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Abstract

Over the past decade, graphical models have emerged as a workhorse for
statistical processing of data in disciplines as diverse as computer vision,
natural language processing, digital communications and computational
biology. Problems from all of these disciplines have in common that the
objects of interest possess rich internal structure. Graphical models help us
make this structure explicit and exploit it during statistical inference.

The proliferation of freely available data has lead to reinforced interest
in approaches that learn from existing examples how to infer the properties
of previously unseen instances. Graphical models provide a sound formal
framework towards this end—the discriminative learning approach seeks to
estimate the parameters of a graphical model such that its predictions are
consistent with the observed data. While conceptually simple, the preva-
lent approaches suffer from computational intractability if the underlying
graphical model contains cycles. Unfortunately, this is the case in many ap-
plications of practical interest. During recent years, the understanding of
approximate inference in graphical models has improved dramatically. Yet,
in a learning scenario, intractability is still often dealt with in an ad-hoc or
heuristic manner. This thesis aims to aid the goal of bridging this gap.

The first approach we present draws heavily on tools from convex opti-
mization. Based on a variational characterization of the inference problems
in graphical models, we present a whole catalogue of equivalent formula-
tions of discriminative learning, each exposing different merits. The idea
underlying this approach is to relax the inference subproblems, that is, to
optimize over a simpler constraint set. We introduce new algorithms that
can be used to solve these relaxed problems more efficiently than previ-
ously possible. Alternatively, we demonstrate how the variational view-
point allows to formulate discriminative learning as a single unconstrained
convex optimization problem that can be solved using off-the-shelf solvers.

Our second approach is based on a Gaussian model and allows for
treatment of both discrete and continuous learning tasks. Discrete variables
can be handled either via a high-dimensional encoding, or by optimizing a
specific loss function. While the use of a Gaussian predictive density may
seem overly restrictive at first, we demonstrate how the expressiveness of
the model can be increased significantly via non-parametric conditioning.

We present applications from computer vision and natural language
processing that demonstrate the wide applicability of our algorithms and
the importance of employing principled approximations. A highlight among
our results is that we obtain the best published numbers for natural image
denoising and related image restoration problems.





Kurzfassung

Im vergangenen Jahrzehnt haben sich grafische Modelle als wichtiges Werk-
zeug zur statistischen Analyse von Daten aus unterschiedlichsten wissen-
schaftlichen Disziplinen—wie etwa maschinellem Sehen, Sprachverarbei-
tung, Nachrichtentechnik und Biologie—herauskristallisiert. Diesen Diszi-
plinen ist gemein, dass die Aufgabenstellungen typischerweise Objekte mit
komplexer interner Struktur behandeln. Grafische Modelle sind dabei be-
hilflich, diese Struktur explizit zu machen, und sie zum Zwecke der statis-
tischen Inferenz auszunützen.

Neuerdings hat die erhöhte Verfügbarkeit von Daten aller Art zu ver-
stärktem Interesse an Ansätzen geführt, die aus vorhandenen Beispielen
lernen, Eigenschaften bisher ungesehener Objekte vorherzusagen. Grafische
Modelle bieten zu diesem Zweck ein wohldefiniertes theoretisches Rüst-
zeug. Der diskriminative Lernansatz zielt darauf ab, die Parameter eines
grafischen Modells so zu schätzen, dass die Vorhersagen des Modells mit
den beobachteten Daten konsistent sind. Die vorherrschenden Ansätze sind
elegant und konzeptuell einfach, leiden jedoch unter dem Problem, dass
sie—sofern das grafische Modell Zyklen aufweist—aus rechnerischer Sicht
für praktische Zwecke zu langsam sind. In den letzten Jahren hat sich das
Verständnis von approximativer Inferenz in grafischen Modellen drama-
tisch verbessert. Dennoch wird dem ausufernden rechnerischen Aufwand
in Lernanwendungen häufig mit “ad-hoc”-Ansätzen oder Heuristiken be-
gegnet. Ziel dieser Dissertation ist es, Teile der neuen theoretischen Er-
kenntnisse auf die Anwendung in Lernverfahren zu übertragen.

Der erste in dieser Dissertation präsentierte Ansatz basiert primär auf
Werkzeugen aus der konvexen Optimierung. Basierend auf einer variatio-
nalen Charakterisierung von Inferenz in grafischen Modellen werden meh-
rere äquivalente Formulierungen des diskriminativen Lernproblems vorge-
stellt, von denen jede ihre eigenen Stärken aufweist. Die Idee, die diesem
Ansatz zugrunde liegt, ist die Inferenz—als Unterproblem des Lernens—zu
relaxieren, worunter eine Aufweichung der Beschränkungen des ursprüngli-
chen Optimierungsproblems verstanden wird. Es werden neue Inferenzal-
gorithmen vorgestellt, die solche relaxierten Probleme effizienter lösen kön-
nen, als dies bisher möglich war. Alternativ dazu wird demonstriert, wie
das Problem des diskriminativen Lernens als ein einziges unbeschränktes
konvexes Programm dargestellt, und somit handelsübliche Optimierungs-
software zum Einsatz gelangen kann.

Der zweite verfolgte Ansatz basiert auf einem Gauss’schen Modell und
erlaubt es, sowohl kontinuierliche als auch diskrete Lernanwendungen zu
behandeln. Die Festlegung auf eine Gauss’sche Dichtefunktion mag auf den
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ersten Blick als starke Einschränkung empfunden werden; die Mächtigkeit
des Modells kann jedoch durch nicht-parametrische Konditionierung auf
die beobachteten Daten massiv erhöht werden.

Die in der Dissertation betrachteten Anwendungen aus den Bereichen
des maschinellen Sehens und der Sprachverarbeitung untermauern die viel-
seitige Einsetzbarkeit der vorgestellten Algorithmen, sowie die Notwendig-
keit prinzipienbasierter Approximationen. Als besonders erwähnenswert
soll unter den in der Dissertation präsentierten Ergebnissen hervorgehoben
werden, dass durch die vorgestellten Verfahren die besten bisher publizier-
ten Ergebnisse im Entrauschen natürlicher Bilder und in damit verwandten
Bildrestaurierungsproblemen gewonnen werden konnten.



Part I

Introduction and Foundations





Preface

In recent years, the amount of data that is readily available on the Internet
has steadily increased. On the one hand, content is actively being created
and published by individual users and made available for others to use
on-line; on the other hand, an ever-growing amount of data is collected by
governments and non-governmental organizations and made accessible in
structured or semi-structured formats.

While there is justified concern about the use of sensitive data leading
to violation of every human’s right to privacy, it is also undoubtedly the
case that somewhere within these enormous piles of data, the answers to
many scientific questions are buried. In some cases, being able to answer
such questions could lead to enormous social and economic benefits. In
any case, a reversal of the trend is unlikely, so if we have to live with the
negative consequences of an increasingly transparent society, we should at
least strive to make the most out of its potential benefits.

Analysis of data has traditionally been the playing field of statistics.
Originally, the data under consideration was characterized by small sam-
ple sizes, as well as low-dimensional explanatory and response variables.
In more recent years, a young scientific discipline by the name of machine
learning has heralded a new era in data analysis, where the number of ex-
planatory variables (typically called features in machine learning), as well as
the number of data points, have become increasingly large. Inevitably, the
trend of increasing dimensionality has eventually swept back to statistics,
with scientists frequently working on data sets where the dimensionality
of the explanatory variables exceeds the number of data points. Likewise,
machine learning has benefitted tremendously from the amount of math-
ematical rigor that has been developed in statistics over the course of cen-
turies. Differences between the two fields are nowadays perhaps more often
rooted in philosophy than in methodology.

Probably the most recent revolution has been brought about by data
sets that feature response variables of high dimensionality. In this regime,
the usual approaches towards classification and regression fall short. Such
data sets occur frequently in areas like computer vision, computational bi-
ology and natural language processing, where the considered objects have
internal structure. Graphical models provide a sound formal framework that
helps us make this structure explicit and exploit it during statistical infer-
ence. However, even the most fundamental queries, such as computation
of marginal probabilities and modes, are intractable in discrete graphical
models of high tree width. As a consequence, inference and parameter es-
timation in such graphical models have proved to be a significant challenge.
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Contributions of the Thesis

This thesis considers the problems of inference and parameter estimation in
graphical models of high tree width. In particular, discriminative approaches
to parameter estimation or training are explored. Besides a unifying review
of the relevant literature, the thesis presents the following contributions:

• Convergent algorithms for approximate inference in discrete graphical1. Convergent inference algorithms

models of high tree width; both for computation of marginal probabili-
ties and modes.

• An in-depth treatment of the topic of convex duality in discrete graphical2. Training of discrete models

models, convex relaxations, and their use in discriminative parameter es-
timation; providing a whole catalogue of tractable convex formulations,
some of which have not been considered in the literature before.

• Introduction of a particular Gaussian conditional random field model3. Training of Gaussian models

with more expressive parameterization than has been considered before;
discriminative training algorithms for discrete and continuous response
variables; and finally, a non-parametric extension of the basic model.

The utility of all algorithms is evaluated in a substantial number of ex-
periments, and the wide applicability of the two different approaches to
discriminative training is demonstrated by means of several practical ap-
plications. In particular, we present the most effective approach towards
natural image denoising published so far.

Papers that directly contribute to this thesis

J. Jancsary, S. Nowozin, and C. Rother. Loss-Specific Training of Non-
Parametric Image Restoration Models: A New State of the Art. In 12th

European Conference on Computer Vision (ECCV), Florence, Italy, 2012.

J. Jancsary, S. Nowozin, T. Sharp, and C. Rother. Regression Tree Fields –
An Efficient, Non-Parametric Approach to Image Labeling Problems. In
2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Providence, RI, USA.

J. Jancsary and G. Matz. Convergent Decomposition Solvers for Tree-
reweighted Free Energies. In 14th International Conference on Artificial Intel-
ligence and Statistics (AISTATS), Ft. Lauderdale, FL, USA, 2011.

J. Jancsary, G. Matz, and H. Trost. An Incremental Subgradient Algorithm
for Approximate MAP Estimation in Graphical Models. In NIPS 2010 Work-
shop on Optimization for Machine Learning, Whistler, BC, Canada, 2010.

J. Jancsary, J. Matiasek, and H. Trost. Revealing the Structure of Medical
Dictations with Conditional Random Fields. In 2008 Conference on Empirical
Methods in Natural Language Processing (EMNLP), Honolulu, HI, USA, 2008.

Further papers that are not directly contained

J. Jancsary, F. Neubarth, S. Schreitter, and H. Trost. Multi-Faceted Analysis
of News Articles for Intelligent User- and Context-Sensitive Presentation.
Journal article under preparation, 2012.
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S. Petrik, C. Drexel, J. Jancsary, A. Klein, G. Kubin, J. Matiasek, F. Pernkopf,
and H. Trost. Semantic and Phonetic Automatic Reconstruction of Medical
Dictations. Computer Speech & Language, 25(2):363–385, 2011.

J. Jancsary, F. Neubarth, S. Schreitter, and H. Trost. Towards a Context-
Sensitive Online Newspaper. In IUI 2011 Workshop on Context-awareness in
Retrieval and Recommendation, Palo Alto, CA, USA, 2011.

J. Jancsary, F. Neubarth, and H. Trost. Towards Context-Aware Personal-
ization and a Broad Perspective on the Semantics of News Articles. In 4th

ACM Conference on Recommender Systems (RECSYS), Barcelona, Spain, 2010.

J. Matiasek, J. Jancsary, A. Klein, and H. Trost. Identifying Segment Topics
in Medical Dictations. In EACL 2009 Workshop on Semantic Representation of
Spoken Language, Athens, Greece, 2009.

J. Jancsary, A. Klein, J. Matiasek, and H. Trost. Semantics-Based Automatic
Literal Reconstruction of Dictations. In CAEPIA 2007 Workshop on Semantic
Representation of Spoken Language, Salamanca, Spain, 2007.

M. Huber, J. Jancsary, A. Klein, and H. Trost. Mismatch interpretation by
semantics-driven alignment. In 8th Conference on Natural Language Process-
ing (KONVENS), Konstanz, Germany, 2006.

Organization

This thesis is organized in three parts. In the remainder of the first part, First Part

we set forth our notion of structured prediction and discriminative training,
giving examples and definitions by other authors, and discussing the main
challenges arising in this setting. Moreover, we give an introduction to
graphical models—the framework on which we base our two approaches to
structured prediction—and point out their relation to exponential families
and statistical mechanics. Finally, we consider in some detail the prevailing
approaches to discriminative parameter estimation, such as the maximum
conditional likelihood and large margin principles.

In the second part of the thesis, we consider inference and discriminative Second Part

training in discrete graphical models by means of convex relaxations. We
start by demonstrating how exact inference in discrete graphical models can
be understood as an optimization problem, moving on to discuss the spe-
cific relaxation taken by the local polytope, and introducing new algorithms
for computation of approximate marginal probabilities and modes over this
relaxed polytope. Finally, we use our insights to derive several classes of
equivalent convex optimization formulations of discriminative parameter
estimation, and provide comparisons in terms of practical applications.

In the third and final part, we first take an in-depth look at Gaussian Third Part

graphical models, again from a convex optimization perspective. We move
on to describe several efficient and exact inference algorithms, and use our
insights to devise two approaches to parameter estimation within our Gaus-
sian model that are applicable both to discrete and continuous response
or output variables: the first approach is based on maximizing the condi-
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tional likelihood of an encoding of the response, while the second approach
draws on differentiable loss functions. We discuss how the expressiveness
of Gaussian conditional random fields can be increased by means of non-
parametric conditioning on the input. In doing so, we alleviate the re-
striction to modelling of uni-modal data. Finally, we conclude the thesis
by describing several applications, both discrete and continuous in nature,
and comparing the effectiveness of our Gaussian model to previous state-
of-the-art approaches.



Structured Prediction

X 7→ Y

Semantic segmentation
complaint dehydration weakness and diarrhea 
full stop Mr. Will Shawn is a 81-year-old 
cold Asian gentleman who came in with fever 
and Persian diaper was sent to the 
emergency department by his primary care 
physician due him being dehydrated 
period ... neck physical exam general alert 
and oriented times three known actue 
distress vital signs are stable ... 
diagnosis is one chronic diarrhea with 
hydration he also has hypokalemia neck 
number thromboctopenia probably duty liver 
cirrhosis ... a plan was discussed with 
patient in detail will transfer him to a 
nurse and facility for further care ... end 
of dictation

CHIEF COMPLAINT
Dehydration, weakness, and diarrhea.

HISTORY OF PRESENT ILLNESS
Mr. Wilson is a 81-year-old Caucasian 
gentleman who came in here with fever 
and persistent diarrhea. ...

PHYSICAL EXAMINATION

GENERAL: He is alert and oriented times
 three, not in acute distress.

VITAL SIGNS: Stable
...

Parsing of dictations

little      [ˈlɪtəl]
Pronunciation modelling

Image denoising

Figure 1: Examples: Structured predic-
tion seeks to find a map from an input
space X to a structured output space Y .

In the overview of the thesis, we already briefly mentioned that the meth-
ods presented herein are designed to predict structured objects. Indeed,
this task has become important enough for there to be a whole discipline
dedicated to the topic, which goes by the name of structured prediction.

General Definition

Ironically enough, although the problem has received significant attention
in recent years, a generally accepted definition of structured prediction is
conspicuously hard to find. Very broadly, the problem consists of finding
a map from an input space X to a structured output space Y . Beyond this
generally accepted definition, structured prediction is mostly defined in
terms of examples. For instance, Smith1 defines the problem as follows:

1 Noah A. Smith. Linguistic Structure
Prediction. Synthesis Lectures on Hu-
man Language Technologies. Morgan
and Claypool, 2011

The word structure evokes ideas about complexity and interconnectedness; in ma-
chine learning the term structure prediction (or structured prediction) is used to refer
to prediction of a set of interrelated variables. Such problems arise in areas like com-
puter vision (e.g., interpreting parts of a visual scene), computational biology (e.g.,
modeling how protein molecules fold), and, of course, speech and text processing.

A similar definition is set forth by Daumé,2 who emphasizes the differences

2 Hal Daumé III. Practical Structured
Learning Techniques for Natural Language
Processing. PhD thesis, University of
Southern California, 2006

from typical classification and regression tasks:

Structured prediction is a generalized task that encompasses many problems in nat-
ural language processing, as well as many problems from computational biology,
computational vision and other areas. The key issue in structured prediction that
differentiates it from more canonical machine learning tasks (such as classification or
regression) is that the objects being predicted have internal structure.

Again, this definition does not add much in terms of a more formal char-
acterization of the problem.

Since structured prediction mostly seems to be defined in terms of exam-
ples, then, it is only natural to give examples of the kind of problems that
will be considered in this thesis. In Figure 1, we show four exemplary tasks
that are meant to illustrate the discipline. In semantic segmentation, the goal
is to assign class labels to the pixels of an image that encode which parts of
the image belong to what kind of object (a bird, in this example). Problems
of this kind have been considered by Shotton et al.3, among many others.

3 Jamie Shotton, John Winn, Carsten
Rother, and Antonio Criminisi. Tex-
tonBoost: Joint Appearance, Shape and
Context Modeling for Multi-class Ob-
ject Recognition and Segmentation. In
European Conference on Computer Vision
(ECCV), 2006

As another example, one may be interested in parsing transcripts of medical
dictations4 to make explicit the structure (sections, headings, etc.) that is

4 Jeremy Jancsary, Johannes Matiasek,
and Harald Trost. Revealing the Struc-
ture of Medical Dictations with Con-
ditional Random Fields. In Conference
on Empirical Methods in Natural Language
Processing (EMNLP), 2008

underlying the report. To give one more example from natural language
and speech processing, consider the problem of predicting the pronunciation
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of a word given its written representation. This problem has been treated
in-depth by Bisani and Ney,5 and clearly it is the case that the output space5 Maximilian Bisani and Hermann Ney.

Joint-sequence models for grapheme-
to-phoneme conversion. Speech Commu-
nication, 50(5):434–451, 2008

consists of several interconnected units (phonemes, in this case). Finally, we
consider an example we will treat in great detail in this thesis, namely nat-
ural image denoising. Here, the goal is to recover an image that has been
corrupted by additive white Gaussian noise. The output space is defined
by the set of all uncorrupted natural images, and again, the pixel values are
clearly interrelated. The current state of the art for this widely considered
problem is held by Zoran and Weiss,6 but will be shown to be surpassed6 Daniel Zoran and Yair Weiss. From

Learning Models of Natural Image
Patches to Whole Image Restoration. In
International Conference on Computer Vi-
sion (ICCV), 2011

using the methods developed in this thesis.
While a universally accepted formal definition of structured prediction

does not seem to exist, we can still formalize the setting we will be con-
cerned with in this thesis.

Our Notion of Structured Prediction

The kind of structured prediction problems that will be considered in this
thesis can be defined in formal terms as follows. We assume the standard
setup for statistical learning, i.e. an unknown distribution p(x, y) over the
set of labelled examples, X × Y , where x ∈ X denotes the observed input
of an example and y ∈ Y denotes the correct output, typically referred to
as the corresponding ground truth or the labels of the example.

Our goal in this setting is to learn a map

ŷ : X 7→ Y (1)

that achieves low expected error

R`[ŷ(·)] = E(x,y)∼p(x,y)[`(ŷ(x), y)] (2)

with respect to a loss function ` : Y × Y 7→ R+. The loss functions we will
consider satisfy the intuitive constraint that `(y, y) = 0.

The Role of Structure

The structured nature of the problems under consideration enters our defi-
nition in terms of the output space Y . In particular, we restrict our attention
to problems in which Y ⊆ Rv(x), i.e. where the output space is a random
vector of a fixed size v(x) that can be determined readily from the observed
input x ∈ X . Notably, this definition excludes problems in which the di-
mensionality of the structured output is a priori unknown and needs to be
inferred as part of the prediction process. While this may seem restrictive at
first, in many cases of interest it is in fact possible to encode variable-length
structures in terms of a fixed number of random variables.

We make the additional assumption that the components of our output
space Y are statistically dependent, such that it is not a sound approach
to predict each random variable in the vector independently. Nonetheless,
some of the variables may be statistically independent given the outcome
of others. Such structural sparsity can be made precise using probabilistic
graphical models,7 which we will consider in some detail in the follow-7 Martin J. Wainwright and Michael I.

Jordan. Graphical Models, Exponen-
tial Families, and Variational Inference.
Foundations and Trends in Machine Learn-
ing, 1(1-2):1–305, 2008

ing chapter. To make a long story short, we will consider the problem of
predicting the outcome of a random vector.
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Three Main Ingredients

Given our characterization of structured prediction as loss-conscious pre-
diction of the outcome of a random vector, several questions arise naturally.

Modelling

How to model:

p(y | x; w)

correct labels
“ground truth”

observed input

Figure 2: Modelling: Define a predic-
tive density capable of representing the
statistics of the task at hand faithfully.

Perhaps the most immediate question is how the distribution of this ran-
dom vector depends on the observed input x. Our approach in this thesis
will be discriminative, that is, we will directly model the posterior density
p(y | x) to obtain a map from input to ground truth. In contrast, a gener-
ative approach models the joint probability p(x, y) and makes predictions
by using Bayes’ rule to compute p(y | x). However, as Vapnik notes,8 8 Vladimir N. Vapnik. Statistical Learn-

ing Theory. John Wiley & Sons, 1998

. . . one should solve the problem directly and never solve a more general problem as
an intermediate step.

In other words, if our ultimate goal is to infer y, we should directly focus on
this aspect of the problem. In passing, we want to note that the generative
approach does have its own share of advantages, such as being able to
draw samples from the joint distribution. In any case, treatment of these
topics exceeds the scope of this thesis, as our primary goal is to develop
new techniques for the discriminative approach.

The second important aspect in modelling the distribution of the out-
put vector y is to choose from a family of distributions and an according
parameterization, which we denote by w. For instance, we may wish to
restrict p(y | x; w) to being Gaussian. In that case, the parameterization in
terms of w determines the mean and the covariance of the density. More
generally, we will restrict our attention to exponential families. We will make
this point more precise in the chapters to follow.

Prediction

Given unknown item x:

Determine prediction ŷ(x; w):

arg max
y

p(y | x; w) =

Tractability?

Figure 3: Prediction: Given the ob-
served input of an unknown item, the
goal is to infer the correct labels, i.e. the
“prediction” under our model.

Given the predictive density p(y | x; w), the question arises how the map
ŷ : X 7→ Y should be defined in terms of this object. We make the assump-
tion that p(y | x; w) equals the true posterior distribution p(y | x).

Naïvely, one might simply choose the most likely labeling,

ŷ(x; w)
def
= arg max

y∈Y
p(y | x; w). (3)

However, this choice is optimal only if our goal is to optimize a 0-1 loss
function that assigns equal cost of 1 to any incorrect prediction.

More generally, remember that our goal is to minimize the expected loss
with respect to a loss function ` : Y × Y 7→ R+. In this case, from basic
decision theory,9 the optimal map should be chosen as 9 Steven M. Kay. Fundamentals of Statisti-

cal Signal Processing, Volume 2: Detection
Theory. Prentice Hall, 1998

ŷ(x; w)
def
= arg min

ŷ∈Y

∫
Y

p(y | x; w)`(ŷ, y)dy. (4)

In both cases, a central question is whether the operation can be carried
out efficiently. The answer to this question depends both on the nature of
the density, as well as on the loss function. Hence, already in the modelling
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step, one should ensure tractability through the choice of an appropriate
family of density functions. An alternative, of course, is to carry out the
optimization approximately, in which case, however, it is often difficult to
make meaningful statements about the quality of the approximate solution.

Parameter Estimation

Given pairs (x, y):

Estimate parameters as:

ŵ = arg max
w

∏(x,y) p(y | x; w)︸ ︷︷ ︸
likelihood

ŵ = arg min
w

∑(x,y)

loss of prediction︷ ︸︸ ︷
`(ŷ(x; w), y)︸ ︷︷ ︸

empirical risk

Tractability?

(ML)

(ER)

Figure 4: Parameter estimation: Given
pairs of labelled items, estimate the pa-
rameters of our model such that the
data is faithfully represented.

The final ingredient in our structured prediction framework is to estimate
the parameters w that determine the predictive density. Towards this end,
we are given a number of independent and identically distributed (i.i.d.)
labelled examples D = {(x, y)}. This step is often referred to as the learning
or training phase in the machine learning literature. We will restrict our
discussion to classical point estimates—a Bayesian treatment, as in Qi et
al.10 is possible, but often prohibitively expensive for structured prediction

10 Yuan Qi, Martin Szummer, and
Thomas P. Minka. Bayesian Conditional
Random Fields. In Artificial Intelligence
and Statistics (AISTATS), 2005

tasks. Tractability is again a major concern, even more so than in prediction.
Remember that we have chosen a discriminative approach, i.e. to model

p(y | x; w) directly. A principal method from estimation theory11 is to

11 Steven M. Kay. Fundamentals of Statis-
tical Signal Processing, Volume 1: Estima-
tion Theory. Prentice Hall, 1999

choose the parameters so as to optimize the (conditional) likelihood of the
data. In our setting, this translates to

ŵML = arg max
w

∏
(x,y)∈D

p(y | x; w). (5)

A prime motivation for following this route is that the maximum likelihood
estimate thus obtained is asymptotically consistent,12 i.e. it converges to the

12 Robert V. Hogg, Allen Craig, and
Joseph W. McKean. Introduction to
Mathematical Statistics. Pearson Educa-
tion, 2005

true parameters in the limit of infinite data.
A complication arises if our model is misspecified, for instance because

the chosen family of the predictive density is too restrictive. In this case,
one cannot expect a consistent maximum likelihood estimate, since the data
we consider was not generated from the family of distributions our model
belongs to in the first place. This fact is of high practical relevance. It is
perhaps not an overstatement to claim that the majority of machine learning
models are misspecified. The reason is simply that practitioners tend to
choose tractable probability densities to work with, and often these are not
quite sufficiently expressive to model the data at hand.

An alternative is then to directly choose the parameters w following the
empirical risk minimization principle,

ŵER = arg min
w

1
n ∑

(x,y)∈D
`(ŷ(x; w), y) (6)

≈ arg min
w

E(x,y)∼p(x,y)[`(ŷ(x; w), y)] (7)

whereby the parameters are chosen to minimize an empirical estimate of
the loss incurred by our map ŷ(·; w). This has the effect of directly selecting
w—within the possibly restrictive family of our predictive density—such
that the predictions under the model are of high quality in the sense of `.
Moreover, this approach gives us flexibility in choosing the map ŷ(·, w).
Commonly, it is chosen as in (3), that is, to return a mode of the density
p(y | x; w). Compared to the minimum expected loss problem (4), this
simplifies the prediction task for previously unseen items, because the loss
function was already accounted for during parameter estimation.



Graphical Models and Discriminative Training

In the previous chapter, we took an abstract viewpoint and characterized
structured prediction as the problem of predicting the outcome of a random
vector. From this bird’s-eye view, our task may appear to have been solved
(as you may have guessed, this is not the case). The main complication
arises from the sheer size of the random vectors we will be considering.
For instance, in image processing, it is not uncommon to deal with images
of size 1, 000 × 1, 000 or even larger, resulting in over a million random
variables if one chooses to model at the pixel level.

As a consequence, it becomes completely intractable to specify the pre-
dictive density p(y | x) without further provisions. We will need to exploit
the structure of the problem. Probabilistic graphical models13 allow us to 13 Daphne Koller and Nir Friedman.

Probabilistic Graphical Models: Principles
and Techniques. MIT Press, 2009

specify independence statements regarding the individual variables of the
joint density. This in turn enables more efficient computations and reduced
memory requirements as opposed to working with the full, unstructured
density over all variables.

In this chapter, we will introduce graphical models formally and spe-
cialize the key ingredients we previously introduced (modelling, predict-
ing, and parameter estimation) to this new setting. In particular, we will
introduce two of the most commonly used approaches towards discrimina-
tive training of graphical models, conditional random fields14 and max-margin 14 John Lafferty, Andrew McCallum,

and Fernando Pereira. Conditional
Random Fields: Probabilistic Models
for Segmenting and Labeling Sequence
Data. In International Conference on Ma-
chine Learning (ICML), 2001

Markov networks.15 As we shall see, tractability of these approaches depends

15 Ben Taskar, Carlos Guestrin, and
Daphne Koller. Max-Margin Markov
Networks. In Advances in Neural Infor-
mation Processing Systems (NIPS), 2003

crucially on the graph structure, motivating the need for approximations.
In general, graphical models are an immensely deep and well-studied

topic, so we will only be able to scratch the surface and introduce the tools
that will be required by our approach in the sequence.

Notation for Random Vectors

We will consider random vectors Y of multiple random variables Ys taking
on values ys ∈ Ys. Of particular interest will be the case where each Ys is
discrete, taking on one of ms values such that Ys = {0, 1, . . . , ms − 1}, as
well as the case where Ys is continuous and Ys = R. A joint realization of
the random vector will be denoted by y ∈ Y .

In this chapter, to abstract over the precise nature of the random vector,
we will work with probability distributions represented as densities p that
are absolutely continuous with respect to a measure ν. For discrete random
variables, we will choose the counting measure on their state space to ob-
tain a probability mass function, whereas for continuous random variables,
ν will denote the ordinary Lebesgue measure on R.
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Undirected Graphical Models

Undirected graphical models are defined by a graph G = (V, E) consisting
of vertices s ∈ V and undirected edges (s, t) ∈ E, where E ⊆ V×V denotes
the edge set of G. Each vertex s ∈ V corresponds to a variable Ys of random
vector Y. We can then specify the joint probability density in terms of fully
connected16 subsets F ⊆ V of vertices of G, via16 Full connectivity within F prescribes

that (s, t) ∈ E for all s, t ∈ F.

p(y) =
1
Z ∏

F∈F
ψF(yF) . (8)

We refer to each ψF (or F for short) as a factor, and to F as the set of factors,
containing each maximal clique17 of G at least once. In order for p(y) to17 A maximal clique is a fully connected

set of vertices that cannot be extended
by including one more adjacent vertex.

be a valid probability density, we require each ψF to be positive and finite.
We use yF to denote a realization of YF, the random vector consisting of
the subset of variables specified by F ⊆ V. Finally, Z is a normalization
constant and usually referred to as the partition function.

Visualizations t u
variable

factor

F = (s, t, u)

Figure 5: A factor graph involving mul-
tiple factors defined over pairs of vari-
ables, and a single factor defined over a
triplet (s, t, u).

If each factor is uniquely defined over subsets of at most two variables,
the graph describing the factorization of p(y) can easily be visualized by
means of vertices and edges.

On the other hand, if the factors involve larger subsets of V, or multiple
factors are defined over the same subset, we shall find it convenient to use a
bipartite graph involving variable nodes and factor nodes. This representa-
tion is called a factor graph.18 We show an exemplary factor graph involving18 Frank R. Kschischang, Brendan J.

Frey, and Hans-Andrea Loeliger. Fac-
tor Graphs and the Sum-Product Algo-
rithm. IEEE Transactions on Information
Theory, 47(2):498–519, 2001

factors of cardinality two and three in Figure 5. Variables are generally rep-
resented as circles, whereas factors are depicted as (solid) boxes.

Inference in Graphical Models

Now that we know how to specify a graphical model, it will be interesting
to see what kind of queries can be posed to a graphical model.

Marginalization. Perhaps the most important operation within a graphical
model is to compute the marginal distribution of a single variable or a
subset of variables,

ps(ys) =
∫
YV\s

p(y) ν(dyV\s) (9)

and
pF(yF) =

∫
YV\F

p(y) ν(dyV\F). (10)

As we will point out later in this chapter, this problem is intimately related
to computation of the partition function Z, defined as

Z =
∫
Y

∏
F∈F

ψF(yF) ν(dy). (11)

Our particular interest in marginalization arises from the fact that it has
important applications in discriminative training, to be discussed presently.
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MAP estimation. Another fundamental operation in a graphical model is
to compute a mode of the distribution,

ŷ = arg max
y∈Y

p(y). (12)

This task is also referred to as maximum a-posteriori (MAP) estimation. In
general, since we do not assume a uni-modal distribution, the solution to
this optimization problem need not be unique.

Tractability. Whether or not the above operations can be carried out effi-
ciently (i.e. in polynomial time) depends both on the family of the probabil-
ity density p(y) and the structure of the graph G specifying our graphical
model. In any case, an important selling point of graphical models is that
the factorization of the density can be exploited gainfully. This part is im-
portant, since if the structure of the graph didn’t gain us anything, there
wouldn’t be a point in using a graphical model after all.

We will discuss tractability of two particular types of graphical models—
discrete and Gaussian Markov random fields—in detail later in this thesis.

Graphical Models as Exponential Families

Any undirected graphical model with strictly positive density p can be
expressed as a member of an exponential family.19 By virtue of positivity 19 Daphne Koller and Nir Friedman.

Probabilistic Graphical Models: Principles
and Techniques. MIT Press, 2009

of the factors ψF, we can thus equivalently express the joint density as

p(y;θ) =
1

Z(θ) ∏
F∈F

exp〈θF,φF(yF)〉 (13)

where φF(yF) denotes the vector of sufficient statistics of factor F, and θF

are the corresponding exponential parameters. Clearly, this follows again
the factorization over subsets of vertices of G we previously assumed.

By collecting all sufficient statistics φF(yF) into a single vector φ(y), the
density can be written more compactly as

p(y;θ) = exp (〈θ,φ(y)〉 − A(θ)) , (14)

with
A(θ) = log Z(θ) =

∫
Y

exp〈θ,φ(y)〉 ν(dy). (15)

This form follows the canonical representation of an exponential family, in
which A(θ) plays the role of the log-partition function.

t

s
variable

factor

θF

Figure 6: Within a given exponential
family, each factor is fully specified by
its exponential parameters θF .

A lot hinges on the question of how the vector of sufficient statistics φ(y)
is defined. In particular, these statistics determine the exponential family
of our undirected graphical model G. In general, if φ(y) is a d-dimensional
vector, then θ ⊆ Rd, as it may need to satisfy various constraints.

As illustrated in Figure 6, within a fixed exponential family, each factor
is fully specified in terms of its exponential parameters θF. We will use this
fact later on when we introduce discriminative graphical models, in which
the θF are allowed to depend on the observed input.

We will now have a first look at two particular exponential families on
which we are going to build our structured prediction framework in the
sequence, and make the choice of sufficient statistics concrete. For details
on further exponential families, we refer to Wainwright and Jordan.20 20 Martin J. Wainwright and Michael I.

Jordan. Graphical Models, Exponen-
tial Families, and Variational Inference.
Foundations and Trends in Machine Learn-
ing, 1(1-2):1–305, 2008
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Example 1 (Discrete MRF) In a discrete Markov random field (MRF), the
sufficient statistics of a factor are chosen as a vector of binary indicators.
Formally, the joint state space is given by ×s∈F Ys. Let mF be the cardinality
of this state space. In this case, the sufficient statistics of factor F are a
map φF : YF 7→ {0, 1}mF to an mF-dimensional indicator vector I, each
component α of which represents a particular joint state yF;α via

Iα(yF) =

1 if yF = yF;α

0 otherwise.
(16)

The vector of exponential parameters θF is hence also of size mF, and each
of its components corresponds to a particular joint state. This is illustrated
for a pairwise factor in Figure 7. The vector consisting of all sufficient
statistics is unconstrained, that is, θ ∈ Rd.

Ys Yt θF(·, ·)
0 0 -0.3
0 1 1.4
...

...
...

ys yt θF(ys, yt)
...

...
...

Figure 7: In a discrete MRF, each factor
can be completely specified by means of
a table that assigns a potential to each
joint state of the variables of the factor.

Note that the distribution of any discrete random vector Y that is Markov
with respect to G can be described in this manner.21 However, in general,

21 A random vector Y is Markov with
respect to graph G if any two non-
adjacent variables are conditionally in-
dependent given all other variables, i.e.

Ys ⊥⊥ Yt | YV\{s,t} for all s, t ∈ V.

the representation in terms of indicator vectors as defined above is over-
complete, that is, there can be multiple exponential parameter vectors θ

resulting in the same distribution. 2

Example 2 (Gaussian MRF) The density of the v-dimensional normal dis-
tribution N (u, C) with mean u and covariance C in standard form is

p(y; u, C) = (2π)−
v
2 det(C)−

1
2 exp(− 1

2 (y−u)TC−1(y−u)), C � 0. (17)

An alternative parameterization of the same Gaussian density, referred to
as the canonical or information form C(h, J), is defined as2222 Daphne Koller and Nir Friedman.

Probabilistic Graphical Models: Principles
and Techniques. MIT Press, 2009 p(y; h, J) = exp(− 1

2 yTJy + yTh− A(h, J)), J � 0. (18)

This canonical form maps to standard form using the equalities

J = C−1, C = J−1, (19)

h = C−1u, u = J−1h, (20)

and the normalization constant A can be computed as

A(h, J) = 1
2 hTJ−1h + v

2 log(2π) + 1
2 log det(J−1). (21)

By defining φ(y) =
( y

vec(yyT)

)
and θ =

(
h

− 1
2 vec(J)

)
, one can easily verify

that Gaussians form an exponential family. Observe that since J � 0, the
exponential parameters are constrained such that θ ⊂ Rd.

Figure 8: In a Gaussian MRF, the preci-
sion matrix J is sparse, and if the pair-
wise factors are instantiated in a repeti-
tive manner, it typically exposes a spar-
sity pattern defined by diagonal bands.
The main diagonal stores the variances.

The positive-definite v × v matrix J � 0, defined as the inverse of the
covariance matrix, goes by the names precision, information, or concentration
matrix. The Markov property of a Gaussian MRF can be defined succinctly
in terms of J: if (s, t) /∈ E, then Jst = 0. This is illustrated in Figure 8.

By the Hammersley-Clifford theorem, we can factor this distribution as

p(y) ∝ ∏
F∈F

ψF(yF) (22)

with ψF ∼ C(hF, JF), where the hF and JF parameters of the individual
factors must be chosen to add up to h and J, respectively. This choice is
not in general unique; moreover, the parameterization in terms of h and J
is overcomplete itself, since J is symmetric and thus redundant. 2
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Maximum Entropy Justification

The representation as an exponential family can be motivated as follows.
Assume we are given n i.i.d. realizations y(1), y(2), . . . , y(n) of our ran-
dom vector and form the empirical estimate of the sufficient statistics,
µ̂ = 1

n ∑i φ(y(i)). We now want to pick our distribution p such that it
is consistent with the data, i.e. ,

Ey∼p(y;θ)[φ(y)] !
= µ̂ (23)

holds. An important observation is that in general, there are many dis-
tributions p that meet this constraint. Therefore, we need a principle for
choosing among these distributions. For lack of further information, it is
reasonable to choose a maximally vague distribution, as characterized by
possessing the greatest entropy among all distributions satisfying the con-
sistency constraint. Under weak technical conditions, the density can be
shown to follow the form exp(〈θ,φ(y)〉 − A(θ)) of an exponential family.

Importance of the Mean Parameters

In the previous section, we saw that the expected sufficient statistics play an
important role in exponential families. We will refer to

µ(θ) = Ey∼p(y;θ)[φ(y)] (24)

as the mean parameters resulting from the exponential density over graph G,
parameterized by θ. The set of all realizable mean parameters,

M(G) = {µ | ∃p s.t. Ey∼p(y)[φ(y)] = µ}, (25)

will turn out to be of particular importance in the sequence. In the case
of a discrete MRF, where the vector of sufficient statistics is defined in
terms of indicator functions, the mean parameters are given by the marginal
probabilities of the factors F ∈ F . In contrast, in a Gaussian MRF, the mean
parameters comprise the mean vector Ey∼p(y;θ)[y] as well as the second-
order moment matrix Ey∼p(y;θ)[yyT] and satisfy E[yyT]−E[y]E[yT] � 0.

Variational characterization of the log-partition function Via the mean param-
eters, A(θ) can be described in terms of an optimization problem

A(θ) = max
µ∈M◦

{
〈θ,µ〉+ H(pθ(µ))

}
, (26)

where

H(pθ(µ)) = −
∫
Y

p(y;θ(µ)) log p(y;θ(µ)) ν(dy) (27)

denotes the entropy of an exponential density parameterized by a vector
θ(µ) for which the condition

Ey∼p(y;θ(µ))[φ(y)] !
= µ (28)

holds.23 At least one such θ(µ) exists for each point inM◦, the interior of 23 Martin J. Wainwright and Michael I.
Jordan. Graphical Models, Exponen-
tial Families, and Variational Inference.
Foundations and Trends in Machine Learn-
ing, 1(1-2):1–305, 2008

M. In turn, the maximum in (26) is attained uniquely at the interior point

µ(θ) = Ey∼p(y;θ)[φ(y)], (29)

i.e. the mean parameters obtained for θ. These conditions define a dual
coupling between exponential parameters θ and mean parameters µ, which
is however not one-to-one for an overcomplete vector of sufficient statistics.
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Properties of the log-partition function. In terms of the variational represen-
tation, it is easy to see the following properties of A(θ):

a) Since we determine the maximum over a family of functions that are
trivially convex in θ (linear), it follows that A(θ) is convex, too.2424 Stephen Boyd and Lieven Vanden-

berghe. Convex Optimization. Cam-
bridge University Press, 2004 b) Since the maximum in (26) is uniquely attained and the objective is

continuous in µ and θ, as well as convex in θ, under mild technical
conditions on the set of mean parameters over which we optimize, Dan-
skin’s theorem25 states that A(θ) is differentiable with respect to θ, and25 Dimitri P. Bertsekas. Nonlinear Pro-

gramming. Athena Scientific, second
edition, 1999

the gradient is given by

∇θA(θ) = µ(θ), (30)

the unique maximizing vector of mean parameters.

These properties will prove useful in our subsequent attempts at solving
optimization problems involving the log-partition function.

Tractability. The preceding discussion allows us to draw general conclu-
sions about the difficulty of the inference problem. First, the set of mean
parameters itself poses a challenge, as it can be hard to specify all possible
mean parameters explicitly. In particular, the size of the set will turn out to
be problematic. Second, then entropy, which is only defined via the dual
coupling, cannot in general be characterized explicitly, so it is unclear how
to compute this function (as we will see, important exceptions exist).

Maximum A-Posteriori Estimation in Exponential Families

So far, we have discussed the log-partition function A(θ) in some detail.
As we have seen, this function is closely related to the mean parameters,
which in discrete graphical models correspond to marginal probabilities.

We shall also find it useful to introduce a similar function corresponding
to the maximization problem, rather than marginalization. Consider

Å(θ) = max
y∈Y
〈θ,φ(y)〉. (31)

The function so defined is clearly convex in θ, since it maximizes over a
family of functions that are convex in θ.2626 Stephen Boyd and Lieven Vanden-

berghe. Convex Optimization. Cam-
bridge University Press, 2004

Unlike the log-partition function, we cannot in general assume that the
maximum is attained uniquely (depending on the set of mean parameters),
so Å(θ) need not be differentiable. However, by standard results in convex
optimization, a subgradient with respect to θ is given by

g(θ) = φ(ŷ), ŷ ∈ arg max
y
〈θ,φ(y)〉. (32)

Again, this fact will be useful in optimization algorithms, both for inference
in graphical models and for discriminative training. The observant reader
may have noticed that Å is named suggestively close to the log-partition
function A. Indeed, there exists a fundamental relationship between these
two functions, as will be pointed out in Part II of this thesis.
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Relation to Statistical Mechanics

Graphical models can also be interpreted from a statistical mechanics view-
point, as has been pointed out by Yedidia et al.27 We will now introduce a 27 Jonathan S. Yedidia, William T. Free-

man, and Yair Weiss. Constructing
Free Energy Approximations and Gen-
eralized Belief Propagation Algorithms.
IEEE Transactions on Information Theory,
51:2282–2312, 2004

few of these concepts that are important to our discussion.
Statistical mechanics tells us that in thermal equilibrium, the probability

of a joint state y = {y1, y2, . . . , yv} of a system of v particles, each of which
can be in one of a discrete number of states, follows Boltzmann’s law, viz.:

p(y) =
1

ZT
e−E(y)/T, (33)

where T denotes the temperature and ZT is a partition function that nor-
malizes the probability mass. We refer to the rich literature on statistical
mechanics for further discussion on Boltzmann’s law—of greater interest
to us is the connection to exponential families. Under this viewpoint,
Boltzmann’s law defines the probability density of an exponential model
in terms of an energy function E(y). The temperature T is inconsequential
to our discussion, as it merely sets a scale for the unit of the energy, and
will simply be assumed to be 1.

In the notation for exponential models we previously set forth, the en-
ergy of a state y is hence given by

Recall that φ(y) denotes the sufficient
statistics of our exponential family.

E(y;θ) = −φ(y)Tθ. (34)

Likewise, the Helmholtz free energy of a system, FHelmholtz, plays an im-
portant role in statistical mechanics. It is defined as

FHelmholtz = − log Z, (35)

and can thus be seen to correspond the the negative log-partition function,
that is −A(θ), in the exponential family framework.

Knowledge of these concepts helps understand the terminology used in
different communities. For instance, computing a mode of a density,

ŷ(θ) = arg max
y

p(y;θ) = arg max
y

log p(y;θ) (36)

= arg min
y

E(y;θ), (37)

is often referred to as energy minimization. Similarly, in computation of the
log partition function, one often encounters references to the free energy.

Discriminative Models

j

i

θF(x; w) = BF(x)w

Figure 9: In a discriminative model, the
exponential parameters of factor F de-
pend on a subset of rows of feature ma-
trix B, as well as on model weights w.

Ys Yt θF(·, ·)
0 0 0.3
0 1 1.4
...

...
...

ys yt θF(ys, yt)
...

...
...

bF;st(x)Tw

Figure 10: For discrete factors, the en-
tries of the factor table arise as the inner
product of a row of the feature matrix
and the weights vector.

We have seen that within a given exponential family, the distribution of a
random vector can be specified completely in terms of the vector of expo-
nential parameters associated with the sufficient statistics. We have also
seen examples of the sufficient statistics of two types of graphical models,
discrete MRFs and Gaussian MRFs.

In both cases, the distribution can be defined in terms of factors and the
associated exponential parameters. In discriminative graphical models, the
exponential parameters of the factors can depend on the observed input x
(remember our abstract discussion of the structured prediction problem at
the beginning of this chapter, cf. Figure 2).
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Linear Parameterization

We will consider linear models—parameterized by a vector w ∈ Ω ⊆ Rp of
model parameters—that initialize the exponential parameters θ ⊆ Rd from
weighted sums of derived features or basis functions of input x, via

θ(x; w) = B(x)w, (38)

or equivalently, making the factor structure explicit,

θF(x; w) = BF(x)w, F ∈ F . (39)

Here, B : X 7→ Rd×p is a matrix-valued function28 returning the features28 Actually, the dimensionality of the
output space Y can vary depending on
input x, such that θ ∈ Rd(x), and the
signature of B must be adjusted accord-
ingly.

derived from input x, and we use BF(x) to denote the subset of rows that
apply to factor F. This is illustrated in Figures 9–10.

Typically, depending on the nature of the structured prediction task,
factors are instantiated in a repetitive manner and B(x) is defined such that
model parameters w are tied among factors of a common type.

Note that since the exponential parameters θ are in general restricted to
a subset of Rd, the model parameters w, and possibly the features B(x),
cannot be chosen completely freely. We denote this by requiring w ∈ Ω.

The above linear parameterization may seem restrictive at first; however,
we want to emphasize that while the model is linear in w, it can depend
on the observed input x in an almost arbitrary manner—including highly
non-linear functions. Indeed, in Part III of the thesis, we will use this fact
to devise a model with non-parametric dependence on x.

Conditional Random Fields

Recall that the exponential parameters θ(x; w), now depending on input x,
define a probability distribution. This distribution is conditional on x, and
parameterized by the model parameters w ∈ Ω, as follows:

p(y | x; w) = exp{〈θ(x; w),φ(y)〉+ A(θ(x; w))} (40)

= exp{−E(y | x; w)− A(θ(x; w))}. (41)

We call such a distribution over a random vector a conditional random field,29

By defining the conditional energy

E(y | x; w) = −〈θ(x; w),φ(y)〉.

29 John Lafferty, Andrew McCallum,
and Fernando Pereira. Conditional
Random Fields: Probabilistic Models
for Segmenting and Labeling Sequence
Data. In International Conference on Ma-
chine Learning (ICML), 2001

or CRF for short. The principal advantage of CRFs is that they let us han-
dle structured prediction tasks within a probabilistic framework. We will
elaborate on this point by discussing how to obtain predictions from a CRF,
and how to estimate its parameters.

