
Combining Multiple Depth
Cameras for Reconstruction

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieurin

im Rahmen des Studiums

Computergraphik und Digitale Bildverarbeitung

eingereicht von

Katharina-Anna Wendelin
Matrikelnummer 0425160

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Univ.Ass. Mag.rer.nat. Dr.techn. Hannes Kaufmann

Wien, 12.11.2012
(Unterschrift Verfasserin) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Combining Multiple Depth
Cameras for Reconstruction

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieurin

in

Visual Computing

by

Katharina-Anna Wendelin
Registration Number 0425160

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Univ.Ass. Mag.rer.nat. Dr.techn. Hannes Kaufmann

Vienna, 12.11.2012
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -
einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasserin)

i

Danksagung

Zunächst möchte ich mich bei meinem Betreuer Hannes Kaufmann bedanken, der sehr viel
Geduld mit mir hatte und mir immer mit Rat und Tag zur Seite gestanden ist. Auch Christian
Schönauer, Annette Mossel und Ingo Schiller möchte ich für ihre Hilfe bei der Kalibrierung der
Kameras meinen Dank aussprechen.

Meinen Freunden, meinen Studienkollegen und meiner Familie möchte ich dafür danken,
dass sie immer an mich geglaubt haben und mich in schwierigen Zeiten motiviert haben.

Der größte Dank geht an meinen Verlobten, der mich während der gesamten Studienzeit
unterstützt hat, meine Launen ertragen musste und mich immer motiviert hat, weiter zu machen.
Ich danke dir Andi, ohne dich wäre das alles nicht möglich gewesen.

iii

Acknowledgements

First of all I want to thank my advisor Hannes Kaufmann who was very patient and helped me
with words and deeds. Also I want to thank Christian Schönauer, Annette Mossel and Ingo
Schiller who helped me during the calibration process.

Further more I also want to thank my friends, my colleagues and my family for always
believing in me.

Special thanks go to my fiancé who supported me throughout the whole time at university,
had to bear my mood and always motivated me. I thank you Andi, without you this all would
not have happened.

v

Abstract

In the past few years depth cameras and their applications have gained more and more attention.
Especially the publication of the Microsoft Kinect which is a cheap alternative to the expen-
sive industrial cameras has initiated the research and development in this area. Adding depth
information to images makes it possible to develop a lot of different application areas. Ges-
ture and motion recognition, 3D Reconstruction of people and objects and the analysis of work
movements are just a few possibities for using the depth camera technology. This work treats
the combination of depth cameras in order to support future work like 3D reconstruction. The
configuration of the cameras, external factors and camera calibration have to be considered. Dif-
ferent techniques for 3D image generation are described and analized and similar publications
with various approaches are explained and evaluated. Subsequently the practical part of this
work is explained covering the combination of two different depth cameras and the challenges
which arrise out of it.

vii

Kurzfassung

In den letzten Jahren haben Tiefenbildkameras und ihre Anwendungsgebiete immer mehr an
Bedeutung gewonnen. Vor allem durch die Veröffentlichung der Microsoft Kinect, die eine kos-
tengünstige Alternative zu den teuren industriellen Kameras darstellt, hat die Forschung mit
Tiefenbildkameras angeregt. Die Anreicherung von Bildern mit Tiefeninformation öffnet die
Tür für eine große Anzahl von Anwendungsgebieten. Erkennung von Gesten und Bewegungen,
3D Rekonstruktion von Menschen und Objekten und Analyse von Bewegungsabläufen sind nur
einige der vielen Möglichkeiten, die sich durch diese Technologie ergeben. Diese Arbeit be-
schäftigt sich mit der Kombination von Tiefenbildkameras, um zukünftige Arbeiten wie zum
Beispiel die 3D Rekonstruktion von Menschen und Objekten zu ermöglichen. Dabei sind einige
Faktoren wie die Beschaffenheit der Kameras, die Einwirkung von äußerlichen Faktoren und die
Kalibrierung der Kameras aufeinander zu beachten. Es werden die unterschiedlichen Verfahren,
3D Bilder zu erzeugen, beschrieben und analysiert und ähnliche Arbeiten mit verschiedenen
Herangehensweisen zu diesem Thema geschildert und evaluiert. Anschließend wird der prakti-
sche Teil dieser Arbeit beschrieben, der sich mit der Zusammenführung zweier unterschiedlicher
Tiefenbildkameras und die Herausforderungen, die sich dadurch ergeben, beschäftigt.

ix

Contents

List of Figures xiii

List of Tables xiv

1 Introduction 1
1.1 Object Capturing with Depth cameras . 1
1.2 Application Fields using Multiple Depth Cameras 2

2 Related Work 5
2.1 Technological Background . 5

Overview . 5
The Computer Vision Pipeline . 5
3D Vision . 10

2.2 Object Capturing . 15
Initialization . 16
2D Recording . 16
3D Recording . 17
Combined Approaches . 17
Comparison of the different approaches . 18

3 Design 19
3.1 Workflow . 19
3.2 Hardware and Setup . 21

PMD[vision] Camcube 3.0 . 21
Microsoft Kinect . 23

3.3 Libraries . 25
Open Natural Interaction (OpenNI) Framework 25
PMDSDK 2 . 26

3.4 Calibration . 26
Image Generation . 27
Image Lists . 27
Corner Assignment . 29
Approximation and refinement of the camera parameters 30

xi

3.5 Data Acquisition . 31
Data Acquisition with the PMD[vision] Camcube 3.0 32
Data Acquisition with the Microsoft Kinect 32

3.6 Noise Reduction . 32
3.7 Background Segmentation . 34
3.8 Merged Views . 35

4 Implementation 37
4.1 Main class . 37
4.2 KinectConnection class . 38
4.3 PmdConnection class . 40
4.4 FrameHandler class . 41
4.5 Matrix class . 41
4.6 View class . 42
4.7 DisplayImage class . 42
4.8 Configuration File . 43
4.9 DepthCamCon Library . 44

5 Results 47
5.1 Calibration . 47
5.2 Raw Data . 53
5.3 Noise Reduction and Background Subtraction 54
5.4 Merged Point Cloud . 56

6 Conclusion and Future Work 59
6.1 Improvements and Future Tasks . 59
6.2 Using Multiple Depth Cameras for Tracking 59
6.3 Conclusion . 60

Appendix 61
Quaternions . 61
Euler angles . 62
Conversion between euler angles and rotation matrices 62
Conversion between quaternions and rotation matrices 63
Conversion between quaternions and euler angles 63
Homogeneous coordinates . 64

Bibliography 65

xii

List of Figures

2.1 Perspective Projection . 6
2.2 Orthographic Projection . 7
2.3 The computer vision pipeline . 7
2.4 The triangulation principle . 11
2.5 Epipolar geometry . 14

3.1 Workflow of the practical part of this work . 20
3.2 Workflow in detail . 21
3.3 The PMD[vision] Camcube 3.0 sensor . 22
3.4 One of the two PMD[vision] Camcube 3.0 illumination units 22
3.5 The PMD[vision] Camcube 3.0 depth camera . 23
3.6 The Microsoft Kinect . 24
3.7 Pattern generated by the Microsoft Kinect IR projector 25
3.8 The functionality of OpenNI . 26
3.9 A picture series taken with the PMD depth camera. From left to right: amplitude

image, intensity image, depth image . 28
3.10 A picture series taken with the Kinect depth camera. From left to right: amplitude

image and depth image . 28
3.11 A sample of the corner selection with an amplitude image made with the PMD depth

camera. 29
3.12 A sample of the corner selection with an infrared image made with the Kinect depth

camera. 29
3.13 The result of the approximation of the camera parameters 30
3.14 A frame captured with a low integration time. The visualization was done with

OpenGL . 33
3.15 A frame captured with a high integration time. The visualization was done with

OpenGL. 33
3.16 This image shows the shadow effect occurring when a captured object is located too

near in front of the Microsoft Kinect. The captured hand can be seen twice. 34

5.1 A sequence of infrared and depth images taken with the Microsoft Kinect 48
5.2 A sequence of intensity and depth images taken with the PMD[vision] Camcube 3.0 49
5.3 This image shows the reprojected calibration pattern for the Microsoft Kinect . . . 50
5.4 This image shows the reprojected calibration pattern for the PMD[vision] Camcube

3.0 . 51
5.5 This image shows a scene captured simultaneously by both cameras 52
5.6 This image shows the reprojected calibration pattern for the same scene captured by

both depth cameras . 52

xiii

5.7 This image shows the reprojected calibration pattern for the same scene captured by
both depth cameras. The calibration pattern is out of alignment and so falsifies the
result of the calibration. 53

5.8 The raw output of the PMD[vision] Camcube 3.0 visualized from different viewing
angles with OpenGL. 54

5.9 The raw output of the Microsoft Kinect visualized from different viewing angles
with OpenGL. 54

5.10 Background subtraction using the PMD[vision] Camcube. 55
5.11 Background subtraction using the Microsoft Kinect. 55
5.12 Applying a 9x9 Median Filter on a frame captured with the PMD[vision] Camcube. 56
5.13 This image shows the result of the intrinsic calibration performed on both point clouds 57
5.14 This image shows the result of the extrinsic calibration performed on both point clouds 58

List of Tables

3.1 Specification of the PMD[vision] Camcube 3.0 24

5.1 System configuration and used components for Microsoft Kinect and PMD[vision]
Camcube 3.0 . 48

5.2 Example results of the calibration process of the intrinsic parameters using the Mi-
crosoft Kinect . 50

5.3 Results of the calibration process of the intrinsic parameters using the PMD[vision]
Camcube 3.0 . 50

5.4 Results of the calibration process of the extrinsic parameters using the PMD[vision]
Camcube 3.0 and the Microsoft Kinect. The unit of the translation part of the pa-
rameters is millimeter. The rotation part of the parameters is given as a quaternion
(for more information see 6.3) . 51

5.5 System configuration and used components for Microsoft Kinect and PMD[vision]
Camcube 3.0 . 53

xiv

CHAPTER 1
Introduction

1.1 Object Capturing with Depth cameras

When using multiple depth cameras the same challenges rise as using conventional two dimen-
sional cameras. Every camera is constructed in a different way and in order to be able to capture
data the different systems have to be aligned to each other. In order to achieve that every camera
has to be calibrated in respect to all other cameras used in the system. Calibration is a compre-
hensive task that includes mathematical practices and image processing techniques. An accurate
calibration however is not solely a guarantor for good image quality. External factors like illu-
mination or the setting of the area the capturing takes place at can make the captured images
useless.
When using depth cameras the same aspects as mentioned before have to be considered. Addi-
tionally every source of interference regarding the process of capturing three dimensional data
has to be taken into account. In this case the construction of the depth camera determines the
possible difficulties. When using different types of depth cameras the different sources of errors
have to be considered as well as the different ways of capturing images.
This work explains the steps that have to be made in order to be able to capture three dimen-
sional data with multiple depth cameras. The chapter „Related Work“ explains the technological
background and takes into account the process of image capturing and the transformation into
three dimensional space. After that different methods for retrieving three dimensional data are
presented. At the end of the chapter „Related Work“, different types of object capturing tech-
nologies are presented. The next chapter explains the core of the work treating the setup of a
rig consisting of two different types of depth cameras in order to capture a point cloud. In this
chapter the hardware and software setup are explained as well as the calibration of the intrinsic
and extrinsic camera parameters. Also methods like background segmentation and noise reduc-
tion are explained in order to increase image quality. The chapter „Implementation“ explains the
structure of the practical part of this work. It covers the implementation of the data acquisition
from the different cameras, the handling of the calibrated data, the enhancement of the retrieved
data and the output of the merged views. Subsequently the results of the before mentioned

1

steps are presented and evaluated in chapter „Results“. The last chapter „Conclusion and Future
Work“ evaluates possible enhancement of the data concerning real-time applications and treats
the possible application fields of the resulting point cloud. The chapter „Appendix“ includes the
explanation of mathematical operations used during this work.

1.2 Application Fields using Multiple Depth Cameras

The use of depth cameras is wide spread and reaches from application fields like object recon-
struction for computer graphics, 3D interaction, visualization for medical purposes to preserva-
tion of cultural heritage. In all these application fields the reconstruction of the real world is the
principal task. With the use of reconstructed three dimensional data it is possible for the user to
receive new possibilities of interaction. Using only a single depth camera has the disadvantage
of only delivering a single view at one time. So when trying to reconstruct the real world either
the camera has to be moved or the object has to be moved. This limits the field of application to
the reconstruction of only static scenes because movement that happens beyond the field of view
can not be captured. In the following possible application fields are described with attention
turned on the possible benefit of using multiple depth cameras.

3D interaction

3D interaction has become a very important application field in the past few years. Especially
in the gaming industry where the Microsoft Kinect has revolutionized the interaction between
the user and the game by making the traditional controller obsolete thus enhancing the gaming
experience. The use of a single camera limits the user to a specific field of view. Gestures that
are performed beyond that view can not be recognized. As well as the field of view, occlusions
impair the result of the captured person. The use of multiple depth cameras would make it
possible to resolve this limitations. The person captured could use the whole room to perform
the gestures without having to care about the position of the camera or the field of view and
would not have to worry about occlusions.

Applications in Medicine

The use of 3D data in medicine makes it possible to observe visual information in an intuitive
way. The use of multiple depth cameras for motion analysis increases the process of diagnosis
and therapy. With the use of depth cameras it is possible to observe a patient in an non-invasive
way which is a benefit for the observed person.

Reconstruction of the Environment

Reconstruction of the environment has many application fields in daily life. The estimation of
distances and the identification of objects are the main tasks that can be fulfilled when using
depth cameras. These tasks are very important for application fields like robotics or the car
industry. The possibility to reconstruct the environment in order to overcome an obstacle or to
prevent accidents are important fields of research.

