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1. Introduction 

1, 2, 3, 4, 5, 6, 7, 8, 9, 10… counting is one of the main parts of mathematics and 

most certainly the first which appeared in history. Most people know that there is a 

difference between even (2, 4, 6, 8, 10…) and odd (1, 3, 5, 7, 9…) numbers. But 

what do the numbers 2, 3, 5, 7… have in common and why are they so significant for 

mathematics? 

Prime numbers are the DNA of mathematics. Every number consists of primes and 

can be decomposed into primes in a unique way. Thus one assumes rightly that 

there has been an enormous amount of studies to investigate and understand prime 

numbers. Nevertheless, they are still one of the greatest mysteries in mathematics.  

This paper deals with the mysteries and secrets of prime numbers and is divided into 

four main parts. The first part offers a brief history of the numerous achievements 

concerning prime numbers. This is followed by a second more mathematical part 

which states the different definitions of prime numbers and proves their most 

important characteristics, such as the fundamental theorem of arithmetic.  

However, the most fascinating attribute of prime numbers, their distribution, is still 

hidden behind a veil of mere approximations and an, as it seems, unprovable 

hypothesis. In the last two sections of this paper one experiences the whole way from 

the proof of infinitely many prime numbers and the first unsure consideration of their 

distribution to the still unproven but vitally important Riemann hypothesis. 
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2. History of Prime Numbers 

This chapter gives a short overview of the historical discovery of prime numbers and 

their properties. It starts with the very early discoveries of the ancient Greeks and 

ends with the RSA algorithm, which is nowadays very important in electronic 

commerce. In between, it mentions the most important mathematicians and their 

achievements with regard to prime numbers, such as Euclid, Eratosthenes, Fermat, 

Mersenne, Euler, Gauss, Legendre, Riemann, etc. 

 

2.1. Ancient Greek (500-200 BC) 

Ancient Greek mathematicians were the first who studied 

prime numbers and their properties extensively. Especially 

the mathematicians of Pythagoras’ school were interested 

in number theory and their mystical properties. They 

already proved that every number is either a prime number 

or can be decomposed into prime numbers. They argued 

that if there were such numbers which are neither prime 

numbers nor decomposable into prime numbers, then 

there would also exist a smallest one, which will be called 

𝑁. Since this 𝑁 is no prime number, there have to exist two 

smaller numbers 𝐴 and 𝐵 which when multiplied with each other result in 𝑁. Due to 

the fact that 𝐴 and 𝐵 are smaller than 𝑁, they have to be either prime numbers 

themselves or decomposable into prime numbers. This argument shows that 𝑁 itself 

can be written as a product of primes, which is a contradiction to the definition of 𝑁. 

Therefore, the first argument is wrong and such numbers do not exist. This is one of 

the first proofs which bases its arguments on a contradiction12.  

 

                                                        
1 du Sautay 2004, pp. 51-52 
2 O'Connor & Robertson 2009 

Image 1: Pythagoras of Samos 
(about 569 BC in Samos – 
about 475 BC)  

javascript:enlarge('Pythagoras.jpeg')
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About 300 BC, Euclid wrote the most influential book at that 

time, called Elements, in which, amongst other things, he 

proved several important results about prime numbers. In 

Book IX, proposition 20, he proved that there exist infinitely 

many prime numbers3. The complete proof is stated in 

section 4.1.1. In the Elements, Euclid also gave a proof of 

the fundamental theorem of arithmetic which says that 

every integer can be written as a unique product of prime 

numbers 4. The proof of existence of such a prime 

factorization was already mentioned earlier in this section. 

The proof of uniqueness is more challenging and will be stated in section 3.2. 

 

Another famous ancient Greek mathematician was 

Eratosthenes. He is credited with being the first who 

discovered that there is an easy algorithm to find all primes 

up to a given number 𝑁. In order to do so, one has to write 

down all the numbers up to 𝑁. Afterwards, one has to take 

the first prime number and cross out every multiple of this 

number. Thereafter, one does the same thing with the next 

number which is not crossed out, thus, the next prime 

number. In the 13th century, it was found out that one only 

has to cross out all multiples up to the number √𝑁 since at 

least one prime factor of all composite numbers up to 𝑁 does not exceed √𝑁.5  

 

2.2. Middle Ages 

During the so called Dark Ages, there is a long gap in the history of primes. Nearly 

everything that the Greeks had discovered about the prime numbers fell into oblivion 

during the Roman times6. 

                                                        
3 Euclid 2003, pp. 204-205 
4 Euclid 2003, p. 199 
5 Harman 2007, p. 4 
6 Kerkhoff, Krycki & Stuckenholz 1998 

Image 2: Euclid of Alexandria 
(about 325 BC – about 265 BC 
in Alexandria )  

Image 3: Eratosthenes of 
Cyrene (276 BC – 194 BC)  

http://www-history.mcs.st-andrews.ac.uk/PictDisplay/Eratosthenes.html
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2.3. Modern Age 

It took the mathematics until the renaissance to recover 

from the Dark Ages. At the beginning of the 17th century, 

Pierre de Fermat made a new important discovery. He 

proved the speculation of Albert Girard that every prime 

number of the form 4𝑛 + 1 can be written as the sum of two 

squares in a unique way. He also argued that if 𝑝 is a prime 

number and if 𝑎 is an integer, then 𝑎𝑝  ≡  𝑎 (𝑚𝑜𝑑 𝑝). In 

particular, if 𝑝 does not divide 𝑎, then 𝑎𝑝−1 ≡  1 (𝑚𝑜𝑑 𝑝). 

This argument is known as Fermat’s little theorem and 

Euler published the first proof of it7. This theorem will be 

proved in section 3.3. Fermat’s little theorem is the basis for several later discovered 

results in Number Theory, especially for methods of checking whether a number is 

prime or not. Some of these methods are still used today. Another well known 

discovery of Fermat are Fermat Numbers, which are of the form 22𝑛 + 1. Fermat 

believed that all of his numbers are primes and he verified it for 𝑛 = 1,2,3,4 but he 

could not prove it on the whole. It took a hundred years until Euler could show that 

the Fermat Number 225 + 1 = 4294967297 is not prime because it is divisible by 

641 8 9.  

 

Fermat corresponded with the French monk Marin 

Mersenne and told him about his numbers. Encouraged by 

Fermat’s discoveries, Mersenne studied numbers of the 

form 2𝑛 − 1, which are therefore called Mersenne Numbers. 

These numbers are composite unless 𝑛 is prime. 

Nevertheless, not all numbers of the form 2𝑛 − 1 are prime 

even if 𝑛 is a prime number (for example 211 − 1 = 2047 =

23 ∗ 89). Mersenne argued that these numbers are prime as 

long as 𝑛 is one of the following prime numbers: 

                                                        
7 Ribenboim 1996, p. 22 
8 du Sautoy 2004, p. 56 
9 O'Connor & Robertson 2009 

Image 5: Marin Mersenne 
(1588 Oizé in Maine – 1648 
Paris) 

Image 4: Pierre de Fermat 
(1601 Beaumont de Lomage – 
1665 Castres) 
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2, 3, 5, 7, 13, 19, 31, 67, 127, 257, which is nowadays known to be wrong. At the end of 

the 19th century, Édouard Lucas managed to show that Mersenne’s list misses the 

numbers 61, 89, and 107 and due to the help of computers we know today that 

2257 − 1 is no prime number10. Nevertheless, Mersenne Numbers are far more 

effective in finding large prime numbers than Fermat Numbers and provided the 

largest known primes for many years11.  

 

In 1772, Euler discovered that the equation 𝑥2 + 𝑥 + 41  

produces prime numbers when fed with numbers 𝑛 =

0, … 39. Moreover, he ascertained that also with 𝑞 =

2, 3, 5, 11, 17 the equation 𝑥2 + 𝑥 + 𝑞 generates prime 

numbers for 𝑥 = 0, … , 𝑞 − 2.12 Euler also showed that the 

infinite series 1 2⁄ + 1 3⁄ + 1 5⁄ + 1 7⁄ + 1 11⁄ + ⋯ formed 

by summing the reciprocals of the prime numbers is 

divergent11.  

 

Another famous mathematician, who lived at the turn of the 

18th century, was Carl Friedrich Gauss. Gauss invented a 

calculating machine which worked like a clock, the so 

called modulo calculator. This new way of calculating was 

very important for later prime discoveries13. Both Gauss 

and the French mathematician Adrian-Marie Legendre 

independently conjectured that for a number 𝑁 the number 

of primes not exceeding 𝑁 is about 𝑁
log (𝑁)

. Gauss as well as 

Legendre improved this estimate of the number of primes, 

but in different ways14. It took a whole century until 

                                                        
10 du Sautoy 2004, p. 58, 253 
11 O'Connor & Robertson 2009 
12 du Sautoy 2004, pp. 62-63 
13 du Sautoy 2004, pp. 33-34 
14 du Sautoy 2004, pp. 67-68, 73-76 

Image 6: Leonhard Euler (1707 
Basel – 1783 St. Petersburg)  

Image 7: Johann Carl Friedrich 
Gauss (1777 Brunswick – 1855 
Göttingen)  
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Jacques Hadamard and, simultaneously, Charles de la Vallée-Poussin were able to 

prove the Prime Number Theorem15. This theorem will be discussed in more detail in 

section 4.3. 

 

A famous student of Gauss was Bernhard Riemann, who 

studied mathematics at the University of Göttingen16. 

Gauss supervised Riemann’s dissertation and had a great 

influence on his work with prime numbers17. Riemann 

defined the zeta function ζ(s) = ∑ 1
𝑛𝑠

∞
𝑛=1 , which had already 

appeared in Euler’s work, for complex numbers 𝑠 ≠ 1. He 

suspected that all zeros in the critical strip, consisting of 

the nonreal complex numbers s with 0 ≤ 𝑅𝑒(𝑠) ≤ 1, have 

the real part 1
2
. This conjecture is known as the famous 

Riemann hypothesis and is until now unproved18. It is one of only three still unsolved 

Hilbert’s problems, a list of 23 problems in mathematics published in 190019. More 

about Riemann and his hypothesis can be found in section 5. 

 

2.4. Computer Era 

Due to the increasing need to send secret messages in the 20th century (bank 

transfers, secret diplomatic information, etc.), there has been a great focus on 

developing safe methods of coding messages. The idea of a public key crypto-

system was introduced by Whitfield Diffie and Martin E. Hellman in 197620. Until then, 

the decoding und encoding keys were identical, which made this system very 

vulnerable because no matter how complex the coding scheme might be, there were 

at least two parties which had to know the keys. In 1977, on the basis of Diffie’s and 

Hellman’s work, Roland Linn Rivest, Adi Shamir, and Leonard Adleman have 

                                                        
15 du Sautoy 2004, p. 135 
16 du Sautoy 2004, p. 84 
17 du Sautoy 2004, p. 95 
18 Ribenboim 1996, pp. 221-223 
19 Yandell 2001, p. 385 
20 Ribenboim 1996, p. 173 

Image 8: Georg Friedrich 
Bernhard Riemann (1826 
Breselenz – 1866 Selasca)  
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invented a very effective public key crypto-system, called the RSA-system. In this 

new crypto-system the encryption and decryption keys are distinct. It is theoretically 

possible to figure out the decryption key from the encryption key but it is 

“computationally infeasible”21. The benefits of a public key crypto-system compared 

to a traditional crypto-system are the public key, its simplicity and, nevertheless, the 

high difficulty in cracking it. The concept of the RSA-system is based on the extreme 

difficulty of prime factorization. This system is still widely used and especially 

important in electronic commerce22.  

                                                        
21 Bressoud 1989, p. 43 
22 Ribenboim 1996, p. 173 
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3. Definition and Characteristics of Prime Numbers 

In this part of the paper, the definition and important attributes of prime numbers are 

stated. Moreover, the fundamental theorem of arithmetic will be proved in three ways, 

one of them being Euclid’s proof. This part also includes the proof of Fermat’s little 

theorem. At the end, it is proved that there exist arbitrarily big gaps in the prime 

number sequence before it comes to the part of the prime number estimate. 

