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Abstract
Humans are living in a 3D world and are able to reason about 3D properties. They can for example
estimate occlusion boundaries and spatial arrangements of objects which is necessary for object manipu-
lation and navigation. When capturing various real world scenes on 2D image planes, they may vary in
terms of involved objects. These objects can for example be pedestrians, vehicles, chairs, walls, moun-
tains. They may also provide a variety of appearances, namely different dimensions, or colors. Images
showing these scenes may also be taken under changing environmental settings which may be changes in
terms of lighting, weather condition, or the time of the day. Captured scenes do also differ regarding the
events and actions which occur among objects. Due to this endless number of variations, computer vision
applications and algorithms are designed to handle a specific task at a specific environmental setting in
order to assure a certain accuracy for that task.

This thesis deals with overcoming the specificity of a single algorithm and increasing its robustness
by exploiting redundant information for solving 3D computer vision tasks. Redundancy in this context is
a combination of different algorithms, or a variety of different cues. The task of 3D scene understanding
is divided into three parts, namely calibration, 3D reconstruction and 3D reasoning.

Two auto-calibration methods for traffic surveillance scenarios from videos are presented. The first
algorithm estimates extrinsic and intrinsic camera parameters for a whole network of cameras from ana-
lyzing pedestrians. The second proposed method aims for calibrating a surveillance camera from pedes-
trians and zebra-crossings. Redundant information for calibration is gathered by combining multiple
instances of a pedestrian over time and by combining static and dynamic objects by means of pedestrians
and zebra-crossings.

Man-made indoor environments suffer from flat and textureless surfaces, where conventional, feature-
based 3D reconstruction pipelines fail to estimate the 3D scene layout. In order to overcome this problem,
the proposed work combines conventional feature matching techniques with 3D information coming from
semantic reasoning. It is assumed that an image can be segmented in parts where each segment can be
modeled by a planar patch. The patches’ 3D surface normal orientations are estimated and a pixel-
wise optimization is exploited in order to get the globally best surface normal orientation for each pixel.
Redundant information for 3D surface labeling and 3D reconstruction is achieved by combining different
segmentation methods when performing semantic reasoning and by combining semantic information with
geometric information coming from conventional feature matches.

The task of 3D reasoning covers the description of a variety of different events which are for example
human actions or interactions between objects. Nevertheless, 3D pose estimation and 3D tracking are
the basis for analyzing these events. Therefore, two pose estimation, object classification and tracking
algorithms for vehicles, which are the most important objects to be analyzed in computer vision besides
persons, are presented. The proposed methods exploit existing 3D models for pose estimation and clas-
sification of vehicles. This first enables overcoming the ill-posed problem of projecting a pixel from the
image plane into 3D space and second speeds up the training phase of collecting annotated data. The best
pose is then found by obtaining a matching score between 3D model projections and the input frame and
by determining a global optimization over subsequent frames. It is also shown that the accuracy increases
when having multiple viewpoints. Redundant information for 3D reasoning is obtained by using existing
3D models, by incorporating temporal consistency, and by considering multiple viewpoints.

As can be seen from the experiments conducted in this thesis, exploiting redundant information
improves the accuracy of all three parts of the pipeline and brings computer vision solutions one step
closer towards automatically accomplishing a more robust 3D perception than humans achieve.
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Kurzfassung
Menschen leben in einer 3D Welt und haben die Möglichkeit, Schlussfolgerungen dreidimensional zu
ziehen. So zum Beispiel werden Verdeckungen und räumliche Aufteilungen von Objekten erkannt, wobei
diese Fähigkeiten für die Führung von Objekten und für die Navigation notwendig sind. Projektionen von
3D Szenen variieren in Hinblick auf die eingebundenen Objekte, welche zum Beispiel Fußgänger, Autos,
Stühle, Wände, oder Berge sein können. Die Objekte können in Hinblick auf ihre Abmessungen und
Farben verschieden konzipiert sein. Szenen werden aber auch unter veränderten Aufnahmebedingungen,
wie zum Beispiel verschiedener Beleuchtung, Wetterbedingung oder Tageszeit, erfasst. Projizierte Szenen
unterscheiden sich zusätzlich in den Ereignissen oder Handlungen, welche durch oder zwischen Objekten
auftreten. Aufgrund einer unendlichen Anzahl an Variationen werden Anwendungen und Algorithmen
der Bildverarbeitung so entwickelt, dass sie in der Lage sind, eine spezielle Aufgabe unter bestimmten
Bedingungen zu bewältigen und dabei eine festgelegte Genauigkeit erreichen.

Diese Arbeit versucht durch die Verwendung von redundanter Information die spezifische Wirksam-
keit eines einzelnen Algorithmus aus der 3D Bildverarbeitung zu umgehen und die Robustheit zu erhöhen.
Als Redundanz wird in diesem Zusammenhang die Kombination von mehreren Algorithmen oder Merk-
malen bezeichnet. Das 3D Verstehen von visuellen Szenen wird in die drei Aufgaben Kamerakalibrierung,
3D Rekonstruktion und 3D Interpretation unterteilt.

Es werden zwei Methoden zur Selbstkalibrierung mittels Videos für Verkehrsüberwachungsszenen
präsentiert. Der erste Ansatz schätzt sowohl intrinsische, als auch extrinsische Parameter mehrerer Ka-
meras in einem Netzwerk durch die Analyse von Fußgängern. Die zweite Methode ist in der Lage, eine
Verkehrsüberwachungskamera mittels Fußgänger und Zebrastreifen zu kalibrieren. Redundanz zur Ka-
librierung wird durch die Kombination von mehreren zeitlichen Instanzen der Fußgänger und mittels
Kombination von statischen (Zebrastreifen) und dynamischen Objekten (Fußgänger) gewonnen.

Künstlich geschaffene Innenräume weisen ebene und texturlose Flächen auf, wo merkmalsbasierte
Ansätze nicht in der Lage sind, den 3D Szenenaufbau zu rekonstruieren. Zur Lösung dieses Problems prä-
sentiert diese Arbeit die Kombination von 3D Information aus merkmalsbasierten Techniken mit semanti-
schen Interpretationen. Es wird angenommen, dass ein Bild segmentiert werden kann und jedes Segment
einer Ebene entspricht. Die 3D Oberflächennormalen der Segmente werden eruiert und die global beste
Lösung für die Normale jedes Pixels wird durch eine pixelweise Optimierung erreicht. Redundanz zur
3D Rekonstruktion wird erstens durch mehrere Segmentierungen und zweitens durch die Kombination
von merkmalsbasierten Methoden und semantischen Informationen erreicht.

Die 3D Interpretation beinhaltet die Beschreibung einer Vielzahl von Ereignissen, wie zum Beispiel
menschliche Handlungen oder Interaktionen zwischen Objekten. Die 3D Posenschätzung und die 3D Ver-
folgung stellen dabei die Basis dar. Deshalb werden zwei Methoden zur Posenschätzung, Klassifizierung
und 3D Verfolgung von Fahrzeugen, die neben Personen die wichtigsten zu analysierenden Objekte in
der Bildverarbeitung sind, vorgestellt. Durch Verwendung von existierenden 3D Modellen wird das Pro-
blem der 3D Rekonstruktion aus einzelnen Bildern gelöst und die Trainingsphase effizienter gestaltet, da
Trainingsdaten nicht manuell annotiert werden. Die beste Pose wird durch Vergleichen der Projektionen
der 3D Modelle mit den Eingabebildern und durch eine globale Optimierung über aufeinander folgende
Posen eruiert. Es wird auch gezeigt, dass die Genauigkeit unter Berücksichtigung von mehreren Blick-
richtungen gesteigert wird. Die Redundanz zur Interpretation der 3D Szene wird durch die Verwendung
von 3D Modellen, aber auch durch die zeitliche Optimierung und die gleichzeitige Analyse von mehreren,
synchronisierten Blickrichtungen, sichergestellt.

Die Ergebnisse dieser Arbeit verdeutlichen, dass die Ausnutzung von redundanter Information die
Genauigkeit aller drei Teile des 3D Verstehens einer visuellen Szene erhöht und somit die Bildverarbei-
tung näher an eine robustere Wahrnehmung, verglichen mit der menschlichen Wahrnehmungsfähigkeit,
gebracht wird.
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“ Nothing in the world is worth having or worth doing unless it means effort, pain, difficulty. . .

I have never in my life envied a human being who led an easy life.

I have envied a great many people who led difficult lives and led them well. “
Theodore Roosevelt (1858 - 1919)
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CHAPTER 1
Introduction

The human visual system is an important feature to navigate through everyday life. It mainly
consists of two parts, namely first seeing and second interpreting the perceived scene, where the
first part is also known as cognitive vision and the second part is also known as visual perception
(i.e. to think and find causal relationships between objects) [Les and Les, 2008, Alexandrov and
Gorsky, 1991]. One of the greatest unanswered questions in research is how the human brain
is able to understand and interpret surrounding scenes so fast and precisely. The perception
system can be split in three parts, namely detection, recognition and reasoning [Les and Les,
2008, Alexandrov and Gorsky, 1991]. All these parts are shown in Figure 1.1 and are described
in the following.

Detection As illustrated in Figure 1.1a, people are able to detect a variety of physical objects
(e.g. vehicles, chairs, humans, desks, animals, walls, ceilings,. . . ) in 2D images or videos. This
ability is even given when the object in question is placed in an unknown environment. For
example, when people search for their own, well-known key, they would also find and identify it
in an environmental setting which they never saw before. When a person stands in a room where
he or she has never been before, it would not be any problem to detect ceilings, walls, the floor
and all the objects within the room [Les and Les, 2008, Alexandrov and Gorsky, 1991].

Recognition Apart from detection, humans experience the ability to identify and recognize
specific objects, i.e. to differentiate among different objects of various classes or group similar
ones when specific grouping and differentiation rules are given (see Figure 1.1b). It is e.g.
possible to categorize a vehicle and determine the type of the car (e.g. hatchback, limousine,
truck,. . . ). When seeing a specific but novel vehicle type in a commercial on television, people
would immediately know the brand of the car if similar vehicles from this brand are known
from somewhere else. The grouping rule in this case is made up by the brand. Products of the
same brand provide a lot of similar visual properties which are distinctive from the human’s
point of view. Recognizing, grouping and differentiating may be performed on a variety of
different levels of granularity depending on the differentiation / grouping rule which needs to be
set beforehand [Les and Les, 2008].
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(a)

(b)

(c) 2D

3D

carsbuildings persons trees

signs

Figure 1.1: A human’s visual system is able to (a) detect and localize a number of different
physical objects, (b) recognize objects and differentiate among different classes when group-
ing/differentiation rules are given or set (note that in this example objects are grouped based on
color) and (c) infer 3D geometric relationships from 2D images.

3D Reasoning Going even further, humans are also able to localize the detected objects in 3D,
to estimate geometric 3D relationships among different objects, to analyze an object interacting
with other objects or with its environment and to combine semantic information with the object
seen in the image (see Figure 1.1c). Extracting metric information from a 2D image can be
established in a fraction of a second and the observed scene may vary between a single micro-
scopic laboratory slide and a whole city seen from a helicopter’s point of view. When going
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from images to videos, the human brain is for example also able to predict the metric movement
of a vehicle from one frame to a subsequent one with the slightest effort in order to have the
object moving smoothly [Les and Les, 2008, Marr, 1983].

The holy grail of computer vision is to obtain even more reliable and consistent 3D infor-
mation out of 2D images than humans are able to do by combining computational power and in-
telligent image analysis software. Operating in 3D space provides the advantage of enabling 3D
reasoning. This is for example necessary for the detection of occlusions and occluded objects,
for the extraction of metric information, for navigational tasks which humans are experiencing.

The term 3D scene understanding is used for describing a computer vision framework mod-
eling a human’s visual perception system. Such a system consists of three parts, which are
described in the following and where the workflow can be seen in Figure 1.2.

Calibration The first step for gathering a 3D representation of the scene is known as camera
calibration. Camera calibration describes the task of determining the interrelationship between
image and camera plane, which is described by so called intrinsic parameters, as well as the
relationship between camera plane and 3D world, also known as the extrinsic parameters. This
information is necessary to map between 2D image coordinates and 3D world coordinates. Fig-
ure 1.2b illustrates a sample camera position (denoted by C = (x, y, z)) in 3D space, where the
3D reconstruction is represented by the road markings seen in the input image (Figure 1.2a).

3D Reconstruction After knowing the camera position and the relationship between image
plane and world coordinate system, the next step is to reconstruct the surrounding scene. Going
from 2D to 3D is an ill-posed problem which can be solved (i) by exploiting the principle of
triangulation [Hartley and Zisserman, 2003] from corresponding points between two or more
camera views, or (ii) by using prior information such as 3D models. Figure 1.2c presents the 3D
reconstruction of the scene seen in the input image.

3D Reasoning The last step in a computer vision framework, which models the human per-
ception system in 3D, is known as 3D reasoning. Having a specific set of rules defined for an
event of interest, the framework must be able to interpret the scene and to describe the events
observed in the scene. Figure 1.2d shows the 3D reconstruction of the environment seen in the
input image in combination with vehicles (represented by red boxes), pedestrians (represented
by blue boxes), cyclists (represented by yellow boxes) and their moving directions, which are
indicated by the magenta arrows.

For this research, each of the three tasks is evaluated independently. Nevertheless, they are
all evaluated on image sequences (videos) coming from static surveillance cameras, where the
reasons for using this input data are explained in the following.

• Using videos as input allows performing e.g. object tracking, object interaction detection,
or action detection. As can be seen from these samples, many 3D reasoning tasks are
performed over time.

• Using videos as input allows exploiting temporal cues in order to achieve both consis-
tency and redundancy over time.

• Using static cameras allows obtaining a calibration setting which is valid for a longer
time compared to moving ones.

3



Figure 1.2: (a) Having an input image, a visual computing 3D scene understanding framework
consists of three parts, namely (b) camera calibration, (c) 3D reconstruction and (d) 3D reason-
ing. These algorithmic steps are used in a bottom-up style where each part combines the 3D
information resulting from its previous step with the 2D information given from a single input
image or from a whole input image sequence.
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• Using surveillance videos allows exploiting humans and vehicles for 3D scene under-
standing as these objects are the most frequent ones to be analyzed in surveillance scenar-
ios [Leotta and Mundy, 2011].

1.1 Motivation

Real world scenarios consist of a vast variation of involved objects (e.g. objects providing dif-
ferent dimensions, pedestrians wearing different clothes, cars providing different colors,. . . ), but
they can also provide different environmental settings (e.g. lighting, shadows, rain, snow, day,
night,. . . ), and do also offer an endless number of different events and actions which can occur
(e.g. one object is sitting on top of another one, persons are fighting, persons are shaking hands,
pedestrians are carrying bags,. . . ). Due to these variations, computer vision applications are
always designed to handle a specific task at a specific environmental setting. In recent years,
computational power has been massively increased which gives the advantage that tasks, which
computers were not able to solve earlier, can be solved nowadays [Zach, 2007, Hennessy and
Patterson, 2011]. The proposed methods exploit this increase in computational power. Novel
algorithmic approaches, which bring us one step closer to general 3D scene understanding, are
presented.

In this thesis, the term redundancy is used as a synonym for combining different algorithms,
or a number of different cues which are designed to tackle a specific task. Redundant informa-
tion is then exploited in order to make the final result robust against the described environmental
setup changes. When having multiple cues or algorithms, getting a globally correct result can
be shifted to a later stage. The tremendous increase of computational power enables gathering
multiple hypotheses for a variety of applications and lets the algorithm decide afterwards which
hypothesis may be the best one in order to get a final result. As described in the previous para-
graph, a 3D scene understanding framework in computer vision consists of three parts, namely
camera calibration, 3D reconstruction and 3D reasoning. This work exploits redundant infor-
mation gathered from different sources for all the three parts of the pipeline and returns a final
result at the end of each stage. Particular goals of this work can be summarized as follows.

1. Development of a camera auto-calibration method which exploits 3D features and 3D
principles of objects shown in the image. By using redundant data, coming from multiple
objects or multiple instances of an object, a practical and efficient calibration framework
with no (or little) user interaction is established.

2. Development of a 3D labeling and 3D reconstruction algorithm. The goal is to obtain
a 3D labeling and 3D reconstruction framework for scenes where no (or less) texture is
available. Texture is needed for conventional reconstruction methods which are based
on localizing and matching discriminative features. Having less or no texture means that
these features get less discriminative and incorrect matches may occur among different
viewpoints. This problem is tackled by combining redundant information obtained from
multiple cues.
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3. Development of a 3D reasoning framework. One specific task in the domain of 3D rea-
soning, namely vehicle pose estimation and 3D tracking is performed. Pose estimation
and 3D tracking is chosen as this is the initial step towards full 3D reasoning of a scene,
as e.g. stated in [Geiger et al., 2012, Geiger et al., 2011]. As a robust pose classifier must
be trained on a huge number of labeled and clustered training images, these images are
generated synthetically from 3D Computer-Aided Design (CAD) models in order to speed
up the training phase of manually collecting and labeling real world images. Apart from
speeding up the training phase, using 3D models also enables to overcome the ill-posed
problem of going from 2D images to the 3D world and enables reasoning about hidden
parts of the object in a scene as the dimensions and other features (e.g. color, shape,. . . ) of
the corresponding 3D model from an object seen in 2D images are known in advance. This
research also answers the question whether or not aggregating information from multiple
cameras increases the pose estimation results.

1.2 Contribution

There is an endless number of different influences which change the representation of a 3D scene
on a 2D image plane in computer vision. Each of the developed methods described in literature
provides advantages as well as drawbacks when it performs a specific task, if it is applied on
specific image regions, or with a specific environmental setting. The main contribution of this
research lies in showing that by combining different methods and algorithms related to 3D scene
understanding, which in the rest of this work is referred to as redundancy, the final outcome
of the pipeline can be improved. In detail, these contributions are described as follows, where
major parts are presented in scientific publications and presentations within the last three and a
half years.

1. Exploiting Redundancy for Calibration: Camera calibration can be established using
vanishing points or other features obtained from a single image or from multiple ones.
This work exploits the prior knowledge that a person, who is observed for a sequence
of frames, does not change its height and uses this information for gathering intrinsic
as well as extrinsic parameters automatically. Calibrating a whole camera network from
pedestrians only and calibrating a single traffic surveillance camera from a combination
of pedestrians and zebra-crossings is shown. It is demonstrated in the experiments section
that an improved performance is achieved compared to state-of-the-art methods.

The redundant information exploited for calibrating a camera is obtained by com-
bining (i) multiple instances of the same pedestrian over time and (ii) static (zebra-
crossings) and dynamic (pedestrian) objects.

The proposed work dealing with camera calibration was mainly presented in two publi-
cations. [Hödlmoser and Kampel, 2010] describe the calibration from pedestrians only,
[Hödlmoser et al., 2011b] illustrate the method using a combination of pedestrians and
zebra-crossings.
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2. Exploiting Redundancy for 3D Surface Normal Labeling and 3D Reconstruction:
3D Reconstruction is usually done by generating a sparse point cloud obtained by trian-
gulation followed by a densification [Furukawa and Ponce, 2007]. In case of challenging
indoor environments, this is not possible anymore because there may be incorrect matches
between corresponding camera views due to similar features obtained from flat and tex-
tureless surfaces (e.g. walls, floors) [Häne et al., 2012]. To compensate this lack of feature
matches, the semantic information available in 2D images is exploited to estimate both a
corresponding 3D position and a 3D surface normal for each pixel. A semantic classi-
fier is therefore applied on a single segmented image in order to get a likelihood for a
segment providing one of the surface normals within a discrete set of them. A segment
is assumed to be modeled by a planar patch. To improve the accuracy of the labeling
step, the presented method combines multiple segmentation algorithms in order to come
up with a stronger classifier for both 3D surface normal labeling and 3D reconstruction in
challenging environments. The final surface normal label and the corresponding 3D point
for each pixel are then obtained by evaluating the spatial smoothness between neighbor-
ing pixels and solving it in an optimization framework. As can be seen in the experiments
section, using redundant information allows obtaining more accurate results compared to
state-of-the-art methods in terms of both labeling and reconstruction.

The redundancy for 3D labeling and 3D reconstruction is therefore gathered by com-
bining multiple cues coming (i) from a variety of different shaped segments, obtained
from various segmentation methods and (ii) from combining conventional feature
based matches with semantic patch-based 2D information.

The content dealing with this contribution emerged from the methods described in [Hödl-
moser and Mičušík, 2013] which describes labeling the image, and the workflow outlined
in [Hödlmoser et al., 2013a] which illustrates the 3D reconstruction from these labeled
images. Additionally, requirements for running a 3D reconstruction pipeline on an em-
bedded device, which is not directly related to this research, are published in [Hödlmoser
et al., 2011a].

3. Exploiting Redundancy for 3D Reasoning: The last part of a scene understanding
framework is a broad field covering a vast variation of events. This work picks out a
specific task and deals with 3D pose estimation and tracking of objects as this is the ba-
sis for all 3D reasoning algorithms, as stated in [Geiger et al., 2011, Geiger et al., 2012].
More specifically, vehicles are used since they are the second most important objects to
be analyzed in computer vision besides persons [Leotta and Mundy, 2011]. The advan-
tage of analyzing vehicles over persons is that the shape and texture of a vehicle is more
discriminative than the shape of a person [Leotta, 2010]. This advantage even increases
if the silhouettes are seen from a larger distance (5-30 meters) which is usually the case
in surveillance scenarios. The best matching pose for a given vehicle is determined in an
image sequence. It is therefore proposed to exploit redundancy, rank all possible poses
for each frame and let an optimization framework afterwards decide which pose to be the
best for each frame by also considering subsequent poses. In order to get multiple pose
hypotheses for each frame, multiple images showing a vehicle from different poses must
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be collected. To overcome the problem of collecting and sorting real world images based
on the vehicle’s pose, existing 3D models are exploited. It is also shown that aggregating
information from multiple views increases the accuracy of determining the pose and the
class of the vehicle. It is shown that the accuracy increases compared to the result coming
from analyzing each camera separately.

The redundancy for 3D reasoning is obtained by (i) gathering synthetic images from
3D models rendered with different poses, (ii) combining information about the pose
and class over time in an image sequence and (iii) combining results from different
viewpoints simultaneously.

The core algorithms of the parts dealing with 3D reasoning are presented in three publi-
cations. [Hödlmoser et al., 2011c] present a vehicle pose estimation algorithm using edge
features, [Hödlmoser et al., 2012] describe pose estimation using a classifier trained on
multiple vehicle models, and [Hödlmoser et al., 2013b] tackle simultaneous pose estima-
tion from multiple viewpoints.

1.3 Thesis Organization

The contributions are directly related to the research fields calibration, 3D reconstruction and
3D reasoning and are therefore divided into three technical chapters (4-6). Each of the three
chapters holds an outline of the proposed method and an experimental evaluation of the proposed
approach, where outcomes of the pipeline are compared to results obtained by state-of-the-art
algorithms. Before that, Chapter 2 gives an overview on related work, Chapter 3 describes the
basic principles needed to explain the implementations outlined in the following chapters. The
rest of the work is therefore organized as follows.

Chapter 2 presents an overview on state-of-the-art methods related to the three steps needed in
computer vision to extract 3D information out of 2D images, namely calibration, 3D reconstruc-
tion and 3D reasoning and shows how they are all related to this research and how the content
of existing methods differ from the proposed framework.

Chapter 3 outlines the fundamental principles which are used in Chapters 4-6. It shows how
image and video data are described and represented in computer vision applications. Different
image description features and representative implementations are outlined. Next, principles
about the interrelationship between image plane, camera plane and 3D world coordinate system
are described and fundamentals of 3D computer vision are explained. Computer vision algo-
rithms, which find the final solution from multiple hypotheses, are based on a variety of opti-
mization and classification methods. The goal of this evaluation is to get the most likely, globally
optimized and best fitting result from all these hypotheses. Therefore, Chapter 3 describes an
optimization method and a classification algorithm, which are used in the accompanying imple-
mentations for this work, namely Random Forests (RFs) and Markov Random Fields (MRFs).

Chapter 4 describes two novel auto-calibration methods for finding a camera’s parameters.
Auto-calibration can be established after the extraction of three vanishing points which are or-
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(a) (b)

Figure 1.3: Calibration using (a) pedestrians only and (b) pedestrians and a zebra-crossing.

thogonal to each other. The first approach proposes to obtain these vanishing points from a
walking pedestrian. Having at least two images of a walking pedestrian from different time
instances, the vanishing points can be extracted by using top and bottom points of the person.
Multiple surveillance cameras within a network are calibrated using this information. Figure
1.3a illustrates the outcome of the approach. From an input image, showing multiple instances
of a pedestrian with extracted top and bottom points (left), camera positions, which are observ-
ing the same scene with pedestrians walking on the ground plane, are determined in 3D space
(right). The second approach describes the calibration of a single static traffic surveillance cam-
era, where vanishing points are extracted from both static and dynamic objects. The advantage
of static objects is that the results are more robust against outliers, the advantage of dynamic
objects is that the method is more flexible. Pedestrians (dynamic objects) are walking on or
near zebra-crossings (static objects) in a traffic scenario. This knowledge is then exploited for
calibration. It is shown that the results can be improved by combining the two object types over
using pedestrians only. The approach is shown in Figure 1.3b. Multiple instances of a pedestrian
are extracted (drawn as white silhouettes in a single background image which contains a zebra-
crossing (left)) and the corresponding 3D locations of pedestrians, zebra-crossing, and camera
are determined in 3D space (right).

(a) (b)

Figure 1.4: (a) 3D surface orientation labeling. (b) Reconstruction using the labeled image.

Chapter 5 presents a novel 3D labeling and 3D reconstruction framework. In man-made
environments, conventional feature-based 3D reconstruction pipelines suffer from incorrect or
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missing matches and therefore provide incomplete 3D models. The chapter describes how to
improve the reconstruction results by incorporating semantic 2D information, where an image
is segmented and each segment is assumed to be described by a planar patch. The surface
normal and a corresponding 3D point for each pixel is then estimated by solving an optimization
framework to enforce spatial smoothness between neighboring pixels. It is also shown in the
experiments of this chapter, that the accuracy of these results can be even further increased
by estimating the surface normal of this patch and combining multiple segmentation methods.
Figure 1.4a shows the result of the proposed approach for labeling the 2D image into ground
plane (green), ceiling(blue), vertical(red). Image regions which are excluded from labeling are
marked black. This image is then used to obtain a 3D reconstruction of the scene (see Figure
1.4b).

(a) (b)

Figure 1.5: (a) 3D vehicle classification and pose estimation using (b) projections of existing
3D models.

Chapter 6 explains a novel method for solving specific task within this field, namely pose
estimation and classification of vehicles. This task is chosen since it is used as a basis for 3D
reasoning frameworks [Geiger et al., 2011, Geiger et al., 2012, Leotta and Mundy, 2011]. Two
different approaches for vehicle tracking are outlined in this chapter. Both rank all possible poses
for each frame using multiple projections of different 3D models. The first method does this
ranking based on comparing the edges within the image with the edges resulting from rendering
the models. The second approach explains another ranking strategy, where the score is obtained
by training an RF on all the 3D model projections. Both methods then find the best matching
pose for each frame by evaluating the poses for each frame in combination with previous and
subsequent poses in the video. This chapter also shows that estimating a vehicle’s pose and class
from two views simultaneously increases the accuracy over analyzing each viewpoint separately.
Figure 1.5a shows sample vehicle classification and pose estimation results using projections of
existing 3D models which are shown in Figure 1.5b.

Chapter 7 gives a summary and an outlook to possible ideas or research directions for future
work. These ideas help to improve the proposed framework in further developments.
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CHAPTER 2
Related Work

3D computer vision methods evolved from the early photogrammetric inventions before and also
after the introduction of the principles of photography. The following review presents a historical
review ranging from the early beginnings of photography in combination with photogrammetry
to modern 3D computer vision and its analogy to the human visual perception system.

2.1 From Photogrammetry to 3D Computer Vision

The main goal of photogrammetry is to obtain a precise mapping and to achieve accurate mea-
surements [Clarke and Fryer, 1998]. Photography (greek for ’drawing with light’ was first intro-
duced in 1839 by Sir John Herschel, who was an English mathematician and astronomer [Schaaf,
1992]. This invention brought the advantage of obtaining a correct perspective projection of a
3D scene which was not perfectly the case with paintings.

Gathering 3D information from 2D photographs was first used to create topographic maps
and to obtain terrain models. In 1726, Kappeler compiled a topographic map of a Swiss moun-
tain range using perspective drawings. It is not documented how he generated these drawings.
Therefore, the term photogrammetry was officially introduced in literature by [Laussedat, 1899]
which let Aime Laussedat become the father of photogrammetry [Sturm, 2011]. At the be-
ginning, the approach needed perspective drawings in order to extract 3D information. At the
introduction of photography, these drawings were then replaced by photographs. This inven-
tion was first tested in 1849 and enabled measuring heights and distances as well as planar
point triangulations. In the following decades, there were several inventions which enabled us-
ing multi-camera systems having well defined properties (e.g. fixed distances and orientations
among cameras). In [Tissandier, 1886] for example the authors describe a multi-camera system
consisting of 7 fixed mounted cameras attached to a balloon which was used to obtain images
from an aerial point of view. [Scheimpflug, 1904] presents the principles of how the lens and the
back of a camera must be tilted in order to focus a plane which is not parallel to the image plane.

In order to work with cameras from an arbitrary point of view having arbitrary intrinsic
parameters, the next step is to obtain these properties from 2D images in combination with
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calculating the 3D structure of the projected scene. Two steps are required to get these properties
namely calibration, consisting of finding a camera’s intrinsic parameters its pose in 3D space and
its relative orientation to a camera providing a different viewpoint, and triangulation which is
also known as estimating the 3D structure of the scene [Sturm, 2011].

2.1.1 Calibration

In photogrammetry, the problem of calibration is divided into three parts which are (i) finding
the intrinsic parameters, (ii) estimating the camera pose in 3D space and (iii) calculating the
relative pose between two cameras. Camera self-calibration for both computer vision and pho-
togrammetry is defined as estimating these parameters from only the information available in
the images [Hartley and Zisserman, 2003]. In 1892, Meydenbauer explained that finding a cam-
era’s intrinsic parameters is possible for a rotating one [Meydenbauer, 1892]. Finsterwalder, a
German mathematician, described that the task of camera calibration from a rigid object, where
the camera is moving with general motion, is also solvable [Finsterwalder, 1899]. Both meth-
ods assume to have the principal point available and only determine the focal length. They
additionally assume that the camera is rotated around either its vertical or horizontal axis. Ad-
ditionally to obtaining the focal length, the method proposed by [Sutor, 1939] also recovers the
principal point from rotating cameras. Mathematical models for estimating a camera’s intrinsic
parameters were published by [Brandenberger, 1948] and [Brown, 1956].