2

3D reconstruction

In order to capture not only a static scene but a course of motion the combination of multiple
cameras is needed. The use of depth cameras makes it possible to identify the foreground ob-
jects faster than using the conventional 2D CCD (charged coupled device) cameras. The depth
information can be used to make a prior selection of the area of interest and so drop non relevant
information in an early step of the capturing process. This work should serve as preparatory
work for 3D reconstruction facing the challenges when combining multiple depth cameras.

3

CHAPTER 2
Related Work

2.1 Technological Background

Overview

The following section covers information about prerequisites and different fields of applications
of depth cameras. First of all the different kind of projections are discussed leading to active
and passive 3D vision methods as a field of application. As this work covers the active methods
the emphasis lies on different technologies in that area and the mathematical background. Last
different approaches in view independent motion capturing systems will be discussed covering
2D, 3D and hybrid methods using either one or multiple cameras.

The Computer Vision Pipeline

This section will give a short overview about different projection methods and the application
field explaining mathematical backgrounds and therefor the prerequisites for image capturing.
The geometric relationships as well as optical principles are described being a precondition for
3D Vision in general. The underlying theory for projections in general is called the pinhole
model [FLP01]. It describes the relationship between the captured scene in 3D and the corre-
sponding mapping in 2D. All captured object points can be mapped onto the image plane by rays
that pass the center of projection. The pinhole model assumes that there is always only one ray
for each object point that leads to the corresponding projection. So a pinhole camera consists of
an optical center, the image plane and the focal length which is the distance between the optical
center and the image plane [FLP01]. The projection which is described by the pinhole camera
model is called perspective projection or central projection and is described in the following.

Perspective Projection

The perspective projection or central projection is a projection of the 3D world on a 2D surface
generated by rays that go through a common point called the center of projection [Sab08]. The

5

mapping from 3D to 2D is defined by the equation for the central projection [Sch05]:

xw
x

=
yw
y

=
z

f
(2.1)

Where the point (xw, yw, zw) represents the world coordinates, the point (x, y, z) represents
the image coordinates and f is the focal length. The index w denotes that the coordinates are
represented in homogeneous coordinates (see 6.3). With this relationship the mapping done in
the central projection can be written like the following equation:

xw
yw
zw
w

 =

f 0 0 0
0 f 0 0
0 0 f 0
0 0 1 0

x
y
z
w

The relationship between world coordinates and image coordinates is explained in figure 2.1.

The points P1 = (x1w, y1w, z1w) and P2 = (x2w, y2w, z2w) that lie on the captured object are
mapped onto the image plane and result in the points p1 = (x1, y1, z1) and p2 = (x2, y2, z2).
The ray captured by the camera goes through the center of the camera O = (i, j, k). The
intersection point between the image plane and the optical axis is called principal point c. The
focal length (the distance between the image plane and O) is denoted as f in the figure.

Figure 2.1: Perspective Projection

Orthographic Projection

As a special case of the perspective projection, the orthographic projection can be approximated
by assuming that the focal length equals infinity. This is the case when objects that are far away
from the optical center are captured. This projection is called orthographic or parallel projection
because only the x and y values of a captured object are taken into account. So the mapping can
be formulated as followed [Sch05]:

x = xw and y = yw (2.2)

6

Orthographic projections can be used for aerial photographs or cartography. Figure 2.2 shows a
parallel projection where every optical ray is perpendicular to the image plane.

Figure 2.2: Orthographic Projection

In order to get the pixel coordinates of a point in the world reference frame, several transfor-
mation steps have to be performed [Sch05]. Figure 2.3 shows the steps of the viewing pipeline.
In the following every single step is described briefly.

Figure 2.3: The computer vision pipeline

First of all the so called external transformation must be computed. In this transformation
the world coordinate system is transfered into the camera coordinate system centered at the point
Pc by performing a rotation and a translation:

PcH =

r11 r21 r31 tx
r12 r22 r32 ty
r13 r23 r33 tz
0 0 0 1

xw
yw
zw
1

 = BPwH (2.3)

Where PcH is the transformed point with respect to the camera coordinate system, B is the
external transformation matrix that contains a rotation and a translation part and PwH is the
original point with respect to the world reference frame. In literature the camera coordinate
system is also denoted as the eye coordinate system [Li01]. The subscript H indicates that the
point is in homogeneous coordinates. A short explanation to homogeneous coordinates is given
in chapter 6.3.

After the external transformation the so called perspective transformation has to be made.
This transformation transforms the point PcH into the sensor coordinate system by using the

7

perspective projection matrix P . The result is the point PiH :

PiH =

fx 0 0 0
0 fy 0 0
0 0 1 0

xc
yc
zc
1

 = PPcH

The last step is the internal transformation where the camera coordinate system point is
transformed into discrete image coordinates. For this transformation we need the internal matrix
A resulting in the point PpH:

PpH =

su 0 u0
0 sv u0
0 0 1

xiyi
zi

 = APiH

So finally the resulting transformation from world coordinates into pixel coordinates can be
written as follows:

uv
1

 =

su 0 u0
0 sv u0
0 0 1

fx 0 0 0
0 fy 0 0
0 0 1 0

r11 r21 r31 tx
r12 r22 r32 ty
r13 r23 r33 tz
0 0 0 1

xw
yw
zw
1

s = (su, sv) is the scale factor and describes the ratio of pixel spacing in x- and y-direction

[Hor00]. In the following the intrinsic and extrinsic part of the computer vision pipeline are
described in more detail.

Intrinsic and Extrinsic Parameters

In the computer vision pipeline the external and internal transformations are used for transform-
ing the world coordinates into pixel coordinates. Those parameters can be subdivided into so
called intrinsic and extrinsic parameters. The intrinsic parameters define optical characteristics
as well as internal geometry of the camera [HS97]. The intrinsic parameters for a camera are:

• Principal point C = (Cx, Cy) : The principal point is the intersection point between the
image plane and the optical axis

• Focal length f = (fx, fy): The focal length is the distance between the image plane and
the center of projection.

• Scaling factor s = (su, sv): The scaling factor describes the horizontal and vertical scal-
ing.

With these parameters the so called intrinsic matrix can be formed as follows:

A =

fsu 0 u0 0
0 fsv v0 0
0 0 1 0

8

Where u0 and v0 describe the transformation towards the principle point.
The extrinsic parameters describe the orientation and location of the camera reference frame

with respect to the world frame [Sab08]. They are described in the following:

• Rotation parameters yaw θ, pitch φ and roll ψ. The rotation parameters describe the
rotation of the coordinate systems

• Translation t = (tx, ty, tz): t describes the translation of the object coordinate system
towards the center of projection.

The euler angles yaw, pitch and roll can be combined into one rotation matrix R:

R =

 cos Θ cos Ψ − cos Θ sin Ψ sin Θ
sin Φ sin Θ cos Ψ + cos Φ sin Ψ − sin Φ sin Θ sin Ψ + cos Φ cos Ψ − sin Φ cos Θ
− cos Φ sin Θ cos Ψ + sin Φ sin Ψ cos Φ sin Θ sin Ψ + sin Φ cos Ψ cos Φ cos Θ

A short description of the euler angles can be found in chapter 6.3.
The extrinsic parameters (rotation and translation) can now be combined into one external

transformation matrix [Sch05] :

B =

r11 r21 r31 tx
r12 r22 r32 ty
r13 r23 r33 tz
0 0 0 1

 =

[
R t
0T3 1

]

The extrinsic and intrinsic parameters can now be used in the computer vision pipeline.

Lens Distortion

In an ideal pinhole camera model we can expect that the central projection is conducted without
any distortion. When taking images with a camera that uses a lens, one has to cope with two
types of distortions: radial and tangential distortion which both have to be corrected [MSB99].
Radial distortion signifies a non-linear mapping on the image plane when increasing the distance
radially from the principle point [Sch05]. Tangential distortion describes the decentering of the
principal point away from the optical axis [MSB99]. Lens correction can be performed by
adding the error compensation factors δu and δv to the uncorrected image coordinates ũ and ṽ:

u = ũ+ δu (2.4)

v = ṽ + δv (2.5)

δu and δv contain the error correction for radial and tangential distortion and can be described
by using the following equations [Sch05]:

δu = ũ(κ1r
2
d + κ2r

4
d + ...) + [η1(r

2
d + 2ũ2) + 2η2ũṽ](1 + η3r

2
d + ...) (2.6)

δv = ṽ(κ1r
2
d + κ2r

4
d + ...) + [2η1ũṽ + η2(r

2
d + 2ũ2)](1 + η3r

2
d + ...) (2.7)

9

with rd =
√
ũ2 + ṽ2 (2.8)

The parameters κi describe the radial distortion, the parameters ηi describe the tangential distor-
tion [Sch05] and rd describes the distance between the measured pixel and the principal point
p = (u, v) [MSB99]. The distortion correction parameters can be combined with the matrix of
the intrinsic parameters resulting in a so called calibration matrix Kk that has to be constructed
for every camera that is used during image acquisition [SBK08].

Kk =

fsu 0 u0 + δu
0 fsv v0 + δv
0 0 1

3D Vision

There are many ways to retrieve 3D information. Considering only optical systems there are two
umbrella terms describing the functionality of the respective systems namely active and passive
systems. The choice of the system basically depends on the available equipment. These two
categories will be described below.

Active Systems

Active Systems use controlled emission of light. In the following different active optical methods
are explained in more detail [CBS00] [Gmb09].

• Time of Flight: Time-of-Flight cameras consist of an illumination source and a sensor.
A modulated infrared light signal is emitted by the light source and reflected by the mea-
sured object. Depth information is computed either by the phase difference between the
emitted and the received signal or by the time between emitting and receiving a light pulse.
So Time-of-Flight technologies can be subdivided into two categories: Systems that use
continuous wave modulation and systems that use pulsed wave modulation [Sab08]. Con-
tinuous wave modulation techniques use sinusoidal or more commonly square waves for
wave modulation. The range can be estimated by using the following equation where c is
a constant for the speed of light, ϕ0 is the measured phase and N is the range estimation
ambiguity [Gmb09]:

R =
c

2fmod
(
ϕ0

360◦
+N360◦) with N = 0, 1, 2, 3... (2.9)

Choosing varying values for the modulation frequency fmod the NAR (non-ambiguity
range) can be estimated which describes the maximum distance that can be captured with-
out capturing ambiguous range data caused by overlapping waves [Gmb09]:

NAR =
c

2fmod
(2.10)

Continuous wave modulation techniques have the advantage of not depending on a high
power laser which allows these cameras to use a wide field of light sources. The disadvan-
tage of these systems is the correlation between modulation frequency and the measuring

10

range. Because of the ambiguity a high modulation frequency decreases the measurable
distance. The pulsed wave modulation technique is also known as LIDAR (LIght De-
tecting And Ranging) and requires a high power laser because of the short time intervals
between emission and detection. The use of a high power laser limits the application field
because of the danger of injuring the eyes of captured people. Also just one range at a time
can be acquired which extends the time of capturing a whole scene. However, the LIDAR
technology has a range from 0.1 mm to several kilometers having an accuracy of about
0.01 mm which makes this technology very usable for many technological applications
like industrial robotic or military use [MSB99].

• Triangulation: A range finder based on the triangulation technique consists of a camera
and a projector. In principle the projector emits a light signal that is captured by the
camera. With help of the triangulation principle the distance to the object can be estimated
using the following equation [Sab08]:

Z =
b sinα sinβ

sin (180− α− β)
(2.11)

b describes the distance between the camera and the projector, α describes the angle be-
tween b and the light ray and β describes the angle between b and the normal vector of
the camera. Figure 2.4 shows the connection between object point, camera and projector.
The angle between the baseline b and the light ray of the projector proj is the angle α, the
angle between the baseline b and the viewing ray of the camera cam is the angle β. To be
able to use the triangulation principle α, β and b have to be known.

Figure 2.4: The triangulation principle

11

There are many possibilities of projecting light onto the object. The simplest method is
to project one single point onto the object so no correspondence problems can occur. The
disadvantage of this method is that the use of only one laser point can lead to occlusions
more easily. Also the image retrieval process takes some time because the laser has to be
steered all over the object to capture all points. Because of these limitations other light
projection methods have been developed like sheets of light, pattern projection or coded
light techniques. Using one sheet of light there are several possibilities to capture the
object. For example the projector can be equipped with a deflection unit that deflects the
light beam in different directions. A cheaper method is to move either the object or the
projector to different locations. Like the single point projection, the single light projection
method is slow because only one light sheet at a time is captured. That is why multiple
coded light stripes or patterns are used more often. All of these methods have a similar
procedure [Sab08]:

1. A laser, infrared or coded light pattern is projected into the scene.

2. The pattern that is reflected by the object surface is captured by a camera.

3. The observed structure is evaluated in every frame receiving depth information by
using the triangulation principle.

An example for light projection techniques is the Moirè technique that can be categorized
into Shadow Moirè or Projection Moirè [CBS00]. This method uses two patterns also
called gratings - one grating is projected on the object the other grating is used to observe
the reflected image. The emitter could be a projector using lines and the receiver could
be a camera equipped with a line filter. There are multiple methods to increase the im-
age acquisition speed and precision leading from binary coded light-cutting over phase
shifting to color coding. These improvements have the advantages that they are easy to
implement and since there is no deflection unit needed, they are more affordable than a
regular Moirè range finder. Further information about different triangulation methods can
be found in [CBS00].

Using triangulation one has to cope with various challenges. First of all depth information
can only be retrieved if the laser reaches a point on the object surface that is captured
by the camera. So in order to capture the whole object surface it has to be ensured that
every object point is captured simultaneously by receiver and emitter at least once during
image retrieval which can be very tricky especially if the object surface contains a lot of
concave surfaces which produce occlusions. Another problem regarding the evaluation
of the scanning process is varying results caused by different surface characteristics and
surface edges.

