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Abstract

Low-density parity-check block codes (LDPC-BCs) were first discovered by

Gallager in the early 1960s. As counterparts, LDPC convolutional codes

(LDPC-CCs) were first proposed in 1999 [1]. They can be considered as

conventional convolutional codes with fairly large memory. Using pipeline

decoding [2], it has been shown that they are suitable for practical im-

plementation with continuous transmission as well as, via encoder termi-

nation, for block transmission in frames of arbitrary size [3] without an

increase in computational complexity compared to their block code coun-

terparts. Time-invariant or time-varying LDPC-CCs can be defined by

polynomial-domain syndrome former matrices HT (D) (transposed parity-

check matrices in polynomial form), that can be derived from corresponding

Quasi-Cyclic (QC) LDPC-BCs or unwrapping LDPC-BCs.

LDPC-CCs can be efficiently decoded by a pipelined sub-optimal Sum Prod-

uct Algorithm (SPA). It suffers, however, from convergence problems, due

to cycles in the Tanner graph. To improve the decoding performance, we

analyze the cycle properties, based on the connections between monomi-

als in the polynomial-domain syndrome former matrix. According to the

relationship of cycle structures between time- and polynomial-domain syn-

drome former matrices, we present a cycle counter algorithm to enumerate

cycles in time-invariant and time-varying LDPC-CCs. Due to some specific

structures in the weight matrix of a polynomial-domain syndrome former

matrix HT (D), some cycles are unavoidable no matter what monomials are

placed in the weight matrix. It is shown that large-weight entries in HT (D)

lead to small girth, while monomial or empty entries, which can break short

unavoidable cycles, may result in large girth.

Another important characteristic of LDPC-CCs is the distance spectrum.

However, it is complicated to compute the precise distance spectrum of

LDPC-CCs by, for example, the BEAST algorithm due to the large mem-

ory of LDPC-CCs. An estimation of the distance spectrum of time-invariant



LDPC-CCs is obtained by splitting the polynomial-domain syndrome for-

mer matrix into submatrices representing “super codes” and then evaluating

the linear dependence between codewords of the corresponding super codes.

This estimation results in an upper bound on the minimum free distance

of the original code and, additionally, a lower bound on the number of

codewords Aw with Hamming weight w.

To adapt to the changing conditions of time-varying channels and to al-

low transceivers to employ the same encoder/decoder pair, a family of

robust rate-compatible (RC) punctured low-density parity-check convolu-

tional codes (LDPC-CCs) is derived from a time-invariant LDPC-CCmother

code by periodically puncturing encoded bits (variable nodes) with respect

to several criteria: (1) ensuring the recoverability of punctured variable

nodes, (2) minimizing the number of completely punctured cycle trapping

sets (CPCTSs), and (3) minimizing the number of punctured variable nodes

involved in short cycles. The influence of (1) and (3) on iterative decoding

performance is felt most strongly in the waterfall region of the bit-error-rate

(BER) curve, while (2) has a larger effect in the error floor, or high signal-

to-noise ratio (SNR), region. We show that the length of the puncturing

period is an important parameter when designing high-rate punctured codes

and, moreover, that extending the puncturing period can improve the de-

coding performance and extend the range of compatible rates. As examples,

we obtain families of RC LDPC-CCs from several time-invariant LDPC-CC

mother codes with monomial and binomial entries in their polynomial syn-

drome former matrices.
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Chapter 1

Introduction

1.1 Reliable data transmission system

Data transmission or digital transmission is the physical transfer of data (a digital bit

stream) over a point-to-point or point-to-multipoint communication channel. Examples

of such channels are copper wires, optical fibers, wireless communication channels, and

storage media. In recent years, there has been an increasing demand for efficient and

reliable digital data transmission and storage as a result of the emergence of large-scale,

high-speed data networks for exchange, processing, and storage of digital information.

Error-free data transmission and storage are difficult to achieve for practical communi-

cations because of the noise and interference in the channel. Then the concern is how

to lower the error rate as much as possible so that the reliability of communications

is acceptable. According to Shannon’s theory, by proper coding applied to the data,

errors induced by a noisy channel or storage medium can be reduced to any desired

level, as long as the information rate is less than the capacity of the channel. Since

then, a lot of effort went into the problem of devising good coding schemes approaching

Shannon limit.

Modern digital communication design requires a pair of transmitter and receiver

that spans a radio link. The data information is transferred from the transmitter to the

receiver. A simple and typical transmission system is illustrated by the block diagram

shown in Fig. 1.1. The transmitter consists of the information source, source encoder,

channel encoder, and modulator. And the receiver is made up of a demodulator, channel

decoder, source decoder, and the destination.

In the transmitter, the information source is encoded by the source encoder into a

sequence of binary digits (bits) u called information sequence which is further encoded
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Figure 1.1: Block diagram of a simple and typical data transmission system [4].

by the channel encoder into a discrete sequence v called a codeword by adding redun-

dancy bits. Channel encoding makes the data information described by the codewords

robust against noise interference. Discrete symbols, for example a digital bit stream

(codewords) or an analog audio signal, are not suitable for transmission over a physical

channel or recording on a digital storage medium. Hence in the modulator, each symbol

is modulated into a waveform. It conveys a message signal inside another signal that

can be physically transmitted. For example, modulation of a sine waveform is used

to transform a baseband message signal into a passband signal, such as low-frequency

audio signal into a radio-frequency signal (RF signal). The modulated waveform enters

the channel and is corrupted by noise and interference.

In the receiver, the demodulator conveys the corrupted waveform back to a set

of symbols r called received sequence that corresponds to the codeword v. Due to

the noisy environment of the channel, the received sequence r could be different from

the codeword v. The channel decoder converts received sequence r into an estimated

information sequence û. The source decoder then transforms the estimated information

sequence û into an estimate of the information source and delivers this estimate to the

destination.

1.2 Channel coding

This dissertation focuses on channel coding which is involved in the channel encoder/de-

coder of the block diagram in Fig. 1.1. In communication or storage system, channel

coding or forward error correction (FEC), is a technique used for controlling errors in

2



data transmission over unreliable or noisy channels. The central idea is encoding the

information sequence in a redundant way by using a channel code.

The redundancy allows the receiver to detect a limited number of errors, which may

occur anywhere in the sequence of symbols, and often to correct these errors. Channel

coding gives the receiver the ability to correct errors without a reverse channel to request

retransmission of data, but at the cost of a fixed, higher forward channel bandwidth.

Channel coding is therefore applied in situations where retransmissions are costly or

impossible, such as one-way communication links and when broadcasting to multiple

receivers.