2.1.2 Triangulation

[Finsterwalder, 1899] also provided a solution for reconstructing the 3D scene from two pro-
jective images using four coplanar and two other points. [Kruppa, 1913] outlines that the rela-
tive pose between two images taken from two different points of views can be estimated when
five corresponding 2D points and the intrinsic parameters are known. These developed Kruppa
Equations are still used in today’s computer vision applications. The principles of epipolar ge-
ometry, which is in detail also described in Section 3.2.3, was first introduced by [Hauck, 1883].
The epipolar geometry describes the relationship between two camera’s centers, the correspond-
ing image planes, their epipoles, corresponding points and the triangulated 3D point [Hartley
and Zisserman, 2003]. Horst von Sanden then described how to calculate the epipoles needed
for triangulation in [von Sanden, 1908]. [Thompson, 1968] presents the first approach to de-
scribe the relative orientation between two camera views by an equation. Based on that con-
tribution, [Longuet-Higgins, 1987] showed that the principles of the epipolar geometry can be
described by a single matrix. In computer vision, the matrix is called essential matrix. Fol-
lowing [Longuet-Higgins, 1987], it can be estimated by using eight corresponding points be-
tween the two views. The invention of this 3x3 matrix enabled efficient solving the problem
of finding the 3D structure from 2D images for computer vision applications. [Faugeras, 1992]
and [Hartley, 1992] propose two methods for 3D reconstruction and camera calibration from
two uncalibrated images.
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Figure 2.1: Camera calibration is the determination of a camera’s intrinsics (mapping between
image and camera plane) and extrinsics (mapping between camera plane and 3D world). (a)
Input image. (b) Camera localization in 3D space.

2.2 3D Computer Vision

Different to the field of photogrammetry, the main objectives of computer vision are recon-
struction and recognition [Ma et al., 2003]. The research field of computer graphics studies the
problem of how 3D objects and their properties can be modeled on 2D images. This model-
ing is established by exploiting the knowledge of physics. A light ray coming from a source
is reflected by the surface of an object, received by the human eye or the lens of a camera and
projected onto the retina or a 2D image plane [Sonka et al., 2008]. Doing the inverse task is
tackled by computer vision applications. The 3D reconstruction and the properties (e.g. shape,
color,. . . ) of a scene and all associated objects, which are projected onto a 2D image plane,
should be recovered. Performing 3D scene understanding in computer vision can be divided
into three steps which are calibration, 3D reconstruction and 3D reasoning.

2.2.1 Calibration

Similar to photogrammetry, camera calibration in computer vision is known as the determination
of the interrelationships between the 3D world coordinate system and the one described by a
camera (extrinsic parameters) and between the camera model and the image coordinate system
(intrinsic parameters) [Hartley and Zisserman, 2003]. The outcome of the calibration process is
visually demonstrated in Figure 2.1. The input image, shown in Figure 2.1a is used to obtain
a corresponding 3D pose of the camera’s center point C = (x, y, z) within the scene, which is
shown in Figure 2.1b. When talking about camera calibration in this research, it is always meant
to be a calibration using the conventional pinhole camera model. Calculating these intrinsic
and extrinsic parameters is a preprocessing task for 3D computer vision applications which
range from the area of surveillance networks (e.g. security scenarios, or ambient assisted living
applications [Zhang et al., 2012]) to autonomous robots and ubiquitous network robotic devices
[Tsai et al., 2011]. Having the 3D information can also be helpful for the reconstruction of
a scene, as can be seen in [Leibe et al., 2007a] and [Hödlmoser et al., 2013a]. Knowing the
3D information of a scene allows video and image metrology, as described by [Criminisi et al.,
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2000] or [Guo and Chellappa, 2010]. It also enables classification and pose recovery of vehicles
using 3D CAD models, as proposed by [Buch et al., 2009], or [Yoneyama et al., 2005].

According to [Hartley and Zisserman, 2003], camera calibration methods can mainly be
divided into two approaches, namely conventional camera calibration using a known calibration
object and camera auto-calibration which is also known as camera self-calibration. When the
dimensions of an object are known, the 3D information of a scene can precisely be extracted by
establishing correspondences between different views showing the same calibration object. As
described in Section 2.1.1, in case of auto-calibration, no calibration object is needed in order to
calibrate a camera from uncalibrated images.

The disadvantage of conventional camera calibration methods is the extra time needed to
obtain a tailored calibration object and to perform the calibration procedure which can then only
be done in an offline fashion. As auto-calibration methods do not use known 3D points, the main
disadvantage of these methods is that the camera parameters are less accurate than parameters
obtained by using conventional methods, as can be seen in [Lv et al., 2006].

2.2.1.1 Conventional Camera Calibration

Conventional camera calibration is performed offline by using a pre-defined and well-known
calibration pattern. This method has also been used for photogrammetry [Faig, 1975, Brown,
1971]. In practice, the generation of an adequate calibration pattern is not an easy task because
its size should be tailored to meet the requirements for obtaining a certain accuracy in the cam-
era calibration process (i.e. the projection of the calibration pattern must fill most parts of the
2D image). Producing such a tailored calibration pattern and performing an offline calibration
procedure takes some extra time compared to executing camera auto-calibration.

[Tsai, 1987] introduced the first computer vision method for camera calibration from known
points. They first transform the 3D points in a camera coordinate system. Then, camera coor-
dinates are transformed to image coordinates, lens distortion is corrected and depending on the
sensor size and the image resolution, the final image coordinates are estimated. [Heikkilä and
Silvén, 1997] propose to estimate a camera’s parameters by first using a linear closed-form
solution followed by a non-linear least-squares estimation. The method can be used for both
calibration grids in 2D and 3D. [Zhang and Zhang, 2000] present a camera calibration method
based on [Heikkilä and Silvén, 1997] but using a planar calibration pattern which in practice is
a conventional chessboard pattern. This calibration pattern must be seen from multiple views in
order to estimate the projective transformation between corresponding 3D points. This method
also first exploits a closed-form solution followed by a non-linear refinement to get the cam-
era parameters. A similar method is presented in [Sturm and Maybank, 1999] which is able to
calibrate multiple cameras having different intrinsic parameters from a calibration pattern that is
seen from at least two different views. All the described calibration techniques are combined in a
single Matlab framework called Camera Calibration Toolbox for Matlab (CCTfM) 1. Calibrating
a whole network of non-overlapping cameras with the help of a mirror is presented in [Kumar
et al., 2008]. The problem that the calibration pattern needs to be seen from all the devices in a
network can be overcome by using a planar mirror. The calculated mirrored camera poses then

1http://www.vision.caltech.edu/bouguetj/calib_doc/, last retrieved on 21.03.2013.
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also describe the real camera poses. From an application point of view, a human pose estima-
tion procedure supporting multiple cameras is presented by [Kurillo et al., 2009]. A framework
for conventional camera calibration for teleimmersion purposes using corresponding points of
interest is proposed. Intrinsic parameters are obtained by using a conventional method based on
a defined chessboard pattern. For finding the cameras’ extrinsic parameters, two LED markers
having a fixed distance and defining a virtual calibration object are used. After the marker is de-
tected on the image plane, the fundamental matrix between two cameras is determined and the
relative rotation is calculated. Another camera calibration technique is presented by [Martynov
et al., 2011] which exploits an inverted workflow of conventional camera calibration methods.
The calibration is done by iteratively adjusting projected markers to be used as input for the
refinement and exploiting planar homographies in order to speed up the process.

2.2.1.2 Camera Auto-Calibration

Camera auto-calibration is the determination of camera parameters from uncalibrated images of
unstructured scenes. The main difference to conventional camera calibration methods is that no
3D points must be known in advance [Hartley and Zisserman, 2003]. Due to this higher degree of
uncertainty, the results obtained by using auto-calibration are more sensitive to outliers than the
ones obtained by conventional methods. The first solutions for the concept of auto-calibration
are based on a single moving camera which means that the intrinsics are constant and at least two
images are needed. A self-calibration method, which exploits the Kruppa equations, for cam-
era poses with constant intrinsic parameters was introduced by [Maybank and Faugeras, 1992].
The method was then developed further by [Luong and Faugeras, 1997], where point correspon-
dences from three images and the fundamental matrices are used for self-calibration and 3D
reconstruction. A system of polynomial equations is derived from the Kruppa equations which
is then solved by numerical continuation. [Pollefeys and Van Gool, 1997] proposed a method for
self-calibration by estimating a plane at infinity and calculating constant camera intrinsics from
the Image of the Absolute Conic (IAC). [Triggs, 1997] then presented the Absolute Quadric for
recovering the intrinsic parameters. This concept was then used by [Pollefeys et al., 1998] for
estimating varying intrinsic parameters from multiple images.

[Beardsley and Murray, 1992] first described the extraction of intrinsic camera parameters
from three vanishing points. By the determination of three vanishing points within an image,
the principal point and the focal length can be recovered sequentially. In [Cipolla et al., 1999],
camera calibration using three vanishing points of an image is proposed. Their semi-automatic
auto-calibration method uses building façades to determine three vanishing points. The user
needs to select a set of parallel image lines in order to search for a correct vanishing point
initialization. After initialization, the intrinsic parameters are recovered. The relative rotation
between a camera pair is estimated using the calculated points on the plane at infinity and the
translation is calculated by using further points of interest in a scene.

Calibrating a camera using a pedestrian was first introduced by [Lv et al., 2006]. Top and
bottom points are determined in the images and three vanishing points are extracted. A geometric
solution is used to obtain the intrinsic parameters afterwards. The extrinsic parameters with
respect to one camera are calculated to compute the complete pose of a camera within a defined
world coordinate system. Another approach for calibrating a camera from a pedestrian was
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introduced in [Krahnstoever and Mendonça, 2005]. Camera parameters are estimated by using
a foot-to-head plane homology in combination with a Bayesian framework which is able to
handle measurement uncertainties and outliers. In [Krahnstoever and Mendonça, 2006], it is
shown that incorporating information about the motion of people observed for several frames
can help to get a robust solution to the camera auto-calibration problem. A similar approach
to [Lv et al., 2006] is proposed by [Junejo, 2009], where pedestrians need to walk on uneven
terrains in order to extract camera parameters. A direct method for auto-calibrating a camera
by observing a pedestrian is presented in [Kusakunniran et al., 2009]. Based on top and bottom
points of a walking human, the pose matrix is estimated column by column by exploiting cross-
ratio constraints. Having two vanishing points and a vanishing line, the third vanishing point can
be calculated. The vanishing points are then directly used to calculate the pose of the camera. A
camera calibration method for two cameras only is published by [Chen et al., 2007]. Recovering
the intrinsic parameters is based on the algorithm presented by [Junejo, 2009]. The relative
orientation is afterwards calculated using all vanishing points and the infinite homography. The
vanishing points do not need to be orthogonal to each other and the intrinsic parameters are
estimated by obtaining the infinite homography from all the extracted vanishing points. [Mičušík
and Pajdla, 2010] published a surveillance camera calibration method based on foot and head
points of pedestrians. By introducing the Quadratic Eigenvalue problem, extrinsic and intrinsic
parameters are extracted as well as a foot-head homology is estimated.

[Pflugfelder and Bischof, 2010] presented a method for calibrating non-overlapping cam-
eras from pedestrian observations by exploiting vanishing points from man-made environments
and a non-linear optimization. Extrinsic parameters as well as smooth pedestrian trajectories in
3D space are calculated by using Singular Value Decomposition. [Zhang et al., 2008b] explain
an auto-calibration method using the orientation of pedestrians and vehicles. The method ex-
tracts a vertical vanishing point from the main axis direction of their trunk, perpendicular to the
ground plane. Two horizontal vanishing points are extracted by investigating the moving cars.
Calibrating a camera network from a person’s silhouette is described by [Sinha et al., 2004].
The RANdom SAmple Consensus (RANSAC) based method estimates a camera’s parameters
from the motion of a moving silhouette. [Puwein et al., 2011] published a method for calibrat-
ing a camera network from sports broadcasts. Correspondences among views are established
in a coarse to fine fashion by collecting and matching both Maximally Stable Extremal Re-
gions (MSER) and Scale Invariant Feature Transform (SIFT) features. The images used for the
calibration procedure show hockey, football, or basketball games. The approach recovers both
extrinsic and intrinsic parameters of a surveillance camera. In [Furukawa and Ponce, 2008] a
camera’s parameters are roughly found by initial feature matches between multiple views which
are refined by finding additional matches in the neighborhood of the initial ones. The method
additionally generates a 3D model of the scene. [Zhang et al., 2011] present a method for esti-
mating the intrinsic parameters and the lens distortion parameters of a surveillance camera from
low-rank textured images. A closed-form solution for gathering a camera’s parameters was first
introduced by [Wildenauer and Hanbury, 2012]. A monocular camera is calibrated by using
vanishing points from Manhattan World scenarios. A RANSAC-based approach for estimat-
ing focal length and three vanishing points from a set of four lines is proposed. The resulting
parameters are further refined by exploiting a Maximum Likelihood estimator.

16



(a) (b)

Figure 2.2: (a) Humans do not have any troubles to estimate the 3D layout of the scene and
label the 2D image based on the predefined classes ground plane, ceiling and vertical. (b) The
3D reconstructed scene obtained from the labeled image.

2.2.2 3D Reconstruction

When humans are looking on an image, they are immediately able to interpret the scene due to
capturing the semantic and geometric context. Even when looking at the image shown in Figure
2.2a for the first time, a human brain does not have any troubles to assume the 3D layout of the
scene without having any further information. Humans are able to roughly gather the position
of the viewpoint where the image was taken, to localize the ground plane and the ceiling, to find
vertical wall segments and even to distinguish between inside and outside the building although
there is a reflexive door surface in the middle of the image. As can be seen, obtaining the 3D
layout, detecting occluded objects and even gathering the 3D relationship among objects in the
scene is something which is obviously beyond the visible 2D scene. A rough 3D surface normal
layout estimation is shown in Figure 2.2a, where different colors represent the different classes
ground plane (green), ceiling (blue) and vertical (red). Image parts, which are not known, are
labeled as black regions. The 3D reconstruction of the scene using this labeled image can be
seen in Figure 2.2b.

For the last few years, transferring this human ability to computers is one of the grand chal-
lenges in computer vision. Having the 3D geometry of a scene would help applications placed
on top of this knowledge. Assuming a given ground plane is for example necessary for initializ-
ing a tracking sequence, as in [Shitrit et al., 2011,Ess et al., 2009,Leotta and Mundy, 2011], but
it also increases the accuracy in tasks such as autonomous robot navigation [Leibe et al., 2007b]
and automatic object manipulation [Petrovskaya et al., 2006]. Reconstructing a scene can be
established by using a single image in combination with additional information (e.g. existing
3D models), or by using feature matches coming from multiple images.

2.2.2.1 Single View Labeling-based 3D Reconstruction

Reconstructing 3D models from a single 2D image is an ill-posed problem. Nevertheless, sev-
eral methods split an image into segments, use semantic information, and choose a label for each
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pixel from a set of geometrically meaningful classes in order to overcome this problem. [Hoiem
et al., 2005a, Hoiem et al., 2005b] both present an approach for automatically constructing a
rough 3D model from a single 2D image. This is established by learning a statistical model
of surface normal label classes. Extracting 3D information from a single 2D image showing a
Manhattan world indoor environment is described by [Delage et al., 2006]. They assume to have
a calibrated camera, extract edges, the ground plane and surface orientations from the images
and obtain a final labeling by solving an MRF. Labeling the 3D layout of a scene is published
in [Hoiem et al., 2007]. By combining multiple 2D cues (color, texture and perspective features
of a patch) the classifier is trained on multiple indoor and outdoor still images using boosted
decision trees. Each image is segmented using the approach presented by [Felzenszwalb and
Huttenlocher, 2004]. For getting a higher accuracy, the method merges segments to obtain dif-
ferent segments in terms of size and shape. [Barinova et al., 2008] present an algorithm based
on [Hoiem et al., 2007] for obtaining a 3D model out of a single 2D image. The 3D model
is created by combining a number of patches belonging to vertical structures and patches on
the ground plane. By combining the search for the ground-vertical boundary with geomet-
ric 3D modeling constraints, the best model is obtained by exploiting a Conditional Random
Field (CRF). [Gould et al., 2009] obtain a holistic representation of the scene by finding seman-
tic and geometric meaningful and consistent regions in the image. Mean-shift segmentation and
merging patches in the segmentation process is used to obtain better results. Another segmenta-
tion and depth estimation framework using an MRF and semantic segmentation using meanshift
is presented by [Liu et al., 2010a]. Bedroom sampling on still images by incorporating the ge-
ometric features of objects within a room is used to obtain a rough layout of the room by [Pero
et al., 2011] and [Pero et al., 2012].

2.2.2.2 Multiple View Labeling-based 3D Reconstruction

Having multiple images enables generating a sparse 3D point cloud of the scene by using
Structure from Motion (SfM) approaches. Labeling each pixel with a geometrically meaningful
label using multiple images is established by combining semantic information with 3D infor-
mation coming from the triangulated point cloud. [Brostow et al., 2008] published an approach
for labeling 2D video sequences from outdoor scenes using sparse 3D point clouds. By using
Delaunay Triangulation, a relief mesh is set up from the 3D points. Based on the orientation
and location of the triangles, the traffic scene is segmented. For this approach, the features are
purely calculated on the geometric observations. [Flint et al., 2011] present a method which in-
corporates stereo, monocular and 3D features to iteratively help in the segmentation process of
indoor videos. Bayesian filtering with motion cues of possible hypotheses of box layouts of in-
put videos showing indoor scenes is presented by [Tsai et al., 2011]. An approach using videos
of street scenes for segmenting the scene is presented in [Xiao and Quan, 2009]. Reconstructed
3D points are manually but not perfectly labeled to help in the 2D segmentation process which is
performed using an MRF. [Floros and Leibe, 2012] present an approach which combines spatial
and temporal smoothness terms between corresponding pixels in a single higher-order CRF in
order to obtain an image segmentation formulation.
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2.2.2.3 Single View 3D Reconstruction

Going beyond labeling-based 3D reconstruction leads to reconstructing the scene from higher-
level representation. Following [Lee et al., 2009], the layout of indoor Manhattan World scenes
can be estimated from a single image. By connecting and sweeping line segments, the most
likely box layout is found. [Hedau et al., 2009] present a novel approach on estimating the scene
layout of cluttered rooms by fitting the most likely 3D box. By combining the clutter detection
and vanishing point evaluations, the most likely configuration is found. [Gupta et al., 2010]
describe an approach which allows estimating the 3D scene layout by combining volumetric
reasoning (e.g. occlusions, arrangement of objects) with reasoning with mechanics (e.g. material
density and internal energy). [Schwing et al., 2012] propose to estimate the 3D surface layout of
an indoor scene by decomposing higher order potentials into pairwise potentials by incorporating
integral images to geometry. This enables much faster runtimes by keeping the high accuracy of
state-of-the-art methods. [Schwing and Urtasun, 2012] propose the first exact solution to obtain
the 3D room layout using a cuboid in indoor environments. They do not use an MRF to perform
inference but solve the problem by using a branch and bound formulation.

2.2.2.4 Multiple View 3D Reconstruction

A full 3D reconstruction pipeline from 2D image sequences is presented in [Pollefeys et al.,
2004], which is based on one of the first SfM methods [Pollefeys et al., 1998]. Images are ob-
tained from a hand-held camera and the method recovers both the camera parameters and the
underlying 3D structure from uncalibrated image sequences. Two initial cameras are determined
as a starting point for 3D reconstruction and both structure and motion are updated for every
additional camera pose. Refinement for structure and motion is obtained by using bundle adjust-
ment. Metric reconstruction is achieved by exploiting self-calibration. Dense disparity matching
from rectified images in combination with a triangular mesh allow generating 3D surface models
of the scene. A sparse 3D reconstruction framework for SfM was introduced by [Snavely et al.,
2006]. The algorithm creates a sparse point cloud in combination with corresponding camera
positions from a given image set. The reconstruction is done incrementally which means that not
all images are considered at a time. Optimization is obtained by exploiting the bundle adjust-
ment algorithm [Lourakis and Argyros, 2004]. A dense 3D reconstruction pipeline is published
by [Furukawa and Ponce, 2007]. By using SIFT and Difference of Gaussian (DoG) features and
multiple iterations of matching, expanding and filtering these matches, a dense model is obtained
from multiple images. The key towards performance and geometric correct reconstruction lies in
enforcing visibility constraints and photometric constraints. The framework is extended by [Fu-
rukawa et al., 2010] in order to overcome large collections of images. Before reconstructing the
scene and finding corresponding feature matches between images, the method proposed in [Fu-
rukawa et al., 2010] clusters the input images. Reconstruction is then performed on each cluster
where a fusion of all clusters in performed in the last step of the algorithm. Reconstructing a
3D model from 2D images using a plane sweep stereo reconstruction algorithm with multiple
sweeping directions is proposed by [Gallup et al., 2007]. A 3D reconstruction pipeline using
a single semantic segmentation and matching method is presented by [Mičušík and Kosecka,
2009]. Dense reconstruction of well-known touristic parts of cities is presented in [Agarwal
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et al., 2009] by using a parallel distributed system. Dense reconstruction processed on a single
computer is presented by [Frahm et al., 2010]. Images from tourists are collected and matched
by the method published by [Agarwal et al., 2009] to obtain the 3D model. [Frahm et al., 2010]
automatically cluster the pictures based on the location of the building which is seen on the
images. This enables the 3D reconstruction of the scene in less time with less computational
effort. Automatic dense 3D reconstruction from 2D images using planar patches to recover both
planar and non-planar structures was introduced by [Gallup et al., 2010]. Planes are detected
using RANSAC and automatically linked for multi-view reconstruction. The final outcome is
obtained by exploiting Graph Cuts [Boykov and Jolly, 2001]. [Wu et al., 2011] present a dense
reconstruction pipeline which is working on a single input image and is based on exploiting the
repetition of image patches. [Xiao and Furukawa, 2012] describe an algorithm for reconstruc-
tion and visualization of large scale indoor environments from various museums. By exploiting
volumetric primitives and therefore doing a volumetric reconstruction instead of recovering a
surface model, wall configurations are found and textured. [Häne et al., 2012] present a pipeline
for piecewise planar depth map fusion and 3D reconstruction using a first-order primal dual
optimization method instead of a higher order one.

2.2.2.5 Combining Recognition and 3D Reconstruction

Going one step further after reconstructing the 3D environment, the computer should know
which object is at what location. Therefore, the objects need to be localized and put in 3D space.
These two tasks can also be combined in order to increase the accuracy of both the detection
and the 3D reconstruction task. [Bao et al., 2010] outline a method which first detects some
specific objects in the scene (e.g. cups) and then reasons about the supportive plane between
these objects. By optimizing both the detections and the supportive plane, incorrect detections
are eliminated and missed detections are found. A SfM pipeline for estimating both camera
parameters and 3D structure from point correspondences and corresponding object detections
between several viewpoints is described by [Bao and Savarese, 2011]. This enables both geo-
metric and semantic 3D reconstruction from multiple views. This approach was then extended
by [Bao et al., 2012] by also using corresponding regions additionally to points and objects to
reconstruct the scene. Labeling both visible and occluded regions was introduced by [Guo and
Hoiem, 2012]. By using visible cues, semantic context and geometric features, the underlying
structure is estimated. [Fouhey et al., 2012] present an algorithm for 3D reconstruction from
observing a human action in a still image. According to the pose of the human, the geometric
context is obtained. An extended approach is described by [Delaitre et al., 2012]. By observing
humans over time, the underlying 3D structure can be estimated from human poses and object
appearances. Joint dense 3D reconstruction and both 2D and 3D class segmentation is presented
in [Häne et al., 2013]. The reconstruction is done in volumetric space where voxels are la-
beled as occupied or empty. Occupied voxels are then assigned a label from a discrete set of
classes (e.g. ground, building, vegetation.). By incorporating class specific geoemtric priors and
a smoothness constraint, an optimization leads to the final reconstruction and labeling result.
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Figure 2.3: Examples for 3D reasoning frameworks. (a) Automatically generated storyline of
a baseball match, taken from [Gupta et al., 2009]. Objects are detected in the scene and the
storyline is generated based on detecting objects and events. (b) Pose estimation and tracking
results taken from [Mitzel and Leibe, 2012]. Pedestrians are tracked using a 3D bounding box,
carried items are marked red. (c) 3D scene layout estimation of a traffic scene, taken from
[Geiger et al., 2011].

2.2.3 3D Reasoning

The Holy Grail in computer vision is to understand what an image is describing and to perform
3D scene reasoning about the scene in order to extract similar results and cues as humans are
experiencing. Neuroscience studies have pointed out that a human’s brain works with 3D repre-
sentation of objects and scenes and somehow (unclear how) stores the 3D information to achieve
3D reasoning about the scene at the level humans have been experiencing. The field of 3D rea-
soning is a broad one covering an endless number of different events (e.g. human actions and
3D object movements). Nevertheless, all these high level event recognition and 3D reasoning
methods incorporate 3D pose estimation and 3D object tracking as a first step, which can also be
seen in Figures 2.3. Figure 2.3a shows the storyline of a baseball match, automatically generated
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by the method described in [Gupta et al., 2009]. Figure 2.3b shows the outcome of a 3D object
tracking pipeline described in [Mitzel and Leibe, 2012]. Figure 2.3c presents the outcome of the
algorithm described in [Geiger et al., 2011]. The method performs 3D scene layout estimation in
combination with detection and tracking of traffic participants in 3D space. Although the tasks
solve different problems in the domain of 3D reasoning, 3D pose estimation and 3D tracking of
rigid and non-rigid objects serve as a basis for all three applications.

2.2.3.1 3D Pose Estimation

Using 3D information helps when performing object detection, classification and pose esti-
mation. First, the appearance of objects varies substantially with the viewing angle and local
features may be occluded in 2D. Second, using 3D information allows making some a-priori
assumptions about the scene and relaxing the problem (e.g. a car is more likely to be located
on a road than in the sky). By representing a 3D scene in 2D, the depth information gets lost
and going back to 3D from a single viewpoint is therefore an ill-posed problem. In computer
vision, the same object may be captured under varying lighting conditions and different poses.
Therefore, traditional pose estimation algorithms extract features from multiple input images
to cover at least a discrete set of variations in order to relax the problem of these intra-class
variations [Fergus et al., 2005a, Fergus et al., 2005b]. These approaches were also extended to
view-invariant detection methods by learning a sparse 3D object model from multiple training
images [Payet and Todorovic, 2011, Ozuysal et al., 2009, Thomas et al., 2006].

Following [Savarese and Li, 2007], 3D shape models for pose estimation of rigid objects are
estimated by learning a collection of features from multiple 2D training images. Visual features
are combined with geometric ones in order to recover the pose of rigid objects.

Detailed 3D models of cars and motorcycles are first exploited by [Liebelt et al., 2008]
for classification in still images. The training is performed using a synthetic camera orbiting
around the models. Classification is done by comparing all possible projections to the input
image. Combining these geometric features with appearance features learned from 2D images
is demonstrated by [Liebelt and Schmid, 2010, Khan et al., 2010, Glasner et al., 2011]. An ap-
proach for matching vehicles in still images under large body transformations using detailed 3D
models is described by [Guo et al., 2008a]. They gain an initial pose from meta-data, match
the 2D image projection to the 2D model projection by using Chamfer distance and the Itera-
tively Closest Point algorithm. Rendering is done on manually labeled semantic parts, where
occlusions in the rendering are handled by filling gaps using an MRF.

[Arie-Nachimson and Basri, 2009] published a way to construct implicit 3D shape models
for pose estimation of vehicles. As an extension to [Savarese and Li, 2007], visual and geometric
features are combined with visibility and transformation constraints. A rough shape model for
3D pose estimation of vehicles is published by [Li et al., 2009]. A Bayesian inference algorithm
is exploited to generate a shape model from visual features coming from partial shapes, i.e. their
corresponding geometric information. Following [Stark et al., 2010], a viewpoint estimator is
trained on non-photorealistic rendered images of 3D CAD models. These models are mapped
onto 2D image planes in order to obtain visual features. The classifier is then trained on these
features in order to obtain a generalized pose estimator. [Guo et al., 2008b] describe an approach
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for 3D pose estimation in still images using Chamfer matching and projections of existing 3D
models.

[Villamizar et al., 2011] utilize real images, Histogram of Oriented Gradients (HOG) fea-
tures and RFs for training the pose estimator. Sun and Savarese propose a framework for object
pose estimation using a general 3D model representation in [Xiang and Savarese, 2012]. Objects
are detected with respect to its aspect configuration and the matching score to a learned config-
uration from multiple 3D models. Detecting an object using parts and the configuration of these
parts was first introduced by [Felzenszwalb et al., 2010]. This approach was extended to discrete
3D pose estimation by [Pepik et al., 2012b]. The method explained by [Pepik et al., 2012a] pro-
vides a further extension to enable pose estimation on a continuous view sphere. Additionally to
having a certain part configuration constraint in 2D, a part configuration learned from 3D mod-
els must also hold. The approach of [Liebelt et al., 2008] was extended to represent the object
viewpoint on a continuous instead of a discrete viewsphere by [Schels et al., 2012].

The RF classifier is a popular method for pose estimation in computer vision due to the fact
that it can handle large training data sets and several classes, it is robust against outliers and the
classification or regression task is performed quickly, as is described in Section 3.3.2. Using
classification-based RFs for pose estimation of humans was first introduced by [Rogez et al.,
2008]. Human people are detected in a variety of real world images and a training set is built
up to generate an RF. Classes are generated by encountering both the pose and the action of a
human. Using regression instead of classification is described by [Gall et al., 2011b]. Objects
are found by exploiting the generalized Hough transform. Detections of object parts individually
vote for the localization of the complete object. By using depth images, regression is used for
determining a human’s head pose [Fanelli et al., 2011]. These features are also used by [Shotton
et al., 2011] for obtaining a human’s pose. Each body part casts votes for a single class. The
final pose is estimated by generating confidence-scored 3D proposals of how the body parts are
connected. Conditional RFs are used for pose estimation by [Sun et al., 2012] which allows
incorporating relationships between output variables by a global latent variable.

2.2.3.2 3D Tracking

A polyhedral 3D vehicle model for classification, following a motion model over time, was first
introduced by [Koller, 1993]. The parameters of the model are first found by edge fitting and the
refinement is done by exploiting the tracking results. More complex deformable models are first
described by [Ferryman et al., 1995]. The model parameters are learned from real data, where
the parameter space is reduced using principal components analysis. The pose of a fixed model
which is obtained from gray value image gradients rather than from edge segments is described
by [Kollnig and Nagel, 1997]. Following [Lou et al., 2005], vehicles are tracked by exploiting a
simple 3D model and a Kalman filter. The shape of the used 3D model is fixed and the pose is
determined by exploiting edge fitting. The pose is then refined by introducing a feasible motion
model. [Zhang et al., 2008a] use a fitness score and a particle filter for tracking the vehicle. The
approach of [Liebelt et al., 2008] was extended to videos in [Toshev et al., 2009]. The area of
the projected model is matched to a segmented foreground input image mask. The area overlap
as well as the shape similarity is used as matching score. The temporal inference is established
by introducing a CRF. Using a deformable model [Leotta, 2010] for vehicle tracking was first
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introduced by [Leotta and Mundy, 2011]. The authors are changing parts of the model online
between consecutive frames and align the rendered projection with the input image. A Kalman
filter is used to predict a pose from a frame to a subsequent one. A framework for estimating
the scene layout of traffic scenes in combination with a 3D detection and tracking pipeline for
traffic participants is presented by [Geiger et al., 2011]. The algorithm is applied on a single
moving camera and the results are obtained by combining 3D object detections, object tracklets
and semantic scene labels.

