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Abstract

Schema mappings represent a basic concept of data integration and data exchange, expressing
the relationship between database schemas. They can be seen as declarative programs, trans-
forming the data from one schema to another, or rewriting a query against one schema as a
query against another schema. A typical situation is when syntactically different mappings have
the same effect with respect to a given task in information integration. However, syntactical
differences may have dramatic effects on the consumption of computational resources, which
are required for solving the task.

Considering mappings leading to the same end result for the task at hand as equivalent,
one can formulate the semantic optimization problem as follows: among multiple equivalent
mappings find those that yield the least resource consumption. The first step towards the goal of
schema mapping optimization has been made by Fagin et al. in 2008 by introducing three basic
notions of schema mapping equivalence and studying their properties. This dissertation extends
the theory of schema mapping optimization in several directions.

The first part of this dissertation deals with the question of optimization and normalization of
schema mappings with respect to the standard notion of logical equivalence. We formulate the
concrete optimality criteria for schema mappings given by embedded dependencies, and define
a system of rewrite rules, transforming a mapping given by a set of source-to-target depen-
dencies into an optimal one. We also prove that the result of applying our rewrite rule system is
unique up to renaming of variables. Moreover, we extend this result by defining a unique normal
form in the presence of target equality generating dependencies and show the trade-off between
uniqueness and optimality in this setting.

In the second part of the dissertation, we move on to the relaxed notions of equivalence,
proposed by Fagin et al.: namely, to data exchange equivalence and to conjunctive query equiv-
alence. If no integrity constraints are defined over the target schema, these notions are known to
coincide with logical equivalence. We show that this result holds even if the target schema in-
cludes integrity constraints, under the assumption that the schema and the constraints are fixed.
If the target constraints are taken as part of the mapping and are allowed to vary, the relaxed no-
tions of equivalence are known to become undecidable. For conjunctive query equivalence, this
holds even if the target constraints are restricted to primary keys. We separate the two relaxed
notions of equivalence by identifying a practically relevant class of target integrity constraints
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(containing functional and inclusion dependencies), for which data exchange equivalence is de-
cidable and offers more optimization potential than logical equivalence.

Finally, we consider testing conjunctive query equivalence for mappings based on Second-
Order tuple generating dependencies and show undecidability of this task, under a realistic as-
sumption that primary keys are defined over the source schema.



Kurzfassung

Schemaabbildungen (“schema mappings”) sind ein grundlegendes Konzept in Datenintegration
(“data integration”) und Datenaustausch (“data exchange”), welches die Beziehung zwischen
zwei Datenbankschemas beschreibt. Schemaabbildungen können als deklarative Programme
verstanden werden, die entweder Daten von einem Schema in ein anderes transferieren, oder eine
Abfrage über einem Schema in eine Abfrage über einem anderem Schema übersetzen. Dabei tritt
häufig die Situation auf, dass syntaktisch verschiedene Abbildungen denselben Effekt bezüglich
einer bestimmten Aufgabe im Bereich der Informationsintegration (“information integration”)
haben. Solche Abbildungen werden als äquivalent (bezüglich dieser Aufgabe) bezeichnet. Ein
wichtiger Aspekt dabei ist, dass syntaktische Unterschiede zwischen äquivalenten Abbildungen
eine große Auswirkung auf die Menge der benötigten Ressourcen (Zeit und Speicher) haben
können.

Auf Grund dessen ist das Problem der “semantischen Optimierung” wie folgt definiert: Ge-
geben eine Schemaabbildung, finde jene äquivalente Abbildung, welche es erlaubt, die gestellte
Aufgabe mit dem geringsten Ressourcenverbrauch zu lösen.

Der erste Schritt in Richtung Abbildungsoptimierung wurde von Fagin et al. 2008 gesetzt, in-
dem sie drei Äquivalenzbegriffe definierten und deren grundlegende theoretische Eigenschaften
untersuchten. Die vorliegende Arbeit erweitert die Theorie der Optimierung von Schemaabbil-
dungen in mehrere Richtungen.

Der erste Teil dieser Arbeit beschäftigt sich mit der Frage der Optimierung und Normalisie-
rung von Schemaabbildungen bezüglich logischer Äquivalenz, dem Standardbegriff von Äqui-
valenz. Für Schemaabbildungen, definiert durch sogenannte “embedded dependencies”, formu-
lieren wir konkrete Optimalitätskriterien und definieren ein System von Transformationsregeln,
das eine Abbildung (gegeben als sogenannte Quelle-zu-Ziel (“source-to-target”) Beziehungen)
in eine optimale Darstellung überführt. Weiters beweisen wir, dass das Ergebnis der Anwendung
dieser Transformationsregeln eindeutig ist.

Darüber hinaus erweitern wir dieses Resultat durch die Definition einer Normalform von
Schemaabbildungen, welche zusätzlich Gleichheit erzeugende Abhängigkeiten (“equality ge-
nerating dependencies”) auf dem Ziel-Schema erlauben, und zeigen die Unvereinbarkeit von
Eindeutigkeit und Optimalität in dieser Situation.

Der zweite Teil der Arbeit betrachtet weniger strenge (gelockerte) Äquivalenzbegriffe, wie
sie von Fagin et al. definiert wurden, nämlich Datenaustauschäquivalenz (“data exchange equiva-
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lence”; DE-Äquivalenz) und Äquivalenz bezüglich konjunktiver Abfragen (“conjunctive query
equivalence”; CQ-Äquivalenz).

Es ist bekannt, dass diese Begriffe mit logischer Äquivalenz zusammenfallen wenn kei-
ne Integritätsbedingungen auf dem Ziel-Schema definiert sind. Wir zeigen, dass dies auch der
Fall ist wenn auf dem Ziel-Schema Integritätsbedingungen definiert sind, vorausgesetzt dass
das Ziel-Schema und die Bedingungen fixiert sind. Weiters ist bekannt, dass die gelockerten
Äquivalenzbegriffe im Allgemeinen unentscheidbar sind, wenn diese Ziel-Bedingungen (“tar-
get constraints”) nicht fixiert sind. Für CQ-Äquivalenz gilt dies sogar für den Fall dass diese
Bedingungen nur Schlüssel sind.

Wir identifizieren eine praktisch relevante Klasse von Ziel-Bedingungen, die sowohl die
Funktionalen- als auch Inklusionsabhängigkeiten beinhaltet. Für diese ist DE-Äquivalenz ent-
scheidbar, und darüber hinaus bietet sie zusätzliches Optimierungspotential gegenüber logischer
Äquivalenz. Abschließend betrachten wir das Problem SO-Abbildungen (“SO-tgds”) auf CQ-
Äquivalenz zu überprüfen. Wir zeigen, dass dieses Problem unter der realistischen Annahme,
dass das Quell-Schema Schlüssel besitzt, unentscheidbar ist.
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CHAPTER 1
Introduction

Schema mappings are high-level specifications that describe the relationship between two data-
base schemas. They play a key role in data integration [32,38] and data exchange [22]. A schema
mapping is usually given in the formM = 〈S,T,Σ〉, indicating the two database schemas S

and T plus a set Σ of dependencies. These dependencies express constraints that instances of S
and T must fulfil. In data exchange, S and T are referred to as source and target schema. The
dependencies in Σ specify, given a source instance (i.e., an instance of S), what a legal target
instance (i.e., an instance of T) may look like. Similarly, in data integration, a schema mapping
M describes the relationship between a local data source and a global mediated schema.

Over the past decade, schema mappings have been extensively studied (see [11, 37] for nu-
merous pointers to the literature). However, the question of schema mapping optimization has
been posed only in 2008 by Fagin et al. [23]. In that work, the authors laid the foundations for
schema mapping optimization by defining several forms of equivalence of schema mappings and
by proving important properties of the resulting notions. The goal of this thesis is to extend the
theory of schema mapping optimization in several directions.

On the one hand, we define a number of optimization criteria and show that under the stan-
dard notion of logical equivalence mappings based on source-to-target tgds admit a unique nor-
mal form which satisfies all these optimization criteria. We also show that even slight increase
in complexity of schema mappings leads to a trade-off between uniqueness of the normal form
and optimality. These results, published as [31], constitute the first part of this thesis.

On the other hand, we focus on the relaxed notions of equivalence. The main motivation
for introducing alternative notions of equivalence in [23] was the fact that logical equivalence is
often too restrictive and does not properly reflects the applications of schema mappings. This
point is illustrated by examples later on in this chapter (see Section 1.1). Relaxed notions of
equivalence address this issue, but are subject to the following paradoxical situation: Already
in [23] it has been shown that for relatively simple mappings (e.g., those without target con-
straints) relaxed notions of equivalence coincide with the logical equivalence, that is, bring no
additional optimization power. A slight increase of expressiveness of schema mappings, how-
ever, immediately leads to undecidability of the equivalence testing problem. The second part
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of this thesis is dedicated to the exploration of the decidability boundary for alternative notions
of equivalence and specifically focuses on two results: a positive one, establishing the notion
of Data Exchange equivalence as a practical tool for optimization of a broad class of schema
mappings, and a negative one, concerned with undecidability of testing the Conjunctive Query
equivalence for mappings based on Second-Order tgds. These and a number of other results
(surveyed in Chapter 6) have been published in [27, 49].

We continue our introduction with a series of motivational examples for schema mapping
optimization under various notions of equivalence.

1.1 Motivational examples

Fundamental notions

A few concepts of Data Exchange are needed to motivate the problems studied in this thesis. The
Data Exchange Problem associated with a schema mappingM = (S,T,Σ) is the following one:
Given an instance I of S, find an instance J of T such that the combined instance 〈I, J〉 satisfies
Σ (By combined instance 〈I, J〉 we mean simply the union I ∪ J). Suppose that Σ is a set of
embedded dependencies [19], that is, the sentences of the form

(∀x) (ϕ(x)→ (∃y) ψ(x, y)) ,

where ϕ(x) is a conjunction of atoms and ψ(x, y) is either a conjunction of atoms or an equality
xi = xj for some variables xi, xj from x. In the former case, the sentence is called tuple
generating dependency, or tgd for short, and in the latter case equality generating dependency
abbreviated as egd. The universal quantification is usually not denoted explicitly. Instead, it is
assumed implicitly for all variables in ϕ(x ). The set of dependencies Σ in a schema mapping
can be typically subdivided into the disjoint sets Σs ∪ Σst ∪ Σt, defined as follows:

• Source-to-target dependencies Σst have the antecedent of the implication ϕ over the
source schema S and the conclusion of the implication over the target schema T. They
specify the relations between two schemas and consist of tgds, called s-t tgds for short.

• Target dependencies Σt express integrity constraints over the target schema.

• Source dependencies Σs can be used to restrict admissible source instances. We will only
consider source egds in this thesis, specifically, in Chapters 4 and 8.

For mappings given by sets of embedded dependencies, the Data Exchange Problem can
be solved by a natural procedure called chase [7, 22]: given a source instance IS and a set of
embedded dependencies Σ, we initialize an instance I over 〈S,T〉 with IS . Then, for each
dependency (∀x)ϕ(x)→ (∃y) ψ(x, y) in Σ and for each assignment a for x such that the atoms
in ϕ(a) are contained in I (in which case we informally say that the dependency “fires” for an
assignment a), I is updated as follows:

Tgd: If ψ(x, y) is a conjunction of atoms, then I is extended with the atoms of ψ(a, Z)

where Z assigns to each variable in y a distinct labelled null not yet present in I .
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Egd: If ψ(x, y) is an equality xi = xj , the respective values ai, aj are unified everywhere
in I , unless ai and aj are distinct constants: then the chase aborts with failure.

The updating process repeats until all unifying assignments a have been tried, or a failure occurs.
In the former case, the part of the instance over the schema T is a solution for the Data Exchange
problem [22].

Example 1. Consider a schema mapping M = 〈S,T,Σ〉 with S = {L(·, ·, ·), P (·, ·)} and
T = {C(·, ·), N(·, ·)}, where L,P , C and N are abbreviations for the relational schemas Lec-

ture(title, year, prof), Prof(name, area), and Course (title, course-area), NetworkLab (room,

reserved-for), respectively. Suppose that Σ contains source-to-target dependencies expressing
the following constraints: If any lecture is specified in the source instance, then the title of all
lectures for 3rd year students as well as the area of the professor giving this lecture should be
present in the Course-relation of the target instance. Moreover, Σ contains a specific rule which
takes care of the lectures given by professors from the database area. We get the following tgds
relating the schemas S and T:

τ1 = L(x1, x2, x3) ∧ L(x4, 3, x5) ∧ P (x5, x6)→ C(x4, x6)

τ2 = L(x1, 3, x2) ∧ P (x2, ’db’)→ C(x1, ’db’)

Moreover, let the following integrity constraints be defined over T: A course in the database
area requires a lab with a server access. However, there can be no more than one network lab
assigned to a single course:

τt = C(x, ’db’)→ (∃y) N(y, x)

εt = N(x1, x) ∧N(x2, x)→ x1 = x2

We will start with an input instance IS = {L(’distr-data’, 3, ’bob’), P (’bob’, ’db’)} and apply the
chase procedure to it:

1. Initialize I:= IS .

2. Apply τ1 to I: extend I with a new fact C(’distr-data’, ’db’).

3. Apply τ2 to I: the fact C(’distr-data’, ’db’) already exists in I , so proceed to the next step.

4. Apply τt to I: extend I with a new fact N(R, ’distr-data’) with a fresh null R.

5. Apply εt to I: there is only one N -fact in I , so εt is trivially satisfied.

The execution terminates successfully.

The target instance constructed by the chase thus has the form J = {C(’distr-data’, ’db’),

N(R, ’distr-data’)} where R is a labelled null. J is a solution for the Data Exchange Problem
associated with Σ, for a given source instance I .

Several remarks are in order:

• Termination of the chase depends on the set of dependencies in Σ. Generally, for mappings
given by sets of embedded dependencies, it is undecidable whether the chase terminates
on a given instance or on every instance [15]. However, there are very large classes of
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schema mappings for which the chase procedure always terminates [43, 46, 56]. In this
thesis we only consider mappings given by dependencies which do not cause the chase to
diverge.

• The target instances are allowed to contain labelled nulls (or simply nulls): these can be
seen as placeholders for unknown values. (We are thus dealing with incomplete databases,
or v-tables [35], also known as naïve tables). In contrast, we assume source instances to
be ground, that is, to contain no nulls at all.

• There can be an infinite number of solutions.

Under this provision, the notion of universal solution is crucial: Consider a function h assigning
values to labelled nulls (a value can be either a labelled null or a constant). Let us call such
a function a null valuation. By a certain overloading of notation, given a null valuation h we
write h(J) to denote an instance resulting from replacing each null x in J by h(x). Now, a
solution J is universal, if for any other solution J ′, there exists a null valuation h such that
h(J) ⊆ J ′ holds. In particular, the solution J in Example 1 is universal while the solution
J ′ = {C(’distr-data’, ’db’), N(’room1’, ’distr-data’)} is not: no null valuation can turn J ′ into J .

In their fundamental paper on Data Exchange [22], Fagin et al. showed that if terminated
without failure, the chase procedure computes a universal solution for a given Data Exchange
Problem. Such a solution is called canonical universal solution. Universal solutions have been
shown extremely useful for query answering in data exchange: Intuitively, they can be described
as “the most general solutions possible”. Notably, there can be infinitely many universal solu-
tions, containing an arbitrary number of syntactically distinct tuples containing labelled nulls.
Therefore, the notion of minimal universal solution is important: minimal solution is unique
up to renaming of nulls and is called the core universal solution. More details on cores and
universal solutions, as well as formal definitions can be found in Chapter 2.

Logical equivalence

Our goal in this section is to illustrate the basic ideas of schema mapping optimization by simple
examples, where it is clear “at a glance” what the optimal form of the schema mappings should
look like. In fact, one would expect that a human user designs these mappings in their optimal
form right from the beginning. However, as more and more progress is made in the area of
automatic generation and processing of schema mappings [10, 11] we shall have to deal with
schema mappings of ever increasing complexity. The optimality of these automatically derived
schema mappings is by no means guaranteed and schema mapping optimization will become a
real necessity.

Example 2. Consider a schema mappingM = 〈S,T,Σst〉 with the schemas S = {L(·, ·, ·),
P (·, ·)}, T = {C(·, ·)} and the two source-to-target dependencies from Example 1:

L(x1, x2, x3) ∧ L(x4, 3, x5) ∧ P (x5, x6)→ C(x4, x6)

L(x1, 3, x2) ∧ P (x2, ’db’)→ C(x1, ’db’)
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The above mapping has a specific form called GAV (global-as-view) [38], i.e., we only
have s-t tgds ϕ(x ) → A(x ), where the conclusion is a single atom A(x ) without existentially
quantified variables. In this special case, we see a close relationship of schema mappings with
unions of conjunctive queries (UCQs). Indeed, given a source instance I over S, the tuples
which have to be present in any legal target instance J according to the above schema mapping
M are precisely the tuples in the result of the following UCQ:

ans(x4, x6) :- L(x1, x2, x3) ∧ L(x4, 3, x5) ∧ P (x5, x6)

ans(x1, ’db’) :- L(x1, 3, x2) ∧ P (x2, ’db’).

The goal of UCQ-optimization is usually twofold [14, 53], namely to minimize the number of
CQs and to minimize the number of atoms in each CQ. In the above UCQ, we would thus delete
the second CQ and, moreover, eliminate the first atom from the body of the first CQ. In total, the
above UCQ can be replaced by a single CQ ans(x4, x6) :- L(x4, 3, x5) ∧ P (x5, x6).

We would thus naturally reduce the set Σ of two s-t tgds in Example 2 to the singleton
Σ′ = {L(x4, 3, x5) ∧ P (x5, x6)→ C(x4, x6)}.
So far, the standard query optimization techniques were sufficient for mapping optimization.

In the case of GAV mappings, this is generally true, as we point out in Section 1.2. However,
as mentioned above, GAV mappings are only a special case of schema mappings given by s-t
tgds which, in the general case, may have existentially quantified variables and conjunctions of
atoms in the conclusion. As follows from the definition of chase, these existentially quantified
variables cause unknown values (labelled nulls) to be generated in the target instance. Hence, as
an additional optimization goal, we would like to minimize the number of existentially quantified
variables in each s-t tgd. Moreover, we would now also like to minimize the number of atoms in
the CQ of the conclusion.

Example 3. We revisit Example 2 and consider a new mappingM in the reverse direction so to
speak: LetM = 〈S,T,Σ〉 with S = {C(·, ·)} and T = {L(·, ·, ·), P (·, ·)} where L,P , and C
are as before. Moreover, let Σ be defined as follows:

Σ = { C(x1, x2) → (∃y1, y2, y3, y4) L(y1, y2, y3) ∧ L(x1, 3, y4) ∧ P (y4, x2),
C(x1, ’db’)→ (∃y1) L(x1, 3, y1) ∧ P (y1, ’db’)}

Clearly, Σ is equivalent to the singleton

Σ′ = {C(x1, x2)→ (∃y4)L(x1, 3, y4) ∧ P (y4, x2)}.

The above schema mapping corresponds to the special case of LAV (local-as-view) [38]
with s-t tgds of the form A(x )→ ∃y ψ(x, y ), where the antecedent is a single atom A(x ) and
all variables in A(x ) actually do occur in the conclusion. In the most general case (referred to
as GLAV mappings), no restrictions are imposed on the CQs in the antecedent and conclusion
nor on the variable occurrences. In order to formulate an optimality criterion for schema map-
pings with s-t tgds of this general form, the analogy with UCQs does not suffice. Indeed, the
following example illustrates that we may get a highly unsatisfactory result if we just aim at the
minimization of the number of s-t tgds and of the number of atoms inside each s-t tgd.
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Example 4. LetM = 〈S,T,Σ〉 with S = {L(·, ·, ·)} and T = {C(·, ·), E(·, ·)} where L, and
C are as before andE denotes the schema Equal-Year(course1, course2), i.e.,E contains pairs
of courses designed for students in the same year. Moreover, let Σ be defined as follows:

Σ = {L(x1, x2, x3)→ (∃y)C(x1, y),
L(x1, x2, x3) ∧ L(x4, x2, x5)→ E(x1, x4)}

Then Σ is equivalent to the singleton Σ′ with the tgd

L(x1, x2, x3) ∧ L(x4, x2, x5)→ (∃y)C(x1, y) ∧ E(x1, x4)

Now suppose that the title-attribute is a key in Lecture. Let li denote the title of some lecture
in a source instance I and suppose that I contains m lectures for students in the same year
as li. Then the computation of the canonical universal solution by the chase procedure yields
two results of significantly different quality depending on whether we take Σ or Σ′: In case
of Σ, we get one tuple C(li, y) with this course title li. In contrast, for Σ′, we get m tuples
C(li, y1), . . . , C(li, ym) with the same course title li. The reason for this is that the s-t tgd “fires”
for every possible combination of key values x1 and x4, although for the conjunct C(x1, y) in
the conclusion, only the value of x1 is relevant.

We shall refer to the two s-t tgds in Σ of the above example as the split form of the s-t tgd
in Σ′. We shall formally define splitting of s-t tgds in Chapter 3. Intuitively, splitting aims at
breaking up the conclusion of an s-t tgd in smaller parts such that the variables in the antecedent
are indeed related to the atoms in the conclusion. Without this measure, any target instance
would be artificially inflated with labelled nulls as we have seen with Σ′ in the above example.
Splitting helps to avoid such anomalies. Indeed, it can be seen as an analogous operation to
the decomposition of relational schemas into normal form where we also want to exclude that
some attributes are fully determined by parts of a key. Carrying over this idea to s-t tgds, we
want to exclude that some atoms in the conclusion are fully determined by parts of the atoms in
the antecedent. Our first optimization goal for schema mappings will therefore be to minimize
the number of s-t tgds only to the extent that splitting should be applied whenever possible.
Minimizing the size of each s-t tgd and the number of existentially quantified variables in the
conclusion will, of course, be pursued as another optimization goal. We thus have the following
optimality criteria for sets Σ of s-t tgds:

• cardinality-minimality, i.e., the number of s-t tgds in Σ shall be minimal;

• antecedent-minimality, i.e., the total size of the antecedents of the s-t tgds in Σ shall be
minimal;

• conclusion-minimality, i.e., the total size of the conclusions of the s-t tgds in Σ shall be
minimal;

• variable-minimality, i.e., the total number of existentially quantified variables in the con-
clusions shall be minimal.
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We say that a set of s-t tgds is optimal, if it is minimal w.r.t. each of these four criteria.
Following the above discussion, we only take s-t tgds into consideration for which no further
splitting is possible. (We shall give a formal definition of this property and of the four optimal-
ity criteria in Chapter 3). Cardinality-minimality together with antecedent-minimality means
that the cost of the join-operations is minimized when computing a canonical universal solution
for some given source instance. Conclusion-minimality and variable-minimality mean that no
unnecessary incomplete facts are introduced in the canonical universal solution. For the transfor-
mation of arbitrary sets of s-t tgds into optimal ones, we shall present a novel system of rewrite
rules. Moreover, we shall show that the optimal form of a set of s-t tgds is unique up to variable
renaming.

In other words, our optimization of schema mappings is also a normalization of schema
mappings. As an immediate benefit of a normalization, we get a purely syntactical criterion
for testing the equivalence of two schema mappings. Another, even more important application
of such a normalization is in the area of defining the semantics of query answering in data
exchange. Several definitions in this area depend on the concrete syntactic representation of the
s-t tgds. This is, in particular, the case for queries with negated atoms (see e.g., [3, 39]) and
for aggregate queries (see [1]). This semantic dependence on the syntax of a mapping clearly
is undesirable. Since the minimal set of s-t tgds produced by our rewrite rules is unique up to
variable renaming, we can use it as the desired normal form which eliminates the effect of the
concrete representation of the s-t tgds from the semantics of query answering.

Example 5. Consider a schema mappingM = 〈S,T,Σ〉 with the source and target schemas
S = {S(·, ·, ·)} and T = {L(·, ·, ·), P (·, ·)}, where L and P are as in Example 3, and S denotes
the relational schema Student(name, year, area). Let Σ express the following constraints:
If there exists a student in any year, then there should exist at least one lecture for this year.
Moreover, if a student specializes in a particular area, then there should be a professor in this
area teaching at least one lecture for this year. We thus have the following set Σ with a single
s-t tgd:

S(x1, x2, x3)→ (∃y1, y2, y3, y4, y5) L(y1, x2, y3) ∧ L(y4, x2, y5) ∧ P (y5, x3)

Clearly, the first atom in the conclusion may be deleted.

Now consider the source instance I = {S(’bob’, 3, ’db’)} and suppose that we want to evaluate
the query

ans(x2) :- L(x1, x2, x3),¬P (x3, x4)

over the target instance, i.e., we want to check if, in some year, there exists a lecture which has
not been assigned to a professor. In [3,39], query answering via the canonical universal solution
is proposed. Depending on whether the s-t tgd in Σ has been simplified or not, we either get J =

{L(u1, 3, u2), L(u3, 3, u4), P (u4, ’db’)} or the core thereof, J ′ = {L(u1, 3, u2), P (u2, ’db’)} as
the canonical universal solution. In the first case, the query yields the result {〈3〉} whereas, in
the second case, we get ∅.
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Similarly, a unique normal form of the s-t tgds is crucial for the semantics of aggregate
queries in data exchange, whose investigation has been initiated recently by Afrati and Kolaitis
[1]. Aggregate queries are of the form SELECT f FROMR, where f is an aggregate operator
min(R.A), max(R.A), count(R.A), count(∗), sum(R.A), or avg(R.A), and whereR is a target
relation symbol or, more generally, a conjunctive query over the target schema and A is an
attribute of R. On the one hand, [1] defines an interesting and non-trivial semantics of aggregate
queries in data exchange. On the other hand, it is shown that the most important aggregate
queries can be evaluated in polynomial time (data complexity). In Chapter 5 of this thesis, we
shall show how aggregate queries can benefit from our normalization of schema mappings.

So far, we have only mentioned mappingsM = 〈S,T,Σ〉, where Σ is a set of s-t tgds. In
addition, the target schema T may contain integrity constraints. For the sake of uniformity, we
adopt the convention of taking the integrity constraints as a part of Σ. One of the most important
forms of target constraints are egds, introduced in Section 1.1, which can be considered as a
generalization of functional dependencies.

Example 6. We modify the setting from Example 2 and 3. Let M = 〈S,T,Σ〉 with S =

{C(·, ·, ·)} and T = {P (·, ·, ·)} where C and P denote the relational schemas Course (title,

course-area, prof-area) and Prof(name, prof-area, course-area). The P -relation thus contains
information on the main research area of the professor as well as on the area(s) of the courses
taught by him/her. The set Σ of s-t tgds expresses the following constraints: For every course,
there exists a professor who teaches courses in his/her main area of expertise and who teaches
courses with this combination of course- and prof-area. Moreover, there exists a professor whose
expertise matches the area of the course and vice versa. We thus define Σ as a mapping with the
following two s-t tgds:

C(x1, x2, x3)→ (∃y1, y2) P (y1, y2, y2) ∧ P (y1, x2, x3)

C(x1, x2, x3)→ (∃y1)P (y1, x3, x2)

This set of dependencies is minimal. However, suppose that we add the egd
P (x1, x2, x3)→ x2 = x3,

expressing that a professor only teaches courses in his/her own area of expertise. Then the atom
P (y1, y2, y2) can be eliminated from the conclusion of the first s-t tgd. Moreover, the first and
the second s-t tgd imply each other. Hence, Σ can be replaced by either Σ′ or Σ′′ with

Σ′ = {C(x1, x2, x3)→ (∃y1) P (y1, x2, x3)} and

Σ′′ = {C(x1, x2, x3)→ (∃y1) P (y1, x3, x2)}.

Example 6 illustrates that, in the presence of target egds, our rewrite rules for the s-t tgds-
only case are not powerful enough. To deal with target egds, we will introduce further rewrite
rules. In particular, one of these new rewrite rules will result in the introduction of source egds
to prevent situations where two sets of s-t tgds only differ on source instances which admit no
target instance anyway. Indeed, in Example 6, Σ′ and Σ′′ only differ if x2 6= x3 holds. But this
cannot happen due to the egd over the target schema. Hence, Σ should be replaced by Σ∗ with
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Σ∗ = {C(x1, x2, x3)→ x2 = x3,

C(x1, x2, x2)→ (∃y1) P (y1, x2, x2)}.
In summary, we shall be able to prove that our extended set of rewrite rules again leads to a
normal form which is unique up to variable renaming. The main ingredients of our normaliza-
tion and optimization are the splitting and simplification of tgds. In the presence of target egds,
several pitfalls will have to be avoided when defining appropriate splitting and simplification
rules so as not to destroy the uniqueness of the normal form.

Alternative notions of equivalence

So far, we have been only dealing with logical equivalence, requiring that to be equivalent, the
mappingsM1 andM2 must be satisfied by precisely the same pairs 〈I, J〉 of source and target
instances. This definition is often too strict for practical applications in information integration,
as illustrated by the following example:

Example 7. Consider the schema mapping M = 〈S,T,Σ〉 between the source schema S =

{C(·, ·, ·)} and the target schema T = {P (·, ·, ·), S(·, ·, ·)}, which extend the schemas from
Example 6 with the relation Student from Example 5. Let Σ contain a single dependency

τ = C(x1, x2, x2)→ (∃y)P (y, x2, x2)

which simply copies the information about the courses taught by professors whose area of ex-
pertise exactly matches the topic area of the course. Now, let the mapping M1 = (S,T,Σ1)

extendM with a single target dependency

τ1 = S(x1, x2, x3)→ (∃y1, y2)P (y1, x3, y2),

stipulating that if a student specializes in some area, then there must be a professor active in this
area as a researcher.

The mappings M and M1 are not logically equivalent. To see this, simply consider an
instance 〈I, J〉, where I is empty and J consists of a single fact S(’bob’, 3, ’db’). It is easy to
check that both 〈I, J〉 |=M and 〈I, J〉 6|=M1 holds.

We see that M1 and M2 are not logically equivalent, in spite of the fact that the target
dependency in M1 is defined over a relation which is not required to have any facts, no matter
which source instance we consider. In particular, recall the chase procedure which computes an
instance over T satisfying all dependencies in a given schema mapping. The chase would leave
the Student relation empty, and thus the target dependency inM1 would be trivially satisfied.
Thus, with respect to this specific application in data exchange,M andM1 are indistinguish-
able, which is however not captured by logical equivalence.

To address such situations, in their 2008 paper [23], Fagin et al. proposed two relaxed
definitions of equivalence between the mappingsM1 andM2:

• Data exchange equivalence requires that for every source instance I , the universal solu-
tions under the mappingsM1 andM2 coincide.
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• L-equivalence for a class of queries L requires, that for every source instance I , any query
q fromL posed against the target schema yields the same certain answers for the mappings
M1 andM2. The notion of certain answer is central for information integration and refers
to answers that hold in each solution to a given instance of Data Exchange Problem (see
Section 2.6 and Chapter 5).

These two notions capture the immediate applications of schema mappings: In data ex-
change, universal solutions are recognized to be viable options for materialization [22, 39], so
the notion of data exchange equivalence is specially tailored for applications which require uni-
versal solutions to be instantiated (An already mentioned example of such application is answer-
ing aggregate queries in data exchange, considered in Chapter 5). Since the chase is a tool for
constructing universal solutions, the shortcoming of Example 7 can be eliminated by comparing
the mappings relative to data exchange equivalence.

The motivation behind L-equivalence is obvious, keeping in mind that answering queries
(over transformed schemas) is the ultimate goal of information integration, and that the certain
answers semantics is the one most generally agreed upon in the literature. Under the assumption
that the classL of queries is known a priori, L-equivalence allows to abstract away the properties
of schema mappings which are not essential for query answering. The class of positive conjunc-
tive queries (CQ) is of immense practical importance. Therefore, the notion of conjunctive query
equivalence is one of the most remarkable members of the L-equivalence family.

In total, in this thesis we will be dealing with three notions of equivalence, which are defined
as follows: LetM1 andM2 be two schema mappings. We say thatM1 andM2 are

• logically equivalent (denotedM1 ≡ M2) ifM1 andM2 are satisfied by precisely the
same pairs 〈I, J〉 of source and target instances.

• DE-equivalent (denoted M1 ≡DE M2) if, for every source instance I , the universal
solutions under the mappingsM1 andM2 coincide.

• CQ-equivalent (denotedM1 ≡CQ M2) if, for every source instance I , any conjunctive
query posed against the target schema yields the same certain answers for the mappings
M1 andM2.

In [23], the implications (M1 ≡ M2) ⇒ (M1 ≡DE M2) ⇒ (M1 ≡CQ M2) were
proved. In general, the converse of neither implication is true. The following example illus-
trates that for schema mappings consisting of embedded dependencies, the three notions of
equivalence are indeed different and provide different power for detecting the redundancy of
dependencies.

Example 8. Consider the schema mappings M = 〈S,T,Σ〉, M1 = 〈S,T,Σ1〉 and M2 =

〈S,T,Σ2〉, where the schemas and the first two mappings are the same as in Example 7. Namely,
we have three sets of dependencies Σ = {τ}, Σ1 = {τ, τ1}, Σ2 = {τ, τ2}, where τ , τ1 and τ2

are defined as follows:

τ = C(x1, x2, x2)→ P (x1, x2, x2)
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τ1 = S(x1, x2, x3)→ (∃y1, y2)P (y1, x3, y2)

τ2 = P (x1, x2, x3)→ (∃y)P (y, x3, x3)

The former two dependencies have been introduced in Example 7. The latter one, τ2 stipulates
that if for some reason a professor teaches a course not in his immediate research area, there
must also be an expert in the area in the faculty.

ForM1, the equivalenceM1 ≡DE M holds (and hence alsoM1 ≡CQ M). Intuitively,
this is due to the fact that τ1 has no effect on the universal solutions. On the other hand, as
explained in Example 7, we haveM1 6≡ M.

ForM2, we haveM2 ≡CQM butM2 6≡DE M (and henceM2 6≡ M).

The CQ-equivalence can be shown using its convenient characterization from [23], namely:
The mappings N and N ′ are CQ-equivalent if, for every source instance I , either both N and
N ′ have no solution or they both have the same core universal solutions. Recall that the core
universal solution is up to renaming of nulls equal to any other minimal universal solution (See
Chapter 2 for details).

We argue that for any source instance I , the smallest possible universal solution has a form
J∗I = {P (na, a, a) | (∃c, b)C(c, a, b) ∈ C}, where na is a labelled null, distinct for each a.

Indeed, it is easy to see that such J∗I is a solution for I underM, since it satisfies τ . It is
minimal, as removing any fact from J∗I would lead to a violation of τ . Moreover, it is universal,
since any solution for I underM resp. M2 must satisfy τ , and thus must contain a fact Pa =

P (x, a, a) for each value a occurring in a second position in C in I , with some arbitrary x. The
corresponding atom P (na, a, a) ∈ J∗I can be turned into Pa by replacing na with x.

Now, observe that J∗I satisfies τ2 for a given source instance I . Thus, J∗I is also a solution
underM2. Moreover, we have shown that J∗I is both minimal and universal and is thus the core
universal solution underM2. Hence,M2 ≡CQM holds.

To see the failure of DE-equivalence between M and M2, consider the instances I =

{C(a, b, b)} and J = {P (a, b, b), P (y1, y2, y3)} where y1, y2, y3 are distinct nulls. J is a uni-
versal solution for I under mappingM but not a solution underM2, as 〈I, J〉 6|= τ2.

Second-Order tgds

Finally, we will consider source-to-target dependencies more expressive than sets of embedded
dependencies. The motivation for introducing such language comes from the area of schema
mappings management, which is concerned with transformations of schema mappings.

Several algebraic operators [9, 47] on schema mappings have been intensively studied in
recent time like computing inverses [5,6,20,26] and composing schema mappings [10,25,41,48].
The composition operator is arguably a very basic one, defined purely set theoretically: Namely,
the compositionM1 ◦ M2 of schema mappingsM1 andM2 is the following set of instance
pairs 〈I, J〉, where 〈I, J〉 = {〈I1, I3〉 | ∃I2 : 〈I1, I2〉 ∈ M1 and 〈I2, I3〉 ∈ M2}. Many other
operators including, notably, the operators expressing inverse of mappings, are defined via the
composition operator.
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Figure 1.1: Mapping compositions.

Fagin et al. proved that, in general, s-t tgds are not powerful enough to express the compo-
sition of two mappings defined by s-t tgds [25]. To remedy this defect, so-called Second-Order
tuple generating dependencies (SO tgds) were introduced in [25]. SO tgds extend s-t tgds by
existentially quantified function-variables and equalities of (possibly functional) terms in the
antecedents of implications. Details and formal definitions are given in Chapter 2. It was shown
in [25] that SO tgds capture the closure under composition of mappings defined by s-t tgds.

Example 9 ([25]). Consider the following three schemas. Let S1 consist of the unary relation
symbol Emp(·) of employees. Schema S2 consists of a single binary relation symbol Mgr′(·, ·)
that associates each employee with a manager. Schema S3 consists of a similar binary relation
symbol Mgr(·, ·) that is intended to provide a copy of Mgr′ and an additional unary relation
symbol SelfMgr(·) to store employees who are their own manager.

Consider the mappingsM12 = (S1,S2,Σ12) andM23 = (S2,S3,Σ23) with

Σ12 = {∀e(Emp(e)→ ∃mMgr′(e,m))} and

Σ23 = {∀e,m(Mgr′(e,m)→ Mgr(e,m)), ∀e(Mgr′(e, e)→ SelfMgr(e))}.

We are looking for the composition ofM12 andM23. It can be verified that this composition
can be expressed by the SO tgd

σ = ∃f (∀e (Emp(e)→ Mgr(e, f(e))) ∧ ∀e (Emp(e) ∧ (e = f(e))→ SelfMgr(e))).