Passive Methods

Basically passive systems use the information that can be found in one or several images. These
methods are known as “Shape from X“ methods and acquire depth information using intensity
information from the retrieved image. Not all passive methods are able to compute the exact
depth value for an object point because the main idea of passive methods is to calculate depth

12

information out of 2D images. In the following a few techniques are described in more detail.
Further information can be found in [MSB99].

• Shape from Shading: This method makes it possible to gather information about lighting
and depth conditions by just processing characteristics that can be found in a 2D image.
The human brain serves as an example for this method because it is able to estimate depth
by processing surface characteristics and lighting conditions. The prerequisites for Shape
from Shading are:

– surfaces that are invariant respecting rotations

– surfaces that are illuminated by an illumination source that is far away and whose
position is known

– surfaces that have no cast shadows and do not contain any interreflections

Also the image has to be an orthographic projection. In [ZTCS99] different Shape from
Shading methods are compared:

1. Minimization approach: This method was first implemented by Ikeuchi and Horn.
It minimizes an energy function consisting of a brightness factor and other con-
straints like an integrability constraint. The result of the calculation with a given
surface shape leads to the surface normal and surface gradients. Further information
can be found in [Ike89]

2. Propagation approach: The propagation method was also implemented by Horn
who assumed that the depth and orientation of all points can be computed if the depth
and orientation of the starting point of a line is known [ZTCS99]. To accomplish that,
characteristic points in the image are chosen and evaluated. Characteristic points are
e.g. points with maximum intensity. The shape information between characteristic
points is then interpolated.

Zhang worked out that these methods have problems with the uniqueness of the points
when no additional information about the surface is known. Also both methods can
only handle ideally opaque surfaces with ideal diffusion (so called Lambertain surfaces)
[MSB99].

• Shape from Texture: Like Shape from Shading this method is also inspired by the pro-
cesses that happen in the human brain because humans are able to determine depth out of
texture information. Texture that is viewed from a specific angle in a 3D setting is dis-
torted due to the perspective projection and with increasing distance the pattern is getting
smaller. Using this properties it is possible to gain depth information provided that the
texture is a regular pattern whose texel are all the same size. By estimating the vanishing
point and vanishing line it is possible to calculate the orientation of the surface.

• Stereopsis: In contrast to the other passive methods that used the information of only
one 2D image, stereo vision uses the information that can be gathered by observing two
or more 2D images. In principle stereo vision simulates the human visual system having

13

two eyes to observe a scene. By capturing images from two different views it is possible
to retrieve depth information. The precondition of being able to get 3D information is
the epipolar constraint which implies that every point that lies on the epipolar line of one
image has to lie on the epipolar line of the other image too. Figure 2.5 shows the principle
of epipolar geometry. The captured point p = (xw, yw, zw) is mapped onto Image 1 and
Image 2 resulting in the points p1 = (x1, y1) and p2 = (x2, y2). The epipolar plane is
generated by three points: the object point p, the center of projection of the left image
c1 and the center of projection of the right image c2. The intersection lines between the
images and the epipolar plane are called the epipolar lines. The baseline is the distance
between the centers of projection.

Figure 2.5: Epipolar geometry

Assuming that both cameras used are calibrated the so called epipolar equation can be
described as followed:

p̃1
TEp̃2 = 0 (2.12)

p̃1 = (x1, y1, f1) is the corresponding point of p̃2 = (x2, y2, f2) where f1 and f2 are
the focal lengths of both cameras. E = [t]xR is the essential matrix that describes the
transformation between the two cameras by using a rotation matrix R and a translation
vector [t]x([Sch05], [MHS05]). The essential matrix can be estimated by using a set of
corresponding points.

• Shape from Motion: As “Shape from Shading“ and “Shape from Texture“, “Shape from
Motion“ originates from processes in the human brain. From the cradle the human being

14

learns that objects that move faster during motion are nearer than objects that move slower
(such as mountains). Shape from motion designates a method that uses the epipolar con-
straint for estimating the distances to the captured object. Instead of using two or multiple
cameras, only one camera that is moved around the object, is used. The shift between
a point in one image and the same point in the subsequent image is called disparity. To
obtain the distance zw of the point p = (xw, yw, zw) the following equation using the
disparity can be formulated as: [Sab08]:

zw =
bf

d
(2.13)

The baseline which is the distance between the centers of projection, is multiplied with the
focal length and is divided by the disparity d = x1 − x2. The formula can be established
by the coherence between the world and the camera coordinate system:

xw
x1

=
zw
f

(2.14)

Subtracting the distance between the centers of projection from the point xw a second
equation describing the coherence between the second image and the distance zw can be
established:

xw − b
x2

=
zw
f

(2.15)

Now we can build the following equation and reduce it:

zwx1
f

=
b− zwx2

f
(2.16)

zw =
bf

d
with d = x1 − x2 (2.17)

2.2 Object Capturing

This chapter will give a short explanation about object/motion capturing in general containing
the particular steps of the capturing pipeline focusing on the initialization and the different data
capturing methods and comparing different acquisition techniques to each other.

An object or motion capturing system basically consists of four successive steps [MG01]:

• Initialization: This step deals with the setup of the system and contains the calibration of
the cameras and the manipulation of the data such as segmentation.

• Tracking: The second step of the pipeline ensures that the captured object is recognized
and its motion is traced in every frame. Manipulation of the data can be conducted in this
step as well as it has been in the first pipeline step.

15

• Pose Estimation: The third step takes care of the identification of the orientation of the
different parts of the captured body having the goal of estimating the total pose of the body
in relation to the camera. To accomplish that there are different methods like model-free,
indirect model use and direct model use. For further information about Pose Estimation
see [MG01].

• Recognition: The last step of the pipeline tries to recognize the pose by using the infor-
mation gained in step three. This can be done for example by using predefined templates
of different poses that can be compared with the estimated pose.

In the following only steps one and two will be treated in more detail as a spadework for
pose estimation and recognition in future work.

Initialization

As described in the pipeline, initialization deals with preparatory operations concerning the hard-
ware setup and other modifications influencing the data acquisition. First of all an appropriate
camera setup for tracking has to be chosen. In general it has to be decided whether one or
multiple cameras are used in the system.

An important point for initialization is camera calibration which has been explained mathe-
matically in chapter 2.1.

In the following related work is presented that deals with various techniques that can be
applied to steps one and two in the tracking pipeline. Traditional approaches using 2D technolo-
gies, novel methods using depth cameras and hybrid methods are annotated and evaluated.

2D Recording

In [SC06] a framework for motion tracking using eight calibrated gray scale cameras is pre-
sented. Silhouettes and motion information are used to estimate the pose of the captured user.
Parametric shape models are compared with the captured body that is an 3D estimation calcu-
lated from 2D motion captured by the cameras using pixel displacement. Another example of
2D motion capturing published by [LB08] uses a similar method to track a body. In this work
a set of four high resolution industrial CCD cameras are used that are placed in a large room
covered in blue fabric. For markerless motion tracking skinned mesh models are used which are
created using a body scanner. In addition a skeleton described by a kinematic tree is used rep-
resenting the main body parts of the mesh. The kinematic tree is used to hierarchically describe
the setup of the skeleton containing a state representation for each bone. After scanning the
body the movement of the body is captured by the four cameras producing images that contain
motion cues. These motion cues are used to define an objective function. In order to be able
to use this function, pixel correspondences between the model and the current image has to be
found. To be able to get this information, optical flow and silhouette techniques are used. With
this information the objective function is minimized using the Levenberg-Marquardt algorithm.
The tracking algorithm provides satisfying results for normal movement but does not cope with
very fast movements. Another work done by [CMC+06] uses adapted fast simulated annealing
in order to match an a priori model to the visual hull. The purpose of this work is to supply

16

reliable information of the movement of a body in order to study musculoskeletal biomechanics.
First of all the visual hull is constructed using an eight CCD camera setup with each camera
having a resolution of 640 x 480 pixel. The a priori model is then created using a laser scan
of a human being and segmenting it manually afterwards. In addition to capturing a body in
a real environment the authors used a 3D model created in a virtual environment in order to
evaluate the proposed method excluding errors arising from camera calibration or background
subtraction. In summary the results obtained from the real environment are comparable to the
virtual environment showing an effective tracking algorithm that does not require an accurate
initialization of the model [CMC+06]. Nevertheless due to the symmetry of the thigh and shank
the method produces noisy results while tracking the rotation of these body parts.

3D Recording

In order to capture motion without using any markers Pekelny and Gotsman [PYGC08] use a
single depth camera delivering a depth video sequence. The depth camera is used to capture a
3D point cloud that is transformed into a dataset containing all rigid bone transformations. The
bones are found by using the ICP (iterative closest point) algorithm. Another work done by
Swadzba et al. [SBSS08] uses a 3D camera mounted on a movable robot for capturing the scene.
The goal of this work is to capture a static scene while moving around the robot that has to cope
with moving objects and human beings. In order to capture a point cloud the robot moves around
in the room and captures the data received by the 3D camera. After data acquisition the point
cloud is edited using a median filter to eliminate noise generated by different surface reflections
during acquisition. Swadzba et al. also used velocity information for each valid 3D point by
using optical flow methods. This information is needed to identify moving people and objects.
By removing the identified moving objects and people a 3D representation of a static scene is
generated.

Combined Approaches

There is also the possibility of combining the 2D and 3D technologies in order to compensate the
disadvantages of the 2D approach and to increase the results using additional 3D information. In
[SBKK07] a camera setup consisting of a CCD camera and a TOF camera is used to estimate the
pose of the camera. The scene is captured simultaneously by the CCD and the TOF camera with
the CCD camera covering the whole field of view of the depth camera. The introduced method
is a combination of SfM (Structure from Motion) and the time-of-flight method and is able to
overcome the restriction of the traditional SfM method that needs a lateral movement to be able
to get good initialization results. Supported by metric information gathered by the time-of-flight
camera the pose estimation using a single CCD camera can be improved noticeably. To improve
the process of segmentation Crabb et al. [CTPD08] also use a high resolution CCD camera with
a TOF camera. The main part of the foreground segmentation is done by constructing a trimap of
depths. Here depth values are either categorized as into the foreground, into the background or
indeterminate based on a likelihood for each pixel [CTPD08]. The threshold for the foreground
depth area of the pixels is assigned by the user.

17

Comparison of the different approaches

Markerless tracking is a challenging area of research because of the difficulty to recognize body
parts and the movement of the person over the time. Nevertheless this area is becoming more
and more important because of the drawbacks tracking with markers implicates. In the following
the presented methods are summarized and evaluated starting with single camera tracking and
leading to multiple camera approaches. When using a single camera despite of whether it is a
2D or 3D camera it is only possible to capture a single view at one time. This fact makes it
impossible to be able to gather the information that lies beyond that view. In order to be able
to track an object or a person in the 3D space the single camera has to be moved (see chapter
2.1) or more than one camera is needed. Examles of such methods where shown previously.
All the presented methods used silhouette or visual hull techniques in order to extract to moving
object from the images. The disadvantages of these methods are that they are prone to fast
movement and that they have problems with distinguishing body parts which look similar. Using
3D cameras has the advantage that the depth information enhances the information a 2D camera
delivers. With the additional depth information it is possible to retrieve results in a faster way
with no need to process only the 2D information. Also the depth information can be used
to distinguish between the moving object or person and the background which accelerates the
process of background segmentation. As described before using only a single 3D camera has
the same drawback as using a single 2D camera. The information that lies beyond can not be
captured. When using a 3D camera mounted on a robot like in [SBSS08] only a static scene
can be captured. As described in [SBSS08] a combination of a 2D and a 3D camera makes it
possible to extract foreground information faster than using only 2D information but also only
a single view can be captured. In order to be able to capture a moving object or person in 3D
space multiple cameras are needed. Here it is possible to either use multiple 2D cameras, a
combination of 2D and 3D cameras or a combination of multiple 3D cameras as presented later
in this work.

Using multiple 2D cameras makes it possible to capture a three dimensional image of the
observed scene. As described in [CMC+06] silhouette and visual hull techniques are used to
identify the moving subject and extract the foreground information. This has the same drawback
as the single 2D camera method. The precise edges of the object can not be captured when
using the visual hull method. When using the silhouette method the area between the different
views can be very noisy due to the projection of the single views. Using multiple 3D cameras
as presented in this work, makes it possible to use the information of the 2D image and the
depth information for every single view. This makes it possible to create a 3D point cloud and
to segment fore- and background with only the use of the depth information. Using multiple
3D cameras makes it also possible to deliver a more precise result for the edges of the captured
object

In the following chapter the design of such a rig containing a set of two 3D cameras is
described.

18

CHAPTER 3
Design

This chapter covers the design of the system in general, starting with the workflow, the used
hardware and the camera setup. Additionally a short overview of the used libraries containing
OpenNI and the multiple camera calibration software MIP-MCC is given. The last part of the
chapter contains a detailed description of the particular steps starting from data acquisition and
leading to the result: the merged point cloud.

3.1 Workflow

As described in chapter 2.2 this work deals with the first step of the object capturing pipeline
called initialization. As mentioned before, initialization is an umbrella term and so it contains
several steps each of them being dependent of the previous step. Figure 3.1 gives a coarse
overview of the workflow. The first step of this pipeline is the Camera Setup which consists of a
Microsoft Kinect and a PMD[vision] Camcube 3.0. A well-considered hardware setup makes it
possible to get the best possible results, and so it is important to consider influences like incident
solar radiation, the angle between the cameras, the working environment and the camera settings.
Chapter 3.2 will deal with this step of the pipeline in more detail.