 

3.1. Definition of Prime Numbers 

The most common definition of primes is the following: 

Definition 3.1: An integer 𝑝 > 1 is called prime number or prime if there exists no 

divisor 𝑑 of 𝑝 with 1 < 𝑑 < 𝑝. Every integer 𝑎 > 1 which is no prime number is called 

composite23.  

An important characteristic of prime numbers is the theorem of Euclid: 

Theorem 3.1: If 𝑝 is a prime number and 𝑝│𝑎𝑏, then 𝑝│𝑎 or 𝑝│𝑏. In general: If 

𝑝│𝑎1𝑎2 … 𝑎𝑛, then 𝑝 is a divisor of at least one 𝑎𝑖24. 

Proof: In order to proof this theorem one needs the definition of the greatest common 

divisor and two lemmas. 

Definition 3.2: Let 𝑎 and 𝑏 be integers. The greatest common divisor of 𝑎 and 𝑏 is 

the largest positive integer which divides both 𝑎 and 𝑏. It will be denoted by 

gcd(𝑎, 𝑏) 25. 

Lemma 3.1: For any positive integers 𝑎 and 𝑏, there exists a unique pair (𝑞, 𝑟) of 

nonnegative integers such that 

𝑏 = 𝑎𝑞 + 𝑟, with 𝑟 < 𝑎. 

                                                        
23 Niven, Zuckerman 1972, p. 15 
24 Niven, Zuckerman 1972, p. 19 
25 Bressoud 1989, p.6 
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In this case 𝑞 is called the quotient and 𝑟 the remainder26. 

Proof of lemma 3.1: Since 𝑎 > 1, there exist positive integers 𝑛 such that 

𝑛𝑎 > 𝑏 (for example 𝑛 = 𝑏). 

Let 𝑞 be the least positive integer for which  

(𝑞 + 1)𝑎 > 𝑏. 

Hence, 

𝑞𝑎 ≤ 𝑏. 

Let 𝑟 = 𝑏 − 𝑞𝑎. It follows that 

𝑏 = 𝑎𝑞 + 𝑟, with 0 ≤ 𝑟 < 𝑎. 

To prove the uniqueness, one assumes that 𝑏 = 𝑎𝑞′ + 𝑟′, where 𝑞′ and 𝑟′ are also 

nonnegative integers and 0 ≤ 𝑟′ < 𝑎. Then 

𝑎𝑞 + 𝑟 = 𝑎𝑞′ + 𝑟′, 

which implies that 

𝑎(𝑞 − 𝑞′) = 𝑟′ − 𝑟 

and, thus, 

𝑎|𝑟′ − 𝑟. 

Hence, 

|𝑟′ − 𝑟| ≥ 𝑎 or |𝑟′ − 𝑟| = 0. 

Since 0 ≤ 𝑟, 𝑟′ < 𝑎, it follows that 

|𝑟′ − 𝑟| < 𝑎 

and, therefore,  

                                                        
26 Andreescu, Andrica 2009, pp. 3-4 
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|𝑟′ − 𝑟| = 0, 

implying 

𝑟′ = 𝑟 and, consequently, 𝑞′ = 𝑞27. 

 

Lemma 3.2: Let 𝑎 and 𝑏 be integers and let 𝑔 = gcd (𝑎, 𝑏). Then there exist integers 

𝑚 and 𝑛 such that 

𝑔 = 𝑚 ∗ 𝑎 + 𝑛 ∗ 𝑏28. 

Proof of lemma 3.2: Assuming that 𝑎 and 𝑏 are positive, one can apply lemma 3.1, 

which leads to 

𝑎 = 𝑞1𝑏 + 𝑟1,  with 0 ≤ 𝑟1 < 𝑏. 

If 𝑟1 = 0 then 𝑏 divides 𝑎 and 𝑏 = gcd(𝑎, 𝑏). One can than choose 𝑚 = 0 and 𝑛 = 1. If 

not, one can divide 𝑏 by 𝑟1: 

𝑏 = 𝑞2𝑟1 + 𝑟2,  with 0 ≤ 𝑟2 < 𝑟1. 

If 𝑟2 = 0, one stops here. If not, one has to continue by dividing 𝑟1 by 𝑟2: 

𝑟1 = 𝑞3𝑟2 + 𝑟3,  with 0 ≤ 𝑟3 < 𝑟2. 

This process is continued until the remainder is 0, which has to happen since the 

remainders are always nonnegative and each remainder is strictly smaller than the 

previous one. These are the last two equations: 

𝑟𝑘−2 = 𝑞𝑘𝑟𝑘−1 + 𝑟𝑘,  with 0 ≤ 𝑟𝑘 < 𝑟𝑘−1, 

𝑟𝑘−1 = 𝑞𝑘+1𝑟𝑘 + 0. 

The greatest common divisor of 𝑎 and 𝑏 is the last non-zero remainder, 𝑟𝑘. To see 

this, one must work back up the whole list of equations. By the last equation, one can 

see that 𝑟𝑘 divides 𝑟𝑘−1. By the second last equation, one can see that 𝑟𝑘 also divides 
                                                        
27 Andreescu, Andrica 2009, p. 4 
28 Bressoud 1989, p.6 
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𝑟𝑘−2 because 𝑟𝑘 divides 𝑟𝑘 and 𝑟𝑘−1. One continues this all the way to the third 

equation. By the third equation, one can see that 𝑟𝑘 divides 𝑟1 because 𝑟𝑘 divides 𝑟3 

and 𝑟2. By the second equation, one can see that 𝑟𝑘 also divides 𝑏. And finally, by the 

first equation, one can see that 𝑟𝑘 also divides 𝑎. Hence, 𝑟𝑘 is a common divisor of 𝑎 

and 𝑏. 

To show that 𝑟𝑘 is the largest divisor, let 𝑑 be any other common divisor of 𝑎 and 𝑏. 

By the first equation, one can see that 𝑑 divides 𝑟1 because 𝑑 divides both 𝑎 and 𝑏. 

Continuing down the list, one sees that 𝑑 must divide all the remainders 𝑟1, 𝑟2, 𝑟3, … , 𝑟𝑘 

and, therefore, 𝑑 ≤ 𝑟𝑘. 

One can now use these equations to find the 𝑚 and 𝑛 from lemma 3.2. By the first 

equation, 𝑟1 can be written as 

𝑟1 = 1𝑎 + (−𝑞1)𝑏. 

By making this substitution for 𝑟1 in the second equation, 𝑟2 can be written as 

𝑟2 = 𝑏 − 𝑞2𝑟1 

= 𝑏 − 𝑞2(𝑎 − 𝑞1𝑏) 

=  −𝑞2𝑎 + (1 + 𝑞1𝑞2)𝑏. 

Continuing down the list of equations, each remainder 𝑟𝑖can be written as an integer 

times 𝑎 plus an integer times 𝑏 and this proves lemma 3.2.  

Sequel to the proof of theorem 3.1: Let 𝑝 be a prime number and 𝑝|𝑎𝑏. If 𝑝|𝑎, the 

theorem is proved. If not, than gcd(𝑝,𝑎) = 1 because 𝑝 is prime and, thus, 1 is 

besides 𝑝 the only other integer which divides 𝑝. According to lemma 3.2, one can 

find two integers 𝑛 and 𝑚 such that 

1 = 𝑚𝑝 + 𝑛𝑎. 

Multiplying both sides by 𝑏, one gets 

𝑏 = 𝑚𝑝𝑏 + 𝑛𝑎𝑏. 
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Since 𝑝|𝑎𝑏 and 𝑝|𝑝, it divides both summands on the right side and, thus, divides 

their sum, which is 𝑏. Hence, if 𝑝 does not divide 𝑎, it must divide 𝑏.  

 

3.2. Fundamental Theorem of Arithmetic 

Theorem 3.2: The fundamental theorem of arithmetic says that every integer greater 

than 1 can be written as a unique product of prime numbers except for the ordering of 

the factors29. 

The existence of a prime factorization has already been proved in the section 

“Ancient Greek”. To prove the uniqueness of such a factorization one uses an indirect 

approach. 

1st proof: Assuming that there exists a natural number 𝑛 with two different prime 

factorizations, one can omit the prime numbers which appear in both factorizations 

and gets 

𝑝1𝑝2 … 𝑝𝑟 = 𝑞1𝑞2 … 𝑞𝑠 

with 𝑝𝑖 ≠ 𝑞𝑗 for every 𝑖 = 1, … , 𝑟 and every 𝑗 = 1, … , 𝑠. This is not possible because 

𝑝1│𝑞1𝑞2 … 𝑞𝑠 and due to theorem 3.1 𝑝1 has to be a divisor of at least one of the 𝑞𝑗 

with 𝑗 = 1, … 𝑠 and because 𝑝1 and every 𝑞𝑗 are prime numbers, this means that 𝑝1 

has to be identical with at least one of the 𝑞𝑗 with 𝑗 = 1, … 𝑠30.  

2nd proof: Assuming that the theorem is not true, there exists a smallest natural 

number 𝑛 with more than one prime factorization. 

𝑛 = 𝑝1𝑝2 … 𝑝𝑟 = 𝑞1𝑞2 …𝑞𝑠  with 𝑠, 𝑟 > 1 

None of the prime numbers 𝑝1,𝑝2, … ,𝑝𝑟 is identical with any of the prime numbers 

𝑞1, 𝑞2, … , 𝑞𝑠. Otherwise one could omit the identical prime number 𝑝𝑖 = 𝑞𝑗 and get two 

different factorizations of the natural number 𝑛
𝑝𝑖

, which is a contradiction to the 

                                                        
29 Niven, Zuckerman 1972, p. 19 
30 Niven; Zuckerman 1972, pp. 19-20 
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assumption that 𝑛 is the smallest natural number with more than one prime 

factorization.  

It is easy to see that 

(𝑞1 − 𝑝1)𝑞2𝑞3 … 𝑞𝑠 = 𝑝1(𝑝2𝑝3 … 𝑝𝑟 − 𝑞2𝑞3 … 𝑞𝑠) 

because 

𝑞1𝑞2 …𝑞𝑠 − 𝑝1𝑞2𝑞3 …𝑞𝑠 = 𝑝1𝑝2 … 𝑝𝑟 − 𝑝1𝑞2𝑞3 … 𝑞𝑠 

And, hence, 

(𝑞1 − 𝑝1)𝑞2𝑞3 … 𝑞𝑠 = 𝑝1(𝑝2𝑝3 … 𝑝𝑟 − 𝑞2𝑞3 … 𝑞𝑠). 

 

Without loss of generality it can be implied that 𝑝1 < 𝑞1. Let  

𝑁 = (𝑞1 − 𝑝1)𝑞2𝑞3 … 𝑞𝑠 = 𝑝1(𝑝2𝑝3 … 𝑝𝑟 − 𝑞2𝑞3 …𝑞𝑠). 

Apparently, 𝑁 < 𝑛 and, thus, factorable in a unique way.  

However, 𝑝1│(𝑞1 − 𝑝1) and, hence, one gets two factorizations of 𝑁 with one 

containing 𝑝1 and the other one not containing 𝑝1. This is a contradiction because 

𝑁 < 𝑛 and, therefore, not factorable in different ways31.  

In the following proof, the word “measure” will be used in the sense of “divide” just 

like Euclid did.  

Euclid’s proof: If 𝑎 is the least number to be measured by 𝑏, 𝑐, and 𝑑, Euclid claims 

that 𝑎 cannot be measured by any other prime number than 𝑏, 𝑐, and 𝑑. Assuming 

that 𝑒 measures 𝑎 and 𝑒 is not identical with 𝑏, 𝑐 or 𝑑, there has to exist an 𝑓 which 

multiplied with 𝑒 results in 𝑎 and, therefore, also measures 𝑎. According to 

proposition 30 in book VII, 𝑏, 𝑐 and 𝑑 have to measure either 𝑒 or 𝑓 because they are 

prime numbers and they measure the product of 𝑒 and 𝑓. Since 𝑒 is also a prime 

number and not identical with 𝑏, 𝑐  or 𝑑, they have to measure 𝑓. This would be a 

                                                        
31 Niven; Zuckerman 1972, pp. 20-21  
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contradiction to the argument at the beginning because 𝑓 is smaller than 𝑎, but 

according to the definition of 𝑎, 𝑎 is the least number which can be measured by 𝑏, 𝑐, 

and 𝑑. Consequently, no prime number besides 𝑏, 𝑐, and 𝑑 can measure 𝑎 32 33.   