The question of equivalence of mappings based on SO tgds naturally arises in several scenar-
ios. Figure 1.1 illustrates a model evolution scenario, where data structured under some schema
S is first migrated to a database with schema T and then further transformed to meet schema
U. Now suppose that there exists an alternative migration path from schema S via T′ to schema
U. The question if the two migration paths yield the same result comes down to checking if the
dependencies σ and σ′ (which represent the respective mapping compositions) are equivalent.
Actually, Figure 1.1 can also be thought of as illustrating a peer data management scenario,
where some peer with data structured according to S provides part of its data to some other peer
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with schema T (resp. T′). The latter peer in turn passes this data on to yet another peer with
schema U. Now suppose that a user may access the data only at the peer with schema U. What
happens if some link in this peer data network is broken, say the one corresponding to mapping
Σ23? Will the path of mappings from S via T′ to U still give the user full access to the data
provided by the peer with schema S? Testing the equivalence of σ and σ′ is thus crucial for
answering questions of redundancy and reliability in a peer data network.

1.2 Related work

In this thesis we are dealing with mappings between relational schemas. As already pointed
out in the previous section, such mappings are typically represented as sets of embedded depen-
dencies. Moreover, the source schema and the target schema may contain integrity constraints,
which can, of course, also be expressed as embedded dependencies. Our goal in this section is
thus to draw a distinction between the questions of optimization for the language of embedded
dependencies and similar problems studied for similar logical languages.

Logical equivalence

In Section 1.1, we have pointed out the similarities between GAV mappings and UCQs. The
well-studied methods of query optimization dealing with CQs [14] and UCQs [53] are not suf-
ficient for LAV and GLAV mappings, let alone mappings with target constraints: see Examples
3 and 6. The same applies to the methods of Datalog optimization considered by Sagiv in [52]
and to optimization of logic programs, studied relative to various semantics, including the stable
model semantics [17, 18, 42]. Interestingly, Sagiv actually considers embedded dependencies
in his work, but not as a subject for optimization: rather, the optimization of Datalog queries
against schemas with integrity constraints is being discussed. Note that what Fagin et al. in [23]
and we in this thesis call logical equivalence in the Datalog and Logic Programming worlds is
known as uniform equivalence [42, 52].

Recently, the characteristic features of schema mapping languages have been actually added
to Datalog, effectively eliminating the distinction between the two languages. The result of this
extension is known as the Datalog± family of languages [12, 13]. The research on Datalog±

so far has been focused on modelling ontology languages and algorithms for query answering
and query containment in the situation when the bottom-up evaluation of the Datalog program
(the chase procedure) does not terminate. Our work in this thesis is orthogonal to this line
of research: We will be only dealing with mappings with the terminating chase property. Our
results on schema mapping optimization and equivalence also apply to Datalog± programs, with
an exception of Chapter 8, where the language of Second-Order tgds is considered.

The question of rewriting of schema mappings have been considered in the literature in
the context of core computation for data exchange. In [45] and [57], the authors aim at the
transformation of a set Σ of s-t tgds into an equivalent set Σ′, s.t. chasing a source instance
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with Σ′ directly yields the core universal solution of the corresponding data exchange problem.
In [44], such a transformation of s-t tgds is extended to mappings which comprise also functional
dependencies as target dependencies. The transformations in [44, 45, 57] insert negated atoms
and/or inequalities in the antecedents of some s-t tgds so as to block certain forms of applying
these s-t tgds in the chase. The goal pursued by these transformations is to avoid the expensive
core computation by post-processing of the canonical universal solution and to obtain the core
directly as the chase result. Normalization and optimization of the mappings are not in the scope
of those transformations.

Alternative notions of equivalence

In the area of schema mappings, notions of equivalence other than logical equivalence have
been first considered by Fagin et al. in 2008 [23]. For query languages and logic programs such
notions have been considered also prior to that. Actually, the standard notion of equivalence
for Datalog programs coincides with CQ-equivalence in the terminology of Fagin et al. CQ-
equivalence of Datalog programs is undecidable [55], like many optimization problems [28] re-
lated to this notion. These results can be directly used to demonstrate the hardness of equivalence
testing and optimization of schema mappings with target tgds, with respect to CQ-equivalence:
this observation has been made already in [23].

However, the applications of information integration yield for equivalence notions which
have not yet been considered in the literature: So is data exchange equivalence [23] allowing
mappings to differ on non-universal solutions. Since universal solutions have numerous impor-
tant applications in information integration, this is a quite natural notion in this area.

No existing results on query optimization can be directly applied to data exchange equiva-
lence. However, so far there was no clear understanding, for which situations DE-equivalence
is preferable over, e.g. CQ-equivalence. More generally, the alternative notions of equivalence
are subject to the following phenomenon: for simpler mappings (e.g., for mappings based on
non-recursive tgds relating schemas without integrity constraints) the alternative notions coin-
cide with logical equivalence [23], and thus bring no additional optimization potential. However,
already a slight increase in expressiveness of mappings, such as allowing key constraints over
the target schema, leads to the undecidability of testing for all equivalence notions but the most
restrictive logical one. It is thus important to identify a class of mappings for which relaxed
notions of equivalence are both decidable and more powerful than logical equivalence.

Second-Order tgds

No results concerning testing equivalence of Second-Order tgds have been published until the
work [27], partly reflected upon in Chapter 8. In this chapter we show that the CQ-equivalence
of mappings based on Second-Order tgds is undecidable, if the source schema allows for key
dependencies. Without this assumption, however, the decidability of testing for CQ-equivalence
remains an interesting open problem: On the one hand, logical equivalence of Second-Order tgds
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is undecidable even for schemas without integrity constraints. On the other hand, in their recent
paper [21], Fagin and Kolaitis have shown that testing CQ-equivalence between a Second-Order
tgd and a set of embedded dependencies is decidable.

Summary

In spite of the fact that many notions of equivalence have been studied in the context of query
languages and logic programming, the following problems have not been sufficiently treated in
the literature and will be studied in this thesis:

• The language of schema mappings has features not present in traditional query and logic
programming languages for which the optimization problem has been considered in the
literature. This asks for a new formulation of optimization criteria and new optimization
algorithms.

• The applications in data exchange make the question of normalization of schema map-
pings important. Is there a unique normal form? Is this form optimal?

• The alternative notions of equivalence, especially that of data exchange equivalence, raise
a number of open problems. In particular, it is desirable to find classes of mappings
for which the relaxed notions of equivalence offer more optimization potential than the
standard notion of logical equivalence, and yet do not lead to undecidability of equivalence
testing problem.

• Complexity (actually, even decidability) of testing equivalence of Second-Order depen-
dencies is not known.

In the next section, we describe the structure of this thesis and outline our contributions
towards closing the above gaps.

1.3 Organization of the thesis and summary of results

This thesis is organized in the following way: In Chapter 2, we recall some basic notions. A
conclusion and an outlook to future work are given in Chapter 9. The rest of the thesis is divided
in two parts.

Part I is dedicated to optimization and normalization of schema mappings under logical equiv-
alence. The main results of the first part of the thesis are detailed in the Chapters 3–5, namely:

• Optimization and normalization of sets of s-t tgds. In Chapter 3, we give a formal definition
of the above mentioned optimality criteria for sets of s-t tgds and we present rewrite rules to
transform any set of s-t tgds into an optimal one (i.e., minimal w.r.t. to these criteria). We shall
also show that the normal form obtained by our rewrite rules is unique up to variable renaming.
Moreover, we show that, if the length of each s-t tgd is bounded by a constant, then this normal
form can be computed in polynomial time.
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• Extension to target egds. In Chapter 4, the rewrite rule system for s-t tgds is then extended to
schema mappings comprising target egds. Several non-trivial extensions (like the introduction
of source egds) are required to arrive at a unique normal form again. The extended splitting and
simplification rules will have to be defined very carefully so as not destroy this uniqueness.

• Semantics of aggregate operators. In Chapter 5, we discuss in detail the application of our
normalization of schema mappings to the definition of a unique semantics of aggregate operators
in data exchange.

Part II of the thesis deals with alternative notions of schema mapping equivalence, namely with
data exchange equivalence and conjunctive query equivalence.

• Optimization of source-to-target dependencies in the presence of fixed target constraints un-
der the relaxed notions of equivalence is considered in Chapter 6, followed by an overview of
undecidability results concerning testing relaxed notions of equivalence for various classes of
mappings. We show that by no means can the practical applicability of DE- and CQ-equivalence
be taken for granted: whereas for simple mappings the notions coincide with the logical equiv-
alence, already a slight increase in expressiveness of the mappings results in the undecidable
equivalence testing problem.

• A class of mappings with decidable data exchange equivalence is identified in Chapter 7.
This class includes mappings with target Inclusion and Functional Dependencies, which makes
DE-equivalence a practically relevant notion. This is in a sharp difference to CQ-equivalence,
which, as pointed out in Chapter 6, is undecidable even for mappings with target Key Dependen-
cies. The problem of testing DE-equivalence is shown to be efficiently solvable under realistic
assumptions.

• Undecidability of conjunctive query equivalence for mappings based on Second Order tgds.
In Chapter 8, we show that if Key Dependencies over the source schema are allowed, CQ-
equivalence of SO tgds is undecidable. The proof uses the reduction from the Domino Problem
[8]. As a by-product of this proof, we also get the undecidability of logical equivalence of SO
tgds without equalities, also known as plain SO tgds.
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CHAPTER 2
Preliminaries

A schema R = {R1, . . . , Rn} is a set of relation symbols Ri each of a fixed arity. An instance
(or database) I over a schema R consists of a relation RIi for each relation symbol Ri in R,
such that both have the same arity. We only consider finite instances here.

Tuples of the relations (which we also call facts) may contain two types of terms: constants
and variables. The latter are often also called labelled nulls or simply nulls for short. Two
labelled nulls are equal if they have the same label. For every instance J , we write dom(J),
var(J), and Const(J) to denote the set of terms, variables, and constants, respectively, of J .
Clearly, dom(J) = var(J) ∪ Const(J) and var(J) ∩ Const(J) = ∅. If we have no particular
instance J in mind, we write Const to denote the set of all possible constants. We write x for
a tuple 〈x1, x2, . . . , xn〉 and vice versa, denote by xi an element at the ith position in x. By
a certain abuse of notation, we also refer to the set {x1, . . . , xn} as x. Hence, we may use
expressions like xi ∈ x or x ⊆ y, x ⊆ X , etc.

Let S = {S1, . . . , Sn} and T = {T1, . . . , Tm} be schemas with no relation symbols in
common. We call S the source schema and T the target schema. We write 〈S,T〉 to denote
the schema {S1, . . . , Sn, T1, . . . , Tm}. Instances over S and T are called source and target
instances, respectively. If I is a source instance and J a target instance, then their combination
〈I, J〉 is an instance of the schema 〈S,T〉. In this thesis we assume the instances over S to be
ground, that is, dom(I) = Const(I), whereas target instances may contain nulls.

2.1 Homomorphisms and substitutions

Let I , I ′ be instances. A homomorphism h : I → I ′ is a mapping dom(I) → dom(I ′), such
that (1) whenever a fact R(x ) ∈ I , then R(h(x )) ∈ I ′, and (2) for every constant c, h(c) = c.
If such h exists, we write I → I ′. Moreover, if both I → I ′ and I ← I ′ holds, abbreviated as
I ↔ I ′, then we say that I and I ′ are homomorphically equivalent. In contrast, if I → I ′ but
not vice versa, we say that I is more general than I ′, and I ′ is more specific than I .

17



If h : I → I ′ is invertible, s.t. h−1 is a homomorphism from I ′ to I , then h is called an
isomorphism, and the instances I, I ′ isomorphic, denoted I ∼= I ′. An endomorphism is a homo-
morphism I → I . An endomorphism is proper if it is not surjective (for finite instances, this is
equivalent to being not injective), i.e., if it reduces the domain of I .

If I is an instance, and I ′ ⊆ I is such that I → I ′ holds but for no other I ′′ ⊂ I ′ : I → I ′′

(that is, I ′ cannot be further “shrunk” by a proper endomorphism), then I ′ is called a core of
I [24, 33]. The core is unique up to isomorphism [33]. Hence, we may speak about the core of
I . Cores have the following important property: for arbitrary instances J and J ′, J ↔ J ′ iff
core(J) ∼= core(J ′) [33].

A substitution σ is a mapping which sends variables to other domain elements (i.e., variables
or constants). We write σ = {x1 ← a1, . . . , xn ← an} if σ maps each xi to ai and σ is the
identity outside {x1, . . . , xn}. The application of a substitution is usually denoted in postfix
notation, e.g., xσ denotes the image of x under σ. For an expression ϕ(x), we write ϕ(xσ)

to denote the result of replacing every occurrence of every variable x ∈ x by xσ. We will
sometimes identify σ with the tuple a = 〈a1, . . . , an〉 of respective images for the variables
〈x1, . . . , xn〉 and speak of the assignment a for x. In this case, ϕ(a) is a shorthand for ϕ(xσ).

2.2 Conjunctive queries

A conjunctive query (CQ) over a schema S is a formula ϕ(x) = R1(xi) ∧ . . . ∧ Rn(xn) where
Ri ∈ S and xi ⊆ x, for 1 ≤ i ≤ n. We write At(ϕ(x)) or simply At(ϕ) to denote the instance
in which the tuples correspond exactly to the set of atoms of ϕ(x). Thereby, if the variables in x
are substituted with distinct fresh constants in At(ϕ(x)) — that is, with constants not occurring
in ϕ(x) — the latter instance is called a frozen database of ϕ. Such an instance is known in
the literature as a canonical database of ϕ(x). However, unless otherwise specified, we assume
that the elements in x are instantiated with distinct labelled nulls in At(ϕ(x)). Furthermore,
in Chapters 3 and 4 we will consider CQs with variables partitioned in two sets, written as
ϕ(x1, x2). In At(ϕ(x1, x2)), the elements of x1 and x2 can be instantiated differently, e.g.,
often we will instantiate x1 with distinct fresh constants and x2 with distinct fresh labelled nulls.
The way of instantiation is specified explicitly in such situations.

We say that an instance I of S satisfies ϕ(x), written I |= ϕ(x), if there exists an assignment
a ⊆ dom(I) for x such that At(ϕ(a)) ⊆ I . For CQs ϕ(a) without variables, I |= ϕ(a)

obviously coincides with At(ϕ(a)) ⊆ I .

2.3 Schema mappings and data exchange

A schema mapping is given by a tripleM = (S,T,Σ) where S is the source schema, T is the
target schema, and Σ is a set of dependencies expressing the relationship between S and T and
possibly also local constraints on S and T. The Data Exchange Problem associated with M
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is the following: Given a (ground) source instance I , find a target instance J , s.t. 〈I, J〉 |= Σ.
Such a J is called a solution for I underM or, simply, a solution if I andM are clear from the
context. The set of all solutions for I under M is denoted by Sol(I,M). If J ∈ Sol(I,M)

is such that J → J ′ holds for any other solution J ′ ∈ Sol(I,M), then J is called a universal
solution. The set of all universal solutions for I underM is denoted as UnivSol(I,M). Since
the universal solutions for a source instance I are homomorphically equivalent, the core of the
universal solutions for I is unique up to isomorphism. It will be denoted as core(I,M). The
core is the smallest universal solution [24].

In the following, we will often identify a schema mappingM = 〈S,T,Σ〉 with the set of
dependencies Σ, without explicitly mentioning the schemas, for the sake of brevity. In such
situations, we will also write core(I,Σ) instead of core(I,M)

2.4 Dependencies

Embedded dependencies [19] over a relational schema R are first-order formulas of the form

∀x
(
ϕ(x )→ ∃y ψ(x, y )

)
In case of tuple-generating dependencies (tgds), both antecedent ϕ and conclusion ψ are con-
junctive queries (CQs) over the relation symbols from R such that all variables in x actually do
occur in ϕ(x ). Equality-generating dependencies (egds) are of the form

∀x (ϕ(x )→ xi = xj)

with xi, xj ∈ x. Throughout this thesis, we shall omit the universal quantifiers: By convention,
all variables occurring in the antecedent are universally quantified (over the entire formula). If
there is no existentially quantified variables in the conclusion of a tgd, the latter is called full tgd.

We denote the antecedent of an embedded dependency τ as ant(τ). The instanceAt(ant(τ))

will be often referred to as antecedent database of τ . If τ is a tgd with the conclusion (∃y)ϕ(x, y),
we will also consider a CQ ϕ(x, y) and a corresponding instance At(ϕ(x, y)) called conclusion
database of τ . In At(ϕ(x, y)), elements of x will be typically instantiated with fresh distinct
constants whereas elements of y with fresh distinct labelled nulls.

In Chapters 3 and 4, we also split the variables x in the antecedent of a dependency in two
disjoint sets: one contains the variables which occur in the conclusion of the dependency while
the other contains the variables which do not occur in the conclusion. We thus write down the
dependency as ϕ(x1, x2)→ (∃y) ψ(x1, y). Clearly, all variables in x1 are supposed to occur in
ψ(x1, y) in this case.

In the context of data exchange, we are mainly dealing with source-to-target dependencies
consisting of tuple-generating dependencies (or s-t tgds) over the schema 〈S,T〉 (the antecedent
is a CQ over S, the conclusion over T) and target dependencies over T. Moreover, in Chapters 4
and 8, we shall also consider source dependencies consisting of egds over S.
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Second-Order tgds

A second-order tuple generating dependency (SO-tgd) [25] has the form
∃f̄ ( (∀x1(ϕ1 → ψ1)) ∧ · · · ∧ (∀xn(ϕn → ψn)) ) ,

where
(1) each member of f̄ is a function symbol,

(2) each ϕi is a conjunction of atomic formulas over the source schema S with terms from xi

and equalities of the form t = t′, t and t′ being terms based on xi and f̄ ,

(3) eachψi is a conjunction of atomic formulas over the target schema T of the form T (t1, . . . , t`),
t1, . . . , t` being terms based on xi and f̄ , and

(4) each variable in xi appears in some atomic formula of ϕi.

When dealing with instances 〈I, J〉 in the context of SO tgds, target instances J may contain
functional terms which can be treated as labelled nulls [25]. The domain of source instances I
is assumed to consist of constants only, also in the context of SO tgds.

2.5 Chase

As has already been mentioned in Chapter 1, the data exchange problem can be solved by the
chase [7, 22], a sequence of chase steps, each enforcing a single constraint within some limited
set of tuples. More precisely, let Σ contain a tgd τ : ϕ(x)→ (∃y )ψ(x, y ), such that I |= ϕ(a )

for some assignment a on x. Then the chase step with τ and a extends I with facts corresponding
to ψ(a, z ), where the elements of z are fresh labelled nulls. Note that this definition of the chase
differs from the definition in [22], where no new facts are added if I |= ∃yψ(a, y ) is already
fulfilled. Omitting this check is referred to as oblivious [36] chase or naïve [1] chase. It is the
preferred version of chase if the result of the chase should not depend on the order in which the
tgds are applied (see e.g., [1, 3, 39]).

Now suppose that Σ contains an egd ε : ϕ(x ) → xi = xj , s.t. I |= ϕ(a ) for some assign-
ment a on x. This egd enforces the equality ai = aj . At the chase step with ε and a we thus
choose a null a′ among {ai, aj} and replace every occurrence of a′ in I by the other term; if
ai, aj ∈ Const(I) and ai 6= aj , the chase halts with failure.

The chase proceeds until all combinations of dependencies ϕ(x) → (∃y) ψ(x, y) and as-
signments a for x, consisting of values from dom(I) such that I |= ϕ(a), have been tried. A
chase sequence is a sequence of chase steps. The chase of I with Σ, denoted as chase(I,Σ), is
a chase sequence including all possible chase steps.

Consider an arbitrary schema mappingM = 〈S,T,Σ〉 with Σ = Σs ∪ Σst ∪ Σt where Σs

is a set of source egds, Σst is a set of source-to-target tgds and Σt is a set of target tgds and
egds. If I 6|= Σs, the chase terminates with failure: recall that by our convention I is ground
and Σs contains of egds, so a unification of two distinct constants is implied. If no source egd
is violated, then the solution to a source instance I can be computed as follows: We start off
with the instance 〈I, ∅〉, i.e., the source instance is I and the target instance is initially empty.
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Chasing 〈I, ∅〉 with Σst yields the instance 〈I, J〉, where J is called the preuniversal instance.
This chase always succeeds since Σst contains no egds, and can be computed in polynomial
time [22]. Then J is chased with Σt. This chase may fail on an attempt to unify distinct
constants. If the chase succeeds, we end up with U = chase(J,Σt), which is referred to as
the canonical universal solution CanSol(I,Σ), which, depending on the context, will be also
denoted as CanSol(I,M) or simply CanSol(I).

If Σt contains tgds, the chase sequence may be infinite. As already mentioned in the In-
troduction, in this thesis we will not deal with such sets of dependencies. Instead, we assume
that Σ belongs to some class of mappings for which the chase sequence is finite, for any source
instance. Examples of such classes can be found in [22, 43, 46, 56]. Interestingly, for all known
so far classes of mappings having only finite chase sequences, the length of these sequences is
polynomially bounded.

For a SO tgd ∃f̄ ((∀x1(ϕ1 → ψ1)) ∧ · · · ∧ (∀xn(ϕn → ψn))), the chase step consists of an
application of a single implicational conjunct (∀xi) (ϕi → ψi) to a given instance. Such a chase
step is very similar to a chase step with a tgd, whereby also the equalities in the antecedents have
to be taken into account. Formally, we say that a mapping h from a conjunct Ci = (∀x)(ϕi →
ψi) of an SO tgd to an instance I is a homomorphism if for every relational atom S(y1, . . . , yk)

in ϕi the tuple (h(y1), . . . , h(yk)) is in SI and for every equality t = t′ we have h(t) = h(t′).
The chase step with a conjunct of Ci and a homomorphism h can be defined similarly to a
chase step with a tgd: The instance I is extended with a tuples (h(t1), . . . , h(t`)) for each atom
T (t1, . . . , t`) in ψi, where the terms h(ti) are understood as labelled nulls.

As in the case of embedded dependencies, the chase with SO tgds can be done in polynomial
time w.r.t. the size of the source instance and results in a universal solution [25].

2.6 Equivalence of schema mappings

LetM = 〈S,T,Σ〉 andM′ = 〈S,T,Σ′〉 be two schema mappings.

Logical equivalence. M and M′ are logically equivalent, denoted as M ≡ M′, if, for ev-
ery source instance I and target instance J , 〈I, J〉 |= Σ iff 〈I, J〉 |= Σ′. This is the case if
Sol(I,M) = Sol(I,M′) holds for every source instance I .

Data exchange equivalence (DE-equivalence). M and M′ are DE-equivalent, denoted as
M ≡DE M′, if, for every source instance I , the universal solutions coincide, i.e.: the equality
UnivSol(I,M) = UnivSol(I,M′) holds for every source instance I .

Conjunctive query equivalence (CQ-equivalence). To formally define this notion, we need
a definition of certain answers: For a schema mappingM defined as above, the set of certain
answers to a query q over the schema T and for a source instance I is a set

certainM(q, I) =
⋂
{q(J)|J ∈ Sol(I,M)}.
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Now, M andM′ are CQ-equivalent, denoted asM ≡CQ M′ if, for every source instance I ,
and for any conjunctive query q over T, the equality certainM(q, I) = certainM′(q, I).

As mentioned in the previous chapter, the implications (M1 ≡M2)⇒ (M1 ≡DE M2)⇒
(M1 ≡CQ M2) have been proved in [23], whereas the converse of neither implication holds
in general. Furthermore, [23] presents an alternative characterization of CQ-equivalence for
mappings that satisfy the following property: for every source I if there is a solution for I then
there is a universal solution for I . Mappings given by embedded dependencies which do not
cause infinite chase sequences, as well as mappings given by the SO-tgds, possess this property:
Namely, chase(I,Σ) is a desired universal solution for a mappingM = 〈S,T,Σ〉 and a source
instance I [22, 25]. The characterization in [23, Proposition 3.5], which will be used as the
definition of CQ-equivalence in this thesis, is as follows:

Proposition 1 (CQ-EQUIVALENCE [23]). Let M and M′ be schema mappings given by sets
of embedded dependencies or by SO-tgds. Then, M ≡CQ M′ if, for every source instance I ,
either Sol(I,M) = ∅ = Sol(I,M′) or core(I,M) = core(I,M′).
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Part I

Logical equivalence
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CHAPTER 3
Optimization and normalization of

mappings defined by s-t tgds

In this chapter, we investigate ways of optimizing sets of s-t tgds relative to logical equivalence.
In the first place, we thus formulate some natural optimality criteria. The following parameters
of a set of s-t tgds will be needed in the definition of such criteria:

Definition 1. Let Υ be a set of s-t tgds. Then we define:

• |Υ| denotes the number of tgds in Υ.

• AntSize(Υ) = Σ{|At(ϕ(x ))| : ϕ(x ) → ∃y ψ(x, y ) is a tgd in Υ}, i.e., AntSize(Υ) is
the total number of atoms in all antecedents of tgds in Υ.

• ConSize(Υ) = Σ{|At(ψ(x, y ))| : ϕ(x ) → ∃y ψ(x, y) is a tgd in Υ}, i.e., ConSize(Υ)

is the total number of atoms in all conclusions of tgds in Υ.

• VarSize(Υ) = Σ{|y | : ϕ(x )→ ∃y ψ(x, y) is a tgd in in Υ}, i.e., VarSize(Υ) is the total
number of existentially quantified variables in all conclusions of tgds in Υ.

We would naturally like to transform any set of s-t tgds into an equivalent one where all
the above parameters are minimal. Recall however our discussion on the splitting of s-t tgds
from Example 4. As we pointed out there, the splitting of s-t tgds is comparable to normal form
decomposition of relational schemas. It should clearly be applied in order to avoid anomalies
like the introduction of obviously irrelevant atoms in the canonical universal solution as we
saw in Example 4, where the set Σ (with two split s-t tgds) was certainly preferable to Σ′ even
though |Σ′| < |Σ| and AntSize(Σ′) < AntSize(Σ) hold. Note that in Example 4, the equality
ConSize(Σ′) = ConSize(Σ) holds. Intuitively, the effect of splitting is that the atoms in the
conclusion of some s-t tgd are distributed over several strictly smaller s-t tgds. Thus, our goal
should be to find an optimal set of s-t tgds (that is, a set where the above mentioned parameters
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are minimal) among those sets of s-t tgds for which no further splitting is possible. We now
make precise what it means that “no further splitting” is possible and formally define optimality
of a set of s-t tgds.

Definition 2. Let Σ be a set of s-t tgds. We say that Σ is split-reduced if there exists no Σ′

equivalent to Σ, s.t. |Σ′| > |Σ| but ConSize(Σ′) = ConSize(Σ).

Definition 3. Let Σ be a set of s-t tgds. We say that Σ is optimal if it is split-reduced, and if
each of the parameters |Σ|, AntSize(Σ), ConSize(Σ), and VarSize(Σ) is minimal among all
split-reduced sets equivalent to Σ.

Of course, given an arbitrary set Σ of s-t tgds, it is a priori not clear that an optimal set
Σ′ equivalent to Σ exists, since it might well be the case that some Σ′ minimizes some of the
parameters while another set Σ′′ minimizes the other parameters. The goal of this chapter is to
show that optimality in the above sense can always be achieved and to construct an algorithm
which transforms any set Σ of s-t tgds into an equivalent optimal one. To this end, we introduce
a rewrite system which consists of two kinds of rewrite rules: rules which simplify each s-t tgd
individually and rules which are applied to the entire set of s-t tgds. The following example
illustrates several kinds of redundancy that a single s-t tgd may contain (and which may be
eliminated with our rewrite rules).

Example 10. Consider the following dependency:

τ : S(x1, x3)∧S(x1, x2)→ (∃y1, y2, y3, y4, y5) P (x1, y2, y1)∧R(y1, y3, x2)∧R(2, y3, x2)

∧P (x1, y4, 2) ∧ P (x1, y4, y5) ∧Q(y4, x3)

Clearly, τ is equivalent to the set {τ1, τ2} of s-t tgds:

τ1 : S(x1, x3) ∧ S(x1, x2)→ (∃y1, y2, y3) P (x1, y2, y1) ∧R(y1, y3, x2) ∧R(2, y3, x2)

τ2 : S(x1, x3) ∧ S(x1, x2)→ (∃y4, y5) P (x1, y4, 2) ∧ P (x1, y4, y5) ∧Q(y4, x3)

Now the antecedents of τ1 and τ2 can be simplified:

τ ′1 : S(x1, x2)→ (∃y1, y2, y3) P (x1, y2, y1) ∧R(y1, y3, x2) ∧R(2, y3, x2)

τ ′2 : S(x1, x3)→ (∃y4, y5) P (x1, y4, 2) ∧ P (x1, y4, y5) ∧Q(y4, x3)

Finally, we may also simplify the conclusion of τ ′2:

τ ′′2 : S(x1, x3)→ (∃y4)P (x1, y4, 2) ∧Q(y4, x3)

In total, τ is equivalent to {τ ′1, τ ′′2 }.

For the simplifications illustrated in Example 10, we define the rewrite rules 1 – 3 in Fig-
ure 3.1. Rules 1 and 2 replace an s-t tgd τ by a simpler one (i.e., with fewer atoms) τ ′, while
Rules 3 replaces τ by a set {τ1, . . . , τn} of simpler s-t tgds. These rules make use of the follow-
ing definitions of the core and the components of CQs.
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Rewrite rules to simplify a set of s-t tgds

Rule 1 (Core of the conclusion, see Definition 4).
τ : ϕ(x )→ (∃y )ψ(x, y ) =⇒
τ ′ : ϕ(x )→ (∃y )ψ(x, yσ),
s.t. ψ(x, yσ) is the core of ψ(x, y).

Rule 2 (Core of the antecedent, see Definition 4).
τ : ϕ(x1, x2)→ (∃y )ψ(x1, y ) =⇒
τ ′ : ϕ(x1, x2σ)→ (∃y)ψ(x1, y),
s.t. ϕ(x1, x2σ) is the core of ϕ(x1, x2).

Rule 3 (Splitting, see Definition 5).
τ : ϕ(x )→ (∃y )ψ(x, y ) =⇒ {τ1, . . . , τn}, s.t.
τi : ϕ(x )→ (∃yi)ψi(x, yi) for i ∈ {1, . . . , n} and
{ψ1(x, y1), . . . , ψn(x, yn)} are the components of ψ(x, y )

Rule 4 (Implication of an s-t tgd).
Σ =⇒ Σ \ {τ}
if Σ \ {τ} |= τ .

Rule 5 (Implication of atoms in the conclusion).
Σ =⇒ (Σ \ {τ}) ∪ {τ ′}
if τ : ϕ(x )→ (∃y )ψ(x, y )
and τ ′ : ϕ(x )→ (∃y ′)ψ′(x, y ′),
s.t. At(ψ′(x, y ′)) ⊂ At(ψ(x, y ))
and (Σ \ {τ}) ∪ {τ ′} |= τ .

Figure 3.1: Redundancy elimination from a set of s-t tgds.

Definition 4. Let χ(u, v ) be a CQ with variables in u∪v and letA denote the structure consist-
ing of the atoms At(χ(u, v )), s.t. the variables u are considered as constants and the variables
v as labelled nulls. Let A′ denote the core of A with A′ ⊆ A, i.e., there exists a substitution
σ : v → Const ∪ u ∪ v s.t. At(χ(u, v σ)) = A′ ⊆ At(χ(u, v )). Then we define the core of
χ(u, v ) as the CQ χ(u, vσ).

Definition 5. Let χ(u, v ) be a CQ with variables in u ∪ v. We set up the dual graph G(τ)

as follows: The atoms of χ(u, v ) are the vertices of G(τ). Two vertices are connected if
the corresponding atoms have at least one variable from v in common. Let {C1, . . . , Cn}
denote the connected components of G(τ). Moreover, for every i ∈ {1, . . . , n}, let vi with
∅ ⊆ vi ⊆ v denote those variables from v, which actually occur in Ci and let χi(u, vi) denote
the CQ consisting of the atoms in Ci. Then we define the components of χ(u, v ) as the set
{χ1(u, v1), . . . , χn(u, vn)}.

The splitting rule (i.e., Rule 3 in Figure 3.1) was already applied in Example 4. Rule 2
involving core computation of the antecedent was applied in Example 2, when we reduced
L(x1, x2, x3) ∧ L(x4, 3, x5) ∧ P (x5, x6) to its core L(x4, 3, x5) ∧ P (x5, x6). Likewise, in Ex-
ample 10, the simplification of τ1 and τ2 to τ ′1 and τ ′2 is due to Rule 2. In a similar way, Rule 1
involving core computation of the conclusion allowed us to reduce L(y1, y2, y3)∧L(x1, 3, y4)∧

27



P (y4, x2) in Example 3 to L(x1, 3, y4) ∧ P (y4, x2). In Example 10, Rule 1 was applied when
we replaced τ ′2 by τ ′′2 .

The following example illustrates that additional rules are required in order to remove an s-t
tgd or a part of an s-t tgd whose redundancy is due to the presence of other s-t tgds.

Example 11. Consider the set Σ = {τ ′1, τ ′′2 , τ3}, where τ ′1 and τ ′′2 are the s-t tgds resulting from
the simplification steps in Example 10:

τ ′1 : S(x1, x2)→ (∃y1, y2, y3) P (x1, y2, y1) ∧R(y1, y3, x2) ∧R(2, y3, x2)

τ ′′2 : S(x1, x3)→ (∃y4) P (x1, y4, 2) ∧Q(y4, x3)

τ3 : S(2, x) → (∃y) R(2, y, x)

The tgd τ3 generates only a part of the atoms that τ ′1 does, and fires in strictly fewer cases than
τ ′1. Hence, τ3 may be deleted. Moreover, considering the combined effect of the rules τ ′1 and τ ′′2 ,
which fire on exactly the same tuples, and a substitution {y1 ← 2, y2 ← y4}, we notice that the
first two atoms in the conclusion of τ ′1 are in fact redundant, and it is possible to reduce τ ′1 to
τ ′′1 : S(x1, x2)→ (∃y3)R(2, y3, x2). In total, Σ may be replaced by Σ′ = {τ ′′1 , τ ′′2 }.

Rules 4 and 5 in Figure 3.1 allow us to eliminate such redundancies from a set Σ of s-t tgds:
By Rule 4, we may delete an s-t tgd τ from Σ, if τ is implied by the others, like τ3 in Example 11.
Rule 5 allows us to replace a rule τ by a strictly smaller rule (with fewer atoms in the conclusion)
if τ is implied by τ ′ together with the remaining s-t tgds in Σ (cf. the replacement of τ ′1 with τ ′′1
in Example 11 above). Figure 3.2 illustrates the elimination of redundant atoms via Rules 1, 2,
4 and 5 in a set {τ1, τ

′
2, τ3} of tgds from Examples 10 and 11.

In principle, the implication of a tgd by a set of dependencies can be tested by a procedural
criterion based on the chase [7]. For our purposes, the following, declarative criterion is more
convenient.

Lemma 1. Consider an s-t tgd τ : ϕ(x) → (∃y )ψ(x, y ) and a set Σ of s-t tgds. Then Σ |=
τ holds iff there exist (not necessarily distinct) s-t tgds τ1, . . . , τk in Σ, such that all s-t tgds
τ, τ1, . . . , τk are pairwise variable disjoint and the following conditions hold:

(a) For every i ∈ {1, . . . , k}, there exists a substitution λi : xi → Const ∪ x, such that
At(ϕi(xiλi)) ⊆ At(ϕ(x )).

(b) A substitution µ : y → Const∪x∪⋃k
i=1 yi exists, such that the following inclusion holds:

At(ψ(x, yµ)) ⊆ ⋃k
i=1 At(ψi(xiλi, yi)).

Proof. For the “⇒”-direction, consider an arbitrary pair 〈I, J〉 of source and target instance, s.t.
〈I, J〉 |= Σ. It is easy to show that, by conditions (a) and (b), then also 〈I, J〉 |= τ holds. For
the “⇐”-direction, we take the source instance I = At(ϕ(x)), where we consider the variables
x as constants. Moreover, let J denote the target instance which results from the oblivious chase
of I with Σ. Let τ1, . . . , τk denote the (not necessarily distinct) s-t tgds whose antecedent can
be mapped into I via substitutions λ1, . . . , λk. These substitutions satisfy the condition (a). By
〈I, J〉 |= Σ and Σ |= τ we get the desired substitution µ for condition (b).
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S(x1, x3)→ (∃y4, y5)

S(x1, x3) ∧ S(x1, x2)→ (∃y1, y2, y3)

Rule 2

   Lemma 1     Rule 4 

P (x1, y2, y1) ∧R(y1, y3, x2) ∧R(2, y3, x2)

Rule 5

S(2, x)→ (∃y)R(2, y, x)

τ1 :

τ ′2 :

τ3 :

Rule 1

P (x1, y4, y5) ∧ P (x1, y4, 2) ∧Q(y4, x3)

Figure 3.2: Tgd optimization. Rectangles mark eliminated atoms, arrows show justifications
for elimination.

Note that Rule 5 generalizes Rule 1 and, in principle, also Rule 4. Indeed, if we restrict Σ in
Rule 5 to the singleton Σ = {τ}, then the replacement of τ by τ ′ means that we reduce ψ(x, y )

to its core. Moreover, Rule 5 allows us to eliminate all atoms from the conclusion of τ iff τ may
be deleted via Rule 4. Clearly, the deletion of the conclusion of τ essentially comes down to the
deletion of τ itself.

The correctness of Rules 1 – 5 can be easily established. For the proof, we will need the
following notion of a “proper instance” of an s-t tgd. It will also play an important role for
showing that the Rules 1 – 5 lead to a unique normal form. A proper instance of an s-t tgd τ is
obtained from τ by eliminating at least one existentially quantified variable in the conclusion of
τ , while keeping the antecedent unchanged.

Definition 6. Let τ : ϕ(x)→ (∃y )ψ(x, y ) be an s-t tgd. We call an s-t tgd τ ′ a proper instance
of τ , if there exists a strict subset y ′ ⊂ y and a substitution σ : y → Const ∪ x ∪ y ′, such that
τ ′ is of the form τ ′ : ϕ(x )→ (∃y ′)ψ(x, yσ).

Example 12. In the following three tgds, each next tgd is a proper instance of the previous ones:
τ1 : S(x1, x2)→ (∃y1, y2) Q(x1, y1, y2)

τ2 : S(x1, x2)→ (∃y1) Q(x1, y1, y1)

τ3 : S(x1, x2)→ Q(x1, x2, x2)

Moreover, observe that τ2 |= τ1 and τ3 |= τ2 holds.