The next step in the pipeline treats camera calibration. As mentioned in chapter 2.1 the
process of calibration delivers the intrinsic and extrinsic parameters of a camera setup making it
possible to transform the world coordinates into pixel coordinates. In this work the calibration
software MIP-MCC has been used. It uses a planar checkerboard pattern to find corresponding
points in both pictures (for more information see subsection stereopsis in chapter 2.1). In order
to get the necessary parameters of the calibration process the software needs calibration shots
done with the calibration pattern which have to be taken with both cameras. The result of the
calibration step is a calibration matrix for both cameras. The quality of the calibration process
depends on the amount of shots that have been taken, on the lighting conditions and of the
position of the calibration pattern in reference to the cameras. The calibration process is treated
in chapter 3.4.

19

Figure 3.1: Workflow of the practical part of this work

After the camera setup has been defined, the data acquisition step can be initiated. Both
cameras are connected to the computer using an USB connection. The interface between the
cameras and the computer is a specific driver for each of the cameras. The communication with
the cameras may be established by using the OpenNI library for the Kinect and the PMD plugin
for the PMD camera. The result of this step is an array of depth values for the PMD and a depth
map for the Kinect camera. For more information about this step see chapter 3.5.

The next step of the pipeline treats the enhancement and the segmentation of the gathered
data. For the PMD camera it is possible to change the integration time and the modulation
frequency leading to different qualities of the output data. The OpenNI framework makes it pos-
sible to change the resolution and the frame rate. Another important aspect of data enhancement
that facilitates object tracking is background segmentation. In this work the Background Model
Method is used. Data enhancement also includes noise reduction. Especially the PMD camera
which uses the time-of-flight technology suffers from pixel noise that has to be attenuated in
order to get good results. The chapters 3.6 and 3.7 treat these aspects in more detail.

The last step of the pipeline is the combination of the corrected and calibrated data which
results in a single point cloud. The advantage of using two cameras is that the accuracy and the
field of view is increased. Using more than two cameras makes it possible to capture the whole
scene and so creating a complete 3D reconstruction of the viewed object. Chapter 3.8 discusses
the last step of the pipeline.

In figure 3.2 the workflow is shown in more detail in order to make it clear how the specific
steps of the pipelines of both cameras interact. It has to be noticed that the evaluation at the end

20

of the pipeline can cause a new iteration of the pipeline in order to improve the results. Also,
changing the camera setup during data acquisition makes it necessary to repeat the calibration
process.

Figure 3.2: Workflow in detail

3.2 Hardware and Setup

In this chapter the technology of the used hardware is described focusing on the computer vision
methods used to generate depth images. In addition, an overview of the working environment is
given by specifying the camera setup and the spatial layout.

PMD[vision] Camcube 3.0

The first depth camera that has been used for this work is the PMD[vision] Camcube 3.0. This
camera works with the time-of-flight principle using one PhotonICs c©PMD 41k-S2 sensor (see
figure 3.3) and two illumination units (see figure 3.4), one on the left side and the other one

21

on the right side of the sensor (see figure 3.5). The sensor is able to capture gray scale and

Figure 3.3: The PMD[vision] Camcube 3.0 sensor

Figure 3.4: One of the two PMD[vision] Camcube 3.0 illumination units

depth images with a 200×200 pixel resolution simultaneously and features SBI (Suppression of
Background Illumination) which reduces the sensibility with respect to illumination [Gmb11].
The measurement range of the camera lies between 0.3 and 7 meters with a field of view of
40◦ × 40◦. The quality of the range data depends on factors like integration time (which can be
determined programmatically) and lighting conditions. Increasing the integration time increases

22

Figure 3.5: The PMD[vision] Camcube 3.0 depth camera

the signal strength and so improves the quality of the data. In spite of the features that are used
to suppress the disruption caused by incoming light, the sensor is prone to excessive amount
of incoming sun light which leads to pixel errors (see chapter 3.6). The PMD camera uses
continuous wave modulation with square waves for retrieving the range data. The output is a
combination of the optical echo and the modulation voltage over integration time [Gmb09]. The
ambiguity of the signal is avoided by phase shifting the periodical signals. To calculate the range
value R the following formula is used [Gmb09]:

R =
NARφ0

360◦
(3.1)

NAR is the non-ambiguity range and the parameter φ0 is the phase difference which can be
calculated by using the correlation function (the correlation of two phase shifted signals) φcorr
in the following way:

φ0 = arctan(
φcorr(270◦)− φcorr(90◦)

φcorr(0◦)− φcorr(180◦)
) (3.2)

The technical specifications of the PMD[vision] Camcube 3.0 are shown in table 3.1. For
more information about the PMD[vision] Camcube 3.0 see [Gmb09] and [Gmb11].

Microsoft Kinect

The second depth camera that has been used for this work is the Microsoft Kinect. In contrast
to the PMD depth camera which works with the time-of-flight principle, the Microsoft Kinect
camera generates a pattern using infrared structured light and calculates the disparity between

23

Specification Parameter Value
Sensor PhotonICs c©PMD 41k-S2
Measurement range 0.3 - 7 meters
FOV (Field Of View) 40◦ × 40◦

FPS (frames per second) 40 fps for 200x200 pixel
Connection to PC USB 2.0
Focal length 12.8 millimeters

Table 3.1: Specification of the PMD[vision] Camcube 3.0

successive pixels [GRBB11]. The Microsoft Kinect consists of two CMOS sensors (one for
capturing infrared light the other one for capturing RGB images) and one laser infrared projector
(see figure 3.6). The Microsoft Kinect is able to capture an infrared image with a resolution

Figure 3.6: The Microsoft Kinect

of 320x240 pixel and a RGB image with a resolution of 640x480 pixel simultaneously. The
measurement range of the camera lies between 1.2 and 3.5 meters with a horizontal field of view
of 57◦ and a vertical field of view of 43◦ [Res11]. As mentioned before the projector of the
Kinect works with a constant speckle IR pattern that is projected onto the scene. The pattern
consists of 633 × 495 spots having brighter and darker subdivision groups of 211 × 165 spots
so it results in a 3 × 3 IR point matrix. The center point of each 211 × 165 point sub-matrix is
brighter than the other points. Figure 3.7 shows a photo of the pattern that has been taken with a
standard camera. The depth value of a pixel can be estimated by comparing a memorized pattern
of a pixel with the local pattern of a pixel. For this a correlation window is used comparing the
pixel and its 64 neighboring pixels. The calculated offset between the compared pixels is called
disparity. The actual depth value can then be calculated with triangulation. [Kho11]

24

Figure 3.7: Pattern generated by the Microsoft Kinect IR projector

3.3 Libraries

For this work several libraries were used, either to establish the connection with the cameras or
to visualize the result. In the following a short overview of the used plugins, frameworks and
libraries is given containing an explanation of the application field in this work.

Open Natural Interaction (OpenNI) Framework

The OpenNI framework implemented by the non-profit organization OpenNI makes it possible
to realize interaction between a human being and a device. The interaction between a device and
a user is accomplished by using so called „Natural Interaction“ [Ope11b]. This term reflects the
fact that no peripheral equipment like a mouse or a keyboard is used for interaction. The only
way to communicate with the system is using hand gestures, voice commands or body motion.
This makes it possible to interact with the system the same way human beings communicate
with each other. In order to accomplish natural interaction with an application, OpenNI uses
APIs (application programming interfaces) that enable access to audio and vision middleware
like cameras. Figure 3.8 shows the interaction between the hardware, OpenNI, the middleware
and the application and demonstrates that OpenNI communicates with every other layer of the
process. The communication between the application and OpenNI is accomplished by using so
called production nodes which provide the data retrieved by the used devices [Ope11b]. There
are different types of production nodes that can be used for different application areas. For
this work depth generator production nodes have been used that provide raw data from a depth
sensor (in this case from the Kinect depth camera). The OpenNI framework collects the data
and transfers it into a depth map (see chapter 3.5). In order to support offline analysis of the
data received by the Kinect, the OpenNI framework supports recording and playback of data.
The data is stored in a proprietary .oni file format that can be handled with OpenNI player
production nodes. Apart from retrieving data the OpenNI framework can be used to provide
other features like pose estimation, skeleton generation or detection of user position. One of the
features that supports the implementation of applications using OpenNI is the production node
error status. With this production node it is possible to support error detection during the process

25

Figure 3.8: The functionality of OpenNI

of development and during the usage of the application. The usage of OpenNI in this work is
explained in detail in chapter 4.

PMDSDK 2

The SDK (software development kit) implemented by the company PMDTec makes it possible
to communicate with the PMD[vision] Camcube 3.0 and enables depth data acquisition [Pro09].
Apart from data acquisition the API permits the manipulation of certain camera parameters like
integration time or modulation frequency. The SDK is included in the scope of delivery when
purchasing the PMD[vision] Camcube 3.0. In order to provide communication with the camera
and to use different functions like retrieving 3D data, the SDK uses two plugins. The first plugin
takes care of the communication with the camera and the second one treats the processes that
are needed to generate depth data [Pro09]. Like OpenNI the PMDSDK 2 supports error states
which facilitates the implementation process. The usage of the PMDSDK 2 is described in more
detail in chapter 4.

3.4 Calibration

The process of calibration is an elaborate operation especially when more than one camera is
involved in the data acquisition process and each camera is produced by a different company.
In order to calibrate each camera separately and in relation to the other cameras used, several
computer vision methods have to be used in order to find corresponding points in all images and
so gaining the intrinsic and extrinsic parameters of every camera. The result of the calibration
process is the calibration matrix for every used camera. These matrices make it possible to
transport the depth data into one combined coordinate system. For this work the calibration
process is handled by a software named MIP-MCC (MIP-MultiCameraCalibration) developed

26

by the Multimedia Information Processing Group of the technical faculty of the University of
Kiel in Germany [Sch11]. For calibration, the MIP-MCC software uses OpenCV, a library that
contains the implementation of computer vision algorithms like calibration or face detection
[Ope11a]. The software makes it possible to calibrate either a single camera or multiple cameras
and it calculates the intrinsic and extrinsic parameters. When calibrating a depth camera it is also
possible to deal with measurement errors regarding the depth values. The MIP-MCC software
calibrates the parameters of the cameras by using pictures made of a planar checkerboard pattern.
In all images correspondent 2D-3D value pairs have to be determined in order to be able to use
epipolar geometry. With these correspondent pairs it is possible to calculate the intrinsic and
extrinsic camera parameters. The calibration process using the MIP-MCC software consists of
the following steps:

• Taking a set of different types of pictures of a checkerboard pattern simultaneously with
every camera in the rig.

• Building image lists for every format of every camera in the rig.

• Defining the corners of the checkerboard in every picture of every format.

• Approximation and refinement of the intrinsic parameters for every picture.

Image Generation

The first step of the calibration process deals with the image generation. In order to be able
to calculate the intrinsic and extrinsic parameters of every used camera several pictures of the
calibration pattern have to be taken. In order to produce accurate calculations the amount of
pictures should lie between 20 and 80 pictures for every camera and every format. The different
picture formats are essential to support 2D cameras as well as 3D cameras. When using only
a set of 2D cameras in the rig only the generation of intensity images is possible so for the
calibration process only images of this format are available. When using depth cameras the
generation of intensity, amplitude and depth value images is possible and so the software has
the possibility to calculate the calibration parameters and to estimate the depth errors. When
taking the pictures of the checkerboard pattern it has to be assured that the whole checkerboard
pattern is visible in every image. Also pictures from multiple distances and angles in respect to
the cameras should be taken in order to be able to correct tangential and radial distortions and
depth errors. A sample of a series of pictures taken with the PMD and the Kinect depth camera
is shown in figure 3.9 and 3.10. For this work a series of 500 pictures were taken each in a
different format.

Image Lists

The MIP-MCC software uses so called image lists for the calibration. Each image list contains
a number of picture paths and must contain the same number of images like every other image
list used for calibration. Also the order of the images has to be the same in every image list.
To generate such lists the pictures have to be in the right format. The MIP-MCC software

27

uses pictures that have the file extension ’.mip’. Such files can be generated with a tool named
biasShowCamWx which is a part of the BIAS library for computer vision developed by the
Multimedia Information Processing Group at Kiel University [ea11]. The biasShowCamWx
tool simultaneously grabs infrared, amplitude and depth images from all cameras used in the rig.
Only the RGB pictures of the Kinect camera have to be taken separately. This limitation makes
it necessary to first grab a set of infrared, amplitude and depth images at one time, then switch to
RGB Kinect Mode and last grab the same image as before in RGB mode. For grabbing the RBG
image it is important that the checkerboard pattern is not moved after taking infrared, amplitude
and depth images to avoid calibration errors. For this work the Kinect RGB images were not
needed and so it was possible to grab a continuous image stream which makes the handling
much easier. The images are stored as ’.mip’ files grouped by the camera type and the recording
mode (amplitude, infrared, depth) and can be stored as image lists.

Figure 3.9: A picture series taken with the PMD depth camera. From left to right: amplitude
image, intensity image, depth image

Figure 3.10: A picture series taken with the Kinect depth camera. From left to right: amplitude
image and depth image

28

Corner Assignment

After generating the image lists the grabbed images have to be processed. For a successful
calibration it is vital that the checkerboard pattern is visible in every image. Images that do not
fulfill this condition have to be invalidated as well as all images that are associated with these
images. As well as image invalidation the selection of the checkerboard corners is a necessary
step. In every image a rectangle containing the inner corners of the checkerboard has to be
selected. Figures 3.11 and 3.12 show a sample of a corner selection in an amplitude image of
the PMD camera and in an infrared image of the Kinect. The corner selection has to be as precise
as possible and it also is very important to always define the corners in the same order to avoid
calibration errors.

Figure 3.11: A sample of the corner selection with an amplitude image made with the PMD
depth camera.

Figure 3.12: A sample of the corner selection with an infrared image made with the Kinect
depth camera.