 

3.3. Fermat’s Little Theorem 

Theorem 3.3: Fermat’s little theorem says that if 𝑝 is a prime number and if 𝑎 is an 

integer, then 𝑎𝑝 ≡ 𝑎 (𝑚𝑜𝑑 𝑝). In particular, if 𝑝 does not divide 𝑎 then 𝑎𝑝−1 ≡

1 (𝑚𝑜𝑑 𝑝)34. 

Proof: This theorem can easily be proved by induction on 𝑎. 

Basis 𝑎 = 1: 

1𝑝 = 1 ≡ 1 (𝑚𝑜𝑑 𝑝) 

Induction step: Assuming that for an arbitrary integer 𝑎, 

𝑎𝑝 ≡ 𝑎 (𝑚𝑜𝑑 𝑝) (induction hypothesis). 

Now it needs to be proved that (𝑎 + 1)𝑝 ≡ 𝑎 + 1 (𝑚𝑜𝑑 𝑝)35. 

To be able to prove this, one needs the binomial theorem, which says that 

(𝑎 + 𝑏)𝑛 = ��𝑛𝑘�
𝑛

𝑘=0

𝑎𝑛−𝑘𝑏𝑘 

with �𝑛𝑘� = 𝑛!
𝑘!(𝑛−𝑘)!

36. 

Furthermore, one needs the following lemma. 

Lemma 3.1: If p is a prime number, 

                                                        
32 Euclid 2003, pp. 199-200 
33 du Sautoy 2004, p. 53 
34 Ribenboim 1996, p. 22 
35 Ribenboim 1996, p. 22 
36 Kraft; Bürger; Unfried; Götz 2006, p.31 
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(𝑥 + 𝑦)𝑝 ≡ 𝑥𝑝 + 𝑦𝑝 (𝑚𝑜𝑑 𝑝). 

Proof of lemma 3.1: According to the binomial theorem 

(𝑥 + 𝑦)𝑝 = ��
𝑝
𝑘� 𝑥

𝑝−𝑘𝑦𝑘
𝑝

𝑘=0

. 

For 0 < 𝑘 < 𝑝, �
𝑝
𝑘� is divisible by 𝑝 because neither of the terms in the denominator 

includes a factor of 𝑝 and, therefore, 

�
𝑝
𝑘� ≡ 0 (𝑚𝑜𝑑 𝑝) for 0 < 𝑘 < 𝑝. 

Thus, one only has to consider �𝑝0� and �
𝑝
𝑝�, which are both by definition 1. 

This leads to 

(𝑥 + 𝑦)𝑝 ≡ �𝑝0� 𝑥
𝑝−0𝑦0 + �

𝑝
𝑝� 𝑥

𝑝−𝑝𝑦𝑝 (𝑚𝑜𝑑 𝑝) 

≡ 𝑥𝑝 + 𝑦𝑝(𝑚𝑜𝑑 𝑝). 

Sequel to the proof of theorem 3.3: By the lemma one has  

(𝑎 + 1)𝑝 ≡ 𝑎𝑝 + 1𝑝 (𝑚𝑜𝑑 𝑝). 

Using the inductive hypothesis this becomes 

(𝑎 + 1)𝑝 ≡ 𝑎 + 1 (𝑚𝑜𝑑 𝑝)37. 

Finally, one has to show that if 𝑝 does not divide 𝑎 then  

𝑎𝑝−1 ≡ 1 (𝑚𝑜𝑑 𝑝). 

It has already been shown that 𝑎𝑝 ≡ 𝑎 (𝑚𝑜𝑑 𝑝). Since 𝑎 is not divisible by 𝑝, 𝑎 has a 

multiplicative inverse 𝑚𝑜𝑑 𝑝. Thus, multiplying each side with the multiplicative 

inverse of 𝑎 (𝑚𝑜𝑑 )𝑝 one obtains 

𝑎𝑝−1 ≡ 1 (𝑚𝑜𝑑 𝑝). 
                                                        
37 Ribenboim 1996, p. 22 
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3.4. Arbitrarily Big Gaps in the Prime Number Sequence 

First of all, the gap between prime numbers has to be defined because there are two 

different standard definitions. In this paper, gap stands for the number of composites 

between two sequenced prime numbers and not for the difference of the two primes.  

For example the gap between 23 and 29 is 5 (24, 25, 26, 27, 28) and not 29 − 23 = 6. 

Theorem 3.3: There exist arbitrarily big gaps in the prime number sequence. That 

means for any natural number k exist k consecutive composites38.  

Proof: To generate a sequence of 𝑘 composites, one has to build the following 

numbers: 

(𝑘 + 1)! + 2, (𝑘 + 1)! + 3, … , (𝑘 + 1)! + 𝑘, (𝑘 + 1)! + 𝑘 + 1 

Each of these is a composite, because at least 𝑗 is a divisor of (𝑘 + 1)! + 𝑗 with 

2 ≤ 𝑗 ≤ 𝑘 + 139.  

 

3.5. Twin Primes 

Definition 5.1: If 𝑝 and 𝑝 + 2 are prime numbers, they are called twin primes40. 

For Clement’s characterization of twin primes one needs Wilson’s theorem, which is 

a corollary of Fermat’s little theorem. 

Theorem 5.1.: Wilson’s theorem sates that 𝑝 > 1 is a prime number, if and only if 

(𝑝 − 1)! ≡ −1 (𝑚𝑜𝑑 𝑝)41. 

Proof:  It is obvious that for any component number 𝑛 > 1 

(𝑛 − 1)! ≡ 0 (𝑚𝑜𝑑 𝑛). 

                                                        
38 Niven; Zuckerman 1972, p. 22 
39 Niven; Zuckerman 1972, p. 22 
40 Ribenboim 1996, p. 259 
41 Ribenboim 1996, p. 25 
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If 𝑝 is a prime number, then the integers 1, 2, 3, … . , 𝑝 − 1 are relatively prime to 𝑝. 

Therefore, for each of these integers 𝑎 exists an integer 𝑏 so that 𝑎 ∗ 𝑏 ≡ 1 (𝑚𝑜𝑑 𝑝). 

Moreover, this 𝑏 is unique 𝑚𝑜𝑑 𝑝 and since 𝑝 is prime, 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑝) if and only if 

𝑎 = 1 or 𝑎 = 𝑝 − 1. If one omits 1 and 𝑝 − 1, the other integers can be grouped into 

pairs whose product is 1 𝑚𝑜𝑑 𝑝. 

Thus, 

2 ∗ 3 ∗ 4 ∗ … ∗ (𝑝 − 2) ≡ 1(𝑚𝑜𝑑 𝑝) 

or more simply 

(𝑝 − 2)! ≡ 1 (𝑚𝑜𝑑 𝑝). 

Multiplying this equality by 𝑝 − 1 one gets 

(𝑝 − 1)! ≡ 𝑝 − 1 (𝑚𝑜𝑑 𝑝) ≡ −1 (𝑚𝑜𝑑 𝑝)42. 

In 1949, twin primes have been characterized by Clement as follows: 

Theorem 5.2: Let 𝑛 ≥ 2. The integers 𝑛 and 𝑛 + 2 form a pair of twin primes if and 

only if 

4[(𝑛 − 1)! + 1] + 𝑛 ≡ 0 [𝑚𝑜𝑑 𝑛(𝑛 + 2)]43. 

Proof: First, one has to show that if the congruence is satisfied, 𝑛 and 𝑛 + 2 are 

prime numbers. It can be seen that 𝑛 ≠ 2,4 and  

(𝑛 − 1)! + 1 ≡ 0 (𝑚𝑜𝑑 𝑛). 

According to Wilson’s theorem 𝑛 is a prime. Moreover, 

4(𝑛 − 1)! + 2 ≡ 0 (𝑚𝑜𝑑 𝑛 + 2). 

Multiplying this equation by 𝑛(𝑛 + 1) one obtains 

4[(𝑛 + 1)! + 1] + 2𝑛2 + 2𝑛 − 4 ≡ 0 (𝑚𝑜𝑑 𝑛 + 2) 

                                                        
42 http://primes.utm.edu/notes/proofs/Wilsons.html 
43 Ribenboim 1996, p. 259 
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hence 

4[(𝑛 + 1)! + 1] + (𝑛 + 2)(2𝑛 − 2) ≡ 0 (𝑚𝑜𝑑 𝑛 + 2). 

Since (𝑛 + 2)(2𝑛 − 2) is a multiple of 𝑛 + 2, it can be omitted. Thus, by Wilson’s 

theorem 𝑛 + 2 is prime too. 

Now, one has to show the other direction, i.e. if 𝑛 and 𝑛 + 2 are primes, the 

congruence has to be satisfied. Since 𝑛 and 𝑛 + 2 are prime number, 𝑛 ≠ 2 and 

(𝑛 − 1)! + 1 ≡ 0 (𝑚𝑜𝑑 𝑛), 

(𝑛 + 1)! + 1 ≡ 0 (𝑚𝑜𝑑 𝑛 + 2). 

Because 𝑛(𝑛 + 1) = (𝑛 + 2)(𝑛 − 1) + 2, it follows that  

2(𝑛 − 1)! + 1 = 𝑘(𝑛 + 2),  

where 𝑘 is an integer.  

Due to Wilson’s theorem, one knows that (𝑛 − 1)! ≡ −1 (𝑚𝑜𝑑 𝑛). Thus, 

2𝑘 + 1 ≡ 0 (𝑚𝑜𝑑 𝑛) 

and substituting 

4(𝑛 − 1)! + 2 ≡ −(𝑛 + 2)[𝑚𝑜𝑑 𝑛(𝑛 + 2)]. 

Therefore, 

4[(𝑛 − 1)! + 1] + 𝑛 ≡ 0 [𝑚𝑜𝑑 𝑛(𝑛 + 2)]44. 

 

                                                        
44 Ribenboim 1996, pp. 259 - 260 
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4. Prime Number Estimate 

4.1. There Exist Infinitely Many Prime Numbers 

Already the ancient Greeks knew that the list of primes has no end. Euclid was the 

first who published this proposition in his book The Elements. This section will include 

three of the most famous proofs of this theorem. 

4.1.1. Euclid’s Proof 

Euclid’s proof: Suppose that 𝑎, 𝑏, and 𝑐 are all the existing prime numbers. Let 

𝑃 = 𝑎𝑏𝑐, the smallest number divisible by 𝑎, 𝑏 and 𝑐. Now we look at 𝑃 + 1 and let p 

be a prime dividing 𝑃 + 1. Hence, p cannot be identical with a, b or c, otherwise it 

would divide 𝑃 + 1 − 𝑃 = 1, which is impossible. Therefore, p is another prime and 𝑎, 

𝑏 and 𝑐 cannot be all the existing primes45 46.  

4.1.2. Goldbach’s Proof 

Christian Goldbach used a very simple idea to prove that there exist infinitely many 

prime numbers. He just had to find an infinite sequence of natural numbers 

𝑎1,𝑎2,𝑎3, … greater than 1, which are pairwise relatively prime. Relatively prime is 

equivalent to their greatest common divisor being 1. Let 𝑝1 be a prime dividing 𝑎1, 𝑝2 

a prime dividing 𝑎2 and so forth, then 𝑝1,𝑝2,𝑝3, … is a infinite sequence of different 

prime numbers. In 1730, Goldbach wrote Euler a letter with his proof using Fermat 

numbers as infinite sequence of natural numbers. He had to show that the Fermat 

numbers 𝐹𝑛 = 22𝑛 + 1 (for 𝑛 ≥  0) are pairwise relatively prime. 

Goldbach’s proof: First, it needs to be shown that 𝐹𝑚 − 2 = 𝐹0𝐹1 …𝐹𝑚−1, which is 

easiest seen by induction on 𝑚. 

Basis 𝑚 = 1:  

𝐹1 − 2 = 221 + 1 − 2 = 3 = 220 + 1 = 𝐹0 

Induction step: Assuming that for an arbitrary natural number 𝑚, 

                                                        
45 Euclid 2003, pp. 204-205 
46 Ribenboim 1996, p. 3 
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𝐹𝑚 − 2 = 𝐹0𝐹1 …𝐹𝑚−1 (inductive hypothesis). 