Predicting

We already alluded to the fact that given the true posterior density p(y | x),
the optimal decision-theoretic prediction with respect to a loss ` is given by

ŷ`(x) = arg min
ŷ∈Y

R`(ŷ | x), R`(ŷ | x) def
= Ey∼p(y|x)[`(ŷ, y)]. (42)

Conditional random fields provide us with a posterior density p(y | x; w)—
estimated from training data in a manner that will be made precise shortly—
and consequently, this approach is applicable in principle.
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Compared to a general multi-variate distribution, remember that we are
now operating on a graphical model. Consequently, a solution to (42) can
often be found at reasonable computational expense, at least approximately.

As an example, assume we are working in a discrete model and want to
find the prediction that minimizes 0-1 loss, defined as

`0-1(ŷ, y) = Iŷ 6=y. (43)

It can easily be verified that any mode of our posterior density constitutes
an optimal prediction under the above optimality criterion. This makes
sense intuitively—if we want to minimize the risk of predicting an incor-
rect joint labeling, we should pick the most likely state. Computing max-
imum a-posteriori states in discrete graphical models is NP-hard in gen-
eral30, however, it is a well-studied problem, and a multitude of algorithms 30 Venkat Chandrasekaran, Nathan Sre-

bro, and Prahladh Harsha. Complexity
of Inference in Graphical Models. Tech-
nical report, 2010

exploiting the structure of the graph exist, both for those cases where ex-
act inference is feasible, as well as for the remaining cases that need to be
handled approximately.31 31 Indeed, we will present our own al-

gorithm towards this end in Part II of
the thesis.

Decomposition of loss. More generally, the problem can often be solved effi-
ciently if the loss function decomposes over the variables. In that case, the
expected loss of a prediction ŷ factors in terms of marginal distributions,

R`(ŷ | x) = Ey∼p(y|x)[`(ŷ, y)] (44)

= ∑
s∈V

∫
Ys

ps(ys | x)`s(ŷs, ys) ν(dys) (45)

= ∑
s∈V

R`;s(ys | x), (46)

and the optimal prediction can be found individually for each variable,

ŷ`;s(x) = arg min
ys∈Ys

R`;s(ŷs | x), s ∈ V. (47)

This decomposition replaces a single complex optimization problem by a
large number of primitive optimization problems.

For instance, in a discrete MRF, we only need to minimize over the finite
(and typically small) label space of individual variables. A typical example
is the so-called Hamming loss, defined as

`Hamming(ŷ, y) = ∑
s∈V

Iŷs 6=ys . (48)

This loss can be minimized by picking for each variable individually the
state that maximizes the posterior marginals.

A similar example for the case of continuous random variables is the
mean squared error (or MSE), measured via

`MSE(ŷ, y) = ∑
s∈V

(ŷs − ys)
2. (49)

Since the loss decomposes over the variables, the optimum can again be
obtained in terms of the posterior marginal distributions by computing for
each variable its conditional expectation, i.e. ŷ`;s(x) = Eys∼p(ys |x)[ys].32 32 Christopher M. Bishop. Pattern Recog-

nition and Machine Learning. Springer,
2007

Evidently, the above approach depends crucially on our ability to com-
pute marginal distributions. The situation is broadly the same as for max-
imum a-posteriori inference: for discrete models, marginalization is NP-
hard in general, but good approximate algorithms exist.
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Maximum Likelihood Estimation

Consider now the problem of estimating the model parameters w given n
labelled i.i.d. training examples D = {(x, y)}. The prevailing approach in
CRF training is to maximize the conditional likelihood of the data:

ŵML = arg max
w∈Ω

∑
(x,y)∈D

p(y | x; w). (50)

Commonly, a zero-mean, spherical Gaussian prior p(w) on the model pa-
rameters is assumed, such that we actually seek the maximum a-posteriori
estimate of w:

ŵMAP = arg max
w∈Ω

{
p(w) ∑

(x,y)∈D
p(y | x; w)

}
. (51)

Computationally, it is more convenient to minimize the negative log-
likelihood of the data. Observe that

− log p(y | x; w) = −〈θ(x; w),φ(y)〉+ A(θ(x; w)) (52)

= E(y | x; w) + A(θ(x; w)) (53)

and
− log p(w) = −C

2
‖w‖2

2 ��
��+ const, (54)

where C is inversely proportional to the variance of the spherical Gaussian
prior over the model parameters. The objective hence turns into

Ocrf(w) =
C
2
‖w‖2

2 + ∑
(x,y)∈D

[
E(y | x; w) + A(θ(x; w))

]
, (55)

and the corresponding optimization problem is convex, subject to w ∈ Ω
(for discrete models, Ω = Rd, so the problem is unconstrained). To see
convexity, first note that any norm is a convex function.33 Moreover, the33 Stephen Boyd and Lieven Vanden-

berghe. Convex Optimization. Cam-
bridge University Press, 2004

conditional energy is linear in w, and hence convex. Finally, the convexity
of A(θ) in θ was established when we discussed its properties, and θ(x; w)

is linear in w, so the composition is again convex in w.

Gradient. To actually minimize the objective, we will find it useful to de-
rive the gradient with respect to the model parameters, given by

∇Ocrf(w) = Cw + ∑
(x,y)∈D

[B(x)]T[µ(x; w)−φ(y)], (56)

where µ(x; w)
def
= Ey∼p(y|x;w)[φ(y)] denotes the mean parameters coupled

to the exponential parameters θ(x; w). Recall that the mean parameters
are generated by differentiating A(θ) with respect to θ. In contrast, the
sufficient statistics of the observed labeling y arise from differentiating the
energy with respect to θ. Finally, note that θ(x; w) = B(x)w is itself a
function of w—the final gradient follows from the chain rule.

Intuitively, the gradient measures the impact of each feature on the mis-
match between the expected sufficient statistics under our model, and the
sufficient statistics actually observed on training data D. In optimizing
w ∈ Ω, the weights on the features are chosen to minimize this mismatch.
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Tractability. Being able to compute this gradient depends crucially on our
ability to compute the mean parameters of each example. Moreover, even
just evaluating the objective function requires that we compute the log-
partition function, the difficulty of which—as we saw—depends crucially
on the set of mean parameters. Unlike for the purpose of prediction, it is
not acceptable to simply compute the mean parameters or the log-partition
function using any approximate inference algorithm, since we wish to main-
tain convexity of the objective.

In Part II of this thesis, we will show how this goal can be achieved for
discrete models, whereas Part III will treat the same problem for Gaussian
models. In fact, this is one of the main challenges considered in this thesis.

Misspecification

The decision-theoretic approach we outlined depends crucially on our abil-
ity to estimate the true posterior distribution p(y | x). We already men-
tioned that maximum likelihood estimation is in principle asymptotically
consistent. The underlying assumption is that y | x ∼ p(y | x; w), i.e. fol-
lows a parametric family that is known up to its parameters θ. However, as
we intimated, this assumption rarely holds up in machine learning practice,
since the distribution of the data, much less the conditional distribution, is
rarely known in advance and often does not follow the parametric family
that was chosen. This situation is referred to as misspecification.34 To make 34 Halbert White. Maximum Likeli-

hood Estimation of Misspecified Mod-
els. Econometrica, 50(1):1–25, 1982

things worse, the notion of consistency itself is rather intricate for condi-
tional random fields.35

35 Mathieu Sinn and Pascal Poupart.
Asymptotic Theory for Linear-Chain
Conditional Random Fields. In Artifi-
cial Intelligence and Statistics (AISTATS),
pages 679–687, 2011

Empirical Risk of a Model

Assuming misspecification, decision-theory is no longer applicable, because
we cannot represent the true posterior density. It is time to step back and
consider our true goal again, which is to learn a map ŷ(x; w) that exposes
low expected loss under the true distribution p(x, y),

R`[ŷ(·)] = E(x,y)∼p(x,y)[`(ŷ(x; w), y)]. (57)

This expectation can be approximated empirically from the n i.i.d. training
examples D = {(x, y)} at our disposal, via

R̃`[ŷ(·)] =
1
n ∑

(x,y)
`(ŷ(x; w), y). (58)

The definition of the map ŷ(x; w) can in principle be constructed from the
misspecified model posterior density p(y | x; w) in an arbitrary manner.
Most commonly, it is defined to return a mode of the density, or equiva-
lently, a minimum energy realization:

ŷ(x; w) = arg max
y

p(y | x; w) (59)

= arg min
y

E(y | x; w). (60)

Choosing w ∈ Ω to minimize the empirical risk then draws the mode
of the misspecified model posterior density towards the observed ground
truth (for each training example), in the sense of loss function `.
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Criticism. Empirical risk minimization has been described as an “incom-
plete inductive principle” by Minka,36 and in particular been criticized for36 Thomas P. Minka. Empirical Risk

Minimization is an incomplete induc-
tive principle. Technical report, MIT
Media Lab, 2000

being agnostic about sampling distributions. However, in our setting, the
sampling distribution either does not follow a known parametric family,
or it is intractable. In this regime, Minka’s characterization of empirical
risk minimization as a “maximally vague model, which assumes nothing
beyond the training data,” sounds appealing rather than problematic.

Generalized notion of losses. The notion of a loss function ` : Y ×Y 7→ R that
assigns a loss to a prediction, i.e. a minimum energy realization under our
model according to the previous development, can be extended such that
the loss function is defined in terms of the energies the model assigns to any
realization. The signature of such loss functions is then ` : Y ×X ×Ω 7→ R.

Note that this is a strict generalization of the previous definition, since
the prediction can always be obtained as a function of the energies the
model assigns to the possible realizations of the random vector. We will
use `(y | x; w) to denote the loss a model parameterized by w incurs on
ground truth y given the observed input x.

Relation to Log-Likelihood. The above extended notion of loss functions
opens up the possibility of analyzing various parameter estimation ap-
proaches in the empirical risk minimization framework. For instance, the
negative log-likelihood of the training data, optimized during maximum
likelihood estimation, can be understood as a convex surrogate for the em-
pirical risk under 0-1 loss. This is depicted for the special case of binary
classification in Figure 11. The logistic loss, which specializes the negative
log-likelihood to binary classification, forms an upper bound on the 0-1
loss applied to the prediction of the model.

−1 0 1

0

1

−E(y | x; w)

`(
y
|x

;w
)

Loss of model w for ground truth y

`Hinge

`Squared

`Logistic

`0-1

Figure 11: Binary classification: We
plot the loss incurred by a model on an
example as a function of the energy the
model assigns to its ground truth y. The
losses considered are defined as

`Hinge(y|x; w) = max(0, 1 + E(y|x; w))

`Squared(y|x; w) = (1 + E(y|x; w))2

`Logistic(y|x; w) = log2(1 + eE(y|x;w))

`0-1(y|x; w) = J−E(y|x; w) < 0K,

and the energy is given by

E(y|x; w) = −y〈b(x), w〉.

An important consequence of the above insight is that even in the regime
of misspecification, maximum likelihood estimation is in fact a sound ap-
proach as long as we wish to minimize 0-1 loss and define the map ŷ(x; w)

so as to return a mode of our misspecified posterior density.

Other convex surrogates. More generally, if we want to minimize the risk
with respect to an arbitrary loss function `, maximum likelihood estima-
tion is no longer an appropriate approach. However, a different approach,
Max-Margin Markov Networks,37 or M3Ns for short, can be used to con-

37 Ben Taskar, Carlos Guestrin, and
Daphne Koller. Max-Margin Markov
Networks. In Advances in Neural Infor-
mation Processing Systems (NIPS), 2003

struct a convex surrogate for any loss function. A similar approach called
Softmax-Margin CRFs38 has recently been introduced that “injects” a loss in

38 Kevin Gimpel and Noah A. Smith.
Softmax-Margin CRFs: Training Log-
Linear Models with Cost Functions. In
Annual Conference of the North American
Chapter of the Association for Computa-
tional Linguistics (NAACL), 2010

maximum likelihood estimation; however, it has not yet gained a momen-
tum comparable to M3Ns, so we will focus on the latter in the following.
Convex surrogate losses have been studied in great detail by Bartlett et al.39

39 Peter L. Bartlett, Michael I. Jordan,
and Jon D. McAuliffe. Convexity, Clas-
sification, and Risk Bounds. Journal
of the American Statistical Association,
101(473):138–156, March 2006

Max-Margin Markov Networks

Max-margin Markov networks (M3Ns) are generally considered a non-
probabilistic model. However, as we will point out later in this thesis, they
are in fact intimately related to conditional random fields through choice
of a specific loss function.
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We will motivate M3Ns in terms of the energy the model assigns to re-
alizations y. Remember that in our discriminative setting, the energy de-
pends on the observed input x, as follows:

E(y | x; w) = −〈θ(x; w),φ(y)〉. (61)

The lower the energy, the higher the likelihood of a realization y of our
random vector Y in an exponential model.

Constraint formulation. They key idea is now to choose the model param-
eters w ∈ Ω such that given i.i.d. training data D = {(x, y)}, our model
assigns to each observed realization y an energy that is lower than that of
any other realization ŷ, by a margin that corresponds to the loss `(ŷ, y) that
would be incurred by predicting ŷ. Formally, the constraints are

E(y | x; w) ≤ E(ŷ | x; w)− `(ŷ, y), ∀(x, y) ∈ D, ŷ ∈ Y . (62)

Note that this is in fact equivalent to demanding that

E(y | x; w) ≤ min
ŷ
{E(ŷ | x; w)− `(ŷ, y)}, ∀(x, y) ∈ D, (63)

i.e. , that the energy of each observed realization be lower than the lowest
energy of any other realization.

Regularized risk function. In general, it is impossible to meet all constraints.
Therefore, we introduce a slack variable ζ(x,y) for each example by which
we penalize constraint violation, and form the optimization problem

minimize
w∈Ω,ζ

C
2
‖w‖2

2 + ∑
(x,y)∈D

ζ(x,y)

s.t. E(y|x; w)− ζ(x,y) ≤ min
ŷ
{E(ŷ|x; w)− `(ŷ, y)}, ∀(x, y).

(64)

The squared norm on the model parameters are a regularization term that
can be tuned using the hyper parameter C so as to trade off model com-
plexity against constraint violation.40 40 In the case of binary classification and

linearly separable data, this choice of
regularizer has the additional interpre-
tation of choosing the hyperplane that
maximizes the margin (among all hy-
perplanes that separate the data).

A key observation here is that, by virtue of regularization, the inequali-
ties are always tight at the optimum. We can thus eliminate the slack vari-
ables, turning our problem into minimization of a regularized risk function:

minimize
w∈Ω

C
2
‖w‖2

2 + ∑
(x,y)

(
E(y | x; w) + max

ŷ
{`(ŷ, y)− E(ŷ | x; w)}

)
. (65)

Note that we replaced the inner minimization by an equivalent maximiza-
tion problem, which we refer to as the loss-augmented inference problem.

Loss-augmented inference. Observe that modulo the loss term, the inner
problem amounts to finding a maximum a-posteriori realization, or equiva-
lently, a minimum energy realization. If the loss function decomposes over
the sufficient statistics in terms of a map e : Y 7→ Rd via

`(ŷ, y) = 〈e(y),φ(ŷ)〉, (66)

then the problem is exactly as hard as MAP inference in our model.
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Interestingly, the objective of problem (65) can then be written in terms
of the “maximum a-posteriori” function Å(θ), defined in (31):

Om3n(w) =
C
2
‖w‖2

2 + ∑
(x,y)

[
E(y | x; w) + Å(θ(x; w) + e(y))

]
. (67)

We can hence use the properties of Å(θ) that are already known to us.
In particular, it is straightforward to see that just like the negative log-
likelihood, the objective function is convex in w. However, the differentia-
bility of Om3n(w) depends on the exponential family. In particular, for a
discrete MRF, the objective function is non-smooth.

Subgradient. Even if the objective function is non-differentiable, we can
still find a subgradient with respect to w,

gM3N(w) = Cw ∑
(x,y)∈D

[B(x)]T[φ(ŷe(x; w))−φ(y)], (68)

where ŷe(x; w) denotes any maximizer of the loss-augmented inference
problem. One can then employ a variety of non-smooth convex optimiza-
tion algorithms that make use of subgradients, e.g. bundle methods.4141 Choon Hui Teo, S. V. N. Vish-

wanathan, Alex Smola, and Quoc V. Le.
Bundle Methods for Regularized Risk
Minimization. Journal of Machine Learn-
ing Research, 11:311–365, 2010

Tractability. Evidently, the tractability of M3Ns depends crucially on our
ability to solve the loss-augmented inference problem. This, in turn, is
typically only feasible if the loss function decomposes according to (66). But
even then, computation of a subgradient requires that we be able to solve
the maximum a-posteriori problem exactly. This is not in general possible in
discrete MRFs. A possible remedy is to relax the loss-augmented inference
problem, i.e. to solve a related but simpler problem, which we can solve
exactly so as to maintain convexity. We will discuss this approach in great
detail in Part II of the thesis.

Direct Risk Minimization

The observant reader may wonder why we go to great lengths to opti-
mize convex surrogate losses, rather than directly optimize the empirical
risk (58) of the model. There are several reasons for this:

• First, the loss we are interested in is often neither smooth nor convex, as
in the case of `0-1. This makes optimization infeasible.

• Second, even if the loss function is smooth and convex, the overall em-
pirical risk is typically not convex, since it involves the prediction under
the model as a function of the model parameters.

• Finally, it is often difficult to differentiate the prediction under the model
with respect to the model parameters.

Nonetheless, direct risk minimization has repeatedly been considered in
the literature.

For discrete MRFs, the situation is particularly difficult, since the natu-
ral loss functions, such as `0-1 and `Hamming, are typically non-convex and
non-differentiable. In addition, MAP predictions under the model are a
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non-smooth function of the model parameters, which makes optimization
a challenging task. These two problems were addressed independently by
Domke42 and Stoyanov et al.43 by a) smoothing the loss function, and b) 42 Justin Domke. Parameter learning

with truncated message-passing. In
Computer Vision and Pattern Recognition
(CVPR), pages 2937–2943, 2011

43 Veselin Stoyanov, Alexander Ropson,
and Jason Eisner. Empirical Risk Min-
imization of Graphical Model Parame-
ters Given Approximate Inference, De-
coding, and Model Structure. In Artifi-
cial Intelligence and Statistics (AISTATS),
pages 725–733, 2011

through reverse-mode differentiation of a finite number of steps of an iter-
ative, approximate marginalization algorithm. Hence, the prediction under
the model is obtained in terms of marginal probabilities, rather than the
MAP state. Of course, step a) implies that the optimized function is no
longer the true empirical risk. Moreover, the approach is not convex in the
model parameters, making optimization difficult.

In contrast, Gaussian MRFs are somewhat more amenable to direct risk
minimization. As has been shown by Tappen,44 the prediction under a 44 Marshall Tappen, Ce Liu, Edward

Adelson, and William Freeman. Learn-
ing Gaussian Conditional Random
Fields for Low-Level Vision. In Com-
puter Vision and Pattern Recognition
(CVPR), 2007

Gaussian model can be differentiated with respect to the model parameters.
Moreover, loss functions for continuous predictions are typically smooth
and differentiable. By using a logistic loss function, it is also possible to
train Gaussian MRFs such as to make them suitable for discrete binary
prediction problems.45 The issue of non-convexity remains, however. 45 Marshall Tappen, Kegan Samuel,

Craig Dean, and David Lyle. The Logis-
tic Random Field—A convenient graph-
ical model for learning parameters for
MRF-based labeling. In Computer Vision
and Pattern Recognition (CVPR), 2008

Discussion and Outlook

We have seen that in working with discriminative graphical models, there
are two key problems we need to be able to solve efficiently:

• Prediction: Making optimal predictions amounts to being able to solve
two basic inference tasks in our graphical model: maximum a-posteriori
estimation (i.e. , computation of a mode of the posterior density), as well
as marginalization (i.e. , computation of marginal distributions).

• Training: For maximum likelihood estimation, we need to be able to com-
pute the mean parameters for each training example to obtain a gradient.
M3Ns require that we be able to solve—for each training example—a
loss-augmented inference problem, or equivalently, to compute a mode
of the posterior density arising from augmented exponential parameters,
if the loss function decomposes. The difficulty of direct risk minimiza-
tion depends on how we obtain the prediction from the model.

Whether and how the required operations can be carried out efficiently
depends on the exponential family. In part II of this thesis, we will consider
discrete MRFs, whereas part III will deal with Gaussian MRFs.

Part II - Discrete Discriminative MRFs

Obtaining predictions from a discrete MRF is a difficult problem, unless
the graph or the exponential parameters follow a particular structure. For
the general case, both for marginalization and MAP estimation, we will
introduce novel convergent message passing algorithms solving a convex
objective function that can be understood to be a relaxation of the original
problem. Both algorithms effectively perform a reparameterization of the
original exponential parameters.

As far as training is concerned, we will focus on CRFs (i.e. maximum
likelihood estimation) and M3Ns in Part II, since direct risk minimization
in discrete models is associated with several problems, as discussed in the
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previous section. For CRFs and M3Ns, we build on our notion of convex
relaxations developed while introducing the new inference algorithms. We
first discuss how the respective estimation problem can still be approached
as described in this chapter, except that a convex relaxation of the original
mean parameter computation task, or the loss-augmented inference task, is
solved. Subsequently, building on the reparametrization perspective, we in-
troduce several convex re-formulations of the relaxed estimation problems
that do not require to repeatedly solve an inner optimization problem, but
rather move this optimization task into the overall objective.

Part III - Gaussian Discriminative MRFs

In Gaussian MRFs, computation of marginal probabilities and modes is
equivalent, as the unique mode is given precisely by the mean of the Gaus-
sian bell curve. While a trivial analytic solution—in terms of a matrix
inversion—exists, it is typically not feasible to actually invert that matrix,
since its size can be on the order of 1, 000, 000× 1, 000, 000. In this regime,
iterative algorithms are by far preferable, and we introduce several methods
towards that end.

In order to train discriminative Gaussian models, we will consider two
approaches in detail. First, we will be concerned with Gaussian CRFs,
that is, we will attempt to maximize the (conditional) likelihood of the
data. This approach requires the mean parameters of each training exam-
ple given the current model parameters. A major problem in this context
is that the second-order moment matrix Ey ∼p(y|x;w)[yyT], of the size men-
tioned above, is typically not sparse. For this reason, exact maximum likeli-
hood estimation is infeasible. Instead, we demonstrate how the conditional
pseudo-likelihood46 of the data can be optimized. This approach is asymp-46 Julian Besag. Efficiency of pseudo-

likelihood estimation for simple Gaus-
sian fields. Biometrica, 64(3):616–618,
1977

totically consistent, and the corresponding objective function is convex.
The second approach we follow is direct risk minimization. As opposed

to Tappen et al.47, our parameterization is more powerful, necessitating47 Marshall Tappen, Ce Liu, Edward
Adelson, and William Freeman. Learn-
ing Gaussian Conditional Random
Fields for Low-Level Vision. In Com-
puter Vision and Pattern Recognition
(CVPR), 2007

positive-definite constraints on the model parameters. We show how these
constraints can be handled efficiently. Moreover, we generalize the ap-
proach of Tappen et al.48 to discrete multi-label problems, using a multi-

48 Marshall Tappen, Kegan Samuel,
Craig Dean, and David Lyle. The Logis-
tic Random Field—A convenient graph-
ical model for learning parameters for
MRF-based labeling. In Computer Vision
and Pattern Recognition (CVPR), 2008

nomial logistic loss. This allows to handle discrete multi-label problems
within a Gaussian framework, enabling extremely efficient predictions.

Discriminative Gaussian random fields form an elegant framework, but
without fully exploiting the conditional dependency on the observed input,
the limited expressiveness of the posterior density (which is uni-modal
and symmetric) can become too restrictive. We will demonstrate how a
Gaussian model can be made to depend on the observed input in a non-
parametric manner, further adding to the expressiveness of the approach.
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Relaxed Computation of Marginals and Modes

In this part of the thesis, we will discuss ways of dealing with intractability
in discrete graphical models. We will start with an overview of inference
problems, discussing tractable special cases and characterizing the hard-
ness of inference in a given graphical model. By understanding inference
as an optimization problem, tractable relaxations arise naturally.

In the subsequent chapters of this part of the thesis, we will first intro-
duce two novel inference algorithms that solve such relaxations of exact in-
ference problems. Based on the insights gained en route, we will then pro-
ceed to discriminative training. Previously, we have seen that the popular
approaches towards discriminative training are closely related to inference,
in the sense that inference problems need to be solved repeatedly as part
of parameter optimization. From various perspectives, we will address the
question of what happens if these inference problems are replaced by their
respective relaxation. Finally, we will consider several practical structured
prediction tasks and compare different ways of handling intractability dur-
ing training empirically.

Exact Inference in Discrete Graphical Models

In general, both computation of marginal probabilities, as well as computa-
tion of the most likely state of a discrete graphical model, are NP-hard. An
in-depth analysis of the theoretical complexity of inference was conducted
by Chandrasekaran et al.49 49 Venkat Chandrasekaran, Nathan Sre-

bro, and Prahladh Harsha. Complexity
of Inference in Graphical Models. Tech-
nical report, 2010

Rather than elaborate on this point, we will first give well-known exam-
ples of specific discrete graphical models that allow for efficient solution of
marginalization and the MAP problem; if the graphical model of the reader
falls into any of the below categories, this thesis is only of marginal50 inter- 50 No pun intended.

est, as it discusses precisely the remaining cases:

• Perhaps most famously, inference in tree-structured graphs can be imple-
mented efficiently using belief propagation.51 Indeed, the difficulty of 51 Judea Pearl. Reverend Bayes on infer-

ence engines: A distributed hierarchical
approach. In National Conference on Arti-
ficial Intelligence (AAAI), pages 133–136,
1982

inference in a general graph depends crucially on how “tree-like” it is.

• Models with binary variables and sub-modular energies admit to find
MAP states efficiently using graph cuts.52

52 D. M. Greig, B. T. Porteous, and A. H.
Seheult. Exact maximum a posteriori
estimation for binary images. Journal of
the Royal Statistical Society B, 51(2):271–
279, 1989

• Finally, binary planar graphs allow for efficient MAP estimation using
graph cuts, and marginalization using the Kasteleyn matrix.53

53 Nicol N. Schraudolph and Dmitry
Kamenetsky. Efficient Exact Inference
in Planar Ising Models. In Advances
in Neural Information Processing Systems
(NIPS), pages 1417–1424, 2009

The identification of tractable subclasses of graphical models is currently
an active research area. The methods we present in this part of the thesis
are meant to be used for graphical models without structural constraints.
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Tree-Structured Distributions

Before we move on to intractable graphical models, we will discuss the
special case of tree-structured distributions for pedagogical reasons. The
importance lies both in their use as a basic building block for the algorithms
we shall introduce subsequently, as well as in the deep connection to the
difficulty of an inference problem.

Notation. We will specialize our notation when working with trees. A
direct consequence of the tree property is that the cliques of the graph
comprise at most two vertices. Hence, the distribution is fully described
in terms of factors over nodes and edges. Without loss of generality, we
will assume there is precisely one factor per node, and one factor per edge.
Each factor of a node s ∈ V is associated with exponential parameters θs,
while each factor of an edge (s, t) ∈ E is parameterized by a vector θst.

Inference. Let us first consider the problem of computing the marginal
probabilities µs = [ps(ys)]ys∈Ys of a single variable Ys, and the marginals
µst = [pst(ys, yt)](ys ,yt)∈Ys×Yt

of a pair of variables Yst = (Ys, Yt). With some
abuse of notation, we will use the functional notation µs(ys) and µst(ys, yt)

to refer to the component of a vector of marginals that corresponds to a
specific outcome.

A classical algorithm towards this end is belief propagation,54 illustrated in54 Judea Pearl. Reverend Bayes on infer-
ence engines: A distributed hierarchical
approach. In National Conference on Arti-
ficial Intelligence (AAAI), pages 133–136,
1982

Figure 12. Each message ms→t from node s to node t is defined recursively
in terms of the messages mu→s by neighbors u of node s:

ms→t(yt) =
1
Z ∑

ys∈Ys

exp[θs(ys) + θst(ys, yt)] ∏
(u 6=t,s)

mu→s(ys). (69)

These messages live in the same space as the marginal probabilities, and
indeed, as we will see, they are intimately related. The messages must be
passed in a specific order, first running from the leaves of the tree up to an
arbitrarily chosen root, and then running back down to the leaves.

m1→2

m2→1

m2→3

m3→2

m 3→
4

m
3→

5

m 4→
3

m
5→

3

1 2 3

4

5

Figure 12: Belief propagation: For
tree-structured distributions, marginal
probabilities can be found using a
sweep of messages passed from the
leaves to an (arbitrary) root, and a sub-
sequent sweep back down.

After all messages have been sent, the marginals (or the belief ) at a node
or an edge can be retrieved from the relations

µs(ys) =
1
Z

exp θs(ys) ∏
(t,s)∈E

mt→s(ys) (70)

and

µst(ys, yt) =
1
Z

exp θst(ys, yt)
µs(ys)

mt→s(ys)

µt(yt)

ms→t(yt)
. (71)

These formulas can be understood as collecting the evidence of the sub-
trees around a node or edge, as illustrated in Figure 13. This viewpoint
makes clear how belief propagation works: By computing the messages in
a specific order, it enables us to obtain the marginal probabilities in terms
of these pre-computed messages, without recursively descending into the
definition of the messages for each marginal vector we want to obtain.

m1→2

m 4→
3

m
5→

3

1 2 3

4

5

µ2,3

Figure 13: Belief of a node or an edge:
Due to the conditional independencies
in the tree, each belief depends on ad-
jacent sub-trees solely in terms of the
messages by immediate neighbors.

Belief propagation is simply a specific instance of dynamic programming.
Notably, if we only want to obtain a single marginal vector, it is no more
efficient than recursively expanding the definitions (70)–(71). Moreover, it
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can be understood as a generalization of the well-known forward-backward
algorithm in hidden Markov models (HMMs).55 This insight suggests that 55 Lawrence R. Rabiner. A Tutorial

on Hidden Markov Models and Se-
lected Applications in Speech Recogni-
tion. Proceedings of the IEEE, 77(2):257–
286, 1989

an algorithm analogous to the Viterbi algorithm for HMMs, used to find
the MAP state, may exist for trees. Indeed, this is the case.

By replacing the summation over ys ∈ Ys in (69) by a maximization
over all ys ∈ Y , one obtains precisely an algorithm towards this end. If
the maximum is non-unique in any of the message updates, one needs to
collect back-pointers during the pass from the leaves the root, and follow
these pointers back down to the leaves. Otherwise, the jointly optimal state
can be found by picking, for each node, the state that maximizes the so-
called max-marginals resulting from the altered update rule. Again, this is
exactly analogous to the Viterbi algorithm for HMMs.

More generally, in both cases, the distributive law can be seen to be the
common underlying principle.56

56 Frank R. Kschischang, Brendan J.
Frey, and Hans-Andrea Loeliger. Fac-
tor Graphs and the Sum-Product Algo-
rithm. IEEE Transactions on Information
Theory, 47(2):498–519, 2001

Factorization. A convenient property of tree-structured distributions is that
the likelihood of a joint state y factors in terms of the marginals,

p(y) = ∏
s∈V

µs(ys) ∏
(s,t)∈E

µst(ys, yt)

µs(ys)µt(yt)
=

∏(s,t) µst(ys, yt)

∏s µs(ys)ds−1 , (72)

where ds denotes the number of neighbors of node s. This is illustrated in
Figure 14. As a consequence, the entropy of a distribution over a tree is a
function of the marginal probabilities,

H(µ) = ∑
s

H(µs)− ∑
(s,t)∈E

Ist(µst) = ∑
(s,t)∈E

H(µst)−∑
s
(ds − 1)H(µs), (73)

where I(µst) = H(µs) + H(µt)− H(µst) denotes the mutual information of
variables Ys and Yt.

This is a generalization of the well-known result for Markov chains and
will turn out to be extremely useful in the sequence.

1 2 3

4

5

µ1 µ2 µ3

µ4

µ5

µ1,2
µ1µ2

µ2,3
µ2µ3

µ3,4
µ3µ4

µ4,5
µ4µ5

Figure 14: Factorization of the likeli-
hood: Tree-structured distributions al-
low to factor the likelihood of a joint
state in terms of the marginal probabil-
ities of nodes and edges.

Junction Trees and Tree Width

More generally, given an arbitrary discrete random vector Y, the distri-
bution over which factors according to a cyclic graph structure, one may
wonder whether the results we developed for the special case of trees are
still applicable.

An important result in this context is that any structured probability
distribution can be brought into the form of a tree, using the junction tree
algorithm.57 The algorithm works by clustering the vertices of the cyclic

57 Steffen. L. Lauritzen and David J.
Spiegelhalter. Local computations with
probabilities on graphical structures
and their application to expert systems.
Journal of the Royal Statistical Society, Se-
ries B, 50(2):157–224, 1988

graph such that the running intersection property is fulfilled: Specifically,
if clusters Ci and Cj both contain a vertex s ∈ V, then all clusters Ck of
the junction tree in the unique path between Ci and Cj must contain s as
well, as illustrated in Figure 15. This condition guarantees that marginal
probabilities, as well as MAP states, can again be found using dynamic
programming, via an algorithm that is very similar to belief propagation
on regular trees.

Y2 Y6Y1

Y7Y3

Y5 Y8Y4

Y1 Y2
Y3

Y4
Y5

Y3

Y6Y2
Y7

Y8
Y5

Y7

Y2

Y5

Y3

Y2

Y5

Y7

Figure 15: Cyclic graphs can be turned
into junction trees by clustering the ver-
tices such that the clusters satisfy the
running intersection property (example
adapted from http://en.wikipedia.

org/wiki/Tree_decomposition).

There are two items of bad news associated with junction trees. First
of all, the complexity of operations on the junction tree is exponential in

http://en.wikipedia.org/wiki/Tree_decomposition
http://en.wikipedia.org/wiki/Tree_decomposition
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the number of variables of the largest cluster, due to the combinatorial
explosion of their joint state space. Second, the problem of finding an
optimal junction tree, i.e. one that achieves the lowest possible cardinality of
of the largest cluster, is NP-hard.58 Besides, in the worst case, the largest58 Finn V. Jensen and Frank Jensen. Op-

timal Junction Trees. In Uncertainty in
Artificial Intelligence (UAI), pages 360–
366, 1994

cluster contains every variable of the random vector, in which case we have
gained nothing.

The junction tree algorithm is hence only of practical importance if it is
possible to greedily establish a junction tree with small clusters. In many
applications for instance from computer vision, this is not the case—the
clusters simply become too large to be practical. Nonetheless, junction
trees provide us with important theoretical insights.

Tree width. Assume it is possible to find an optimal junction tree. We refer
to the cardinality (the number of variables) of the largest cluster, minus one,
as the tree width of the graph. The importance of the tree width lies in the
fact that it provides a measure of the complexity of inference in a graph-
structured distribution: In order to propagate belief through the junction
tree, we need a number of operations that is linear in the number of clusters
of the junction tree, but the complexity of these operations is exponential in
the cardinality of the clusters.

Inference as Optimization

Since the junction tree algorithm is typically not a practical choice, we need
different methods of dealing with discrete graphical models of high tree
width. An important class of approaches, and indeed the dominant one in
this thesis, considers inference as an optimization problem.

This viewpoint is perhaps most obvious for the problem of finding a
maximum a-posteriori state. Clearly, by definition, this is a combinatorial
optimization problem. However, as we have already seen, the log-partition
function of any exponential family can also be defined in a variational man-
ner, i.e. in terms of optimization over the set of mean parameters—cf. (26).
We will now make this process concrete for the important special case of
discrete MRFs. We will also provide an additional viewpoint in terms of
minimization of the Kullback-Leibler (KL) divergence of a trial distribution.

The Marginal Polytope

Let us first consider the set of all realizable mean parameters, which is the
space over which variational approaches to inference optimize. In discrete
graphical models, this set exposes a particular structure, and is referred to
as the marginal polytope.5959 Martin J. Wainwright and Michael I.

Jordan. Graphical Models, Exponen-
tial Families, and Variational Inference.
Foundations and Trends in Machine Learn-
ing, 1(1-2):1–305, 2008

Remember that the mean parameters in a model with exponential pa-
rameters θ are defined as the expectation of the sufficient statistics, that is,

µ(θ) = Ey∼p(y;θ)[φ(y)] = ∑
y∈Y

p(y;θ)φ(y). (74)

Our use of the symbol µ, which we also used for marginal probabilities
in the previous section, is not coincidental. As we intimated, in a discrete
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model, the sufficient statistics of a joint state y expose the form of an indica-
tor vector, the components of which are one if and only if the corresponding
state of a factor is consistent with y. From the above definition, we conclude
that each component of µ(θ) is precisely a marginal probability.

Recall now the definition of the set of all realizable mean parameters of
a graph G, repeated here for convenience:

M(G) = {µ | ∃p s.t. Ey∼p(y)[φ(y)] = µ}. (75)

Let us characterize this set for the special case of discrete models. Following
Wainwright and Jordan,60 we will refer to this set as the marginal polytope,

60 Martin J. Wainwright and Michael I.
Jordan. Graphical Models, Exponen-
tial Families, and Variational Inference.
Foundations and Trends in Machine Learn-
ing, 1(1-2):1–305, 2008

denoted by M(G), rather thanM(G), to highlight the special case.

M(G)

Figure 16: The marginal polytope is
fully described by the intersection of a
finite number of half spaces.

Fom our knowledge about the sufficient statistics in discrete MRFs, we
can immediately draw the following conclusions:

a) The marginal polytope is a convex set, since by definition, it is the set of
all convex combinations of a finite number of vectors, or equivalently,
their convex hull conv{φ(y)}y∈Y .

b) By the theorem of Minkowski-Weyl,61 since the marginal polytope is
61 Alexander Schrijver. Theory of Linear
and Integer Programming. Wiley, 1998

finitely generated, it can equivalently be described as the intersection of
a finite number of half-spaces.

The depiction of the marginal polytope in Figure 16, again due to Wain-
wright and Jordan, is illustrative, if idealized. In order to appreciate the
complexity of this polyhedron, it is insightful to reason about the number
of its facets. Koller and Friedman62 state the following result: 62 Daphne Koller and Nir Friedman.

Probabilistic Graphical Models: Principles
and Techniques. MIT Press, 2009c) The marginal polytope has an exponential number of facets in general.

Finally, Wainwright and Jordan63 give two concrete examples related to the 63 Martin J. Wainwright and Michael I.
Jordan. Variational inference in graphi-
cal models: The view from the marginal
polytope. In Allerton Conference on Com-
munication, Control, and Computing, 2003

number of facets of the marginal polytope.

d) The marginal polytope of an Ising model on a complete graph with 7

nodes is known to have more than 2× 108 facets.64
64 Michel M. Deza and Monique Lau-
rent. Geometry of cuts and metric embed-
dings. Springer Verlag, 1997

e) For trees, the junction tree theorem65 guarantees that the number of
65 R. G. Cowell, A. P. Dawid, S. L. Lau-
ritzen, and D. J. Spiegelhalter. Prob-
abilistic networks and expert systems.
Statistics for Engineering and Informa-
tion Science. Springer Verlag, 1999

facets grows only linearly in the number of nodes.

Clearly, these results indicate that in general, it will be difficult to work
with the marginal polytope. Nonetheless, we will find it useful to consider
optimization problems over the marginal polytope, since these provide us
with a straightforward way of obtaining sound approximations.

The Log-Partition Function as the Conjugate Dual of the Negative Entropy

In the first part of the thesis, for exponential families in general, we already
pointed out the close connection between the mean parameters µ(θ) and
the log-partition function A(θ). We will now make this connection precise
for the special case of discrete MRFs.

As our starting point, consider the convex conjugate66 of the function A(θ), 66 Dimitri P. Bertsekas, Angelia Nedic,
and Asuman E. Ozdaglar. Convex Anal-
ysis and Optimization. Athena Scientific,
2003

defined as

A∗(θ∗) = sup
θ

{
〈θ,θ∗〉 − A(θ)

}
, θ,θ∗ ∈ Rd. (76)
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Let us now work out the solution to this optimization problem, so as to
obtain an analytic expression for the convex conjugate.
By differentiating the objective function in (76) with respect to θ, we obtain
the stationary condition

θ∗
!
= Ey∼p(y;θ)[φ(y)], (77)

that is, θ∗ must be equal to the marginal probabilities arising from the
vector of exponential parameters θ.6767 Recall that differentiating A(θ) yields

the mean parameters, which corre-
spond to marginal probabilities in a dis-
crete MRF.

Which choice of θ satisfies this constraint? To answer this question, as
shown by Wainwright and Jordan,68 we need to distinguish three cases.

68 Martin J. Wainwright and Michael I.
Jordan. Graphical Models, Exponen-
tial Families, and Variational Inference.
Foundations and Trends in Machine Learn-
ing, 1(1-2):1–305, 2008

a) If θ∗ is an interior point of the marginal polytope, that is, θ∗ = µ ∈M◦,
from our general discussion of mean parameters, we already know that
there exists at least one θ(µ) such that ∇A(θ(µ)) = µ and the above
constraint is satisfied. Consequently, we have

A∗(µ) = 〈θ(µ),µ〉 − A(θ(µ)) (78)

= 〈θ(µ), Ey∼p(y;θ(µ))[φ(y)]〉 − A(θ(µ)) (79)

= Ey∼p(y;θ(µ))[〈θ(µ),φ(y)〉 − A(θ(µ))] (80)

= Ey∼p(y;θ(µ))[log p(y;θ(µ))] (81)

= −H(pθ(µ)). (82)

The convex conjugate is hence precisely the negative entropy of the dis-
tribution with marginal probabilities µ = θ∗ ∈M◦.

b) Let M the denote the closure of M. If the dual point lies at the boundary
of M, that is, θ∗ = µ ∈M \M◦, then

A∗(µ) = lim
n→∞

A∗(µ(n)), (83)

where {µ(n)} is a sequence of interior points converging to µ.

c) Finally, if θ∗ lies outside of M, to be precise, θ∗ /∈M, then

A(θ∗) = +∞, (84)

which completes the three possible cases.

Conjugate of the conjugate. The above development fully characterizes the
convex conjugate A∗. Importantly, since A(θ) is lower semi-continuous,
A = A∗∗, that is, the log-partition function can in turn be described as the
convex conjugate of its convex conjugate:

A(θ) = sup
θ∗

{
〈θ∗,θ〉 − A∗(θ∗)

}
. (85)

By the definition of A∗, for any θ∗ /∈ M, the objective value is −∞, and
certainly not optimal. On the other hand, if θ∗ = µ ∈ M, we know from
our discussion of the map from exponential to mean parameters that the
optimum is uniquely attained at an interior point µ = Ep(y;θ)[φ(y)] ∈M◦.

An equivalent, but more explicit characterization of the log-partition
function is therefore

A(θ) = max
µ∈M◦

{
〈θ,µ〉+ H(pθ(µ))

}
, (86)

which is in line with the result we previously mentioned without proof.
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Alternative Interpretation in Terms of the Kullback-Leibler Divergence

Above, we have demonstrated how the relationship between the log-partition
function and the entropy of a distribution can be understood in terms of
convex conjugacy. Here, we provide an additional characterization that
does not require knowledge of convex analysis, due to Yedidia and Weiss.69 69 Jonathan S. Yedidia, William T. Free-

man, and Yair Weiss. Constructing
Free Energy Approximations and Gen-
eralized Belief Propagation Algorithms.
IEEE Transactions on Information Theory,
51:2282–2312, 2004

Again, through our restriction to exponential families, our distribution
follows Boltzmann’s law, viz.:

p(y;θ) =
1

Z(θ)
e−E(y;θ). (87)

Recall that the energy of a state is given by E(y;θ) = −〈θ,φ(y)〉. We
wish to compute A(θ) = − log Z(θ) = FHelmholtz, which is deemed to be
intractable.

We will choose to approximate p by means of a trial distribution b. To-
wards this end, consider the Gibbs free energy,

FGibbs(b) = FHelmholtz + D(b‖p), (88)

where

D(b‖p) def
= ∑

y∈Y
b(y) log

b(y)
p(y)

(89)

denotes the Kullback-Leibler (KL) divergence between b and p. From basic
information-theoretic results, we know that D(b‖q) is non-negative and
zero if and only if b = p almost everywhere. It follows that the Gibbs free
energy is equal to the Helmholtz free energy if b = p holds.

Consequently, computation of FHelmholtz can equivalently be achieved by
solving the following optimization problem:

FHelmholtz = min
b

FGibbs(b) (90)

over all valid trial distributions b. Of course, without further restrictions on
b, this is intractable as well. In any case, it is insightful to further consider
this problem in order to see its relation to our previous development.

By expanding the definition of the Gibbs free energy, we obtain

FGibbs(b) = FHelmholtz + ∑
y

b(y) log b(y)−∑
y

b(y) log p(y) (91)

= FHelmholtz − H(b)−∑
y

b(y)(FHelmholtz − E(y)) (92)

=���
��FHelmholtz − H(b)−���

��FHelmholtz + ∑
y

b(y)E(y) (93)

= U(b)− H(b). (94)

We refer to U(b) as the variational average energy and to H(b) as the varia-

defining H(b) = −∑y b(y) log b(y) and
expanding p(y)=exp(FHelmholtz−E(y))

defining U(b) = −∑y b(y)E(y)

tional entropy.
From our definition of the energy E, we obtain

FGibbs = −∑
y

b(y)〈θ,φ(y)〉 − H(b). (95)

Assume now that the trial distribution belongs to an exponential family and
gives rise to marginal probabilities µ ∈M◦. We will refer to the distribution
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as bθ(µ) to make this connection explicit. The average energy can then
equivalently be expressed in terms of these marginal probabilities, viz.:

U(bθ(µ)) = −Ey∼bθ(µ)
[∑

F
〈θF,φF(yF)〉] = −∑

F
〈θF,µF)〉 (96)

= −〈θ,µ〉. (97)

Note that it is not in general possible to express the variational entropy
in terms of the marginals, hence we use H(bθ(µ)) to denote the entropy
corresponding to a given set of marginals.

We are now ready to re-state the result we previously obtained using
tools from convex analysis in our KL-divergence framework:

A(θ) = −FHelmholtz = −min
b

FGibbs(b) = max
b
−FGibbs(b) (98)

= max
µ∈M◦

{〈θ,µ〉+ H(bθ(µ))}. (99)

We have thus shown how the variational inference problem can be de-
rived from a different viewpoint. Evidently, however, this does not im-
prove tractability of the problem: still, the constraint set M comprises an
exponential number of half spaces, and there is not an explicit formula for
computation of the entropy H(bθ(µ)).

Computation of a Mode in the Variational Framework

Our previous discussion focused on the log-partition function and its re-
lation to the marginal probabilities. The second fundamental inference
problem we consider in this thesis is maximum a-posteriori estimation, i.e.
computation of a mode of the posterior density, or equivalently, one of the
most likely joint states y.

Remember that we defined this problem as

Å(θ) = max
y∈Y

p(y;θ) = max
y∈Y

log p(y;θ) (100)

= max
y∈Y
〈θ,φ(y)〉. (101)

An important insight is that since we are working in a discrete MRF, the
state space of y is actually finite. Hence, one can equivalently think of the
problem in terms of optimizing over a finite number of vectors of sufficient
statistics {φ(y)}y∈Y , leading us to

Å(θ) = max
{φ(y)}y∈Y

〈θ,φ(y)〉. (102)

The sufficient statistics consist of binary indicators, so this is an integer linear
program.70 Of course, we are optimizing over a number of vectors that is70 Dimitris Bertsimas and John N. Tsit-

siklis. Introduction to Linear Optimiza-
tion. Athena Scientific, 1997

exponential in the number of variables.

Formulation as a linear program. We can use a standard result from linear
programming to turn the above combinatorial optimization problem into a
standard convex optimization problem. This has little practical value, since
the asymptotic complexity will remain the same; however, it will provide
us with a characterization of the problem that is easier to reason about.
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Previously, we already noted that by the Minkowski-Weyl theorem, the
convex hull of finitely many vectors is a bounded polyhedron. Consider
the problem of optimizing our objective function over this polyhedron,

max
conv{φ(y)}y∈Y

〈θ,φ(y)〉. (103)

Any linear program over a polyhedron will attain an optimal solution at
an extreme point of the polyhedron, assuming that the polyhedron has at
least one extreme point and an optimal solution exists.71 In our case, by 71 Dimitris Bertsimas and John N. Tsit-

siklis. Introduction to Linear Optimiza-
tion. Athena Scientific, 1997

definition, the polyhedron is precisely the marginal polytope M(G), the
extreme points or vertices of which are the vectors of sufficient statistics. As
a consequence, we obtain the following linear programming formulation of
the maximum-a-posteriori problem,

Å(θ) = max
µ∈M
〈θ,φ(y)〉, (104)

and any extreme point solution to the above problem is precisely a max-
imum a-posteriori state. Again, it is important to stress the fact that the
marginal polytope is defined by an exponential number of half-spaces, so
solving this linear program is not tractable.