The importance of “proper instances” to our investigations comes from the following properties:

Lemma 2. Let τ and τ ′ be s-t tgds, such that τ ′ is a proper instance of τ . Then the following
properties hold:
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(1) τ ′ |= τ .

(2) Suppose that τ is reduced with respect to Rule 1. Then τ 6|= τ ′.

Proof. (1) Consider two tgds τ : ϕ(x ) → (∃y ) ψ(x, y ) and τ ′ : ϕ(x ) → (∃y ′)ψ(x, yσ).
Let 〈I, J〉 be an arbitrary pair of source and target instances with 〈I, J〉 |= τ ′ and let λ : x →
dom(I) be a substitution, such that At(ϕ(xλ)) ⊆ I . We show that then also J |= ψ(xλ, y )

holds. By 〈I, J〉 |= τ ′, we get J |= ψ(xλ, yσ), that is, there exists a substitution µ, such that
At(ψ(xλ, yσµ)) ⊆ J . But then, for ν = σµ, we have At(ψ(x, yσ)) ⊆ J . Thus, J |= ψ(xλ, y )

holds.

(2) Suppose that τ |= τ ′ holds. We have to show that then Rule 1 is applicable to τ . Let 〈I, J〉
denote a pair of source and target instance with I = At(ϕ(x )) and J = At(ψ(x, y )). The
variables in x are thus considered as constants while y are labelled nulls. Clearly, 〈I, J〉 |= τ

and I |= ϕ(x ). Thus, by the assumption τ |= τ ′, also J |= ψ(x, yσ) holds, i.e., there ex-
ists a substitution µ : y ′ → dom(J) such that At(ψ(x, yσµ)) ⊆ J . Hence, also the follow-
ing inclusion holds: At(ψ(x, yσµ)) ⊆ At(ψ(x, y )). Note that y ′ = yσ ⊂ y. Hence, also
At(ψ(x, yσµ)) ⊂ At(ψ(x, y )). But then At(ψ(x, y )) is not a core and, therefore, Rule 1 is
applicable to τ .

We are now ready to prove the correctness of our transformation rules.

Lemma 3. The Rules 1 – 5 in Figure 3.1 are correct, i.e.: Let Σ be a set of s-t tgds and τ ∈ Σ.
Suppose that Σ is transformed into Σ′ by applying one of the Rules 1 – 5 to τ , that is:

• τ is replaced by a single s-t tgd τ ′ (via Rule 1,2,5),

• τ is replaced by s-t tgds τ1, . . . , τn (via Rule 3),

• or τ is deleted (via Rule 4).

Then Σ and Σ′ are equivalent.

Proof.
Rule 1. Suppose that an s-t tgd τ is replaced by τ ′ via Rule 1. Then the s-t tgds τ and τ ′ are
of the form τ : ϕ(x) → (∃y )ψ(x, y ) and τ ′ : ϕ(x ) → (∃y )ψ(x, yσ), s.t. At(ψ(x, yσ)) ⊂
At(ψ(x, y)). In particular, τ ′ is a “proper instance” of τ according to Definition 6. Hence, by
Lemma 2, τ ′ |= τ holds.

On the other hand, let 〈I, J〉 be an arbitrary pair of source and target instance with 〈I, J〉 |= τ

and let λ : x → dom(I) be a substitution, s.t. At(ϕ(xλ) ⊆ I . We have to show that then also
J |= ψ(xλ, yσ) holds. By assumption, 〈I, J〉 |= τ . Hence, J |= ψ(xλ, y ), i.e., there exists a
substitution µ, s.t. At(ψ(xλ, yµ)) ⊆ J . But then, since At(ψ(x, yσ)) ⊆ At(ψ(x, y )) holds, we
also have At(ψ(xλ, yσµ)) ⊆ J . Thus, τ |= τ ′ indeed holds.

Rule 2. Suppose that τ : ϕ(x1, x2)→ (∃y )ψ(x1, y ) is replaced by τ ′ via Rule 2. Then τ ′ must
be of the form τ ′ : ϕ(x1, x2σ)→ (∃y )ψ(x1, y ), with At(ϕ(x1, x2σ)) ⊂ At(ϕ(x1, x2)). We
show both implications τ |= τ ′ and τ ′ |= τ separately.
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[τ |= τ ′] Let 〈I, J〉 be a pair of source and target instance with 〈I, J〉 |= τ . If I 6|= ϕ(x1, x2σ)

then 〈I, J〉 |= τ ′ holds vacuously. It remains to consider the case that I |= ϕ(x1, x2σ)

holds, i.e., there exists a substitution λ′, s.t. At(ϕ(x1λ
′, x2σλ

′)) ⊆ I . Consider the substi-
tution λ : x1 ∪ x2 → dom(I), s.t. xλ = xλ′ for every x ∈ x1 and xλ = xσλ′ for every
x ∈ x2. Then At(ϕ(x1λ, x2λ)) = At(ϕ(x1λ

′, x2σλ
′)) ⊆ I holds. Thus, we conclude that

J |= (∃y )ψ(x1λ, y ), since 〈I, J〉 |= τ holds. Hence, since λ and λ′ coincide on x1 also
J |= (∃y )ψ(x1λ

′, y ) and, therefore, 〈I, J〉 |= τ ′.

[τ ′ |= τ ] Now let 〈I, J〉 be a pair of source and target instance with 〈I, J〉 |= τ ′ and J |=
ϕ(x1, x2), i.e., there exists a substitution λ, s.t. At(ϕ(x1λ, x2λ)) ⊆ I . By definition of Rule 2,
the inclusion At(ϕ(x1, x2σ)) ⊆ At(ϕ(x1, x2)) holds. Hence, At(ϕ(x1λ, x2σλ)) ⊆ I is true as
well. But then, by 〈I, J〉 |= τ ′, we know that also J |= (∃y )ψ(x1λ, y ) holds and, therefore,
〈I, J〉 |= τ .

Rule 3. This rule is based on two general equivalences in first-order logic:

• (∃z )(A(z ) ∧ B(z )) ≡ (∃z1)A(z1) ∧ (∃z2)B(z2) if the variables z1 actually occurring
in A and the variables z2 actually occurring in B are disjoint.

• We clearly have the equivalence A→ (B1 ∧B2) ≡ (A→ B1) ∧ (A→ B2).

Rule 4. Suppose that τ is deleted from Σ via Rule 4, i.e., Σ is transformed into Σ′ with Σ′ =

Σ \ {τ} and Σ′ |= τ . Hence, Σ′ |= Σ holds. Moreover, Σ |= Σ′ holds by the monotonicity of
“|=”. Hence, Σ ≡ Σ′ clearly holds.
Rule 5. Suppose that τ ∈ Σ is replaced by τ ′ via Rule 5. Then τ ′ is of the form τ ′ : ϕ(x) →
(∃y ′)ψ′(x, y ′), s.t. At(ψ′(x, y ′)) ⊂ At(ψ(x, y )). By the latter condition, τ |= τ ′ clearly holds.
Hence, Σ is equivalent to (Σ∪{τ ′}). By the definition of Rule 5, ((Σ∪{τ ′}) \{τ}) |= τ holds.
Hence, Σ is also equivalent to (Σ ∪ {τ ′}) \ {τ}.

We will now move on to showing that our Rules 1 – 5 lead to a unique normal form. Two
auxiliary lemmas, Lemma 4 and 5, will help us to arrive at this result, formulated as Theorem 1.

Lemma 4. Let τ be an s-t tgd reduced w.r.t. the Rules 1 and 3 and let Σ be a set of s-t tgds. If
Σ |= τ , then one of the following two conditions is fulfilled: Either

• there exists a single s-t tgd τ0 ∈ Σ, s.t. τ0 |= τ , or

• there exists a proper instance τ ′ of τ , s.t. Σ |= τ ′.

Proof. Let {τ1, . . . , τk} ⊆ Σ \ {τ} with {τ1, . . . , τk} |= τ . Suppose that k is minimal with
this property and that k ≥ 2. We show that then {τ1, . . . , τk} |= τ ′ holds for some proper
instance τ ′ of τ . For i ∈ {1, . . . , k}, let τi’s be pairwise variable disjoint and have the form
τi : ϕi(xi) → (∃yi )ψi(xi, yi). By Lemma 1 and the definition of Rule 4, the τi’s fulfil the
following properties:

(a) For every i ∈ {1, . . . , k}, there exists a substitution λi : xi → Const ∪ x, such that
At(ϕi(xiλi)) ⊆ At(ϕ(x )).
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(b) A substitution µ : y → Const ∪ x ∪⋃k
i=1 yi exists, such that the following inclusion holds:

At(ψ(x, yµ)) ⊆ ⋃k
i=1 At(ψi(xiλi, yi)).

Let At(ψ(x, y )) = {A1, . . . , An}. Clearly, n ≥ k ≥ 2. Suppose that {A1µ, . . . , Aαµ} ⊆
At(ψ1(x1λ1, y1)) while {Aα+1µ, . . . , Anµ} ⊆

⋃k
i=2 At(ψi(xiλi, yi)). By assumption, τ is

reduced w.r.t. Rule 3, i.e., the conclusion of τ either consists of a single atom without variables
from y or of atoms forming a single connected component of the dual graph G(τ). By n ≥ k ≥
2, the former case can be excluded. Hence, the atoms in {A1, . . . , Aα} and {Aα+1, . . . , An}
share at least one variable y ∈ y, i.e., y occurs in some atomAi with i ∈ {1, . . . , α} and in some
atom Aj with j ∈ {α+ 1, . . . , n}. Let ` 6= 1 denote the index, s.t. Ajµ ∈ At(ψ`(x`λ`, y`)). In
total, we thus have Aiµ ∈ At(ψ1(x1λ1, y1)) and, therefore, yµ ∈ Const ∪ x∪ y1. On the other
hand, Ajµ ∈ At(ψ`(x`λ`, y`)) and, therefore, yµ ∈ Const ∪ x ∪ y`. By assumption, y1 and y`
are disjoint. Thus, yµ ∈ Const ∪ x.

We construct the desired proper instance τ ′ of τ as follows: Let y ′ := y \ {y} and define
the substitution σ : y → Const ∪ x ∪ y ′, s.t. yσ = yµ and σ maps all other variables in
y onto themselves. Then we have σµ = µ, i.e., for every yi ∈ y, yiσµ = yiµ. Clearly,
{τ1, . . . , τk} |= τµ and, therefore, also {τ1, . . . , τk} |= τσ holds. But then τ ′ is the desired
proper instance of τ .

Lemma 5. Let Σ be a set of s-t tgds and suppose that an s-t tgd τ ∈ Σ is reduced w.r.t.
Rules 1 and 3 and that τ cannot be deleted via Rule 4. If there exists a proper instance τ ′

of τ , s.t. Σ |= τ ′ holds, then there exists an s-t tgd τ ′′, s.t. τ may be replaced by τ ′′ via Rule 5.

Proof. Let τ ′ : ϕ(x ) → (∃y ′)ψ′(x, y ′) and suppose that Σ |= τ ′ holds. Then there exist s-t
tgds τ1, . . . , τk in Σ of the form τi : ϕi(xi) → (∃yi )ψi(xi, yi), s.t. the conditions (a) and (b) of
Lemma 1 are fulfilled, i.e.:

(a) For every i ∈ {1, . . . , k}, there exists a substitution λi : xi → Const ∪ x, such that
At(ϕi(xiλi)) ⊆ At(ϕ(x )).

(b) There exists a substitution µ : y → Const ∪ x ∪⋃k
i=1 yi, such that the following inclusion

holds: At(ψ′(x, y ′µ)) ⊆ ⋃k
i=1 At(ψi(xiλi, yi)).

Let τ : ϕ(x ) → (∃y )ψ(x, y ). We claim that at least one of the τi coincides with τ (up to
variable renaming). Suppose to the contrary that τi ∈ Σ \ {τ} holds for every i ∈ {1, . . . , k}.
Then, the above conditions (a) and (b) imply that Σ \ {τ} |= τ ′ holds by Lemma 1. Moreover,
τ ′ |= τ holds by Lemma 2, part (1). Thus, Σ \{τ} |= τ and τ could be deleted by Rule 4, which
is a contradiction.

Let I = {i | 1 ≤ i ≤ k, s.t. τi is obtained from τ via variable renaming}. We define the CQ
ψ′′(x, y ′′) of the s-t tgd τ ′′ : ϕ(x )→ (∃y ′′)ψ′′(x, y ′′) as follows:

Θ = {A(x, y ) | A(x, y ) ∈ At(ψ(x, y )) and ∃i, s.t. i ∈ I and A(xλi, y ) ∈ At(ψ′(x, y ′µ)) ∩
At(ψi(xiλi, yi))}.
Moreover, we set ψ′′(x, y ′′) =

∧
A(x,y )∈ΘA(x, y ).
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Clearly, (Σ \ {τ}) ∪ {τ ′′} |= τ ′ by Lemma 1. Thus, also (Σ \ {τ}) ∪ {τ ′′} |= τ , by Lemma 2,
part (1). We claim that At(ψ′′(x, y ′′)) ⊂ At(ψ(x, y )) holds. Suppose to the contrary that
At(ψ′′(x, y ′′)) = At(ψ(x, y )). Then, by definition of Θ and by Lemma 1, τ |= τ ′ would hold.
By Lemma 2, part (2), this implies that τ is not reduced w.r.t. Rule 1, which is a contradiction.
Hence, τ ′′ is indeed the desired s-t tgd, s.t. τ may be replaced by τ ′′ via Rule 5.

We now define a normal form of s-t tgds via the rewrite rules of this chapter. We will then
show that this normal form is unique up to isomorphism in the sense defined below.

Definition 7. Let Σ be a set of s-t tgds and let Σ′ be the result of applying the Rules 1 – 5 of
Figure 3.1 exhaustively to Σ. Then Σ′ is the normal form of Σ.

Definition 8. Let τ1 : ϕ1(x1)→ (∃y1 )ψ1(x1, y1) and τ2 : ϕ2(x2)→ (∃y2 )ψ2(x2, y2) be two
tgds. We say that τ1 and τ2 are isomorphic if τ2 is obtained from τ1 via variable renamings
η : x1 → x2 and ϑ : y1 → y2.

Let Σ1 and Σ2 be two sets of tgds. We say that Σ1 and Σ2 are isomorphic if |Σ1| = |Σ2|,
every τ1 ∈ Σ1 is isomorphic to precisely one τ2 ∈ Σ2 and every τ2 ∈ Σ2 is isomorphic to
precisely one τ1 ∈ Σ1.

We start by showing for two single s-t tgds τ1 and τ2 that logical equivalence and isomor-
phism coincide, provided that the s-t tgds are reduced via our rewrite rules. This result will then
be extended to sets Σ1 and Σ2 of s-t tgds.

Lemma 6. Let τ1 and τ2 be two s-t tgds that are reduced w.r.t. Rules 1 – 3. Then τ1 and τ2 are
isomorphic, iff τ1 and τ2 are equivalent.

Proof. The “⇒”-direction is an immediate consequence of Lemma 1. For the “⇐”-direction,
consider two equivalent s-t tgds

τ1 : ϕ1(x1, x2)→ (∃y )ψ1(x1, y ) and

τ2 : ϕ2(u1, u2)→ (∃v )ψ(u1, v ).

Observe that the antecedents of τ1 and τ2 must be homomorphically equivalent, i.e., by Lemma 1,
there exist substitutions λ and ρ, s.t.

λ : x1 ∪ x2 → Const ∪ u1 ∪ u2, and

ρ : u1 ∪ u2 → Const ∪ x1 ∪ x2, such that

At(ϕ1(x1λ, x2λ)) ⊆ At(ϕ2(u1, u2)) and

At(ϕ2(u1ρ, u2ρ)) ⊆ At(ϕ1(x1, x2)).

We show that the antecedents of τ1 and τ2 are in fact isomorphic. In particular, we claim that
there exist substitutions λ and ρ, s.t. the above inclusions are equalities, i.e.,

λ : x1 ∪ x2 → Const ∪ u1 ∪ u2, and

ρ : u1 ∪ u2 → Const ∪ x1 ∪ x2, such that

At(ϕ1(x1λ, x2λ)) = At(ϕ2(u1, u2)) and

At(ϕ2(u1ρ, u2ρ)) = At(ϕ1(x1, x2)).
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Assume the converse is true, and, w.l.o.g., the antecedent of τ1 cannot be mapped onto the entire
antecedent of τ2, i.e., for every substitution λi : x1∪x2 → Const ∪u1∪u2, the inclusion Sλi =

At(ϕ1(x1λi, x2λi)) ⊂ At(ϕ2(u1, u2)) holds. For every such λi, consider the s-t dependency of
the form τ i1 : ϕ1(x1λi, x2)→ (∃y )ψ1(x1λi, y ).

Let T denote the complete set of all such τ i1. It is easy to see that τ1 |= τ2 iff T |= τ2.
Moreover, by construction of T , τ1 |= T and, therefore, we get {τ1} ≡ {τ2} ≡ T .

Note also that the antecedent database of each τ i1 ∈ T is an endomorphic image of the
antecedent database of τ2. Indeed, assume that for some j, there is no homomorphism pro-
jecting ϕ2(u1, u2) onto the antecedent ϕj1(xj1, x

j
2) of τ j1 ∈ T . Then, the combined instance

〈At(ϕj1(xj1, x
j
2), ∅〉 satisfies τ2 but not T , which is a contradiction.

By Lemma 4 we know that the following two cases are possible: either (i) some τ i1 |= τ2, or
(ii) T implies a proper instance of τ2.

The latter case contradicts Lemma 2, part (2), since we immediately get that τ2 implies a
proper instance of itself. We may therefore assume that (i) is the case: There exists some rule
τ ′ ∈ T such that τ ′ ≡ τ2 and moreover, the antecedent of τ ′ is a proper endomorphic image of
the antecedent ϕ2(u1, u2) of τ2.

We also assume that τ ′ is the smallest “endomorphic” (w.r.t. the antecedent of τ2) depen-
dency possible. Indeed, let τ ′ itself admit an equivalent s-t tgd with the proper endomorphically
equivalent antecedent: then we just focus on this smaller s-t tgd instead of τ ′. Thus, we consider
the dependency τ∗ whose antecedent ϕ∗(u∗1, u

∗
2) is minimal in the following sense: no depen-

dency logically equivalent to τ2 (and thus to τ∗) exists, with the antecedent database being a
proper endomorphic instance of At(ϕ∗(u∗1, u

∗
2)).

We show that also the conclusion of τ∗ must be smaller than the conclusion of τ2: that is,
the inequality |At(ϕ2(u1, u2))| > |At(ϕ∗(u∗1, u∗2))| holds. Let σ be a substitution, such that
ϕ2(u1σ, u2σ) = ϕ∗(u∗1, u

∗
2) holds. Since τ∗ is minimal, there must also exist a substitution µ:

At(ψ∗(u∗1, v
∗µ)) ⊆ At(ψ(u1σ, v)).

Note that σ necessarily “lumps together” two elements of u1: otherwise, τ2 would be not
reduced w.r.t. Rule 2 (Core of the antecedent). But then also the inequality |ψ∗(u∗1, v∗µ)| <
|ψ(u1σ, v)| holds. This means that there exists a dependency equivalent to τ2 but with fewer
conclusion atoms. This contradicts the assumption that {τ2} is reduced w.r.t. Rule 5.

That is, we have shown that the antecedents of τ2 and τ1 are isomorphic. But since these
dependencies are equivalent and reduced w.r.t. Rule 1 (Core of the conclusion), we also have
that the entire τ1 and τ2 must be isomorphic as well.

Theorem 1. Let Σ1 and Σ2 be equivalent sets of s-t tgds, i.e., Σ1 |= Σ2 and Σ2 |= Σ1. Let Σ′1
and Σ′2 denote the normal form of Σ1 and Σ2, respectively. Then Σ′1 and Σ′2 are isomorphic.

Proof. Let Σ1 and Σ2 be equivalent. Moreover, let Σ′1 and Σ′2 denote the normal form of Σ1

and Σ2, respectively. By the correctness of our rewrite rules 1 – 5, of course, also Σ′1 and Σ′2
are equivalent.
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We first show that every s-t tgd in Σ′1 is isomorphic to some s-t tgd in Σ′2 and vice versa.
Suppose to the contrary that this is not the case. W.l.o.g., we assume that there exists a τ ∈ Σ′1
which is not isomorphic to any s-t tgd in Σ′2. By the equivalence of Σ′1 and Σ′2, the implication
Σ′2 |= τ clearly holds. By Lemma 4, either τ0 |= τ for a single s-t tgd τ0 ∈ Σ′2 or there exists a
proper instance τ ′ of τ , s.t. Σ′2 |= τ ′.

We start by considering the case that τ0 |= τ for a single s-t tgd τ0 ∈ Σ′2. By the equivalence
of Σ′1 and Σ′2, the implication Σ′1 |= τ0 holds and we can again apply Lemma 4, i.e., either
τ1 |= τ0 for a single s-t tgd τ1 ∈ Σ′1 or there exists a proper instance τ ′0 of τ0, s.t. Σ′1 |= τ ′0.
Again we consider first the case that a single s-t tgd is responsible for the implication. Actually,
if τ1 were identical to τ then we had the equivalence τ1 |= τ and τ |= τ1. Since both τ and τ1

are reduced w.r.t. Rules 1 – 3, this would mean (by Lemma 6) that τ1 and τ are isomorphic. This
contradicts our original assumption that τ is not isomorphic to any s-t tgd in Σ′2. Hence, the case
that τ1 |= τ0 for a single s-t tgd τ1 ∈ Σ′1 means that τ1 is different from τ . In total, we thus have
τ1 |= τ0 and τ0 |= τ and, therefore, τ1 |= τ for a s-t tgd τ1 ∈ Σ′1 \ {τ}. Hence, τ can be deleted
from Σ′1 via Rule 4, which contradicts the normal form of Σ′1.

It thus remains to consider the cases that there exists a proper instance τ ′ of τ , s.t. Σ′2 |= τ ′

or there exists a proper instance τ ′0 of τ0, s.t. Σ′1 |= τ ′0. We only show that the first one leads to
a contradiction. The second case is symmetric. So suppose that there exists a proper instance
τ ′ of τ , s.t. Σ′2 |= τ ′. By the equivalence of Σ′1 and Σ′2, we have Σ′1 |= Σ′2 and, therefore, also
Σ′1 |= τ ′. But then τ can be replaced in Σ′1 by τ ′ via Rule 5. Hence, by Lemma 5, τ can be
replaced in Σ′1 by some s-t tgd τ ′′ via Rule 5. But this contradicts the assumption that Σ′1 is in
normal form.

Hence, it is indeed the case that every s-t tgd in Σ′1 is isomorphic to some s-t tgd in Σ′2 and
vice versa. We claim that every s-t tgd in Σ′1 is isomorphic to precisely one s-t tgd in Σ′2 and vice
versa. Suppose to the contrary that there exists a s-t tgd τ which is isomorphic to two s-t tgds
τ1 and τ2 in the other set. W.l.o.g., τ ∈ Σ′1 and τ1, τ2 ∈ Σ′2. Clearly, τ1 and τ2 are isomorphic
since they are both isomorphic to τ . Hence, τ1 |= τ2 and, therefore, Σ′2 \ {τ2} |= τ2, i.e., Rule 4
is applicable to Σ′2, which contradicts the assumption that Σ′2 is in normal form.

We now consider the complexity of computing the normal form of a set of s-t tgds. Of
course, the application of any of the Rules 1, 2, 4, and 5 is NP-hard, since they involve CQ
answering. However, below we show that if the length of each s-t tgd (i.e., the number of atoms)
is bounded by a constant, then the normal form according to Definition 7 can be obtained in
polynomial time.

Note that a constant upper bound on the length of the s-t tgds is a common restriction in data
exchange since, otherwise, even the most basic tasks like, computing a target instance fulfilling
all s-t tgds, would be intractable.
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Theorem 2. Suppose that the length (i.e., the number of atoms) of the s-t tgds under considera-
tion is bounded by some constant b. Then there exists an algorithm which reduces an arbitrary
set Σ of s-t tgds to normal form in polynomial time w.r.t. the total size ||Σ|| of (an appropriate
representation of) Σ.

Proof. Let constant b limit the number of atoms in each s-t tgd and let ||Σ|| = n denote the
number of s-t tgds in Σ. Moreover, let α denote the maximum arity of the relation symbols in
the source and target schema. We define the following simple algorithm:

1. Obtain Σ′ by applying Rules 1 – 3 exhaustively to {τ}, for each τ ∈ Σ.

2. For each τ in the current set Σ′ of s-t tgds do

• Try to delete τ via Rule 4.

• If τ was not deleted, try to replace τ by some τ ′ via Rule 5.

• If Rule 5 was applicable, apply Rule 3 to τ ′.

Note that the Rules 1 and 2 do not become applicable anymore after an application of Rule 5
provided that we replace τ by an s-t tgd τ ′ such that the set of atoms in the conclusion of τ ′ is
minimal.

In order to establish the polynomial-time upper bound, we proceed in 2 steps. That is, we
prove (1) an upper bound on the total number of rule applications and (2) an upper bound on the
cost of each single rule application.

(1) Total number of rule applications. Rule 4 deletes an s-t tgd. Hence, it can be applied at most
n times. The Rules 1, 2, and 5 delete at least one atom from an s-t tgd. Hence, in total, these
rules can be applied at most b ∗ n times. Finally, Rule 3 splits the conclusion of an s-t tgd in 2
or more parts. Hence, also the total number of applications of Rule 3 is bounded by b ∗ n. We
thus get the upper bound O(b ∗ n) on the total number of applications of any rule. Moreover,
it should be noted that at no stage of the algorithm, the current set Σ′ of s-t tgds contains more
than b ∗ n s-t tgds.

(2) Cost of a single rule application. In Rules 1 and 2, we compute the core of the atoms in the
conclusion resp. in the antecedent. Rules 1 and 2 thus essentially come down to CQ answering
of a query with ≤ b atoms over a database with ≤ b atoms. The cost of a single application of
these rules is therefore in O(αbb).

Rule 3 is the cheapest one in that it only requires the computation of the connected compo-
nents of a graph with ≤ b vertices. For setting up this graph, we have to inspect at most α ∗ b
variable occurrences in an s-t tgd. The cost of an application of Rule 3 is thus in O(αb2).

To apply Rule 4 to an s-t tgd τ` in the current set Σ′, we compare τ` : ϕ(x )→ (∃y )ψ(x, y )

with every τi ∈ Σ′, such that i 6= `. With τi : ϕi(xi)→ (∃yi )ψi(xi, yi), we proceed as follows:

1. For each i 6= `, compute all possible substitutions λij , s.t. At(ϕi(xiλij)) ⊆ At(ϕ(x )).

Every such λij is uniquely determined by an assignment of the ≤ b atoms of ϕi(xi) to the
≤ b atoms of ϕ(x ). Hence, for every i, there are at most bb possible substitutions λij .
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2. For all i, j, compute Aij = At(ψi(xiλij , yij)), where yij is a set of fresh variables, i.e.,
we apply the substitutions λij computed in the first step to the conclusion of τi and rename
the variables yi apart.

3. Let A =
⋃
i 6=`
⋃
j Aij . Try to find a substitution µ, s.t. At(ψ(x, yµ)) ⊆ A. If such a µ

exists, delete τ`.

In Step 1, we compute all solutions of a CQ with ≤ b atoms over a database with ≤ b atoms. In
total, we apply this step to at most b2n2 pairs (τ`, τi), which is feasible in total timeO(b2n2αbb).
As a result, we get A as the union of at most b2n2bb sets Aij , each consisting of ≤ b atoms.
Hence, A contains ≤ n2bb+3 atoms. Step 2 is then feasible in time O(αn2bb+3). Finally, in
Step 3, we have to evaluate a Boolean CQ with ≤ b atoms over a database A consisting of
≤ n2bb+3 atoms. This is feasible inO(α(n2bb+3)b). In total, the entire computation required for
an application of Rule 4 thus fits into time O(||Σ||f(b)) for some function f(.), which depends
only on b but not on the size of the input.

An application of Rule 5 is very similar to Rule 4. The first two steps above are identical.
Only in Step 3 we do not search for a µ with At(ψ(x, yµ)) ⊆ A. At this stage, we know that
such a µ does not exist. Instead, we search for a µ, s.t. At(ψ(x, yµ)) ⊆ A ∪ At(ψ(x, y)) and
At(ψ(x, yµ)) ∩ A 6= ∅. If such a µ exists, we choose µ, s.t. At(ψ(x, yµ)) ∩ A is maximal
(w.r.t. set inclusion). Note that the desired s-t tgd τ ′ for replacing τ is obtained as τ ′ : ϕ(x ) →
(∃y ′)ψ′(x, y ′), s.t. At(ψ′(x, y ′)) = At(ψ(x, y )) \ {A | A ∈ At(ψ(x, y )) and Aµ ∈ A}. In
other words, the set of atoms in the conclusion of τ ′ becomes minimal if At(ψ(x, yµ)) ∩ A is
maximized. Clearly, Steps 1 and 2 above do not have to be repeated for Rule 5. Step 3 of an
application of Rule 5 boils down to essentially the same kind of CQ evaluation as for Rule 4.
We thus end up again with an upper bound of O(||Σ||g(b)) on the computation time, where g(.)

is a function, which depends only on b but not on the size of the input.

The restriction on the number of atoms in each s-t tgd is used in the above proof only in
order to show that each rule application is feasible in polynomial time. The argument that the
total number of rule applications is bounded by the total number of atoms in all s-t tgds in Σ

applies to any set Σ of s-t tgds. We thus get:

Corollary 1. The rewrite rule system consisting of Rules 1 – 5 is terminating, i.e., given an
arbitrary set Σ of s-t tgds, the non-deterministic, exhaustive application of the Rules 1 – 5
terminates.

It can be shown that the unique normal form produced by our rewrite rules is indeed optimal.

Theorem 3. A set Σ of s-t tgds in normal form is optimal according to Definition 3.

Proof. The proof proceeds in three stages:
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(1) Σ is split-reduced. Suppose to the contrary that it is not. Then there exists a set Σ′ with
Σ ≡ Σ′, |Σ| < |Σ′| and ConSize(Σ) = ConSize(Σ′). Let Σ∗ denote the result of exhaus-
tively applying our rewrite rules to Σ′. By Theorem 1, Σ and Σ∗ are isomorphic. Hence, we
have ConSize(Σ) = ConSize(Σ∗) and |Σ| = |Σ∗|. An inspection of the Rules 1 – 5 re-
veals that they may possibly decrement the value of ConSize() (by either deleting an atom in
the conclusion or deleting an entire s-t tgd) but they never increment the value of ConSize().
By ConSize(Σ) = ConSize(Σ′) together with ConSize(Σ) = ConSize(Σ∗), we immediately
have ConSize(Σ′) = ConSize(Σ∗). Hence, when transforming Σ′ into Σ∗, we never decrement
ConSize() and, thus, we never delete an s-t tgd. But then |Σ′| = |Σ∗| and, therefore, |Σ′| = |Σ|,
which contradicts the assumption that |Σ| < |Σ′| holds.

(2) ConSize(Σ) and VarSize(Σ) are minimal. It is easy to verify that by no application of
any of the Rules 1 – 5 the parameters ConSize() or VarSize() can increase, i.e., if a set Υ

of s-t tgds is obtained from some set Υ′ by an application of one of the Rules 1 – 5, then
ConSize(Υ) ≤ ConSize(Υ′) and VarSize(Υ) ≤ VarSize(Υ′).

Now let Σ′ be a set of s-t tgds equivalent to Σ, and let Σ∗ denote the result of exhaustively
applying our rewrite rules to Σ′. By Theorem 1, Σ and Σ∗ are isomorphic. Hence, we have
the following relations: ConSize(Σ) = ConSize(Σ∗) ≤ ConSize(Σ′) and also VarSize(Σ) =

VarSize(Σ∗) ≤ VarSize(Σ′).

(3) |Σ| and AntSize(Σ) are minimal. Let Σ′ be an arbitrary split-reduced set of s-t tgds equiv-
alent to Σ. We first show that |Σ| ≤ |Σ′|. Suppose to the contrary that |Σ| > |Σ′|. We
derive a contradiction by showing that then Σ′ is not split-reduced. By (2), we know that
ConSize(Σ) ≤ ConSize(Σ′) holds. Analogously to the proof of Lemma 7, we can transform
Σ into Σ̄ with ConSize(Σ̄) = ConSize(Σ′) simply by choosing an s-t tgd τ in Σ and inflating
its conclusion by sufficiently many atoms of the form P (u1, . . . , uk). In total, we then have
Σ̄ ≡ Σ′, ConSize(Σ̄) = ConSize(Σ′), and |Σ̄| > |Σ′|. Hence, Σ′ is not split-reduced.

It remains to prove AntSize(Σ) ≤ AntSize(Σ′) as the final inequality. It is easy to verify
that the parameter AntSize() can never increase when one of the Rules 1, 2, 4, or 5 is applied.
Moreover, by Lemma 7, we know that Rule 3 is never applicable when we transform a split-
reduced set of s-t tgds into normal form. Now let Σ∗ denote the normal form of Σ′. By Theorem
1, Σ and Σ∗ are isomorphic. Hence, we have AntSize(Σ) = AntSize(Σ∗) ≤ AntSize(Σ′).

An important motivation for seeking a conclusion-minimal mapping Σ is to keep the redun-
dancies in the target instance small when using Σ in data exchange. The following theorem
establishes that our normal form indeed serves this purpose.

Theorem 4. Let M = 〈S,T,Σ〉 be a schema mapping where Σ is a set of s-t tgds and Σ is
in normal form. Moreover, let Σ′ be another set of s-t tgds, s.t. Σ and Σ′ are equivalent and
let I be an arbitrary source instance. Then there exists a variable renaming λ on the variables
in the canonical universal solution CanSol(I,Σ), s.t. CanSol(I,Σ)λ ⊆ CanSol(I,Σ′) holds,
i.e., the canonical instance produced by Σ is subset-minimal up to variable renaming.
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Proof. It is easy to verify that every application of any of the Rules 1 – 5 either leaves the
corresponding canonical universal solution unchanged or prevents the introduction of some
atoms in the canonical universal solution, i.e., let the set Υ of s-t tgds be obtained from some
set Υ′ by an application of one of the Rules 1 – 5, then there exists a substitution µ, s.t.
CanSol(I,Υ)µ ⊆ CanSol(I,Υ′) holds. The theorem follows by an induction argument.

Before we conclude this chapter, two remarks on the splitting rule are in order:

(1) The purpose of the splitting rule is to enable a further simplification of the antecedents of
the resulting s-t tgds. Of course, it may happen that no further simplification is possible. As an
example, consider a schema mapping Σ = {R(x, y) ∧R(y, z)→ S(x, z) ∧ T (z, x)}. Splitting
yields Σ′ = {R(x, y) ∧ R(y, z) → S(x, z);R(x, y) ∧ R(y, z) → T (z, x)}, which cannot be
further simplified. In cases like this, one may either “undo” the splitting or simply keep track of
s-t tgds with identical (possibly up to variable renaming) antecedents in order to avoid multiple
evaluation of the same antecedent by the chase.

(2) Definition 2 gives a “semantical” definition of “split reduced” while the splitting rule is a
“syntactical” criterion. The following lemma establishes the close connection between them.

Lemma 7. Let Σ be a split-reduced set of s-t tgds and let Σ∗ denote the normal form of Σ. Then,
for every possible sequence of rewrite rule applications, this normal form Σ∗ is obtained from
Σ without ever applying Rule 3 (i.e., splitting).

Proof. Suppose to the contrary that there exists a sequence of rewrite rule applications including
the splitting rule on the way from Σ to Σ∗. An inspection of the rewrite rules shows that an
application of Rule 4 (i.e., deletion of an s-t tgd) is never required as a precondition in order to be
able to apply another rule. Hence, w.l.o.g., we may assume that Rule 4 is applied at the very end
of the transformation of Σ into Σ∗, so that Rule 4 does not precede the application of any other
rule. Let Σ0, . . . ,Σn with Σ0 = Σ and Σn = Σ∗ denote the sequence of intermediate results
along this transformation of Σ into Σ∗. Then there exists an i ∈ {1, . . . , n}, s.t. Σi is obtained
from Σi−1 by an application of Rule 3. Moreover, suppose that this is the first application of
Rule 3 along this transformation of Σ into Σ∗. Since we are assuming that all applications of
Rule 4 occur at the very end of this transformation from Σ to Σ∗, we have |Σi−1| = |Σ| and,
therefore, |Σi| > |Σ|. An inspection of the Rules 1, 2, 3, and 5 reveals that they may possibly
decrement the value of ConSize() (by deleting an atom in the conclusion via Rule 1 or 5) but
they never increment the value of ConSize(). Hence, we have ConSize(Σi) ≤ ConSize(Σ).
We derive a contradiction by constructing a set Σ′ equivalent to Σi (and, hence, to Σ), with
ConSize(Σ′) = ConSize(Σ) and |Σ′| > |Σ|. In other words, we show that Σ is not split-
reduced.

Let τ with τ : ϕ(x ) → ∃y ψ(x, y ) be an arbitrary s-t tgd in Σi and let P (z1, . . . , zk) with
{z1, . . . , zk} ⊆ x∪ y be an atom in the conclusion of τ . Clearly, we may add atoms of the form
P (u1, . . . , uk) for fresh, existentially quantified variables u1, . . . , uk to the conclusion without
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changing the semantics of Σ. Indeed, any such atom could be removed again by our Rule 1 (Core
of the conclusion). Then we transform Σi into Σ′ with ConSize(Σ′) = ConSize(Σi) simply
by inflating the conclusion of τ in Σi by sufficiently many atoms of the form P (u1, . . . , uk). In
total, we then have Σ′ ≡ Σi ≡ Σ, ConSize(Σ′) = ConSize(Σ), and |Σ′| = |Σi| > |Σ′|. Hence,
Σ is not split-reduced, which contradicts the assumption of this lemma.