It is sufficient to prove that 𝐹𝑚+1 − 2 = 𝐹0𝐹1 …𝐹𝑚: 

𝐹𝑚+1 − 2 = 22𝑚+1 − 1 = (22𝑚 − 1)�22𝑚 + 1� = (𝐹𝑚 − 2)(𝐹𝑚) 

Using the inductive hypothesis this becomes 

𝐹𝑚+1 − 2 = 𝐹0𝐹1 …𝐹𝑚−1𝐹𝑚. 

Now, it can be seen that if 𝑛 < 𝑚, 𝐹𝑛 divides 𝐹𝑚 − 2. If 𝐹𝑛 and 𝐹𝑚 were not relatively 

prime, there would exist a prime 𝑝 which would divide both of them. According to the 

above proved, 𝑝 would also divide 𝐹𝑚 − 2 and 𝐹𝑚, hence also the difference 𝐹𝑚 −

(𝐹𝑚 − 2) = 2, which is not possible because 𝐹𝑚 is odd47.  

4.1.3. Euler’s Proof 

The reason for the importance of Euler’s Proof of the infinitude of prime numbers is 

the fact that it has led to one of the most important developments concerning the 

Prime Number Theorem, which will be described in a section 5.1. 

Before one can start with Euler’s Proof, one needs the following lemma. 

Lemma 4.1.: If |𝑟| < 1 then 

�𝑟𝑘
∞

𝑘=0

=
1

1 − 𝑟
48. 

Proof of lemma 4.1.: Starting with the finite sum 

�𝑟𝑘
𝑛

𝑘=0

= 1 + 𝑟 + 𝑟2 + ⋯+ 𝑟𝑛−1 + 𝑟𝑛 

one can then obtain the limit 𝑛 → ∞.  

By multiplying both sides with 𝑟 one obtains 

                                                        
47 Ribenboim 1996, pp. 4-5 
48 Weisstein 
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𝑟�𝑟𝑘 = 𝑟 + 𝑟2 + 𝑟3 + ⋯+ 𝑟𝑛 + 𝑟𝑛+1
𝑛

𝑘=0

 

and subtracting this from the original equation, one thus has  

(1 − 𝑟)�𝑟𝑘
𝑛

𝑘=0

= (1 + 𝑟 + 𝑟2 + ⋯+ 𝑟𝑛−1 + 𝑟𝑛 ) − (𝑟 + 𝑟2 + 𝑟3 + ⋯+ 𝑟𝑛 + 𝑟𝑛+1) 

= 1 − 𝑟𝑛+1. 

Hence, it follows that 

�𝑟𝑘
𝑛

𝑘=0

=
1 − 𝑟𝑛+1

1 − 𝑟
. 

For |𝑟| < 1, the sum converges as 𝑛 → ∞ and, thus, 

�𝑟𝑘
∞

𝑘=0

=
1

1 − 𝑟
49. 

 

Euler’s proof: Assuming that 𝑝1,𝑝2, … ,𝑝𝑛 are all the existing primes. Due to lemma 

4.1., for each 𝑖 = 1, … ,𝑛, 

�
1
𝑝𝑖𝑘

=
1

1 − 1
𝑝𝑖

∞

𝑘=0

. 

Multiplying these n equalities, one obtains 

���
1
𝑝𝑖𝑘

∞

𝑘=0

� = �
1

1 − 1
𝑝𝑖

.
𝑛

𝑖=1

𝑛

𝑖=1

 

On the left-hand side every product of prime numbers appears exactly once in the 

denominator. Due to the fundamental theorem of arithmetic, asserting that every 

integer can be written as a unique product of prime numbers, the term on the left-
                                                        
49 Weisstein 
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hand side is equal to the sum over the inverses of all natural numbers, the harmonic 

series. Therefore, the left-hand side is infinite, whereas the right-hand side is clearly 

finite, which is absurd. Hence, there exist infinitely many prime numbers50.  

 

4.2. Initial Considerations About the Growth of 𝝅(𝒙) 

The various proofs of the infinitude of prime numbers are hardly constructive and do 

not give any indication of how to generate the 𝑛 − 𝑡ℎ prime number. Furthermore, the 

proofs do not indicate the amount of prime numbers less than any given number 𝑁. 

Therefore, this section now offers a detailed analysis of the growth of 𝜋(𝑥), the so 

called prime counting function, which is defined as the number of primes 𝑝 between 1 

and 𝑥 51.  

As mentioned in the section above, Euclid proved that there exist infinitely many 

prime numbers and, therefore, 

lim
𝑛→∞

𝜋(𝑥) = ∞ 

Varying Euclid’s proof a little bit, it says that if there existed only a finite number of 

primes 𝑝1,𝑝2,𝑝3, … ,𝑝𝑛, one of them would be able to divide 𝑝1𝑝2 𝑝3 … 𝑝𝑛 − 1 and this 

is not possible. Consequently, there has to exist a 𝑝𝑚 (𝑚 > 𝑛), which is a divisor of 

𝑝1𝑝2 𝑝3 …𝑝𝑛 − 1, and, thus, not greater than 𝑝1𝑝2 𝑝3 … 𝑝𝑛. Arranging the primes 

according to their size, one can prove that  

𝑝𝑛+1 ≤ 22𝑛. 

Proof: This can easily be seen by induction on 𝑛: 

Basis 𝑛 = 1:  

𝑝1 = 2 = 220.  

Hence 

                                                        
50 Ribenboim 1996, pp. 6-7 
51 Ribenboim 1996, p. 213 
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𝑝1 ≤ 220 

Induction step: If for any natural number ≤ 𝑛, 

𝑝𝑛 ≤ 22𝑛−1 (inductive hypothesis) 

then 

𝑝𝑛+1 ≤ 𝑝1𝑝2 𝑝3 …𝑝𝑛 ≤ 220 ∗ 221 ∗ … ∗ 22𝑛−1 = 220+21+⋯+2𝑛−1 ≤ 22𝑛 

If 𝑛 denotes the greatest number with 

22𝑛−1 ≤ 𝑥,  (𝑥 ≤ 2) 

it follows that 

𝜋(𝑥) ≥ 𝑛 ≥ 1 + �
1

log 2
∗ log �

log 𝑥
log 2

��. 

The right-hand side increases at least proportional to log log 𝑥. Consequently, Euclid 

implicitly proved that 

𝜋(𝑥) ≥ 𝑐 ∗ log log 𝑥,   (𝑐 > 0)52.  

Although not fitting chronologically but with regard to contents, this section will now 

focus on Dressler’s considerations about the growth of 𝜋(𝑥). On the basis of a 

method of Erdös, Dressler argued as follows. Every square-free number 𝑛 ≤ 𝑥 is at 

most divisible by 𝑝1,𝑝2, … ,𝑝𝑘 (𝑘 = 𝜋(𝑥)). Therefore, 𝑛 can be written as 

𝑛 = �𝑝𝑖𝑣𝑖
𝜋(𝑥)

𝑖=1

 

in a unique way with 𝑣𝑖 only taking the values 0 and 1. According to the probability 

theory, there are at most 2𝜋(𝑥) square-free numbers. Since the asymptotic density of 

square-free numbers is 6
𝜋2

, it can be said that 

𝑐1𝑥 ≤ 2𝜋(𝑥) 

                                                        
52 Hlawka; Schoißengeier; Taschner 1986, p. 99 
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for a positive absolute term 𝑐1 < 6
𝜋2

 and 𝑥 being sufficiently large. Hence, 

𝜋(𝑥) ≥ 𝑐 ∗ log 𝑥 

with 𝑐 = log 𝑐1 log 2⁄ 53.  

Euler managed to show that “the primes are not so sparse as the squares”. To 

demonstrate this, he first illustrated that the sum of the inverses of the prime numbers 

is divergent: 

�
1
𝑝

= ∞
∞

𝑝=1

 

Proof: Let 𝑁 be an arbitrary positive integer. As we already know, one can write each 

integer 𝑛 ≤ 𝑁 as a product of primes 𝑝, 𝑝 ≤ 𝑛 ≤ 𝑁, in a unique way. Moreover, for 

every prime 𝑝, 

�
1
𝑝𝑘

=
1

1 − 1
𝑝

∞

𝑘=0

 . 

With the same argument as in Euler’s proof of the existence of infinitely many prime 

numbers, it follows that 

�
1
𝑛
≤ ���

1
𝑝𝑘

∞

𝑘=0

�
𝑝≤𝑁 

𝑁

𝑛=1

= �
1

1 − 1
𝑝𝑝≤𝑁

 . 

However, 

log�
1

1 − 1
𝑝𝑝≤𝑁

= −� log �1 −
1
𝑝
�

𝑝≤𝑁

, 

and for each prime 𝑝 individually, 

− log �1 −
1
𝑝
� = �

1
𝑚𝑝𝑚

≤
1
𝑝

+
1
𝑝2
��

1
𝑝ℎ

∞

ℎ=0

�
∞

𝑚=1

 

                                                        
53 Hlawka; Schoißengeier; Taschner 1986, p. 100 
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=
1
𝑝

+
1
𝑝2

∗
1

1 − 1
𝑝

=
1
𝑝

+
1

𝑝(𝑝 − 1) 

<
1
𝑝

+
1

(𝑝 − 1)2. 

Therefore, 

log�
1
𝑛
≤ log�

1

1 − 1
𝑝
≤ �

1
𝑝

+ �
1

(𝑝 − 1)2 ≤�
1
𝑝

+ �
1
𝑛2

.
∞

𝑛=1𝑝𝑝≤𝑁𝑝≤𝑁𝑝≤𝑁

𝑁

𝑛=1

 

One knows that the series ∑ 1
𝑛2

∞
𝑛=1  is convergent. Moreover, since 𝑁 is arbitrary and 

the harmonic series is divergent, it follows that log∑ 1
𝑛

= ∞∞
𝑛=1  and thus the series 

∑ 1
𝑝𝑝
 is divergent. 

Because the series ∑ 1
𝑛2

∞
𝑛=1  is convergent, but the series ∑ 1

𝑝𝑝
 is divergent, one can 

see that the squares are not as plentifully distributed as the prime numbers54.  

 

4.3. Prime Number Theorem 

Definition 4.1: Two positive real valued functions 𝑓(𝑥) and 𝑔(𝑥) defined for 𝑥 ≥ 𝑥0 >

0 are asymptotically equal, noted 𝑓(𝑥)~𝑔(𝑥), if 𝑙𝑖𝑚𝑥→∞
𝑓(𝑥)
𝑔(𝑥) = 1. 

Theorem 4.1: The Prime Number Theorem states that the prime counting function 

𝜋(𝑥) is asymptotically equal to 𝑥
𝑙𝑜𝑔𝑥

.  

4.3.1. Gauss’s Assumption 

In 1792, at the age of 15, Gauss started to engage himself in the prime counting 

function 𝜋(𝑥). A year earlier he had got a book with a logarithm table in it and a prime 

number table in the appendix as a present and this might have been the trigger for 
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his breakthrough in the determination of the order of magnitude of 𝜋(𝑥). Gauss tried 

to diagnose how many prime numbers do exist between 1 and an arbitrary number55.  

Table 156 Connection between the amount of prime numbers and the decimal power. 

𝒙 𝝅(𝒙) 𝒙/ 𝝅(𝒙) 

10 4 2,5 

102 25 4,0 

103 168 6,0 

104 1229 8,1 

105 9 592 10,4 

106 78 498 12,7 

107 664 579 15,0 

108 5 761 455 17,4 

109 50 847 534 19,7 

1010 455 052 512 22,0 

For a sufficiently large 𝑥, 𝑥 𝜋(𝑥)⁄  increases 2,3 when one goes from a power of 10 to 

the next. 2,3 is approximately log 10 with the basis 𝑒. The table, which Gauss made 

at the age of 15, led him to believe that for the numbers 1 to 𝑥, nearly every 𝑥 log 𝑥 

number is a prime number57 58. This means that the probability of a number between 

1 and 𝑥 being a prime number is approximately log 𝑥. Therefore, 𝜋(𝑥) is 

asymptotically equal to 𝑥 log 𝑥⁄  Nevertheless, if one compares the graph of 𝜋(𝑥) with 

the graph of 𝑥 log 𝑥⁄ , the function 𝑥 log 𝑥⁄  qualitatively mirrors the behavior of 𝜋(𝑥) but 

does not completely agree with it59. 