Connection to the log-partition function. The previous result allows us to see
the connection between Å(θ) and the log-partition function A(θ), from a
statistical mechanics perspective. Towards this end, we will consider the
log-partition function in the so-called “zero-temperature limit”.

Recall that according to Boltzmann’s law, at temperature T, the proba-
bility of a joint state y of a system of v particles, each of which can be in
one of a discrete number of states, is given by

p(y;θ) = exp(−E(y;θ)/T− AT(θ)). (105)

By expanding the variational representation of the log-partition function at
this temperature, we obtain

AT(θ) = sup
µ∈M

{
〈θ,φ(y)〉/T− A∗(µ)

}
. (106)

= A(θ/T). (107)

Finally, by letting the temperature go to zero, and re-scaling accordingly,
we arrive at

lim
T→0

TA(θ/T) = lim
T→0

sup
µ∈M

{
〈θ,φ(y)〉 − TA∗(µ)

}
(108)

= max
µ∈M

{
〈θ,φ(y)〉

}
(109)

= Å(θ). (110)

Intuitively, as the temperature decreases, the influence of the variational
entropy −A∗ diminishes, and the solutions are gradually drawn towards
an extreme point of the marginal polytope, until the problem eventually
turns into maximum a-posteriori estimation—as depicted in Figure 17.

M(G)

µ(θ) (optimal interior point,
close to vertex)

∆(T)

φ(y)

Figure 17: As T decreases, the optimal
mean parameters are gradually drawn
towards a vertex, which corresponds to
a vector of sufficient statistics.
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Relaxing the Variational Problems

We have seen how the problem of exact inference (both marginalization and
maximum a-posteriori estimation) in a graphical model can be understood
as a convex optimization problem. Seemingly, then, we are mostly done,
since general convex optimization problems can be solved efficiently using
interior point methods.7272 Arkadi S. Nemirovski and Michael J.

Todd. Interior-point methods for op-
timization. Acta Numerica, 17:191–234,
2008

Of course, this is not the case. As we pointed out, the problem lies
in the fact that the marginal polytope, the constraint set over which we
need to optimize, is described by an exponential number of facets in gen-
eral. Moreover, for computation of the log-partition function and marginal
probabilities, an additional complication stems from the lack of an explicit
formula for the entropy corresponding to a given set of marginals.

Relaxations. The good news is that dealing with intractable constraint sets
and objective functions has a long history in operations research and math-
ematical programming. In the sequence, we will focus on a principled
approach based on relaxations73 in particular.73 Arthur M. Geoffrion. Duality in

Nonlinear Programming: A Simpli-
fied Applications-Oriented Develop-
ment. SIAM Review, 13(1):1–37, 1971

Consider an optimization problem of the kind

maximize
x∈X

f (x), (111)

where both the constraint set X and the objective function f are intractable.
A relaxation of the above problem is a similar optimization problem

maximize
x∈X̃

f̃ (x) (112)

satisfying the properties

X ⊆ X̃ (113)

and

f (x) ≤ f̃ (x) ∀x ∈ X. (114)

The first condition states that the feasible set of the original problem is a
subset of the feasible set of the relaxed problem, while the second condition
demands that for any feasible point of the original problem, the function
value of the relaxed objective function must be greater than that of the
original function.

Properties of relaxations. The above definition of relaxations is particularly
useful because two important properties follow immediately:

a) The optimum of the relaxed problem is an upper bound on the optimum
of the original problem,

max
x∈X

f (x) ≤ max
x∈X̃

f̃ (x). (115)

To see this, note that for any optimum that is feasible according to the
original constraint set, this is true by definition; moreover, we are now
optimizing over a larger set of points, so the optimum must be at least
as large as if we were optimizing over the original constraint set.
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b) If, in addition to the above assumptions, f (x) = f̃ (x) ∀x ∈ X, then any
optimal point of the relaxed problem is also a maximizer of the original
problem if it lies within the original constraint set,

x̄ ∈ arg max
x∈X̃

f̃ (x) and x̄ ∈ X ⇒ x̄ ∈ arg max
x∈X

f (x). (116)

Again, this follows directly—no solution to the original problem can
achieve a better optimum, since it optimizes over a smaller space of
possible solutions. Hence, in some cases, it is possible to obtain a cer-
tificate of optimality for the solution of the relaxed problem.

We will now specialize this framework to inference in discrete graphical
models—it is applicable both to marginalization and MAP estimation.

Giving up Global Consistency

Let us first consider the marginal polytope and find a relaxed constraint set
in the above sense. Towards this end, it is helpful to try and characterize
the marginal polytope explicitly for a tree-structured graph T.

Assume a hypothetical vector τ—what are the requirements for this vec-
tor to consist of realizable marginal probabilities? First, marginal proba-
bilities must be non-negative, so we have τ ≥ 0. Second, by definition,
marginal probabilities must always sum to one. Finally, as their name indi-
cates, the marginal probabilities of a tree need to satisfy various marginal-
ization constraints between nodes and edges. Putting these local constraints
together, we obtain74 74 One might explicitly require that the

edge marginals sum to one, this is how-
ever redundant due to the marginaliza-
tion constraints.

L(T) =


τ ≥ 0

∣∣∣∣∣∣∣∣∣∣

∑
ys

τs(ys) = 1, ∀s ∈ V

∑
yt

τst(ys, yt) = τs(ys), ∀ys ∈ Ys, (s, t) ∈ E

∑
ys

τst(ys, yt) = τt(yt), ∀yt ∈ Yt, (s, t) ∈ E


. (117)

Are these constraints sufficient to ensure τ is a realizable vector of marginal
probabilities? As Wainwright and Jordan75 show, for a tree, L(T) is indeed 75 Martin J. Wainwright and Michael I.

Jordan. Graphical Models, Exponen-
tial Families, and Variational Inference.
Foundations and Trends in Machine Learn-
ing, 1(1-2):1–305, 2008

equivalent to our previous characterization of the marginal polytope as the
convex hull of the vectors of sufficient statistics, M(T) = conv{φ(y)}y∈Y .

Clearly, any valid set of marginal probabilities must satisfy at least these
local consistency constraints, so M(T) ⊆ L(T). To establish equivalence,
one also needs to show the reverse inclusion L(T) ⊆M(T). For a tree, this
follows from the particular factorization of the distribution, cf. (72).

Cyclic graphs. For a cyclic graph G, the reverse inclusion does not neces-
sarily hold, so M(G) ⊂ L(G). A vector τ ∈ L(G) is then possibly only a
pseudo-marginal, since there is not a distribution p that realizes τ. However,
L(G), called the local polytope by Wainwright and Jordan, provides us with
a useful outer approximation as required by relaxations.

M(G)

L(G)

τ (fractional vertex)

φ(y) (integral vertex)

τ (locally consistent
interior point)

µ (globally consistent
interior point)

Figure 18: The local polytope L(G) is
an outer approximation of the marginal
polytope M(G).

The local polytope is illustrated in Figure 18. It is important to point out
that—as Wainwright and Jordan note—the illustration is highly idealized.
In particular, the number of facets of the local polytope is in fact smaller
than that of the marginal polytope (after all, this is the primary motivation
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behind the approximation), but this cannot be displayed in 2D. Compared
to the marginal polytope, the local polytope contains additional points that
adhere to local marginalization constraints, but cannot arise from a valid
probability distribution. In particular, it contains fractional vertices that do
not correspond to a sufficient statistics vector of any joint state y.

Extension to larger factors. The local polytope can be readily extended to
distributions involving factors F ∈ F over more than two variables. In this
case, the marginalization constraints simply need to hold for all variables
of a factor, as follows:

L(G) =

τ ≥ 0

∣∣∣∣∣∣
∑
ys

τs(ys) = 1, ∀s ∈ V

∑
yF∼ys

τF(yF) = τs(ys), ∀ys ∈ Ys, s ∈ F, F ∈ F

 . (118)

We use the notation yF ∼ ys to denote all states yF ∈ YF of a factor F that
are consistent with Ys = ys.

Application to MAP estimation. The local polytope enables us to define a
relaxation of the exact MAP problem,

ÅLP(θ) = max
τ∈L(G)

〈θ,τ〉. (119)

Compared to the original problem (104), we now optimize over a simpler
constraint set involving only O(|V| + |F|) constraints. Note that the ob-
jective function remains unchanged. Hence, from what we learned about
relaxations, if the optimal τ(θ) ∈ M(G), we found an optimal solution to
the exact MAP problem. In general, however, we must expect the solution
to be a fractional vertex that must be rounded back to a valid state.

Wainwright and Jordan76 refer to the above problem as the first-order LP76 Martin J. Wainwright and Michael I.
Jordan. Graphical Models, Exponen-
tial Families, and Variational Inference.
Foundations and Trends in Machine Learn-
ing, 1(1-2):1–305, 2008

relaxation, since it enforces marginalization constraints only between factors
and single variables (rather than, say, between larger clusters). It is practical
to solve this problem even for graphs of substantial size. While one might
simply use an off-the-shelf linear programming solver, it is desirable to de-
sign algorithms exploiting the specific structure of the problem. A popular
class of algorithms towards this end is max-product message passing. As
shown by Yanover et al.,77 such algorithms are by far more efficient for this77 Chen Yanover, Talya Meltzer, and Yair

Weiss. Linear Programming Relax-
ations and Belief Propagation - An Em-
pirical Study. Journal of Machine Learn-
ing Research, 7:1887–1907, 2006

problem than industrial-strength linear programming solvers.
However, many message passing algorithms do not actually solve the

problem, but can get stuck at sub-optimal solutions. As we will see, this
makes them rather unsuitable for use in discriminative training. Conse-
quently, we will introduce our own message passing algorithm towards
this end in the chapter to follow.

Region-based Entropy Approximations

So far, we have obtained a tractable relaxation of the maximum a-posteriori
problem. Towards this end, we introduced a tractable outer approximation
of the marginal polytope, the so-called local polytope. The local polytope
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will also prove to be useful in obtaining relaxations of the marginaliza-
tion problem; however, for this purpose, we need one additional ingredient
since the objective function itself is intractable.

Remember that besides the marginal polytope, the entropy term in

A(θ) = max
µ∈M◦

{
〈θ,µ〉+ H(pθ(µ))

}
(120)

is an additional source of intractability. The problem is that the entropy is
only defined implicitly, as the entropy of the distribution that realizes the
marginals µ.

Bethe approximation. One may be tempted to again consider the special
case of trees first, and try to generalize it to a valid relaxation for cyclic
graphs. Indeed, as we saw at the beginning of the chapter, tree-structured
distributions admit a particular factorization of the entropy,

H(pθ(µ)) = H(µ) = ∑
(s,t)∈E

H(µst)− ∑
s∈V

(ds − 1)H(µs). (121)

By assuming that this decomposition holds for any graph, and relaxing the
marginal polytope as previously, so that only local consistency is enforced,
one obtains the Bethe78 approximation of the log-partition function:79 78 Jonathan S. Yedidia, William T. Free-

man, and Yair Weiss. Understanding
belief propagation and its generaliza-
tions. In Exploring artificial intelligence
in the new millennium, chapter 8, pages
239–270. Morgan Kaufmann, 2002

79 For graphs exceeding pairwise con-
nectivity, the definition can easily be
extended by summing over factor en-
tropies, rather than edge entropies.

ABethe(θ) = max
τ∈L(G)

{
〈θ,τ〉+ ∑

(s,t)∈E
H(τst)− ∑

s∈V
(ds − 1)H(τs)

}
. (122)

Indeed, as Yedidia et al. show, this is precisely the objective function loopy
belief propagation80 seeks to optimize. Can we use the Bethe approximation

80 Yair Weiss. Correctness of local prob-
ability propagation in graphical models
with loops. Neural Computation, 12:1–41,
2000

as a valid relaxation of the marginalization problem, in the sense we pre-
viously outlined? Unfortunately, the answer to that question is negative.
First of all, unlike the true entropy, the Bethe approximation to the entropy
is not concave. In practice, this means that the above problem cannot be
solved exactly. Second, the Bethe approximation does not form an upper
bound on the true entropy.

Concave entropy approximations. There has been considerable interest in ob-
taining concave entropy approximations. One obvious rationale is that the
true entropy is concave itself. For a class of approximations that decom-
poses the true entropy over variables and factors, via

H̃(τ) = ∑
s∈V

csH(τs) + ∑
F∈F

cF H(τF), (123)

Heskes81 derives the following sufficient conditions for concavity on the 81 Tom Heskes. Convexity arguments
for efficient minimization of the Bethe
and Kikuchi free energies. Journal of Ar-
tificial Intelligence Research, 26:153–190,
2006

counting numbers cs and cF:

∃cFF, css, csF ≥ 0

∣∣∣∣∣∣
cF = cFF + ∑

s∈F
csF, ∀F ∈ F

cs = css − ∑
F:s∈F

csF, ∀s ∈ V.
(124)

Empirically, it has been found that such concave counting numbers often
yield approximations that are inferior to the Bethe approximation in terms
of the error of the resulting pseudo-marginals and the normalization con-
stant. Hence, Meshi et al.82 explore counting numbers that are as close as 82 Ofer Meshi, Ariel Jaimovich, Amir

Globerson, and Nir Friedman. Convex-
ifying the Bethe Free Energy. In Uncer-
tainty in Artificial Intelligence (UAI), 2009

possible to the Bethe approximation, while still satisfying the above suffi-
cient conditions for concavity.
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Concave upper bounds. Concavity solves part of the problem of the Bethe
approximation, but still, a concave approximation does not necessarily pro-
vide us with a relaxation. The second ingredient we require is for the
approximation to form an upper bound on the true log-partition function.
This property does not necessarily follow from concavity. Indeed, Weiss
et al.83 argue that the family of region-based approximations providing a83 Yair Weiss, Chen Yanover, and Talya

Meltzer. MAP Estimation, Linear Pro-
gramming and Belief Propagation with
Convex Free Energies. In Uncertainty in
Artificial Intelligence (UAI), 2007

bound on A(θ) is a strict subset of the family of concave approximations.
An important member of the former is the family of tree-reweighted ap-

proximations.84 Such approximations are of the form
84 Martin J. Wainwright, Tommi S.
Jaakkola, and Alan S. Willsky. A new
class of upper bounds on the log par-
tition function. IEEE Transactions on In-
formation Theory, 51:2313–2335, 2005

Htrw(τ) = ∑
(s,t)∈E

νst H(τst)− ∑
s∈V

[
∑(s,t) νst − 1

]
H(τs), (125)

where the edge occurrence probabilities νst denote the probability of an edge
(s, t) belonging to a spanning tree of the graph, according to a distribution
over all spanning trees. Since tree-reweighted approximations provide a
bound on the true entropy, one obtains a valid relaxation

Atrw(θ) = max
τ∈L(G)

{
〈θ,τ〉+ Htrw(τ)

}
. (126)

The second relaxation we are going to consider subsequently,

Atriv(θ) = max
τ∈L(G)

{
〈θ,τ〉+ ∑

F∈F
H(τF)

}
, (127)

is based purely on factor entropies. As we are going to point out in the
next chapter, as long as each variable is covered by a factor, this is again an
upper bound on the true log-partition function.

Application to marginalization. Either of the two relaxations we described
above is suitable for our purposes. By virtue of convexity, it is in prin-
ciple possible to obtain the exact solution. Moreover, by virtue of being
relaxations, we obtain an upper bound on the log-partition function.

If applicable, the tree-reweighted approximation must be expected to
yield more accurate pseudo-marginals, since it is variable valid, that is, for
a distribution that factors completely over the variables, the estimated en-
tropy is going to be correct. Variable validity has been identified by Meshi
et al.85 as a crucial factor as far as approximation accuracy is concerned.85 Ofer Meshi, Ariel Jaimovich, Amir

Globerson, and Nir Friedman. Convex-
ifying the Bethe Free Energy. In Uncer-
tainty in Artificial Intelligence (UAI), 2009

Nonetheless, for discriminative training, the factor-based relaxation is still
useful. In this context, accuracy of the pseudo-marginals is not of sur-
mount importance—from an empirical risk minimization perspective, the
factor-based approximation will simply induce a slightly different logistic
loss function that still seeks to align the mode of the conditional posterior
distribution with the data.

An important question is how the relaxed optimization problems are
solved in practice. Given their close similarity to the Bethe approximation,
which, as we intimated, is sought to be optimized by loopy belief propaga-
tion, it seems likely that similar message passing algorithms should exist.
Indeed, Wainwright et al.86 introduced precisely such a message passing86 Martin J. Wainwright, Tommi S.

Jaakkola, and Alan S. Willsky. A new
class of upper bounds on the log par-
tition function. IEEE Transactions on In-
formation Theory, 51:2313–2335, 2005

algorithm along with their approximation. However, despite convexity, this
algorithm is not guaranteed to converge. In the next chapter, we will hence
introduce a novel algorithm that is guaranteed to find the exact optimum.
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Related Relaxations

MAP estimation. Relaxations for MAP estimation are a well-studied field.
Besides the linear programming relaxation we described in this chapter,
quadratic programming relaxations87 and second-order cone programming 87 Pradeep Ravikumar and John Laf-

ferty. Quadratic programming relax-
ations for metric labelling and Markov
random field MAP estimation. In Inter-
national Conference on Machine Learning
(ICML), 2006

relaxations88, as well as various variants thereof, have been considered.

88 Pawan M. Kumar, Philip H. S. Torr,
and Andrew Zisserman. Solving
Markov Random Fields using Second
Order Cone Programming Relaxations.
In Computer Vision and Pattern Recogni-
tion (CVPR), pages 1045–1052, 2006

However, as shown by Kumar et al.89, the first-order linear programming

89 Pawan M. Kumar, Vladmir Kol-
mogorov, and Philip H. S. Torr. An
Analysis of Convex Relaxations for
MAP Estimation. In Advances in Neural
Information Processing Systems (NIPS),
2007

relaxation dominates both the quadratic programming and the second-order
cone programming relaxation mentioned above, i.e. , for any vector of ex-
ponential parameters θ, it establishes a tighter bound on Å(θ).

This is a strong argument in support of linear programming relaxations
over the local polytope. Moreover, as Sontag et al.90 show, the local poly-

90 David Sontag, Talya Meltzer, Amir
Globerson, Yair Weiss, and Tommi
Jakkola. Tightening LP Relaxations for
MAP using Message Passing. In Uncer-
tainty in Artificial Intelligence (UAI), 2008

tope can even be tightened by adding further marginalization constraints
between larger clusters of variables. Such constraints can be added itera-
tively. To find out exactly which cluster results in the largest gain is in-
tractable, Sontag et al. use a particular heuristic that results in guaranteed
improvement in the convex dual of the objective; a different heuristic based
on local duality gaps has been suggested by Batra et al.91

91 Dhruv Batra, Sebastian Nowozin, and
Pushmeet Kohli. A Local Primal-Dual
Gap based Separation Algorithm. In
Artificial Intelligence and Statistics (AIS-
TATS), 2011

A problem of these iterative tightening approaches is that the cost of
passing messages grows exponentially in the size of the clusters. This has
been addressed by Sontag et al.92 in follow-up work by partitioning the

92 David Sontag, Amir Globerson, and
Tommi Jakkola. Clusters and Coarse
Partitions in LP Relaxations. In Neural
Information Processing Systems (NIPS),
2008

state space of a cluster and enforcing consistency only across partitions.
It is not clear how to make use of iterative tightening approaches in dis-

criminative training, because it possibly results in a different relaxation at
each evaluation of the learning objective, effectively changing the objective
function we wish to optimize. One would need to fix the additional clus-
ters in advance, which is either too expensive (if a large number of clusters
are added), or possibly does not result in any improvement (because ini-
tially, it is unclear, which clusters to add). Hence, we will only consider
the first-order LP relaxation in the sequence, which is already a veritable
computational challenge in the context of discriminative training.

Marginalization. As far as the log-partition function is concerned, the liter-
ature is somewhat sparser. Wainwright and Jordan93 propose a relaxation 93 Martin J. Wainwright and Michael I.

Jordan. Log-Determinant Relaxation
for Approximate Inference in Discrete
Graphical Models. IEEE Transactions on
Signal Processing, 54(6):2099–2109, 2006

that combines semidefinite constraints and the constraints of the local poly-
tope to form an outer approximation of the marginal polytope, and draws
on a log-determinant bound on the true entropy. However, computation-
ally, this relaxation is somewhat less convenient than the ones we intro-
duced in this chapter, and it received less attention. Nonetheless, it would
be interesting to explore its utility for discriminative training.





Novel Convergent Inference Algorithms

Overview

We have seen that for discriminative training, it is of particular importance
to be able to compute mean parameters (corresponding to marginal proba-
bilities in discrete models), as well as modes (corresponding to maximum
a-posteriori states), efficiently. We start by introducing two inference al-
gorithms towards this end. Both algorithms optimize a convex objective
function, thereby yielding pseudo-marginals and pseudo-states that can be
used in a principled manner within a convex learning objective.

In this chapter, we will already see examples of the richness of equivalent
convex formulations that characterize optimization over the local polytope.
In the chapter thereafter, we will exploit these duality relations to derive
various equivalent objective functions for learning, each characterized by
different strengths and weaknesses in terms of memory requirements and
computational demands.

Convergent Solvers for the Tree-Reweighted Relaxation

In this section, we investigate minimization of the tree-reweighted relax-
ation we briefly introduced in the previous chapter, for the purpose of ob-
taining approximate marginal probabilities and upper bounds on the par-
tition function of cyclic graphical models. The solvers we present for this
problem work by directly tightening tree-reweighted upper bounds. As a
result, they are particularly efficient for tree-reweighted relaxations arising
from a small number of spanning trees. While this assumption may seem
restrictive at first, we show how small sets of trees can be constructed in a
principled manner. An appealing property of our algorithms, which results
from the problem decomposition, is that they are embarrassingly parallel.
In contrast to the original message passing algorithm introduced for this
problem, we obtain global convergence guarantees.

Motivation

As we have seen, exact computation of marginal probabilities and the parti-
tion function in general graphical models is an NP-hard problem that scales
exponentially in the tree width of the graph.94 Much effort has been put 94 Venkat Chandrasekaran, Nathan Sre-

bro, and Prahladh Harsha. Complexity
of Inference in Graphical Models. Tech-
nical report, 2010

into construction of approximate inference algorithms that remain tractable
even for graphs of large tree width, such as those involving many cycles.
Good results were initially obtained using loopy belief propagation, which
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ignores the cycles and performs message updates as if the graph were a
tree.95 Theoretical justification was later given to the method by showing95 Kevin P. Murphy, Yair Weiss, and

Michael I. Jordan. Loopy Belief Prop-
agation for Approximate Inference: An
Empirical Study. In Uncertainty in Arti-
ficial Intelligence (UAI), 1999

that it can be understood to minimize the so-called Bethe free energy.96

96 Jonathan S. Yedidia, William T. Free-
man, and Yair Weiss. Understanding
belief propagation and its generaliza-
tions. In Exploring artificial intelligence
in the new millennium, chapter 8, pages
239–270. Morgan Kaufmann, 2002

However, the Bethe free energy is convex only for tree-structured graphs
and other special cases, such as graphs involving a single loop. Hence,
loopy belief propagation cannot in general be expected to establish the
global minimum, nor is it guaranteed to converge.

In the seminal work of Wainwright et al.,97 a tree-reweighted (TRW) re-

97 Martin J. Wainwright, Tommi S.
Jaakkola, and Alan S. Willsky. A new
class of upper bounds on the log par-
tition function. IEEE Transactions on In-
formation Theory, 51:2313–2335, 2005

laxation of the log-partition function was introduced to rectify this prob-
lem. This relaxation arises from a convex combination of log-partition
functions of spanning trees that forms a natural upper bound on the ex-
act log-partition function. The tree-reweighted free energy itself then only
depends on edge occurrence probabilities resulting from the choice of trees.
An adapted message passing algorithm was derived that is reminiscent of
loopy belief propagation, but minimizes a tree-reweighted free energy in-
stead of the Bethe free energy. However, despite convexity of its objective
function, the algorithm is not guaranteed to converge. Indeed, we will
demonstrate this failure of convergence.

Consequently, recent work has focused on establishing convergent vari-
ants of the original algorithm. Previous attempts have aimed at optimiza-
tion of the tree-reweighted free energy itself, rather than direct minimiza-
tion of the convex upper bound. In part, this is due to the original pre-
sentation by Wainwright et al., who form the convex combination over all
spanning trees of the cyclic graph. Naturally, direct minimization of this
bound is infeasible. However, if the upper bound is restricted to a small
number of spanning trees, this optimization problem has favorable prop-
erties. Moreover, approximate marginal probabilities result naturally as a
byproduct.

In fact, for the related maximum-a-posteriori (MAP) problem, Komodakis
et al.98 have shown that a similar convex upper bound, formed over a small98 Nikos Komodakis, Nikos Paragios,

and Georgios Tziritas. MRF Optimiza-
tion via Dual Decomposition: Message-
Passing Revisited. In International Con-
ference on Computer Vision (ICCV), 2007

number of trees, can be minimized efficiently using the projected subgra-
dient algorithm. Optimization of the upper bound on the log-partition
function differs in two key ways. First, the problem is smooth, which sug-
gests improved asymptotic properties. Second, the choice of spanning trees
can have significant influence on the tightness of the optimum.

Contributions. In this section, we make the following contributions:

a) We investigate direct minimization of tree-reweighted upper bounds
on the log-partition function using the spectral projected gradient al-
gorithm99 and the projected quasi-Newton algorithm100. The core of99 Ernesto G. Birgin, José M. Martínez,

and Marcos Raydan. Nonmonotone
spectral projected gradient methods on
convex sets. SIAM Journal on Optimiza-
tion, 10:1196–1211, 2000

100 Mark Schmidt, Ewout Van den Berg,
Michael P. Friedlander, and Kevin Mur-
phy. Optimizing Costly Functions with
Simple Constraints: A Limited-Memory
Projected Quasi-Newton Algorithm. In
Artificial Intelligence and Statistics (AIS-
TATS), 2009

the resulting algorithms is embarrassingly parallel and we demonstrate
that it scales accordingly in the number of processors.

b) We present strategies for choosing small sets of spanning trees and
study their effect on the error of marginal probabilities, tightness of
the upper bound and computational cost. These results are of general
interest as the choice of trees (or edge probabilities) is mandated by any
tree-reweighted algorithm.
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To our knowledge, our approach was the first to consider direct minimiza-
tion of the upper bounds on the log partition function, as opposed to op-
timization of the corresponding tree-reweighted free energy. Since these
problems are connected through strong duality, either formulation can be
used to obtain the tightest bound and the corresponding pseudomarginals.

Recently, it came to our notice that a similar approach was followed
independently by Domke101 and published shortly after ours. 101 Justin Domke. Dual Decomposition

for Marginal Inference. In Conference on
Artificial Intelligence (AAAI), 2011

Background

Let us now make clear our notation and recapitulate a few concepts that
will be useful in understanding our approach.

Model and notation. We consider undirected graphical models defined over
discrete random variables with at most pairwise interactions. Remember
that the probability of a joint variable state y ∈ Y thus factors as

p(y;θ) = exp
(

∑
s∈V

θs(ys) + ∑
(s,t)∈E

θst(ys, yt)− A(θ)
)

, (128)

or equivalently, expressed using the sufficient statistics corresponding to
the vector of exponential parameters θ ∈ Rd,

p(y;θ) = exp(〈θ,φ(y)〉 − A(θ)). (129)

Subsequently, we will be concerned with computation of approximations
to A(θ) and the marginal probabilities

Ey∼p(y;θ)[φα(y)] = ∑
y∈Y

p(y;θ)φα(y), α ∈ I , (130)

where we use α ∈ I = {1, 2, . . . d} to refer to a single index corresponding
to a particular state of a vertex s or an edge (s, t). The first and second
derivatives of A(θ) then generate the cumulants

∂A(θ)

∂θα
= E[φα(y)] and

∂2 A(θ)

∂θα∂θβ
= cov[φα(y), φβ(y)], α, β ∈ I .

Hence, the marginal probabilities are given precisely by the gradient of
the log-partition function. Moreover, the covariance matrix, which is by
definition positive semi-definite, forms the Hessian. Convexity of the log-
partition function follows from this property; this provides a different per-
spective on convexity, compared to the one based on the variational repre-
sentation of A(θ) and Danskin’s theorem we have already seen.

Tree-reweighted upper bounds. Consider now the set T = {T} of all span-
ning trees of a cyclic graph G. We use I(T) = {α} to denote the set of
indices corresponding to states ys of vertices and (ys, yt) of edges that be-
long to a particular tree T.102 102 Since the trees are spanning, they

cover all vertices s ∈ V. Hence, all
ys ∈ Ys are contained by definition.

Each of the spanning trees is associated with a vector of exponential
parameters θ(T) ∈ Rd that is tractable by the structural assumption. Wain-
wright et al.103 observe that a convex combination ∑T ρ(T)A(θ(T)) over 103 Martin J. Wainwright, Tommi S.

Jaakkola, and Alan S. Willsky. A new
class of upper bounds on the log par-
tition function. IEEE Transactions on In-
formation Theory, 51:2313–2335, 2005
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trees yields an upper bound on A(θ) if the full set of tractable parameters
Θ = {θ(T)}T∈T lies in the convex set

C(θ) =
{
Θ

∣∣∣∣ θα(T) = 0, ∀T, α /∈ I(T)
∑T ρ(T)θ(T) = θ

}
, (131)

and ρ = {ρ(T)} is constrained to belong to the simplex of distributions
over T ,

∆ =
{
ρ
∣∣ ∑T ρ(T) = 1, ρ(T) ≥ 0, ∀T

}
. (132)

Observe that ρ must also be valid in the sense that each edge is covered with
non-zero probability, otherwise C(θ) is empty. The upper bound property
now follows directly from Jensen’s inequality:

A(θ) = A
(
∑T ρ(T)θ(T)

)
≤ ∑T ρ(T)A(θ(T)). (133)

The structural constraints θα(T) = 0 in C(θ) are not required for the upper
bound to hold, but we include them in our presentation to make explicit
the fact that the parameters Θ = {θ(T)} are tractable.

A natural question is then how to obtain the tightest upper bound pos-
sible within this framework. For a given distribution ρ over spanning trees,
and target parameters θ, we can simply optimize over the set of tractable
parameterizations Θ to obtain

min
Θ∈C(θ)

∑
T∈T

ρ(T)A(θ(T)). (134)

Since the upper bound is a convex combination of convex functions, and
the constraint set is convex, this is a convex optimization problem.

Tree-reweighted free energies. By forming the Lagrangian of (134) and ex-
ploiting the conjugate duality relation between the log-partition function
and the negative entropy of a distribution, one can obtain an equivalent
dual problem:104104 Martin J. Wainwright, Tommi S.

Jaakkola, and Alan S. Willsky. A new
class of upper bounds on the log par-
tition function. IEEE Transactions on In-
formation Theory, 51:2313–2335, 2005

max
τ∈L(G)

{
〈τ,θ〉+ ∑s H(τs)−∑(s,t) νst I(τst)

}
, (135)

where τs and τst have interpretations as node and edge pseudo-marginals,
H(·) and I(·) denote the Shannon entropy and the mutual information,
respectively, and the constraint set

L(G) =

τ ≥ 0

∣∣∣∣∣∣
∑ys τs(ys) = 1, ∀s ∈ V

∑yt τst(ys, yt) = τs(ys), ∀ys ∈ Ys, (s, t) ∈ E

∑ys τst(ys, yt) = τt(yt), ∀yt ∈ Yt, (s, t) ∈ E

 . (136)

ensures proper local normalization and marginalization consistency. The
edge probabilities ν = {νst} are strictly positive and arise from the valid
distribution ρ ∈ ∆ over spanning trees.

Constraint set (136) is the local polytope we discussed in the previous
chapter, and the objective function in (135) is the negative tree-reweighted
free energy. As the dual of a convex function, it is concave in τ, and strong
duality holds. The primary advantage of problem (135) over (134) is its
reduced dimensionality: it is independent of the number of spanning trees
involved. However, constraint set L(G) is more complicated than C(θ).
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Approach

Message passing algorithms commonly seek to optimize the tree-reweighted
free energy given in (135), and thus have to handle constraint set L(G).
The original message passing algorithm by Wainwright et al.105 can be un- 105 Martin J. Wainwright, Tommi S.

Jaakkola, and Alan S. Willsky. A new
class of upper bounds on the log par-
tition function. IEEE Transactions on In-
formation Theory, 51:2313–2335, 2005

derstood to perform block coordinate updates in the Lagrangian of (135).
However, without further precautions, the scheme is not guaranteed to con-
verge. In practice, “damping” strategies are often applied to improve the
convergence characteristics. In contrast, we investigate efficient methods
for direct minimization of (134). The coupling constraints in C(θ) are eas-
ier to handle than L(G), and convergent minimization schemes thus arise
naturally. We next discuss several key aspects of our approach.

Obtaining marginals. An approximation to the log-partition function is nat-
urally given by the optimum of problem (134). In contrast, it is not so
obvious how to obtain approximate marginals from the solution. The key
observation here arises en route of deriving (135) from (134): By forming
the Lagrangian of (134), and taking derivatives with respect to θα, one ob-
tains the stationary conditions

Ey∼p(y;θ̂(T))[φα(y)]
!
= τα, ∀T ∈ T , α ∈ I(T). (137)

Consequently, at an optimal solution Θ̂, all trees share a single set of
marginals. To construct a full set of pseudo-marginals τ, for each index α,
we can thus use the marginal probability of any tree T for which α ∈ I(T)
once (134) has been solved to optimality. Notably, as we pointed out in the
previous chapter, the marginals of any tree can be obtained efficiently.

Computing the gradient. As we pointed out previously, the derivative of the
log-partition function A(·) with respect to θα is given by the corresponding
marginal probability, E[φα(x)]. Given that (134) is a weighted sum of such
partition functions, it is easy to see that the full gradient with respect to all
tractable parameters Θ = {θ(T)}T∈T is thus given by the gradients of the
weighted individual terms,

∇Θ =
{

ρ(T)Ey ∼p(y;θ(T))[φ(y)]
}

T∈T
.

In principle, this gradient can be computed very efficiently; the only con-
cern is the number of spanning trees involved. We will discuss this issue in
great detail in the sequence.

Handling the constraints. We now turn to discussion of the constraint set
C(θ), defined in (143). Both the coupling constraints ∑T ρ(T)θ(T) = θ and
the structural constraints θα(T) = 0 are linear, so C(θ) is convex.

As we shall point out, projection onto this set can be realized very ef-
ficiently. Formally, we search the solution to the following optimization
problem:

Pθ(Θ
′) = arg min

Θ∈C(θ)

∥∥Θ−Θ′
∥∥2

2 . (138)

For all T, if α /∈ I(T), the structural constraints prescribe θα(T) = 0. These
components are hence fully specified. Otherwise, the coupling constraints
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Figure 19: TightenBound algorithm.
Shown here is the variant drawing on
the spectral projected gradient (SPG)
method. A key feature is that through
the decomposition into independent
problems, the log-partition function can
be evaluated for each tree in parallel.

input : set of trees T and valid distribution ρ, target parameters θ,
arbitrary initial Θ(1), step size interval [amin, amax], history length h

output: pseudo-marginals τ, upper bound Atrw ≥ A(θ)

Θ(1) ← Pθ(Θ(1))

A(1)
trw
← parallelized ∑T ρ(T)A(θ(1)(T))

a(1) ← 1/‖Pθ(Θ(1) −∇(1)
Θ )−Θ(1)‖

k ← 1

while ‖Pθ(Θ(k) −∇(k)
Θ )−Θ(k)‖ < ε do

d(k) ← Pθ(Θ(k) − a(k)∇(k)
Θ )−Θ(k)

repeat
choose λ ∈ (0, 1) ; e.g. via interpolation
Θ(k+1) ←Θ(k) + λd(k)

A(k+1)
trw

← parallelized ∑T ρ(T)A(θ(k+1)(T))

until A(k+1)
trw

< max{A(k)
trw

, . . . , A(k−h)
trw

}+ ελ∇(k)
Θ · d

(k)

s(k) ←Θ(k+1) −Θ(k)

y(k) ← ∇(k+1)
Θ −∇(k)

Θ

a(k+1) ← min{amax, max{amin, (s(k) · s(k))/(s(k) · y(k))}}
k ← k + 1

return (A(k)
trw

,τ = marginals{∇(k)
Θ }) ; via relation betw. marginals and gradient

∑T ρ(T)θα(T) = θα must be satisfied. Among the admissible {θα(T)} for a
given index α, whose weighted sum must be θα, the sum of squares is min-
imized if (θα(T)− θ′α(T))2 is equal for all trees T with α ∈ I(T). Consider
now the distance from the target parameter δα = (∑T ρ(T)θ′α(T)− θα) and
the accumulated probability mass σα = ∑T:α∈I(T) ρ(T). It can be verified
that the projection given by

Pθ(Θ
′) =

θα(T) = 0 if α /∈ I(T)
θα(T) = θ′α(T)− δα

σα
otherwise

(139)

ensures satisfaction of all constraints while adhering to the optimality cri-
terion discussed above. Hence, it provides a solution to (138) which can be
computed in O(|T |d), i.e. in time linear in the dimensionality of Θ.

Tightening the Bound

For now, assume that ρ(T) > 0 for a small number of trees T only. The gra-
dient of our objective in (134) can then be computed efficiently. Moreover,
the constraint set C(θ) is convex and can be projected onto at little cost. A
principal method for optimization in such a setting is the projected gradient
algorithm. However, this basic method can be improved on significantly.

Spectral projected gradient method. The main improvements of the spectral
projected gradient (SPG) method106 over classic projected gradient descent

106 Ernesto G. Birgin, José M. Martínez,
and Marcos Raydan. Nonmonotone
spectral projected gradient methods on
convex sets. SIAM Journal on Optimiza-
tion, 10:1196–1211, 2000

are a particular choice of the step size due to Barzilai and Borwein107 and107 Jonathan Barzilai and Jonathan M.
Borwein. Two-point step size gradient
methods. IMA Journal of Numerical Anal-
ysis, 8:141–148, 1988

a non-monotone, yet convergent line search due to Grippo et al.108 In the

108 Luigi Grippo, Francesco Lampar-
iello, and Stefano Lucidi. A non mono-
tone line search technique for Newton’s
method. SIAM Journal on Numerical
Analysis, 23:707–716, 1986

setting of unconstrained quadratics, the SPG algorithm has been observed
to converge superlinearly towards the optimum.
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In Figure 19, we show the TightenBound algorithm, which outlines the
application of the spectral projected gradient method to optimization prob-
lem (134). Besides the mandatory input T , ρ and θ, the meta parameters
[amin, amax] specify the interval of admissible step sizes, and history length
h specifies how many steps may be taken without sufficient decrease of the
objective. If the number of steps is exceeded, backtracking is performed
and the step size is decremented until sufficient decrease has been estab-
lished. In our implementation, we chose amin = 10−10, amax = 1010 and
h = 10. In the backtracking step, we simply multiply by a factor of λ = 0.3.
In practice, we found the TightenBound algorithm to be very robust with
respect to the choice of meta parameters.

Proposition 1 For a given set of spanning trees T , valid distribution over trees ρ
and exponential parameters θ of a discrete graphical model, the TightenBound

algorithm converges to the global optimum of (134), or equivalently, the tightest
tree-reweighted upper bound that can be achieved for the specific choice of trees.

Proof (Sketch) Convergence is a simple consequence of the convergence
of spectral project gradient methods, which was analyzed by Wang et al.109 109 Changyu Wang, Qian Liu, and Xin-

min Yang. Convergence properties of
non monotone spectral projected gradi-
ent methods. Journal of Computational
and Applied Mathematics, 182(1):51–66,
2005

Projected quasi-Newton method. The projected quasi-Newton (PQN) method
was recently introduced by Schmidt et al.110 and can be considered a gen-

110 Mark Schmidt, Ewout Van den Berg,
Michael P. Friedlander, and Kevin Mur-
phy. Optimizing Costly Functions with
Simple Constraints: A Limited-Memory
Projected Quasi-Newton Algorithm. In
Artificial Intelligence and Statistics (AIS-
TATS), 2009

eralization of L-BFGS111 to constrained optimization. It is particularly suit-

111 Jorge Nocedal. Updating quasi-
Newton matrices with limited storage.
Mathematics of Computation, 35:773–782,
1980

able if the constraint set can be projected onto efficiently, and the objective
is expensive to compute. At each iteration k, a feasible direction is found
by minimizing a quadratic model subject to the original constraints:

d(k) = arg min
d∈C(θ)

{
A(k)

trw + (d−Θ(k))T∇(k)
Θ + 1

2 (d−Θ(k))TB(k)(d−Θ(k))
}

,

where B(k) is a positive-definitive approximation to the Hessian that is
maintained in compact form in terms of a fixed number of previous iter-
ates and gradients.112 The SPG algorithm can be used to perform this inner 112 Richard H. Byrd, Jorge Nocedal, and

Robert B. Schnabel. Representations of
quasi-Newton matrices and their use in
limited memory methods. Mathematical
Programming, 63(1):129–156, 1994

minimization effectively. We hypothesized that PQN might compensate for
the larger per-iteration cost through improved asymptotic convergence and
thus implemented a variant of the TightenBound algorithm drawing on
PQN, similar to the one shown in Figure 19. We do not give a complete
specification here, as it only differs from Figure 19 in the choice of the
direction and the use of a traditional line search.

Choosing the Set of Trees

It is clear that the TightenBound algorithm is only efficient for a reason-
ably small number of selected trees with ρ(T) > 0. We refer to this set
as S and denote the corresponding vector of non-zero coefficients by ρs.
Subsequently, we discuss how to obtain S and ρs in a principled manner.

Uniform probabilities. According to the Laplacian principle of insufficient
reasoning, one might choose uniform edge occurrence probabilities given
by νst = (|V| − 1)/|E|. However, in our formulation, we need to find a pair
(S ,ρs) that results in these probabilities. The dual coupling between (S ,ρs)



64 approximate discriminative training of graphical models

Figure 20: CoveringTrees algorithm.
The algorithm determines sets of span-
ning trees resulting in uniform edge
occurrence probabilities. If terminated
early, it can be used to establish sets of
small cardinality that still cover every
edge of the original graph.

input : graph G, stopping criterion
output: selected trees S , valid ρs

S (1) ← {random spanning tree}, ρ
(1)
s ← [1], k← 1

while not criterion do
ν(k) ← ν(S (k),ρ(k)s ) ; compute edge probabilities
S (k+1) ← S (k) ∪MST(G,ν(k)) ; minimum spanning tree for edge cost ν(k)

ρ
(k+1)
s ← 1/(k + 1) ; for 1 ∈ Rk+1

k ← k + 1
end

return (S (k),ρ(k)s )

and ν is defined in terms of the mapping ν(S ,ρs) = ∑T∈S ρs(T)ν(T),
where ν(T) ∈ R|E| indicates the edges contained in T, such that νst(T) =

J(s, t) ∈ ETK. The CoveringTrees algorithm shown in Figure 20 estab-
lishes a suitable pair (S ,ρs) in a greedy manner. At each step, we add a
minimum spanning tree (MST) for weights given by the current edge prob-
abilities. We stop when ν(S , ρs) is sufficiently uniform, which allows to
trade off the number of resulting trees against uniformity.

Proposition 2 Given any graph G, the CoveringTrees algorithm determines
a sequence {ν(S (k), ρ

(k)
s )} converging to a vector u of uniform edge occurrence

probabilities, all given by ust = (|V| − 1)/|E|, as k→ ∞.

A proof will be given at the end of this section; the CoveringTrees algo-
rithm can be seen to take conditional gradient steps that seek to minimize
‖ν(S ,ρs)− u‖2

2.

(a) (b)
Figure 21: (a) Two “snakes” cover any
grid; (b) Two more mirrored replicas
achieve symmetric edge probabilities.

Snake-based strategy. For grid-structured graphs, we also found that fairly
uniform edge occurrence probabilities could be obtained using four “snake”-
shaped trees that in sum cover all edges. This is best seen in terms of an
illustration, which we provide in Figure 21. If we choose ρs = 1/|S|, the
edges in the interior assume νst = 1/2, whereas those on the boundary are
given by νst = 3/4.

Constructing an almost minimal set. If we choose a different stopping cri-
terion, namely νst > 0 ∀(s, t), the CoveringTrees algorithm can also be
used to greedily establish a set of trees that is almost minimal, in the sense
that its cardinality is close to the minimum number of spanning trees re-
quired to cover all edges of G. Note that there is no guarantee of optimality
in this respect. However, in practice, we found that the CoveringTrees

algorithm was very effective at establishing sets of small cardinality.

Optimal sets of trees. Wainwright et al.113 show that one can obtain even113 Martin J. Wainwright, Tommi S.
Jaakkola, and Alan S. Willsky. A new
class of upper bounds on the log par-
tition function. IEEE Transactions on In-
formation Theory, 51:2313–2335, 2005

tighter upper bounds by optimizing (135) over the edge occurrence prob-
abilities ν. This is achieved using conditional gradient steps, where each
such outer iteration involves solution of (135) for the current iterate ν(k)

and a subsequent minimum spanning tree (MST) search with edge weights
given by the negative mutual information of the current edge pseudo-
marginals, denoted by I(τst). The resulting bound is jointly optimal over ν
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input : graph G, target parameters θ

output: selected trees S , valid ρs, τ, Atrw ≥ A(θ)

(S (l),ρ(l)s )← CoveringTrees(G, νst > 0 ∀(s, t))
k← l
while not converged do

(A(k)
trw

,τ(k))← TightenBound(S (k),ρ(k)s ,θ)
i(k) ← [−I(µ(k)

st )](s,t)∈E ; negative mutual information per edge
S (k+1) ← S (k) ∪MST(G, i(k)) ; minimum spanning tree for edge cost i(k)

ρ
(k+1)
s ← 1/(k + 1) ; for 1 ∈ Rk+1

k ← k + 1
end

return (S (k),ρ(k),TightenBound(S (k),ρ(k)s ,θ))

Figure 22: OptimalTrees algorithm.
The algorithm converges to a set of
spanning trees and tree probabilities
yielding a jointly optimal (over trees
and parameterizations) bound on the
log-partition function.

and τ. Our OptimalTrees agorithm, shown in Figure 22, defines a similar
procedure for the primal space we are operating in. It successively estab-
lishes pairs (S ,ρs) resulting in increasingly tighter upper bounds Atrw.
The invocation of CoveringTrees(·) in the initialization phase ensures
that we start from a valid distribution ρs and a small set S such that each
edge is covered with non-zero probability and our TightenBound algo-
rithm can be applied.

In practice, the biggest gains are achieved in the first few iterations.
Hence, although it is expensive to find a suitable tree at each iteration,
the number of trees stays relatively small, and we approach the joint op-
timum in the process. The fact that the set of trees stays small is crucial,
since it allows us to employ our TightenBound algorithm.

Proposition 3 The OptimalTrees algorithm determines a sequence {A(k)
trw}

converging to an upper bound Atrw ≥ A(θ) that is jointly optimal over the choice
of spanning trees S , the distribution over spanning trees ρs, and the tractable
parameterization Θ, as k→ ∞.

A proof will be given towards the end of the section; again, the key here is
that the algorithm takes conditional gradient steps with respect to a partic-
ular objective function.

Parallelized Computation

The computational cost of the TightenBound algorithm is dominated by
computation of ∑T ρ(T)A(θ(k+1)(T)), which requires sum-product belief
propagation on each tree T ∈ S . One might then assume that compared
to traditional message passing algorithms, this incurs an overhead that is
asymptotically linear in the number of selected trees. However, observe
that the terms {A(θ(k+1)(T))} are completely independent of each other.
Hence, as long as the number of CPU cores is greater than or equal to the
number of trees, we can avoid the additional execution time by scheduling
each run of belief propagation on a different core. As our experiments will
demonstrate, this works very well in practice.

Generally, the SPG variant of our TightenBound algorithm is prefer-
able from a parallelization point of view, since PQN incurs quite some
overhead while solving the inner direction finding problem.
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Grid IsingGauss Grid IsingUniform Regular IsingGauss Complete ExpGauss

e(Atrw) e(τ) e(Atrw) e(τ) e(Atrw) e(τ) e(Atrw) e(τ)

4Snakes 0.085± 0.01 0.112± 0.01 0.104± 0.01 0.087± 0.00 ∼ ∼

Minimal 0.088± 0.01 0.113± 0.01 0.109± 0.01 0.090± 0.00 0.833± 0.10 0.308± 0.05 0.397± 0.07 0.074± 0.01
Uniform 0.084± 0.01 0.110± 0.01 0.102± 0.01 0.085± 0.00 0.833± 0.10 0.308± 0.05 0.394± 0.07 0.074± 0.01

?Uniform 0.083± 0.01 0.110± 0.01 0.101± 0.01 0.085± 0.00 0.833± 0.10 0.308± 0.05 0.394± 0.07 0.074± 0.01

Optimal 0.031± 0.01 0.091± 0.02 0.053± 0.01 0.079± 0.01 0.832± 0.10 0.308± 0.05 0.377± 0.07 0.075± 0.01

Table 1: Impact of the set of spanning
trees on the approximation error

Experiments

Let us now assess several aspects of our algorithms empirically. Towards
this end, we will consider four types of random graphs with varying struc-
ture and exponential parameters θ. All graph instances we will discuss in
the sequence were generated using libDAI.114114 Joris M. Mooij. libDAI: A free and

open source C++ library for discrete ap-
proximate inference in graphical mod-
els. Journal of Machine Learning Research,
11:2169–2173, 2010

Grid IsingGauss: an ng × ng grid of binary variables (Ys = {−1,+1}),
with potentials chosen as θs(ys) = θsys and θst(yst) = θstysyt, where θs

and θst were drawn independently for each node and edge according to
a N (0, 1) distribution.