If a mapping Σ contains redundancies in the sense that one of the Rules 1, 4, 5 is applicable,
then the notion of “split-reduced” according to Definition 2 and the non-applicability do not
necessarily coincide as the following example illustrates. However, if Rules 1, 4, 5 are not
applicable, then Definition 2 is exactly captured by the splitting rule (Rule 3), see Lemma 8.

Example 13. Consider the set Σ = {τ} of s-t tgds with τ : P (x1, x2)→ (∃y1, y2)R(x1, x2, y1)∧
R(x1, y1, y2). On the one hand, Rule 3 is not applicable because the conclusion of τ consists
of a single connected component. On the other hand, τ may be also simplified (via Rule 1 or
Rule 5) to the form τ ′ : P (x1, x2) → (∃y)R(x1, x2, y). Now let Σ′ consist of two “copies” of
τ ′, i.e., Σ′ = {τ ′, τ ′′} with τ ′′ : P (z1, z2) → (∃y)R(z1, z2, y). Then we have the equivalence
Σ ≡ Σ′. Moreover, |Σ′| > |Σ| and ConSize(Σ′) = ConSize(Σ). Hence, Σ is not split-reduced
in the sense of Definition 2.

Lemma 8. Let Σ be a set of s-t tgds, s.t. Σ is reduced w.r.t. Rules 1, 4, 5. Then the following
equivalence holds: Σ is split-reduced (according to Definition 2) iff Rule 3 (i.e., splitting) is not
applicable.

Proof. If Rule 3 is applicable to Σ, then Σ can obviously be transformed into an equivalent set
Σ′ with |Σ′| > |Σ| and ConSize(Σ′) = ConSize(Σ), i.e., Σ is not split-reduced according to
Definition 2.

Now suppose that the splitting rule is not applicable to Σ. We have to show that then Σ is
split-reduced. Suppose to the contrary that it is not split-reduced, i.e., there exists an equiva-
lent set Σ′ with |Σ′| > |Σ| and ConSize(Σ′) = ConSize(Σ). We derive a contradiction by
exploiting Theorem 1 (i.e., the uniqueness of the normal form according to Definition 7).

First, we observe that the normal form Σ∗ of Σ can be obtained via Rule 2 only. Indeed, by
assumption, none of Rules 1, 3, 4, 5 is applicable to Σ. Hence, either Σ already is in normal form
(i.e., Rule 2 is not applicable either) or Σ can be simplified via Rule 2. Clearly, an application of
Rule 2 does not enable the application of any of the other rules. Hence, Σ∗ is obtained by iterated
applications of Rule 2 only. Note that Rule 2 has no influence on the cardinality and on the
conclusion-size of a mapping. Hence, we have |Σ| = |Σ∗| and ConSize(Σ) = ConSize(Σ∗).

Second, let us transform Σ′ into normal form. By Theorem 1, this normal form is unique
up to isomorphism. Hence, w.l.o.g., this normal form of Σ′ is Σ∗. As far as the cardinality
of the involved mappings is concerned, we have |Σ′| > |Σ| and |Σ| = |Σ∗|. Hence, during
the transformation of Σ′ into |Σ∗|, eventually Rule 4 or 5 must be applied thus reducing the
conclusion-size. Hence, we have ConSize(Σ′) > ConSize(Σ∗). But this is a contradiction to
the above equalities ConSize(Σ′) = ConSize(Σ) and ConSize(Σ) = ConSize(Σ∗).
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CHAPTER 4
Normalization in the presence of target

egds

We now extend our rewrite rule system to schema mappings with both s-t tgds and target egds.
Several additional considerations and measures are required to arrive at a unique normal form
and a basis for the s-t tgd optimization also in this case. The outline of this chapter is as follows:

(1) We have already seen in Example 6 that the presence of egds may have an effect on the equiv-
alence between two sets of s-t tgds. We shall therefore first present a method of “propagating”
the effects of the egds into the s-t tgds in Section 4.1.

(2) Splitting has played an important role in all our considerations so far. It will turn out that
splitting via Rule 3 as in the tgd-only case is not powerful enough if egds are present. We shall
therefore present a generalization of the notion of “split-reduced” and of the splitting rule to the
case when also egds are present. This will lead to the notion of “egd-split-reduced” mappings in
Section 4.2.

(3) The intuition of “egd-split-reduced” mappings is that it is not possible to generate the atoms
in the conclusion of some tgd by means of several tgds. The antecedent may thus possibly be
left unchanged. It can easily be shown that, in general, there does not exist a unique “egd-split-
reduced” normal form. Therefore, in Section 4.3 we restrict this notion to “antecedent-split-
reduced” mappings, i.e.: a tgd is replaced by new tgds only if the new tgds have strictly smaller
antecedents than the original one. With this concept, we shall manage to prove that there always
exists a unique (up to isomorphism) normal form also in the presence of egds.

(4) Finally, we leave aside the considerations on splitting and concentrate on the optimization
of the set of s-t tgds according to the criteria of Chapter 3. We shall show in Section 4.4 that
grouping the s-t tgds by homomorphically equivalent antecedents is the key to any optimization
tasks in this area.
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(5) We also look at the operation opposite to splitting: namely, merge of s-t tgds with homomor-
phically equivalent antecedents. As we will show, unlike the s-t tgds only case, in the presence of
target dependencies the splitting of s-t tgds can cause an increase in the total number of conclu-
sion atoms. Hence, for some cases the merge operation can be a reasonable alternative. We will
show, however, that with respect to the unique normal form, the “merged” form of the mappings
is no more useful than the “egd-split-reduced” form.

4.1 Propagating the effect of egds into s-t tgds

An important complication introduced by the egds has already been hinted at in Chapter 1,
namely the equivalence of two sets of s-t tgds may be affected by the presence of egds:

Example 14. (Example 6 slightly extended).

Σst = {C(x1, x2, x3)→ (∃y1, y2) P (y1, y2, y2) ∧ P (y1, x2, x3)

C(x1, x2, x3)→ (∃y1)P (y1, x3, x2)

C(x1, x2, x2)→ Q(x1)}

Σ′st = {C(x1, x2, x3)→ (∃y1) P (y1, x2, x3)

C(x1, x2, x3)→ Q(x1)}

Σt = {P (x1, x2, x3)→ x2 = x3}
We have Σst ∪ Σt ≡ Σ′st ∪ Σt. Moreover, both Σst and Σ′st are in normal form w.r.t. the Rules
1 – 5 from Chapter 3. However, Σst 6≡ Σ′st holds.

In contrast, the equivalence of two sets of target egds is not influenced by the presence of s-t
tgds, as the following lemma shows.

Lemma 9. Suppose that Σ = Σst ∪ Σt and Υ = Υst ∪ Υt are two logically equivalent sets of
s-t tgds and target egds. Then, Σt and Υt are equivalent.

Proof. W.l.o.g. assume that there exists an ε : ϕ(x) → σ(x) ∈ Υt s.t. Σt 6|= ε. That is, the
set L = chase(At(ϕ(x)),Σt) of atoms of the antecedent of ε chased with Σt does not satisfy
ε. However, it does satisfy Σt. Now, consider the pair of instances 〈∅, L〉. Since L |= Σt,
〈∅, L〉 |= Σ and 〈∅, L〉 6|= Υ, which is a contradiction.

In order to work with logical equivalence, we need a way to test logical implication of
schema mappings. However, since we are now dealing with s-t tgds and egds, the declarative
implication criterion from Lemma 1 no longer works. Instead, we take the chase-based pro-
cedure by Beeri and Vardi [7], applicable to any embedded dependencies that cannot cause an
infinite chase (which is clearly the case when all tgds are s-t tgds).

Lemma 10. [7] Let Σ be a set of tgds and egds and let δ be either a tgd or an egd. Let ϕ(x )

denote the antecedent of δ and let T denote the database obtained by chasing At(ϕ(x )) with Σ.
The variables in x are considered as labelled nulls. Then Σ |= δ iff T |= δ holds.
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Procedure PROPAGATE

Input: Mapping Σ = Σst ∪ Σt, conjunction ϕ(x̄)
Output: Sets of dependencies ∆Σ

s (ϕ(x̄)) and ∆Σ
st(ϕ(x̄))

/* 1. chase with Σ = Σst ∪ Σt */
I := At(ϕ(x̄ ));
J := chase(I,Σ);
if chase fails having to unify c1 = c2, two distinct

constants occurring in ϕ(x̄) or in Σ then
return ({ϕ(x̄)→ c1 = c2}, ∅)

/* 2. compute s-t tgd τ */
let J = JS ∪ JT , s.t. JS is an instance over S

and JT is an instance over T;
let J∗ = core(JT ), where the variables that occur

in JS are considered as constants.
τ :=

(∧
A∈JS A

)
→ (∃ȳ )

∧
B∈J∗ B;

∆st := {τ};
/* 3. compute source egds */

∆s := ∅;
Compute a substitution λ s.t. At(ϕ(x̄λ)) = JS ;
for each pair of variables xj , xk ∈ x̄ do

if xjλ = xkλ then
∆s := ∆s ∪ {ϕ(x̄ )→ xj = xk};

/* 4. output result */
return (∆s,∆st);

Figure 4.1: PROPAGATE Procedure.

Analogously to Rule 4 in Figure 3.1, we also need a rule for deleting redundant tgds in the
presence of target egds. We shall refer to this rule as the Rule E1 in the rewrite rule system to
be constructed in this chapter, which is specified in Figure 4.2 (Section 4.3). As in the tgd-only
case, the primary goal of such a rewrite rule system is the definition of a unique normal form of
the s-t tgds – but now taking also the target egds into account. The first step towards this goal is
to incorporate the effects of egds into s-t tgds. As we have already pointed out in Chapter 1, this
may require the introduction of source egds. Since we only consider source instances containing
no variables, there will be no source chase. The source egds are only meant to capture the failure
conditions which cannot be detected otherwise after the rewriting of the s-t tgds.

In Figure 4.1, we present the procedure PROPAGATE, which allows to incorporate, to some
extent, the effect of the target egds into the s-t tgds and thereby possibly generates source egds.
The idea of this procedure is that, given an s-t tgd τ , we identify all egds in a given mapping Σ

that will be applicable in the chase with Σ whenever τ is. Moreover, we want that all equalities
enforced by these egds should already be enforced in the s-t tgd.

Definition 9 (Rewriting with PROPAGATE). Let Σ = Σst ∪ Σt be a set of source-to-target and
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target embedded dependencies. We say that the following set Σ∗ = Σs∪Σ∗st∪Σt is the rewriting
of Σ with PROPAGATE if:
• Σs is a set of all source egds produced by applying PROPAGATE to all pairs 〈ϕi,Σ〉, where
ϕi is the antecedent of an s-t tgd in Σst,

• Σ∗st is a set of all s-t tgds produced by applying PROPAGATE to all pairs 〈ϕi,Σ〉, where
ϕi is the antecedent of an s-t tgd in Σst.

Note that the chase in step 1 of PROPAGATE is not the usual chase in data exchange. Here, in
order to propagate backwards the effect of the target egds, we chase the database I = At(ϕ(x))

with labelled nulls, which instantiate the variables from x.

Example 15. We apply the PROPAGATE procedure to each s-t tgd in the set of dependencies
Σ = Σst ∪ Σt from Example 14. We start with the first tgd of Σst:

τ : C(x1, x2, x3)→ (∃y1, y2) P (y1, y2, y2) ∧ P (y1, x2, x3).

(a) I := {C(x1, x2, x3)}. (We now consider every xi as a labelled null).

(b) Chasing 〈I, ∅〉 with Σst yields the instance
I ′ = {C(x1, x2, x3), P (y′1, y

′
2, y
′
2), P (y′1, x2, x3), P (y′′1 , x3, x2)}.

The egd of Σt is then applied, resulting in
I ′′ = {C(x1, x2, x2), P (y′1, y

′
2, y
′
2), P (y′1, x2, x2), P (y′′1 , x2, x2)}.

Note, that the egd application affected the “source” atom C. Now, the third tgd in Σst becomes
applicable, producing the ultimate instance

J = 〈JS , JT 〉 = chase(〈I, ∅〉,Σ) =

{C(x1, x2, x2), P (y′1, y
′
2, y
′
2), P (y′1, x2, x2), P (y′′1 , x2, x2), Q(x1)}.

(c) We got instances
JS = {C(x1, x2, x2)} and
JT = {P (y′1, y

′
2, y
′
2), P (y′1, x2, x2), P (y′′1 , x2, x2), Q(x1)}.

Core computation of JT yields
J∗ = {P (y′1, x2, x2), Q(x1)}.

The s-t tgd τ is thus transformed into the following tgd
τ ′ : C(x1, x2, x2)→ (∃y′1) P (y′1, x2, x2) ∧Q(x1).

(d) We compute the substitution λ = {x3 ← x2}, which maps the only atom C(x1, x2, x3) in
ϕ(x ) onto instance JS = {C(x1, x2, x2)}. Hence, we get one source egd

C(x1, x2, x3)→ x2 = x3.

Finally, we obtain the sets
∆Σ
st(C(x1, x2, x3)) = {C(x1, x2, x2)→ (∃y′1)P (y′1, x2, x2) ∧Q(x1)} and

∆Σ
s (C(x1, x2, x3)) = {C(x1, x2, x3)→ x2 = x3}.

Since the antecedents of the other two s-t tgds in Σst coincide either with ant(τ) or with the
antecedent of the tgd in ∆Σ

st(C(x1, x2, x3)), the set ∆Σ
s (C(x1, x2, x3))∪∆Σ

st(C(x1, x2, x3))∪Σt

is the rewriting of Σ with PROPAGATE.
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Rewriting with the PROPAGATE procedure never increases the size of the antecedents of s-t
tgds. Hence, the cost of the join-operations when computing the canonical universal solution
is not affected. On the other hand, the size of the conclusions is normally increased by this
procedure. Note however that all atoms thus accumulated in the conclusion of some s-t tgd τ
would be generated in a target instance anyway, whenever τ fires. Deletion of redundant atoms
from the conclusion of the s-t tgds (via a rule similar to Rule 5 from Figure 3.1) will be a topic
of the next sections.

At this point, we will prove the correctness of rewriting with the PROPAGATE procedure.
The proof will work even for the case when the set of target constraints contains tgds, under the
assumption that these tgds never cause infinite chase sequences. We will start with showing an
auxiliary lemma.

Lemma 11. Let ∆Σ
s (ϕ(z̄)) ∪ ∆Σ

st(ϕ(z̄)) result from applying PROPAGATE to a CQ ϕ(z̄) and
a set of embedded dependencies Σ. Assume that ∆Σ

st(ϕ(z̄)) is not empty and thus contains a
tgd ϕ(x̄) → (∃ȳ) ψ(x̄, ȳ), where x̄ = z̄λ for some substitution λ, and let Iϕ denote a frozen
database of At(ϕ(x̄)). Then, the chase of Iϕ with Σ succeeds.

Proof. Note that ∆Σ
st(ϕ(z̄)) being not empty witnesses the fact that the chase of ϕ(z̄) does

not fail due to unification of some constants present in ϕ or in Σ (see step 1 of PROPAGATE).
Moreover, all equalities which are enforced by Σ on the elements of z are accumulated in the
substitution λ. It suffices to note that x = zλ, and that Iϕ has been produced from ϕ(x) by
assigning a fresh distinct constant to each variable in x. Thus, all unifications implied by Σ have
been already implemented in Iϕ by construction.

Lemma 12 (Soundness). For an arbitrary CQ ϕ(x), and a set of embedded dependencies Σ,
Σ |= ∆Σ

s (ϕ(x̄)) ∪∆Σ
st(ϕ(x̄)).

Proof. We prove Σ |= δ for δ ∈ ∆Σ
s (ϕ(x̄)) and for δ ∈ ∆Σ

st(ϕ(x̄)) separately:

δ ∈ ∆Σ
s (ϕ(x̄)). Let 〈KS ,KT 〉 be a pair of source and target instance with 〈KS ,KT 〉 |= Σ. We

have to show that then 〈KS ,KT 〉 |= δ holds. It suffices to show that, if 〈KS ,KT 〉 6|= δ, then the
chase of 〈KS , ∅〉 with Σ fails, i.e., rather than showing that KT is not a solution to KS under the
mapping Σ, we show that KS has no solution at all under Σ.

By construction, δ has the form ϕ(x̄)→ xi = xj , where xi, xj are either variables from x̄ or
constants. By 〈KS ,KT 〉 6|= δ, there exists a substitution λ with At(ϕ(x̄λ))⊆KS , i.e., λ defines
a homomorphism from At(ϕ(x̄)) to KS . Since CQs are closed under homomorphisms, we can
replay onKS the chase of At(ϕ(x̄)) with Σ (as carried out by the PROPAGATE procedure). Since
δ ∈ ∆Σ

s (ϕ(x̄)), this chase sequence contains the application of some egd ε which enforces the
equality xi = xj . Consider the chase on KS up to the corresponding application of the egd ε.
Suppose that the chase on KS is successful up to this egd application. Now the application of
ε enforces the equality xiλ = xjλ in KS . However, since 〈KS ,KT 〉 6|= δ, xiλ 6= xjλ holds in
KS , i.e., the chase of 〈KS , ∅〉 with Σ fails and, therefore, KS has no solution at all under Σ.
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δ ∈ ∆Σ
st(ϕ(x̄)). Let J = JS ∪ JT denote the result of chasing At(ϕ(x̄)) with Σ (according to

step 1 of PROPAGATE). By the computation of ∆Σ
st(ϕ(x̄)) in step 2, δ is of the form ϕ(x̄λ) →

∃ȳψ(x̄λ, ȳ) for some substitution λ.
We prove Σ |= δ by the implication criterion of Beeri and Vardi recalled in Lemma 10:

We can chase the antecedent ϕ(x̄λ) of δ by applying the same chase order as in the chase of
At(ϕ(x̄)) in step 1 of PROPAGATE. Clearly, this chase of At(ϕ(x̄λ)) yields exactly the same
result JT as the chase of At(ϕ(x̄)) with Σ, i.e., after replaying the chase of step 1 in PROPAGATE,
no additional dependencies fire. Note that At(ψ(x̄λ, ȳ)) ⊆ JT , since At(ψ(x̄λ, ȳ)) is obtained
from JT by core computation (in step 2 of PROPAGATE). Hence, there is a trivial homomorphism
from the conclusion ψ(x̄λ, ȳ) of δ to the result JT of the chase, namely the identity. Thus, by
Lemma 10, Σ |= δ holds.

Lemma 13 (Completeness). Let Σ = Σst ∪ Σt and σ ∈ Σst, s.t. ϕ(x̄) is the antecedent of σ
and let Σ∗ = (Σ \ {σ}) ∪∆Σ

s (ϕ(x̄)) ∪∆Σ
st(ϕ(x̄)). Then Σ∗ |= Σ holds.

Proof. Let σ = ϕ(x̄) → ∃ȳψ(x̄, ȳ ) and let 〈KS ,KT 〉 be a pair of source and target instance
with 〈KS ,KT 〉 |= Σ∗. Moreover, suppose that there exists a substitution ν on the variables x
with At(ϕ(x̄ν)) ⊆ KS . We have to show that there exists a substitution νy on the variables y
with At(ψ(x̄ν, ȳνy)) ⊆ KT .

We first note that the chase of At(ϕ(x̄)) with Σ succeeds. That is, it forces no equality
between distinct constant terms occurring either in ϕ(x̄) or in Σ. For, according to the initial
step of the PROPAGATE procedure, in this case ∆Σ

s (ϕ(x̄)) would contain a dependency with
ϕ(x̄) as antecedent and an unsatisfiable equality in the conclusion. Since, by our assumption,
there is a homomorphism from ϕ(x) toKS and CQs are closed under homomorphisms, all steps
of the chase of At(ϕ(x)) performed by PROPAGATE can be replayed on KS . Therefore, the
assumption 〈KS ,KT 〉 |= Σ∗ implies that the chase of At(ϕ(x̄)) with Σ succeeds, and thus
∆Σ
st(ϕ(x̄)) contains a tgd τ = ϕ(x̄λ)→ ∃z̄χ(x̄λ, z̄ ) for some substitution λ.

Since KS satisfies all source egds produced by PROPAGATE, there exists a substitution µ
on the variables in ϕ(x̄λ), s.t. ν = λµ and, therefore, ϕ(x̄ν) = ϕ(x̄λµ). We can replay on
At(ϕ(x̄λ)) the chase of At(ϕ(x̄)) with Σ (as carried out by the PROPAGATE procedure). More-
over, it can be easily verified that the chase of At(ϕ(x̄λ)) with Σ yields exactly the same result as
the chase of At(ϕ(x̄)) with Σ, i.e.: we get J = JS ∪JT with JS = At(ϕ(x̄λ)) as in the PROPA-
GATE procedure. In the chase of At(ϕ(x̄λ)), eventually also the s-t tgd σ fires and produces the
atoms At(ψ(x̄λ, ȳ ′)) for fresh labelled nulls y ′. In the further course of the chase of At(ϕ(x̄λ)),
some equalities may be enforced on the labelled nulls y ′. Hence, there exists a substitution η on
y, s.t. At(ψ(x̄λ, ȳη)) ⊆ JT . By the construction of τ in step 2 of PROPAGATE, At(χ(x̄λ, z̄)) is
the core of JT . Hence, there exists a substitution η∗ on y, s.t. At(ψ(x̄λ, ȳη∗)) ⊆ At(χ(x̄λ, z̄)).

Clearly, 〈KS ,KT 〉 |= τ since τ ∈ Σ∗ and 〈KS ,KT 〉 |= Σ∗. Moreover, At(ϕ(x̄ν)) ⊆ KS

and ν = λµ. Therefore, we have At(ϕ((x̄λ)µ)) ⊆ KS . Hence, there exists a substitution µz
on z with At(χ(x̄λµ, z̄µz)) ⊆ KT . But then νy = η∗µz is the desired substitution on y with
At(ψ(x̄ν, ȳνy)) ⊆ KT .
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4.2 Splitting in the presence of egds

The following example illustrates that the splitting rule (i.e., Rule 3 in Figure 3.1) does not
suffice to detect the possibility of splitting a “bigger” tgd into smaller ones in the presence of
target egds:

Example 16. Consider the following mapping Σ = {τ, ε}

τ : S(x, z1) ∧ S(x, z2)→ (∃y) R(z1, y) ∧Q(z2, y)

ε : R(x1, y1) ∧Q(x2, y2)→ y1 = y2

It is easy to check that Σ is equivalent to the mapping Σ′ = {τ1, τ2, ε} with the same target egd
and two s-t tgds, each containing only a subset of the antecedent and conclusion atoms of τ :

τ1 : S(x, z1)→ (∃y) R(z1, y)

τ2 : S(x, z2)→ (∃y) Q(z2, y)

The Rule 3 from Chapter 3 does not allow such a splitting, however.

In some sense, the splitting in the above example still had significant similarities with split-
ting in the absence of egds, namely: the basic idea of distributing the conclusion atoms over
several dependencies is still present when target egds have to be taken into account. However,
we have to deal with a significant extension here: Without egds it would never be possible to
split the connected component (w.r.t. the existential variables) of the conclusion of a tgd. As
we have seen in the above example, egds may allow us to tear a connected component apart.
Moreover, splitting in the presence of egds is not merely distributing atoms of the conclusion of
some dependency over several ones. The following example illustrates that we may also have to
copy atoms in order to further split the conclusion of a tgd.

Example 17. Consider the following mapping Σ

τ : S(x1, x2) ∧ S(x1, x3)→ (∃y) R(x2, y) ∧ P (y, x2) ∧Q(y, x3)

ε : R(x, y1) ∧R(x, y2)→ y1 = y2

The s-t tgd τ can be rewritten in the following way:

τ1 : S(x1, x2) ∧ S(x1, x3)→ (∃y) R(x2, y) ∧Q(y, x3)

τ2 : S(x1, x2)→ (∃y) R(x2, y) ∧ P (y, x2)

Both τ1 and τ2 must contain an R-atom.

We observe that the total number of atoms in all conclusions in the resulting mapping in
Example 17 has increased. But compared with the original mapping τ , each conclusion is strictly
smaller than the original one. (i.e., is obtained by deletion of at least one atom and possibly
the renaming of some variable occurrences). We thus generalize the notion of split-reduced
mappings from the s-t tgd-only case:
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Definition 10. Let Σ = Σst∪Σt be a schema mapping. The tgd τ : ϕ(x)→ (∃y) ψ(x, y) ∈ Σst

is egd-split-reduced, if it is not possible to replace it by a set of new s-t tgds τi with antecedent
ϕi and conclusion ψi, s.t. At(ϕi) ⊆ At(ϕ) and |At(ψi)| < |At(ψ)|. Σst is said to be egd-split-
reduced if each dependency in it is.

The above notion of egd-split-reduced mappings generalizes the notion of split-reduced
mappings from Definition 2 to mappings with target egds. The connection between the two
notions of splitting is formalized by the following lemma:

Lemma 14. Let Σ = Σst ∪ Σt be a schema mapping with Σt = ∅ and suppose that Σst cannot
be simplified by any of the Rules 1,4, and 5 from Figure 3.1 (i.e., the rules which would reduce
ConSize(Σst) are not applicable). Then the following equivalences hold: Σst is egd-split-
reduced iff Σst is split-reduced iff Rule 3 (i.e., splitting) cannot be applied.

Proof. The second equivalence was already shown in Lemma 8. Below we show that Σst is
egd-split-reduced iff Rule 3 (i.e., splitting) cannot be applied.

First suppose that Rule 3 (i.e., splitting) actually can be applied to Σst. Then some τ ∈ Σst

can be replaced by tgds τ1, . . . , τn, s.t. the antecedent of each τi coincides with the antecedent
of τ and the conclusion of each τi is a proper subset of the conclusion of τ . Hence, Σst is not
egd-split-reduced.

Now suppose that Σst is not egd-split-reduced. We have to show that then Rule 3 can be
applied. Suppose to the contrary that Rule 3 cannot be applied. We derive a contradiction
by showing that then one of the Rules 1, 4, 5 is applicable to Σ: Since Σst is not egd-split-
reduced, there exists a τ ∈ Σst with antecedent ϕ which can be replaced by a set of new
tgds {τ1, . . . , τn}, s.t. for every i, At(ϕi) ⊆ At(ϕ) and |At(ψi)| < |At(ψ)| hold, where ϕi
and ψi respectively denote the antecedent and conclusion of τ . Moreover, Σ ≡ Σ′ holds with
Σ′ = (Σ \ {τ}) ∪ {τ1, . . . , τn}. In particular, Σ′ |= τ . By Lemma 4, then either (1) Σ′ |= τ ′

holds for some proper instance τ ′ of τ (see Definition 6) or (2) τ is already implied by a single
tgd σ ∈ Σ′.

In case (1), we clearly also have Σ |= τ ′ for the proper instance τ ′ of τ . But then, by
Lemma 5, Rule 5 is applicable to τ , which is a contradiction. It remains to consider case (2).
Clearly, σ 6∈ Σ \ {τ} since otherwise τ could be deleted from Σ via Rule 4. So let σ =

τj for some j. We thus have Σ̄ |= τ with Σ̄ = (Σ \ {τ}) ∪ τj and, therefore, also Σ̄ ≡
Σ. Moreover, |At(ψj)| < |At(ψ)| holds, which implies ConSize(Σ̄) < ConSize(Σ). Now
suppose that we transform both Σ and Σ̄ into the unique (up to isomorphism) normal form Σ∗

according to Definition 7. By assumption, none of the Rules 1, 3, 4, and 5 is applicable to Σ.
Hence, by the same considerations as in the proof of Lemma 8, Σ∗ is obtained by successive
applications of Rule 2, which leaves the conclusions of the tgds unchanged. Hence, we have
ConSize(Σ∗) = ConSize(Σ). On the other hand, if we transform Σ̄ into the normal form
Σ∗, then we never increase the conclusion size. Hence, from the inequality ConSize(Σ̄) <
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ConSize(Σ) we may infer ConSize(Σ∗) < ConSize(Σ), which contradicts the equality that
we have just derived.

In Figure 4.2 we present the Rule ES, whose exhaustive application obviously transforms
any mapping into an egd-split-reduced one. Alas, the following example shows that we cannot
hope to get a unique egd-split-reduced mapping.

Example 18. Consider the schema mapping Σ consisting of a single s-t tgd and a number of
target egds:

S(1, x) ∧ S(1, 2) ∧ S(y, 2)→ (∃x, v, w) T (x, y, z) ∧ P (x, z) ∧R(y, z) ∧Q(z, v, w)

T (x, y, z) ∧ P (x, z) ∧Q(z, v, w)→ v = w

T (x, y, z) ∧R(y, z) ∧Q(z, v, w)→ v = w

T (x, y, z1) ∧ P (x, z2) ∧Q(w, v, v)→ z1 = z2

T (x, y, z1) ∧R(y, z2) ∧Q(w, v, v)→ z1 = z2

This mapping is not in the egd-split-reduced form, since the antecedent of the s-t tgd can be
shrunk by extracting either the P or the Q atom from the conclusion. Σ′st and Σ′′st are two
possible transformations of Σ into egd-split-reduced form via the Rule ES.

Σ′st = { S(1, x) ∧ S(1, 2) ∧ S(y, 2)→ (∃z, v, w)T (x, y, z) ∧R(y, z) ∧Q(z, v, w),

S(1, x) ∧ S(1, 2)→ (∃z) P (x, z)} and

Σ′′st = { S(1, x) ∧ S(1, 2) ∧ S(y, 2)→ (∃z, v, w) T (x, y, z) ∧ P (x, z) ∧Q(z, v, w),

S(1, 2) ∧ S(y, 2)→ (∃z) R(y, z)}.

Clearly, the problem in Example 18 is not just due to the definition of the Rule ES. Instead,
it is an intrinsic problem of the notion of egd-split-reduced mappings. Apparently this extent of
splitting is too strong. We shall therefore relax the notion of egd-split-reduced. This will be the
topic of the next section.

4.3 Antecedent-split-reduced mappings

In Example 18 we observed that certain antecedent atoms may be freely distributed between
several tgds, if the idea of splitting from Chapter 3 is directly adopted in the setting with target
constraints. Therefore, in order to arrive at an intuitive definition of a unique normal form, we
shift our focus to the antecedents:

Definition 11. Let Σ = Σst ∪ Σt be a schema mapping. The s-t tgd τ : ϕ(x) → (y) ψ(x, y)

in Σst is antecedent-split-reduced, if it is not possible to replace it with a set of new s-t tgds τi
each having strictly smaller antecedent, i.e., for the antecedents ϕi, we get |At(ϕi)| < |At(ϕ)|.
Σst is said to be antecedent-split-reduced if each dependency in it is.
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Rewrite Rules in the Presence of Egds

Rule E1 (General implication).
Σ =⇒ Σ \ {τ}
if Σ \ {τ} |= τ .

Rule E2 (Restriction of an antecedent to endomorphic images).
Σ =⇒ (Σ \ {τ}) ∪ {τ1, . . . , τn}
if τ : ϕ(x )→ (∃y )ψ(x, y )
and (Σ \ {τ}) ∪ {τ1, . . . , τn} |= τ
and for each i ∈ {1, . . . , n}
τi : ϕi(xi)→ (∃yi)ψi(xi, yi),
s.t. ∃λ, At(ϕ(xλ)) = At(ϕi(xi)) ⊂ At(ϕ(x))
and ψi(xi, yi) = core(At(ϕi(xi)),Σ).

Rule E3 (Implication of atoms in the conclusion).
Σ =⇒ (Σ \ {τ}) ∪ {τ ′}
if τ : ϕ(x )→ (∃y )ψ(x, y )
and τ ′ : ϕ(x )→ (∃y ′)ψ′(x, y ′),
s.t. At(ψ′(x, y ′)) ⊂ At(ψ(x, y ))
and (Σ \ {τ}) ∪ {τ ′} |= τ .

Rule ES (generalized splitting in the presence of egds).
Σ =⇒ (Σ \ {τ}) ∪ {τ1, . . . , τn}
if τ : ϕ(x )→ (∃y )ψ(x, y )
and (Σ \ {τ}) ∪ {τ1, . . . , τn} |= τ
and for each i ∈ {1, . . . , n}
τi : ϕi(xi)→ (∃yi)ψi(xi, yi),
s.t. ∅ ⊂ At(ϕi(xi)) ⊆ At(ϕ(x))
and At(ψi(xi, yiµi)) ⊂ At(ψ(x, y)) for a substitution µi.

Rule E2-eager (Restriction of an antecedent to subsets).
Σ =⇒ (Σ \ {τ}) ∪ {τ1, . . . , τn}
if τ : ϕ(x )→ (∃y )ψ(x, y )
and (Σ \ {τ}) ∪ {τ1, . . . , τn} |= τ
and for each i ∈ {1, . . . , n}
τi : ϕi(xi)→ (∃yi)ψi(xi, yi),
s.t. ∅ ⊂ At(ϕi(xi)) ⊂ At(ϕ(x))
and ψi(xi, yi) = core(At(ϕi(xi)),Σ).

Figure 4.2: Rewrite rules in the presence of egds.

In order to transform a mapping into an antecedent-split-reduced one, we define the rule
E2-eager in Figure 4.2. It can be shown that any normal form under a rule rewrite system
containing Rule E2-eager is antecedent-split-reduced and vice versa. In this rule, we have to
inspect all subsets of the antecedent database of each tgd. Actually, we will show that it suffices
to check all subsets ϕi of an antecedent ϕ(x), such that ϕi is a proper endomorphic image of
ϕ(x). This is what the Rule E2 in Figure 4.2 does. Clearly, the number of endomorphic images
is, in general, far smaller than the number of all subsets. In particular, we never have to check
antecedents smaller than the core of the already present antecedents (here we mean the core of
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the conjunctive query – without distinguishing two groups of variables as we did in the definition
of the Rules 1 and 2). The following Theorem shows that both, the rule E2-eager and the rule
E2 exactly capture the notion of antecedent-split-reduced mappings.

Theorem 5. Let Σ = Σst ∪ Σt be a schema mapping in which no tgd can be deleted via the
Rule E1. Then the following properties are equivalent:

1. Σ is antecedent-split-reduced.

2. Σ is reduced w.r.t. Rule E2-eager.

3. Σ is reduced w.r.t. Rule E2.

Proof. (1)⇔ (2) follows directly from the definition of antecedent-split-reduced form.

(2) ⇒ (3) is trivial, as every proper endomorphic image of a set of atoms At(ϕ) is a proper
subset of At(ϕ).

(3)⇒ (2). Consider an application of Rule E2-eager, in which it substitutes some s-t tgd τ in Σ

with a set of s-t tgds T , s.t. Σ ≡ Σ \ {τ} ∪ T . Let now ϕ be the antecedent of τ , and ϕi be the
antecedent of some tgd τi ∈ T . By definition of E2-eager, At(ϕi) ⊂ At(ϕ). We have to show
that At(ϕi) is an endomorphic image of At(ϕ). Suppose to the contrary that it is not. We show
that then τi is “superfluous” in T : Namely, the property (Σ \ {τ}) ∪ T \ {τi} ≡ (Σ \ {τ}) ∪ T
holds. Of course, if T only contains such tgds which are superfluous, then the tgd τ itself can
be deleted by Rule E1, which is a contradiction to the assumption of this theorem. On the other
hand, if T is non-empty and contains only tgds whose antecedent is an endomorphic image of ϕ
then also Rule E2 is applicable.

To show that τi is superfluous in T , consider the following two cases:

(a) There exists no homomorphism At(ϕ) → At(ϕi). Then, τi is superfluous in T , in a sense
that the property (Σ \ {τ})∪T \ {τi} |= τ holds. Indeed, according to E2-eager, the conclusion
of τi was created by chasing At(ϕi) with Σ. Since At(ϕ) 6→ At(ϕi), τ played no role in that
chase, and thus Σ \ {τ} |= τi holds, and hence τi is indeed superfluous.

(b) There exists a homomorphism At(ϕ)→ At(ϕi). Let Λ denote the set of all homomorphisms
At(ϕ) → At(ϕi). Then we define Tϕ ⊂ T , s.t. Tϕ = {τj ∈ T | At(ϕj) = At(ϕ(xλ)) for
some λ ∈ Λ}, i.e., the antecedents of the tgds in Tϕ are subsets of ϕi and, at the same time,
endomorphic images of ϕ. Similarly to the previous case, one can show that (Σ\{τ})∪Tϕ |= τi

holds. Thus τi is superfluous.

By construction of τi, we have Σ |= τi. Indeed, consider the implication test of Lemma 10,
in which the database At(ϕi), obtained from the antecedent of τi, is chased by Σ. The effect
of τ in this chase is exactly the generation of conclusion atoms by instantiating the existentially
quantified variables y in ψ(xλ, y), where ψ(x, y) is the conclusion of τ and λ is an endomor-
phism transforming the antecedent ϕ(x) of τ into its subformula ϕi(x) = ϕ(xλ), which is the
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antecedent of τi. But then, by definition of Rule E2, there exists a substitution µ such that
ψ(xλi, yµ) is a subformula of the conclusion of some τϕ ∈ Tϕ: Indeed, Rule E2 takes exactly
all endomorphic images of ϕ and performs the chase with Σ to derive the conclusion of an s-t
tgd in Tϕ. Note that the substitution µ captures the effect of egds possibly fired by the chase
which derives the conclusion of τϕ from its antecedent ϕ(xλ); these egds will surely be also
fired in the chase of At(ϕi).

Let the chase of At(ϕi) with τ yield the target instance J , and the chase of At(ϕi) with
Tϕ yield J ′. Then, it is easy to see that a homomorphism J → J ′ must exist. But then,
chase(At(ϕi),Σ) |= τi only if chase(At(ϕi),Σ′) |= τi with Σ′ = (Σ \ {τ}) ∪ Tϕ Hence, it
must be the case that (Σ \ {τ}) ∪ Tϕ holds and, therefore, τi is superfluous.

There is a close connection between antecedent-split-reduced mappings and the split-reduced
form from Definition 2:

Lemma 15. Let Σ = Σst ∪ Σt be a schema mapping with Σt = ∅ and suppose that Σst cannot
be simplified by any of the Rules 1,4, and 5 from Figure 3.1 (i.e., the rules which would reduce
ConSize(Σst) are not applicable). Then the following equivalence holds: Σst is antecedent-
split-reduced iff Rule 3 (i.e., splitting) cannot be applied in such a way that the antecedents of
all resulting dependencies can be further simplified (by Rule 2).

