10). We have that F is stable-
consistent iff F 2

ϕ is stable consistent, and that {ψ̄} is an ideal set iff it is an ideal set in F 1
ψ and

F is stable consistent. Hence {ψ} is an ideal set in F iff ϕ is satisfiable and ψ is unsatisfiable.

Ideal stb : Again use the AF F = F 1
ψ∪̇F 2

ϕ and the observation that ψ̄ is ideal accepted iff {ψ̄}
is an ideal set.

Exists¬∅
idl

stb : To this end we modify F 2
ϕ such that it always has the emptyset as ideal exten-

sion F 3
ϕ := F 2

ϕ ∪ ({u,w, b}, {(u,w), (w, u), (u, b), (w, b), (b, b)} ∪ {(b, x), (b, x̄) | x ∈ X}).
One can easily show that stb(F 3

ϕ) = {E ∪ {u}, E ∪ {w} | E ∈ stb(F 2
ϕ)}. Hence F 3

ϕ is stable
consistent iff F 2

ϕ is stable-consistent iff ϕ is satisfiable. Moreover each set ∅ 6= E ∈ adm(F 3
ϕ)

has to contain either u or w (otherwise none of the c ∈ C is defended). If F 3
ϕ is stable consistent

neither u nor w is skeptically accepted and thus the ideal extension is the empty set. However if
F 3
ϕ is not stable consistent the ideal extension is empty by definition.

Now we consider the AF F = F 1
ψ∪̇F 3

ϕ. We have that {ψ̄} is an ideal extension iff it is an
ideal set in F 1

ψ and F is stable consistent. Thus we obtain that {ψ̄} is an ideal extension in F iff
ϕ is satisfiable and ψ is unsatisfiable.

Ver iestb : We build the AF F = F 1
ϕ∪̇F 1

ψ. There are just four candidates for the ideal extension,
i.e. ∅, {ϕ̄}, {ψ̄} and {ϕ̄, ψ̄}. We have ψ̄/ϕ̄ is ideal accepted iff ψ/ψ is unsatisfiable. Hence {ψ̄}
is an ideal extensions iff ϕ is satisfiable and ψ is unsatisfiable.

This concludes our complexity analysis of ideal reasoning. Our results are collected in
Table 3.2. There the lower part shows new results.
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3.5 Summary

We briefly summarise the obtained results, together with the results from the literature discussed
in Section 3.1, and draw the complexity landscape of abstract argumentation. In this chapter we
complemented existing complexity results as follows

• We classified the ”tractable“ semantics, i.e. cf ,naive, grd , w.r.t. P-completeness. That
is, computing and even verifying the grounded extensions is P-complete and moreover
the P-completeness of the verification problem turns over to resolution-based grounded
semantics. When analysing ideal reasoning, we obtained that ideal reasoning w.r.t. naive
semantics is also P-complete. Furthermore, we have showed that most of the tractable
problems can be even carried out in L.

• We complemented the complexity analysis of semi-stable semantics answering two open
questions raised by Dunne and Caminada [50]. That is, we provided ΣP

2 (resp. ΠP
2 )

lower complexity bounds for credulous (resp. skeptical) reasoning improved the existing
PNP
|| -lower bounds [50].

• We provided a comprehensive complexity analysis of stage semantics, most importantly
showing that both skeptical and credulous acceptance are on the second level of the poly-
nomial hierarchy.

• Finally we studied the complexity of ideal reasoning with different base semantics. There
we provided generic complexity results that allow to obtain both upper and lower com-
plexity bounds for ideal reasoning given the complexity of the base-semantics. Moreover
we gave a comprehensive analysis of ideal reasoning w.r.t. the semantics under our con-
siderations.

The complexity classifications of the reasoning problems introduced in Section 2.1.3 are
summarised in Table 3.3 (for the argumentation semantics under our considerations).

The first conclusion we can draw from the P-completeness results is that the corresponding
problems are inherent sequential and thus are not (well) amenable for parallelisation (cf. [76]).
Secondly, when comparing the ”tractable“ semantics cf ,naive, grd we have that credulous and
skeptical reasoning in cf ,naive can be done in logarithmic space. So we have that grounded
semantics offer somehow higher expressiveness than cf ,naive . However, the picture is different
when considering ideal reasoning and allowing self-attacks in the AFs, then naive and grounded
semantics provide the same complexity.

Next let us consider the complexity results for semi-stable and stage semantics. We have
that stage, semi-stable together with preferred-semantics form the argumentation semantics with
reasoning problems on the second level of the polynomial hierarchy. However, stage and semi-
stable semantics are the only semantics where credulous acceptance is on the second level, while
for all the other semantics under our considerations credulous acceptance is at most NP-hard.

It is somehow surprising that both stage and semi-stable semantics are of the same com-
plexity, as stage semantics are based on the computational highly tractable concept of conflict-
freeness while semi-stable semantics are based on the computational hard concept of admissi-
ble sets. This suggests that maximising the range of an extension is harder than maximising
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σ Credσ Skeptσ Idealσ Verσ Existsσ Exists¬∅σ

cf in L trivial trivial in L trivial in L
naive in L in L P-c in L trivial in L
grd P-c P-c P-c P-c trivial in L
stb NP-c coNP-c DP -c in L NP-c NP-c

adm NP-c trivial trivial in L trivial NP-c

com NP-c P-c P-c in L trivial NP-c

resGr NP-c coNP-c coNP-c P-c trivial in P

prf NP-c ΠP
2 -c in ΘP

2 coNP-c trivial NP-c

sem ΣP
2 -c ΠP

2 -c ΠP
2 -c coNP-c trivial NP-c

stg ΣP
2 -c ΠP

2 -c ΠP
2 -c coNP-c trivial in L

Table 3.3: Complexity of abstract argumentation (C-c denotes completeness for class C). Novel
results are highlighted in boldface.

the extension itself. This is further mirrored by the following two facts. Firstly, starting from
conflict-free sets we have that ⊆-maximality, i.e. naive semantics, is still tractable while range-
maximality leads to hardness for the second level of the polynomial hierarchy. Secondly, when
considering credulous reasoning⊆-maximality can be neglected and thus does not add complex-
ity while range-maximality has to be taken into account.

Considering the overall picture of ideal reasoning we have that ideal reasoning just adds
polynomial run-time to skeptical acceptance algorithms. Moreover we have that ideal reasoning
is as hard as skeptical reasoning, with two notable exceptions. First, when considering preferred
as base-semantics we can use the complexity gap between credulous and skeptical acceptance
and obtain a ΘP

2 algorithm for ideal reasoning, which is actually easier than the ΠP
2 -hard skepti-

cal acceptance. Second, when considering naive as base-semantics we have that the complexity
of skeptical acceptance is actually to low to subsume the additional effort for ideal acceptance
and thus the complexity slightly increases when switching to ideal reasoning. For stable seman-
tics we have that ideal reasoning takes care whether there exists a stable extension or not. Thus
the complexity of ideal reasoning is in accordance with the complexity of the skeptical reasoning
version that also takes care of this, i.e. Skept ′ , but increases the complexity of classical skeptical
reasoning.

Finally, we identify the following two complexity issues which we have to leave open:

1. Identifying the exact complexity of Idealprf (under standard reductions), i.e. deciding
whether an argument is in the standard ideal extension.

2. Identifying the exact complexity of Exists¬∅resGr , i.e. deciding whether there exists a non-
empty resolution-based grounded semantics.
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As already mentioned for Idealprf , Dunne [46] has shown that it is coNP-hard (cf. Theo-
rem 22) and can be decided within ΘP

2 (cf. Theorem 19). However we are not aware of any
matching bounds. The work in [46] puts quite some effort in attempting lower bounds, proving
that NP-hardness would suffices to obtain ΘP

2 -completeness. Moreover a hardness proof using
randomized reductions is provided. Note that this complexity picture is somehow similar to that
of deciding whether applying the closed world assumption (CWA) [66, 100] to a propositional
theory is consistent. We have that a propositional theory is CWA-consistent if and only if the
theory has a unique minimal model, i.e. the intersection of all models being a model. Although
the latter characterisation provides some similarities to Idealprf we did not manage to reduce
one problem to the other. So when failing classifying whether Idealprf is hard for ΘP

2 , another
interesting open problem would be how Idealprf relates to closed world reasoning.

The problem Exists¬∅resGr was shown to be in the class P in [12] and to the best of our knowl-
edge P-completeness for argumentation problems was not considered in the literature before3.
However, the author expects the problem’s complexity to lie somewhere between L and P, and
thus not being accessible with complexity classes we consider in this work.

3Hence, there is just the author of this work to be to blame for this open issue.
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CHAPTER 4
Towards Tractability

The complexity results from Chapter 3 show that most of the reasoning tasks in abstract argu-
mentation are highly intractable, but on the other side the necessity of efficient algorithms is
evident. So the best we can do is handling problem instances which are of lower complexity by
appropriate efficient algorithms. This chapter is dedicated to identifying structural properties of
argumentation frameworks that make reasoning tasks tractable, and trying to capture as most as
possible (practical) instances by such characterisations. We firstly consider graph properties that
allow for polynomial time algorithms, that is an AF being acyclic, free of even length cycles,
bipartite or symmetric, Secondly we apply structural graph parameters such that the complexity
of reasoning merely depends on this parameters but is polynomial in the size of the AF.
This chapter is organised as follows:

• Section 4.1 studies Tractable Fragments, i.e. graph classes on which argumentation prob-
lems are tractable which are intractable in the general case. Four classes of AFs are con-
sidered, namely acyclic AFs, AFs which are free of even-length cycles, bipartite AFs and
symmetric AFs. We review and complement existing results from the literature and extend
them to all of our semantics. Finally we consider fragments that do not yield tractability
but allow to solve argumentation problems, which are in general hard for the second level
of the polynomial hierarchy, within NP or coNP.

• Section 4.2 provides Fixed-Parameter Tractability results concerning the graph parame-
ters tree-width and clique-width. To this end we first provide monadic second order logic
encodings of the argumentation semantics and then apply the meta-theorems presented in
Section 2.3.4.

• In Section 4.3 we prove Fixed-Parameter Intractability results for several parameters gen-
eralising the parameter tree-width for directed graphs. That is we prove that argumentation
problems remains hard when the parameter cycle-rank is bounded and then use a meta-
theorem from Section 2.3.4 to extend these results to the parameters directed path-width,
Kelly-width, DAG-width, and directed tree-width.
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• Finally in Section 4.4 we provide a Summary of our results and discuss them together with
related work.

Parts of this chapter have been previously published. Sections 4.2 & 4.3 build on [57, 61], also
incorporating the fixed-parameter tractability results from [54].

4.1 Tractable Fragments

Here we revisit known tractable fragments for abstract argumentation, i.e. acyclic AFs, AFs
without even cycles, bipartite AFs and symmetric AFs. We extend existing results in two ways:
Firstly, we extend known tractable fragments to all of the semantics under our consideration
(whenever possible). Secondly, we give a more fine-grained complexity analysis than pro-
vided by the literature, i.e. we classify problems in such fragments w.r.t. P-completeness and
L-membership.

4.1.1 Acyclic Argumentation Frameworks

To obtain exact complexity classifications for reasoning with AFs in the tractable fragments, we
first present a result showing that deciding whether an argument is in the grounded extension
is P-hard even for very simple structured AFs. To this end we present a reduction from the
monotone circuit value problem1.

Theorem 27. Credgrd is P -complete even for acyclic bipartite AFs.

Proof. The membership follows from the general case and we prove hardness by reduction
from MCVP (see Definition 47). Consider a monotone circuit (βi)1≤i≤m over variables X =
{x1, . . . xn} and an assignment a. We construct the AF Fβ = (A,R) as follows:

A = {βi | 1 ≤ i ≤ m} ∪ {β̄1
i , β̄

2
i | βi = ∧(j, k)} ∪ {β̄i | βi = ∨(j, k) or βi = x} ∪ {a}

R = {(a, β̄i) | βi = x and a(x) = true} ∪
{(βj , β̄1

i ), (βk, β̄
2
i ), (β̄1

i , βi), (β̄
2
i , βi) | βi = ∧(j, k)} ∪

{(βj , β̄i), (βk, β̄i), (β̄i, βi) | βi = ∨(j, k)}

Clearly this reduction can be done with a constant number of cursors and thus in L. Further
we have that each attack goes from a lower indexed argument to an higher indexed argument
and thus the resulting AF is clearly acyclic. Moreover there are no attacks between arguments
in the set {βi | 1 ≤ i ≤ m} ∪ {a} as well as in the set {β̄1

i , β̄
2
i | βi = ∧(j, k)} ∪ {β̄i | βi =

∨(j, k) or βi = x}, which together build a partition F . Hence F is a acyclic bipartite AF.
For the correctness of the reduction we claim that v(βi, a) = true iff βi ∈ grd(F ). The

proof is by structural induction.
Let us first mention that by construction the argument a is not attacked in F , and hence

a ∈ grd(F ). Towards the induction base we consider gates βi that are variables. For such a gate
1Notice that, alternatively one can also use a slightly modified version of Translation 8 in Chapter 5, that deletes

the original attacks, and translate each AF faithfully to an acyclic AF.
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x y

∨

∧

Monotone Boolean Circuit β

a

x

y

∨

∧

x̄

ȳ

∨̄

∧̄1

∧̄2

AF Fβ

Figure 4.1: An illustrative example for the reduction in proof of Theorem 27, with the monotone
circuit β = (x, y,∨(β1, β2),∧(β2, β3)) and assignment a(x) = a(y) = true.

we have that β̄i is the only argument attacking βi. If a(x) = true then a attacks β̄i and βi is
defended. Thus βi ∈ grd(F ). If a(x) = false then β̄i is not attacked and thus β̄i ∈ grd(F ). As
β̄i attacks βi we have βi /∈ grd(F ). Hence v(βi, a) = true iff βi ∈ grd(F ) for gates βi that are
variables. As β1 must be a variable this gives us the induction base for ∨,∧ gates.

Now let us consider a gate βi = ∧(j, k), with j, k < i. This argument βi is attacked by the
two arguments β̄1

i , β̄2
i , where the first is only attacked by βj and the latter is only attacked by βk.

Thus we have that βi is defended by grd(F ) iff βj ∈ grd(F ) and βk ∈ grd(F ). By the induction
hypothesis this is equivalent to v(βj , a) = true and v(βk, a) = true. By the definition of v(., .)
we have that v(βi, a) = true iff βi ∈ grd(F ).

Finally let us consider a gate βi = ∨(j, k), with j, k < i. The argument βi is only attacked
by the argument β̄i, which itself is attacked by βj and βk. Thus we have that βi is defended
by grd(F ) iff βj ∈ grd(F ) or βk ∈ grd(F ). By the induction hypothesis this is equivalent to
v(βj , a) = true or v(βk, a) = true. By the definition of v(., .) we have that v(βi, a) = true iff
βi ∈ grd(F ).

Finally we have v(β, a) = v(βm, a) = true iff βm ∈ grd(F ).

Corollary 3. For σ ∈ {stb, com, resGr , prf , sem, stg} the problems Credσ, Skeptσ, Idealσ
are P-complete when restricted to acyclic bipartite AFs.

Proof. Immediate via Theorem 27 and the fact that on such AFs all the semantics σ coincide
with grounded semantics.

We are now prepared to give the complexity landscape on acyclic AFs.

Theorem 28. For acyclic AFs the complexity results depicted in Table 4.1 holds.

Proof. By Theorem 27, Corollary 3 and the identity Credadm = Credcom .
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σ grd stb adm com resGr prf sem stg

Credσ P-c P-c P-c P-c P-c P-c P-c P-c

Skeptσ P-c P-c trivial P-c P-c P-c P-c P-c

Idealσ P-c P-c trivial P-c P-c P-c P-c P-c

Table 4.1: Complexity results for acyclic AFs (C-c denotes completeness for class C).

4.1.2 Even-Cycle free Argumentation Frameworks

The next tractable fragments is based on a observation by Dunne and Bench-Capon [47], that
AFs without even-length cycles have a unique preferred extension, which can be computed in
polynomial time. We first state this result for complete extensions.

Proposition 15. Given an AF F = (A,R) with |com(F )| ≥ 2 then F contains an even length
cycle.

Proof. Suppose that G,E ∈ com(F ) where G is the grounded extension and E different from
G. Thus we have G ⊆ E and there exists x0 ∈ E \ G. As x0 /∈ G we have that x0 is attacked
by some y0 such that G 6� y0. Further as x0 ∈ E we have that y0 6∈ E. As E is admissible
there exists an argument x1 ∈ E \ G attacking y1. Now the same argument applies to the
argument x1 and we obtain that there exist y1 6∈ E and x2 ∈ E \ G. Inductively we obtain an
infinite sequence x0, y0, x1, y1, . . . , xi, yi, . . . such that xi ∈ E \G and (yi, xi) ∈ R as well as
(xi+1, yi) ∈ R. As E \ G is a finite set we certainly have that xi = xj for some i 6= j. Then
xi, yi, xi+1, yi+1, . . . , yj−1 forms a cycle which is of even length.

We have that in AFs without even-length cycles the grounded extension is the only com-
plete extension. Now having Proposition 15 at hand we easily obtain the complexity results for
admissibility based semantics.

Theorem 29. On even-cycle free AFs the problems Credσ, Skeptσ, Idealσ are P-complete for
σ ∈ {grd , stb, com, resGr , prf , sem}. Moreover Credadm is P-complete.

Proof. The hardness follows immediately by the corresponding hardness results for acyclic AFs.
It remains to prove the membership:

By Proposition 15 we have that each such AF F has only one complete extension which is
also the grounded. Now as all semantics σ are com-preserving and provide at least one exten-
sion, except for stable semantics, we have that grd , com, resGr , prf , sem semantics coincide
and thus the lower complexity of grounded semantics carries over to the other ones. For stable
semantics we have that there is just one candidate for being a stable extension, i.e. the grounded
extension, which can be computed in polynomial time. We can check whether it is also stable in
polynomial time and if so we have that stable and grounded semantics coincide. Otherwise there
is no stable extension and we can immediately return the acceptance status of the argument.

Again we obtain the tractability for adm semantics via the identity Credadm = Credcom .
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As stage semantics do not build on admissible sets the above observation does not lead to
tractability. In fact we have that the absence of even cycles does not help when evaluating AFs
w.r.t. stage semantics and all the reasoning tasks still maintain their full complexity.

Theorem 30. The problem Cred stg is ΣP
2 -complete and the problems Skeptstg , Ideal stg are

ΠP
2 -complete even for AFs without even-cycles.

