
D I P L O M A R B E I T

M A S T E R ’ S T H E S I S

Review of
stochastic Finite-Element approaches
and assessment of their applicability

to wood-based products

ausgeführt zum Zwecke der Erlangung des akademischen
Grades eines Diplom-Ingenieurs

unter der Anleitung von

Univ. Ass. Dipl.-Ing. Dr. techn. Josef Füssl
Institut für Mechanik der Werkstoffe und Strukturen

Fakultät für Bauingenieurwesen
Technische Universität Wien

und

Univ. Prof. Dipl.-Ing. Dr. techn. DDr. h.c. Josef Eberhardsteiner
Institut für Mechanik der Werkstoffe und Strukturen

Fakultät für Bauingenieurwesen
Technische Universität Wien

eingereicht an der Technischen Universität Wien
Fakultät für Bauingenieurwesen

von

Georg Kandler

Matr.Nr.: 06 26 144
Webgasse 22/2/4

A - 1060 Wien

Wien, im Februar 2012

 
 
Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der 
Hauptbibliothek der Technischen Universität Wien aufgestellt  
(http://www.ub.tuwien.ac.at). 
 
The approved original version of this diploma or master thesis is available at the 
main library of the Vienna University of Technology   
(http://www.ub.tuwien.ac.at/englweb/). 

 



Danksagung

Mein Dank richtet sich an alle Mitarbeiter des Instituts für Mechanik der Werkstoffe
und Strukturen. Dekan Univ.-Prof. Dipl.-Ing. Dr. techn. DDr. h.c. Josef Eberhardsteiner
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gehaltene Lehrveranstaltung zur Einführung in die stochastische Mechanik. Auf den in
dieser Lehrveranstaltung vermittelten Grundlagen baut diese Arbeit auf.
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Kurzfassung

Das natürliche Wachstum von Holz führt zu nicht konstanten Dichteverteilungen und un-
terschiedlichen Astgruppen in Bauholz, das in den verschiedensten Formen, zum Beispiel
als Konstruktionsvollholz (KVH), Brettschichtholz (BSH) oder Brettsperrholz, genutzt
wird. Die aktuell angewandten Bemessungs- und Berechnungsverfahren basieren jedoch
hauptsächlich auf deterministischen Konzepten und empirisch hergeleiteten Materialpa-
rametern, die die in der Realität auftretende Streuung der Materialeingangswerte nicht
ausreichend berücksichtigen. Das Resultat sind teilweise unwirtschaftliche Konstruktio-
nen, die aber trotz hoher Sicherheitsbeiwerte die Gebrauchstauglichkeit nicht unbedingt
gewährleisten.

Daher ist das Ziel dieser Arbeit, den Einfluss der räumlich zufällig variierenden Stei-
figkeit eines Brettes auf die Gesamtsteifigkeit des Endprodukts BSH zu quantifizieren.
Die zufälligen Materialeigenschaften werden durch Zufallsvariablen, -prozesse und -felder
modelliert. Um daraus die mechanischen Eigenschaften von BSH ableiten zu können, wer-
den unterschiedliche Verfahren der so genannten Stochastischen Finite Elemente Metho-
de (SFEM) vorgestellt, die hauptsächlich in den letzten drei Jahrzehnten entwickelt wur-
den. Zur Berechnung des Mittelwerts und der Standardabweichung der Struktureigen-
schaften eignen sich vor allem die Monte Carlo Simulation, die “Perturbation” Methode
basierend auf der Taylorreihenentwicklung und die Spektrale Stochastische Finite Ele-
mente Methode. Diese Methoden werden mit der Mittelpunktsdiskretisierung und der
Karhunen-Loève Reihenentwicklung kombiniert und auf BSH mit bis zu vier Brettlagen
angewendet. Schlußendlich wird in einer Parameterstudie die Genauigkeit der Methoden
verglichen, und vor allem der oben genannte Einfluss einzelner Bretter auf die Gesamt-
steifigkeit verdeutlicht.

An den Ergebnissen kann man sehen, dass die Monte Carlo Simulation zwar eine
flexible und genaue Methode, dafür aber auch sehr rechenintensiv ist. Im Gegensatz dazu
benötigen die “Perturbation” Methode und die Spektrale Stochastische Finite Elemente
Methode einen Bruchteil an Rechenzeit. Während mit letzterer genaue Resultate für
einzelne Bretter gewonnen werden können, liefert die “Perturbation” Methode vor allem
bei mehreren Brettern gute Ergebnisse.

Zusammenfassend lässt sich sagen, dass mit der Stochastischen Finite Elemente Me-
thode sehr effizient und genau auf die Streuung der mechanischen Eigenschaften von
holz-basierten Produkten geschlossen werden kann. Daher liegt es nahe, dass die darauf
basierenden Resultate stark an Bedeutung gewinnen werden, sei es bei der Sortierung von
Bauholz, der Optimierung von Holzprodukten oder in zukünftigen Bemessungsansätzen
für Holzkonstruktionen.



Abstract

Considering timber elements, a high variability of their effective properties is induced
by uncertain density distributions and the existence of different knot groups. However,
dimensioning practice and many existing design rules for glued-laminated-timber (GLT)
are still based on deterministic calculation methods. The stochastic aspect is only con-
sidered by empirically determined parameters, which often leads to unsatisfactory results
in terms of efficiency and reliability of wood-based products and timber structures.

This thesis aims at giving an idea of how the spatial stiffness variability of timber
influences the performance of wood-based products, in this case GLT. The variabil-
ity is captured using the framework of random variables, processes, and fields. To place
these uncertain quantities into a mechanical context, different Stochastic-Finite-Element
Methods (SFEM), which have been mainly developed within the last three decades, are
reviewed. For obtaining the mean value and standard deviation of the structural re-
sponse, the most promising approaches are the Monte Carlo simulation, the Perturba-
tion Method and the Spectral-Stochastic-Finite-Element Method. The application of
these methods to a GLT beam with up to four laminations is presented and discussed in
detail. Thereby, the random field is approximated either with discrete elements (mid-
point method) or by using series expansions (Karhunen-Loève expansion). Finally, in a
parameter study the performance of the different approaches is compared and, in par-
ticular, the influence of the variability of the “raw” material on the structural response
is shown.

Well known effects, such as the decrease of the variability of effective properties of
GLT with increasing number of laminations, are numerically reproduced and quantified.
Moreover, a significant influence of the correlation length, specifying the rate of material-
property fluctuation, on the “overall” stiffness is demonstrated.

Regarding the different approaches, the Monte Carlo simulation, on the one hand,
is an universally applicable method and suitable for obtaining reference results. How-
ever, the computational effort is huge compared to the Perturbation- and the Spectral-
Stochastic-Finite-Element Method, respectively, which provide results of equal quality,
when used in the right context.

Summarized, it can be said that the Stochastic-Finite-Element Method is a powerful
and valuable tool to gain understanding of the variability of the mechanical behaviour of
wood-based products. Results, based on this methods, will become important in many
fields, from grading and optimization of wood-based products to engineering design of
wooden structures.
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Chapter1
Introduction

1.1 Motivation

Wood is a naturally renewable material and is consequently gaining importance for a
number of reasons. Most importantly, forestry and wood products play a major role in
combating climate changes and can help European countries to achieve their Kyoto tar-
gets, not only by increasing the carbon sink of wood-based products and growing forests,
but also by decreasing carbon sources through substituting energy-intensive products by
wood-based products. Not least because of its evident ecological advantages, its share on
the building market is constantly increasing, and volume consumption is facing enormous
growth rates.

Nevertheless, dimensioning practice and many existing design rules are still based on
an empirical background, which often gives unsatisfactory results in terms of efficiency
and reliability. Developing the design concepts of wood-based products and improving
analysing techniques for timber structures will strengthen the competitiveness of wood
against other technical materials and open up new fields of application and new markets,
respectively. Among others, the Finite-Element Method (FEM) has been proven to be a
powerful and versatile numerical method to predict the structural behaviour of complex
systems. However, in general, commercial FE-codes can handle only deterministic quan-
tities, but nearly all building materials used in civil engineering show a certain amount
of structural variability, leading to a variability in their material properties, too.

Considering timber elements, the main variability of their effective properties is in-
duced by uncertain density distributions and different knot groups. For example, an
unfavorable located knot group can reduce the local stiffness or strength up to an order
of magnitude, compared with the “undisturbed” material. Through grading processes,
the variance of the effective timber properties is reduced for a certain grading class, and
specified in terms of statistical information, e.g. the mean value and variance of the elas-
ticity modulus. Current design methods are not able to take the statistical distribution
of material properties into account, and thus, delivering no statistical information of the
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structural response. Therefore, in recent years, effort has been made in enhancing the
FE-method and implementing the ability to derive random quantities as well. These ap-
proaches are denoted as the Stochastic-Finite-Element Method (SFEM). Their purpose
lies in the implementation of the framework of random variables, processes, and fields,
which allows handling such uncertain input, implied that its statistical information, e.g.
for the Gaussian assumption the mean value and the variance, is available.

In this thesis, different representations of random fields with respect to the SFEM
are proposed. Furthermore, a comprehensive overview of existing SFEMs is given, and
the main characteristics of each approach are briefly described. Finally, different SFE
approaches are applied to a glued-laminated-timber beam, showing the performance
of the different methods and giving a first idea how valuable such approaches for the
understanding and improvement of wood-based products possibly can be.

1.2 Structure of the thesis

Chapter 2 gives basic insights in probability theory, while in Chapter 3 the concept of
random field representation is explained. The different SFE-methods are described in
Chapter 4. Finally, in Chapter 5 the application of different SFE approaches to a glued-
laminated-timber beam, subjected to loading in longitudinal direction, is shown, and
the obtained results are discussed. Concluding remarks are given in Chapter 6.



Chapter2
Probability and random fields

2.1 Probability theory

The term trial usually describes the observation of a random phenomenon with uncertain
outcome. When conducting an experiment, the actual outcome is called realization. The
so called sample space Θ consists of all possible outcomes θ, whereas an event A is a
subset of Θ, consisting of a specific set of outcomes θ ∈ Θ. The probability P [.] provides
a so called probability measure by assigning real numbers to events, thereby allowing
interpretation of their probability of occurence. Since it is not always possible to assign
a probability to each event A ∈ Θ, the focus will lie on the set of events F , to which
probabilities can be assigned, and which is called σ-algebra associated with Θ. The
resulting so called probability space is denoted by (Θ,F , P ) [39].

The most convenient way to define the probability P [A] for an event A, is to divide
the number of ways event A can occur by the total number of outcomes Θ. This is the
so called classical definition of probability :

P [A] =
number of possibilities favorable for event A

total number of outcomes Θ
(2.1)

For example when rolling the dice the number of possibilities for the number 6 to occur is
1, whereas the total number of possibilities is 6. Therefore, the probability for a perfect
balanced die showing a 6 equals 1/6. For a probability of zero (P [A] = 0), A is called
an impossible event . An event is called almost sure if the probability equals 1. However,
there exist problems, which cannot be predicted with the classical definition sufficiently,
e.g. Bertrand’s paradox [40].

Hence the modern definition of probability P [.] is based on the Kolmogorov-axioms:

0 ≤ P [A] ≤ 1, (2.2)

P [Θ] = 1, (2.3)

P [A ∪ B] = P [A] + P [B], (2.4)
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Figure 2.1: Events A and B are mutual ex-
clusive while C shares an intersection area
with both of them.
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Θ

Figure 2.2: Events Bi are partitioning the
sample space, which is shared with A. The
law of total probability provides the link
between P [A] and the conditional proba-
bilites P [A | Bi].

where A and B are events, while Θ is the sample space consisting of all events, i.e.
Θ = {A ∪ B ∪ C ∪ . . . }. An event is a set of possible outcomes and thus, as stated
above, the sample space is the set of all possible outcomes. Figure 2.1 shows a so called
Venn-diagram consisting of events A,B and C being embedded in sample space Θ. The
probability for an event to occur ranges from 0 to 1 (see Equation (2.2)). The sum of
all events in Θ equals the sample space, thus it covers every possibility. Therefore, Θ is
called an almost sure event and its probability is equal to 1, as given in Equation (2.3).
For instance, when throwing the dice, possible events are A1 = 1,A2 = 2, . . . ,A6 = 6
with the sample space Θ = {A1 ∪ · · · ∪A6} = {1∪ · · · ∪ 6}. The probability P [Θ] equals
the probability that the die will show any of its faces, which is obviously equal to one.
The counterpart to the almost sure event is an event which covers a set of outcomes
infeasible by the nature of the experiment, and is called almost impossible event .

The probability that different events occur, given they are mutually exclusive (also
called mutually disjoint), equals the sum of the individual probabilities. Two mutually
exclusive events are events that cannot both occur at the same time or in the same trial,
in other words: They don’t share an intersection area in the Venn diagram (for example,
eventsA and B in Figure 2.1, whereA∩B = Ø). Two faces of a die are mutually exclusive
because only one face can be up at a time. For instance, A1 = {1} and A2 = {2} is
rolling a 1 and 2, respectively. Since they are mutually exclusive, the probability for
A1 or A2 to occur is P [A1 ∪ A2] = P [A1] + P [A2] = 1/6 + 1/6 = 1/3. Giving another
example, event A = {1 ∪ 2} is rolling a 1 or 2 whereas event B = {3 ∪ 4} is rolling a
3 or 4. The probability of event A or event B to occur is P [A ∪ B] = P [A] + P [B] =
{1 ∪ 2}+ {3 ∪ 4} = 1/3 + 1/3 = 2/3.

Obviously, there are events that are not mutually exclusive, meaning they are sharing
an intersection area like events A and C in Figure 2.1. For example, event A = {1 ∪ 2}
is rolling a 1 or 2 whereas event B = {2 ∪ 3} is rolling a 2 or 3. If the die shows a
2 then both events occur at the same time, therefore violating the mutual exclusivity.
Deriving the probability P [A∪B] with Equation (2.4) leads to an error now, the outcome
is P [A ∪ B] = P [A] + P [B] = {1 ∪ 2} + {2 ∪ 3} = 1/3 + 1/3 = 2/3, which cannot be
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true because number 2 is accounted twice for. The correct equation for not mutually
exclusive events is

P [A ∪ B] = P [A] + P [B]− P [A ∩ B], (2.5)

including the so called joint probability P [A ∩ B]. Since we are talking about the same
area in the Venn diagram, the probabilities of the so called joint events A∩B and B∩A
are equal, or in other words, the events A and B can be exchanged:

P [A ∩ B] = P [B ∩ A] (2.6)

The correct answer now is P [A∪B] = P [A]+P [B]−P [A∩B] = P [{1∪2}]+P [{2∪3}]−
P [{1∪2}∩{2∪3}] = 1/3+1/3−1/6 = 1/2, because P [{1∪2}∩{2∪3}] = P [{2}] = 1/6.

In some cases the probability of one event given the occurence of another event is of
interest. This is the so called conditional probability

P [A | B] =
P [A ∩ B]

P [B]
. (2.7)

For instance, when looking at Figure 2.2, the relevant sample space for event A has
changed from Θ to B1, since it is given the occurence of event B1. The space of possibil-
ities for event A occuring conditional on event B1 is restricted to the intersection area
of those two events P [A ∩ B1]. The conditional probability then equals the probability
of the intersection area P [A ∩ B1] divided by the probability of the new sample space
P [B1]. For example event A = {1 ∪ 3 ∪ 5} describes the possibilities of a die showing
an odd number. On the other hand event B = {4 ∪ 5 ∪ 6} is the roll takes a value
equal or greater than 4. Then the probability of A conditional on B is P [A | B] =
P [{1∪ 3∪ 5} ∩ {4∪ 5∪ 6}]/P [{4∪ 5∪ 6}] = P [{5}]/P [{4∪ 5∪ 6}] = (1/6)/(1/2) = 1/3.

Two events are called independent , if

P [A | B] = P [A]. (2.8)

If two eventsA and B are independent, the occurrence of B does not affect the probability
of A conditional on B. Substituting Equation (2.8) into (2.7) yields

P [A ∩ B] = P [A] · P [B]. (2.9)

Supposing two dice are rolled and the dice don’t affect each other, i.e. each roll is
independent. Then the probability for the first die to roll a 2 is A = {2} = 1/6. The
same applies for the second die, thus B = {2} = 1/6. The probability for both rolls to
be a 2 equals P [A ∩ B] = P [A] · P [B] = (1/6) · (1/6) = 1/36.