Richard Hamming pioneered this field in the 1940s and invented the first error-

correcting code in 1950: the Hamming (7, 4) code. Reed-Solomon (RS) codes are non-

binary cyclic error-correcting codes invented by Irving S. Reed and Gustave Solomon.

Reed-Solomon coding is very widely used in mass storage systems, such as CD and

DVD, to correct the burst errors. Fountain codes (also known as rateless erasure codes)

are a class of erasure codes with the property that a potentially limitless sequence of

encoding symbols can be generated from a given set of source symbols such that the

original source symbols can ideally be recovered from any subset of the encoding sym-

bols of size equal to or only slightly larger than the number of source symbols. The

term fountain or rateless refers to the fact that these codes do not exhibit a fixed code

rate. LT codes were the first practical realization of fountain codes. Raptor codes

and Online codes were subsequently introduced, and achieve linear time encoding and

decoding complexity through a pre-coding stage of the input symbols. Convolutional

codes are used extensively in numerous applications in order to achieve reliable data

transfer, including digital video, radio, mobile communication, and satellite communi-

cation. These codes are often implemented in concatenation with a hard-decision code,

particularly Reed Solomon. Prior to turbo codes, such constructions were the most

efficient, coming closest to the Shannon limit.

Apart from above channel codings, Turbo codes [6] and low-density parity-check

(LDPC) codes [7] are two popular channel coding schemes with capacity-approaching

property. Turbo codes were invented in 1993 by Berrou et al. together with a suitable

iterative soft-decoding scheme. They combine two or more relatively simple convolu-

tional codes and interleavers to produce a block code that can perform to within a

fraction of a decibel away from Shannon limit. The first class of turbo codes was the

parallel concatenated convolutional code (PCCC). Since then, many other classes of

turbo-like codes have been discovered, including serial versions and repeat-accumulate

codes.
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Besides turbo codes, LDPC codes form another class of capacity-approaching chan-

nel codes that were first discovered by Gallager in his doctoral dissertation at the MIT

in the early 1960s. Unfortunately, this great discovery did not attract much atten-

tion until the late 1990s, except for the work by Tanner in 1981, who worked on the

interpretation of LDPC codes from a graphical point of view, which is called Tanner

graph nowadays. LDPC codes can be separated into two categories: LDPC block codes

(LDPC-BCs) and LDPC convolutional codes (LDPC-CCs). LDPC-BCs can also be ob-

tained from LDPC-CCs by termination or tail-biting. In [2], it has been shown that

LDPC-CCs are suitable for practical implementation with continuous transmission as

well as, via encoder termination or tail-biting, for block transmission in frames of arbi-

trary size [3] without an increase in computational complexity compared to their block

code counterparts. Therefore, it is of great interest to analyze the characteristics of

LDPC-CCs.

The characteristics of LDPC codes, include girth (the length of shortest cycles),

distance spectrum (including the minimum (free) distance), decoding threshold [8],

trapping sets [9], pseudocodewords [10], and others. In this dissertation, we focus on

the analysis of short cycles including the structure of avoidable short cycles, distance

spectrum including the estimate of minimum free distance, and cycle trapping sets,

which are a subset of trapping sets. Based on these three aspects, we proposed a

puncturing algorithm to obtain rate-compatible (RC) LDPC-CCs that can be used for

wireless communication to adapt to the time-varying conditions of the channel. Unlike

the family of RC convolutional codes first introduced in [11] by periodically puncturing

encoded bits chosen with respect to a distance spectrum criterion, our puncturing

selection criterion is based on a couple of other coding characteristics.

1.3 Outline

The rest of the dissertation is organized as follows:

• In Chapter 2, we give definitions of both time-invariant and time-varying LDPC-

CCs in the time- and polynomial-domains. We introduce the encoding imple-

mentation of LDPC-CCs by means of the polynomial syndrome former matrix.

In terms of the decoding algorithm, we first basically review the sum product

algorithm (SPA [12]) which is typically used for LDPC-BCs. Then, based on the

SPA, we illustrate how the sliding window decoder [1] works for LDPC-CCs.

• In Chapter 3, we discuss the cycle formations of time-invariant and time-varying
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LDPC-CCs in both the time- and polynomial-domain syndrome former matrices.

Rather than counting cycles in the large-scale semi-infinite time-domain syndrome

former matrix, we enumerate the cycles in the compact polynomial syndrome

former matrix of finite size. Moreover, we analyze the structure of unavoidable

cycles of length ranging from 6 to 20. As a result, we illustrate a set of weight

matrices associated with the polynomial syndrome former matrices that have

upper bounds on the girth (the length of the shortest cycle). A cycle counter

algorithm is proposed to enumerate cycles for time-invariant and time-varying

LDPC-CCs. Based on this algorithm, a method is introduced to generate LDPC-

CCs with desired girth.

• Due to the large syndrome former memory of LDPC-CCs, it is difficult to compute

precise distance spectra of LDPC-CCs. For example, the complexity of applying

the BEAST algorithm [13] is proportional to the syndrome former memory. In

Chapter 4, we estimate the distance spectra of LDPC-CCs by evaluating the linear

dependence between the codewords of super codes. We obtain an upper bound

on the minimum free distance and an lower bound on the number of codewords

with certain Hamming weight.

• In Chapter 5 we propose a puncturing algorithm to obtain rate-compatible (RC)

LDPC-CCs by periodically puncturing encoded bits with respect to some punc-

turing criteria, i.e., (1) ensuring the recoverability of punctured variable nodes,

(2) minimizing the number of completely punctured cycle trapping sets (CPCTSs),

and (3) minimizing the number of punctured variable nodes involved in short cy-

cles. One of the advantages of this method compared to designing a puncturing

scheme based on the distance spectrum, which is difficult to compute in practice,

is that these properties can be precisely and efficiently calculated.

• In Chapter 6, we conclude our work and summarize the major contribution. We

also suggest a number of ideas for future research in this area.
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Chapter 2

Low-Density Parity-Check

Convolutional Codes

2.1 Time-domain LDPC convolutional codes

A rate R = b/c LDPC-CC can be described as the set of sequences v satisfying v·HT =

0,1 where

v = (v0,v1,. . . ,vt,. . .)

= ((v
(1)
0 ,v

(2)
0 ,. . .,v

(c)
0 ),. . .,(v

(1)
t ,v

(2)
t ,. . .,v

(c)
t ),. . .), (2.1)

HT=


HT

0 (0) H
T
1 (1) · · · HT

ms
(ms)

HT
0 (1) · · · HT

ms−1(ms) H
T
ms

(ms+1)

. . .
...

...
. . .

HT
0 (ms) HT

1 (ms+1) · · · HT
ms

(ms+ms)

. . .
. . .