                                                        
55 du Sautoy 2004, pp. 64 - 66 
56 Hlawka; Schoißengeier; Taschner 1986, p. 100 
57 Hlawka; Schoißengeier; Taschner 1986, p. 100 
58 du Sautoy 2004, pp. 66-68 
59 Zagier 1975, pp. 9-10 
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Figure 1: Comparison of the graph 𝜋(𝑥) with the approximate graph 𝑥

log 𝑥
.  

4.3.2. Legendre’s Improvements 

Adrien-Marie Legendre was 25 years older than Gauss. Legendre lived in a wealthy 

family, but during the French revolution he lost all his money and he had to do 

mathematics for a living. He was very fascinated by number theory. In 1798, six 

years after Gauss, he discovered the connection between the prime counting 

function and the logarithm. A big fight for the rights of this discovery began but some 

years later it could be proved that Gauss had made this detection long before 

Legendre. Nevertheless, Legendre managed to improve Gauss conjecture to  

𝑥
log x−1,08366

. 

He inserted a little adjustment to be even closer to the real prime counting function60.  

4.3.3. Gauss’s Logarithmic Integral Li(N) 

Gauss managed to show that 

𝑥
log𝑥

~𝐿𝑖 𝑥  

and, therefore, 

𝐿𝑖 𝑥~𝜋(𝑥). 

                                                        
60 du Sautoy 2004, pp. 72-74 
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He defined the integral logarithm as Cauchy principal value logarithm 

𝐿𝑖 𝑥 = �
𝑑𝑡

log 𝑡

𝑥

0

= lim
∈→0

�� �  
𝑥

1+∈

1−∈

0

�
𝑑𝑡

log 𝑡
 . 

Using the l’ Hôpital’s rule one can show the asymptotic equality of 𝐿𝑖 𝑥 and (𝑥) : 

lim
𝑥→∞

𝐿𝑖 𝑥
𝑥

log 𝑥
= lim

𝑥→∞

1
log 𝑥

1
log 𝑥 −

1
log 2 𝑥

= 1. 

Thus, 

𝐿𝑖 𝑥~
𝑥

log 𝑥
~𝜋(𝑥). 

Gauss assumed that 𝜋(𝑥) gets better described by 𝐿𝑖 𝑥 than by 𝑥
log𝑥

, which seems to 

get confirmed by the following table61. 

 

Table 262 Comparison of the two approximation 𝐿𝑖(𝑥) and 𝑥
log𝑥

 with 𝜋(𝑥). 

𝒙 𝝅(𝒙) 𝒍𝒊 𝒙 − 𝝅(𝒙) 𝒙
𝐥𝐨𝐠 𝒙

− 𝝅(𝒙) 

101 4 2,2 0,3 

102 25 5,1 -3,3 

103 168 10 -23 

104 1 229 17 -143 

105 9 592 38 -906 

106 78 498 130 -6 116 

                                                        
61 Hlawka; Schoißengeier; Taschner 1986, p. 101 
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107 664 579 339 -44 158 

108 5 761 455 754 -332 774 

109 50 847 534 1 701 -2 592 592 

1010 455 052 512 3 104 -20 785 030 

4.3.4. Riemann’s Contribution to the Prime Number Theorem 

Riemann not only counted the prime numbers as primes but also the powers of 

primes. More precisely he counted the square of a prime as half a prime, the cube of 

a prime as a third prime, etc. He then claimed that the probability for a large number 

𝑥 to be a prime number is even closer to 𝑥 log 𝑥⁄ . This leads to the approximation 

𝜋(𝑥) +
1
2
𝜋�√𝑥� +

1
3
𝜋�√𝑥3 � +

1
4
𝜋�√𝑥4 � + ⋯ ≈ 𝐿𝑖(𝑥) 

or, equivalently  

𝜋(𝑥) ≈ 𝐿𝑖(𝑥) −
1
2
𝐿𝑖�√𝑥� −

1
3
𝐿𝑖�√𝑥3 � −

1
4
𝐿𝑖�√𝑥4 � − ⋯ 

In honor of Riemann, the right side of this function is called 𝑅(𝑥). Riemann’s 

approximation provides an amazingly good approximation to 𝜋(𝑥) as can be seen in 

the following table63. 

Table 364 Riemann’s approximation 𝑅(𝑥) compared with 𝜋(𝑥). 

𝒙 𝝅(𝒙) 𝑹(𝒙) 

100,000,000 5,761,455 5,761,552 

200,000,000 11,078,937 11,078,090 

300,000,000 16,252,325 16,252,355 

400,000,000 21,336,326 21,336,185 

                                                        
63 Zagier 1975, p. 10 
64 Zagier 1975, p. 10 
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500,000,000 26,355,867 26,355,517 

600,000,000 31,324,703 31,324,622 

700,000,000 36,252,931 36,252,719 

800,000,000 41,146,179 41,146,248 

900,000,000 46,009,215 46,009,949 

1,000,000,000 50,847,534 50,847,455 

Unlike Gauss and Legendre, who obtained their approximations only empirically, 

Riemann discovered his function 𝑅(𝑥) by theoretical considerations. Nevertheless, 

he never managed to prove the Prime Number Theorem. The first two who 

accomplished to prove it were Jacques Hadamard in 1896 and, independently, 

Charles-Jean de la Vallée Poussin. Both their proofs where based on Riemann’s 

work65. 

 
Figure 2: Comparison of the function 𝜋(𝑥) with the approximations of Gauss, Legendre and Riemann up to 10 
million only illustrating the differences between them.  

Since the four functions (𝜋(𝑥) and the approximations of Gauss, Legendre and 

Riemann) lie so close together that one would not be able to distinguish them with 

the naked eye, the illustration only depicts the differences between them. It can be 

observed that for a small number 𝑥 Legendre’s approximation is significantly better 

                                                        
65 Zagier 1975, p. 11 
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than Gauss’s 𝐿𝑖(𝑥). Nevertheless, after 5 million Gauss’s approximation is better and 

it can be proved that 𝐿𝑖(𝑥) stays better when 𝑥 grows. Regarding Fig. 2, it can easily 

be noticed that at least in this interval Riemann’s function describes 𝜋(𝑥) the best 

because it is always smaller than 𝐿𝑖(𝑥). However, Littlewood proved that there 

actually do exist numbers where 𝜋(𝑥) becomes larger than 𝐿𝑖(𝑥), although no such 

numbers have been found. Skewes managed to prove that there exist at least one 

such number which is smaller than 101010
34

 65F

66. 

 

4.4. Chebyshev’s Theorem 

Around 1850, Chebyshev nearly managed to prove the prime number theorem67.  

He conjectured the following theorem and made great progress in the determination 

of the order of magnitude of 𝜋(𝑥). 

Theorem 4.2: There exist two positive absolute terms 𝑐1 and 𝑐2, so that for a 

sufficiently large 𝑥  

𝑐1 ∗
𝑥

𝑙𝑜𝑔 𝑥
< 𝜋(𝑥) < 𝑐2 ∗

𝑥
𝑙𝑜𝑔 𝑥

68 69. 

Chebyshev proved this for 𝑐1 = 0,89 and 𝑐2 = 1,11 70. However, in this paper it will 

only be shown for 𝑐1 = 2
3
 and 𝑐2 = 1,7. 

Proof: At first, one has to prove that  

𝜋(𝑥) < 1,7
𝑥

log 𝑥
 

by induction on 𝑥. 

Basis 𝑥 = 2: 

                                                        
66 Zagier 1975, pp. 12-13 
67 Hlawka; Schoißengeier; Taschner 1986, p. 101 
68 Hlawka, Schoißengeier; Taschner 1986, p. 101 
69 Niven, Zuckerman 1972, p. 240 
70 Zagier 1975, p. 13 
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𝜋(2) = 1 < 1,7
2

log 2
≈ 11,3 

According to Zagier, this inequality is even true for 𝑥 < 1200 71. 

Induction step: Assuming that for any natural number 𝑥 < 𝑛 the inequality has been 

proved. Since 

22𝑛 = (1 + 1)2𝑛 

and according to the binomial theorem 

(1 + 1)2𝑛 = �2𝑛
0 � + �2𝑛

1 � + ⋯+ �2𝑛
𝑛 � + ⋯+ � 2𝑛

2𝑛 − 1� + �2𝑛
2𝑛�, 

the middle binomial coefficient �2𝑛
𝑛 � is at most 22𝑛. 

Moreover, 

�2𝑛
𝑛 � =

(2𝑛)!
(𝑛!)2

=
(2𝑛) ∗ (2𝑛 − 1) ∗ … ∗ 2 ∗ 1
(𝑛 ∗ (𝑛 − 1) ∗ … ∗ 2 ∗ 1)2

. 

It can be seen that �2𝑛
𝑛 � is divisible by every prime number between 𝑛 and 2𝑛, 

because every prime 𝑝 smaller than 2𝑛 appears in the numerator but no prime bigger 

than 𝑛 can appear in the denominator. Thus, 

� 𝑝
𝑛<𝑝≤2𝑛

| �2𝑛
𝑛 �. 

Since this product has 𝜋(2𝑛) − 𝜋(𝑛) factors, each bigger than 𝑛, it follows that 

𝑛𝜋(2𝑛)−𝜋(𝑛) ≤ � 𝑝
𝑛<𝑝≤2𝑛

≤ �2𝑛
𝑛 � < 22𝑛. 

Taking logarithms, one gets 

𝜋(2𝑛) − 𝜋(𝑛) <
2𝑛 log 2

log𝑛
< 1,39

𝑛
log 𝑛

. 

                                                        
71 Zagier 1975, p.13 
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According to the induction hypothesis, the inequality is valid for 𝑛, 

𝜋(𝑛) < 1,7
𝑛

log𝑛
. 

Adding this relation, one gets 

𝜋(2𝑛) − 1,7
𝑛

log𝑛
< 𝜋(2𝑛) − 𝜋(𝑛) < 1,39

𝑛
log𝑛

 

and, thus, 

𝜋(2𝑛) < 3,09
𝑛

log𝑛
< 1,7

2𝑛
log 2𝑛

            (𝑛 > 1200) 

Therefore, the inequality is also true for 2𝑛. Since 

𝜋(2𝑛 + 1) ≤ 𝜋(2𝑛) + 1 

it follows  

𝜋(2𝑛 + 1) < 3,09
𝑛

log𝑛
+ 1 ≤ 1,7

2𝑛 + 1
log(2𝑛 + 1)       (𝑛 > 1200). 

Hence, the inequality is also true for 2𝑛 + 1 completing the induction72.  

To prove the other direction, namely 2
3

𝑛
log𝑛

< 𝜋(𝑛), one needs the following lemma. 

Lemma 4.1: Let 𝑝 be a prime number and 𝑝𝑣𝑝 is the largest power of 𝑝 dividing �𝑛𝑘�, 

then 

𝑝𝑣𝑝 ≤ 𝑛 73. 

Lemma 4.1 can be proved by using the formula of the power of 𝑝 dividing 𝑛!, which 

says that if 𝑛 is a nonnegative integer and 𝑝 is a prime, the exponent (𝑁) of the 

highest power of 𝑝 that divides 𝑛! is equal to 

                                                        
72 Zagier 1975, pp. 13-14 
73 Zagier 1975, p. 14 
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𝑁 = �
𝑛
𝑝𝑖

 74

∞

𝑖=1

75. 

Corollary 4.1: Every binomial coefficient �𝑛𝑘� satisfies 

�𝑛𝑘� = �𝑝𝑣𝑝 ≤ 𝑛𝜋(𝑛) 76

𝑝≤𝑛

. 