Proof. The membership -part follows immediately from the general case. To show hardness we
provide a reduction from the ΣP

2 -complete MINSAT problem (see Definition 55).
To this end let (ϕ, xα) be an instance for the MINSAT problem, i.e. ϕ is a propositional

formula over atoms X in CNF and xα ∈ X . We additionally assume an arbitrary order < on the
clauses of ϕ. Then we define the AF Fϕ,xα = (A,R) as follows:

A = {ϕ, b, q} ∪ C ∪X ∪ X̄ ∪ {Ec | c ∈ C}
R = {(c, ϕ) | c ∈ C} ∪ {(ϕ, b), (b, b), (q, xα)} ∪

{(x̄, x) | x ∈ X} ∪
{(l, c) | l ∈ c, c ∈ C} ∪
{(Ec, a) | c ∈ C, a ∈ A \ ({c, ϕ, b} ∪ {Ec′ : c′ < c})}

The AF Fϕ,xα is illustrated in Figure 4.2. We now claim that the following statements are
equivalent:

1. The atom xα is in a minimal model of ϕ.

2. The argument xα is credulously accepted in Fϕ,xα .

3. The argument q is not skeptically accepted in Fϕ,xα .

4. The argument q is not ideally accepted in Fϕ,xα .

(1)⇔ (2) Recall that each stage extension is also a naive extensions, and hence we consider
only naive extensions as candidates for stage extensions.

First let us consider naive extensions of Fϕ,xα = (A,R) containing an argument Ec. For
simplicity we enumerate the clauses c1, . . . , cm and the arguments E1, . . . , Em, according to
the order < on the clauses. Now one can easily check that these naive extensions are given by
{{Ei, ϕ, q}, {Ei, ci, q} | 1 ≤ i ≤ m}. Further we have that the arguments E1, . . . , Em are in
conflict with each other but not attacked from any other argument. Thus when concerning the
≤+
R-maximality of the above naive extensions they only compete with each other but not with

any other naive extension. Comparing the range of these extensions we get that stage extensions
E such that for some i, Ei ∈ E are the following {{Ei, ϕ, q} | 1 ≤ i ≤ n} ∪ {{E1, c1, q}}.

Now let us consider naive sets E such that for each 1 ≤ i ≤ m, Ei 6∈ E. As we already
have stage extensions with {Ei, ci, q}+ = A \ {b} and {Ei, ϕ, q}+ = A \ ({ci, E1, . . . , Ei−1}).
Clearly {E1, . . . , Em} ∩ E = ∅ and thus the only way for E being ≤+

R-maximal is that
{b, c1, . . . , cm} ⊆ E+. When b ∈ E+ then we have that ϕ ∈ E and hence for 1 ≤ i ≤ m
ci 6∈ E. That is that {b, c1, . . . , cm} ⊆ E+ iff ϕ ∈ E and X ∩ E is a model of ϕ. Hence
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ϕ

c1 c2 c3

x1 x̄1 x2 x̄2 x3 x̄3 x4 x̄4q

b

Ec1Ec2Ec3

Figure 4.2: Illustration of the AF FΦ,x1 as described in the proof of Theorem 30 for the CNF-
formula ϕ =

∧
c∈C c with C = {{y1, y2, z3}, {ȳ2, z̄3, z̄4)}, {ȳ1, ȳ2, z4}}.

there is a one-to-one correspondence between models M of ϕ and candidates for stage exten-
sions M∗ := M ∪ (X \M) ∪ {ϕ} ∪ {q | if xα 6∈ M}. By the construction the range of each
candidate is clearly incomparable with the ranges of the already determined stage extensions
{{Ei, ϕ, q} | 1 ≤ i ≤ n}∪{{E1, c1, q}}. and thus the≤+

R-maximality of such a candidate only
depends on the other candidates.

It remains to show that for two models M,N , we have that M ⊆ N iff M∗ ≥+
R N

∗. For the
“only if” direction consider M ⊆ N . We have that (M∗)+ = A \ (M̄ ∪ {E1, . . . , Em}) ∪ {q |
if x 6∈M} and (N∗)+ = A\(N̄ ∪{E1, . . . , Em})∪{q | if x 6∈M}. As by assumptionM ⊆ N
we finally have that A \ (M̄ ∪ {E1, . . . , Em}) ⊇ A \ (N̄ ∪ {E1, . . . , Em}).

For the “if” part let us consider M 6⊆ N . Hence there is some x ∈M such that x 6∈ N . But
then we have that x̄ 6∈ (M∗)+ and x̄ ∈ (N∗)+. That is that M∗ 6≥+

R N
∗.

(2) ⇔ (3): As xα is the only argument which has a conflict with q we have that each naive
extensions, and thus also each stage extension, either contains q or xα. Hence if q is in all stage
extensions then xα is not credulously accepted and vice versa.

(3)⇔ (4): As q is not attacked at all, it is ideally accepted iff it is skeptically accepted.

We mention that the AF FΦ,xα in the above proof contains just one cycle, i.e. the self-
attacking argument b. That is when starting from a acyclic AF which is easily solvable, just
adding one attack can bring us back to the full complexity on the second-level of the polynomial
hierarchy.

The complexity landscape of reasoning on even-cycle free AFs is given in Table 4.2.
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σ grd stb adm com resGr prf sem stg

Credσ P-c P-c P-c P-c P-c P-c P-c ΣP
2 -c

Skeptσ P-c P-c trivial P-c P-c P-c P-c ΠP
2 -c

Idealσ P-c P-c trivial P-c P-c P-c P-c ΠP
2 -c

Table 4.2: Complexity results for even-cycle free AFs (C-c denotes completeness for class C).

4.1.3 Bipartite Argumentation Frameworks

The class of bipartite AFs was first discovered by Dunne [44], who showed that credulous and
skeptical reasoning w.r.t. preferred or stable semantics can be done in P. Further he mentioned
that these AFs are free of odd-length cycles and thus coherent [42]. This observation will be the
key to extend these results to semi-stable and stage semantics.

Baroni et al. [12] showed that given a set of arguments deciding whether they are simulta-
neously accepted by one resolution-based grounded extension is NP-complete. The following
proposition strengths this result as it shows that credulous reasoning is also NP-hard if we only
consider a single argument for being accepted.

Proposition 16. The problem Cred resGr is NP-complete even for bipartite AFs.

Proof. The membership is immediate via the results for the general case in [12]. We prove
hardness by a reduction from the Monotone SAT problem. Thus let ϕ =

∧
c∈C c be a monotone

CNF over atoms X and (Cp, Cn) a partition of C in positive clauses Cp and negative clauses
Cn. Then we define the following AF Fϕ = (A,R)

A = {t} ∪ C ∪X ∪ X̄ ∪ {ac, bc, dc, ec | c ∈ Cn}
R = {(c, t) | c ∈ C} ∪ {(x, x̄), (x̄, x) | x ∈ X} ∪

{(l, c) | literal l occurs in c ∈ Cp∪}
{(l, dc) | literal l occurs in c ∈ Cn} ∪
{(ac, c), (ac, bc), (bc, ac), (dc, bc), (ac, ec), (ec, dc) | c ∈ Cn}

The reduction is illustrated in Figure 4.3. We can partition the arguments A in two independent
sets, i.e. in the sets X ∪ {ac, dc, t | c ∈ Cn} and X̄ ∪ {bc, ec, | c ∈ Cn} ∪ C. Hence Fϕ is a
bipartite AF. We have to show that ϕ is satisfiable iff t is credulously accepted in Fϕ.

We start with some observations on Fϕ. When resolving a symmetric attack between an
x ∈ X and x̄ we choose either x or x̄ for being in the grounded extension of the resolved
AF. Thus for two resolutions β, β′ that such that (x, x̄) ∈ β and (x̄, x) ∈ β′ we have that the
corresponding grounded extensions of the resolved AFs are clearly not in⊆-relation. So to prove
that the grounded extension of a resolved AF is also a resolution-based grounded extension of
Fϕ, we only have to consider resolutions which make the same choice on the arguments X ∪ X̄ .
⇒: Given model M ⊆ X satisfying ϕ. Let us consider the resolutions β such that M ∪

(A \M) ⊆ grd(A,R \ β). As M is a model we have that each argument c ∈ Cp is attacked
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x1 x̄1

x2 x̄2

dc2 ec2

bc2ac2

c1

c2t

Figure 4.3: Illustration of the AF FΦ as defined in the proof of Proposition 16, for the proposi-
tional formula ϕ = c1 ∧ c2 with c1 = x1 ∨ x2 and c2 = ¬x1 ∨ ¬x2.

by M and for each c ∈ Cn the argument dc is attacked by A \M . Now for each c ∈ Cn we
have to resolve the attacks (ac, bc), (bc, ac), and dependent on the choice we either get {ac} ⊆
grd(A,R \ β) or {bc, ec, c} ⊂ grd(A,R \ β). As these sets are not in ⊆-relation, both give rise
to different resolution-based grounded extensions of Fϕ.

Now let us consider the resolution β such that for each c ∈ Cn : ac ∈ grd(A,R \ β) then
the argument t is defended and hence t ∈ grd(A,R \ β). Now as grd(A,R \ β) is ⊆-minimal
and t ∈ grd(A,R \ β) we have that t is credulously accepted.
⇐: To this end let us assume that ϕ is unsatisfiable. Towards a contradiction let us assume

there is an E ∈ resGr(Fϕ) with t ∈ E. We consider the corresponding set of variables M =
E ∩ X . As M is not a model of ϕ we have that there exists a c ∈ C such that M does not
satisfy c. If c ∈ Cp then by construction E does not attack c and hence t is not defended, a
contradiction for E being a resolution-based grounded extension. Now let us consider the case
where c ∈ Cn. Then dc is not attacked by M and in order to build a ⊆-minimal extension we
have to put (ac, bc) in the resolution. But then none of the arguments ac, bc, dc, ec is contained
in E and thus c is not attacked and t not defended, a contradiction.

Next we give the complexity landscape for bipartite AFs.

Theorem 31. For bipartite AFs the complexity results depicted in Table 4.3 holds.

Proof. The P-hardness results follow immediately from Corollary 3.
The membership for preferred and stable semantics has been shown in Dunne [44], as well it

is mentioned there that bipartite AFs are free of odd-length cycles and thus coherent (this dates
back to [42]). Thus the results extend also to semi-stable and stage semantics, as the coincide
with preferred semantics for this class of frameworks. For admissible and complete semantics
we use the identities Credadm = Credcom = Credprf . The case of resolution-based grounded
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σ grd stb adm com resGr prf sem stg

Credσ P-c P-c P-c P-c NP-c P-c P-c P-c

Skeptσ P-c P-c trivial P-c P-c P-c P-c P-c

Idealσ P-c P-c trivial P-c P-c P-c P-c P-c

Table 4.3: Complexity results for bipartite AFs (C-c denotes completeness for class C).

semantics is covered by Proposition 16 and by results in [12], stating that in bipartite AFs the
problem SkeptresGr can be solved in polynomial time.

4.1.4 Symmetric Argumentation Frameworks

The class of Symmetric Argumentation Frameworks was studied by Coste-Marquis et al. [31],
but with the additional assumption that the attack relation is irreflexive, i.e. there are now self-
attacking arguments. Here we extend the results presented there to semi-stable and stage seman-
tics (the case of resGr has been studied in [12]) and to symmetric AFs allowing self-attacks.

We first recall important facts about symmetric frameworks, starting with those that do not
build on the irreflexivity of the attack relation. As each argument defends itself against all its
attackers, the conflict-free sets coincide with the admissible sets and thus also naive and preferred
extensions coincide [31]. Clearly this also applies to semi-stable and stage semantics, and hence
semi-stable and stage extensions coincide on symmetric AFs.

Considering reasoning with an cf -preserving semantics that proposes at least one extension,
we have that ideal and skeptical reasoning coincide2. This is because the set of skeptically
accepted arguments is conflict-free and by the above observation also admissible and therefore
already the ideal extension. Next we have that the grounded extension is the set of unattacked
arguments [31]. Moreover symmetric AFs are coherent if the attack-relation is irreflexive [31].

We first summarise and complement complexity results for irreflexive symmetric AFs.

Theorem 32. For irreflexive symmetric AFs the complexity results depicted in Table 4.4 hold.

Proof. Such AFs are coherent and thus sem, stg , stb, prf , and naive semantics coincide. Hence,
the complexity of naive semantics turns over to the other semantics. Furthermore, as ideal and
skeptical reasoning coincides, also the lower complexity of skeptical reasoning turns over to
ideal reasoning.

To test whether an argument is in the grounded extension we just have to check whether it is
attacked or not – which is clearly in L. Now the results for admissible and complete semantics
follow from the accordance of certain reasoning problems (see Proposition 5).

For resGr Baroni et al. [12] showed the membership in the class P and moreover that
the skeptically accepted arguments are those arguments which are not attacked at all, i.e. the

2In the case of stable semantics we have that Skept ′stb = Ideal stb
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σ grd stb adm com resGr prf sem stg

Credσ in L in L in L in L in P in L in L in L

Skeptσ in L in L trivial in L in L in L in L in L

Idealσ in L in L trivial in L in L in L in L in L

Table 4.4: Complexity results for irreflexive symmetric AFs.

grounded extension coincide with the arguments skeptically accepted w.r.t. resGr . Hence we
obtain L membership for skeptical and ideal reasoning.

We now turn to general symmetric AFs allowing self-attacking arguments. We still have that
preferred and naive semantics coincides, and that the characterisation of the grounded extension
holds. Moreover, the results for resolution-based grounded semantics in [12] do not make use of
the irreflexiveness. Hence, it suffices to consider stable, semi-stable, and stage semantics.

We start with the case of semi-stable and stage semantics (which actually coincide on sym-
metric AFs).

Proposition 17. Cred sem , Cred stg are ΣP
2 -complete and Skeptsem ,Skeptstg , Ideal sem , Ideal stg

are ΠP
2 -complete even for symmetric AFs allowing self-attacks.

Proof. The membership is immediate via the membership for the general case.
To show hardness we will reduce an arbitrary AF F to a symmetric AF F ∗ (with self-attacks)

such that stg(F ) = stg(F ∗) = sem(F ∗)3.
Given an AF F = (AF , RF ) we define F ∗ = (A∗, R∗) as follows

A∗ = AF ∪A′F
R∗ = RF ∪ {(b, a), (a, b′), (b′, a) | (a, b) ∈ RF }

∪ {(a, b), (b, a) | a ∈ AF , (b, b) ∈ RF }
∪ {(a, a′), (a′, a), (a′, a′) | a ∈ AF }

The reduction is illustrated in Figure 4.4. We claim that stg(F ) = stg(F ∗) = sem(F ∗).
First, we mention that every stage extension of an AF F is also maximal (w.r.t. ⊆) conflict-

free in F . Let us now consider the case where ∅ ∈ stg(F ). We then have that stg(F ) = {∅}
which is equivalent to, for each a ∈ AF also (a, a) ∈ RF . Then by construction of F ∗ for each
a ∈ A∗ also (a, a) ∈ R∗ and therefore stg(F ∗) = sem(F ∗) = {∅}. Hence the lemma holds for
such AFs, and for the remainder of the proof we can assume that ∅ 6∈ stg(F ).

For (1)stg(F ) = stg(F ∗)(2), we again observe that a set E is conflict-free in F iff it is
conflict-free in F ∗. In the following we use (E+

RF
)′ as a short hand for {a′ ∈ A′ | a ∈ E+

RF
}.

Then we have that (E+
RF

)′ ⊆ E+
R∗ , since for each attack (a, b) ∈ RF , we have (a, b′) ∈ R∗.

Furthermore, for each maximal conflict-free setE inF (and thus in F ∗), it holds thatAF ⊆ E+
R∗ .

3We will introduce this form of reductions as so called translations in Chapter 5.
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a b c d e

a′ b′ c′ d′ e′

Figure 4.4: Illustration for the reduction in the proof of Theorem 17 for our running AF from
Example 1.

We show this by contradiction. To this end, let us assume that AF 6⊆ E+
R∗ , i.e. there exists

a ∈ AF such that a 6∈ E+
R∗ . As E 6= ∅ we have that all self-attacking arguments are contained

in E+
R∗ , thus (a, a) 6∈ R∗. As a 6∈ E+

R∗ we have that E 6�R a and a 6�R E, but then the set
E ∪ {a} is conflict-free in F and as E is maximal a ∈ E; a contradiction. Hence, for each
maximal conflict-free set E ⊆ AF in F , i.e. the candidates for stage extensions, it holds that
E+
R∗ = AF ∪ (E+

RF
)′ and thus E+

RF
is maximal (w.r.t. subset inclusion) iff E+

R∗ is maximal.
For (2)stg(F ∗) = sem(F ∗)(3): For E ∈ stg(F ∗) iff E ∈ sem(F ∗), recall that on symmet-

ric AFs stage and semi-stable semantics coincides.
As the reduction preserves the extensions clearly also the skeptical and credulous acceptance

problems ofF are reduced to corresponding problems inF ∗. Finally to obtain the hardness result
for ideal reasoning we recall that on symmetric AFs ideal and skeptical reasoning coincides.

Next we give complexity results for stable semantics.

Proposition 18. We have that Cred stb is NP-complete, Skeptstb is coNP-complete, and Ideal stb
is DP -complete even for symmetric AFs allowing self-attacks.

Proof. Again we can use the construction from the proof of Proposition 17 to build F ∗ =
(A∗, R∗) from a given F .

Given that E+
R∗ = AF ∪ (E+

RF
)′ (from the proof of Proposition 17 ) we immediately obtain

that also stb(F ) = stb(F ∗). Hence we have that the problems Cred stb , Skeptstb , Skept ′stb
reduces to the versions restricted to symmetric AFs. Finally, we mention that, as admissible set
and conflict-free sets coincide as well Skept ′stb and Ideal stb coincide.

The complexity results for symmetric AFs (allowing self-attacks) are summarised in Ta-
ble 4.5. Notice that the complexities on general symmetric AFs and on irreflexive symmetric
AFs only differ on stable, semi-stable and stage semantics.

4.1.5 Fragments beyond Tractability

So far we considered graph classes such that argumentation reasoning tasks are tractable, i.e. in
the class P. But as the complexities of reasoning under preferred, semi-stable and stage seman-
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σ grd stb adm com resGr prf sem stg

Credσ in L NP-c in L in L in P in L ΣP
2 -c ΣP

2 -c

Skeptσ in L coNP-c trivial in L in L in L ΠP
2 -c ΠP

2 -c

Idealσ in L DP -c trivial in L in L in L ΠP
2 -c ΠP

2 -c

Table 4.5: Complexity results for symmetric AFs (C-c denotes completeness for class C).

tics are located at the second level of the polynomial hierarchy, one might be also interested in
fragments reducing complexity from the second level to the first level of the polynomial hierar-
chy, i.e. fragments where reasoning can be done within NP or coNP.