, (2.2)

HT
i (t) =

hi,t
1,1 · · · hi,t

1,p

...
. . .

...

hi,t
c,1 · · · hi,t

c,p

, (2.3)

and p ≜ c−b, the blank spaces correspond to zeros. The transposed parity check matrix

HT , called the syndrome former matrix, is made up of a set of binary submatrices

HT
i (t), t∈Z, i = 0, 1, . . . ,ms, each of size c×p, given by (2.3). ms is called the syndrome

former memory, and the associated constraint length, defined as v̄s = (ms + 1) · c, is
1Note that all the LDPC-CCs considered throughout the dissertation are binary. Therefore, an

entry in v or HT is either “0” or “1” and the matrix product is based on modulo 2.
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proportional to the decoding complexity of pipeline decoding [1]. If, beginning with

the block of q columns at time t = ms, H
T contains exactly J ones in each row and

K ones in each column, then the code is called an (ms, J,K)-regular LDPC-CC. Note

that a row in the syndrome former matrix refers to a variable node while a column

corresponds to a check (constraint) node in the Tanner graph representation of HT .

Specifically, a variable node, denoted as v
(j)
t , j = 1, 2, . . . , c, corresponds to row tc+j of

(2.2), while a check node, denoted as c
(k)
t , k = 1, 2, . . . , q, corresponds to column tq+ k

of (2.2). For time-invariant LDPC-CCs, the binary submatrices in HT are constant,

i.e., HT
i (t) = HT

i , ∀i, t, while for periodically time-varying LDPC-CCs with period T

the submatrices repeat periodically, so that HT
i (t) = HT

i (t + T ). In the dissertation,

LDPC-CCs are assumed to be time-invariant unless stated otherwise.

2.2 Polynomial-domain LDPC-CCs

Given the time-domain syndrome former matrix HT of a time-invariant LDPC-CC

in (2.2) with rate R = b/c and syndrome former memory ms, the corresponding

polynomial-domain syndrome former matrix, also called polynomial syndrome former

matrix, is given by [14]:

HT (D) =
∑ms

n=0H
T
n ·Dn

=


h1,1(D) h1,2(D) · · · h1,p(D)

h2,1(D) h2,2(D) · · · h2,p(D)
...

...
. . .

...

hc,1(D) hc,2(D) · · · hc,p(D)


1

,
(2.4)

Where hi,j(D), i = 1, 2, . . . , c, j = 1, 2, . . . , p, is an polynomial entry. The maximum

power of D in (2.4) is defined as ms. The corresponding weight matrix B associated

with HT (D) is defined as:

B = W(HT (D)) =


W(h1,1(D)) W(h1,2(D)) · · · W(h1,p(D))

W(h2,1(D)) W(h2,2(D)) · · · W(h2,p(D))
...

...
. . .

...

W(hc,1(D)) W(hc,2(D)) · · · W(hc,p(D))


1

, (2.5)

where W(hi,j(D)) indicates the weight or degree of the polynomial entry hi,j(D). The

weight of a polynomial is defined as the number of additive terms with different powers
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of D. For instance, the degree of 1 + D + D2 is three, while the degree of D + D3

is two. When the degree of a polynomial is one and two, it is also called a monomial

or a binomial, respectively. If the sum of the elements in each row of B is J and the

sum of the elements in each column of B is K, the associated LDPC-CC is called an

(ms, J,K)-regular time-invariant LDPC-CC.

For a rate R = b/c periodically time-varying LDPC-CC with period T , given the

time-domain syndrome former matrix HT in (2.2) and syndrome former memory ms,

the polynomial-domain syndrome former matrix is given by

HT (D) =



HT
1 (D)

HT
2 (D)

. . .

HT
i (D)

. . .

HT
T (D)


, (2.6)

where i = 1, 2, . . . , T , and blank spaces correspond to empty entries. Each polynomial

sub-matrix HT
i (D) is defined as

HT
i (D) =

ms∑
n=0

HT
n (i+ n) ·Dn (2.7)

with HT
n (i + n) given in (2.2). Finally, HT (D) consists of T distinct polynomial sub-

matrices, and each is of size c×(c − b). Similar to the time-invariant LDPC-CCs, we

can also form the weight matrix B for time-varying LDPC-CCs. It is of the same

size as the polynomial matrix in (2.6). Each entry in the base matrix B is the weight

of the corresponding polynomial in HT (D). Note that the weight of an empty entry

is zero. To some extent, a rate R = b/c periodically time-varying LDPC-CC with

period T defined in (2.6) can be considered as a time-invariant LDPC-CC with rate

R = (bT )/(cT ). In other words, we consider the polynomial matrix (2.6) in the form

of (2.4) with many empty entries.

The c-tuple of a codeword V(D) in the polynomial-domain codeword set V(D) is

given by

V(D) ≜ [v(0)(D),v(1)(D), . . . ,v(c−1)(D)], (2.8)

i.e., V(D)HT (D) = 0(D). After multiplexing, the codeword can also be expressed
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as [4]

v(D) ≜ v(0)(Dc) +D · v(1)(Dc) + · · ·+Dc−1 · v(c−1)(Dc), (2.9)

which is a member of the multiplexed codeword set v(D). Due to the repeating syn-

drome former matrix structure of time-invariant LDPC-CCs, a periodically shifted

codeword DnV(D), or Dc·nv(D), n∈Z, is also a codeword, and consequently it satisfies

the constraint imposed by the polynomial syndrome former matrix, i.e.,

DnV(D)HT (D) = 0(D). (2.10)

2.3 Time-invariant LDPC-CCs

A particular type of time-invariant LDPC-CCs is derived from the quasi-cyclic (QC)

LDPC block codes (LDPC-BCs). Their syndrome former matrices are made up of a set

of circulant matrices.1 Unlike the random LDPC-BCs, QC LDPC-BCs have geometrical

structure in their syndrome former matrices, which facilitates the practical implemen-

tation and makes them easier to evaluate the coding properties, such as number of

cycles, trapping sets, and minimum distance. Tanner et al. [5] presented a method to

obtain QC LDPC-BCs. Based on the structure of the obtained QC LDPC-BCs, they

also introduced a family of LDPC-CCs. Details are given as follows.