29

Approximation and refinement of the camera parameters

After the definition of the corners of the checkerboard, the MIP-MCC software generates an
approximation for every camera position in all images and so approximates the intrinsic camera
parameters for the PMD and the Kinect depth camera [Sch11]. Figure 3.13 shows an example
of an approximation result of both cameras. The first row ’Center’ determines the x, y and z

Figure 3.13: The result of the approximation of the camera parameters

value of the translation of the coordinate system whereas the quaternion and the rotation matrix
both define the rotation of the coordinate system referring to the extrinsic parameters of the
calibration. The image size describes the height and width of the pictures grabbed by the camera
and the aspect ratio specifies the ratio between image width and height. The row ’Principal’
describes the x and y value of the principal point of the image. The K-matrix is the composition
of focal length, aspect ratio and principal point and can be defined as follows:

K =

f 0 px
0 f ∗ a py
0 0 1

The undistortion vector defines the parameters for correcting the radial and tangential distortion.
After the estimation of the intrinsic and extrinsic parameters the actual calibration can be started.
For every picture used in the calibration process a rig and calibration parameters are estimated
by using the checkerboard pattern and epipolar geometry. At the end of the calibration process
the final calibration parameters are calculated and stored in a .xml file.

30

3.5 Data Acquisition

After the calculation of the extrinsic and intrinsic camera parameters every action that cause a
change of the parameters should be avoided. For example the movement of a camera would
cause a change in the extrinsic camera parameters or the change of the focus would cause a
change of the intrinsic camera parameters. Every change in either the intrinsic or extrinsic pa-
rameters makes it necessary to recalculate the camera parameters.
For data acquisition it is necessary that the cameras are placed in a certain position to each other
that makes it possible to capture the user without causing too much shadowing effects. It is vital
to find a good rig setting before calibration because changes in the rig setting causes a change
in the extrinsic parameters. An appropriate rig setting covers overlapping areas of the images in
order to be able to find corresponding image areas in the merge process later on. Inappropriate
rig settings mostly cover either an area that overlaps too much or not at all. An image merge
using an inappropriate rig setting having too few overlapping areas would produce an unusable
calibration result because no or not enough corresponding points could be found. Using too
much overlapping areas however would cover an area that is too small and so the merged views
would not be usable for later applications like 3D tracking or 3D reconstruction. Also the dis-
tance from the captured object or user to the cameras is an important factor. Objects that are
too near or too far away from the sensors can not be captured accurately and increase image
errors. Using the Kinect the ideal distance from the captured user to the camera lies between 1.2
and 3.5 meters. Objects that are captured beyond this range produce image acquisition failures
that result in shadows in the resulting images. Using the PMD camera wrong distances result
in flying pixels and so cause image errors. Besides the position of the cameras relative to each
other the condition of the room or area used for image acquisition has to fulfill certain criterias.
In principal an empty room with no incoming sunlight would be the optimum for image acqui-
sition. Sunlight causes, dependent on the intensity and the incident, angular, speckle noise in
the resulting image. Also reflecting objects like mirrors or objects made of metal cause image
distortions and noise which increases the effort of data enhancement after acquisition.
After having found the right area and position for the rig the configuration of the cameras should
be evaluated. Settings like integration time or modulation frequency using the PMD depth cam-
era can be changed and produce different results. The increase of the integration time produces
images with less noise and so less pixel errors. The change of frequency makes it possible to use
more than one camera of the same construction type at the same time by avoiding the ambiguity
of signals. In contradistinction to the PMD depth camera the Kinect has no possibility to change
any settings. The images taken with both cameras can either be stored as files or handled as real
time data. The PMD depth camera has the possibility of changing the image resolution which
causes a reduction of the frame rate. The Kinect only offers an image resolution of 640x480 at
a frame rate of 30 fps. The output of both cameras is determined by the calculations of the used
middleware. The PMD plugins deliver an array of depth values, the OpenNI framework delivers
a depth map of the grabbed values. In the following the particular data types are described in
more detail.

31

Data Acquisition with the PMD[vision] Camcube 3.0

Using the PMD depth camera the first step in the data acquisition process is the establishment
of the connection. In order to do so the PMD camera needs the provided plugins as well as the
provided driver to be able to transfer the data. As an interface to the computer the camera needs
USB 2.0 and as an additional power supply it needs 12V power. After connecting the camera
to the computer the data transfer may be started. For every pixel on the sensor the camera gets
an intensity and a depth value by using the calculations described in section 3.2. The quality
of the data depends on the integration time which determines the signal strength. The range of
the camera is determined by the modulation frequency which is by default set to 20 MHz. The
output of the PMD depth camera is a greyscale and a depth image.

Data Acquisition with the Microsoft Kinect

Like the PMD depth camera the Microsoft Kinect has an USB 2.0 interface and an additional
power supply. For this work two different Kinect drivers were used: The NUI Kinect driver
and the PrimeSense driver. The NUI driver was used to be able to capture images for the cal-
ibration process. The PrimeSense driver was used to capture the .oni file used for creating the
resulting 3D images. As described before the Microsoft Kinect uses a speckle IR pattern and
creates an infrared image and a RGB image. The actual depth information is retrieved by using
triangulation as described in chapter 3.2.

3.6 Noise Reduction

As every camera, depth cameras suffer from noise which is caused by lighting conditions or
the condition of the captured area. There are two possibilities for enhancing the quality of the
captured data which can be used individually or in combination with each other:

1. Changing the setting of the cameras in order to improve the quality of the captured frames.

2. Using image processing methods in order to eliminate the noise.

Using the PMD[vision] Camcube 3.0 it is possible to change the integration time while capturing
the image. The integration time defines the strength of the signal and so increases or decreases
the quality of the data. In figure 3.14 a captured frame using a low integration time can be seen.
Especially at the edges of objects the concentration of flying pixels is very high. This effect
is mainly caused by the difference of the depth value between an edge and the environment.
The light emitted by these surfaces vary and so two different illumination values influence the
depth value of a pixel at an edge. The depth values near an edge lie in the middle of the two
captured objects and seem to be „flying around“ in the captured space [SK10]. This effect can
be reduced by increasing the integration time when using the PMD[vision] Camcube 3.0. Figure
3.15 shows the result of the captured frame when increasing the integration time. In order to
eliminate the remaining flying pixels a Median Filter is used. A Median Filter compares the
actual pixel value with his neighboring values. The values are then sorted according to size.
The value of the actual pixel is then replaced by the middle value of the sorted value collection.

32

Figure 3.14: A frame captured with a low integration time. The visualization was done with
OpenGL

The result of a Median Filter is a smoothed image with a reduction of outliers. The Microsoft

Figure 3.15: A frame captured with a high integration time. The visualization was done with
OpenGL.

Kinect also suffers from image noise but with this camera there is no possibility of changing
any settings externally. Since the Microsoft Kinect only has one IR emitter the camera suffers
more easily from image occlusions than the PMD[vision] Camcube. When the observed object

33

gets too close to the camera the region illuminated by the IR emitter cannot be captured by the
camera anymore and so is marked as an unknown area. In the resulting image this area looks
like a shadow or a double image. Figure 3.16 shows this effect.

Figure 3.16: This image shows the shadow effect occurring when a captured object is located
too near in front of the Microsoft Kinect. The captured hand can be seen twice.

3.7 Background Segmentation

The final step before combining the point clouds is background segmentation. Here the relevant
foreground information is separated from the irrelevant background information in order to fur-
ther process the data. When using point clouds for gesture recognition or tracking, the complete
information gathered by the cameras can be disturbing. Also rendering and processing the addi-
tional amount of data is memory consuming. Therefore the process of background segmentation
is an important step of the workflow.
In literature various techniques for background removal are described. Most of them use the
color information contained in the frame in order to distinguish the foreground from the back-
ground. Other algorithms use a gradient or change in luminance to separate both areas [BHH11].
All techniques mentioned suffer from the restriction of having only two dimensional data avail-
able. For this work the depth information is used in order to pre-process the recorded data. The
removal of the background is done in a two step approach:

1. Definition of a threshold for removing the information having a very high z-value.

2. Construction of a background model that is used for the remaining data.

The first step of the process is used to remove the main part of unneeded information. Mostly
the range of the camera is limited by obstacles like walls, office utensils or doors. These objects

34

generate a lot of unwanted information. When using a threshold this information can be removed
easily. Depending on the distance between the foreground object and the obstacles the result of
this method various heavily. When capturing an object that moves closely in front of a wall it is
difficult to choose a suitable threshold. There are also difficulties when the captured object enters
the area beyond the chosen threshold. In this case the foreground information is lost. For this
reason a second method for background removal is implemented. This method uses a predefined
background model which is compared with the actual frame. Each depth value in the actual
frame is subtracted from the depth value in the background model. If the difference between the
values lies beyond a predefined threshold, the pixel in the actual frame is marked as background.
In order to generate a suitable background model the scene has to be captured before the moving
object appears in front of the camera. The frame is stored and then used during the whole image
capturing process which makes this method suitable only for static backgrounds. The result of
this step are two point clouds containing only the foreground information.

3.8 Merged Views

The last step of the working process is the generation of a single point cloud being combination
of the data gathered from both cameras. When capturing the data, both cameras deliver a two
dimensional array of data. The PMD[vision] Camcube 3.0 delivers a 200 x 200 pixel point array
and the Microsoft Kinect delivers a depth map with a resolution of 640 x 480 pixel. Both im-
ages have their own coordinate system. When trying to create a merged point cloud the image
coordinates have to be transformed into 3D coordinates and then the two different coordinate
systems have to be transformed to result in the same coordinate system. This process was pre-
viously described in chapter 2.1. First of all the calculation of the three dimensional data has to
be performed. Since the depth value is known, the following formula can be used [Ope11a]:

X =
u · z
fx
− z · cx

fx
(3.3)

Y =
v · z
fy
− z · cy

fy
(3.4)

Z = depth(u, v) (3.5)

Where (X,Y, Z) are the three dimensional coordinates of the captured point, u and v are the
image coordinates, c = (cx, cy) is the principal point, f = (fx, fy) is the focal length and z
is the depth value captured by the depth camera. As described in chapter 2.1 capturing a scene
with a camera produces lens distortions. Once estimated the correction parameters for radial and
tangential distortion can be integrated in the formula used above as follows:

x′′ =
X

Z
· (1 + k1r

2 + k2r
4 + k3r

6) + 2p1 ·
X

Z

Y

Z
+ p2(r

2 + 2 ·
(
X

Z

)2

) (3.6)

35

y′′ =
Y

Z
· (1 + k1r

2 + k2r
4 + k3r

6) + p1 · (r2 + 2

(
Y

Z

)2

) + 2p2
X

Z

Y

Z
(3.7)

with (3.8)

r2 =

(
X

Z

)2

+

(
Y

Z

)2

and Z = depth(u, v) (3.9)

As soon as the three dimensional coordinates are calculated for every camera used in the rig the
transformation into the world coordinate system can be done with the following formula:xwyw

zw

 = R

x′′y′′
z

+ t

By using the rotation matrix and the translation vector estimated during calibration, the
cameras are transformed in a way that both of them lie in the same coordinate system. The depth
values captured by the camera are reprojected from the estimated reference points resulting in
a point cloud that contains the captured values of both cameras. This combination process of
multiple cameras makes it possible to reconstruct a three dimensional object.

36

CHAPTER 4
Implementation

This chapter covers the implementation of the combination of the depth cameras and the vi-
sualization of the results. In addition to the program a DLL (dynamic link library) has been
implemented in order to make it possible to use the results of the calibration process for future
work. For this work the IDE (integrated development environment) Visual Studio and the pro-
gramming language C++ were used. The visualization of the combined views was done with
the help of OpenGL (Open Graphics Library), the extension library GLEW (OpenGL Extension
Wrangler Library) and the utility toolkit GLUT (OpenGL Utility Toolkit). The implementation
of the camera handling was done with the libraries mentioned in chapter 3.

The program consists of multiple sections all handled by the Main class which is responsible
for establishing the connection, handling the background subtraction and visualizing the results.
The classes KinectConnection and PmdConnection treat the connection with the cameras and
grab the frames on demand. The ConnectionHandler class is responsible for grabbing the actual
frame from both cameras which makes it possible to update both cameras at the same time.
The FrameHandler class lets the user save the active frame and the background image of all
used cameras into files. It also applies the background model to the data and so calculates
the foreground of the scene. The Matrix class handles all matrix operations like returning an
identity matrix or matrix multiplication. The View class provides and calculates all parameters
needed for the calibration of the cameras. The DisplayImage class contains all parts needed to
display the result with OpenGL. In order to be able to use the results of the MIP-MCC software
a configuration file is needed that contains all parameters calculated by the multiple camera
calibration software. Finally the visual output and the resulting DLL are explained in the last
section of this chapter.

4.1 Main class

The Main class is the starting point of the program calling up the DisplayImage class and the
ConnectionHandler class. The main class contains instances of all other classes and handles a

37

global variable that contains information about the visualization state which can be with and
without showing the background. In contradistinction to the DLL the application contains a call
on the DisplayImage class which contains the part that makes it possible to visualize the result
of the merge. The methods used in this class are as follows:

• InitializeConnection: This methods initializes the ConnectionHandler instance and calls
the initialization methods of the KinectConnection and PMDConnection classes.

• GetNextFrame: In order to grab a frame this method has to be called. It uses the update
methods from the camera connection classes and returns the point cloud from the PMD
depth camera and the point values from the Kinect depth camera.

• TerminateConnection: When ending the application it has to be assured that the connec-
tion of both depth cameras are being terminated in order to prevent malfunctions when
starting the application again.