Grid IsingUniform: Equal to the above, except that θs and θst were drawn
from U (−1,+1).

Regular IsingGauss: A random regular graph with nr binary variables,
each connected to nd others, and potentials akin to Grid IsingGauss.

Complete ExpGauss: A complete graph with nc variables (Ys = {0, 1, 2, 3})
and potentials independently drawn as θs(ys) = 0 and θst(yst) ∼ N (0, 1).

These graphs cover a broad spectrum, ranging from rather benign (grid) to
almost pathological (complete).

Impact of tree selection. For our experiments, we are going to consider four
ways of decomposing the cyclic graphs into spanning trees:

4Snakes: Using a set of four “snakes”, as illustrated in Figure 21; this
decomposition is only applicable to grids.

Minimal: Using our greedy algorithm to establish an almost minimal set
of covering trees.

Uniform: Drawing on the same algorithm, but allowing more iterations to
achieve approximately uniform edge occurrence probabilities, stopping
once min(s,t) νst ≥ 0.9 max(s,t) νst.

Optimal: Based on our algorithm for establishing optimal sets of trees.

First, let us assess the impact of the decomposition scheme on the approxi-
mation error of the bound on the log-partition function, which we compute
as e(Atrw) = |Atrw − A(θ)|/A(θ), and the error of the corresponding
pseudo-marginals, given by e(τ) = ‖τ−E[φ(y)]‖1/d.

e(Atrw)

Grid IsingGauss 0.096± 0.0018
Grid IsingUniform 0.112± 0.0019

Regular IsingGauss 0.866± 0.0003
Complete ExpGauss 0.355± 0.0023

Table 2: Standard deviation of the ap-
proximation error for 30 runs over the
same graphs and potentials, using dif-
ferent Minimal sets of trees.
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Figure 23: Asymptotic efficiency—only
a single run is depicted to highlight
convergence characteristics.For each type of graph, we generated 30 random instances (with ng =

15, nr = 30, nd = 10 and nc = 10) and solved the corresponding instance
of (134) to a tolerance of ε = 10−5 using our TightenBound algorithm.
The tree decomposition was computed anew for each instance. For the Op-
timal scheme, we used 50 outer iterations; gains were minuscule beyond
this point. The reference values A(θ) and E[φ(y)] were computed using
junction trees or brute force, depending on the graph.

Table 1 shows the average and the standard deviation (±) of the er-
ror over the 30 instances of each type of graph. As expected, the Opti-
mal scheme performs best almost universally, with large gains in some in-
stances. More interestingly, the other three schemes are rather closely tied,
with only a slight edge for the Uniform decomposition. For comparison,
we also computed the approximation errors resulting from analytically de-
termined uniform edge probabilities (?Uniform), which corresponds to an
infinite number of iterations of our CoveringTrees algorithm; the gains
over the Uniform scheme are negligible.

Let us now consider how deterministically the Minimal scheme behaves
on a single given graph with fixed exponential parameters. Given the ran-
dom nature of the decomposition, this is an important aspect. Table 2

confirms that the standard deviation of the approximation error over 30
independently computed decompositions is very low.

Effectiveness of solvers. Let us now compare our own solvers TrwSPG, out-
lined in Figure 19, and TrwPQN, its projected quasi-Newton variant (with
p = 4), to the message passing algorithm (TrwMP) of Wainwright et al.115 115 Martin J. Wainwright, Tommi S.

Jaakkola, and Alan S. Willsky. A new
class of upper bounds on the log par-
tition function. IEEE Transactions on In-
formation Theory, 51:2313–2335, 2005

and a variant thereof (TrwDMP) that employs “damping” (α = 0.5). In
our implementation of the latter, we update the messages by iterating over
the edges uniformly at random. For comparison, we use the same types of
graphs as previously, but with ng = 50, nr = 100, nd = 10 and nc = 50.

Asymptotic Efficiency. Let us first compare the asymptotic behavior of the
competing solvers. To this end, we ran them on the same randomly gen-
erated instances of each type of graph. Figure 23 shows the progress of
the objective as a function of iterations of the respective algorithm. The
plot displays only a single run of each solver (rather than an average over
multiple runs), so as not to “average out” the convergence characteristics.
We only show the curves for a particular set of trees obtained using the
Minimal scheme; the others triggered similar asymptotic behavior.

As one can see from Figure 23, the message updates performed by Tr-
wMP decrease the objective very rapidly. However, this comes at a price.
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Figure 24: Computational efficiency
of competing solvers—average over 10

runs is shown here.

In some cases, e.g. panel (c), the process diverges. We also note that the
iterates produced by TrwMP need not lie within L(G). Feasibility is only
guaranteed for the optimal solution; hence, the curve can fluctuate about
the optimum, see panel (d). This can even happen for TrwDMP, which
generally improves smoothness of convergence considerably, but decreases
the objective more slowly. In contrast, the iterates of TrwSPG and TrwPQN
are always guaranteed to yield an upper bound. In terms of smoothness of
convergence, TrwPQN exposes the most desirable behavior. On the other
hand, TrwSPG implements a compromise between smoothness and rapid
decrease; while its non-monotone line search can yield sporadic “bumps”,
it ultimately converges to the global optimum.

Computational Efficiency. Let us now assess the solvers in terms of their
computational efficiency. For this purpose, we measure the progress of the
objective as a function of running time, rather than iterations. The curve of
each solver is averaged over 10 runs in order to smooth any effects caused
by the random nature of the updates performed by TrwMP, or scheduling
of the multiple CPU threads used by TrwSPG and TrwPQN. All results
were obtained on a machine with 8 Intel Xeon CPU cores at 2.4 GHz.

Figure 24 shows the resulting plots for two decomposition schemes at
opposing ends of the spectrum, Minimal (top row), and Uniform (bottom
row). As expected, the results vary significantly with the number of trees
in use. For Minimal sets, TrwSPG approaches the optimum even more
quickly than TrwMP, and much more so than TrwDMP. TrwPQN is also
competitive in some cases, but is generally dominated by TrwSPG due to
the lower per-iteration cost. On the other hand, TrwMP and its damped
variant are more efficient for the larger Uniform sets, since they only de-
pend on the edge occurrence probabilities. This is particularly apparent in
panels (e) and (f); over 50 spanning trees are required to achieve uniform
edge probabilities, outnumbering the available CPU cores by far. However,
previously, we saw that there is only limited gain in establishing Uniform
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sets. Hence, one should definitely opt for a Minimal or 4Snakes strat-
egy with TrwSPG and TrwPQN. In this regime, TrwSPG outperforms both
TrwMP and TrwDMP while guaranteeing convergence.
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Figure 25: Constructing Optimal sets
of spanning trees for Grid IsingUni-
form: Note that TrwSPG scales linearly
until after the number of trees exceeds
the CPU cores.

Scalability of optimal tree selection. Let us now consider Optimal tree selec-
tion. Here, at each iteration, the set of trees grows. One might then expect
the running time of the TightenBound algorithm to increase at each it-
eration, such that the accumulated running time grows superlinearly. We
draw on two strategies in order to suppress this effect. First, by paral-
lelizing computation, the computation time of each iteration can be kept
constant until the number of trees exceeds the number of cores. Second,
by warm-starting the TightenBound algorithm, almost-constant execu-
tion time can be maintained up to a relevant number of iterations: At each
outer iteration, we start from the previous solution Θ̂; the additional pa-
rameters θ(T̂) of the newly added MST are obtained from the weighted
average over the other trees, θ(T̂) = ∑T′∈S\T̂ ρs(T′)θ̂(T′). All parameters
are then projected to obtain an initial feasible point.

Figure 25 shows a run of the OptimalTrees algorithm. We compared
our actual implementation (TrwSPG) to an implementation that does not
use multi-processing (NoSMP) and a naive implementation that uses nei-
ther warm-starting nor multi-processing (Naive). As one can see, the dif-
ferences are dramatic. Using the two strategies presented above, TrwSPG
becomes an attractive choice as the inner solver, as it is guaranteed to
converge. Finally, we assessed an implementation (TrwDMP) that uses
damped (α = 0.5) message passing to solve the inner problem, as in the
original algorithm of Wainwright et al.116 Figure 25 shows that up to a 116 Martin J. Wainwright, Tommi S.

Jaakkola, and Alan S. Willsky. A new
class of upper bounds on the log par-
tition function. IEEE Transactions on In-
formation Theory, 51:2313–2335, 2005

relevant number of iterations, this is less efficient than the TrwSPG-based
scheme. Moreover, one does not know in advance which damping factor
ensures convergence—a crucial aspect in this scenario.

Related Work

As we noted in the introduction, it recently came to our notice that an
approach very similar to ours was followed independently by Domke117 117 Justin Domke. Dual Decomposition

for Marginal Inference. In Conference on
Artificial Intelligence (AAAI), 2011

and published shortly after ours.
Other than that, our formulation is most closely related to the dual de-

composition scheme of Komodakis et al.,118 who optimize an upper bound 118 Nikos Komodakis, Nikos Paragios,
and Georgios Tziritas. MRF Optimiza-
tion via Dual Decomposition: Message-
Passing Revisited. In International Con-
ference on Computer Vision (ICCV), 2007

on the MAP score. As opposed to our setting, there is no strong duality
between the (discrete) primal MAP problem and minimization of the con-
vex upper bound, hence primal solutions must be generated heuristically.
Moreover, the upper bound on the MAP score is non-differentiable, which
has recently been dealt with using proximal regularization.119 On the other 119 Vladimir Jojic, Stephen Gould, and

Daphne Koller. Accelerated dual de-
composition for MAP inference. In In-
ternational Conference on Machine Learn-
ing (ICML), 2010

hand, the upper bound on the log-partition function depends on the choice
of trees, a different source of complication.

Several independent lines of work have focused on convergent algo-
rithms for convex free energies. Heskes120 derives convergent double-loop 120 Tom Heskes. Convexity arguments

for efficient minimization of the Bethe
and Kikuchi free energies. Journal of Ar-
tificial Intelligence Research, 26:153–190,
2006

algorithms. He also argues that given sufficient damping, the original algo-
rithm of Wainwright et al. should converge. Globerson and Jaakkola121 pro-

121 Amir Globerson and Tommi S.
Jaakkola. Convergent propagation algo-
rithms via oriented trees. In Uncertainty
in Artificial Intelligence (UAI), 2007

vide a convergent algorithm for tree-reweighted free energies that solves an
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unconstrained geometric program. However, the authors note their work is
mostly of theoretical interest, since “damped” message passing converges
more rapidly. Hazan and Shashua122 devise a convergent algorithm for122 Tamir Hazan and Amnon Shashua.

Convergent message-passing algo-
rithms for inference over general
graphs with convex free energies.
In Uncertainty in Artificial Intelligence
(UAI), 2008

general convex energies by imposing strict non-negativity constraints on
certain counting numbers of the entropy approximation. Meltzer et al.123

123 Talya Meltzer, Amir Globerson, and
Yair Weiss. Convergent message pass-
ing algorithms - A unifying view.
In Uncertainty in Artificial Intelligence
(UAI), 2009

provide a unifying view that relates convergence to the order in which
message updates are performed.

Concerning parallelization, Gonzalez et al.124 devise an efficient concur-

124 Joseph E. Gonzalez, Yucheng Low,
and Carlos Guestrin. Residual splash
for optimally parallelizing belief prop-
agation. In Artificial Intelligence and
Statistics (AISTATS), 2009

rent implementation of belief propagation. They show that synchronous
schedules, which are naturally parallel, converge less rapidly—both em-
pirically and theoretically. Hence, the authors parallelize a residual-based
asynchronous schedule, which requires locking and considerable engineer-
ing effort. Moreover, their algorithm is not guaranteed to converge. On the
other hand, some schemes that do guarantee convergence—such as that of
Meltzer et al.—rely on the order of updates, which makes it inherently hard
to gainfully employ parallelization. Our algorithms avoid these problems
naturally.

Conclusion

In this section, we derived convergent optimization schemes for computa-
tion of approximate marginal probabilities in cyclic graphical models. For
tree-reweighted energies arising from a small number of spanning trees,
our SPG-based solver was shown to be more efficient than the original
message passing algorithm for this problem, while guaranteeing conver-
gence. Moreover, we found empirically that such energies provide ap-
proximations of reasonable quality. If more accurate approximations are
desired, one can additionally optimize over the choice of trees. Towards
this end, we outlined an efficient algorithm that draws on our convergent
solvers at each iteration to establish the joint global optimum. In this con-
text, the convergence guarantees of our solvers are particularly valuable.
We described how to avoid linear growth of the cost at each outer iteration,
which improved computational efficiency by several orders of magnitude
over a naive implementation.

Proofs Regarding Tree Selection

We start with a general discussion, as Proposition 2 and Proposition 3 are
both based on the same framework. In particular, both algorithms seek the
solution to a convex optimization problem

min
ν∈T(G)

f (ν),

where f (·) is a convex function of the edge occurrence probabilities ν and
T(G) is the so-called spanning tree polytope of a graph G.125 The latter is125 Jack Edmonds. Matroids and the

greedy algorithm. Mathematical Pro-
gramming, 1(1):127–136, 1971

described by a number of inequalities that is exponential in the size of G.
Nonetheless, one can optimize efficiently over ν using the conditional gra-
dient or Frank-Wolfe method.126 Here, at each iteration k, we determine a126 Dimitri P. Bertsekas. Nonlinear Pro-

gramming. Athena Scientific, second
edition, 1999

feasible descent direction p(k) through the solution of the first-order Taylor
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expansion of f (·) around ν(k),

min
ν∈T(G)

{
f (ν(k)) +∇ f (ν(k)) · (ν− ν(k))

}
.

We use ν̂(k) to denote the minimizer of the above. The feasible descent
direction is then given by p(k) = ν̂(k)−ν(k), and the next iterate is obtained
as

ν(k+1) = ν(k) + α(k)p(k), α(k) ∈ [0, 1].

Observe that this is equivalent to

ν(k+1) = α(k)ν̂(k) + (1− α(k))ν(k), α(k) ∈ [0, 1],

i.e. , the new iterate is obtained as a convex combination of the previ-
ous iterate and the extreme point ν̂(k), which can be found efficiently
using the minimum spanning tree (MST) algorithm with edge weights
given by ∇ f (ν(k)). Hence, the MST algorithm solves the linear program
minν∈T(G)〈∇ f (ν(k)),ν〉 over the spanning tree polytope.

Lemma 1 The steps taken by the CoveringTrees algorithm, as well as the
OptimalTrees algorithm, are exactly of the form described above.

Proof To see this, observe that at each step, the current edge occurrence
probabilities ν(k) are maintained through the mapping

ν(k) = ν(S (k),ρ(k)
s ) = ∑

T∈S (k)
ρ
(k)
s (T)ν(T),

where ν(T) ∈ R|E| indicates which edges are contained in T, that is,
νst(T) = J(s, t) ∈ E(T)K. Each step chooses ρ

(k+1)
s as 1/(k + 1). Equiv-

alently, we can develop the iterate as ρ
(k+1)
s = [α(k), (1 − α(k))ρ

(k)
s ] with

α(k) = 1/(k + 1). Moreover, we note that the extreme point ν̂(k) corre-
sponds to a particular tree T̂(k) via the relation ν̂(k) = ν(T̂(k)). It is precisely
this tree T̂(k) that both of the above-mentioned algorithms add to S (k) with
associated probability α(k) at each step. But then, through the mapping
between (S ,ρs) and ν, we obtain

ν(k+1) = ν(S (k+1),ρ(k+1)
s )

= α(k)ν(T̂(k)) + ν(S (k), (1− α(k))ρ
(k)
s )

= α(k)ν̂(k) + (1− α(k))ν(k),

which is what we wanted to show.

To guarantee convergence of the framework, we also need the following
lemma.

Lemma 2 For the sequence of step sizes {α(k)} chosen as α(k) = 1/(k + 1), the
conditional gradient algorithm converges to the global minimum of f (·).

Proof (Sketch) We do not give an explicit proof here. Global convergence
of a conditional gradient algorithm with {α(k)} chosen as a 1/(k + 1) has
been shown by Nedic and Subramanian,127 among others. 127 Angelia Nedic and Vijay G. Subra-

manian. Approximately optimal utility
maximization. In IEEE Information The-
ory Workshop on Networking and Informa-
tion Theory, pages 206–210, 2009

Note that it is also possible to choose α(k) such that sufficient decrease
is obtained at each step by imposing the Armijo condition.128 It remains to

128 Dimitri P. Bertsekas. Nonlinear Pro-
gramming. Athena Scientific, second
edition, 1999

discuss the objective functions f (·) optimized by the CoveringTrees and
OptimalTrees algorithms.
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Proof of Proposition 2. We wish to show that the CoveringTrees algo-
rithm determines a sequence {ν(S (k),ρ(k)

s )} that converges to a vector u
with components given by ust = (|V| − 1)/|E|. To see this, consider the
optimization problem

min
ν∈T(G)

funi(ν), funi(ν)
def
= ‖ν− u‖2

2.

To apply the conditional gradient algorithm, we require the gradient of the
objective, which we develop as ∇ funi(ν) = 2(ν− u). At each iteration k,
to determine the extreme point ν̂(k), we thus solve a minimum spanning
tree problem with edge weights given by 2(ν(k) − u). The constant factor 2
does not affect the solution, nor does the constant vector u, the compo-
nents of which are all equal. Consequently, we can solve the MST problem
with edge weights given by ν(k). This is exactly what the CoveringTrees

algorithm does. Finally, we note that u ∈ T(G) such that ν = u can be
achieved. Proposition 2 then follows from Lemma 1 and Lemma 2.

Proof of Proposition 3. We wish to show that the OptimalTrees algorithm
determines a sequence {A(k)

trw} converging to a bound Atrw ≥ A(θ) that
is jointly optimal over the choice of trees S , the distribution over trees ρs,
and the tractable parameterization Θ. To see this, consider the problem

min
ν∈T(G)

fopt(ν), fopt given by (135).

It can be shown129 that fopt(·) is convex and differentiable in ν, and that its129 Martin J. Wainwright, Tommi S.
Jaakkola, and Alan S. Willsky. A new
class of upper bounds on the log par-
tition function. IEEE Transactions on In-
formation Theory, 51:2313–2335, 2005

partial derivatives are given by ∂ fopt
∂νst

= −I(τ̂st), where I(τ̂st) denotes the
mutual information of (s, t) given the pseudo-marginals τ̂ that maximize
the objective in (135). Note that at each iteration k, the term τ̂(k) depends
on the solution of (135) given the current iterate ν(k). At each step, the con-
ditional gradient algorithm first determines τ̂(k), and then finds the mini-
mum spanning tree with the weight of edge (s, t) given by −I(τ̂(k)st ). Wain-
wright et al. show that by minimizing fopt(·) over ν, one obtains a bound
Atry ≥ A(θ) that is jointly optimal over ν and τ. Now, from Lemma 1,
we conclude that the OptimalTrees takes the same steps as the condi-
tional gradient algorithm of Wainwright et al. The only difference lies in
the fact that the edge occurrence probabilities ν(k) are implicitly maintained
in terms of the mapping ν(S (k),ρ(k)

s ), and that the pseudo-marginals τ̂(k)

are (equivalently) computed using the TightenBound algorithm, which
at each step determines the parameterization Θ̂ that minimizes the upper
bound for the current iterate (S (k),ρ(k)

s ). Furthermore, Lemma 2 guarantees
convergence for our choice of step sizes. It then follows that the sequence
of upper bounds {A(k)

trw} converges to a jointly optimal upper bound Atrw.
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An Incremental Subgradient Algorithm for MAP Estimation

In this section, we investigate minimization of the linear programming re-
laxation over the local polytope we introduced in the previous chapter. Our
goals in doing so are twice-fold: First of all, we want to be able to obtain
approximate integral solutions of the maximum-a-posteriori (MAP) prob-
lem (for predicting), and second, we want to be able to solve the relaxation
itself to obtain a well-motivated bound on Å(θ), which will be useful for
approximate discriminative training in the chapter to follow.

Towards this end, we present an incremental subgradient algorithm for
approximate computation of maximum-a-posteriori (MAP) states in cyclic
graphical models. Its most striking property is its immense simplicity: each
iteration requires only the solution of a sequence of trivial optimization
problems. The algorithm can be equally understood as a dual decompo-
sition scheme or as minimization of a degenerate tree-reweighted upper
bound and assumes a form that is reminiscent of message-passing. De-
spite (or due to) its conceptual simplicity, it is equipped with important
theoretical guarantees and exposes strong empirical performance.

Motivation

In recent years, machine learning has given rise to a number of very-large-
scale optimization problems. In this regime, conceptually simple algo-
rithms can have an edge over their mathematically involved counterparts,
in particular if accuracy is not at a premium. One reason for this phe-
nomenon is that constant overhead matters a lot in the very-large-scale
setting. The purpose of our investigation is to assess whether the principle
of simplicity extends to maximum-a-posteriori (MAP) estimation in cyclic
graphical models. As we saw previously, this is an NP-hard combinato-
rial optimization problem in general. There have been several attempts to
solve the task approximately by optimizing a continuous relaxation, most
prominently the so-called first-order linear programming (LP) relaxation,
first considered by Schlesinger,130 which we discussed previously.

130 Michail I. Schlesinger. Syntactic anal-
ysis of two-dimensional visual signals
in the presence of noise. Cybernetics and
Systems Analysis, 12(4):612–628, 1976

Industrial-strength general purpose solvers can be quite ineffective given
the sheer size of the resulting programs.131 Message passing algorithms, on

131 Chen Yanover, Talya Meltzer, and
Yair Weiss. Linear Programming Relax-
ations and Belief Propagation - An Em-
pirical Study. Journal of Machine Learn-
ing Research, 7:1887–1907, 2006

the other hand, can exploit the special problem structure but are still a topic
of ongoing research. For instance, the original tree-reweighted message
passing algorithm of Wainwright et al.132 is not guaranteed to converge at

132 Martin J. Wainwright, Tommi S.
Jaakkola, and Alan S. Willsky. MAP
Estimation via Agreement on Trees:
Message-Passing and Linear Program-
ming. IEEE Transactions on Information
Theory, 51(11):3697–3717, 2005

all, while later improvements by Kolmogorov133 and a related formulation

133 Vladimir Kolmogorov. Convergent
tree-reweighted message passing for
energy minimization. IEEE Transactions
on Pattern Analysis and Machine Intelli-
gence, 28(10):1568 – 1583, 2006

by Globerson and Jaakkola134 establish convergence, but not necessarily to

134 Amir Globerson and Tommi
Jaakkola. Fixing max-product: Conver-
gent message passing algorithms for
MAP LP-relaxations. In Advances in
Neural Information Processing Systems,
2007

the global optimum (except for binary variables). This undesirable behavior
is due to the non-differentiability of the dual of the linear programming
relaxation, which in turn results from non-strict convexity of the primal.

Consequently, recent work has focused on smoothing a dual formulation
of the LP relaxation135 and on obtaining strict convexity in the primal for-

135 Jason K. Johnson, Dmitry Malioutov,
and Alan S. Willsky. Lagrangian relax-
ation for MAP estimation in graphical
models. In Allerton Conference on Com-
munication, Control and Computing, 2007;
and Vladimir Jojic, Stephen Gould, and
Daphne Koller. Accelerated dual de-
composition for MAP inference. In In-
ternational Conference on Machine Learn-
ing (ICML), 2010

mulation.136 These approaches provide global convergence and improved

136 Pradeep Ravikumar, Alekh Agarwal,
and Martin J. Wainwright. Message-
passing for Graph-structured Linear
Programs: Proximal Methods and
Rounding Schemes. Journal of Machine
Learning Research, 11:1043–1080, 2010

asymptotic convergence rates at the cost of greater complexity. However,
it is not immediate that solving a relaxation extremely accurately should
result in better solutions of the discrete problem.



74 approximate discriminative training of graphical models

A different approach was taken by Komodakis et al.,137 who solve a dual137 Nikos Komodakis, Nikos Paragios,
and Georgios Tziritas. MRF Optimiza-
tion via Dual Decomposition: Message-
Passing Revisited. In International Con-
ference on Computer Vision (ICCV), 2007

decomposition formulation using the projected subgradient algorithm. Global
convergence is guaranteed, although at a sublinear rate. At each iteration,
their scheme involves max-product belief propagation on spanning trees
of the graph. We found that in practice, this comes at a considerable cost.
Depending on the structure of a graph, a substantial number of spanning
trees can be required in order to cover all edges. The number of dual pa-
rameters is exceedingly large in these cases. Moreover, since each iteration
requires repeated belief propagation, a significant computational overhead
can accumulate.

Interestingly, the dual formulation of Komodakis et al. is equivalent to
minimization of the tree-reweighted upper bounds of Wainwright et al.
Whereas the first authors directly minimize this bound, the latter go on to
determine a Lagrangian reformulation and devise message passing algo-
rithms in order to solve it. An important finding in this context is that the
choice of spanning trees does not matter as long as all edges are covered
with non-zero probability. Moreover, as Kolmogorov138 later noted, the138 Vladimir Kolmogorov. Convergent

tree-reweighted message passing for
energy minimization. IEEE Transactions
on Pattern Analysis and Machine Intelli-
gence, 28(10):1568 – 1583, 2006

trees need not be spanning. We exploit this freedom in the choice of trees
to define a lightweight iterative scheme that solves a dual formulation of
the first-order LP relaxation. The resulting algorithm is easy to implement,
efficient in practice, and guaranteed to converge to the global optimum of
the relaxation.

Subsequent to publication of our algorithm, augmented Lagrangian ap-
proaches have become popular.139 These approaches are interesting alter-139 André F. T. Martins, Mário A. T.

Figueiredo, Pedro M. Q. Aguiar,
Noah A. Smith, and Eric P. Xing. An
Augmented Lagrangian Approach
to Constrained MAP Inference. In
International Conference on Machine
Learning (ICML), 2011; and Ofer Meshi
and Amir Globerson. An Alternating
Direction Method for Dual MAP LP
Relaxation. In European Conference
on Machine Learning and Principles
and Practice of Knowledge Discovery in
Databases (ECML PKDD), 2011

natives to our algorithm, since they are also guaranteed to converge; how-
ever, they seem to carry some (constant) overhead as compared to simpler
block coordinate updates or our incremental subgradient scheme.

Preliminaries

As in the previous section, we will consider undirected graphical models
G with vertex set V and edge set E defined over discrete random variables
with at most pairwise interactions. The potential of a joint variable state
y ∈ Y thus decomposes as

P(y;θ) = ∑
s∈V

θs(ys) + ∑
(s,t)∈E

θst(ys, yt), (140)

where the exponential parameters θ ∈ Rd (consisting of node potentials
θs and edge potentials θst) are considered given. In the following, we
will be concerned with computation of approximations to the maximum-a-
posteriori (MAP) value and state,

Å(θ) = max
y∈Y

{
∑s θs(ys) + ∑(s,t) θst(ys, yt)

}
(141)

and

ŷ(θ) = arg max
y∈Y

{
∑s θs(ys) + ∑(s,t) θst(ys, yt)

}
. (142)
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Tree-reweighted upper bounds

We next discuss the tree-reweighted upper bounds on Å(θ) introduced by
Wainwright et al.140 and show that minimization of these bounds is equiv- 140 Martin J. Wainwright, Tommi S.

Jaakkola, and Alan S. Willsky. MAP
Estimation via Agreement on Trees:
Message-Passing and Linear Program-
ming. IEEE Transactions on Information
Theory, 51(11):3697–3717, 2005

alent to the dual decomposition formulation by Komodakis et al.141. Con-

141 Nikos Komodakis, Nikos Paragios,
and Georgios Tziritas. MRF Optimiza-
tion via Dual Decomposition: Message-
Passing Revisited. In International Con-
ference on Computer Vision (ICCV), 2007

sider the set T = {T} of all spanning trees of a cyclic graph G. As in the
bound on the log-partition function, each of the spanning trees is associated
with a parameterization θ(T) that is tractable by the structural assumption;
that is, the components of θ(T) corresponding to configurations ys of ver-
tices and (ys, yt) of edges that do not belong to a particular tree T are
implicitly constrained to be zero. A convex combination ∑T ρ(T)Å(θ(T))
over trees then yields a natural upper bound on Å(θ) if the tractable pa-
rameters {θ(T)}T∈T and the distribution over trees ρ lie in the respective
convex sets

C(θ) =
{
{θ(T)} | ∑T ρ(T)θ(T) = θ

}
(143)

and

∆ =
{
ρ | ∑T ρ(T) = 1, ρ(T) ≥ 0, ∀T

}
. (144)

Note that the definition of C(θ) implies that each edge (s, t) must be
covered with non-zero probability unless the potentials θst are all zero.
The upper bound now follows from Jensen’s inequality:

Å(θ)
def
= Å

(
∑T ρTθ(T)

)
≤ ∑T ρ(T)Å

(
θ(T)

)
.

A natural question is then how to obtain the tighest upper bound possi-
ble within this framework. For a given distribution ρ over spanning trees,
and given target parameters θ, we want to find the minimum over the set
of tractable parameterizations {θ(T)},

min
{θ(T)}∈C(θ)

∑
T∈T

ρ(T)Å
(
θ(T)

)
. (145)

This is a convex optimization problem. For any feasible ρ ∈ ∆, the op-
timum attained in (145) will be the same, the reason being that the La-
grangian duals are all equivalent to the same LP relaxation.142 Hence, we 142 Martin J. Wainwright, Tommi S.

Jaakkola, and Alan S. Willsky. A new
class of upper bounds on the log par-
tition function. IEEE Transactions on In-
formation Theory, 51:2313–2335, 2005

can choose ρ such that most coefficients ρ(T) are zero, whereas the coeffi-
cients for a few selected trees needed to cover the edges, which we denote
by S , are equal to a common constant ρ = 1/|S|. But then, the formulation
in (145) reduces to

min
{λ(T)}∈C ′(θ)

∑
T∈S

Å
(
λ(T)

)
(146)

with

C ′(θ) =
{
{λ(T)}

∣∣ ∑T∈S λ(T) = θ
}

, (147)

where we moved the common constant ρ into the parameters by defining
λ(T) = ρθ(T). Due to the linearity of Å(·), this changes neither the so-
lution nor the corresponding optimum. But now the equivalence to the
formulation obtained by Komodakis et al. is apparent.
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Approach

How can the above problems be solved most efficiently? One might choose
to exploit convex duality; indeed, one of the principal motivations of Wain-
wright et al.143 in deriving the Lagrangian dual of (145) is the associated143 Martin J. Wainwright, Tommi S.

Jaakkola, and Alan S. Willsky. A new
class of upper bounds on the log par-
tition function. IEEE Transactions on In-
formation Theory, 51:2313–2335, 2005

reduction in dimensionality; specifically, the number of parameters of the
optimization problem is reduced from |S|d to d. However, as we shall
point out, a similar dimensionality reduction is possible while maintaining
the upper bound formulation in (145)–(146).

Re-stating the Problem

We start out with the more convenient formulation given by (146). It is
apparent that the objective does not depend on ρ; moreover, as mentioned
before, the optimum is independent of the choice of trees as long as each
edge with non-zero potentials θst is covered. Our main idea is now to
choose each tree as a single edge, such that S equals E. To make this choice
explicit, we will use F = (s, t) ∈ E to refer to such a degenerate tree consist-
ing of a single edge from now on. An important consequence of our lim-
itation to single-edge trees is that the edge potentials λst(F) of degenerate
tree F = (s, t) must equal the edge potentials θst of the target parameters θ,
otherwise we have that {λ(F)} /∈ C ′(θ). Hence, the parameters λst(F) are
fully specified. Moreover, those components of λ(F) corresponding to vari-
ables that are not part of F or edges other than F are implicitly constrained
to be zero. Hence, the only remaining parameters of an edge F = (s, t) are
the node parameters λs(F) and λt(F). For notational convenience, we will
refer to these parameters as λ(F) = {λF

s ,λF
t } in the following.

The MAP value of each degenerate tree F = (s, t) is easily obtained as

ÅF(λ(F);θ
)
= max

(ys ,yt)∈Ys×Yt

{
λF

s (ys) + λF
t (yt) + θst(ys, yt)

}
. (148)

Subsequently, we use (ŷF
s , ŷF

t ) to denote any maximizing edge state144 of144 Remember that the maximum need
not be attained uniquely. the above, which can be found by maximizing over |Ys ×Yt| sums of three

scalar values. In contrast, computation of Å(λ(T)) in (146) requires max-
product belief propagation, which is a fairly elaborate procedure. Next,
observe that the constraint set simplifies to

Q(θ) =
{
{λ(F)}

∣∣ ∑F:s∈F λ
F
s = θs, ∀s ∈ V

}
. (149)

By defining Λ = {λF}F∈E and putting things together, we obtain the final
formulation:

minimize D(Λ;θ) def
= ∑F∈E ÅF(λ(F);θ

)
s.t. Λ ∈ Q(θ).

(150)

Importantly, this new problem is defined in terms of the parameters
Λ = {λ(F)} ∈ R(|Ys |+|Yt |)|E|, the dimensionality of which is significantly
lower than that of {λ(T)}. In particular, since Λ only involves parameters
corresponding to node potentials, the number of parameters is not on the
order of |Ys × Yt|. In terms of memory consumption, formulation (150)
is thus on par with message passing algorithms. Indeed, as we shall see,
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each λF
s can be understood to carry messages between a node s and its

containing edge F. Furthermore, comparing (150) and (146), we observe
that the new objective replaces |S| elaborate optimization problems by a
large number |E| of primitive optimization problems.

Minimization of the Upper Bound

We next inspect the mathematical properties of (150). While this optimiza-
tion problem is convex, the objective function D(λ;θ) is non-differentiable.
Nonetheless, one can obtain a subgradient g ∈ R(|Ys |+|Yt |)|E| with respect
to Λ. Its components are given by

gF
s (xs) = Jys = ŷF

s K, gF
t (yt) = Jyt = ŷF

t K, ∀F = (s, t), ys, yt, (151)

where ŷF
s and ŷF

t belong to an edge MAP state (ŷF
s , ŷF

t ) that maximizes
(148) for edge E, and J·K evaluates to 1 if the condition inside the brackets
is true and 0 otherwise. This subgradient is trivially bounded since we have
‖gF

s ‖2
2 = 1 and hence ‖g‖2

2 = 2|E|.
Consider now the constraint set Q(θ). It turns out that there is an effi-

cient way of projecting an infeasible point Λ′ onto this set. Formally, we
search the solution to the following problem:

Pθ(Λ
′) = arg min

Λ∈Q(θ)

‖Λ−Λ′‖2
2. (152)

It is easily seen that among the admissible {λF
s (ys)} for a given variable s

and state ys, which must sum to θs(ys), the sum of squares is minimized if
(λF

s (xs)− λ′Fs (ys))2 is equal for all containing edges Es = {F ∈ E | s ∈ F}.
For these components, we need to subtract a common constant

δs(ys) =
(

∑F′∈Es λ′F
′

s (ys)− θs(ys)
)

/|Es| (153)

to restore feasibility. Hence, the optimal projection in the sense of (152) is
given by

Pθ(Λ
′) =

{
λF

s (ys)← λ′Fs (ys)− δs(ys), ∀s ∈ V, F ∈ Es, ys ∈ Ys

}
. (154)

Equivalently, after each modification of a component λF
s (ys) of a feasible

point, feasibility can be restored by distributing the amount of change uni-
formly over all components {λF′

s (ys) | F′ ∈ Es}.

Incremental subgradient algorithm. Equipped with efficient ways of comput-
ing the subgradient and projecting onto the feasible set, we could use the
projected subgradient algorithm to solve (150), analogously to Komodakis
et al.145. However, our problem differs from theirs in that the number of 145 Nikos Komodakis, Nikos Paragios,

and Georgios Tziritas. MRF Optimiza-
tion via Dual Decomposition: Message-
Passing Revisited. In International Con-
ference on Computer Vision (ICCV), 2007

component functions can be expected to be significantly larger. Hence,
the incremental subgradient method146 is an attractive option. Here, at

146 Angelia Nedic and Dimitri P. Bert-
sekas. Incremental subgradient meth-
ods for nondifferentiable optimization.
SIAM Journal on Optimization, 12:109–
138, 2001

each inner iteration, only the subgradient of a single component function is
subtracted, after which feasibility is restored using projection. The subgra-
dient of the next component function is then computed using the adapted
parameters. When the parameters of the component functions overlap or
are coupled through the constraints, this can result in significantly faster
initial convergence.
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Figure 26: IncMP algorithm for MAP
estimation

Input : Graph G, target parameters θ, initial feasible point Λ
Output: Feasible primal solution ỹ that is an approximation to ŷ(θ)
choose initial feasible primal solution ỹ arbitarily ;
repeat

pick next step size α and shuffle the set of edges E;
foreach F = (s, t) ∈ E do

find edge MAP state: (ŷF
s , ŷF

t ) ;

subtract scaled subgradient: λF
s (ŷF

s )← λF
s (ŷF

s )− α ;
λF

t (ŷ
F
t )← λF

t (ȳ
F
t )− α ;

foreach F′ ∈ Es do project: λF′
s (ŷF

s )← λF′
s (ŷF

s ) + α/|Es| ;
foreach F′ ∈ Et do project: λF′

t (ŷF
t )← λF′

t (ŷF
t ) + α/|Et| ;

foreach s ∈ V do
construct candidate c: cs ← choose at random from {ŷF

s | F ∈ Es} ;

if P(c;θ) > P(ỹ;θ) then
accept best primal solution so far: ỹ← c ;

if D(Λ;θ) = P(ỹ;θ) then
optimal primal solution found: return ỹ ;

until converged;
approximate primal solution found: return ỹ ;

Our IncMP algorithm, shown in Figure 26, outlines the application of
this method to optimization problem (150). Each component subgradient
is very sparse in our case; only two indices are ever non-zero, namely those
corresponding to the variable states ŷF

s and ŷF
t of the edge MAP state that

maximizes (148) for edge F. Consequently, each inner update only affects
a small number of parameters. The parameters of edges other than F are
affected through the projection step, which only involves adjacent edges.
Hence, the structure of a graph determines how quickly parameter up-
dates propagate through the graph, which mirrors the situation in message
passing algorithms.

Two choices impact the convergence behavior of the IncMP algorithm
significantly. The first one is the order in which edges F are selected for the
inner updates. We found that a random update order (implemented using a
Fisher-Yates shuffle) consistently gives good results over a variety of graph
structures. This is also supported by findings of Nedic and Bertsekas,147147 Angelia Nedic and Dimitri P. Bert-

sekas. Incremental subgradient meth-
ods for nondifferentiable optimization.
SIAM Journal on Optimization, 12:109–
138, 2001

who show improved convergence rates for updates in random order.
The second choice concerns the sequence of step sizes {α(k)}. Several se-

quences are known for which convergence to the global optimum is guar-
anteed; however, these can be rather slow in practice. We implemented the
following practical variant: Initially, α(0) is set to the sample standard devia-
tion of the potentials in θ. At each outer iteration, if D(·) has decreased, we
opt for a moderate decrease, say, α(k+1) = 0.95α(k); otherwise, we decrease
aggressively, e.g. α(k+1) = 0.5α(k). Once α(k) drops below a tiny number ε

in iteration k, we adopt a static schedule and choose α(k
′) = ε/(k′ − k) in

subsequent iterations k′ = k + 1, k + 2, . . . of the algorithm.

Proposition 4 With the sequence of step sizes {α(k)} chosen as described above,
the IncMP algorithm, shown in Figure 26 converges to the global optimum of
optimization problem (150) as k approaches infinity.
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Proof (Sketch) Initially, the sequence of step sizes {α(k)} decreases such
that we reach ε in a finite number of iterations. Subsequently, {α(k)} is cho-
sen as a nonsummable diminishing sequence, guaranteeing global conver-
gence for bounded subgradients by the results of Nedic and Bertsekas.148 148 Angelia Nedic and Dimitri P. Bert-

sekas. Incremental subgradient meth-
ods for nondifferentiable optimization.
SIAM Journal on Optimization, 12:109–
138, 2001

Obtaining Primal Solutions

In general, we do not have strong duality between (141) and (150). Hence, it
is not always possible to extract the exact MAP state ŷ(θ) from an optimal
solution Λ̂ of (150). However, “good” feasible points can be expected to be
obtained from the edge MAP states (ŷF

s , ŷF
t ). Specifically, at each iteration

of the IncMP algorithm, for each node s, we choose the component cs of a
candidate primal solution uniformly at random from the set {ŷF

s | F ∈ Es}.
Those MAP states that appear in more edges adjacent to s thus have a
higher chance of being picked. We keep track of the best primal solution
ỹ generated so far, and in some cases, a certificate of optimality can be
obtained for ỹ this way.

Proposition 5 Assume that at a given outer iteration of the IncMP algorithm,
we have P(ỹ;θ) = D(Λ;θ). It then follows that Λ minimizes D(·) and ỹ maxi-
mizes P(·). This happens precisely if there is a set of edge MAP states {(ŷF

s , ŷF
t )}

that for each node s agrees on the current solution ỹs. In that case, ỹ = ŷ(θ).

Proof (Sketch) By construction, P(ỹ;θ) gives a lower bound on Å(θ),
whereas D(Λ;θ) gives an upper bound. For the bounds to coincide, ỹ and
Λ must both be optimal. Agreement of the edge MAP states at the joint
optimum follows from Wainwright et al.,149 Proposition 1. 149 Martin J. Wainwright, Tommi S.

Jaakkola, and Alan S. Willsky. MAP
Estimation via Agreement on Trees:
Message-Passing and Linear Program-
ming. IEEE Transactions on Information
Theory, 51(11):3697–3717, 2005

Experiments

Let us consider three random graphs of varying structure and exponential
parameters θ. First, GridIsingUni is a 50× 50 grid with binary variables
(Ys = {−1,+1}) and potentials given by θs(ys) = γsys and θst(ys, yt) =

γstysyt with γs and γst drawn from a U (−1,+1) distribution indepen-
dently for each node and edge. Second, GridMultiGauss is a 20× 20 grid
with variables of arity |Ys| = 16 and potentials chosen as θs(ys) = 0 and
θst(ys, yt) ∼ N (0, 15) independently. Finally, CompIsingUni is a complete
graph of 50 binary variables with potentials chosen akin to GridIsingUni.

We compare IncMP, our own algorithm, to our implementations of two
competing algorithms. We did not tune IncMP individually for each graph,
but rather use the general step size schedule we previously described. By
construction, a choice of trees is not required by IncMP. For DDSub, the
dual decomposition scheme of Komodakis et al.,150 the greedy algorithm 150 Nikos Komodakis, Nikos Paragios,

and Georgios Tziritas. MRF Optimiza-
tion via Dual Decomposition: Message-
Passing Revisited. In International Con-
ference on Computer Vision (ICCV), 2007

we described in the previous section was used to establish small sets of
trees covering all edges and obtained the primal solutions similarly to
IncMP. The step size schedule is similar to the one presented here and
performed well in previous experiments. For TrwMP, the tree-reweighted
message passing algorithm of Wainwright et al., the edge occurrence prob-
abilities are obtained analogously to DDSub, and the primal solutions are
constructed from the maximizers of the node beliefs at each iteration. The
messages are updated by iterating over factors in random order, akin to
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IncMP. For each graph and solver, we plot the best primal function value
found as a function of running time, averaged over 20 runs. We exclude
the time for generation of the set of trees needed by TrwMP and DDSub.

Figure 27 shows that our IncMP algorithm dominates its competitors
on the three graphs discussed above. Interestingly, all algorithms were able
to minimize the dual D(·) very effectively (not shown in the figure), but
the quality of primal solutions found by the methods varies significantly.
In particular, DDSub suffers from this phenomenon. One explanation is
that the LP relaxation need not be very tight for graphs of substantial size
and complexity. In this regime, the low per-iteration cost of IncMP allows
for guided construction and evaluation of a large number of candidate so-
lutions, which clearly pays off.

Conclusion and Outlook

We derived an efficient algorithm for approximate MAP estimation in cyclic
graphical models that is reminiscent of message passing. It is characterized
by the following properties: (a) guaranteed convergence to the global opti-
mum of the first-order LP relaxation of the MAP problem; (b) by construc-
tion, we obtain both an upper bound and a lower bound on the exact MAP
value; (c) if the LP relaxation is tight, the bounds coincide and we obtain the
exact MAP state; (d) the memory requirements are equal to those of belief
propagation. In future work, it may be interesting to employ the algorithm
as the computational core in a branch-and-bound scheme. The above prop-
erties of the algorithm, along with the potential for warm-starting, render
it an attractive choice in this setting.
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Figure 27: Best primal solution found
by the solvers as a function of time.



Exploiting Duality in Discriminative Training

In the previous chapter, we have already seen examples of the various du-
ality relations arising from relaxations of the log-partition function and the
maximum a-posteriori function, and how these can be exploited for effi-
cient inference in discrete graphical models. It is our restriction to convex
relaxations that enables this flexibility. In this chapter, we will have an in-
depth look at how these duality relations can be exploited for training of
discrete graphical models. Interestingly, one can obtain a wide variety of
equivalent optimization problems, each characterized by different strengths
in terms of computational efficiency and memory requirements.

Conditional Random Fields and Max-Margin Markov Networks

In the sequence, we will be discussing discriminative parameter estimation
in discrete graphical models, in particular maximum conditional likelihood
estimation (a.k.a. conditional random fields)151 and max-margin learning 151 John Lafferty, Andrew McCallum,

and Fernando Pereira. Conditional
Random Fields: Probabilistic Models
for Segmenting and Labeling Sequence
Data. In International Conference on Ma-
chine Learning (ICML), 2001

(a.k.a. max-margin Markov networks).152

152 Ben Taskar, Carlos Guestrin, and
Daphne Koller. Max-Margin Markov
Networks. In Advances in Neural Infor-
mation Processing Systems (NIPS), 2003

In the first part of the thesis, we already saw the objective functions these
approaches seek to minimize. Since we restrict our attention to discrete
graphical models in this part of thesis, we can re-consider these functions
in terms of the marginal polytope. We obtain

Ocrf(w) =
C
2
‖w‖2

2 + ∑
(x,y)

[
E(y | x; w) + A(θ(x; w))︸ ︷︷ ︸

maxµ∈M◦(x){〈θ(x;w),µ〉+H(pθ(µ))}

]
(155)

and

Om3n(w) =
C
2
‖w‖2

2 + ∑
(x,y)

[
E(y | x; w) + Å(θ(x; w) + e(y))︸ ︷︷ ︸

maxµ∈M(x){〈θ(x;w),µ〉+〈e(y),µ〉}

]
. (156)

Several comments are in order here: First of all, since for discrete random
fields, the exponential parameters θ(x; w) ∈ Rd(x) are unconstrained, we
need not empose any constraints on the model parameters w ∈ Rp to
ensure feasibility of the exponential parameters.

Second, while the corresponding optimization problems are convex and
unconstrained, the principal difficulty comes from the log-partition func-
tion A or the maximum a-posteriori function Å, which require optimization
over the marginal polytope.

Finally, the variational representation of the inner problem allows us to
recognize the CRF objective as a particular special case of an M3N, where
the loss term e(y) does not decompose over factors but is rather chosen as
the entropy of the posterior distribution.
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CRF Recipe 1 (Tightened Free Energy Formulation)
Choose a concave region-based entropy approximation H̃ and solve the convex optimization problem

minimize
w

Õcrf(w)
def
=

C
2
‖w‖2

2 + ∑
(x,y)

[
E(y | x; w) + max

τ∈L(x)
{〈θ(x; w),τ〉+ H̃(τ)}

]
by running convex message passing to solve the inner problem and obtain the maximizing pseudo-
marginals τ(x; w) required to compute the gradient for each example, at each step of an iterative opti-
mization algorithm.

The Relaxation Viewpoint

Let us now establish tractable approximations to the exact objective func-
tions. Our starting point will be the notion of relaxations we developed
over the previous chapters: Remember that a relaxation optimizes over a
simpler set of feasible points (a superset of the original set), and that the
relaxed objective function forms an upper bound on the original objective
function (for all points in the original set).

The formulations we obtain from this perspective are particularly intu-
itive: We simply replace A or Å by a suitable relaxation (which maintains
convexity), and solve for the model parameters, which is now tractable.