In the Galois field GF(m), with m prime, the nonzero elements of GF(m) form a

cyclic multiplicative group. As described in [5], we assume that a and b are two nonzero

elements with multiplicative orders2 o(a) = K and o(b) = J , respectively. With the

(s, t)-th element Ps,t = bsat mod m, s = 0, 1, ..., J − 1, and t = 0, 1, ...,K − 1, we form

the matrix P of size K × J with elements in GF(m):

P =


1 b · · · bJ−1

a ab · · · abJ−1

a2 a2b · · · a2bJ−1

· · · · · · · · · · · ·
aK−1 aK−1b · · · aK−1bJ−1

. (2.11)

Note that all products in the matrix are “modulo m”. The syndrome former matrix

(transposed parity-check matrix) HT of a QC LDPC-BC is generated from (2.11) as

1Circulant matrices are cyclically shifted identity matrices.
2In GF(m), the multiplicative order of a modulo m is the smallest positive integer k satisfying

ak ≡ 1( mod m).
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follows:

HT =


I1 Ib · · · IbJ−1

Ia Iab · · · IabJ−1

Ia2 Ia2b · · · Ia2bJ−1

· · · · · · · · · · · ·
IaK−1 IaK−1b · · · IaK−1bJ−1

 (2.12)

The matrices IPs,t are m×m identity matrices cyclically shifted to the left by Ps,t − 1

positions. Note that, therefore, I1 corresponds to an “unshifted” standard identity

matrix.

The syndrome former matrix HT is of size Km × Jm, with Km being the block

length of the code and Jm being the number of parity-check constraints, some of which

may be linearly dependent resulting in rank deficiency in the syndrome former matrix.

Due to the construction of shifted identity matrices, each row of HT contains J ones

while every column contains K ones, resulting in a (J,K)-regular QC LDPC-BC. As we

have K (cyclically shifted) identity matrices in every m columns of HT , we can add all

of these columns in such a block of m columns and obtain one “all-one” column every

m columns. As we have J of such blocks in HT , we obtain the number J “all-one”

columns of which, trivially, J − 1 are linearly dependent. Hence, the HT matrix has,

by construction, at least J −1 linearly dependent columns, so we obtain the rate of the

QC LDPC block code: R ≥ K·m−J ·m+(J−1)
K·m = 1− J

K + J−1
K·m .

As explained in [5], LDPC-CCs can be formed by a matrix that consists of monomial

entries, with each monomial entry describing the first column of the corresponding

shifted identity sub-matrix in HT . For instance, if the first column of a horizontally

left-shifted identity matrix is [00010]T (this means three horizontal shifts to the left), it

is represented by the polynomial D3. Therefore, given the syndrome former matrix

in (2.12), the associated polynomial syndrome former matrix for the LDPC-CC is

described as1

HT (D) =


D0 Db−1 · · · DbJ−1−1

Da−1 Dab−1 · · · DabJ−1−1

Da2−1 Da2b−1 · · · Da2bJ−1−1

· · · · · · · · · · · ·
DaK−1−1 DaK−1b−1 · · · DaK−1bJ−1−1

. (2.13)

1Note that the subscripts of the matrix elements in (2.12) do not carry over directly as powers of D
in (2.13): we have to subtract “1” due to the definition of Ip (see above) indicating an identity matrix
that is cyclically shifted p− 1 (not p) positions to the left.
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A polynomial syndrome former matrix generated in this way produces a (ms, J,K)-

regular time-invariant LDPC-CC; it has exactly J monomials in each row, K monomials

in each column, i.e., the corresponding weight matrix has all one entries, and ms is

defined as the maximum power of D in HT (D). Throughout the dissertation, we call

such codes with only monomial entries in the polynomial syndrome former matrix

(ms, J,K) Tanner LDPC-CCs. A remarkable property of such LDPC-CCs over the

corresponding QC LDPC-BC is that there are (usually [5, p. 2970]) no linear dependent

rows in the time-domain HT matrix leading to a code rate of exactly R = 1− J/K.

Note that when we design LDPC-CCs, we can focus on the structure of the weight

matrix and the entries in the polynomial syndrome former matrix without considering

the corresponding QC LDPC-BCs. In addition, the polynomial entries in (2.13) are

not necessarily monomials.

Example 2.3.1. Here we use the method summarized above to generate a Tanner

LDPC-CC (this code can be found in [5]). We pick the field GF(7) and the elements

a = 2 and b = 6. As K = 3 is the smallest positive integer K > 0 for which aK

mod 7 = 1, the order of a is K
.
= o(a) = 3; similarly, the order of b is J

.
= o(b) = 2.

From this we obtain by (2.12)

HT =

I1 I6

I2 I5

I4 I3


3·7×2·7

(2.14)

for the syndrome former matrix of the QC LDPC-BC. By (2.13) we obtain the poly-

nomial syndrome former matrix

HT (D) =

D
0 D5

D1 D4

D3 D2

 (2.15)

or equivalently,

HT (D) =

 1 D3

D D2

D3 1

 (2.16)

for the corresponding LDPC-CC.1 (2.15) and (2.16) are referred to (5, 2, 3) and (3, 2, 3)

Tanner LDPC-CCs, respectively. Both of them define a code of rate R = 1 − J/K =

1The equivalence is being discussed in Section 2.3.1.
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1− 2/3 = 1/3. However, (2.16) defines a code with smaller syndrome former memory

than (2.15) does, which is desired as large ms results in high decoding complexity. ■

2.3.1 Tanner graph of LDPC codes

A bipartite Tanner graph (factor graph) is used to describe LDPC codes. It consists

of two types of nodes: the variable nodes denoted by vi and the check nodes denoted

by cj . A variable node vi corresponds the i-th row of the HT matrix, while a check

node cj corresponds the j-th column of HT . Variable node vi and check node cj are

connected by an edge whenever the entry hij is “1”, where hij indicates the entry in

the i-th row and j-th column of HT . In this section, two example codes are used to

illustrate the Tanner graph representations of a QC LDPC-BC and an LDPC-CC.

Example 2.3.2. The QC LDPC-BC given by (2.14) has the syndrome former matrix

HT
=



1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 0 0 1 0 0



. (2.17)

Based on the above description, the corresponding Tanner graph of this code is shown

in Fig. 2.1.

In Fig. 2.1, each variable node is connected to two neighboring check nodes, while

each check node contains three neighboring variable nodes. It is consistent with the

fact that the row weight and column weight1 in HT are two and three, respectively. In

the Tanner graph, there is a set of edges colored in blue forming a cycle of length 12.

When designing LDPC codes, short cycles should be removed since they degrade the

decoding performance. The length of the shortest cycles in the Tanner graph is called

girth of an LDPC code. Details about cycles in LDPC codes are discussed in Chapter

3. ■
1The weight of a row or column is referred to the number of “1”s involved in it.
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Figure 2.1: Tanner graph of the LDPC code in (2.17).
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Figure 2.2: Tanner graph of the (5, 2, 3) LDPC-CC example code in (2.15).