The equations presented in this section can be generalized for more than 2 events.
Equation (2.4) then becomes

P [A1 ∪ A2 ∪ · · · ∪ AN ] =

N∑
i=1

P [Ai]. (2.10)

Realigning (2.7) and supposing Bi∩Bj = Ø, i 6= j are pairwise mutually exclusive events
yields

P [A ∩ Bi] = P [A | Bi] · P [Bi]. (2.11)
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Under the condition that the sum of the components Bi equals the sample space, i.e.∑N
i=1 Bi = Θ, the probability for A, describing any event in the same sample space Θ

and thus sharing intersection areas with Bi, can be derived with

P [A] =

N∑
i=1

P [A ∩ Bi] =

N∑
i=1

P [A | Bi] · P [Bi]. (2.12)

Equation (2.12) is called the law of total probability . It is visualized in Figure 2.2. Sub-
stituting (2.11) and (2.12) into (2.6) and realigning yields the so called Bayes’ theorem

P [Bi | A] =
P [A | Bi] · P [Bi]

P [A]
=

P [A | Bi] · P [Bi]
N∑
i=1

P [A | Bi] · P [Bi]
. (2.13)

Mathematically speaking, it provides the link between the conditional probability P [Bi |
A] and its inverse P [A | Bi].

As an extension to (2.9) events A1, . . .AN are called independent if and only if

P[A1 ∩ . . . ∩ AN ] = P[A1] · · ·P[AN ]. (2.14)

2.2 Random variables

A real-valued random variable X is a measurable function from sample space Θ to real
space R, i.e. X : Θ → R. In other words, it provides a numerical description of the
outcome of a trial, which is a more or less abstract term. Since any experiment with
sample space Θ is considered to have random output, the corresponding real-valued
number is also random [33]. For example, when throwing the dice, it can take values
θ ∈ Θ with sample space Θ = {1, 2, 3, 4, 5, 6}. The most convenient way is to define the
random variable X equal to the number rolled θ ∈ Θ. Hence X can assume values from
1 to 6. Another example for using random variables is tossing a coin. The sample space
consists of Θ = {heads, tails}, whereas the corresponding random variable X takes on
values of 1 for heads and 0 for tails. In this case X represents a discrete random variable.
Generally speaking, a discrete random variable can assume only a finite or countably
infinite number of values. In other words, a random variable X is discrete, if indexing
the feasible outcomes of X using integers n ∈ N is possible. On the contrary, continuous
random variables X map the outcomes to values of an uncountable set (for example, the
set of real numbers R), in other words, indexing using integers is not possible because X
can assume a continuum of values. Therefore, when estimating the strength of concrete
or steel, continuous random variables are used.

2.3 Univariate probability distribution functions

For an event A = {X < x}, comparing a real-valued random variable X against a
deterministic real value x, there exists a probability P [A] = P [X < x] expressing the
probability for the random variable X to exceed the deterministic value x. The magni-
tude of P [X < x] depends on the value of x. Therefore, a new probability function is
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introduced so that

P [X ≤ x] = FX(x). (2.15)

FX(x) is called the cumulative distribution function (cdf). Since the cdf is related to
one random variable, it is called an univariate distribution function.

The following properties stem from the assumption that all real-valued values x lie
between the limits −∞ and +∞, but never reach either of them:

lim
x→−∞

FX(x) = 0 and lim
x→+∞

FX(x) = 1 (2.16)

The first equation of (2.16) results from knowing that x = −∞ is the smallest possible
value. Thus, the probability forX assuming a value less than x = −∞ is P [x = −∞] = 0.
The second equation stems from knowing that x = +∞ is the biggest possible value and
hence every value of X has to be less than x = +∞ for sure, i.e. P [x = +∞] = 1.
Therefore, FX(x) can assume values from 0 to 1:

0 ≤ FX(x) ≤ 1 (2.17)

The cdf is a monotonically increasing function which can assume values between 0 and
1 for −∞ ≤ x ≤ +∞.

For a continuous random variable X the derivative of FX(x) yields the probability
density function (pdf)

fX(x) =
d(FX(x))

dx
, (2.18)

whereas integrating the pdf returns the cdf

x∫
−∞

fX(ξ)dξ = FX(x). (2.19)

Integrating the pdf over the whole sample space Θ equals integrating from −∞ to +∞,
since this covers the complete range of possibilites for X. From Equation (2.16) then
follows

+∞∫
−∞

fX(x)dx = FX(x) |x=+∞ −FX(x) |x=−∞= 1− 0 = 1. (2.20)

Considering Equation (2.3), the outcome of (2.20) could have been predicted in the first
place. Since the cdf FX(x) is the antiderivative of the pdf fX(x), Equation (2.20) applies
for every x1 < x2:

x2∫
x1

fX(x)dx = FX(x2)− FX(x1) (2.21)

The probability for a continuous random variable X assuming a specific value x is∫ x
x fX(ξ)dξ = 0 according to (2.21). The pdf provides non-zero results only for ranges

of x1 < x2.
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For discrete random variables the pdf becomes the probability mass function (pmf)

pX(x) = P [X = x]. (2.22)

The pmf expresses the finite probability of a discrete random variable X taking a specific
deterministic value x by assuming values between 0 and 1. Similar to (2.20) the pmf
satisfies

N∑
i=1

pX(xi) = 1. (2.23)

2.3.1 Expectation values of univariate pdfs

In most cases so called expected values suffice to describe a pdf completely. For a
continuous random variable the expectation value E[.] is defined by

E[X] =

+∞∫
−∞

xfX(x)dx, (2.24)

while for discrete random variables the definition is as follows:

E[X] =

N∑
i=1

xpX(xi) (2.25)

The first moment (E[Xn] with n = 1 in (2.24)) is called mean or expectation of X. It is
defined by

µX ≡ X̄ ≡ E[X] =

+∞∫
−∞

xfX(x)dx. (2.26)

Deriving E[(x− µX)2] leads to the second central moment, also called variance

σ2
X ≡ Var[X − µX ] = E[(X − µX)2] =

+∞∫
−∞

(x− µX)2fX(x)dx. (2.27)

Equation (2.27) can be simplified:

σ2
X = E[(X − µX)2] = E[X2 − 2µXX + µ2

X ]

= E[X2]− 2µ2
X + µ2

X = E[X2]− µ2
X , (2.28)

which is equivalent to applying the Huygens-Steiner theorem. The squareroot of the
variance is called standard deviation σX

σX =
√
σ2
X =

√
E[X2]− µ2

X . (2.29)
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To normalize the measure of dispersion of a probability distribution the coefficient of
variation δX is introduced:

δX =
σX
µX

(2.30)

Since σX and µX have the same units, δX is unit-less.
The expectation E is a linear operator, thus it can be exchanged with sums and

integrals

E
[∑

Xi

]
=
∑

E[Xi], E

[∫
Xidx

]
=

∫
E[Xi]dx. (2.31)

Furthermore, the following rules apply:

E[aX] = aE[X], a = const., (2.32)

E
[
E[X]

]
= E[X]. (2.33)

2.3.2 Univariate normal (Gaussian) distribution

The Gaussian or normal distribution is popular not only for its simplicity, its use is often
justified by the central limit theorem. It states, that the sum of independent arbitrarily
distributed random variables Xi approaches the normal distribution as the number of
terms is heading to ∞. The normal probability distribution function is a continuous
distribution which is completely described by the mean µX and the standard deviation
σX , therefore a Gaussian random variable is commonly denoted as N(µX , σX):

fX(x) =
1

σX
√

2π
exp

[
−1

2

(
x− µX
σX

)2
]

. . .−∞ < x < +∞ (2.34)

Integrating yields the cdf

FX(x) =
1

σX
√

2π

x∫
−∞

exp

[
−1

2

(
ξ − µX
σX

)2
]

dξ = Φ

(
x− µX
σX

)
. (2.35)

Equations (2.34) and (2.35) are visualized in Figure 2.3. For the integral in Equation
(2.35) no analytical solution Φ(.) exists. However, the random variable X can be trans-
formed into a so called standard normal variable Z = (X − µX)/σX , resulting in a
random variable with zero mean and unit standard deviation, i.e. N(0, 1). Numerical
solutions as well as tables for the cdf of this standard normal variable are widespread
and can be found easily.

On the downside, one has to consider that the normal pdf can assume positive as well
as negative values, what is not desirable in some situations, in particular when depicting
the elastic modulus.
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Figure 2.3: Normal pdf and cdf for N(1, 1).

2.4 Joint probability distribution functions

2.4.1 Random vectors

A random vector X is an array of random variables X1, . . . XM :

X = [X1, . . . XM ]T (2.36)

Sometimes the components of X are mutually independent, but in many cases there
exist, to varying extends, dependencies. The connection between 2 components Xi and
Xj of a random vector can be described by the so called auto-covariance, which is

Cij ≡ Cov[Xi, Xj ] = E[(Xi − µXi)(Xj − µXj )]

=

+∞∫
−∞

+∞∫
−∞

(Xi − µXi)(Xj − µXj )fXi,Xj (xi, xj)dxidxj . (2.37)

In (2.37) fXi,Xj (xi, xj) denotes the so called joint probability density function. Its prop-
erties are similar to the univariate pdf, further details will be presented in the fol-
lowing sections. The quantities Cij are components of the auto-ccovariance matrix
CXX = Cov[X,X]. For a random vector X containing M random variables, the covari-
ance matrix has dimensions of M ×M . For the case of i = j the covariance equals the
variance of random variable Xi

Cii = E[(Xi − µXi)
2] = σ2

Xi
. (2.38)
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Thus, the variance σ2
X can be seen as a special case of the covariance Cij . The dimen-

sionless coefficent of correlation is defined as [41]

ρij ≡ ρXi,Xj =
Cov[Xi, Xj ]

σiσj
=

Cij
σiσj

. (2.39)

The correlation coefficient assumes values in the range of −1 ≤ ρij ≤ +1. For ρij =
±1, random variables Xi and Xj are called perfectly correlated . On the contrary, for
ρij = 0 they are perfectly uncorrelated . The correlation coefficient provides a measurable
quantity for the linear correlation between two random variables.

In contrast to the auto-covariance matrix CXX the so called cross-covariance matrix
CXY provides information on the statistical dependencies between two different random
vectors X and Y. Since the indices already imply if auto-covariance or cross-covariance
is used, from now on those terms will be suppressed where not absolutely necessary.

2.4.2 Bivariate probability distribution functions

The introduction of the random vector X = [X1, X2]T allows extending the concept
presented in Section 2.3 for two random variables, which leads to the following definition
of the so called joint cumulative distribution function [33, 41]

FX1,X2(x1, x2) ≡ F (x1, x2) = P [{X1 ≤ x1} ∩ {X2 ≤ x2}]. (2.40)

The joint cdf gives the probability for the random variables X1 and X2 to exceed the
deterministic values x1 and x2 respectively. Assuming the joint cdf is continuous, differ-
entiation yields

f(x1, x2) =
∂2F (x1, x2)

∂x1∂x2
. (2.41)

Integration of f(x1, x2) returns the joint cdf F (x1, x2)

F (x1, x2) =

x1∫
−∞

x2∫
−∞

f(u1, u2)du1du2. (2.42)

Since the assumpations stated in (2.16) still apply, setting the integration limits to
x1 = +∞, x2 = +∞ yields

F (+∞,+∞) =

+∞∫
−∞

+∞∫
−∞

f(u1, u2)du1du2 = 1. (2.43)

Similar to equations (2.8), (2.9) and (2.14), statements regarding the independence
of random variables X1 and X2 can be made. For instance, two random variables X1

and X2 are called independent if and only if [41]

f(x1, x2) = f(x1)f(x2), (2.44)

which is equal to

f(x1 | x2) = f(x1). (2.45)
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2.4.3 Multivariate probability distribution functions

The concept can be expanded further for a random vector X = [X1, . . . XM ]T consisting
of M components. Then the joint cdf is

FX(x) ≡ F (x) ≡ F (x1, . . . xM ) = P [{X1 ≤ x1} ∩ . . . ∩ {XM ≤ xM}]. (2.46)

Differentiating yields the joint pdf

fX(x) ≡ f(x) =
∂MF (x)

∂x1 . . . ∂xM
=
∂MF (x1, . . . xM )

∂x1 . . . ∂xM
. (2.47)

Random variables X1, . . . XM are called independent if and only if [41]

f(x) = f(x1, . . . xM ) = f(x1) · · · f(xM ). (2.48)

The multi-dimensional Gaussian pdf [6] reads

fX(x) ≡ f(x) =
1

(2π)
n
2
√

det CXX

exp

[
−1

2
(x− µX)TC−1

XX(x− µX)

]
, (2.49)

with µX and CXX denoting the mean value vector and the covariance matrix, respec-
tively.

2.5 Estimators

Estimators provide the ability to assess statistical properties like mean value µ or vari-
ance σ2 for the complete population from just a finite set of samples (e.g. from obser-
vations). There exist certain conditions which have to be fulfilled by the estimators.
Suppose parameter γ has to be estimated from M samples {X1, . . . XM}, then the esti-
mator ΓM (= f(X1, . . . XM )) is consistent if:

lim
M→∞

P[|ΓM − γ| < ε] = 1, ∀ε > 0, (2.50)

meaning, that the estimator ΓM approaches the true value γ with M heading towards
infinity [6]. Another requirement is called unbiasedness:

E[ΓM ] = γ, (2.51)

that is, on average the estimator equals the true value [6].
For example, it can be shown, that the arithmetic mean µ̂X(M) is a consistent and

unbiased estimator for the mean value E[X] = µX

µ̂X,M =
1

M

M∑
i=1

Xi, (2.52)

as is the sample variance

σ̂2
X,M =

1

M − 1

M∑
i=1

(Xi − µ̄X,M )2 =
1

M − 1

M∑
i=1

X2
i − µ̄2

X,M (2.53)

for the variance σ2
X .



Probability and random fields 15

θ

t

G(t, θ)

t0

θ0

G(t, θ0)

G(t0, θ)

Figure 2.4: Three realizations of a random process G(t, θ).

2.6 Random processes

A random or stochastic process is defined as a set of random variables G(t, θ), with
t ∈ T usually denoting time, and the outcomes θ ∈ Θ expressing the random nature of
a process [17]. In other words, a random process depends on time t and chance θ [6].
For a given t0, G(t0, θ) is a random variable, whereas for a given θ0, G(t, θ0) describes
a realization of the entire process for every t ∈ T , see Figure 2.4. As stated in [6], if all
distribution functions of the type

FG(g1, . . . gn) = P [{G(t1) ≤ g1}, . . . {G(tn) ≤ gn}] (2.54)

with arbitrary n ∈ N are multi-variate Gaussian distributions, then a random process is
called Gaussian random process.

2.7 Random fields

As an extension to Subsection 2.6, a random field H(x, θ) is defined as a collection of
random variables, where the coordinates x ∈ V ⊂ Rd usually describe the spatial system
geometry. For a given x0, H(x0, θ) describes a random variable at point x0, whereas for
a given outcome θ0, H(x, θ0) is a realization of the random field [39], as shown in Figure
2.5. Parameter θ expresses the random character of a quantity. From now on, whenever
a quantity’s random nature is obvious, the parameter θ will be suppressed, leading to
H(x, θ) ≡ H(x). Hence, a random field H(x) can be seen as a real-valued variable with
varying statistics (e.g. mean µ or variance σ2) depending on the coordinates x [6].

Usually vector x consists of spatial coordinates, e.g. x = [x1, x2, x3]T = [x, y, z]T for
a three-dimensional problem in V ⊂ R3. Taking the influence of time t into account
“reduces” the parameter t to just another coordinate in n-dimensional space, i.e. x =
[x1, x2, x3, x4]T = [x, y, z, t]T. Thus, a random field can be seen as a generalization of a
random process, which depends on an arbitrary number of parameters.

In [41] no rigorous distinction is made between random processes and random fields.
However, it is noted that the term random process is usually reserved for processes
depending on a single coordinate, e.g. time t, whereas random fields are considered to
have a multi-dimensional parameter space x.

The main focus of this work will be on spatial problems without consideration of
time-dependency.
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θ
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H(x1, θ)
(0, 0)

x1

x0

H(x0, θ0)

H(x1, θ0)

θ0

θ0

Figure 2.5: Two-dimensional random field H(x, θ), showing realizations of points x0 and
x1.