Proof. First suppose that Rule 3 (i.e., splitting) followed by a simplification of the antecedent
of each new tgd is applicable. Then, in the first place, some τ ∈ Σst can be replaced by tgds
τ1, . . . , τn, s.t. the antecedent of each τi coincides with the antecedent of τ and the conclusion of
each τi is a proper subset of the conclusion of τ . Moreover, each τi can then be transformed via
Rule 2 into τ ′i , s.t. the antecedent of τ ′i is a proper subset of the antecedent of τ and, therefore,
also of τ . Hence, Σst is not antecedent-split-reduced.

For the opposite direction, suppose that Σst is not antecedent-split-reduced. We have to show
that then Rule 3 can be applied followed by applying Rule 2 to each of the new tgds. Since Σst is
not antecedent-split-reduced, there exists a τ ∈ Σst with antecedent ϕ which can be replaced by
a set of new tgds {τ1, . . . , τn}, s.t. for every i, At(ϕi) ⊂ At(ϕ) and |At(ψi)| < |At(ψ)| hold,
where ϕi and ψi respectively denote the antecedent and conclusion of τ . Moreover, Σ ≡ Σ′

holds with Σ′ = (Σ \ {τ}) ∪ {τ1, . . . , τn}.
Analogously to the proof of Theorem 5, we may assume w.l.o.g., that each of the new an-

tecedents ϕi is an endomorphic image of ϕ. Moreover, we may assume w.l.o.g., that each ψi
contains only one connected component since otherwise we simply split τi further via Rule 3.
We claim that for every connected component of ψ, there is one i, s.t. this connected component
corresponds to ψi. Suppose to the contrary that there is a connected component χ of ψ which
does not have a corresponding ψi. Then we derive a contradiction as follows. The tgd τ ′ ob-
tained from τ by reducing the conclusion ψ to χ is clearly implied by Σ′. Hence, by Lemma
4, either (1) Σ′ |= τ ′′ holds for some proper instance τ ′′ of τ ′ (see Definition 6) or (2) τ ′ is
already implied by a single tgd σ ∈ Σ′. In case (1), we thus have Σ |= τ ′′ for the proper instance

52



τ ′′ of τ ′. But then, also Σ |= τ∗, where τ∗ denotes the tgd obtained from τ by replacing the
connected component χ by the conclusion of τ ′′ (i.e., a proper instance of χ) and leaving all
other connected components unchanged. By Lemma 5, Rule 5 is applicable to τ ∈ Σ, which
is a contradiction. Now consider case (2), i.e., τ ′ is implied by a single tgd σ ∈ Σ′. Clearly, σ
cannot be contained in Σ \ {τ} since this would mean that the connected component χ of the
conclusion of τ could be deleted from Σ via Rule 5. So suppose that σ = τj for some j, i.e., we
have τj |= τ ′. By Lemma 10, this means that the conclusion χ of τ ′ can be obtained by chasing
the antecedent ϕ of τ ′ with χ. Note however that χ is a single connected component. Hence, all
of χ is obtained in a single chase step, since otherwise we conclude that also a proper instance
of τ ′ is implied by τj and we proceed as in case (1). Since χ is obtained in a single chase step,
the conclusion of τj indeed comprises all of χ.

To conclude the proof, recall the above observation that each of the antecedents ϕi is an
endomorphic image of ϕ. But then we can indeed apply Rule 2 in the reverse direction to extend
each ϕi to ϕ. Let the resulting tgds be called {τ̄1, . . . , τ̄n}. Then we indeed have that τ ∈ Σ

may be replaced by {τ̄1, . . . , τ̄n} via Rule 3 and each τ̄i may be further simplified via Rule 2 to
τi with strictly smaller antecedent.

Most importantly, the notion of antecedent-split-reduced mappings allows us to define a
unique (up to isomorphism) normal form of the set of s-t tgds. To this end, we consider the
transformation of an arbitrary mapping consisting of s-t tgds and target egds by the PROPAGATE

procedure from Figure 4.1 followed by exhaustive application of the rules E1 and E2 from
Figure 4.2. Below we show that the resulting normal form is indeed unique up to isomorphism:

Lemma 16. The rewrite rules E1 and E2 in Figure 4.2 are correct, i.e.: Let Σ be a set of s-t tgds
and target egds and let Σ′ be the result of applying one of the rules E1 or E2 to Σ. Then Σ ≡ Σ′.

Proof. The correctness follows directly from the fact that a logical implication test is built into
the rules E1 and E2.

Theorem 6. Let Σ = Σst∪Σt and Υ = Υst∪Υt be two logically equivalent schema mappings
consisting of s-t tgds and target egds and let 〈Σs,Σ

∗
st,Σt〉 and 〈Υs,Υ

∗
st,Υt〉 be obtained by first

rewriting Σ resp. Υ with the PROPAGATE procedure and then exhaustively applying Rules E1
and E2 to the rewritten sets of s-t tgds in these mappings. Then Σt ≡ Υt holds and Σ∗st and Υ∗st
are isomorphic.

Proof. The equivalence Σt ≡ Υt was shown in Lemma 9. It remains to show that Σ∗st and Υ∗st
are isomorphic.

Let σ ∈ Σ∗st be an arbitrary s-t tgd in Σ∗st. We have to show that it has an isomorphic
analogue in Υ∗st (and vice versa). Let Σ̄σ denote the set of s-t tgds whose antecedents are the
proper subsets of σ and whose conclusions are obtained by chasing the corresponding antecedent
database with Σ∗st∪Σt (i.e., we get s-t tgds analogous to the τi’s in Rule E2). By Lemma 11, the
chase of the frozen antecedent database of σ with Σ succeeds. The same must then hold for any
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set of tuples from this database: the antecedent of σ and all its subformulas satisfy Σs. Then, by
Lemmas 12 and 13, the conclusion obtained by chasing Σ∗st ∪ Σt must have the same core as if
it were obtained by chasing with Σ.

By Υ |= σ, there exists a subset T ⊆ Υs∪Υ∗st∪Υt, s.t. T ∪Σs∪ Σ̄σ ∪Σt∪Σ∗st \ {σ} |= σ.
We claim that there even exists a set Tσ ⊆ Υ∗st with Tσ ∪ Σs ∪ Σ̄σ ∪ Σt ∪ Σ∗st \ {σ} |= σ, s.t.
every τ ∈ Tσ fulfils the following properties:

1. The antecedents ϕτ (xτ ) of τ and ϕσ(xσ) of σ are homomorphically equivalent;

2. there exists a substitution λ, s.t. ϕτ (xτλ) = ϕσ(xσ). That is, the antecedent of τ can be
mapped onto the entire antecedent of σ;

3. τ is not equivalent to any dependency in Σst \ {σ}

In order to prove this claim, we start with a set T ⊆ Υs ∪ Υ∗st ∪ Υt, s.t. T ∪ Σs ∪ Σ̄σ ∪ Σt ∪
Σ∗st \ {σ} |= σ and remove all parts from T until a subset Tσ ⊆ T with the desired properties is
obtained. It is convenient to write Σ∗ as a short-hand for Σs ∪ Σ̄σ ∪ Σt ∪ Σ∗st \ {σ}.
(a) Eliminate Υs from T . This is justified by the fact that Υ∗st ∪ Υt |= σ holds. Suppose to
the contrary that σ is not implied by Υ∗st ∪ Υt. Let I be an instance over the schema 〈S,T〉,
in which the only non-empty relations are those of the antecedent database At(ϕσ(xσ)) of σ.
Then, chase(I,Υst∪Υt) 6|= σ, whereas chase(I,Υs∪Υst∪Υt) |= σ. Since source dependen-
cies in Υs are only applicable to relations of the source schema, it must hold that Υs modifies
At(ϕσ(xσ)); otherwise there would be no difference between the two chase results. That is,
At(ϕσ(xσ)) 6|= Υs. By Lemma 13, this means that the chase of At(ϕσ(xσ)) with Υ fails. Thus,
also the chase with Σ fails, which contradicts Lemma 11.

(b) Eliminate Υt from T . The correctness of this step follows immediately from the equivalence
Υt ≡ Σt that we showed in Lemma 9.

(c) Eliminate every tgd τ from T which is equivalent to some σ′ ∈ Σ∗st \ {σ}. Clearly, after such
a reduction, we still have T ∪ Σ∗ |= σ with Σ∗ = Σs ∪ Σ̄σ ∪ Σt ∪ Σ∗st \ {σ}.
(d) Eliminate from T all dependencies with the antecedent ϕi(xi) which is not homomorphically
equivalent to the antecedent ϕσ(xσ) of σ. Indeed, for every s-t tgd τi ∈ Υ∗st with the antecedent
“more specific” than ϕσ(xσ), we may conclude that for arbitrary Σ′, such that Σ′ |= σ, it holds
that Σ′ \ {τi} |= σ. For every τj with the antecedent “more general” than ϕσ(xσ), we have that
Σ∗ \ {σ} |= τj , and therefore, τj is redundant in T ∪ Σ∗ \ {σ}.
(e) Eliminate from T all s-t tgds with the antecedents ϕk(xk) such that there exists no variable
substitution λ : ϕk(xkλ) = ϕσ(xσ), where ϕσ(xσ) again denotes the antecedent of σ. First
observe that there are no dependencies in T whose antecedents under any variable substitution
are supersets of ϕσ(xσ), since they are “more specific” than ϕσ(xσ) and have therefore been
removed in the previous step.

Now consider the substitutions λki, s.t. ϕk(xkλki) ⊂ ϕσ(xσ) and the corresponding s-t tgds
τk ∈ T . We claim that the following property holds:
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For any set of dependencies K such that τk ∈ K, K |= σ iff (K \ {τk})∪Kτk |= σ, where Kτk

is the set of all instantiations of τk with λki: τki = ϕk(xkλki)→ ∃yk ψ(xkλki, yk).

The claim follows from the consideration of the implication test by Beeri and Vardi [7]: to chase
the antecedent database At(ϕσ(xσ)) of σ, τk is instantiated by every λki and thus has the same
effect in the chase as Kτk . Hence, every τk in T whose antecedent cannot be projected onto the
entire ϕσ(xσ) may be replaced by the respective instantiations Kτk .

We now recall that the antecedents of the s-t tgds ρl ∈ Σ̄σ ⊂ Σ∗ range over all possible
subsets of ϕσ(xσ). That is, for each τki with the antecedent ϕk(xkλki) there exists ρki with the
identical antecedent and with the conclusion obtained by chasing ϕk(xkλki) with Σ. Since Σ

and Υ are equivalent, we conclude that ρki |= τki, and thus Σ∗ |= Kτk for every τk. Hence, it
is indeed allowed to eliminate from T all s-t tgds with the antecedents ϕk(xk) such that there
exists no variable substitution λ : ϕk(xkλ) = ϕσ(xσ).

After the above five elimination steps, T is indeed reduced to a set Tσ of the desired form. Note
that Tσ is non-empty. This can be seen as follows: The s-t tgd σ is reduced w.r.t. rules E1 and
E2. Hence, Σs ∪ Σ̄σ ∪ Σt ∪ Σ∗st \ {σ} 6|= σ and, therefore, Tσ must be non-empty.

By obvious symmetry reasons, the same holds for any s-t tgd τ ∈ Υ∗st as well: each τ must
also have such a corresponding non-empty set Sτ ⊆ Σ∗st, with elements satisfying the conditions
1–3.

We now construct a directed bipartite graphG = (V1, V2, E) as follows: We associate the s-t
tgds in Σ∗st and Υ∗st with the vertices, s.t. V1 = Σ∗st and V2 = Υ∗st. Moreover, whenever τ ∈ Tσ
(resp. σ ∈ Sτ ), then there is an edge from τ to σ (resp. from σ to τ ).

The conditions 1–3 of Tσ and Sτ translate into the following properties of the graph G:

a. Every vertex has an incoming edge, since the sets Tσ and Sτ are non-empty.

b. Cycles in G have length at most 2. Indeed, by property 2, an edge from τ to σ implies that
the size of the antecedent of τ is no less than the size of σ. But then all s-t tgds associated
to the vertices in a cycle must have antecedents of equal size. By properties 1 and 2,
all such antecedents are isomorphic. This means that the conclusions are isomorphic as
well, since they are obtained as cores of the chase of isomorphic source instances with
equivalent sets of dependencies (procedure PROPAGATE).

c. Vertices that participate in such a two-edge cycle are disconnected from the rest of the
graph. This follows from the fact that the corresponding s-t tgds are equivalent, and thus
any other edge would contradict the property 3.

We obtained a graph, of which each vertex should be connected by an incoming path to a
cycle: there is only a finite number of vertices, and from each vertex an infinite incoming path
can be traced, by the property (a). Considering (c), this is only possible if each vertex itself
belongs to a cycle, and, by (b), G must consist of connected components of size 2. In total, this
means, that every s-t tgd σ ∈ Σ∗st has an isomorphic counterpart τ ∈ Υ∗st and vice versa.
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The question now is how to further simplify the set of s-t tgds. Due to the egds, we could
strengthen Rule 5 from Chapter 3 (i.e., deletion of redundant atoms from some conclusion) to
the Rule E3 in Figure 4.2. Unfortunately, this would again lead to a non-unique normal form as
the following example illustrates.

Example 19. Consider the mapping consisting of two s-t tgds and one egd:

S(x, y)→ (∃z) P (x, z) ∧Q(x, z)

S(x, y)→ (∃z) R(x, z) ∧Q(x, z)

P (x, z1) ∧R(x, z2)→ z1 = z2

It is easy to verify that the atom Q can be eliminated by the rule E3 from the conclusion of any
of the two tgds, but not from both.

However, if we content ourselves with the simplifications from the s-t tgds only case (i.e,.
Rules 1 – 5 from Chapter 3), then we get an intuitive normal form which is simplified to a large
extent and which is guaranteed to be unique up to isomorphism. As was mentioned earlier, it
is sometimes important in data exchange to arrive at a unique canonical universal solution (this
is in particular the case for defining the semantics of queries in a way that the semantics does
not not depend on the syntax of the dependencies). In these situations, the normal form defined
below should be chosen.

Definition 12. Let Σ = Σst ∪ Σt be a schema mapping consisting of s-t tgds and target egds
and let the result of rewriting of Σ with PROPAGATE be the schema mapping Σs ∪ Σ′st ∪ Σt.
Moreover, let Σ∗st denote the set of s-t tgds resulting from Σst

′ by exhaustive application of Rules
E1, E2 as well as Rules 1–5 from Chapter 3 and let Σ∗s denote the result of exhaustive reduction
of Σs via rule E1. Then we call 〈Σ∗s,Σ∗st,Σt〉 the normal form of Σ.

Theorem 7. Let Σ = Σst ∪ Σt and Υ = Υst ∪Υt be equivalent sets consisting of s-t tgds and
target egds and let 〈Σ∗s,Σ∗st,Σt〉 and 〈Υ∗s,Υ∗st,Υt〉 be the corresponding normal forms. Then
Σ∗st and Υ∗st are isomorphic. Moreover, Σt ≡ Υt holds.

Proof. The fact that Σ∗st and Υ∗st are isomorphic follows immediately from Theorems 1 and 6.
The equivalence Σt ≡ Υt was proved in Lemma 9.

4.4 Homomorphically equivalent components

The normal form obtained by the PROPAGATE procedure followed by the Rules E1 and E2 is
not optimal in all respects yet. In particular, both the PROPAGATE procedure and the Rule E2
may have introduced more atoms than needed in the conclusion of s-t tgds. Moreover, by the
Rule E2, we may have split the antecedents of tgds into several smaller ones, such that the total
number of atoms in the antecedents is increased. Of course, we may now simply apply the rules
from Figure 3.1 to further simplify the set of s-t tgds. However, in the final part of this chapter,
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Figure 4.3: Antecedents of τ1 (left) and τ2 (right), Example 20

we want to look in a principled way at further optimizations of the normal form of s-t tgds in the
presence of egds. The following concept is crucial.

Definition 13. Let Σ = Σst ∪ Σt be a schema mapping. We say that two tgds τ1 and τ2 in Σst

are homomorphically equivalent if their antecedents are. Moreover, we say two sets S, S′ of tgds
are homomorphically equivalent if the tgds in one set and the tgds in the other set are pairwise
homomorphically equivalent.

Obviously, homomorphical equivalence is indeed an equivalence relation on Σst. We refer
to the equivalence classes of this relation as the HE-components of Σst.

We now define a partial order on the HE-components of a set of s-t tgds by considering a
“more general” component as greater than a “more specific” one (i.e., there are homomorphisms
from the more general one into the “more specific” one but not vice-versa). Moreover, we also
consider the closure under the greater-than relation. Below, we show that the closure of each
HE-component is unique up to logical equivalence.

Definition 14. Let Σ = Σst ∪ Σt be a schema mapping and let S = {S1, . . . , Sm} denote the
HE-components of Σst. We define a partial order as follows: for any pair of indices i, j, we
define Si ≥ Sj if for every antecedent ϕ(x) of the tgds in Si and every antecedent χ(z) of the
tgds in Sj , At(ϕ(x)) → At(χ(z)) holds (i.e., there is a homomorphism from ϕ(x) to χ(z)). If
Sj 6≥ Si, Si is said to be strictly greater than Sj , Si > Sj .

For i ∈ {1, . . . , n}, we define the closure of Si above as Cl≥(Si,Σ) = {τ | τ ∈ Sj for some
j with Sj ≥ Si}.

Example 20. Consider a source schema consisting of a single relation symbol P (·, ·), a tar-
get schema with relational symbols Q(·, ·), T (·, ·) and a schema mapping Σ = {τ1, τ2, τ3, τ4},
where the τi’s are defined as follows:

τ1 : P (x1, x2) ∧ P (x2, x3) ∧
P (y1, y2) ∧ P (y2, y3) ∧ P (y′2, y3)→ Q(x1, y3)

τ2 : P (u1, u2) ∧ P (u2, u3) ∧ P (u2, u
′
3)→ Q(u3, u

′
3)

τ3 : P (v1, v2)→ T (v1, v2)

τ4 : P (v1, v1)→ Q(v1, v1)
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Intuitively, the binary relation symbol P (·, ·) can be thought of as defining edges of a directed
graph. Then the antecedent of the tgd τ1 consists of two connected components: two paths of
length two, one having an additional edge pointing to the peak. The antecedent of the tgd τ2

corresponds to a Y-shaped graph (see Figure 4.3). The antecedent of τ3 consists of a single edge,
and the antecedent of τ4 consists of a single self-loop.

The antecedents of τ1 and τ2 have the same cores (a path of length 2) and thus are ho-
momorphically equivalent. Hence, τ1 and τ2 are part of the same HE-component S1. The tgd
τ3 belongs to a different HE-component S2 with S2 > S1. Indeed, there is a homomorphism
sending P (v1, v2) either to the antecedent of τ1 or the antecedent of τ2, but not vice versa.
For the same reason, τ4 gives rise to yet another HE-component S3 with S1 > S3. In to-
tal, Σ has three HE-components. As far as the “closure above” is concerned, we thus have
Cl≥(S1,Σ) = {τ1, τ2, τ3}, Cl≥(S2,Σ) = {τ3}, and Cl≥(S3,Σ) = Σ.

Lemma 17. Let Σ = Σst∪Σt and Υ = Υst∪Υt be two logically equivalent schema mappings.
Moreover, let S be an HE-component in Σst and let T be an HE-component in Υst, s.t. S and T
are homomorphically equivalent. Then Cl≥(S,Σ) ∪ Σt ≡ Cl≥(T,Υ) ∪Υt holds.

Proof. By Lemma 9 we have Σt ≡ Υt. It remains to show that, for every τ ∈ Cl≥(T,Υ), the
implication Cl≥(S,Σ)∪Σt |= τ holds. The implication Cl≥(T,Υst)∪Υt |= σ for every σ ∈ S
follows by symmetry.

By Σ ≡ Υ, we clearly have Σ |= τ . Let ϕ(x) denote the frozen antecedent of τ and let
I = At(ϕ(x)). Now consider the instance chase(I,Σst): Clearly, only those tgds σ ∈ Σst

fire, for which there is a homomorphism from the antecedent of σ to ϕ(x). These are precisely
the tgds in Cl≥(S,Σst). Hence, we have chase(I,Σst) = chase(I,Cl≥(S,Σ)). But then, by
the implication criterion of [7] recalled in Lemma 10, Σ |= τ holds iff Cl≥(S,Σ) ∪ Σt |= τ

holds.

The following lemma shows that, unless a schema mapping contains redundant dependen-
cies, the HE-components of a schema mapping are in a sense invariant under logical equivalence.
Moreover, HE-components may be exchanged between logically equivalent mappings.

Lemma 18. Let Σ = Σst∪Σt and Υ = Υst∪Υt be two logically equivalent schema mappings,
s.t. Rule E1 is not applicable to them. Let S = {S1, . . . , Sm} denote the HE-components of
Σst and T = {T1, . . . , Tn} the HE-components of Υst. Then the following properties hold:
n = m and for every Si ∈ S , there exists exactly one j, s.t. the tgds in Si are homomorphically
equivalent to the tgds in Tj .

Proof. W.l.o.g. suppose that there exists an HE-component Si of Σst which is not homomorphi-
cally equivalent to any HE-component Tj of Υst. By assumption, Σ ≡ Υ. Hence, Υ |= Si. Let
T ∗ ⊆ T with T ∗ =

⋃{Tj | Tj ≥ Si}. By the same considerations as in the proof of Lemma 17,
only the HE-components in T ∗ are used to test the implication Υ |= Si via Lemma 10. Hence,
we have T ∗ |= Si.
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On the other hand, also Σ |= T ∗. Now define S∗ =
⋃{Sk | Sk ≥ Tj for some Tj ∈ T ∗}.

Again, we may conclude S∗ |= T ∗ and, therefore, also S∗ |= Si By assumption, Υ does not
contain an HE-component whose tgds are homomorphically equivalent to Si. Therefore, all
HE-components in T ∗ are strictly greater than Si. But then, all HE-components Sk in S∗ are
also strictly greater than Si. Thus, Σ \ Si |= Si. In other words, every dependency in Si

can be removed from Σst by Rule E1, which contradicts the assumption that Rule E1 is not
applicable.

Lemma 19. Let Σ = Σst∪Σt and Υ = Υst∪Υt be two logically equivalent schema mappings,
s.t. Rule E1 is not applicable to them. Moreover, let S be an HE-component in Σst and let T
be an HE-component in Υst, s.t. S and T are homomorphically equivalent. Then the logical
equivalence Σ ≡ (Σst \ S) ∪ T ∪ Σt holds (i.e., we may replace the HE-component S from Σ

by the corresponding HE-component T from Υ).

Proof. Let S = {S1, . . . , Sn} denote the HE-components of Σst and T = {T1, . . . , Tn} the HE-
components of Υst. By Lemma 18, we may assume w.l.o.g., that every Si is homomorphically
equivalent to Ti. Now let S and T of this lemma correspond to Sj and Tj , for some j ∈ {1 . . . n}.

We apply Lemma 17 to all HE-components that are strictly greater than Sj resp. Tj : Let
I = {i | Si > Sj}. Clearly, I = {i | Ti > Tj}. For every i ∈ I , we have Cl≥(Si,Σ) ∪ Σt ≡
Cl≥(Ti,Υ) ∪Υt by Lemma 17. Then also (

⋃
i∈I Cl≥(Si,Σ)) ∪ Σt ≡ (

⋃
i∈I Cl≥(Ti,Σ)) ∪Υt

holds, i.e.: (Cl≥(Sj ,Σ) \ Sj) ∪ Σt ≡ (Cl≥(Tj ,Σ) \ Tj) ∪Υt, i.e., the HE-components strictly
greater than Sj and Tj lead to logical equivalence.

Now if we apply Lemma 17 to Sj and Tj , we may conclude Cl≥(Sj ,Σ)∪Σt ≡ Cl≥(Tj ,Υ)∪
Υt. By the above considerations, we may exchange in Cl≥(Tj ,Υ) all HE-components that are
strictly greater than Tj by the corresponding HE-components from Σ. That is, Cl≥(Sj ,Σ) ∪
Σt ≡ (Cl≥(Sj ,Σ) \ Sj)∪ Tj ∪Υt. By adding all remaining HE-components of Σ to both sides
of the equivalence, we get the desired equivalence Σ ≡ (Σst \ S) ∪ T ∪ Σt.

HE-components will turn out to be crucial for optimizing the s-t tgds. Indeed we show
that for all optimization criteria considered here, local optimization inside every HE-component
yields a global optimum.

Definition 15. An optimization problem on sets of dependencies is called a sum-minimization
problem if the goal of the optimization is to minimize a function F with the following property:
(1) F (Σ) ≥ 0 holds for every set of dependencies Σ and (2) for any two sets of dependencies
Σ,Σ′ with Σ ∩ Σ′ = ∅, we have F (Σ ∪ Σ′) = F (Σ) + F (Σ′).

Clearly, all optimization criteria studied here (like cardinality-minimality, antecedent-mini-
mality, conclusion-minimality, and variable-minimality, see Definition 1) are sum-minimization
problems.
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Definition 16. Let Σ = Σst ∪ Σt be a schema mapping, s.t. Rule E1 is not applicable to it, i.e.,
Σ contains no s-t tgd that may be deleted. Now consider a sum-minimization problem whose
goal is to minimize some function F over sets of s-t tgds.

We say that Σ is globally optimal (or simply optimal) if, for every mapping Υ = Υst ∪ Υt

with Σ ≡ Υ, we have F (Σ) ≤ F (Υ).

We say that Σ is locally optimal if the following conditions are fulfilled: let Υ = Υst ∪ Υt

be an arbitrary mapping with Σ ≡ Υ. Moreover, let S be an arbitrary HE-component of Σ and
let T be the corresponding HE-component of Υst, s.t. S and T are homomorphically equivalent.
Then F (S) ≤ F (T ) holds.

Theorem 8. Let Σ = Σst ∪ Σt be a schema mapping, s.t. Rule E1 is not applicable to it. Now
consider a sum-minimization problem whose goal is to minimize some function F over sets of
s-t tgds. Then Σ is globally optimal iff it is locally optimal.

Proof. Let Υ = Υst ∪Υt be an arbitrary mapping with Σ ≡ Υ. By Lemma 18, there exist sets
of s-t tgds S = {S1, . . . , Sn} and T = {T1, . . . , Tn}, s.t. S denotes the set of HE-components
of Σst, T denotes the set of HE-components of Υst, and for every i, the tgds in Si are homo-
morphically equivalent to the tgds in Ti.

First suppose that Σ is globally optimal. We have to show that then Σ is also locally optimal.
Assume to the contrary that F (Si) > F (Ti) holds for some i. We define Σ′ = (Σst\Si)∪Ti∪Σt.
By Lemma 19, Σ ≡ Σ′. Moreover, since we are considering a sum-minimization problem, we
clearly have: F (Σst) = F (Σst \ Si) + F (Si) > F (Σst \ Si) + F (Ti) = F ((Σst \ Si) ∪ Ti) =

F (Σ′). This contradicts the assumption that Σ is globally optimal.

Now suppose that Σ is locally optimal. We have to show that then Σ is also globally optimal
The local optimality implies that F (Si) ≤ F (Ti) holds for every i. Since F defines a sum-
minimization problem, we have F (Σst) =

∑n
i=1 F (Si) and F (Υst) =

∑n
i=1 F (Ti). But then

also F (Σst) ≤ F (Υst) holds, i.e., Σ is globally optimal.

Theorem 8 says, that for the optimization of an HE-component, it does not matter how
and if other HE-components have already been optimized. However, this does not mean that
one can optimize a single HE-component in isolation. In particular, the closure above must be
considered.

As demonstrated by the Examples 18 and 19, aggressive splitting and conclusion optimiza-
tion lead to a non-unique normal form. In the rest of the section, we consider an operation
opposite to splitting: Namely, merging of multiple s-t tgds, to enforce cardinality-minimality.
As we will see, also this approach leads to non-unique normal forms. The following theorem
contains a property that any merge operation must fulfil:

Theorem 9. Consider a schema mapping Σ = Σs ∪ Σst ∪ Σt resulting from a rewriting with
the PROPAGATE procedure, and additionally reduced by the rules E1 and E2. Assume that
dependency τ ∈ Σst with the antecedent ϕ can be substituted by the dependency τ ′ with the
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Figure 4.4: Possible merges of antecedents ϕ1, ϕ2, Example 21

antecedent ϕ′, such that Σ ∪ {τ ′} \ {τ} ≡ Σ holds, and At(ϕ′) does not cause a chase failure
under Σ. Then, ϕ must coincide (up to isomorphism) with some endomorphic image of ϕ′.

Proof. By Theorem 6, exhaustive application of the rules E1 and E2 allows us to obtain a unique
normal form of s-t dependencies. Hence, if the mapping Σ′ = Σ∪{τ ′}\τ is logically equivalent
to Σ, it is possible to bring it back in the form isomorphic to Σ by applying the procedure
PROPAGATE, followed by the rules E1 and E2.

Since At(ϕ′) does not cause a chase failure, we know that PROPAGATE does not affect ϕ′ in
any way. Moreover, all the remaining rules in Σ \ {τ} remain unchanged after Σ′ is transformed
by E1 and E2. Hence, it must be the case that one can obtain τ from τ ′ by (possibly successive)
applications of E2, and hence ϕ has to be among the endomorphic images of ϕ′.

To achieve cardinality-minimality, we will replace each HE-component with a single tgd. As
Theorem 9 suggests, the antecedent of this tgd must contain every antecedent from the original
HE-component as an endomorphic image. The following example illustrates that there is no
unique minimal “merged” antecedent.

Example 21. Recall the schema mapping Σ from Example 20, with the HE-component S1 con-
taining tgds τ1, τ2:

τ1 : P (x1, x2) ∧ P (x2, x3)∧
P (y1, y2) ∧ P (y2, y3) ∧ P (y′2, y3)→ Q(x1, y3)

τ2 : P (u1, u2) ∧ P (u2, u3) ∧ P (u2, u
′
3)→ Q(u3, u

′
3)

Let ϕ1, ϕ2 denote the antecedents of τ1 and τ2, respectively. Recall the graphical representation
of ϕ1 and ϕ2 that was given in Figure 4.3. Obviously, ϕ1 and ϕ2 are not isomorphic.

Now, there are two ways of adding a single edge to ϕ1 in order to get a minimum conjunctive
query containing both antecedents as its endomorphic images namely, ϕ′1 = ϕ1 ∧ P (x2, z) and
ϕ′′1 = ϕ1 ∧ P (y2, z), see Figure 4.4. Clearly, the resulting antecedents ϕ′1 and ϕ′′1 are not
isomorphic.
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Procedure MERGE

Input. A set Φ of homomorphically equivalent CQs;
Output. CQ ϕ having endomorphism onto each ϕi ∈ Φ.

while |Φ| > 1 do
Choose distinct ϕi, ϕj ∈ Φ.
Find an endomorphism ei for ϕi and ej for ϕj , such that
ei(ϕi) ∼= ej(ϕj) and |ei(ϕi)| is maximized.

Let λ be a variable renaming ei(ϕi)→ ej(ϕj).
Set ϕij := ϕiλ ∧ ϕj .
Set Φ := Φ ∪ {ϕij} \ {ϕi, ϕj}.

od;
return the element remaining in Φ;

Procedure MERGETGDS

Input. A schema mapping Σ = Σs ∪ Σst ∪ Σt, a CQ χ;
Output. A set ∆Σ

s of source egds and a set ∆Σ
st = {τ} with an s-t tgd,

s.t. the equivalence Σ ≡ (Σ \ Σ[χ]) ∪∆Σ
s ∪∆Σ

st holds.

/* (a) collect and merge the antecedents of Σ[χ] */
Set Φ = {ϕi| (ϕi(xi)→ (∃yi)ψ(xi, yi) ∈ Σst) ∧ϕi ↔ χ};
I := chase(At(MERGE (Φ)),Σs)

/* (b) initialize τ ′ */
J := chase(I,Σst).
Let y be a tuple of all labelled nulls from var(J) \ var(I)
τ ′ :=

∧
A∈I A→ (∃y)

∧
B∈J B.

/* (c) propagate Σt into ant(τ ′) */
return 〈∆Σ

s ,∆
Σ
st〉 := PROPAGATE (ant(τ ′),Σ).

Figure 4.5: Procedures MERGE and MERGETGDS.

Example 21 shows that there is no unique optimal way of merging s-t tgds from a single
HE-component. Notably, egds play no role here. On the other hand, an obvious unique (though
hardly optimal) way of merging would be to take a conjunction of all antecedents in a HE-
component of a schema mapping resulting from the exhaustive application of the rules E1 and
E2, and renaming apart the variables in distinct tgds.

We conclude this discussion by presenting a procedure that merges several homomorphi-
cally equivalent conjunctive queries in one, of reasonable size and satisfying the condition of
Theorem 9. At every iteration, the procedure MERGE takes two conjunctive queries ϕi and ϕj ,
finds a greatest common (up to isomorphism) endomorphic image in them, which in the worst
case is the core, and renames the variables of ϕi in such a way that it is stitched to ϕj along
this greatest common endomorphic subquery. The resulting query ϕij is thus sure to have an
endomorphism to ϕi as well as to ϕj .

This operation is then used in the Procedure MERGETGDS, which produces an s-t tgd to
substitute a given HE-component in a mapping Σ. To build the conclusion of such a merged tgd,
MERGETGDS uses the PROPAGATE procedure, which chases the merged antecedent with Σ and
then takes the conjunction of atoms in the core of the resulting target instance as the conclusion.
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Definition 17. Let Σ be a set of s-t tgds and let χ be a conjunctive query. Then we write
Σ[χ] to denote the HE-component of those tgds in Σ, whose antecedents are homomorphically
equivalent to χ.

Theorem 10. Let Σ = Σs ∪ Σst ∪ Σt be a schema mapping consisting of source egds, s-t tgds
and target egds, Σs and Σst resulting from a rewriting with the PROPAGATE procedure, and let
χ be a CQ. Moreover, let 〈∆Σ

s ,∆
Σ
st〉 be the output of MERGETGDS (Σ, χ). Then, the following

equivalence holds: Σ ≡ (Σ \ Σ[χ]) ∪∆Σ
s ∪∆Σ

st.

Proof (Sketch). Consider an s-t tgd τ ′ which has been created in step (b) of MERGETGDS by
chasing the merged antecedent I with Σ. By construction of τ ′, Σ |= τ ′ holds and thus Σ ≡
Σ ∪ {τ ′}. Then, Σ |= Σ ∪ ∆Σ

s ∪ ∆Σ
st follows by Lemma 12, as both ∆Σ

s and ∆Σ
st have been

produced by applying PROPAGATE to the antecedent of τ ′.

In the other direction, we show that τ ′ |= τi for any τi ∈ Σ[χ]. Then, by Lemma 13 we
immediately obtain ∆Σ

s ∪ ∆Σ
st |= τi. In order to prove τ ′ |= τi we will use the implication

criterion from Lemma 1.
Let τ ′ and τi have the form ϕ(x) → (∃y) ψ(x, y) and ϕi(xi) → (∃yi) ψi(xi, yi), respec-

tively. Then, the following two claims hold.

1. there exists a substitution σ1 : x→ xi ∪ Const s.t. At(ϕ(xσ1)) = At(ϕi(xi));

2. there exists a variable renaming σ2 : xi → x s.t. At(ϕi(xσ2)) ⊆ At(ϕ(x)).

Both claims follow directly from the definition of the procedure MERGE. Moreover, combining
the two claims it is straightforward to show that there exists some endomorphic image Kϕ of
At(ϕ(x)) that can be transformed in At(ϕi(xi)) by renaming of nulls. Let λ denote a respective
variable renaming, and let λ0 be the endomorphism s.t. At(ϕ(xλ0)) = Kϕ.

Note that the conclusion of τ ′ has been produced in step (b) of MERGETGDS by chasing
At(ϕ(x)) with Σ. Since τi ∈ Σ, the chase step with τi and λ−1 has been part of that chase,
where λ−1 is the inverse of λ. Hence, the conclusion of τ ′ contains the conclusion of τi under
the isomorphism λ−1 ∪µ, where µ : yi → y′, with y′ ⊆ y, captures the assignment instantiating
the existentially quantified variables yi of τi with fresh labelled nulls, in the chase step with τi
and λ−1. In total, we have a situation when the mappings λ′ : x→ xi∪Const and µ−1 : yi → y

exist s.t. At(ϕ(xλ′)) = At(ϕi(xi)) and At(ψi(xi, yiµ
−1)) ⊆ At(ψ(xλ′, y)), where λ′ = λ0◦λ.

This satisfies the preconditions of Lemma 1, and thus τ |= τi.

Example 22. Recall the tgds τ1 and τ2 with the antecedents ϕ1 and ϕ2 from Example 21. As
illustrated by that example, there are two possible ways to merge ϕ1 and ϕ2, resulting in two
merged antecedents ϕ′1 = ϕ1 ∧ P (x2, z) and ϕ′′1 = ϕ1 ∧ P (y2, z). The corresponding outputs
of the procedure MERGETGDS are

τ ′1 : P (y1, y2) ∧ P (y2, y3) ∧ P (y′2, y3) ∧
P (x1, x2) ∧ P (x2, x3) ∧ P (x2, z)→ Q(x1, y3) ∧Q(x3, z)

63



and

τ ′′1 : P (y1, y2) ∧ P (y2, y3) ∧ P (y′2, y3) ∧ P (y2, z) ∧
P (x1, x2) ∧ P (x2, x3)→ Q(x1, y3) ∧Q(y3, z),

respectively.