Training via Convex Entropy Approximations

As we discussed previously, for CRFs, a whole class of suitable relaxations
is provided by convex free energies over the local polytope L(G). Specifi-
cally, the negative convex free energy, characterized by a particular region-
based entropy approximation H̃, forms a relaxation of the log-partition
function A. This approach is illustrated in CRF Recipe 1. For each training
example, the original variational problem over the marginal polytope—
computation of A(θ(x; w))—is simply replaced by a tractable optimization
problem over the local polytope.

We already discussed two particular convex region-based entropy ap-
proximations that qualify for use in a relaxation,

Htrw(τ) = ∑s H(τs)−∑(s,t) νst I(τst), (157)

and

Htriv(τ) = ∑F H(τF), (158)

the tree-reweighted approximation of Wainwright et al.153 and the trivial153 Martin J. Wainwright, Tommi S.
Jaakkola, and Alan S. Willsky. A new
class of upper bounds on the log par-
tition function. IEEE Transactions on In-
formation Theory, 51:2313–2335, 2005

approximation of Weiss et al.154, respectively. Either of those two approxi-

154 Yair Weiss, Chen Yanover, and Talya
Meltzer. MAP Estimation, Linear Pro-
gramming and Belief Propagation with
Convex Free Energies. In Uncertainty in
Artificial Intelligence (UAI), 2007

mations are suitable for our purposes.
Assuming that a choice regarding the entropy approximation has been

made, the most important point is how the relaxed inference problem can
be solved. This is of particular importance since the problem must be
solved repeatedly, for each training example.
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In principle, tree-reweighted variational problems can be solved using
the original message passing algorithm of Wainwright et al. However, prob-
lems can arise, since this algorithm is not guaranteed to converge. The au-
thors suggest to “damp” the updates to avoid this effect. Since it is crucial
to be able to find the exact optimum of the inner problem, it is advisable to
use a convergent message passing scheme, such as the one introduced by
Meltzer et al.155 instead. 155 Talya Meltzer, Amir Globerson, and

Yair Weiss. Convergent message pass-
ing algorithms - A unifying view.
In Uncertainty in Artificial Intelligence
(UAI), 2009

For the variational problem arising from the trivial entropy approxi-
mation, the norm-product belief propagation scheme has recently been intro-
duced156, which also guarantees convergence to the exact optimum.

156 Tamir Hazan and Amnon Shashua.
Norm-product belief propagation:
Primal-dual message-passing for ap-
proximate inference. IEEE Transactions
on Information Theory, 56(12):6294–6316,
2010

In both cases, one obtains an approximation Ã(x; w) to the log-partition
function and a set of corresponding pseudo-marginals τ(x; w). These are
crucial in obtaining a gradient with respect to the model parameters,

∇Õcrf(w) = Cw + ∑
(x,y)

[B(x)]T[τ(x; w)−φ(y)]. (159)

This gradient can then be employed in a wide variety of iterative algorithms
for unconstrained convex optimization. If exact solutions are desired, the
L-BFGS157 method has emerged as the algorithm of choice for such prob- 157 Jorge Nocedal. Updating quasi-

Newton matrices with limited storage.
Mathematics of Computation, 35:773–782,
1980

lems. For exceedingly large datasets, stochastic gradient methods have also
emerged as viable choices.158 Here, the gradient is only computed on a

158 Léon Bottou and Olivier Bousquet.
The Tradeoffs of Large Scale Learning.
In Advances in Neural Information Pro-
cessing Systems (NIPS), 2008

subset of training examples at each step, approximating the true gradient.
Either way, the main weakness of this approach is that at each step of

an outer iterative optimization algorithm, several inner variational prob-
lems must be solved—one for each training example. Each such variational
problem is a large-scale optimization problem, and a veritable challenge
in its own right. Moreover, the inner optimization must be carried out to
rather high precision, to ensure that the objective function remains convex
(remember that maximization preserves the convexity), and that the line
search of the outer optimization algorithm can make sufficient progress.

Use in previous work. Despite its drawbacks, this approach enjoys some
popularity. For instance, it has successfully been followed by Levin and
Weiss159 in conditional random field learning for natural image segmen- 159 Anat Levin and Yair Weiss. Learning

to Combine Bottom-Up and Top-Down
Segmentation. In European Conference on
Computer Vision (ECCV), 2006

tation. Moreover, Yanover et al.160 have followed this route in optimizing

160 Chen Yanover, Ora Schueler-Furman,
and Yair Weiss. Minimizing and Learn-
ing Energy Functions for Side-Chain
Prediction. In International Conference on
Research in Computational Molecular Biol-
ogy (RECOMB), 2007

the CRF parameters for side-chain prediction, a prominent problem from
computational biology.

In both cases, the authors used a tree-reweighted entropy approxima-
tion. It is important to point out that a choice regarding the edge occur-
rence probabilities must be made in this case. As we saw in the previous
chapter, the choice of edge occurrence probabilities can significantly affect
the tightness of the approximation. The most popular choice seems to be to
choose the edge occurrence probabilities as uniform. Our previous exper-
iments confirm that this is a reasonable choice in principle. Nonetheless,
it is somewhat unsettling to know that tighter approximations could exist
within the same class of free energies.

An approach that suggests itself is then to consider the edge occurrence
probabilities as part of the model parameters over which we optimize. Can
such optimization be carried out efficiently? As we show next, this is in-
deed possible and a viable option.
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CRF Recipe 2 (Tightened Tree-Reweighted Free Energy Formulation)
Solve the jointly convex optimization problem

minimize
w,{ν}

Õcrf(w, {ν}) def
=

C
2
‖w‖2

2 + ∑
(x,y)

[
E(y |x; w) + max

τ∈L(x)
{〈θ(x; w),τ〉+ ∑s H(τs)−∑(s,t) νst I(τst)}

]
s.t. {ν} ∈ Tn

by running convex message passing to solve the inner problem, obtaining the maximizing pseudo-marginals
τ(x; w) and the corresponding mutual information I(τst(x; w)) required to compute the gradient for each
example, at each step of an iterative optimization algorithm, ensuring feasibility of the edge occurrence
probabilities ν of each example by projecting onto the spanning tree polytope T(x).

The Special Case of Tree-Reweighted Approximations

In the previous chapter, when we introduced our TightenBound algo-
rithm, we already saw that it is possible to tighten the tree-reweighted
upper bound over the edge occurrence probabilities in a double-loop algo-
rithm. However, in conditional random field training, this approach would
actually result in a triple-loop method, rendering optimization infeasible.

Our main observation is that the tree-reweighted approximation to the
log-partition function,

Atrw(θ,τ) = max
τ∈L(G)

{〈θ,τ〉+ ∑s H(τs)−∑(s,t) νst I(τst)}, (160)

is jointly convex both in θ and the edge occurrence probabilities ν.161 One161 Observe that the objective function of
the variational problem is linear in θ

and ν.
can thus move the ν parameters associated with each example into the
overall objective function and use the gradients

∇θAtrw(θ,τ) = τ̂ (161)

and

∇τAtrw(θ,τ) = −[I(τ̂st)](s,t)∈E (162)

to obtain the gradient with respect to the overall objective function.
The main complication arises from the fact that the edge occurrence

probabilities of each example must belong to the spanning tree polytope,162162 Jack Edmonds. Matroids and the
greedy algorithm. Mathematical Pro-
gramming, 1(1):127–136, 1971

which we denote by T(G).
Assuming we could project onto this polytope, the projected gradient

methods163 we already discussed would be suitable for handling this type163 Mark Schmidt, Ewout Van den Berg,
Michael P. Friedlander, and Kevin Mur-
phy. Optimizing Costly Functions with
Simple Constraints: A Limited-Memory
Projected Quasi-Newton Algorithm. In
Artificial Intelligence and Statistics (AIS-
TATS), 2009; and Ernesto G. Birgin,
José M. Martínez, and Marcos Raydan.
Nonmonotone spectral projected gradi-
ent methods on convex sets. SIAM Jour-
nal on Optimization, 10:1196–1211, 2000

of constraint. To do so, we need to be able to solve

arg min
τ∈T(G)

‖τ− τ′‖2
2, (163)

starting out from an infeasible point τ′. In fact, as we saw in the context
of our CoveringTrees algorithm, this can be done efficiently by solving a
sequence of minimum spanning tree problems with edge weights given by
2(ν(k) − ν′), effectively taking conditional gradient steps.

We are not aware of this approach having been followed in the literature
before, but it certainly seems worthwhile.
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M3N Recipe 1 (Zero-Temperature Limit Formulation)
Choose a decomposing loss term e, as well as an arbitrary concave region-based entropy approximation H̃
and a close-to-zero temperature T, and solve the convex optimization problem

minimize
w

Õm3n(w)
def
=

C
2
‖w‖2

2 + ∑
(x,y)

[
E(y | x; w) + max

τ∈L(x)
{〈θ(x; w) + e(y),τ〉+ TH̃(τ)}

]
by running convex message passing to solve the inner problem and obtain the maximizing pseudo-
marginals τ(x; w) required to compute the gradient for each example, at each step of an iterative opti-
mization algorithm.

Free Energies in the Limit of the Temperature

L(G)

τ̂ (locally consistent, optimal
interior point – close to vertex)

∆(T)

Figure 28: As T decreases, the optimal
pseudo-marginals are gradually drawn
towards a vertex, which can either be
integral or fractional.

Let us now consider training of M3Ns. Here, the maximum-a-posteriori
function Å is the main source of complication. One promising approach,
suggested by the close similarity to the log-partition function A, is to pro-
ceed as previously for CRFs, but in the “zero temperature” limit.

In particular, we already saw that
T

A(θ)
def
= T A(θ/T) (164)

forms a smooth approximation to Å, with equality in the limit of T →
0. The same relationship holds between relaxations of the log-partition
function and the linear programming relaxation of Å, which optimizes over
L(G) instead of M(G).

For T > 0, one can evaluate the smoothed relaxation at θ(x; w) + e(y) in
the M3N objective and obtain the gradient

∇Õm3n(w) = Cw + ∑
(x,y)

[B(x)]T[τ(x; w)−φ(y)], (165)

where τ(x; w) refers to the pseudo-marginals that solve the smooth, loss-
augmented variational problem.

Exactly how the inner variational problem is best solved depends on the
entropy approximation in use. Since the quality of the entropy approxima-
tion does not matter in this case, it is perhaps best to use a simple approxi-
mation like Htriv. The variational problem can then again be solved using
norm-product belief propagation,164 with the difference to the CRF-case

164 Tamir Hazan and Amnon Shashua.
Norm-product belief propagation:
Primal-dual message-passing for ap-
proximate inference. IEEE Transactions
on Information Theory, 56(12):6294–6316,
2010

being that the counting number of each factor is T, rather than 1.
Due to smoothing, the overall objective function is differentiable in w,

so almost any solver for unconstrained convex problems can be applied.

Relation to previous work. The relationship between A and Å has repeatedly
been noted in the literature. For instance, Pletscher et al.165 introduce a

165 Patrick Pletscher, Cheng Soon Ong,
and Joachim M. Buhmann. Entropy
and Margin Maximization for Struc-
tured Output Learning. In European
Conference on Machine Learning (ECML),
2010“continuum” of approximations for discriminative training based on the

temperature parameter. The special case of T = 1 is referred to as the
“Softmax Margin CRF” by Gimpel and Smith.166

166 Kevin Gimpel and Noah A. Smith.
Softmax-Margin CRFs: Training Log-
Linear Models with Cost Functions. In
Annual Conference of the North American
Chapter of the Association for Computa-
tional Linguistics (NAACL), 2010

In both case, the authors restrict their consideration to the exact case.
Recently, Hazan and Urtasun167 extended the approach to approximations

167 Tamir Hazan and Rachel Urtasun.
A Primal-Dual Message-Passing Algo-
rithm for Approximated Large Scale
Structured Prediction. In Advances in
Neural Information Processing Systems,
2010

over the local polytope.
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M3N Recipe 2 (LP Relaxation Formulation)
Pick a decomposing loss term e and solve the convex optimization problem

minimize
w

Õm3n(w)
def
=

C
2
‖w‖2

2 + ∑
(x,y)

[
E(y | x; w) + max

τ∈L(x)
{〈θ(x; w) + e(y),τ〉}

]
by running an off-the-shelf LP solver or a message passing algorithm yielding a fractional primal-optimal
solution τ(x; w) required to compute a subgradient for each example, at each step of an iterative optimiza-
tion algorithm for non-differentiable problems.

Training via Linear Programming Relaxations

In the context of max-margin Markov networks, perhaps the most obvious
and most well-studied168 approach is to estimate the parameters directly168 Alex Kulesza and Fernando Pereira.

Structured Learning with Approximate
Inference. In Advances in Neural Informa-
tion Processing Systems (NIPS), 2007; and
Thomas Finley and Thorsten Joachims.
Training structural SVMs when exact
inference is intractable. In International
Conference on Machine Learning (ICML),
2008

using linear programming relaxations of Å.
Unlike the log-partition function, there is no need for an additional ap-

proximation of the entropy term. In exchange, the variational problem is
not strictly convex, so the maximum need not be attained uniquely. As a
consequence, the overall objective is not differentiable in the model param-
eters. Nonetheless, one can obtain a subgradient

g̃m3n(w) = Cw + ∑
(x,y)

[B(x)]T[τ(x; w)−φ(y)], (166)

where τ(x; w) denotes one of possibly many solutions of the linear pro-
gram. If the LP relaxation is tight, τ(x; w) will be a vertex, such that
τ(x; w) = φ(y) for some y ∈ Y . In general, the solution will be fractional.

The options for solving the inner problem are somewhat limited. Of
course, one can in principle use an off-the-shelf linear programming solver,
but in practice, it is desirable to exploit the problem structure.

This requires a message passing algorithm that allows to retrieve the pri-
mal solution of the LP relaxation. Algorithms that are guaranteed to find
the optimum and yield the primal solution have recently been introduced
by Ravikumar et al.169 and Martins et al.,170 but compared to typical mes-

169 Pradeep Ravikumar, Alekh Agarwal,
and Martin J. Wainwright. Message-
passing for Graph-structured Linear
Programs: Proximal Methods and
Rounding Schemes. Journal of Machine
Learning Research, 11:1043–1080, 2010

170 André F. T. Martins, Mário A. T.
Figueiredo, Pedro M. Q. Aguiar,
Noah A. Smith, and Eric P. Xing. An
Augmented Lagrangian Approach
to Constrained MAP Inference. In
International Conference on Machine
Learning (ICML), 2011

sage passing algorithms that only yield dual solutions, they carry a large
constant overhead. Learning using the LP relaxation is perhaps most prac-
tical for problems with binary variables; in this special case, an optimal
primal solution can be recovered trivially from a dual solution.

To solve the outer problem, the venerable subgradient method is in prin-
ciple applicable, but provides only a sub-linear convergence rate. If high
precision is desired, bundle methods specifically designed for regularized
risk functionals171 are a better choice. Analogously to stochastic gradient

171 Choon Hui Teo, S. V. N. Vish-
wanathan, Alex Smola, and Quoc V. Le.
Bundle Methods for Regularized Risk
Minimization. Journal of Machine Learn-
ing Research, 11:311–365, 2010

descent, stochastic sub-gradient methods172 have also been developed that172 Shai Shalev-Shwartz, Yoram Singer,
and Nathan Srebro. Pegasos: Primal
estimated sub-gradient solver for SVM.
In International Conference on Machine
Learning (ICML), 2007

provide faster initial convergence on large, redundant datasets and are ap-
plicable to non-differentiable problems of the above kind.

Learning using linear programming relaxations has been considered in
numerous application areas, for instance dependency parsing in natural lan-
guage processing.173173 André F. T. Martins, Noah A. Smith,

and Eric P. Xing. Polyhedral outer ap-
proximations with application to natu-
ral language parsing. In International
Conference on Machine Learning (ICML),
2009
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Related Approaches

M(G)

φ(y) (integral,
non-optimal vertex)

τ (locally consistent,
non-optimal interior point)

Figure 29: In training via sum-product
loopy belief propagation, one uses ap-
proximate marginals obtained from the
Bethe approximation. Since the global
optimum cannot be found, convexity
of the overall objective breaks down.
Using max-product belief propagation,
one employs non-optimal integral ver-
tices. This approach is undergenerating
and does not perform well.

All “recipes” we considered so far had in common that they solve a well-
motivated convex relaxation of the original problem, yielding an upper
bound on the exact optimum. Various other approximations have been
suggested in the literature that are closely connected but expose undesir-
able properties. In the following, we will review two of the most common
approaches and discuss their shortcomings.

Training via loopy belief propagation. Prior to the advent of convex message
passing algorithms, perhaps the most common approach was to obtain
approximate marginals,174 or approximate MAP states using loopy belief

174 S. V. N. Vishwanathan, Nicol N.
Schraudolph, Mark W. Schmidt, and
Kevin P. Murphy. Accelerated Train-
ing of Conditional Random Fields with
Stochastic Gradient Methods. In Inter-
national Conference on Machine Learning
(ICML), 2006; and Charles Sutton and
Andrew McCallum. An Introduction
to Conditional Random Fields for Re-
lational Learning. In Lise Getoor, ed-
itor, Introduction to Statistical Relational
Learning, pages 93–128. MIT Press, 2007

propagation. As we already intimated, loopy belief propagation (in its
sum-product variant) seeks to minimize the Bethe free energy.

The problem with

ABethe(θ)
def
= arg max

τ∈L(G)

{〈θ,τ〉+ HBethe(τ)} (167)

is that in principle, the function is convex in θ, but only if the variational
problem can be solved exactly. Alas, this is not the case, since the objective
function is not convex in the pseudo-marginals τ over which it is optimized.
Even if we could find the optimum, ABethe need not be smooth, since the
maximum need not be attained uniquely (the Bethe approximation to the
entropy does not guarantee strict convexity).

From a practical perspective, this renders optimization very difficult.
From a theoretical viewpoint, recent results of Heinemann and Glober-
son175 characterize the implications of these problems on learning (although

175 Uri Heinemann and Amir Glober-
son. What Cannot be Learned with
Bethe Approximations. In Uncertainty
in Artificial Intelligence (UAI), 2011

in the generative setting): In particular, unlike for the exact case or convex
relaxations, there exists data for which moment-matching176 does not hap-

176 Martin J. Wainwright. Estimating the
"wrong" graphical model: Benefits in
the computation-limited setting. Jour-
nal of Machine Learning Research, 7:1829–
1859, 2006

pen: even at the optimum, the marginals under the model will not be equal
to the empirical marginals.

Training M3Ns by running (max-product) loopy belief propagation to
obtain approximate MAP states, and using these instead of exact maximiz-
ers to obtain a subgradient with respect to the model parameters is even
less well-motivated. In particular, as Finley and Joachims177 show, this ap-

177 Thomas Finley and Thorsten
Joachims. Training structural SVMs
when exact inference is intractable.
In International Conference on Machine
Learning (ICML), 2008

proach is undergenerating, in that the model cannot realize all vertices of the
marginal polytope during training. As a consequence, vertices that cannot
be realized cannot be penalized either. A problem in particular is incom-
patibility with approximate maximum a-posteriori prediction at test time:
models trained in the above way tend to promote fractional solutions.

In contrast, training using LP relaxations is overgenerating, in that the
model can realize a superset of the feasible points. This leads to fractional
solutions being penalized during training and increases the chances of in-
tegral solutions being found by approximate MAP prediction at test time.

Training via the mean field approximation. Discriminative training using mean
field approximations has also been suggested by several authors, for in-
stance by Vishwanathan et al., and more recently Weinman et al.178. 178 Jerod J. Weinman, Lam Tran, and

Christopher J. Pal. Efficiently Learning
Random Fields for Stereo Vision with
Sparse Message Passing. In European
Conference on Computer Vision (ECCV),
2008

In mean field approximations, one optimizes over a tractable subset of
the marginal polytope. In the naïve mean field approximation in particular,
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this subset corresponds to fully factorized distributions, such that

µst(ys, yt)
!
= µs(ys)µt(yt), ∀(s, t), (ys, yt). (168)

M(G)

MF (G)

µ (globally consistent,
non-optimal interior point)

Figure 30: Training via approximate
marginals obtained from the naive
mean field approximation: The set
of fully factorized marginals is non-
convex, so the optimal marginals can-
not in general be found. This causes
convexity of the overall learning objec-
tive to break down.

A sketch of the set of MF (G) of fully factorized marginals is shown
in Figure 30. In general, this set is not convex.179 One may choose to

179 Martin J. Wainwright and Michael I.
Jordan. Graphical Models, Exponen-
tial Families, and Variational Inference.
Foundations and Trends in Machine Learn-
ing, 1(1-2):1–305, 2008

explicitly enforce the constraints, moving them into the objective function
of the variational problem; this overcomes non-convexity of the constraint
set, but in turn results in a non-concave objective function.

The implications for conditional random field training are two-fold: First,
as in the case of the Bethe approximation, while the mean field approx-
imation to the log-partition function AF (θ) is in principle convex in θ,
convexity only holds up if the maximization over µ can be carried out ex-
actly, which is intractable. Second, somewhat analogously to the concept
of undergeneration set forth by Finley and Jochaims180 for training using ap-

180 Thomas Finley and Thorsten
Joachims. Training structural SVMs
when exact inference is intractable.
In International Conference on Machine
Learning (ICML), 2008

proximate MAP states, a model trained using mean field approximations
can only realize, and hence penalize, a subset of the valid marginals during
training. While the implications of this undesirable property have not to
our knowledge been investigated empirically in the context of conditional
random field training, the results of Finley and Joachims still suggest that
one should be cautious of any potential detrimental effects.

The Reparameterization Viewpoint

So far, we discussed the natural approach of relaxing the inner inference
problems that must be solved during training of conditional random fields
and max-margin Markov networks. We also saw other approaches that are
commonly followed in the literature and discussed undesirable properties
of these approaches.

We will now follow up with a different approach that builds on the con-
vexity of the relaxations we previously used. For inference, we already saw
that optimization of free energies over the local polytope and optimization
of LP relaxations is dually coupled to a certain class of bound tightening
problems. This duality can also be exploited for discriminative training, as
we are going to point out shortly.

In particular, these bounds are constructed as follows: Decompose a
given cyclic graph G into tractable subgraphs or pieces R ∈ R(G), and
approximate the log-partition function A(θ) by a weighted sum of the log-
partition functions AR(λ(R)) of the pieces,

Ã(θ) = ∑R c(R)AR(λ(R)), ∑R λ(R) !
= θ, (169)

where the tractable set of parameters {λ(R)}R∈R(G) associated with the
pieces must add up the original vector θ ∈ Rd of exponential parameters.
For a piece R to be tractable, a subset of its parameters λ(R) is bound to
be zero. We use the index set I(R) ⊂ {1, 2, . . . , d} to denote the indices of
non-zero components of a piece R.

Reparameterization. We say that the tractable parameters {λ(R)} induce a
reparameterization of θ if the condition

∑R〈c(R)λ(R),φ(y)〉 = 〈θ,φ(y)〉, ∀y ∈ Y , (170)
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holds, that is, the sum over pieces assigns the same energy to each joint state
that it receives under the original parameter vector. It can easily be seen
that this is the case if the {λ(R)} parameters add up to θ.

Duality. For a suitable choice of pieces R and associated weights c(R),
(169) forms an upper bound on the exact log-partition function. An ob-
vious attempt is then to find the tightest such bound, by minimizing over
{λ(R)}, subject to the reparameterization constraint. Indeed, this problem
is related to the variational problems we previously considered through
convex duality, that is,

min
{λ(R)} :

∑R c(R)λ(R)=θ

∑
R

c(R)AR(λ(R)) = max
τ∈L(G)⊇M(G)

{〈θ,τ〉+ H̃(τ)} (171)

for some region-based entropy approximation H̃, the precise form of which
arises from weighted entropy terms contributed by the tractable pieces. For
typical choices of pieces, the constraint set L(G) is precisely the first-order
local polytope we discussed previously.

Approximate MAP. A similar approach can be followed to obtain an ap-
proximation to Å(θ), the maximum a-posteriori function. Since the entropy
term is absent in this case, the choice of weights c(R) does not matter and
we can simply assume that they are all 1, obtaining

min
{λ(R)} :

∑R λ(R)=θ

∑
R

AR(λ(R)) = max
τ∈L(G)⊇M(G)

〈θ,τ〉. (172)

The choice of pieces only affects the outer approximation L(G), and for
typical choices, this will again be the first-order local polytope.

Examples. Our claims are best understood by means of concrete examples.
The tree-reweighed bounds of Wainwright et al.181 map into this framework 181 Martin J. Wainwright, Tommi S.

Jaakkola, and Alan S. Willsky. A new
class of upper bounds on the log par-
tition function. IEEE Transactions on
Information Theory, 51:2313–2335, 2005;
and Martin J. Wainwright, Tommi S.
Jaakkola, and Alan S. Willsky. A new
class of upper bounds on the log par-
tition function. IEEE Transactions on In-
formation Theory, 51:2313–2335, 2005

as follows: The pieces are chosen as spanning trees T of the graph, each
associated with a probability ρ(T). As the authors show, the dual relation

min
{λ(T)} :

∑T ρ(T)λ(T)=θ

∑
T

ρ(T)A(λ(T)) = max
τ∈L(G)

{〈θ,τ〉+ Htrw(τ)} (173)

holds, where the approximate entropy Htrw(τ) = ∑s H(τs)−∑(s,t) νst I(τst)

depends on the coefficients ρ(T) via the edge occurrence probabilities νst.
As another example, consider the node-splitting piecewise upper bound

of Sutton and McCallum,182 which approximates the log-partition function 182 Charles Sutton and Andrew McCal-
lum. Piecewise training for structured
prediction. Machine learning, 77(2):165–
194, 2009

by a sum of per-factor log-partition functions, i.e. Apw(θ) = ∑F AF(θ). As
we show in the appendix of this section, by tightening over the reparame-
terizations, one obtains

min
{λ(F)} :

∑F λ(F)=θ

∑
F

AF(λ(F)) = max
τ∈L(G)

{〈θ,τ〉+ ∑
F

H(τF)}, (174)

a variational problem involving the trivial entropy approximation of Weiss
et al.,183 providing an interesting interpretation of piecewise training. 183 Yair Weiss, Chen Yanover, and Talya

Meltzer. MAP Estimation, Linear Pro-
gramming and Belief Propagation with
Convex Free Energies. In Uncertainty in
Artificial Intelligence (UAI), 2007

By substituting Å for A, both cases reduce to the linear programming re-
laxation over the first-order local polytope, so for M3N training, the choice
of pieces matters only for computational reasons.
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CRF Recipe 3 (Consecutively Tightened Reparameterization Formulation)
Choose a decomposition of each example into tractable subgraphs R ∈ R(x) with associated weights c(R)
and index set I(R) ⊂ {1, 2, . . . , d(x)}, and solve the convex optimization problem

minimize
w

Õcrf(w)
def
=

C
2
‖w‖2

2 + ∑
(x,y)

[
E(y | x; w) + min

{λ(R)}
∑R∈R(x) c(R)AR(λ(R))

]
s.t. ∑R c(R)λ(R) = θ(x; w)

λα(R) = 0, ∀R, α /∈ I(R)

by solving, for each example, the inner reparameterization problem subject to the reparameterization and
structural constraints (handled explicitly or implicitly) to obtain the marginals µR(x; w) of each tractable
subgraph, needed to compute the full gradient at each step of an iterative optimization algorithm.

Consecutive Tightening of the Log-Partition Function

We can exploit the duality relations between reparameterization and the vari-
ational problems we previously considered in CRF training.

In particular, as shown in CRF Recipe 3, instead of solving a variational
problem over the local polytope in order to approximate the log-partition
function, we can equivalently solve a reparameterization problem for suit-
ably chosen pieces and associated weights.

One feasible way of doing so is to solve the reparameterization problem
for each example at each iteration. Note that the overall objective is convex
in the {λ(R)} parameters. By standard results in convex optimization,184184 Stephen Boyd and Lieven Vanden-

berghe. Convex Optimization. Cam-
bridge University Press, 2004

partial minimization over these parameters then preserves convexity of the
problem. Each such inner problem can be solved efficiently, for instance,
using projected gradient methods, as in our TightenBound algorithm.

How can the outer problem, the minimization with respect to w, be
solved? A slight complication is that—as presented—w enters the inner
problem only through the reparameterization constraints. Nonetheless, the
solution to this problem is actually a function of w.

To obtain the gradient with respect to w, we use the fact the reparam-
eterization constraints can be eliminated altogether. In particular, observe
that only equality constraints are present. For each index α ∈ I , we can
thus simply pick any piece Rα with α ∈ I(Rα), and solve for the associated
parameter λα(Rα), obtaining

λα(Rα) =
1

c(Rα)
θα(x; w)− ∑

R∈R\Rα

c(R)
c(Rα)

λα(R), (175)

which allows us to move θ(x; w) into the objective function. Each compo-
nent θα enters the objective only through the single chosen piece Rα, which
we can now differentiate:

c(Rα)∂ARα(·)
∂θα

=
�
�
�c(Rα)

c(Rα)
µα(Rα), (176)

where µα(Rα) denotes the marginal probability of a particular state in the
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reparameterized piece Rα. Interestingly, as we have already seen in the
context of our TightenBound algorithm, at optimum, the reparameter-
ized pieces satisfy the stationary condition

µα(R) !
= τα(x; w), ∀R : α ∈ I(R), (177)

that is, the marginals of the reparameterized pieces are all equal to a single
pseudo-marginal τα(x; w), where τ(x; w) denotes the solution of the dually
coupled variational inference problem.

The comforting—and expected—result is that the gradient with respect
to the model parameters is equivalent to the gradient we previously ob-
tained for CRF Recipe 1,

∇Õcrf(w) = Cw + ∑
(x,y)

[B(x)]T[τ(x; w)−φ(y)]. (178)

The gradient can then be employed in an off-the-shelf iterative algorithm
for unconstrained convex optimization, as previously.

One may wonder what has been gained over CRF Recipe 1. For CRF
training, the practical gains are little, since the inner variational problem is
strictly convex and the pseudo-marginals can be trivially obtained by solv-
ing either the bound-tightening or the free energy minimization problem.
However, the importance of this formulation lies in the fact that the training
objective is actually jointly convex in the model and the reparameterization
parameters, which we are going to exploit in a subsequent recipe.

Moreover, as we shall see, the dual coupling between equivalent formu-
lations of the inference sub-problem is more subtle for M3Ns, such that the
reparameterization formulation does have practical benefits.

Relation to previous work. From a theoretical viewpoint, the reparameter-
ization formulation also enables us to see the close connection to related
approaches, which is interesting in its own right.

For instance, by choosing the tractable pieces as spanning trees, one
obtains a tightened version of the spanning-tree approximation that has
been suggested by Pletscher et al.185 for conditional random field training. 185 Patrick Pletscher, Cheng Soon Ong,

and Joachim M. Buhmann. Spanning
Tree Approximations for Conditional
Random Fields. In Artificial Intelligence
and Statistics (AISTATS), 2009

If a loser approximation is sufficient, one can simply omit minimization
over the {λ(R)} parameters in CRF Recipe 3 to obtain precisely such an
approach, which is computationally more attractive.

If, on the other hand, one chooses the pieces as single factors, one obtains
a tightened variant of the piecewise training approach suggested by Sutton
and McCallum.186 As we already intimated, this approach is equivalent 186 Charles Sutton and Andrew McCal-

lum. Piecewise training for structured
prediction. Machine learning, 77(2):165–
194, 2009

to learning with the trivial approximation to the log-partition function sug-
gested by Weiss et al.187. The close connection between piecewise training

187 Yair Weiss, Chen Yanover, and Talya
Meltzer. MAP Estimation, Linear Pro-
gramming and Belief Propagation with
Convex Free Energies. In Uncertainty in
Artificial Intelligence (UAI), 2007

and this particular approximation was already pointed out by Ganapathi et
al.,188 but motivated from the dual perspective to ours, namely in terms of

188 Varun Ganapathi, David Vickrey,
John Duchi, and Daphne Koller. Con-
strained Approximate Maximum En-
tropy Learning. In Uncertainty in Arti-
ficial Intelligence (UAI), 2008

adding local polytope constraints to the per-factor log-partition functions
to enforce consistency of their pseudo-marginals. In contrast, we arrived
at this result by reparameterizing the per-factor log-partition functions—a
different perspective, which yields, however, a mathematically equivalent
approximation.
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M3N Recipe 3 (Consecutively Tightened Reparameterization Formulation)
Choose a decomposition of each example into tractable subgraphs R ∈ R(x) with associated index set
I(R) ⊂ {1, 2, . . . , d(x)}, and solve the convex optimization problem

minimize
w

Õm3n(w)
def
=

C
2
‖w‖2

2 + ∑
(x,y)

[
E(y |x; w) + min

{λ(R)}
∑R∈R(x) ÅR(λ(R))

]
s.t. ∑R λ(R) = θ(x; w) + e(y)

λα(R) = 0, ∀R, α /∈ I(R)

by solving, for each example, the inner reparameterization problem subject to reparameterization and struc-
tural constraints (handled explicitly or implicitly) to obtain a maximizing state ŷR(x; w) of each tractable
subgraph, needed to compute a subgradient at each step of a non-differentiable optimization scheme.

Consecutive Tightening of the Maximum A-Posteriori Function

A similar reparameterization approach may be followed for M3N training.
As we intimated in the beginning of this section, any choice of pieces will
result in a linear programming relaxation of the MAP function, and both
for single factor pieces and spanning trees, the resulting constraint set is
precisely the local polytope L(G).

The reparameterization approach has a practical advantage over solving
a linear programming over the local polytope: In fact, most message pass-
ing algorithms belong to the family of bound tightening algorithms189 that189 Talya Meltzer, Amir Globerson, and

Yair Weiss. Convergent message pass-
ing algorithms - A unifying view.
In Uncertainty in Artificial Intelligence
(UAI), 2009

implicitly solve the reparameterization problems. As such, one cannot eas-
ily obtain the solution of the dually coupled linear programming relaxation
from them, except for special cases.

For instance, the IncMP algorithm we previously introduced can be
used to solve the inner reparameterization problem very efficiently. An-
other suitable and efficient message passing algorithm is the augmented
Lagrangian approach by Meshi et al.190190 Ofer Meshi and Amir Globerson. An

Alternating Direction Method for Dual
MAP LP Relaxation. In European Con-
ference on Machine Learning and Princi-
ples and Practice of Knowledge Discovery
in Databases (ECML PKDD), 2011

However, note that it is not a sound approach to minimize the bound
using coordinate descent schemes such as MPLP191 or TRW-S192, which

191 Amir Globerson and Tommi
Jaakkola. Fixing max-product: Conver-
gent message passing algorithms for
MAP LP-relaxations. In Advances in
Neural Information Processing Systems,
2007

192 Vladimir Kolmogorov. Convergent
tree-reweighted message passing for
energy minimization. IEEE Transactions
on Pattern Analysis and Machine Intelli-
gence, 28(10):1568 – 1583, 2006

get stuck at sub-optimal solutions. In order to maintain convexity, it is
crucial that the partial minimization is carried out exactly. Otherwise, one
needs to maintain the {λ(R)} variables over iterations, which we are going
to consider in the next recipe.

As was the case for reparameterization of the log-partition function, the
inner problem is a function of w. To see this, we can again move θ(w; x)
into the objective via the relation

λα(Rα) = θα(x; w) + eα(y)− ∑
R∈R\Rα

λα(R). (179)

However, as is to be expected, the function is non-smooth in θ(x; w) and
hence w. Nonetheless, after solving the reparameterization problem to
optimality, one can obtain a subgradient with respect to θ(x; w) in terms of
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the containing pieces via

g̊α(θα(x; w)) = φα(ŷR(x; w)), α ∈ I(R), (180)

where ŷR(x; w) is a maximizing state (after reparameterization) of any
piece R containing index α, and φ(·) denotes the sufficient statistics of
that state. Hence, the component of the subgradient is 1 if θα belongs to the
maximizing state, and 0 otherwise.

Note that this leaves several degrees of freedom: first of all, the maxi-
mum need not be attained uniquely in a piece, and second, in constructing
the subgradient, one can choose among the pieces that contain index α.
Unlike the previous case of the log-partition function, where the marginals
of the pieces must agree at the optimum, the MAP states of the pieces need
not agree. However, if they do agree, the LP relaxation was tight, and a
subgradient constructed as above corresponds to the sufficient statistics of
an exact joint MAP state ŷ(x, w), as in the case of the exact M3N objective.

Solving the outer problem. Using the above recipe to obtain a subgradient of
the inner problem with respect to θ(x; w), and by applying the chain rule,
one obtains a subgradient of the overall objective with respect to w,

g̃m3n(w) = Cw + ∑
(x,y)

[B(x)]T[g̊(θ(x; w))−φ(y)]. (181)

Using this subgradient, one can again employ a solver for non-differentiable
regularized risk functionals,193 or a stochastic subgradient method.194 193 Choon Hui Teo, S. V. N. Vish-

wanathan, Alex Smola, and Quoc V. Le.
Bundle Methods for Regularized Risk
Minimization. Journal of Machine Learn-
ing Research, 11:311–365, 2010

194 Shai Shalev-Shwartz, Yoram Singer,
and Nathan Srebro. Pegasos: Primal
estimated sub-gradient solver for SVM.
In International Conference on Machine
Learning (ICML), 2007

Related work. We are unaware of this approach having been followed in the
literature. As we pointed out, its convenience lies in the fact that one need
not obtain primal solutions of the linear programming relaxation. Instead,
it is sufficient to tighten the dual formulation, which is an easier task in
practice, and indeed the route that is followed by most message passing
algorithms.

Exploiting Joint Convexity in All Parameters

The two previous recipes still rely on consecutive tightening of a reparam-
eterization of the log-partition function or the MAP function as an inner
problem, which must be solved repeatedly during the course of optimizing
the overall objective function.

However, we already alluded to the fact that the overall objective func-
tion is actually jointly convex in both the model parameters w and the repa-
rameterization parameters {λ(R)}. An important consequence of this fact
is that the inner problem need not actually be solved at each step, but rather
can we include its parameters in the overall optimization process. That is,
instead of defining our objective function in terms of partial minimization
with respect to the {λ(R)}, these parameters become part of the outer ob-
jective function and are optimized along with w at each step.

This transformation avoids the need to repeatedly run inference using
a specialized solver as part of training. On the other hand, it results in a
single very-large-scale convex optimization problem, the number of param-
eters of which grows linearly in the number of training examples.
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CRF Recipe 4 (Jointly Convex Reparameterization Formulation)
Choose a decomposition of each example into tractable subgraphs R ∈ R(x) with associated weights c(R)
and index set I(R) ⊂ {1, 2, . . . , d(x)}, and solve the jointly convex optimization problem

minimize
w,{λ(R)}

Õcrf

(
w, {λ(R)}

) def
=

C
2
‖w‖2

2 + ∑
(x,y)

[
E(y | x; w) + ∑R∈R(x) c(R)AR(λ(R))

]
s.t. ∑R c(R)λ(R) = θ(x; w), ∀(x, y)

λα(R) = 0, ∀(x, y), R, α /∈ I(R)

by computing, at each step of an iterative optimization algorithm and for each example, the marginals
µR(x; w,λ(R)) of each tractable subgraph for the current parameters to obtain the gradient, handling the
reparameterization constraints implicitly by moving them into the objective function.

Exploiting Joint Convexity in CRF training

Let us make this strategy concrete for CRF training, where the {λ(R)}
parameters serve the purpose of tightening a piecewise approximation of
the log-partition function.

The formulation as shown in CRF Recipe 4 is explicit and most eas-
ily comprehensible, but for practical optimization purposes we shall again
find it more convenient to eliminate the reparameterization constraints by
moving them into the objective function. Again, for each index α ∈ I , we
solve for the parameter of a chosen piece Rα to obtain

λα(Rα) =
1

c(Rα)
θα(x; w)− ∑

R∈R\Rα

c(R)
c(Rα)

λα(R), (182)

and substitute into the objective function. For the model parameters, we
then obtain the familiar (partial) gradient

∇wÕcrf(w, {λ(R)}) = Cw + ∑
(x,y)

[B(x)]T[τ(x; w, {λ(R)})−φ(y)], (183)

where the vector of pseudo-marginals is given component-wise by

τα

(
x; w, {λ(R)}

) def
=

c(Rα)∂ARα(·)
∂θα

= µα(Rα). (184)

In other words, the components of τ(·) correspond to marginal probabil-
ities of the designated pieces Rα, for the current parameters. At the joint
global optimum, all pieces again yield (locally) consistent marginal proba-
bilities, so it does not matter to which piece θα is assigned.

The gradient with respect to the tightening parameters is slightly more
involved. Observe that each λα(R) occurs in two pieces: once in its own
piece R with positive sign, and by (182) once in the designated piece Rα of
index α, with negative sign. The partial derivative is then

∂Õcrf(w, {λ(R)})
∂λα(R)

= c(R)[µα(R)− µα(Rα)], (185)

exposing the intuitive stationary condition of marginal consistency among
the reparameterized pieces.
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M3N Recipe 4 (Jointly Convex Reparameterization Formulation)
Choose a decomposition of each example into tractable subgraphs R ∈ R(x) with associated index set
I(R) ⊂ {1, 2, . . . , d(x)}, and solve the jointly convex optimization problem

minimize
w,{λ(R)}

Õm3n

(
w, {λ(R)}

) def
=

C
2
‖w‖2

2 + ∑
(x,y)

[
E(y | x; w) + ∑R∈R(x) ÅR(λ(R))

]
s.t. ∑R λ(R) = θ(x; w) + e(y), ∀(x, y)

λα(R) = 0, ∀(x, y), R, α /∈ I(R)

by computing, at each step of an iterative optimization algorithm and for each example, a maximizing state
ŷR(x; w,λ(R)) of each tractable subgraph for the current parameters to obtain a subgradient, handling the
reparameterization constraints implicitly by moving them into the objective function.

From the above ingredients, one can construct a gradient with respect to
all parameters. The problem is then unconstrained and convex. The main
challenge is posed by the large number of parameters. It is thus advisable
to either use a first-order gradient based method, or a limited-memory
method such L-BFGS195 that works using a fixed memory budget. 195 Jorge Nocedal. Updating quasi-

Newton matrices with limited storage.
Mathematics of Computation, 35:773–782,
1980Related work. Hazan and Urtasun196 recently proposed a similar formula-
196 Tamir Hazan and Rachel Urtasun.
A Primal-Dual Message-Passing Algo-
rithm for Approximated Large Scale
Structured Prediction. In Advances in
Neural Information Processing Systems,
2010

tion, which can be understood as a special case of ours where the pieces
consist of single factors. In their development, the tightening parameters
arise as Lagrange multipliers corresponding to (first-order) marginalization
constraints, which provides yet another viewpoint. Our approach is more
general in that (for suitably chosen pieces) higher-order marginalization
constraints can be enforced, at the cost of a larger number of parameters.

To actually solve the problem, Hazan and Urtasun suggest to perform
stochastic gradient descent on the model parameters, and block coordinate
updates (as in message passing) on the tightening parameters. Whether
this is preferable to solving the whole problem over all parameters using
a single iterative algorithm depends on a wide variety of characteristics of
the task, such as the number of features, the redundancy in the dataset,
and the cardinality of the variables. In any case, the possibility to construct
a multitude of convergent optimization strategies is a major benefit of joint
convexity over the previous “relaxation” perspective.

Exploiting Joint Convexity in M3N Training

The same strategy we used for CRF training can be used to exploit joint
convexity in the context of M3N training (M3N Recipe 4).

The main difference is that, as previously, the sufficient statistics of a
MAP state of a reparameterized piece must be used instead of the marginals
of that piece, due to non-differentiability. In terms of these sufficient statis-
tics, a subgradient with respect to the model and tightening parameters
can then be constructed. A problem in this context is that unlike the model
parameters w, the tightening parameters {λ(R)} are not regularized, so
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BMRM,197 the solver for regularized risk functionals we previously sug-197 Choon Hui Teo, S. V. N. Vish-
wanathan, Alex Smola, and Quoc V. Le.
Bundle Methods for Regularized Risk
Minimization. Journal of Machine Learn-
ing Research, 11:311–365, 2010

gested, is not immediately applicable.
A possible remedy is to include the tightening parameters Λ = {λ(R)}

in the regularization, scaled by a small number Cλ, such that the regular-
ization term turns into

Cw

2
‖w‖2

2 +
Cλ

2
‖Λ‖2

2. (186)

Another practical approach is to approximate ÅR(θ) ≈ TAR(θ/T) for
a small number T, such that the objective function becomes smooth and
L-BFGS198 can be used. In both cases, if the constant is chosen small198 Jorge Nocedal. Updating quasi-

Newton matrices with limited storage.
Mathematics of Computation, 35:773–782,
1980

enough, the difference over the original formulation becomes negligible—
and in any case, we are working with an approximation of Å(θ) already.

Related work. Similar approaches have recently been followed indepen-
dently by Hazan and Urtasun,199 as well as Meshi et al.,200 using slightly199 Tamir Hazan and Amnon Shashua.

Norm-product belief propagation:
Primal-dual message-passing for ap-
proximate inference. IEEE Transactions
on Information Theory, 56(12):6294–6316,
2010

200 Ofer Meshi, David Sontag, Tommi
Jaakkola, and Amir Globerson. Learn-
ing Efficiently with Approximate Infer-
ence via Dual Losses. In International
Conference on Machine Learning (ICML),
2010

different, but mathematically equivalent, dual formulations. In both cases,
the authors suggest to perform coordinate descent on the tightening pa-
rameters {λ(R)}, and stochastic subgradient steps, akin to Pegasos,201 on

201 Shai Shalev-Shwartz, Yoram Singer,
and Nathan Srebro. Pegasos: Primal
estimated sub-gradient solver for SVM.
In International Conference on Machine
Learning (ICML), 2007

the w parameters. However, unlike the strictly convex case of the CRF
objective, block coordinate updates are not guaranteed to converge to the
optimum in this setting. This problem could be rectified by regularizing
the tightening parameters, as we suggested above, such that the objective
function becomes strictly convex.

As in the case of jointly convex CRF training, our formulation is more
general than the above approaches, but equivalent for typical choices of
decomposing the graphs into pieces.

Appendix: Dual of the piecewise reparameterization problem

Towards the beginning of this section, we claimed that the node-splitting
piecewise training approach of Sutton and McCallum,202 if tightened over202 Charles Sutton and Andrew McCal-

lum. Piecewise training for structured
prediction. Machine learning, 77(2):165–
194, 2009

reparameterizations, is equivalent to learning with the trivial approxima-
tion of Weiss et al.,203

203 Yair Weiss, Chen Yanover, and Talya
Meltzer. MAP Estimation, Linear Pro-
gramming and Belief Propagation with
Convex Free Energies. In Uncertainty in
Artificial Intelligence (UAI), 2007

Atriv(θ) = max
τ∈L(G)

{
〈θ,τ〉+ ∑F H(τF)

}
. (187)

We now wish to show that this is indeed the case. Remember that piecewise
training approximates the intractable log-partition function via

Apw(θ) = ∑
F

AF(θ), (188)

with

AF(θ) = log
(
∑yF

exp〈θ,φ(yF)〉
)
. (189)

This is a special case of our framework, where each tractable piece R ∈ R
corresponds to a factor F ∈ F along with its variables s ∈ F.

As Sutton and McCallum note, the piecewise approximation provides an
upper bound on the exact log-partition function. How can this bound be
tightened in our framework? Observe that the exponential parameters θF

corresponding to a factor F occur precisely in a single piece, given precisely
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by that factor. Hence, in a reparameterization {λ(F)} of θ, the parameters
{λF(F)} are already fully determined by λF(F) = θF. However, variables
are shared among possibly multiple factors, hence the exponential param-
eters corresponding to these can be varied.

We use λs(F) to denote the tightening parameters associated with vari-
able s ∈ F. Note that there are no components corresponding to variables
in θ, hence their exponential parameters are zero in the original parame-
terization, and we obtain the reparameterization constraint

∑
F : s∈F

λs(F) = 0, ∀s ∈ V. (190)

Our claim is now that

Ã(θ)
def
= min
{λ(F)}

∑F AF(λ(F))

s.t. ∑F:s∈F λs(F) = 0, ∀s ∈ V
(191)

is in fact equivalent to Atriv(θ), defined in (187). To establish equiva-
lence, we proceed by forming the Lagrangian of the above problem, using
suggestively named Lagrange multipliers τs associated with the equality
constraints, and obtain

L
(
{λ(F)}, {τs}

)
= ∑

F
AF(λ(F))−∑

s
〈τs, ∑F:s∈F λs(F)〉 (192)

= ∑
F

AF(λ(F))−∑
F

∑s∈F〈λs(F),τs〉. (193)

Next, by taking the partial derivative of L with respect to a single λs(F),
we obtain the stationary conditions

µF→s
!
= τs, ∀F : s ∈ F, (194)

where we use µF→s(ys) = ∑yF∼ys µF(yF) to denote the marginals µF re-
sulting from the optimal λ̂(F), marginalized for s. Consequently, at the
optimum, the marginal probabilities of the single-factor pieces all agree.