2.7.1 Properties of random fields

Whether the associated result of a random field at a given point H(x0) is a single
random variable or a random vector, the random field is called univariate or multivariate,
respectively. Similar to regular random variables, the mean value function is defined as
[6]

µH(x) = E[H(x)]. (2.55)

In (2.55) the expectation operator E[.] denotes ensemble averaging, that is, the expec-
tation value is to be taken at location x for every possible realization θ ∈ Θ of H(x, θ)
[6]. The auto-covariance function can be defined similarly to (2.37) as

Cij ≡ CHH(xi,xj) = E
[
(H(xi)− µH(xi))(H(xj)− µH(xj))

]
. (2.56)

Similarly to (2.28), Equation (2.56) can be simplified:

Cij = E
[(
H(xi)− µH(xi)

)(
H(xj)− µH(xj)

)]
= E

[
H(xi)H(xj)− µH(xi)H(xj)−H(xi)µH(xj) + µH(xi)µH(xj)

]
= E

[
H(xi)H(xj)

]
− µH(xi)E

[
H(xj)

]
− E

[
H(xi)

]
µH(xj) + µH(xi)µH(xj)

= E
[
H(xi)H(xj)

]
− 2µH(xi)µH(xj) + µH(xi)µH(xj)

= E
[
H(xi)H(xj)

]
− µH(xi)µH(xj) (2.57)

Under the condition that all quantities Cij are finite (e.g. when a random field is
evaluated at nodes of a lattice in space), they can be seen as components of the auto-
covariance matrix CHH , in analogy to Subsection 2.4.1.

Further, the auto-correlation function is

ρij ≡ ρ(xi,xj) =
CHH(xi,xj)

σiσj
=

Cij
σiσj

. (2.58)

Common functions to describe the correlation of one-dimensional random fields/pro-
cesses are
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� the exponential correlation:

ρij = exp

(
−|xj − xi|

lc

)
, (2.59)

� the exponential square correlation:

ρij = exp

[
−
(
xj − xi
lc

)2
]
, (2.60)

� and the sinusoidal correlation:

ρij = sin

(
xj − xi
lc

)
lc

xj − xi
, (2.61)

where lc denotes the correlation length.
The following properties of random fields allow classification and important simpli-

fying assumptions:

� Homogeneity : Let r = ‖ξ‖ denote the distance between 2 points. A random field,
which allows the translation of coordinates x without changing the joint pdf, is
called homogeneous [41]:

fX(x + ξ) = fX(x) ∀x ∈ V (2.62)

Further, a random field is called weakly homogeneous, if the auto-covariance func-
tion CHH(xi,xj) depends only on the distance vector ξ = xj − xi between two
points, and if the mean value function µH(x) is constant [6]:

CHH(x,x + ξ) = CHH(ξ) ∀x ∈ V ; µH(x) = const. ∀x ∈ V (2.63)

Furthermore, weakly homogeneous fields have the following properties:

CHH(r) = CHH(−r), (2.64)

max |CHH(r)| = CHH(0) = σ2
H . (2.65)

� Isotropy : If rotation of points t doesn’t change the joint pdf, a random field is
called isotropic [41]. In other words, a random field is isotropic if CHH depends on
the distance ‖ξ‖ only, regardless of the direction [6]:

CHH(x,x + ξ) = CHH(‖ξ‖) ∀x ∈ V (2.66)

For the case of an isotropic random field, the correlation length is

lc =

∞∫
0

r|CHH(r)|dr
∞∫
0

|CHH(r)|dr
. (2.67)

A random field with lc →∞ is fully correlated in the entire domain of definition V
and therefore describes a single random variable. On the contrary, lc → 0 produces
a random field without any spatial correlation, which is called white noise [6].
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� Ergodicity : If one realization reveals all statistical information of a random field,
it is called ergodic [41].

� Power spectral density : For a weakly homogeneous one-dimensional random field
(which may also be called a stationary random process) the auto-power spectral
density is defined as [6]

SHH(ω) =
1

2π

∞∫
−∞

CHH(r)eiωrdr. (2.68)

The inverse relation reads

CHH(r) =

∞∫
−∞

SHH(ω)e−iωrdω, (2.69)

where ω denotes the frequency. Equations (2.68) and (2.69) are the so called
Wiener-Khintchine relations, forming a Fourier-transform pair. Let r = 0, then

CHH(0) = σ2
H =

∞∫
−∞

SHH(ω)dω, (2.70)

which leads to the interpretation of the power spectral density as the distribution
of the variance in the domain of frequency ω [6].

2.7.2 Gaussian random fields

A random field is called Gaussian, if H(x0, θ) is a Gaussian random variable for any given
x0 ∈ V . The mean value function µH(x), the variance σ2

H(x), and the auto-correlation
coefficient ρH(xi,xj) are then sufficient to completely describe a Gaussian field [1]. The
central limit theorem [16, 3] is another commonly used argument justifying the use of
this type of field. Furthermore, when only information about the second order moments
(µ and σ2) is available, the Gaussian field model provides the maximum entropy [37].
Thus, Gaussian fields are popular and often used.



Chapter3
Representation of Random Fields

Similar to the spatial discretization in deterministic finite element methods, a continu-
ous random field H(x) can be discretized for numerical treatment and analysis. This
can be explained by considering the Monte Carlo simulation, where a random field is
simulated using a random number generator, which produces a finite number of random
numbers. Discretization methods allow to use those random numbers for the realization
of a continuous random field, thus making numerical treatment possible. The random
numbers can be seen as realizations of random variables, the latter being grouped in a
random vector χ(θ) ≡ χ = [χ1, . . . ]

T, and yielding the approximation [39]

H(x, θ)
Discretization−−−−−−−−→ Ĥ(x,χ(θ)) = χ(θ)

(
ϕ(x)

)T
=

Nrv∑
i

χi(θ)ϕi(x), (3.1)

where Ĥ denotes the discretized random field, χi is the i-th random variable, and ϕi
denotes the corresponding interpolation function. The correlation matrix Cχχ of the
random vector χ and the total number of random variables N rv depend on the repre-
sentation method.

It is not necessary for the discretization of the random field to match the spatial
discretization of the geometry. However, in some cases they are one and the same for
simplicity.

For the discretization of a random field, two parameters need to be taken into account
[29]: First, the correlation length lc (see Equation (2.67)), which describes the fluctuation
(in other words: the rate of change) within the random field. Just as a conventional
finite element mesh needs to depict the stress gradient in every point of the structure
x ∈ V accordingly to the desired accuracy, a random field mesh needs to depict the
essential features of the random field, which are strongly dependent on the correlation
length lc.

Second, the number of random variables used to discretize the random field. A
higher number of random variables leads, in most cases, to exponential increase of the
computational effort.
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Table 3.1: Unified notation of random field representations in terms of weight functions
w(x) and coefficients ϕi(x) (see Equations (3.1) and (3.2)) (∗NOLE

i (x) are optimal in a
sense of minimizing the variance of the estimation error) [39].

Midpoint Spatial average Shape function Optimal linear estimation

w(x) δ(x− xec)
δVe(x)

Ve
δ(x− xi) δ(x− xi)

ϕi(x) δVe(x) δVe(x) N e
i (x) NOLE

i (x)∗a

aNOLE
i (x) are optimal in a sense of minimizing the variance of the estimation error

In the following sections, different discretization methods are described in detail.
Basically, three different categories can be defined: (i) Point-discretization, (ii) average-
type discretization, and (iii) series expansion methods.

Point- and average-type discretization methods seem to be the most convenient way,
since, for instance the midpoint method assigns one random variable to a discrete area V
of the structure, thus being particularly illustrative, see Figures 3.1 and 3.2. As shown
in [39], for all point and average type discretization methods, the finite sets of random
variables can be expressed as weighted integrals over the corresponding discrete domain
Ve:

χe(θ) =

∫
Ve

H(x, θ)we(x)dV, (3.2)

where we(x) are deterministic weight functions depending on the discretization method.
Then the approximated random field can be formulated in a unified way as a series
expansion according to (3.1). In Table 3.1 the coefficients we and ϕi are listed for the
methods following in Sections 3.1 and 3.2.

Attention has to be paid to the fineness/accuracy of the discretization. Apart from
the significant influence on computation time, the most serious drawback of using ex-
traordinary fine meshes lies in the risk of yielding highly correlated random variables
[29]. These may lead to a nearly singular correlation matrix, making further calculations
difficult, not to say, impossible.

Series expansion methods avoid this problem and, in general, provide a more accurate
representation of H(x).

3.1 Point discretization methods

As stated before, point discretization methods represent a random field H(x) by its
values at one or more points x. Advantages of point discretization methods are according
to [29]:

� Straightforward computation of the covariance matrix,

� positive-definitness of the covariance matrix,

� the distribution type does not chance from the original to the discretized case, thus
(theoretically) no restriction to Gaussian fields.
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In the following, let

δVe(x) =

{
1 x ∈ Ve
0 x /∈ Ve

(3.3)

and

δ(x− xc) =

{
1 x = xc

0 x 6= xc
. (3.4)

3.1.1 Midpoint method

The midpoint method, introduced by [11] represents a random field H(x) as follows:

Ĥ
(
x,χ(θ)

)
=

Nrf∑
e=1

χe(θ)δVe(x), (3.5)

where N rf is the total number of random field elements, and

χe(θ) =

∫
V
H(x, θ)δ(x− xec)dV = H(xec, θ), (3.6)

with xec denoting the center point of the random field element e, reading

xec =
1

n

n∑
i=1

xi. (3.7)

Within one element, the random field is represented by one random variable χe, with
the same mean µ, variance σ2, and marginal pdf as the random field at point xec. The
covariance between two random variables χi and χj can be obtained from the covariance

function of the original random field, computed at the points xic and xjc

Cov(χi, χj) = Cij ≡ CHH(xic,x
j
c). (3.8)

All realizations of Ĥ are piecewise constant, with discontinuities at the element
boundaries. This is illustrated in Figure 3.1 for square elements. This method appears to
be the only one over-estimating the variability of the random field, and thus, representing
an upper bound [11].

3.1.2 Nodal point method

Similar to the midpoint method, the nodal point method represents the random field by
random variables χi at each of the nodal points xi, where

χi(θ) =

∫
V
H(x, θ)δ(x− xi)dV = H(xi, θ). (3.9)

Again, each realization is piecewise constant (see Figure 3.2). In analogy to the
midpoint method, the entire random field is represented by the random vector χ =
[χ1, . . . χNrv ]T, where the number of random variables N rv equals the total number of
nodal points N rf of the discretized random field. Statistical quantities like mean µ,
variance σ2 and covariance function Cov(χi, χj) are be obtained in the same way as in
the midpoint method.
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V

Ve

xe
c

xi

xi+1

xi−1

χe(θ0)

Ĥ(., θ0)

Figure 3.1: When using midpoint method,
each realization of the random field is
piecewise constant. Each element e is rep-
resented by one value χe(θ0), computed at
the center point xec.

V

xi

xi+1

xi−1

χi(θ0)

Ĥ(., θ0)

Figure 3.2: Each realization of a ran-
dom field represented by the nodal point
method is piecewise constant by means
of the values χi(θ0), being computed at
global nodes xi.

3.1.3 Integration point method

The integration point method, as stated in [6], represents a random field with a random
variable χe∗ at each integration point xe∗ of the mechanical finite-element mesh.

Since most finite element packages provide integration rules for the construction of
the element matrices, implementation of the integration point method is straightforward
compared to other methods. Further references regarding the nodal- and integration
point method can be found in [29].

3.1.4 Shape function/Interpolation method

The shape function method represents a random field H(x) with random variables χi =
H(xi) at nodal points xi, which define the stochastic finite element nodes, see Equation
(3.9). In analogy to the conventional FE method, the random field is approximated
within each stochastic finite element e, using shape functions Ni(x) as follows:

Ĥ(x,χ) =

Nrf
e∑

e=1

(
δVe(x)

n∑
i=1

χiNi(x)

)
=

Nrf
e∑

e=1

n∑
i=1

χiNi(x)δVe(x)︸ ︷︷ ︸
Ne

i (x)

=
Nrf∑
i=1

χiN
e
i (x), (3.10)

where N rf
e and n denote the total number of elements of the random field discretization

and the number of nodes of one random field element e, respectively. The shape functions
N e
i (x) assume non-zero values only for x ∈ Ve, that is, they are non-zero only for

the random field element e corresponding to vector x. Hence, one summation over
i = 1, . . . N rf , where N rf is the total number of nodal points, is sufficient. Since the
shape function method assigns one random variable χi to each node i, it requires as
many random variables for representation as the nodal point method. Therefore, the
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random vector χ = [χ1, . . . χNrf ]T = [H(x1), . . . H(xNrf )]T has the same dimension as
for the nodal point method. Its advantage over the midpoint and nodal point method,
however, is the fact, that each realization Ĥ(x, θ0) is a continuous function over V [39]
(see Figure 3.3). The mean value function µĤ(x) of the approximated field is

µĤ(x) = E[Ĥ(x)] = E

Nrf∑
i=1

χi(x)N e
i (x)

 =

Nrf∑
i=1

E[χi]N
e
i (x)

=
Nrf∑
i=1

µχiN
e
i (x) =

Nrf∑
i=1

µH(xi)N
e
i (x), (3.11)

where µχi denotes the mean value of random variable χi at nodal point i, which is equal
to the mean value function evaluated at point xi. Therefore, the mean value function of
the approximated random field is an interpolation of the corresponding random variables.
Substituting (3.10) and (3.11) into (2.57) yields

CĤĤ(xk,xl) = E[Ĥ(xk)Ĥ(xl)]− µĤ(xk)µĤ(xl)

= E

Nrf∑
i=1

Nrf∑
j=1

N e
i (xk)N

e
j (xl)χiχj

− Nrf∑
i=1

Nrf∑
j=1

N e
i (xk)N

e
j (xl)µχiµχj

=
Nrf∑
i=1

Nrf∑
j=1

N e
i (xk)N

e
j (xl)E [χiχj ]−

Nrf∑
i=1

Nrf∑
j=1

N e
i (xk)N

e
j (xl)µχiµχj

=
Nrf∑
i=1

Nrf∑
j=1

N e
i (xk)N

e
j (xl)

(
E [χiχj ]− µχiµχj

)
. (3.12)

Moreover, substituting (2.57) into the equation above, the result is the covariance of the
approximated field

CĤĤ(xk,xl) =
Nrf∑
i=1

Nrf∑
j=1

N e
i (xk)N

e
j (xl)Cov(χi, χj), (3.13)

where Cov(χi, χj) = Cij ≡ CHH(xi,xj) (see Equation (3.8)). As stated in [29], depend-
ing on the proper choice of shape functions, this method provides accurate results even
for coarse discretizations.

3.1.5 Optimum linear estimation (OLE) method

Also known as the Kriging method , the optimal linear estimation method is a special
type of shape function method. The approximation Ĥ is defined as a linear function
of random variables χ = [χ1, . . . χN ]T = [H(x1), . . . H(xN )]T located at nodal points xi
[28, 39]:

Ĥ(x,χ) = a(x) +
Nrf∑
i=1

bi(x)χi = a(x) + bT(x) · χ, (3.14)
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V

Ve

x

xi

xi+1

xi−1

H(xi+1, θ0)

H(x, θ0)

Figure 3.3: Illustration of the shapefunction method, which provides continuous realiza-
tions H(x, θ0).

with N rf denoting the total number of points used for the representation. The functions
a(x) and bT(x) are optimal with respect to the variance of the error ε = H(x)− Ĥ(x),
reading

min
(

Var
[
H(x)− Ĥ(x)

])
, ∀x ∈ V. (3.15)

As stated in [6] and [39], the estimator Ĥ(x) is called unbiased, if

E
[
H(x)− Ĥ(x)

]
= 0, ∀x ∈ V, (3.16)

meaning that the estimator is expected to be equal to the value of the random field H(x)
on average.

The functions a(x) and b(x) are determined as

a(x) = µ(x)− bT(x) · µχ,
b(x) = C−1

χχcχ(x),χ, (3.17)

with µ(x) and µχ being the mean value function of the original random field and the vec-
tor of the random vector χ, respectively. Furthermore, Cχχ denotes the auto-covariance
matrix of χ, and cχ(x),χ the components of the covariances of a random variable χ(x)
located at point x with all components of random vector χ, thus

cχ(x),χ =
[
Cov[χ(x), χ1], . . .Cov[χ(x), χN ]

]T
≡
[
Cov[H(x), H(x1)], . . .Cov[H(x), H(xN )]

]T
. (3.18)

Substituting the two equations (3.17) into (3.14) finally yields the optimal linear esti-
mation

Ĥ(x,χ) =

a(x)︷ ︸︸ ︷
µ(x)− bT(x) · χ+bT(x) · µχ = µ(x) + bT(x) · (χ− µχ)

= µ(x) + cTχ(x),χC−1
χχ · (χ− µχ). (3.19)
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Finally, the variance of error yields

Var[H(x)− Ĥ(x)] = σ2
H − σ2

Ĥ
, (3.20)

and is always positive, thus

σ2
H > σ2

Ĥ
. (3.21)

In other words, Ĥ(x) always underestimates the variance of the original random field
[39]. For further references, see [29]. It is mentioned, that the OLE method is particularly
suitable for interpolating random field samples where certain values are known.