The task of 3D person tracking is tackled by [Urtasun et al., 2006]. Human pose and motion
estimations are learned by using Gaussian Process Dynamical Models to overcome different
human walking styles. Multi-camera person tracking in 3D space was presented by [Fleuret
et al., 2008]. Persons are detection in each image and blobs are merged in order to obtain a
3D occupancy grid. Tracking is then done in 3D space. Person tracking using a stereo rig on
a mobile device was introduced by [Ess et al., 2009]. The method jointly estimates camera
position, stereo depth, and object positions. A real-time multi-person 3D detection and tracking
system was introduced by [Mitzel et al., 2011]. A 3D depth occupancy map is used to track,
add and delete individual objects over time. An extended approach of [Mitzel et al., 2011] for
3D tracking of pedestrians, carried items and other unknown objects is presented by [Mitzel and
Leibe, 2012]. Objects are extracted from input images in combination with stereo depth maps
and the 3D scene model is updated online. Different objects are categorized based on their 3D
shape.

2.3 Innovative Aspects and Context of this Thesis

The main advantages and innovations of the proposed pipeline over existing work can be sum-
marized as follows.

Calibration

The first proposed method for camera calibration extracts top and bottom points similarly to
the algorithm described in [Lv et al., 2006]. Differently to existing approaches, these points
are not only used for gathering intrinsic parameters of a single camera (e.g. [Lv et al., 2006],
or [Kusakunniran et al., 2009]) but for estimating both intrinsic and extrinsic parameters of a
whole network of cameras.

Different to existing approaches (e.g. [Lv et al., 2006] and [Junejo, 2009] who use pedestri-
ans, or [Wildenauer and Hanbury, 2012] who use building façades of man-made environments),
the second proposed method combines static (zebra-crossings) and dynamic (pedestrians) ob-
jects for calibrating a single surveillance camera. This combines the main advantage of con-
ventional calibration techniques, namely obtaining a precise result, and the main advantage of
auto-calibration techniques, namely increasing the flexibility. To sum up the method described
by [Zhang et al., 2008b], a vertical vanishing point is extracted by observing pedestrians and two
horizontal vanishing point are extracted by observing multiple vehicles’ movements. Different
to that approach, the proposed algorithm does not rely on a specific movement of the dynamic
objects (e.g. the cars must not turn but move straight). In theory, there are no standardized

24



dimensions of a zebra-crossing available. In practice, brighter areas of it are at least two meters
long and exactly 50 centimeters wide. This knowledge is exploited for extracting metric infor-
mation from the scene in order to overcome the problem of forcing the user to provide some
a-priori information about the scene (e.g. the pedestrian’s height, as illustrated by [Lv et al.,
2006], or the camera’s height, as by [Zhang et al., 2008b]).

3D Reconstruction

Conventional 3D reconstruction methods rely on obtaining discriminative feature matches be-
tween corresponding views [Snavely et al., 2006,Agarwal et al., 2009]. The obtained sparse 3D
model is then densified e.g. by the method introduced by [Furukawa and Ponce, 2007] which is
based on combining a variety of different feature descriptors for feature matching. Man-made
environments contain flat and textureless surfaces where large areas provide the same color in-
formation (e.g. walls and floors). These areas deliver incorrect matches due to the lack of
discrimination between feature descriptions. In order to describe such regions, semantic infor-
mation is used for existing approaches. [Mičušík and Kosecka, 2010] present a method which
reconstructs the scene from multiple views based on semantic information coming from a single
superpixel segmentation method. [Hoiem et al., 2007] describe an approach for extracting 3D
information from a single 2D image by segmenting an image and using color and texture infor-
mation in combination with perspective features for each segment. The proposed framework is
based on these methods but combines multiple segmentation algorithms in order to increase the
3D reconstruction accuracy. Conventional 3D reconstruction pipelines deliver correct feature
matches for regions, where discrimination can be assured (e.g. texture on the ground or on the
ceiling, chairs, windows). Different to existing work, where either point features or semantic in-
formation is used, the proposed 3D reconstruction pipeline combines information coming from
semantic cues and 3D reasoning.

3D Reasoning

In [Leotta and Mundy, 2011], tracking is done by changing parts of a deformable 3D model and
predicting the pose by a Kalman filter. The proposed approaches are not using a deformable
model since on the one hand, having more parameters to optimize to get the shape of the car
can fail due to multiple local minima. On the other hand, not having the strong prior knowledge
about the vehicle’s shape gives worse tracking results, as can be seen in the experiments. There
is never happening a prediction of a pose from one frame to a subsequent one, as described in
[Leotta and Mundy, 2011], but a set of poses for each frame is evaluated in order to find the best
combination of vehicle types and poses over time. This brings the advantage of having multiple
hypothesized poses available for each frame and a higher accuracy in terms of pose estimation.
To sum up [Guo et al., 2008b], they work on single images, gain an initial pose from meta-data
and match 2D images to 2D projection by conventional Chamfer distance. Rendering is done
on manually labeled semantic parts. They exploit an MRF for connecting the right semantic
parts of the vehicle. Different to pose estimation methods working on still images [Guo et al.,
2008b], each frame is not optimized separately but temporal consistency in the video is exploited
for temporal inference and refinement. This means it relaxes the computational cost of finding
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the best solution for each frame by exploiting temporal coherence as a strong prior. Using Fast
Directional Chamfer Matching (FDCM) or RFs for vehicle pose estimation, as in this research,
works superior in terms of speed, accuracy and practicality [Liu et al., 2010b], compared to using
meta-data as in [Guo et al., 2008b]. The main drawback of the approach presented in [Toshev
et al., 2009] is the inevitable perfect foreground segmentation for each frame. The proposed
vehicle 3D pose estimation and classification approaches are able to overcome this problem
by relying on edges for matching 3D models projections and input images instead of using
background subtraction and foreground shape comparison.

2.4 Summary

The research discipline of 3D computer vision emerged from photogrammetry. This chapter
first gives a brief overview of this development and describes related work from the field of 3D
scene understanding. Related work is then split into the task of 3D scene understanding, namely
calibration, 3D reconstruction and 3D reasoning.

First, related publications and methods for the task of camera calibration, which is divided
into conventional calibration methods and auto-calibration approaches, are described.

Second, algorithms for 3D reconstruction from 2D images, which can be divided into ex-
tracting 3D information coming from a single view, or from multiple ones, are reviewed. Addi-
tional work for combining reconstruction and object recognition is presented.

Third, related work tackling the tasks of 3D vehicle pose estimation and 3D vehicle tracking
are presented, as the proposed 3D reasoning pipeline is also dealing with these two tasks.

This chapter then also outlines innovative aspects of the proposed framework and shows how
it is related to existing work.
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CHAPTER 3
Theory and Background

As can be seen in Figure 3.1, pixels offer color or intensity information but a single pixel does not
tell anything about the 3D scene or its 2D projected scene without any geometric information. To
describe a scene, a geometric structure must be known in combination with the pixels. Geometry
can either occur within an image plane or between image plane and 3D coordinate system.

Figure 3.1: Random input image, which is taken from [Leotta and Mundy, 2011], used for
demonstration purposes to show the outcome when applying different features and representa-
tions presented in the following parts of Chapter 3.

First, this chapter outlines geometric representations in both 2D space (Section 3.1) and in
a 3D world (Section 3.2), as well as their integration in computer vision applications. The pre-
sented 2D image representations are for example used for 3D vehicle pose estimation described
in Section 6.3, or 3D surface normal labeling presented in Section 5.1 and 3D reconstruction
outlined in Section 5.2.

Second, a method for optimization, namely RFs, and a method for classification, namely
MRFs, are described in Section 3.3. The theory for these two tools is provided as they are used
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(a) (b)

Figure 3.2: Point features describing the structure of an image. (a) Harris corner detector, (b)
SIFT features, where every 20th feature is shown due to better visualization.

for the 3D vehicle pose estimation and classification implementation in Chapter 6 as well as for
the dense 3D reconstruction algorithms outlined in Chapter 5.

This chapter therefore gives an overview on all methods and principles used in Chapters 4-6.
Discussions on why the specific methods are chosen for the accompanying implementations are
presented in the particular chapter.

3.1 2D Image Representations

Geometric information is fundamental when describing 2D image projections of 3D scenes.
An image can only be described when the geometric information of one pixel is known. This
means that a pixel’s image coordinates and a geometric relationship to other pixels are present
additionally to color or intensity values. This geometric information within an image plane is
described by so called geometric features [Shapiro and Stockman, 2001]. Geometric features can
be clustered based on their dimensionality which is needed for representing them. A dimension
of zero is needed to describe point features, one dimension describes line or edge features and
two dimensions describe region or area features. In computer vision, these features are the
basis to perform higher level computer vision tasks (e.g. object detection, object matching, 3D
reconstruction, scene understanding etc.) [Leotta and Mundy, 2011,Ma et al., 2003,Sonka et al.,
2008].

3.1.1 Point Features

Features having a dimensionality of zero are also known as interest points [Hartley and Zisser-
man, 2003]. In general, when talking about interest in this context, the pixel should provide
discriminative information when looking on a predefined geometric image structure around the
pixel position and this information should be robust against defined changes (e.g. transfor-
mations, rotations, lighting, etc.) [Hartley and Zisserman, 2003, Gonzalez and Woods, 2007].
Figure 3.2 shows the outcome of two point feature detectors, namely the Harris corner detector,
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first described in [Harris and Stephens, 1988], (see Figure 3.2a) and SIFT, which was introduced
in [Lowe, 2004] (see Figure 3.2b.

These two image descriptors are picked out for presentation in the following sections since
Harris corner features are used for the implementation described in Section 6.3 and SIFT features
are used for gathering a sparse point cloud from an image sequence, as described in Section 5.1.

3.1.1.1 Harris Corner Detector

One of these point features describing the structural information around a pixel is the Harris
corner detector, introduced by [Harris and Stephens, 1988]. This detector searches for junctions
of edges in an image and operates on intensity values rather than on color information. The
detected point is therefore only described by a location (x, y), where the idea of the detector is
the following. Having a patch of a certain size of an image, there will be less intensity change
when this patch is shifted on a flat region. If this patch is shifted along an edge, there will be less
intensity change along this edge, but if the window slides over a corner, there is a discontinuity
between intensity values in all directions. From the mathematical point of view, this change
between intensity values for a point (x, y) in image I and a shift (u, v) is computed by

E(u, v) ≈
∑
x,y

G(x, y, σ)
[
I(x, y) + uIx + vIy − I(x, y)

]2
=

∑
x,y

G(x, y, σ)
[
I2
xu

2 + 2IxIyuv + I2
yv

2
]
, (3.1)

where Ix and Iy are the partial derivatives of I in vertical and horizontal direction, G(x, y, σ)
is a Gaussian kernel with size σ. Corners are then found by analyzing the so called structure
tensor of Equation 3.1 [Harris and Stephens, 1988].

3.1.1.2 Scale Invariant Feature Transform

Another point feature used in computer vision for describing and detecting the structural infor-
mation of points of interest is called SIFT, which was introduced in [Lowe, 2004] by David
Lowe in 2004. The main advantage of this detector is the fact that it is invariant to changes
in translation, rotation and scaling. The SIFT feature is therefore described by a pixel location
(x, y), a scale, and an orientation.

The first step of SIFT is to detect corner points in an image but in combination with enforcing
invariance to scaling changes. The keypoints are detected in a cascaded filtering approach. This
can be done by first filtering the input image with multiple Gaussian kernels of various sizes σ.
An image I is filtered at scale space σ at position (x, y) by

L(x, y, σ) = I(x, y)⊗G(x, y, σ). (3.2)

After filtering the image I with multiple Gaussian filters, the DoG function is computed by

D(x, y, σ) = L(x, y, kσ)− L(x, y, σ), (3.3)
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where k is a multiplicative factor. In the original implementation of [Lowe, 2004], three scale
spaces are used and combined to one so called octave. Within one octave, the image dimensions
are kept constant. Multiple octaves are used in the implementation, where the image dimensions
are halved for each octave. To detect keypoints in the image, the maxima and minima are
determined in the DoG images. Each sample point is therefore compared to its eight connected
neighbors. The keypoint is then selected when the value is larger or smaller than the values from
all its neighbors. As this comparison is not only established spatially but also over different
scale spaces, each keypoint must be compared to 26 neighbors when three scale spaces are used.
In this step, corners are also localized and both edge-like extrema and low contrast extrema
are discarded due to the lack of discrimination. In [Lowe, 2004], low contrast extrema are
determined by using an approximation of a second-order Taylor expansion on the DoG function,
D(x, y, σ). Edge-like extrema can be determined by calculating the eigenvalues of a specific
pixel location.

In a next step, the feature’s orientation is determined in order to become invariant against
rotational changes. For each window at the selected scale, centered at the point of interest,
the principle gradient direction is computed. In practice, this is established by calculating a
histogram from all orientations available within the window. For each keypoint, the magnitude
m and orientation θ is therefore computed by

m(x, y) =
√

(L(x+ 1, y, σ)− L(x− 1, y, σ))2 + (L(x, y + 1, σ)− L(x, y − 1, σ))2

θ = arctan

(
L(x, y + 1, σ)− L(x, y − 1, σ)

L(x+ 1, y, σ)− L(x− 1, y, σ)

)
, (3.4)

where σ is chosen to be the closest scale to the scale of the keypoint. An orientation histogram
having 36 bins is then computed, covering a range of 360 degrees. Each orientation is weighted
by the magnitude m and by a Gaussian window of G(x, y, 3σ

2 ). The dominant direction in the
window corresponds to the highest peak in the histogram. When multiple peaks are found, mul-
tiple keypoints having the same location and the same scale but different dominant orientations
are generated for the observed pixel location.

The feature description is then obtained by calculating 16x16 orientation histograms around
the location of the keypoint. These are then weighted by a Gaussian filter in order to obtain a
4x4 grid of orientation histograms around the keypoint. Each histogram contains 8 orientation
bins which means that a SIFT descriptor holds 128 elements [Lowe, 2004].

3.1.2 Edge Features

Apart from point features, the geometric structure of an image can also be described by so
called edge features [Shapiro and Stockman, 2001, Ma et al., 2003]. Edges can arise from
discontinuities in depth, discontinuities in surface orientation, discontinuities between different
materials and discontinuities in terms of illumination [Barrow and Tenenbaum, 1980]. Ideally,
an edge detector should find all these discontinuities which should lead to finding the boundaries
between different objects, different surface orientations, different surface materials and when
illumination changes occur [Barrow and Tenenbaum, 1980,Lindeberg, 1998]. The main problem
is, that this is not always applicable due to e.g. occlusions or low contrast which then leads
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(a) (b)

Figure 3.3: Edge features describing the structure of an image. (a) Canny edge detector using
parameters σ = 3, t1 = 0.05, t2 = 0.2, (b) Sobel filter without applying a threshold.

to fragmented, missing and false edges. False edges in this case are edges which indicate a
boundary where there is no boundary [Lindeberg, 1998]. In computer vision, detecting edges
corresponds to calculating the first-order derivatives from the intensity values of an image in both
horizontal and vertical direction to obtain the gradient images in both horizontal and vertical
direction Ix and Iy, respectively [Lindeberg, 1998, Ma et al., 2003].

In the following, the Sobel filter and the Canny edge detector are described. The Sobel filter
is used for the implementation described in Section 6.3, the Canny edge detection is used several
times, e.g. in Section 4.2 to locate the zebra-crossing, or in Section 6.1 and Section 6.2 to obtain
the rendered images of the 3D models.

The Sobel filter is a convolution of the image I with the Sobel operator [Gonzalez and
Woods, 2007] in vertical and horizontal direction, followed by calculating the magnitude and
orientation of the edge. Figure 3.3b shows an image filtered with the Sobel operator, where no
threshold is used for binarization of the output [Gonzalez and Woods, 2007].

Another approach for detecting edges in an image was introduced by [Canny, 1986], which
in literature is known as the Canny edge detector. The detector is by now quite old but is still
considered state-of-the-art in the field of computer aided image analysis. The output of the
algorithm is shown for comparison to the Sobel operator in Figure 3.3a. The three parameters
needed, σ and t1, t2, are describes in the following and set to σ = 3 and t1 = 0.05, t2 = 0.2
respectively for this example image. The method tries to overcome the aforementioned problem
of finding incorrect or fragmented edges by searching for an optimal trade-off between noise
reduction and edge localization. The first step of the algorithm is designed to localize edges in
an image. The optimal function is described by four exponential terms which is time consuming
to be solved and therefore can be approximated by a first-order derivative of a 2D Gaussian
kernel. The image is therefore in a first step smoothed by convolving it with a Gaussian kernel
of size σ which in practice is done by applying Equation 3.2. Second, the Sobel operator is
applied and both magnitude and orientation are calculated [Canny, 1986, Gonzalez and Woods,
2007].

Since an edge should only be one pixel wide, the next step is known as edge thinning which
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in practice can be done by applying Non-Maximal Supression (NMS). Each potential edge pixel
is evaluated and if the magnitude of the pixel in question is smaller than the magnitude of all its
neighboring pixels, the point is not considered as an edge point. Neighboring pixels, which lie
along the edge direction, can of course have a higher magnitude and are therefore not taken into
consideration [Sonka et al., 2008, Canny, 1986].

The last step of the algorithm should decide whether or not the edge is strong enough. A
strong edge in this context means that the magnitude is high and is therefore more likely to be a
correct edge. Edges are filtered by introducing a hysteresis thresholding procedure which means
that all values should be located between thresholds t1 and t2. Corresponding edges are found
by tracing edges in the image. First, an element holding a magnitude m > t2 is located in the
image. By tracing the edge, all pixels having a magnitude m > t1 are then considered to be part
of the edge [Canny, 1986].

3.1.3 Region Features

Region features do not only cover points or lines within an image but densely a whole part of
it [Sonka et al., 2008]. Similar to edge features, a region should represent all the pixel providing
similar color, intensity, depth, illumination, texture, or other similar properties, where this sim-
ilarity should hold up to a certain threshold [Leotta and Mundy, 2011]. Grouping the pixels is
also known as segmentation where the desired outcome of the algorithm is image segments [Ma
et al., 2003]. Different to edge features, pixels within one segment do not have to be spatially
connected. Similar to edge features, segmentation methods can provide incorrect or missing
segments. In the following, principles for segmenting an image into so called superpixels and
segmenting the image into Background (BG) and Foreground (FG) are presented. There are
many representative implementations developed both these two types of region features, where
Figure 3.4 shows one superpixel segmentation method based on entropy rates [Liu et al., 2011]
and one BG/FG segmentation method called frame differencing [Sonka et al., 2008]. In Figure
3.4a the image is split into 1300 superpixels. The threshold for binarization of Figure 3.4b is
chosen to be an intensity value of 50.

The presented background subtraction technique is used for the implementations described
in e.g. Section 4.1, Section 4.2 and Section 6.3. Superpixel segmentation methods are the
basis for 3D surface normal labeling and 3D reconstruction algorithms presented in Chapter 5.
Therefore, these two region features are presented in the following.

3.1.3.1 Superpixels

The name Superpixel and a corresponding algorithm was first introduced by Ren and Malik [Ren
and Malik, 2003] in 2003. The idea of superpixels is to transform an image, consisting of
pixels where one pixel is visually not meaningful, into perceptually meaningful regions [Achanta
et al., 2012]. Superpixels can be seen as an oversegmentation of the image which means that
dividing an image into superpixels is known as pre-segmentation [Hanbury, 2008]. Regardless
of the algorithm to be applied on the image, superpixels reduce the computational complexity of
subsequent image processing tasks compared to using all pixels. Different to other segmentation
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(a) (b)

Figure 3.4: Region features describing the structure of an image. (a) Entropy rate superpixel
segmentation [Liu et al., 2011] producing 1300 segments, (b) BG / FG segmentation using frame
differencing and a threshold of 50.

methods (e.g. BG/FG segmentation), pixels, which are grouped to superpixels, are also spatially
connected.

Depending on a particular application, there are several algorithms which are able to split an
image into superpixels each of them having advantages and disadvantages. In Section 5.1 of this
dissertation, four different superpixel segmentation methods are used as a pre-processing step
for 3D surface labeling. Each of these methods are described in the following in chronological
order of the date they were published.

The first one was introduced in [Felzenszwalb and Huttenlocher, 2004] by Felzenszwalb and
Huttenlocher in 2004. The segmentation is solved by using a graph-based approach, where each
node represents a pixel and edges describe the dissimilarity between neighboring pixels. Nodes
are clustered using the graph so that edges within a segment have low weights and edges between
segments provide high weights. Each segment is defined by a minimum spanning tree. The
internal difference is therefore defined as the maximum edge weight in the minimum spanning
tree of the segment. A boundary between segments is then found by gathering the minimum
weight of the edges connecting neighboring superpixels. The superpixels obtained are irregular
in terms of size and compactness and the number of superpixels cannot be defined beforehand.
The complexitiy of the algorithm changes linearly with the number of pixels in the graph which
means it has a complexity of O(n log n), where n is the number of pixels.

The second method outlined in this section was first described in 2009 by [Levinshtein et al.,
2009]. The approach is named TurboPixels and uses geometric flow to obtain a segmentation
of the image. Superpixels are obtained by dilating multiple seed locations, based on the level-
set geometric flow method, which are evenly distributed over the whole image plane [Osher
and Sethian, 1988]. The geometric flow is calculated by using image gradients, where bound-
aries stop to grow when they get close to a region having a high gradient. This approach leads
to evenly distributed superpixels having similar sizes and compactnesses where the number of
superpixels can also be defined. According to the authors, the complexity of the algorithm is
described by O(n).
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The third superpixel method is named Simple Linear Iterative Clustering (SLIC) and was
first introduced by [Achanta et al., 2012, Achanta et al., 2010]. The clustering is performed by
using k-means in 5D space, where these five dimensions are x, y on the image plane and L,
a, b from the CIELAB color space. First, seed points are found by sampling on a regular grid
in the image space. Resulting superpixels are roughly same sized and the desired number of
superpixels can also be defined for this approach. The distance between a pixel and a potential
segment center is found by using a distance measure which also incorporates the size of the
superpixel. The complexity of this approach is O(n).

The last algorithm described in this dissertation is based on entropy rates and was first in-
troduced by [Liu et al., 2011] in 2011. Superpixels are obtained by finding the maximum of a
graph-based energy function which consists of an entropy rate and a balancing term. The en-
tropy rate is used to find the superpixel borders, which refer to the cuts in the graph, and the
balancing term is used to get superpixels of approximately the same size. To obtain compact-
ness and homogeneous superpixels, the entropy rate of a random walk on the graph is used and
the optimization is done by using a greedy algorithm. For this approach, the number of de-
sired superpixels can be defined, and the method has approximately a complexity of O(n log n),
according to the authors.

3.1.3.2 Background Modeling

BG/FG segmentation is also known as motion estimation or background modeling, where the
purpose is to determine moving parts [Shapiro and Stockman, 2001]. In order to find these mov-
ing parts, a reference frame must be provided which can be a background image or a subsequent
frame. Moving segments are described as FG, pixels, which did not move between the two com-
pared frames, are denoted as BG. The simplest way to divide the image into FG and BG regions
is achieved by applying frame differencing and comparing intensity values of subsequent frames
or between an input frame and a background image. If the intensity difference at a pixel location
is above a certain threshold, the pixel is considered to be foreground, otherwise it is considered
to be part of the background. The output of this method using two subsequent frames and a
threshold of 50 can be seen in Figure 3.4b [Sonka et al., 2008].

Simple background subtraction by frame differencing suffers from a high level of noise since
each pixel is treated separately. To overcome this problem, a Gaussian Mixture Model (GMM)
can be used to introduce a statistical model for BG/FG segmentation [Stauffer and Grimson,
1999]. The GMM was first introduced by Stauffer and Grimson in [Stauffer and Grimson, 1999].
The goal of this model is to ignore noisy background variations by modeling the normal intensity
variations of each image pixel over time. This modeling is done by using a Gaussian filter, more
precisely a mixture of adaptive Gaussians. The mixture then handles both illumination changes
and multiple surfaces, occurring at different time instances at a single pixel location. At time
t, it is assumed that the history values X = {X1, X2, Xt} of a pixel are known, on which the
model is applied on. At each time instance, Gaussians are evaluated to determine which pixels
are most likely to correspond to the background and which ones do not. The GMM for pixel
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(a) (b) (c)

Figure 3.5: A 3D cube projected onto the image plane using (a) orthographic, (b) parallel and
(c) perspective projection from three vanishing points.

values X at time instance t are modeled by

P (Xt) =
K∑
i=1

ωi,tη(Xt, µi,t,Σi,t), (3.5)

where K is the number of Gaussian distributions, µi,t and Σi,t are the mean and the covariance
matrix of the ith Gaussian distribution, ω is the weight of a pixel belonging to the ith Gaussian
function,

∑K
i=1 ωi,t = 1 and eta is the d−dimensional Gaussian probability density function.

The value Xt matches one of the existing Gaussian functions i if Xt is within σ < 2.5 and
the parameters are updated in a next step. Gaussians are clustered in BG and FG functions,
corresponding pixels are also marked as BG and FG pixels.

3.2 3D Computer Vision

Geometric information does not only describe the relationship between different pixels on the
image plane but also between 2D pixels and 3D points [Hartley and Zisserman, 2003]. Capturing
an image is established by projecting a 3D scene onto a 2D image plane. The 3D point lies along
the camera ray going through the projection of this point. When only the projection is known,
the problem of finding the corresponding 3D point is an ill-posed one since this point can be
anywhere along the camera ray [Hartley and Zisserman, 2003]. This problem can be solved by
using some a-priori information or by having corresponding points from different viewpoints.

As 3D computer vision methods are fundamental aspects throughout the whole presented
framework, the following sections describe the geometric relationship between 2D image plane
and 3D world coordinate plane as well as computer vision principles and methods to go back
and forth between these two coordinate systems.

3.2.1 Perspective Projection

When projecting a 3D scene onto an image plane, this can be done either by using a parallel
or a perspective projection [Gonzalez and Woods, 2007]. When using a parallel projection, all
the projection lines are orthogonal to the projection plane and the projection center is at infinity.
A famous representative of parallel projection types is the orthographic projection which is e.g.

35



Q

C
v

x

y

f

u
c

q

z

Camera Coordinate
System

Image Plane

X

Y
Z

α

γ

β

Yt

Xt

Zt

World Coordinate
System

Figure 3.6: Pinhole camera. Mapping of a 3D point Q onto its 2D counterpart q on the image
plane. The intrinsic parameters are described by f and c, the extrinsics by R = RαRβRγ and
t = (Xt, Yt, Zt)

T .

used for floor plans. It shows a 3D scene or a 3D object from several views. Different to
orthographic projection, the perspective projection uses vanishing points which makes objects
closer to the viewpoint look larger than objects farther away. Vanishing points represent the point
on an image plane where parallel lines of a 3D scene converge. Depending on the viewpoint,
the number of vanishing points can change between one and three. Figure 3.5 shows a cube
projected on the image plane using (a) orthographic, (b) parallel and (c) perspective projection
from three vanishing points [Ma et al., 2003].

When talking about 3D computer vision and projection in this work, it is meant to be a
perspective projection between 3D scene and 2D image plane. The corresponding camera model
is called pinhole camera model which in combination with a lens distortion model can be used
as a fair approximation for conventional cameras [Hartley and Zisserman, 2003]. The principles
are shown in Figure 3.6. For simplification, the image plane is mirrored along the z-axis of
the camera coordinate system. Let Q = (xQ, yQ, zQ)T ∈ R3 be a point in camera space and
q = (uq, vq)

T ∈ R2 its projected point on the image plane. The optical center is denoted as C,
the principal point on the image plane as c = (u0, v0). The distance between the optical center
and the image plane is described by the focal length f of a camera. The projection of point Q
is then given by the intersection of the projection line and the image plane, where the projection
line must pass through both the optical center and the 3D point Q [Hartley and Zisserman, 2003].

When assuming that the origin of the image plane c corresponds with the origin of the
camera coordinate system C, the mapping between the projected point q of a point Q can be
described by [Hartley and Zisserman, 2003](

uq
vq

)
=

f

zQ

(
xQ
yQ

)
. (3.6)
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Due to camera geometrics, the assumption that the principal point corresponds with the camera
coordinate system origin, a conversion between the two systems is necessary. This can be done
by including the principal point in Equation 3.6. The principal point in combination with the
focal length describe the relationship between the image plane and the camera reference frame
and are also called intrinsic parameters. By re-formulating Equation 3.6, introducing the prin-
ciple point and transforming the result in homogeneous coordinates, the 3x4 camera calibration
matrix K is obtained. It is defined by

K =

f 0 u0 0
0 f v0 0
0 0 1 0

 . (3.7)

In homogeneous coordinates, the mapping between camera coordinate system and image plane
is then established by

q = KQ. (3.8)

When going from 3D space to 2D image coordinates, the point to be projected must not be
defined by using camera coordinates but by using coordinates from the real 3D world. The
pinhole camera can therefore also be extended by so called extrinsic parameters which define
the relationship between camera plane and world coordinate system [Hartley and Zisserman,
2003]. The extrinsic parameters consist of a 3x3 rotation matrix R, obtained from the three
angles denoted by α, β and γ in Figure 3.6, and a translation vector t = (Xt, Yt, Zt)

T . Together
with the camera intrinsics they set up the 3x4 camera matrix P. Let Q = (XQ, YQ, ZQ)T ∈ R3

now be described by world coordinates. The mapping between Q and q is then given by

q = PQ

= K

(
R t
0 1

)
Q. (3.9)

3.2.2 Camera Auto-Calibration from Vanishing Points

Let p = (p1, p2, p3), q = (q1, q2, q3), r = (r1, r2, r3) be three vanishing points which are
orthogonal to each other. Vanishing points can be determined by first extracting line segments
(e.g. by applying the Canny edge detector) from an image. Then, line segments are clustered
based on their orientations and the three dominant orientations which hold the maximum number
of lines are obtained by using RANSAC. Under the assumption of squared pixels, the IAC,
denoted as ω, has the form of

ω =

ω1 ω2 ω4

ω2 ω3 ω5

ω4 ω5 ω6

 (3.10)

After the calculation of three vanishing points, ω can be determined. By having three orthogonal
vanishing points, the following equations arise.

pT · ω · q = 0

qT · ω · r = 0

pT · ω · r = 0 (3.11)
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By expanding these equations, a linear equation system can be formed by

AT =



p1 · v1 p1 · r1 q1 · r1 0 1
p1 · q2 + p2 · q1 p1 · r2 + p2 · r1 q1 · r2 + q2 · r1 1 0

p2 · q2 p2 · r2 v2 · r2 0 −1
p1 · q3 + p3 · q1 p1 · r3 + p3 · r1 q1 · r3 + q3 · r1 0 0
p2 · q3 + p3 · q2 p2 · r3 + p3 · r2 q2 · r3 + q3 · r2 0 0

p3 · q3 p3 · r3 q3 · r3 0 0

 (3.12)

By assuming zero skew, which is equal to setting ω2 = 0, the elements of ω are found by solving

A · (ω1, ω2, ω3, ω4, ω5, ω6)T = 0T . (3.13)

The intrinsic parameters are directly related to ω by (KKT )−1 = ω. By applying the Cholesky de-
composition [Press et al., 1992], the intrinsic parameters can be extracted from the IAC [Hartley
and Zisserman, 2003].