Example 2.3.3. We continue with the LDPC-CC defined by (2.15), its Tanner graph

representation is given in Fig. 2.2.

The equivalence of the codes in (2.15) and (2.16) can be explained by the Tanner

graph. It follows directly from (2.15) with “D” being interpreted as a “delay” between

two time steps. We denote by a,b,c the three code bits (variable nodes) which are

generated by the encoder for every input data bit time-indexed by t; the two parity

checks which must be fulfilled at each time t are denoted by x,y. The check x at time

t is given by x(t)=a(t)+b(t-1)+c(t-3) (all “+”-operations are “modulo-2”) which

directly reflects the first column in the syndrome former matrix (2.15). Similarly, for

the check y at time t, we obtain y(t)=a(t-5)+b(t-4)+c(t-2).

Conversely applying the transformation described by (2.4) to the HT (D) matrix in
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Figure 2.3: Syndrome former matrix of the (5, 2, 3) Tanner LDPC-CC.
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Figure 2.4: Syndrome former matrix of the (3, 2, 3) Tanner LDPC-CC.
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(2.15), we obtain the syndrome former matrix presented in Fig. 2.3, where the blank

spaces are all zeros. The syndrome former matrix shows two checks y(0),y(1) (colored

in red) that are not connected to any code bits, i.e., these two columns are all-zero

vectors. They correspond to the two unconnected checks (colored in red) in the y-path

in Fig. 2.2. As the code is not changed by permuting columns in the syndrome former

matrix, we can remove the “empty” checks and move the corresponding checks (colored

in green) at later time steps upwards. As a result, we obtain the new syndrome former

matrix in Fig. 2.4, which is the time-domain syndrome former matrix of the code in

(2.16). Thus, this process corresponds to pulling out common factors Dl, l > 0 from

any column of HT (D) [15]. Removing common factors reduces the syndrome former

memory of LDPC-CCs. For example, compared with the code in (2.15) the syndrome

former memory of the code defined in (2.16) is reduced from ms = 5 to ms = 3. ■

2.4 Time-varying LDPC-CCs

In [1], the derivation of periodically time-varying LDPC-CCs from LDPC-BCs was

proposed. The principle is to unwrap the parity-check or syndrome former matrix of

an LDPC-BC and duplicate the unwrapped matrix to infinity along the diagonal. This

unwrapping method has been further discussed by Pusane [16]. Normally, given a QC

LDPC-BC of rate R = b/c and the identity matrix of size m×m, the unwrapping step

size is chosen to be ck× (c−b)k, 0<k⩽m, k∈Z+; when k=1, the period of the obtained

time-varying LDPC-CC is T = m.

0   0   1   0   0   0   0   0   1   0   0   0   0   0

1   0   0   0   0   0   0   0   0   0   0   0   1   0
0   1   0   0   0   0   0   0   0   0   0   0   0   1
0   0   1   0   0   0   0   1   0   0   0   0   0   0
0   0   0   1   0   0   0   0   1   0   0   0   0   0
0   0   0   0   1   0   0   0   0   1   0   0   0   0
0   0   0   0   0   1   0   0   0   0   1   0   0   0
0   0   0   0   0   0   1   0   0   0   0   1   0   0
0   1   0   0   0   0   0   0   0   0   0   1   0   0
0   0   1   0   0   0   0   0   0   0   0   0   1   0
0   0   0   1   0   0   0   0   0   0   0   0   0   1
0   0   0   0   1   0   0   1   0   0   0   0   0   0
0   0   0   0   0   1   0   0   1   0   0   0   0   0
0   0   0   0   0   0   1   0   0   1   0   0   0   0
1   0   0   0   0   0   0   0   0   0   1   0   0   0
0   0   0   1   0   0   0   0   0   1   0   0   0   0
0   0   0   0   1   0   0   0   0   0   1   0   0   0
0   0   0   0   0   1   0   0   0   0   0   1   0   0
0   0   0   0   0   0   1   0   0   0   0   0   1   0
1   0   0   0   0   0   0   0   0   0   0   0   0   1
0   1   0   0   0   0   0   1   0   0   0   0   0   0

Figure 2.5: Syndrome former matrix of the QC LDPC-BC in (2.14).
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                                                            0   0   0   0   1   0   0   0   0   0   1   0   0   0

1   0   0   0   0   0   0   0   0   0   0   0   1   0
0   1   0   0   0   0   0   0   0   0   0   0   0   1
0   0   1   0   0   0   0   1   0   0   0   0   0   0
          0   1   0   0   0   0   1   0   0   0   0   0   0   0
          0   0   1   0   0   0   0   1   0   0   0   0   0   0
          0   0   0   1   0   0   0   0   1   0   0   0   0   0
                    0   0   1   0   0   0   0   1   0   0   0   0   0   0
                    0   0   0   0   0   0   0   1   0   0   0   1   0   0
                    0   0   0   0   0   0   0   0   1   0   0   0   1   0
                              0   0   0   0   0   0   0   1   0   0   0   1   0   0
                              0   1   0   0   0   0   0   0   0   0   0   0   1   0
                              0   0   1   0   0   0   0   0   0   0   0   0   0   1
                                        0   1   0   0   0   0   0   0   0   0   0   0   1   0
                                        0   0   1   0   0   0   1   0   0   0   0   0   0   0
                                        0   1   0   0   0   0   0   0   0   1   0   0   0   0
                                                  1   0   0   0   0   0   0   0   1   0   0   0   0   0
                                                  0   1   0   0   0   0   0   0   0   1   0   0   0   0

                                                            0   1   1   0   0   0   0   0   0   0   0   0   0   0
                                                            0   0   0   1   0   0   0   0   0   1   0   0   0   0

                                                  0   0   1   0   0   0   0   0   0   0   1   0   0   0

Figure 2.6: Unwrapped QC LDPC-BC in (2.14)

To illustrate the unwrapping technique, we apply it to the rate R = 1/3 QC LDPC-

BC in (2.14) whose transposed parity-check matrix is given in Fig. 2.5. The unwrapping

step size is set to be ck × (c − b)k = 3 · 1 × (3 − 1) · 1. As indicated in Fig. 2.5, we

“cut” the syndrome former matrix into two pieces, whereby the cutting pattern is such

that we repeatedly move two units to the right and then three units down. Having

applied this “diagonal cut”, we copy and paste the upper part to the bottom of the

lower part resulting in the matrix in Fig. 2.6. Repeating the matrix in Fig. 2.6 along

the diagonal, we obtain a rate R = 1/3 time-varying LDPC-CC with period T = 7.

Note that, time-varying LDPC-CCs derived in this way maintain the row and column

weights and the code rate is the same as for the block codes.