3.2 Average-type discretization methods

3.2.1 Local averaging method

Introduced by [41], and also known as the spatial average method (when only functions
of space are being used), this method represents a random field H(x) in each element e
with one random variable, computed as follows:

χe(θ) =
1

Ve

∫
V
H(x, θ)δVe(x)dV, (3.22)

where Ve denotes the volume or surface area of element e. The entire random field is
represented by the random vector χ = [χ1, . . . χNrf

e
], reading

Ĥ(x,χ(θ)) =

Nrf
e∑
e

χe(θ)δVe(x), (3.23)

with N rf
e as the total number of elements. The mean vector µχ and the covariance

matrix Cχχ are obtained by integration over the domain Ve. In [41] solutions for this
integral are presented.

As stated in [29], the two major disadvantages are:

� The use of non rectangular elements may lead to a non-positive definite covariance
matrix.

� The pdf of each random variable χi can be obtained for Gaussian fields only,
otherwise its computation is almost impossible.

However, [29] refer to [11], where it is shown that the local averaging method appears
to give accurate results even for coarse meshes. Furthermore, this method tends to
under-represent the variability, thus, providing a lower bound. In combination with
the midpoint method (with the same discretization) upper and lower bounds of the
variability can be given.
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3.2.2 Weighted integral method

Within finite element methods, the element stiffness matrix ke can be expressed as

ke =

∫
Ve

BTDBdV, (3.24)

with D denoting the so called element elasticity matrix and B linking the node displace-
ments to element strains. The weighted integral method proposes the use of a determin-
istic elasticity matrix multiplied by a random field value (for example, the modulus of
elasticity), that is

D(x, θ) = D0 · (1 + I(x, θ)), (3.25)

where D0 denotes the mean value elasticity matrix and I(x, θ) is an univariate random
field with zero mean. Substituting (3.25) into (3.24) yields

ke =

∫
Ve

BTD̄BdV︸ ︷︷ ︸
k̄e

+

∫
Ve

H(x, θ)BTD̄BdV︸ ︷︷ ︸
∆ke(θ)

= k̄e + ∆ke(θ). (3.26)

The weighted integral method turns out to be a special case of the shape function method
and shares its advantages. However, since the representation of the random field depends
on the discretization of the deterministic problem, the quality of results may vary [39].

3.3 Series expansion methods

In contrast to all methods presented in Sections 3.1 and 3.2, series expansion methods
deal with an infinite number of coefficients ϕi(x). This allows theoretically an exact rep-
resentation of a random field. The approximation is obtained by truncation of the series
[39]. Furthermore, the methods presented in the following sections provide solutions for
non-Gaussian random fields as well as for unknown covariance functions.

3.3.1 Orthogonal functions

Since the approaches presented in the following sections involve orthogonal functions,
a short mathematical overview will be given first. In Section 2.1 the probability space
(Θ,F , P ) was introduced. All real-valued random variables X with a finite second
moment E[X2] < ∞ form a vectorial space L2(Θ,F , P ). The term L2 emphazises the
fact that a Lebesgue space of square-integrable functions is involved. A random field
H(x, θ) can be defined as a curve in L2(Θ,F , P ), which can be shown to be a Hilbert
space [39]. A Hilbert space is a vector space with an inner product <f, g> allowing to
measure length and angle in analogy to the inner product f · g. In analogy to vector
algebra, two functions f(x) and g(x) are called orthogonal if their inner product <f, g>
is zero [42]. A common definition of the inner product is given by

<f, g> =

∫
V
f(x)g(x)dV. (3.27)
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For instance, the functions f(x) = cos(x) and g(x) = sin(x) are orthogonal with respect
to the range of real values 0 ≤ x ≤ 2π, since

< cos(x), sin(x)> =

2π∫
0

cos(x) sin(x)dx = 0. (3.28)

Other examples for orthogonal coefficients are Hermite polynomials or Legendre Polyno-
mials. The one-dimensional Hermite polynomials read

Ψi(x) = (−1)i
di

dxi

[
e(− 1

2
x2)
]
e(− 1

2
x2), (3.29)

whereas the Legendre polynomials can be obtained using Rodrigues’ formula [22]:

Pi(x) =
1

2ii!

di

dxi
(x2 − 1)i. (3.30)

The functions are called orthonormal, if

<f, f> =

∫
V

[f(x)]2dV = 1. (3.31)

Thus, for an orthonormal set of functions f = {f1, . . . fn} the inner product reads

<fi, fj> = δij , (3.32)

where δij denotes the Kronecker-delta. Choosing the deterministic coefficients ϕi(x) in
Equation (3.1) to be mutually orthogonal or even orthonormal yields several advantages
which will be showed in the following sections. In addition, orthogonality or orthonor-
mality between random variables can be interpreted as independency.

In probability theory, the expectation value E[X] allows another important definition
of the inner product [39] as well as the relating norm

<X,Y > = E[XY ], (3.33)

‖X‖ =
√

E[X2]. (3.34)

Obviously, the angle between two functions depends on the definition of the inner prod-
uct.

3.3.2 Karhunen-Loève expansion

The Karhunen-Loève expansion, introduced by [18] (in fact, it was introduced by Ghanem
and Spanos 1991, 2003 a new edition was released) and also known as kernel expan-
sion method , is based on the spectral decomposition of the autocovariance function
CHH(xi,xj)

CHH(xi,xj) =
∞∑
k=0

λkfk(xi)fk(xj), (3.35)
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with λk and fk(x) denoting the eigenvalue and the eigenvector, respectively, to the
following eigenvalue problem∫

V
CHH(xi,xj)fk(x)dxi = λkfk(xj). (3.36)

Equation (3.36) describes a Fredholm integral equation. Since the covariance kernel CHH
is symmetric and positive-definite, the eigenfunctions fi(x) are orthogonal and form a
complete set. Moreover, they can be normalized, thus being orthonormal and fulfilling
Equation (3.32). The random field then can be written as follows:

H (x,χ(θ)) = µH(x) +
∞∑
i=0

χi(θ)
√
λifi(x), (3.37)

with µH(x) as the mean value function and the second term denoting a zero mean
random process, with random variables χi(θ), deterministic eigenvalues λi(x) and eigen-
functions fi(x), respectively. While (3.37) is still exact, approximation is accomplished
by truncating the series after N terms

H (x,χ(θ)) = µH(x) +
N∑
i=0

χi(θ)
√
λifi(x). (3.38)

The approximation is optimal in the Fourier sense, i.e. the mean square error resulting
from truncation of the series is minimized [18].

The random variables χi are a set of orthonormal variables according to (3.33), and
therefore, mutually independent, reading

<χi, χj> = E[χiχj ] = δij . (3.39)

The orthogonal property of the eigenfunctions fi(x) allows a closed form solution for
each of the random variables χi(x) [39], given as

χi(θ) =
1

λi

∫
V

[H(x, θ)− µH(x)] fi(x)dV. (3.40)

It can be seen that when H(x, θ) is a Gaussian random field, the random variables χi
are Gaussian as well. In addition, as noted in Subsection 3.3.1, the orthonormality of
the random variables χi leads to the conclusion that they are mutually independent.
Thus, for the represention of a Gaussian random field the random variables form a set
of independent standard normal variables [39].

In [18] analytical solutions are presented for a few special - yet important - cases
of covariance functions CHH . Furthermore, a Galerkin type numerical procedure is
presented, allowing approximation of the eigenvalue problem for arbitrary covariance
kernels.

The eigenvalues, reflecting the importance of the corresponding random variables
and arranged in descending order, quickly converge to zero. Hence, truncation of the
series after just a few terms already yields very good approximations. For instance, as
summarized in [37], the KL-expansion yields good results with N ≈ 4 terms, given that
the correlation length is large enough.
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However, the requirement to solve the eigenvalue problem is a major disadvantage.
Moreover, the Karhunen-Loève expansion requires knowing the covariance function CHH .
Altough it can be used for a known random excitation or random material property, the
method cannot be used to represent the yet unknown random solution process.

As stated in [39], the KL-expansion always under-represents the variability of the
random field.

3.3.3 Orthogonal series expansion

The orthogonal series expansion method involves a set of orthogonal functions hi(x),
which, in contrast to the Karhunen-Loève expansion method, are not evaluated by solv-
ing an eigenvalue problem. The functions hi(x) are chosen right from the beginning,
circumventing the time consuming solution of the eigenvalue problem, see [44]. Any
complete set of orthogonal functions, for instance, Legendre polynomials or Hermite
polynomials, can be used.

A random field H(x, θ) with mean value function µH(x) and covariance function
CHH is then represented by expanding it by means of the known orthogonal functions
hi(x):

H (x,χ(θ)) = µH(x) +

∞∑
i=1

χi(θ)hi(x), (3.41)

with χi(θ) denoting the random variables. Truncation of the series after the N -th term
yields the approximation. In analogy to the Karhunen-Loève expansion, exploiting the
orthogonality, a closed form solution for the random variables can be derived:

χi(θ) =

∫
V

[H(x, θ)− µH(x)]hi(x)dV, (3.42)

Equation (3.42) reveals that when representing a zero-mean Gaussian random field
H(x, θ), the random variables χi(θ) are Gaussian with zero-mean as well.

Furthermore, it can be shown that

<χi, χj> = E[χiχj ] =

∫
V

∫
V
CHH(xk,xl)hi(xk)hj(xl)dVxk

dVxl
. (3.43)

Thus, the random variables χi are not necessarily uncorrelated. Nevertheless, the co-
variance function of the random variables χi, keeping in mind that they have zero-mean,
is given by

Cχχ(χi, χj) = E
[
(χi − µχi)(χj − µχj )

]
= E[χiχj ] = <χi, χj>, (3.44)

showing that the inner product equals the covariance function of the random variables,
which can be orthogonalized using spectral decomposition. As shown in [44] the spectral
decomposition leads to independent random variables and finally to the same result as
the Karhunen-Loève expansion. Likewise, this method requires the covariance function
CHH to be known.
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3.3.4 Polynomial Chaos expansion

For the Polynomial Chaos expansion method [18], the covariance CHH is not required in
advance. This method expands the random field as follows:

Ĥ(x,χ(θ)) = a0(x)Γ0

+

∞∑
i1=1

ai1Γ1(x)(χi1(θ))

+

∞∑
i1=1

∞∑
i2=1

ai1i2(x)Γ2(χi1(θ), χi2(θ))

+

∞∑
i1=1

∞∑
i2=1

∞∑
i3=1

ai1i2i3(x)Γ3(χi1(θ), χi2(θ), χi3(θ)) . . . , (3.45)

where Γi(.) denotes the Homogeneous Chaos of i-th order and ai(x) are determinis-
tic coefficients. For a Gaussian random field, the Homogeneous Chaoses Γi equal the
corresponding multidimensional Hermite polynomials Ψi mentioned in Subsection 3.3.1.
Equation (3.45) can also be written as

Ĥ(x,χ(θ)) =
∞∑
i=0

ai(x)Ψi(θ), (3.46)

with Ψi(θ) denoting the set of Hermite polynomials. Forming a complete set of orthog-
onal random variables, they provide the following properties [39]:

Ψ0 = 1, (3.47)

E [Ψi] = 0, i > 0, (3.48)

and [18]

E [ΨiΨj ] = δijE
[
Ψ2
i

]
. (3.49)

In [18] a list of the Polynomial Chaoses is given. Furthermore, [39] present an algorithm
to compute the Polynomial Chaoses. Since this method does not require the covariance
CHH , it is suitable for the representation of the resulting displacements, e.g. in the
SSFEM method or the response surface method. Moreover, the Polynomial Chaos is also
suitable for representing non-Gaussian random fields ([18], [29]). For instance, in [10]
the Polynomial Chaos is employed to represent the random input as well as the response,
allowing to investigate non-Gaussian random field problems. In addition, instead of the
Hermite polynomials, any type of orthogonal polynomials can be used. In [10], a list of
appropriate choices for a number of distribution function types is given.

3.3.5 Expansion optimum linear estimation (EOLE) method

This method combines the OLE-concept (see Subsection 3.1.5) with a spectral decom-
position of the covariance matrix Cχχ. The OLE method represents H as a linear
combination of random variables χ = [χ1, . . . χNrf ]T = [H(x1), . . . H(xNrf )]T located at
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nodal points xi (see Equation (3.14)). The random vector χ is characterized by mean
value µχ and covariance matrix Cχχ. Using the EOLE method, the latter is decomposed
into Eigenvalues λi and Eigenvectors φi by solving the eigenvalue problem

Cχχφi = λiφi. (3.50)

Then the random vector χ can be written in analogy to the random field H in Equation
(3.38):

χ(θ) = µχ +
Nrf∑
i=0

ζi(θ)
√
λiφi, (3.51)

where ζi denotes independent standard normal variables, and λi and φi the correspond-
ing eigenvalues and eigenvectors, respectively. Substituting (3.51) into (3.14) and solving
the OLE-problem yields [44]

Ĥ(x, θ) = µH(x) +

Nrf∑
i=1

ζi(θ)√
λi
φT
i cχ(x),χ. (3.52)

Truncating the series after r terms yields the approximated solution similarly to the
Karhunen-Loève expansion. Thus, the EOLE approximates a random field on two levels:

� Grid size: The grid size defines the dimension M ×M of Cχχ and, thus, the size
of the eigenvalue problem. The more terms are retained, the more accurate the
representation.

� Number of random variables: In analogy to the Karhunen-Loève expansion,
the series can be truncated after r terms, thus reducing the expansion to the r
most important random variables ζi(θ).

3.4 Summary

Except for the Polynomial Chaos, the presented methods are almost exclusively suitable
for Gaussian random fields, as stated in [37], where methods for the representation of
non-Gaussian fields are summarized.

In [38] it is stated, that, mathematically speaking, the Midpoint- and Average-type
discretization methods expand the random field on a finite, incomplete set of determinis-
tic functions ϕi(x) using the coordinates χi(θ) as shown in Equation (3.1). Furthermore,
it can be seen that these methods are linear methods, i.e. the discretization parameters
are linear functionals of the random field [29].

Series expansion methods, on the other hand, provide a complete set of basis func-
tions, thus, allowing theoretically an exact representation of the random field.

The representation methods shown in this chapter allow using simulation methods
as well as further analytical treatment. However, a great number of representation
methods is devoted exclusively to simulation methods. Such methods are e.g. the
turning bands method (TBM), the autoregressive (AR) and moving average (MA) as
well as their combination (ARMA). Furthermore, the autoregressive integral moving
average (ARIMA) is worth mentioning.



Chapter4
The Stochastic-Finite-Element
method (SFEM)

In structural mechanics, the system equilibrium equation for static loading used within
Finite elements methods reads

Ku = f , (4.1)

where f and u denote the excitation and the response vector, respectively, and K denotes
the system stiffness matrix. Some tasks in structural engineering involve a random
excitation f = f(θ), whereas some problems involve a random system stiffness K =
K(θ), which may stem from a random elastic modulus E = E(x, θ) or Poisson’s ratio
ν = ν(x, θ), with both of them being expressed as random fields. However, if at least
one of the quantities in Equation (4.1) is random, the structural response is assumed
to be random as well [18]. In this work, the randomness of the system stiffness matrix
K(θ) is of interest, and the excitation remains to be deterministic, hence

K(θ)u(θ) = f . (4.2)

4.1 Discretization of the stochastic global stiffness matrix

Under the assumption that the random variation of the elastic modulus E can be repre-
sented using a homogeneous random field and that the material behaviour is isotropic,
the following applies:

E(x, θ) = µE ·
(
1 + I(x, θ)

)
, (4.3)

where I(x, θ) is a homogeneous random field with zero mean and autocovariance CEE .
It can be shown that the global stiffness matrix K can be divided into the mean K̄ and
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the deviatoric (random) part ∆K [31]. In deterministic finite elements, the e-th element
stiffness matrix reads

k(e) =

∫
Ve

BTDBdVe, (4.4)

where B and D are the strain-displacement matrix and the elasticity matrix, respectively.
Provided the material behaviour is isotropic, the elasticity matrix for stochastic finite
elements is

D
(
E(x, θ)

)
= D̄ ·

(
1 + I(x, θ)

)
, (4.5)

where D̄ is a constant matrix. Thus, in stochastic finite elements, the element stiffness
matrix reads

k(e)(θ) =

∫
Ve

(
1 + I(x, θ)

)
BTD̄BdVe

=

∫
Ve

BTD̄BdVe︸ ︷︷ ︸
k̄(e)

+

∫
Ve

I(x, θ)BTD̄BdVe.︸ ︷︷ ︸
∆k(e)(θ)

(4.6)

Assembling the elements matrices k(e) yields the global stiffness matrix

K =

Ne∑
e=1

k(e)(θ) =

Ne∑
e=1

(
k̄(e) + ∆k(e)(θ)

)
=

Ne∑
e=1

k̄(e) +

Ne∑
e=1

∆k(e)(θ) = K̄ + ∆K(θ), (4.7)

where Ne is the number of finite elements, k̄(e) is the e-th element mean value stiffness
matrix, and θ is denoting the random character of ∆K. The random field I(x, θ) is
discretized by a finite number of random variables χi(θ), using one of the methods
shown in Chapter 3. Thus, the global stiffness matrix reads

K = K̄ + ∆K(θ)
Discretization−−−−−−−−→ K (χ) = K̄ + ∆K (χ) ≡ K̄ + ∆K, (4.8)

with χ = [χ1(θ), χ2(θ), . . . ]T, and K̄ and ∆K denoting the mean value stiffness matrix
and the deviatoric (random) stiffness matrix, respectively.