Sequel to the proof of theorem 4.2: 

Using the inequality of corollary 4.1, one gets 

2𝑛 = (1 + 1)𝑛 = ��𝑛𝑘� ≤ (𝑛 + 1) ∗ 𝑛𝜋(𝑛)
𝑛

𝑘=0

 

and taking the logarithms of it 

𝑛 log 2 ≤ log(𝑛 + 1) + 𝜋(𝑛) log𝑛, 

 hence,  

𝜋(𝑛) ≥
𝑛 log 2
log𝑛

−
log(𝑛 + 1)

log𝑛
>

2
3

𝑛
log 𝑛

          (𝑛 > 200) 77 

Chebychev nearly managed to prove the Prime Number Theorem. He already knew 

that if the function 𝜋(𝑥) is asymptotic to some 𝑐 𝑥
log𝑥

, 𝑐 has to be 1. However, the real 

difficulty in proving the prime number theory is to show that lim𝑥→∞ 𝜋(𝑥) (𝑥 log 𝑥⁄⁄ ) 

exists at all. Although Chebychev made great progress in the field of prime numbers, 

the world of mathematics had to wait another 46 years until Hadamard and de la 

Vallée Poussin independently proved the Prime Number Theorem in 189678. 

 

                                                        
74 Zagier 1975, p. 14 
75 Sato, p.20 
76 Zagier 1975, p. 14 
77 Zagier 1975, p. 14 
78 Crandall, Pomerance 2005, p. 10 
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5. Riemann and the Zeta Function 

Bernhard Riemann was born in 1826 in Hannover. He studied mathematics at the 

University of Göttingen and also at the Berlin University. In 1851, Riemann submitted 

his Ph.D thesis, which was supervised by Gauss. It is said that Gauss had a great 

influence on Riemann and his interest in number theory79.  

In 1859, Riemann was elected to become a member of the Berlin Acadamy at the 

early age of 32. This was a great honor for such a young mathematician. Since it was 

common at such occasions to report to the Academy on their most recent research, 

Riemann presented his work On the Number of Prime Numbers Less Than a Given 

Quantity80. In this paper, Riemann investigated the zeta function  

𝜁(𝑠) = �
1
𝑛𝑠

∞

𝑛=1

, 

which had already been examined by Euler. However, Riemann considered the zeta 

function as a complex function instead of a real one81. He suspected that all non-

trivial zeros of the zeta function have real part 1
2
, but did not prove it82. He just 

remarked: 

“Certainly one would wish for a stricter proof here; I have meanwhile 
temporarily put aside the search for this after some fleeting futile 
attempts, as it appears unnecessary for the next objective of my 
investigation.”83 

This casual guess of Riemann is now known as the Riemann hypothesis and is one 

of the most important unsolved problems in mathematics. More about the fascination 

of the Riemann hypothesis is stated in section 5.3. 

So far, there has not been an obvious reason for mentioning the zeta function in a 

paper about prime numbers. Why is the Riemann hypothesis always associated with 

prime numbers? 

                                                        
79 O'Connor & Robertson 1998 
80 Derbyshire 2003, p. ix 
81 O'Connor & Robertson 1998 
82 Derbyshire 2003, p. xi 
83 Riemann 1859, p. 4 
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The following two sections are going to answer this question and reveal the 

connection between the zeta function and the prime numbers. 

 

5.1. Relation to Prime Numbers 

The connection with prime numbers had already been noticed earlier by Euler. By 

proving the following theorem he managed to express the zeta function as a product 

over prime numbers only84. 

Theorem 5.1: If 𝑠 > 1 then 

𝜁(𝑠) = �(1 − 𝑝−𝑠)−1,
𝑝∈𝑃

 

with 𝑃 being the set of primes85. 

Proof: This proof starts with the zeta function and slowly converts it into the above 

mentioned product. First, one has to apply the sieve of Eratosthenes to the zeta 

function. By multiplying both sides with 1
2𝑠

, one gets 

1
2𝑠
𝜁(𝑠) =

1
2𝑠

+
1
4𝑠

+
1
6𝑠

+
1
8𝑠

+
1
9𝑠

+
1

10𝑠
+ ⋯ 

and by subtracting the result from the original zeta function, it becomes 

�1 −
1
2𝑠
� 𝜁(𝑠) = 1 +

1
3𝑠

+
1
5𝑠

+
1
7𝑠

+
1
9𝑠

+
1

11𝑠
+ ⋯ 

It can be seen, that the subtraction eliminated all the even-numbered terms from the 

infinite sum. Continuing this with 1
3𝑠

, one gets 

1
3𝑠
�1 −

1
2𝑠
� 𝜁(𝑠) =

1
3𝑠

+
1
9

+
1

15𝑠
+

1
21𝑠

+
1

27𝑠
+

1
33𝑠

+ ⋯ 

and again subtracting it from the expression before 

                                                        
84 Hardy & Wright 1979, p. 246 
85 Crandall & Pomerance 2005, p. 34 
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�1 −
1
3𝑠
� �1 −

1
2𝑠
� 𝜁(𝑠) = 1 +

1
5𝑠

+
1
7𝑠

+
1

11𝑠
+

1
13𝑠

+
1

17𝑠
+ ⋯ 

Thus, all the multiples of three terms were eliminated from the infinite sum. By 

repeating this process infinitely often (for every prime number), one receives the 

following equation 

… �1 −
1

13𝑠
� �1 −

1
11𝑠

� �1 −
1
7𝑠
� �1 −

1
5𝑠
� �1 −

1
3𝑠
� �1 −

1
2𝑠
� 𝜁(𝑠) = 1 

and written in a closed form, one obtains 

𝜁(𝑠)��1 −
1
𝑝𝑠
�

𝑝∈𝑃

= 1. 

This is equivalent to 

𝜁(𝑠) = ��
1

1 − 1
𝑝𝑠
�

𝑝∈𝑃

 

or avoiding fractions 

𝜁(𝑠) = �(1 − 𝑝−𝑠)−1
𝑝∈𝑃

86. 

 

The attentive reader might have noticed that this theorem is somehow similar to 

Euler’s proof of the existence of infinitely many prime numbers. Actually, this theorem 

leads directly to Euler’s proof.  

Proof: By rewriting the left side of theorem 5.1, one gets the expression 

�𝑛−𝑠
∞

𝑛=1

= �(1 − 𝑝−1)−1
𝑝∈𝑃

. 
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Both sides are infinite sums. If the prime numbers ended, the product on the right 

side of the equation would end as well. Therefore, it would work out to a finite 

number, regardless of the value of 𝑠. However, when 𝑠 = 1, the left hand side is the 

harmonic series, which is known to add up to infinity. And this is a contradiction. 

Therefore, the number of primes must be infinite87. 

Consequently, one can see that the connection between the zeta function and the 

prime numbers has already been established with Euler’s proof in section 4.1.2. 

 

5.2. Connection between 𝝅(𝒙) and 𝜻 Function  

Since the Riemann hypothesis and the connection between 𝜋(𝑥) and ζ function is 

highly complicated, this section is going to be more explanatory than the previous 

ones and the focus is not so much on exact mathematical proofs but on conveying 

the topic in an understandable way.  

First of all, the function 𝜋(𝑥) needs to be defined more precisely with some 

adjustments in order that the following arguments are correct. 

Definition 5.1.: The prime counting function 𝜋(𝑥) is defined as following: 

𝜋(𝑥) =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑖𝑚𝑒𝑠 𝑠𝑚𝑎𝑙𝑙𝑒𝑟 𝑡ℎ𝑎𝑛 𝑥,                    𝑖𝑓 𝑥 𝑖𝑠 𝑛𝑜 𝑝𝑟𝑖𝑚𝑒
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑖𝑚𝑒𝑠 𝑠𝑚𝑎𝑙𝑙𝑒𝑟 𝑡ℎ𝑎𝑛 𝑥 𝑝𝑙𝑢𝑠 1

2
,         𝑖𝑓 𝑥 𝑖𝑠 𝑝𝑟𝑖𝑚𝑒 

88. 

This definition is illustrated by Fig. 3. One can see that every time 𝑥 reaches a prime 

number the function 𝜋(𝑥) jumps up one half. The domain of this function consists of 

all the non negative numbers. 
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39 
 

 
Figure 3: The prime counting function for 0 ≤ 𝑥 ≤ 20.  

The next function, which is going to be introduced, will be called 𝐽 function following 

Harold Edwards although Riemann referred to it as the 𝑓 function. Since 𝑓 is 

nowadays mostly used to refer to any generic function, it would be unusual to use 𝑓 

to refer to a specific one89. 

Definition 5.2: For any non negative number 𝑥, 𝐽 is defined as  

𝐽(𝑥) = �
1
𝑛
𝜋�√𝑥𝑛 �

∞

𝑛=1

= 𝜋(𝑥) +
1
2
𝜋�√𝑥� +

1
3
𝜋�√𝑥3 � +

1
4
𝜋�√𝑥4 � + ⋯ 90 

Although this function seems to be infinite, it is actually a finite sum, since the prime 

counting function 𝜋(𝑥) is zero for every 𝑥 < 2 91. Fig. 4 depicts the 𝐽 function up to 

100.  

                                                        
89 Derbyshire 2003, p. 298 
90 Derbyshire 2003, p. 299 
91 Derbyshire 2003, p. 299 
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Figure 4: The 𝐽(𝑥) function for 0 ≤ 𝑥 ≤ 100.  

The next step is now the inversion of this relationship and, therefore, one needs the 

Möbius function and the Möbius inversion. 

Definition 5.3: The Möbius function 𝜇(𝑛)is defined as follows: 

(i) 𝜇(1) = 1, 

(ii) 𝜇(𝑛) = 0 if 𝑛 has a squared factor, 

(iii) 𝜇(𝑝1𝑝2 … 𝑝𝑘) = (−1)𝑘 if all the primes 𝑝1,𝑝2, … ,𝑝𝑘 are different92. 

For a better understanding of the Möbius function and its relationship with the zeta 

function, one has to take a closer look at the reciprocal of the zeta function. Due to 

theorem 5.1 

1
𝜁(𝑠)

= ��1 −
1
𝑝𝑠
�

𝑝∈𝑃

 

= �1 −
1
2𝑠
� �1 −

1
3𝑠
� �1 −

1
5𝑠
� �1 −

1
6𝑠
� �1 −

1
7𝑠
�… 

                                                        
92 Hardy & Wright 1979, p. 234 
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Every term in this expression which is not equal to 1 is a number between 0 and −1
2
. 

By multiplying an infinite of them, the result would be no bigger than �− 1
2
�
∞

, which is 

zero. Thus, if one wants to multiply out this parenthesis, one must only look at the 

products with a finite number of terms not equal to 1. By doing so one receives the 

following expression. 

1
𝜁(𝑠)

= 1 −
1
2𝑠
−

1
3𝑠
−

1
5𝑠

+
1
6𝑠
−

1
7𝑠

+
1

10𝑠
−

1
11𝑠

−
1

13𝑠
+

1
14𝑠

… 

It can be seen that this expression includes every natural number that is the product 

of an odd number of different primes prefixed by a minus sign and every natural 

number that is the product of an even number of different primes prefixed by a plus 

sign. The only numbers missing are those which have a squared factor and this is 

exactly the definition of the Möbius function. Thus, one can express the zeta function 

in terms of the Möbius function. 

1
𝜁(𝑠)

= �
𝜇(𝑛)
𝑛𝑠

∞

𝑛=0

93 

Theorem 5.2: The Möbius inversion says that if 𝑓 is any arithmetic function, and 𝑔 is 

the arithmetic function defined by 

𝑔(𝑛) = �𝑓(𝑑),
𝑑|𝑛

 

then 

𝑓(𝑛) = �𝜇�
𝑛
𝑑
�𝑔(𝑑).

𝑑|𝑛

 

And vice versa, if 𝑔 is any arithmetic function, and 𝑓 is the arithmetic function defined 

by 

𝑓(𝑛) = �𝜇�
𝑛
𝑑
�𝑔(𝑑)

𝑑|𝑛

 

                                                        
93 Derbyshire 2003, pp. 247-250 
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then 

𝑔(𝑛) = �𝑓(𝑑) 94.
𝑑|𝑛

 

Proof: In order to be able to prove the Möbius inversion, one needs the following 

lemmas and definitions. 

Lemma 5.1: The Möbius function 𝜇(𝑛) is multiplicative (more precisely: an arithmetic 

function 𝑓(𝑛) is multiplicative if 𝑓(𝑚𝑛) = 𝑓(𝑚)𝑓(𝑛) whenever (𝑚,𝑛) = 1), and 

�𝜇(𝑑) =
1       𝑖𝑓 𝑛 = 1,
0    𝑖𝑓 𝑛 > 1 95.