Considering the time-domain syndrome former matrix partially given in Fig. 2.6,

according to (2.6) and (2.7), we obtain the corresponding polynomial-domain syndrome

former matrix

HT (D) =



HT
1 (D)

HT
2 (D)

HT
3 (D)

HT
4 (D)

HT
5 (D)

HT
6 (D)

HT
7 (D)


, (2.18)

where blank spaces correspond to empty entries. It consists of T = 7 polynomial
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Figure 2.7: Encoder for the (3, 2, 3) Tanner LDPC-CC based on polynomial syndrome
former matrix.

sub-matrices, and they are given by

H
T
1 (D) =

D6 + 1 0

0 D6 + 1

D D3

 ,HT
2 (D) =

D3 1

D D3

D4 D

 ,HT
3 (D) =

 D D3

0 D5 +D3

D6 +D4 0


H

T
4 (D) =

 0 D5 +D3

D6 1

D D6

 ,HT
5 (D) =

 D6 1

D3 +D 0

0 D4 + 1

 ,HT
6 (D) =

D4 + 1 0

0 D4 + 1

D5 +D 0

 ,

H
T
7 (D) =

 D 1

0 D4 +D

D5 +D2 0

 .

The obtained polynomial syndrome former matrix has 2 and 3 monomials in each row

and column, respectively, resulting in a time-varying (ms = 6, J = 2,K = 3)-regular

R = 1/3 LDPC-CC.

2.5 Encoding of LDPC-CCs

LDPC-BCs can be encoded by the generator matrix which is obtained from its syn-

drome former (or parity-check) matrix by means of Gaussian elimination. Similarly,

for the convolutional codes a generator matrix G(D) can be obtained by Gaussian

elimination of HT (D). However, it is also possible to directly encode LDPC-CCs using

the polynomial syndrome former matrices.

Recall the definition of LDPC-CCs in (2.2) that satisfies v·HT = 0. This constraint

imposed by the syndrome former matrix can be written as

vtH
T
0 (t) + vt−1H

T
1 (t) + · · ·+ vt−msH

T
ms

(t) = 0, t ∈ Z∗. (2.19)
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Motivated by (2.19), an encoder is derived for the LDPC-CC. Here we use an example

to show how the encoder works.

Example 2.5.1. Consider the rate R = 1/3 (3, 2, 3) Tanner LDPC-CC given in (2.16).

Its polynomial syndrome former matrix HT (D) can be written according to

HT (D) =

 1 D3

D D2

D3 1

 =

1 0

0 0

0 1

+D

0 0

1 0

0 0

+D2

0 0

0 1

0 0

+D3

0 1

0 0

1 0

 . (2.20)

Let vt = (v1t , v
2
t , v

3
t ) represent the three bits of a codeword at time unit t in a code

sequence. According to (2.2) and (2.19), it follows that

vt

1 0

0 0

0 1

+ vt−1

0 0

1 0

0 0

+ vt−2

0 0

0 1

0 0

+ vt−3

0 1

0 0

1 0

 = 03×2. (2.21)

Now, if we let v
(2)
t correspond to an information bit ut then the corresponding parity-

check can be determined by solving (2.21), i.e.,v
(1)
t = v

(2)
t−1 + v

(3)
t−3

v
(3)
t = v

(2)
t−2 + v

(1)
t−3

Based on above equations, the encoding system can be easily implemented as shown

Fig. 2.7. The system continuously encodes information bits into codewords by exploit-

ing the relationship between the input information bit and the bits of codewords in

different time slots. ■

2.6 Decoding of LDPC-CCs

LDPC codes are iteratively decoded based on the maximum a posteriori probability

(MAP) algorithm. LDPC-BCs have a finite topology in the Tanner graphs. The itera-

tive decoding algorithm runs over the graph until a codeword is found or the maximum

number of iteration is reached. However, due to the infinite topology of the Tanner

graphs of LDPC-CCs, the decoding algorithm used for LDPC-BCs cannot be directly

applied to LDPC-CCs. Instead, a so-called pipeline decoding algorithm is derived based

on the traditional sum-product algorithm (SPA). Before discussing the decoding algo-

rithm for LDPC-CCs, we review the decoding method for LDPC-BCs.
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2.6.1 Sum-product algorithm for LDPC-BCs

LDPC-BCs are usually decoded by the so-called sum-product algorithm (SPA), which

is an iterative belief-propagation, or message-passing algorithm, over the Tanner graph

(factor graph) of the code. The SPA is a soft decision algorithm that iteratively com-

putes the probability of a transmitted bit, given the received bit value.

As an input of the decoder, the input bit probability is called a prior probability

because it is known in advance before running the LDPC decoder. The bit probabilities

returned by the decoder are called a posteriori probabilities. In the case of the SPA

these probabilities are expressed as Log-likelihood ratios (LLRs) to greatly reduce the

complexity of the algorithm and make the decoding algorithm numerical stable. In the

Tanner graph representation, these LLRs are called messages that propagate between

variable nodes and check nodes.

For a binary variable x it is easy to find p(x = 1) given p(x = 0), since p(x = 1) =

1 − p(x = 0) and so we only need to store one probability value for x. LLRs are used

to represent both probabilities for a binary variable by a single value:

L(x) = log
p(x = 0)

p(x = 1)
, (2.22)

where we use the natural logarithm loge. If p(x = 0) > p(x = 1) then L(x) is positive

and the greater the difference between p(x = 0) and p(x = 1), i.e., the more sure we are

that x = 0, and the larger the positive value for L(x). Conversely, if p(x = 1) > p(x = 0)

then L(x) is negative and the greater the difference between P (x = 0) and p(x = 1)

the larger the negative value for L(x) [12]. Thus the sign of L(x) provides the hard

decision on x and the magnitude |L(x)| represents the reliability of this decision.

The aim of SPA decoding is to compute the maximum a posteriori probability for

each codeword bit, Pi = P (xi|N), which is the probability that the i-th codeword bit

(corresponds to the variable node vi of a codeword) is a 1 conditional on the event N

that all parity-check constraints are satisfied. The information about bit xi (variable

node vi) received from the parity-checks (neighboring check nodes) is called extrinsic

information for xi.

Regarding the scheduling of decoding LDPC-BCs, it mainly includes the flooding

algorithm, layer decoding [17,18], informed dynamic decoding [19–21]. Now we discuss

the most traditional one, the flooding algorithm, in detail. It consists of two consecutive

steps, i.e., (1) updating all the variable nodes and (2) updating all the check nodes in the

Tanner graph. This two-step updating process is iteratively applied until the maximum
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cj

viCj\i

L(rji)L(qi′j)

Figure 2.8: Update the message passing from the check node cj to the variable node
vi.

number of iterations is reached or a codeword has been found, i.e., all the parity-check

constraints are satisfied.