The k-th realization of the random field I(x, θk) leads to

K(k) = K̄ + ∆K(θk)
Discretization−−−−−−−−→ K

(
χ(k)

)
= K̄ + ∆K

(
χ(k)

)
≡ K̄ + ∆K(k), (4.9)

with the k-th realization of random variables χ(k) = [χ1(θk), χ2(θk), . . . ]
T, k = 1, . . .m,

and K̄ and ∆K(k) denoting the mean value stiffness matrix and the k-th deviatoric
(random) stiffness matrix, respectively.
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Figure 4.1: Basic structure of an uncertainty analysis, figure from [38].

4.2 Overview

The term SFEM covers several approaches capable of solving the problem at hand, which
can be divided into three groups, as suggested in the overview given in 4.1 [38]:

� Reliability assessment methods are suitable for dealing with small probabilities
(e.g. the probability of failure).

� Second moment methods are efficient, but only appropriate for obtaining the
response variability, meaning that the mean value and variance of the response are
derived, but, except for MCS, no statement about the pdf can be given. Further-
more, most of these approaches are, except for MCS, subject to severe limitations
regarding the random input.

� Spectral methods use complete sets of functions to represent the involved ran-
dom fields, thus, providing an unified (and theoretically exact) framework of un-
certainty assessment. These methods represent the complete random response in
terms of a series expansion, which can be used to obtain the second order moments
as well as moments of higher order.

4.3 Monte Carlo simulation (MCS)

The Monte Carlo simulation is the most illustrative and simple - yet, most stable and
generally applicable - method. Thanks to its simplicity, this method is used frequently.
The general approach is illustrated in Figure 4.2.

4.3.1 Direct MCS

The stochastic global stiffness matrix is assumed to be assembled as shown in Section
4.1. Therefore, the randomness is no longer expressed in terms of a random field H(x, θ)
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but random variables χi. The basic concept, as described in [6], consists of generating
m random samples/realizations X(k) = χ(k) = [χ1(θk), χ2(θk), . . . ]

T, k = 1, 2, . . .m,
using a quasi-random number generator. The samples are required to comply with the
given distribution parameters, and to be statistically independent from each other, see
[6]. Therefore, the use of a reliable random number generator is necessary. Then the
given problem is solved for each of the samples, giving a set of structural responses
R(k) = u(k). Using the Finite element method, according to Equation (4.1) the problem
for each realization reads

K
(
χ(k)

)
u(k) = f , k = 1, . . .m. (4.10)

Multiplying by
(
K
(
χ(k)

))−1
yields

u(k) =
(
K
(
χ(k)

))−1
f =

(
K̄ + ∆K(k)

)−1
f , k = 1, . . .m. (4.11)

Finally, the statistical information/variability of the structural answer u can be obtained
using estimators. The estimated mean value µ̂u and the variance σ̂2

u, respectively, of the
structural response are

µ̂u,m =
1

m

m∑
k=1

u(k) (4.12)

and

σ̂2
u,m =

1

m− 1

m∑
k=1

(
u(k) − µ̂u,m

)2
. (4.13)

The estimator µ̂ is consistent, unbiased and asymptotically normal distributed with a
variance of

σ2
µ̂u,m

=
σ2

u,m

m
≈
σ̂2

u,m

m
=

1

m

(
1

m− 1

m∑
k=1

(
u(k) − µ̂u,m

)2
)

=
1

m

1

m− 1

(
m∑
k=1

(
u(k)

)2
− µ̂2

u,m

)
. (4.14)

MCS can also be employed for reliability assessment. Then the estimated failure prob-
ability is

p̂F = P [F ] =
1

m

m∑
k=1

IF,(k), (4.15)

where F is the event of failure and IF,(k) denotes the indicator function

IF,(k) =

{
1 if system collapses

0 otherwise.
(4.16)
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Figure 4.2: Flow-chart for Monte Carlo stochastic analysis, X(k) = χ(k),R(k) = u(k),
figure taken from [6]

The variance of the estimator is [6]

σ2
p̂F

=
pF
m
− p2

F

m
⇒ σp̂F ≈

√
pF
m
. (4.17)

Thus, for reliability assessment, the accuracy of the estimation depends not only on the
sample size m, but also on the failure probability. According to [34], a sample size of
m = 30 to 100 is sufficient for estimating µ and σ2 with acceptable accuracy, whereas a
sample size of m ≈ 500 provides enough information to estimate the cdf [37]. However,
since failure is supposed to be a rare event and, thus, only few realizations induce
failure, reliability computation requires a relatively big number - proportional to 1/pF
- of samples, see Equation (4.17). For this reason, deriving the failure probability using
direct MCS is time-consuming and inefficient. To overcome this major disadvantage,
numerous approaches like Latin Hypercube sampling, importance sampling, as well as
line sampling, directional sampling, and subset sampling have been proposed. Their
main goal is to reduce the number of samples m. Since the main focus of this work is
the structural response variability, reliability assessment methods will be presented only
superficially.

4.3.2 Importance sampling

The basic idea of importance sampling is to produce samples particularly in an important
domain of the sample space. This is accomplished by choosing the probability distri-
bution parameters accordingly, e.g. the distribution function for the important domain
is f ISX (x), whereas the original distribution function is fX(x). In reliability assessment,
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the important domain denotes the area close and within the failure domain, usually it
is chosen around the most probable point. The latter can be computed using FORM
(see Section 4.4.1), which in turn is just an approximation and prone to error. In case
of FORM giving appropriate results, more realizations are situated in the failure region,
thus, reducing the required sample size and the variance error. The failure probability
is then obtained by modifying Equation (4.15)

p̂F =
1

m

m∑
k=1

fX(x)

f ISX (x)
IF,(k). (4.18)

As stated in [37], importance sampling is efficient for static linear and nonlinear sys-
tems, which are depending on a small number of random variables. In high stochastic
dimensions, however, finding a appropriate distribution function f ISX (x) may become
difficult.

4.3.3 Latin hypercube sampling

Latin hypercube sampling is employed to decrease the variance of the estimator and,
thus, reducing the required number of samples.

Suppose, a problem depends on 2 random variables X1 and X2, then the sample space
is two-dimensional, with each realization being a point with coordinates

(
X1(θ0), X2(θ0)

)
.

A square grid over the sample space is called Latin square grid if (and only if) there is
only one realization

(
X1(θ0), X2(θ0)

)
in each row and each column of the grid.

The generalization of this concept for n random variables, denoting a point (X1, . . . Xn)
in n-dimensionial sample space, is called Latin hypercube. As stated in [6], Latin hyper-
cube sampling provides a good coverage of the sample space and, hence, when estimating
the coefficient of correlation δ, the method may reduce the required sample size by a
factor of more than 10. However, with increasing dimensionality n, the computation
time grows exponentially. Thus, the Latin hypercube sampling method is very sensitive
to problems with high stochastic dimensionality.

4.3.4 Line Sampling

A method, suitable for problems with high stochastic dimensionality, is line sampling,
proposed by [27]. Instead of a most probable point, a so called important direction α
can be used. The estimator for the failure probability p̂F writes

p̂F =
1

N

m∑
i=1

p
(i)
F , (4.19)

with conditional probabilities, which can be computed quasi-exactly according to the
normal cdf

p
(i)
F =

+∞∫
−∞

IF

(
x(i)
) 1√

2π
exp

−
(
x

(i)
1

)2

2

 = Φ
(
β

(i)
1

)
+ Φ

(
−β(i)

u

)
, (4.20)

where the safe region is denoted by [β
(i)
1 , β

(i)
u ]. The variance of the line sampling estimator

is always smaller than the variance of direct MCS [27].
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4.3.5 Neumann expansion

When performing Monte Carlo simulation, for each realization k the inverse of the system
stiffness matrix K has to be built, which is a time consuming process. Applying the
Neumann expansion method, the computation time for this inversion can be reduced
significantly. The method, introduced by [43], is based on the series expansion of a
square and non-singular matrix P

(I−P)−1 =
∞∑
i=0

Pi = I + P + P2 + . . . (4.21)

It converges only for ‖P‖ < 1, or if all Eigenvalues λi of P fulfil ‖λi‖ < 1. Thus, for
this approach the random field I(x, θ) according to (4.3) needs to comply with −1 <
I(x, θ) < 1. Substituting (4.8) into (4.10) yields

K
(
χ(k)

)
u(k) =

[
K̄ + ∆K(k)

]
u(k) = f . (4.22)

Multiplied by K̄−1 gives [
I + K̄−1∆K(k)︸ ︷︷ ︸

−P(k)

]
u(k) = K̄−1f , (4.23)

and further

u(k) =
[
I−P(k)

]−1
K̄−1f . (4.24)

Applying the Neumann series expansion leads to

u(k) =

( ∞∑
i=0

(
P(k)

)i)
K̄−1f =

[ ∞∑
i=0

(−1)i
(
K̄−1∆K(k)

)i]
K̄−1f . (4.25)

Truncating the series after N terms yields the approximation

u(k) =

[
N∑
i=0

(−1)i
(
K̄−1∆K(k)

)i]
K̄−1f . (4.26)

Finally, in analogy to the direct MCS the response statistics are obtained using Equations
(4.12) and (4.13).

The major advantage of (4.26) over (4.11) is the fact that only the deterministic part
K̄ needs to be inverted. Since K̄ is constant for all samples, only one inversion has to be
done for the entire simulation process, which reduces the computation time significantly.

Although any distribution type can be assigned to I(x, θ), the Neumann expansion
approach only allows to compute the solution characteristics up to the second moments,
i.e. mean and variance. Another drawback is that the random variables are required to
remain in the range of −1 < I(x, θ) < 1, thus, each realization with values exceeding
this range has to be excluded from the Monte Carlo simulation, biasing the result.
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4.3.6 Subset simulation

The subset simulation method was proposed by [2], providing a method which is not in-
fluenced by the dimension of the stochastic problem. The basic idea of subset simulation
is to replace the failure event F by a sequence of supersets Fi, denoting intermediate
failure events of greater probability. This is accomplished by defining the supersets as
F1 ⊃ F2 ⊃ . . . ⊃ Fm = F with Fk =

⋂k
i=1 Fi, k = 1, . . . ,m. Then, considering Equation

(2.7), the failure probability writes

pF = P[F ] = P[F1 ∩ F2 ∩ . . . ∩ Fm−1 ∩ Fm] = P[Fm−1 ∩ Fm]

= P [Fm ∩ Fm−1] = P [Fm | Fm−1]P [Fm−1]. (4.27)

Repeating the steps for P[Fm−1] gives

P [Fm−1] = P [Fm−1 | Fm−2]P [Fm−2], (4.28)

which, substituted into (4.27), yields

pF = P [Fm | Fm−1]P [Fm−1 | Fm−2]P [Fm−2], (4.29)

and so forth. The general equation finally reads

pF = P[F1]
m−1∏
i=1

P[Fi+1 | Fi]. (4.30)

With properly chosen intermediate failure events Fi, the subset simulation method is
very efficient. For example, the failure probability of a certain system is assumed to
be pF ≤ 10−4. Verification via direct MCS is in most cases inefficient (depending on
the complexity of the system). However, using subset simulation, 4 intermediate failure
events with conditional failure probability P[Fi+1 | Fi] ≈ 0.1 are chosen. Those condi-
tional probabilities can be efficiently computed using direct MCS, providing the same
solution quality as the direct MCS. Nevertheless, [2] use a Markov chain MCS simulation
method, based on the Metropolis algorithm, to further increase the efficiency.

A major advantage of subset simulation is the fact, that the efficiency is not de-
pending on the stochastic dimensionality of the problem. However, the convergence rate
depends on the choice of intermediate failure events [37].

4.4 Reliability assessment

The response X of a structural system (e.g. a bridge), subject to random parameters
χ, is random as well. For every system, desired (safe) and undesired (unsafe) states are
defined. Usually, the so called limit state function g(X) defines the border between safe
and unsafe region. For instance, the unsafe region can be defined as points of structural
failure, undesired deformation states, or when cracking starts. In general, structural
responses located in the unsafe region g(X) ≤ 0 are considered as failure.

Obviously, the probability of failure is demanded to be small, depending on the type
of structural problem. It can be written as

P[g(X) ≤ 0] =

∫
· · ·
∫

g(X)≤0

fX(x)dx, (4.31)
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where fX(x) denotes the joint probability. In general, when analysing complex struc-
tures, numerical methods like FEM are applied. Thus, the limit state function is not
available explicitly. Another issue is the joint pdf fX(x), which is usually not known.
Hence, the integral in (4.31) cannot be solved analytically. In the following, some
approaches to numerically solve the integral, and compute the probability of failure
P[g(X) ≤ 0], are summarized.

4.4.1 First-/second order reliability method (FORM/SORM)

This method requires the transformation from non-Gaussian random variables X into
standard normal random variables U with zero mean. Furthermore, correlated random
variables are transformed into uncorrelated variables (see e.g. [39]).

The First order reliability method is used to obtain the so called design- or most
probable point , which is the point u∗ on the limit state function g(u) with minimal
distance β = ‖u‖, also called reliability index , to the origin:

u∗ = min
(
‖u‖

∣∣ g(u) = 0
)
. (4.32)

For this purpose, the Rackwitz-Fiessler algorithm can be applied [13]. Then the limit
state function is linearized at the design point and the probability of failure is estimated
as

pF ≈ Φ(−β). (4.33)

As stated in [39], accurate results are obtained only for the tails of the pdf, i.e. a large
reliability index is required. When using SORM, the second order term is added to
the linearization of g(u)|u=u∗ . This increases the computational cost significantly while
hardly improving the results.

FORM is a method easy to implement and, thus, widely used. However, it cannot
be guaranteed that the global minimum of β is found. Furthermore, in some cases the
algorithm does not converge. Therefore numerous improvements and new methods were
developed, e.g. the Sequential quadratic programming (SQP), see [26].

4.4.2 Monte Carlo simulation

Using direct Monte Carlo simulation, the probability of failure can be estimated, accord-
ing to Section 4.3, as

p̄F = P [F ] =
1

m

m∑
k=1

IF,(k). (4.34)

Furthermore, methods improving the direct MCS, such as Importance sampling, Line
sampling, and Subset sampling, have been presented.

4.4.3 Response surface method

The response surface method aims at using an approximated limit state surface for the
reliability analysis. The approximated limit state surface ĝ(X) can be expanded as
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quadratic function [39]

ĝ(x) = ĝ(x1, x2, . . . ) = a0 +
N∑
i=1

aixi +
N∑
i=1

N∑
j=1

aijxixj . (4.35)

The coefficients a = {a0, a1, . . . aNN} are obtained by either regression or interpolation
[6], evaluating the problem at hand at a number of grid points x(k), k = 1, . . .M (e.g. us-
ing the Finite element method). For instance, using the least-square regression method,
the error writes

ε(a) =

M∑
k=1

(g(x)− ĝ(x))2 , (4.36)

with N ≤M . Finally, by minimizing ε the coefficients a can be computed

min
[
ε(a)

]
⇒ dε(a)

da
= 0. (4.37)

The resulting response surface may be analyzed using the methods presented above, for
example FORM or Importance sampling.