We continue by inspecting the variational representation of AF,

AF(λ(F)) = max
µF∈M(F)

{
〈θF,µF〉+ ∑s〈λs(F),µF→s〉+ H(µF)

}
.

Exploiting the stationary conditions, we can hence develop the Lagrange
dual function as

Note that for a given τs, the term
∑s〈λ̂s(F),µF→s〉 is a constant that does
not influence the optimum of the in-
ner problem (due to the marginaliza-
tion constraints obtained from the sta-
tionary conditions).

g({τs}) = max
{τs}

∑
F

(
AF(λ̂(F))−∑s∈F〈λ̂s(F),τs〉

)
=

�
��max
{τs}

∑
F

(
max

µF∈M(F),
µF→s=τs ,∀s

{
〈θF,µF〉+(((((

(((
∑s〈λ̂s(F),µF→s〉+ H(µF)

}
((((

(((−∑s〈λ̂s(F),τs〉
)

= max
{µF}∈L(G)

{∑F〈θF,µF〉+ ∑F H(µF)},

where we used the fact that all terms involving the τs variables cancel,
and that the intersection of the local normalization constraints and the
marginalization constraints of (194) forms the first-order local polytope.
We have thus shown equivalence to (187), which concludes our proof.
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Dualizing the Entire Objective: Exponentiated Gradient Training

In this section, we will exploit yet another different kind of duality relation.
Previously, we showed that decomposing the intractable log-partition func-
tion or maximum a-posteriori function into pieces, and tightening these
pieces over all reparameterizations, yields formulations that are equivalent
to the original variational problems for a suitable choice of pieces and as-
sociated weights.

Another possibility, which results from quadratic regularization, is to
eliminate the model parameters w altogether and optimize directly over the
marginal probabilities. For conditional random fields, this dual objective
function was derived by Lebanon and Lafferty204 and is given by204 Guy Lebanon and John Lafferty.

Boosting and Maximum Likelihood for
Exponential Models. In Advances in
Neural Information Processing Systems,
2001

Qcrf

(
{µx}

) def
=

1
2C
∥∥∑(x,y)[B(x)]T[φ(y)− µx]

∥∥2
2 −∑(x,y) H

(
pθ(µx)

)
, (195)

where the marginals µx ∈ M(x) of each example are restricted to belong
the marginal polytope.

A similar dual was derived by Taskar et al.205 for max-margin Markov205 Ben Taskar, Carlos Guestrin, and
Daphne Koller. Max-Margin Markov
Networks. In Advances in Neural Infor-
mation Processing Systems (NIPS), 2003

networks and is given by

Qm3n

(
{µx}

) def
=

1
2C
∥∥∑(x,y)[B(x)]T[φ(y)− µx]

∥∥2
2 −∑(x,y)〈µx, e(y)〉, (196)

where the parameters associated with each example are again restricted to
reside in the marginal polytope.

The dual formulations are then coupled to their primal form via

min
{µx}∈Mn

Qcrf

(
{µx}

)
= − min

w∈Rp
Ocrf(w) (197)

and

min
{µx}∈Mn

Qm3n

(
{µx}

)
= − min

w∈Rp
Om3n(w), (198)

and the optimal primal parameters ŵ can be recovered from the dual solu-
tion {µ̂} via the relation

w
(
{µx}

)
= C ∑

(x,y)
[B(x)]T[φ(y)− µx] (199)

in both cases. We refrain from a detailed derivation here since it is incon-
sequential to our approach, but note in passing that for the CRF objective,
the duality relation can easily be seen from the stationary conditions at
the optimal ŵ. More generally, the coupling is a direct consequence of
Lagrangian duality.

Relaxing the problems

The main complications are the same as previously: first of all, the marginal
polytope is intractable, since it is defined by an exponential number of
halfspaces; moreover, the CRF objective requires to evaluate the entropy of
the distribution coupled to the current marginal parameters, which, as we
saw, is also intractable.

Our idea is now to proceed as previously, by relaxing the marginaliza-
tion constraints such that the parameters are only required to reside in the
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CRF Recipe 5 (Maximum Approximate Entropy Formulation)
Pick a concave region-based entropy approximation H̃ and solve the convex optimization problem

minimize
{τx}

Q̃crf

(
{τx}

) def
=

1
2C
∥∥∑(x,y)[B(x)]T[φ(y)− τx]

∥∥2
2 −∑(x,y) H̃

(
τx
)

s.t. τx ∈ L(x), ∀(x, y)

using exponentiated gradient steps (see main text for details).

M3N Recipe 5 (Approximate Quadratic Program Formulation)
Pick a decomposing loss term e and solve the convex optimization problem

minimize
{τx}

Q̃m3n

(
{τx}

) def
=

1
2C
∥∥∑(x,y)[B(x)]T[φ(y)− τx]

∥∥2
2 −∑(x,y)〈τx, e(y)〉

s.t. τx ∈ L(x), ∀(x, y)

using exponentiated gradient steps (see main text for details).

local polytope L(x), and by choosing a concave region-based entropy ap-
proximation H̃(τx) instead of the intractable exact entropy. The resulting
optimization problems are shown in CRF Recipe 5 and M3N Recipe 5.

One may wonder if—just like their exact counterparts—these relaxed
problems are also dually coupled to a primal form. Indeed, this is the case:
As expected, the coupling is to the relaxation of the exact primal-form CRF
(CRF Recipe 1), or the exact primal-form M3N objective (M3N Recipe 2),
respectively. This can easily be verified by deriving the Lagrangian dual of
these problems similarly to the exact case.

Exponentiated gradient algorithm

One advantage of the above dual formulations over the “partially dualized”
reparameterization formulations is that the M3N objective function is dif-
ferentiable. A clear disadvantage is that the number of parameters is even
larger in general: As we previously saw, for a choice of pieces as individual
factors, the reparameterization parameters λ(F) need only be associated
with variable states and hence require O(|Ys|) memory. In contrast, each
dual parameter µx consumes O(|YF|). For higher-order factors, this dif-
ference can be significant. Moreover, the local polytope is a significantly
more difficult constraint set than the simple reparameterization equality
constraints.

One may then wonder about the utility of the dual formulations. Their
importance lies in the fact that they allow for application of a particularly
convenient optimization scheme. Specifically, the local polytope constraints
can be handled implicitly by taking exponentiated gradient steps. Exponen-
tiated gradient training for CRFs and M3Ns was introduced by Collins et
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al.206, but—to our knowledge—has so far only been applied to problems206 Michael Collins, Amir Globerson,
Terry Koo, Xavier Carreras, and Pe-
ter L. Bartlett. Exponentiated Gradi-
ent Algorithms for Conditional Ran-
dom Fields and Max-Margin Markov
Networks. Journal of Machine Learning
Research, 9:1775–1822, 2008

where exact inference is feasible. Our contribution here is to point out that
it can be applied equally well to relaxations.

The main idea of the algorithm, applied to structured prediction prob-
lems, is as follows: Instead of the pseudo-marginal parameters τx, we main-
tain dually coupled exponential parameters θx that result in these pseudo-
marginals. Since the exponential parameters are unconstrained, one can thus
avoid handling the local polytope constraints in the overall objective func-
tion. On the other hand, as we will see, it becomes necessary to compute
the forward map τ(θx) from exponential parameters to pseudo-marginals
for the exponentiated gradient steps, requiring repeated (tractable) infer-
ence as in our original relaxation formulation.

Nonetheless, the exponentiated gradient algorithm is attractive, since it
can be implemented in an online manner. In particular, the exponentiated
gradient steps can be chosen to update the parameters associated with a
single example (x, y) at a time,

θ
(k+1)
x = θ

(k)
x − η

∂Q({τ(θx)})
∂τ(θx)

. (200)

Unlike stochastic gradient methods,207 which operate on the primal w pa-207 Léon Bottou and Olivier Bousquet.
The Tradeoffs of Large Scale Learning.
In Advances in Neural Information Pro-
cessing Systems (NIPS), 2008

rameters using an estimated gradient, this online update guarantees de-
scent in the dual objective Q for a suitable chosen learning rate η. Indeed,
the progress in the objective can be evaluated purely in terms of the pa-
rameters of the single chosen example, enabling efficient linesearch (which
however, requires inference to obtain the marginals τ(θx) coupled to the
current parameters).

To make the form of the updates concrete, for the CRF objective, assum-
ing the trivial entropy approximation of Weiss et al.,208 we develop208 Yair Weiss, Chen Yanover, and Talya

Meltzer. MAP Estimation, Linear Pro-
gramming and Belief Propagation with
Convex Free Energies. In Uncertainty in
Artificial Intelligence (UAI), 2007

∂Qcrf({τ(θx)})
∂τ(θx)

= 1 + logτ(θx)− B(x)w({τ(θx)}), (201)

where the logarithm is taken component-wise, and similarly, for the M3N
objective,

∂Qm3n({τ(θx)})
∂τ(θx)

= −e(y)− B(x)w({τ(θx)}). (202)

The primary challenge in implementing these updates efficiently lies in
computation of the map w({τ(θx)}), defined in (199). This term involves
a sum over all training examples, so it would be inefficient to re-compute it
for each update of the parameters of a single example. However, since (199)
decomposes into contributions of the individual examples, one can simply
maintain a vector w(k) in memory and adjust it by the new contribution
of an example after its parameters have been updated. This operation is
efficient and requires only the marginals τ(θ

(k)
x ) of the example for its pre-

vious parameters, and the marginals τ(θ
(k+1)
x ) for its new parameters.

The ability to update parameters in an online fashion is certainly an
attractive property, even more so since decrease in the objective can be
guaranteed. For this reason, CRF Recipe 5 and M3N Recipe 5 are worth
considering, depending on the application.
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A Brief Empirical Comparison

So far, we have seen a wide range of approximate convex formulations
that are all equivalent for an appropriate choice of their hyper parameters.
While we pointed out the theoretical advantages of each approach as far
as memory consumption and computational aspects are concerned, it is
interesting to see how these properties hold up in practice.

Towards this end, we will compare three different ways of solving the
relaxation of the CRF objective using the trivial region-based concave en-
tropy approximation over the first-order local polytope. In particular, we
compare the following options for solving one and the same relaxation of
the exact CRF objective:

• CRF Recipe 1 (denoted Relaxation, BP), where we solve the inner infer-
ence problem using norm-product belief propagation209 at each step of 209 Tamir Hazan and Amnon Shashua.

Norm-product belief propagation:
Primal-dual message-passing for ap-
proximate inference. IEEE Transactions
on Information Theory, 56(12):6294–6316,
2010

the L-BFGS210 iterative optimization code;

210 Jorge Nocedal. Updating quasi-
Newton matrices with limited storage.
Mathematics of Computation, 35:773–782,
1980

• CRF Recipe 4 (denoted Relaxation, Jointly), where the jointly convex for-
mulation is optimized both over the model parameters and the tighten-
ing parameters at the same time using L-BFGS;

• And finally CRF Recipe 5 (denoted Relaxation, EG), where the dual of
the relaxed CRF objective is solved by taking online exponentiated gra-
dient steps,211 again computing the map from exponential parameters 211 Michael Collins, Amir Globerson,

Terry Koo, Xavier Carreras, and Pe-
ter L. Bartlett. Exponentiated Gradi-
ent Algorithms for Conditional Ran-
dom Fields and Max-Margin Markov
Networks. Journal of Machine Learning
Research, 9:1775–1822, 2008

to marginals using norm-product belief propagation.

Out of these formulations, CRF Recipe 4 is the one that does not require
repeated inference using a specialized solver.

We compare these different ways of solving one and the same objective
function to two other established tractable ways of CRF training:

• Piecewise training,212 where the objective function is minimized using L- 212 Charles Sutton and Andrew McCal-
lum. Piecewise training for structured
prediction. Machine learning, 77(2):165–
194, 2009

BFGS. Remember that the relaxation based on the trivial entropy approx-
imation can be interpreted as an estimator that tightens the piecewise
approach over all possible reparameterizations.

• Pseudolikelihood training,213 again using L-BFGS to optimize the objective 213 Julian Besag. Statistical Analysis
of Non-Lattice Data. The Statistician,
24(3):179—-195, 1975

function. This estimator attains tractability by conditioning each variable
on its Markov blanket and can be shown to asymptotically consistent.

We emphasize that in general, these two approaches attain optimal objec-
tive values that differ from the above three approaches. We include them
in our comparison to put their relative computational cost into perspective.

The CoNLL-2000 task214 we consider for our comparison will be de- 214 Erik F. Tjong Kim Sang and Sabine
Buchholz. Introduction to the CoNLL-
2000 shared task. In 4th Conference on
Computational natural language learning
(CoNLL), September 2000

scribed in greater detail in the next section. Our goal is to jointly predict
the part-of-speech tags and the phrase boundaries of natural language sen-
tences. Our model includes pairwise factors between variables encoding
the part-of-speech and phrase-boundary labels. The cardinality of the vari-
ables is either 44 or 23, depending on which information it contains, and
variables are connected in a cyclic graph structure, necessitating approxi-
mate parameter estimation.

All training algorithms were run on a 2,000 examples subset of the train-
ing data. This restriction was necessary due to the excessive memory con-
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sumption of the Relaxation, EG approach. Remember that the dual param-
eters require O(|F ||YF|) memory per example. In contrast, the Relaxation,
Jointly approach only requires O(|F ||Ys|) memory per example, and the
Relaxation, BP approach does not require additional memory growing in the
number of training examples. For large variable cardinalities in particular,
the amount of training data that can be processed using the exponentiated
gradient approach is clearly limited.
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Figure 31: Objective (Y axis) vs. running
time in minutes (X axis) on the CoNLL-
2000 task.

The results are shown in Figure 31, where we plot for each approach the
progress in the respective objective as a function of running time.

As one can see, the difference between the optimal piecewise objective
value and the optimum of the relaxation is rather small, meaning that
the piecewise approximation is rather tight already. The optimal objec-
tive value of the pseudolikelihood estimator is unrelated to the other ap-
proaches, so it is only the relative progress that is of interest to us.

Computationally, pseudolikelihood estimation is clearly the most effi-
cient approach. From a bird’s-eye view, all other approaches reach the
vicinity of their respective optimum at comparable computational cost. In
particular, all approaches that tighten the relaxation seem to be roughly
comparable to piecewise training.

However, close to the optimum, the different approaches to solving the
relaxation start differing. Interestingly, the Relaxation, BP approach, which
repeatedly solves the inner inference problem using message passing, con-
verges significantly faster than the Relaxation, Jointly approach, which solves
a single jointly convex optimization problem. So while very attractive from
a theoretical viewpoint, it seems that the large number of variables intro-
duced into the jointly convex objective function inhibits rapid progress as
we get closer to the optimum. The extra cost of solving an inference prob-
lem for each example at each outer step, as exercised by the Relaxation, BP
approach, seems to pay off, as norm-product belief propagation can put the
particular problem structure to good use. Although one should not rush to
conclusions, this is a somewhat disappointing result—while we managed
to eliminate the inference subproblem via convex reformulations, this does
not seem to result in practical gains on this task: the jointly convex formu-
lation requires more memory, and is slower to converge to the optimum.

The Relaxation, EG approach converges somewhat faster, but still slower
than Relaxation, BP. This is to be expected, as it implements online param-
eter updates, affecting only the dual parameters of a single example at a
time. However, in exchange, it should converge faster than batch methods
initially, which is not clearly visible on this task. Besides, the ability of
this approach to handle large, redundant datasets (the scenario which it is
targeted at) is clearly limited due to its excessive memory requirements.

Computationally, out of the approaches that seek to solve the relaxation,
the Relaxation, BP approach is the clear winner in this brief comparison.
However, this finding can very dramatically depending on the properties
of the task, so it is still important to be able to choose from a variety of
alternatives, to select the most suitable approach for the problem at hand.
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Perhaps even more important than computational efficiency is the predic-
tion accuracy achieved by different approaches to parameter estimation. As
far as this aspect is concerned, all computational approaches are equivalent
as long as they solve the same objective function. We are going to compare
three different objective functions in the following:

• Relaxation, by which we denote the relaxation of the exact CRF objective
obtained by optimizing over the local polytope instead of the marginal
polytope, and the trivial concave region-based entropy approximation of
Weiss et al.215 instead of the true entropy; 215 Yair Weiss, Chen Yanover, and Talya

Meltzer. MAP Estimation, Linear Pro-
gramming and Belief Propagation with
Convex Free Energies. In Uncertainty in
Artificial Intelligence (UAI), 2007

• Piecewise, denoting the piecewise training approach of Sutton and Mc-
Callum216, which can be seen as an untightened variety of the above;

216 Charles Sutton and Andrew McCal-
lum. Piecewise training for structured
prediction. Machine learning, 77(2):165–
194, 2009

• Pseudolikelihood, by which we denote the asymptotically consistent pseudo
likelihood estimator of Besag.217

217 Julian Besag. Statistical Analysis
of Non-Lattice Data. The Statistician,
24(3):179—-195, 1975

Note that these are the same objective functions we considered in the pre-
vious section; but this time, we are interested in their generalization perfor-
mance, rather than computational efficiency. Towards this end, we consider
several applications from different fields of research. Since all of the tasks
involve cyclic graphs, we use the MPLP algorithm218 for MAP prediction 218 Amir Globerson and Tommi

Jaakkola. Fixing max-product: Conver-
gent message passing algorithms for
MAP LP-relaxations. In Advances in
Neural Information Processing Systems,
2007

on test data, after the model parameters have been estimated. MPLP seeks
to solve the first-order LP relaxation of the MAP problem; alternatively, we
could have used the popular TRW-S code219 or our own IncMP algorithm.

219 Vladimir Kolmogorov. Convergent
tree-reweighted message passing for
energy minimization. IEEE Transactions
on Pattern Analysis and Machine Intelli-
gence, 28(10):1568 – 1583, 2006

Joint Part-of-Speech Tagging and Chunking

The CoNLL-2000 shared task220 provides sentences that are labelled with
220 Erik F. Tjong Kim Sang and Sabine
Buchholz. Introduction to the CoNLL-
2000 shared task. In 4th Conference on
Computational natural language learning
(CoNLL), September 2000

Part-of-Speech and phrase boundary information. Sutton and McCallum221

221 Charles Sutton and Andrew McCal-
lum. Piecewise training for structured
prediction. Machine learning, 77(2):165–
194, 2009

suggested to model the problem as a factorial CRF involving two label
chains, see Figure 32 for an illustration. The dataset comprises a total of
10,947 sentences, which we split into 2000 test examples and 8,947 training
examples. The label space consists of 44 PoS tags and 23 tags that mark
phrase boundaries. The features of our CRF are based on the tokens in a
window around the current position in the sentence. We use two unary fac-
tor types, one for each chain, as well as two pairwise factor types to model
in-chain and between-chain interactions. The weights associated with the
features are tied for factors of the same type; all factor types employ the
same sparse feature vectors. These local observations are highly indicative
of the true unary and pairwise states.



104 approximate discriminative training of graphical models

Figure 32: The CoNLL-2000 shared task
dataset: Joint Part-Of-Speech tagging
and phrase chunking.

The incident occurred Saturday night .

NN VBDDT NNP NN .

I-NP B-VPB-NP B-NP I-NP O

This is precisely the scenario in which the piecewise estimator can be
expected to perform well. The results of our experiment are shown in
Figure 33. For each of the considered estimators, we plotted the per-label
prediction accuracy on the test data and the training data. We trained
using two different settings of the regularization parameter: C = 10−4,
which corresponds to strong regularization, and C = 10−8, which is very
moderate.222 For each system, we plot the average final duality gap of222 In our implementation, we divide the

loss by the number of variables, so the
value of C we report here is scaled ac-
cordingly.

MPLP (a gap of 0% indicates that the solution found by MPLP is indeed
the discrete optimum), as well as the average number of iterations taken
by MPLP. These numbers quantify the difficulty of the inference problem
resulting from the estimators.

Figure 33: Results on the CoNLL-2000

dataset.
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The piecewise estimator and its tightened variant, our relaxation, per-
form best at weak regularization settings. Both of these estimators outper-
form the pseudolikelihood estimator substantially. However, in this task,
as was to be expected, there is no gain in using a tighter-than-piecewise
relaxation since the local evidence is very strong. Approximate MAP pre-
diction using MPLP works well (zero gap) for all systems, although the
pseudolikelhood approximation results in a few more iterations of MPLP.
Our results are slightly better than those reported by Sutton and McCal-
lum223, however we were able to use more training data. Finally, we also223 Charles Sutton and Andrew McCal-

lum. Piecewise training for structured
prediction. Machine learning, 77(2):165–
194, 2009

determined the exact ML estimator at C = 10−4 by computing the marginals
via junction trees, resulting in a test accuracy of 93.84%. This is somewhat
better than the piecewise approximations at C = 10−4, which however tend
to require weaker regularization, so the result is only mildly conclusive.
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Ground Truth Input Image Relaxation Piecewise PseudoLikelihood

Figure 34: The “Horse segmentation”
task: The estimator drawing on the re-
laxation is more capable of reproducing
characteristics that require global prop-
agation of belief.

Segmentation of Horse Images

We now turn to a segmentation task from computer vision where propa-
gation of belief is much more important, specifically the Weizmann Horse
dataset used by Borenstein et al.224 Here, the goal is to determine those 224 Eran Borenstein, Eitan Sharon, and

Shimon Ullmann. Combining top-
down and bottom-up segmentation. In
IEEE Workshop on Perceptual Organiza-
tion in Computer Vision, June 2004

pixels of an image that are part of a horse, as illustrated in Figure 34. The
dataset consists of 328 images of horses, which we randomly split into 200

training images and 128 test images. Only two labels are required to model
this task. We use a simple 4-connected CRF model involving three factor
types—one for the unaries, and one each for the horizontal and vertical
factors.

Unlike the previous task, it is very challenging to find good local obser-
vations that are highly indicative of the label of a pixel. Our approach to
feature extraction is inspired by Tappen et al.225 and works as follows: In a 225 Marshall Tappen, Kegan Samuel,

Craig Dean, and David Lyle. The Logis-
tic Random Field—A convenient graph-
ical model for learning parameters for
MRF-based labeling. In Computer Vision
and Pattern Recognition (CVPR), 2008

first step, we extract from the training data roughly a thousand 50× 50 im-
age patches from locations close to the segmentation boundary and store
their corresponding segmentation masks. The patches are chosen at ran-
dom in a greedy manner that ensures the patches are sufficiently dissimi-
lar. Each such patch contains e.g. the head of a horse, and the segmentation
mask specifies which pixels are part of the animal.

In the second step, for each patch and each image, we determine the po-
sition where the absolute value of the normalized cross-correlation (NCC)
is maximized. At this position, we overlay the segmentation mask, with
values encoded as {+1,−1}, multiplied by the absolute NCC. Hence, for
each pixel of an image, we obtain a sparse list of indices of the masks that
were overlaid at this pixel, along with the corresponding scaled values.
This step must also be performed for the test images.

We use the sparse vector obtained in the second step as the features
of our unary factor type, associating with each component a weight. As
a result, the system can learn which image patches are most informative
by adjusting these weights. The patches typically cover most parts of the
horse and so give a reasonable local hint. The pairwise factor types, on the
other hand, are used to propagate connectivity, and to push the boundaries
of the predicted segmentation towards meaningful positions in the image.
Towards this end, we employ a constant bias term as well as a single feature
that measures the absolute difference in intensity of the two pixels covered
by a pairwise term.

Figure 35 shows the results obtained from the different system configu-
rations. Again, we note that approximate MAP prediction via MPLP works
surprisingly well – for all systems, the duality gap is negligible. How-
ever, there are substantial differences regarding the number of iterations
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Figure 35: Results on the “Horse”
dataset.
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required by MPLP. In particular, the pseudolikelihood estimator gives rise
to very hard inference problems at both settings of C. For the horse images,
which are typically no larger than 300× 200 pixels, this may not be much of
a concern. However, for larger images, an order of magnitude difference in
the number of iterations can effectively render approximate MAP decoding
intractable.

Regarding the prediction accuracy of the competing systems, our tighter-
than-piecewise relaxation is the clear winner at both settings of C. At over
91.1% test accuracy, it surpasses the other estimators by 5 percent points.
This difference is also clearly visible in Figure 34. A worrisome result is that
the pseudolikelihood estimator fails completely at C = 10−8. It is unclear
to us why this is the case. Compared to the 94.6% test accuracy achieved
by Tappen et al.226, our peak result of 91.1% still lags somewhat behind,226 Marshall Tappen, Kegan Samuel,

Craig Dean, and David Lyle. The Logis-
tic Random Field—A convenient graph-
ical model for learning parameters for
MRF-based labeling. In Computer Vision
and Pattern Recognition (CVPR), 2008

however, we emphasize that our numbers were obtained on black & white
input, while Tappen et al. seem to work on color input, which must be
expected to be easier. The rest of the difference can be attributed to our
rather simple feature engineering.

Grapheme-to-Phoneme Prediction

The final task we consider is characterized by large label spaces and sparse
higher-order factors. The goal is to predict the pronunciation of a Ger-
man word given its orthographic input string, i.e. to learn a map from
graphemes to phonemes. We also want to model stress and glottal stops
jointly with the sequence of phonemes. The dataset we use has not been
considered in the literature before; it consists of 8,000 training examples
and 2,000 test examples.

The factor graph model we devised for this task can be seen in Fig-
ure 36. We use three chains, one for the word stress, one for the sequence
of phonemes, and one for glottal stops. The label space of the phoneme
variables is very large, encoding 51 phoneme symbols. The variables en-
coding word stress and glottal stops, on the other hand, are binary. We use
dense pairwise factors within each chain. We use a binary feature vector
consisting of observed grapheme n-grams relative to the current position
for these pairwise factor types. To enforce the constraint that only one syl-
lable can be stressed, we use a sparse global factor that prohibits all invalid
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A r s e n Figure 36: An exemplary factor graph
in the grapheme-to-phoneme transcrip-
tion task: Higher-order factors over the
phonemes are not shown to reduce clut-
ter.

states (see Figure 36, top factor). This factor is only instantiated during
prediction at test time—as shown by Roth and Yi,227 it is preferable not to 227 Dan Roth and Wen-tau Yih. Inte-

ger linear programming inference for
conditional random fields. In 22nd In-
ternational conference on Machine learning
(ICML), pages 736–743, August 2005

incorporate hard constraints during training.
To model interactions between the chains, we use sparse ternary fac-

tors. Moreover, the higher-order interactions between phoneme variables
are modelled using sparse factors involving up to six variables. For these
sparse factor types, the only features we use are constant bias terms. A
joint state of such a factor must occur in the training data at least once in
order to receive a separate weight; all other states are merged into a single
default state. As shown by Cohn,228 most common factor operations can

228 Trevor Cohn. Efficient Inference
in Large Conditional Random Fields.
In 17th European Conference on Machine
Learning (ECML), pages 606–613, 2006

be performed efficiently in sparse factors with tied potentials.
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Phoneme task.

Since the grapheme and phoneme sequence are generally of different
length, our approach requires a pre-processing step: We first merge some
phoneme symbols based on mutual information statistics until all phoneme
sequences are shorter than the corresponding grapheme sequences or of
equal length. The two sequences are then aligned via dynamic program-
ming, using mutual information between graphemes and phonemes as a
distance measure. The task can then be formulated as a graph labelling
problem and we proceed as usually.

Since the model is very complex, we expect the first-order local polytope
to be very loose, and approximate inference to fail in many cases. We do not
advocate the use of this model to achieve the best practical results; rather,
the goal is to highlight the difference between the considered estimators.
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Figure 37 shows the results. For each system, we report the accuracy in
terms of the phoneme-error-rate (PER), defined as the string-edit-distance
between the predicted phoneme sequence and the correct phoneme se-
quence, normalized by the total length of the correct phoneme sequence.

Figure 37 confirms that there are two sources of error in this task. Unlike
the previous two tasks, approximate MAP prediction using MPLP does not
work well, i.e. the approximate solutions are far from being optimal. We
not only incur errors through the approximate estimators, but also through
approximate prediction. The interplay of the two components becomes im-
portant. This can lead to seemingly paradox situations: For instance, the
average duality gap during prediction is very large when training with the
piecewise approximation at C = 10−8; still, the overall system compares
very favourably to the others. Interestingly, our tighter-than-piecewise re-
laxation performs best at C = 10−4, while the piecewise estimator is better
at C = 10−8. Overall, use of our relaxation leads to the smallest duality
gaps, and at C = 10−4, it also achieves the highest test accuracy of all
configurations. The pseudolikelihood estimator fails miserably again.

Conclusions and Future Work

In this part of the thesis, we contributed:

a) Convergent message passing algorithms for inference in discrete graph-
ical models, solving well-motivated convex relaxations that provide an
upper bound on the exact objective function that is solved during vari-
ational inference;

b) Based on these relaxations, a whole catalog of recipes for tractable train-
ing of CRFs and M3Ns, drawing on several convex reformulations, some
of which remove the need for repeated inference during training;

c) A brief empirical comparison of our message passing algorithms to sev-
eral competitors, as well as an empirical comparison of several tractable
approaches to CRF training, both in terms of computational efficiency
and predictive accuracy of the resulting models.

Compared to approaches such as loopy belief propagation and naïve mean
field inference, as well as discriminative training approaches building on
these, all approaches we presented in our thesis are well-motivated in the
sense that they solve a tractable, convex objective function that forms an
upper bound on the optimal value of the exact problem.

Compared to piecewise training,229 which can also be considered a valid229 Charles Sutton and Andrew McCal-
lum. Piecewise training for structured
prediction. Machine learning, 77(2):165–
194, 2009

relaxation of the CRF training problem, the approaches we discussed can be
considerably tighter (depending on the task), and often come at comparable
computational cost. Compared to pseudolikelihood estimation,230 training230 Julian Besag. Statistical Analysis

of Non-Lattice Data. The Statistician,
24(3):179—-195, 1975

based on relaxations has proved to be significantly more robust, in the sense
that models estimated for maximum pseudolikelihood tended to expose
pathological predictive performance in some situations.

In the future, it would be gainful to conduct a large-scale study evalu-
ating the different approaches and competing estimators in an exhaustive
series of experiments to be able to draw even stronger conclusions.
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Tractability through Gaussian
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Exact Inference in Gaussian Models

In the second part of this thesis, we saw that exact inference in discrete
graphical models is intractable, except for a few special cases (most promi-
nently trees). Consequently, we discussed a variety of tractable relaxations
as substitutes for the exact variational inference problems, and introduced
algorithms to solve and make use of these relaxations.

A different approach, and indeed the one we are going to follow in this
final part of the thesis, is to postulate a Gaussian model even when this
assumption is unwarranted. Inference in Gaussian models is tractable (at
least in theory), so one can work exactly within this restricted class of mod-
els. This opens up a variety of discriminative training approaches, allowing
to handle both continuous and discrete structured prediction tasks.

In this first chapter of the final part of the thesis, we will start by reca-
pitulating multivariate Gaussians and Gaussian Markov random fields. In
doing so, we will make clear our notion of inference. While it is true that this
problem has an exact algebraic solution, it is computationally more conve-
nient to solve the inference problem using iterative algorithms when work-
ing in extremely high-dimensional Gaussian models. These algorithms al-
low to exploit the structure of the inverse covariance matrix, which, as we
already saw at the beginning of this thesis, is defined by the underlying
graphical model. Consequently, we will discuss a few of these approaches
in some detail, as they are the computational backbone of the structured
prediction methods we will devise in the chapters to follow.

The Normal Distribution and Gaussian Graphical Models

In this part of the thesis, we will model our structured prediction problem
via v random variables ys ∈ Rκ , s ∈ V that are jointly Gaussian, i.e.

y = (y1 . . . yv)
T (203)

with

y ∼ N (u, C), C � 0. (204)

Notably, when we speak of a variable, we actually refer to a block of κ

components, so Ys = Rκ and Y = Rvκ . Put another way, we are interested
in predicting v values, each of which is κ-dimensional.

Since the variables are jointly normal, one might equally think of this
process as predicting vκ scalar values. However, in the applications we
will consider, the smallest units are naturally defined as low-dimensional
vectors of fixed size κ. An additional benefit is that one can exploit this
particular block structure computationally.
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In the following, we are going to recapitulate important facts about
Gaussian distributions and discuss some aspects in greater depth than in
the short introduction at the beginning of the thesis.

Characterization of the Density

Typically, the density of multivariate normal distributions is parameterized
in standard form. The density of the vκ-dimensional normal distribution
N (u, C) with mean u and covariance C in standard form is then given by

p(y; u, C) = (2π)−
vκ
2 det(C)−

1
2 exp(− 1

2 (y− u)TC−1(y− u)), C � 0.
(205)

The covariance C must be positive-definite for the density to be valid. For
later use, we record the entropy of this density, given in closed form by

H(u, C) = 1
2 log det(C) + vκ

2 log 2πe. (206)

We will prefer to work with an alternative parameterization of the same
Gaussian density because it better reflects the factorization of the density.
The so-called canonical or information form,231 denoted C(h, J), is defined as231 Daphne Koller and Nir Friedman.

Probabilistic Graphical Models: Principles
and Techniques. MIT Press, 2009

p(y; h, J) = exp(− 1
2 yTJy + yTh− A(h, J)), J � 0. (207)

As we already intimated in the beginning of the thesis, the canonical form
maps to standard form using the equalities

J = C−1, C = J−1, (208)

h = C−1u, u = J−1h, (209)

and the normalization constant A can be computed as

A(h, J) = 1
2 hTJ−1h + vκ

2 log(2π) + 1
2 log det(J−1). (210)

It is worth pointing out that A is precisely the log-partition function we
studied in great detail already; the fact that it can be computed efficiently
using linear algebra primitives requiring time at most polynomial in the
number of variables demonstrates the tractability of inference in Gaussian
models. We will make this point more concrete shortly.

Gaussian Graphical Models

We already alluded to the fact that the canonical form of the Gaussian
density directly reflects the factorization of the distribution, which we will
again describe by means of a graph G with vertex set V and edge set E. In
particular, this connection is evident from the symmetric, positive-definite
vκ × vκ matrix J � 0. This matrix, the inverse of covariance matrix C, goes
by the names precision, information, or concentration matrix. Notably, the
κ × κ block corresponding to a pair (s, t) of variables is required to be zero
unless (s, t) ∈ E.

By the Hammersley-Clifford theorem, y ∼ p(y; h, J) is then Markov with
respect to graph G, that is, any two non-adjacent variables are conditionally
independent given all other variables, formally

ys ⊥⊥ yt | yV\{s,t}, ∀s, t ∈ V. (211)
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Importantly, this allows us to factor the distribution in terms of fully con-
nected subgraphs F ∈ F of G via

p(y) =
1
Z ∏

F∈F
ψF(yF), (212)

where ψF(yF) ∝ C(yF; hF, JF) with the hF and JF parameters of the individ-
ual factors chosen so as to add up to h and J, respectively.

Conversely, any factorization of the above kind fully specifies the param-
eters of a joint density C(y; h, J). Though they contain some redundancy,
we will find it convenient to model p(y) directly in terms of the parameters
hF and JF associated with the factors. It can easily be seen that due to the
restricted quadratic form of the model, any global h and J can be realized
using at most pairwise factors.

Operations on canonical forms

Let us now consider a few important operations that can be carried out
using factors in canonical form.232 Towards this end, we need a notation 232 Daphne Koller and Nir Friedman.

Probabilistic Graphical Models: Principles
and Techniques. MIT Press, 2009

for referring to sub-blocks of a pairwise factor F = (s, t). Note that the
canonical parameters of such a factor are given by κ × 1 blocks [h]s and
κ × κ blocks [J]st as follows:

hF =

(
[hF]s
[hF]t

)
and JF =

(
[JF]ss [JF]st

[JF]ts [JF]tt

)
. (213)

We will use the above bracket notation to refer to the appropriate block in
the following. Similarly, we use [h]s to refer to a κ × 1 block of the global
canonical parameter h corresponding to variable ys, and [J]st to denote the
κ × κ block of the global parameter matrix J composed of rows belonging
to variable ys and columns belonging to variable yt.

Multiplication. Perhaps the most common operation is to multiply factors.
This simply involves adding up the canonical parameters of the factors. For
instance, from the factorization

p(y) =
1
Z ∏

F
ψF(yF), ψF(yF) ∝ C(yF; hF, JF), (214)

it follows that y ∼ C(h, J) with

[h]s = ∑
F:s∈F

[hF]s, ∀s ∈ V, (215)

[J]ss = ∑
F:s∈F

[JF]ss, ∀s ∈ V, (216)

[J]st = ∑
F:s,t∈F

[JF]st, ∀(s, t 6= s) ∈ E. (217)

Marginalization. For F = (s, t), assume that a factor ψF(yF) ∝ C(yF; hF, JF)

is marginalized for variable s. One can show that ys ∼ C(hs, Js) with

hs = [hF]s − [JF]st[JF]
−1
tt [hF]t, (218)

Js = [JF]ss − [JF]st[JF]
−1
tt [JF]ts. (219)

The latter equality can be seen to be the Schur complement of block [JF]tt
of matrix JF and has important applications in MMSE estimation.233 233 Steven M. Kay. Fundamentals of Sta-

tistical Signal Processing, Volume 1: Esti-
mation Theory. Prentice Hall, 1999
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Conditioning. Finally, if ψF(yF) ∝ C(yF; hF, JF) with F = (s, t) is condi-
tioned on Yt = yt, the resulting density follows ys | yt ∼ C(hs|t, Js|t) with

hs|t = [hF]s − [JF]styt, (220)

Js|t = [JF]ss. (221)

These building blocks allow to construct a wide range of operations in
inference and learning algorithms and will be useful in the sequence.

The Variational Viewpoint

Given a Gaussian density in canonical parameterization, perhaps the most
important task is to be able to compute the associated mean. Unlike Gaus-
sian densities in standard form, this information is not readily available.
Moreover, one may be interested in the covariance. As we saw, there is in
fact a mapping from canonical parameters to standard parameters that al-
lows us to compute these quantities. This process is analogous to inference
in discrete graphical models, except that the operation is tractable. More-
over, in a Gaussian model, the mean equals the one and only mode, so the
MAP and marginalization problems coincide.

In order to develop an optimization perspective of the above problem, it
is again useful to consider the variational viewpoint. In the beginning of the
thesis, we already mentioned that Gaussians in canonical parameterization
map into the exponential family framework via

φ(y) =

(
y

vec(yyT)

)
and θ =

(
h

− 1
2 vec(J)

)
. (222)

Consequently, the corresponding mean parameters are

µ = Ey∼p(y;θ)[φ(y)] =

 u def
= E[y]

Σ
def
= E[yyT]

 . (223)

By definition of the second-order moment matrix Σ, we have Σ− uuT = C,
so the mean parameters must belong to the set

M(G) = {u, Σ | Σ− uuT � 0} (224)

such that the covariance matrix C is positive-definite.
We also saw that in exponential families, the variational inference prob-

lem in general exposes the form234234 Martin J. Wainwright and Michael I.
Jordan. Graphical Models, Exponen-
tial Families, and Variational Inference.
Foundations and Trends in Machine Learn-
ing, 1(1-2):1–305, 2008

A(θ) = max
θ∈M◦(G)

{
θTµ+ H(pθ(µ))

}
. (225)

From the closed-form expression for the Gaussian entropy in (206), as well
as the above characterization of the exponential and mean parameters,
we thus conclude that—for the special case of Gaussians—this variational
problem attains the form

A(h, J) = max
u,Σ

{
− 1

2 tr(JTΣ) + hTu + 1
2 log det(Σ− uuT) + vκ

2 log 2πe
}

s.t. Σ− uuT � 0.
(226)
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By our previous discussion of the relation between parameters in standard
and canonical form, the maximum of this convex optimization problem
must be attained uniquely at

µ̂ = J−1h, (227)

Σ̂ = C + uuT = J−1 + uuT. (228)

This result provides us with an explicit characterization of the mean pa-
rameters, which, as we already saw, are required for conditional random
field training.

Algorithms for Inference

We already alluded to the fact that the mode of a Gaussian density is equal
to its mean. Consequently, computation of the mean can be understood as
energy minimization in a Gaussian model.

Note that the energy exposes a particularly simple quadratic form,

E(y; h, J) =
1
2

yTJy− yTh, (229)

and the solution is hence given in closed-form by

ŷ = u = arg min
y

E(y; h, J) = J−1h. (230)

Another interpretation of inference in a Gaussian model is as determining
the solution to a system of linear equations

Ju = h. (231)

In principle, direct methods are applicable to this problem and can solve
it in polynomial time.235 However, for our purposes, the excessive size of 235 Gene H. Golub and Charles F. van

Loan. Matrix Computations. The Johns
Hopkins University Press, third edition,
1996

J—depending on the application it is not uncommon for it to be a 106× 106

matrix—render such approaches unattractive. Moreover, since J is typically
extremely sparse in our applications, it is desirable to exploit this sparsity
as efficiently as possible. A variety of iterative methods exist that are use-
ful towards this end; we will introduce three different approaches in the
following.

The Conjugate Gradient Method

Perhaps the most commonly employed algorithm for iteratively solving
systems of linear equations is the conjugate gradient (CG) method.236 This 236 Magnus R. Hestenes and Eduard

Stiefel. Methods of Conjugate Gradi-
ents for Solving Linear Systems. Jour-
nal of Research of the National Bureau of
Standards, 49(6), 1952

algorithm is outlined (specialized for our setting) in Figure 38.
The key step is computation of the sparse matrix-vector product Jp. This

operation can be carried out directly in terms of the per-factor contributions
JF, such that J need not actually be instantiated. Moreover, computation of
the product can be parallelized efficiently over the variables s ∈ V via

[Jp]s = ∑
F:s∈F

[JF]ss[p]s ∑
t∈F\s

[JF]st[p]t. (232)

Note that each κ × 1 block [Jp]s, s ∈ V can be computed independently of
the other blocks and is determined by a number of products of dense κ× κ

and κ × 1 blocks. This allows for additional instruction-level parallelism.
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Figure 38: ConjugateGradient al-
gorithm Initialize mean u← 0;

Determine residual r← h− Ju ;
Set initial direction p← r ;
Compute squared residual norm r′ ← rTr ;
repeat

Determine step size α← r′
pTJp ;

Update mean u← u + αp ;
Recompute residual r← r− αJp ;
Recompute squared residual norm r ← rTr;
Compute new direction p ← r + r

r′ p;
Record previous residual norm r′ ← r;

until r < ε;
Return mean u ;

Moreover, the conjugate gradient method is well-suited for execution on
Graphics processing units (GPUs). A GPU implementation is available for
instance in the thrust237 library.237 http://developer.nvidia.com/

thrust It is worth pointing out that a highly tuned implementation can be orders
of magnitude faster than a naïve approach. Figure 39 shows the relative
speed-up over several stages of refinement of our actual implementation,
on a Gaussian graphical model resulting from an image inpainting task.

Figure 39: Relative speed-up of infer-
ence using CG over several stages of
refinement. In absolute numbers, the
fastest implementation requires about
one second.
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A significant advantage of the CG method is that it is guaranteed to
converge to the optimal solution. However, the convergence rate is rather
sensitive to the condition number of J. If this should turn out to be a
problem, various ways of preconditioning238 can be considered.238 Gene H. Golub and Charles F. van

Loan. Matrix Computations. The Johns
Hopkins University Press, third edition,
1996

In practice, as we shall point out subsequently, one can directly learn the
model parameters such as to enforce a benign condition number of J.

Gibbs Sampling

Let us now turn to a sampling-based approach. The Gibbs sampler239 is239 Stuart Geman and Donald Geman.
Stochastic relaxation, Gibbs distribu-
tion and Bayesian restoration of images.
IEEE Transactions on Pattern Analysis and
Machine Intelligence, 6:721–741, 1984

particularly popular for inferring marginal probabilities in discrete Markov
random fields, where this problem is NP-hard.240 Nonetheless, the ap-

240 Venkat Chandrasekaran, Nathan Sre-
bro, and Prahladh Harsha. Complexity
of Inference in Graphical Models. Tech-
nical report, 2010

proach is sufficiently general so that it can be adapted for inference in a
Gaussian graphical model.

http://developer.nvidia.com/thrust
http://developer.nvidia.com/thrust
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Initialize state y← 0, mean u← 0 ;
k← 1 ;
repeat

foreach s ∈ V do
Update ys ← ys|V , ys|V ∼ p(ys | yV\s; h, J) ;

if k > NBurnIn then
Update u← u + y/NSamples

;

k← k + 1 ;
until k > (NBurnIn + NSamples

);
Return mean u ;

Figure 40: BlockedGibbsSampler al-
gorithm

The basic algorithm is outlined in Figure 40. Again, we make use of the
fact that each ys ∈ Rκ , by performing blocked sampling.

The key idea behind Gibbs sampling is as follows: It is computation-
ally expensive to draw a sample y ∼ p(y; h, J) from the joint distribution,
but assuming that the realizations yV\s of all variables but one are fixed
and given, it is easy to obtain a sample ys|V ∼ p(ys | yV\s; h, J) from the
conditioned distribution of that variable.

This requires us to compute the canonical parameters of the conditioned
distribution, which we obtain by conditioning the factors adjacent to s:

hs|V = ∑
F:s∈F

(
[hF]s −∑t∈F\s[JF]styt

)
, (233)

Js|V = ∑
F:s∈F

[JF]ss. (234)

Samples from the conditioned distribution can then be obtained viz.:241 241 Brian D. Ripley. Stochastic Simulation.
Wiley-Interscience, 2006

1. Compute Cs|V = J−1
s|V ∈ Sκ

++ and us|V = Cs|Vhs|V ∈ Rκ .

2. Compute a Cholesky decomposition LLT = Cs|V .

3. Obtain κ independent standard normal variates z = (z1, z2, . . . , zκ)T.

4. Obtain ys|V = (u + Lz) ∼ p(ys | yV\s; h, J).

Since κ is typically very small, say 3, the associated linear algebra opera-
tions can be carried out extremely efficiently. In fact, the main computa-
tional burden stems from generation of the standard normal variates—it is
important to sample these numbers efficiently.

At each iteration, the Gibbs sampler then performs one sweep over the
joint state vector it maintains and re-samples each variable. Variables that
are conditionally independent given their Markov blanket can actually be
sampled in parallel,242 allowing to make use of multiple CPU cores. 242 Joseph Gonzalez, Yucheng Low,

Arthur Gretton, and Carlos Guestrin.
Parallel Gibbs Sampling: From Colored
Fields to Thin Junction Trees. In Artifi-
cial Intelligence and Statistics (AISTATS),
2011

Typically, in the first few iterations, called the burn-in phase, the samples
are discarded. An unbiased estimate of the joint mean u is then obtained
from N joint realizations obtained in the above manner.

While the Conjugate Gradient method is typically more efficient at ob-
taining highly accurate solutions, the Gibbs sampling approach is attractive
for two reasons: First, it allows to draw samples from the joint distribution,
which is desirable for instance for visualization purposes. Second, it can be
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Figure 41: GaussianBeliefPropaga-
tion algorithm foreach F ∈ F and s ∈ F do

Initialize to uninformative messages mF→s ∝ C(0, 0);

repeat
foreach F ∈ F and s ∈ F do

Update mF→s(ys) ∝
∫
YF\s

ψF(yF)∏t∈F\s ∏F′ 6=F:t∈F′ mF′→t(yt)dyF\s ;

until converged or iterations exceeded;
foreach s ∈ V do

Compute marginal distribution p(ys) ∝ ∏F:s∈F mF→s(ys) ;
Determine mean us ← arg maxys

p(ys) ;

Return variable mean u ;

used to obtain an estimate of (parts of) the covariance matrix, via

C def
= E[(y− u)(y− u)T] ≈ 1

N

N

∑
k=1

(y(k) − u)(y(k) − u)T, (235)

where y(k) is the joint sample generated at the k-th iteration of the Gibbs
sampler. In contrast, explicit computation of C is typically intractable due
to its size—unlike J, the covariance matrix need not be sparse.

Gaussian Belief Propagation

Finally, akin to discrete Markov random fields, once can run belief propa-
gation in a Gaussian graphical model.243 The resulting algorithm is closely243 Daphne Koller and Nir Friedman.

Probabilistic Graphical Models: Principles
and Techniques. MIT Press, 2009

related to Kalman filtering,244 and is outlined in Figure 41.
244 Frank R. Kschischang, Brendan J.
Frey, and Hans-Andrea Loeliger. Fac-
tor Graphs and the Sum-Product Algo-
rithm. IEEE Transactions on Information
Theory, 47(2):498–519, 2001

In principle, the algorithm remains unchanged over loopy belief prop-
agation in discrete models, except for the fact that the messages that are
passed between factors and variables are now densities, and that the vari-
ables are continuous, so we need to integrate, rather than sum, over the
realizations of the other variables when marginalizing.