4.2 KinectConnection class

This class contains all functions that assure the correct execution and termination of the data
acquisition process for the Kinect depth camera. The first method to call when establishing a
connection with the Kinect camera is the KinectInitialize method which creates the connection
between the camera and the application. In order to create a connection the OpenNI Framework
has to be used creating a so called ’Context Object’. This object makes it possible to combine
the production chains that are used for the application. Each production chain is a set of different
production nodes used to create the required data. It is possible to create multiple instances of
OpenNI context objects and so use different sensors at the same time as long as the OpenNI
sensor module was implemented for the device. To use a context object it has to be initialized
using the function context.Init(). Since the OpenNI framework not only allows to retrieve data
from the sensor in real time but also to process previously recorded data streams, it is possible to
load sensor data from a file having the file extension .oni. Loading data from a file the function
context.OpenFileRecording(filename) has to be used. Instead of creating production nodes
programmatically it is possible to load production nodes from a .xml file. Listing 4.1 shows an
example of a .xml file created to produce a depth production node and an image production node.
The tag <Log> configures the logging information which is set to ’Error’ by default which means
that for this configuration only errors are logged. The production node tags define all nodes used
by this initialization. In doing so it is possible to define also specific configurations for each
node like mirroring or cropping.

<OpenNI>
<Log writeToConsole="false" writeToFile="false">

<LogLevel value="3"/>
</Log>
<ProductionNodes>

<Node type="Depth" name="DepthNode">
<Configuration>

38

<Mirror on="false"/>
</Configuration>

</Node>
<Node type="Image" name="ImageNode" stopOnError="

false">
<Configuration>

<Mirror on="false"/>
</Configuration>

</Node>
</ProductionNodes>

</OpenNI>

Listing 4.1: The configuration file for production nodes

After initializing the context it is possible to access a specific node by calling the function
context.FindExistingNode(). Calling the function it is possible to define the type of node to
be found and saving the node into a generator object which generates a depth map or an image
map. In addition to the data generated by the generator object additional information concerning
the gathered data is provided. This metadata is saved into a so called ’Metadata object’ and can
be accessed with the help of the generator object. The metadata object contains information like
resolution or the total number of the grabbed frames. In order to retrieve the depth map of the
current frame it is necessary to call an update function. There are different update functions
depending on the use of the application. If multiple context nodes are used in one application it
can be desirable to update only specific context nodes. In order to update all used context nodes
the function context.WaitAndUpdateAll() has to be used. It updates all production nodes as
soon as the data is available. Each operation conducted by the production node returns a status
value which indicates, if the desired function call has been successful or not. This status value
can be used to implement error handling and so communicate the problem to the user. The last
step in the process of data retrieving is the termination of the connection which is conducted
by the function context.Shutdown. Listing 4.2 shows a simple example of the data acquisition
process using the OpenNI framework:

context.InitFromXmlFile();

context.FindExistingNode(NodeType , depthgenerator);

context.WaitAndUpdateAll();

depthgenerator.GetMetaData();

depthgenerator.GetDepthMap();

context.ShutDown();

Listing 4.2: Connection and frame grabbing with the Kinect depth camera

39

Further information about the features of the OpenNI framework can be found in [Ope11b].

4.3 PmdConnection class

The PmdConnection class like the KinectConnection class contains all functions to ensure the
correct connection handling and data acquisition. To initialize the connection with the PMD
depth camera the function pmdInitialize() is called which opens a connection between the cam-
era and the application. In order to do that a ’PMDHandle’ object has to be created which handles
the connection and all other functions concerning the depth data. The first function that has to be
called is PMDOpen() which expects a pointer to a PMDHandle object and the plugin parameter.
Like the OpenNI Framework the PMD plugins allow to record data and save it into a file that
has a .pmd file extension. Such files can afterwards be loaded and handled in the application.
In contrary to OpenNI the PMD plugin only requires a variable, passed during the process of
opening a handle, that declares whether the data should be loaded from a file or be streamed
during a real time connection with the camera. In order to grab a frame the pmdUpdate() func-
tion has to be called. This function has to be called every time a new frame is required. The
actual frame can be received by calling the function pmdgetSourceData() which requires the
handle and the size data which is returned by the function pmdGetSourceDataDescription. To
get all distances captured in a frame the function pmdGetDistances() can be used. It returns a
float variable with all distance values of the current frame. The last step is the termination of
the connection which can be done with the function pmdClose(). It terminates the connection
with the camera and deletes the handle. In order to be able to implement exception handling
the PMD plugin supports multiple error descriptions. Each function returns an integer value that
determines whether the current operation was successful or not. Listing 4.3 shows an example
of a PMD Connection and the process of retrieving a frame.

pmdOpen(*PMDHandle,*CamcubePluginPath,*VideoPath,*
CamcubeprocPluginPath);

pmdUpdate(PMDHandle);

pmdGetSourceDataDescription(PMDHandle, *PMDDataDescription);

pmdGetDistances(PMDHandle, *data, size);

pmdClose(PMDHandle);

Listing 4.3: Connection and frame grabbing with the PMD depth camera

Further information about the PMD functions can be found in [Gmb09].

40

4.4 FrameHandler class

The FrameHandler class is a helper class and makes it possible for the user to have a glance at
the data by saving the depth values into a file. This can be very helpful if no data is visible for
the user during the visualization . In addition it contains the determination of the background
model and returns the edited frame to the DisplayImage class. The following functions are part
of the FrameHandler class:

• saveFrameToFile: This function opens a file stream and iterates over the data. Every
depth value is saved in a separate row.

• saveKinFrametoFile: In order to save depth data retrieved from the Kinect depth camera
a file stream has to be opened. The data from the DepthMetaData object is stored in a
two dimensional data structure. So a two dimensional iteration has to be done to grab all
values.

• calculateKinForeground: This function calculates the foreground of the actual frame by
applying the background model on it.

• calculatePmdForeground: In this function the active area of the actual PMD frame is
calculated by using the background model.

• MedianFilter: This functions performs a filter operation of the current image using a
Median Filter.

4.5 Matrix class

The Matrix class contains all operations that are necessary to operate with matrices and reduces
the complexity of the code structure. A 4x4 matrix is a two dimensional array having each four
values. The following functions are part of the Matrix class and describe matrix operations:

• initalizeIdentity: This function initializes an identity matrix by setting the diagonal val-
ues to one and the rest of the matrix to zero.

• initializeNull: This function creates a matrix object whose values are all set to zero.

• initializeTranslation: In order to be able to perform a translation, a translation matrix
has to be created. As described in chapter 2.2 the translation part of the matrix is the last
column of the matrix.

• initializeRotationX: Initializes a rotation around the x-axis about a certain angle.

• initializeRotationY: Initializes a rotation around the y-axis about a certain angle.

• initializeRotationZ: Initializes a rotation around the t-axis about a certain angle.

• initializeScale: This function defines a matrix that performs a scaling transformation. The
scaling parameters are positioned in the diagonal of the matrix.

41

• matrixMultRight: Performs a matrix multiplication with the passed matrix on the right
hand side of the multiplication.

• matrixMultLeft: Performs a matrix multiplication with the passed matrix on the left hand
side of the multiplication.

• transposeMatrix: Transposes the passed matrix.

• invertMatrix: Calculates the inverted matrix by using the determinant of the passed ma-
trix.

• matrixPointMult: Transforms a specific point by multiplying it with a matrix.

4.6 View class

This class contains all operations that are needed to perform the merging of the views. It contains
the generation of the matrices for the intrinsic and extrinsic parameters and various conversion
functions. All functions are listed below:

• anglesToRotationMatrix: Makes a conversion between angles and rotation matrices as
described in the appendix.

• getRotationMatrix: Creates the rotation matrix used by the external transformation.

• getIntrinsics: Creates the matrix with the intrinsic parameters.

• createRoll: Calculates the roll angle from the quaternion delivered by the calibration
software.

• createPitch: Calculates the pitch angle from the quaternion delivered by the calibration
software.

• createYaw: Calculates the yaw angle from the quaternion delivered by the calibration
software.

4.7 DisplayImage class

This class contains all OpenGL functions and makes it possible to visualize the results. It con-
sists of the initialization of GLUT which handles the window generation, the keyboard, the
mouse movement and all OpenGL operations like rotations or the visualization of points. The
following list shows all functions of the DisplayImage class:

• initialize: In this function GLUT is initialized and used for determining window proper-
ties, keyboard , mouse and display functions.

• draw: This function visualizes the point clouds and a global reference coordinate system
for better orientation.

42

• handleKeyboard: All operations that can be controlled by the user are implemented in
this function including rotations, turning the background on and off, translations and the
termination of the application.

• handleMouse: The control of the mouse is implemented in this function. The mouse is
used to rotate the global view and to zoom in or out.

• getMergedView This function brings together all calculations and operations that are
necessary to merge the two views generated by the depth cameras. The transformation
from world coordinates into image coordinates is done by this function as well as the
merge of the two different camera coordinate systems into one global coordinate system.
The calculations from this function are the precondition for the draw function.

4.8 Configuration File

The configuration file is needed to be able to use the results of the MIP-MCC software. It
contains all intrinsic and extrinsic parameters calculated by the software. Also it contains the
thresholds for the background model and the paths for the PMD plugins and the OpenNI config-
uration .xml file. Listing 4.4 shows the structure of the configuration file using offline mode and
listing 4.5 shows the structure of the configuration file in online mode.

<?xml version="1.0" encoding="utf-8" ?>
<configuration>

<appSettings>

<add key="Plugins" value="pmdfile.W32.pcp"/>

<add key="Param" value="filename.pmd"/>

<add key="PluginProc" value="camcubeproc"/>

<add key="KinnectConnectionMode" value="offline"/>

<add key="KinnectFile" value="filename.oni"/>

</appSettings>

</configuration>

Listing 4.4: The configuration file for the offline application

<?xml version="1.0" encoding="utf-8" ?>
<configuration>

43

<appSettings>

<add key="Plugins" value="camcube3"/>

<add key="Param" value=""/>

<add key="PluginProc" value="camcubeproc"/>

<add key="KinnectConnectionMode" value="online"/>

</appSettings>

</configuration>

Listing 4.5: The configuration file for the online application

4.9 DepthCamCon Library

The purpose of the dynamic link library named ’DepthCamCon’ created for this work is the
usage of the data in future work. The merged point cloud can be used for motion tracking or
reconstruction purposes. The library delivers the transformed point clouds separately so the
user has the possibility to work with the individual views as well as with the merged view. In
addition it is possible to control the process of grabbing the frames at specific time intervals.
This functionality is very useful for computationally intensive applications that do not run in
real time. In order to support this feature an additional class was implemented named ’Connec-
tionHandler’. This class handles the connections of both cameras, the timing of the acquisition
of the new frame and the termination of the connections. In addition it provides meta data of
both data streams that could be useful for the user. The library delivers only the calibrated data
with the background removed from the scene. The following list shows all functions of the
ConnectionHandler class:

• InitializeKinect: Initializes the connection with the Kinect depth camera.

• InitializePmd: Initializes the connection with the PMD depth camera.

• getNextFrameKinect: Updates the context node and grabs the next frame.

• getNextFramePMD: Updates the PMDHandle and grabs the next frame.

• TerminatePmdCon: Terminates the connection with the PMD depth camera.

• TerminateKinCon: Terminates the connection with the Kinect depth camera.

• getPmdWidth: Gets the amount of values in x direction for the PMD depth camera.

• getPmdHeight: Gets the amount of values in y direction for the PMD depth camera.

44

• getKinWidth: Gets the amount of values in x direction for the Kinect depth camera.

• getKinHeight: Gets the amount of values in y direction for the Kinect depth camera.

The usage of the library is very simple and done in a few lines of code as listing 4.6 shows with
help of a simple example of grabbing a frame from both cameras.

1
2 connectionHandler−>InitializePmd();
3 connectionHandler−>InitializeKinect();
4
5
6 //for every new frame these two functions have to be called
7
8 float∗ pmdFrames= connectionHandler−>getNextFramePMD();
9 float∗ kinFrames= connectionHandler−>getNextFrameKinnect();

10
11
12 //the x,y and z values of the first pixel are stored one after another
13 //the size of the arrays is height∗width∗3 so 3 values for every pixel are stored
14 //these variables can be used for a loop in order to get all coordinates for the actual frame
15
16 int allPmdCoordinates=con−>getPmdWidth()∗connectionHandler−>getPmdHeight() ∗3;
17 int allKinCoordinates=con−>getKinWidth()∗connectionHandler−>getKinHeight() ∗3;
18
19 //getting the first x,y,z−coordinate of the actual PMD frame
20
21 int i=0;
22 float pmdFramex1=pmdFrames[i];
23 float pmdFramey1=pmdFrames[i+1];
24 float pmdFramez1=pmdFrames[i+2];
25
26 //getting the first x,y,z−coordinate of the actual Kinect frame
27
28 int j=0;
29 float kinFramex1=kinFrames[j];
30 float kinFramey1=kinFrames[j+1];
31 float kinFramez1=kinFrames[j+2];
32
33
34 connectionHandler−>TerminatePmdCon();
35 connectionHandler−>TerminateKinCon();

Listing 4.6: The usage of the DepthCamCon library

45

CHAPTER 5
Results

In this chapter the result of every single work step is presented, showing that every step has
a significant influence on the successive step. In the first section the calibration of the depth
cameras is described which influences the results of all other steps. Without precise intrinsic and
extrinsic parameters a successful merging process of the depth data cannot be made. Because of
some difficulties arising from the calibration of the depth cameras, the final result of the merging
process was not as expected. This section describes the problems that occurred during calibration
and the influence this calibration troubles had on the resulting point cloud. The second section
describes the capturing process with the cameras and the resulting raw data without applying any
image processing tasks. The third section briefly covers the influence of varying input settings
and the process of eliminating the background information. In the last section the result of the
merging process is presented by visualizing the point cloud using OpenGL.