We start with the class of coherent AFs, i.e. AFs where stable, preferred, semi-stable and
stage semantics coincide.

Proposition 19. When considering coherent AFs and semantics σ ∈ {prf , sem, stg} we have
that

• Credσ ∈ NP

• Skeptσ ∈ coNP

• Idealσ ∈ coNP

Proof. We have that stable, preferred, semi-stable and stage semantics coincide. Thus we can
use the NP (resp. coNP) procedures for stable semantics.

Unfortunately it is in general ΠP
2 -hard to decide whether an AF is coherent or not [48].

However one can consider subclasses that are easier to detect. One of that being AFs without
odd-length cycles.

Corollary 4. When considering AFs without odd-length cycles and semantics σ ∈ {prf , sem,
stg} we have that

• Credσ ∈ NP

• Skeptσ ∈ coNP

• Idealσ ∈ coNP

Proof. Immediate by the fact that each odd-cycle free AF is coherent [42].

While the class of odd-cycle free AFs is a strict subset of the coherent AFs, it is easy to
detect, i.e. deciding whether a given AF is free of odd-cycles is in P (see e.g. [4]).

Next we consider AFs guaranteeing the existence of a stable extension.
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Proposition 20. When considering stable-consistent AFs, we have that

• Cred sem ∈ NP, Cred stg ∈ NP

• Skeptsem ∈ coNP, Skeptstg ∈ coNP

• Ideal sem ∈ coNP, Ideal stg ∈ coNP

Proof. We have that stable, semi-stable and stage semantics coincide. Thus we can use the NP
(resp. coNP) procedures for stable semantics.

We recall that deciding whether an AF is stable-consistent is NP-complete. We have that
stable-consistent AFs are an NP-fragment of semi-stable and stage semantics. However one can
show that reasoning under preferred semantics remains hard for stable-consistent AFs, by con-
sidering the hardness proof of Skeptprf [48] for QBFs ∀Y ∃Zϕ(Y,Z) such that ϕ is satisfiable.

Finally we have the class of AFs with cycle-rank 1, which reduces the complexity of skepti-
cal reasoning under preferred semantics (cf. Theorems 35 & 36).

Proposition 21. Skeptprf ∈ coNP when restricted to AFs of cycle-rank 1.

Proof. To prove Skept ∈ coNP we provide a polynomial-time algorithm for verifying that a
given set is a preferred extension. Then one can build a coNP-algorithm for Skept by deciding
its complement by a standard guess and check approach. To verify whether a setE is a preferred
extension of an AF F = (A,R) we first compute the SCCs and build a linear order S1, . . . Sm
of the SCCs which respects the partial order given by the attacks between different components,
i.e. for i < j we have that Sj 6� Si. Note that both the identification of SCCs and obtaining
such a linear order can be done in polynomial time by depth-first search. Now one can decide
the verification problem by considering each SCC separately starting with S1 and then following
the linear ordering. Therefore, we use a multi-labelingM : VS → 2{in,def ,undec} which maps
vertices to sets of labels, as well as ordinary labelings L : VS → {in, def , undec} (see [27]).
Intuitively such a labeling corresponds to an extension in the following way: an argument is
labeled in if it is in the extension. An argument is labeled def if it is not in the extension
and attacked by some argument in the extension. Intuitively, the label def indicates that the
extension is “defended” against potential attacks from this argument. Finally, an argument is
labeled undec if it is neither in the extension nor attacked by an argument in the extension.
Intuitively, the label undec indicates that the status of this argument is in a sense “undecided”
yet.

The multi-labeling will be used as a certain form of initialization of the currently considered
SCC Sj (for j > 1 this might take results from SCCs Si with i < j into account); ordinary
labelings are then obtained fromM by taking a designated argument as a starting point and are
finally compared to the candidate E.

The verification algorithm (see also Example 4 below for illustration) for a given AF F =
(A,R) with linearly ordered SCCs S1, . . . , Sm and a set of arguments E is as follows and loops
over j with 1 ≤ j ≤ m.
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1. First, initialize a multi-labelingMj withMj(a) = {in, def , undec}, for all vertices a in
Sj . For each attack (a, b) in F with a ∈ Si, b ∈ Sj and i < j, we set

Mj(b) :=Mj(b) \ {in, undec} if a ∈ E
Mj(b) :=Mj(b) \ {in} if a /∈ E ∧ E 6� a

2. Identify an argument x ∈ Sj such that Sj \ {x} is acyclic.

3. Compute a labelingLlj for each label l ∈Mj(x) as follows: Llj(x) = l and for all vertices
a 6= x in Sj :

Llj(a) =


in if in ∈Mj(a) ∧ ∀b ∈ Sj : b� a⇒ Llj(b) = def

def ifMj(a) = {def } or ∃b ∈ Sj : Llj(b) = in ∧ b� a

undec otherwise

4. Verify the status of the selected argument x in labelings Llj :

• Linj is valid iff ∀b ∈ Sj : b� x⇒ Llj(b) = def

• Ldefj is valid iffMj(x) = {def } or ∃b ∈ Sj : Ldefj (b) = in ∧ b� x

• Lundecj is valid anyway

Let Lj be the set of valid labelings for Sj .

5. Define

L∗j =

{
Lj if Lj = {Lundecj }
Lj \ {Lundecj } otherwise

6. Verification: Reject, if there is no L ∈ L∗j such that for all vertices a in Sj it holds that
L(a) = in iff a ∈ E; otherwise continue with the next SCC.

If the above algorithm terminates without rejecting E, then E is a preferred extension.
To show the correctness of the verification algorithm we exploit the following result from [8]

(Prop. 41): For E ⊆ A it holds that E ∈ prf (F ) iff for each SCC S of F it holds that E ∩ S
is the ⊆-maximal admissible set of (S \ (E \ S)⊕, R ∩ S × S) satisfying that no argument is
attacked by A \ (S ∪ E⊕).

Our algorithm iterates over all SCCs Si testing the above conditions for E being preferred.
In (1) for each argument b ∈ S ∩ (E \ S)⊕ we set Mj(b) := {def } excluding argument b
from having any effect in the subsequent computation, i.e. restricting the set S to S \ (E \ S)⊕.
Moreover, for each argument b attacked by A\ (S∪E⊕) we exclude in from the possible labels
for b, implementing that b can not be contained in the admissible sets.

The steps (2) - (5) are used to compute these ⊆-maximal admissible sets. In step (2) we use
the fact that, by definition, cr(F ) ≤ 1 iff for each SCC S = (AS , RS) of F , there is an argument
x ∈ AS , such that S|AS\{x} is acyclic. We note that this can be easily done in polynomial time.
In steps (3) & (4) we compute all labelings that are (i) admissible and (ii) are candidates for
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being ⊆-maximal. By definition of a labeling we have that an argument is labeled def iff it is
attacked by an argument labeled in (the conditionMj(a) = {def } just ignores arguments in
S ∩ (E \ S)⊕). By (i) we have that if an argument is labeled in it has to be defended, i.e. all of
its attackers have to be labeled def [27]. Further by (ii) we have that each argument defended
by an extension and not attacked by A \ (S ∪E⊕), actually has to be in an extension. We obtain
the conditions to compute Llj(a). Note that given the label of the selected argument x, we can
compute the labels of all other arguments in Sj by a finite recursion (due to the fact that the SCC
without x is acyclic).

However, in step (4) we have to check whether the computed labels are compatible with
the label of x, i.e. we have to verify if the computed label is really an admissible labeling. For
the case where we labeled x with in , we have to check whether x is defended with respect to
labeling Linj . Similar, for l = def , we have to check whether x is attacked.

In step (5) we address the⊆-maximality of the valid labelings. The extensions corresponding
to Linj , Ldefj are clearly not in ⊆-relation as one contains x and the other extension contains at
least one attacker of x. On the other hand we have that in the recursion in step 3, switching
an def or in label to undec never gives rise to a new in or def label. Hence, the extension
corresponding to Lundecj is in ⊆-relation to the extensions corresponding to Linj and resp. Ldefj

and as it neither contains the argument x nor an attacker of x they are also in ⊂-relation. Hence
if Linj and Ldefj are admissible labelings then Lundecj is not maximal.

Finally in (6) we test whether E ∩S corresponds to one of the maximal admissible sets.

As we will see in Section 4.3, reasoning under semi-stable and stage remains hard for AFs
of cycle-rank 1.

Example 4. For illustration of the algorithm presented in the proof of Proposition 21, consider
the AF F = ({a, b, c, d, e}, {(a, b), (b, c), (c, d), (d, e), (e, b)}) and the set E = {a, c}.

a b

c

e

d

We have two SCCs S1 = F |{a} and S2 = F |{b,c,d,e}. First we apply our algorithm to S1. Since
S1 is an initial SCC, its multi-labeling is given byM1(a) = {in, def, undec}. S1 has only one
argument, we thus select x = a in Step 2 and get the following three labelings Lin1 (a) = in,
Ldef1 (a) = def and Lundec1 (a) = in in Step 3. As there is no argument attacking a, Ldef1 (a) is
not valid (Step 4). In Step 5, we obtain L∗1 = {Lin1 ,Lundec1 } \ {Lundec1 } = {Lin1 }. As a ∈ E and
Lin1 (a) = in, we now have that E is valid on S1 and we thus continue the algorithm with SCC
S2.

For the multi-labelingM2 we have thatM2(c) = M2(d) = M2(e) = {in, def , undec}
andM2(b) = {def}. The latter equality holds because a ∈ E and a� b. In the next step we
have four options for argument x to make S2 acyclic. Let us consider x = d. We compute three
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labelings Lin2 , Ldef2 and Lundec2 . They are given as follows:

Lin2 (b) = def Lin2 (c) = in Lin2 (d) = in Lin2 (e) = def ;

Ldef2 (b) = def Ldef2 (c) = in Ldef2 (d) = def Ldef2 (e) = in;
Lundec2 (b) = def Lundec2 (c) = in Lundec2 (d) = undec Lundec2 (e) = undec.

The labeling Lin2 is not valid, because of the fact that c� d and Lin2 (c) = in. Hence we have
that L∗2 = {Ldef2 }. Now, since Ldef2 (e) = in but e /∈ E, E is rejected by the algorithm.

It is easy to see that {a, c, e} is the only set that would be accepted by the algorithm, which
mirrors the fact that {a, c, e} is the only preferred extension of F .

The problem Skeptprf is closely related to the problem of deciding whether an AF is co-
herent [48], that is checking whether the stable and preferred extensions of the AF coincide. In
general, deciding whether an AF is coherent is ΠP

2 -complete, and the hardness proof is via the
same reduction from [48] we will use to show that Skeptprf is hard for AFs of cycle rank 2 (see
Theorem 35 and Figure 4.5). Hence the problem clearly remains ΠP

2 -hard for AFs of cycle-rank
2, but one might be interested whether this problems also becomes easier for cycle-rank 1.

In the proof of Proposition 21 we have shown that for AFs of cycle-rank 1 one can decide in
polynomial time whether a given set is a preferred extension. This gives rise to a simple coNP
algorithm for deciding coherence of an AF. First, non-deterministically guess a set E and then
perform a polynomial-time test whether E is a preferred extension and whether E is a stable ex-
tension. If E is preferred and not stable one has found a counter-example for coherence. More-
over, coNP-hardness can be easily shown by using the reduction F 1

Φ ∪ ({b}, {(Ψ, b), (b, b)}),
where F 1

Φ as in the proof of Theorem 26.
Finally, note that one can easily show NP (resp. coNP) hardness for all of the fragments

presented in this section. These follow from the observation that the standard hardness proof
for stable semantics is free of odd-length cycles (and thus coherent and stable-consistent) and
Theorem 36 in Section 4.3.

4.2 Fixed Parameter Tractability

First investigations on fixed parameter tractability in the field of abstract argumentation where
undertaken in [44], where several problems concerning preferred and stable semantics where
shown to be fixed parameter tractable w.r.t. the graph-parameter tree-width of the AF. These
results build on corresponding MSO encodings and Courcelle’s meta-theorem (cf. Section 2.3.4).

Here we extend these results in three directions: First, we extend them to all semantics under
our considerations. Second, we bring the parameter clique-width into play and extend the fixed
parameter tractability to it. Third, we cover all computational tasks we are interested in.

4.2.1 MSO - Characterisations of Argumentation Semantics

In this section we use MSO to characterise all semantics under our considerations. We will
exploit these characterisations later on to obtain fixed parameter tractability results via the meta-
theorems presented in Section 2.3.4.
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Building Blocks We first introduce some shorthands simplifying notation when dealing with
subset relations and the range of extensions.

x /∈ X = ¬(x ∈ X)

X ⊆ Y = ∀x (x ∈ X → x ∈ Y )

X ⊂ Y = X ⊆ Y ∧ ¬(X ⊆ Y )

X 6⊆ Y = ¬(X ⊆ Y )

X 6⊂ Y = ¬(X ⊂ Y )

x ∈ X+
R = x ∈ X ∨ ∃y(y ∈ X ∧ (y, x) ∈ R)

X ⊆+
R Y = ∀x (x ∈ X+

R → x ∈ Y +
R )

X ⊂+
R Y = X ⊆+

R Y ∧ ¬(X ⊆+
R Y )

Another important notion that underlies argumentation semantics is the notion of a set being
conflict-free. The following MSO formula encodes that a set X is conflict-free w.r.t. the attack
relation R:

cf R(X) = ∀x, y ((x, y) ∈ R→ (¬x ∈ X ∨ ¬y ∈ X))

Next we give a building block for maximising extensions using an (MSO expressible) ordering
v of sets:

maxA,P (.),v(X) = P (X) ∧ ¬∃Y v A(P (Y ) ∧X < Y )

Clearly we can also implement minimisation by inverting the ordering, i.e. minA,P (.),v(X) =
maxA,P (.),w(X).

Standard Encodings In the following we provide MSO1-characterisations for the different
argumentation semantics. The characterisations for admissible, stable and preferred semantics
are borrowed from [44].

cf R(X) = ∀x, y (x, y) ∈ R→ (¬x ∈ X ∨ ¬y ∈ X)

naiveR(X) = cf R(X) ∧ ¬∃Y (cf R(Y ) ∧X ⊂ Y )

admR(X) = cf R(X) ∧ ∀x, y ((x, y) ∈ R ∧ y ∈ X)→ ∃z(z ∈ X ∧ (z, x) ∈ R)

comR(X) = admR(X) ∧ ∀x(x /∈ X → ∃y((y, x) ∈ R ∧ @z(z ∈ X ∧ (z, y) ∈ R)))

grdR(X) = comR(X) ∧ ¬∃Y (comR(Y ) ∧ Y ⊂ X)

stbR(X) = cf R(X) ∧ ∀y(y /∈ X → ∃z ∈ X(z, x) ∈ R)

prf R(X) = admR(X) ∧ ¬∃Y (admR(Y ) ∧X ⊂ Y )

semR(X) = admR(X) ∧ ¬∃Y (admR(Y ) ∧X ⊂+
R Y )

stgR(X) = cf R(X) ∧ ¬∃Y (cf R(Y ) ∧X ⊂+
R Y )

As these encodings directly follow the definitions, they can be easily verified to be correct. Now,
based on these encodings we build up encodings for the parameterized semantics. We start with
encoding resolution-based semantics, and in a first step characterise the resolved attack relations
R \ β for the resolutions β.
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resR(XE) = ∀x, y
(
XE ⊆ R ∧ (x, x) ∈ R→ (x, x) ∈ XE∧

(x 6= y ∧ (x, y) ∈ R)→ ((x, y) ∈ XE ↔ (y, x) 6∈ XE)
)

Now, following the definition, resolution based semantics are characterised by

σ∗A,R(X) = ∃XEresR(XE) ∧ σA,XE (X) ∧ ∀Y ∀Y E(resR(Y E) ∧ σA,Y E (Y )→ Y 6⊂ X)

However, as this encoding uses second order quantification over edges it does not yield
an MSO1-encoding for resGr . Hence, having in mind the meta-theorems for obtaining fixed
parameter tractability results, we are interested whether it is possible to express resGr in MSO1.
We devote the next subsection to this problem.

Finally we consider parameterized ideal semantics. Here we first characterise ideal sets and
then use them to encode the ideal extension.

idealsetσR(X) = admR(X) ∧ ∀Y (σR(Y )→ X ⊆ Y )

idealextσR(X) = idealsetσR(X) ∧ ¬∃Y (idealsetσR(Y ) ∧X ⊂ Y )

Notice that the encoding for ideal sets and ideal extensions are in MSO1 if the encoding
of the corresponding base semantics is in MSO1. So far all of the presented MSO encodings,
except those for resolution-based semantics, omit quantification over edge sets and are thus
MSO1 encodings.

Towards an MSO1 encoding of resolution-based grounded semantics

As the definition of resolution based semantics explicitly makes use of quantification over sets
of attacks it is not amenable for a direct translation in MSO1. Also all our attempts for implic-
itly quantifying over resolutions by using quantification over certain sets of arguments failed.
Hence we go for a characterisation of resolution-based grounded semantics which eliminates
the quantification over sets of attacks, exploiting results from [12].

To this end we first restrict the class of resolutions we have to consider when showing that a
set of arguments is a complete extension of some resolved AF.

Lemma 9. Given AF F = (A,R) and a set E ⊆ A. If E ∈ resGr(F ) then there exists a
resolution β with {(b, a) | a ∈ E, b 6∈ E, {(a, b), (b, a)} ⊆ R} ⊆ β such that E ∈ com(A,R \
β).

Proof. AsE ∈ resGr(F ) we have that there exists a resolution β′ such thatE ∈ grd(A,R\β′).
Now let us define β as {(b, a) | a ∈ E, {(a, b), (b, a)} ⊆ R} ∪ (β′ ∩ (A \E ×A \E)). Clearly
E is conflict-free in (A,R \ β). Next we show that (i) E⊕R\β′ = E⊕R\β and (ii) E	R\β′ ⊇ E

	
R\β .