Assume the received channel value is yi given xi is transmitted over binary input

additive white Gaussian noise (BI-AWGN) channel.1 At the beginning of the flooding

algorithm, the a priori LLR is assigned to the variable node vi according to

L(xi|yi) = 4yi
Es

N0
= 4yi

EbR

N0
, (2.23)

where Es
N0

is the signal-to-noise ratio (SNR) of the energy per symbol, Eb
N0

is the SNR of

the energy per information bit, and R is the code rate. Then, a message passing from

the variable node vi to its neighboring check node cj denoted by L(qij), where j ∈ Vi

and Vi is the subscript index set of all the check nodes connecting to variable node vi,

is initialized by L(xi|yi).
After initialization, we repeat the following three-step updating process:

1. update each check node, i.e., updating each message passing from a check node

to a variable node by using

L(rji) = 2 tanh−1(
∏

i′∈Cj\i

tanh (
1

2
L(qi′j))), (2.24)

where L(rji) represents the message passing from check node cj to variable vi,

L(qi′j) represents the message passing from variable node vi′ to check node cj , and

Cj\i is, except for the variable node vi, the index set of variable nodes connecting

to the check node cj . The Tanner graph representation of updating a check node

is given in Fig. 2.8;

1Note that xi is the value of the symbol, corresponding to the variable node vi in the Tanner graph,
after mapping in the modulator of the transmitter in Fig. 1.1 while yi indicates the corrupted value of
xi by channel noise or interference.
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Figure 2.9: Update the message passing from the variable node vi to the check node
cj .

L(xi|yi)

vi

Vi

L(rji)

Figure 2.10: Take a decision for the variable node vi.

2. Update each variable node, i.e., updating each message passing from a variable

node to a check node by using

L(qij) = L(xi|yi) +
∑

j′∈Vi\j

L(rj′i). (2.25)

Similar explanations for the notations in (2.25) can be obtained by referring to

those for (2.24). Fig. 2.9 illustrates the Tanner graph representation of updating

a variable node. Note that when updating a variable node, the initialization

message L(xi|yi) is also involved. Steps (1) and (2) form one iteration of the

decoding process;

3. At the end of each iteration, we take a decision for each variable node vi by using

the sign of the total LLR value

L(Qi) = L(xi|yi) +
∑
j∈Vi

L(rji). (2.26)

It is illustrated in Fig. 2.10. Since we made the assumption of BPSK modulation,

if the sign of L(Qi) is negative, we decode the transmitted bit xi associated with
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vi as a “1”; if the sign of L(Qi) is positive, the transmitted bit xi is decoded as

a “0”. The details of flooding algorithm is described in Algorithm 1.1

Algorithm 1 The flooding Algorithm

• Initialization: Set the maximum number of decoding iterations I and assign the
priori probability to each variable node in the Tanner graph with respect to (2.23).

• Step 1: Update all the check nodes by passing all the messages from check nodes
to corresponding variable nodes using (2.25).

• Step 2: Update all the variable nodes by passing all the messages from variable
nodes to corresponding check nodes using (2.24).

• Step 3: According to (2.26), take the hard decision for each bit (variable node) in
the sequence v. If v ·HT = 0 or the maximum number of iterations is reached,
go to Step 4; else, go to Step 2.

• Step 4: Output the sequence v as the decoded codeword.

2.6.2 Decoding of LDPC-CCs

The syndrome former matrix HT (see (2.2)) of an LDPC-CC is semi-infinite. This

means in the Tanner graph there is an infinite number of variable nodes and check

nodes. As a result, the flooding decoding algorithm cannot be directly applied to the

Tanner graph. In 1999, Felström and Zigangirov [1] introduced the pipeline decoder for

LDPC-CCs also called the sliding window decoder. The decoding process looks like a

window of finite size sliding along the diagonal of the syndrome former matrix.

Given an LDPC-CC defined by (2.2) of rate R = b/c, the corresponding sliding

window is of size c(ms+1)I×p(2ms+1)I, where p = c− b, ms is the syndrome former

memory of the code and I is the number of iterations used in the decoder. The sliding

window decoder consist of I processors, each one corresponds to one iteration of the

decoding process. During the window sliding over the matrix, the I processors work

in parallel and each variable node (or check node) sequentially passes through the I

processors. It results in all the messages are updated by I times as each variable node

(or check node) is updated by I times. The decoding complexity is dominated by the

size of the sliding window. In other words, the decoding complexity is proportional to

the value of the syndrome former memory ms and the number of iterations I.

1Note that, in Algorithm 1 Step 1 and Step 2 can be switched.
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Figure 2.11: Sliding window decoder for the (3, 2, 3) Tanner LDPC-CCs.

�
�

�



�
�

�
�Given the LDPC-CC of rate R = b/c, this matrix is defined by (2.3)

and is of size c× p, where p = c− b.

R

�

The sliding window decoder follows the first-in first-out (FIFO) rule. At every time

unit, there are c received bits entering the decoder at the bottom right corner of the

window, in the meanwhile, there are c decoded bits leaving the decoder from the top left

corner of the window. Note that, only the first and last c rows in the sliding window are

involved in the output (decoded) and input (received) bits. After each time unit, the

sliding window moves downwards along the diagonal of the matrix HT . Specifically,

it moves to the right and to the bottom of the syndrome former matrix by p and c

symbols positions1, respectively.

Example 2.6.1. To illustrate the sliding window decoder of LDPC-CCs, we use the

(3, 2, 3) rate R = b/c = 1/3 Tanner LDPC-CC whose time-domain syndrome former

matrix is given in Fig. 2.4 as an example. The syndrome former memory of this code

is ms = 3. Assuming that the number of iterations is set to be I, the structure of the

sliding window decoder overlapping the syndrome former matrix HT is presented in

Fig. 2.11. It is observed that the window contains I processors, each one is a matrix of

size c(ms + 1)× p(2ms + 1) = 12× 14 and represents one decoding iteration. At each

1Here one symbol means one entry “1” or “0” in the syndrome former matrix HT .
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Figure 2.12: Initialization of the sliding window decoder.

time unit, the sliding window decoder processes the following three updating steps:

• Initialize the sliding window decoder.

As shown in Fig. 2.12, in this case, at each time unit there are 3 received bits

at the bottom right corner of the window. The corresponding submatrix in the

window involved in the initialization step is highlighted in red in Fig. 2.12. The

computation of the initialization of variable nodes is given in (2.23). Fig. 2.12

also shows the corresponding Tanner graph representation of the messages passing

above the highlighted submatrix.