As stated in [7], since the limit state function depicts the mechanical behaviour,
the approximation ĝ(X) is made in a mechanical context, thus, being open to engi-
neering judgement. Meanwhile, approximations or assumptions regarding the random
variables/statistics (like FORM) are more or less infeasible to verify (apart from MCS,
which is computationally expensive).

4.5 Second moment methods

The basic idea of second moment methods is to obtain the second order statistics, i.e.
mean µ (first moment) and variance σ2 (second central moment), of the system response,
due to varying input parameters. The latter being expressed by nothing more than their
mean value and variance. No statement is made regarding the higher order moments
nor the probability distribution type.

4.5.1 Monte Carlo simulation

As stated in Subsection 4.3.1, the Monte Carlo simulation can be used to obtain estimates
of mean and variance, requiring approximately 100 samples for sufficient accuracy. In
particular, direct Monte Carlo simulation, Latin hypercube sampling, and Neumann
expansion are of interest in this regard. However, the MCS is not limited to second
moment analysis.

4.5.2 Neumann expansion method

When coupled with the Spectral Stochastic Finite-Element Method (which is presented
in Section 4.6), the Neumann expansion method is a second order method. However,
since it is often coupled with MCS, it is explained in Subsection 4.3.5.
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4.5.3 Perturbation method

The Perturbation method aims at giving the second order statistics of the response vector
u. It is based on Taylor series expansions of the three quantities found in Equation (4.1),
namely the global stiffness matrix K, the displacement vector u, and the excitation
vector f . The Perturbation method can be combined with the discretization techniques
presented in Sections 3.1 and 3.2, a list of combinations accomplished is found in [39].
After the random field representing the elastic modulus is discretized, the global stiffness
matrix writes, in analogy to Equation (4.8),

K = K̄ + ∆K (χ) , (4.38)

where K̄ is the corresponding mean value stiffness matrix K̄ = f(µE) and ∆K (χ) de-
notes the random deviatoric part, being a function of the random vector χ = [χ1, χ2, . . . ]

T.
The excitation vector f and the response vector u are operated on in the same manner:

f = f̄ + ∆f (χ) , (4.39)

u = ū + ∆u (χ) . (4.40)

The Taylor series expansion is applied on the deviatoric parts, resulting in

K = K̄ +

N∑
i=1

∂K

∂χi

∣∣∣
χ=0

χi +
1

2

N∑
i=1

N∑
j=1

∂2K

∂χi∂χj

∣∣∣
χ=0

χiχj + . . . , (4.41)

u = ū +
N∑
i=1

∂u

∂χi

∣∣∣
χ=0

χi +
1

2

N∑
i=1

N∑
j=1

∂2u

∂χi∂χj

∣∣∣
χ=0

χiχj + . . . , (4.42)

f = f̄ +
N∑
i=1

∂f

∂χi

∣∣∣
χ=0

χi +
1

2

N∑
i=1

N∑
j=1

∂2f

∂χi∂χj

∣∣∣
χ=0

χiχj + . . . . (4.43)

Since obtaining the derivatives of higher order than 2 is increasing the computation time
substantially, without improving the results significantly, the Taylor series is truncated
after the second order term. The derivation of K is made preferably on the element stiff-
ness matrix level, either analytically or using the finite difference method. Substituting
(4.41), (4.42), and (4.43) into (4.1) and comparing coefficients gives

ū = K̄−1f̄ , (4.44)

∂u

∂χi
= K̄−1

(
∂f

∂χi
− ∂K

∂χi
ū

)
, (4.45)

and

∂2u

∂χi∂χj
= K̄−1

(
∂2f

∂χi∂χj
− ∂K

∂χi

∂u

∂χj
− ∂K

∂χj

∂u

∂χi
− ∂2K

∂χi∂χj
ū

)
, (4.46)
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showing that the response vector u can be readily computed up to the second order
term. In case of a deterministic excitation vector f , the first and second derivatives are
zero, while f represents the mean.

Finally, in [37], a first order estimation is provided, the mean being

µ̄I
u = ū, (4.47)

whereas the covariance matrix reads

CI
uu =

N∑
i=1

N∑
i=1

∂u

∂χi

(
∂u

∂χj

)T

Cov[χi, χj ]. (4.48)

The second order approximation of the mean is given in [39] as

µ̄II
u = ū +

1

2

N∑
i=1

N∑
j=1

∂2u

∂χi∂χj
Cov[χi, χj ]. (4.49)

It is stated that the second order estimation of the covariance can be derived, but terms
of fourth order are involved and computation is possible only for the case of a Gaussian
random field.

The major advantage of this method is its high efficiency. In contrast to the Neumann
expansion method, only one structural analysis needs to be performed. Furthermore,
the accuracy is high for Gaussian random variables and linear problems, see [19].

However, since this method involves a linearization at the mean value, it is limited
to small coefficients of variation with values δ < 0.1. To overcome this drawback, the
method has been improved in [15]. In [24] further improvements regarding the efficiency
and the a priori quantification of the estimation accuracy are developed. Furthermore,
this method has been applied in elasto-statics [23], as well as in elastic stability problems
[25].

4.5.4 Quadrature method

The quadrature method approximates moments of i-th order by applying a weighted
summation. As can be seen in previous sections, the system response can be expressed
as a functional of the random vector u = f(χ). The i-th moment writes

E [u(χ1, χ2, . . . χN )] =

+∞∫
−∞

· · ·
+∞∫
−∞

(
u(χ1, χ2, . . . χN )

)i
f(χ1)f(χ2) · · · f(χN )dχ1 · · · dχN ,

(4.50)

where f(χi) is the standard normal pdf. The approximation reads

E [u(χ1, χ2, . . . χN )] ≈
M∑
k1=1

· · ·
M∑

kN=1

wk1 · · ·wkN
[
u(χk1 , . . . χkN )

]i
, (4.51)

with wkj denoting the weights. A major disadvantage is the exponential increase of
computations with the number of random variables.
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4.6 Spectral-Stochastic-Finite-Element method (SSFEM)

This method, developed by [18], is based on a series expansion of the global stiffness
matrix as well as the response vector. A summary of the procedure is given in [39]. The
global stiffness matrix K and the response vector u are represented using the Karhunen-
Loève series expansion and the Polynomial Chaos expansion, respectively. As shown in
Section 3.3.2, the Karhunen-Loève expansion of a Gaussian homogeneous random field
E(x, θ) reads

E(x, θ) = µE(x) +
∞∑
i=1

χi(θ)
√
λifi(x), (4.52)

where µE(x) is the mean value function, χi(θ) are mutually independent normal dis-
tributed random variables, and λi and fi(x) are the Eigenvalues and Eigenfunctions,
respectively. Provided the material behaviour is isotropic, the elasticity matrix writes

D ≡ D
(
E(x, θ)

)
= E(x, θ)D0 =

(
µE(x) +

∞∑
i=1

χi(θ)
√
λifi(x)

)
D0, (4.53)

with D0 denoting a constant matrix. Substituting (4.53) into (4.4) yields the element
stiffness matrix

k(e)(θ) =

∫
Ve

BTD
(
E(x, θ)

)
BdVe

=

∫
Ve

µE(x)BTD0BdVe︸ ︷︷ ︸
k

(e)
0

+
∞∑
i=1

χi(θ)
√
λi

∫
Ve

BTD0Bfi(x)dVe︸ ︷︷ ︸
k

(e)
i

= k
(e)
0 +

∞∑
i=1

χi(θ)k
(e)
i . (4.54)

Assembling the element stiffness matrices gives the global stiffness matrix, which can be
expressed in the same manner

K(θ) =

Ne∑
e=1

k(e)(θ) =

Ne∑
e=1

k
(e)
0 +

Ne∑
e=1

∞∑
i=1

χi(θ)k
(e)
i =

Ne∑
e=1

k
(e)
0︸ ︷︷ ︸

K0

+

∞∑
i=1

χi(θ)

Ne∑
e=1

k
(e)
i︸ ︷︷ ︸

Ki

= K0 +
∞∑
i=1

χi(θ)Ki. (4.55)

with Ne denoting the number of finite elements and Ki being deterministic matrices.
Substituting (4.55) into (4.2) gives the stochastic equilibrium equation

K(θ)u(θ) =

(
K0 +

∞∑
i=1

χi(θ)Ki

)
u(θ) = f . (4.56)
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4.6.1 Improved Neumann series expansion

Originally, in [18] the Neumann series expansion method was applied to Equation (4.56)
similar to Subsection 4.3.5, being called improved Neumann series expansion

u(θ) =

[ ∞∑
r=1

(−1)r

( ∞∑
. . .

∞∑
i1...ir=1

χirK
−1
0 Kir

)r]
K−1

0 f

=

(
I−

∞∑
i1=1

χi1K
−1
0 Ki1 +

∞∑
i1=1

∞∑
i2=1

χi1χi2K
−1
0 Ki1K

−1
0 Ki2 − . . .

)
K−1

0 f . (4.57)

Truncating the Neumann series (with index r) and the Karhunen-Loève (with index ir)
after M and N terms, respectively, gives the approximation

u =

[
M∑
r=1

(−1)r

(
N∑
. . .

N∑
i1...ir=1

χirK
−1
0 Kir

)r]
K−1

0 f

=

I−
N∑
i1=1

χi1K
−1
0 Ki1 + . . .+

N∑
i1=1

. . .
N∑

iM=1

χi1 · · ·χiM K−1
0 Ki1 · · ·K−1

0 KiM

K−1
0 f .

(4.58)

In contrast to the Neumann series expansion coupled with Monte Carlo simulation (see
Subsection 4.3.5), no MCS is required here. However, the number of computational
tasks grows exponentially with the number of terms r retained in the Neumann series
expansion. Another drawback is the requirement of∥∥∥∑χiK

−1
0 Ki

∥∥∥ < 1, (4.59)

with ‖.‖ denoting the norm, as discussed in Subsection 4.3.5.

4.6.2 Polynomial Chaos expansion

In [18], the Polynomial Chaos expansion is applied to overcome the disadvantages of the
Neumann series expansion. By definition, the spectral stochastic finite element method
(SSFEM) is the combination of Karhunen-Loève- with Polynomial Chaos expansion.

Expanding the response vector u subject to the Polynomial Chaos writes

u(θ) =

∞∑
j=0

ujΨj(θ), (4.60)

where uj are yet unknown deterministic coefficients. Substituting (4.60) into (4.56) gives(
K0 +

∞∑
i=1

χi(θ)Ki

) ∞∑
j=0

ujΨj(θ) = f , (4.61)

which can be reformulated to
∞∑
i=0

χi(θ)Ki

∞∑
j=0

ujΨj(θ) =

∞∑
i=0

∞∑
j=0

χi(θ)Ψj(θ)Kiuj = f , (4.62)
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with χ0(θ) ≡ 1. Truncation of the Karhunen-Loève expansion and the Polynomial Chaos
expansion after i = M and j = P terms, respectively, gives the approximation

M∑
i=0

P∑
j=0

χi(θ)Ψj(θ)Kiuj ≈ f . (4.63)

Usually, the Karhunen-Loève expansion is truncated after M ≈ 4 terms, implied the
correlation length is sufficiently large. From now on, reference to the random parameter
θ will be withhold for simplicity, thus χi(θ) ≡ χi,Ψi(θ) ≡ Ψi. Multiplying (4.63) by Ψk

and taking the expectation value leads to a minimum of the error made by truncation
[39], hence

M∑
i=0

P∑
j=0

E [χiΨjΨk]︸ ︷︷ ︸
cijk

Kiuj = E [Ψkf ]︸ ︷︷ ︸
fk

=
P∑
j=0

M∑
i=0

cijkKi︸ ︷︷ ︸
Kjk

uj = fk

=
P∑
j=0

Kjkuj = fk, k = 0, . . . P (4.64)

with

fk =

{
f k = 0

0 k > 0
, (4.65)

since E[Ψ0f ] = E[Ψ0]f = f (see Eq. (3.48)). Furthermore, each matrix Kjk is a linear
combination of M + 1 matrices Ki. Equation (4.64) can be rewritten as

K00 K10 . . . KP0

K01 K11
...

...
. . .

K0P . . . KPP


︸ ︷︷ ︸

K

·


u0

u1
...

uP


︸ ︷︷ ︸
U

=


f0

f1
...

fP


︸ ︷︷ ︸
F

, (4.66)

which can be solved for U

U = K−1F . (4.67)

Thus, the coefficients uj , j = 0, . . . P are obtained, fully describing the response vector
u in terms of Equation (4.60). Considering (3.48) and (3.49), the mean vector writes

µu = E[u] = E

 P∑
j=0

ujΨj

 =
P∑
j=0

ujE [Ψj ] = u0, (4.68)
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whereas the covariance matrix is

Cuu =
P∑
j=0

E
[
Ψ2
j

]
uju

T
j . (4.69)

Each coefficient uj in (4.60) is a vector withN terms, whereN is denoting the number
of degrees of freedom (d.o.f.). Since vector U consists of P + 1 vectors uj , the vectors U
and F have N(P +1) rows, while the matrix K is of dimensions N(P +1)×N(P +1). As
stated in [39], for practical application P usually equals 15 to 35, therefore, increasing the
dimensionality and the computational cost significantly compared to the corresponding
deterministic FE analysis. However, because most of the coefficients cijk are zero, K
forms a relatively sparse matrix already being subdivided into submatrices Kjk. In [32],
an iterative algorithm is employed to efficiently solve the linear equation system.

For non-Gaussian random fields, a Polynomial Chaos representation not only for the
response, but also for the input random field is suggested, see [9, 10]. As stated in
[39], the input random field can also be represented using orthogonal series expansion
or EOLE.

The SSFEM provides a unified framework for uncertainty analysis, which, in theory,
is exact for an infinite number of terms in the according series expansions. However,
although in [18] the applicability to second moment statistics as well as reliability analysis
is emphasized, in [39] the accuracy for reliability assessment is doubted. Furthermore,
the method is limited to linear material behaviour and geometrical linearity [39].



Chapter5
Application of SFEM

In this chapter, different SFE approaches are applied to GLT beams, giving the mean
value and variance of the effective elasticity modulus Eeff . The performance of the
different approaches is compared and the obtained results are discussed. To gain un-
derstanding of the basic response of a GLT beam with varying stiffness, at first, one
lamination is investigated. Then, compound structures of up to four laminations are
analysed.

5.1 Problem description

The stiffness distribution in glued-laminated timber (GLT) layers (laminations) is subject
to uncertainty, thus, the effective stiffness of the compound structure is assumed random
as well, see Figure 5.1. It is assumed that the stiffness of each lamination only varies in
longitudinal direction (along the x-axis).

The mechanical behaviour of GLT beams is mainly determined by the combined
load transfer of laminations. It is influenced by varying properties due to knots or
global strain deviation and the natural variability of wood. The main challenge in their
mechanical description is to determine the influence of this variability on the variability
of the resulting effective properties. The involved effects are commonly summarized
under the term “laminating effects” .

Research on the mechanical behaviour of glued-laminated timber has mainly been
performed experimentally so far. In general, comprehensive test series were carried out
and the results analysed statistically in order to identify the relation between the dis-
tribution of mechanical properties of the laminations and corresponding characteristics
of GLT beams (see [5] and references therein). Following this approach, no separation
of mechanical and stochastic effects is possible. Moreover, the derived relations are only
valid for an investigated sample and the specific testing conditions must be taken into
account. This limits the comparability of results and universality of the derived relations.

In order to obtain enhanced insight, the experimental approaches were complemented
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Figure 5.1: Illustration of the stiffness variation within a GLT beam.

by analytical or numerical investigations. The former are mainly based on application
of stochastic concepts to mixed parallel-serial systems (e.g. [21], [12], [4, 5]). Numerical
approaches mostly use the finite element method to study the internal load transfer
within GLT beams. The most elaborate model in this context is the KAREM model,
which was developed at TU Karlsruhe [14], where a simulation program mimics the
grading process and derives statistical distribution functions of mass densities and knots
in the laminations and corresponding mechanical properties. These data serve as input
for a MCS simulation, which is coupled with a two-dimensional finite element program.
Similar approaches were proposed by [20] and [35]. A summary can be found in [36].
However, the high computational effort of these stochastic schemes is a serious drawback.
Extending the SSFEM, [8] developed a model for laminated composite plates, which is
adapted for the application to GLT beams in this thesis.