For (i), let us first consider b ∈ E⊕R\β′ . Then there exists (a, b) ∈ R \ β′ with a ∈ E and by
construction also (a, b) ∈ R \ β and thus b ∈ E⊕R\β . Now let us consider b ∈ E⊕R\β . Then there
exists (a, b) ∈ R \ β with a ∈ E and by construction either (a, b) ∈ R \ β′ or (b, a) ∈ R \ β′.
In the first case clearly b ∈ E⊕R\β′ . In the latter case b attacks E and as E is admissible in
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(A,R \ β′) there exists c ∈ E such that (c, b) ∈ R \ β′, hence b ∈ E⊕R\β′ . For (ii) consider
b ∈ E	R\β , i.e. exists a ∈ E such that (b, a) ∈ R \ β. By the construction of β we have that
(a, b) 6∈ R and therefore (b, a) ∈ R \ β′. Hence also b ∈ E	R\β′ .

AsE ∈ adm(A,R\β′) we have thatE	R\β′ ⊆ E
⊕
R\β′ and by the above observations then also

E	R\β ⊆ E
⊕
R\β . Thus E is an admissible set. Finally let us consider an argument a ∈ A \E⊕R\β .

In the construction of β the incident attacks of a are not effected and hence {a}	R\β′ = {a}	R\β .
That is E defends a in (A,R \ β) iff E defends a in (A,R \ β′). Now as E ∈ com(A,R \ β′)
we have that a is not defended and hence E ∈ com(A,R \ β).

Now, using Lemma 9 we can give a first alternative characterisation for resolution-based
grounded semantics.

Lemma 10. Given AF F = (A,R) and E ⊆ A. We have that E ∈ resGr(F ) iff the following
conditions hold

1. there exists a resolution β with {(b, a) | a ∈ E, {(a, b), (b, a)} ⊆ R} ⊆ β and E ∈
com(A,R \ β)

2. E is ⊆-minimal w.r.t. (1).

Proof. Let us first recall that by definition the grounded extension is the ⊆-minimal complete
extension and hence resGr = com∗.
⇒: Assume that E ∈ resGr(F ), then by Lemma 9 E fulfills condition (1). Further we have

that each set E satisfying (1) is a complete extensions of a resolved AF. As by definition E is
⊆-minimal in the set of all complete extensions of all resolved AFs it is also minimal for those
satisfying (1).
⇐: As E satisfies (1) it is a complete extensions of a resolved AF. Now towards a con-

tradiction let us assume it is not a resolution-based grounded extension. Then there exists
G ∈ resGr(F ) with G ⊂ E. But by Lemma 9 G fulfills condition (1) and thus G ⊂ E
contradicts (2).

In the next step we look for an easier characterisation of condition (1) from Lemma 10.

Lemma 11. For an AF F = (A,R) and E ⊆ A the following statements are equivalent

1. There exists a resolution β with {(b, a) | a ∈ E, {(a, b), (b, a)} ⊆ R} ⊆ β and E ∈
com(A,R \ β)

2. E ∈ com(A,R \ {(b, a) | a ∈ E, {(a, b), (b, a)} ⊆ R}) and resGr(A \ E+
R , R ∩ ((A \

E+
R )× (A \ E+

R ))) = {∅}.

Proof. In the following we will make use of the following shorthands, R∗ = R \ {(b, a) | a ∈
E, {(a, b), (b, a)} ⊆ R} and (A′, R′) = (A \ E+

R , R ∩ ((A \ E+
R )× (A \ E+

R ))).
(1)⇒ (2): Consider a resolution β such that E ∈ com(A,R \ β). We first show that then

also E ∈ com(A,R∗). By construction we have that for arbitrary b ∈ A that (a) E �R b
iff E �R\β b iff E �R∗ b, and (b) b �R\β E iff b �R∗ E. Hence we have that (i)
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E ∈ adm(A,R \ β) iff E ∈ adm(A,R∗) and (ii) E+
R = E+

R\β = E+
R∗ . By definition of

complete semantics, E ∈ com(A,R \ β) is equivalent to for each argument b ∈ A \ E there
exists an argument c ∈ A such that c�R\β b and E 6�R\β c. As R∗ ⊇ R \ β we obtain that
(c, b) ∈ R \ β implies (c, b) ∈ R∗. Using (a) we obtain that E ∈ com(A,R \ β) implies for
each argument b ∈ A \ E there exists an argument c ∈ A such that (c, b) ∈ R∗ and E 6�R∗ c,
i.e. E ∈ com(A,R∗).

Now addressing resGr(A′, R′) = {∅} we again use the assumption E ∈ com(A,R \ β),
i.e. each argument which is defended by E is already contained in E, we have that grd(A \
E+
R\β, R \ β ∩ ((A \ E+

R )× (A \ E+
R ))) = grd(A′, R′ \ β) = {∅}. Note that β′ = β ∩ R′ is a

resolution of (A′, R′) and that grd(A′, R′ \ β) = grd(A′, R′ \ β′) = {∅}. We can conclude that
resGr(A′, R′) = {∅}.

(1) ⇐ (2): Let β′ be a resolution such that grd(A′, R′ \ β′) = {∅}; such a β′ exists since
resGr(A′, R′) = {∅}. Now consider the resolution β = {(b, a) | a ∈ E, {(a, b), (b, a)} ⊆
R}∪β′. Again, by construction of β we have that for arbitrary b ∈ A: (a)E �R b iffE �R\β b
iff E �R∗ b, and (b) b �R\β E iff b �R∗ E. Hence we obtain that E ∈ adm(A,R \ β).
Using R = E+

R\β = E+
R∗ we have grd(A \ E+

R\β, (R \ β) ∩ ((A \ E+
R ) × (A \ E+

R ))) =

grd(A′, R′ \ β′) = {∅}. Thus, E ∈ com(A,R \ β).

Next we make use of a result by Baroni et al. [12].

Proposition 22. [12] For an AF F = (A,R), resGr(F ) = {∅} iff for each minimal SCC S of
F one of the following conditions holds:

• S contains a self-attacking argument

• S contains a non-symmetric attack

• S contains an undirected cycle

Based on the above observations we obtain the following characterisation of resolution-
based grounded semantics

Theorem 33. Given AF F = (A,R). The resolution-based grounded extensions are the ⊆-
minimal sets E ⊆ A such that:

• E ∈ com(A,R′) with R′ = R \ {(b, a) | a ∈ E, {(a, b), (b, a)} ⊆ R})

• Each minimal SCC S of F̂ = (A\E+
R , R∩A\E

+
R×A\E

+
R ) satisfies one of the following

conditions:

– S contains a self-attacking argument

– S contains a non-symmetric attack

– S contains an undirected cycle

Proof. Immediate by Lemma 9, Lemma 10 and Proposition 22.
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In the following we encode the characterisation of resolution based grounded semantics
obtained by Theorem 33 as MSO1 formula. We start with encoding the relation R′.

R′E(x, y) = (x, y) ∈ R ∧ ¬(x ∈ E ∧ y 6∈ E ∧ (x, y) ∈ R ∧ (y, x) ∈ R)

Now the AF F̂ = (Â, R̂) is given by the following encodings.

ÂA,R,E(x) = x ∈ A ∧ x 6∈ E ∧ @y ∈ E : R′E(y, x)

R̂E,R(x, y) = (x, y) ∈ R ∧A∗A,R,E(x) ∧A∗A,R,E(y)

To characterise reachability in a digraphs we borrow the following MSO1 encoding from
[34], encoding that there is path from x to y in R

reachableR(x, y) = ∀X(x ∈ X ∧ [∀u, v(u ∈ X ∧R(u, v)→ v ∈ X)]→ y ∈ X)

Based on reachability we can easily specify a relation SCR(x, y) encoding whether the ar-
guments x, y are strongly connected or not and a predicate minSCCA,R(x) that captures all
arguments x in minimal SCCs.

SCR(x, y) = reachableR(x, y) ∧ reachableR(y, x)

minSCCA,R(x) = A(x) ∧ ¬∃y (A(y) ∧ reachableR(y, x) ∧ ¬reachableR(x, y))

It remains to encode the check for each minimal SCC, which we implement by a check for each
argument in a minimal SCC.

C1R(x) = ∃y(SCR(x, y) ∧ (y, y) ∈ R)

C2R(x) = ∃y, z(SCR(x, y) ∧ SCR(x, z) ∧ (y, z) ∈ R ∧ (z, y) 6∈ R)

C3R(x) = ∃X(∃y ∈ X ∧ ∀y ∈ X[SCR(x, y)∧
∃u, v ∈ X : u 6= v ∧ (u, y) ∈ R ∧ (y, v) ∈ R])

CR(x) = C1R(x) ∨ C2R(x) ∨ C3R(x)

Finally using Theorem 33 we obtain an MSO1 encoding for resolution-based grounded seman-
tics:

candA,R(X) = comA,R′X
(X) ∧ ∀x(minSCC ÂA,R,E ,R̂E,R

(x)→ CR̂E,R(x))

resGrA,R(X) = candA,R(X) ∧ @Y (candA,R(Y ) ∧ Y ⊂ X)

4.2.2 Fixed-Parameter Tractability Results

Given the MSO1 characterisations for all semantics under our considerations we are now pre-
pared to state our fixed parameter tractability results. Given the meta-theorems from Sec-
tion 2.3.4 we have that graph problems expressed in MSO1 are fixed-parameter tractable w.r.t.
the parameters tree-width and clique-width and graph problems expressed in MSO2 are fixed-
parameter tractable w.r.t. the tree-width. In the following we exploit these meta-theorems. To
this end, let σ, σ′ denote one of our semantics cf , naive , grd , adm , com , stb, resGr prf , sem ,
stg and resGr .

We first address the three reasoning problems and start with credulous acceptance.
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Proposition 23. Let σ be one of the above mentioned semantics.

• Credσ is fixed-parameter tractable w.r.t. the tree-width of F .

• Credσ is fixed-parameter tractable w.r.t. the clique-width of F .

Proof. We use the following MSO encoding of credulous acceptance

ϕσCred (x) = ∃X (x ∈ X ∧ σR(X))

which is MSO1 if σR(X) is in MSO1. By the Theorems 8 and 9 we have that given an AF
F = (A,R) and an argument a ∈ A one can decide whether F |= ϕσCred (a) is fixed-parameter
tractable w.r.t. tree-width (resp. clique-width).

Notice that the above theorem can be easily extended to the problem of deciding whether a
set of arguments is simultaneously credulously accepted adapting the MSO formula as follows
ϕσCred (X) = ∃Y (X ⊆ Y ∧ σR(Y )). Next we consider skeptical acceptance.

Proposition 24. Let σ be one of the above mentioned semantics.

• Skeptσ is fixed-parameter tractable w.r.t. the tree-width of F .

• Skeptσ is fixed-parameter tractable w.r.t. the clique-width of F .

Proof. We use the following MSO encoding of skeptical acceptance

ϕσSkept (x) = ∀X (σR(X)→ x ∈ X)

which is MSO1 if σR(X) is in MSO1. By the Theorems 8 and 9 we have that given an AF
F = (A,R) and an argument a ∈ A one can decide whether F |= ϕσSkept (a) is fixed-parameter
tractable w.r.t. tree-width (resp. clique-width).

Finally we consider ideal acceptance.

Proposition 25. Let σ be one of the above mentioned semantics.

• Idealσ is fixed-parameter tractable w.r.t. the tree-width of F .

• Idealσ is fixed-parameter tractable w.r.t. the clique-width of F .

Proof. We use the following MSO encoding of ideal acceptance

ϕσIdeal (x) = ∃X(idealextσR(X) ∧ x ∈ X)

which is MSO1 if σR(X) is in MSO1. By the Theorems 8 and 9 we have that given an AF
F = (A,R) and an argument a ∈ A one can decide whether F |= ϕσIdeal (a) is fixed-parameter
tractable w.r.t. tree-width (resp. clique-width).

We continue with the remaining decision problems.
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Proposition 26. Let σ be one of the above mentioned semantics.

• Verσ is fixed-parameter tractable w.r.t. the tree-width of F .

• Verσ is fixed-parameter tractable w.r.t. the clique-width of F .

Proof. We use the following MSO encoding of the verification problem

ϕσVer (X) = σR(X)

which is MSO1 if σR(X) is in MSO1. By the Theorems 8 and 9 we have that given an AF
F = (A,R) and a set of arguments S ∈ A one can decide whether F |= ϕσVer (S) is fixed-
parameter tractable w.r.t. tree-width (resp. clique-width).

Next we have that the problem Existsσ is trivial for all semantics except stable. Hence the
next theorem is only stated for stable semantics.

Proposition 27. For stable semantics we have that

• Existsstb is fixed-parameter tractable w.r.t. the tree-width of F , and

• Existsstb is fixed-parameter tractable w.r.t. the clique-width of F .

Proof. We use the following MSO encoding of Existsσ

ϕσExists = ∃XσR(X)

which is MSO1 if σR(X) is in MSO1. By the Theorems 8 and 9 we have that given an AF
F = (A,R) one can decide whether F |= ϕstb

Exists is fixed-parameter tractable w.r.t. tree-width
(resp. clique-width).

Proposition 28. Let σ be one of the above mentioned semantics.

• Exists¬∅σ is fixed-parameter tractable w.r.t. the tree-width of F .

• Exists¬∅σ is fixed-parameter tractable w.r.t. the clique-width of F .

Proof. We use the following MSO encoding of Existsσ

ϕσ
Exists¬∅

= ∃X∃x(σR(X) ∧ x ∈ X)

which is MSO1 if σR(X) is in MSO1. By the Theorems 8 and 9 we have that given an AF
F = (A,R) one can decide whether F |= ϕσ

Exists¬∅
is fixed-parameter tractable w.r.t. tree-width

(resp. clique-width).

Finally we present an result illustrating that MSO is not only suitable for expressing reason-
ing problems with one semantics but also for comparing different semantics or reasoning with
different semantics in parallel.
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Proposition 29. Given an AF F = (A,R) and two semantics σ, σ′ ∈ {cf ,naive, grd , adm,
com, stb, prf , sem, stg , resGr}.

• Deciding whether σ(F )=σ′(F ) is fixed-parameter tractable w.r.t. the tree-width of F .

• Deciding whether σ(F )=σ′(F ) is fixed-parameter tractable w.r.t. the clique-width of F .

Proof. We use the following MSO encoding

∀X(σR(X)↔ σ′R(X))

which is MSO1 if both σR(X) and σ′R(X) are in MSO1.

The above proposition generalises Dunne’s observation that it can be efficiently decided
whether an AF of bounded tree-width is coherent [44] (which is in general ΠP

2 -complete [48]).
Clearly the results in this section can be generalised to all MSO2 definable semantics when

concerning tree-width and all MSO1 definable semantics when concerning clique-width. In this
work we restrict ourselves to decision problems, however as mentioned in section 2.3.4 the meta-
theorems can be extended for enumerating models or counting models. Thus one can use MSO
-characterisations also to obtain fixed parameter tractability results for enumerating or counting
extensions 4.

As one can see, the presented meta-theorems are a powerful and elegant tool to classify ar-
gumentation problems to be fixed-parameter tractable. But when turning to algorithmic issues
these theorems do not help, with the words of Niedermeier [93], MSO “is a very elegant and
powerful tool for quickly deciding about fixed-parameter tractability, but it is far from any ef-
ficient implementations”5. Thus after classifying such problems to be fixed-parameter tractable
the natural next step is to go for efficient algorithms, using for instance dynamic-programming
techniques. For abstract argumentation prototypical dynamic programming algorithms for ad-
missible and preferred semantics have been presented for AFs of bounded tree-width [57] and
AFs of bounded clique-width [58], the former are implemented in the dynPARTIX system [60].

4.3 Fixed-Parameter Intractability

In this section we provide negative results for certain parametrisations of argumentation frame-
works. In Section 4.2 we have shown that the graph parameter tree-width applies well to our
reasoning problems. However tree-width does not take the direction of the attacks into account.
As argumentation frameworks are directed graphs it seems promising to consider directed graph
measures to get larger classes of tractable AFs than those captured by bounded tree-width. We
have already seen the that the directed notion of clique-width applies well to argumentation.
However the definition of clique-width is in a quite different manner that that of tree-width. The
first one builds on algebraic expressions while the latter one uses structural decompositions of
the graph. Hence one might be interest whether one can use dedicated decompositions for di-
rected graphs to get further tractability results. As this is a frequent problem when dealing with

4The general complexity of counting extensions in abstract argumentation has been studied in [9].
5However, recently first competitive MSO model checking tools were announced [85, 88].
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directed graphs there are several approaches generalising tree-width to directed graphs. Unfor-
tunately, it turns out that the problems under our considerations remain hard when bounding
typical directed graph measures. We illustrate this fact by first using cycle rank [63] as a param-
eter, and then we apply the meta-theorems from Section 2.3.4 to generalise these results to the
other parameters.

In the following we show that for all semantics under our considerations the computational
hard reasoning tasks maintain their full complexity when restricted to AFs with cycle-rank (see
Definition 74) bounded by either 1 or 2. We start with semi-stable and stage semantics where
cycle-rank 1 suffices for full hardness.

Theorem 34. When restricted to AFs which have a cycle-rank of 1 the problems

1. Cred sem ,Cred stg remain ΣP
2 -hard,

2. Skeptsem , Skeptstg remain ΠP
2 -hard,

3. Ideal sem , Ideal stg remain ΠP
2 -hard.

Proof. For (1) and (2) consider Reduction 1 in Section 3.3, it is easy to see that every frame-
work of the form FΦ has cycle-rank 1 and therefore we have an reduction from QBF formulas
to an AF with cycle-rank 1. In fact, the strongly connected components of FΦ are the follow-
ing: {yi, ȳi}, {zi, z̄i}, {ϕ, ϕ̄}, {y′i}, {ȳ′i}, {ci}, {b}. As each of these components can be made
acyclic by removing one vertex, the cycle-rank of FΦ is thus 1.

For (3) consider the modification of FΦ in the proof of Theorem 23, i.e. adding a new argu-
ment y mutual attacking ϕ̄. As the new SCC {ϕ, ϕ̄, y} can be made acyclic by removing ϕ̄ the
modification still has cycle-rank 1 and the same argument as above applies.

For preferred semantics we have that for AFs of cycle-rank 1 skeptical reasoning actually
falls down to the first level of the polynomial hierarchy (see Proposition 21). However cycle-rank
2 suffices to obtain the full complexity.

Theorem 35. The problem Skeptprf remains ΠP
2 -hard, even when restricted to AFs which have

a cycle-rank of 2.