In particular, the messages are κ-dimensional Gaussians. Hence, we can
represent each message mF→s ∝ C(hF→s, JF→s) as a canonical form, simply
storing its parameters hF→s and JF→s. An important insight is that the
message updates only consist of two kinds of operations, applied to either
messages or factors, both of which are canonical forms: multiplication and
marginalization. As we saw previously, multiplication of canonical forms
simply involves adding up their parameters, and marginalization can again
be conducted in closed form using equalities (218)–(219).

Similarly, after the messages have been updated, the marginal distribu-
tion of a variable s can be computed as a product of the incoming messages.
This results in a canonical form C(hs, Js), and consequently the estimated
mean can be obtained as us = J−1

s hs.
The correctness results245 mostly mirror those of discrete belief prop-245 Yair Weiss and William T. Freeman.

Correctness of Belief Propagation in
Gaussian Graphical Models of Arbi-
trary Topology. Neural Computation,
13(10):2173–2200, 2001

agation: In general, Gaussian BP is guaranteed to yield correct marginal
probabilities only if the graph is tree-structured or if there is only a single
loop. However, there is one important difference: If Gaussian BP converges,
it is guaranteed to recover the exact mean. The same does not apply to esti-
mates of the covariance that can be obtained from the algorithm, however.
Recently, convergent variants of Gaussian BP have also been devised.246246 Jason K. Johnson, Danny Bickson,

and Danny Dolev. Fixing convergence
of Gaussian belief propagation. In IEEE
International Symposium on Information
Theory (ISIT), 2009



Maximizing the Likelihood of an Encoding

In the past chapter, we developed the tools required to work with a Gaus-
sian mode. We will now return to our original goal, discriminative training
of structured prediction models.

The particular approach we are going to consider in this chapter is based
on maximizing the conditional likelihood of the observed data. In prin-
ciple, a Gaussian model is most naturally applicable to continuous data
points, that is, to regression problems. However, since the regression prob-
lem is strictly more general than the classification problem, the approach
we present in this chapter is equally applicable to classification, simply by
encoding discrete labels as particular points in a multi-dimension contin-
uous space. Here, we are going to discuss one particularly natural way of
encoding the discrete labels and discuss a few of its properties—however,
in principle, numerous different encodings are feasible, and construction of
such encoding schemes is an interesting direction for future work.

In any case, the use of encodings is just one way of handling discrete
variables in a Gaussian model. Another possibility, which we are going to
investigate in the chapter to follow, is to use a specific loss function that
penalizes mispredictions in a discrete sense.

Gaussian Conditional Random Fields

Recall our general definition of a discriminative graphical model: We let
the exponential parameters depend on the observed input x, via a linear
function of derived features and model weights:

θ(x; w) = B(x)w, w ∈ Ω. (236)

As we saw, in a Gaussian model, the exponential parameters are deter-
mined by the precision matrix J and the offset vector h. Unlike the discrete
case, the exponential parameters are constrained: In particular, J must be
positive-definite.

The question is then how to train or estimate the model parameters w.
Discriminative training of Gaussian random fields was first considered by
Tappen et al.247 The approach we are going to discuss here differs in two 247 Marshall Tappen, Ce Liu, Edward

Adelson, and William Freeman. Learn-
ing Gaussian Conditional Random
Fields for Low-Level Vision. In Com-
puter Vision and Pattern Recognition
(CVPR), 2007

key ways: First of all, we use a convex likelihood-based learning objective
such that the resulting model represents probabilities. Second, we do not
use a restricted quadratic form but allow arbitrary positive-definite preci-
sion matrices to be learned. The latter point will be made clear shortly.
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Factor Energy

We will find it convenient to model the energy of a joint realization y in
terms of the contributions of the factors of the Gaussian random field. In a
conditional random field, the energy of a factor can depend on the observed
input x in terms of its linear and quadratic coefficients. Moreover, we will
group factors into types t, where the type determines how these coefficients
are constructed from a subset wt ⊂ w of model parameters. The energy of
a factor can then be written as

Et(yF | xF; wt) =
1
2

yT
F Jt(xF; wt)yF − yT

F ht(xF; wt), Jt(xF; wt) � 0.
(237)

The above representation leaves several degrees of freedom, most notably
in the definition of the local precision matrix Jt(xF; wt), which must be
positive-definite, and the offset term ht(xF; wt), which adjusts the location
of the mean.

Simple linear model. In many cases the mapping to the output is locally
well approximated as a linear function of some features derived from the
input. For such cases, we propose to use an arbitrary linear model in each
factor using a set of application-dependent basis functions.

Such factor-type dependent basis functions {b(i)t }B
i=1 can be readily em-

ployed in our model, and can depend on the observed input x in an arbi-
trary manner. For notational convenience, we arrange the basis functions
into a single vector-valued function bt : X → RB. The factor energy of a
label yF ∈ Rκ|F| then turns into

Et(yF | xF; wt︸︷︷︸
Jt ,Ht

) =
1
2

yT
F Jt︸︷︷︸
Jt(xF ;wt)

yF − yT
F Htbt(xF)︸ ︷︷ ︸

ht(xF ;wt)

, Jt � 0, (238)

and is fully determined by the matrix Ht ∈ Rκ|F|×B that weights the re-
sponses of the basis functions, and the local precision matrix Jt ∈ S

κ|F|
++ .

Note that it is also possible to let Jt depend on the observed input, via

Jt(xF) =
B

∑
i

b(i)t (xF)J
(i)
t , b(i)t (xF) > 0, J(i)t � 0, (239)

where the {J(i)t } together with Ht form the model parameters wt, and each
derived feature b(i)t must be positive to ensure positive-definiteness of the
resulting precision matrix Jt. For simplicity of our presentation, we will
assume the form in (238) in the following.

Global Energy

From the quadratic form of the factors, it follows that the global energy is
again a quadratic function of the joint labeling,

E(y | x; w) = ∑
t

∑
F∈Ft

Et(yF | xF; wt) (240)

=
1
2

yTJ(x; w)y− yTh(x; w), (241)
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where the non-zero entries of the global coefficients are given by

[h(x; w)]s = ∑
t

∑
F∈Ft :s∈F

[ht(xF; wt)]s, ∀s ∈ V, (242)

and

[J(x; w)]ss = ∑
t

∑
F∈Ft :s∈F

[Jt(xF; wt)]ss, ∀s ∈ V, (243)

[J(x; w)]st = ∑
t

∑
F∈Ft :s,t∈F

[Jt(xF; wt)]st, ∀(s, t 6= s) ∈ E. (244)

Importantly, assuming the linear factor model discussed above, this shows
that the entries of h and J are simply linear functions of the model param-
eters w, so we can write (

h(x; w)

J(x; w)

)
= B(x)w. (245)

for a suitably chosen matrix B(x) consisting of the responses of the basis
functions. Consequently, our parameterization follows the general form of
a discriminative graphical model set forth in the first part of the thesis, and
all parameter estimation approaches discussed therein can be applied in
principle (though with some caveats, as we shall see).

Relation to Previous Work

An important difference to the approach of Tappen et al.248 is that our 248 Marshall Tappen, Ce Liu, Edward
Adelson, and William Freeman. Learn-
ing Gaussian Conditional Random
Fields for Low-Level Vision. In Com-
puter Vision and Pattern Recognition
(CVPR), 2007

approach is motivated in terms of local factor models and allows to learn
precision matrices Jt, subject only to positive-definite constraints. In con-
trast, Tappen et al. represent the global precision matrix as J = FT diag(j)F,
learning only the diagonal weights j on convolution filters represented
compactly by matrix F.

Our approach requires us to ensure positive-definiteness of the {Jt}
model parameters during parameter estimation, but in turn augments ex-
pressiveness of the model significantly. Our strategy for handling the
positive-definiteness constraints will be made clear shortly.

Maximum Conditional Likelihood Training

Assume now that we are given i.i.d. training data D = {(x, y)} and want
to estimate the parameters of our model. Ideally, we would be able to use
the maximum likelihood estimate (MLE) of the parameters, because it is
asymptotically consistent and has low asymptotic variance:249 249 Robert V. Hogg, Allen Craig, and

Joseph W. McKean. Introduction to
Mathematical Statistics. Pearson Educa-
tion, 2005

ŵmle = arg min
w∈Ω

{
−∑(x,y) log p(y | x; w)

}
, (246)

where constraint set Ω enforces positive-definiteness of the parameters
{Jt}, the precision matrices of the factor models.

In the first part of the thesis, we already discussed maximum conditional
likelihood estimation for exponential families. All results we previously
developed apply, but have to be specialized for the Gaussian case we are
considering here.
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− log p(y | x; w) = E(y | x; w) + log
∫

Rκv
exp(−E(ẏ | x; w))dẏ, (247)

∇w[− log p(y | x; w)] = ∇wE(y | x; w)−Eẏ∼p(ẏ|x;w)

[
∇wE(ẏ | x; w)

]
. (248)

Figure 42: General form of the negative
log-likelihood and the gradient with re-
spect to the model parameters w.

In particular, the negative log-likelihood can again be expressed as a
function of the energy of the observed label and the log-partition func-
tion. In a Gaussian model, the log-partition function generates the first and
second-order expectations, so the gradient of the negative log-likelihood
can be expressed as the gradient of the energy of the observed label, minus
the expected gradient of the energy, as shown in Figure 42.

Computation of the gradient. Let us now make this more concrete by devel-
oping the gradient of the energy of a single factor F of type t. Assuming
the simple factor model in (238), the energy is parameterized in terms of
wt = {Jt, Ht}, and we have

∇Jt
Et(yF | xF; wt) =

1
2

yFyT
F , (249)

and

∇Ht
Et(yF | xF; wt) = yF[bt(xF)]

T. (250)

Computing the gradient of the expected energy with respect to the model
parameters is considerably more involved. In particular, we have

Eẏ∼p(ẏ|x;w)

[
∇Jt

Et(ẏF | xF; wt)
]
=

1
2

Eẏ
[
ẏFẏT

F
]
, (251)

and

Eẏ∼p(ẏ|x;w)

[
∇Ht

Et(ẏF | xF; wt)
]
= Eẏ

[
ẏF
][

bt(xF)
]T. (252)

The main complication is that to compute these expectations, one needs the
relevant blocks of the mean

u def
= Eẏ∼p(ẏ|x;w)

[
ẏ
]
= [J(x; w)]−1h(x; w) (253)

and the second-order expectation matrix

Σ
def
= Eẏ∼p(ẏ|x;w)

[
ẏẏT] = [J(x; w)]−1 + uuT (254)

pertaining to factor F. While polynomial-time, the complexity of this com-
putation is cubic in the number variables v, specifically O(κ3v3), and hence
prohibitive even for instances of relatively modest size. Moreover, unlike
the global precision matrix J(x; w), the second-order expectation matrix Σ

is typically not sparse, so infeasible amounts of memory are needed even
just to store it.

For this reason, exact maximum likelihood estimation is not in general
viable option. Tractable alternatives are needed that avoid computation of
the matrix Σ, or at least reduce its dimensionality.
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− log p(ys | yV\s, x; w) = E(ys, yV\s | x; w) + log
∫

Rκ
exp(−E(ẏs, yV\s | x; w))dẏs, (255)

∇w[− log p(ys | yV\s, x; w)] = ∇wE(ys, yV\s | x; w)−Eẏs∼p(ẏs |yV\i ,x;w)

[
∇wE(ẏs, yV\s | x; w)

]
. (256)

Figure 43: General form of the negative
log-pseudolikelihood and the gradient
with respect to w around a single con-
ditioned variable ys.

Maximum Conditional Pseudo-likelihood Training

An alternative to exact maximum conditional likelihood estimation is to
maximize the conditional pseudolikelihood250 of the training data. To our 250 Julian Besag. Efficiency of pseudo-

likelihood estimation for simple Gaus-
sian fields. Biometrica, 64(3):616–618,
1977

knowledge, this approach has not been followed for training of Gaussian
conditional random fields before.

Previously, when we discussed discrete models, we saw that pseudo-
likelihood estimation does not always work well, in particular if maximum
a-posteriori predictions must be obtained approximately. In a Gaussian
model, we can determine the MAP prediction efficiently and exactly, so
there is less reason for concern about such incompatibilities.

As in the discrete case, the true likelihood of an example is approximated
by the likelihood of the individual variables, conditioned on all other vari-
ables of the graph:

p(y | x; w) ≈ ∏
s∈V

p(ys | yV\s, x; w), (257)

and the estimation problem turns into

ŵmple = arg min
w∈Ω

{
−∑(x,y) ∑s∈V(x) log p(ys | yV\s, x; w)

}
. (258)

The construction of the pseudolikelihood approximation is in fact very
similar to the Gibbs sampler we considered in the previous chapter. In
particular, it requires the same basic operation, namely computation of the
conditioned density of a single variable ys.

Mean parameters. Remember that the canonical parameters of the condi-
tioned density of variable ys can be obtained by adding up the parameters
of the conditioned factors connected to the variable,251 via 251 By the Markov property, the factors

that are not connected to the variable
do not affect the conditioned density.hs|V(x; w) = ∑

t

∑
F∈Ft :s∈F

(
[ht(xF; wt)]s −∑t∈F\s[Jt(xF; wt)]styt

)
, (259)

and

Js|V(x; w) = ∑
t

∑
F∈Ft :s∈F

[Jt(xF; wt)]ss. (260)

Using these canonical parameters, one can efficiently compute the low-
dimensional mean parameters us|V ∈ Rκ and Σs|V ∈ Sκ

++ of the density,

us|V = [Js|V(x; w)]−1hs|V(x; w), (261)

and

Σs|V = [Js|V(x; w)]−1 + us|VuT
s|V , (262)

as well as the normalization constant

A(hs|V , Js|V) =
1
2

hT
s|VJ−1

s|Vhs|V +
κ

2
log(2π) +

1
2

log det(J−1
s|V). (263)
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Eẏs∼p(ẏs |yF\s ,x;w)

[
∇Jt

Et(ẏs, yF\s | xF; wt)
]
=

1
2

Eẏs

( ẏs
yF\s

)(
ẏs

yF\s

)T
 =

1
2

(
Σs|V us|VyT

F\s
yF\suT

s|V yF\syT
F\s

)
, (266)

Eẏs∼p(ẏs |yF\s ,x;w)

[
∇Ht

Et(ẏs, yF\s | xF; wt)
]
= Eẏs

[(
ẏs

yF\s

)[
bt(xF)

]T]
=

(
us|V
yF\s

) [
bt(xF)

]T. (267)

Figure 44: Gradient of the expected
energy of a factor with respect to the
model parameters.

Computation of the gradient. As shown in Figure 43, the pseudolikelhood
objective and its gradient with respect to the model parameters expose a
general form that is very similar to the true maximum likelihood prob-
lem we considered previously. The main difference is that the operations
involving an expectation can be carried out efficiently, since the mean pa-
rameters are low-dimensional.

Again, we will consider the gradient on a per-factor basis, for factors F
of type t adjacent to vertex s. Remember that we condition on all t ∈ V \ s,
and that each factor is parameterized in terms of wt = {Ht, Jt}. The
gradient of the energy of the observed output yF remains unchanged over
the maximum likelihood formulation,

∇Jt
Et(ys, yF\s | xF; wt) =

1
2

yFyT
F , (264)

and

∇Ht
Et(ys, yF\s | xF; wt) = yF[bt(xF)]

T. (265)

However, the gradient of the expected energy changes, since the expectation
is only taken over ys conditioned on the other variables. This gradient is
developed in Figure 44.

Handling the Constraints: Efficient Regularization
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Figure 45: Convex set of 2 × 2 matri-
ces [a c; c b] whose eigenvalues are re-
stricted to lie within (ε = 0.1, ε = 10).

So far, we have neglected the problem of handling the constraint set Ω that
enforces positive-definiteness of the local precision matrices {Jt}. Related
to this problem is prevention of overfitting: Our model is expressive but can
easily overfit the data if the factor models become exceedingly peaked, as
determined by the associated precision matrices.

Commonly, the model parameters w of a conditional random field are
regularized using the squared norm, ‖w‖2

2. However, for our Gaussian
conditional random field, this has neither the desired effect of keeping the
precision matrices positive-definite, nor is it particularly well-motivated as
a means of regularization.

Instead, we suggest to prevent both overconfident predictions and viola-
tion of positive-definiteness in a common framework, using a novel form of
regularization for the matrix parameters. In particular, the above goal can be
achieved by lower- and upper-bounding all eigenvalues of the {Jt} param-
eters to be no smaller than a small positive number ε, and no larger than a
large positive number ε. The set of matrices that fulfill these constraints is
again convex (see Figure 45).

Through this restriction, we can enforce a favourable condition number
of J(x, w), leading to fast convergence of the conjugate gradient method
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at test-time. Moreover, by adjusting ε, we can push local models to be
less certain of their mean, effectively regularizing the model. This can be
understood as a flat prior over bounded-eigenvalue matrices, and because
this set is bounded the prior is proper.252 252 Robert V. Hogg, Allen Craig, and

Joseph W. McKean. Introduction to
Mathematical Statistics. Pearson Educa-
tion, 2005

To ensure the matrices remain in this constrained set, one can use a
projection operator that builds on earlier results by Higham253 and finds

253 Nicholas J. Higham. Computing a
nearest symmetric positive semidefinite
matrix. Linear Algebra and its Applica-
tions, 103:103–118, 1988

for any given matrix the closest matrix in Frobenius sense that satisfies our
eigenvalue constraints. This is computationally efficient and requires one
eigenvalue decomposition per Jt matrix. In particular, let VDVT = Jt be
an eigenvalue decomposition of Jt. The projection is then obtained as

PΩ(Jt) = V min(ε, max(ε, D))VT, (268)

where the minimum and the maximum are applied to the diagonal matrix
D component-wise.

Using the above projection operator, and the closed-form expressions
for the gradient, the maximum pseudolikelihood estimation problem can
be solved efficiently using projected gradient methods, since it is convex.
We already discussed a few such methods in the previous part of the the-
sis on discrete models. In particular, both the spectral projected gradient
method254 and the projected quasi Newton method255 are applicable and 254 Ernesto G. Birgin, José M. Martínez,

and Marcos Raydan. Nonmonotone
spectral projected gradient methods on
convex sets. SIAM Journal on Optimiza-
tion, 10:1196–1211, 2000

255 Mark Schmidt, Ewout Van den Berg,
Michael P. Friedlander, and Kevin Mur-
phy. Optimizing Costly Functions with
Simple Constraints: A Limited-Memory
Projected Quasi-Newton Algorithm. In
Artificial Intelligence and Statistics (AIS-
TATS), 2009

offer rapid convergence to the global optimum.

Convexity of the Pseudolikelihood Estimation Problem

To see convexity of (258), recall that the energy E(ys, yV\s | x; w) of labeling
ys of a conditioned subgraph around s can be written as

1
2

yT
s Js|V(x; w)ys − yT

s hs|V(x; w).

Observe from (259)–(260) that this function is linear in w, and hence convex.
Consider next the logarithm of the partition function normalizing

p(ys | yV\s, x; w) ∝ exp(−E(ys, yV\s | x; w)),

defined as

A(yV\s, x; w) = log
∫

Rκ
exp(−E(ẏs, yV\s | x; w))dẏs.

Convexity of this function in the model parameters can most easily be seen
from its variational representation:

max
us|V ,Σs|V

{
− 1

2 tr
[
ΣT

s|VJs|V(x; w)
]
+ uT

s|Vhs|V(x; w) + H(us|V , Σs|V)
}

s.t. Σs|V − us|VuT
s|V � 0.

Again, the objective is linear in w by the definition of the conditioned
canonical parameters, and by standard results in convex optimization,256 256 Stephen Boyd and Lieven Vanden-

berghe. Convex Optimization. Cam-
bridge University Press, 2004

maximization over a family of convex functions preserves convexity. To-
gether with linearity of the energy and convexity of the constraint set Ω,
this establishes convexity of the overall problem.
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Computational Efficiency

Besides convexity, a principal advantage of our regularized pseudolikeli-
hood estimation approach is its computational efficiency. A particularly
convenient property is that computation of the pseudolikelihood can be
easily parallelized over the variables—each conditioned distribution of a
variable can be computed completely independently from the others. This
enables very fine-grained parallelism, which can be exploited, for instance,
on modern graphics processing units (GPUs).

Furthermore, as first proposed by Nowozin et al.,257 pseudolikelihood257 Sebastian Nowozin, Carsten Rother,
Shai Bagon, Toby Sharp, Bangpeng Yao,
and Pushmeet Kohli. Decision tree
fields. In 13th International Conference
on Computer Vision (ICCV), Barcelona,
Spain, 2011

estimation allows us to use a subsample of the training set. To do so, one
can resample a fraction of all the variables in the training set, uniformly
with replacement, to obtain an unbiased estimate of the pseudolikelihood
objective (258). This approach is statistically more efficient than simply
reducing the number of training examples, since the variables within an
example tend to be strongly correlated. Moreover, it allows to trade off
accuracy against computational cost at a very fine-grained level.

Large-scale Training. To demonstrate the scalability of our training proce-
dure, we want to show here the training curve resulting from a denoising
experiment on the MirFlickr-25000 dataset,258 consisting of 25,000 natu-

258 Mark J. Huiskes and Michael S. Lew.
The MIR Flickr retrieval evaluation. In
International Conference on Multimedia
Information Retrieval (MIR), 2008

ral images. We use subsets of up to 5,000 images for training. The results
are shown in Figure 46. They demonstrate that our approach scales to a
large number of images, and that the performance of the model keeps im-
proving as more data is used to obtain the pseudolikelihood estimate of the
model parameters. Moreover, training time increases only linearly in the
number of training images—a very desirable property.

We will return to the denoising task later in the thesis and provide a
thorough evaluation of the denoising performance of our model. Our goal
here is simply to demonstrate the convenient computational properties of
the pseudolikelhood approximation, which make it very useful for large-
scale regression and classification tasks. While it is clear that—compared
to exact maximum likelihood estimation—some statistical efficiency is lost,
the ability to handle substantial amounts of training data can compensate
for this weakness, in particular if training data is plentiful or can even be
generated synthetically, as in many image processing tasks.
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Figure 46: Training efficiency on a sin-
gle computer (8 cores). We learn a
denoising model for a noise level of
σ = 25 from the MIRFLICKR dataset
and test on 5,000 hold-out images. The
peak signal-to-noise ratio (PSNR) on
the test data continues to increase as
more training data is used.

Handling Discrete Labels
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Figure 47: Discrete labels can be rep-
resented via an orthonormal basis en-
coding. This allows for rich interaction
terms.

So far, we have only touched on the topic of how discrete variables can
be handled in our framework. We are now going to make this discussion
concrete and discuss the properties of our approach.

In particular, we propose to encode discrete variables ys, each of which
can take on one of κ discrete labels, by means of κ orthonormal vectors
in Rκ . In other words, the k-th component is a binary indicator that is
one if and only if the k-th class label is assigned to the variable. This
corresponds precisely to the sufficient statistics φ(ys) in a discrete MRF,
and is illustrated in Figure 47. The model parameters are then estimated
to maximize the likelihood of this encoding of the observed variable labels
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in the training data. At test time, the regressed mean of the Gaussian
conditional random field is turned into a discrete prediction by rounding
to the closest vector of sufficient statistics, in the Euclidean sense. This
rounding approach is well-motivated, since the energy the model assigns to
the possible realizations penalizes deviations from the mean quadratically.

Expressiveness for Discrete Tasks

The ability to learn all coefficients of the underlying quadratic energies—
together with the above high-dimensional encoding of the labels—lifts the
common restriction of Gaussian conditional random fields to associative259 259 By associative interaction, we mean

that the model encourages adjacent
variables to take on the same labels.
The opposite are repulsive interactions.

interactions.260 Interestingly, such restrictions are also commonly found in

260 Marshall Tappen, Kegan Samuel,
Craig Dean, and David Lyle. The Logis-
tic Random Field—A convenient graph-
ical model for learning parameters for
MRF-based labeling. In Computer Vision
and Pattern Recognition (CVPR), 2008

discrete models.261

261 Ben Taskar, Vassil Chatalbashev, and
Daphne Koller. Learning associative
Markov networks. In International Con-
ference on Machine Learning (ICML), 2004

In the chapter on applications and results, we will demonstrate empir-
ically that the expressive power of the interaction terms in our model is
indeed comparable to unrestricted discrete random fields. First, we want
to provide an intuitive perspective on the matter.

An experiment. Consider a learning task involving κ discrete labels, which
we encode using κ orthonormal basis vectors (e.g. [1, 0, 0]T, [0, 1, 0]T, [0, 0, 1]T

for κ = 3). Remember that the energy of a pairwise factor F = (s, t) of type
t assumes the form

Et(yF | xF; wt) =
1
2

yT
F Jt(xF; w)yF − yT

F ht(xF; w),

where yF = [ys, yt]T ∈ R2κ is the vector of stacked variable labels. In
contrast, in a discrete model, the energy of a particular pairwise labeling
(ys, yt) is determined by a κ × κ table that assigns a particular energy to
each label configuration.

Interestingly, using the above κ-dimensional orthonormal basis encod-
ing, it is always possible to choose the coefficients Jt ∈ S2κ

++ and ht ∈ R2κ

(non-uniquely) such that each continuously encoded discrete label indeed
receives precisely the energy assigned by any discrete κ × κ energy table.
Using an additional constant bias term in the quadratic form, the same
property can be achieved by encoding the κ discrete labels via κ − 1 or-
thonormal basis vectors and a single 0 vector.262 Even repulsive energy 262 In our actual model, we always use

κ-dimensional basis vectors (rather than
κ − 1) because the quadratic forms do
not include a bias term.

tables can be “fitted” this way, as illustrated in Figure 48 for the special
case of κ = 2, i.e. binary labels.

0
0.5

1

0

0.5

1
3.9

4

4.1

4.2

E
(y

i,
y j
)

yi yj

E(1, 0)
E(0, 0)

E(1, 1)

E(0, 1)

Figure 48: Quadratic fit of a repulsive
pairwise discrete energy table assigning
E(0, 0) = 4.16, E(0, 1) = 4.06, E(1, 0) =
4.05 and E(1, 1) = 4.12.

Such fitting of energy tables relies crucially on a sufficient number of
degrees of freedom and is not in general possible using lower-dimensional
encodings. To verify this, the coefficients of a quadratic form (including
a bias term) were fitted to random 3× 3 energy tables, where each entry
was drawn uniformly at random from (0, 5) at each run, and the coefficients
were chosen to minimize the sum of squared errors of the assigned energies
(subject to the positive-definite constraint on the quadratic coefficients).

The experiment was repeated 10,000 times, using a one-dimensional en-
coding of the three discrete labels as {0, 1

2 , 1}, and a two-dimensional en-
coding {[1, 0]T, [0, 1]T, [0, 0]T}. Using the latter, it was always possible to
achieve a residual of zero, whereas using the former, the residual was never
zero, with a mean residual of 8.88 and a variance of 27.67.
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However, while the ability to match energy values at any given set of
points is a necessary condition for accurate modeling of the “true” under-
lying distribution, this property alone is not sufficient. For instance, there
may be a large probability mass far away from any discrete labeling (cf. Fig-
ure 48). The main restriction over an unrestricted discrete graphical model
stems from the positive-definiteness constraint on the precision matrix. We
leave the question of formalizing this trade-off for further study.
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Figure 49: Associativity of the learned
pairwise potentials. We plot the value
of E(0, 0)+ E(1, 1)− E(0, 1)− E(1, 0). A
negative value indicates that a pairwise
interaction encourages its pixels to take
the same value.

Repulsive energies. Finally, we want to show that our model indeed learns
pairwise terms that assign repulsive energies to the continuously encoded
discrete labels. Towards this end, consider the associativity strengths of
the pairwise terms learned for a binary black & white inpainting task (con-
cretely, the “Chinese characters” task we are going to consider in full detail
in the chapters to follow), as displayed in Figure 49.

The figure displays the associativity of the pairwise potentials, at offsets
relative to a given pixel. The offset determines the position of the sec-
ond variable in the factor, relative to the variable in the center of the plot.
Clearly, the learned energies encourage the pixels at some relative positions
to take on similar values, whereas at other positions, disparate pixel values
are encouraged. This is precisely the effect that is impossible to achieve
within many restricted model classes.

It is also worthwhile to point out that the interaction terms reflect the
“slant” that is naturally present in Chinese characters, and that these reg-
ularities were discovered purely by means of estimating the model param-
eters from training data. This demonstrates both the expressiveness of the
model itself, as well as the effectiveness of the pseudolikelihood estimation
framework.



Empirical Risk Minimization within the Gaussian Family

In the previous chapter, we motivated why exact maximum conditional
likelihood estimation of the model parameters of a discriminative Gaussian
random field is typically intractable, and discussed how pseudolikelihood
estimation can be applied efficiently in our setting.

An alternative we already introduced earlier in this thesis is to minimize
the empirical risk of the model. In the following, we are going to recapitulate
a few important concepts and specialize them to our Gaussian model. An
important property of the resulting approach is that it can accommodate an
arbitrary differentiable loss function, and hence choose the model parame-
ters such that they are optimal in a user-specified sense. As an added ben-
efit, an alternative means of handling discrete labels in a Gaussian model
emerges from this viewpoint.

The Empirical Risk of a Model

Recall our original goal, which is to learn a map ŷ : X ×Ω→ Y from input
to output (parameterized by some w ∈ Ω) that exposes low expected loss
under the true distribution p(x, y),

R`[ŷ(·)] = E(x,y)∼p(x,y)[`(ŷ(x; w), y)]. (269)

This expectation can be approximated empirically from the n i.i.d. training
examples D = {(x, y)} at our disposal, via

R̃`[ŷ(·)] =
1
n ∑

(x,y)
`(ŷ(x; w), y). (270)

The definition of the map ŷ(x; w) can in principle be constructed from the
model posterior density p(y | x; w) in an arbitrary manner. The two most
common approaches, maximum a-posteriori prediction and maximum pos-
terior marginal prediction, coincide in a Gaussian model, and consequently
we are going to use

ŷ(x; w) = u(x; w) = arg max
y

p(y | x; w) (271)

= arg min
y

E(y | x; w) = [J(x; w)]−1h(x; w). (272)

in the further development of our approach.
Choosing w ∈ Ω to minimize the empirical risk then draws the unique

mode of the model posterior density towards the observed ground truth
(for each training example), in the sense of loss function ` : Y × Y 7→ R.
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Ground truth
MSE 0, IW-SSIM 1

Noisy input
MSE 3230, IW-SSIM 0.785

Output IW-SSIM trained
MSE 313, IW-SSIM 0.932

Output MSE trained
MSE 273, IW-SSIM 0.893

Figure 50: The loss function matters.
We show reconstructions of an image
corrupted by structured noise, by two
models with identical specifications, ex-
cept for one being optimized for in-
formation content-weighted structural
similarity (IW-SSIM), and the other op-
timized for mean squared error (MSE).
Each model has a different bias.

Importance of the loss function

The question which loss function should be optimized has received a lot
of attention lately. In the past, regression models have been tuned almost
ubiquitously so as to optimize the mean squared error (MSE), mostly due to
its convenient computational properties. Recently, more complex measures
of error or quality have found wide-spread acceptance.

Unfortunately, the question which loss function is most appropriate can
only be answered on a per-application basis. For instance, for many image
processing problems, the structural similarity (SSIM) index263 has mean-263 Zhou Wang, Alan C. Bovik,

Hamid R. Sheikh, and Eero P. Simon-
celli. Image Quality Assessment: From
Error Visibility to Structural Similarity.
IEEE Transactions on Image Processing,
13(4):600–612, 2004

while been accepted as a better performance measure than MSE or mea-
sures based thereon, such as the peak signal-to-noise ratio (PSNR). When
designing a structured prediction method, one should be aware of the im-
plications of optimizing the model for one measure over the other.

An example. To illustrate this point, consider Figure 50. We show the pre-
dictions by competing models on an image restoration task. The goal is to
remove the structured noise present in the input. The models are both of
the kind discussed in this chapter, i.e. Gaussian conditional random fields,
the model parameters of which have been trained to optimize a specific
loss function. The difference between the two model instances is that the
parameters of the first model were tuned for information-content weighted
structural similarity (IW-SSIM),264 whereas the parameters of the second264 Zhou Wang and Qiang Li. IW-SSIM:

Information Content Weighted Struc-
tural Similarity Index for Image Quality
Assessment. IEEE Transactions on Image
Processing, 20(5):1185–1198, 2011

model were trained to minimize the mean squared error (MSE) of its pre-
dictions. As one can see, each model clearly exposes a different bias. In
particular, the model trained for MSE “hallucinates” turbulent structures in
the sky that are not present in the original, uncorrupted image. In contrast,
the model trained for IW-SSIM is much more successful at recovering the
ground truth. This is due to the fact that the IW-SSIM measure takes into
account larger image patches, rather than individual pixels, and is more-
over optimized to reflect image quality as perceived by humans. Clearly, this
makes it a more useful target for optimization.

Handling Discrete Labels

Evidently, other applications can require different performance measures.
In principle, our approach can accommodate a wide variety of different
loss functions. In fact, the only assumption we are going to make is for
the function to be differentiable. This flexibility can even be exploited to
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construct loss functions that penalize predictions in a discrete sense.
For instance, one may wish to penalize predictions by the model using

the Hamming loss, defined as

`Hamming(ŷ, y) = ∑
s∈V

Iŷs 6=ys , (273)

where ŷs denotes the predicted value of variable s. Unfortunately, this loss
function is non-differentiable. However, one can easily obtain a smooth
approximation. For instance, for tasks involving binary {−1,+1} labels,
Tappen et al.265 propose to use the logistic loss 265 Marshall Tappen, Kegan Samuel,

Craig Dean, and David Lyle. The Logis-
tic Random Field—A convenient graph-
ical model for learning parameters for
MRF-based labeling. In Computer Vision
and Pattern Recognition (CVPR), 2008

`Logistic(ŷ, y) = ∑
s∈V

log(1 + e−ys ŷs). (274)

This approach can easily be extended to multi-class problems. For a prob-
lem involving κ classes, we predict for each variable s a vector ys ∈ Rκ , and
define the multinomial logistic loss

`Multi(ŷ, y) = ∑
s∈V

[A(ŷs)− 〈φ(ys), ŷs〉]. (275)

The term contributed by each variable exposes the familiar form of the
log-likelihood of a discrete exponential family, where the binary indicator
vector φ(ys) plays the role of the sufficient statistics, the prediction ŷs cor-
responds to the exponential parameters, and A(·) is the log-partition func-
tion, i.e. the logarithm of the sum of all exponentiated components of ŷs.
Consequently, the loss is close to zero if the component of ŷs corresponding
to the observed ground truth is much larger than all other components.

This approach is an alternative to maximizing the pseudo-likelihood of
an encoding of the observed ground truth, which we suggested previously.
In line with the properties of the loss, a discrete prediction should be con-
structed by picking for each ŷs ∈ Rκ the label corresponding to the compo-
nent with the largest value.

Note that it is also possible to construct smooth versions of other pop-
ular discrete performance measures, such as the F1 score, using a similar
approach. We leave the exploration of such loss functions for future work.

Direct Risk Minimization

Let us now consider how the model parameters w can be optimized effi-
ciently so as to optimize the chosen loss function. In the introduction of
the thesis, we already pointed out that direct optimization of the empirical
risk is often intractable, in particular for discrete graphical models. A key
feature of the Gaussian approach we pursue in this part of the thesis is that
direct risk minimization is in fact feasible, and indeed can be achieved at
relatively low computational cost.

Optimization of the model parameters

The key to tractability is that, as first noted by Tappen et al.,266 the predic- 266 Marshall Tappen, Ce Liu, Edward
Adelson, and William Freeman. Learn-
ing Gaussian Conditional Random
Fields for Low-Level Vision. In Com-
puter Vision and Pattern Recognition
(CVPR), 2007

tion of a Gaussian CRF under the current model, ŷ(x; w), can be differenti-
ated with respect to the model parameters w. Even though our parameter-
ization is more powerful than the one assumed by Tappen et al., as we will
point out, this approach is still applicable to our setting.
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∂`(ŷ(x, w), y)
∂wi

=
∂`(ŷ, y)

∂ŷ
∂([J(x; w)]−1h(x; w))

∂wi
(by chain rule)

= ∂`(ŷ,y)
∂ŷ [J(x; w)]−1×[

∂J(x;w)
∂wi

[J(x; w)]−1h(x; w) + ∂h(x;w)
∂wi

] (by matrix inverse rule and product rule)

= ĉ
T ∂J(x;w)

∂wi
ŷ + ĉ

T ∂h(x,w)
∂wi

. (by substituting ĉ def
= [J(x; w)]−1[ ∂`(ŷ,y)

∂ŷ ]
T

)

Figure 51: Derivative of the loss func-
tion with respect to a single model pa-
rameter. It is straightforward to further
develop ∂J(x;w)

∂wi
and ∂h(x;w)

∂wi
, since the

entries of J(x; w) and h(x; w) are affine
functions of w, as per the factor energy.

To see this, consider Figure 51, in which we develop the derivative of
the loss function with respect to a single model parameter wi. To evaluate
the loss, the prediction ŷ for the given input x is required. The derivative
furthermore requires the solution ĉ to a second sparse linear system of
equal dimensionality. To evaluate the full gradient of the empirical risk
(270), these two solutions need to be obtained once per training example.
A technical complication is that the Jt parameters must remain positive-
definite. However, we already pointed out how these constraints can be
handled efficiently: Namely by projecting the precision matrix parameters
onto the convex cone of positive-definite matrices. The parameters can then
be optimized using any projected gradient method.267267 Ernesto G. Birgin, José M. Martínez,

and Marcos Raydan. Nonmonotone
spectral projected gradient methods
on convex sets. SIAM Journal on
Optimization, 10:1196–1211, 2000; and
Mark Schmidt, Ewout Van den Berg,
Michael P. Friedlander, and Kevin Mur-
phy. Optimizing Costly Functions with
Simple Constraints: A Limited-Memory
Projected Quasi-Newton Algorithm. In
Artificial Intelligence and Statistics (AIS-
TATS), 2009

Robustness in the presence of misspecification

Note that the above procedure measures the quality of the actual predic-
tions of our model on the training data and adjusts the model parameters
so as to optimize these predictions in the specific sense of loss function `.
This can be thought of as a “self correcting” mechanism. The practical ben-
efits of this approach over pseudo-likelihood estimation, as explored in the
previous chapter, will studied in detail in the “Applications and Results”
chapter to follow.

Intuitively, the direct risk minimization approach has the advantage
that—even if the model is misspecified, that is, the Gaussian model is too
restrictive—the parameters are still chosen such as to result in the best pre-
dictions that can be achieved by a model within this restricted class.

Notes on non-convexity of the approach

A disadvantage of the direct risk minimization approach is that it leads
to a non-convex optimization problem. Even if the chosen loss function is
convex in the prediction, the map producing the prediction, that is

ŷ(x; w) = [J(x; w)]−1h(x; w), (276)

is in general not convex in the parameters w due to the matrix inversion. In
practice, we found that initializing the parameters as Jt = I (identity) and
ht = 0 works very well, such that the optimization process does not get
stuck in bad local minima. Note that it is also possible to initialize the pa-
rameters to the pseudolikelihood estimate, which can be obtained exactly.
In practice, we did not observe noticeable gains over the aforementioned
initialization, but of course this depends on the application. Even more
potential countermeasures are described by Stoyanov et al.268

268 Veselin Stoyanov, Alexander Ropson,
and Jason Eisner. Empirical Risk Min-
imization of Graphical Model Parame-
ters Given Approximate Inference, De-
coding, and Model Structure. In Artifi-
cial Intelligence and Statistics (AISTATS),
pages 725–733, 2011



Increased Expressiveness via Non-Parametric Conditioning

In the previous chapters, we used a simple parameterization of the Gaus-
sian conditional random field model that exposes linear dependence on the
basis functions computed from the observed input. Indeed, in many cases,
the mapping to the output is locally well approximated as a linear function
of some derived input features.

On the other hand, in some cases, the relationship between the input and
the output is more complex. In fact, since the introduction of the Percep-
tron269—perhaps the most prominent linear classifier—the issue of linear

269 Frank Rosenblatt. The perceptron:
A probabilistic model for information
storage and organization in the brain.
Psychological Review, 66(6):386–408, 1958

decision boundaries has been studied extensively, leading to the develop-
ment of deep architectures such as artificial neural networks,270 as well as

270 Christopher M. Bishop. Neural Net-
works for Pattern Recognition. Oxford
University Press, 1996

kernel machines.271

271 Bernhard Schölkopf and Alexander J.
Smola. Learning with Kernels: Sup-
port Vector Machines, Regularization, Op-
timization, and Beyond. MIT Press, 2001

Letting aside the issue of parameterization in terms of the observed
input, the Gaussian family itself is encumbered by several restrictions,
notably enforcing symmetry and uni-modality of the predictive density
p(y | x). For this reason, it is important to fully exploit the conditional
nature of our model.

0 1

f (xi) < c

yi

p̃(
y i
)

Figure 52: Via conditioning, multi-
modal empirical distributions can be
split into distributions that are closer to
being Gaussian.

Consider the hypothetical empirical distribution of a variable. In general,
it is reasonable to assume that the data cannot be fitted well using the
Gaussian bell curve, for instance due to multi-modality. On the other hand,
individual subsets of the same data might be roughly normally distributed.
If it is possible to distinguish between these subsets by means of inspecting
the observed input, multiple Gaussian models can be used to describe each
subset separately. This idea is illustrated in Fig. 52, and in fact this divide and
conquer approach to modelling is precisely the one underlying classification
and regression trees,272 another popular machine learning paradigm that

272 Leo Breiman, Jerome Friedman,
Charles J. Stone, and R. A. Olshen. Clas-
sification and regression trees. Chapman
and Hall/CRC, 1984

has been developed with the goal of overcoming linearity in mind.

Regression Tree Fields
Yi

Yj

observed input

1
23

1
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Figure 53: Illustration of how regres-
sion trees and random fields are com-
bined in an RTF: a pairwise factor type
is instantiated on a grid of random vari-
ables. At each instantiation, a tree is
evaluated on the surrounding observed
input, performing a sequence of tests
(1,2, and 3) until a leaf is reached. For
each factor, the selected node deter-
mines the effective interaction. The con-
ditional model becomes a Gaussian ran-
dom field, enabling efficient inference.

In this chapter, we will introduce a novel conditional random field model,
the regression tree field (RTF), which draws on regression trees in order to
determine the effective interactions between variables. The basic idea un-
derlying the approach is illustrated in Figure 53.

What makes the approach effective is that it allows to fully leverage the
conditional aspect of a conditional random field. In particular, the depen-
dence on the input x, say a corrupted image, is non-parametric, enabling us
to learn arbitrarily complex maps from the input space to the output space.
At the same time, unlike an ordinary standalone regression tree approach,
dependencies among the output variables y can be modeled effectively.
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Figure 54: Regression trees: (left) the
prediction is determined by the path
to leaf l? storing sample mean µ(l∗);
(right) instead of a mean, a quadratic
energy is stored, determining a local
model.
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f (xF) < c f (xF) ≥ c

Parameterization in terms of regression trees

We now discuss how a non-parametric map from x to valid local factor mod-
els can be realized using regression trees. Regression trees are commonly
employed as follows (see Figure 54): when inferring a prediction about la-
bel ys ∈ Rκ of variable s from observations x, one follows a path from the
root of the tree to a leaf l∗. This path is determined by the branching deci-
sions made at each node, typically by computing a feature score from the
observed input relative to the position of s and comparing it to a threshold.
The label ys is then chosen as the mean vector µ(l∗) ∈ Rκ of those training
points that previously ended up at the selected leaf l∗.273273 Leo Breiman, Jerome Friedman,

Charles J. Stone, and R. A. Olshen. Clas-
sification and regression trees. Chapman
and Hall/CRC, 1984

In our model, we use a similar approach to determine the parameteriza-
tion of the energy term contributed by a factor of type t in an input context-
dependent manner. Our starting point is the original parameterization of
factor energies in (238), in terms of model parameters wt = {Jt � 0, Ht}.
However, rather than a single set of parameters wt, we now associate with
each factor type t a regression tree, each leaf l ∈ Lt of which stores a sep-
arate set of parameters w(l)

t = {J(l)t � 0, H(l)
t }. The active set of parameters

for a factor of type t is then determined by the path through the associated
regression tree, in terms of the selected leaf l∗, viz.:

Et(yF | xF; wt︸︷︷︸
{J(l)

t
,H(l)

t
}l∈Lt

) =
1
2

yT
F J(l

∗)
t︸︷︷︸

Jt(xF ;wt)

yF − yT
F H(l∗)

t bt(xF)︸ ︷︷ ︸
ht(xF ;wt)

, l∗ = Leaf(t, xF).

(277)
This parameterization is strictly more general than the one we previously
used, which emerges as the special case of associating with each factor type
a regression tree stump consisting only of a single leaf node.

A perhaps counter-intuitive but extremely important property is the fact
that as previously, Jt(xF; wt) and ht(xF; wt) are still linear functions of wt:
the non-linearity enters in terms of the dependence on xF, which deter-
mines which subset of the parameters is in use.

A similar way of parameterizing factor energies was recently introduced
for discrete conditional random fields.274 The advantage of the model we274 Sebastian Nowozin, Carsten Rother,

Shai Bagon, Toby Sharp, Bangpeng Yao,
and Pushmeet Kohli. Decision tree
fields. In 13th International Conference
on Computer Vision (ICCV), Barcelona,
Spain, 2011

present here is that it allows for efficient training and inference using the
methods we outlined in the previous chapters.
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EpYs Yt

s ∈ V
Figure 55: Example of a regression tree
field: regression trees (left) determine
the effective factors of type u, u

′ and
p, based on the observed input X, by
selecting learned weights stored at their
leaves. The model structure (right) is
replicated once for each variable s ∈ V.

Summary of the model

Let us briefly summarize the main ingredients of our model. As illustrated
in Figure 55, our model consists of several factor types, each of which is
associated with a regression tree that stores at its leaves the parameters
of a local quadratic energy. A factor type also specifies how factors are
instantiated relative to a given variable. Importantly, factors of a common
type share a local energy function that is parametrized via the quadratic
models at the leaves of the associated tree, that is, the parameters of factors
of a common type are tied. The input contents relative to the position of
a factor determines the path from the root of the regression tree to the
selected leaf, and hence selects the local Gaussian model that is in effect.
The sum of local energy functions over the entire input determines the
overall energy function.

Benefits of non-parametric conditioning

So far, we have introduced a new way of parameterizing the factor ener-
gies, which we argued increases the expressiveness of the model. Before
going ahead, we wish to present some preliminary evidence that the more
powerful parameterization in terms of regression trees is indeed useful.

Towards this end, consider Figure 56. We plot the denoising perfor-
mance of our model on a natural image denoising task, with input images
corrupted by additive white Gaussian noise, as we vary the depth of the
regression trees of the pairwise factor types. Keep in mind that a depth of
one corresponds to our previous Gaussian CRF parameterization.
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Figure 56: Non-parametric condition-
ing at work: Conditional pairwise in-
teractions lead to improved natural im-
age denoising (σ = 25). We vary the
maximum depth of pairwise regression
trees from one to eight. This increases
the peak-signal-to-noise ratio (PSNR)
on the test set from 25.62dB (depth one)
to 26.63dB (depth seven).

The precise details of the denoising task are insubstantial to our discus-
sion at this point and will be provided later in the thesis, as we present
many more applications and results obtained using our model. For now,
the point we wish to make is that as deeper trees are learned, more com-
plex dependencies between the corrupted input image x and the original
ground truth image y can be represented. As shown in Figure 56, this re-
sults in a substantial increase in denoising performance. To give some per-
spective, improvements by 0.1dB are typically visible. However, the figure
also shows that overfitting can happen as the trees are trained to excessive
depth, at which point the performance starts to drop again.
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Loss-Specific Learning of Regression Tree Fields

So far, we have ignored the question of how the regression trees should be
chosen or learned. Ideally both the structure of the regression trees as well
as the parameters at their leaves are jointly chosen to minimize a common
objective function. But because the RTF model is a random field, all parts of
the model interact with each other and this makes joint minimization chal-
lenging. Previously, we saw how—for the simpler parameterization—the
model parameters of a Gaussian CRF can be estimated so as to minimize
the empirical risk of the model. We are now going to demonstrate that it is
indeed possible to extend this approach so as to jointly optimize both the
choice of trees as well as the model parameters residing at their leaves in
the sense of an empirical risk function. Towards this end, we will rely on
two alternating optimization steps.

Optimization of the model parameters

Consider first how the model parameters w can be optimized for a fixed,
given set of regression trees associated with the factor types of our model.