4.5 Summary

The following lessons have been learned from our analysis of the normalization and optimization
of s-t tgds in the presence of egds: In contrast to the tgd-only case, we have seen that one has to
be very careful with the definition of splitting and optimization so as not to produce a non-unique
normal form: If we aim at a strict generalization of the splitting rule from Chapter 3 via the Rule
ES in Figure 4.2, then there does not exist a unique normal form. This also happens if we aim at
a strict generalization of the Rule 5 (deletion of redundant atoms from the conclusion of a tgd)
via the Rule E3 in Figure 4.2. For most purposes, we therefore consider the transformation of
an arbitrary mapping (consisting of s-t tgds and target egds) via the PROPAGATE procedure and
exhaustive application of the rules E1 and E2 from Figure 4.2 followed by the Rules 1 – 5 from
Chapter 3 as the best choice: The resulting normal form is unique up to isomorphism and in-
corporates a reasonable amount of splitting and simplification. From the splitting point of view,
the resulting normal form is referred to as “antecedent-split-reduced”. This corresponds to a re-
striction of the splitting rule in the tgd-only case to those situations where subsequent antecedent
simplifications of all resulting dependencies are possible. Such a restriction is justifiable by the
fact that one of the main motivations for splitting is indeed to further reduce the antecedents.
From the optimization point of view, the Rules 1–5 guarantee that we do not perform worse than
in the tgd-only case. But of course, this leaves some additional potential of further optimization
in the presence of egds (in particular the Rule E3) unexploited.

We have also identified the HE-components (components of tgds with homomorphically
equivalent antecedents) as an important handle for the most common optimization tasks on the
s-t tgds (in particular, for all optimization criteria according to Definition 1). We have seen
that a global optimum according to the optimization criteria studied here is obtained by locally
optimizing the s-t tgds inside each HE-component. In particular, this allowed us to define a
simple procedure which transforms a schema mapping into an equivalent one with the smallest
possible number of s-t tgds. Of course, also in this case, uniqueness is not guaranteed.

We have entirely concentrated on the normalization and optimization of the s-t tgds, while
a transformation of the egds has not been considered. Indeed, a normal form of the (source
or target) egds is not important for our purposes since we will show in Theorem 11 that the
unique (up to isomorphism) canonical universal solution in data exchange only depends on the
normalization of the s-t tgds – the equivalence of the source egds and the concrete syntax of the
egds are irrelevant.
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CHAPTER 5
Application to answering aggregate

queries

As an application for schema mapping normalization, in this chapter we discuss the semantics
and evaluation of aggregate queries in data exchange, that is, queries of the form
SELECT f FROMR, where f stands for one of the aggregate operators min(R.A), max(R.A),
count(R.A), count(∗), sum(R.A), or avg(R.A), and where R is a target relation symbol or,
more generally, a conjunctive query over the target schema and A is an attribute of R. For this
purpose, we first recall some basic notions on query answering in data exchange as well as some
fundamental results on aggregate queries from [1].

5.1 Certain answers

Though any target database satisfying the schema mapping and local constraints is called a “so-
lution”, a random choice of a candidate for materializing a target database is not satisfactory:
query answering in data exchange cannot be reduced to evaluating queries against random solu-
tions. The widely accepted approach is based on the notion of certain answers. Here, we will
generalize the definition given in Section 2.6:

Definition 18. Let Σ be a schema mapping over the schema 〈S,T〉, and let I be an instance
over S. Then, the certain answers for a query q over T and for the source instance I are

certain(q, I,W(I)) =
⋂
{q(J)|J ∈ W(I)},

whereW(I) is the set of possible worlds for I and Σ.

Several proposals can be found in the literature [22,34,39,40] as to which solutions should be
taken as possible worldsW(I). Typical examples are the set of all solutions, the set of universal
solutions, the core of the universal solutions, or the CWA-solutions. For conjunctive queries, all
these proposals lead to identical results.
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5.2 Aggregate certain answers

Afrati and Kolaitis [1] initiated the study of the semantics of aggregate queries in data exchange.
They adopted the notion of aggregate certain answers for inconsistent databases of Arenas et
al. [4] to data exchange:

Definition 19. [1] Let q be a query of the form SELECT f FROM R, where R is a target
relation symbol or, more generally, a first-order query over the target schema T, and f is one of
the following aggregate operators: min(R.A), max(R.A), count(R.A), count(∗), sum(R.A),
or avg(R.A) for some attribute A of R. For all aggregate operators but count(∗), tuples with a
null value in attribute R.A are ignored in the computation.

• Value r is a possible answer of q w.r.t. I andW(I) if there exists an instance J ∈ W(I)

for which f(q)(J) = r.

• poss(f(q), I,W(I)) denotes the set of all possible answers of the aggregate query f(q)

w.r.t. I andW(I).

• For the aggregate query f(q), the aggregate certain answer agg-certain(f, I,W(I)) w.r.t.
I andW(I) is the interval
[glb(poss(f(q), I,W(I))), lub(poss(f(q), I,W(I)))] , where glb and lub stand, respec-
tively, for the greatest lower bound and the least upper bound.

5.3 Semantics of aggregate queries via endomorphic images

A key issue in defining the semantics of queries in data exchange is to define which set of
possible worlds should be considered. In [1], Afrati and Kolaitis showed that all previously
considered sets of possible worlds yield a trivial semantics of aggregate queries. Therefore, they
introduced a new approach via the endomorphic images of the canonical universal solution.
Let Endom(I,M) denote the endomorphic images of the canonical universal solution J∗ =

CanSol(I), i.e.: J ∈ Endom(I,M) if there exists an endomorphism h : J∗ → J∗, s.t. J =

h(J∗). As shown in [1], takingW(I) = Endom(I,M) leads to an interesting and non-trivial
semantics of aggregate queries. However, in general, the semantics definition depends on the
concrete syntactic representation of the s-t tgds.

Example 23. Consider the source schema S = {P}, target schema T = {R} and the pair of
schema mappingsM1 = 〈S, T,Σ1〉 andM2 = 〈S,T,Σ2〉 with the following s-t tgds:

Σ1 = {P (x)→ (∃y)R(1, x, y)} and
Σ2 = {P (x)→ (∃y1 . . . yn)R(1, x, y1) ∧ · · · ∧R(1, x, yn)}

Clearly,M1 andM2 are logically equivalent. However, for the source instance I = {P (a)},
they yield different canonical universal solutions J1 = {R(1, a, y)} and J2 = {R(1, a, y1), . . . ,
R(1, a, yn)}, respectively, where y and y1, . . . , yn are distinct labelled nulls. Let A denote the
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name of the first attribute of R. Then all of the three aggregate queries count(R.A), count(∗),
and sum(R.A) have the range semantics [1, 1] inM1 and [1, n] inM2, i.e.: M1 admits only
one possible world, in which all three aggregate queries evaluate to 1. In contrast, M2 gives
rise to a number of possible worlds with {R(1, a, y1), . . . , R(1, a, yn)} being the biggest one
and {R(1, a, y)} the smallest. Thus, the aggregate queries may take values between 1 and n.

In order to eliminate the dependence on the concrete syntactic representation of the s-t tgds,
we have defined a new normal form of s-t tgds in Definition 12. Below, we show that we thus
get a unique canonical universal solution also in the presence of target egds.

Theorem 11. LetM = 〈S,T,Σ〉, be a schema mapping consisting of a set Σ = Σst ∪Σt of s-t
tgds and target egds and let Σ∗ = Σs ∪ Σ∗st ∪ Σt be the normal form of Σ. Moreover, let I be
a source instance and J∗ the canonical universal solution for I underM obtained via a chase
with Σ∗st followed by a chase with Σt in arbitrary order. Then J∗ is unique up to isomorphism.
We denote J∗ as CanSol∗(I).

Proof. By the logical equivalence between Σ and Σ∗, the chase with Σ fails iff the chase with
Σ∗ fails. We may thus restrict ourselves to the case that both chases succeed. Suppose that the
chase of J with Σ (resp. Σ∗) consists of n (resp. n∗) egd-applications and write Ji (resp. J∗i ) to
denote the intermediate result after the i-th step with i ∈ {0, . . . , n} (resp. i ∈ {0, . . . , n∗}). In
particular, J = J0 = J∗0 . Clearly, every Ji and J∗i is a homomorphic image of J .

Egds have the effect that variables may disappear from J . We therefore concentrate on the
positions in J . To this end, we assume that every atom A in J is equipped with a unique
identifier id(A). A position in J is thus uniquely determined by id(A) of an atom A and
a position in A (i.e., an index between 1 and the arity of the predicate symbol of A). We
assume that duplicate atoms, which may be produced by the chase, are not deleted. Then the
positions in J persist in all instances Ji and J∗i , even though variables from J may disappear
in Ji and J∗i . The application of an egd ε : ϕ(x ) → z1 = z2 to an instance Ji (resp. J∗i )
means that the variables in ε are bound by some substitution σ : x → Const ∪ var(J). This
substitution σ is determined by assigning each atom in ϕ(x ) to an atom in Ji. Thus, every
variable occurrence in ε is assigned to some position in J . We can thus represent σ as a mapping
from the variables in ε to tuples of positions in J : For x = {x1, . . . , xk}, σ is of the form
σ = {x1 ← (p11, . . . , p1j1), . . . , xk ← (pk1, . . . , pkjk)} with j1, . . . , jk ≥ 1, where the pαβ’s
denote positions in J . If a variable xα occurs more than once in ϕ(x ) then it is mapped to
several positions. Clearly, σ is well-defined for an instance Ji only if for every α ∈ {1, . . . , k},
all positions pα1, . . . , pαjα have identical values in Ji.

In order to describe the instances resulting from the application of egds to J , we introduce
the notion of equality graphs: The vertices of these equality graphs are the positions in J .
We say that an equality graph corresponds to an instance J ′ (which was obtained from J by
the application of some egds) if the following equivalence holds: Two vertices corresponding
to positions p1 and p2 in J are connected (not necessarily adjacent) if p1 and p2 have the
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same value in J ′. Obviously, if two instances J ′ and J ′′ obtained from J via egds are such
that the corresponding equality graphs have the same connected components, then J ′ and J ′′

are isomorphic. Thus, in order to show that chase(J,Σ) and chase(J,Σ∗) are isomorphic, it
suffices to show that the equality graphs corresponding to chase(J,Σ) and chase(J,Σ∗) have
the same connected components.

We construct the equality graph Ei of Ji (and, analogously the graph E∗i corresponding to J∗i )
inductively as follows: The vertices never change, i.e., in every graph Ei, there is one vertex for
each position in J . By slight abuse of notation, we thus identify the vertices with the positions.
As edges, we introduce in the graph E0 corresponding to J = J0 an edge between any two
(vertices corresponding to) positions p1 and p2 if they have the same value in J . Suppose that we
have already constructed Ji−1. Then Ji is constructed as follows: Suppose that the egd ϕ(x )→
z1 = z2 with z1, z2 ∈ x is applied in the i-th chase step. By the above considerations, this means
that we apply a substitution σ = {x1 ← (p11, . . . , p1j1), . . . , xk ← (pk1, . . . , pkjk)} to the
variables x = {x1, . . . , xk}, i.e., every variable in ϕ(x ) is mapped to one or more positions in
Ji−1 (or, equivalently, positions in J), s.t. for every α ∈ {1, . . . , k}, all positions pα1, . . . , pαjα
have identical values in Ji−1. Note that zj with j ∈ {1, 2} is a variable xα ∈ x. We thus choose
as vertex vj in Ei−1 some position pαβ for non-deterministically selected β ∈ {1, . . . , jα}. Then
Ei is obtained from Ei−1 by inserting an edge between v1 and v2. It can be easily verified that
every Ei is an equality graph corresponding to Ji. By the above considerations, it suffices to show
that En and E∗n∗ have the same connected components. We prove by induction on i ∈ {0, . . . , n∗}
that any two vertices v1, v2 connected in E∗i are also connected in En. The proof that any two
vertices v1, v2 connected in Ei are also connected in E∗n∗ is symmetric.

“i = 0”. E ′0 is the initial equality graph corresponding to J . By construction, every edge in
E∗0 = E0 is contained in En.

“(i − 1) → i”. Suppose that any two vertices connected in E∗i−1 are also connected in En.
We have to show that then also any two vertices connected in E∗i are connected in En. By
construction, E∗i contains at most one additional edge compared with E∗i−1, say (v1, v2). We
have to show that v1 and v2 are also connected (not necessarily adjacent) in En. Let ε : ϕ(x )→
z1 = z2 with z1, z2 ∈ x denote the egd which was applied in the i-th chase step with Σ∗,
i.e., a substitution σ = {x1 ← (p11, . . . , p1j1), . . . , xk ← (pk1, . . . , pkjk)} was applied to the
variables x = {x1, . . . , xk}. The remainder of the proof proceeds in three steps:

(1) The substitution σ is also well-defined for chase(J,Σ)

(2) chase(J,Σ) |= ϕ(xσ)

(3) The vertices v1, v2 are connected in En.

Proof of (1). Let α ∈ {1, . . . , k}. We have to show that the positions pα1, . . . , pαjα have
identical values in chase(J,Σ). Note that σ is well-defined as a mapping of x to J∗i−1 since this
substitution was applied for the i-th chase step with Σ∗. Hence, the vertices pα1, . . . , pαjα are
connected in E∗i−1. But then, by the induction hypothesis, they are also connected in En. This
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means that the positions pα1, . . . , pαjα indeed have identical values in chase(J,Σ).

Proof of (2). Let A(x ) be a conjunct in ϕ(x ). We have to show that chase(J,Σ) |= A(xσ).
Clearly, J∗i−1 |= A(xσ) since σ was applied for the i-th chase step with Σ∗, i.e., there exists
an atom B ∈ J with identifier id(B), s.t. the atom B (i.e., precisely speaking, the atom with
identifier id(B)) in J∗i−1 coincides with A(xσ). We claim that then A(xσ) also coincides with
the atom B in chase(J,Σ): By definition, σ as a mapping to chase(J,Σ) maps the variables
in x to the (values at the) same positions like σ as a mapping to J∗i−1. Hence, if a variable
occurring in A(x) is mapped to some position of B in J∗i−1 then it is mapped to the same
position of B in chase(J,Σ). By (1), if some variable occurs in several positions in A(x), then
the corresponding positions of B have identical values in chase(J,Σ). It thus remains to show
that if some constant c occurs at a position p in A then B in chase(J,Σ) also has the value c
at this position. Since A(xσ) coincides with B in J∗i−1, B has the value c at position p in J∗i−1,
i.e., there exists a position q, s.t. p and q are connected in E∗i−1 (this also comprises the case
that p and q are identical) and the value at position q in J was c. Note, that the (constant) value
at position q can never change during the chase. Moreover, by the induction hypothesis, p is
connected with q also in En. Thus, B in chase(J,Σ) also has the value c at the position p.

Proof of (3). Recall the construction of E∗i . Namely, let ε be an egd ϕ(x ) → z1 = z2 with z1

being a variable xα and z2 a variable xγ . Then v1 is some position pαβ and v2 is some position
pγδ according to the substitution σ. In other words, the edge (v1, v2) was introduced in E∗i in
order to enforce the equality z1σ = z2σ in J∗i .

We have to show that v1, v2 are connected in En, where v1 is the position pαβ and v2 is
the position pγδ. By assumption, Σ and Σ∗ are equivalent. Hence, since chase(J,Σ) |= Σ,
also chase(J,Σ) |= Σ∗ holds. In particular, chase(J,Σ) |= ε. By the above considerations,
chase(J,Σ) |= ϕ(xσ). Hence, the equality z1σ = z2σ must also be fulfilled in chase(J,Σ)

and, therefore, the values at the positions pαβ and pγδ are identical in chase(J,Σ). Thus, the
vertices v1 and v2 are indeed connected in En.

To obtain a unique range semantics of the aggregate functions min, max, count, count(∗),
sum, and avg, we therefore propose to follow the approach of [1], with the only difference that
we take the unique target instance CanSol∗(I) from Theorem 11.
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Part II

Relaxed notions of equivalence
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CHAPTER 6
Introduction and background

Two main results in this part of the thesis are (i) decidability of optimizations based on DE-
equivalence for restricted classes of schema mappings (with target dependencies), which consti-
tutes the subject of Chapter 7, and (ii) the undecidability of CQ-equivalence testing for Second-
Order tgds, considered in Chapter 8.

In the current chapter, we provide a context for these results. Our starting point will be the
role of relaxed notions of equivalence for optimizing source-to-target dependencies.

6.1 Optimization of s-t tgds

This chapter extends the results first formulated in [54] for mappings with target egds only.

Let schema mappings include no target dependencies. Then, as shown by Fagin et al., the
notions of logical, DE- and CQ-equivalence coincide.

Theorem 12 ([23]). LetM1,M2 be mappings given by sets of s-t tgds. Then,M1 ≡ M2 iff
M1 ≡CQM2 iffM1 ≡DE M2.

But what happens if the mappings M1 and M2 have target dependencies? We start by
considering the setting similar to that in Chapter 4, namely, when the set of target constraints in
the mappings is fixed up to logical equivalence.

Lemma 20. Let Σ = Σst ∪ Σt and Υ = Υst ∪ Υt be schema mappings with Σ ≡CQ Υ.
Moreover, for an arbitrary conjunction ϕ(x̄), let ∆Σ = ∆Σ

s (ϕ(x̄)) ∪ ∆Σ
st(ϕ(x̄)) and ∆Υ =

∆Υ
s (ϕ(x̄)) ∪ ∆Υ

st(ϕ(x̄)), respectively, denote the output of the PROPAGATE procedure. Then
∆Σ ≡ ∆Υ holds.

Proof. We even show a slightly stronger result, namely: If the assumption of the lemma holds,
then exactly the following two cases are possible:
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• ∆Σ
st(ϕ(x̄)) = ∆Υ

st(ϕ(x̄)) = ∅ and both ∆Σ
s (ϕ(x̄)) and ∆Υ

s (ϕ(x̄)) contain a single egd of
the form ϕ(x̄) → c = c′ for distinct constants c, c′ possibly different for ∆Σ

s (ϕ(x̄)) and
∆Υ
s (ϕ(x̄)), or

• (1) ∆Σ
s (ϕ(x̄)) = ∆Υ

s (ϕ(x̄)) and (2) τ and τ ′ are identical up to variable renaming for
∆Σ
st(ϕ(x̄)) = {τ} and ∆Υ

st(ϕ(x̄)) = {τ ′}.
For the former case, let any of ∆Σ

st(ϕ(x̄)), ∆Υ
st(ϕ(x̄)) be empty. This can happen if the

consistency check at step 1 of the PROPAGATE procedure fails, and the chase of At(ϕ(x̄)) with
Σ resp. Υ causes a unification of distinct constants. Assume w.l.o.g. that ∆Σ

st(ϕ(x̄)) = ∅ that is,
chasing At(ϕ(x̄)) with Σ enforces the unification of distinct constants c, c′ occurring in ϕ(x̄) or
in Σ. We show that also the chase of At(ϕ(x̄)) with Υ causes unification of distinct constants
occurring in ϕ(x̄) or in Υ. Assume to the contrary, no such constant clash takes place in the
chase of At(ϕ(x̄)) with Υ. Then, there exists a substitution λ for x̄ and a “Skolemization” I ′

of At(ϕ(xλ)) assigning distinct fresh constants to the variables in x̄λ, such that the chase of I ′

with Υ succeeds. However, the same egds that fire in the chase of At(ϕ(x̄)) with Σ are still
applicable when I ′ is chased, and thus the unsatisfiable equality c = c′ also causes this chase to
fail. We obtain a contradiction to the assumption Σ ≡CQ Υ. Thus, we have shown that if either
of ∆Σ

st(ϕ(x̄)), ∆Υ
st(ϕ(x̄)) is empty, then necessarily both sets are, and ∆Σ

s (ϕ(x̄)), ∆Υ
s (ϕ(x̄))

contain a single egd of the form ϕ(x̄)→ c = c′.

For the latter case, when both ∆Σ
st(ϕ(x̄)) and ∆Υ

st(ϕ(x̄)) contain a single tgd τ resp. τ ′, we
first introduce some useful notation: We write JΣ = JΣ

S ∪ JΣ
T and JΥ = JΥ

S ∪ JΥ
T to denote the

result of chasing I = At(ϕ(x̄))} with Σ respectively Υ.

(1) ∆Σ
s (ϕ(x̄)) = ∆Υ

s (ϕ(x̄)): Suppose to the contrary that ∆Σ
s (ϕ(x̄)) 6= ∆Υ

s (ϕ(x̄)) holds.
W.l.o.g., assume that there exists a source egd ϕ(x) → xi = xj in ∆Σ

s (ϕ(x̄)) \∆Υ
s (ϕ(x̄)). By

the construction of ∆Σ
s (ϕ(x̄)) respectively ∆Υ

s (ϕ(x̄)) in step 3 of the PROPAGATE procedure,
the egd ϕ(x)→ xi = xj is satisfied by JΣ

S but not by JΥ
S .

We construct the source instance I ′ by “Skolemizing” JΥ
S , i.e., the variables in JΥ

S are re-
placed by pairwise distinct, fresh constants. By this construction, we know that I ′ satisfies
∆Υ
s (ϕ(x̄)). Moreover, the chase of I with Υ can be replayed on I ′. This chase of I ′ with Υ

clearly succeeds since all necessary equalities (i.e., the equalities enforced by ∆Υ
s (ϕ(x̄)) indeed

hold in I ′. In contrast, I ′ violates ∆Σ
s (ϕ(x̄)). Hence, by Lemma 12, the chase of I ′ with Σ fails.

This contradicts the assumption Σ ≡CQ Υ.

(2) ∆Σ
st(ϕ(x̄)) = {τ} and ∆Υ

st(ϕ(x̄)) = {τ ′}, the s-t tgds τ and τ ′ are identical up to variable
renaming: By part (1) of the proof, the source egds ∆Σ

s (ϕ(x̄)) and ∆Υ
s (ϕ(x̄)) coincide. Hence,

JΣ
S = JΥ

S . By step 2 of PROPAGATE, the s-t tgds τ and τ ′ are of the form τ = ϕ(x̄λ) →
(∃ȳ)ψ(x̄λ, ȳ) and τ ′ = ϕ(x̄λ) → (∃z̄)χ(x̄λ, z̄), respectively, for some substitution λ, s.t.
At(ϕ(x̄λ)) = JΣ

S = JΥ
S .

Let I ′ denote the source instance obtained by “Skolemizing” JΣ
S (or, equivalently, JΥ

S ), i.e.,
the variables in JΣ

S are replaced by pairwise distinct, fresh constants. Thus, I ′ = At(ϕ(x̄λµ)),
where µ is a substitution that sends each variable xi present in I ′ to a fresh constant ci.
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As in part (1) of the proof, the chase of I with Σ (resp. Υ) can be replayed on I ′. Since I ′

satisfies ∆Σ
s (ϕ(x̄)) (resp. ∆Υ

s (ϕ(x̄))), this chase of 〈I ′, ∅〉 with Σ (resp. Υ) succeeds and yields
a pair of instances 〈I ′, J ′Σ〉 (resp. 〈I ′, J ′Υ〉), s.t. J ′Σ is obtained from JΣ

S (resp. J ′Υ is obtained
from JΥ

S ) by applying the substitution µ to the variables in xλ ∩ JΣ
S (resp. xλ ∩ JΥ

S ).

Let CΣ = core(J ′Σ) and CΥ = core(J ′Υ). Then we have CΣ = At(ψ(x̄λµ, ȳ)) and CΥ =

At(χ(x̄λµ, z̄)), respectively. This is due to the fact that J ′Σ (resp. J ′Υ) is obtained from JΣ
S (resp.

JΥ
S ) via the “Skolemization” substitution µ and, therefore, the core CΣ of J ′Σ (resp. core CΥ of
J ′Υ) can be obtained from JΣ

S (resp. JΥ
S ) by first computing the core (considering the variables

xi as constants) and then applying substitution µ. But, by step 2 of PROPAGATE, core(J ′Σ)
= At(ψ(x̄λ, ȳ)) respectively core(J ′Υ) = At(χ(x̄λ, z̄)) holds.

CΣ and CΥ are homomorphically equivalent, since we are assuming Σ ≡CQ Υ. For cores,
homomorphical equivalence and isomorphism coincide. Hence, there exists a variable renaming
η from y to z, s.t. At(ψ(x̄λµ, ȳη)) = At(χ(x̄λµ, z̄)). But then also ψ(x̄λµ, ȳη) = χ(x̄λµ, z̄),
i.e., τ and τ ′ are identical up to variable renaming η.

We now want to combine the above result with Lemmas 12 and 13 to show that if two
mappings are CQ-equivalent, then their difference can be reduced to the target dependencies
(while the s-t tgds can be replaced by common source egds and s-t tgds). Since DE-equivalence
implies CQ-equivalence, this clearly holds for DE-equivalent mappings as well. Before we
formalize this idea in Theorem 13 below, it is convenient to prove the following lemma. It is
a slight generalization of Lemma 12 and tells us that all s-t tgds in a schema mapping may be
replaced by the output produced by successive calls of PROPAGATE (provided that PROPAGATE

is called with all CQs ϕ(x) that occur as antecedents of the s-t tgds in Σ).

Lemma 21. Let Σ = Σst ∪ Σt be a schema mapping and let Φ be a set of CQs, s.t. {ϕ(x) |
ϕ(x) is the antecedent of some σ ∈ Σst} ⊆ Φ. Moreover, let Σ∗s =

⋃
ϕ(x)∈Φ ∆Σ

s (ϕ(x)) and
Σ∗st =

⋃
ϕ(x)∈Φ ∆Σ

st(ϕ(x)). Then Σ ≡ Σ∗s ∪ Σ∗st ∪ Σt.

Proof. Let Σst = {σ1, . . . , σm} and let (ϕ1, . . . , ϕm), s.t. for each i ∈ {1, . . . ,m}, ϕi is the
antecedent of σm. Then Φ is of the form Φ = {ϕ1, . . . , ϕn} for some n ≥ m.

We define Σ0:=Σst and, for each i ∈ {1, . . . ,m}, we set Σi:=(Σi−1 \ {σi}) ∪∆
Σi−1
s (ϕi) ∪

∆
Σi−1

st (ϕi). By Lemma 12 and 13, we have the logical equivalence Σi ∪ Σt ≡ Σi−1 ∪ Σt for
each i ∈ {1, . . . ,m}. Hence, Σ = Σ0 ∪ Σt ≡ Σm ∪ Σt.

Note that Σm =
⋃m
i=1 ∆

Σi−1
s (ϕi) ∪

⋃m
i=1 ∆

Σi−1

st (ϕi). Moreover, the logical equivalence
Σi ∪ Σt ≡ Σst ∪ Σt implies CQ-equivalence Σi ∪ Σt ≡CQ Σst ∪ Σt. Hence, by Lemma 20,
∆

Σi−1
s (ϕi) ≡ ∆Σ

s (ϕi) and ∆
Σi−1

st (ϕi) ≡ ∆Σ
s (ϕi) holds. Hence, Σ ≡ Σm∪Σt ≡

⋃m
i=1 ∆Σ

s (ϕi)∪⋃m
i=1 ∆Σ

st(ϕi) and, by Lemma 12, Σ ≡ Σm ∪ Σt ≡
⋃n
i=1 ∆Σ

s (ϕi) ∪
⋃n
i=1 ∆Σ

st(ϕi).

Theorem 13. Let Σ = Σst ∪ Σt and Υ = Υst ∪ Υt with Σ ≡CQ Υ. Then there exist a set Σ∗s
of source egds and a set Σ∗st of s-t tgds, s.t. Σ ≡ Σ∗s ∪ Σ∗st ∪ Σt and Υ ≡ Σ∗s ∪ Σ∗st ∪Υt.
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Proof. The idea is to call PROPAGATE with every antecedent occurring in Σst ∪Υst and to take
Σ∗s (resp. Σ∗st) as the set of all source egds (resp. all s-t tgds) produced by these procedure calls.
Formally, we set Φ = {ϕ(x) | ϕ(x) is the antecedent of some σ ∈ Σst} ∪ {ϕ(x) | ϕ(x) is the
antecedent of some σ ∈ Υst} and Σ∗s =

⋃
ϕ(x)∈Φ ∆Σ

s (ϕ(x)) and Σ∗st =
⋃
ϕ(x)∈Φ ∆Σ

st(ϕ(x)).

Then, by Lemma 21, Σ ≡ Σ∗s ∪ Σ∗st ∪ Σt. Likewise, Υ ≡ Υ∗s ∪ Υ∗st ∪ Υt holds for
Υ∗s =

⋃
ϕ(x)∈Φ ∆Υ

s (ϕ(x)) and Υ∗st =
⋃
ϕ(x)∈Φ ∆Υ

st(ϕ(x)).

By Σ ≡CQ Υ and Lemma 20, ∆Σ
s (ϕ(x)) ≡ ∆Υ

s (ϕ(x)) and ∆Σ
st(ϕ(x)) ≡ ∆Υ

st(ϕ(x)) holds
for every ϕ(x) ∈ Φ. Hence, Σ∗s ≡ Υ∗s and Σ∗st ≡ Υ∗st. Thus, Υ ≡ Σ∗s ∪ Σ∗st ∪Υt.

With this theorem at hand, we can now settle the question of the decidability of DE- and
CQ-equivalence of schema mappings with logically equivalent (and, in particular, with identical)
target dependencies. Again, it is convenient first to prove a lemma.

Lemma 22. Let Σ = Σst ∪ Σt and Υ = Υst ∪ Υt, such that Σ ≡CQ Υ and Σt ≡ Υt holds.
Then Σ ≡ Υ.

Proof. By Theorem 13, there exist a set of source egds Σt
∗ and a set of s-t tgds Σ∗st such that

Σ ≡ Σ∗s ∪ Σ∗st ∪ Σt and Υ ≡ Σ∗s ∪ Σ∗st ∪Υt. The claim follows from Σt ≡ Υt.

Theorem 14. Suppose that the problems of DE- and CQ-equivalence are restricted to pairs of
schema mappings Σ = Σst∪Σt and Υ = Υst∪Υt, s.t. Σt and Υt are logically equivalent. With
this restriction, the DE- and CQ-equivalence problems Σ ≡DE Υ and Σ ≡CQ Υ, respectively,
are decidable.

Proof. By the condition Σt ≡ Υt and by Lemma 22, Σ ≡ Υ holds iff Σ ≡CQ Υ holds. Hence,
also Σ ≡DE Υ coincides with logical equivalence.

In other words, the relaxed notions of equivalence are decidable on schema mappings if only
the s-t tgds are allowed to vary. This naturally raises the question if the decidability result of
Theorem 14 allows us to exploit additional possibilities (compared with logical equivalence) of
optimizing the s-t tgds in the presence of target dependencies.

We now show for a broad class of optimization problems on s-t tgds that the relaxed notions
of equivalence lead to exactly the same notion of optimality as logical equivalence. Negatively,
this means that the relaxed notions of equivalence do not give us additional power. Positively,
this means that for optimizing the s-t tgds one can interchangeably use algorithms for any of
these notions of equivalence. Below, we carry over the notions of optimality to s-t tgds and
generalize these notions to arbitrary, real-valued target functions. W.l.o.g., we restrict ourselves
to minimization problems. For the sake of a uniform notation, in Definition 20 we denote logical
equivalence by ≡log rather than ≡.

Definition 20. LetM = 〈S,T,Σ〉 with Σ = Σst ∪ Σt be a mapping, let x ∈ {log,DE,CQ}
and let F be a function that assigns a real number to every set of s-t tgds.
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Then the set of s-t tgds Σst is called F -optimal w.r.t. x-equivalence, if there does not exist a set
of s-t tgds Σ′st, s.t. F (Σ′st) < F (Σst) and Σst ∪ Σt ≡x Σ′st ∪ Σt.

Formally, we show below that, for any real-valued function F , the F -optimality w.r.t. DE-
or CQ-equivalence coincides with the F -optimality w.r.t. logical equivalence.

Theorem 15. Let M = 〈S,T,Σ〉 with Σ = Σst ∪ Σt be a schema mapping and let F be a
function that assigns a real number to every set of s-t tgds. Then Σst is F -optimal w.r.t. logical
equivalence iff it is F -optimal w.r.t. DE-equivalence iff it is F -optimal w.r.t. CQ-equivalence.

Proof. Logical equivalence entails DE-equivalence, which entails CQ-equivalence [23]. Hence,
it suffices to show that if Σst is F -optimal w.r.t. logical equivalence then it is also F -optimal w.r.t.
CQ-equivalence. Suppose to the contrary that Σst is F -optimal w.r.t. logical equivalence but not
w.r.t. CQ-equivalence. Then there exists Σ′st, s.t. F (Σ′st) < F (Σst) and Σst∪Σt ≡CQ Σ′st∪Σt.
By Lemma 22, then also Σst ∪ Σt ≡ Σ′st ∪ Σt holds, which contradicts the assumption that Σst

is F -optimal w.r.t. logical equivalence.

We have shown that if the target dependencies are fixed, the notions of logical, DE- and
CQ-equivalence coincide, in full analogy with the situation when mappings are specified by sets
of source-to-target tgds alone. Now, we move on to a situation where the target dependencies
are allowed to vary, and consider the relaxed notions of equivalence in this setting.

6.2 Overview of undecidability results

We start with an undecidability result that immediately follows from the undecidability of equiv-
alence of Datalog programs [55]:

Theorem 16 ([23]). CQ-equivalence is undecidable for mappings based on full s-t tgds and full
target tgds.

As shown in [49], this result can be extended to mappings with target egds (and no target tgds):

Theorem 17 ([49]). CQ-equivalence is undecidable for schema mappings based on s-t tgds and
target egds.

Furthermore, Theorems 16 and 17 hold even if restricted to mappings with just a single target
dependency each. The proof utilizes the result of Gottlob and Papadimitriou [29], who proved
that for every Datalog program, one can find an (essentially) equivalent Datalog program which
consists of a single rule (called sirup):

Theorem 18 ([49]). CQ-equivalence is undecidable for schema mappings based on full s-t tgds
and a single full target tgd, or s-t tgds and a single target egd.
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Already based on these results, one can receive an impression that CQ-equivalence is in
general difficult to test in the presence of target constraints. Yet a closer investigation is neces-
sary to support such a claim. In particular, decidability of specific optimization tasks, as well
as decidability of testing CQ-equivalence for restricted classes of target dependencies must be
investigated. In [49], most of these questions have been settled in the negative: both testing CQ
equivalence and optimizing schema mappings w.r.t. CQ-equivalence is undecidable, even for
very restricted target dependencies. In particular, CQ-equivalence becomes undecidable if target
key dependencies are allowed:

Theorem 19 ([49]). CQ-equivalence is undecidable for schema mappings based on s-t tgds and
at most one key dependency per target relation.

Therefore, it is important to clarify the role of DE- equivalence, a notion which is stricter than
CQ-equivalence and yet more relaxed than logical equivalence. However, many results in [49]
concerned with DE-equivalence are not particularly encouraging: in the presence of unrestricted
target egds or full target tgds, DE-equivalence is undecidable as well as CQ-equivalence:

Theorem 20 ([49]). DE-equivalence is undecidable for schema mappings based on s-t tgds and
target egds.

Furthermore, if target integrity constraints are encoded by (full) tgds, the undecidability holds
even if the source-to-target tgds in the mappings are full as well:

Theorem 21 ([49]). DE-equivalence is undecidable for schema mappings based on full s-t tgds
and full target tgds.

For mappings in which the source-to-target tgds are not necessarily full, the above results can be
considerably strengthened:

Proposition 2 ([49]). DE- and CQ-equivalence remain undecidable for schema mappings based
on s-t tgds and either (1) full target tgds or (2) target egds, even if one of the following restrictions
applies:
• constant symbols are not allowed in dependencies, or

• the sets of target dependencies are fixed.

Note that in the second claim of Proposition 2, we are dealing with the situation where two
mappings in question have two a priori known sets Σ∗t and Σ∗∗t of target dependencies. Of
course, the two sets Σ∗t and Σ∗∗t must be distinct: Otherwise, both CQ- and DE-equivalence
become decidable by Theorem 14.

Similarly, many natural optimization tasks are undecidable under DE-equivalence as well as
under CQ-equivalence.

Theorem 22 ([49]). LetM = 〈S,T,Σ〉 be a a schema mapping with Σ = Σst ∪ Σt based on
s-t tgds and target egds, or full s-t tgds and full target tgds. Then, the following optimization
problems are undecidable w.r.t. DE- resp. CQ-equivalence.:
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• Test if a given dependency τ ∈ Σ is redundant.

• Test if Σ is cardinality-minimal.

Notably, cardinality-minimality remains undecidable even if the set of source-to-target depen-
dencies is fixed. This is in contrast to the opposite situation considered in the previous section:
Recall that if the target dependencies are fixed, CQ-, DE- and logical equivalence collapse, see
Lemma 22.

Theorem 23 ([49]). Let M = 〈S,T,Σ〉 be a schema mapping with Σ = Σst ∪ Σt based on
s-t tgds and target egds, or full s-t tgds and full target tgds. Then it is undecidable if Σt is
cardinality-minimal w.r.t. DE- resp. CQ-equivalence.

Finally, antecedent-minimality of target dependencies is also undecidable under the relaxed no-
tions of equivalence:

Theorem 24 ([49]). Let 〈S,T,Σ〉 be a a mapping with Σ = Σst∪Σt of s-t tgds and target egds.
Then it is undecidable if for all Σ′t, s.t. Σst∪Σt ≡CQ Σst∪Σ′t (resp. Σst∪Σt ≡DE Σst∪Σ′t), the
total number of atoms in the antecedents in Σt is less than or equal to the total number of atoms
in the antecedents in Σ′t. That is, if Σt is antecedent-minimal w.r.t. DE- resp. CQ-equivalence.

However, the situation changes completely when restrictions of target dependencies are con-
sidered. For a large class of target constraints DE-equivalence turns out to be decidable, and so
are most important optimization tasks. This will be the subject of the next chapter.
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CHAPTER 7
DE-equivalence: decidable case

Among the results outlined in Section 6.2 there was the undecidability of testing CQ-equivalence
of mappings with target dependencies as weak as sets of key constraints. In this chapter, we
show that DE-equivalence is decidable for mappings whose target dependencies belong to a
considerably bigger class. The idea of the equivalence test is rather simple: given two mappings,
we identify dependencies in one mapping which are not logically implied by the other mapping.
For DE-equivalence, it is sufficient that no such “differing” dependency ever fires in any possible
chase sequence (see Theorem 25). Moreover, we will show that for a certain class of target
dependencies, this condition is also necessary for DE-equivalence.