5.2 Applied methods

Since the mean value and the covariance of the system response are of particular in-
terest, methods capable of efficiently obtaining the second moments are considered. A
literature study (e.g. [29], [37], [34]) has revealed the Perturbation method (for its high
efficiency), the Spectral stochastic Finite-element method (for its unified framework and
its versatility regarding the computation effort), and the Monte Carlo simulation as the
most promising ones in this context. The MCS is also applied for comparison purposes,
since it is the least complex and most investigated approach.

Regarding the random field representation, the Karhunen-Loève expansion is applied,
which can be coupled with MCS as well as SSFEM. Furthermore, from a data acquisition
point of view, each lamination is divided into sections with constant stiffness according
to the grading method (e.g. by means of knothole clusters). Obviously, the midpoint
method seems most suitable for this kind of purpose. Furthermore, the midpoint method
and the Karhunen-Loève expansion describe upper and lower bounds of the variability
representation of random fields. Thus, the true solution can be expected to lie within
those bounds. To sum up, the following methods are applied:
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� The direct Monte Carlo simulation (MCS) using the midpoint method
(MP), as well as the Karhunen-Loève expansion (KL) for the discretization
of the random field,

� the Perturbation method (PERT) with the MP method for the random field
discretization, and

� the spectral stochastic finite element method (SSFEM) with the KL expan-
sion and the Polynomial Chaos (PC) expansion to represent the input and the
response random field, respectively.

All methods, including the underlying finite element code, are implemented in Mat-
lab. The GLT beam is discretized using two-dimensional 4-node finite elements with
bilinear interpolation functions, and isotropic material behaviour is assigned.

In the following, after the input parameters are specified, the FE code is verified by
a deterministic calculation, where the results are compared to the analytical solution
(Section 5.4). Then, in Section 5.5 the application of the SFEM is discussed in detail
considering a single lamination. Afterwards, an extension to multiple laminations (GLT
beams) is carried out and results are presented for up to four laminations (Section 5.6).
Finally, to gain understanding of how the statistical input parameters influence the
resulting effective modulus of elasticity Eeff , a parameter study where the number of
laminations and the probabilistic parameters are varied (according to Tables 5.1 and
5.2) is proposed in Section 5.7.

5.3 Input parameters

The elastic modulus E is assumed random, whereas Poisson’s ratio ν, geometry (Lx, Ly, Lz),
and loading (Fx, Fy) are deterministic values, see Table 5.1. Further, the spatial vari-
ability is represented using the exponential correlation function (see Eq. 2.59):

ρij = exp

(
−|xj − xi|

lx

)
. (5.1)

Multiplied by σ2
E it yields the covariance function

Cij = ρijσ
2
E , (5.2)

which is illustrated in Figure 5.2. The mean value µE and coefficient of variation (COV)
δE are given in Table 5.2.

5.4 Deterministic investigation of one lamination

At first, to verify the underlying FE-code one lamination is analysed, where the elasticity
modulus E is set to 1100 kN/cm2 as deterministic input. The static system and the
finite element discretization are illustrated in Figures 5.3 and 5.4, respectively. The
resulting displacement ux at node 146 (located at the rightmost border of the structure)
is 0.272 cm, which is equal to the analytical solution, reading

ux ≡ ∆l =
FxLx
µEA

=
30 · 400

1100 · 40
= 0.272 cm, (5.3)
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Figure 5.2: Illustration of the exponential covariance function Cij with lx = 100 cm.

Table 5.1: Deterministic properties of GLT beam model

Number of laminations 1 2 3 4

Length Lx [cm] 400

Height Ly [cm] 4 8 12 16

Width Lz [cm] 10

Loading Fx [kN] 30 60 90 120

Boundary Conditions acc. to Fig. 5.4

Poisson’s ratio ν [-] 0.03

Table 5.2: Properties of the random field representing the elastic modulus E

exp. correlation ρij [-] = exp
(
−
∣∣∣xi−xjlx

∣∣∣)
mean µE [kN/cm2] 1100

Varied parameters:

COV δE [-] 0.1 0.15 0.20 0.25

standard deviation σE [kN/cm2] 110 165 220 275

correlation length lx [cm] 100 200 400
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Figure 5.3: Illustration of the static system of one lamination.

fx = 10 kN

fx = 10 kN

fx = 10 kN

Figure 5.4: Finite element discretization of one lamination.

where A = LyLz = 40 cm2.

5.5 Probabilistic investigation of one lamination

Assuming that the elastic modulus is varying only along the x-axis, the random field
reduces to one dimension and, thus, may be called a random process. In the following, the
procedure and results for one lamination are presented. The coefficient of variation of the
elastic modulus is specified with δE = 0.1 and the correlation length with lx = 100 cm.

5.5.1 Midpoint discretization of the random field

First, the random field is discretized using the MP method for the implementation in the
PERT approach. To investigate the accuracy of the PERT estimation, the MP method
is also applied in combination with the MCS. To correctly depict the fluctuations of the

approximated random field, the random field element size in x-direction s
(e)
x is derived

according to the following criterion [29]:

s(e)
x ≤

1

2
lx. (5.4)

For a correlation length lx of 100 cm (which is the smallest value for lx considered in

this thesis), Eq. (5.4) yields a maximum random field element size s
(e)
x of 50 cm. Since

for further research an investigation of correlation lengths smaller than 100 cm could be
of interest, 25 cm are chosen as the random field element size, so that comparison with
future results is straightforward.

To every finite element the probabilistic quantities of the corresponding random field
element are assigned . Each realization of the elastic modulus E is piecewise constant,
thus, the element stiffness matrix reads

k(e) = k̄(e) + ∆k(e) (5.5)
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Figure 5.5: One realization of the random field using the MP method with δE = 0.1
and lx = 100. The solid and dotted lines depict the random field discretization and the
deterministic finite element discretization, respectively.

with

k̄(e) = µE

∫
Ve

BTD0BdV and ∆k(e) = Ê(x,χ)

∫
Ve

BTD0BdV, (5.6)

where

D0 =
1

1− ν2

1 ν 0
ν 1 0
0 0 1−ν

2

 . (5.7)

Ê(x,χ) denotes the discretized zero-mean random field, obtained with the MP method.
As shown in Subsection 3.1.1, it represents the random field by means of a random vector
χ, thus

∆k(e) = χ

∫
Ve

BTD0BdV. (5.8)

In Figure 5.5, one realization of the random field is shown. The solid and dotted lines
depict the random field elements and the finite elements, respectively. The corresponding
covariance matrix Cij ≡ Cχχ, obtained according to Equation (3.8), is illustrated in
Figure 5.6.

5.5.2 Karhunen-Loève expansion of the random field

For the SSFEM the random field is discretized using the Karhunen-Loève expansion.
In addition, to evaluate the accuracy of the SSFEM, the KL-expansion will be used
in combination with the MCS. In [18] two transcendental equations for the case of the
exponential correlation kernel ρij and rectangular domain are given

1

lx
− ωi tan(ωia) = 0, and ω∗i +

1

lx
tan(ω∗i a) = 0, (5.9)

where a = Lx/2. The i-th solutions ωi and ω∗i lead to the corresponding Eigenvalues λi
and λ∗i , reading

λi =
2lx

1 + ω2
i l

2
x

and λ∗i =
2lx

1 + (ω∗i )
2 l2x

. (5.10)
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Figure 5.6: Covariance matrix Cij ≡ Cχχ for the discretized random field (16 random
field elements and 96 finite elements).
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The corresponding Eigenfunctions fi and f∗i are

fi(x) = cos(ωix)

(
a+

sin(2ωia)

2ωi

)− 1
2

and f∗i (x) = sin(ω∗i x)

(
a− sin(2ω∗i a)

2ω∗i

)− 1
2

.

(5.11)

As it can be seen in Figure 5.7, the Eigenvalues λi decay faster with increasing correlation
length lx. Therefore, with increasing lx, the first few random variables become more
important (see Eq. (3.38)), and thus, the KL-expansion represents the random field more
accurately for a certain number of terms in the series expansion. Figure 5.8 illustrates
the first four eigenfunctions of the random field for various correlation lengths lx. It
can be seen, that a change in correlation length lx does not have great impact on the
eigenfunctions.

The element stiffness matrix is computed according to Equation (4.55), where the
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Figure 5.9: One realization of the random field using the KL expansion with δE = 0.1
and lx = 100 cm.
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Figure 5.10: Illustration of the (a) 4-th and (c) 16-th order approximation of the covari-
ance kernel Cij and the corresponding approximation error (b) and (d), respectively.
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first term k
(e)
0 is equivalent to the first term k̄(e) in (5.6) and k

(e)
i is obtained from

Equation (4.54). Using a four-point Gaussian integration scheme, where the eigenfunc-
tions are evaluated directly at the Gauss integration points, yields the solution of the
integral in (4.54). After assemblation of the global stiffness matrix as described in Sec-
tion 4.6, each realization can be generated according to Equation (4.55), where χi are
independent standard normal random variables. In Figure 5.9, one realization of the
random field is illustrated. Since the dimension of the stochastic global stiffness matrix
increases drastically with the number of terms considered in the KL expansion, the series
is truncated after M = 4 terms. On the contrary, the computational effort of the MCS
is insensible to the number of terms considered in the KL expansion. Therefore, for
the MCS method the KL series is truncated after M = 16 terms. In Figure 5.10, the
4-th and 16-th order approximated covariance Ĉij (according to (3.35)) are illustrated.
In addition, the approximation error compared to the exact covariance function Cij is
shown. Obviously, the 16-th order expansion seems by far more accurate than the 4-th
order expansion.

The MP method and the KL-expansion method require the generation of m · N rf
e

and m ·M random numbers, respectively. In our case, the number of random variables
was chosen to be equal, giving N rf

e = M = 16. The Gaussian random numbers for
the MP method are produced my a random number generator using the covariance
matrix Cij illustrated in Figure 5.6, whereas the Karhunen-Loève expansion is based on
independent standard normal Gaussian distributed random numbers. Using a random
number generator, 10000 samples of the random vector χ (with zero mean) are produced.
Each sample k is denoted by χ(k) with k = 1, . . .m.

The PERT method is based on the Taylor-series expansion of the stiffness matrix.
Since in this thesis, it is coupled with the MP discretization, K is derived with respect to
the random variables χi, i = 1, . . . N rf

e , representing the random field elements. For the
mean value, the second order solution µII is given. The covariance is computed using
the first order Taylor-series approximation.

The SSFEM is applied using a 4-th order (M = 4) KL-expansion of the random
field E(x, θ) coupled with a 3-rd order (N = 3) Polynomial Chaos (PC) expansion of
the displacements u, resulting in a series expansion with a total number of 35 basis
polynomials, which are computed using an algorithm proposed in [39].

5.5.3 Results

In Figure 5.11 the displacement of the rightmost part of the lamella is shown. In the
following, the results are compared by means of the displacement ux in x-direction of
node 146, which is the rightmost node at height Ly/2, see Figure 5.4.

First, in order to compare the MP method to the KL expansion, the results of the
MCS are presented in numerical form in Table 5.3 for 100, 1000, and 10000 samples,
and in graphical form in Figure 5.12. After 10000 samples, the results for µ and σ of
the MP method and KL expansion are almost identical, therefore both representation
techniques can be assumed to appropriately describe the present input random field. It
should be noted, that the convergence of the MCS results is stronlgy influenced by the
input coefficient of variation. In the present case, with δE = 0.1, a reasonable accuracy
is achieved after approximately 1000 samples.
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Figure 5.11: Illustration of the displacements of the rightmost border of the lamella
(nodes 145-147).

Table 5.3: MCS results for the displacement u146
x of node 146 with N rf

e = M = 16.

MP method KL-expansion

samples m 100 1000 10000 100 1000 10000

µ [cm] 0.2745 0.2749 0.2751 0.2731 0.2753 0.2751

σ [cm] 0.0196 0.0178 0.0174 0.0180 0.0173 0.0175

δ [-] 0.0715 0.0638 0.0634 0.0659 0.0638 0.0636

As mentioned in Subsections 3.1.1 and 3.3.2, respectively, the MP method tends to
over-represent, whereas the KL expansion always under-represents the variability of a
random field. Hence, the results of these two methods represent give lower and upper
bounds of the true random field, and as they converge, the “real” solution can be
narrowed well.

The results of PERT and SSFEM are compared with those of MCS in Table 5.4
and in Figure 5.12, respectively. It can be seen, that the mean value µII obtained with
PERT agrees well with the corresponding result of MCS (MP). The relative error of
the standard deviation σ is less than 4%. SSFEM provides results for both the mean
value µ and standard deviation σ, which are very close to those of MCS (KL). The
relative error between SSFEM results and MCS (KL) results is less than 1.5%. The
computed covariance matrix Cuu for the displacements is displayed in Figures 5.13 and
5.14, respectively. Comparison with the MCS shows, that the covariances obtained with
the PERT method and the SSFEM are accurate for all nodes.
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Figure 5.12: Convergence behaviour of different SFE methods, shown by means of the
displacement u146

x as a function of considered samples (realizations).

Table 5.4: Comparison of mean and standard deviation of displacement u146
x obtained

with: MCS (MP, N rf
e = 16, 10000 samples) and MCS (KL, M = 16, 10000 samples),

PERT (MP, N rf
e = 16) and SSFEM (KL order M = 4 and PC order N = 3). Error

relative to MCS values.

MP method KL-expansion

MCS PERT εPERT MCS SSFEM εSSFEM

µ [cm] 0.2751 0.2748 0.0013 0.2751 0.2745 0.0023

σ [cm] 0.0174 0.0168 0.0383 0.0175 0.0172 0.0141

δ [-] 0.0634 0.0610 0.0371 0.0636 0.0628 0.0118
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Figure 5.13: Illustration of the covari-
ance matrix Cuu for displacements ux =
[u1, . . . u147]T obtained with MCS (MP)
and PERT.

Figure 5.14: Illustration of the covari-
ance matrix Cuu for displacements ux =
[u1, . . . u147]T obtained with MCS (KL)
and SSFEM.

In summary, all methods correspond surprisingly well. Both the PERT and SSFEM
method provide reasonably accurate results for one lamination. However, the accuracy
of the SSFEM result is particularly interesting, considering that the random field dis-
cretization for MCS (KL) is carried out using a M = 16-th order expansion, in contrast
to the KL expansion for SSFEM, which is already truncated after M = 4 terms. Thus,
the seemingly rough approximation of the correlation kernel, shown in Figure 5.10, is of
no significant consequence.

5.6 Probabilistic investigation of GLT beams

The GLT-beam is subjected to a tensile force in axial direction in such a way, that the
tension stresses are equal for all configurations, see Table 5.1. As it can be seen in Figure
5.15, each lamination is discretized using two layers of finite elements. The boundary
conditions are specified in analogy to the single lamella (see Figure 5.4).

5.6.1 Midpoint discretization of the random field

The extension of the midpoint method for multiple laminations is straightforward. Each
lamination is represented by a row of random field elements. Since the random field is
now two-dimensional, in theory, a two-dimensional correlation function ρij is required.
However, considering the structure and production process of GLT beams, the lam-
inations can be assumed as mutually independent. Thus, there is no correlation in
y-direction, and the one-dimensional exponential correlation function given in Eq. (5.1)
remains valid.

5.6.2 Karhunen-Loève expansion of the random field

In [8], the extension of the KL-expansion method to multiple laminations is introduced.
The basic idea is to assemble the stiffness matrix for each lamination m according to
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Figure 5.15: Illustration of the deterministic FE discretization for 1, 2, 3, and 4 lamina-
tions. Each lamination is discretized with two elements in thickness direction. Blue and
black numbers denote the element and the node numbers, respectively.

Subsection 5.5.2:

Km = K0
m +

M∑
i=1

χmi(θ)Kmi with m = 1, . . . NL, (5.12)

where NL denotes the total number of laminations, and M is the number of terms
retained in the KL-expansion. The global stiffness matrix of the compound structure is
then given by

K =
NL∑
m=1

Km =

NL∑
m=1

(
K0
m +

M∑
i=1

χmi(θ)Kmi

)

=
NL∑
m=1

K0
m +

NL∑
m=1

M∑
i=1

χmi(θ)Kmi. (5.13)

With j = (m− 1) ·NL+ i the second term can be rewritten such that

K =

NL∑
m=1

K0
m︸ ︷︷ ︸

K0

+
NL·M∑
j=1

χj(θ)Kj . (5.14)

Equation (5.14) has the same form as (4.55), thus, the following proceedings are similar
to those shown in Subsection 4.6.2.
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Figure 5.16: Realizations of GLT beam with 2, 3, and 4 laminations, using MP-
discretization (left-hand side) with N rf

e = 16 for each lamination and KL-expansion
(right-hand side) of order M = 16, COV δE = 0.1 and lx = 100.