Proof. Consider the following reduction from [48] mapping the ΠP
2 -hard problem of deciding

whether a given QBF Φ = ∀Y ∃Zϕ(Y,Z) is valid, where ϕ =
∧
c∈C c and X = Y ∪ Z, to

Skeptprf . Given Φ one constructs the AF FΦ = (AΦ, RΦ) as follows (Figure 4.5 illustrates the
construction):

AΦ = {ϕ, b} ∪ C ∪X ∪ X̄
RΦ = {(c, ϕ) | c ∈ C} ∪ {(x, x̄), (x̄, x) | x ∈ X} ∪

{(x, c) | x occurs in c} ∪ {(x̄, c) | ¬x occurs in c} ∪
{(ϕ, b), (b, b)} ∪ {(b, z), (b, z̄) | z ∈ Z}

We have that each model Φ is valid iff ϕ is skeptically accepted in FΦ [48]. Moreover, we have
that FΦ has cycle-rank 2. Deleting argument b from FΦ would result in an AF with the following
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ϕ

c1 c2 c3

y1 ȳ1 y2 ȳ2 z3 z̄3 z4 z̄4

b

Figure 4.5: FΦ for the QBF Φ = ∀y1y2∃z3z4(y1 ∨ y2 ∨ z3) ∧ (y2 ∨ z̄3 ∨ z̄4) ∧ (y2 ∨ z3 ∨ z4).

SCCs {yi, ȳi}, {zi, z̄i}, {ci}, {ϕ}. As these SCCs can be clearly made acyclic by deleting one
argument we have that FΦ has cycle-rank ≤ 2

For hardness results on the first level of the polynomial hierarchy cycle-rank 1 is sufficient.

Theorem 36. When restricted to AFs which have a cycle-rank of 1 the problem

• Credprf remains NP-hard,

• Skeptprf remains coNP-hard,

• Idealprf remains coNP-hard.

Proof. Consider the AF F 1
ϕ from the proof of Theorem 26. We have that the argument ϕ̄ is

skeptically / ideal accepted in F 1
ϕ iff the formula ϕ is unsatisfiable [41, 46]. The SCCs of F 1

ϕ are
{xi, x̄i}, {ci}, {ϕ, ϕ̄} and hence F 1

ϕ has cycle-rank 1.

We continue with stable semantics.

Theorem 37. When restricted to AFs which have a cycle-rank of 1 the problem

1. Cred stb remains NP-hard,

2. Skeptstb remains coNP-hard,

3. Ideal stb remains DP -hard.

Proof. For (1) and (2) again consider the AF F 1
ϕ from the proof of Theorem 26. We mention that

F 1
ϕ has no odd length cycle and therefore is a coherent AF [42]. Thus the results from [41, 46]

carry over and we have that (i) the argument ϕ̄ is skeptically accepted w.r.t. stb in F 1
ϕ iff the

formula ϕ is unsatisfiable and (ii) the argument ϕ is credulously accepted w.r.t. stb in F 1
ϕ iff the

formula ϕ is satisfiable. As F 1
ϕ has cycle-rank 1 the statements (1) and (2) follow.
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For (3) consider the AF F = F 1
ψ∪̇F 2

ϕ from the proof of Theorem 26 showing DP -hardness
for Ideal stb . It remains to show that F has cycle-rank 1. As, by definition the AFs F 1

ψ and F 2
ϕ

are disjoint parts of F the cycle-rank of F is simple the maximum of the cycle-ranks of F 1
ψ and

F 2
ϕ. We already obtained that the cycle rank of F 1

ψ is 1. Thus let us consider F 2
ϕ. The SCCs of

F 2
ϕ are {xi, x̄i}, {ci} and each of them can be made acyclic by deleting one argument, thus F 2

ϕ

has cycle rank 1. Hence, F = F 1
ψ∪̇F 2

ϕ has cycle rank 1.

We complete our analysis of the parameter cycle-rank with resolution-based grounded se-
mantics.

Theorem 38. When restricted to AFs which have a cycle-rank of 1 the problem

1. Cred resGr remains NP-hard,

2. SkeptresGr remains coNP-hard,

3. Ideal resGr remains coNP-hard.

Proof. Recall the AF Gϕ from the proof of Theorem 24. By Theorem 24 and a result from [12]
we have that a formula ϕ is satisfiable iff the argument ϕ is credulously accepted in Gϕ iff the
argument ϕ̄ is not skeptically accepted in Gϕ iff the argument ϕ̄ is not ideal accepted in Gϕ.
Moreover the SCCs of Gϕ are {xi, x̄i}, {ci}, {ϕ, ϕ̄} and hence Gϕ has cycle-rank 1.

By Theorem 10 we have that if a problem remains hard for AFs of bounded cycle-rank it
is also hard when bounding one of the other directed graph measures, i.e. directed path-width,
Kelly-width, DAG-width and directed tree-width. Thus, by the above hardness results for AFs
of bounded cycle-rank, we have that none of these graph parameters is applicable for efficient
reasoning in abstract argumentation.

Theorem 39. For all semantics σ under our considerations. The problems Credσ, Skeptσ,
Idealσ maintain there full complexity even when restricted to AFs of bounded cycle-rank, di-
rected path-width, Kelly-width, DAG-width or directed tree-width.

4.4 Summary

Let us first briefly resume the results of this chapter, before discussing the overall picture of
tractability in abstract argumentation. In this chapter we

• complemented studies on the tractable fragments of acyclic, even-length cycle free, bi-
partite and symmetric AFs. That is we extend them to all of our semantics and classified
tractable problems w.r.t. P-completeness.

• extended fixed parameter tractability results for the parameter tree-width.

• presented new fixed parameter tractability results for the graph parameter clique-width.
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• showed that several generalisations of tree-width to directed graphs are not applicable to
obtain fixed parameter tractability results for reasoning tasks in argumentation.

So for abstract argumentation we have four (known) tractable fragments, namely acyclic
AFs, even-length cycle free AFs, bipartite AFs and symmetric AFs. While reasoning on acyclic
AFs is tractable for each of our semantics the other fragments have some restrictions. So for
even-length cycle free AFs we have that reasoning with stage semantics maintains its full com-
plexity. For bipartite AFs credulous reasoning with resolution based grounded semantics is
NP-hard. Finally in the case of symmetric AFs we have that all semantics are tractable if the AF
is irreflexive, but stable, semi-stable and stage are hard if the AF is not irreflexive.

Concerning fixed parameter tractability we have that reasoning in AFs is fixed parameter
tractable w.r.t. tree-width and clique-width. Further we know that the cycle-rank, directed path-
width, Kelly-width, DAG-width and directed tree-width do not lead to tractability.

Ordyniak and Szeider [95] follow a different approach for parametrising AFs. They consider
the distance of the AF to a specific tractable fragments, in terms of arguments that have to be
deleted such that the AF falls in such a fragment. They show that reasoning problems are fixed-
parameter tractable when considering the distance to the class of acyclic AFs or the class of
even-length cycle free AFs6. Moreover the showed that small distance to symmetric or bipartite
AFs does not lead to tractability.

Several negative results for possible parametrisations are given in [44], showing that consid-
ering k-partite AFs and parametrising the in- and out- degree do not lead tractability. Moreover
even the combination of these parameters still yields the full complexity. However, this results
are just stated for preferred semantics 7.

Finally we identify one technical issue we had to leave open in this section. We have that
deciding credulous acceptance w.r.t. resolution-based grounded semantics in a symmetric AF is
certainly in P but we do not know whether it is complete for P.

6Notice that this does not hold for stage semantics (cf. Theorem 30) and that resGr was not studied in [95].
7Nevertheless, the author has no doubt that the results in [44] can be extended to the other (admissible-based)

argumentation semantics.
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CHAPTER 5
Intertranslatability of Argumentation

Semantics

We already have used translations between different argumentation semantics in the previous
chapters to obtain complexity results (cf. Propositions 17 & 18). In this chapter we complement
this picture by formalising the concept of a translation, adding further translations and showing
some impossibility results. Informally a translation from a semantics σ to a semantics σ′ is
a function Tr such that the σ-extensions of each AF F are in certain correspondence to the
σ′-extensions of the associated AF Tr (F ).

These translations are not only of theoretical interest but are also of practical value consid-
ering the reduction-approach for implementing argumentation systems. This is in the spirit of
well-known work on intertranslatability of other non-monotonic formalism (see, e.g., [38, 39,
74, 79, 86, 90]). For example consider the case where we have an advanced argumentation en-
gine for a semantics σ′, but for some reason we want to evaluate AFs with another semantics σ.
Then instead of implementing a new system from scratch, it might be a good idea to transform
the AFs such that one can use the advanced system but can still easily obtain the extensions for
semantics σ. If the required transformations are efficiently computable, this is more appealing
than implementing a distinguished algorithm for the σ-semantics from scratch. We illustrate
this idea in Figure 5.1. The concept of a filter is required in case the transformation introduces
further arguments (which thus might appear in the σ′-extensions of the transformed AF) in the
course of the translation making a filtering of these new arguments necessary to obtain the de-
sired original extensions. However, when possible we will prefer translations for which such a
back-translation is not necessary. Finally let us mention that the value of translations between
argumentation semantics is not limited to computational issues but also has relevance in meta-
argumentation or multi-agent argumentation scenarios. For a broader discussion the interested
reader is referred to [56]. Finally let us mention that we omit parameterised semantics and
this chapter and hence restrict ourselves to grounded, admissible, complete, stable, preferred,
semi-stable and stage semantics.
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Translation
for σ ⇒ σ′

Solver for
σ′

Filter
Input AF F Tr (F ) σ′(Tr (F )) σ(F )

Figure 5.1: Solver for semantics σ.

The organisation of this chapter and its main contributions are as follows:

• Section 5.1 defines properties for translations basically along the lines of Janhunen [79].
In particular, we consider here as desired properties efficiency (the translation can be
computed in logarithmic space w.r.t. the given AF), modularity (the translation can be
done independently for certain parts of the framework) and faithfulness (there should be
a clear correspondence between the extensions of the translated AF and the original AF).
However, we also consider some additional features which are needed to deal with some
of the argumentation semantics (for instance, the admissible semantics always yields the
empty set as one solution; thus filtering such an entire solution is necessary).

• Section 5.2 contains our main results in this chapter, in particular we provide translations
between grounded, stable, admissible, complete, preferred, semi-stable and stage stage
when possible. We analyze these translations w.r.t. the properties mentioned above using
as minimal desiderata efficiency and (a particular form of) faithfulness.

• As already mentioned, Section 5.3 then provides negative results, i.e. we show that certain
translations between semantics are not possible. Some of these impossibility results make
use of typical complexity-theoretic assumptions together with results from Chapter 3;
others are genuine due to the different properties of the compared semantics.

• Finally, in Section 5.4 we conclude this chapter with a summary and discussion of the
presented results. As well, an outlook to potential future work is given there.

This chapter is based on [56] (a short version was published in [55]).

5.1 Properties for Translations

In what follows, we understand as a translation Tr a function which maps AFs to AFs. In
particular, we seek translations, such that for given semantics σ, σ′, the extensions σ(F ) are in
a certain relation to extensions σ′(Tr (F )) for each AF F . To start with, we introduce a few
additional properties which seem desirable for such translations. To this end, we recall that, for
AFs F = (A,R), F ′ = (A′, R′), the union F ∪F ′ is defined as (A∪A′, R∪R′), and inclusion
F ⊆ F ′ holds iff jointly A ⊆ A′ and R ⊆ R′ (see Definition 60).

Definition 77. A translation Tr is called

• efficient if for every AF F , the AF Tr (F ) can be computed using logarithmic space w.r.t.
to |F |;
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• covering if for every AF F , F ⊆ Tr (F );

• embedding if for every AF F , AF ⊆ ATr (F ) and RF = RTr (F ) ∩ (AF ×AF );

• monotone if for any AFs F, F ′, F ⊆ F ′ implies Tr (F ) ⊆ Tr (F ′);

• modular if for any AFs F, F ′, Tr (F ) ∪ Tr (F ′) = Tr (F ∪ F ′).

As we mentioned we want to use translations as part of a reasoner (cf. Figure 5.1) hence it
should be efficiently computable. Moreover if the translation already provides the complexity
of the reasoning problems of a semantics we can use it to directly solve the problem. Thus the
computational cost of a translation should be less than the computational cost of any semantics
under our focus, i.e. less than P. Thus using the class of logarithmic space computable functions
is appropriate for our purposes. This also allows us to compare semantics w.r.t. their expressive-
ness. In addition, one could seek translations which are minimal w.r.t. certain parameters (for
instance, number of additional arguments and attacks). However, we decided not to design our
translations towards such aims, since this would partly hide the main intuitions underlying the
translations.

While the property of efficiency is clearly motivated by our computational issues, let us
spend a few words on the other properties. Covering holding ensures that the translation does
not hide some original arguments or conflicts. Being embedding, in addition, ensures that no
additional attacks between the original arguments are pretended. While efficiency is motivated
by the reduction approach and comparing expressiveness the properties of covering and embed-
ding can be motivated by the meta-argumentation scenario. Translations which are covering
or embedding preserve the arguments and conflicts we (meta)-argue about, an assumption one
usually has in mind in the context of meta-argumentation. To put it in other words, having an
embedding translation, the original framework and the meta-level part are clearly separated in
the translated framework.

Monotonicity and modularity are crucial when extending the source AF after translation.
Let us first consider monotonicity. In multi-agent scenarios it may be impossible for one agent
to withdraw already interchanged arguments and attacks, as the other agents may not agree to
forget arguments and conflicts they already know about; hence, re-translating the augmented
source AF should respect the already existing translation. Now let us consider modularity and
adding only a few arguments/attacks to a huge AF. When updating the translation it suffices to
only consider the new arguments/attacks, instead of the whole source AF, which indeed can be of
computational value. In the field of meta-argumentation, modular translations are in particular
interesting as they are compatible with merging AFs. Thus one can interchange merge- and
translation-operations, i.e. it does not make a difference if one first merges two AFs and then
translates the union or first translates both AFs and then merges the translations. Moreover, as it
can be easily checked each modular transformation is also monotone.

Next, we give two properties which refer to semantics. We note that our concept of faith-
fulness follows the definition used by Janhunen [79]; while exactness is in the spirit of bijective
faithfulness w.r.t. equivalence as used by Liberatore [89].
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Definition 78. For semantics σ, σ′ we call a translation Tr

• exact for σ ⇒ σ′ if for every AF F , σ(F ) = σ′(Tr (F ));

• faithful for σ ⇒ σ′ if for every AF F , σ(F ) = {E ∩ AF | E ∈ σ′(Tr (F ))} and
|σ(F )| = |σ′(Tr (F ))|.

However, due to the very nature of the different semantics we want to consider, we need
some less restricted notions. For instance, if we consider a translation from stable to some other
semantics, we have to face the fact that some AFs do not possess a stable extension, while other
semantics always yield at least one extension. The following definition takes care of this issue.

Definition 79. For semantics σ, σ′, we call a translation Tr

• weakly exact for σ ⇒ σ′ if there exists a collection S of sets of arguments, such that for
any AF F , σ(F ) = σ′(Tr (F )) \ S;

• weakly faithful for σ ⇒ σ′ if there exists a collection S of sets of arguments, such that for
any AF F , σ(F ) = {E ∩AF | E ∈ σ′(Tr (F )) \ S} and |σ(F )| = |σ′(Tr (F )) \ S|.

We sometimes refer to the elements from S as remainder sets. Note that S depends only on
the translation, but not on the input AF. Thus, by definition, each S ∈ S only contains arguments
which never occur in AFs subject to translation. In other words, we reserve certain arguments
for introduction in weak translations.

Finally, we mention that the properties from Definition 77 as well as being exact, weakly
exact and faithful are transitive, i.e. for two transformations satisfying one of these properties,
also the concatenation satisfies the respective property. However, transitivity is not guaranteed
for being weakly faithful.

5.2 Translations

In this section, we provide numerous faithful translations between the semantics introduced in
Definition 4. As minimal desiderata, we want the translations to be efficient, monotone, and
covering (see Definition 77). Thus, in this section when speaking about translations we tacitly
assume that they satisfy at least these three properties.

5.2.1 Exact Translations

We start with a rather simple such translation, which we will show to be exact for prf ⇒ sem
and adm ⇒ com .

Translation 1. The translation Tr1 is defined as Tr1(F ) = (A∗, R∗), where

A∗ = AF ∪A′F
R∗ = RF ∪ {(a, a′), (a′, a), (a′, a′) | a∈AF },

with A′F = {a′ | a∈AF }.
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a b c d e

a′ b′ c′ d′ e′

Figure 5.2: Tr1(F ) for the AF F from Example 1.

A few words about the intuition behind the above translation (for illustration see Figure 5.2
which depicts the translation of our example AF from Example 1): the new arguments a′ ∈
A′F are all self-attacking and thus never appear in any extension of the resulting framework.
However, each a′ attacks the original argument a (and a attacks a′), thus an argument a is only
defended by a setE in Tr1(F ) if a ∈ E. Consequently, we have that in Tr1(F ) each admissible
set is also a complete one.

Lemma 12. For an AF F and a set E of arguments, the following propositions are equivalent:

1. E ∈ adm(F )

2. E ∈ adm(Tr1(F ))

3. E ∈ com(Tr1(F ))

Proof. As all arguments in A′F are self-conflicting, every conflict-free set E of Tr1(F ) satisfies
E ⊆ AF . Further, since Tr1 is embedding, E is conflict-free in F iff E is conflict-free in
Tr1(F ). Moreover, since Tr1 only adds symmetric attacks against arguments a ∈ AF , we have
that E defends its arguments in F iff E defends its arguments in Tr1(F ). Thus, adm(F ) =
adm(Tr1(F )) and (1)⇔(2) follows. For (2)⇒(3), let a ∈ A be an arbitrary argument and
E ⊆ A. In Tr1(F ) the argument a is attacked by a′ and a is the only attacker (except a′ itself)
of a′. Hence, for each a ∈ A, E defends a only if a ∈ E and thus every admissible set of
Tr1(F ) is also a complete one. Finally, (2)⇐(3) holds since com(F ) ⊆ adm(F ) is true for any
AF F .

Concerning Tr1 we observe another side effect. As already mentioned a ∈ A is the only
argument attacking a′. Thus different preferred extensions of Tr1(F ) have incomparable range
(recall Definition 12), and therefore each preferred extension of Tr1(F ) is also a semi-stable
extension of Tr1(F ).

Lemma 13. For an AF F and a set E of arguments, the following propositions are equivalent:

1. E ∈ prf (F )
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a b c d e

a′ b′ c′ d′ e′

Figure 5.3: Tr2(F ) for the AF F from Example 1.