Definition 21. A query ϕ is said to be satisfiable in a mapping Σ if there exists a source instance
I such that the chase of I with Σ terminates and succeeds, and chase(I,Σ) |= ϕ holds.

Definition 22. Let Σ and Σ′ be schema mappings. Dependency τ ∈ Σ ∪ Σ′ is said to be
“differing”, if it is not implied by one of the mappings, i.e., either Σ 6|= τ or Σ′ 6|= τ holds.

Definition 23 (AUC). We say that a pair of mappings Σ,Σ′ meets the antecedent unsatisfiability
condition (AUC), if no differing dependency τ in any of Σ,Σ′ has an antecedent satisfiable in
the mapping which contains τ .

Effectively, AUC makes Σ and Σ′ indistinguishable for the chase. As it was shown by
Theorem 13, for any two mappings Σ = Σst ∪ Σt and Σ′ = Σ′st ∪ Σ′t, whenever Σ ≡CQ Σ′

holds, there exist sets Σ∗s of source egds and Σ∗st of s-t tgds, such that Σ ≡ Σ∗s ∪ Σ∗st ∪ Σt and
Σ′ ≡ Σ∗s ∪ Σ∗st ∪ Σ′t. Since DE-equivalence implies CQ-equivalence, in this chapter we always
assume that two mappings whose DE-equivalence is under consideration have exactly the same
set of s-t tgds and source egds. As a consequence, by “differing dependency” we will always
assume a target one. We also notice that the following simple proposition holds:

Proposition 3. LetM = 〈S,T,Σ〉 be a schema mapping s.t. Σ = Σs ∪ Σst ∪ Σt is a set of
source egds, s-t tgds and target tgds and egds. For any dependency τ over T, Σ |= τ iff Σt |= τ .
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Proof. “If” is by Σt ⊆ Σ, and “only if” is due to the fact that Σ \ Σt = Σst ∪ Σs is the set of
source-to-target tgds and source egds, which, as it is easy to see from Lemma 10, have no impact
on the implication test: having antecedents over S, they never fire in the chase of the antecedent
database of τ , and thus Σ |= τ only if Σt |= τ .

The following theorem puts AUC into effect, as illustrated by the mappings M and M1

from Example 8 in Section 1.1.

Theorem 25. Let Σ = Σs ∪ Σst ∪ Σt and Σ′ = Σs ∪ Σst ∪ Σ′t be schema mappings with
terminating chase property where the target dependencies consist of egds and tgds. If Σ and Σ′

satisfy the AUC, then Σ ≡DE Σ′ holds.

This result is not very surprising, if we recall that DE-equivalence is concerned with univer-
sal solutions, and that AUC makes two mappings indistinguishable for the chase, a primary tool
for actually computing a universal solution. The following lemma helps to make this intuition
precise:

Lemma 23. Let Σ = Σs ∪ Σst ∪ Σt and Σ′ = Σs ∪ Σst ∪ Σ′t be two mappings between the
schemas S and T, and I an instance over S, such that Σ′ does not cause a chase failure on I . Let
n be arbitrary. Assume that in the first n steps of the chase of I with Σ, only those dependencies
fire which are logically implied by Σ′. Then, chasen(I,Σ)→ chase(I,Σ′) holds.

Proof. Follows from Lemma 3.4 of [22], which makes the following claim: LetK be an instance
which satisfies a dependency τ , and let K1 and K2 be instances, such that the latter is produced
from the former by a non-failing chase step enforcing τ . Then K1 → K implies K2 → K.

By taking K = chase(I,Σ′), it is easy to see that (i) the chase of K0 = chase(I,Σst) with
Σt starts with an instance from which there is a homomorphism onto K, and (ii) K satisfies all
the dependencies firing in this chase. Hence, chasen(I,Σ) → K = chase(I,Σ′) for every n
such that only dependencies implied by Σ′ are firing up to step n.

We are now ready to prove Theorem 25:

Proof of Theorem 25. Suppose that the two mappings are not DE-equivalent: w.l.o.g., there is a
source instance I and a target instance J such that J ∈ UnivSol(I,Σ′) and J 6∈ UnivSol(I,Σ).
We show that there must exist at least one differing target dependency violating the preconditions
of the theorem.

Since J is a universal solution for Σ′, core(I,Σ′) ∼= core(J). Hence, the chase of I with Σ′

must succeed. For Σ, we have the following two cases:
1. I is a counter-example to Σ′ =CQ Σ: the chase of I with Σ fails, or core(I,Σ) 6∼=

core(I,Σ′). Consider two parallel chases of I , one with Σ and another with Σ′. If neither
sequence contains a firing of a differing dependency, then by Lemma 23, the chase of I with
Σ succeeds (since the chase Σ′ does) and moreover, chase(I,Σ) ↔ chase(I,Σ′) holds. Thus,
core(I,Σ) ∼= core(I,Σ′) which contradicts our assumption.
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Hence, it must be the case that at least one differing dependency fires in the course of the
chase of I with Σ or with Σ′, thereby its antecedent must be satisfiable in the respective mapping.

2. I illustrates Σ′ =CQ Σ: core(I,Σ) ∼= core(I,Σ′) ∼= core(J). Then, J 6∈ Sol(I,Σ)

must be the case, as otherwise J would be a universal solution for Σ, which contradicts the
assumption that J is a witness for Σ 6≡DE Σ′.

Then, there must be a dependency τ ∈ Σ which is violated only by J but not by core(J).
Since J |= Σ′, it must be the case that Σ′ 6|= τ . It remains to show that ant(τ) is satisfiable
in Σ. It is very easy to see, though: J |= ant(τ) (otherwise, J would not violate τ ) and J ↔
chase(I,Σ), since the two instances have isomorphic cores. Thus, chase(I,Σ) |= ant(τ).

It turns out that for DE-equivalent mappings, the AUC can be reformulated in terms of
unsatisfiability in either mapping:

Theorem 26. Let Σ = Σs ∪Σst ∪Σt and Σ′ = Σs ∪Σst ∪Σ′t be two DE-equivalent mappings.
For any differing dependency τ ∈ Σ ∪ Σ′, let Στ ∈ {Σ,Σ′} denote the mapping containing τ ,
and let Σ¬τ be the other mapping, Σ¬τ 6|= τ . Then, the following two statements are equivalent:

A: For any differing dependency τ ∈ Σ ∪ Σ′, the antecedent of τ is unsatisfiable in Σ¬τ ;

B: (AUC) For any differing dependency τ ∈ Σ∪Σ′, the antecedent of τ is unsatisfiable in Στ .

Proof. For convenience, we expand the formulation of the claim of the theorem. Specifically,
(A) is equivalent to the following pair of statements:

A1: For any σ ∈ Σ, Σ′ 6|= σ, and for any source Iσ, chase(Iσ,Σ
′) 6|= ant(σ).

A2: For any σ′ ∈ Σ′, Σ 6|= σ′, and for any source Iσ′ , chase(Iσ′ ,Σ) 6|= ant(σ′).

Likewise, (B) is equivalent to (B1 ∧B2):

B1: For any τ ∈ Σ, Σ′ 6|= τ , and for any source Iτ , chase(Iτ ,Σ) 6|= ant(τ).
B2: For any δ ∈ Σ′, Σ 6|= δ, and for any source Iδ, chase(Iδ,Σ

′) 6|= ant(δ).

(A1 ∧ A2)⇒ (B1 ∧ B2). We only show that (A1) implies (B1); (A2)⇒ (B2) follows immediately
by symmetry.

Indeed, assume (A1) and suppose that (B1) does not hold: there exists such a τ ∈ Σ, Σ′ 6|= τ

and a source instance Iτ , that chase(Iτ ,Σ) |= ant(τ).
Firstly, by Σ ≡DE Σ′, the chase of Iτ with Σ must succeed, as otherwise Iτ would be

a counter-example to DE-equivalence of Σ and Σ′. We show by induction on n, that for no
dependency δ ∈ Σ which is not implied by Σ′, chasen(Iτ ,Σ) |= ant(δ) can hold.

n = 1: @δ ∈ Σ such that Σ′ 6|= δ and chase(Iτ ,Σst) |= ant(δ). Otherwise, as source-to-target
dependencies in Σ′ and Σ coincide, and the chase of Iτ with Σ′ succeeds, also chase(Iτ ,Σ

′) |=
ant(δ) holds, which contradicts (A1).

n⇒ n+ 1: By induction hypothesis, up to step n of the chase of Iτ with Σ, no dependency that
is not implied by Σ′ fires. Then, by Lemma 23, it holds that chasen(Iτ ,Σ) → chase(Iτ ,Σ

′).
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But then also at step n + 1 of the chase with Σ no dependency δ can fire such that Σ′ 6|= δ, as
then chase(Iτ ,Σ

′) |= ant(δ) would be the case, which contradicts (A1).

(B1 ∧ B2)⇒ (A1 ∧ A2). We only prove (A1) assuming (B1) and (B2), since (B1 ∧ B2)⇒ (A2)
is a symmetric case.

Suppose that (A1) does not hold, and there exists some differing dependency σ ∈ Σ, whose
antecedent ant(σ) is satisfiable in Σ′: That is, Σ′ 6|= σ and for some source instance Iσ,
chase(Iσ,Σ

′) |= ant(σ).
Then, there must be some integer n, such that chasen(Iσ,Σ

′) |= ant(σ). At the same time,
by (B1), chase(Iσ,Σ) 6|= ant(σ).

It must be the case that the chase with Σ succeeds on Iσ, as otherwise the DE-equivalence
of Σ and Σ′ would be immediately violated.

Now, by Lemma 23, we have that if in the course of the chase of Iσ with Σ′ no dependency
δ fires s.t. Σ 6|= δ, then chase(Iσ,Σ

′) → chase(Iσ,Σ) holds, and thus also chase(Iσ,Σ) |=
ant(σ) must be the case, which contradicts (B1). Hence, there must be some δ ∈ Σ′ s.t. Σ 6|= δ

and δ applies in the course of the chase of Iσ. Clearly, this implies that ant(δ) is satisfiable in
Σ′, and we have derived a contradiction to (B2).

Theorem 26 will allow us to show, that for some useful class of mappings, the antecedent
unsatisfiability condition is also necessary for DE-equivalence. Namely, this is the case for
mappings in which target dependencies are constant-free and connected:

Definition 24. A conjunctive query is said to be connected if so is its dual graph (that is, the
graph whose vertices correspond to the query atoms and an edge is drawn between two vertices
whenever the respective atoms share a variable).

An egd is connected if its antecedent is. Finally, a tgd is connected if the conjunction of its
antecedent and conclusion is: both the antecedent and the conclusion are connected and share
at least one variable.

We also extend the notion of connectedness to databases:

Definition 25. Let I be an instance. The dual graph GI of I has vertices associated with the
atoms of I . An edge betweenA(x̄) andB(ȳ) is drawn whenever x̄ and ȳ have a term in common
(be it a constant or a labelled null). We say that I is connected if GI is.

The following lemma will be of help subsequently:

Lemma 24. Consider a connected Boolean conjunctive query ϕ, and an instance I . If there
exists a homomorphism h mapping each atom of ϕ onto a fact in I (if I |= ϕ, that is), the
subinstance h(ϕ) of I is connected.

Proof. We apply induction on the size of ϕ. For an atomic ϕ, the claim is trivial. Assume now
that all images of any connected Boolean CQ ϕn of size n are connected. Then, consider a query
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ϕn+1 obtained by augmenting ϕn with an additional atom A that shares at least one variable
with some atom B in ϕn. Let h be a homomorphism mapping ϕn+1 onto I . By the induction
hypothesis, h(B) belongs to a connected component of h(ϕn) ⊆ I . Clearly, by construction of
ϕn+1, h(A) must share a term with h(B), and thus h(ϕn+1) is connected, too.

Now, everything is set up to demonstrate AUC as a necessary condition for DE-equivalence:

Theorem 27. Consider the mappings Σ = Σs∪Σst∪Σt and Σ′ = Σs∪Σst∪Σ′t in which both
Σt and Σ′t are constant-free and connected. Then, Σ ≡DE Σ′ implies that the two mappings
satisfy the antecedent unsatisfiability condition.

Proof. Assume that Σ ≡DE Σ′ holds, but the antecedent unsatisfiability condition is violated:
that is, there exists a differing dependency δ in either of the mappings, with the antecedent sat-
isfiable in the mapping which contains δ. Then, by Theorem 26, also the following statement
holds: W.l.o.g. there exists τ ∈ Σt such that Σ′ 6|= τ and the antecedent ϕ(x̄) of τ is satisfi-
able in Σ′. Now if τ and all dependencies in Σ′t are constant-free and connected, we derive a
contradiction by showing Σ 6≡DE Σ′:

Indeed, assume there exists a source instance I such thatϕ(x̄) is satisfied in J = chase(I,Σ′).
Let [ϕ] be a database isomorphic to ϕ(x̄): each atom of ϕ(x̄) is turned into a fact in [ϕ] by in-
stantiating the variables with distinct labelled nulls not occurring in J .

Based on [ϕ], we now build a counter-example to Σ ≡DE Σ′. We first note that the chase
with both Σ and Σ′ succeeds on [ϕ], as the target dependencies in both mappings are constant-
free, and dom([ϕ]) consists solely of labelled nulls.

Consider the instance Jϕ = chase([ϕ],Σ′). We prove three properties, justifying that the
instance J ′ = J ∪ Jϕ is exactly a counter-example to DE-equivalence of Σ and Σ′.

a. J ′ 6|= Σt and hence, J ′ 6∈ Sol(I,Σ).

b. J ′ |= Σ′. Since J ∈ Sol(I,Σ′), we have J ′ ∈ Sol(I,Σ′).

c. There exists a homomorphism from J ′ onto any other solution for I under Σ′. Hence,
J ′ ∈ UnivSol(I,Σ′).

(a) First note that Jϕ 6|= τ , since otherwise Σ′ |= τ would be the case, by the dependency
implication test from Lemma 10. We show now that also J ′ 6|= τ holds by arguing that the facts
or equalities missing in Jϕ cannot be provided by J . This is immediate if τ is an egd: Missing
equalities in Jϕ will violate τ irrespectively of any facts added to Jϕ.

Let τ be a tgd. Jϕ 6|= τ means that there exists an assignment λ for the variables of ϕ(x̄),
such that no assignment µ exists for which At(ψ(x̄λ, ȳµ)) ⊆ Jϕ holds. We show that for this
very assignment λ, there is also no assignment χ, such that At(ψ(x̄λ, ȳχ)) ⊆ J ′.

Indeed, by the connectedness condition on target dependencies, ψ(x̄, ȳ) is connected. By
Lemma 24, every image ofψ(x̄, ȳ) must be connected, too. Recall that λ sends the atoms ofϕ(x̄)

onto Jϕ, and that dom(Jϕ)∩dom(J) = ∅. It is thus not possible thatAt(ψ(x̄λ, ȳχ)) ⊆ J holds.
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Moreover, since any instance combining the atoms from Jϕ and J is necessarily disconnected,
there is no χ s.t. At(ψ(x̄λ, ȳχ)) ⊆ Jϕ ∪ J holds.

(b) To show J ′ ∈ Sol(I,Σ′), we first note that both J and Jϕ satisfy Σ′. It remains to
show that no further dependencies from Σ′ fire on their union J ′. This follows from Lemma 24
and the fact that all target dependencies in Σ′ are constant-free and have connected antecedents.
Since dom(Jϕ)∩dom(J) = ∅, the antecedent of no target dependency in Σ′ can be surjectively
mapped onto any subinstance of J ′ which mixes facts from J and Jϕ.

Finally, (c) is shown by proving J ′ → J , as J is a canonical universal solution for I under
Σ′. Recall that, by the initial assumption made in this proof, J |= ϕ(x̄) and thus there is a
homomorphism [ϕ] → J , by construction of [ϕ]. It takes an easy inductive proof to show that
after each chase step n of [ϕ] with Σ′, the homomorphism chasen([ϕ],Σ′) → J holds, using
the Lemma 3.4 of [22] (cited in the proof of Lemma 23 above).

Theorem 27 allows one to reduce the data exchange equivalence of mappings with terminat-
ing chase property, containing constant-free and connected target dependencies, to testing the
satisfiability of conjunctive queries according to Definition 21. This is good news, since satisfi-
ability can be efficiently decided for a broad class of mappings. In particular, we bring together
the results of this chapter and Lemma 10 to establish the DE-equivalence as a useful tool for
optimizing practically relevant schema mappings, given by functional dependencies (FDs) and
weakly acyclic sets of inclusion dependencies (IDs).

Weak acyclicity (see [16, 22]) is a sufficient condition, ensuring that a chase of arbitrary
source instance terminates in polynomial time (data complexity). This property is formalized
by setting up the dependency graph G corresponding to a set Σ of tgds. The vertices of G are
the positions Ri of every relation R in the schema. Let a variable x occur at position Ri in the
antecedent of some tgd τ . Then there is an edge

(
Ri, Sj

)
in G if either

1. x also occurs at position Sj in the conclusion of τ or

2. x occurs in in the conclusion of τ and there is an existentially quantified variable y at
position Sj in the conclusion of τ .

Edges resulting from rule (2) are called special. A set of tgds is weakly acyclic if there is no
cycle containing a special edge.

Theorem 28. DE-equivalence of schema mappings with target dependencies consisting of FDs
and IDs, and possessing the terminating chase property is decidable.

Furthermore, suppose that the sets of IDs in these schema mappings are weakly-acyclic
and that the number of terms in the antecedent resp. conclusion of s-t tgds in the mappings
is bounded by some constant b. Then DE-equivalence of such mappings can be decided in
polynomial time.
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Proof. First note that FDs and IDs are always connected and constant-free. Then, given the
mappings Σ = Σst ∪Σt and Σ′ = Σ′st ∪Σ′t where both Σt and Σ′t are restricted to FDs and IDs
and possess the terminating chase property, the following procedure decides Σ ≡DE Σ′:

1. Transform Σ and Σ′ into the form Σs∪Σ̂st∪Σt resp. Σ′s∪Σ̂′st∪Σ′t using the PROPAGATE

procedure. By Theorem 13, if Σs 6≡ Σ′s or Σ̂st 6≡ Σ̂′st, conclude Σ 6≡DE Σ′.

2. Conclude Σ ≡DE Σ′ if the pair (Σ,Σ′) meets the antecedent unsatisfiability condition
and Σ 6≡DE Σ′ otherwise.

The complexity estimation rests upon the fact that both steps of the decision procedure take
polynomial time if the sets of tgds in the mappings are weakly acyclic and the dependency
size is bounded. For the s-t dependencies this bound is b, and for target inclusion and target
dependencies it is implicit in the size of the schema, which we consider fixed. Let d0 be the
maximum of the two bounds. We do then one further adaptation: as a final dependency size
bound d, we take max(d0, c), where c is the maximal number of antecedent resp. conclusion
atoms in the dependencies in Σ resp. Σ′. (Note, that as b limits a number of antecedent resp.
conclusion terms, and a schema is fixed, there is only a fixed number of different atoms which
can be constructed, and thus c can be considered fixed as well).

Let D be the maximal number of dependencies in Σ resp. Σ′. For correctness of the com-
plexity estimation, the following two claims are essential:

Claim 1: Let weakly-acyclic mapping Σ be defined as above and consist of at most D dependen-
cies, and let a source instance I have size n. Then, the size of chase(I,Σ) is polynomial both in
D and in n.
This is shown implicitly by the proof of Theorem 3.9 [22], which claims that the number of steps
in a chase sequence is polynomial in the size of the source instance.

Claim 2: Let T be an instance of size polynomial in D. Then for each τ ∈ Σ ∪ Σ′, deciding
T |= τ takes poly(D) time, i.e., the required time is a polynomial in D.

Indeed, there are at most |dom(T )|d ways in which the antecedent of τ can be mapped onto
T . For each such application, we have to check that also the conclusion of τ is satisfied, which
amounts to evaluating a CQ of bounded size.

We now analyze the running time of the two steps of the above decision procedure.

Step 1 of the decision procedure. Applying PROPAGATE to an instance with at most d
facts (the antecedent of some s-t tgd) comes down to chasing it with D dependencies. Let JT
denote the chase result. Since d is constant, by Claim 1 the size of JT is poly(D). Step 2
uses JT to construct the new s-t tgd τ . This is preceded by computing the core of JT , which
is an expensive operation.1 However, for weakly-acyclic sets of tgds of bounded size, core
computation is feasible in polynomial time. First note that depth p of the chase, i.e., the maximal

1In principle, core computation could be omitted: Every result presented so far would also hold if JT is directly
converted into the conclusion of τ .
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number of existential edges in any path in the dependency graph of Σ is bounded by the number
of vertices in this graph (every path containing a special edge is acyclic), that is, depends on
the schema T only and thus can be considered fixed. The core computation algorithm of [51]
performs iterations consisting of evaluating a query of size O(dp) = O(1) against JT . These
iterations then replay the chase of JT , thereby obtaining a homomorphism from JT in its proper
subset. Finally, the homomorphism must be transformed into an idempotent one, which takes
O(|dom(JT )|2) time. After less than |dom(JT )|2 iterations, the core is found. Thus, the second
step of PROPAGATE is also feasible in poly(D) time.

Assume that unifications of the source variables performed by the chase are recorded at step
1 of the PROPAGATE. Then, also the 3rd step, producing the source egds is feasible in constant
time, since all egds use the same antecedent and there is only a fixed number of variables to
equate. In total, each call of the PROPAGATE procedure takes poly(D) time, and there is no
more than 2D calls, for each antecedent of the s-t tgd in Σ resp. Σ′. As a result, the sets Σ̂st and
Σ̂′st have at most 2D dependencies, and the size of Σs resp. Σ′s is O(D).

Checking Σs = Σ′s, by Lemma 10, amounts to chasing at most 2D antecedents of source
egds (of bounded size) with O(D) source egds, which takes time O(D2).

In contrast with source egds, the dependencies in Σ̂st resp. Σ̂′st can have conclusions of size
poly(D), by Claim 1. Let τ ∈ Σ̂st be such an s-t tgd, and it has to be found if Σ̂′st |= τ holds.
For that, we chase the instanceAτ = At(ant(τ)) with Σ̂′st which by Claim 1 results in the target
instance J of polynomial size. Then, by Lemma 10, it remains to test 〈Aτ , J〉 |= τ .

Recall that the conclusion of τ has been produced by the PROPAGATE procedure by chasing
Aτ with Σ. Hence, instead of testing 〈Aτ , J〉 |= τ , we can as well check 〈Aτ , J〉 |= Σ. If the
latter condition fails, a counter-example to DE-equivalence has been found; otherwise, we can
conclude 〈Aτ , J〉 |= τ . Since the size of the combined database 〈Aτ , J〉 is polynomial in D, by
Claim 2 we know that 〈Aτ , J〉 |= Σ can be decided in polynomial time, too.

Step 2 of the decision procedure. Testing the antecedent unsatisfiability condition amounts
to (a) finding the differing dependencies in Σt,Σ

′
t and (b) testing the satisfiability of the an-

tecedents of the identified dependencies.

(a) Consider a dependency τ ∈ Σt. By Lemma 10, the implication test consists of two
phases: (i) chasing of the antecedent databaseAτ of τ with Σ′; and (ii) checking chase(Aτ ,Σ

′) |=
τ . By Claim 1, we know that the size chase(Aτ ,Σ

′) is polynomial in D. Then, by Claim 2, also
the second phase takes polynomial time.

(b) The core of the antecedent of any ID or FD consists of a single atom with pairwise
distinct variables. If target dependencies in Σ are restricted to IDs and FDs, satisfiability of
the antecedent R(z) of any of them can be tested by simply checking if an R atom occurs in
the conclusion of some s-t tgd in Σ̂st. For the soundness of this test method, assume that such
tgd σ exists. Then the source instance Aσ obtained by instantiating the variables of ant(σ)

with distinct constants is a witness thatR(z) is satisfiable in Σ. Indeed, both the antecedent (and
thus,Aσ) and the conclusion of σ result from the same chase with Σ at step 1 of the PROPAGATE
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procedure.
In the opposite direction, assume that there exists a source database I such that chase(I,Σ) |=

∃zR(z). Let σ0, . . . , σk be a smallest sequence of tgds that need to fire in order to add an R fact
to chase(I,Σ): σ0 is a s-t tgd in Σ, and σi+1 is a target ID which is not applicable unless σi
has fired. Let σ be the tgd in Σ̂st produced by the PROPAGATE procedure applied to ant(σ0)

and Σ. We know that σ exists, that is, the chase of At(ant(σ0)) with Σ does not fail due to an
attempt to unify distinct constants from ant(σ0) resp. Σ: otherwise, it would also fail on I . The
conclusion of σ includes all target relational symbols occurring in σ0 and hence any chase in
which σ fires, also contains chase steps with σ1, . . . , σk. In particular, this holds for the chase
sequence that produced the conclusion of σ, and thus at least one R atom must occur there. We
have shown the completeness of our satisfiability check. It is feasible in time O(D).

The previous result extends to mapping optimization with respect to redundancy elimination
and subset-minimality. Namely, the following theorem can be easily shown:

Theorem 29. Let M = 〈S,T,Σ〉 be a schema mapping with target FDs and weakly acyclic
set of IDs. Moreover, assume that the number of terms in the s-t tgds of Σ is limited by some
constant b. Then, the following problems can be decided in polynomial time:

• checking if a dependency τ ∈ Σ is redundant w.r.t. DE-equivalence, and therefore,

• checking if Σ is subset-minimal.

Thus, in terms of complexity, DE-equivalence, while offering strictly higher optimization
potential, is no worse than logical equivalence (studied in [31]) in the setting of Theorem 28.
Note also, that the Theorems 28 and 29 can be adapted for a class of mappings with more
expressible target dependencies than FDs and IDs: namely, constant-free and connected target
tgds and egds. In this case we assume that also s-t tgds are free of constants. Then, the following
satisfiability test using a notion called critical instance in [43] can be used:

Definition 26. A critical instance I1
S for schema S contains a single atom R(c, . . . c) for each

relation R in S, where c is some constant: dom(I1
S) = {c}.

Theorem 30. Let M = 〈S,T,Σ〉 be schema mapping where Σ consists of constant-free de-
pendencies: source egds, s-t tgds, and target egds and tgds, possessing the terminating chase
property. A Boolean conjunctive query q is satisfiable in Σ iff chase(I1

S,Σ) |= q.

Proof. There is a homomorphism h (not preserving constants) from any source database I onto
I1
S. Thus, any dependency with constant-free antecedent which fires in the chase of I is also

applicable when I1
S is chased, and h can be extended to h′ : chase(I,Σ) → chase(I1

S,Σ) by
extending the domain of h to the nulls introduced by the chase of I with Σ. Hence, for every I ,
chase(I,Σ) |= q only if chase(I1

S,Σ) |= q. The “if” direction is trivial.

Theorem 28 can now be reformulated as follows:
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Theorem 31. DE-equivalence of schema mappings with constant-free and connected dependen-
cies, possessing the terminating chase property, is decidable.

Furthermore, suppose that the number of terms in each dependency in the mapping is
bounded by some constant b, and the set of target tgds is weakly-acyclic. Then DE-equivalence
of such mappings can be decided in polynomial time.

Proof. The same as in Theorem 28, except for the running time estimation being based on the
bound b also in case of target dependencies, and the satisfiability test (needed to check the AUC
in Step 2 of the decision procedure) based on Theorem 30. Claim 1 in the proof of Theorem 28
and polynomial data complexity of CQs justify that also in this case the satisfiability test is
feasible in poly(|Σ|) time.

For mappings with target dependencies of arbitrary size, further useful minimization tasks
may be investigated: for example, testing if any atom can be eliminated from a given depen-
dency. The decidability of such tasks, concerned with redundancy and subset-minimality, can
be seen as a direct consequence of Theorem 31. There is no immediate solution for cardinality-
minimality, however, since this problem does not offer a bounded search space.
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CHAPTER 8
CQ-equivalence of SO-tgds

8.1 Background on logical equivalence of SO-tgds

In this chapter we are dealing with a more expressive language than that of s-t tgds, namely with
the language of SO-tgds. Recall that the two main features distinguish SO-tgds from s-t tgds:
(1) arbitrary Skolem functions instead of existential variables and (2) equalities between terms
in the antecedents. These features are crucial for the complexity of equivalence testing: logical
equivalence, decidable by a simple syntactic characterization based on Lemma 1 in the case of
s-t tgds, becomes undecidable for SO-tgds. It follows as a corollary of the undecidability result
by Arenas et al. in the context of inverse schema mappings [6].

Theorem 32. Let τ and τ ′ be two SO tgds. It is undecidable whether τ ≡ τ ′.

Proof (Sketch).1 In [20], a schema mappingM2 is defined to be an inverse of another mapping
M1 if their compositionM1 ◦M2 is logically equivalent to the identity mapping, i.e., a set of
s-t tgds of the form (∀x)

(
P (x) → P̂ (x)

)
for every source relation P . In [6, Corollary 9.5] the

authors show that the following problem is undecidable: Given mappingsM1 andM2 specified
by s-t tgds, check whetherM2 is an inverse ofM1.

In other words, checking if the compositionM1 ◦M2 is equivalent to the identity mapping
is undecidable. Clearly, a set of s-t tgds can be represented as an SO tgd. Let τ denote the SO
tgd corresponding to the set of s-t tgds of the identity mapping. Likewise, M1 ◦ M2 can be
represented as an SO tgd, say τ ′. Then τ ≡ τ ′ holds iffM2 is an inverse ofM1. Hence, the
logical equivalence of two SO tgds is undecidable.

In [27], also a significantly stronger result has been shown using a reduction from the Halting
Problem for Turing Machines:

1We thank the anonymous referee of AMW 2011 who pointed out this proof.
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Theorem 33 ([27]). Let τ and τ ′ be two SO tgds. It is undecidable whether τ ≡ τ ′, even when
τ ≡CQ τ ′ is known to hold.

That is, even if the two SO-tgds are known to be CQ-equivalent, it is undecidable if they are
logically equivalent. But is it possible to find out if two SO-tgds are CQ-equivalent? We will
make a first step towards answering this question in the next section.

8.2 CQ-Equivalence

We now show the undecidability of CQ-equivalence of schema mappings based on SO-tgds and
source key dependencies, by a reduction from the Domino Problem (DP), which was first shown
undecidable by Berger [8].

Definition 27. A domino system (DS) is given by a set D of domino types defined as follows.
Let C be a set of colours. Then, each domino type is a quadruple 〈l, t, r, b〉 of values from C,
corresponding respectively to the left, top, right and bottom colour of a square domino piece. Let
d.side (with side ∈ {left , right , bottom, top}) denote an accessor function D → C returning
the colour of d, corresponding to side. Then, the domino problem (DP) given by D asks if for
each m,n ∈ N a consistent tiling of an m×n grid with the domino types fromD exists. That is,
if there is a function tm,n : {1 . . .m}×{1 . . . n} → D, such that the equality tm,n(i, j).right =

tm,n(i + 1, j).left holds for 1 ≤ i < m and 1 ≤ j ≤ n and tm,n(k, l).bottom = tm,n(k, l +

1).top for 1 ≤ k ≤ m and 1 ≤ l < n.

Note that the conventional formulation of the Domino Problem [8] asks if there exists a
consistent tiling of an infinite plane, while Definition 27 seeks for tilings of arbitrarily big rect-
angles. There is no contradiction: in fact, the proof of undecidability specifies an encoding of a
the blank-tape Turing MachineM as a DS DM, such thatM does not halt iff there is a tiling of
an arbitrarily big square grid with DM ([2, p.414]).

Chains, proper instances, and coordinates. We model a grid using the source schema S con-
sisting of two binary relations Ch and Cv intended to define a horizontal and vertical successor
relation: For an instance I of S, CIh and CIv denote the relations of I . Often in this chapter, our
statements will apply to both relations Ch and Cv alike. To avoid repetitions, we will then use
the symbol Ch|v resp. CIh|v as a placeholder for any of Ch, Cv resp. CIh, C

I
v . The intended form

of CIh|v is {(a0, a1), (a1, a2) . . . (an−1, an)}, with ai 6= aj , for every 0 ≤ i < j ≤ n. We define
a < b w.r.t. an order CIh|v, if (a, b) ∈ CIh|v or ∃x,Ch|v(x, b) ∧ a < x. Taking the tuples of CIh|v
as edges of a directed graph (which we call the dual graph), the order defined above corresponds
to an acyclic chain. If each relation of an instance I over S contains a single acyclic chain, I is
called proper. The size (m,n) of such a proper instance I is defined as (|Ch|, |Cv|).

Domino tilings are modelled by the target relation D of arity 4. Each of its four arguments
is populated by a functional term cs(x, y) where c corresponds to the colour, s to the side of
the domino piece, and the pair (x, y) defines the position in the grid. To save notation, we will
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D I = {Ch(0, 1), Ch(1, 2), Ch(2, 3), Cv(0, 1), Cv(1, 2)}

a

b

c

d

wh0 1

wv1 0

gh1 1

gv1 1

a

wh0 2

gv1 1

wh1 2

wv1 2

b

gh1 1

gv2 0

gh2 1

wv2 1

c

wh1 2

wv2 1

gh2 2

gv2 2

a

gh2 1

wv3 0

wh3 1

wv3 1

d

gh2 2

wv3 1

wh3 2

wv3 2

d

Figure 8.1: Dotted rectangles are facts in core(I,ΣD), corresponding to a consistent tiling

omit parentheses when writing the terms in the relation D (e.g. the above term will be written
as csxy). Given a fact d ∈ D, we define the accessor function d[i], returning the term in the
i-th place of d with 1 ≤ i ≤ 4. Recall that the sequence of sides in the D-tuple is as follows:
〈left, top, right, bottom〉.

Definition 28. Let D be a DS with types d1 . . . dk. A simulation mapping ΣD for D over the
source schema S = {Ch(·, ·), Cv(·, ·)} and the target schema T = {D(·, ·, ·, ·)} consists of an
SO tgd τD and two source key dependencies:

ε1 : Ch(x, x1) ∧ Ch(x, x2)→ x1 = x2,

ε2 : Cv(x, x1) ∧ Cv(x, x2)→ x1 = x2.

The SO tgd τD has the form ∃count ∃ph∃pv∃qh∃qv(τd1 ∧ . . .∧ τdk ∧ γh ∧ γv), where τd1 . . . τdk
encode the corresponding domino types:

τdi : Ch(x1, x2) ∧ Cv(y1, y2)→ D(lh x1 y2, t
v x2 y1, r

h x2 y2, b
v x2 y2),

l, t, r, b denoting respectively the left, top, right and bottom colours of di. Superscripts distin-
guish the horizontal and vertical dimensions, so that there are two distinct functions in count

for each colour in D. Moreover, count contains neither ph|v nor qh|v.

The conjuncts γh and γv are called guards and have a form similar to τdi:

γh : Ch(x0, x1) ∧ Ch(x1, x2) ∧ Cv(y1, y2)→ D(ph x1 y2, p
v x2 y1, p

h x2 y2, p
v x2 y2)

γv : Ch(x1, x2) ∧ Cv(y0, y1) ∧ Cv(y1, y2)→ D(qh x1 y2, q
v x2 y1, q

h x2 y2, q
v x2 y2)

Informally, given a proper source instance of size (m,n), the conjuncts τd1 . . . τd|D| create
a stack of |D| domino tiles at each position in the m × n grid. Additionally, the guards γh and
γv create two more tiles with unique colours p and q on each position (i, j) with i, j > 1, or a
single tile if i = 1 or j = 1. The guards tackle source instances with cycles instead of the linear
order, as will be explained later.

For a source instance I , a D-fact d enforced by the SO tgd in a simulation mapping (that is,
d ∈ chase(I,ΣD)) has a form D(lhxp y, t

vxyp, r
hxy, bvxy), s.t. (xp, x) ∈ CIh, (yp, y) ∈ CIv .
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Definition 29. LetD be a DS and I a proper instance of size (m,n). A fact d = D(lhxpy, t
vxyp,

rhxy, bvxy) ∈ chase(I,ΣD) is associated with the domino type 〈l, t, r, b〉, and with the pair
(x, y) of I-values, occurring as arguments in its two last terms. Moreover, let i be the ordinal
of x w.r.t. the order defined by CIh and j be the ordinal of y w.r.t. CIv . We call the pair (i, j) the
coordinates of d defining its grid position.

Proposition 4. Let I be a proper source instance, and ΣD the simulation mapping of a DS D.
Moreover, let d1 and d2 be two facts in chase(I, τD), d1 associated with the pair of I-values
(x1, y1), and d2 with (x2, y2). Then, the following claims hold true:

1. d1[3] = d2[1]⇒ (x1, x2) ∈ CIh ∧ y1 = y2 ∧ ∀i 6= 3 ∀j 6= 1 d1[i] 6= d2[j].

2. d1[2] = d2[4]⇒ (y1, y2) ∈ CIv ∧ x1 = x2 ∧ ∀i 6= 4 ∀j 6= 2 d1[i] 6= d2[j].

3. ∃i ∈ {1...4} d1[i] = d2[i]⇒ x1 = x2 ∧ y1 = y2.

4. d1[1] 6= d2[2] ∧ d1[3] 6= d2[4] ∧ d1[1] 6= d2[4].

Claim 1 stipulates, that whenever a term is shared between the 3rd place of d1 and the 1st

place of d2, the facts correspond to horizontally adjacent grid positions (i.e., have first coordi-
nates i and i + 1 and the same second coordinate) and can have no further terms in common.
Claim 2 is an analogue of Claim 1 for the equality d1[4] = d2[2] and vertical adjacency: d1 and
d2 must have coordinates (i, j) and (i, j + 1). Claim 3 states that terms at respective positions
can be only shared by facts with the same coordinates. Finally, Claim 4 restricts term equalities
to the above cases.