3.2.3 Epipolar Geometry

As can be seen in Section 3.2.1, projecting a 3D point onto an image plane is well defined
[Hartley and Zisserman, 2003]. An ill-posed problem arises, when the corresponding 3D point
should be found for a given 2D point, since the 3D point must lie somewhere on the projection
ray but the exact location cannot be determined. This problem can only be solved when having
(i) additional priors about the 3D scene (e.g. 3D models) or (ii) two or more corresponding
2D points from several views. The 3D relationship between two cameras is expressed by the
so called epipolar geometry which can be described by the 3x3 fundamental matrix F. Let i
and j be the indices of two cameras within a camera network which can consist of two or more
cameras. As can be seen in Figure 3.7, the epipolar geometry holds two important aspects when
the relative orientation between two camera views is known [Hartley and Zisserman, 2003].

• Given two corresponding 2D image points xi and xj , the 3D point X is described by
the intersection of the projection line passing through xi and Ci and the projection line
passing through xj and Cj .

• When only one of the 2D image points, xi or xj , is known, the search space of the cor-
responding point in the other view can be shrinked down since it must lie on the known
epipolar line. The epipolar line of camera two is the line passing through Ci and the pro-
jection of Cj onto the image plane of camera two and vice versa. The projections of the
cameras’ centers onto the image plane of the other camera are called epipoles, represented
by ei and ej in Figure 3.7.

Let xi be a point from the first view and xj be a point from the second view, then the fundamental
matrix is defined by

xTj Fxi = 0. (3.14)

As can be seen from this equation, the fundamental matrix can be determined from eight corre-
sponding points. When the intrinsic parameters Ki and Kj are already known, the fundamental
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matrix in Equation 3.14 can be replaced by the essential matrix E = KTi FKj [Hartley and Zisser-
man, 2003]. The essential matrix can then be used to obtain the relative orientation ∆R and ∆t
between the two cameras with indices i and j by

Eij = [∆tij ]×∆Rij = ∆Rij [∆RTij∆tij ]× (3.15)

The relative rotation and translation can then be extracted from the essential matrix [Ma et al.,
2003]. As there are four solutions for ∆Rij and ∆tij , the solution where a positive depth is
gathered for any projected point must be picked, as described in [Hartley and Zisserman, 2003].
The epipolar geometry is used in Chapter 4 of this dissertation for camera auto-calibration.

3.3 Optimization and Classification Methods

Due to changes in illumination, a changing viewpoint, changing shape and color of objects and
also due to blur and noise in an image, similar scenes and objects look different when projected
on various images [Sonka et al., 2008]. Since it is not feasible in practice in the field of computer
vision to consider all of these variations, it is important for a number of applications (i) to be
able to obtain similar objects or scenes for given ones and (ii) to be able to handle the mentioned
local changes which means to enforce an image region to be consistent with neighboring regions
in terms of time, space or context, without letting the local noise avoid obtaining the globally
correct result. The following sections describe two methods used for such scenarios, namely the
MRF to enforce spatial, temporal or contextual consistency and the RF to perform classification
on image regions or objects afflicted with noise in the image.

Graphical models are used for performing inference in Section 6.1, 6.2 to get the best feasible
combination of vehicle poses over time and in Section 5.1 to get the best combination of structure
labels for 3D reconstruction. In Section 6.2, RFs are used to determine the pose of a car seen in
video sequences, where the RF classifier is trained on existing 3D models.

3.3.1 Markov Random Field

A discrete Markov Random Field (MRF) is a statistical framework used in computer vision to
analyze spatial or contextual dependencies among regions of an image [Nowozin and Lampert,
2011]. The framework is used for many tasks where a single label from a discrete set of pre-
defined labels is assigned to a set of given regions in an image. The optimization of an MRF
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Figure 3.8: Sample graph and example cliques on the graphs, denoted as Ck, where k is the size
of the clique.

delivers the globally best combination of labels for all the regions which are analyzed. De-
pending on the application, the regions may be e.g. points, segments or objects and the labels
may be a variety of e.g. object classes, depth values, or color and intensity values. The MRF
is described by a graph G = (V, E), where V = {v1, v2 . . . vN} are the N nodes or vertices
on the graph (correspond to image regions) and E ⊂

(V
2

)
describe the edges between these

nodes [Nowozin and Lampert, 2011]. Figure 3.8 shows an example graph. On the graph, two
nodes vi, vj ∈ V are neighbors if (vi, vj) ∈ E . The neighborhood of a node vi is therefore given
by N (vi) = {vj : (vi, vj) ∈ E}, where i 6= j. In Figure 3.8, the neighbors of node v2 are given
by N (v2) = {v1, v4, v5}. The model is a representative of the so called undirected graphical
models which means that vi ∈ N (vi) ⇔ vj ∈ N (vj). A clique is defined as an ordered and
complete subset of nodes on the graph and can exist from one, two, three or more vertices. The
maximal clique is then a clique consisting of the maximal number of nodes while the graph
still remains correct and complete. In Figure 3.8, there can be formed multiple cliques, e.g.
C1 = {v1, v2, v3, v4, v5}, C2 = {(v1, v2), (v2, v4), . . .} and C3 = {(v1, v2, v4), (v2, v4, v3), . . .}.
In other words, all nodes in a clique must be neighbor of all other members in the clique. Note
that not all possible cliques are shown in the Figure due to visibility constraints. Each node is
then assigned a random variable from a set of them, denoted by X = {X1, X2 . . . XN} which
can take a label configuration x = {x1, x2 . . . xN} from a set of M labels L = {l1, l2 . . . lM}.
The set X is also known as random field. For this discrete label set, the probability that random
variable Xi takes label xi is denoted by P (xi), the joint probabilty that a configuration x is
assigned to a set of random variables X is denoted by P (x). The random field X is then said to
be an MRF, if

P (xi) > 0 ∀xi
P (xi|xV\{i}) = P (xi|xN (i)), (3.16)

which in other words means that the probability for a value taken from a set of labels to be
assigned to a random variable must be greater than zero and that each random variable only
depends on random variables through its neighbors on the graph. To formulate the global joint
probability from multiple local functions, the MRF can be characterized by a Gibbs distribution,
as stated in the Hammersley-Clifford Theorem [Hammersley and Clifford, 1971]. The joint
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distribution is then given by the product of all these non-negative functions over the maximal
cliques of the graph, which can be written as

P (x) =
1

Z
exp

(
− 1

T

∑
C∈C

VC(xC)

)
, (3.17)

where Z is a normalizing constant, called the partition function, T is a constant called the tem-
perature and VC is the corresponding clique potential. The energy function E(x) can then
expressed by

E(x) =
∑
C∈C

VC(xC)

=
∑
{i}∈C1

V1(xi) +
∑
{i,j}∈C2

V2(xi, xj) + . . . (3.18)

Optimization of an MRF equals to finding the maximum joint probability on the graph or per-
forming inference on the graph [Nowozin and Lampert, 2011]. Maximizing the joint probability
can be established by minimizing the energy, given in Equation 3.18. This equals to minimizing
all the clique potentials and the most likely configuration x̂ is then given by

x̂ = argmax
x

P (x)

= argmax
x

1

Z
exp

(
− E(x)

)
= argmin

x
E(x). (3.19)

Performing exact inference is in practice a hard task and therefore time consuming. Fortunately,
there are several implementations and algorithms which are able to perform an approximated
optimization of the MRF, e.g. Loopy Belief Propagation (LBP) [Frey and MacKay, 1998],
Iterated Conditional Modes (ICM) [Besag, 1986], or also graph cut [Boykov and Jolly, 2001].
When using graph cuts, it must be noticed that the cliques must be reduced to binary ones
in order to perform a global optimization of the graph. Due to computational complexity, the
algorithms are mostly used on computer vision problems which can be solved by double or triple
cliques. An MRF is called pairwise if all the cliques in the random field are of size two. This
model is the most common one used in the field of computer vision. Each node is represented by
a pixel and the labeling is solved with pairwise clique potentials of neighboring pixels. The joint
probability is then given by unary potentials V1(xi) and binary potentials V2(xi, xj). The unary
potential is defined by the observation af a pixel taking a certain label and the binary potential
is called the smoothness term between these pairwise nodes. For further reading on graphical
models see [Nowozin and Lampert, 2011].

3.3.2 Random Forest

Many tasks in computer vision (e.g. object detection and recognition, segmentation) rely on
efficient and accurate algorithms for classification or regression [Gall et al., 2011a]. Classi-
fication, or clustering, is the task of separating a dataset in clusters or classes based on their
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Figure 3.9: Principle of a random forest consisting of N binary decision trees, where each tree
contains multiple split nodes and leaf nodes. For a classification task and given a set of input
feature vectors V〉, each tree Ti gives back the probability of this set being classified as class
c. For regression the response variables are continuously. The probability is found by going
through the graph from top to bottom and evaluating all the split functions fφ until the path
terminates at leaf node Li.

discrete or categorical response variable. In case the response variables are defined in continu-
ous space, the task is called regression [Gall et al., 2011a]. Both classification and regression can
be performed by a so called Random Forest (RF) which is a combination of N binary decision
trees T = {T1, Ti . . . TN} and was first introduced by Breiman in 2001 [Breiman, 2001]. The
principle of a random forest can be seen in Figure 3.9.

A single tree Ti consists of split nodes (denoted as circles) and leaf nodes (denoted as rect-
angles) [Breiman, 2001]. The split node on the first depth level of the tree is called root node.
Let V = {vj} be a given set of feature vectors. A feature vector vj is then sent through the
tree from top to bottom and evaluated at a split node for each depth level of the tree using a split
function fφ. The path of the feature vector is then terminated at the leaf node Li of a tree. In
order to perform classification tasks, the goal for each tree is to estimate the probability of vj
belonging to a certain class c, described by p(c|Li). When regression should be performed, the
goal is to estimate the distribution over the continuous parameter x ∈ RH .

Figure 3.10 shows an example of a separation of features in R2 in two different classes. Each
line represents one split function fφ which can be seen as a weak learner [Gall et al., 2011a].
Merging two lines means going down one depth level of a tree. Having all lines merged is equal
to having reached the terminal node Li of a tree. As can be seen, the final merged line represents
the line which best separates the data into the given number of classes. It can also be seen that
split functions that do not help to obtain a better separation boundary are not considered in the
final boundary decision. Having a decision boundary does in fact not always mean that all the
features from the input data are classified correctly but most of them are. Obtaining a good
decision boundary depends on how to set the learning parameters of the tree. It is described in
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Figure 3.10: Binary decision tree example for multiple features in R2 and two classes, de-
noted by red and black points. By combining multiple weak learners fφ, a stronger classifier is
obtained and therefore a more discriminative boundary between the two classes is found.

the following how to set these parameters in order to obtain a good and globally valid decision
boundary. In order to avoid overfitting, which can occur when estimating the decision boundary
using a single tree, multiple trees are used.

In a first step, an RF must be trained. To handle the large amount of data and perform the
training efficiently, randomness is introduced by

• training each tree i on a random subset V i = {vr},vr ∈ V and

• randomly using split functions at each node.

Having a set of randomly picked split function parameters Φ = {φk}, a split function is defined
by fφ, where φ ∈ Φ. The split function is used to divide the set of input vectors V i into V il and
V ir, following the left and right branch of the tree respectively by

V il (φ) = {vr|fφ(vr) < t}
V ir(φ) = V i\V il , (3.20)

where t is a threshold [Gall et al., 2011a]. The splitting function parameters φ and the threshold
t must be chosen so that the information gain g is maximized by exploiting the Shannon entropy
H by

φ̂ = argmax
φ

g(φ,V i),

g(φ,V i) = H(V i)−
∑

s∈{l,r}

|V is(φ)|
V i

H(V is(φ)). (3.21)

The set V i is split until a stopping criteria is met (e.g. maximum tree depth, minimum entropy
gain) and the number of features used for evaluation depends on the task to be performed. By
using only one feature, the tree is built up extremely randomized [Geurts et al., 2006]. Taking
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few features may introduce an underfitting, taking too many features may produce overfitting of
the optimization task.

In order to perform classification or regression based on the trained RF, the given input data
can vary from the training data. The final probability of a randomly picked feature vector v′

voting for a class c is then obtained by averaging all probabilities obtained from the trees by

p(c|v′) =
1

N

N∑
i=1

p(c|Li). (3.22)

Similarly, the probabilities can also be multiplied or probability distributions can be averaged
or multiplied using the distributions from all the trees [Gall et al., 2011a]. To conclude, RFs
describe an efficient and fast algorithm for classification and regression tasks which must be
designed carefully due to the number of parameters which need to be set.

3.4 Summary

This chapter describes the basic principles, algorithms and tools which are used for the accom-
panying implementations described in Chapters 4-6. The aim of a computer vision based 3D
scene understanding framework is to extract semantic information from 2D images in order to
perform 3D reasoning about the scene. Since a single pixel does not have any semantic informa-
tion, the geometric relationship to pixels within the image or to corresponding 3D points must
be known.

First, different representations of such geometric information within an image are described.
Point, line and region features are discussed and two representatives for all three feature types,
which are also used in the following chapters, are described in detail. These representatives
are the Harris corner detector and SIFT for point features, the Sobel filter and the Canny edge
detector for edge features and superpixel segmentation methods as well as background modeling
techniques for region features.

As geometric relations do not only occur between pixels in an image but also between points
on an image plane and their corresponding 3D points, the second part of this chapter describes
the basic relationship between image plane, camera plane and 3D scene. It also shows how points
can be projected back and forth between these coordinate systems using multiple viewpoints.
The section concludes with outlining the principles of epipolar geometry and how a camera can
be calibrated from three orthogonal vanishing points detected in the image.

The third part of this chapter deals with classification and optimization algorithms which are
applied to computer vision problems. In computer vision, images taken from the same scene
but with e.g. different capturing devices, under different lighting conditions or from a different
viewpoint may appear quite different in terms of color or intensity the pixels are holding. Apart
from that, the geometric relationship can also slightly change. To deal with such variations in
computer vision applications and to get globally correct results (e.g. for segmentation, object
detection or recognition tasks), an optimization algorithm, namely MRFs, and a method for
classification and regression, namely RFs, are described.
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CHAPTER 4
Camera Auto-Calibration from Traffic

Participants

This chapter describes two camera-auto calibration methods which exploit redundant scene in-
formation obtained by observing a traffic scene in order to increase the accuracy of such auto-
calibration methods.

First, a new approach for automatically calibrating a camera network is described in Section
4.1. It gathers intrinsic and extrinsic parameters from a pedestrian, who is walking upright on
the ground plane. By combining redundant information from multiple time instances, vanish-
ing points are calculated from the pedestrian. Intrinsic parameters are estimated by exploiting
these vanishing points. The same feature points of a pedestrian are also taken to calculate each
camera’s extrinsic parameters within a common coordinate system. The performed experiments
outline the accuracy and the practicability. Major parts of this work are described in the accom-
panying publication [Hödlmoser and Kampel, 2010].

Second, a novel auto-calibration method for a single camera based on traffic scenes is de-
scribed in Section 4.2. This scene must consist of one or more pedestrians and a zebra-crossing.
Vanishing points are obtained from a combination of both static objects (zebra-crossing) and
dynamic ones (pedestrians). A horizontal vanishing point and a vanishing line is extracted from
a zebra-crossing. Pedestrians walking upright allow estimating the vertical vanishing point and
the intrinsic parameters are determined. Extrinsic parameters are estimated by assuming the
width of the black and white patterns of the zebra-crossing to be known. By combining static
and dynamic calibration objects, the method can be made robust against outliers. The robust-
ness against outliers, the practicability of the method and improved results in terms of accuracy
compared to state-of-the-art algorithms are shown in the experiments. These are carried out
by using synthetic and real data of different application scenarios. The method is published
in [Hödlmoser et al., 2011b].
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4.1 Multiple Camera Auto-Calibration Using Pedestrians

Humans are the most frequent object to be analyzed in surveillance scenarios [Leotta and Mundy,
2011]. Therefore, pedestrians are predestined to be used as calibration object for self-calibrating
a traffic surveillance camera. In this section, a novel and practical approach to determine both
intrinsic and extrinsic parameters for a network of surveillance cameras by only analyzing a
pedestrian is presented. The method delivers a camera’s intrinsic and extrinsic parameters from
a pedestrian, who is walking upright on the ground plane. Calibration can then be done when
having at least two different time instances of the walking pedestrian. By combining redundant
information from more than two time instances, vanishing points are calculated. These vanishing
points are determined by extracting top and bottom points of the person. Instead of exploiting
a geometric solution as in [Lv et al., 2006], the intrinsic parameters are then extracted from the
IAC. In a next step, the extracted top and bottom points are also used as input for gathering
the pairwise relative orientations between all cameras within a network. To calculate the scaling
factor for the absolute translation of all cameras, the user needs to predefine the height of the
walking person.

4.1.1 Vanishing Point Estimation

Given a camera network consisting of i = 1 . . . N cameras, calibrating the whole network
includes three steps. First, the camera matrices Ki need to be determined for each camera.
Second, pairwise relative rotations ∆Rij and translations ∆tij) between two cameras i,j are
extracted. The last step is the determination of the absolute rotations Ri and translations ti for
each camera in a common 3D coordinate system.

This approach describes the extraction of intrinsic and extrinsic parameters for multiple
cameras in a network from a sequence of a walking human. The pedestrian is observed for
at least two frames over time t = 1 . . . T and head and bottom (or foot) points are extracted.
These points are then taken to calculate two vanishing points v1 and v3 and a vanishing line
l. A third vanishing point v2 can be determined by geometric relationships and the IAC can be
formed. Figure 4.1b illustrates the triangle spanned by v1, v2 and v3. The orthocenter is denoted
as c. By applying the Cholesky decomposition [Press et al., 1992], the intrinsic parameters can
be extracted from the IAC. The geometric relationship of the vanishing points and the vanishing
line can be seen in Figure 4.1a. It shows the vanishing line l and a selection of vanishing points of
four pairs of instances of a walking human. Head and bottom points are also used to recover the
cameras’ extrinsic parameters. To obtain a metric scaling of the scene and to extract the scaling
factor for the absolute translation of all cameras, the user needs to predefine the height of the
walking person. In order to obtain correct vanishing points, there are two constraints related to
this approach, namely (i) head and foot points need to have a fixed 3D distance over time and
(ii) all head and foot points need to be coplanar respectively. Both constraints are fulfilled by a
pedestrian having a constant height walking on an even ground plane.
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Figure 4.1: (a) Determination of the vanishing line l and a vertical vanishing point v3 by using
all head and foot points of a walking pedestrian. (b) Triangle spanned by v1, v2 and v3.

4.1.1.1 Determination of Vertical Vanishing Point

To determine a head point ht = (xh, yh) and a bottom point bt = (xb, yb) of a walking human
at time instance t, the human silhouette must be extracted in a first step which is crucial for all
further calculations. A simple background subtraction is done to determine a rough silhouette
of the pedestrian. The resulting foreground bounding box is used as input for the GrabCut algo-
rithm [Rother et al., 2004] which performs an accurate extraction of the pedestrian’s silhouette
from the background.

The bounding box for the determined pedestrian is calculated and divided in an upper and a
lower part. The center of mass is calculated for the whole bounding box, for the lower and for
the upper part respectively. By using a least squares estimation, a line is fitted through the three
centers of mass. This gives a vertical line of the walking human at time instance t. The head and
foot points are then given by the intersection of the vertical line and the bounding box. Figure
4.2a shows a random input image from a video sequence used for the experiments, Figure 4.2b
shows the extracted person within a rectangular bounding box, its three centers of mass denoted
by crosses and its corresponding head and foot points denoted by circles. Figure 4.2c shows the
pedestrian extracted for an image sequence and the corresponding head and foot points.

The goal of the next step is to estimate three vanishing points v1 = (x1, y1), v2 = (x2, y2)
and v3 = (x3, y3) from head and foot points. According to [Lv et al., 2006], a vertical vanishing
point v3 can be calculated by using the head and foot points of a walking human. Theoretically,
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Figure 4.2: (a) Example input image, (b) extraction of head and foot points and (c) extracted
head and foot locations for a sequence of images.

all lines going through corresponding foot and head points of a pedestrian must converge to one
vanishing point v3. Since head and foot location initialization may be noisy, an approximation
of the intersection needs to be performed. Using cross ratio in 2D, the relationship between the
vertical vanishing point and head and foot points of a pedestrian is given by [Kusakunniran et al.,
2009]

x3(yh − yb) + y3(xb − xh) = (xbyh − xhyb). (4.1)

This equation is underdetermined and cannot be solved when only having one instance of a
pedestrian. When two or more instances of the pedestrian are given, an equation system Av3 =
r, where r is the result vector, can be formed to solve the equation. A least squares solution can
be gathered by solving

v3 = (ATA)−1AT r. (4.2)

To make the solution more robust and to exploit redundant information, all
(
N
2

)
possible com-

binations for N instances of the pedestrian are used for further calculations.

4.1.1.2 Determination of Horizontal Vanishing Points

Having multiple instances of a pedestrian enables the calculation of pairwise vanishing point
calculation between each pair of these instances. Similarly to estimating v3, all possible pairwise
combinations are used in this step to exploit redundant information again in order to increase the
robustness of the result against outliers. A vanishing point between two instances of a pedestrian
at time instance t and time instance t + 1 can be calculated by vt,t+1 = htht+1 × btbt+1.
Theoretically, all vanishing points constructed from such pairs must lie on one line called the
vanishing line. Since head and foot location initialization may be noisy and therefore not all
vanishing points must lie on one line, the vanishing line is fitted by using the least squares
algorithm.
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As three vanishing points orthogonal to each other are needed for gathering the intrinsic
parameters of a camera, v3 and l are used for the determination of two more vanishing points,
v1 and v2. The second vanishing point v1 can be determined by taking an arbitrary point on
the vanishing line. If the vanishing line has a gradient equal to zero, it is called the horizontal
line. Before calculating v2, the vanishing line needs to be aligned with the horizontal line. This
is established by rotating the vanishing line by the negative gradient of l. By this alignment,
the whole scene, including all points needed for further calculations, must also be rotated (i.e.
v1 = v′1,v2 = v′2,v3 = v′3). The principal point c = (u0, v0) can safely be assumed to be the
image center and c is rotated to obtain c′. As c′ is the orthocenter of the triangle spanned by
the three vanishing points, v′2 can be calculated geometrically as also shown in Figure 4.1b. To
obtain v1, v2, and v3, the scene is rotated back around the image origin by the negative gradient
of the vanishing line.

4.1.2 Camera Parameter Estimation

After the calculation of all three vanishing points, the IAC ω can be determined. According to
Section 3.2, ω can be determined from three orthogonal vanishing points under the assumption of
squared pixels and zero skew. The intrinsic parameters are directly related to ω by (KKT )−1 = ω.
By applying the Cholesky decomposition [Press et al., 1992], the intrinsic parameters can be
extracted from the IAC.

Head and foot points of the walking pedestrian are also used to recover the scene structure
which in other words means the determination of the cameras’ extrinsic parameters. Given
a camera network consisting of i = 1 . . . N cameras, the goal is to estimate each camera’s
absolute rotation Ri and translation ti in a common coordinate system. In order to do so, the
relative orientations between camera pairs are calculated sequentially. The orientation between
two arbitrary cameras, providing the indices i and j, consists of a relative rotation ∆Rij and
a relative translation ∆tij . As described in Section 3.2.3, the relative rotation and translation
between two cameras having indices i and j are extracted from the essential matrix.

After pairwise calibration of the camera network, the absolute orientation for each camera
must be determined. Therefore, one camera is assumed to be the common coordinate origin.
Having two cameras i, j and their relative rotations ∆Rij and translations ∆tij , the absolute
rotation Rj and absolute translation tj of camera j is calculated by

Rj = ∆RijRi, tj = ∆tij + ∆Rijti (4.3)

Since the essential matrix is only determined up to a scale factor λ, this factor must be calculated
to gain a scaled translation vector. Therefore, corresponding pedestrian head and foot points are
triangulated in the normalized world coordinate system at time instance t to obtain head points
Ht and foot points Bt. The scale factor can be calculated by

λ =
1

T

T∑
t=1

M

‖Ht,Bt‖2
, (4.4)

where M is the real height of the pedestrian in metric 3D space which must be provided by
the user. The rotation and translation parameters are optimized by running the sparse bundle
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Cam f u0 v0 ∆R ∆t µ RE σ RE
# (pixels) (pixels) (pixels) (degrees) (mm) (10−3pixels) (10−3pixels)
01 CV 659.40 320.00 240.00 ( 00.00, 00.00, 00.00) 000.00 0.00 0.19

RV 660.00 320.00 240.00 ( 00.00, 00.00, 00.00) 000.00 – –
02 CV 659.46 319.98 239.99 ( 60.00, 00.00, 00.00) 371.35 0.00 0.25

RV 660.00 320.00 240.00 ( 60.00, 00.00, 00.00) 371.30 – –
03 CV 659.42 320.00 239.99 (110.00, 00.00,-00.00) 666.64 0.01 0.40

RV 660.00 320.00 240.00 (110.00, 00.00, 00.00) 666.55 – –
04 CV 659.79 319.95 239.99 (135.00,-00.00, 00.00) 782.55 0.01 0.24

RV 660.00 320.00 240.00 (135.00, 00.00, 00.00) 782.54 – –
05 CV 659.36 319.99 239.99 (179.99,-00.00,-00.00) 854.60 0.00 0.30

RV 660.00 320.00 240.00 (180.00, 00.00, 00.00) 854.53 – –
06 CV 659.43 320.03 240.00 (224.99, 00.00, 00.00) 786.95 0.01 0.28

RV 660.00 320.00 240.00 (225.00, 00.00, 00.00) 786.93 – –
07 CV 659.34 319.96 239.98 (275.01,-00.00, 00.00) 603.98 0.02 0.96

RV 660.00 320.00 240.00 (275.00, 00.00, 00.00) 603.79 – –
08 CV 659.36 320.03 240.00 (290.00,-00.00,-00.00) 492.78 0.00 0.30

RV 660.00 320.00 240.00 (290.00, 00.00, 00.00) 492.76 – –
09 CV 659.29 319.98 239.99 (304.99, 00.00,-00.00) 369.46 0.01 0.37

RV 660.00 320.00 240.00 (305.00, 00.00, 00.00) 369.48 – –
10 CV 659.36 319.97 239.99 (339.99, 00.00,180.00) 134.51 0.00 0.22

RV 660.00 320.00 240.00 (340.00, 00.00,180.00) 134.52 – –

Table 4.1: Comparison of calculated intrinsic / extrinsic parameters and their reference param-
eters of seven synthetic cameras. Additionally, reprojection errors are shown.

adjustment algorithm over all cameras within the network, as proposed in [Lourakis and Argy-
ros, 2004]. This algorithm simultaneously minimizes the reprojection error and the error of all
absolute orientations, when intrinsic parameters are fixed.

4.1.3 Experiments

To show the accuracy of the proposed method, an evaluation using synthetic and real data is
performed in the following. As this section should show the precision of the algorithm, it is
first evaluated by using a synthetically generated scene. Additionally, the impact of the noisy
measurements of top and bottom points on the calibration results is shown. The algorithm is
secondly tested on a real world scenario in order to show the practical applicability. Reprojection
errors as well as a comparison between results from the proposed approach and both synthetic
and real world ground truth data are presented.

4.1.3.1 Synthetic Data

For evaluation purposes, a 3D scene is generated using OpenGL and ten top and bottom points
are randomly positioned within the scene. The distance between top and bottom locations is
56 millimeters, as the model figure of the experiments using real images is exactly that height.
Ten cameras are located randomly within the observed scene of 360 degrees where all top and
bottom points can be seen from each camera. All cameras have the same focal length and
principal point. The positions of the cameras and the calculated camera positions are shown in
Table 4.1. The relative rotation ∆R and the relative translation ∆t for each camera present the
offset to reference camera one and are represented by the three angles pitch, roll, yaw and the
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σ f(pixels) u0(pixels) v0(pixels) ∆R(degrees) ∆t(mm)
0.5 638.36 323.50 240.27 (340.22 -00.08 179.76) 123.34
1.0 621.33 322.89 239.89 (339.76 00.39 173.98) 102.67
1.5 602.49 309.30 238.55 (340.59 -00.54 175.33) 99.31

Table 4.2: Intrinsics and relative orientation between reference camera one and camera ten when
introducing noise.

Euclidean distance to the origin. As can be seen, both the intrinsic and the extrinsic parameters
can be extracted precisely. Reference values (RV) from the OpenGL scene are compared to
calculated values (CV). All cameras offer a difference between calculated and reference focal
length of < 0.12%. The maximum difference of the relative translation is 0.03%, measured at
camera seven. Since the top and bottom locations are calculated having no noise, it can be seen
that the mean and the standard deviation of the reprojection error (represented by µ RE and σ
RE) is nearly zero. In a next step, the height of the synthetically generated distance between top
and bottom locations is compared and evaluated. The mean height of all ten top/bottom pairs is
56.00 millimeters, having a standard deviation of 2.0248e-004.

To proof the robustness of the algorithm, the method is run again by using a varying standard
deviation on the top and bottom points. Table 4.2 shows the results obtained when using a raising
standard deviation on camera ten. As can be seen, intrinsic parameters and the relative rotations
remain stable (maximum ∆f = 8.71%, maximum ∆u0 = 3.34%, maximum ∆v0 = 0.60%,
maximum ∆R = (0.07%, 0.10%, 3.34%)) whereas the distance between camera one and camera
ten gets smaller when noise is introduced (maximum ∆t = 26.17%).

The computation time of the whole calibration procedure using 2,3,4,5 and 10 cameras is
1.5, 2.7, 4.3, 5.6 and 13.8 seconds which means that by each camera used in the network, the
computation time increases by approximately 1.4 seconds which is negligible in a calibration
procedure.

4.1.3.2 Real Data

In the following, real data is used for evaluating the proposed calibration method. In order to
obtain foot- and headpoints of pedestrians, the distance between pedestrians and camera centers
must not be above 10-15 meters. As there is no dataset publicly available showing pedestrians
from this distance but from multiple synchronized viewpoints, new datasets are generated for
evaluation. The experiments are divided into two different setups. In a first setup, three cameras
are capturing a moving model figure (Figure 4.3a), having a height of 56 mm. Three Unibrain
Fire-i webcams are used in order to enable observing the scene from 360 degrees. In a second
setup, two cameras (AXIS M1031-W) mounted on an indoor wall, are capturing a walking
human (Figure 4.3b) having the height of 195cm.