2. E ∈ prf (Tr1(F ))

3. E ∈ sem(Tr1(F ))

Proof. For (1)⇔(2), it is sufficient to show that E ∈ adm(F ) iff E ∈ adm(Tr1(F )) holds for
each E. This is captured by Lemma 12. For (2)⇒(3), let D,E ∈ prf (Tr1(F )) and, towards a
contradiction, assume that D+

R∗ ⊂ E
+
R∗ , i.e. D /∈ sem(Tr1(F )). As both D and E are preferred

extensions, we have D 6⊆ E. Thus, there exists an argument a ∈ D \ E. By construction of
Tr1(F ), we get a′ ∈ D+

R∗ but a′ /∈ E+
R∗ , a contradiction to D+

R∗ ⊂ E+
R∗ . (2)⇐(3) follows from

the fact sem(F ) ⊆ prf (F ) for any AF F .

Obviously Tr1 is an embedding translation and as the introduction of a new argument or
attack in Tr1 only depends on one original argument it is also modular. Together with the
results from Lemma 12 and 13 we thus get our first main result.

Theorem 40. Tr1 is a modular, embedding, and exact translation for prf ⇒ sem and adm ⇒
com .

Next we will restate the translation already used in the proof of Proposition 17, but now
using it for a different purpose, namely translating stage to semi-stable semantics. In addition to
Tr1, we make all attacks symmetric (thus Tr2 will not be embedding) and add for each original
attack (a, b) also an attack (a, b′).

Translation 2. The translation Tr2 is defined as Tr2(F ) = (A∗, R∗), where

A∗ = AF ∪A′F
R∗ = RF ∪ {(b, a), (a, b′), (b′, a) | (a, b) ∈ RF }

∪ {(a, b), (b, a) | a ∈ AF , (b, b) ∈ RF }
∪ {(a, a′), (a′, a), (a′, a′) | a ∈ AF }

The symmetric attacks in Tr2(F ) mirror the fact that we do not mind the orientation of
attacks when considering conflict-freeness. In other words, we exploit the well known property
that for symmetric frameworks conflict-free and admissible sets coincide. However, making
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attacks symmetric destroys the original range of extensions. Thus we make use of arguments
a′ ∈ A′F in the sense that, for a given set E of arguments, an argument a′ is contained in
E+
R∗ iff a is contained in E+

R . Likewise, we have to add attacks into self-defeating arguments.
The technical reason for this is that we require that each original argument is attacked by each
maximal conflict-free non-empty set in Tr2(F ) (see also the proof of Proposition 17). For
illustration we refer to Figure 5.3.

By results of Gaggl and Woltran [72], we can remove attacks of an AF where the source argu-
ment is self-attacking without changing the stage extensions of the AF. So in case the number of
attacks in crucial one might omit the attacks {(b, a) | a ∈ AF , (b, b) ∈ RF }∪ {(a′, a) | a ∈ AF }
in translation Tr2.

Lemma 14. For an AF F and any setE of arguments, the following propositions are equivalent:

1. E ∈ stg(F )

2. E ∈ stg(Tr2(F ))

3. E ∈ sem(Tr2(F ))

Proof. See proof of Proposition 17.

By definition the translation Tr2 is covering, but not embedding. Moreover, as each self-
attacking argument of the original AF is attacked by all of the other original arguments Tr2 is
not modular. Together with the above lemma, we thus obtain the following result.

Theorem 41. Tr2 is an exact translation for stg ⇒ sem .

The next translations consider the stable semantics as source formalism. Recall that not all
AFs possess a stable extension, while this holds for all other semantics (also recall we excluded
empty AFs for our considerations). Thus we have to use weak translations as introduced in
Definition 79. Our first such translation is weakly exact and uses a single remainder set {t}
(recall the definition of remainder sets as given in Definition 79).

Translation 3. The translation Tr3(F ) is defined as Tr3(F ) = (A∗, R∗) where

A∗ = AF ∪ {t}
R∗ = RF ∪ {(t, a), (a, t) | a ∈ AF }

Here the intuition is rather simple, see also Figure 5.4. In fact, the new argument t in Tr3(F )
encodes that there might not exist a stable extension for F . Thus none of the (other) arguments
in Tr3(F ) is accepted, whenever t is accepted. Since the argument t guards that there exists at
least one stable extension of Tr3(F ) (for any AF F ), namely {t}, we can make use of the fact
that stable, semi-stable and stage semantics thus coincide for Tr3(F ).

Lemma 15. Let F = (A,R) be an AF and E ⊆ A. Then the following statements are equiva-
lent:

1. E ∈ stb(F )
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a b c d e

t

Figure 5.4: Tr3(F ) for the AF F from Example 1.

2. E ∈ stb(Tr3(F ))

3. E ∈ sem(Tr3(F ))

4. E ∈ stg(Tr3(F ))

Further for each E ∈ σ(Tr3(F )) with σ ∈ {stb, sem, stg} either E = {t} or t 6∈ E holds.

Proof. As the translation does not modify the original AF F , i.e. Tr3 is embedding, we have
that for each E ⊆ AF , E is conflict-free in F iff E is conflict-free in Tr3(F ).

(1)⇒(2): Each E ∈ stb(F ) by definition is non-empty, conflict-free and satisfies E+
RF

=

AF . By construction it also holds thatE �R∗ t and thusE+
R∗ = A∗, i.e.E ∈ stb(Tr3(F )). For

(1)⇐(2) consider E ∈ stb(Tr3(F )), E ⊆ AF . Then by definition we have that E is conflict-
free in Tr3(F )) and thus in F ; moreover, E+

R∗ = A∗ and as Tr3 is embedding also E+
R = AF .

Hence E ∈ stb(F ).
For (2)⇔(3)⇔(4), we mention that {t} is a stable extension of Tr3(F ) for any AF F . Fur-

thermore, we know that if there exists a stable extension for an AF, then stable, semi-stable and
stage extensions coincide.

Finally as the argument t is in conflict with all of the other arguments the only extension E
with t ∈ E is the set {t}.

Adding argument t and the corresponding attacks to the source AF is a modular operation
and as no further attacks are added Tr3 is also embedding.

Theorem 42. Tr3 is modular, embedding and weakly exact for stb⇒σ, σ∈{sem, stg}.

Proof. The result follows from Lemma 15, which states that sem(Tr3(F )) = stg(Tr3(F )) =
stb(F ) ∪ {{t}}. Thus by taking as remainder set S = {{t}}, Tr3 is weakly exact.

We continue with a different translation from stable to other semantics.

Translation 4. Tr4 is defined as Tr4(F ) = (A∗, R∗) where

A∗ = AF ∪A′F
R∗ = RF ∪ {(b′, a) | a, b ∈ AF }

∪ {(a′, a′), (a, a′) | a ∈ AF }
∪ {(a, b′) | (a, b) ∈ RF }.
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a b c d e

a′ b′ c′ d′ e′

Figure 5.5: Tr4(F ) for the AF F from Example 1.

As before in translation Tr2, new arguments a′ ∈ A′F are used to encode the range of an
extension in the sense that a′ is attacked by a set E in Tr4(F ) only if a is in the range of E in
F . However, given the fact that each a′ ∈ A′F attacks back all original arguments a ∈ A, we can
now accept an argument in a set E only if all arguments are in the range of E. For illustration
on our running example, see Figure 5.5. Observe that in our example each of the arguments
a′, b′, c′, d′, e′ attacks each of the arguments a, b, c, d, e.

Lemma 16. Let F = (A,R) be an AF and E ⊆ A with E 6= ∅. Then, the following statements
are equivalent:

1. E ∈ stb(F )

2. E ∈ stb(Tr4(F ))

3. E ∈ adm(Tr4(F ))

4. E ∈ prf (Tr4(F ))

5. E ∈ com(Tr4(F ))

6. E ∈ sem(Tr4(F ))

Further for each conflict-free set E of Tr4(F ) it holds that E ⊆ A.

Proof. First, as all arguments a′ ∈ A′ are self-attacking, for each conflict-free set E in Tr4(F )
it holds that E ⊆ A. Since the translation is embedding, any set E is conflict-free in F iff it is
conflict-free in Tr4(F ). To show (1)⇒(2), let E ∈ stb(F ). Hence, for all a ∈ A \E, E �R a.
We now claim that each argument inA∗\E is attacked byE in Tr4(F ). We distinguish between
two cases for the different arguments in A∗ \ E:

(i) a ∈ A\E: The construction of Tr4(F ) preserves all attacks inR. Thus as each a ∈ A\E
satisfies E �R a, we obtain that E �R∗ a

(ii) a′ ∈ A′: In case a ∈ E we have E �R∗ a′, since (a, a′) ∈ R∗ In case a ∈ A \ E, by the
assumption E ∈ stb(F ), there exists an argument b ∈ E such that (b, a) ∈ R. But then
by construction (b, a′) ∈ R∗ and thus E �R∗ a′.
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Together with our observations about conflict-free sets, we get E ∈ stb(Tr4(F )).
Vice versa, to show (1)⇐(2) we get, for E ∈ stb(Tr4(F )), E �R∗ a, for each a ∈ A∗ \E,

and thus, in particular, for each a ∈ A\E. By definition of Tr4, we also have E �R a for each
a ∈ A \ E. Thus E ∈ stb(F ) follows.

To show (2)⇐(3), let E be a nonempty admissible extension of Tr4(F ) and a ∈ E. By
construction, we have that a	R∗ = {b ∈ A∗ | (b, a) ∈ R∗} ⊇ A′. As E ∈ adm(Tr4(F )),
E �R∗ a′ for each a′ ∈ A′. But E � a′ only if either a ∈ E or E �R∗ a. Thus for every
a ∈ A∗ it holds that either a ∈ E or E �R∗ a; hence, E ∈ stb(Tr4(F )).

The remaining implications follow by well-known relations between the semantics, i.e.
stb(G) ⊆ sem(G) ⊆ prf (G) ⊆ com(G) ⊆ adm(G), for each AF G. Hence, in partic-
ular, since for Tr4(F ), stable extensions and non-empty admissible sets coincide, the claim
follows.

Clearly Tr4 is an embedding translation, but as for each new argument we add attacks to all
original arguments, Tr4 is not modular.

Theorem 43. Tr4 is an embedding and weakly exact translation for stb ⇒ σ with σ ∈
{adm, com, prf , sem}.

Proof. By Lemma 16, we in particular have that stb(F ) = σ(Tr4(F ))\{∅}, for any AF F . Thus
taking ∅ as a remainder set, we obtain that Tr4 is weakly exact for the involved semantics.

Thus we have that both Tr3 and Tr4 are weakly exact translations for stb ⇒ sem , of course
with different remainder sets. Due the to different properties of two translations it depends on
the concrete application which of them would be the better choice.

5.2.2 Faithful Translations

So far, we have only introduced exact and weakly exact translations. We now present translations
which relax this semantical property, i.e. we switch to faithful translations. As a first example,
we consider a translation for stg ⇒ sem which is faithful and embedding, but not exact. This
is in contrast to translation Tr2 which is exact for stg ⇒ sem but not embedding. As we will
see in Section 5.3 it is impossible to give a translation that is both embedding and exact for
stg ⇒ sem , thus one has to decide which property is more important for a concrete application
scenario.

Translation 5. The translation Tr5(F ) is defined as Tr5(F ) = (A∗, R∗) where

A∗ = AF ∪ ĀF ∪A′F
R∗ = RF ∪ {(a, ā), (ā, a) | a ∈ AF }

∪ {(a, a′), (a′, a′) | a ∈ AF }
∪ {(a, b′) | (a, b) ∈ RF }

As in Tr2(F ) the arguments a′ ∈ A′F handle the range of the original extensions. But
instead of making original attacks symmetric (as in Tr2) we add the arguments ā ∈ ĀF to
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a b c d e

ā b̄ c̄ d̄ ē

a′ b′ c′ d′ e′

Figure 5.6: Tr5(F ) for the AF F from Example 1.

encode that an argument is not in the extension (also compare Figures 5.3 and 5.6). In fact,
such meta-arguments indicating that some a is out of an extension will be used in all faithful
translations presented in this subsection.

Lemma 17. Let F = (A,R) be an AF,E ⊆ A andE∗ = E∪(A \ E). The following statements
are equivalent:

1. E ∈ stg(F )

2. E∗ ∈ stg(Tr5(F ))

3. E∗ ∈ sem(Tr5(F ))

Moreover for each S ∈ sem(Tr5(F )) there exists a set E ⊆ A such that S = E ∪ (A \ E).

Proof. First we prove that each S ∈ stg(Tr5(F )) is of the form S = E ∪ (A \ E). As S is
conflict-free we have that A′F ∩ S = ∅ (each a′ ∈ A′ is self-attacking) and for each a ∈ A
that {a, ā} 6⊆ E∗ (as a attacks ā and vice versa). Further as each stage extension is also a ⊆-
maximal conflict-free set we have that for each a ∈ A either a ∈ S or ā ∈ S. Hence there exists
an E ⊆ A such that S = E ∪ (A \ E).

(1)⇒(2): Let E ∈ stg(F ). It is easy to see that E∗ is conflict-free in Tr5(F ). By con-
struction for each argument a ∈ A either a ∈ E∗ or ā ∈ E∗ holds and there are mutual attacks
between a and ā, hence we have that A ∪ Ā ⊆ (E∗)+

R∗ . Next we observe that each a′ ∈ A′

is self-attacking and thus a′ ∈ (E∗)+
R∗ iff E∗ � a′. Further by the definition of Tr5(F ) each

argument a′ is attacked by a and all arguments b such that (b, a) ∈ R. That is a′ ∈ (E∗)+
R∗ iff

either a ∈ E or there exists a b ∈ A such that (b, a) ∈ R iff a ∈ (E)+
R. By assumption E is a

stage extension of F and thus we have that (E)+
R is ⊆-maximal. Using the above observation

we have that also (E∗)+
R∗ is ⊆-maximal in Tr5(F ) and therefore E∗ ∈ stg(Tr5(F )).

(1)⇐(2): Let E∗ ∈ stg(Tr5(F )). We recall that E∗ is of the form S = E ∪ (A \ E), for
some E ⊆ A. It can be easily checked that E is conflict-free in F . By the above observation
that a′ ∈ (E∗)+

R∗ iff a ∈ (E)+
R and the fact that (E∗)+

R∗ is ⊆-maximal in Tr5(F ) we get that
also E+

R is ⊆-maximal in F . Hence, E ∈ stg(F ).

115



a b c d e

ā b̄ c̄ d̄ ē

(a, b) (c, b) (d, c) (c, d) (d, e) (e, e)

Figure 5.7: Tr6(F ) for the AF F from Example 1.

(2)⇔(3): Let us consider E∗ ∈ stg(Tr5(F )). As we have already observed, E∗ is of the
desired form and for each a ∈ AF ∪ ĀF either a ∈ E∗ or E∗ � a. Further by construction
an argument b ∈ A′F does not attack E∗. We can conclude that each stage extension defends
itself against all attackers, i.e. is an admissible set. Hence, stage and semi-stable extensions of
Tr5(F ) coincide.

By above lemma and construction of Tr5, the following result is immediate.

Theorem 44. Tr5 is a modular, embedding and faithful translation for stg ⇒ sem .

Next we give a faithful translation from admissible semantics to stable, semi-stable and stage
semantics.

Translation 6. The translation Tr6(F ) is defined as Tr6(F ) = (A∗, R∗) where

A∗ = AF ∪ ĀF ∪RF
R∗ = RF ∪ {(a, ā), (ā, a) | a ∈ AF }

∪ {(r, r) | r ∈ RF }
∪ {(ā, r) | r = (y, a) ∈ RF }
∪ {(a, r) | r = (z, y) ∈ RF , (a, z) ∈ RF }

The main idea is to use additional arguments (a, b) ∈ A∗ which represent the attack relations
from the source framework in order to capture admissibility as follows: (a, b) is attacked by
an extension E∗ in Tr6(F ) if (a, b) is not critical w.r.t. the corresponding extension E in F ,
meaning that either b /∈ E or there exists a c ∈ E such (c, a) ∈ RF , i.e. E defends b against
the attack (a, b). For instance, consider the argument (c, b) in the translation of our example
framework as depicted in Figure 5.7. Then, we have that (1) b̄ attacks (c, b) since if b is chosen
to be out (i.e. b̄ is chosen in), there is no need to defend b; (2) d attacks (c, b) since if d is chosen
in, d defends b against attacker c (recall that (d, c) is present in the source AF). Thus, as long
as (c, b) is attacked by some argument, b is treated corrected in terms of admissibility (w.r.t.
attacker c). Note that in our example b cannot be defended against a, thus the only way to get
(a, b) into the range is to select b to be out.
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Lemma 18. Let F = (A,R) be an AF,E ⊆ A andE∗ = E∪(A \ E). The following statements
are equivalent:

1. E ∈ adm(F )

2. E∗ ∈ stb(Tr6(F ))

3. E∗ ∈ sem(Tr6(F ))

4. E∗ ∈ stg(Tr6(F ))

Moreover for each E∗ ∈ σ(Tr6(F )) (σ ∈ {stb, sem, stg}) there exists a set E ⊆ A such that
E∗ = E ∪ (A \ E).

Proof. (1)⇒(2): Let E ∈ adm(F ). It is easy to see that E∗ is conflict-free in Tr6(F ) and
further that A ∪ Ā ⊆ (E∗)+

R∗ . It remains to show that each argument r ∈ A∗ for r ∈ R is
attacked by E∗. Let (a, b) be such an argument r. If b /∈ E then b̄ ∈ E∗ and thus E∗ �R∗ r.
Otherwise, b ∈ E (thus b ∈ E∗) and, by assumption, E defends b in F , i.e. (c, a) ∈ R for some
c ∈ E (thus c ∈ E∗). By construction, (c, r) ∈ R∗ and E∗�R∗ r.

(1)⇐(2): Let E∗ ∈ stb(Tr6(F )). E∗ is conflict-free, thus R ∩ E∗ = ∅ and {a, ā} 6⊆ E∗

for all a ∈ A. By construction, E is conflict-free in F . It remains to show that E defends all
its arguments in F . Let b ∈ A \ E such that b �R a for some a ∈ E. Then there exists an
argument (b, a) in Tr6(F ) attacked by E. As a ∈ E we have that ā /∈ E∗ and thus there exists
an argument c ∈ E such that (c, b) ∈ R.

(2)⇔(3)⇔(4): As the empty set is always admissible we have that Ā is always a stable
extension of Tr6(F ). Hence, stable, semi-stable and stage extensions coincide in Tr6(F ), for
any AF F .

Observe that in the construction of Tr6 drawing attacks {(a, r) | r = (z, y) ∈ RF , (a, z) ∈
RF } depends on two attacks and three arguments from the original framework. Hence Tr6 is
not modular. By Lemma 18 the next result follows quite easily.

Theorem 45. Translation Tr6 is embedding and faithful for adm ⇒ σ (σ ∈ {stb, sem, stg}).