5.6.3 Results

Figure 5.16 shows realizations of the discretized random fields of the MP and KL method.
It can be seen that the KL expansion provides continuous realizations, whereas the MP
method is piecewise constant, and furthermore, that for both methods the elasticity
modulus is correlated only within each lamination.

The resulting displacement ux of the rightmost node halfway up for 1 to 4 laminations
is given in Table 5.5. Both MCS approaches and the PERT method provide similar
results for multiple laminations. Regarding the PERT method, the maximum error for
the mean value and the COV is approximately 0.1 % and 5 %, respectively. The maximal
difference between MCS (MP) and the PERT method appears for one lamination. On
the contrary, the SSFEM provides accurate results for one lamination, but for multiple
laminations a large difference is obtained compared to the corresponding MCS (KL)
results, which can not be explained by the author at this moment.

Summarizing, the mean value µu shows no significant difference for different numbers
of laminations. In contrast, it can be seen that, as a consequence of the lamination
effect, δu decreases with increasing number of laminations, which is explained further in
Subsection 5.7.2.

In Table 5.6, the computational effort of each method is shown. Using MCS, the com-
putation time is directly related to the number of samples m [30], whereas the compu-
tational effort of the Perturbation approach strongly depends on the number of random
variables (i.e. the stochastic dimensionality). The computational cost of the SSFEM is
mainly influenced by the KL- and PC-expansion order. Since the KL-expansion contains
random variables, the SSFEM is strongly influenced by the stochastic dimensionality,
too.
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Table 5.5: Comparison of mean value and standard deviation of the displacement ux of
the rightmost border, obtained with: MCS (MP, N rf

e = 16, 20000 samples) and MCS

(KL, M = 16, 10000 samples), PERT (MP, N rf
e = 16), and SSFEM (KL order M = 4

and PC order N = 2). Error relative to MCS values.

MP method KL-expansion

Laminations MCS PERT εPERT MCS SSFEM εSSFEM

1 (node 146)
µ [cm] 0.2751 0.2748 0.0013 0.2751 0.2745 0.0023
σ [cm] 0.0174 0.0168 0.0383 0.0175 0.0172 0.0141
δ [-] 0.0634 0.0610 0.0371 0.0636 0.0628 0.0118

2 (node 243)
µ [cm] 0.2735 0.2733 0.0007 0.2735 0.2744 0.0034
σ [cm] 0.0122 0.0119 0.0244 0.0119 0.0172 0.4471
δ [-] 0.0444 0.0434 0.0237 0.0435 0.0628 0.4422

3 (node 340)
µ [cm] 0.2732 0.2729 0.0011 0.2731 0.2743 0.0046
σ [cm] 0.0098 0.0097 0.0120 0.0097 0.0172 0.7710
δ [-] 0.0359 0.0355 0.0109 0.0356 0.0628 0.7628

4 (node 437)
µ [cm] 0.2729 0.2726 0.0009 0.2728 0.2743 0.0054
σ [cm] 0.0085 0.0084 0.0187 0.0084 0.0172 1.0550
δ [-] 0.0313 0.0307 0.0178 0.0307 0.0628 1.0440

Table 5.6: Problem dimension and computational effort of considered SFE methods.
For all GLT-beams each lamination is represented using KL order M = 4 or N rf

e = 16
random field elements (MP). Note that the global stochastic stiffness matrix for SSFEM
is sparse and, in spite of its dimensions, easily handled when using a suitable solution
algorithm.

Lam. size(Kdet.)
number of terms size(Kstoch.)

MP KL PC MCS PERT SSFEM

1 [294× 294] 16 4 2

size(Kdet.) size(Kdet.)

[4410× 4410]
2 [490× 490] 32 8 2 [22050× 22050]
3 [686× 686] 48 12 2 [62426× 62426]
4 [882× 882] 64 16 2 [134946× 134946]

number of solutions of Ku = f 10000 1 -

further computations - ∂K
∂χ ,

∂2K
∂χ∂χ KU = F
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5.7 Parameter studies

In this section, the structural sensitivity with respect to material variability and, fur-
thermore, the application limits of the different methods are investigated. Therefore,
the influence of the coefficient of variation and the correlation length of the raw ma-
terial on the structural response is determined. These parameters are varied in the
range of δE = {0.10, 0.15, 0.20, 0.25} and lx = {100, 200, 400}, as specified in Table 5.2.
Furthermore, the number of laminations is varied from 1 to 4 (see Table 5.1).

The deterministic Finite element discretization is chosen with 48 and 2 subdivisions
in horizontal and vertical direction, respectively. Using midpoint discretization, each
lamination is represented by N rf

e = 16 random field elements in longitudinal direction.
The KL-expansion is truncated after 16 terms. Therefore, both discretization methods
are based on a series expansion using 16 random variables per lamination.

The MCS (MP) and MCS (KL) results are based on 20000 samples, and can therefore
be seen as reliable reference for comparison. For values δE ≥ 0.25, some realizations give
negative values for the elastic modulus E. In order to circumvent numerical issues, those
samples are replaced by new realizations with E > 0. The PERT results are the second
order mean value µII and first order standard deviation σI, according to Equations (4.49)
and (4.48). The SSFEM results are obtained with KL expansion order M = 4 for each
random field and a Polynomial Chaos expansion order of N = 2.

5.7.1 Effective elastic modulus

For practical purposes, the so called effective elastic modulus Eeff , defined as

Eeff =
N

A

l

∆l
, (5.15)

is of particular interest, since it describes the “overall” stiffness of the GLT beam, which
may be used for classification in grading industry. However, the computation of Eeff

is based on the displacements obtained with SFEM. Thus, in the following, the Taylor
series expansion is applied to approximate the moments of a function

Y = f(X), (5.16)

where X denotes one random variable. Basically, this approach is the univariate case of
the perturbation approach, presented in Section 4.5.3. Considering Equation (4.49), the
first and second order mean value of the displacement read

µ̂I
Y = f(µX) (5.17)

and

µ̂II
Y = f(µX) +

1

2
f ′′(x)

∣∣
x=µX

σ2
X , (5.18)

respectively. In analogy to (4.48), the variance is approximated by

σ̂2
Y =

(
f ′(x)

∣∣
x=µX

)2
σ2
X . (5.19)
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As it can be seen, f needs to be differentiable and the moments of X are required to
be finite. In Equation (5.15), let ∆l = ux, length l = Lx, longitudinal force N = Fx,
and cross section area A = LyLz, as listed in Table 5.1, then the problem at hand is
described by

ux = f(Eeff) =
FxLx
LyLz︸ ︷︷ ︸
c

1

Eeff
, (5.20)

with the random variable Eeff determined by mean value µEeff
and variance σ2

Eeff
. Sub-

stituting Equation (5.20) into (5.18) and (5.19) yields the mean value

µ̂II
ux = f(µEeff

) +
1

2
f ′′(µEeff

)σ2
Eeff

=
c

µEeff

+
1

2

(
2c

µ3
Eeff

)
σ2
Eeff

=

(
1

µEeff

+
σ2
Eeff

µ3
Eeff

)
c (5.21)

and the variance

σ̂2
ux =

(
f ′(µEeff

)
)2
σ2
Eeff

=

(
− c

µ2
Eeff

)2

σ2
Eeff

=
c2

µ4
Eeff

σ2
Eeff

, (5.22)

where

c =
FxLx
LyLz

. (5.23)

In analogy, the mean and variance of the effective elastic modulus

Eeff = f(ux) = c
1

ux
(5.24)

are computed as

µ̂Eeff
=

(
1

µux
+
σ2
ux

µ3
ux

)
c (5.25)

and

σ̂2
Eeff

=
c2

µ4
ux

σ2
ux . (5.26)
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Figure 5.17: Mean and COV of the effective elastic modulus Eeff as a function of the
COV δE of the “raw” material and for three different correlation lengths lx, for up to
four laminations, and for two SFE methods (MCS (MP) with 20000 samples and PERT
method).
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Figure 5.18: Mean and COV of the effective elastic modulus Eeff as a function of the
COV δE of the “raw” material and for three different correlation lengths lx, for up to four
laminations, and for two SFE methods (MCS (KL) with 20000 samples and SSFEM).



Application of SFEM 67

 

 

4 Lam, ǫSSFEM

4 Lam, ǫPERT

3 Lam, ǫSSFEM

3 Lam, ǫPERT

2 Lam, ǫSSFEM

2 Lam, ǫPERT

1 Lam, ǫSSFEM

1 Lam, ǫPERT

lx = 400 cm

ǫ(
δ E

e
ff
)
[-
]

δE [-]

lx = 400 cm

ǫ(
µ
E

e
ff
)
[-
]

δE [-]

lx = 200 cm
ǫ(
δ E

e
ff
)
[-
]

δE [-]

lx = 200 cm

ǫ(
µ
E

e
ff
)
[-
]

δE [-]

lx = 100 cm

ǫ(
δ E

e
ff
)
[-
]

δE [-]

lx = 100 cm

ǫ(
µ
E

e
ff
)
[-
]

δE [-]

0.1 0.15 0.2 0.250.1 0.15 0.2 0.25

0.1 0.15 0.2 0.250.1 0.15 0.2 0.25

0.1 0.15 0.2 0.250.1 0.15 0.2 0.25

0

0.05

0.1

0.15

0.2

0

0.005

0.01

0.015

0.02

0

0.05

0.1

0.15

0.2

0

0.005

0.01

0.015

0.02

0

0.05

0.1

0.15

0.2

0

0.005

0.01

0.015

0.02

Figure 5.19: Estimation error of the mean and COV of Eeff as a function of the COV
δE of the “raw” material and for three different correlation lengths lx, for up to four
laminations, and for two SFE methods (MCS (MP) and MCS (KL) with 20000 samples).



Application of SFEM 68

5.7.2 Results

The mean and the COV of the effective modulus Eeff are given as a function of the COV
δE of the “raw” material and for three different correlation lengths lx in Figures 5.17
and 5.18, respectively. For MCS, each sample is evaluated using (5.24), whereas results
of PERT and SSFEM are computed according to Equations (5.25) and (5.26). In Figure
5.19 the relative errors εPERT and εSSFEM between PERT and SSFEM results and the
corresponding MCS results are shown.

Regarding the Perturbation approach, related to the MCS the error of the estimate
for the mean value µEeff

is fairly small (max(εPERT) ≤ 0.5 %), where the maximal differ-
ence appears for one lamination. Since it is based on a first-order Taylor-series expansion,
the PERT approach is not suitable to exactly reveal the increase of δEeff

with increasing
material variability δE for one lamella, where the error is 17 %. However, in this partic-
ular case, with a maximal error of 9 % the estimate for δEeff

is of acceptable accuracy
for all structural configurations with more than one lamination.

The SSFEM provides results for the mean value with a maximum error of approxi-
mately 1.5 %. Regarding the COV δEeff

, the SSFEM estimation is less than 10 % for one
lamination. However, this method fails to depict the lamination effect at all, which can
not be explained by the author at this moment.

As can be seen throughout the data in Figures 5.17 and 5.18, increasing material
variability δE results in a non-linear decrease of the mean value µEeff

and an almost
linear increase of the COV δEeff

, respectively. However, the absolute value of µEeff

does not deviate significantly from the “raw” material mean value µE = 1100 kN/cm2,
whereas the variability in terms of the coefficient of variation δEeff

changes substantially.
Furthermore, MCS (MP), MCS (KL), and PERT method nicely capture the so called

lamination effect, which describes the decreasing variability of the compound product
δEeff

with increasing number of laminations. In Figure 5.20 the variability of Eeff is
plotted over the number of laminations for a COV of the “raw” material of 0.2. With
increasing number of laminations, the variability of the structural response (δEeff

) de-
creases significantly. From one to four laminations, a reduction in variability of more
than 50 % is obtained. This effect stems from the lateral support of laminations by
neighbouring laminations and the take-over of the load by other laminations in case of
local weak spots.

Another effect with considerable impact results from different correlation lengths lx.
It can be seen in Figures 5.17, 5.18, and 5.20 that as lx increases, so does δEeff

. This can
be explained by the fact, that the greater the correlation length, the more a realization
of the random field fits an almost constant value along the lamination axis, as discussed
in Subsection 2.7.1. This effect is demonstrated in Figure 5.21, where realizations with
correlation lengths lx = {100, 200, 400, 1200} cm are shown for a GLT beam with three
laminations. Since the stiffness within each lamination becomes more or less constant
for a high correlation length, the ability of the laminations to redistribute the stresses
deteriorates and in the end, as lx → ∞, reduces to the model of springs in parallel,
resulting in a high variability δEeff

.
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Figure 5.20: Mean value and COV of the effective elastic modulus Eeff plotted over the
number of laminations, for δE = 0.2.
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Figure 5.21: Realizations of the GLT-beam with 2, 3, and 4 laminations using MP-
discretization (left-hand side) with N rf

e = 16 for each lamination and KL-expansion
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Chapter6
Summary & conclusion

In this thesis, a brief introduction to probability theory was given (Chapter 2), followed
by basic concepts of random field representation (Chapter 3). In Chapter 4, the appli-
cation of probability theory in the framework of Finite-Element Methods was proposed.
Therein, different so-called Stochastic-Finite-Element Methods were described, giving an
idea of the strongly varying complexity and diversity of these approaches. Finally, in or-
der to illustrate the performance of such methods, the three most prominent ones were
applied to glued-laminated-timber elements (GLT), subjected to longitudinal loading
(Chapter 5).

In different parameter studies, the influence of the variability of the “raw” material
on the mechanical response on the structural scale is shown. Based on the obtained
results, the following conclusions can be drawn:

� The coefficient of variation δE of the elastic modulus of the “raw” material has a
major impact on the variability of the overall stiffness δEeff

of GLT, rather than
the mean value µEeff

.

� Similarly, δEeff
increases with the correlation length lx. The acquisition of a cor-

relation length suitable for depicting the stochastic phenomena of wood requires
further research.

� With increasing number of laminations, the variability of the effective elastic mod-
ulus decreases substantially. This effect is known by the name “lamination effect”,
and is a result of load distributions in between the laminations of the GLT beam.
This effect can be efficiently quantified using SFEM.

� The Monte Carlo simulation has been proven to be an universally applicable
method, and therefore is used as benchmark model. However, the computational
effort can be reduced significantly, while retaining the quality of the results, with
the Spectral-Stochastic-Finite-Element Method or the Perturbation Method.
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� The Spectral-Stochastic-Finite-Element Method gives accurate results for one lam-
ination. However, the approach suggested in [8] failed to reveal the lamination
effect, which could be a result of the Polynomial Chaos expansion with Hermite
polynomials being inadequate for the response random field representation.

� The Perturbation Method delivers accurate results for two or more laminations
with minimal computational effort. Therefore, it deserves further investigation
regarding the improvements introduced in [15].

Summarized, it can be said that the Stochastic-Finite-Element Method is a powerful
and valuable tool to gain understanding of the variability of the mechanical behaviour of
wood-based products. Results, based on this methods, will become important in many
fields, from grading and optimization of wood-based products to engineering design of
wooden structures.
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in high dimensions, part i: algorithms and applications. Probabilistic Engineering
Mechanics, 19(4):409 – 417, 2004.

[28] Chun-Ching Li and A. Der Kiureghian. Optimal discretization of random fields.
Journal of Engineering Mechanics, 119(6):1136–1154, 1993.

[29] Hermann G. Matthies, Christoph E. Brenner, Christian G. Bucher, and C. Guedes
Soares. Uncertainties in probabilistic numerical analysis of structures and solids-
stochastic finite elements. Structural Safety, 19(3):283 – 336, 1997. Devoted to the
work of the Joint Committee on Structural Safety.

[30] M.F. Ngah and A. Young. Application of the spectral stochastic finite element
method for performance prediction of composite structures. Composite Structures,
78(3):447 – 456, 2007.

[31] Hyuk-Chun Noh and Taehyo Park. Monte carlo simulation-compatible stochastic
field for application to expansion-based stochastic finite element method. Computers
& Structures, 84(31-32):2363 – 2372, 2006.

[32] M.F Pellissetti and R.G Ghanem. Iterative solution of systems of linear equations
arising in the context of stochastic finite elements. Advances in Engineering Soft-
ware, 31(8-9):607 – 616, 2000.

[33] J.A. Rice. Mathematical Statistics and data analysis. Thomson Learning, 2006.
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