For the experiments, ten subsequent moving positions of the model figure and ten subsequent
walking positions of the pedestrian are used for calibrating the camera network. Table 4.3 shows
the calculated intrinsic parameters using the proposed method. The ground truth (denoted as
GT in the table) for the intrinsics is given by the data sheet of the used cameras. Since the
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Figure 4.3: Input data for the experimental setup using real data: (a) model figure and (b)
walking human.

f(pixels) u0(pixels) v0(pixels) ∆R(degree) ∆t(mm) µ RE(pixel) σ RE(pixel)
Model Figure

GT 746.67 320.00 240.00 – – – –
cam01 766.01 331.96 239.36 ( 00.00 00.00 00.00) 00.00 3.91 2.45
cam02 685.48 336.44 239.89 (246.38 17.78 21.42) 362.74 2.93 1.76
cam03 709.12 286.17 243.23 (135.34 -12.98 33.94) 412.53 3.81 3.01

Pedestrian
GT 782.22 320.00 240.00 – – – –

cam01 781.88 374.98 243.36 ( 00.00 00.00 00.00) 0000.00 3.83 3.05
cam02 783.51 303.31 241.66 (266.55 -36.40 -18.96) 4221.49 3.81 3.26

Table 4.3: Intrinsics and extrinsics of three real cameras compared to the ground truth, given by
the camera’s data sheets. Additionally, mean and standard deviation of the reprojection error are
shown.

determination of top and bottom locations extracted from real world images is noisy, it can
be seen that the mean reprojection error is relatively high in both cases (e.g. 3.91 pixels for
camera 1 using the model figure and 3.83 pixels for camera 1 using the pedestrian). To show
the accuracy of the proposed calibration method on real data, the height of the model figure and
the pedestrian is calculated. All ten recovered top and bottom positions are used for calculating
the mean height of all ten points which is µ = 56.00 millimeters (σ = 1.21 millimeters) for the
model figure and µ = 195.00 centimeters (σ = 4.17 centimeters) for the pedestrian.
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Figure 4.4: Camera calibration by analyzing a zebra-crossing and a pedestrian. A vertical van-
ishing point is extracted from the walking person, two horizontal vanishing points are determined
by analyzing the zebra-crossing.

4.2 Single Camera Auto-Calibration Using Pedestrians and
Zebra-Crossings

This section presents a calibration method which is able to gather intrinsic and extrinsic camera
parameters from 2D images using only the a-priori assumption that one or more pedestrians
are walking on or near a zebra-crossing. There are no restrictions to the humans walking in
a certain manner, direction, or certain velocity. The approach is also able to classify between
pedestrians and cars and is therefore of great use for surveillance applications. Figure 4.4 shows
a sequence of one pedestrian walking on a zebra-crossing. The proposed method exploits the
approach of [Se, 2000] and determines both a horizontal vanishing point and a vanishing line
from the edges of a zebra-crossing. By having a person walking through the working volume,
all three vanishing points get extracted from a scene and the camera’ intrinsic and extrinsic
parameters can be calculated. Exploiting redundant information from pedestrians and zebra-
crossings eliminates two main problems in previously presented auto-calibration approaches,
namely

1. a restriction in terms of constraints which cannot be fulfilled precisely in surveillance
scenarios (e.g. cars must be driven in a straight manner, as presented in [Zhang et al.,
2008b]) and

2. the need of a-priori information, e.g. camera’s or pedestrian’s height, like in [Lv et al.,
2006] or [Zhang et al., 2008b].
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Vanishing points are defined as the intersection of parallel lines, projected onto the image plane.
When the parallel lines are also equally spaced, the vanishing line can be extracted. These two
concepts are useful for auto-calibrating a camera. The edges of a zebra-crossing, which consists
of alternating black and white patterns, are equally spaced and parallel in 3D space. Therefore,
the first horizontal vanishing point v1 and the vanishing line l are extracted by analyzing a
zebra-crossing. Since the main axes of all instances of a pedestrian’s trunk which are observed
over a sequence of frames and perpendicular to the ground plane, are parallel to each other,
a vertical vanishing point v2 can be determined. The second horizontal vanishing point v2

can then be estimated by using the triangle spanned by three vanishing points. The image of
the absolute conic can be formed using all three vanishing points. By applying the Cholesky
decomposition [Press et al., 1992] the intrinsic parameters can be extracted from the image of
the absolute conic. Extrinsics are estimated by determining the camera’s height from the width
of the zebra-crossing’s bright area.

4.2.1 Vanishing Point Estimation

As can be seen in the previous section, cameras can be calibrated by using multiple instances of a
walking pedestrian. One of the problems which arise is the sensitivity against poor segmentation
of the pedestrian which leads to outliers in the calculation of vanishing points. Since the camera
parameters are directly related to the vanishing points, the accuracy of the calibration result
decreases with noisy measurements of the vanishing points. Most of the surveillance scenarios
(e.g. in garages, on parking lots, or general urban traffic scenes) basically provide two types
of moving objects, namely pedestrians and vehicles. When pedestrians are observed, they may
cross the street on or near a zebra-crossing. In this section, a camera calibration method is
presented which exploits this knowledge and uses both pedestrians and zebra-crossings in order
to extract the camera’s intrinsic and extrinsic parameters from a traffic surveillance scenario.
When a camera is calibrated using static objects, it is known that the flexibility is limited but
the accuracy is high. On the other hand, when a camera is calibrated using dynamic or moving
object, the method is flexible and more general but the calibration result is noisier. It is shown in
the experiments in Section 4.2.3 that the calibration results can be improved by combining static
(pedestrians) and dynamic (zebra-crossing) objects and by exploiting the advantages of both
these objects for calibration. Two constraints need to be fulfilled in order to extract vanishing
points from surveillance scenarios using the described algorithm.

• Pedestrians are walking on an even ground plane with their body perpendicular to the
plane.

• Zebra-crossings having equally spaced and parallel black (or darker) and white (or brighter)
patterns are present somewhere in the observed scene.

As the mentioned properties arise in traffic surveillance scenarios, they can easily be fulfilled
and used for gathering three vanishing points, perpendicular to each other and denoted by v1 =
(x1, y1), v2 = (x2, y2), v3 = (x3, y3).
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4.2.1.1 Moving Object Detection and Classification

As static surveillance cameras are used for the experiments carried out in Section 4.2.3, sim-
ple background subtraction is taken for extracting the moving blobs within a scene. The blob’s
shadow is removed by using the normalized Red Green Blue (RGB) color model. Since blobs
can be separated (e.g. between top and bottom of pedestrians), a morphological closing is per-
formed for reunion. The center of mass is calculated for each line and for each row of the
moving blob. Afterwards, two lines called lines of mass are fitted through all centers in horizon-
tal and vertical direction. Figure 4.5 shows the vertical (m) and horizontal (m′) lines of mass
of a walking person and a car. When observing a pedestrian, the difference between horizontal
and vertical line of mass is smaller than the difference between the two lines of an observed car.
This difference occurs due to a more cubic and regular shape of a car compared to the pedestrian.
Therefore, a threshold to classify between a car and a pedestrian is introduced. In practice, this
threshold is set to 45◦. As can be seen, the segmentation must not be precise (e.g. holes in the
body of the pedestrian, clipped head) to get a correct classification result and the two lines of
mass.

4.2.1.2 Extraction of Vertical Vanishing Point

When using a sequence of two or more instances of one or more walking pedestrians, indicated
by n = 1, 2 . . . N , multiple vertical lines of mass can be recovered, which are denoted by mn.
Next to calculating these lines for each blob classified as a pedestrian, the vertical vanishing
point v3 can be determined. When using synthetic data, all intersections of possible pairs of
mn must converge to one point v3. Since the initialization of mn may be noisy when using real
data, an approximation needs to be performed. Let h = (xh, yh) and b = (xb, yb) be the foot
and head point of the first instance of the pedestrian, respectively. By exploiting cross-ratio, the
coordinates of the vertical vanishing point v3 may be written as

y3 − yh
x3 − xh

=
yb − yh
xb − xh

, (4.5)

or
x3(yh − yb) + y3(xb − xh) = (xbyh − xhyb), (4.6)

as described in [Kusakunniran et al., 2009]. When two or more instances of a pedestrian are
given, an equation system A · v3 = r, where r is the result vector, can be formed to solve the
equation. A least squares solution is gathered by solving

v3 = (ATA)−1AT r. (4.7)

Two different pedestrians or two different positions of the same pedestrian would be enough to
determine a vertical vanishing point but due to more robust calculations, more than two positions
should be used for camera calibration.

4.2.1.3 Extraction of Horizontal Vanishing Points

After the determination of the vertical vanishing point v3, the first horizontal vanishing point
v1 and the vanishing line l need to be estimated. A zebra-crossing, which consists of black (or
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Figure 4.5: Input image and classification of (a) a pedestrian and (b) a car. The difference
between vertical and horizontal line of mass is 24.0◦ for the pedestrian and 51.7◦ for the vehicle.

darker) and white (or brighter) equally spaced patterns, is therefore analyzed. For the calculation
of the vanishing line, at least three equally spaced parallel lines need to be extracted. In a first
step, a Canny Edge Detector is exploited to determine the edges in the zebra-crossing image.
Only positive gradients are taken for further calculations. When positive and negative gradients
would be used, this would mean that the width of black and white patterns must be the same to
have all parallel edges equally spaced. When only using positive gradients, all black or all white
patterns must have the same width but not both colors.

In a second step, redundant edge segments are eliminated (e.g. one edge segment of a
zebra-crossing can be separated in two line segments when a pedestrian is occluding parts of
the edge). The shorter segment is removed and the longer one is kept for further calculations.
The next step of the pipeline searches for all edge segments which support a common vanishing
point v1. By exploiting RANSAC [Fischler and Bolles, 1981], the intersection of a random pair
of edge segments is taken as an initial guess for v1. Only those segments where v1 is located
within a certain distance to them are taken as inliers. In practice, this threshold distance is three
pixels. The result having the most inliers is taken as the best one. The final vanishing point is
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Figure 4.6: (a) All detected edge segments, (b) segments supporting v1 after removal of redun-
dant data, (c) triplet of lines supporting l, (d) the determined values for l and v1 shown in pixels
on the image plane.

then estimated by only using inlier edges. For each inlier edge segment two points on the line are
taken to get a least square estimation for v1 (see description for the estimation of v3 in Section
4.2.1.2).

It may occur that also segments, which are not part of the zebra-crossing, support a vanishing
point but those lines get eliminated in the next step. The vanishing line l can only be calculated
by a closed-form solution when using exactly three equally spaced and parallel edge segments.
Having three different line segments si, sj and sk, which may not be consecutive, this closed
form solution is given by [Se, 2000]

l ∝ [(si × sk) · (sj × sk)]sj + (k − i)[(si × sj) · (sk × sj)]sk. (4.8)

RANSAC [Fischler and Bolles, 1981] is used to estimate the vanishing line. Therefore a triplet of
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Figure 4.7: Interrelationship between v1, v2, v3, l.

random edge segments is taken to calculate an initial guess for l using Equation 4.8. A verifying
check if another edge segment sl supports the current estimation of l can be established by
calculating

E = si × sl + (l − i)µl× sl ,

where

µ = −si × sj
l× sj

= − si × sk
2 · (l× sk)

. (4.9)

In practice, sl supports l when |E| is smaller than a threshold, chosen to be 0.0008. Figure 4.6
shows all detected edge segments, the segments supporting one common vanishing point, the
three edge segments used for calculating the vanishing line, the estimated l and v1.

The third vanishing point, v2, can be calculated after the estimation of v1, v3 and l. Figure
4.7 shows different instances of a pedestrian walking on a zebra crossing and the interrelation-
ship of v1,v2,v3 and l. If l has a gradient equal to zero, it is called the horizontal line. This
gradient angle is known as the yaw angle γ of the camera. Before calculating v2, the vanishing
line needs to be aligned with the horizontal line. This is established by rotating l by the negative
gradient of the vanishing line. By aligning l, the whole scene, including all points needed for
further calculations, must also be rotated (v1 = v′1,v3 = v′3). The principal point c can safely
be assumed to be the image center and c is rotated to obtain c′. As c′ is the orthocenter of the
triangle spanned by the three vanishing points, v′2 can be calculated geometrically, as described
in Section 4.1 and in [Lv et al., 2006]. To obtain v2, the scene is rotated back around the image
origin by the gradient of l.
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(a) (b)

Figure 4.8: (a) One extracted lighter pattern of a zebra-crossing and its centroid. (b) The two
determined reference points, where the distance between them must be 50 centimeters.

4.2.2 Camera Parameter Estimation

By applying the Cholesky decomposition [Press et al., 1992], the intrinsic parameters K, con-
sisting of focal length f and principal point c = (u0, v0) are extracted from the IAC. Next to
calculating the intrinsic parameters, the extrinsics, defined by a rotation matrix R and a transla-
tion vector t, need to be determined. Under the assumption of zero skew and an aspect ratio of
one, KKT = ω−1 can be rewritten asλ1x1 λ2x2 λ3x3

λ1y1 λ2y2 λ3y3

λ1 λ2 λ3

 = KR (4.10)

where λi are scaling factors. By rearranging Equation 4.10, these scaling factors are determined
by solving the equation system

x2
1λ

2
1 + x2

2λ
2
2 + x2

3λ
2
3 = f2u2

0

y2
1λ

2
1 + y2

2λ
2
2 + y2

3λ
2
3 = f2v2

0

λ2
1 + λ2

2 + λ2
3 = 1 (4.11)

Three angles, namely α for roll, β for pitch and γ for yaw are then extracted from R. The
position and scaling within a common world coordinate system is described by a translation
t = R(0 0 H)T , where H is the camera’s height. To get the height in metric 3D space, a
scaling needs to be determined. Brighter areas of a zebra-crossing do not have to be standardized
but in practice, most of them are at least two meters long and exactly 50 centimeters wide. This
knowledge is exploited and the brighter areas are extracted, where at least two border pixels
of the area are located within a distance of two pixels to the extracted zebra-crossing edges.
These edges are used to gather the vanishing line l. The centroid of the areas is also extracted.
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Next, for each extracted pattern two intersections of the area’s border lines and the line, which
has the vanishing point’s orientation and goes through the centroid, has to be calculated. These
intersection pairs are taken as reference points where the real world distance of each pair must
be 50 centimeters. Figure 4.8 shows the determination of both reference points for one brighter
pattern of the zebra-crossing. After the extraction of a lighter pattern, the two reference points,
where the distance between them must be 50 centimeters, are determined. Since both points
are located on the same plane, the 3D coordinates can be recovered from a single camera. As
the camera matrix K and the rotation matrix R are known, the camera’s height is increased and
the pair of points is projected to 3D space until the estimated distance between the two points
meets the reference distance of 50 centimeters. To gain a higher accuracy, the mean distance of
intersection pairs of all bright patterns is taken.

4.2.3 Experiments

To show the practicability and the accuracy of the proposed approach, this section provides
experiments using synthetic and real data in various scenarios.

4.2.3.1 Synthetic Data

As in practice the calibration parameters are affected by noisy input data (e.g. poor segmentation,
distortions, changing lightning conditions), this effect can be simulated by using synthetic, noisy
input data. A synthetic camera, having a focal length of 600 pixels, providing three angles, α =
−20◦, β = −30◦ and γ = 0◦ is positioned at a height of H = 20 units from the ground plane.
The image provides the dimensions 640 × 480 so the principal point is located at u0 = 320,
v0 = 240. Two or more instances are needed in order to assure the least squared optimization to
work properly and exactly three equally spaced lines are needed to calculate the vanishing line.
In this test set, five pedestrians and three parallel and equally spaced lines, representing three
equally spaced edges of a zebra-crossing, are used. All instances of the pedestrian and the edges
of the zebra-crossing are positioned randomly within the scene, where persons are sitting on the
ground plane. The distance between two edges is 15 units.

By introducing Gaussian noise, described by its parameter σ, the pixel locations are ran-
domly moved in both vertical and horizontal direction. As it would be interesting to answer the
question whether the edges of the zebra-crossing or the foot/head locations of the pedestrians
are less robust against outliers, those two classes of points are distorted separately and in a com-
bined fashion. Figure 4.9 shows the results for f , u0, v0, α, β and γ from top to bottom and left
to right. The metrics are represented by the vertical axis. The horizontal axis represents the stan-
dard deviation σ which goes from 0-4 pixels by a stepsize of 0.2. The calibration is performed
1000 times at each noise level and the mean results are taken for comparison. The distorted
foot/head points, distorted zebra-crossing edges and both locations distorted are represented by
×, ◦ and �, respectively.

As can be seen, the output is not sensitive to pedestrian locations. At a maximum noise level
of σ = 4, the relative errors of f , u0, v0, α, β and γ compared to the ground truth are 1.37%,
0.04%, 0.01%, 0.25◦, 0.51◦ and 0.00◦, respectively. In practice, the sensitivity regarding the
zebra-crossing depends on the distance between the black and white patterns in the image space.
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Figure 4.9: Synthetic data. From top to bottom and left to right: The results for f , u0, v0, α,
β and γ by using distorted foot/head points (×), distorted zebra edges (◦) and both pixel values
distorted (�). The pixels are shifted by σ in both vertical and horizontal direction.

The wider the distance is, the more robust the calibration setup is. Therefore, the calibration
procedure is more robust when the camera’s height is greater than the distance to the first pattern
of the zebra-crossing. When both top/bottom locations of the pedestrians and the edges of a
zebra-crossing are distorted, maximum relative deviations to the ground truth data of 1.10%,
14.20%, 2.82%, 1.00◦, 0.23◦ and 1.68◦ for f , u0, v0, α, β and γ, are obtained respectively.
As expected, the curves of all metrics show that the accuracy decreases by increasing the noise
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level. As the camera’s height has a maximum relative deviation of 0.02% when both zebra edges
and pedestrian locations are distorted, H and t are not taken into account for evaluation.

4.2.3.2 Real Traffic Scene

To show the practicability of the proposed approach, the algorithm is also tested on real world
data. There is no dataset publicly available which provides both a scene showing pedestrians in
combination with zebra-crossings and a correct calibration. Therefore, a Canon Digital IXUS
60 camera, having a focal length of 665 pixels, captures two image sequences with a resolution
of 640x480 pixels. A pedestrian is walking near or on a zebra-crossing. Four sequences, labeled
PED01-PED04 and shown in Figure 4.10, are taken for evaluation purposes.

(a) (b)

(c) (d)

Figure 4.10: Real data. All instances of pedestrians used for (a) PED01, (b) PED02, (c) PED03
and (d) PED04, shown in one image. For PED01 and PED02, the same zebra-crossing is used,
PED03 and PED04 offer different ones.
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f u0 v0 (α, β, γ)T t H
(pixels) (pixels) (pixels) (degrees) (cm) (cm)

CCTfM 662.1 318.6 239.8 – – –
[Lv et al., 2006] 678.8 193.8 220.0 – – –
PED01 665.3 317.6 240.5 -45.4 -07.9 168.0

-10.8 159.3
-02.8 -38.2

PED02 625.4 327.7 238.5 -43.3 -07.9 176.0
-11.6 158.6
-02.8 -41.1

PED03 656.7 314.8 239.7 33.8 17.5 143.0
-04.5 156.4
06.4 -38.6

PED04 675.7 356.6 245.9 43.8 03.8 146.0
-09.6 161.9
01.3 -31.4

Table 4.4: Comparison of calculated intrinsic/extrinsic parameters using PED01-PED04 to
the results obtained by using the CCTfM and the method of [Lv et al., 2006] (using se-
quence PED01). The ground truth focal length is 665 pixels, the measured camera heights
are 164/166/152/153 centimeters for PED01-PED04, respectively.

The three lines represent the pencil of zebra-crossing edges used for calculating the vanish-
ing line. PED01 and PED02 show the same zebra-crossing, PED03 and PED04 offer a different
one. Due to privacy issues, pedestrians are shown as white silhouettes. The camera is located
at a measured height of H = 164/166/152/153 centimeters (cm) above the ground plane for
PED01-PED04, respectively.

To evaluate the accuracy of the intrinsic parameters, the results are compared to the results
obtained by using the CCTfM 1 and an implementation based on [Lv et al., 2006], where PED01
was used as input. Table 4.4 presents the intrinsic parameters for the CCTfM, [Lv et al., 2006]
as well as estimations of intrinsics, extrinsics and the camera height for PED01-PED04 using
the proposed approach. As can be seen, all obtained results are close to the ground truth data
but the results for the principal point using the method described in this work are closer than the
results obtained by [Lv et al., 2006]. This occurs due to segmentation uncertainties which have
more effect on the method of [Lv et al., 2006] than on the proposed one. As can be seen from
the experiments’ results, the focal length is more sensitive to outliers than the principal point
which occurs due to poor pedestrian segmentation (e.g. clipped head or legs) and the resulting
calculation errors for each vn. As can be seen in Figure 4.10, PED03 provides the greatest yaw
angle of γ = 6◦ and a smaller tilt angle than PED04.

1http://www.vision.caltech.edu/bouguetj/calib_doc/, last retrieved on 21.03.2013.
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4.2.3.3 Real Traffic Scene Measurements

In a second step, real world measurements are compared to the results obtained by the described
method to evaluate the estimated extrinsic parameters. The calibration parameters of PED01 are
used for this purpose and two types of measurements are determined. This experiments should
also show how calibration parameters influence the accuracy of the measurements in 3D space.

First, vertical ones (labeled hi, i = 1 . . . 7), where bottom points are located on the ground
plane, having the 3D coordinates (xi, yi, 0) and top points located at (xi, yi, zi) are measured.
Second, horizontal distances (labeled di, i = 1 . . . 13) are calculated, where both start and end
points are positioned on the ground plane and therefore share the same z-coordinate. With this
restrictions it is possible to recover the 3D point from a single projection matrix, as described
in [Wang et al., 2005]. The uncertainty analysis takes into account image coordinates, distorted
by a Gaussian noise of σ = 5 in both vertical and horizontal direction. All metrics are presented
in centimeters. Figure 4.11 illustrates the measurements projected onto a real world image plane.

d1

d3
d2

d4
d5

d6

d7

d8

d9
d10

h1
h2

h3

h4

h5

h6h7

d11

d12 d13

Figure 4.11: Vertical (di) and horizontal (hi) measurements (in centimeters) compared to esti-
mated values of the proposed method.

As can be seen, the mean error for all distances between measured and calculated values is
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Distance d1 d2 d3 d4

Measured 600 600 600 600
Calculated 558.56±12.1 543.14±15.5 554.30±12.0 540.65±12.6
Distance d5 d6 d7 d8

Measured 600 600 50 50
Calculated 535.58±13.6 543.61±13.9 49.81±4.1 44.35±6.3
Distance d9 d10 d11 d12

Measured 50 50 245 123
Calculated 48.67±4.1 50.02±6.4 240.12±16.3 124.71±10.8
Distance d13 h1 h2 h3

Measured 118 90 90 200
Calculated 111.18±10.0 84.06 ±2.0 85.47±3.6 198.23±3.5
Distance h4 h5 h6 h7

Measured 90 50 50 50
Calculated 89.57±3.34 46.05±2.79 47.36±3.66 47.64±3.66

Table 4.5: Measurements h1-h7 and d1 − d13, shown on the background image of PED01.

5.4%, the standard deviation is 3.7%. In this experiment, the distance between the 3D points and
the camera center range from 500.5 and 1438.3 centimeters. Although Zhang et al. only used
distances shorter than 2.3 meters and located near the camera, the proposed approach reaches
slightly better results compared to the measurements introduced in [Zhang et al., 2008b] (mean
error 6.3%, standard deviation 4.6%). Using longer distances results in higher relative error
rates because due to measurement uncertainties far distances have a higher error weighting than
near ones. This phenomenon is also visible in Table 4.5, where longer distances or distances far
away from the camera have a higher uncertainty than shorter or near measurements.
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4.3 Summary

This chapter describes two camera auto-calibration methods which try to exploit redundant in-
formation in order to increase the parameter estimation accuracy compared to state-of-the-art
approaches.

First, an approach, which obtains both intrinsic and extrinsic parameters for a whole camera
network from multiple observations of a pedestrian over time, is described. In surveillance sce-
narios, pedestrians are predestined to be used as input for auto-calibrating a traffic surveillance
camera. The user needs to predefine the height of the walking person to determine the scaling
of all cameras’ absolute translations. As shown in the experiments, the accuracy of the method
only depends on the noise of top and bottom locations.

Second, a novel self-calibration method for fixed surveillance cameras based on zebra-
crossings and pedestrians is outlined. These two objects are included in traffic surveillance
scenarios. An important advantage of the algorithm is that it needs no user input to completely
recover both intrinsic and extrinsic parameters. This is necessary for camera calibration and
re-calibration where physical access is impossible. One vertical vanishing point is extracted
from the pedestrians’ lines of mass and in combination with the horizontal vanishing point and
the vanishing line, obtained from three equally spaced zebra-crossing edges, the camera can be
calibrated. The suggested system requires zebra crossings to work which limits the number of
scenarios. Nevertheless, it is useful for traffic surveillance applications, where 3D information is
needed to improve e.g. pedestrian detection or tracking, pose estimation or object classification.
The proposed system is both robust and accurate which is demonstrated by experimenting on
synthetic and real world data and by comparing it to state-of-the-art calibration methods.

As stated in [Sun and Cooperstock, 2005], a mean value of 0.88 pixels on the distorted
image plane results in a mean distance between the 3D test points and the optical ray generated
from their projections of 3.58 millimeters. The 3D test points used in their experiments have a
rather small distance ranging from 25 to 55 centimeters measured from the camera center and
the cameras are calibrated manually. This shows that obtaining accurate camera parameters is
important for real 3D world measurements. Calibrating a camera manually is a tedious work
and when a network consists of hundreds of cameras, where each of them also needs to be
re-calibrated whenever it is moved, this cannot be tackled manually anymore. The proposed
method, which is exploiting a zebra-crossing and pedestrians, achieves a mean error of 5.4%
between measured 3D distances (ranging from 50 to 600 centimeters) and projected ones. This
means an improvement of approximately 1% compared to the mean error reported by [Zhang
et al., 2008b]. The mean error of 3.58 obtained by [Sun and Cooperstock, 2005] equals to
6.5% when using the largest possible distance of 55 centimeters. As can be seen, also their
mean measurement error is approximately 1% larger, although in the proposed setup the distance
between the 3D points and the camera center is ranging from 5.0 to 14.4 meters, which is farther
away from the camera center compared to the settings used by [Sun and Cooperstock, 2005].
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CHAPTER 5
3D Reconstruction from Semantic and

Geometric Information

This chapter outlines how 2D images obtained at man-made indoor scenes can be split into
ground plane, ceiling and vertical regions. It is also shown how this information in combination
with point based local features can be used to obtain a dense 3D model of the scene. As is de-
scribed in the following, combining this semantic information with the outcome of feature-based
3D reconstruction pipelines overcomes the problem of finding feature matches on textureless
surfaces (e.g. walls, non-Lambertian planar patches,. . . ).

First, a novel method for 3D surface normal layout estimation is outlined in Section 5.1.
The image is first split into superpixels using multiple segmentation methods. Superpixels give
the opportunity to obtain a semantically richer representation of a scene then single point-based
features do. Automatically analyzing the content of multiple connected pixels can be seen as
a similar procedure compared to a human person capturing semantic and geometric context
within a scene. Each segment is then assumed to be part of either the ground plane, the ceiling,
or a vertical wall. Segmentation uncertainties are compensated by using multiple superpixel
segmentation methods. After having multiple hypothesis for each pixel’s surface orientation, the
global best label is obtained by using an MRF. The proposed algorithm delivers more accurate
results compared to state-of-the-art 3D surface normal labeling methods. Major parts of this
method are published in [Hödlmoser and Mičušík, 2013].

Second, a novel algorithm for 3D reconstruction of man-made environments is proposed in
Section 5.2. The 3D reconstruction is based on the labeling outcome of the method presented
in Section 5.1. Such man-made environments suffer from textureless and non-Lambertian sur-
faces, where conventional, feature-based 3D reconstruction pipelines fail to obtain good feature
matches. To overcome this problem, the semantic information of multiple superpixel methods
is exploited once more to estimate both a 3D point and a 3D surface normal for each pixel. By
applying a semantic classifier on each of the segmentation methods, a likelihood is obtained for
each segment to be located on the ground plane, on the ceiling or on a vertical wall segment.
The global best surface normal orientations for all pixels are then obtained by solving an MRF.
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Figure 5.1: Proposed scene layout estimation by combining multiple superpixel segmentation
methods and geometric reasoning.

The 3D reconstruction is then obtained by combining the outcome of the semantic surface nor-
mal orientation estimation with a sparse point cloud obtained by a conventional feature-based
3D reconstruction pipeline. It is also shown, that the proposed method outperforms state-of-
the-art dense 3D reconstruction pipelines. This section contains material which is published
in [Hödlmoser et al., 2013a].

5.1 Semantic 3D Surface Labeling of Complex Indoor Scenes

If humans would look on a single pixel of an image without having any other kind of informa-
tion, they would not be able to reason about the context or the geometric scene. In computer
vision, images may be described by point features, so called low level descriptors which do not
tell anything about the semantic context. Semantically, it would be the most meaningful repre-
sentation to use the occurring objects and their geometric relationships in the scene. To obtain
such a representation, superpixels can be exploited. In terms of semantic richness, superpixels
are located between low level features and high level objects. Superpixels treat semantically
connected pixels as a single patch. As in [Wang et al., 2011, Mičušík and Kosecka, 2010], a
single superpixel segmentation method is taken as a preprocessing step for further applications.
As there is no superpixel generation method, which works for all kind of different scenarios and
environments, the resulting segmentation may generate incorrect or missing patches. This would
mean that the application on top of it would be based on an incorrect initialization and cannot
recover anymore.

The approach described in this section therefore tries to overcome this problem and pro-
poses a novel method which estimates the 3D scene layout of a scene. As a prerequisite, it is
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assumed that each superpixel segment in a 2D image can be represented by a planar patch in its
corresponding 3D environment. The goal is then to classify each pixel in vertical plane, ground
plane and ceiling which is equal to finding the discrete 3D surface normal of the patch, as can
be seen in Figure 5.1. The workflow can be seen in Figure 5.2, where the contribution presented
this section is two-fold and described in the following.
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Figure 5.2: Workflow of the proposed algorithm. For each segmentation method, semantic and
geometric features are calculated in order to obtain a likelihood for each segment being labeled
ground plane, ceiling, or vertical. The final label for each pixel is then obtained by using a
pixel-wise MRF.

• The presented approach combines the strengths of several superpixel segmentation meth-
ods to build a stronger classifier for pixel-wise labeling of an image in vertical plane,
ground plane and ceiling. Different to applications which use different quantization steps
for the same segmentation method [Hoiem et al., 2007, Ladicky et al., 2009], this method
combines different superpixel segmentation methods to form a stronger classifier. The
idea is then that pixels which are assigned the same label multiple times are more likely to
have a certain label than pixels where the outcome is changing for different segmentation
methods.