In our faithful translation from complete to stable semantics which we present next, we
extend the given AF by arguments that represent whether an argument is attacked in the corre-
sponding extension or not. Further we add arguments that ensure admissibility and complete-
ness. The entire translation is thus slightly more complicated; see also Figure 5.8 which depicts
the translated framework for our running example.

Translation 7. The translation Tr7(F ) is defined as Tr7(F ) = (A∗, R∗) where

A∗ = AF ∪ ĀF ∪A◦F ∪ Ā◦F ∪A′F ∪RF
R∗ = RF ∪ {(x, x) | x ∈ A′F ∪RF }

∪ {(a, ā), (ā, a), (ā◦, a◦), (a, a′) | a ∈ AF }
∪ {(a, b̄◦), (ā◦, b′) | (a, b) ∈ RF }
∪ {(ā, r), (b◦, r) | r = (b, a) ∈ RF }

117



a b c d e

ā b̄ c̄ d̄ ē

a′ b′ c′ d′ e′

ā◦ b̄◦ c̄◦ d̄◦ ē◦

a◦ b◦ c◦ d◦ e◦

(a, b) (c, b) (d, c) (c, d) (d, e) (e, e)

Figure 5.8: Tr7(F ) for the AF F from Example 1.

The intuition behind arguments A′F , ĀF , and RF is similar as in previous translations. An
argument a◦ ∈ A◦F indicates that a is attacked by an extension E of F , i.e. a ∈ E⊕, while
ā◦ ∈ Ā◦F says that a is not attacked by E, i.e. a 6∈ E⊕.

Lemma 19. Let F = (A,R) be an AF,E ⊆ A andE∗ = E∪(A \ E)∪{a◦ | E �R a}∪{ā◦ |
E 6�R a}. Then the following statements are equivalent:

1. E ∈ com(F )

2. E∗ ∈ stb(Tr7(F ))

3. E∗ ∈ sem(Tr7(F ))

4. E∗ ∈ stg(Tr7(F ))

Moreover for each E∗ ∈ σ(Tr6(F )) (σ ∈ {stb, sem, stg}) there exists a set E ⊆ A such that
E∗ = E ∪ (A \ E) ∪ {a◦ | E �R a} ∪ {ā◦ | E 6�R a}.

Proof. To show (1)⇒(2), let E ∈ com(F ). Then by construction E∗ is conflict-free in Tr7(F )
(for x, y ∈ E we have x�R y ⇔ x�R∗ y). Moreover, by definition of E∗, it can be verified
that A ∪ Ā ∪ A◦ ∪ Ā◦ ⊆ (E∗)+

R∗ . Thus it remains to show that (i) A′ ⊆ (E∗)+
R∗ and (ii)

R ⊆ (E∗)+
R∗ .
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(i) Let a ∈ A be an arbitrary argument of F . As E is a complete extension we have that
either a ∈ E, and thus a ∈ E∗, or there exists an attack (b, a) ∈ R with E 6�R b, and
thus b̄◦ ∈ E∗. As by construction (b̄◦, a′) ∈ R∗ we thus have that E∗�R∗ a′.

(ii) Let r = (b, a) ∈ R be an arbitrary attack of F . As E is admissible it holds that either
a /∈ E, and thus ā ∈ E∗, or E �R b, and thus b◦ ∈ E∗. In both cases E∗�R∗ r.

Putting things together, we get that A ∪ Ā ∪ A◦ ∪ Ā◦ ∪ A′ ∪ R = A∗ ⊆ (E∗)+
R∗ which is

equivalent to E∗ being a stable extension of Tr7(F ).
To show (1)⇐(2), let E∗ ∈ stb(Tr7(F )). First we prove that E∗ is of the desired form. As

E∗ is both conflict-free and⊆-maximal we clearly have thatE∗∩(A∪Ā) = E∪A \ E for some
E ⊆ A. Let now a ∈ A be an arbitrary argument. We have that a◦ ∈ E∗ iff ā◦ 6∈ E∗. But as E∗

is stable ā◦ 6∈ E∗ iff there exists an attack (b, ā◦) such that b ∈ E∗. By construction of Tr7(F )
this is equivalent to b ∈ E and therefore E �R a. Thus E∗ is of the desired form, it remains to
show that E is complete. As mentioned before we have for x, y ∈ E : x �R y ⇔ x �R∗ y
and thusE is conflict-free in F . Thus it remains to show that (i)E defends each of its arguments
in F and (ii) E contains each argument defended by E in F .

(i) Let us assume there exists an argument a ∈ E not defended by E. Thus there exists
r = (b, a) ∈ R,E 6� b. By construction we also have that ā /∈ E∗ (as a ∈ E) and
b◦ 6∈ E∗ (as E 6� b). But in Tr7(F ) the self-attacking argument r is only attacked by the
arguments ā, b◦ (and itself). Hence, this is in contradiction to E∗ being a stable extension.

(ii) Let a ∈ A be an argument defended by E. Then for all arguments b �R a we have
that E �R b and thus b◦ ∈ E∗ and b̄◦ /∈ E∗. Recall that in Tr7(F ) the argument a′ is
self-attacking and thus does not belong to E∗ and is only attacked by the arguments b̄◦

and a. As E∗ is a stable extension and a′ 6∈ E∗ we have that a ∈ E∗ and a ∈ E.

(2)⇔ (3)⇔ (4): As there always exists a complete extension we know that any framework
Tr7(F ) has a stable extension. But then stable, stage and semi-stable extensions coincide.

Translation Tr7 introduces a huge number of new arguments, despite this the introduction
of a concrete argument or attack only depends on a single argument or attack. Hence Tr7 is
modular. It is easily checked that Tr7 is also embedding. Together with Lemma 19 we thus can
state the following result for Tr7.

Theorem 46. Tr7 is a modular, embedding and faithful translation for com ⇒ σ with σ ∈
{stb, sem, stg}.

Finally we present a translation from grounded semantics to most of the other semantics
under our focus, i.e. to all semantics except admissible semantics. The main idea is to simulate
the computation of the least fixed-point of the characteristic function FF (S) = {x ∈ AF |
x is defended by S} of an AF F within the target AF.
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a b c d e

ā◦1 b̄◦1 c̄◦1 d̄◦1 ē◦1

a1 b1 c1 d1 e1

ā◦2 b̄◦2 c̄◦2 d̄◦2 ē◦2

a2 b2 c2 d2 e2

ā◦3 b̄◦3 c̄◦3 d̄◦3 ē◦3

a b c d e

Figure 5.9: An example for Tr8.

Translation 8. The translation Tr8(F ) is defined as Tr8(F ) = (A∗, R∗) where

A∗ = AF,1 ∪ Ā◦F,1 ∪ · · · ∪AF,l ∪ Ā◦F,l
R∗ = RF ∪ {(ā◦i , bi) | (a, b) ∈ R, i ∈ [l]}

∪ {(ai, b̄◦i+1) | (a, b) ∈ R, i ∈ [l − 1]}

with AF = AF,l and l = d |AF |2 e.

For illustration, we use here a slightly different example depicted in Figure 5.9(a). Ob-
serve that this AF has {a, c} as its grounded extension. The translated framework is given in
Figure 5.9(b).

The intuition behind arguments ai ∈ AF,i is that a ∈ F iF (∅), while the intuition of ā◦i ∈ Ā◦F,i
is that F (i−1)

F (∅) 6� a. The integer l is an upper bound for the number of iterations we need to
reach the least fixed-point, i.e. the grounded extension.

Lemma 20. Let F = (A,R) be an AF and E∗ the grounded extension of Tr8(F ). Then E∗∩A
is the grounded extension of F . We further have that on Tr8(F ) the grounded, stable, complete,
preferred, semi-stable and stage extensions coincide.

Proof. We recall the definition of the characteristic function FF of an AF F (see Definition 20),
defined as FF (S) = {x ∈ AF | x is defended by S}, and that the grounded extension of F is
the least fix-point of FF . Further we use as a shorthand F ∗ = Tr8(F ). One can show that for
arbitrary a ∈ A we have
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(i) ai ∈ E∗ iff a ∈ F iF (∅);

(ii) ā◦i ∈ E∗ iff F i−1
F (∅) 6�R a; and

(iii) AF,i ⊆ (E∗)+
R∗ .

(iv) Ā◦F,i ⊆ (E∗)+
R∗ .

We prove this by structural induction. As induction base we show (ii) and (iv) for the arguments
ā◦1. For a ∈ A we have that ā◦1 ∈ E∗ as they are not attacked by any argument. This coincides
with the fact that F0

F (∅) = ∅ doesn’t attack any argument and thus (ii) and (iv) holds.
We have two induction steps: (1) Showing that (i) and (iii) hold for arbitrary n iff (ii) and

(iv) hold for n; and (2) showing that (ii) and (iv) hold for arbitrary n iff (i) and (iii) hold for
n− 1.

(1) We assume (ii) and (iv) hold for all ā◦n. By the definition of FF we have that a ∈ FnF (∅)
iff all b ∈ a	 = {b ∈ A | b � a} are attacked by Fn−1

F (∅). Applying the induction
hypothesis (ii) to b ∈ a	 we obtain that a ∈ FnF (∅) iff each b̄◦i ∈ {b̄◦i | (b, a) ∈ R} is
attacked by E∗. Further, as by the construction of Tr8(F ) these are the only attackers of
a, this is equivalent to argument ai being defended by E∗. Now recall that the each argu-
ment defended by the grounded extension is indeed contained in the grounded extension.
Hence, a ∈ FnF (∅) iff ai ∈ E∗ and (i) holds.

To show (iii) we consider ai ∈ AF,i. If ai ∈ E∗ then clearly ai ∈ (E∗)+
R∗ . Thus let us

consider ai /∈ E∗. Then, by the above observations, there exists a b̄◦i such that b̄◦i � ai
and E∗ 6� b̄◦i . Using the latter and the induction hypothesis (iv) we obtain that b̄◦i ∈ E∗.
Now we have that E∗� ai, hence ai ∈ (E∗)+

R∗ and we obtain (iii).

(2) Now let us assume that (i) and (iii) hold for all an−1. We have that Fn−1
F (∅) � a iff

there exists b ∈ Fn−1
F (∅)∩ {b | (b, a) ∈ R∗}. By induction hypothesis this holds iff there

exists a bi−1 ∈ E∗ such that (b, a) ∈ R. In other words there exists bi−1 ∈ E∗ such that
bi−1 �R∗ ā◦i , which implies that ā◦i 6∈ E∗. Moreover if there is no bi−1 ∈ E∗ such that
bi−1 �R∗ ā◦i , by assumption (iii) we have that E∗ defends ā◦i and thus ā◦i ∈ E∗. Hence
(ii) and (iv) hold.

Furthermore when applying the FF operator we either add a new argument to the set and
attack an additional argument or we reach the fixed-point. So in each step we make a decision
about at least two arguments and thus F lF (∅) = grd(F ). In combination with (i), we get that
al ∈ E∗ iff a ∈ grd(F ). Moreover by (iii) and (iv) it holds that E∗ is also a stable extension and
thus grd(F ∗) = stb(F ∗) = com(F ∗) = prf (F ∗) = sem(F ∗) = stg(F ∗).

As in Tr8 the integer value l depends on the size S of the source AF, Tr8 is not modular.
However, it can be verified that the computation of the translation only requires logarithmic
space w.r.t. S and that Tr8 is embedding (the original AF is indeed contained in the resulting
AF; see also the bottom layer in Figure 5.9(b)). Our final result concerning translations thus
follows immediately from Lemma 20.
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Theorem 47. Tr8 is an embedding and faithful translation for grd ⇒ σ (σ ∈ {stb, com,
prf , stg , sem}).

5.3 Impossibility Results

In this section, we present results fortifying that for several semantics there does not exist any
translation with the desired properties. The first result, which is rather straight forward, relies
on the fact that the grounded semantics is a unique-status semantics.

Proposition 30. There is no (weakly) faithful translation for σ ⇒ grd with σ ∈ {sem , stg , prf ,
com, stb, adm}.

Proof. For instance consider the AF F = ({a, b}, {(a, b), (b, a)}). We have that {{a}, {b}} ⊆
σ(F ) for σ ∈ {sem , stg , prf , com, stb, adm} but the grounded semantics always proposes a
unique extension.

We observe that in general it holds that if σ is a multiple status semantics and σ′ is a unique
status semantics then there is no (weakly) faithful translation for σ ⇒ σ′.

Further results are based on complexity gaps between different semantics (see Table 3.3)
and the fact that certain translations preserve some decision problem. We start with cases where
it is impossible to find efficient faithful translations; even if we allow for weakly faithful trans-
lations, cf. Definition 79. Afterwards, we give some negative results concerning (weakly) exact
translations.

The following theorem concerns the intertranslatability of preferred, semi-stable and stage
semantics, i.e. the semantics where skeptical acceptance is ΠP

2 -complete. The underlying reason
for the impossibility result is the complexity gap for the credulous acceptance problems.

Theorem 48. There is no efficient (weakly) faithful translation for sem ⇒ prf or stg ⇒ prf
unless ΣP

2 = NP.

Proof. σ ∈ {sem, stg} to prf . By definition this translation is L-computable and as we show
next reduces Credσ to Credprf : Let F = (A,R) be an arbitrary AF, x ∈ A an argument.
First let us assume that x is credulously accepted w.r.t. to σ. Hence, there exists an E ∈ σ(F )
with x ∈ E. As Tr is a weakly faithful translation, there is an E∗ ∈ prf (Tr (F )), such that
E∗ ∩A = E. Thus x ∈ E∗, i.e. x is credulously accepted w.r.t. preferred semantics in Tr (F ).

So assume x is credulously accepted in Tr (F ) w.r.t. to prf , i.e. x ∈ E∗ for some E∗ ∈
prf (Tr (F )). By x ∈ E∗ ∩ A we can conclude that E∗ is not a remainder set of Tr . As Tr is
a weakly faithful translation we have that E = E∗ ∩ A is in σ(F ), and thus x is credulously
accepted in F w.r.t. σ. Thus, Tr is a L-reduction from the ΣP

2 -hard problem Credσ to the
NP-easy problem Credprf .

The following theorem makes use of complexity gaps for the skeptical acceptance.

Theorem 49. There is no efficient (weakly) faithful translation for σ ⇒ σ′, where σ ∈ {sem,
stg , prf } and σ′ ∈ {com, stb, adm}, unless ΣP

2 = NP.
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Proof. Given an efficient weakly faithful translation Tr with remainder set S for σ ⇒ σ′ we
have that Skeptσ is translated to the problem SkeptSσ′ , that is deciding whether an argument is
in each σ′-extension which is not in the set S . Next we show that the problem SkeptSσ′ remains
in coNP. One can disprove SkeptSσ′ , by guessing a set E ⊆ A, such that a 6∈ E and verify that
E ∈ σ′(F ) and E 6∈ S. As Ver σ′ ∈ P and the set S is fixed, i.e. S does not depend on the
input, this is an NP-algorithm. Hence proving SkeptSσ′ is in coNP. Thus Tr would be an L-
reduction from the ΠP

2 -hard problem Skeptσ to the coNP-easy problem SkeptSσ′ , which implies
ΣP

2 = NP.

One might prefer (weakly) exact over (weakly) faithful translations. As we have seen in
Section 5.2, several of our translations are not exact but only faithful. In these cases we are
interested in either finding an exact translation or an evidence that an exact translation is not
possible. The following theorems approve that it was appropriate to have given only a (weakly)
faithful translation in Section 5.2, as there cannot be any exact such translation.

Theorem 50. There is no (weakly) exact translation for σ ⇒ σ′ where σ ∈ {adm, com} and
σ′ ∈ {stb, prf , sem, stg}.

Proof. This is basically by the fact that admissible resp. complete extensions may be in a ⊂-
relation; consider e.g. F = ({a, b}, {(a, b), (b, a)}) with σ(F ) = {{a}, {b}, ∅}. Let us now
assume there exists a (weakly) exact translation Tr for σ ⇒ σ′. By definition, σ(F ) =
{{a}, {b}, ∅} ⊆ σ′(Tr (F )), but as ∅ ⊂ {a} this contradicts σ′ ∈ {stb, prf , sem, stg}.

Theorem 51. There is no (weakly) exact translation for com ⇒ adm .

Proof. We observe that for every AF F it holds that ∅ ∈ adm(F ), but there are AFs where
∅ /∈ com(F ). Thus for a weakly exact translation Tr , with the collection S of remainder sets, it
holds that ∅ ∈ S. But then, given an AF F with ∅ ∈ com(F ), e.g. F = ({a, b}, {(a, b), (b, a)}),
we can conclude that ∅ ∈ adm(Tr (F )) \ S , a contradiction.

Theorem 52. There is no efficient (weakly) exact translation for grd ⇒ σ where σ ∈ {stb, adm,
com}, unless L = P.

Proof. Let us, towards a contradiction, assume that there exists an efficient (weakly) exact trans-
lation Tr for grd ⇒ σ, with the collection S of remainder sets. For a given AF F = (A,R) with
a set E ⊆ A it holds that E ∈ grd(F ) iff E ∈ σ(Tr (F )) \ S . As E ⊆ A and S is independent
of F , we have that E ∈ S implies E = ∅. Thus for E 6= ∅1 the translation Tr would be an L-
reduction from the P-hard problem Ver grd (see Proposition 6) to Ver σ (σ ∈ {stb, adm, com})
which is in L.

In Section 5.2 we presented two translations for stg ⇒ sem: Tr2 which is an exact transla-
tion, but not embedding, and Tr5 which is an embedding and faithful translation, but not exact.
Let us also mention at this point that Tr2 was the only translation presented in Section 5.2 that is
not embedding. Hence a natural question that occurs is whether a translation that is embedding
and exact for stg ⇒ sem is possible. We give a negative answer to this question.

1The empty set can be easily verified, in L, to be the grounded extension by testing that there is no unattacked
argument in F .
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Figure 5.10: Counterexample for exact translations σ ⇒ stg (σ ∈ {sem, prf }).

Theorem 53. There is no embedding and (weakly) exact translation for stg ⇒ sem .

Proof. Let us assume there exists an embedding and (weakly) exact translation Tr for stg ⇒
sem . Consider the AF F = ({a, b}, {(a, a), (a, b)}) with stg(F ) = {{b}}. As Tr is a (weakly)
exact translation we have that {b} ∈ sem(Tr (F )) and thus {b} ∈ adm(Tr (F )). Further we
have that (a, b) ∈ RTr (F ) (Tr (F ) is embedding) and thus {b} must attack a. But then we have
(b, a) ∈ RTr (F ) which is contradiction to Tr being an embedding translation.