5.1 Calibration

The calibration process consists of three steps each of them building on the previous one. The
first step of the calibration is the image generation. As described in chapter 2.1, intensity and
depth images have to be taken from each camera. The system configuration and components
used for image generation are shown in table 5.1. In order to produce meaningful calibration
data the checkerboard has to be visible in each image. Also the checkerboard has to captured
from different poses, distances and angles in order to get more accurate results. In order to re-
ceive results as precise as possible the intrinsic parameters of the cameras have to be calibrated
separately. This makes it possible to generate various checkerboard poses without paying at-
tention to occlusions regarding the viewing angle of the second camera. The following pictures
with corresponding image lists where made in order to calibrate the intrinsic camera parameters:

• Infrared image list for the Microsoft Kinect: In order to generate an image list for
infrared images twenty pictures where taken from different poses. In order to find an

47

System Component Used Component
Operating system Windows XP 32bit
Kinect driver Windows Kinect Driver
Kinect Plugin OpenNI 1.5.2.23
PMD driver pmdcamcube
PMD plugin camcube.W32.pap, camcubeproc.W32.ppp
Software for image generation biasShowCamWx.exe
Software for calibration MIP-MCC 1.0.0

Table 5.1: System configuration and used components for Microsoft Kinect and PMD[vision]
Camcube 3.0

image having sparse interferences but enough light intensity to be able to find the corners
of the checkerboard, the lighting condition has to be taken into account.

• Depth image list for the Microsoft Kinect: The image list for the depth images corre-
sponds to the image list for the infrared images and so it is important that both lists contain
the same image from the same pose. In order to achieve that the checkerboard should not
be moved during image generation. Also the same amount of images has to be taken and
saved into the image list. Figure 5.1 shows a sequence of the image lists generated for
the Microsoft Kinect containing infrared images and the corresponding depth images. It
can be seen that defining the corners of a single image can be very difficult because the
illumination of the image can be quite unsatisfactory.

Figure 5.1: A sequence of infrared and depth images taken with the Microsoft Kinect

• Infrared image list for the PMD[vision] Camcube 3.0: Taking images with the PMD[vision]

48

Camcube 3.0, four kinds of images are created namely amplitude images, grey value
images, intensity images and depth images. For the calibration only intensity (or grey
value) and depth images are needed. In order to calibrate the intrinsic parameters of the
PMD[vision] Camcube 3.0 twenty pictures are taken from various angles and distances.
Compared with the Microsoft Kinect the PMD[vision] Camcube 3.0 produces images with
less resolution but makes the identification of the corners more comfortable because they
can be identified easier in the intensity image than in the infrared image the Microsoft
Kinect produces.

• Depth image list for the PMD[vision] Camcube 3.0: The depth image list for the
PMD[vision] Camcube 3.0 is produced in the same way as for the Microsoft Kinect so
twenty depth images corresponding to the intensity images have to be taken. Figure 5.2
shows a sequence of intensity and depth images made with the PMD[vision] Camcube
3.0.

Figure 5.2: A sequence of intensity and depth images taken with the PMD[vision] Camcube 3.0

After creating the image lists the structure of the checkerboard pattern has to be specified. For the
calibration of the depth cameras a checkerboard pattern consisting of 12x9 squares is used. Each
square has a size of 80 millimeters. Table 5.2 and table 5.3 show the result for the calibration
of the intrinsic parameters of the Microsoft Kinect and the PMD[vision] Camcube 3.0 depth
cameras:

In figure 5.4 and 5.3 reprojection images of the calibration process of the PMD[vision]
Camcube 3.0 and the Microsoft Kinect created by the MIP-MCC software are shown.

After calibrating the intrinsic parameters for both cameras the extrinsic parameters of the
rig can be calibrated. This is being done by starting the calibration process with fixed intrinsic

49

Intrinsic Parameter Result
Focal length 589.87
Aspect Ratio 0.99
Principal Point C = (Cx, Cy) (342.77,248.40)

Table 5.2: Example results of the calibration process of the intrinsic parameters using the Mi-
crosoft Kinect

Intrinsic Parameter Result
Focal length 301.40
Aspect Ratio 0.99
Principal Point C = (Cx, Cy) (107.75,103.88)

Table 5.3: Results of the calibration process of the intrinsic parameters using the PMD[vision]
Camcube 3.0

Figure 5.3: This image shows the reprojected calibration pattern for the Microsoft Kinect

parameters from the previous step. For this calibration step four image lists are used namely
one intensity image list captured with the PMD[vision] Camcube 3.0, one infrared image list
captured with the Microsoft Kinect and two depth image lists captured with both cameras. When
calibrating the extrinsic cameras it is vital that the calibration pattern is visible in both images and
that during the image retrieval process the calibration pattern stays at the same place. Figure 5.5
shows an example of an image pair taken with both cameras simultaneously. Here it can be seen
that taking pictures with both cameras is quite challenging because of the different resolutions
of the cameras. This makes it difficult to assure that the checkerboard pattern is visible in every

50

Figure 5.4: This image shows the reprojected calibration pattern for the PMD[vision] Camcube
3.0

image. After creating the image lists for both cameras the corners have to be assigned in order to
be able to calibrate the extrinsic parameters. Table 5.4 shows the result of the calibration process
and in figure 5.6 the reprojection of the calibration pattern from every depth camera is shown.
The x, y and z values describe the translation in relation to the first camera and the rotation of
one camera in respect to the other is described as a quaternion.

Extrinsic Parameter Result
tx 2136.47 mm
ty 207.76 mm
tz 3034.87 mm
s 0.018
a -0.738
b 0.027
c 0.67

Table 5.4: Results of the calibration process of the extrinsic parameters using the PMD[vision]
Camcube 3.0 and the Microsoft Kinect. The unit of the translation part of the parameters is
millimeter. The rotation part of the parameters is given as a quaternion (for more information
see 6.3)

51

Figure 5.5: This image shows a scene captured simultaneously by both cameras

Figure 5.6: This image shows the reprojected calibration pattern for the same scene captured by
both depth cameras

The calibration process has been a very challenging part of this work. Several tries to cal-
ibrate both cameras have been made producing different results for the extrinsic and intrinsic
parameters although the same pictures have been used. Not knowing the exact parameters com-
plicates error handling in the subsequent steps because the error source cannot be spotted cer-
tainly. Figure 5.7 shows an example of a failed reprojection.

52

Figure 5.7: This image shows the reprojected calibration pattern for the same scene captured by
both depth cameras. The calibration pattern is out of alignment and so falsifies the result of the
calibration.

5.2 Raw Data

In this section the process of data acquisition and the output of this step is described. As men-
tioned in chapter 3.5 every camera has its own plugin for capturing data. During the process
of data capturing different system configurations have to be used in order to retrieve images for
the calibration process and a video stream for the reconstruction process. The components and
system configurations used in order to be able to capture data with both cameras are shown in
table 5.5: With the used system configuration it is possible to either use a recorded video stream

System Component Used Component
Operating system Windows XP 64bit
Kinect driver SensorKinect from Primesense
Kinect Plugin OpenNI 1.5.2.23
PMD driver pmdcamcube
PMD plugin camcube.W32.pap, camcubeproc.W32.ppp, pmdfile.W32.pcp

Table 5.5: System configuration and used components for Microsoft Kinect and PMD[vision]
Camcube 3.0

for both cameras or to use a live stream. The software used for capturing a video stream was
Camvis 3.0 for the PMD depth camera and OpenNI NiViewer for the Microsoft Kinect depth
camera. The depth data was then retrieved with the algorithms described in chapter 4. The result
of this step is a two dimensional image per camera with a depth value assigned to each pixel.
Figures 5.8 and 5.9 show the result of this process.

53

Figure 5.8: The raw output of the PMD[vision] Camcube 3.0 visualized from different viewing
angles with OpenGL.

Figure 5.9: The raw output of the Microsoft Kinect visualized from different viewing angles
with OpenGL.

5.3 Noise Reduction and Background Subtraction

This section shows the result of the used background subtraction method and the noise reduction
using a Median Filter. As described in section 3.7 a background model is generated in order to
subtract the background information from the foreground information. This background infor-
mation is generated by capturing the first frame of the stream and storing it. For this method it

54

is important to first capture the empty room because the model acts as a mask. A background
model containing foreground information would distort the resulting image. After creating the
background model the actual frame is subtracted from the model. For this operation a threshold
is used which makes is possible to adjust the result of the subtraction by taking the distance
between the observed object and the background into account . Figure 5.10 and 5.11 show the
result of the background subtraction method for the PMD[vision] Camcube and the Microsoft
Kinect. The removal of the background cuts away a large part of unwanted information but as

Figure 5.10: Background subtraction using the PMD[vision] Camcube.

Figure 5.11: Background subtraction using the Microsoft Kinect.

mentioned before in section 3.6 especially the PMD[vision] Camcube suffers from noise caused

55

by incoming sunlight. A simple and effective method to reduce outlier is the appliance of a
Median filter. For this work a Median Filter having a 9x9 filter window is used for sorting the
neighboring values. After that the middle value of the sorting operation is used for the actual
pixel value. In order to handle the edges of the input image correctly the value of the edge is
copied to the left and the right of the value respectively otherwise the resulting image would be
distorted. The result of this step is a smoothed image with reduced noise. Figure 5.12 shows the
result of this step for the PMD[vision] Camcube.

Figure 5.12: Applying a 9x9 Median Filter on a frame captured with the PMD[vision] Camcube.

5.4 Merged Point Cloud

After having found appropriate values for generating input data and subtracting the background
from the foreground information, the result are two 2D images containing depth information
for each pixel value. The images have different resolutions namely 200x200 pixel for the
PMD[vision] Camcube and 640x480 pixel for the Microsoft Kinect. Also the images are cap-
tured with different frame rates because the PMD[vision] Camcube is able to capture 40 images
per second whereas the Microsoft Kinect only captures 30 frames per second. The intrinsic
and extrinsic parameters estimated during calibration are used in this working step considering
the different image resolution and frame rate as mentioned before. When merging the point
clouds using the formulas described in 3.8, it could be seen that the problems occurred during
calibration severely influence the resulting merged point cloud. While the result of the three
dimensional reconstruction using the intrinsic parameters gained during calibration seems to
produce quite good results the transformation into world coordinates fails. The result of the
extrinsic calibration produces very imprecise values with divergences up to 1.3 meters. Various
attempts were made using different lighting conditions and input images always resulting in un-
usable values for the extrinsic parameters. Since the source code of the used calibration software

56

was not available at the time the experiments were made, there was no possibility of analyzing
the source of error in order to be able to correct it. Another difficulty using different types of
depth cameras is the different frame rate. Since there is no possibility of changing the frame rate
it was not possible to synchronize both cameras. Figure 5.13 shows the result of the intrinsic
calibration and figure 5.14 shows the result of the extrinsic calibration step. As it can be seen the
two individual point clouds do not match which is a result of the imprecise extrinsic parameters.

Figure 5.13: This image shows the result of the intrinsic calibration performed on both point
clouds

57

Figure 5.14: This image shows the result of the extrinsic calibration performed on both point
clouds

58

CHAPTER 6
Conclusion and Future Work

6.1 Improvements and Future Tasks

As described in chapter 5 the result of the calibration have a grave influence on the following
steps of the process. Without having precise calibration data the combination of the depth data
can not be done. In order to improve the results of this step another calibration tool should be
evaluated or an algorithm that handles this step of the working process should be implemented.
In order to achieve better reconstruction results merging algorithms like ICP (iterative closest
point) should be explored as a future work. Because these steps of the process are very vital and
labor intensive it should be seen as stand alone fields of research.
Another problem is the use of different camera types and different capturing technologies. Every
capturing technology has its own drawbacks. When using different types of cameras all these
drawbacks have to be taken into account and the developer runs the risk of loosing the sight
of the actual application by only handling fault correction. On the other hand using the same
capturing technology can also cause severe problems. For example the usage of multiple time of
flight cameras can cause signal overlapping and so falsify the result of the capturing process. The
same effect occurs when using a depth camera like the Microsoft Kinect where an IR pattern is
projected onto the scene.When using multiple cameras of this type the projected pattern overlaps
and so can cause a misinterpretation of the data. As a future work this aspect should be explored.
In order to improve background segmentation other features like intensity values or gradients
could be taken into account. The effectivity of the algorithm depends of the used capturing
technology so an algorithm that takes this into account would be useful.

6.2 Using Multiple Depth Cameras for Tracking

The application fields of using multiple depth cameras are versatile but besides reconstructing
a three dimensional object the intended use of this work is three dimensional tracking. Once
calibrated a stable camera rig can be used for various purposes. The camera stream can either be

59

recorded to use it for motion analysis or the movement of the captured object can be used as a
basement for creating three dimensional objects. Especially in computer graphics or the movie
industry where realistic movements of characters play an important role this three dimensional
records can be very useful. For these application fields the performance of the system is not
so important because the quality of the results of the tracking algorithms and the results of the
motion analysis come to the fore. There are other fields of application where both the perfor-
mance of the tracking algorithms and the performance of the data enhancement algorithms play
a very important role. Considering applications where the tracked movement is used as an input
for a successive action the performance of the system is vital. Such tracking system could be
used for the gaming and entertainment industry where the tracked movements can be used for
steering a character in a computer game or for turning on the television with a special gesture.
The benefit of using multiple depth cameras is that the observed person can move freely across
the room without paying attention to the viewing angle of a single camera. Also the additional
depth information can be easily used to cut away unwanted information.

6.3 Conclusion

Combining multiple depth cameras is a challenging but interesting work. In this work the math-
ematical and technological background for combining depth cameras has been explained. The
whole working process from the connection of the cameras to the combination of the processed
data has been specified and analyzed. On base of this work an application that gathers the data
and combining them to a single point cloud has been developed with the possibility of using it
not only for offline but also for real time applications. Unfortunately it was not possible to merge
the point clouds due to bad calibration results but using the proposed improvements satisfying
results certainly can be found in future.