𝑑|𝑛

 

Proof of lemma 5.1: The multiplicativity follows immediately from the definition of 

𝜇(𝑛), because if (𝑚,𝑛) = 1 and both are square free integers with 𝑘 and 𝑙 prime 

factors, respectively, then the product 𝑚𝑛 is also square free with 𝑘 + 𝑙 factors. Thus, 

𝜇(𝑚)𝜇(𝑛) = (−1)𝑘(−1)𝑙 = (−1)𝑘+𝑙 = 𝜇(𝑚𝑛). 

The second part of lemma 5.1 is slightly more difficult to prove. If 𝑛 = 1,  

�𝜇(𝑑) = 𝜇(1) = 1.
𝑑|𝑛

 

For 𝑛 > 1, let 

𝑛 = 𝑝1𝑟1𝑝2𝑟2 … 𝑝𝑘𝑟𝑘 

be the prime factorization of 𝑛 with 𝑟1, 𝑟2, … , 𝑟𝑘 ≥ 1. Consequently, the largest square 

free divisor of 𝑛, namely the radical of 𝑛, is 

𝑟𝑎𝑑(𝑛) = 𝑝1𝑝2 … 𝑝𝑘. 

This is the product of all the different prime numbers dividing 𝑛. Let 𝑚 = 𝑟𝑎𝑑(𝑛). If 𝑑 

divides 𝑛 and 𝜇(𝑑) ≠ 0, it follows that 𝑑 is square free and, thus, 𝑑 must also divide 

𝑚. Therefore, 

                                                        
94 Nathanson 2000, pp. 218-219 
95 Nathanson 2000, p. 217 
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�𝜇(𝑑) = �𝜇(𝑑)
𝑑|𝑚𝑑|𝑛

 

Since 𝑚 is the product of 𝑘 different primes, it follows that there are exactly �𝑘𝑖 � 

divisors of 𝑚 which consist of 𝑖 distinct primes. Consequently, the number of divisors 

𝑑 of 𝑚 such that 𝜔(𝑑) = 𝑖 (𝜔(𝑑) being defined as the number of distinct prime 

divisors of 𝑑) is �𝑘𝑖 �. Hence, 

�𝜇(𝑑) = � � 𝜇(𝑑)
𝑑|𝑚

𝜔(𝑑)=𝑖

𝑘

𝑖=0𝑑|𝑚

 

= � � (−1)𝑖
𝑑|𝑚

𝜔(𝑑)=𝑖

𝑘

𝑖=0

 

= ��𝑘𝑖� (−1)𝑖
𝑘

𝑖=0

 

and according to the binomial theorem 

= (1 − 1)𝑘 

= 0 96. 

Definition 5.4: The Dirichlet convolution 𝑓 ∗ 𝑔 is defined by 

(𝑓 ∗ 𝑔)(𝑛) = �𝑓(𝑑)𝑔 �
𝑛
𝑑
� = � 𝑓(𝑑)𝑔(𝑑′),

𝑑𝑑′=𝑛𝑑|𝑛

 

where the sum is over all positive divisors 𝑑 of 𝑛97. 

Definition 5.5: The arithmetic function 𝛿(𝑛) is defined by 

𝛿(𝑛) =  1      𝑖𝑓 𝑛 = 1,
 0      𝑖𝑓 𝑛 > 1, 

                                                        
96 Nathanson 2000, pp. 217-218 
97 Nathanson 2000, p. 201 
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 the zero function 0(𝑛) by 

0(𝑛) = 0, 

and the function 1(𝑛) by 

1(𝑛) = 1 

for all 𝑛98. 

Lemma 5.2: The Dirichlet convolution is commutative and associative, that is, 

𝑓 ∗ 𝑔 = 𝑔 ∗ 𝑓 

and  

(𝑓 ∗ 𝑔) ∗ ℎ = 𝑓 ∗ (𝑔 ∗ ℎ) 

for all arithmetic functions 𝑓,𝑔, and ℎ99. 

Proof of lemma 5.2: To prove this lemma, one has to use mere elementary 

calculations. It is 

(𝑓 ∗ 𝑔)(𝑛) = �𝑓(𝑑)𝑔 �
𝑛
𝑑
� = �𝑔�

𝑛
𝑑
� 𝑓(𝑑) = �𝑔(𝑑)𝑓 �

𝑛
𝑑
�

𝑑|𝑛𝑑|𝑛𝑑|𝑛

= (𝑔 ∗ 𝑓)(𝑛), 

which proves the commutativity of the Dirichlet convolution. Moreover, 

�(𝑓 ∗ 𝑔) ∗ ℎ�(𝑛) = �(𝑓 ∗ 𝑔)(𝑑)ℎ �
𝑛
𝑑
�

𝑑|𝑛

 

= � (𝑓 ∗ 𝑔)(𝑑)ℎ(𝑚)
𝑑𝑚=𝑛

 

= � �𝑓(𝑘)𝑔 �
𝑑
𝑘
� ℎ(𝑚)

𝑘|𝑑𝑑𝑚=𝑛

 

                                                        
98 Nathanson 2000, p. 201 and 218 
99 Nathanson 2000, p. 202 
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= � � 𝑓(𝑘)𝑔(𝑙)ℎ(𝑚)
𝑘𝑙=𝑑𝑑𝑚=𝑛

 

= � 𝑓(𝑘)𝑔(𝑙)ℎ(𝑚)
𝑘𝑙𝑚=𝑛

 

= �𝑓(𝑘) � 𝑔(𝑙)ℎ(𝑚)
𝑙𝑚=𝑛 𝑘⁄𝑘|𝑛

 

= �𝑓(𝑘) � 𝑔(𝑙)ℎ �
𝑛
𝑘𝑙
�

𝑙|(𝑛 𝑘⁄ )𝑘|𝑛

 

= �𝑓(𝑘)(𝑔 ∗ ℎ) �
𝑛
𝑘
�

𝑘|𝑛

 

= �𝑓 ∗ (𝑔 ∗ ℎ)�(𝑛) 

and, thus, the Dirichlet convolution is also associative100.  

With the use of straightforward calculations, one can even prove that the set of all 

complex-valued arithmetic functions is a commutative ring, with addition defined by 

point wise sum and multiplication defined by the Dirichlet convolution. The additive 

identity is 0(𝑛), whereas the multiplicative identity is 𝛿(𝑛)101. However, this is not 

needed for the Möbius inversion and, therefore, not proved in this paper. 

By using the Dirichlet convolution and by defining the arithmetic function 1(𝑛) by 

1(𝑛) = 1 for all 𝑛, one can reformulate lemma 5.1 as follows: 

𝜇 ∗ 1 = 𝛿 

and, thus, the Möbius function is a unit with inverse 1102. 

Sequel to the proof of theorem 5.2: If one uses lemma 5.1 and 5.2, the Möbius 

inversion is easy to prove. Using the Dirichlet convolution, the definition  

                                                        
100 Nathanson 2000, p. 202 
101 Nathanson 2000, p. 202 
102 Nathanson 2000, p. 218 
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𝑔(𝑛) = �𝑓(𝑑)
𝑑|𝑛

 

is equivalent to 

𝑔 = 𝑓 ∗ 1. 

Moreover, 

𝑔 ∗ 𝜇 = (𝑓 ∗ 1) ∗ 𝜇 = 𝑓 ∗ (1 ∗ 𝜇) = 𝑓 ∗ 𝛿 

and  

(𝑓 ∗ 𝛿)(𝑛) = (𝛿 ∗ 𝑓)(𝑛) = �𝛿(𝑑)𝑓 �
𝑛
𝑑
�

𝑑|𝑛

= 𝛿(1)𝑓 �
𝑛
1
� = 𝑓(𝑛), 

hence,  

𝑔 ∗ 𝜇 = 𝑓 

and by applying the definition of the Dirichlet convolution, one gets 

𝑓(𝑛) = �𝑔(𝑑)𝜇 �
𝑛
𝑑
� = �𝜇�

𝑛
𝑑
�

𝑑|𝑛𝑑|𝑛

𝑔(𝑑). 

To prove the other direction, one uses the same arguments. 

The definition 

𝑓(𝑛) = �𝜇�
𝑛
𝑑
�𝑔(𝑑)

𝑑|𝑛

 

is equivalent to 

𝑓 = 𝑔 ∗ 𝜇. 

Furthermore, 

𝑓 ∗ 1 = (𝑔 ∗ 𝜇) ∗ 1 = 𝑔 ∗ (𝜇 ∗ 1) = 𝑔 ∗ 𝛿 = 𝑔 

and again by applying the definition of the Dirichlet convolution, one obtains 
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𝑔(𝑛) = �𝑓(𝑑)1 �
𝑛
𝑑
�

𝑑|𝑛

 

and due to the definition of the function 1(𝑛) for all 𝑛, this gives 

𝑔(𝑛) = �𝑓(𝑑)103.
𝑑|𝑛

 

Now with the help of the Möbius inversion, one can express the prime counting 

function 𝜋(𝑥) in terms of the 𝐽 function. 

𝜋(𝑥) = �
𝜇(𝑛)
𝑛

∞

𝑛=1

𝐽�√𝑥𝑛 � 

This is again a finite sum, since 𝐽(𝑥) = 0 for every 𝑥 < 2. The most important fact is 

that Riemann managed to express 𝐽(𝑥) in terms of 𝜁(𝑥). 

According to theorem 5.1, 

𝜁(𝑠) = �(1 − 𝑝−𝑠)−1.
𝑝∈𝑃

 

By taking the logarithm, one gets 

log 𝜁(𝑠) = �−
𝑝∈𝑃

log(1 − 𝑝−𝑠) 104. 

McLaurin’s infinite series for log(1 − 𝑥) says that if −1 ≤ 𝑥 < 1, it follows that 

log(1 − 𝑥) = �−
𝑥𝑛

𝑛
 

∞

𝑛=1

105. 

Therefore, as long as 𝑠 is positive one can apply McLaurin’s infinite series for  

log(1 − 𝑥). Hence, 

                                                        
103 Nathanson 2000, p. 219 
104 Derbyshire 2003, pp. 302-304 
105 Derbyshire 2003, pp. 148-149 



48 
 

log 𝜁(𝑠) = ��
1

𝑛𝑝𝑛𝑠

∞

𝑛=1𝑝∈𝑃

 

=
1
2𝑠

+
1

2 ∗ 22𝑠
+

1
3 ∗ 23𝑠

+
1

4 ∗ 24𝑠
+ ⋯ 

+
1
3𝑠

+
1

2 ∗ 32𝑠
+

1
3 ∗ 33𝑠

+
1

4 ∗ 34𝑠
+ ⋯ 

+
1
5𝑠

+
1

2 ∗ 52𝑠
+

1
3 ∗ 53𝑠

+
1

4 ∗ 54𝑠
+ ⋯ 

+⋯ 

In order to be able to establish the connection with the 𝐽 function, one has to look at 

the integral of 𝐽(𝑥) 106.  

 
Figure 5: The function of 𝐽(𝑥) with an exemplary stripe starting from 𝑥 = 32. 

By analyzing the graph of 𝐽(𝑥), as shown in Fig. 5, more closely, one can see that 

there are infinitely many stripes going to infinity. The ones starting from each prime 

have the height 1, from each square of a prime have the height 1
2
, from each cube of 

a prime have the height 1
3
, and so forth. In the end, one obtains 

                                                        
106 Derbyshire 2003, pp. 304-305 
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� 𝐽(𝑥)𝑑𝑥
∞

0

= �� �
1
𝑛

∞

𝑝𝑛

𝑑𝑥
∞

𝑛=1𝑝∈𝑃

 

= � 1𝑑𝑥 + �
1
2
𝑑𝑥 +

∞

22

∞

2

�
1
3
𝑑𝑥 +

∞

23

�
1
4
𝑑𝑥 +

∞

24

… 

+� 1𝑑𝑥 + �
1
2
𝑑𝑥 +

∞

32

∞

3

�
1
3
𝑑𝑥 +

∞

33

�
1
4
𝑑𝑥 +

∞

34

… 

+� 1𝑑𝑥 + �
1
2
𝑑𝑥 +

∞

52

∞

5

�
1
3
𝑑𝑥 +

∞

53

�
1
4
𝑑𝑥 +

∞

54

… 

+⋯ 

Therefore, the integral of 𝐽(𝑥) is infinite. To connect the infinite integral of 𝐽(𝑥) with 

the zeta function, one has to squish down the 𝐽 function at the right side by 

multiplying it with 𝑥−𝑠−1. This leads to the following integral. 