Proof (Sketch) of Proposition 4. All four claims follow directly from Definition 28 and the fact
that the source instance I is proper. Note that the domain of chase(I, τD) consists of labelled
nulls associated with binary Skolem functional symbols. The equality d1[i] = d2[j] means that
the leading symbols and corresponding arguments of the Skolem terms coincide.
Claim 1. Suppose that d1[3] = d2[1] holds. The facts d1, d2 have been instantiated by the chase,
and therefore, by Definition 28, they must have the form D(chx0y1,

v
2x1y0, c

h
3x1y1, c

v
4x1y1)

and D(ch3x1y1, c
v
5x2y

′
0, c

h
6x2y1, c

v
7x2y1), respectively. Moreover, the following inclusions hold:

(x0, x1), (x1, x2) ∈ CIh and (y0, y1), (y′0, y1), (y1, y2) ∈ CIv . Since I is proper, y′0 = y0 must be
the case, otherwise CIv is not a chain. By the same reason, the inequalities x0 6= x1, x1 6= x2,
x0 6= x2, and y0 6= y1 hold, which proves the claim.

Claim 2 can be shown analogously to Claim 1. Claim 3 follows from the observation that
the arguments of each Skolem term from dom(chase(I,ΣD)) uniquely define the coordinates
of the corresponding domino piece. Finally, Claim 4 is due to the superscripts h and v appended
to the leading symbols of Skolem terms.

Example 24. Consider a DS D containing the four types a, b, c, d in Figure 8.1, using only two
colours white and grey denoted as w and g, respectively. In the simulation mapping ΣD, the
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first type is modelled by the following implicational conjunct in the SO tgd τa : Ch(x1, x2) ∧
Cv(y1, y2)→ D(wh x1 y2, w

v x2 y1, g
h x2 y2, g

v x2 y2).
The 3 × 2 grid is represented by a proper source instance I (see top of Figure 8.1). The

six dotted rectangles represent a consistent tiling of this grid with D. Each rectangle bears the
four terms of the corresponding D-fact in chase(I,ΣD): e.g., the topmost leftmost tile has the
position (1,1) and is encoded by the fact D(wh01, wv10, gh11, gv11).

Problem reduction. Let D be a DS and ΣD its simulation mapping. Furthermore, consider a
singleton colour set Cb = {b} (where b stands for “black”) and a corresponding domino set B =

{〈b, b, b, b〉} with the simulation mapping ΣB. We claim that D has a solution iff ΣD ≡CQ ΣB

holds. The SO tgd in ΣB has the following form:
τB : ∃bh∃bv∃ph∃pv∃qh∃qv((

Ch(x1, x2) ∧ Cv(y1, y2)→ D(bh x1 y2, b
v x2 y1, b

h x2 y2, b
v x2 y2)

)
∧ γh ∧ γv

)
.

It is easy to see that the conjuncts γh and γv are redundant in τB. Hence, in the following we
assume τB to contain a single implicational conjunct and no guards. Moreover, the following
relationship holds between the chase result of τB and τD:

Proposition 5. Let D be a DS with the simulation mapping ΣD, let (i1, j1) and (i2, j2) be two
distinct grid positions, and let d1, d2 ∈ chase(I,ΣD) be facts at positions (i1, j1) resp. (i2, j2).
Then also chase(I,ΣB) contains two facts d′1, d

′
2 at these grid positions. Moreover, for every

1 ≤ k, l ≤ 4, if d1[k] = d2[l] then d′1[k] = d′2[l], i.e., if two terms in d1 and d2 are equal, then
the terms at these places in d′1 and d′2 are equal as well.

Proof (Sketch). This proposition uses the observation that every implicational conjunct τdi en-
coding a domino type di in the SO tgd of a simulation mapping produces exactly one D-fact for
each grid position, and that τB ∈ ΣB uses the minimal set of functional symbols.

For DPs that have a solution (of which B is obviously an example) the following lemma,
which is crucial for our construction, holds, as will be shown shortly:

Lemma 25. Let I be a proper instance of size (m,n) and let D be a DS. Then, there is a
consistent tiling of an m× n grid with D iff core(I, τD) ∼= core(I,ΣB) holds.

Example 25. It is easy to check that the six D-facts in Figure 8.1 indeed form core(I,ΣD). For
I , ΣB yields a solution with the isomorphic core: each fact in core(I,ΣB) can be obtained from
some fact of core(I,ΣD) by replacing leading symbols w and g with b.

For the proof of Lemma 25 and subsequent results, we recall the notion of connectedness of
an instance, see Definition 25.

Proof of Lemma 25. First we recall our convention, that ΣB contains an SO tgd τB with a single
implicational conjunct

Ch(x1, x2) ∧ Cv(y1, y2)→ D(bh x1 y2, b
v x2 y1, b

h x2 y2, b
v x2 y2).
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Hence, for a proper source instance I , core(I,ΣB) = chase(I,ΣB).

[⇒] Assume that D consistently tiles an m× n grid. We first show that some subinstance JB of
J = chase(I,ΣD) is isomorphic to chase(I,ΣB), and then that J → JB holds.

Consider the SO tgd τD ∈ ΣD. For each domino type δ = 〈l, t, r, b〉 in D, there is an
implicational conjunct τδ of τD of the form

Ch(x1, x2) ∧ Cv(y1, y2)→ D(lhx1y2, t
vx2y1, r

hx2y2, b
vx2y2).

That is, τδ coincides with τB up to names of functional symbols in the conclusion. Hence, both
chase(I,ΣD) and chase(I,ΣB) can be partitioned in m · n non-empty subinstances associated
with the pairs (x, y) ∈ dom(CIh) × dom(CIv ). In chase(I,ΣB), there is exactly one D-fact
per each grid position, whereas in chase(I,ΣD) there are at least |D| D-facts (plus one or two
D-facts produced by the guards γh and γv, depending on the coordinates of x and y).

We want to show that, if there is a consistent tiling of anm×n grid withD, a subinstance JB
isomorphic to chase(I,ΣB) can be built by unifying, for each (x, y) ∈ dom(CIh) × dom(CIv ),
the fact chase(I,ΣB) associated with (x, y) with some fact of J , associated with the same pair
of I-values (x, y).

In the rest of the proof, we use the following notation: for an I-value xi, the subscript
denotes the coordinate of x. The fact associated with a pair of I-values (xi, yj) has thus the grid
position (i, j). We will add a subscript i,j to variables denoting facts to specify the fact’s grid
positions.

Let di,j = D(bhxi−1yj , b
vxiyj−1, b

hxiyj , b
vxiyj) be a fact in chase(I,ΣB) associated

with the grid position (i, j). It has a single term in common with at most four other atoms
in chase(I,ΣB):

1. If i > 0, there is a fact di−1,j ∈ chase(I,ΣB) such that di−1,j [3] = di,j [1] holds. The
shared term is bhxi−1yj .

2. If j > 0, there is a fact di,j−1 ∈ chase(I,ΣB) such that di,j−1[4] = di,j [2] holds. The
shared term is bvxiyj−1.

3. If i < m, there is a fact di+1,j ∈ chase(I,ΣB) such that di,j [3] = di+1,j [1] holds. The
shared term is bhxiyj .

4. If j < n, there is a fact di,j+1 ∈ chase(I,ΣB) such that di,j [4] = di,j+1[2] holds. The
shared term is bvxiyj .

Now, let tm,n be a function {1 . . .m} × {1 . . . n} → D corresponding to a consistent tiling
of an m × n grid with D. We define a function f : {1 . . .m} × {1 . . . n} → J , s.t. whenever
tm,n(i, j) = 〈cl, ct, cr, cb〉, where 〈cl, ct, cr, cb〉 ∈ D, we set

f(i, j) = D(chl xi−1yj , c
v
txiyj−1, c

h
rxiyj , c

v
bxiyj) ∈ J ,

where xk denotes kth value from the order CIh, and yl denotes the lth value from CIv . Such a
function f is well-defined, since, by construction of ΣD, for each position (i, j) of an m × n

96



grid, there is a pair (xi, yj) of I-values in dom(CIh) × dom(CIv ), such that f(i, j) ∈ J holds.
Moreover, since tm,n corresponds to a consistent tiling, the following term equalities hold, in
full analogy to chase(I,ΣB):

1. f(i− 1, j)[3] = f(i, j)[1], for all i > 0

2. f(i, j − 1)[4] = f(i, j)[2], for all j > 0

3. f(i, j)[3] = f(i+ 1, j)[1], for all i < m

4. f(i, j)[4] = f(i, j + 1)[2], for all j < n

Indeed, the arguments of the corresponding terms are the same in chase(I,ΣD) and chase(I,ΣB)

and the leading symbols of functional terms coincide by the tiling consistency conditions. Hence,
there is an isomorphism between the instances JB = {f(i, j) | 1 ≤ i ≤ m, 1 ≤ j ≤ n} ⊂ J

and chase(I,ΣB).

It remains to show that an endomorphism J → JB exists. JB contains exactly a single fact
for every grid position, corresponding to the domino type from the grid tiling. In J , there are
more D-facts with the same grid positions: namely, those corresponding to other domino types
and those produced by the guards γh and γv. By Proposition 4 the only equalities between facts
at distinct positions in J are those listed under the items (1)–(4) above. We have already shown
that these equalities are present in JB. Therefore, we can conclude, that a mapping sending any
fact d̂i,j ∈ J onto di,j ∈ JB is a homomorphism. Hence, JB is indeed a core of J .

[⇐] Assume there exists an isomorphism e between the core(I,ΣB) = chase(I,ΣB) and
core(I,ΣD). We show that there exists a consistent tiling of an m × n grid. To do so, we
prove two claims:

1. Every isomorphism e′ between core(I,ΣD) and any subinstance of chase(I,ΣB) must
relate the facts with the same coordinates. In other words, if the fact D(αl, αt, αr, αb)

is in core(I,ΣD) and the fact D(e′(αl), e
′(αt), e

′(αr), e
′(αb)) in chase(I,ΣB), then the

Skolem terms denoted by αi and e′(αi) must have the same pairs of arguments, for each
i ∈ {l, t, r, b}.

2. There is no isomorphism h : chase(I,ΣB)→ chase(I,ΣD) such that a fact d with func-
tional terms ph|vxy or qh|vxy (that is, enforced by the guards γh or γv) is a member of
h(chase(I,ΣB)).

From these two claims, it follows that the tiling of a grid can be “read off” from core(I,ΣD),
since in chase(I,ΣB) and, hence, in core(I,ΣD) there is exactly a single D-fact for every grid
position.

Proof of Claim 1. Assume, e relates a fact d ∈ core(I,ΣD) to some fact d′ ∈ core(I,ΣB), so
that the coordinates (i, j) of d and (i′, j′) of d′ are distinct. W.l.o.g., assume that i′ > i holds,
and let k denote the difference i′−i. Let d0,j ∈ core(ΣD) be the fact with the coordinates (0, j).
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That is, the last two Skolem terms in d0,j have the arguments (x0, y), such that x0 is the minimal
element w.r.t. the linear order defined by CIh. Since e is an isomorphism and i′ − i = k, the
image of d0,j in core(I,ΣB) is the fact d′k,j′ . By Claim (1) of Proposition 4, there is no fact d−1,j

in chase(I,ΣD), such that the equality d−1,j [3] = d0,j [1] holds: (x, x0) 6∈ CIh holds for all x.
At the same time, there is an atom dk−1,j′ ∈ core(I, τB) such that equality dk−1,j′ [3] = dk,j′ [1]

holds, which contradicts the assumption that e is an isomorphism.

Proof of Claim 2. Note that applied to a proper instance of size (m,n), the maximal horizontal
coordinate of a D-fact produced by γh is m − 1, and the maximal vertical coordinate of a
D-fact produced by γv is n − 1. Hence, by exactly the same reasoning as in the proof of
Claim 1, we can show that no isomorphism can map chase(I,ΣB) on instances produced by the
guards. Moreover, chase(I,ΣB) is connected, while the guards produce D-facts which cannot
be connected to any fact encoding a domino piece (conjuncts τ1, . . . τ|D| and γh|v in Definition 28
use distinct functional symbols). Hence, by a trivial generalization of the Lemma 24 we can
show that no homomorphism can map part of the nulls of chase(I,ΣB) to the nulls produced
by the conjuncts τ1, . . . τ|D| and the other part to the nulls produced by the guards γh|v.

To lift the equivalence between solvability ofD and existence of an isomorphism core(I,ΣD) ∼=
core(I,ΣB) to unrestricted source instances I , we will first show, that whenever CIh or CIv
contains a single simple cycle (that is, its dual graph is connected, each vertex having a single
incoming and a single outgoing edge), then any simulation mapping yields an instance with the
same core as chase(I,ΣB).

Lemma 26. Let I be of such a form that either CIh or CIv consists of a single cycle. Then, for
arbitrary DS D, core(I,ΣD) ∼= core(I,ΣB) holds.

Proof (Sketch). W.l.o.g. assume that the single cycle is contained in Ch. For such I , the guard
γh in the SO tgd τD ∈ ΣD is indistinguishable from τB in ΣB. Indeed, the conclusions of
these implications coincide up to renaming of functional terms. The antecedent ϕh of γh has
an extra atom C(x0, x1), that prevents it from being satisfied by a Ch-fact at the beginning of
the chain. However, if CIh is a cycle, the relations q1|2 defined as q1(x1, x2) ↔ Ch(x1, x2)

and q2(x1, x2) ↔ ∃x0 Ch(x0, x1) ∧ Ch(x1, x2), coincide, and so do τB and γh. Hence, J =

chase(I,ΣD) contains a subinstance JB isomorphic to chase(I,ΣB). Using Proposition 5,
J → JB can be shown.

In the next lemma, we consider homomorphisms that do not preserve constants, and thus can
map a source instance on another one. We call such homomorphisms constants-agnostic. It is
immediate to see, that conjunctive queries which do not contain constants are closed under such
homomorphisms: That is, let I be an instance and h a constants-agnostic homomorphism for I .
If q(x) is a CQ without constants, and a tuple ā is such that I |= q(ā) then also h(I) |= q(h(a)).
Note that according to Definition 28, all antecedents of implications in a simulation mapping are
constants-free CQs. Therefore, we can show the following lemma.
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Lemma 27. Let I be an instance of S and I ′ ⊆ I be an image of a constants-agnostic homo-
morphism h on I (that is, h does not necessarily preserve constants). Then, for the simulation
mapping ΣD of any DP D, core(I,ΣD) ∼= core(I ′,ΣD).

Proof. Note that a simulation mapping does not require any values from the domain of a source
instance to be transferred into the target instance. Let D(lhx1y2, t

vx2y1, r
hx2y2, b

vx2y2) be
an arbitrary fact in core(I,ΣD). Since the antecedents of the implicational conjuncts in the
SO tgd τD of ΣD are closed under constants-agnostic homomorphisms, we know that the fact
D(lhx̂1y2, t

vx̂2y1, r
hx̂2y2, b

vx̂2y2) is in chase(I ′,ΣD) ⊆ chase(I,ΣD), where x̂ abbreviates
h(x). Thus, we can easily construct a homomorphism from core(I,ΣD) to chase(I ′,ΣD), by
mapping each labelled null αxy in the domain of core(I,ΣD) to αx̂y ∈ dom(chase(I ′,ΣD)).
Composing this homomorphism with a homomorphism from chase(I ′,ΣD) to core(I ′,ΣD), we
obtain a homomorphism core(I,ΣD) → core(I ′,ΣD). Recall the property of cores mentioned
in Chapter 2: J1 ↔ J2 iff core(J1) ∼= core(J2), for arbitrary instances J1, J2. The claim
of the lemma then follows from an easy observation that a homomorphism core(I ′,ΣD) →
core(I,ΣD) can be obtained by restricting the homomorphism chase(I,ΣD) → core(I,ΣD)

to the domain of core(I ′,ΣD).

Lemma 27 will be crucial for dealing with source instances that are neither acyclic chains
nor simple cycles. The source key dependencies only deprecate the “fork” pattern in the Ch|v
relations, where distinct elements have a common predecessor. The “join” pattern — a common
successor of the distinct elements — is allowed. We will next lift our simulation technique to
instances containing the join pattern.

Definition 30. An instance of the schema S admissible if it satisfies the key dependencies ε1, ε2
of Definition 28.

The following lemma drastically restricts the diversity of admissible instances that should
be considered. In particular, it implies that the join pattern is harmless for our simulation. Recall
our convention of writing Ch|v where the reasoning applies to the relations Ch and Cv alike.

Lemma 28. Let I be an admissible instance. Then core(I,ΣD) ∼= core(I ′,ΣD) holds, where
instance I ′ ⊆ I is obtained as follows: ifCIh|v contains a cycle, CI

′

h|v consists of all simple cycles
of CIh|v. Otherwise, CI

′

h|v consists of one of the longest acyclic chains in CIh|v.

Proof. The key dependencies ε1,2 enforce that each connected component in CIh|v can contain at
most one cycle. Indeed, let K be a connected component in CIh|v and Kc ⊆ K be a simple cycle
inK. Let f = Ch|v(z1, z2) be a fact inK. By lf we denote a distance from f toKc: a number of
facts in a shortest chain in the dual graph of K, which contains any of z1, z2 together with some
y ∈ dom(Kc). Note that the chain must have the form

(
Ch|v(z1, z2) . . . Ch|v(zlf+1, y)

)
. A

chain in the other direction, that is,
(
Ch|v(y, z2−lf ) . . . Ch|v(z1, z2)

)
, is only possible if lf = 0:

Otherwise K will contain the distinct facts Ch|v(y, z2−lf ) and Ch|v(y, y′) ∈ Kc which violates
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the key dependencies, thus rendering K not admissible. By induction on lf we show that f
cannot belong to a simple cycle other than Kc.

Let lf = 0 and assume that f belongs to two distinct simple cycles in K. Consider a
chain in Kc starting in f and belonging also to the other cycle. There must be some dis-
tance k < |Kc| from f , where the two cycles separate: the facts Ch|v(zk+1, zk+2) ∈ Kc

and Ch|v(zk+1, z
′
k+2) ∈ K \ Kc must exist, otherwise, the cycles coincide. But then, K vi-

olates the source key dependencies and cannot be admissible. As induction hypothesis, as-
sume that up to a certain distance n, no fact can belong to a cycle other than Kc. We con-
sider a fact f = Ch|v(z1, z2) with lf = n + 1. Assume that f belongs to a simple cycle
K ′c = Ch|v(z1, z2), Ch|v(z2, z3), . . . , Ch|v(zm, z1). Note that K ′c 6= Kc since lf > 0. By the
induction hypothesis, no fact with lf ≤ n can belong to K ′c and, since lf = n+ 1, there must be
a fact f ′ = C(z2, y) ∈ K with lf ′ = n. But then K is not admissible, which is a contradiction.
We have shown that every connected component in an admissible source instance has at most
one cycle.

Next, we show that if a connected component K contains a simple cycle Kc, then there is a
homomorphism (not preserving constants) h : K → Kc (That is, Kc can be seen as a core of K
w.r.t. constants-agnostic homomorphisms). We start defining h by setting it equal to the identity
on dom(Kc). Next, we proceed recursively as follows:

1. Set K ′:=Kc.

2. For each fact Ch|v(z1, z2) ∈ K such that z2 ∈ dom(K ′), pick a fact f ′ = Ch|v(z
′
1, z2)

from K ′.

3. Extend h with the mapping z1 → h(z′1), and set K ′:=K ′ ∪ {Ch|v(z1, z2)}.

4. Repeat from step 1 until K ′ = K.

We now show the completeness and soundness of the above procedure. For completeness,
note that all facts in K are visited, since K is connected and the procedure systematically ex-
plores all paths in K leading to Kc. There are no outbound paths starting in Kc (Otherwise, K
is not admissible). The fact f ′ always exists at step 2, since Kc is a cycle. For the soundness,
we have to show that the extension of h at step 3 always results in a homomorphism of K. To
this end, we will show two loop invariants of the above procedure:

(i) If the fact Ch|v(z1, z2) at step 2 has z1 6∈ dom(K ′), then for any predecessor zp1 of
z1 w.r.t. the relation CIh|v, also zp1 6∈ dom(K ′) holds. After step 1 of the procedure, this loop
invariant holds, since otherwise, there were more than a single cycle inK, which we have shown
impossible. Suppose it also holds before the nth iteration. Now suppose that, at step 2 entered
at the nth iteration of the loop, a term z1 is selected whose predecessor zp1 is in K ′. W.l.o.g. we
can assume that zp1 is the closest such term to z1: that is, there is no other term z′ ∈ K ′ such that
a path from zp1 to z′ and from z′ to z1 exist. By construction of K ′, there is a path p from zp1 to
Kc via the terms from dom(K ′). Since z1 was picked at step 2, we know that there is another
distinct path from zp1 to Kc via z1. Since zp1 is the closest to z1 term from dom(K ′), there must
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be the facts Ch|v(z
p
1 , z
′) and Ch|v(z

p
1 , z
′′) in K, such that z′ ∈ dom(K ′) and z′′ 6∈ dom(K ′)

and thus, z′ 6= z′′. Therefore, I cannot be admissible.

(ii) For each fact Ch|v(x1, x2) ∈ K ′, Ch|v(h(x1), h(x2)) ∈ Kc. This is certainly true
before the first iteration of the loop: K ′ = Kc after step 1, and h is the identity on dom(Kc).
Assume the invariant holds before the nth iteration of the loop, we show that it is preserved
after step 3. Extending the homomorphism h with the mapping z1 → h(z′1), we send the fact
Ch|v(z1, z2) onto f ′′ = Ch|v(h(z′1), h(z2)). The fact f ′′ is an image of f ′ = Ch|v(z

′
1, z2) and

f ′ ∈ K ′ held when the loop entered its nth iteration. Since we assumed that the loop invariant
holds after the (n − 1)th iteration, we have Ch|v(h(z′1), h(z2)) ∈ Kc, and then at step 3, K ′ is
extended with a fact whose image under h is in Kc, as desired.

The two loop invariants allow us to show the third one, namely (iii) h is a homomorphism
K ′ → Kc. Indeed, this claim holds before the first iteration of the loop. Due to the invariant (i),
we know that h covers exactlyK ′ and that at least the first argument of every fact inK \K ′ does
not belong to dom(h). By the invariant (ii) we know that images for the values of dom(K \K ′)
picked at step 2 always can be found, and the way these images are chosen at step 3 ensures that
h is a homomorphism on K ′. This concludes the proof of the soundness of our procedure.

Next, we argue that if a connected component K contains no cycles, then there is a homo-
morphism (not preserving constants) h : K → Kl where Kl is a chain of maximal length in
K. Let’s fix any such Kl in K and set h to be identity on dom(Kl). We can be sure that the
resulting procedure remains complete, since again, all paths leading to Kl are explored and no
other paths exist (Otherwise, Kl would not be maximal). For the same reason, the fact f ′ at step
2 must exist. The loop invariants, including the last one “h is a homomorphism K ′ → Kc”,
which proves the soundness of the procedure, can be shown as in the above case.

Finally, we address the source instances I containing multiple connected components in
CIh|v. The following property can be shown by induction on the distance (e.g., length of the
shortest path, as in the proof of Lemma 28) between two D-facts:

Lemma 29. Let ΣD be a simulation mapping, I a source instance over S, and let d1, d2 be
facts in J = chase(I,ΣD) containing respectively terms α(x1, y1) and β(x2, y2). Assume that
x1 is a term in a fact f ′h ∈ CIh, and x2 is a term in f ′′h ∈ CIh. Likewise, let y1 and y2 occur,
respectively, in the facts f ′v, f

′′
v ∈ CIv . Then, d1 and d2 are connected in J only if the facts f ′h

and f ′′h are connected in CIh, and so are f ′v and f ′′v in CIv .

Proof. We proceed by induction on the distance l between d1 and d2. The following notation is
used: given an instance I , xph denotes the direct predecessor of x according to the relation CIh,
and ypv denotes the direct predecessor of y in CIv .

[l = 0], which corresponds to the case d1 = d2. For any fact of chase(I,ΣD) of the form
D(αh1xphy, α

v
2xypv , α

h
3xy, α

v
4xy), the terms xph , x stem from some single fact in CIh, and the

terms ypv , y from a fact in CIv .
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[l → l + 1] Let the facts d1, d2 ∈ chase(I,ΣD) be directly connected. We distinguish three
cases, corresponding to Claims (1), (2) and (3) of Proposition 4. It follows from Proposition 4
that there are no other cases to be considered.

1. The equality d1[3] = d2[1] holds. Let (x′, y′) and (x′′, y′′) be the pairs of I-values associ-
ated with d1 resp. d2 (e.g., pairs of arguments of terms at 3rd and 4th positions in d1 resp.
d2). By Claim (1) of Proposition 4, (x′, x′′) ∈ CIv , y′ = y′′.

Let α(x1, y1) be any term in d1 and β(x2, y2) be a term in d2. For d1, there are three
possibilities: (x1, y1) = (x′, y′), (x1, y1) = (x′ph , y

′) or (x1, y1) = (x′, b′pv). In all cases,
we have that x1, x

′ belong to the domain of the same connected component in CIh, and
y1, y

′ belong to the domain of the same connected component in CIv . Analogously, we
show that x2, x

′ belong to the domain of the same component of CIh, and y2, y
′ to the

domain of the same component of CIv . Hence, also x1, x2 belong to the domain of the
same connected component in CIh, while y1, y2 belong to the domain of some component
in CIv . The desired property follows.

2. The equality d1[4] = d2[2] holds. The same reasoning as in the previous case applies, but
using Claim (2) of Proposition 4 in place of Claim (1).

3. Respective terms in d1 and d2 have the same pairs of attributes: (xph , y) for d1|2[1],
(x, ypv) for d1|2[2], and (x, y) for the 3rd and 4th places of d1|2. Clearly, (xph , x) ∈ CIh,
(ypv , y) ∈ CIv .

The above lemma implies, that if the source I contains lh and lv connected components inCIh and
CIv respectively, then for any simulation mapping Σ, chase(I,Σ) can be decomposed into lh · lv
pairwise disconnected instances. By Lemma 28 we can consider every connected component in
CIh|v as an acyclic chain or a simple cycle. Then by applying one of the Lemmas 25, 26 in each
of the lh · lv cases, the problem reduction can be lifted to the case when relations CIh|v contain
multiple connected components. We are thus able to prove the main result of this chapter.

Theorem 34. The CQ-equivalence of mappings consisting of SO tgds and source key dependen-
cies is undecidable.

Proof. We show that for an arbitrary DSD, the corresponding DP has a solution iff ΣD ≡CQ ΣB

holds. By the undecidability of the Domino Problem, the claim of the theorem will follow.

[⇒]. Assume that the domino problem associated with D has a solution. We show that for any
source instance I , either the chase fails both under ΣD and ΣB, or core(I,ΣD) ∼= core(I,ΣB)

holds.
Chase failure can be only due to the source key dependencies ε1, ε2 from Definition 28.

Since ΣD and ΣB have the same KDs, the respective chases fail on exactly the same set of not
admissible instances, namely on those containing a pattern {C(x, y1), C(x, y2)}, with y1 6= y2.
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Given an arbitrary admissible source instance I , we prove two claims:

1. A subinstance JB of J = chase(I,ΣD), isomorphic to chase(I,ΣB), exists.

2. An endomorphism J → JB holds.

Proof of Claim 1. Let Ik,l ⊆ I be an instance in which CIk,lh contains the kth connected compo-
nent of CIh, and CIk,lv contains the lth connected component of CIv . Let Jk,l denote an instance
produced by chasing Ik,l with ΣB. Since the antecedent of the simulation mapping ΣB has only
2 atoms, the equality chase(I,ΣB) =

⋃
i,j Ji,j holds, where i, j range from 1 to the number of

disconnected components in CIh and CIv , respectively. Moreover, by Lemma 29, subinstances
Jk,l define a partition of J , in which any two elements are disconnected. Therefore, we can
prove the claim independently for each pair k, l and the corresponding source instance Ik,l with
connected CIk,lh|v . We distinguish two cases:

(i) Ik,l contains a cycle in one of its relations. By Lemma 28, we can assume that this relation
contains exactly a single simple cycle. By Lemma 26, chase(Ik,l,ΣD) contains a subinstance
isomorphic to chase(Ik,l,ΣB) in this case.

(ii) Both relations of Ik,l are acyclic. By Lemma 28, we can assume that Ik,l is a proper
instance. That is, that both C

Ik,l
h and C

Ik,l
v contain a single acyclic chain of size lh resp.

lv. By Lemma 25, we know that also in this case ΣD contains a subinstance isomorphic to
chase(Ik,l,ΣB). Hence, there exists an isomorphism h between chase(I,ΣB) and some subin-
stance of chase(I,ΣD).

Proof of Claim 2. Note that h was constructed in such a way preserving the arguments of
the functional terms in D facts. Hence, chase(I,ΣD) contains a D fact associated with the
pair (x, y) of the values from dom(I) iff there is a fact associated with the same pair (x, y) in
chase(I,ΣB).

Then, we construct a mapping e : chase(I,ΣD) → h(chase(I,ΣB)) unifying, for each
pair (x, y) of elements from dom(I) × dom(I), every fact from chase(I,ΣD) with the fact of
h(chase(I,ΣB)) associated with this pair. By Properties 4 and 5, we conclude that e is indeed
an endomorphism.

[⇐] Assuming ΣD ≡CQ ΣB holds, we must show that a DP given by D has a solution. Our
assumption implies, that for every m,n ∈ N, and for every proper instance I of size (m,n),
core(I,ΣD) ∼= core(I,ΣB) holds. By Lemma 25, a consistent tiling D of an m× n grid exists.
Hence, the domino problem corresponding to D has a solution.

We finish this chapter by extending the above undecidability result to logical equivalence
for mappings comprised of plain SO tgds (i.e., SO tgds without equalities in the antecedents of
implications) and source key dependencies. To do this, we will need a result from [23].

Definition 31. A schema mapping M = (S,T,Σ) is said to be preserved under homomor-
phisms if, for every source instance I and all target instances J and J ′ such that (I, J) ∈ Σ and
J → J ′, we have that (I, J ′) |= Σ.
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Fagin et al. showed that for mappings which are preserved under homomorphisms and pos-
sess the property that, for each source instance I , existence of solutions for I implies existence
of a universal solution for I , CQ-equivalence implies logical equivalence [23, Proposition 3.14].
As argued in Chapter 2, the latter property holds for SO tgds in general. Preservation under
homomorphisms can be easily seen to hold for plain SO tgds. Moreover, the same properties
hold for mappings that additionally have source key dependencies. Hence, we obtain the follow-
ing corollary, and, as an immediate consequence, the desired undecidability result for mappings
based on plain SO tgds:

Corollary 2. Let ΣD be a simulation mapping for a DP D. Then, ΣD ≡CQ ΣB iff ΣD ≡ ΣB.

Theorem 35. The logical equivalence of mappings consisting of plain SO tgds and source key
dependencies is undecidable.
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CHAPTER 9
Conclusion and future work

9.1 Summary

In this thesis we have extended the theory of schema mapping optimization in several direc-
tions: we have studied the optimization and normalization of schema mappings under logical
equivalence, and then provided two results related to the alternative notions of equivalence.

In the first part of the thesis, we have presented several natural optimality criteria for schema
mappings and devised a rewrite rule system for transforming any set of s-t tgds into a logically
equivalent normal form, guaranteed to satisfy these criteria. Moreover, we have shown that the
normal form of s-t tgds is unique up to renaming of variables.

In order to extend our rewrite rule system to schema mappings including target egds, the
most important ingredients of our transformation (namely splitting and simplification of tgds)
had to be defined very carefully so as not to destroy the uniqueness of the normal form. We have
investigated several forms of splitting and of optimization and we have identified a rewrite rule
system which indeed guarantees to produce a normal form that is again unique up to variable
renaming. Finally, we have applied the normalization of schema mappings containing target
egds to aggregate queries in data exchange. An implementation of the presented algorithms is
freely available from http://www.dbai.tuwien.ac.at/proj/sm.

In the second part of the thesis, we have focused on the relaxed notions of equivalence for
schema mappings. First of all, we have shown that neither DE- nor CQ-equivalence bring ad-
ditional optimization power compared to logical equivalence, if the set of target dependencies
is fixed. This is in a sharp contrast with the situation when the target dependencies can vary: a
series of undecidability results from [49] renders equivalence testing and optimization w.r.t. DE-
and to CQ-equivalence infeasible in the general case. However, we have shown that for a prac-
tical class of mappings with target constraints based on inclusion and functional dependencies,
DE-equivalence is decidable and brings greater optimization power than logical equivalence,
whereas CQ-equivalence remains undecidable. Yet more expressive target dependencies are al-
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lowed if the s-t tgds in the schema mapping are free of constants. To the best of our knowledge,
this has been the first evidence of a greater usefulness of DE-equivalence w.r.t. CQ-equivalence.

We have also studied the problem of equivalence testing for schema mappings based on SO-
tgds. This problem has been completely unexplored until 2011, when Feinerer et al. [27] showed
that logical equivalence is undecidable even for SO-tgds which are known to be CQ-equivalent.
In this thesis we have shown that CQ-equivalence of schema mappings based on SO-tgds is
undecidable, under the assumption that the source schema contains key dependencies. Without
this provision, the decidability of CQ-equivalence for SO-tgds remains open. In their recent
paper [21], Fagin and Kolaitis have shown that CQ-equivalence of two mappings, of which one
is based on an SO-tgd and another on a set of s-t tgds (GLAV mapping, that is), is decidable.

9.2 Future work

The theory of schema mapping optimization is yet in its infancy. The following are examples
of open problems in this theory that are immediately related to the work presented in this thesis.
Many further practically relevant questions can be easily defined, taking into account a wide
range of applications of schema mappings in information integration.

• The search for classes of mappings for which the relaxed notions of equivalence are de-
cidable should be continued. In particular, the decidability of DE-equivalence for a larger
class of mappings than that described in Chapter 7 seems plausible.

• CQ-equivalence of mappings based solely on SO-tgds (without integrity constraints on the
source resp. target schema) remains open. Moreover, DE-equivalence of SO-tgds has not
been studied. The recent results [21] indicate a potential for practically relevant decidable
fragments of mappings based on SO-tgds.

• Equivalence of schema mappings defined over incomplete source instances (instances
with labelled nulls, that is) should be studied.

9.3 Publications

This thesis summarizes the results published in conference proceedings and in journals. In
particular, the results of Chapters 3 and 4 have been in part presented at the VLDB conference
[30] and then appeared in the special issue “Best papers of VLDB 2009” of The VLDB Journal
[31]. Chapters 6 and 7 are based on the work presented at ICDT 2011 [50], which has also been
invited for the “Best Papers of ICDT 2011” issue of Theory of Computing Systems (currently
available as online publication [49]). Chapter 8 contains an enhancement of a result presented
at AMW 2011 [27].
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• Jorge Pérez, Reinhard Pichler, Emanuel Sallinger, and Vadim Savenkov. Union and
intersection of schema mappings. In Proceedings of 6th Alberto Mendelzon Inter-
national Workshop on Foundations of Data Management, AMW 2012, Ouro Preto,
Brazil, June 27-30, 2012. CEUR-WS.org

• Ingo Feinerer, Reinhard Pichler, Emanuel Sallinger, and Vadim Savenkov. On the
undecidability of the equivalence of second-order tuple generating dependencies. In
Proceedings of the 5th Alberto Mendelzon International Workshop on Foundations of
Data Management, Santiago, Chile, May 9-12, 2011, volume 749 of CEUR Workshop
Proceedings. CEUR-WS.org, 2011

• Reinhard Pichler, Emanuel Sallinger, and Vadim Savenkov. Relaxed notions of
schema mapping equivalence revisited. In Database Theory - ICDT 2011, 14th In-
ternational Conference, Uppsala, Sweden, March 21-24, 2011, Proceedings, pages
90–101. ACM, 2011

113



• Reinhard Pichler, Vadim Savenkov, Sebastian Skritek, and Hong Linh Truong. Un-
certain databases in collaborative data management. In Proceedings of the Fourth
International VLDB workshop on Management of Uncertain Data (MUD 2010) in
conjunction with VLDB 2010, Singapore, September 13, 2010, volume WP10-04 of
CTIT Workshop Proceedings Series, pages 129–143. Centre for Telematics and In-
formation Technology (CTIT), University of Twente, The Netherlands, 2010

• Georg Gottlob, Reinhard Pichler, and Vadim Savenkov. Normalization and opti-
mization of schema mappings. PVLDB, 2(1):1102–1113, 2009

• Reinhard Pichler and Vadim Savenkov. Demo: Data exchange modeling tool. PVLDB,
2(2):1606–1609, 2009

• Reinhard Pichler and Vadim Savenkov. Towards practical feasibility of core compu-
tation in data exchange. In Proc. LPAR 2008: Doha, Quatar, pages 62–78, 2008

Surveys

• Schahram Dustdar, Reinhard Pichler, Vadim Savenkov, and Hong Linh Truong.
Quality-aware service-oriented data integration: requirements, state of the art and
open challenges. SIGMOD Record, 41(1):11–19, 2012

• Vadim Savenkov. Algorithms for core computation in data exchange. In Dagstuhl
Follow-Up Series, GI Dagstuhl Seminar ”Data Exchange, Integration, and Streams”
2010. To appear

Certificates • German Course, Level: 7th (of 8 possible), University of Vienna, 2007

• Microsoft Certified Software Developer, 2005

• TOEFL (270 out of 300), 2004

Personal
Information Birth date: 7 July, 1981

Spoken languages: Russian (native), English (fluent in speaking and writing), German
(intermediate)

Marital status: Married, two children

Hobbies: Music (violin playing), Sports (jogging, cycling and alpine skiing)

114


	Introduction
	Motivational examples
	Related work
	Organization of the thesis and summary of results

	Preliminaries
	Homomorphisms and substitutions
	Conjunctive queries
	Schema mappings and data exchange
	Dependencies
	Chase
	Equivalence of schema mappings

	Logical equivalence
	Optimization and normalization of mappings defined by s-t tgds
	Normalization in the presence of target egds
	Propagating the effect of egds into s-t tgds
	Splitting in the presence of egds
	Antecedent-split-reduced mappings
	Homomorphically equivalent components
	Summary

	Application to answering aggregate queries
	Certain answers
	Aggregate certain answers
	Semantics of aggregate queries via endomorphic images


	Relaxed notions of equivalence
	Introduction and background
	Optimization of s-t tgds
	Overview of undecidability results

	DE-equivalence: decidable case
	CQ-equivalence of SO-tgds
	Background on logical equivalence of SO-tgds
	CQ-Equivalence


	Conclusion and future work
	Summary
	Future work
	Publications

	Bibliography
	Curriculum Vitae