• Semantic reasoning is combined with geometric reasoning in order to improve the 3D
surface normal labeling accuracy. For estimating the label of each superpixel, a modified
version of the method described in [Hoiem et al., 2007] is used. This method is referred
to as semantic reasoning. A sparse point cloud is generated using SfM and geometric
features are calculated from it. Semantic features are combined with geometric ones and
an MRF is exploited to do a pixel-wise classification.
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5.1.1 Proposed Framework

The 3D surface normal of a scene is estimated by combining the advantages of multiple super-
pixel segmentation methods and evaluating both semantic and geometric features. In a first step,
multiple images are taken to obtain a sparse point cloud and corresponding 3D camera posi-
tions using a conventional SfM pipeline [Snavely et al., 2006]. Afterwards, the whole labeling
pipeline is performed on a single image. This image is then segmented into semantically mean-
ingful parts using superpixel segmentation methods. As can be seen in Figure 5.3, there exists a
variety of different segmentation methods, where each of them uses different cues to get seman-
tically meaningful regions. These four methods are used since they provide a vast variation of

Figure 5.3: Multiple superpixel segmentation methods deliver different results in terms of shape
and size of the segments. From left to right: [Felzenszwalb and Huttenlocher, 2004], [Levin-
shtein et al., 2009], [Liu et al., 2011], [Achanta et al., 2012].

the segments’ shapes and sizes. They also provide different results when using changing param-
eters. This knowledge is exploited to obtain more accurate results by combining the strengths
of different methods. By applying the approach of [Hoiem et al., 2007], the likelihood for each
segment being located on the ground plane, ceiling or on a vertical wall segment is obtained.
The segmented image is processed by [Hoiem et al., 2007] which delivers a likelihood for each
segment having an orientation label l ∈ L = {ground plane, ceiling, vertical}. The likelihood u
for a single pixel yi within this segment and at image location i, is then given by

u(yi) = P (l|yi). (5.1)

Geometric features are then calculated for each segment using the sparse point cloud. As the
goal is to classify each pixel according to the label set L, it is assumed that each segment in the
image can be represented by a planar patch. All geometric features are obtained relatively to the
camera’s orientation. The camera’s gravity vector g is therefore determined from the vertical
vanishing point. It is further known that the ground plane’s and ceiling’s surface normal are
aligned with this gravity vector. Surface normals of vertical patches must be perpendicular to
the gravity vector. Only those segments, where four or more reprojected 3D points are located,
are labeled. Using RANSAC, a plane is fitted to the 3D points. Figure 5.4 shows the features
used for labeling the segments after fitting the plane. In the following, the surface normal of a
patch is denoted as n.
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Figure 5.4: Geometric features with respect to the camera’s gravity vector g and a random
perpendicular vector p used for geometric reasoning. (i) Planarity, (ii) ground plane / ceiling
orientation, (iii) ground plane position, (iv) vertical plane orientation, (v) segments where foot-
points of pedestrians are located are labeled as ground plane.

• Planarity likelihood Pplan(Figure 5.4(i)): By calculating the Euclidean distances d be-
tween the 3D points and the plane, the planarity likelihood Pplan is calculated by

Pplan =
Q(d)25 +Q(d)75

Q(d)50
, (5.2)

where Q(d) are the quantiles of d.

• Horizontality likelihood Phor (Figure 5.4(ii)): By determining the surface normal differ-
ence between the normal of the plane in question n and the gravity vector g, the likelihood
for the plane being horizontal is obtained by

α = min(cos−1(g · n), π − cos−1(g · n))

Phor = exp(−|α| π/180). (5.3)

• Ground plane / ceiling likelihood Pgp/Pcei (Figure 5.4(iii)): This feature indicates if the
patch in question is more likely to be located on the ground or on the ceiling. Given the
center point of the plane in question a and the camera center b, the likelihood for the
segment being located on the ground plane is then given by

Pgp =

{
1 if a below b

0.2 else
, (5.4)

Pcei is set up vice versa.

• Verticality likelihood Pver(Figure 5.4(iv)): The patch’s surface normal n is rotated around
the camera’s gravity vector g with a stepsize of r = 0◦ . . . 5◦ . . . 360◦ to obtain nr. By
defining β = [β0 . . . β360], the verticality likelihood is then obtained by

βr = min(cos−1(p · nr), π − cos−1(p · nr))
Pver = exp(−|β| π/180), (5.5)

where p is any random perpendicular vector to the camera’s gravity vector.
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• Pedestrian Likelihood Pped(Figure 5.4(v)): This feature distinguishes between ground
plane and ceiling. Pedestrians are detected using [Felzenszwalb et al., 2010]. It is assumed
that the lower boundary of the bounding box is a person’s foot point f . To gain robust-
ness, an ellipse (height 5 pixels, width 10 pixels) is defined which also takes neighboring
segments into account. The likelihood that a pedestrian is located on a given segment s is
defined by

Pped =

{
λ if f ∈ s
λ/2 else

, (5.6)

where λ is a multiplier constant in order to increase the likelihood for the segment to be
located on the ground plane.

The final likelihoods for the labels are calculated by

v(yi) = P (l|yi) =


Pplan · Phor · Pgp · Pped if l = ground plane
Pplan · Phor · Pcei if l = ceiling
Pplan · Pver else

. (5.7)

5.1.1.1 Pixel-wise Labeling

To get a spatial consistent result for the whole image, the label for each pixel is determined
independently of the segments of an image. The superpixel segmentation methods in the previ-
ous step can be seen as multiple soft priors to the final labeling problem. The solution to this
problem corresponds to finding the configuration of a Gibbs distribution with maximal probabil-
ity which is equivalent to finding the maximum posterior (MAP) configuration of an MRF. Let
G = (V, E) be a graph described by vertices V which in this case are represented by theN pixels
of the image and edges E . As described in Section 3.3.1, when having a set of random variables
X = {X1, X2, . . . XN} and a label configuration x = {x1, x2, . . . xN} which can take values
from the discrete set of labels L, the energy term E of the pairwise MRF is defined by

E(x) =
∑
i∈V

ψi(xi) +
∑

i∈V,j∈N (i)

ψi,j(xi, xj), (5.8)

where N (i) is the neighborhood of node i, ψi is the unary potential in the graph and ψi,j is the
pairwise potential, or smoothness term, between neighboring pixels. These terms are defined to
be

ψi(xi) = 1 − max(u(yi), v(yi))

ψi,j(xi, xj) =

{
0.5 if xi = xj ,

1 if xi 6= xj
(5.9)

The MAP configuration x̂ is then found by

x̂ = argmin
x

E(x). (5.10)

In the proposed implementation an 8-connectivity is chosen so that each pixel has 8 neighboring
pixels.
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5.1.2 Experiments

The proposed algorithm is being evaluated on two datasets. The Airport dataset provides an
image sequence of 270 images having a resolution of 1001x1001 pixels. The dataset is taken
in a challenging indoor airport environment. 100 of the images in the dataset are manually
segmented using the labels ground plane, ceiling and vertical. Objects which cannot be classified
by the method are not considered in this evaluation (e.g. people, columns) and are marked as
black region in the following. The second dataset was taken from [Hedau et al., 2009], which
is referred to as the Rooms dataset. It provides 314 images with varying resolutions showing
cluttered indoor scenes. Ground truth labels are also ground plane, ceiling, vertical and objects
are also excluded (e.g. beds, chairs). Since this dataset only provides still images, geometric
reasoning cannot be applied.

To exploit consistent pixel-wise labeling, different superpixel methods are applied and the
labels are estimated by exploiting geometric reasoning and semantic reasoning using [Hoiem
et al., 2007]. To get different superpixel methods, the methods of [Felzenszwalb and Hutten-
locher, 2004], [Levinshtein et al., 2009], [Liu et al., 2011] and [Achanta et al., 2012] are used.
These four methods are chosen because they provide a vast variation of their segments’ shapes
and sizes. Each of those methods is performed multiple times using different parameter sets
to obtain varying segmentation results. Hoiem’s baseline method (with and without an MRF
optimization) is compared to the proposed method which is performed six times using varying
parameters with and without incorporating information coming from geometric reasoning. This
results in eight different runs:

• Hoiem’s base method [Hoiem et al., 2007] which uses [Felzenszwalb and Huttenlocher,
2004] for segmentation

• Hoiem’s method in combination with an MRF (Hoiem et al. + MRF)

• Hoiem’s method applied on four segmentation methods with one parameter set and no
geometric reasoning (4SP1N)

• Hoiem’s method applied on four segmentation methods with one parameter set and geo-
metric reasoning (4SP1Y)

• Hoiem’s method applied on four segmentation methods with two parameter sets and no
geometric reasoning (4SP2N)

• Hoiem’s method applied on four segmentation methods with two parameter sets and geo-
metric reasoning (4SP2Y)

• Hoiem’s method applied on four segmentation methods with three parameter sets and no
geometric reasoning (4SP3N)

• Hoiem’s method applied on four segmentation methods with three parameter sets and
geometric reasoning (4SP3Y)
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Figure 5.5: Screenshot of the sparse 3D point cloud and the camera positions from the Airport
dataset.

Airport Dataset
Hoiem et al., Hoiem et al., Proposed Proposed Proposed Proposed Proposed Proposed

2007 2007+MRF 4SP1N 4SP1Y 4SP2N 4SP2Y 4SP3N 4SP3Y
ground plane 63.57 76.77 80.58 80.40 82.83 82.40 82.83 82.92

ceiling 36.98 58.20 61.61 64.91 62.54 66.25 62.63 66.82
vertical 17.98 23.07 25.37 25.04 25.84 25.62 25.94 25.64
global 54.36 70.49 73.42 74.85 74.64 76.22 74.67 76.48

average 39.51 52.68 55.85 56.78 57.07 58.09 57.13 58.46
Rooms Dataset [Hedau et al., 2009]

Hoiem et al. Hoiem et al. Proposed Proposed Proposed
2007 2007+MRF 4SP1N 4SP2N 4SP3N

ground plane 63.54 71.60 73.06 74.07 74.91
ceiling 37.35 46.12 42.60 43.19 43.53
vertical 80.77 80.63 79.53 80.10 80.10
global 84.87 85.00 85.05 85.81 85.92

average 60.55 66.11 65.06 65.78 66.18

Table 5.1: Percentage of correctly classified pixels per label for Airport and Rooms [Hedau
et al., 2009] dataset.

The labels for the MRF outcome of all methods are ground plane, ceiling and vertical. On the
Airport dataset, the SfM pipeline presented in [Snavely et al., 2006] is run to obtain a sparse 3D
model of the scene and the camera positions. In combination with Bundler, SIFT features are
used to obtain points of interest to match in the images. It uses a modified version of bundle
adjustment to obtain both a sparse point cloud and the camera positions. A screenshot of the
reconstructed scene can be seen in Figure 5.5.

74



5.1.2.1 Quantitative Experiments

As the proposed method is calculating a corresponding label for each pixel, the percentage of
correctly classified pixels is compared to the ground truth images. For both the Airport dataset
and the dataset of [Hedau et al., 2009], pixels which are left blank in the ground truth image
are not taken into account for the comparison. Having a ground truth labeled image G and a
resulting image R, the accuracy for label l is determined by |Gl∩Rl|

|Gl∪Rl| , where | · | refers to the
number of pixels of label l in an image. The percentage of correctly classified pixels for each
label can be seen in Table 5.1.

Airport Dataset: As can be seen, there is an improvement of approximately 20% between
using [Hoiem et al., 2007] and the same method using an MRF for pixel labeling. It can
also be seen that there is an improvement between using only the superpixel method proposed
by [Felzenszwalb and Huttenlocher, 2004] and using all described methods having multiple pa-
rameter sets. The difference between incorporating geometric reasoning and not incorporating is
up to 4%, no matter if a segmentation algorithm is applied once or multiple times. The improve-
ment is obviously higher between using a variety of superpixel methods than between a variety
of different parameter sets for each method, regardless of incorporating geometric reasoning or
not.

Rooms Dataset: There is also an improvement between using a single superpixel segmen-
tation method and multiple ones for this dataset. Since the scenes shown in the images are not
as complex as the ones shown in the images of the Airport dataset, the method of [Hoiem et al.,
2007] delivers better results and the improvement when processing the frame using 4SP1N,
4SP2N, or 4SP3N is not as obvious as for complex scenes. Nevertheless, an average accuracy
improvement of almost 6% can be obtained when using multiple segmentation methods. For the
ground plane label, an improvement of over 10% is reached.

5.1.2.2 Qualitative Experiments

Figure 5.6 shows qualitative results of the proposed method using different parameter settings
and a comparison to the state-of-the-art method proposed by [Hoiem et al., 2007]. Each row
shows a different image of the scene. The first image of each row shows the manually labeled
ground truth data, where black regions indicate objects which are not taken into account in the
evaluation. The following columns show the results for [Hoiem et al., 2007], [Hoiem et al.,
2007]+MRF, 4SP1N, 4SP1Y, 4SP2N, 4SP2Y, 4SP3N, 4SP3Y. The labels ground plane, ceiling
and vertical are indicated by the colors green, blue, and red, respectively. As can be seen, there
is clearly an improvement between only considering a single segmentation method and incorpo-
rating multiple ones. It is also visible that there is an improvement in labeling the surfaces by
incorporating geometric reasoning about the scene.
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Figure 5.6: Qualitative results. First image of each row shows ground truth (excluded ob-
jects are marked black), following columns show results for [Hoiem et al., 2007], [Hoiem
et al., 2007]+MRF, 4SP1N, 4SP1Y, 4SP2N, 4SP2Y, 4SP3N, 4SP3Y. Green= ground plane,
blue=ceiling, red=vertical.
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Figure 5.7: (a) Proposed semantic patch-based 3D reconstruction results compared to (b) con-
ventional feature-based 3D reconstruction results [Furukawa and Ponce, 2007].

5.2 3D Reconstruction of Complex Indoor Scenes

Reconstructing a dense 3D model from a single moving camera capturing a real world envi-
ronment is usually done by generating a sparse point cloud obtained by triangulation [Snavely
et al., 2006] followed by a densification [Furukawa and Ponce, 2007], where both steps rely on
discriminative feature matches. In case of man-made environments, this approach is not feasi-
ble because of incorrect matches which can occur between corresponding camera views due to
similar features obtained from flat and textureless surfaces (e.g. walls, floors). Nevertheless,
these conventional 3D reconstruction pipelines deliver correct but sparse 3D point clouds where
discriminative features can be extracted (e.g. posters on the wall, texture on the ground and on
the ceiling).

This section presents a method which combines a conventional 3D reconstruction pipeline
with a patch-based 3D surface normal labeling system in order to overcome the problem of
finding discriminative features in man-made environments. As clearly visible in Figure 5.7, (a)
incorporating patch-based semantic information in the proposed pipeline gives a more planar
and complete model compared to (b) exploiting point-based feature matches only, as proposed
by [Furukawa and Ponce, 2007].

In a first step, a sparse point cloud is therefore generated from multiple input images and
the 3D camera positions are calculated by using the method described in [Furukawa and Ponce,
2007]. According to [Furukawa and Ponce, 2007], the described method can also generate
dense 3D models which is only true when finding discriminative features. In case of man-made
environments, the outcome is also sparse, as can be seen in the experiments section. For the
following steps, the algorithm is operating on a single input image.

The input image is segmented into semantic meaningful parts using superpixel methods. It
is assumed that each segment can be modeled by a planar patch. By using color, texture, per-
spective features and a boosted decision tree, the 3D plane normal for each segment is estimated
by [Hoiem et al., 2007]. Since multiple pixels are classified in a global fashion, it is referred to
Hoiem’s method as semantic labeling in the following parts of this paper.

In order to be able to perform a classification, this normal is chosen from a given set of
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Figure 5.8: (a) Multiple segmentation methods generate multiple 3D points for each pixel. (b)
Each pixel can be labeled with one of the labels within the discrete set of orientations.

discrete normal directions. Superpixel methods are designed to perform well under a certain en-
vironmental setting (e.g. indoor/outdoor setting, specific lighting, defined color, or object pose).
Since this specific setting cannot cover all possible variations in an image (e.g. different lighting
conditions, different geometric relationships between objects seen in a scene), a superpixel seg-
mentation method may also deliver incorrect or missing segments. To compensate these errors,
redundant information is exploited and the image is segmented using multiple superpixel meth-
ods [Felzenszwalb and Huttenlocher, 2004, Levinshtein et al., 2009, Liu et al., 2011, Achanta
et al., 2012].

Each pixel is then assigned a possibility to belong to a certain normal orientation class out of
the given disrete set. In order to find the global best configuration and therefore the global best
normal orientation for each pixel, an MRF is used. By combining the normal estimation with
the sparse 3D point cloud, planes are fitted through the 3D points and the cloud is densified.
The contribution of this section is therefore two-fold: first, semantic information is used to
compensate missing and incorrect feature matches at textureless and non-Lambertian surfaces
in man-made environments. Second, redundant information in terms of multiple segmentation
methods is used to exploit the advantages of each single one in order to obtain a higher accuracy
for both the surface labeling and 3D reconstruction results.

5.2.1 3D Point Cloud Densification Pipeline

The goal of the proposed pipeline is to do both, classifying each pixel according to the labels
ground plane, ceiling and vertical, defined by an angle α and vertical-β (where α = 90◦ corre-
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sponds to all possible vertical orientations β) and gathering a 3D point for each 2D pixel by only
considering a single input image and a sparse point cloud of the scene. The angle α can take
values of a discrete set L1 = {0◦, 90◦, 180◦} and describes the orientation difference between
the camera’s gravity vector g and the plane normal n. The orientations α = 0◦ can be seen as the
ground plane of the scene, α = 90◦ can be seen as any vertical structure, α = 180◦ corresponds
to the ceiling. The angle β can take values from a discrete set L2 = {0◦, 45◦, 90◦, 135◦} and
describes the orientation difference between the camera’s right vector r and the plane normal n.

The workflow for obtaining all possible 3D points for each 2D pixel is illustrated in Figure
5.8. The pixel in question is shown as rectangle in the image for demonstration purposes. The
segment holding the pixel in question is then projected in 3D space using all 3D points providing
a 2D projection within the segment’s 2D area. The pixel in question is projected onto the 3D
segments for each segmentation method. Note that the center point (denoted as black circle in
the image) of the 3D segments varies according to the considered 3D points. This means that
multiple corresponding 3D points are available for each 2D pixel.

The workflow of the proposed optimization algorithm can be seen in Figure 5.9. First, a
sparse 3D point cloud in combination with corresponding camera positions are generated from
multiple input images by using the method described in [Furukawa and Ponce, 2007]. Second,
multiple 3D points are generated for each pixel using multiple defined surface normal orienta-
tions. Each normal direction, within a discrete set of normals, is then assigned a certain likeli-
hood which is gathered from semantic and geometric reasoning, as can also be seen in Figure
5.9. The globally best result and therefore the best fitting corresponding 3D point is obtained
by pixel-wise optimization using an MRF. As the likelihoods from [Hoiem et al., 2007] cannot
be compared with likelihoods from geometric reasoning, the optimization is established in two
steps in order to obtain the optimized results v, w and their combination x̂. Note that due to
visibility constraints in Figure 5.9, the lines going from pixels in the segmented image to pixels
in the optimized image are only samples and not all pixels of the final outcome are connected to
an input. In the accompanying implementation, all pixels from the resulting image are labeled.

After generating the point cloud, the algorithm is operating on a single image, which is
split into semantically meaningful parts. It is assumed that each segment in the image can be
represented by a planar patch. The main problem in this step is that segmentation methods are
designed for specific environmental settings (e.g. certain lighting conditions, specific objects
or scenes, . . . ), which means that they may provide incorrect or missing segments when these
settings or conditions are not met. To exploit the advantages from several segmentation methods
in order to increase the accuracy of the 3D reconstruction pipeline, each frame is segmented by
using multiple segmentation methods.

The segmented image is then further used as input for the next step, where the method
of [Hoiem et al., 2007] delivers a likelihood for each segment having an orientation α. The
likelihood u for a single pixel yi within the segment s and at image location i is then given by

u(yi) = P (α|yi). (5.11)

As the original implementation differentiates between left and right wall segment, these two
likelihoods are combined to obtain the likelihood for the label vertical (α = 90◦). The results
obtained by from [Hoiem et al., 2007] are improved by also calculating the vanishing points in
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Figure 5.9: Workflow of the proposed optimization which is performed in two steps.
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the image. This prevents from labeling pixels above the horizon line as ground plane and pixels
below the horizon line as ceiling.

The next step is referred to as geometric reasoning. As the segmented image is already
available, geometric reasoning is also performed at this stage. Therefore, all projected 3D points
which are within the area of a segment are investigated for each segment. If a certain number of
points (5 in the experiments) is found, a plane is fitted through all these 3D points by exploiting
RANSAC. The 3D center point of the segment is obtained by gathering the median of all points
marked as inlier in the plane fitting step. In case there are not enough points, a segment’s normal
is set as the median from its 3 neighboring segments’ ones. The angle φ(β) between the normal
n of the fitted plane and the normal n(β) of the plane in question is then calculated by

d(β) =
cos−1 (n · n(β))

‖n‖ · ‖n(β)‖
φ(β) = min(d(β), π − d(β)). (5.12)

To get a spatial consistent result for the whole image, the label for each pixel is determined inde-
pendently of the segments of an image. The segmentation methods therefore serve as soft priors
to the final labeling problem. The solution to this problem corresponds to finding the configu-
ration of a Gibbs distribution with maximal probability which is equivalent to finding the maxi-
mum posterior (MAP) configuration of an MRF. Let G = (V, E) be a graph described by vertices
V which in this case are represented by the pixels of the image and edges E . When having a set
of random variables X = {X1, X2, . . . XN} and a label configuration x = {x1, x2, . . . xN}
which can take values from the discrete set of labels L1, the energy term E of the pairwise MRF
is defined by

E(x) =
∑
i∈V

ψi(xi) +
∑

i∈V,j∈Ni

ψi,j(xi, xj), (5.13)

where Ni is the neighborhood of node i, ψi is the unary potential in the graph and ψi,j is the
pairwise potential, or smoothness term, between neighboring pixels. The unary potentials and
smoothness terms are set to

ψi(xi) = exp(−u(yi) · λ · ds) (5.14)

ψi,j(xi, xj) = 1 − exp

(
−
∣∣∣∣(α(yi)− α(yj))

180

∣∣∣∣) , (5.15)

where u(yi) is obtained by using Hoiem’s method, ds is the 3D Euclidean distance between the
center point of segment s (which contains yi) and the camera center, λ is a normalizing constant
and α(yi) is the surface normal orientation at pixel yi. Normalization is reached by dividing
through 180. The distance ds is used to increase the likelihood for pixels which are closer to the
camera center. When using 4 different segmentation methods, this leads to 4 · |L1| = 12 labels
a pixel can obtain. The MAP configuration v = {v1, v2, . . . vN} is then found by

v = argmin
x

E(x). (5.16)

In the proposed implementation an 8-connectivity is chosen so that each pixel has eight neigh-
boring pixels. The MRF is then solved by using ICM. After having defined if the pixel is
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located on the ground, the ceiling, or a wall segment, the next goal is to find out the orientation
of the wall. Since unary potentials between Hoiem’s approach and geometric reasoning cannot
be directly compared, a second pairwise MRF is solved between neighboring pixels to find this
orientation. The label configuration x can take values from the discrete set of labels L2. Unary
and pairwise terms are set to

ψi(xi) = 1 − exp

(
−φ(β)

180

)
(5.17)

ψi,j(xi, xj) = 1 − exp

(
−
∣∣∣∣(β(yi)− β(yj))

180

∣∣∣∣) , (5.18)

where β(yi) is the surface normal orientation for pixel yi. Once more, when using 4 different
segmentation methods, this leads to 4·|L2| = 16 labels a pixel can obtain. The final configuration
w = {w1, w2, . . . wN} is then found by solving Equation 5.16. In the last step, v and w are
combined to obtain the final labeling x̂ by

x̂ =

{
vi if α(yi) ∈ {0◦, 180◦}
wi else

(5.19)

For both classification steps, not only a 2D segmentation of the scene is obtained but also corre-
sponding 3D points for each 2D pixel. As stated previously, the 3D center point of each segment
is obtained and a plane, where the orientation corresponds to the 2D orientation label obtained
in the optimization step, is fitted through it. As the orientation is known at this stage, it is also
known from which 2D segmentation the best configuration comes from. For each 2D pixel, the
3D point corresponding to the globally best segmentation result is therefore used.

For demonstration purposes, in the following experiment section all points which are too
far away from the camera image plane are sorted out. Therefore, a threshold of ten times the
distance between the current and the subsequent camera center is chosen.

5.2.2 Experiments

Experiments are conducted using an indoor dataset holding 270 images showing the indoor
environment of an Airport having multiple height layers and complex geometric structures. The
images are taken by a person walking on the ground plane with a Canon EOS 5D Mark II.
A sparse point cloud and the 3D camera positions are obtained by using all the images in the
dataset and the method of Furukawa, described in [Furukawa and Ponce, 2007]. A screenshot
of the sparse 3D reconstructed model can be seen in Figure 5.10. Note that the cloud is denser
than the one shown in Figure 5.5 in Section 5.1 since multiple local feature descriptors are used.
Segmentation is done by using the algorithms described in [Felzenszwalb and Huttenlocher,
2004, Levinshtein et al., 2009, Liu et al., 2011, Achanta et al., 2012].

5.2.2.1 Quantitative Experiments

To show the relevance of the MRF in this approach, the 2D labeling results of Hoiem’s method
are compared to the proposed method. This means that the label configuration can only take
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Figure 5.10: Screenshot of the sparse 3D point cloud obtained by [Furukawa and Ponce, 2007].

values of α ∈ L1. First, 100 ground truth images are labeled manually, where pixels which are
left blank in the ground truth image are not taken into account for the comparison. Note that
these pixels are marked in black in Figure 5.11. Having a ground truth labeled image G and a
resulting imageR, the accuracy pl for label l is determined by

pl =
|Gl ∩Rl|
|Gl ∪Rl|

, (5.20)

where | · | refers to the number of pixels assigned to a certain discrete angle α. The percentage
of correctly classified pixels for each label can be seen in Table 5.2, Figure 5.11 shows some
sample results for the basic approach of [Hoiem et al., 2007], the proposed MRF approach using
a single segmentation method (SM) [Felzenszwalb and Huttenlocher, 2004] and the proposed
MRF approach using four segmentation methods (MM). The ground plane is labeled in green,
the ceiling in blue and vertical segments in red. As can be seen, using multiple segmentation
methods increases the accuracy of labeling the pixel correctly. Note that the results are dif-
ferent compared to the results presented in Section 5.1 due to using (i) different segmentation
parameters and (ii) different unary and binary potentials in the MRF.

Hoiem [Hoiem et al., 2007] Proposed (SM) Proposed (MM)
ground plane 68.39 85.54 87.41

ceiling 43.19 75.44 79.61
vertical 22.11 36.39 39.94
global 60.17 82.64 85.19

average 44.56 65.97 68.99

Table 5.2: Percentage of correctly classified pixels per label for the Airport dataset.
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Figure 5.11: Sample labeling results where ground plane = green, ceiling = blue, vertical = red.

5.2.2.2 Qualitative Experiments

After having the labeled images, the reconstruction is established by using the method described
in Section 5.2.1. Figure 5.12 shows two sample 3D model results rendered from novel view-
points. As can be seen, planar patches are reconstructed densely where segments closer to the
camera center are reconstructed denser than those patches farther away. As demonstrated by
the quantitative experiments, using multiple segmentation methods improves the 2D labeling
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Figure 5.12: 3D models rendered from novel viewpoints using the results obtained by the pro-
posed method.

accuracy. Figure 5.13 shows a qualitative comparison between 3D reconstruction results us-
ing a single superpixel method (SM) [Felzenszwalb and Huttenlocher, 2004] and multiple ones
(MM) [Felzenszwalb and Huttenlocher, 2004, Levinshtein et al., 2009, Liu et al., 2011, Achanta
et al., 2012]. As can be seen, using multiple segmentation methods improves the results of both,
the 2D labeling as well as the 3D reconstruction. It is also clearly visible in the 2D labeling
images that more errors occur at patches which are farther away from the camera center.

As the goal of this method is to densify a sparse point cloud, Figure 5.13 shows several
sample results, where each row shows the reconstruction results for one image. Each column
presents the input image, the reconstructed model using the proposed method and the resulting
3D point cloud obtained when using Furukawa’s method [Furukawa and Ponce, 2007]. As can
be seen, the outcome of the proposed method is much denser and provides a more complete
model compared to the outcome of Furukawa’s method.
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Figure 5.13: Qualitative comparison between 2D labeling and 3D models obtained by using a
single segmentation method (SM) and four different ones (MM).
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Figure 5.14: Qualitative results. Each row presents results using the input image shown in
column 1. The following columns show the reconstructed scene using the proposed method and
Furukawa’s method [Furukawa and Ponce, 2007].
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5.3 Summary

Conventional feature-based dense 3D reconstruction pipelines generate a sparse 3D point cloud
and densify the cloud by analyzing the spatial neighborhood of the feature matches. In case of
man-made indoor environments, matching is not possible anymore because of incorrect matches
between corresponding views due to feature similarity from flat and textureless surfaces. The
work described in this chapter tries to overcome this problem by combining point-based features
with semantic patch-based 2D information.

First, a framework for estimating the 3D scene layout of a scene is presented. A semantic
meaningful patch is obtained by using different cues. Depending on these cues, the resulting
patches of different segmentation methods vary in shape and size. By combining the strengths of
several superpixel segmentation methods, it is possible to obtain a stronger classifier for labeling
each pixel’s surface orientation. The labeling accuracy is improved by incorporating geometric
features, obtained from 3D point clouds of the scene. The most likely label is then obtained
by exploiting an MRF. Experiments on novel and existing datasets show superior results of the
proposed approach compared to state-of-the-art methods.

Second, a 3D reconstruction pipeline is presented which performs densification of sparse
point clouds obtained from man-made environments. A sparse point cloud and corresponding
3D camera positions are therefore obtained from conventional methods using multiple input
images. A single image is then segmented and a likelihood for each segment having a certain 3D
surface orientation is calculated by using semantic information. Multiple segmentation methods
are used to exploit the advantages of each single one in order to obtain a higher accuracy for both
this labeling step and the subsequent reconstruction step which is performed in combination with
the sparse point cloud. As can be seen in the experiments section, the proposed method achieves
denser and more accurate results compared to state-of-the-art labeling and 3D reconstruction
pipelines.
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CHAPTER 6
3D Reasoning Using Existing 3D

Models

This chapter describes two approaches for 3D pose estimation of vehicles from videos using
existing CAD models. The tasks 3D pose estimation and tracking are chosen since they are
forming the basis for 3D reasoning frameworks [Geiger et al., 2011, Geiger et al., 2012]. The
method is processing images showing vehicles since these objects represent the second most
important subject to be analyzed in computer vision besides persons [Leotta and Mundy, 2011].
The advantage of analyzing vehicles over pedestrians is a varying shape and texture when the
object is seen from different viewpoints. This makes the matching between 3D models and 2D
images more robust. Existing 3D models are exploited since this gives the advantages that (i)
the training can be performed without manually labeling the images and (ii) hidden parts of
the object in question can also be analyzed since the dimensions and other features (e.g. color,
shape,. . . ) of the object are also known in advance. Using 3D models prevents from generating
3D scenes which are physically not feasible. As can for example be seen in Figure 6.1, the
connectivity of the configuration of the building is ambiguous. The poses are then discretized
and ranked based on a matching score between the 3D projection and an input frame. Highly
ranked outliers are determined over time by exploiting an optimization framework. This chapter
also provides a comparison between matching these 3D models to monocular image sequences
and matching them to data coming from a stereo setup.

First, Section 6.1 describes a new framework for classification and pose estimation of vehi-
cles in videos by assuming their given 3D models. First, the estimation of a vehicle’s pose and
type is cast as a solution of a continuous optimization problem over space and time. Due to a
non-convexity of this problem, good initial starting points are important. It is proposed to obtain
them by a discrete temporal optimization reaching a global optimum on a ranked discrete set of
possible types and poses. In order to efficiently reduce the search space of potential 3D model
types and poses for each frame for the discrete optimizer, the ranking of the discretized poses
is done by using FDCM. An MRF is used to exploit temporal consistency between consecutive
frames. Quantitative and qualitative experiments on a variety of videos with vast variation of
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Figure 6.1: Image of the lithographic print named Belvedere by M. C. Escher, first printed
in 1958. The configuration of the tower looks visually plausible but contains a visual illusion
caused by ambiguous connectivities which results in a building which is physically not feasible.

vehicle types show superior results to state-of-the-art methods. Major parts of this method are
published in [Hödlmoser et al., 2012].