This problem is very similar to the parameter estimation problem using
the simpler parameterization we previously considered. The key point is
that the entries of J(x; w) and h(x; w) are still linear functions of w. While
each Jt(xF; wt) or ht(xF; wt) can be a highly non-linear function of x, it
depends on the model parameters solely as a linear function of the active
w(l∗)

t = {J(l
∗)

t , H(l∗)
t } of the selected leaf l∗.

In short, the main difference over our previous model is that now we
have one local model per leaf of a factor type, rather than one local model
per factor type. To determine the partial derivative with respect to a single
model parameter wi, one can thus proceed exactly as in Figure 51.

Growing of the Trees

Conversely, assume that the model parameters have been optimized for
the current tree structure. To allow for further descent in the objective,
it is desirable to further grow the trees, effectively introducing new model
parameters at the newly added leaf nodes. A common approach in growing
stand-alone regression trees is to select splits that minimize the sum of
squared residuals, i.e. the sum of squared distances of individual data points
from their mean.275 This approach is not well-motivated when learning an275 Leo Breiman, Jerome Friedman,

Charles J. Stone, and R. A. Olshen. Clas-
sification and regression trees. Chapman
and Hall/CRC, 1984

RTF. First, it is often desirable to use a loss function other than squared
error, and second, the regression trees of the factor types interact with each
other in the random field, so it is misguided to grow each tree as if their
predictions were made separately. Nonetheless, such „standalone“ training
is suggested by Nowozin et al.276 for decision tree fields.276 Sebastian Nowozin, Carsten Rother,

Shai Bagon, Toby Sharp, Bangpeng Yao,
and Pushmeet Kohli. Decision tree
fields. In 13th International Conference
on Computer Vision (ICCV), Barcelona,
Spain, 2011

Instead, we propose to efficiently split all current tree nodes so as to di-
rectly decrease the empirical risk incurred by the model. Unfortunately, it
is intractable to find the optimal splits under this viewpoint; however, we
can base the split decisions on the largest increase in the norm of the gra-
dient of the empirical risk function with respect to the model parameters,
which should be well-correlated with the possible decrease in the objective.
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We now demonstrate that this approach is feasible for any differentiable
loss function `, and indeed, as shown in Fig. 57 (again for denoising), it re-
sults in considerable gains. The main idea is to consider the gradient contri-
butions by individual factors as separate data points, in terms of which the
split criterion can be evaluated efficiently. Let us make this more precise.
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Figure 57: Benefits of splitting tree
nodes according to the largest increase
in gradient norm. Nodes are split either
by maximizing the norm of the gradi-
ent with respect to the model parame-
ters, or using the classic squared resid-
uals criterion. Comparison in terms of
MSE (top): the squared residuals cri-
terion aims at the right loss, but can-
not take into account that the trees are
combined in a random field. Compari-
son in terms of IW-SSIM (bottom): the
squared residuals criterion additionally
optimizes the wrong loss, so the gradi-
ent norm criterion is even more impor-
tant.

Lemma 3 For any differentiable loss function `(·, ·), the derivative of the empir-
ical risk R̃`(w) with respect to the parameters of leaf l of factor type t, ∂R̃`(w)

∂w(l)
t

,

decomposes into contributions of the factors F ∈ F (l)
t for which leaf l is active.

Proof Consider the derivative of the loss function with respect to a single
model parameter wi, given in Fig. 51. By further noting that the entries of
J(x; w) and h(x; w) are affine functions of the w(l)

t = {J(l)t , H(l)
t } parame-

ters, as per the factor energy (277), we develop the partial derivatives as

∂`(ŷ(x; w), y)

∂J(l)t

= ∑
F∈F (l)

t

ĉFŷ
T

F and
∂`(ŷ(x; w), y)

∂H(l)
t

= ∑
F∈F (l)

t

ĉF[bt(xF)]
T

,

(278)
where we again use ŷ and ĉ to denote the solutions to the sparse linear
systems that must be solved (cf. Fig. 51), and ŷF and ĉF denote column
vectors containing only the components of the variables covered by F.

Notably, ĉ is the only term in (278) that depends on the loss function,
so the decomposition over factor contributions holds irrespective of the
definition of `(·, ·), as long as it is differentiable and ĉ is thus well-defined.

To state our main result, let w denote the model parameters before a leaf
l is split into two new leaves lleft and lright. We denote by w′ the parameters
after a particular split. Since l is no longer a leaf in the new tree, and two

new leaves are added, we have w′ = {w \w(l)
t } ∪ {w

(lleft)
t , w

(lright)
t }.

Proposition 6 The increase in the gradient norm ∆ =
∥∥ ∂R̃`(w′)

∂w′
∥∥ − ∥∥ ∂R̃`(w)

∂w

∥∥
achieved by a split of leaf l of factor type t can be computed purely locally in terms
of the contributions by the factors F ∈ F (l)

t for which leaf l is active.

Proof Consider the gradient norm before a split, C def
=

∥∥ ∂R̃`(w)
∂w

∥∥. The
squared norm decomposes over the components of the individual leaves,
so we obtain

∆ =

√
C2 −

∥∥∥ ∂R̃`(w)

∂w(l)
t

∥∥∥2

2
+
∥∥∥ ∂R̃`(w′)

∂w
(lleft)
t

∥∥∥2

2
+
∥∥∥ ∂R̃`(w′)

∂w
(lright)
t

∥∥∥2

2
− C. (279)

Note that C remains constant among splits and can be pre-computed. By
our result of Lemma 1, the other terms depend only on the individual con-

tributions of factors F ∈ F (l)
t = F (lleft)

t ∪ F (lright)
t and can thus be computed

efficiently.

In practice, when evaluating split candidates, we initialize the param-

eters of the candidate leaves to w(lleft)
t = w(l)

t and w
(lright)
t = w(l)

t . This
way, the increase in gradient norm achieved by a split can be interpreted
as a measure of how much gain is possible over the current parameter set-
ting. Moreover, this approach ensures monotonic decrease in the objective
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Figure 58: OptimizeLossJointly al-
gorithm Start with trees consisting solely of root nodes;

repeat
(Re-)optimize all parameters w at the current leaf nodes ;
foreach training example i do

Solve two sparse linear systems to obtain ŷ(i) and ĉ(i), as in Fig. 51;

foreach factor type t and its regression tree do
foreach training example i do

foreach factor F ∈ Ft of matching type do

Compute gradient contribution via ŷ(i)
F and ĉ(i)F , as in (278) ;

Sort F and its contribution into the target leaf ;

foreach leaf l do

From the contributions, find the split that maximizes ‖ ∂R̃`(w′)
∂w′ ‖;

Split node l into new child leaves (lleft, lright) ;

Set w(lleft)
t
← w(l)

t
and w

(lright)
t

← w(l)
t

;

until maximum depth reached;
Optimize all parameters w to final accuracy ;

function, since immediately after a split, the same local factor models are in
effect as before. However, the degrees of freedom have increased, so further
progress in the objective may be possible.

We note in passing that the above arguments also extend to computation
of the increase in the norm of the projected gradient. Indeed, this is the
criterion we use in practice, as it can be expected to more reliably reflect
the possible decrease in the objective function. However, for simplicity of
our exposition, we use the norm of the gradient in our development.

Putting Things Together

So far, we developed procedures for optimizing the model parameters
given a fixed set of regression trees, and for splitting the trees given the
model parameters that are optimal for the current tree structure. Using
these building blocks, one can start from regression tree stumps consisting
solely of root nodes and optimize over the model parameters and the tree
structure in a greedy manner. At each iteration, the model parameters are
first optimized, and the leaves of the trees are then split according to the
largest increase in gradient norm to enable further progress in the objective.
This iterative scheme is outlined in Figure 58. The main hyper parameter
is the maximum depth of regression trees, which we suggest should be
determined from validation data.

Joint Optimization of the Pseudolikelihood

Prior to introducing the empirical risk as our objective of choice, we sug-
gested pseudolikelihood estimation as a tractable alternative to exact maxi-
mum likelihood estimation. It is natural to ask whether an analogous joint
training routine, which optimizes both the structure of the trees and the
model parameters so as to maximize the pseudolikelihood, can be real-
ized. Indeed, this is possible—again, the idea is to choose splits leading
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Start with trees consisting solely of root nodes;
repeat

(Re-)optimize parameters of current leaf nodes ;
foreach conditioned subgraph s do

Pre-compute mean parameters us|V ,Σs|V ;

foreach factor type t and its tree do
foreach conditioned subgraph s do

foreach factor F ∈ Ft of matching type do
Compute gradient contribution via us|V ,Σs|V – as in Fig. 44 ;
Sort contribution into target leaf ;

foreach leaf p do
From the contributions, find the split that maximizes ‖ ∂Onlpl(w′)

∂w′ ‖ ;
Split node l into new child leaves (lleft, lright) ;

Set w(lleft)
t
← w(l)

t
and w

(lright)
t

← w(l)
t

;

until maximum depth reached;
Optimize parameters of leaf nodes to final accuracy ;

Figure 59: OptimizeLikelihood-
Jointly algorithm

to the largest increase in gradient norm. In this setting, the gradient norm
with respect to model parameters w(l)

t = {J(l)t , H
t
(l)} of a given leaf l has

a particularly intuitive interpretation: In particular, it can be thought of
as a measure of disagreement between the mean parameters {us|V , Σs|V}
and the empirical distribution of the labels {ys, ysyT

s } in the conditioned
subgraphs affected by the leaf. Consequently, this split criterion prefers
splits introducing new parameters relevant to those subgraphs where the
disagreement is largest, as these are most likely to achieve significant gains
in terms of the pseudolikelihood.

The algorithm in Figure 59 gives an outline of how this works. As pre-
viously, the key to tractability is that the increase in gradient norm is com-
puted for the parameters of the candidate child nodes set to those of their
parent node. This way, the increase in overall gradient norm again can
be computed efficiently and purely locally in terms of the norms resulting
from the gradient contributions of the factors that are relevant to the respec-
tive candidate child. As previously, by initializing the parameters of the
new leaf nodes to those of their parent, the algorithm achieves monotonic
descent in the negative log-pseudolikelihood (denoted by Onlpl). This
holds even if re-optimization of the parameters at each round is approx-
imate, which is often preferable from an efficiency perspective.
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Figure 60: Joint training reduces the
negative log-pseudolikelihood objective
faster than separate training (top),
which translates into improved peak
signal-to-noise ratio (bottom).

Practical benefits. Figure 60 shows the performance of the same RTF de-
noising model given additive white Gaussian noise with σ = 10 (see the
chapter to follow for details), both for joint minimization of the negative
log-pseudolikelihood and separate training. Joint training optimizes the
learning objective more effectively as a function of the tree depth, produc-
ing in this case more accurate predictions in terms of the error measure
(PSNR). For other noise levels, joint training always optimized the learning
objective better, which, however, did not always improve PSNR. Again, this
is a strong argument in support of empirical risk minimization.





Applications and Results

In the previous chapters, we first introduced a Gaussian conditional ran-
dom field model based on local quadratic energies, and subsequently dis-
cussed how the coefficients of these energy terms can be learned freely
(modulo a positive-definiteness constraint on the local precision matrices),
either by maximizing the pseudolikelihood of the training data, or by di-
rectly minimizing the loss of the predictions on the training data obtained
from the model, i.e. the empirical risk. Subsequently, we introduced Re-
gression Tree Fields (RTFs), which extend the basic aforementioned model
by allowing for non-parametric dependence on the input, effectively deter-
mining the active interactions in the Gaussian random field via the paths
taken through regression trees.

We are now going to investigate the performance of these models by
means of several structured prediction tasks. First of all, we are interested
in the expressive power of the Gaussian CRF models we previously intro-
duced. What kind of problem can be tackled successfully using these mod-
els, and how does a Gaussian model compare to alternative approaches,
in particular when discrete labels shall be predicted? Moreover, does non-
parametric conditioning substantially improve the predictive accuracy of a
Gaussian CRF? We are going to answer these question by means of several
specifically constructed benchmark tasks.

Moreover, we will consider a problem of great practical relevance, image
restoration, and discuss the application of RTFs to common instances of this
problem, such as natural image denoising and removal of JPEG artifacts. The
former in particular has received an enormous amount of attention in the
image processing literature, and highly engineered algorithms exist that
exploit the specific properties of the task. Nonetheless, as we will show,
our image restoration framework based on RTFs allows for substantial im-
provements over the state of the art.

Discrete Problems

We will start by considering two problems involving discrete labels. In
the previous chapters, we introduced two different ways of handling such
labels in Gaussian conditional random fields: a) maximizing the pseudo-
likelihood of an orthonormal basis encoding, and b) minimizing the em-
pirical risk of the model using a multi-nomial logistic loss function that
penalizes incorrect predictions in a discrete sense.

The results we are going to present were obtained using the former ap-
proach; while it is possible that direct risk minimization might result in
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Figure 61: Chinese characters with
large occlusions—test set predictions.

Truth Input RF MRF Gmrf DTF RTF

some minor improvements, it does not increase the overall expressiveness
of the model. Indeed, restrictions concerning the expressive power mostly
stem from the positive-definiteness constraint on the global system matrix,
which is present irrespective of the particular parameter estimation routine.

Chinese Characters

The first task we are going to consider is of interest to us since it was used
by Nowozin et al.277 to assess the performance of the discrete Decision Tree277 Sebastian Nowozin, Carsten Rother,

Shai Bagon, Toby Sharp, Bangpeng Yao,
and Pushmeet Kohli. Decision tree
fields. In 13th International Conference
on Computer Vision (ICCV), Barcelona,
Spain, 2011

Field (DTF) model, which can be seen as the discrete counterpart of our RTF
model—allowing for a direct comparison.

The goal in this task is to in-paint the occluded parts of handwritten Chi-
nese characters from the KAIST Hanja2 database (Figure 61). Each charac-
ter is occluded by a centred grey box of varying size. Following Nowozin
et al., we measure the prediction accuracy on a dataset with small occlu-
sions, and visualize the predictions on images with larger occlusions. We
replicate the DTF model as closely as possible (same features and neigh-
borhood). For RTF training, we consider 2D orthonormal basis encoding
{[1 0]T , [0 1]T}, as well as plain 1D encoding of the binary labels. We con-
sider a Gaussian MRF where the pairwise trees are restricted to a single
leaf (GMRF), as well as systems with deep pairwise trees (RTF), analogous
to the MRF and DTF systems of Nowozin et al. We also include the random
forest (RF) baseline result of Nowozin et al. for comparison.

All systems were trained on a training set of 300 training images (pairs
of occluded images and the corresponding ground truths), and evaluated
on a disjoint set of 100 occluded test images. Since the in-painting task is
highly ambiguous, this evaluation is performed using somewhat smaller
occlusions than depicted in Figure 61 (again, following Nowozin et al.),
whereas the visualization is performed on the larger occlusions to highlight
the different biases of the models.

The results are shown in Table 3. Our 2D-encoded systems are very com-
petitive, with a particular RTF system achieving the best result on this task
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Depthu Depthp Test Train

Random Forest 15 ∼ 67.74% ∼
Regression Tree 1D 15 ∼ 70.50% 77.91%
Regression Tree 2D 15 ∼ 69.70% 77.12%
Discrete MRF 15 1 75.18%/≈20s ∼
Gaussian MRF 1D 15 1 70.14%/0.19s 73.11%
Gaussian MRF 2D 15 1 74.19%/0.32s 80.97%
DTF 15 6 76.01%/≈20s ∼
RTF 1D 15 6 75.37%/0.27s 79.38%
RTF 2D 15 6 75.02%/0.49s 81.73%
RTF 1D 20 20 76.39%/0.23s 94.56%
RTF 2D 20 20 77.55%/0.24s 94.91%

Table 3: Chinese characters—accuracy
on small occlusions: The prediction
accuracy of a model is computed as
the fraction of pixels in the occlusion
box that are correctly inpainted by the
model.

so far. Moreover, the best RTF system requires typically 0.2s per prediction,
which is two orders of magnitude faster than the current DTF implemen-
tation (Nowozin et al.; private communication with the authors). The DTF
predictions were obtained using simulated annealing and therefore may
not be optimal, whereas inference in the RTF model is always exact. Note
that 2D encoding is particularly important for GMRF, where the restricted
pairwise terms in 1D encoding cannot be compensated for by conditioning.
If deeper pairwise trees are allowed, as in RTF, this difference mostly van-
ishes. This clearly demonstrates the utility of non-parametric conditioning
on the image contents.

Snakes

Next, we are going to consider a multi-label discrete learning task with
weak local evidence for any particular label; the ability of the pairwise
terms to capture the relevant interactions is crucial. Each “snake” (Figure
62) consists of a sequence of adjacent pixels whose color in the input en-
codes the direction of the next pixel: go north (red), go south (green), as well
as go east (yellow) and go west (blue). Each snake is 10 pixels long, and in
output space exposes a grey-scale gradient that starts at its head in black
and ends at its tail in white.

Severe limitations in the expressiveness of our model, if any, would pre-
vent us from learning the map from input space to output space.

Truth Input Gmrf1D Gmrf11D RTF1D RTF11D
Figure 62: “Snakes” task—1D encoding
seeks to minimize RMSE; 11D encoding
injects a loss that is closer to multi-label
error.

Again, we use the systems from the DTF paper278 as our baseline. For 278 Sebastian Nowozin, Carsten Rother,
Shai Bagon, Toby Sharp, Bangpeng Yao,
and Pushmeet Kohli. Decision tree
fields. In 13th International Conference
on Computer Vision (ICCV), Barcelona,
Spain, 2011

RTF-training, we compare 1D encoding, which directly models the grey-
scale pixel intensity, to 11D encoding that assigns an orthonormal basis
label to each of the 11 different grey-scale values. The latter “injects” a
particular loss function during training: Since all labels are equally close in
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Table 4: Results on the “Snakes” test
data, 4-connected model: The predic-
tive performance of each model is mea-
sured both via the root mean squared
error (RMSE) over all predicted con-
tinuous pixel values, as well as the
percentage of correctly predicted dis-
cretized pixel values (Accuracy).

Depthu Depthp Accuracy RMSE

Random Forest 25 ∼ 90.30% ∼
Decision Tree 25 ∼ 90.90% ∼
Regression Tree 1D 36 ∼ 82.69% 0.1020

Regression Tree 11D 36 ∼ 82.43% 0.1125

MRF 25 1 91.90% ∼
Gaussian MRF 1D 36 1 82.52% 0.0999

Gaussian MRF 11D 36 1 84.22% 0.1352

DTF 25 15 99.40% ∼
RTF 1D 0 10 91.14% 0.0512

RTF 11D 0 7 98.77% 0.0268

Euclidean space, we attain invariance with respect to label permutations,
and MPLE minimizes a quadratic approximation of the discrete multi-label
error. In contrast, in 1D grey-scale encoding, MPLE minimizes a quadratic
loss that is closely correlated with RMSE. The regressed label of a pixel
is decoded as follows: For 1D encoding, RMSE can be computed directly
from the prediction, while multi-label error is computed by rounding to
the nearest discrete label. With 11D, we find the basis vector closest to the
prediction and use the corresponding grey-scale value (RMSE) or discrete
label (multi-label error).

The numeric results are given in Table 4, and example predictions are
shown in Figure 62. Tree depths were optimized for each system. RTF
using 11D encoding and DTF essentially solve the task, while all other
systems fail. Consider the error rates achieved by GMRF: Clearly, 11D en-
coding leads to smaller multi-label error, while 1D encoding favours RMSE.
On the other hand, using the fully conditional pairwise terms of the RTF,
11D encoding yields better results in terms of both error metrics. This
result suggests that high-dimensional encodings yield additional benefits
even beyond the above loss function perspective. In particular, it may be
useful to construct high-dimensional codebooks that preserve the original
distances in 1D space.

A Mixed Problem

We now consider a problem that requires both discrete labels and continu-
ous labels. As we shall see, our method is capable of solving such problems
very effectively.

Detection and Registration

In this task we jointly detect and register deformable objects within an
image. The input, Figure 63(b), are two flags with variable position and
deformation. We use the 60 deformations provided by Garg et al.279 The279 Ravi Garg, Anastasios Roussos, and

Lourdes Agapito. Robust trajectory-
space TV-L 1 optical flow for non-rigid
sequences. In 8th international confer-
ence on Energy minimization methods in
computer vision and pattern recognition
(EMMCVPR), pages 300–314, 2011

background is an arbitrary crop from a large mosaic of flags. The output
labeling, see Figure 63(a) is a 3D (RGB) labeling where the first channel de-
fines fore- and background and the last two represent the mapping of each
pixel to a reference frame of the flat flag. We use an RTF model with dense
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Ground truth Input Unary RTF

(a) (b) (c) (d)

Figure 63: Detection and registration—
from left to right: ground truth (RGB),
input image, unary prediction, RTF 5x5

prediction.

pairwise connectivity in a 5× 5 window around each pixel and a maximum
tree depth of 50 for all trees, trained for maximum pseudolikelihood. We
compare to a similar model involving only unary factors (Unary) for each
pixel, roughly corresponding to a standalone regression tree approach.

We use 400 generated training images and 100 test images to evaluate
both systems. Figure 63(c,d) shows that a regression tree field performs
much better than the simpler model. This is clearly reflected in the mean
squared error (MSE); 6.1 · 10−2 for Unary, versus 1.0 · 10−2 for the RTF.

While the joint detection and registration problem may seem to be some-
what obscure, it is in fact a proxy task for important real-world problems
such as human pose estimation, e.g. Girshick et al.280 Since this problem 280 Ross Girshick, Jamie Shotton, Push-

meet Kohli, Antonio Criminisi, and An-
drew Fitzgibbon. Efficient Regression
of General-Activity Human Poses from
Depth Images. In International Confer-
ence on Computer Vision (ICCV), 2011

has been approached very successfully using regression trees, it is safe to
assume that the RTF framework could be employed gainfully in this setting.

A Continuous Problem

Before turning to more practical applications, we consider one more ex-
ample application that is mainly meant to illustrate the expressiveness and
utility of our method.

Face Colorization

Colorization is the task of adding color to a gray-scale image, e.g. an old
photograph. In most works, e.g. by Levin et al.,281 this under-constrained 281 Anat Levin, Dani Lischinski, and

Yair Weiss. Colorization using opti-
mization. In SIGGRAPH, 2004

task is solved with some user guidance. Here we demonstrate a fully au-
tomatic system that exploits domain knowledge. We are given a training
set of 200 frontal faces and a test set of 200 different people,282 where the 282 Images available from http://fei.

edu.br/~cet/facedatabase.htmlface images are roughly registered. Given the gray-scale input, the goal is
to predict the three-dimensional (RGB) output, as illustrated in Figure 64.

As the features of our RTF model, we use Haar-wavelets of size 1–32

pixels at various relative offsets (Gaussian-distributed with σ = 10 pixels).
We train the model for maximum pseudolikelihood and compare its pre-
dictions, achieving an MSE of 4.7 · 10−4, to several competitors (Figure 64):

Global Avg I: A simple, “global-average” competitor. First, 10 nearest-
neighbor images are retrieved from the training set, in terms of pixel-
wise gray-scale difference. Then these images are superimposed and the
median color (hue, saturation) is computed at every pixel location. Since
the NN-faces are not perfectly registered, color bleeding (e.g. around the
left ear) can be observed, translating into an MSE of 7.3 · 10−4.

http://fei.edu.br/~cet/facedatabase.html
http://fei.edu.br/~cet/facedatabase.html
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Ground Truth Input Image Global Avg I Global Avg II Unary RTF

Figure 64: Face colorization (top row:
full images, bottom row: zoom-in).
Given a gray-scale test image, the goal
is to recover its color (best viewed in
color). Global Avg II: A second competitor, which uses the same 10 nearest-

neighbors as the above. For each luminance value, the median color
(hue, saturation) is derived. The result does not show color-bleeding,
but suffers from the fact that the whole face and hair has virtually the
same color. This is also reflected in the worse MSE of 7.8 · 10−4.

Unary: Our result with unary factors only (one tree, depth ten). While
the overall result is encouraging the details are unfortunately blurry (see
the zoom-in). This is likely caused by the fact that neighboring pixels
make independent decisions, and results in an MSE of 8.2 · 10−4.

Compared to these competitors, the results achieved by our system (RTF)
are both visually superior and achieve a lower error rate, by a wide margin.

Image Restoration

We now turn to our final application, which is at the same time the most
relevant from a practical perspective. Image restoration has a rich history
in image processing, with special cases such as image denoising having
received significant attention over the years. In general terms, the problem
can be defined as follows: a natural image y is corrupted by a distortion
process x = f(y). We are only given the corrupted image x and our goal is
to recover the original image through an estimate ŷ. Ideally, the estimate
could be obtained through the inverse process f−1. However, in practice
f is either stochastic in nature, or deterministic but non-invertible. As a
consequence, perfect reconstruction of y is impossible most of the time.

While one can still aim at finding a reconstruction ŷ that is reasonably
close to the original image, this immediately raises the question how the
quality of such a reconstruction should be measured. In the past, the
squared error ‖y− ŷ‖2

2 has often been chosen because it is convenient com-
putationally. More recently, measures of perceived quality, such as the struc-
tural similarity index283 have been accepted as a better performance mea-283 Zhou Wang, Alan C. Bovik,

Hamid R. Sheikh, and Eero P. Simon-
celli. Image Quality Assessment: From
Error Visibility to Structural Similarity.
IEEE Transactions on Image Processing,
13(4):600–612, 2004

sure. When designing a restoration method, one should be aware of the
implications of optimizing the algorithm for one measure over the other.
As we saw in Figure 50, this choice affects the reconstructions considerably.
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Figure 65: Existing denoising meth-
ods contain complementary informa-
tion: we process a noisy image (left,
σ = 40) using four denoising meth-
ods (BM3D, EPLL, FoE, LSSC). For each
pixel and using the ground truth, we se-
lect the best possible prediction among
the methods (second column). Com-
pared to the ground truth this predic-
tion has some remaining error (third
column). In different parts of the im-
age different methods are selected over
larger regions (fourth column), indicat-
ing that the methods are consistently
different and have varying strengths
that depend on the image content.

Our contributions

In this section, we introduce a novel image restoration framework based
on the non-parametric Regression Tree Field (RTF) model we devised in
the previous chapters. We draw on the direct risk minimization approach
we previously introduced in order to directly optimize both the regression
trees associated with factor types, as well as the parameters at their leaves,
for a user-specified performance measure.

Owing to the RTF framework, our model is a highly-connected condi-
tional random field that produces globally consistent image reconstructions
tailored to specific loss functions. Both image features and reconstructions
made by existing restoration methods are seamlessly integrated into the
random field, and their dependency on the local image context is repre-
sented non-parametrically.

Moreover, we present the first learning-based approach that directly op-
timizes all aspects of a model for measures of perceived quality. In terms
of the structural similarity index (SSIM), but also peak signal-to-noise-ratio
(PSNR) and mean absolute error (MAE), we obtain the best published im-
age denoising results by a statistically significant margin. Our method is
visibly better than the best published methods, LSSC by Mairal et al.284 and 284 Julien Mairal, Francis Bach, Jean

Ponce, Guillermo Sapiro, and Andrew
Zisserman. Non-local Sparse Models
for Image Restoration. In International
Conference on Computer Vision (ICCV),
2009

EPLL by Zoran and Weiss.285 We further present results in removal of JPEG

285 Daniel Zoran and Yair Weiss. From
Learning Models of Natural Image
Patches to Whole Image Restoration. In
International Conference on Computer Vi-
sion (ICCV), 2011

blocking artefacts that surpass the state-of-the-art SA-DCT method.286

286 Alessandro Foi, Vladimir Katkovnik,
and Karen Egiazarian. Pointwise
Shape-Adaptive DCT for High-Quality
Denoising and Deblocking of Grayscale
and Color Images. IEEE Transactions on
Image Processing, 16(5):1395–1411, 2007

Previous approaches and related work

Image denoising has a rich history in image processing and a wide vari-
ety of image denoising methods exist. Patch-averaging methods such as
BM3D287 build weighted averages of noisy image patches and combine

287 Kostadin Dabov, Alessandro Foi,
Vladimir Katkovnik, and Karen
Egiazarian. Image denoising by sparse
3D transform-domain collaborative
filtering. IEEE Transactions on Image
Processing, 16(8):2080–2095, 2007

these into a single prediction. Sparse coding methods like LSSC optimize a
dictionary of image patches within each image. Fields-of-Experts (FoE)288

288 Stefan Roth and Michael J. Black.
Fields of Experts. International Journal
of Computer Vision (IJCV), 82(2):205–229,
2009

use a higher-order Markov random field as generative probabilistic image
model and combine it with an analytic noise model to obtain a posterior
distribution over noise-free images. Finally, as the last approach we will
consider here, the recent expected patch log likelihood (EPLL) method uses an
image patch model but combines all individual patch predictions to jointly
maximize the expected patch likelihood of the predicted image.

As far as measures of perceived quality are concerned, Estrada et al.289

289 Francisco Estrada, David Fleet, and
Allan Jepson. Stochastic Image Denois-
ing. In British Machine Vision Conference
(BMVC), 2009

optimize a stochastic denoising method explicitly for SSIM, but only using
a few manually set hyper parameters. In contrast, our method is capable
of optimizing tens of thousands of parameters automatically for SSIM.

Our observation that existing methods can be complementary has previ-
ously been made in a different context, namely optical flow estimation.290

290 Oisin Mac Aodha, Gabriel J. Brostow,
and Marc Pollefeys. Segmenting Video
into Classes of Algorithm-Suitability. In
Computer Vision and Pattern Recognition
(CVPR), 2010

This suggests that our approach is widely applicable and may lead to gains
even in other areas.
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Applying Regression Tree Fields to Image Restoration

The image restoration problem maps into our framework as follows. The
observed input image x denotes the corrupted image, which is generated
from ground truth y via some perturbation process. In the classical image
denoising setting, an additive white Gaussian noise assumption is made,
that is, x = y + z for z ∼ N (0, σ2I). However, we will also consider images
corrupted by JPEG blocking artefacts and a structured noise model (see
Figure 69) in our experiments. In fact, the ability to handle arbitrary noise
models is a major strength of our approach.

The restored image ŷ is then obtained as the prediction of our model
given the corrupted input, i.e. ŷ def

= ŷ(x; w) = [J(x; w)]−1h(x; w).

Feature engineering. Remember that the entries of J(x; w) and h(x; w) arise
as sums of per-factor contributions Jt(xF; wt)

def
= J(l

∗)
t and ht(xF; wt)

def
=

H(l∗)
t bt(xF), which depend on the evaluation of a regression tree.
Depending on our system configuration, the basis vector bt(xF) in the

leaf model of a unary or pairwise factor is initialized from one or more of
the following sources: a) the corrupted image itself, b) responses of a fixed
filterbank, and c) predictions by base methods; at the position of the pixels
covered by the factor.

In the regression trees, we use feature tests inspecting the input image,
the filter responses and the output of base methods at offsets relative to
the position of a factor. For JPEG deblocking, we use two more feature
tests indicating whether the position of the factor lies at the boundary of a
4× 4 or 8× 8 block. For the filter responses, we use the RFS filterbank291291 http://www.robots.ox.ac.uk/~vgg/

research/texclass/filters.html to derive 38 responses per pixel of the input image.
The use of base methods varies depending on the restoration task and

will be described per experiment. Our motivation is as follows: for many
established image restoration tasks, there exist highly engineered task-
specific methods. These competing approaches often contain complemen-
tary information, as illustrated for denoising in Figure 65. In our RTF
model, the relative contribution of the base methods can be learned per
image context, such that their complementary strenghts can be exploited.

Model selection and training. We choose among RTF models with dense
pairwise connectivity in either a 3× 3 or a 5× 5 window centered around
the current pixel, and tree depths of 1, 3, 5, 7, 8 or 9, based on validation
data (in most cases, a 5× 5 field at depth 8 or 9 was selected).

We train and evaluate using peak signal-to-noise ratio (PSNR); mean
absolute error (MAE); and unweighted structural similarity (SSIM), defined
over fixed 8× 8 windows as in Wang and Simoncelli.292 To train for MAE,

292 Zhou Wang and Eero P. Simon-
celli. Maximum differentiation (MAD)
competition: Methodology for compar-
ing computational models of percep-
tual quantities. Journal of Vision, 8(12):1–
13, 2008

we use the smoothed, differentiable version suggested by Tappen et al.293,

293 Marshall Tappen, Ce Liu, Edward
Adelson, and William Freeman. Learn-
ing Gaussian Conditional Random
Fields for Low-Level Vision. In Com-
puter Vision and Pattern Recognition
(CVPR), 2007

but evaluate in terms of the original definition. All measures are computed
per image and then averaged over the number of images.

For regularization, we follow the procedure we previously suggested
and not only restrict the J(l)t parameters to be positive-definite, but fur-
thermore bound their eigenvalues by (10−2, 102). In practice, we found our
training procedure to be insensitive to the choice of these hyper parameters.

http://www.robots.ox.ac.uk/~vgg/research/texclass/filters.html
http://www.robots.ox.ac.uk/~vgg/research/texclass/filters.html
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Ground Truth Noisy Input (σ=40) PsnrRTFAll EPLL

Figure 66: Visual improvement in de-
noising quality. Our PsnrRTFAll-
system clearly produces more natural
restorations than EPLL.

Experiments

We adhere to a strict experimental protocol, using the disjoint training, vali-
dation and test splits from the BSDS500 database294 (with images scaled by 294 Pablo Arbeláez, Michael Maire,

Charless Fowlkes, and Jitendra Malik.
Countour Detection and Hierarchical
Image Segmentation. IEEE Transac-
tions on Pattern Analysis and Machine
Intelligence, 33(5):898–916, 2011

a factor of 0.5). In particular, we pay attention to clearly separate the model
selection from the final performance evaluation. We perform model selec-
tion using the validation set only and evaluate the performance on the test
set only once. Given the final results on the test set, we perform a Wilcoxon
signed-ranks test295 testing for the null-hypothesis of equal performance 295 Janez Demšar. Statistical Compar-

isons of Classifiers over Multiple Data
Sets. Journal of Machine Learning Re-
search, 7:1–30, 2006

between competing methods.
We consider 12 configurations of our method, based on the combinations

of the loss functions we optimize (PsnrRTF, MaeRTF, SsimRTF, NlplRTF)
and three different feature sets: using only the filterbank (RTFPlain), the
filterbank and the output of BM3D (RTFBm3d), as well as the filterbank,
FoE, BM3D, LSSC and EPLL (RTFAll). Note that the NlplRTF-systems
are trained to minimize the negative log-pseudolikelihood. As for the
loss-specific systems, we use joint training of trees and parameters for the
NlplRTF-systems.

Denoising. We perturb the images of the BSDS500 database with additive
white Gaussian noise (AWGN), for noise levels σ ∈ {20, 30, 40, 50}. The re-
sults achieved by our system configurations, as well as the strongest com-
petitors, are shown in Table 6. We compare against EPLL, LSSC, BM3D
as previously discussed, as well as the most recent FoE release,296 which

296 Uwe Schmidt, Qi Gao, and Stefan
Roth. A Generative Perspective on
MRFs in Low-Level Vision. In Computer
Vision and Pattern Recognition (CVPR),
2010optimizes for MSE.

In all cases, an RTFAll-system trained for the specific loss achieves the
best result. In terms of PSNR, the gains over the best published method
range from 0.26dB to 0.29dB across the different noise levels. This is a
substantial improvement and is clearly visible, as shown in Figure 66.

In many applications, the right trade-off between speed and quality is
required. Table 5 shows the average running time of the considered denois-
ing methods on 241× 161 pixel images. The improvement of our RTFBm3d-
systems over the best published methods (LSSC and EPLL) ranges from
0.07dB to 0.16dB and is statistically significant, yet they run 20× faster.

Observe that the RTF configurations trained for a specific loss perform

FoE BM3D LSSC EPLL RTFPlain RTFBm3d RTFAll

Running time (s) 1,063 0.9 172 38 0.7 1.6 1,275

PSNR (σ = 30) 26.81 27.32 27.39 27.44 26.97 27.58 27.72

Table 5: Typical running time of de-
noising methods, for a single natural
image (241 × 161 pixels) on an 8-core
Intel Xeon machine (2.4GHz), along
with their performance in PSNR. RTF
using BM3D as a feature (RTFBm3d) of-
fers the best trade-off between denois-
ing performance and computational
cost, as it is better than the strongest
competitor (EPLL), yet about twenty
times faster.
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Figure 67: What has our model learned
about images? On the test set we visu-
alize the original image and the differ-
ence image between our best method,
PsnrRTFAll, and the uniform aver-
age of our competitors’ predictions
(UniformAvg). One can clearly see
structure in the difference: our model
has learned to refine smooth areas (left),
texture patterns (middle), and edges
(right).

much better than the NlplRTF-systems. The impressive difference between
PsnrRTFPlain and NlplRTFPlain ranges from 0.31db to 0.39db across the
noise levels. This gap narrows as more powerful features are added to the
models, but it remains statistically significant. On the other hand, training
of NlplRTF-systems is typically faster than that of the loss-specific models
(for example 22h for NlplRTFBm3d versus 35h for PsnrRTFBm3d), and it
supports subsampling of pixels both for parameter estimation and node
splitting, while subsampling is only possible for the latter in our approach.

The gains of our loss-specific RTF models, both over state-of-the-art de-
noising methods and NlplRTF, are even more pronounced in terms of
MAE and SSIM. Note that it is not at all apparent how these systems could
be made to take into account these measures.

A natural question is whether the gains of our approach simply stem
from averaging of strong base methods. This is not the case—in Table 6, we
show the performance achieved by averaging the predictions of our com-
petitors uniformly (UniformAvg). Our RTFAll-systems outperform this
naïve strategy by a wide margin. The difference is statistically significant
and clearly visible, cf. Figure 67.

Table 6: Denoising test set results for
natural images. We compare state-of-
the-art competitors to configurations of
our method (RTF). For each measure,
the result of the strongest competitor
is printed in blue, and the best RTF
result is printed in green. The gain
of our method is statistically signifi-
cant as per Wilcoxon signed-ranks test
(with p < 10−5 for each blue-green
pair in each column). In all cases the
RTF trained for the corresponding loss
achieves the best result.

Method PSNR (↑ better) MAE (↓ better) SSIM (↑ better)
σ 20 30 40 50 20 30 40 50 20 30 40 50

Input 22.11 18.59 16.09 14.15 15.96 23.93 31.91 39.89 0.541 0.401 0.307 0.242

FoE 28.87 26.81 25.45 24.47 6.79 8.56 10.03 11.24 0.848 0.776 0.712 0.660

BM3D 29.25 27.32 25.98 25.09 6.40 7.95 9.25 10.22 0.855 0.793 0.741 0.699

LSSC 29.40 27.39 26.08 25.09 6.39 7.96 9.23 10.33 0.861 0.799 0.745 0.700

EPLL 29.38 27.44 26.17 25.22 6.37 7.90 9.12 10.17 0.864 0.800 0.747 0.703

UniformAvg 29.47 27.50 26.21 25.25 6.30 7.84 9.08 10.12 0.863 0.802 0.749 0.705

PsnrRTFPlain 28.95 26.97 25.71 24.76 6.78 8.44 9.72 10.85 0.840 0.771 0.716 0.666

PsnrRTFBm3d 29.52 27.58 26.24 25.38 6.23 7.73 8.99 9.92 0.863 0.803 0.750 0.711

PsnrRTFAll 29.67 27.72 26.43 25.51 6.14 7.62 8.80 9.78 0.868 0.809 0.758 0.717

MaeRTFPlain 28.92 26.94 25.69 24.75 6.78 8.43 9.71 10.81 0.840 0.771 0.715 0.669

MaeRTFBm3d 29.53 27.58 26.22 25.36 6.21 7.71 8.96 9.88 0.863 0.803 0.750 0.711

MaeRTFAll 29.67 27.72 26.43 25.50 6.12 7.59 8.77 9.74 0.867 0.808 0.758 0.717

SsimRTFPlain 28.49 26.55 25.31 24.41 7.17 8.92 10.23 11.34 0.844 0.778 0.721 0.676

SsimRTFBm3d 29.17 27.13 25.69 24.85 6.60 8.31 9.80 10.79 0.868 0.809 0.757 0.719

SsimRTFAll 29.23 27.14 25.67 24.75 6.60 8.39 9.96 11.06 0.872 0.815 0.766 0.726
NlplRTFPlain 28.61 26.66 25.32 24.42 7.09 8.80 10.28 11.37 0.828 0.758 0.694 0.653

NlplRTFBm3d 29.43 27.44 26.10 25.21 6.32 7.88 9.16 10.13 0.861 0.799 0.747 0.708

NlplRTFAll 29.60 27.64 26.34 25.40 6.20 7.71 8.92 9.93 0.866 0.806 0.755 0.714

Removal of blocking and ringing artefacts. To demonstrate once more that
our approach is very flexible and can be applied to numerous low-level vi-
sion and imaging problems, we distort the images of the BSDS500 database
by JPEG blocking artefacts. We use the JPEG quality settings 10, 20, 30 and
40 of the Matlab JPEG encoder. Again, we compare the loss-specific sys-
tem configurations to maximum pseudolikelihood estimation (NlplRTF),
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Ground Truth Lossy Jpeg MaeRTFSadct SA-DCT

Figure 68: Improvement in JPEG de-
blocking (quality 10): SA-DCT fails to
remove the blocking artefacts in the sky
while our MaeRTFSadct

-system suc-
ceeds.

as well as the state-of-the-art deblocking method SA-DCT.297 We consider

297 Alessandro Foi, Vladimir Katkovnik,
and Karen Egiazarian. Pointwise
Shape-Adaptive DCT for High-Quality
Denoising and Deblocking of Grayscale
and Color Images. IEEE Transactions on
Image Processing, 16(5):1395–1411, 2007

configurations of our system that use only the filterbank (RTFPlain), as well
as those that include SA-DCT as a base method (RTFSadct

).
Again, loss-specific training of RTFs achieves the best results, as shown

in Table 7. The gains over SA-DCT are statistically significant and clearly
visible, as demonstrated in Figure 68. The PSNR and MAE measures
are strongly correlated in this task, so there is little difference between
PsnrRTF and MaeRTF, but SsimRTF achieves better results in terms of
the loss it optimizes.

It is also interesting to note that the “standalone” RTFPlain-systems per-
form extremely competitively. Unlike denoising, there is not much to be
gained by incorporating the predictions of SA-DCT as a base method, and
it is encouraging to see that our simple feature engineering is already suf-
ficient to beat a state-of-the-art approach.

Method PSNR (↑ better)) MAE (↓ better) SSIM (↑ better)
quality 10 20 30 40 10 20 30 40 10 20 30 40

Input 26.62 28.80 30.08 31.01 8.64 6.64 5.70 5.11 0.790 0.868 0.900 0.918

SA-DCT 27.44 29.48 30.70 31.58 7.67 6.00 5.20 4.69 0.810 0.880 0.909 0.926

PsnrRTFPlain 27.66 29.84 31.15 32.10 7.49 5.78 4.95 4.44 0.817 0.886 0.914 0.930

PsnrRTFSadct
27.70 29.86 31.17 32.12 7.43 5.75 4.94 4.42 0.819 0.887 0.915 0.931

MaeRTFPlain 27.66 29.83 31.16 32.10 7.46 5.77 4.94 4.43 0.817 0.886 0.914 0.930

MaeRTFSadct
27.71 29.87 31.17 32.13 7.40 5.73 4.93 4.41 0.818 0.887 0.915 0.930

SsimRTFPlain 27.18 29.47 30.81 31.80 8.07 6.12 5.23 4.66 0.823 0.889 0.916 0.932
SsimRTFSadct

27.25 29.49 30.82 31.82 7.97 6.10 5.22 4.64 0.824 0.890 0.917 0.932

NlplRTFPlain 27.50 29.69 31.01 31.96 7.64 5.90 5.05 4.53 0.813 0.883 0.913 0.928

NlplRTFSadct
27.61 29.76 31.06 32.00 7.52 5.84 5.01 4.49 0.816 0.885 0.913 0.929

Table 7: JPEG deblocking results for
natural images. We compare SA-DCT,
a state-of-the-art deblocking method,
to configurations of our method (RTF).
The best RTF result is printed in green.
Again, statistically significant gains
are printed in bold font.

Removal of structured noise. We simulate synthetic dust artifacts as follows.
For each image, we sample a random number of dust particles (Poisson-
distributed with λ = 20), and then for each particle we sample a position
uniformly at random on the image plane. Each dust particle decreases
the image intensity according to a fixed 2D Gaussian-shaped function with
scaling of s = 5 (small dust) or s = 20 (large dust) pixels. Our image
restoration framework is highly capable of recovering the images, even for
the large-dust case (see Figure 69). We emphasize that none of the other
denoising methods described in this paper can handle the structured noise
present in the corrupted images. In fact, when applying a conventional
denoising method such as BM3D to the noisy input, the algorithm not only
fails to remove the dust artifacts, but even worse, it blurs the uncorrupted
parts of the image.
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Ground Truth Noisy Input IwSsimRTFPlain
BM3D

Figure 69: No real competitor: Com-
mon denoising algorithms fail on
the structured noise dataset since the
AWGN assumption is violated. While
our method is surprisingly capable of
restoring the corrupted image regions,
BM3D fails to remove the noise, and
moreover blurs the uncorrupted parts.

Conclusions and Future Work

In this final part of the thesis, we introduced a Gaussian conditional ran-
dom field model that is suitable both for discrete and continuous struc-
tured prediction tasks. Already the basic parameterization we proposed
extends on existing Gaussian CRFs by allowing to freely learn the shape
of the local precision matrices of factors from training data. Furthermore,
we demonstrated how the expressive power of the model can be further
extended by letting the factor energies depend on the observed input in a
non-parametric manner, via regression trees.

We devised two efficient training routines for estimating the parameters
of such conditional random fields, or learning the regression trees deter-
mining the factors, in the case of the non-parametric model class. The first
approach is based on maximizing the pseudo-likelihood of the training data
and is particularly convenient from a computational perspective: The ob-
jective function is convex, and since it decomposes over all variables in the
training data, computation of the objective function can be further sped up
either through parallelization or by sub-sampling from the variables within
each training example. The second training approach we introduced di-
rectly seeks to minimize the empirical risk of the model with respect to a
user-specified, differentiable loss function. This approach has the advan-
tage of being robust even in the presence of model misspecification, since
the quality of the predictions obtained from the model are directly assessed
in terms of the quality measure that is eventually applied to test instances.
This way, the model parameters are directly chosen so as to obtain the best
possible predictions within the restricted model class.

We first evaluated our models on specifically constructed benchmark
tasks, demonstrating that in several cases, their expressive power is indeed
comparable to discrete models. We also demonstrated the great flexibility
afforded by being able to freely mix discrete and continuous variables.

In order to confirm the practical relevance of our method, we then pro-
posed a framework for image restoration, based on three ideas. First, non-
parametric regression tree fields as a flexible representation. Second, loss-
specific joint training, selecting all model aspects to optimize a task-specific
losses. Third, making efficient use of existing restoration methods, com-
bining and improving their predictions. All three ideas together produce a
new state-of-the-art in image denoising and JPEG deblocking. Importantly,
we leveraged the work that has been invested into specialized methods for
these tasks by incorporating their predictions into our field model, which
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makes it future-proof and applicable to a wide variety of tasks.
Is image denoising solved? We believe it is not solved yet, because com-

mon performance measures (PSNR and SSIM) are just a proxy for the per-
ceptual quality. With our model we can efficiently optimize for a given
measure, and by analyzing the loss-specific predictions, we hope that in
the future this will provide insight into the remaining shortcomings of mea-
sures such as SSIM. After all, we would argue that image denoising is as
much about the perceived quality by a human observer as it is about the
natural image statistics.

Aside from potential improvements in image restoration, we believe that
the methods developed in this part of the thesis allow both for exciting
new applications, as well as for a number of algorithmic improvements
in future work. As far as applications are concerned, low-level computer
vision tasks such as image segmentation or optical flow seem to be obvious
candidates. Our encouraging results for the joint detection and registration
task furthermore suggest that our model could be gainfully employed for
human pose estimation, a topic that has received significant attention in
recent years.

On the algorithmic side, it will be beneficial to work on improved train-
ing routines. While the direct risk minimization approach seems to yield
superior results over pseudolikelihood estimation, it is slightly worrisome
that the objective function is not convex in the model parameters. It will
be an interesting challenge to develop methods that can gainfully incor-
porate loss functions and are nonetheless convex. Moreover, it would be
useful to gain an improved theoretical understanding of the decrease in
expressiveness incurred by the restriction to positive-definite factor poten-
tials, thereby characterizing the tightness of our approximation for discrete
labeling tasks and setting the ground for future improvements.

In any case, perhaps the main strength of the methods developed in this
thesis is their wide applicability and versatility, allowing for novel applica-
tions in a variety of different fields. It will certainly be exciting to see them
put to use by the scientific community.
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