60

Appendix

This section gives an short description of the mathematical background that is relevant for the
implementation.

Quaternions

Quaternions are an extension of complex numbers into higher dimensions containing one real
part s and three imaginary parts i,j and k [DDH04]:

q = s+ ia+ jb+ kc with a, b, c ∈ < (6.1)

The imaginary parameters can be defined as followed [DDH04]:

i2 = j2 = k2 = −1, ij = −ji = k (6.2)

Instead of using euler angles for the representation of rotation transformation quaternions can
be used because of their simplicity. A rotation using quaternions can be represented by using a
unit quaternion q containing the unit vector u:

q = (s, v) (6.3)

s = cos
θ

2
, v = u sin

θ

2
(6.4)

The unit vector u refers to a specific rotation axis and θ describes the rotation angle around the
selected axis. Using quaternions the rotation of a point P that results in the rotated point p′ can
be formulated as below [DDH04]:

P ′ = (0, p′) (6.5)

p′ = s2p+ v(p · v) + 2s(v × p) + v × (v × p) with p = (x, y, z) (6.6)

This term can be evaluated by using the following rule for quaternion multiplication [DDH04]:

q1q2 = (s1s2 − v1 · v2, s1v2 + s2v1 + v1 × v2) (6.7)

61

Euler angles

Euler angles can be used to describe rotations in any direction. Basically there are three angles
of rotation called pitch, roll and yaw [DP02]. Yaw defines the rotation around the y-axis, pitch
describes the rotation around the x-axis and roll measures the rotation around the z axis. The
three vectors can be defined as followed [Sab08]:

Rφ =

1 0 0
0 cosφ − sinφ
0 sinφ cosφ

Rθ =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

Rψ =

cosψ − sinψ 0
sinψ cosψ 0

0 0 1

Where φ refers to pitch, θ refers to yaw, and ψ refers to roll.

Conversion between euler angles and rotation matrices

A single rotation matrix that describes the rotation of an object in x-, y- and z-direction can
be constructed by building up three independent rotation matrices for each direction and then
combining them into the final rotation matrix [DP02]. The multiplication of matrices is not
commutative and thats why multiplying the individual matrices in a different order yields to
different rotation matrices. For this work, the OpenGL convention is used where all rotations
are performed counterclockwise, the up vector is the positive y-axis and the viewing direction is
the negative z-axis. Using this convention a rotation around first the x axis then the y axis and
last the z axis is defined as followed:

R = RφRθRψ (6.8)

R =

1 0 0
0 cosφ − sinφ
0 sinφ cosφ

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

cosψ − sinψ 0
sinψ cosψ 0

0 0 1

 (6.9)

R =

 cos Θ cos Ψ − cos Θ sin Ψ sin Θ
sin Φ sin Θ cos Ψ + cos Φ sin Ψ − sin Φ sin Θ sin Ψ + cos Φ cos Ψ − sin Φ cos Θ
− cos Φ sin Θ cos Ψ + sin Φ sin Ψ cos Φ sin Θ sin Ψ + sin Φ cos Ψ cos Φ cos Θ

(6.10)

62

Conversion between quaternions and rotation matrices

The conversion from a quaternion to a rotation matrix can be performed by using the rules of
quaternion multiplication defined in chapter 6.3. The resulting matrix Rp′ that rotates around a
chosen axis can be seen in the following:

Rp′ =

1− 2b2 − 2c2 2ab+ 2sc 2ac− 2sb
2ab− 2sc 1− 2a2 − 2c2 2bc+ 2sa
2ac+ 2sa 2bc+ 2sa 1− 2a2 − 2b2

 (6.11)

The terms (a, b, c) are the vector part and s is the scalar part of the quaternion. The final rotation
matrix can be constructed by substitution of the s, a, b, c parts of the quaternion resulting in the
following matrix [DDH04]:

Rp′ =

 u2x(1− cos θ) + cosθ uxuy(1− cosθ)− uz sin θ uxuz(1− cosθ) + uysinθ
uyux(1− cosθ) + uzsinθ u2y(1− cosθ) + cosθ uyuz(1− cosθ)− uxsinθ
uzux(1− cosθ)− uysinθ uzuy(1− cosθ) + uxsinθ u2z(1− cosθ) + cosθ

(6.12)

The vector u = (ux, uy, uz) is the unit vector used in the quaternion representation. The matrix
Rp′ is constructed using the following substitutions [DP02]: w = cos θ2
x = ux sin θ

2

y = uy sin θ
2

z = uz sin θ
2

Conversion between quaternions and euler angles

The conversion from quaternions to euler angles can be conducted by using the following equa-
tions using the terms from the matrix Rp′ [DP02]:

φ = arcsin(−(2bc+ 2sa)) (6.13)

θ =

{
arctan(2ac− 2sb, 1− 2a2 − 2b2) if cos(φ) 6= 0,

arctan(−2ac− 2sb, 1− 2b2 − 2c2) otherwise
(6.14)

ψ =

{
arctan(2ab+ 2sc, 1− 2a2 − 2c2) if cos(φ) 6= 0,

0 otherwise
(6.15)

For more information about derivations and conversion of different rotation representations see
[DP02].

63

Homogeneous coordinates

Homogeneous coordinates are meaningful representations and can be used to express trans-
formations as matrix multiplications [DDH04]. To accomplish that a three dimensional point
P = (x, y, z) has to be expanded to a four dimensional point P ′ = (xw, yw, zw,w), where
w 6= 0 is called the homogeneous parameter. This parameter has to be chosen in a way that the
following condition is fulfilled [DDH04]:

x =
xw

w
, y =

yw

w
and z =

zw

w
(6.16)

For reasons of simplification w = 1 is often chosen.

64

Bibliography

[BHH11] S. Brutzer, B. Hoferlin, and G. Heidemann. Evaluation of background subtraction
techniques for video surveillance. In Computer Vision and Pattern Recognition
(CVPR), 2011 IEEE Conference on, pages 1937 –1944, june 2011.

[CBS00] Frank Chen, Gordon M. Brown, and Mumin Song. Overview of three-dimensional
shape measurement using optical methods. Optical Engineering, 39(1):10–22,
2000.

[CMC+06] S. Corazza, L. Mündermann, A.M. Chaudhari, T. Demattio, C. Cobelli, and T.P.
Andriacchi. A markerless motion capture system to study musculoskeletal biome-
chanics: Visual hull and simulated annealing approach. Annals of Biomedical En-
geneering, 34:1019–1029, 2006.

[CTPD08] Ryan Crabb, Colin Tracey, Akshaya Puranik, and James Davis. Real-time fore-
ground segmentation via range and color imaging. Computer Vision and Pattern
Recognition Workshop, 0:1–5, 2008.

[DDH04] M. Pauline Baker Donald D. Hearn. Computer Graphics with OpenGL. Pearson
international edition. Pearson Prentice Hall, 3 edition, 2004.

[DP02] F. Dunn and I. Parberry. 3D math primer for graphics and game development.
Wordware game math library. Wordware Pub., 2002.

[ea11] Koch R. et al. Bias - basic image algorithms library, 2011.

[FLP01] Olivier Faugeras, Quang-Tuan Luong, and T. Papadopoulou. The Geometry of Mul-
tiple Images: The Laws That Govern The Formation of Images of A Scene and Some
of Their Applications. MIT Press, Cambridge, MA, USA, 2001.

[Gmb09] PMDTechnologies GmbH. A performance review of 3d tof vision systems in com-
parison to stereo vision systems. Technical report, PMDTechnologies GmbH, 2009.

[Gmb11] PMDTechnologies GmbH. A performance review of 3d tof vision systems in com-
parison to stereo vision systems. Technical report, PMDTechnologies GmbH, 2011.

[GRBB11] Matthias Greuter, Michael Rosenfelder, Michael Blaich, and Oliver Bittel. Object
Detection with the 3D-Sensor Kinect. In International Conference on Research and
Education in Robotics, pages 130–143. Springer, 2011.

65

[Hor00] Berthold K. P. Horn. Tsai’s camera calibration method revisited. Technical report,
Massachusetts Institute of Technology, 2000.

[HS97] Janne Heikkila and Olli Silven. A four-step camera calibration procedure with
implicit image correction. In Proceedings of the 1997 Conference on Computer
Vision and Pattern Recognition (CVPR ’97), CVPR ’97, pages 1106–, Washington,
DC, USA, 1997. IEEE Computer Society.

[Ike89] Shape from shading. MIT Press, 1989.

[Kho11] K. Khoshelham. Accuracy analysis of kinect depth data. Volume XXXVIII-5/W12,
2011:1–6, 2011.

[LB08] Guido Maria Cortelazzo Luca Ballan. Marker-less motion capture of skinned mod-
els in a four camera set-up using optical flow and silhouettes. Proceedings of
3DPVT’08 - the Fourth International Symposium on 3D Data Processing, Visu-
alization and Transmission, pages 1–8, 2008.

[Li01] Ming Li. Correspondence analysis between the image formation pipelines of graph-
ics and vision. Technical report, May 2001.

[MG01] Thomas B. Moeslund and Erik Granum. A survey of computer vision-based human
motion capture. Computer Vision and Image Understanding, 81:231–268, 2001.

[MHS05] Yukiko Kenmochi Masatoshi Hamanaka and Akihiro Sugimoto. Discrete epipolar
geometry. Lecture Notes in Computer Science, Volume 3429/2005:323–334, 2005.

[MSB99] Vaclav Hlavac Milan Sonka and Roger Boyle. Image Processing, Analysis, and
Machine Vision. PWS Publishing, 1999.

[Ope11a] OpenCV, 2011.

[Ope11b] OpenNI. OpenNI User Guide. OpenNI, 2011.

[Pro09] Frd Pro. PMDSDK 2 Programming Manual. PMDTec GMBH, 2.1.1 edition, 6
2009.

[PYGC08] Pekelny, Yuri, Gotsman, and Craig. Articulated object reconstruction and marker-
less motion capture from depth video. Computer Graphics Forum, 27(2):399–408,
2008.

[Res11] Microsoft Research. Programming guide: Getting started with the kinect for win-
dows sdk beta. Technical report, Microsoft, 2011.

[Sab08] Robert Sablatnig. 3d vision maschinelles sehen in 3d. Skriptum zur Lehrveranstal-
tung, 2008.

66

[SBK08] Ingo Schiller, Christian Beder, and Reinhard Koch. Calibration of a pmd camera
using a planar calibration object together with a multi-camera setup. In The Inter-
national Archives of the Photogrammetry, Remote Sensing and Spatial Information
Sciences, volume Vol. XXXVII. Part B3a, pages 297–302, Beijing, China, 2008.
XXI. ISPRS Congress.

[SBKK07] Birger Streckel, Bogumil Bartczak, Reinhard Koch, and Andreas Kolb. Supporting
structure from motion with a 3d-range-camera. In Proceedings of the 15th Scandi-
navian conference on Image analysis, SCIA’07, pages 233–242, Berlin, Heidelberg,
2007. Springer-Verlag.

[SBSS08] Agnes Swadzba, Niklas Beuter, Joachim Schmidt, and Gerhard Sagerer. Tracking
objects in 6d for reconstructing static scenes. Computer Vision and Pattern Recog-
nition Workshop, 0:1–7, 2008.

[SC06] Aravind Sundaresan and Rama Chellappa. Multi-camera tracking of articulated
human motion using motion and shape cues. In IN ASIAN CONFERENCE ON
COMPUTERVISION, pages 131–140. Springer, 2006.

[Sch05] Oliver Schreer. Stereoanalyse und Bildsynthese. Springer-Verlag Berlin Heidelberg,
2005.

[Sch11] Ingo Schiller. Mip - multicameracalibration., 2011.

[SK10] Alexander Sabov and Jörg Krüger. Identification and correction of flying pixels in
range camera data. In Proceedings of the 24th Spring Conference on Computer
Graphics, SCCG ’08, pages 135–142, New York, NY, USA, 2010. ACM.

[ZTCS99] Ruo Zhang, Ping-Sing Tsai, James Edwin Cryer, and Mubarak Shah. Shape from
shading: A survey. IEEE Trans. Pattern Anal. Mach. Intell., 21:690–706, August
1999.

67

	List of Figures
	List of Tables
	Introduction
	Object Capturing with Depth cameras
	Application Fields using Multiple Depth Cameras

	Related Work
	Technological Background
	Overview
	The Computer Vision Pipeline
	3D Vision

	Object Capturing
	Initialization
	2D Recording
	3D Recording
	Combined Approaches
	Comparison of the different approaches

	Design
	Workflow
	Hardware and Setup
	PMD[vision] Camcube 3.0
	Microsoft Kinect

	Libraries
	Open Natural Interaction (OpenNI) Framework
	PMDSDK 2

	Calibration
	Image Generation
	Image Lists
	Corner Assignment
	Approximation and refinement of the camera parameters

	Data Acquisition
	Data Acquisition with the PMD[vision] Camcube 3.0
	Data Acquisition with the Microsoft Kinect

	Noise Reduction
	Background Segmentation
	Merged Views

	Implementation
	Main class
	KinectConnection class
	PmdConnection class
	FrameHandler class
	Matrix class
	View class
	DisplayImage class
	Configuration File
	DepthCamCon Library

	Results
	Calibration
	Raw Data
	Noise Reduction and Background Subtraction
	Merged Point Cloud

	Conclusion and Future Work
	Improvements and Future Tasks
	Using Multiple Depth Cameras for Tracking
	Conclusion

	Appendix
	Quaternions
	Euler angles
	Conversion between euler angles and rotation matrices
	Conversion between quaternions and rotation matrices
	Conversion between quaternions and euler angles
	Homogeneous coordinates

	Bibliography