Second, a computational efficient framework for the same task of vehicle classification and
pose estimation is demonstrated in Section 6.2. The advantage of using FDCM is the robustness
against outliers which comes with the drawback that similar model compared to the vehicle seen
in the image must also exist in the dataset. To overcome this computational problem, a general
pose estimator is trained on multiple models. It is not necessary anymore that an exact counter-
part of the vehicle seen in the video must also be present in the dataset. The pose estimator then
ranks all possible poses for each frame. For both methods, the final best matching pose is ob-
tained by evaluating the temporal smoothness between consecutive poses in an image sequence.
Redundancy for both methods is obtained by (i) rendering multiple 3D models from different
viewpoints and (ii) estimating the best fitting pose for each frame depending on subsequent and
previous frames. As can be seen from the experiments, which are conducted on a variety of
videos with a vast variation of vehicle types, the proposed framework achieves similar results in
less computational time compared to state-of-the-art methods. This algorithm is also published
in [Hödlmoser et al., 2013b].

Third, a novel classification and pose estimation procedure, which shows how information
coming from two different views can be aggregated, is presented in Section 6.3. The exper-
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Figure 6.2: Pose estimation can be significantly improved over [Toshev et al., 2009] by pro-
cessing in continuous space (columns 1, 2), by reducing incorrect classifications due to incorrect
scales (column 3) and can be improved over deformable model approaches [Leotta and Mundy,
2011] by using existing 3D models.

iments show how exploiting this redundant information improves the classification and pose
estimation performance over only considering the information coming from a single camera.
The accompanying work is also published in [Hödlmoser et al., 2011c].

6.1 Vehicle Classification and Pose Estimation Using Chamfer
Matching

This section presents a framework for estimating a vehicle’s pose and its type by ranking pos-
sible poses and types for each frame and exploiting temporal coherence between consecutive
frames for refinement. The contribution is two-fold. First, it is proposed to define the problem
of estimating a vehicle pose and type as a solution over all possible poses and types along a
sequence as a continuous optimization in space and time. To solve the problem in continuous
space, starting points are required due to the non-convex objective function which are proposed
to be obtained by an initial discrete optimizer reaching a global optimum on a discrete set of
ranked types and poses. Hence, the proposed strategy is referred to as a discrete-continuous
optimization method. As a second contribution, to cope with computational complexity of the
generic class of methods, a novel way to efficiently reduce the search space over the vehicle
poses and types for the discrete optimizer is presented. It is shown how a state-of-the-art ob-
ject detector and FDCM, an OpenGL renderer, the Ackermann principle in the vehicle motion
model, and a tree structured MRF to get fast and globally optimal inference in the initial phase
can be combined to improve current approaches [Toshev et al., 2009, Leotta and Mundy, 2011].
As can be seen in Figure 6.2, using continuous optimization eliminates two main problems of
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Figure 6.3: Vehicle, described by orientation α and centroid on the ground plane C = (x, y, 0).

e.g. [Toshev et al., 2009], namely i) discrete pose estimation errors (rows 1,2:columns 1,2) and
ii) one scaling of an incorrect model may fit better than the best discrete scaling of the correct
model (rows 1-2:column 3). By exploiting 3D models with known dimensions, the approach
also improves pose estimation over methods using generic models (row 3).

First, a 2D object detector [Felzenszwalb et al., 2010] is applied to obtain some initial hy-
potheses of the vehicle positions in the images. This brings the advantage of not having a noisy
localization compared to background subtraction. Then, it is assumed to have a calibrated setup
and a known ground plane (as others, e.g. [Leotta and Mundy, 2011]), to lift the hypotheses to
3D space. This gives a rough estimate of the vehicle’s 3D trajectory. After that, a variety of
poses which are used to render all 3D models are hypothesized and the FDCM algorithm [Liu
et al., 2010b,Liu et al., 2010c] is applied to rank them. FDCM, which works superior in terms of
speed and accuracy compared to conventional Chamfer matching [Liu et al., 2010b], uses object
contours which have been shown to be robust in case of low resolution images or texture-less ob-
jects [Leotta and Mundy, 2011, Payet and Todorovic, 2011]. Exploiting edges for matching the
projections of 3D models to 2D images gives the advantage of not dealing with any noisy fore-
ground segmentation, as in [Toshev et al., 2009]. Finally, this work proposes a tree-structured
MRF model to compute an optimal pose trajectory in the discrete domain which forces the ve-
hicle to only move with feasible and constant motion. This serves as a reliable initial point for
solving the final continuous optimization problem. The optimization is done by exploiting a least
squares method, where the distances between projected 3D model points and corresponding 2D
edge points in the input images are used to improve the pose estimation result.

Yet, there is no existing work where classification and pose estimation is done continuously
in terms of space and time which enables higher accuracy compared to state-of-the-art methods.
This is also shown in Section 6.2.4.

This work describes an efficient approach for accurately detecting a vehicle’s pose and its
type in continuous space, given a calibrated video sequence and a set of 3D models containing
a large variety of vehicles. As [Leotta and Mundy, 2011], it is assumed, that given the ground
plane, the vehicle’s pose is parameterized by p = (x, y, α) as shown in Figure 6.3. The car’s
centroid on the ground plane is therefore denoted as C = (x, y, z = 0), its orientation is
described by the angle α.

The whole pipeline can be summarized in the following steps. First, the object in each
single frame is detected by using [Felzenszwalb et al., 2010] which does not provide any 3D
information. By re-projecting the 2D detection in 3D space, a rough guess on the pose of the
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object is estimated. By using FDCM, the k most similar models are then obtained by measuring
the distance between the projected edges of all 3D models and the edges in the scene, generated
by a Canny edge detector. These steps are described in Section 6.1.1. Small variations are then
applied on the model’s pose, the similarity is measured by combining area overlap and FDCM
and all the projections are put in an MRF. By introducing a simple motion model and solving
the MRF using a forward-backwards algorithm, the best fitting projection sequence for a given
video sequence is determined. The temporal alignment is explained in Section 6.1.2. A final
pose refinement, described in Section 6.1.2.2, is applied to get an optimal result in continuous
space. Figure 6.4 shows the whole workflow of the proposed framework.

6.1.1 Single Frame Vehicle Matching

Matching vehicles in image sequences can be a hard task since these objects provide specular but
large texture-less surfaces, different shapes and different colors. The most stable features which
can be used are their edges. For comparing a 3D model to an input frame the model therefore
needs to be rendered. This equals to detecting visible edges which can arise from sharp edges
between two adjacent faces of the 3D model and from the silhouette of its projection. For speed
reasons, the whole rendering pipeline is computed on the Graphics Processing Unit (GPU).
Given a vehicle’s pose and a calibrated camera, the visibility constraint is therefore exploited
to obtain the face which is the closest visible to the camera center for each pixel. For finding
all the sharp edges of a model, the normal vectors are calculated for adjacent faces, ni and nj .
A sharp edge is found, when |ni · nj | ≤ threshold, meaning that ni and nj are pointing in
different directions. The threshold is empirically chosen to be 0.95 (= 20.00◦). A visible edge
must therefore pass the visibility and the sharp edge constraint. First, the vehicle needs to be
roughly located in the image. As can be seen in [Toshev et al., 2009] it is clearly not enough
to perform background subtraction to obtain an accurate foreground mask due to highlights and
shadows in the scene. A state-of-the-art object detector [Felzenszwalb et al., 2010] is used which
returns a bounding box for the 2D vehicle location. Afterwards, the bounding box’s centroid is
re-projected on a horizontal plane at a certain height above the ground plane. As proposed for
track initialization in [Leotta and Mundy, 2011], this height is assumed to be one meter. The
gathered 3D point is projected on the ground plane and aligned with the 3D model’s centroid on
the ground plane. This gives a rough estimate of x and y. The procedure is applied to the first
subsequent frames. By fitting a spline through these points, an initial guess for the orientation α
is obtained.

The goal of the next step is to determine the class of the vehicle as well as the refined pose.
Since the type of the target vehicle in the frame is unknown, it would be necessary to apply
small variations of the initial pose guess (±5◦ in Section 6.1.3) for all the models in the data set,
render all poses and perform a similarity search using FDCM to obtain the matching score s.
For additional speed-up, this step is performed only on the k best fitting modes where the k best
models are found by ranking the FDCM scores of the models in the initial pose. It is empirically
found that keeping the hypotheses for the best two models is sufficient for the experiments. For
the determination of the matching score using FDCM, let U and E be the edge maps of the
rendered model and the input image respectively. FDCM maps the edge pixels in U and E to an
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orientation augmented space. The alignment cost between the two edge maps is then given by

d(U,E) =
∑
ui∈U

min
ej∈E

||ui − ej ||2 + λ|∠(ui)− ∠(ej)| (6.1)

where ∠(·) refers to the orientation of the edge pixel and λ is the weighting factor on the orien-
tation term. The best alignment d̂ is then the rigid transformation in 2D image space r ∈ SE(2)
minimizing d̂ = minr∈SE(2) d(Ur, E). Here, Ur is used to denote the transformation of the
edge map U with the parameter r. In [Liu et al., 2010b], it is shown that via line-segment
approximation of the edge maps the FDCM cost can be evaluated efficiently using an integral
distance transform structure. Such an approximation is particular beneficial for this approach
since the structure of vehicles generally follows some straight line pattern. Moreover, the prior
that a vehicle lies evenly on the ground further eliminates the need to search for an in-plane
rotation and speeds up the matching process. The matching score is then updated by setting

sl,p = 1− d̂l,p, (6.2)

where l = 1 . . . k, d̂l,p is the normalized FDCM matching score within [0, 1] for model l, ren-
dered with pose p. FDCM returns the similarity score between the edge image and the rendered
3D model as well as its 2D location. It therefore shifts the projection on the image plane to get
the best possible match which results in a re-projection error due to not caring about projective
correctness. To handle this, the best k models are rendered by aligning the 2D output location
of the FDCM with the vehicle’s centroid again and use pose variations q (in the experiments p
± 80 centimeters and ± 2◦). Given the shifted but projective incorrect model projection Ap

l and
a projective correct model projection area Bq

l , the similarity score for a pose is calculated by
combining the output of FDCM and the area overlap by

sql =

sl,p +

(
|Ap

l ∩B
q
l |

|Ap
l ∪B

q
l |

)
2

. (6.3)

6.1.2 Temporal Model Alignment

After having ranked all possible poses for the whole image sequence, the best matching pose
for each frame is then found in a batch process, which is described in the following. As stated
previously, the proposed approach consists of a discrete pose estimation and a continuous pose
refinement.

6.1.2.1 Discrete Pose Estimation

Consider an input vehicle sequence V = {v1 . . . vt, . . . , vN} and multiple model sequences
Ml = {ml,1, . . . ,ml,t, . . . ,ml,N}, where l is obtained using the method described in Section
6.1.1, vt is the projection of the vehicle in the input video and ml,t is the projection of model l
at time t. The goal is to find the best matching model sequence M̂ which means to find the best
fitting model at each time instance t. This implies that i) the whole sequence provides the same
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Figure 6.5: Temporal inference for ranked projections.

model type and the vehicle moves with ii) constant and iii) feasible motion. This problem can
be solved by calculating the sequential inference as shown in Figure 6.5.

The inference can be calculated by using an MRF which is a chain-structured undirected
graphical model, where the joint distribution forMl given V for each 3D model l is determined
by

P (Ml|V) =
1

Z(V)

N∏
t

F (ml,t|V)F (ml,t,ml,t−1|V), (6.4)

where Z(V ) is a partition function guaranteeing a probability distribution, F (ml,t|V) is the
matching score between a model projection mq, where q denotes a pose variation, and vehicle
at time instance t. F (ml,t,ml,t−1|V) denotes the transition of model l between consecutive
frames. The matching score term for each frame is simply determined by

F (mq|vt) = sql . (6.5)

It is assumed that a vehicle moves continuous over time. According to [Siegwart and Nour-
bakhsh, 2004] and [Scaramuzza et al., 2009], the Ackermann steering principle ensures a fea-
sible vehicle movement by applying different but defined turning radii for the inner and outer
wheels of the car. The principle is shown in Figure 6.6. Combining continuous and feasible
motion leads to

F (ml,t,ml,t−1|V) = exp(−(‖pl,t−1 − pl,t‖2 + λ2(ϕ− θ

2
))), (6.6)

where λ2 is a weighting constant guaranteeing an equal impact of both terms on the final out-
come.

For solving Equation (6.4) and finding the best fitting Ml for a given V , it is necessary
to determine the path having the maximum probability through the graph and compute both
Equation (6.5) for each of the model projections and Equation (6.6) for each edge, where an
edge should be from each projection of frame at time t − 1 to each one at time t. Since the
model type determined in this step must not change over time, Equation (6.4) is solved for each
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Figure 6.6: Ackermann steering principle where ϕ = θ
2 .

vehicle type l. After establishing the whole graph for each type, the problem becomes a labeling
problem, where it is needed to find the best matching projection sequence

M̂l = argmax
Ml

P (Ml|V) (6.7)

for each class l. This inference can exactly be solved by a forward-backwards algorithm. The
vehicle type w for the best fitting model sequence is then obtained by

w =
k

argmax
l=1

(
P (M̂l|V)

)
. (6.8)

The optimized discrete sequence is then given by

M̂ = M̂w. (6.9)

6.1.2.2 Continuous Pose Refinement

Using the MRF, it is only possible to choose the best fitting projection out of discretely rendered
3D models for each frame which means that the results of the previous step depend on the step-
size of the discretization. To refine the pose, a continuous optimization of the car’s parameters
is carried out in 3D space. It is therefore proposed to use a least squares method where the dis-
tances between projected 3D model points and image edge points are minimized. At time t, Qt
3D model points At are considered for which their projected 2D points at are part of a rendered
edge. For all points at, the Euclidean distance is used to find the closest corresponding points
ât in the input edge image. These corresponding points are shown in Figure 6.7. To assure
a smooth movement of the vehicle, the distance between two consecutive poses is additionally
minimized over time. Given a camera matrix K, its rotation and translation R and t, the error for a
set of discretely optimized pose vectors P̂ = {p1, . . . , pt, . . . , pN} for a set of model projections
M̂ is calculated by

ε(P̂) =
N∑
t=1

λ3

Qt

Qt∑
i=1

‖K[R t]At,i − ât,i‖2 +

N∑
t=2

‖pt−1 − pt‖2, (6.10)

where λ3 is a weighting constant. Note that projected 3D points At,i have been converted
from homogeneous to 2D coordinates. The iterations are performed by updating the poses
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Figure 6.7: Corresponding points between projected edges of the model and edge image.

P̂j+1 = P̂j + ∆P̂ . The pose update ∆P̂ is determined by JTε Jε∆P̂ = JTε ε, where Jε is
the Jacobian matrix determined for each ε of Equation (6.10). At every iteration, the points at,i,
ât,i are calculated for each time instance t and the squared error between all pairs as well as
between consecutive poses are estimated. After this step, the final projection set M̂ is updated
according to P̂ . Figure 6.8 shows the results of the pose estimation using simply FDCM (top
row), the improved pose estimation result using an MRF (middle row) and the final result using
the proposed discrete-continuous optimization (bottom row).

Figure 6.8: Pose estimation using FDCM only (top row), combining FDCM and MRF (middle
row), combining FDCM, MRF and continuous optimization (bottom row).
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6.1.3 Experiments

Experiments are carried out using eight calibrated real world data sequences. These show six
different types of vehicles, provide between 30-150 frames, have a resolution between 640x480
(sequence 1) and 1280x720 (sequences 2-8, taken from [Leotta and Mundy, 2011]) pixels and
are captured from different viewpoints. To obtain a classification rate, six corresponding CAD
models are downloaded from the Internet for the cars shown in the videos. The dimensions of the
models are taken from the manufacturer’s specifications. Figure 6.9 shows the six models used
which are from left to right: Chevrolet Silverado 2500HD, Chrysler PT Cruiser, VW Beetle,
Toyota RAV4, Chevrolet Blazer and Skoda Fabia.

Figure 6.9: Models used for the experiments.

6.1.3.1 Quantitative Experiments

The output for each step of the proposed pipeline (using FDCM only (No Opt), applying the
MRF (MRF) and applying pose refinement (Opt)) is shown and compared them to [Toshev
et al., 2009] [Leotta and Mundy, 2011]. For generating ground truth data, the 2D area of the
vehicle is manually segmented as foreground for each frame. Since Toshev’s approach is not
publicly available, it is re-implemented and the manual segmentation is used as input. This
perfect foreground localization prevents incorrect classifications due to a bad segmentation. To
assure fairness in the comparison, the re-implementation of the method is done in such a way
that comparable performance on similar videos is obtained as presented in [Toshev et al., 2009].
The dataset is generated with an azimuth, elevation and distance stepsize of 5◦, 10◦ and 50
centimeters, respectively. Leotta’s approach [Leotta and Mundy, 2011] is publicly available.
Due to the blur in sequence 1, this approach cannot be used on it and therefore this sequence is
excluded for the quantitative experiments. First, the overlap between the ground truth region and
the projected 3D model is compared. As this metric is used for the evaluation of the detected
pose, it is only valid when correctly classified frames are used. In the experiments, a correct
classification is obtained for all sequences, whereas Toshev’s method gets the correct class in
sequences 3-6 and 8. Since Leotta uses a deformable model, it cannot be directly used for
classification and therefore all frames are labeled as correctly classified. The graph in Figure
6.10 shows the vehicle detection rate for correctly classified frames at a certain amount of overlap
for all the steps of the proposed implementation (No Opt, MRF, Opt) as well as for Toshev’s and
Leotta’s approach. As can be seen, the proposed method is able to outperform both Toshev’s
and Leotta’s method. Toshev’s approach uses all scales of a discretely rendered model which are
available in the dataset. This can lead to misclassifications, where the incorrect, discrete scale
of an incorrect model may fit better than the next best discrete scale of the correct model. As
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Figure 6.10: Area overlap over all sequences for correctly classified vehicles.

Proposed(Opt) Proposed(MRF) Proposed(No Opt)
µ(cm) 24.68 25.68 28.63
σ(cm) 11.93 13.24 16.38

max(cm) 66.29 87.08 126.08

Toshev et al., 2009 Leotta and Mundy, 2011

µ(cm) 35.47 28.75
σ(cm) 31.49 15.06

max(cm) 288.45 120.17

Table 6.1: Offsets of the vehicle’s center on the ground plane compared to ground truth.

can be seen in Figure 6.10, this does not directly influence the overlap between ground truth
and the detected model. Therefore the offset of the vehicle’s centroid on the ground plane is
also compared to the ground truth data (Table 6.1). As can be seen, the proposed algorithm
clearly outperforms both methods when using the optimized results. Leotta’s performance is
worse due to the deformable model and Toshev’s method is worse since it does not incorporate
ground plane estimation but only classifies each single frame based on the area overlap between
training data and the input frame. The algorithm described in this section provides a maximum
deviation to the ground truth of 66.29 cm, Leotta 120.17 cm and Toshev even up to 288.45 cm.
Figure 6.11 shows the trajectory of the detected vehicle’s centroid over a whole sequence for
each method. The vehicle’s starting position is denoted by×, ∗, ?,5,♦, ◦ and + for Opt, MRF,
No Opt, Leotta, Toshev, ground truth and Opt(model n/a) respectively. The results of sequences
1-8 are shown in columns 1-4, ordered from left to right and top to bottom. As can be seen,
there are more jumps in space between consecutive frames using Toshev’s method than using
the proposed one which assumes the 3D model to be located on the ground plane. The last
column shows a comparison between the proposed optimized result with and without having the
best matching vehicle in the data set.
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Figure 6.11: Columns 1-4: 3D tracks of car’s centroid on warped top-view for all sequences.
Proposed method (No Opt, MRF, Opt), [Toshev et al., 2009], [Leotta and Mundy, 2011], ground
truth. Column 5: Optimized output with and without best matching model in dataset.
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6.1.3.2 Qualitative Experiments

Figure 6.12 shows qualitative example results using the proposed approach. One row shows one
sequence, where the leftmost image of each row presents the first frame of it and the proposed
optimized projected track. The following frames of the row provide the refined pose of the
detected class, projected onto the image plane. For viewing purposes, the region containing the
vehicle is cropped. Rows 1-8 show result images for sequences 1-8, where the correct 3D model
is within the dataset. The bounding box and the projection of the best fitting 3D model is plotted.
Note that also blurry images (e.g. sequence 1) and occlusions (sequence 6, frame 3) are handled
over time by the proposed framework. Rows 9-10 show results where the correct model is not
in the dataset.
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Figure 6.12: Qualitative results. One row describes one sequence where leftmost image shows
first frame of it and the proposed optimized projected track. For rows 1-8, correct model is in
dataset, for rows 9-10 it is not.
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Input Video Pose Estimation and Tracking3D Models, RFs,
Motion Model

Figure 6.13: A computationally effective 3D model based vehicle detection and tracking frame-
work.

6.2 Vehicle Classification and Pose Estimation Using Random
Forests

Similarly to the framework described in Section 6.1, this method also tries to overcome both
an object’s intra-class variations as well as the ill-posed problem between a monocular image
stream and its 3D reconstruction by using a video stream in combination with 3D models having
known dimensions for pose estimation and tracking in videos.

As a contribution, an RF ensemble which is trained on a set of existing 3D models and used
to rank the vehicles’ possible poses and locations in real world input frames (see Figure 6.13), is
introduced. Different to the method described in Section 6.1 [Hödlmoser et al., 2012], the pose
estimation does not rely on the correct 3D model being in the training set. A generic classifier
is trained on multiple models, whereas [Hödlmoser et al., 2012] needs to have the correct model
available and evaluates all models in various poses to obtain the correct pose. The synthetic cam-
era orbiting around the model gives correctly labeled training images based on the viewpoints
and provides the advantage that the proposed method does not suffer from incorrectly classified
training images due to manual pose estimation in real world images. Simple but discriminative
principle gradient features are introduced to describe the training images as well as the input
images. These features give the opportunity to describe synthetically rendered objects without
using depth, texture or color information. Note that of course, the models can also be rendered
with color and texture information but the synthesized appearances differ from the real world
counterparts due to illumination and other ambient factors. To date, RFs trained on existing 3D
models have never been used to overcome the problem of pose estimation. Different to [Fanelli
et al., 2011], regression based RFs are not used for pose estimation which gives the opportunity
to keep possible poses for each frame and remove outlier poses at a later stage over time and
therefore enables making the whole pipeline more robust. A classification based approach is
therefore used to rank all possible poses and an MRF is incorporated to ensure temporal consis-
tency between poses of consecutive frames, as proposed by [Hödlmoser et al., 2012].

As in Section 6.1, it is assumed, that given the ground plane, the vehicle’s pose is pa-
rameterized by p = (x, y, α). The car’s centroid on the ground plane is therefore denoted
as C = (x, y, z = 0), its orientation is described by the angle α. Tracking a vehicle can
be seen as finding the perfect pose in continuous space for each frame and connecting subse-
quent poses by exploiting a feasible motion model over time. Due to computational complexity,
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evaluating all possible poses is not feasible in practice, so the problem is cast as the determi-
nation of a set of poses in discrete space. Having a video which provides N frames and given
a discrete input vehicle sequence S = {s1 . . . st . . . sN} the goal is to find the pose sequence
R = {p1 . . .pt . . .pN}. This is established by finding the best matching model projection at
each time instance t as well as determining the best transition between consecutive frames. This
means the model must move in 3D space by following a feasible motion. Finding a solution
to this problem is done by calculating the sequential inference which is established by using an
MRF, a chain-structured undirected graphical model. The pose for a current frame is therefore
inferred from past and future poses in a batch process. Given S, the joint distribution for a model
sequenceR is denoted by

P (R|S) =
1

Z(S)

N∏
t

Y (pt|S)Y (pt,pt−1|S), (6.11)

where Y (pt|S) is the matching score between a vehicle pose and the vehicle shown in the video
at time instance t, Y (pt,pt−1|S) describes the transition of the model between consecutive
frames and Z(S) assures a probability distribution. The following sections explain how to get
both terms of Equation 6.11 for this specific tracking problem.

6.2.1 Discrete Vehicle Pose Definition

In order to rank poses for each frame, it is first needed to specify which poses are possible and
how similar poses are clustered to the same class. The 3D model is therefore placed at the
origin of the coordinate system and orbit a synthetic camera around it. Vehicles may provide
a vast variety of dimensions and shapes but all of them provide some common features if seen
from the same viewpoint. It is therefore proposed to tag all projections of multiple models seen
from the same viewpoint with a common class label. As proposed by [Liebelt et al., 2008], the
camera therefore orbits around the object in discrete space to decrease computational complexity
by varying azimuth and elevation angle, as well as the distance between the synthetic camera and
the coordinate center, as can be seen in Figure 6.14. To avoid misclassifications, the 3D model
is sampled by a azimuth stepsize of 5◦, an elevation stepsize of 10◦ and a distance stepsize of
one meter. These parameters are set to be an empirically found trade-off between having an
accurate enough pose estimation whilst avoiding too fine granularity. Regression based RFs are
not used in the proposed method. Using regression has the advantage of penalizing poses based
on their distance to a correct result but the problem is that this method does not provide any
confidence how well a certain pose fits the input frame. When the regression based RF obtains
a completely incorrect pose, the proposed framework will not recover anymore which will yield
to an incorrect result. Using classification instead gives the opportunity to count the number
of trees voting for a specific class, take this as the pose confidence and remove outliers over
time. Decreasing the stepsize means increasing the number of classes. Having too many classes
is equal to using regression with the same penalty for all incorrect poses which also results in
increasing the number of misclassifications and may not be handled by further steps anymore.

Vehicles provide low-textured but specular surfaces. Following the vehicle pose estimation
and tracking methods described by [Leotta and Mundy, 2011], [Payet and Todorovic, 2011] and
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Pose 1

Pose 200

Pose 175

Figure 6.14: Discrete rendering of 3D models placed at the origin of the coordinate system.
Multiple models seen from the same viewpoint are clustered into the same class. A class is
defined by azimuth, elevation angle and the distance from the synthetic camera to the origin.

[Hödlmoser et al., 2012], edges are the most informative and stable features to use in this case.
In the proposed framework, synthetic 3D model projections are therefore used. The training data
is a set of synthetically rendered 3D models using a synthetic camera with a given focal length.
Edges must be shown when sharp edges between adjacent faces or edges from the projection’s
silhouette occur. This rendering is performed on the GPU due to computational complexity.
Contour edges are found by projecting all faces onto the 2D image plane. Sharp edges are
drawn when normals of adjacent faces of a 3D model are pointing in different directions. For
obtaining realistic looking projections, this difference is empirically chosen to be 20◦.

6.2.2 Random Forests for Pose Estimation

For each frame, all model projections are ranked based on how well they fit to the input frame.
This can efficiently be done by exploiting RFs. An RF is a classifier which consists of multiple
decision trees and can be used for solving multi-class labeling problems. It was first introduced
by [Amit and Geman, 1997] and extended in [Breiman, 2001]. By evaluating a feature using
all the trees in the forest, each tree votes for a class. Each of those features of course only
provides a weak assumptions about which class it belongs to but by evaluating multiple features
and cleverly building up the decision forest, the whole classifier is proven to be robust [Shotton
et al., 2011, Lepetit et al., 2005].

Let an RF, built up by b = 1 . . . B of trees, classify between l = 1 . . . L classes. Each
tree consists of split nodes, built up by a feature θ and a threshold as well as leaf nodes. The
threshold is used for following the tree to its left or right branch. Each of the trees then votes for
a single class l. Then, the whole vote distribution of the forest is used for ranking the poses.

6.2.2.1 Random Forest Training

The authors in [Villamizar et al., 2011] utilize real images, HOG features and RFs for training a
pose estimator. Different to the proposed approach, they are not using 3D models. It is therefore
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proposed to use principle gradient edge features instead of HOG features because it is empiri-
cally found that these features work better for the 2D to 3D model matching problem. In the
proposed framework, multiple principle gradient features describe a 3D model projection. Syn-
thetically generated data is a synthesized copy of its real world counterpart without any noise,
occlusions, or variations. The classification of real world images can therefore be improved by
intentionally varying the training images on which the classifier is trained. This can be done by
changing the threshold for sharp edges, by introducing noise, and by varying the 2D location of
the projection. All these variations can be seen in Figure 6.15, where the introduction of noise
is performed by simply placing the model projection on a different background image.

First, the gradient direction image G = arctan(GxGy ) is determined, where each pixel repre-
sents an angle in radians and Gx and Gy are the derivatives of an input image in both horizontal
and vertical direction. Since the proposed method uses a synthetic camera, all training images
are aligned to each other. Given a pixel location X = (x, y), two points X1 = (x1, y1) and
X2 = (x2, y2), both having a random offset φ to X in both directions are determined. Given a
certain blocksize (20 pixels in the experiments), the mean gradient directions ψ(X1) and ψ(X2)
of each block are calculated. The feature at location X is then computed by

θ(X, φ) = mod

(
arctan

(∑2
i=1 sin(ψ(Xi))∑2
i=1 cos(ψ(Xi))

)
, 2π

)
. (6.12)

To cover variations between classes, M = 500 features are roughly even distributed randomly
over the area covered by all 3D model projections to obtain random features θ(X, φ1) . . . θ(X, φM ).
To build up an RF, each tree within the same RF chooses a location X at random but common
over all nodes of the tree. For each of the nodes of the tree, X1 and X2 are chosen randomly.
As stated in Section 6.2.1, the models are rendered using a stepsize of one meter for the distance
between the model and the camera center. It is proposed to generate an RF for each distance in
order to keep misclassifications and therefore incorrect poses ranked high on a minimum. This
gives L = 288 classes for each RF within the proposed framework.

6.2.2.2 Single Frame Pose Estimation

The RF can be used for localizing the vehicle in 2D. However, it is time-consuming because
all decision trees at each pixel location have to be evaluated. Hence the RF is not used for
localization but a state-of-the-art object detector [Felzenszwalb et al., 2010]. It is applied at
each frame and returns a bounding box for the 2D vehicle location. The detector by its nature
also provides a rough pose estimation but it does not provide any 3D information. Hence, the
detector’s pose output cannot be used in this case. As can be seen in [Toshev et al., 2009] it is
obviously not enough to perform background subtraction to obtain an accurate foreground mask
due to highlights and shadows in the scene.

The vehicle’s pose and its location on the ground plane are determined by exploiting an RF
ensemble. Therefore, a = 1 . . . A RFs having b = 1 . . . B trees are used, where each tree is
trained with a different distance between camera and vehicle model. To increase efficiency, the
number of RFs to be evaluated is minimized by determining the rough distance between the car
and the camera center. For the experiments, the threshold between the rough distance between
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Figure 6.15: Feature Extraction for a variety of different projections but for the same class. A
class is defined by the same viewpoint, where robustness to outliers is gained by placing the
projection on different backgrounds, changing the threshold for sharp edges at the rendering
process, shifting the model in 2D and using a variety of different 3D models.

camera and 3D model and the trained distance of the RFs is chosen to be ± 1.4 meters, so that
only the closest three RFs are being evaluated for each frame.