Finally we present an impossibility result for prf ⇒ stg and sem ⇒ stg .

Theorem 54. There is no (weakly) exact translation for σ ⇒ stg (σ ∈ {sem, prf }).

Proof. Consider the AF2 F = ({a, b, c, d, e, f, g1, g2, h}, {(g1, g1), (g2, g2), (a, b), (b, a), (c, d),
(d, c), (a, g1), (b, e), (c, e), (d, g2), (e, f), (f, h), (h, e)}) illustrated in Figure 5.10. We have that
sem(F ) = {{b, d, f}, {a, c, f}, {a, d}} and prf (F ) = sem(F ) ∪ {{b, c, f}}.

To prove that there is no weakly exact translation for σ ⇒ stg (σ ∈ {sem, prf }), we will
show that there exists no AF F ′ with sem(F ) ⊆ stg(F ′). To this end, let us assume that F ′ =
(A′, R′) is such an AF with {{b, d, f}, {a, c, f}, {a, d}} ⊆ stg(F ′). Using the fact that {b, d, f}
is conflict-free in F ′ we obtain that (d, f), (f, d) 6∈ R′ and similar by using that {a, c, f} is
conflict-free in F ′ we get that (a, f), (f, a) 6∈ R′. By assumption {a, d} ∈ stg(F ′) and thus
{a, d} is a maximal conflict-free set of F ′, but by the above observations the set {a, d, f} is also
conflict-free in F ′, a contradiction.

5.4 Summary

In this chapter, we investigated intertranslations between different semantics for abstract argu-
mentation. We focused on translations which are efficiently computable and faithful (with a few
relaxations due to certain differences implicit to the semantics). An overview of our results is
given in Table 5.1.3 The entry in row σ and column σ′ is to read as follows: “–” states that we

2The author is grateful to Christof Spanring for pointing at this counter-example.
3One may notice that Tr5 does not appear in the table. Recall that Tr5 was proposed as an alternative to Tr2

satisfying slightly different properties for stg ⇒ sem; see also the discussion before Theorem 53.
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grd adm stb com prf sem stg

grd id Tr4 ◦ Tr8 / - Tr8 / - Tr8 / - Tr8 / ? Tr8 / ? Tr8 / ?
adm – id Tr6 / - Tr1 Tr4 ◦ Tr6 / - Tr6 / - Tr6 / -
stb – Tr4 id Tr4 Tr4 Tr3, Tr4 Tr3

com – Tr4 ◦ Tr7 / - Tr7 / - id Tr4 ◦ Tr7 / - Tr7 / - Tr7 / -
prf – – – – id Tr1 ? / -
sem – – – – – id ? / -
stg – – – – – Tr2 id

Table 5.1: Results about (weakly) faithful / exact translations.

have shown (Section 5.3) that no efficient faithful (even weakly faithful) translation for σ ⇒ σ′

exists. If the entry refers to a translation (or a concatenation of translations), we have found
an efficient (weakly) exact translation for σ ⇒ σ′. An entry which is split into two parts, e.g.
“Tr8 / -”, means that we have found an efficient (weakly) faithful translation, but there is no
such exact translation. “?” indicates an open problem. We mention that all the concatenated
translations are weakly faithful as they are built from a weakly exact translation Tr4 (which has
as only remainder set the empty set) and a faithful translation (either Tr6, Tr7, or Tr8).

Figure 5.11 illustrates our intertranslatability results at one glance. Here, a solid arrow
expresses that there is an efficient faithful translation while a dotted arrow depicts that there

grounded

admissible, complete, stable

preferred stage

semi-stable

Figure 5.11: Intertranslatability of argumentation semantics w.r.t. weakly faithful translations.
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may exist such a translation, but so far we have neither found one nor have an argument against
its existence. Furthermore, if for two semantics σ, σ′ there is no path from σ to σ′ then it is
proven (partly under typical complexity theoretical assumptions) that there is no efficient faithful
translation for σ ⇒ σ′. If we consider the relations between the semantics w.r.t. exactness
rather than just faithfulness, the overall picture changes; see Figure 5.12. Here, we get a more
detailed picture about the relations between stable, admissible, and complete semantics. One
conclusion, we can draw from these pictures is that semi-stable semantics is the most expressive
one, since each of the other investigated semantics can be efficiently embedded. Moreover,
we believe that our investigations complements recent results about comparisons between the
different semantics proposed for argumentation frameworks.

Let us at this point also mention that, instead of considering different properties for the
translations, we could also have used slightly revised semantics. The notion of remainder sets
(as given in Definition 79) can partly be circumvented by, for instance, using a quasi-admissible
semantics instead of admissible semantics, where the quasi-admissible extensions of an AF are
all non-empty admissible extensions (in case such ones exist), or is only the empty set otherwise.
Also it is obvious that the more restricted the properties for a translation are, the less such trans-
lations exist (compare Figures 5.11 and 5.12). Hence, we observe a certain trade-off between
translation criteria and comparability between semantics.

grounded

stable admissible complete

preferred stage

semi-stable

Figure 5.12: Intertranslatability of argumentation semantics w.r.t. weakly exact translations.
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CHAPTER 6
Conclusion

Here we briefly summarise and discuss the achievements of this thesis, and give an outlook to
potential future research directions.

6.1 Summary

In this work we provided a comprehensive analysis of computational issues in abstract argumen-
tation, addressing computational complexity in general, several approaches to obtain tractable
subclasses and finally intertranslatability as an elegant method to generalise existing systems to
several semantics. In the following we discuss our contributions in more detail.

In Chapter 3 we complemented existing complexity results in several directions. Firstly,
we gave exact complexity bounds for standard reasoning problems with semi-stable or stage
semantics. Secondly, we provided a comprehensive complexity analysis of ideal reasoning pre-
senting generic complexity results referring to the complexity of classical reasoning tasks as
well as exact complexity classifications for the semantics under our considerations. Moreover,
we classified the tractable problems w.r.t. P-completeness (resp. L-membership). Finally, to-
gether with existing results from the literature, we obtained the complexity landscape of abstract
argumentation as summarised in Table 6.1.

The general picture is that there are three tractable semantics, namely cf ,naive and grd .
We have that the problems concerning cf are all on the L level and thus cf lacks expressibil-
ity. When considering credulous and skeptical reasoning naive semantics are also in L, but
when considering ideal acceptance with the heavy use of self-attacks one gets P-completeness.
For grounded semantics we have that the three reasoning modes coincide and acceptance is P-
complete. So we have that on the one hand grounded semantics is not amenable for efficient
parallelisation but on the other hand it is more expressible than cf and also than naive if it is
used in a reasonable way.

Further we have that stb, adm, com, resGr are on the first level of the polynomial hierarchy,
i.e. on the NP, coNP layer, while prf , sem, stg are located at the second level of the polynomial
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σ Credσ Skeptσ Idealσ Verσ Existsσ Exists¬∅σ

cf in L trivial trivial in L trivial in L
naive in L in L P-c in L trivial in L
grd P-c P-c P-c P-c trivial in L
stb NP-c coNP-c DP -c in L NP-c NP-c

adm NP-c trivial trivial in L trivial NP-c

com NP-c P-c P-c in L trivial NP-c

resGr NP-c coNP-c coNP-c P-c trivial in P

prf NP-c ΠP
2 -c in ΘP

2 coNP-c trivial NP-c

sem ΣP
2 -c ΠP

2 -c ΠP
2 -c coNP-c trivial NP-c

stg ΣP
2 -c ΠP

2 -c ΠP
2 -c coNP-c trivial in L

Table 6.1: Complexity of abstract argumentation (C-c denotes completeness for class C). Novel
results are highlighted in boldface.

hierarchy. Hence we have that most of the interesting problems are in general intractable while
the necessity of efficient reasoners for argumentation systems is obvious.

Therefore, in Chapter 4, we explored the range of tractable instances. That is we studied
so called tractable fragments, i.e. graph classes that allow for efficient reasoning methods. We
complemented existing results on acyclic, even-cycle free, bipartite, and symmetric AFs by ex-
tending them to all semantics under our considerations whenever possible and showing hardness
otherwise. Moreover we classified the obtained tractability results w.r.t. P-completeness. We
also studied fragments beyond tractability, that is graph classes reducing the complexity of rea-
soning problems for the semantics at the second level of the polynomial hierarchy down to either
NP or coNP. In a second approach towards tractability we studied fixed-parameter tractability,
i.e. parameterisations of problems such that the problem is hard w.r.t. a parameter but can be
solved in polynomial w.r.t. the size if the parameter is bounded by a fixed constant. We consid-
ered several graph parameters. First building on work of Dunne [44] we considered the parame-
ter tree-width and extended existing results to all of our semantics and reasoning problems using
characterisations in monadic second order logic and meta-theorems by Courcelle [32, 33] and
Bodlaender [20]. In a similar manner we gave fixed-parameter tractability results for the more
general parameter of clique-width using MSO1 encodings and meta-theorems by Courcelle et al.
[36] and Oum and Seymour [96]. Finally we studied generalisations of tree-width for directed
graphs and showed that all of these parameters are not applicable to abstract argumentation in
order to obtain fixed parameter tractability.

A high-level overview of tractability results for abstract argumentation, combing novel re-
sults from this work together with existing results from the literature is given in Table 6.2. We
have that acyclic AFs are tractable for all semantics, while the more general class of even-cycle
free AFs is tractable for all semantics except stage semantics where the reasoning tasks maintain
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stb adm com resGr prf sem stg

acyclic X X X X X X X

noeven X X X X X X 7

bipartite X X X 7 X X X

symmetric 7 X X X X 7 7

bounded tree-width X X X X X X X

bounded clique-width X X X X X X X

bounded cycle-rank 7 7 7 7 7 7 7

bounded directed path-width 7 7 7 7 7 7 7

bounded Kelly-width 7 7 7 7 7 7 7

bounded DAG-width 7 7 7 7 7 7 7

bounded directed tree-width 7 7 7 7 7 7 7

Table 6.2: Tractability for abstract argumentation: An entry Xmeans the main reasoning prob-
lems are tractable for AFs of the given graph class. While an entry 7 mains that at least one of
the main reasoning problem remains hard for such AF.

their full complexity on the second level of the polynomial hierarchy. For bipartite AFs the only
exception from tractability is resGr where credulous acceptance remains hard. Notice also that
by results in [12, 44] deciding whether two (or more) arguments are simultaneously credulously
accepted in a bipartite AF is NP-hard. For symmetric AFs we have that stable, semi-stable and
stage semantics remain hard, but when additionally assuming that the AFs are irreflexive also
these semantics are tractable [31]. For the fragments of acyclic AFs and AFs without even length
cycles one can compute the unique extension efficiently (except for admissible semantics). In
contrast in bipartite and symmetric AFs there is in general a exponential number of extensions
and thus they can not be handled efficiently.

Concerning fixed-parameter tractability we have that all semantics under our considerations
are tractable w.r.t. graph parameters tree-width and clique-width. This was shown by MSO1

characterisations of the semantics and extends to any new semantics that is expressible in MSO1.
Moreover we have shown that the graph parameter cycle-rank does not lead to tractability which,
by results from the literature [16, 77, 78], also implies intractability for the parameters directed
path-width, Kelly-width, DAG-width, and directed tree-width.

However, notice that, beside the fragments studied here, there are further negative results
for preferred semantics given in [44], i.e. for planar graphs and parameters vertex degree and
k-partite, as well as there is work towards so called backdoors for tractable fragments by Ordy-
niak and Szeider [95], providing both fixed-parameter tractability and negative results. Roughly
speaking the idea behind the backdoor approach is to parameterise the distance to a tractable
fragments.

Finally we studied how semantics can be translated into each other by modifying the AF,
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grounded

admissible, complete, stable

preferred stage

semi-stable

Figure 6.1: Intertranslatability of argumentation semantics.

which gives rise to reduction-based implementations. That is, given such a translation from a
semantics σ to a semantics σ′, we can use an existing solver for σ′ to compute the σ-extensions
by first applying the translation. The overall picture of our results is given in Figure 6.1. Se-
mantics embraced in one box can be translated to each other, that is admissible, complete and
stable semantics can be translated to each other. A path of solid arrows from a semantic σ to
a semantics σ′ expresses that σ can be translated to σ′. Dotted arrow (and paths containing a
dotted arrow) depicts that there may exist such a translation, but so far we have neither found one
nor have an argument against its existence. Furthermore, if for two semantics σ, σ′ there is no
path from σ to σ′ then we have shown (partly under typical complexity theoretical assumptions)
that there is no efficient translation for σ ⇒ σ′.

6.2 Open Problems & Future Research Directions

We already identified several open problems during the last chapters which we briefly sum-
marise next. In Chapter 3 we have to leave the exact complexity of the problems Idealprf and
Exists¬∅resGr open. However the first can be shown to be ΘP

2 -complete under randomized reduc-
tions [44]. In Chapter 4 we mentioned that it is open whether Cred resGr restricted to symmetric
AFs is P-complete. In our studies on intertranslatability in Chapter 5 we left open whether there
exist efficient weakly faithful translations for prf ⇒ stg and sem ⇒ stg and whether there
exist efficient weakly exact translations for grd ⇒ {prf , sem, stg}. However these problems
are all of rather technical nature, and will only have minor effects. In the following we discuss
open issues on a higher level, which are crucial towards efficient reasoning systems for practical
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argumentation.
First, recall that we have discussed a lot of graph parameters for obtaining fixed-parameter

tractability results for argumentation. However such results only help if instances in practise
provide low values for the parameter. So one important issue is to actually collecting benchmarks
argumentation frameworks of applications, study their structure and identify parameters that
apply to them (and offer fixed-parameter tractability).

Also without having information about the typical structure argumentation frameworks pro-
vide one can think of building complexity-sensitive reasoning systems building on our complex-
ity results. For instance consider semi-stable semantics which in general is on the second level
of the polynomial hierarchy. A good reasoner should work in polynomial time for acyclic AFs,
should be in NP is the AF is free of odd cycles, i.e. it might use a SAT solver, and only if none
of the easier fragments apply using a general procedure. First work on complexity-sensitive
procedures was recently published in [62].

Finally let us mention that abstract argumentation frameworks are not the holy grail of for-
mal argumentation. While they convince by their simplicity when studying conflicts between
arguments, even this simplicity sometimes causes cumbersome encodings in the instantiation
process, for example when dealing with preference. Hence several generalisations of Dung’s
abstract argumentation frameworks have been proposed, most prominently value-based argu-
mentation frameworks (VAFs) [13], extend argumentation frameworks (EAFs) [91], argumen-
tation frameworks with recursive attacks (AFRAs) [11], and abstract dialectical frameworks
(ADFs) [21]. Clearly similar computational issues as for standard AFs also arise for each of
these generalisations. So one open issue would be to complement existing complexity analysis
on these generalisations, in particular by studies on tractable sub-classes. The general com-
plexity of VAFs was studied [15, 49] as well as there are investigations for fixed-parameter
tractability [44, 84]. For EAFs the general complexity has been studied in [52] and the complex-
ity of AFRAs is implicitly given in [11] by a translation to abstract argumentation frameworks.
However as far as we know there is no work on tractable subclasses for EAFs and AFRAs. For
ADFs even the general complexity of reasoning is partly still open.

For future work on intertranslatability, we identify the following tasks: Further properties
for translations could be of interest. For instance, one could even strengthen the property of be-
ing exact (which is defined in terms of the extensions) to the requirement that the labelings [27]
of the source and target framework coincide. Labelings provide additional information, in par-
ticular for arguments not contained in an extension. A promising starting point for obtaining
(negative) results in that direction would be the work on labeling based justification statuses of
arguments [53, 106]. Likewise, it would be interesting to investigate intertranslatability in the
more general approach of equational semantics for argumentation frameworks [71].

Further properties for translations could be also given in terms of graph properties. As an
example, acyclic AFs should remain acyclic after the translations, or parameters as tree-width
should remain unchanged. Requirements of such a form are also termed “structural preserva-
tion” [80]. Such properties are of interest from a computational point of view in the sense that,
in case the source AF is easy to evaluate (because of its structure), this advantage should not
be lost during the translation or if we translate a semantics on the first level of the polynomial
hierarchy to a semantics on the second level of the polynomial hierarchy we gain for a graph
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structure that allows for NP (resp. coNP) algorithms; recall here Figure 5.1 where we suggested
to use our translations for a rapid prototyping approach to compute the extensions of a semantics
via an argumentation engine based on a different semantics.

Another open issue is to studying translations between semantics for generalisations of
Dung-style AFs as EAFs, AFRAs or ADFs.
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Vienna University of Technology
Institute of Information Systems
Database and Artificial Intelligence Group
Favoritenstraße 9
A-1040 Wien, Austria

Phone: +43 (1) 58801 58437
Fax: +43 (1) 58801 18493
Email: dvorak@dbai.tuwien.ac.at
Homepage: www.dbai.tuwien.ac.at/staff/dvorak

Personal

Date of birth: June 24, 1984

Birthplace: Vienna, Austria

Citizenship: Austrian

Gender: male

Education

Student of Technical Mathematics, Vienna University of Technology, October 2003 - March 2009,
With a concentration in Mathematical Computer Science

24.March 2009: Master of Science (Msc) in Technical Mathematics with distinction.

Student of Computational Intelligence, Vienna University of Technology, April 2009 - December 2009

02.December 2009: Master of Science (Msc) in Computational Intelligence with distinction.

Ph.D. student in Computer Science, Vienna University of Technology, April 2009 - Present
Supervisor: Ass.Prof.Dr. Stefan Woltran

Participation in Summer Schools

European Summer School in Logic, Language and Information (ESSLLI’09), Bordeaux France, July
20-31, 2009.

Advanced Course in Artificial Intelligence (ACAI’09), Belfast GB, August 23-29, 2009.

European Summer School in Logic, Language and Information (ESSLLI’10), Copenhagen Denmark,
August 9-20, 2010.

Employment

Teaching Assistant at the Database and AI Group, Vienna UT, March 2006 - February 2009
for the courses: Data Modeling, Database Systems, Semistructured Data, Database Theory

Research Assistant at the Database and AI Group, Vienna University of Technology, April 2009 - Present
Project title: New Methods for Analyzing, Comparing, and Solving Argumentation Problems
(supported by the Vienna Science and Technology Fund (WWTF) under grant ICT 08-028)
Project leader: Ass.Prof.Dr. Stefan Woltran



Wolfgang Dvořák 2
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[J2] Wolfgang Dvořák, Stefan Woltran. On the Intertranslatability of Argumentation Semantics. Journal
of Artificial Intelligence Research, Volume 41 (2011), Pages 445-475.
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