� 𝐽(𝑥)𝑥−𝑠−1𝑑𝑥
∞

0

= �� �
1
𝑛

∞

𝑝𝑛

𝑥−𝑠−1𝑑𝑥
∞

𝑛=1𝑝∈𝑃

 

= � 1𝑥−𝑠−1𝑑𝑥 + �
1
2
𝑥−𝑠−1𝑑𝑥 +

∞

22

∞

2

�
1
3
𝑥−𝑠−1𝑑𝑥 +

∞

23

�
1
4
𝑥−𝑠−1𝑑𝑥 +

∞

24

… 

+� 1𝑥−𝑠−1𝑑𝑥 + �
1
2
𝑥−𝑠−1𝑑𝑥 +

∞

32

∞

3

�
1
3
𝑥−𝑠−1𝑑𝑥 +

∞

33

�
1
4
𝑥−𝑠−1𝑑𝑥 +

∞

34

… 

+� 1𝑥−𝑠−1𝑑𝑥 + �
1
2
𝑥−𝑠−1𝑑𝑥 +

∞

52

∞

5

�
1
3
𝑥−𝑠−1𝑑𝑥 +

∞

53

�
1
4
𝑥−𝑠−1𝑑𝑥 +

∞

54

… 

+⋯ 107 

 

                                                        
107 Derbyshire 2003, pp. 306-309 
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Figure 6: The function of 𝐽(𝑥)𝑥−𝑠−1 for 𝑠 = 1,2 with an exemplary stripe starting from 𝑥 = 32. 

The last step to finally get to Riemann’s achievement and see the connection 

between the 𝐽 and the zeta function is only shown exemplarily. If one picks the 

integral  ∫ 1
2
𝑥−𝑠−1𝑑𝑥∞

32  out of the infinite sum of infinite sums of integrals, one can 

show that  

1
2
� 𝑥−𝑠−1
∞

32

𝑑𝑥 =
1

2 ∗ 32𝑠𝑠
 

Proof: Since  

�𝑥−𝑠−1𝑑𝑥 = −
1
𝑠𝑥𝑠

, 

one obtains 

1
2 ∫ 𝑥−𝑠−1∞

32 𝑑𝑥 = 1
2
�0 + 1

32𝑠𝑠
� = 1

2∗32𝑠𝑠
 108. 

                                                        
108 Derbyshire 2003, p. 305 
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Therefore, it can be seen that 1
2 ∫ 𝑥−𝑠−1∞

32 𝑑𝑥 is exactly the same as the term found in 

log 𝜁(𝑠) divided by 𝑠. 

log 𝜁(𝑠) = ��
1

𝑛𝑝𝑛𝑠

∞

𝑛=1𝑝∈𝑃

 � 𝐽(𝑥)𝑥−𝑠−1𝑑𝑥
∞

0

= �� �
1
𝑛

∞

𝑝𝑛

𝑥−𝑠−1𝑑𝑥
∞

𝑛=1𝑝∈𝑃

 

=
1
2𝑠

+
1

2 ∗ 22𝑠
+

1
3 ∗ 23𝑠

+
1

4 ∗ 24𝑠
+ ⋯ = � 1𝑥−𝑠−1𝑑𝑥 + �

1
2
𝑥−𝑠−1𝑑𝑥 +

∞

22

∞

2

… 

+
1
3𝑠

+
1

2 ∗ 32𝑠
+

1
3 ∗ 33𝑠

+
1

4 ∗ 34𝑠
+ ⋯ +� 1𝑥−𝑠−1𝑑𝑥 + �

1
2
𝑥−𝑠−1𝑑𝑥

∞

32

∞

3

+. .. 

+
1
5𝑠

+
1

2 ∗ 52𝑠
+

1
3 ∗ 53𝑠

+
1

4 ∗ 54𝑠
+ ⋯ +� 1𝑥−𝑠−1𝑑𝑥 + �

1
2
𝑥−𝑠−1𝑑𝑥 +

∞

52

∞

5

… 

+⋯ +⋯ 

 

Consequently,  

log 𝜁(𝑠)
𝑠

= � 𝐽(𝑥)𝑥−𝑠−1𝑑𝑥
∞

0

. 

This was Riemann’s great achievement. If one now inverted this expression, one 

would then be able to express the prime counting function 𝜋(𝑥) in terms of 𝜁(𝑠),  

since it has already been shown how to express 𝜋(𝑥) in terms of 𝐽(𝑥). Riemann 

managed to connect the prime counting function belonging to number theory with the 

zeta function belonging to analysis und calculus. This bridge between mere counting 

and actual measuring was Riemann’s greatest achievement109. 

Some of the most important results of this finding are: 

• The fact that 𝜁(𝑠) → ∞ as 𝑠 → 1 implies that there are infinitely many prime 

numbers. 
                                                        
109 Derbyshire 2003, pp. 309-310 
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• The fact that 𝜁(𝑠) has no zeros on the line 𝑅𝑒(𝑠) = 1 immediately leads to the 

Prime Number Theorem. 

• The properties of the zeta function in the critical strip (0 < 𝑅𝑒(𝑠) < 1) lead to 

deep aspects of the prime counting function, such as the essential error term 

in the Prime Number Theorem110. 

 

5.3. Riemann Hypothesis, the Greatest Unsolved Problem in 
Mathematics 

The Riemann Hypothesis says that all non trivial zeros of the zeta function have real 

part 1
2

 111.  

This Hypothesis became very famous when David Hilbert presented a list of 23 open 

problems at the 1990 International Congress of Mathematicians112. He began his 

speech with the following words: 

“Who of us would not be glad to lift the veil behind which the future lies 
hidden; to cast a glance at the next advances of our science and at 
the secrets of its development during future centuries?”113 

He finished his address with a list of 23 mathematical problems on which he wanted 

mathematicians to concentrate, because he thought that a discussion of these might 

result in an advancement of science114. Only three of these problems have not been 

solved yet, one of it being the Riemann Hypothesis115. 

The importance of this hypothesis gets clear if one looks at the hundreds of theorems 

beginning with “Assuming the truth of the Riemann Hypothesis…”116. It beggars the 

imagination what will happen if the Riemann Hypothesis can be proved wrong, if 

someone finally finds a zero not being on the critical line. 

 
                                                        
110 Crandall & Pomerance 2005, pp. 34-35 
111 Derbyshire 2003, p. 77 
112 Encyclopedia of Mathematics 2012 
113 Hilbert 1990 
114 Hilbert 1990 
115 Yandell 2001, p. 385 
116 Derbyshire 2003, p. 357 
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Andrew Odlyzko once said that: 

It was said that whoever proved the Prime Number Theorem would 
attain immortality. Sure enough, both Hadamard and de la Vallée 
Poussin lived into their late nineties. It may be that there is a corollary 
here. It may be that the RH is false; but, should anyone manage to 
actually prove its falsehood – to find a zero off the critical line – he will 
be struck dead on the spot, and his result will never become known117. 

                                                        
117 Derbyshire 2003, p. 356 
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6. Conclusion 

Prime numbers are an incredibly vital and fascinating part of mathematics. As shown 

in this paper, there is much which has been discovered about prime numbers. The 

mathematicians of Pythagoras’ school already knew that every number is either a 

prime number or can be decomposed into prime numbers. The fundamental theorem 

of arithmetic, which was proved much later, adds that this factorization is in fact 

unique. Thus, prime numbers can be seen as the DNA of every number. About 300 

BC, Euclid proved that there exist infinitely many prime numbers, although one 

nowadays also knows that there exist arbitrarily big gaps in this infinite prime number 

sequence.  

However, prime numbers still contain one of the greatest unsolved problems in 

today’s mathematics, their distribution. Both Gauss and Legendre noticed that the 

prime counting function 𝜋(𝑥) is asymptotically equal to 𝑥
log𝑥

 known as the Prime 

Number Theorem. About 100 years later, Hadamard and de la Vallée Poussin 

managed to prove this theorem. Moreover, Riemann made great progress in the field 

of prime numbers and the growth of 𝜋(𝑥) by examining the zeta function for complex 

numbers. His hypothesis about the location of the non trivial zeros of the zeta 

function has had an immense influence not only on the field of prime numbers but 

also on other areas of mathematics and even physics.  

Regardless of the numerous great mathematicians who have spent many years of 

their lives studying prime numbers and the zeta function, no one has managed to 

completely understand the distribution of prime numbers or find any pattern in their 

sequence. 

Euler once said: 

Mathematicians have tried in vain to this day to discover some order in 
the sequence of prime numbers, and we have reason to believe that it is a 
mystery, into which human mind will never penetrate118. 

 

                                                        
118 Verkhovsky & Mutovic 2005, p. 2 
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9. Appendix 
9.1. Primes up to 1,000 in Decimal Notation 

2 3 5 7 11 13 17 19 23 29 

31 37 41 43 47 53 59 61 67 71 

73 79 83 89 97 101 103 107 109 113 

127 131 137 139 149 151 157 163 167 173 

179 181 191 193 197 199 211 223 227 229 

233 239 241 251 257 263 269 271 277 281 

283 293 307 311 313 317 331 337 347 349 

353 359 367 373 379 383 389 397 401 409 

419 421 431 433 439 443 449 457 461 463 

467 479 487 491 499 503 509 521 523 541 

547 557 563 569 571 577 587 593 599 601 

607 613 617 619 631 641 643 647 653 659 

661 673 677 683 691 701 709 719 727 733 

739 742 751 757 761 769 773 787 797 809 

811 821 823 827 829 839 853 857 859 863 

877 881 883 887 907 911 919 929 937 941 

947 953 967 971 977 983 991 997   

Twin primes 

 

9.2. Primes up to 100 in Binary Notation 

10 11 101 111 1011 

1101 10001 10011 10111 11101 

11111 100101 101001 101011 101111 

110101 111011 111101 1000011 1000111 

1001001 1001111 1010011 1011001 1100001 

Twin primes 
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9.3. Song: “Where are the zeros of zeta of s?” 

Where are the zeros of zeta of s?119  
by Tom M. Apostol 

(To the tune of Sweet Betsy from Pike) 

Where are the zeros of zeta of s? 

G.F.B. Riemann has made a good guess: 

“They're all on the critical line,” stated he, 

“And their density's one over two pi log T.” 

This statement of Riemann's has been like trigger, 

And many good men, with vim and with vigor, 

Have attempted to find, with mathematical rigor, 

What happens to zeta as mod t gets bigger. 

The efforts of Landau and Bohr and Cramér, 

Hardy and Littlewood and Titchmarsh are there. 

In spite of their effort and skill and finesse, 

In locating the zeros there's been no success. 

In 1914 G.H. Hardy did find, 

An infinite number that lie on the line. 

His theorem, however, won't rule out the case, 

That there might be a zero at some other place. 

Let P be the function pi minus Li; 

The order of P is not known for x high. 

If square root of x times log x we could show, 

Then Riemann's conjecture would surely be so. 

Related to this is another enigma, 

Concerning the Lindelöf function mu sigma, 

                                                        
119 Derbyshire 2003, pp. 394-395 
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Which measures the growth in the critical strip; 

On the number of zeros it gives us a grip. 

But nobody knows how this function behaves. 

Convexity tells us it can have no waves. 

Lindelöf said that the shape of its graph 

Is constant when sigma is more than one-half. 

Oh, where are the zeros of zeta of s? 

We must know exactly. It won’t do to guess, 

In order to strengthen the prime number theorem, 

The integral's contour must never go near 'em. 

André Weil has improved on old Riemann’s fine guess 

By using a fancier zeta of s. 

He Proves that the zeros are where they should be, 

Provided the characteristic is p. 

There’s a moral to draw from this long tale of woe 

That every young genius among you must know: 

If you tackle a problem and seem to get stuck, 

Just take I mod p and you’ll have better luck. 
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