The vehicle’s pose and its location on the ground plane are determined by exploiting an RF
ensemble. In this work, a = 1 . . . A RFs are used having b = 1 . . . B trees where each RF
is trained with a different distance between camera and vehicle model. To increase efficiency,
the number of RFs to be evaluated is minimized by determining the rough distance between
the car and the camera center. For the experiments, a threshold between the rough distance
between camera and 3D model and the trained distance of the RFs are chosen to be ± 1.4
meters, so that only the closest three RFs are being evaluated for each frame. A feature vector
Θ(X) = θ(X, φ1) . . . θ(X, φM ) is then extracted with the same offsets φ1 . . . φM as in the
training stage. The vehicle’s 2D bounding box in the gradient image G of the input image is
aligned with the training images and the features are calculated for the 2D bounding box of each
video frame. Each tree from the RF ensemble holds a vote distribution Pa,b(l|G,Θ(X)) for
label l. The probability for label l is then given by

P (l|G,Θ(X)) =
1

A

A∑
a=1

1

B

B∑
b=1

Pa,b(l|G,Θ(X)). (6.13)
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The extraction of a feature at location X and finding the correct class by exploiting an ensemble

...

Tree 1 Tree B
x

Input Frame
Label 1 Label 270

∑ 

Figure 6.16: Pose estimation by classification using RFs and multiple features extracted at pixel
X = (x, y).

of RFs is illustrated in Figure 6.16. Split nodes are denoted by ◦, leaf nodes as �. To solve the
first part of Equation 6.11, the matching score at time instance t between a model projection pt
and an input vehicle st is given by

Y (pt|st) = P (l|G,Θ(X)). (6.14)

6.2.3 Temporal Model Alignment

After having a matching score, the transition term Y (pt,pt−1|S) must be determined. Ideally,
the vehicle should move with constant speed which is established by using slow speed and ap-
plying a L2 norm minimization. A feasible motion model is ensured by applying the Ackermann
steering principle, [Scaramuzza et al., 2009]. The principle is defined by ϕ = γ

2 , where ϕ and
γ are the angles of the vehicle’s inner and outer turning radius, respectively. As described in
Section 6.1, forcing the vehicle to move with constant and feasible motion is therefore described
by

Y (pt,pt−1|S) = exp(−(‖pt−1 − pt‖2 + λ2(ϕ− γ

2
))), (6.15)

where λ2 assures equal weighting between the impact of constant and feasible motion, p is the
car’s pose. For solving Equation (6.11) and finding the best fitting sequence R̂ for a given S, it is
necessary to determine the Maximum A Posteriori Probability (MAP) configuration through the
graph and compute both Equation (6.14) for each of the model projections and Equation (6.15)
for each edge, where an edge should be from each projection of frame at time t− 1 to each one
at time t. The final MAP of the MRF is then given by

R̂ = argmax
R

P (R|S). (6.16)

6.2.4 Experiments

The algorithm is tested on five sequences from [Leotta and Mundy, 2011] showing a variety of
different vehicles from different viewpoints. They provide a resolution of 1280x720 pixels and
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a calibrated setup. A number of 32 RFs consisting of 200 trees are generated with an azimuth
angle ranging from 0◦ - 360◦, stepsize 5◦, an elevation angle ranging from 0◦ to 30◦, stepsize
10◦ and a distance ranging from 16-32 and 125-140 meters, stepsize one meter. A number of
9 different existing 3D models are used to train the pose estimator (see Figure 6.17) where the
dimensions are taken from the manufacturers’ specifications.

Figure 6.17: Models used for training the pose estimator.

6.2.4.1 Quantitative Experiments

The output for each step of the pipeline (RF only (No Opt) and applying MRF (Opt)) is shown
and compared to Toshev’s [Toshev et al., 2009] and Leotta’s [Leotta and Mundy, 2011] results
as well as to the approach described in Section 6.1, which in the following is referred to as
the chamfer matching approach (Prop-CM). For generating ground truth data, the 2D area of
the vehicle is manually segmented as foreground for each frame. Since the approach for pose
estimation using 3D models of [Toshev et al., 2009] is not publicly available, it is being re-
implemented. For Toshev’s method the manual foreground segmentation is used as input data
which prevents incorrect classifications due to a bad segmentation. To assure fairness in the
comparison, the method is re-implemented such that comparable performance on similar videos
is obtained. The dataset of [Toshev et al., 2009] is generated with the same parameters as the
proposed one. Leotta’s approach [Leotta and Mundy, 2011] is publicly available.

First, the overlap between the ground truth region and the projected 3D model is compared.
As this metric is used for the evaluation of the detected pose, it is only valid when the correct
type of the vehicle is projected onto the image plane. When the vehicle’s pose is known and
a correct 3D model is available, its type can be determined by rendering all vehicle types with
the determined pose. The best matching vehicle type is obtained by using FDCM which is an
edge-based matching method and known to be robust against intra-class variations [Liu et al.,
2010c], [Hödlmoser et al., 2012]. The same models are used for determining the type and
for training the pose estimator. In the experiments, a correct vehicle type for all sequences is
obtained when using the proposed method, [Toshev et al., 2009] misclassified the vehicle shown
in sequence 1.

Figure 6.18a shows the overlap rate for the proposed implementation (No Opt, Opt) as well
as for Toshev’s, Leotta’s and Prop-CM. As can be seen, the described method obtains similar
results compared to state-of-the-art algorithms. Toshev’s approach uses all scales of a discretely
rendered model. This can lead to misclassifications, where the incorrect, discrete scale of an in-
correct model may fit better than the next best discrete scale of the correct model. As can be seen
in Figure 6.18a, this does not directly influence the overlap between ground truth and detected
model. Therefore the offset of the vehicle’s centroid and its orientation α on the ground plane
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Figure 6.18: (a) Area overlap between ground truth and results from all methods over all se-
quences for correctly classified vehicles. (b) Difference of orientation α over all sequences
between all methods and ground truth data.

Proposed(Opt) Proposed(No Opt)
µ 30.15 49.12
σ 26.85 38.52

max 202.67 332.24

Leotta and Mundy, 2011Toshev et al., 2009 Prop-CM
42.94
33.21

288.45

29.85
16.36

120.17

25.38
11.98

66.29

Proposed(Opt) Proposed(No Opt)
µ 17.60 28.72
σ 11.90 38.82

max 55.04 120.17

Toshev et al., 2009
20.96
14.58

  58.95

13.20
14.49

  43.30

13.06
11.05

  37.68

Location Distance on Ground Plane to Ground Truth (cm)

Orientation Distance on Ground Plane to Ground Truth (degrees)
Prop-CMLeotta and Mundy, 2011

Table 6.2: Offsets of the vehicle’s center (top) and orientation α (bottom) on the ground plane
compared to ground truth .

are compared to the ground truth data (see Table 6.2). The proposed method clearly outperforms
Toshev’s implementation and gets similar results compared to Leotta’s implementation both in
terms of mean location and orientation error. Toshev’s method is worse since it does not incor-
porate a ground plane estimation but only classifies each single frame based on the area overlap
between training data and the input frame.

Figure 6.18b shows the percentage of poses being below a certain difference between the
calculated orientation α and the ground truth data. The proposed, optimized pose estimator
obtains comparable results to all other methods. More than 50% of all poses yield an error
smaller than 15◦.

Figure 6.19a shows the trajectory of the vehicle’s centroid over a whole sequence for each
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Figure 6.19: (a) Tracks of the car’s centroid on a warped top-view image for all sequences.
Comparison between the proposed approach (No Opt, Opt), as well as [Toshev et al., 2009],
[Leotta and Mundy, 2011], the method described in Section 6.1, Prop-CM, and ground truth. (b)
Mean processing time for one frame in seconds.

method for all sequences from left to right. The vehicle’s starting position is denoted by ×, ?,
5, ♦, 7, ◦ for Opt, No Opt, Leotta, Toshev, Prop-CM and ground truth, respectively. As can
be seen, there are more jumps in space between consecutive frames using Toshev’s method than
using the one described in this section since the proposed algorithm assumes the 3D model to
be located on the ground plane. The main advantage of the proposed approach is that compara-
ble results to state-of-the-art methods are reached in much less computational time. The mean
processing time for one frame can be seen in Figure 6.19b.

As can be seen, the algorithm described in this section provides a faster runtime than the
approach presented in Section 6.1 since there is no need to evaluate all models in order to ob-
tain a matching score between 3D model and input video. For this comparison, only the time
needed for pose estimation for each method is used, where detecting and tracking the vehicle
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Figure 6.20: Best five poses for three random frames ranked from left to right. The rightmost
image shows the pose and its rank chosen from the MRF. Note that the proposed method uses a
random model type for visualization.

are excluded. The test is performed on an Intel i5, 2.4 GHz and 8GB RAM, the method outlined
in this section, the algorithm described in Section 6.1 and Toshev’s are implemented in Matlab,
Leotta’s in C++.

6.2.4.2 Qualitative Experiments

Figure 6.20 shows from left to right the best matching five poses for random frames. The right-
most image shows the best matching pose and its corresponding rank taken from the MRF. As
can be seen, the best pose must not be ranked first to get a smooth result but all highly ranked
poses are similar to the correct one. Figure 6.21 and Figure 6.22 show qualitative example results
using the proposed approach. One sequence is represented by five rows where each column cor-
responds to the method outlined in this section, [Toshev et al., 2009], [Leotta and Mundy, 2011]
and Prop-CM. The upper left image of each sequence presents its first frame and the proposed,
optimized projected track. The following frames of each column provide the refined pose in
combination with the vehicle type estimated by FDCM projected onto the image plane. For
viewing purposes, the region showing the vehicle is cropped. As can be seen, comparable re-
sults are obtained for all evaluated methods. The last five rows in Figure 6.22 show incorrect
model types projected onto the image plane.
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Figure 6.21: Classification and pose estimation results. One sequence is represented by five
rows where each column shows results using different methods. The upper leftmost image of
each sequence shows its first frame and the novel optimized projected track.
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Figure 6.22: Classification and pose estimation results. One sequence is represented by five
rows where each column shows results using different methods. The upper leftmost image of
each sequence shows its first frame and the proposed optimized projected track. The last five
rows show a variety of incorrect model projected onto the image plane.

115



Calibrated Setup & Feature Analysis3D Model Projections

Figure 6.23: Classification and pose recovery by using projections of 3D models (left) and by
analyzing the tracked features (top right). The Results (bottom right) are enhanced by aggregat-
ing information simultaneously over multiple synchronized and calibrated cameras.

6.3 Vehicle Classification and Pose Estimation from Two Views

Object classification and pose recovery are used in a wide range of applications (e.g. surveil-
lance, content based image retrieval, and robotics). Detecting or classifying an object within a
generic scene is a challenging problem in the area of computer vision because the same object
can occur in front of different backgrounds, under varying lightning conditions and in different
poses. These problems are known as intraclass variations. Traditional object classification algo-
rithms extract features from input images, where objects of the desired class are visible to learn a
classifier [Thomas et al., 2006]. This can be established by taking advantage of the huge amount
of data available on the Internet. By using thousands of images, intra-class variations will be
included in the classifier but only discrete viewpoints can be learned. The tremendous increase
of computing power enables the generation of all different poses of an object from existing 3D
models which eliminates the problem of intraclass variations.

This section therefore present a novel method for traffic object classification and pose esti-
mation based on existing 3D models and shows how to efficiently combine multiple cues from
different viewpoints in order to minimize the pose estimation and classification error. As surveil-
lance scenarios may consist of cars and pedestrians, in a first step, the cameras are calibrated
using pedestrians walking through the observed scene, as proposed in [Hödlmoser and Kampel,
2010]. Since the camera parameters are then known, the 3D models from an existing dataset can
be projected from 3D space onto 2D image planes in the training stage. Features are extracted
from the video stream to be classified. These features are then used to find the best fitting model
in its best fitting projection within the training set. The calibrated setup consists of two cameras
which allows to improve the classification and pose estimation results by assuring spatial con-
sistency. Figure 6.23 shows the determination of the correct pose and class of a detected object
in a video stream.
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(a) (b)

(c) (d)

Figure 6.24: (a) Sample frame and Harris features, (b) features kept after applying Sobel fil-
ter, (c) final foreground features using Canny edge image. As can be seen in (d), background
subtraction cannot handle highlights and shadows.

The contribution of this section is twofold. First, a novel framework is presented which is
based on the approach of [Toshev et al., 2009] and is used for object classification and pose es-
timation using synthetic 3D models. After the determination of a vehicle’s area in the image, all
projections of the 3D models are compared to this blob in order to find the best fitting one. Sec-
ond, this approach also considers a setup consisting of two cameras and shows how aggregating
information from both cameras simultaneously enhances the classification results. In contrast
to [Gill and Levine, 2009], where spatial consistency is meant to be consistency between de-
tected parts of an object, in this section the term is used for consistency of 2D projections of an
object between different viewpoints.

6.3.1 Moving Object Detection

The first part within the framework is related to the determination of moving objects within the
scene. Since traffic scenarios consist of objects providing shadows and highlights due to poor
lighting conditions (e.g. in a garage or at night), it is not possible to determine the moving
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Figure 6.25: Training stage camera positions at a distance of 9 meters from the origin and
discrete azimuth and elevation values.

object correctly by simply subtracting the background or learning the background using a GMM
(see Figure 6.24). It is therefore proposed to take the structure of the detected motion segments
into account to get rid of highlight and shadow regions. Harris corner features [Harris and
Stephens, 1988] are extracted and tracked over time by using a Kanade-Lucas-Tomasi feature
tracker. Features, which provide the same oriented motion over time, are kept and new features
are added when they occur. Since a moving object provides more structure than shadow or
highlight areas, an edge image of the current frame is obtained by using a Sobel filter. Areas
with less structural features are removed and others are kept by only taking those Harris features
located within a certain distance near an edge. In practice, this distance is set to 1 pixel. As
the goal is to increase the number of features to be tracked and consequently get a better pose
estimation result, another edge image is calculated by exploiting the Canny edge filter which is
more sensitive to structural changes than the Sobel filter. All points on an edge located within a
distance of 1 pixel to a feature point are taken as input for the classification and pose estimation
in the next step. Figure 6.24 shows (a) a sample frame providing all moving Harris corner
features, (b) the features kept after applying the Sobel filter and (c) the resulting features taken
for classification and pose estimation located on the edges of the output using a Canny edge
detector. The foreground obtained by using background subtraction only is shown in (d).

6.3.2 Training, Classification and Pose Estimation

Increasing computational power [Hennessy and Patterson, 2011] allows the determination of all
possible camera’s view sphere 2D projections of a 3D model within a certain amount of time.
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In practice, model projections are calculated from discrete camera positions by positioning the
object at the coordinate origin and orbiting the camera around the object, as proposed in [Liebelt
et al., 2008], in order to reduce the complexity and computational effort. The orbit of the camera
is described by three parameters, namely the two angles azimuth, elevation and the distance from
the origin. Figure 6.25 shows a random 3D model and all camera positions using a distance of 9
meters and discrete values for azimuth and elevation.

Classification and pose estimation of moving objects is done by finding the best fitting 2D
projection for a given set of detected point features. To minimize the computational complexity,
all tracked feature points between two consecutive frames are projected on the ground plane. As
can be seen in Figure 6.26, (a) two random points having the same vertical value (denoted as4)
are projected on (b) the ground plane. The line going through both of them provides an azimuth

(a)

α

(b)

Figure 6.26: Determination of the difference angle α between azimuth=0 and the vehicle ori-
entation found from the 2D tracked feature points (a) in the 2D image and (b) on the 3D ground
plane.

angle of 0◦ which equals to an azimuth angle of 0◦ in the training stage. By calculating the
orientation difference between the tracked points and the line going through these two points,
the azimuth angle used for training, denoted as α, can be approximated. This angle can then
be directly used for comparison to the projections of the 3D models from the training data set.
Figure 6.26 shows the determination of the azimuth angle α. The solid line represents an azimuth
angle of zero, the dashed line represents the mean orientation of all tracked feature points, which
are represented by × and ◦ for two subsequent frames.

To narrow down the search space of valid projections, those projections providing an azimuth
angle greater than α ± 30◦ are excluded from further calculations. The center of mass of all
detected feature points is then calculated and the center of mass of all 2D projections is placed
on the same position. Having the feature locations f and n model projections A, the index p of
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Figure 6.27: Test set used for the experiments.

the best fitting one is gathered by

p = argmax
i=1...n

(
|f ∪Ai|
|f ∩Ai|

)
. (6.17)

Apart from determining the most likely projections for each frame and each camera separately
using Equation 6.17, these results can be enhanced by considering spatial consistency over all
cameras. As the relative positions of all cameras are known, a projection of one camera view can
be projected into all other camera views. This approach finds the global best class for the moving
object and varying classifications can be excluded. In practice the first most likely projections
for each camera are taken and the corresponding projections are calculated for all other views in
order to speed up the matching procedure. The final result is obtained by finding the maximum
correlation between model projection and input frame over all cameras by calculating the index
p of the best fitting pose by

p = argmax
i=1...n

k∑
j=1

(
|fj ∪A(i,j)|
|fj ∩A(i,j)|

)
, (6.18)

where k which is set to 2 in the experiments, denotes the number of cameras and n is set to 3 for
evaluation purposes in order to speed up the matching procedure.

6.3.3 Experiments

To show the practicability of the proposed framework, it is tested on real world data where two
cameras which have an overlapping view and a wide baseline, are mounted in a garage scenario.
To calibrate the setup it is decided to use the self-calibration method proposed in [Hödlmoser and
Kampel, 2010]. For all the experiments the same training set in combination with the calibration
parameters is used. The set consists of five 3D models (4 vehicles and a pedestrian) where an
azimuth angle covering a range between 0 and 360 degrees having a stepsize of 5, elevation
between 0 and 30 degrees with a stepsize of 10 and a distance ranging from 9 to 17 meters with
a stepsize of 1 meter is used. This results in 12960 different projections. The dimensions of
the vehicles are taken from manufacturers’ information. The test set is shown in Figure 6.27.
All CAD models, except the pedestrian which is constructed by hand, are downloaded from the
Internet.
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Hatchback Bus SUV Scooter Pedestrian No Match
Single Viewpoints 73.2% 4.4% 8.0% 1.6% 0.0% 12.7%

Two Viewpoints 78.8% 1.3% 7.3% 0.0% 0.0% 12.7%

Table 6.3: Quantitative evaluation. Percentage for frames classified as a certain vehicle type.
As ground truth data, each frame should be labeled as hatchback.

6.3.4 Quantitative Experiments

A number of four synchronized videos are taken from the same stereo camera setup where each
video is between 50 and 120 frames showing the same hatchback. From all the moving objects
which should be detected as hatchback, 4.4% and 1.3% are classified as bus, 8.0% and 7.3%
are classified as SUV, 73.2% and 78.8% are classified as hatchback, 1.6% and 0% are classified
as scooter, 0% and 0% are classified as pedestrian, without and with using spatial consistency,
respectively. In both cases, for 12.7% of all frames no matching projection can be found due to
fewer features. The results are summarized in Table 6.3 which shows the percentage of frames
labeled as a certain vehicle type.

6.3.5 Qualitative Experiments

Figures 6.28 and 6.29 show input frames in columns 1 and 3 in combination with its best fitting
projections calculated by the proposed algorithm in the columns besides them. Each two rows
represent synchronized cameras having an overlapping field of view. Column 2 of Figure 6.28
and Figure 6.29 shows results by analyzing each camera separately, column 4 shows results by
considering calibration data and therefore spatial consistency. As can be seen, two problems
can be tackled using redundant data from both cameras, namely obtaining different classes in
synchronized frames from different camera views and rough or incorrect pose estimations. If no
correct projection is within the first three most likely ones after analyzing each view separately,
the calibration data cannot be used to correct the results.
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Figure 6.28: Input frames are shown in columns 1 and 3 in combination with its best fitting
projections besides them. Each two rows represent synchronized cameras having an overlapping
field of view. Column 2 shows results from analyzing each camera separately, column 4 shows
results when considering calibration data. Note that the projections are enlarged for viewing
purposes.
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Figure 6.29: Input frames are shown in columns 1 and 3 in combination with its best fitting
projections besides them. Each two rows represent synchronized cameras having an overlapping
field of view. Column 2 shows results from analyzing each camera separately, column 4 shows
results when considering calibration data. Note that the projections are enlarged for viewing
purposes.

123



6.4 Summary

As 3D reasoning is a broad field in computer vision, this section presented a specific task within
that area, namely object classification and pose estimation. Vehicles are used since they are the
most important objects besides pedestrians in visual surveillance applications.

First, this chapter describes the task of vehicle classification and pose estimation in videos as
a continuous optimization problem which can practically be solved by discrete-continuous opti-
mization. Good starting points which are essential for the ensuing continuous optimization prob-
lem, are obtained by a discrete optimization reaching a global optimum on the given discrete set.
In both the quantitative and qualitative results it is shown that the proposed method clearly out-
performs state-of-the-art methods from both approaches, namely those using deformable models
and those using models with known dimensions. It could also be seen that the proposed method
handles two drawbacks of purely discrete solutions, namely huge pose estimation errors and
preferring an incorrect model at an incorrect scale over the correct one.

Second, a framework for estimating the pose of vehicles in videos by exploiting existing 3D
models having known dimensions in combination with a random forest is presented. The ran-
dom forest classifier is trained on a synthetic set of existing 3D models, rendered from discrete
viewpoints. Different to existing approaches, a generic pose estimator is trained on a variety of
3D models which does therefore not rely on having a corresponding 3D model in the training
set to the vehicle shown in the input frame. A novel edge based feature is introduced to match
2D projections to 2D input frames. These features give the opportunity to describe synthetically
rendered objects and compare them to their real world counterparts. An MRF ensures a feasi-
ble vehicle motion between consecutive frames. As can be seen from the experiments, similar
results compared to state-of-the-art methods are obtained but the proposed method dramatically
outperformed them in terms of processing time.

Third, it is shown that combining information from different improves the results of esti-
mating the pose and type of an object. A novel method for traffic object classification and pose
estimation is presented based on finding the best fitting projection of existing 3D models to
moving 2D object projections in the scene. Additionally, a setup consisting of two cameras is
considered and it is shown how aggregating information simultaneously from multiple cameras
raises the classification performance compared to results obtained by analyzing each camera
separately.
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CHAPTER 7
Conclusion and Future Work

Reasoning in 3D space is necessary for humans to tackle the tasks of detecting occlusions and
occluded objects, extracting metric information from 2D images, navigating through everyday
life and many others. The holy grail of computer vision is to obtain even more reliable and
consistent 3D information out of 2D images than humans are able to achieve. In this thesis, the
task of 3D scene understanding using computer vision is split into three parts, namely camera
calibration, 3D reconstruction and 3D reasoning.

When capturing a 3D scene onto a 2D image plane, there is an endless number of different
influences which can change the representation of the scene (e.g. lighting conditions, different
objects involved in the scene, different tasks performed between these objects,. . . ). As a re-
sult, an algorithm performing a computer vision task is in practice tailored to handle a certain
amount of influences and can therefore be applied on a specific image region, or with a specific
environmental setting in order to obtain the maximum accuracy.

The main contribution of this thesis lies in showing that by combining different methods and
algorithms related to 3D scene understanding, which in this work is referred to as redundancy,
the final outcome of a computer vision pipeline can be improved. Redundant information is
therefore exploited in order to overcome the specificity of a single algorithm which furthermore
increases the robustness of the framework and finally improves the task of 3D understanding in
computer vision applications and methods.

As the first part of a 3D scene understanding framework is camera calibration, two meth-
ods for calibrating static surveillance cameras from traffic participants and road markings are
presented. The first proposed method performs calibration of a camera network from a pedes-
trian. Both intrinsic and extrinsic parameters are extracted by observing the person over time
and extracting foot and head points. Three vanishing points are extracted from these points and
the intrinsic parameters are determined by exploiting the Image of the Absolute Conic (IAC).
The relative rotation and translation between two cameras in a network are then also determined
from foot and head points. The second proposed method describes a calibration procedure for
a single static traffic surveillance camera from pedestrians and a zebra-crossing. Intrinsic pa-
rameters are obtained from vanishing points, extrinsic parameters are determined by assuming
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a certain width of the zebra-crossing pattern. When a camera is calibrated using static objects,
it is known that the flexibility is limited but the accuracy is high. On the other hand, when a
camera is calibrated using dynamic objects, the method is more flexible but the results are nois-
ier. It is shown in the experiments carried out with a variety of real and synthetic scenes that by
combining pedestrians (dynamic objects) and zebra-crossings (static objects) the advantages of
both objects can be combined in order to obtain higher calibration accuracy.

The second part is referred to as 3D reconstruction. Conventional dense 3D reconstruction
methods obtain a sparse 3D model by extracting and matching corresponding features and by
densifying the model by searching for corresponding features in the spatial neighborhood of
good matches. Man-made indoor environments suffer from flat and textureless surfaces, where
these conventional, feature-based 3D reconstruction pipelines fail to estimate the 3D scene lay-
out due to wrong or missing matches. This thesis therefore proposes a 3D reconstruction pipeline
which combines conventional approaches with 3D reasoning coming from semantic information.
First, a sparse 3D model is generated from multiple images in a sequence by using Structure
from Motion (SfM). Second, each image is processed separately and split in semantic mean-
ingful segments using existing Superpixel segmentation methods. Each segment is assumed to
be described by a planar patch and a surface normal is estimated for each segment. Multiple
methods are used in order to exploit redundancy which means that multiple orientation possi-
bilities are available for each pixel. The final surface normal orientation is then gathered by
finding the most probable solution for each pixel out of all possibilities by solving a pixel-wise
Markov Random Field (MRF). The dense 3D model is then obtained by combining the surface
orientation information with the sparse 3D point cloud. The experiments carried out show that
the combination of semantic and geometric 3D reasoning provides a much denser reconstruction
and a more complete model compared to state-of-the-art dense 3D reconstruction pipelines. It
is also demonstrated that using multiple segmentation methods increases the accuracy of the 3D
surface normal estimation compared to using a single one.

The final part of a 3D scene understanding pipeline is known as 3D reasoning. There is
a variety of different applications and tasks covered by 3D reasoning (e.g. human actions and
interactions among objects, extraction of metric information, occlusion estimation,. . . ). Never-
theless, 3D pose estimation and 3D tracking form the basis for many of these tasks. As vehicles
are the most important objects to be analyzed in surveillance applications besides pedestrians,
this work presents a method for 3D vehicle pose estimation, classification and tracking. Two
different approaches are outlined. The first framework obtains the vehicle’s class and its pose
by exploiting existing 3D models and measuring the similarity between discretely rendered 3D
model projections and an input frame using Fast Directional Chamfer Matching (FDCM). The
global best result for a whole video sequence is then obtained by solving an MRF. The unary
term is defined as the matching score, the binary term is defined as the distance and orientation
offset between 3D model positions of subsequent frames. The conducted experiments validate
that having multiple solutions for each frame and finding a global best result afterwards outper-
form state-of-the-art 3D vehicle tracking and pose estimation approaches. The second proposed
method tries to overcome the drawback of the first approach which is the computational com-
plexity due to the fact that the matching similarity for multiple projections and for each 3D
model in a dataset must be determined in order to find the best matching one. This is solved by
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creating a pose estimation classifier from multiple 3D models using a Random Forest (RF). Pro-
jections from the same viewpoint but from a different model type are combined to form a single
class in a training stage. The matching similarity between a trained class and an input frame is
then determined in the matching stage. Similarly to the first approach, the global best result is
generated by using an MRF. Experiments show that similar accuracy but much faster runtimes
can be achieved compared to state-of-the-art methods. The last part of this work outlines that
having information coming from different viewpoints improves the accuracy of estimating the
3D pose and type of the vehicle. Therefore, a method for 2D vehicle classification and pose
estimation and a solution for combining the results from multiple viewpoints are presented.

Although this thesis presented a well designed framework for 3D scene understanding, the
single tasks of camera calibration, 3D reconstruction and 3D reasoning are not working in real
time at the moment. Additionally to improving the algorithms’ runtimes, future research objec-
tives, which are described in the following, should be followed.

Camera Calibration: The current camera calibration procedures are limited in terms of the
number of cameras included in a network. The first approach deals with calibrating a single
camera, the second method is able to calibrate a network of cameras, where all of them observe
the same scene. The future research direction in this field should therefore deal with this scal-
ability problem in order to tackle the task of calibrating a couple of thousand non-overlapping
cameras. This can for example be handled by accurately tracking traffic participants over time
and by re-identifying them among different views.

3D Reconstruction: The presented 3D reconstruction procedure is done in two steps. The first
step divides the image into vertical and horizontal regions, the second one splits the vertical parts
into multiple surface normal orientations selected from a set of discrete orientations. In future,
these two steps should be performed together. This can be established by replacing the pairwise
MRF by an optimization framework processing a clique of three or more pixels which was also
proposed by [Woodford et al., 2008]. Having a clique formed by three or more pixels enables
penalizing the clique depending on the structure’s planarity. By also introducing a semantic
label in terms of a surface orientation to the cliques, the accuracy of the 3D reconstruction can
be further improved due to solving both problems in parallel.

3D Reasoning: The proposed pipeline for 3D vehicle pose estimation and classification de-
pends on a 2D detector [Felzenszwalb and Huttenlocher, 2004], serving as initialization for the
matching procedure. The first approach presented in this thesis performs the matching between
2D image and the rendered 3D models by using FDCM which means that a matching score is
generated for each projection. Therefore, only a certain number of vehicles can be processed
due to practical time limitations. As is shown in the thesis, this problem can be handled by using
an RF trained on multiple vehicle models. The drawback, which comes along with the runtime
improvement, is a slight decrease in accuracy. Therefore, a combination of both approaches
should be designed. When FDCM is working fast enough, first the initial 2D detection can be
skipped and second a higher number of vehicles can be processed compared to the current im-
plementation. Third, as FDCM is known to be robust against variations, the method of 3D pose
estimation can be extended to perform action recognition using non-rigid objects (e.g. persons),
where classes are not designed as different vehicle types anymore but as a variation of actions.
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Nomenclature

BG Background

CAD Computer-Aided Design

CCTfM Camera Calibration Toolbox for Matlab

CRF Conditional Random Field

DoG Difference of Gaussian

FDCM Fast Directional Chamfer Matching

FG Foreground

GMM Gaussian Mixture Model

GPU Graphics Processing Unit

HOG Histogram of Oriented Gradients

IAC Image of the Absolute Conic

ICM Iterated Conditional Modes

LBP Loopy Belief Propagation

MAP Maximum A Posteriori Probability

MRF Markov Random Field

MSER Maximally Stable Extremal Regions

NMS Non-Maximal Supression

RANSAC RANdom SAmple Consensus

RF Random Forest

RGB Red Green Blue
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SfM Structure from Motion

SIFT Scale Invariant Feature Transform

SLIC Simple Linear Iterative Clustering
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Notations

Symbol Used Font Description

a, b, c, d . . . A,B,C,D . . . . . . . . . Default Scalars, both uppercase and lowercase letters
a,b, c,d . . .A,B,C,D . . . . . . . . Bold Vectors, both uppercase and lowercase letters
A, B, C, D . . . . . . . . . . . . . . . . . . . . . . Monospace Matrices, only uppercase letters
A,B, C,D . . . . . . . . . . . . . . . . . . . . . Calligraphy Sets of elements, only uppercase letters
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