• Update the corresponding messages from variable nodes to check nodes, i.e., up-

date the corresponding variable nodes.

In Fig. 2.13, those columns in the sliding window involved in this step are high-

lighted in blue. Specifically, any column in the sliding window whose column

index i satisfies i ∈ [msq+1+ j(ms +1)q, (ms +1)q+ j(ms +1)q], where i ∈ Z+

and j = 0, 1, 2, . . . , I − 1, participates in updating the messages from variable

nodes to check nodes. In other words, the centering p columns in each processor
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Figure 2.13: Partially update the variable nodes.

update messages with respect to (2.25). It is also shown in Fig. 2.13 the message

propagation from the Tanner graph point of view.

• Update the corresponding messages from check nodes to variable nodes, i.e., up-

date the corresponding check nodes, and output c decoded bits at the top left corner

of the sliding window.

This step contains two different types of message updating: (i) In the processors

numbered from 1 to I − 1, update messages from check nodes to variable nodes

using (2.24). It refers to those rows in the sliding window with row index k lies in

the range k ∈ [c(ms+1)+1+j(ms+1)c, c(ms+1)+c+j(ms+1)c], where k ∈ Z+

and j = 1, 2, . . . , I − 1. It is colored in green in the sliding window in Fig. 2.14.

(ii) However, in the Processor I, according to (2.26), take hard decisions for every

c = 3 decoded bits as the output of the sliding window. It is colored in purple as

shown in Fig. 2.14.

After the three-step updating, i.e., after one time unit, the sliding window moves

to the right and to the bottom by p = 2 and c = 3 symbols, respectively. In the next

time unit, another c received bit enter the sliding window at the bottom right corner
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Figure 2.14: Partially update the check nodes and make decisions for the decoded bits.

of the window as input bits. Then it repeats the above three-step updating process.

Considering the period starting with a bit (variable node) entering the window and

ending with the bit leaving it, the bit (variable node) is totally updated by I times. ■

Note that, before the sliding window output decoded bits, there is a delay of I(ms+

1) time units for the very beginning input bits to pass through the entire sliding window.

After such delay, the sliding window decoder continuously produce c output bits at each

time unit. Compared to LDPC-BC decoding, it significantly reduces the time of waiting

for receiving the entire block length for every codeword.
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Chapter 3

Cycle analysis of LDPC-CCs

The sum-product algorithm (SPA), also known as belief propagation, can be viewed

as applying Bayes’ rule locally and iteratively on the Tanner graph of LDPC codes to

calculate approximate marginal a posteriori probabilities for these codes. If the Tanner

graph has no cycles, then it can be proved that the SPA computes marginal posterior

probabilities exactly. However, LDPC codes of interest contain cycles in the Tanner

graphs and short cycles degrade decoding performance because a message sent by a node

along a cycle propagates back to the original node after a small number of iterations,

which destroys the assumption of dependence among messages of SPA. Specifically,

short cycles prevent the SPA from converging, in addition, short cycles forming so-

called trapping sets results in an error floor in the decoding performance. Intuitively, the

larger the girth (length of the shortest cycle), the better the decoding performance will

be. However, due to the finite block length and the practically motivated requirement

for structured codes, for example, regular or partial regular quasi-cyclic (QC) LDPC

codes, there are many cycles not avoidable.

In order to improve decoding performance, there have been lots of efforts to con-

struct LDPC codes with large girth. Fossorier [22] discussed the cycle formations in

QC LDPC-BCs that are made up of a set of circulant permutation matrices. Large

girth QC LDPC codes were presented in [22–25] from an algebraic-structure point-of-

view. Some optimization and greedy search algorithms were used in [26,27] to find QC

LDPC-BCs with large girth. Recently, Esmaeili et al. [28] introduced four classes of

maximum-girth geometrically structured column-weight-two regular QC LDPC-BCs.

Other work on the constructions of QC LDPC-BCs with girth at least six can be found

in [29, 30]. A cycle counting algorithm was introduced in [31] to count short cycles in

protograph based QC LDPC-BCs. Based on the message passing in the Tanner graphs
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of QC protograph-based LDPC codes, an efficient method for counting short cycles was

presented in [32].

Low-density parity-check convolutional codes (LDPC-CCs) were first proposed in [1]

and some construction are based on QC LDPC-BCs. Using pipeline decoding [2], it has

been shown that they are suitable for practical implementation with continuous trans-

mission as well as, via encoder termination, block transmission in frames of arbitrary

size [3] without an increase in computational complexity compared to their block code

counterparts. In this chapter we analyze the cycle formation in LDPC-CCs so as to

design good LDPC-CCs containing no short cycles.

The work of this chapter were published in [14,33–35].

3.1 Cycles in time-invariant LDPC-CCs

A cycle in an LDPC-CC consists of a set of edges and vertices. Vertices refer to

the entries “1” in the time-domain syndrome former matrix HT or monomials1 in the

polynomial-domain syndrome former matrix HT (D) that are connected by vertical and

horizontal edges. Correspondingly, in the Tanner graph, vertices refer to variable nodes

and check nodes, and they are alternatively connected by edges. If we define the “delay”

as the difference t− t′ between the subscripts of two variable nodes v
(j)
t and v

(j′)
t′ , then

• a horizontal edge in HT corresponds to a connection between two monomials in

the same row of HT (D): such a connection links two check nodes via a variable

node in the Tanner graph representation, there is no “delay” incurred as there is

only one variable node;

• a vertical edge in HT corresponds to a connection between two monomials in the

same column of HT (D): such a connection links two variable nodes via a check

node, the “delay” incurred equals the difference between the “powers” of the two

connected monomials.

Alternatively, if we considers the “delay” with respect to check nodes, we can also

define that a horizontal connection results in a “delay” equals the difference between

the “powers” of the two connected monomials, while a vertical connection results in

no “delay”. Note that when a path forms a cycle, either the accumulated “delays”

between variable nodes or between check nodes is zero. To simplify the description, we

only need to consider one of them. Here we work on the formation of cycles based on

the former one.
1A monomial is essentially denoted as Dl with the integer l ≥ 0.
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Due to the semi-infinite size of the time-domain matrix HT of LDPC-CCs and the

repeated identical structure of cycles, it is difficult to analyze the edge connections

in the cycles. Instead, we use the polynomial-domain matrix HT (D) of finite size to

form the cycles. The formal definition of the delay denoted by ∆(spij , s
q
kl) between two

monomials spij and sqkl in HT (D) is given by

∆(spij , s
q
kl)

.
= ∆(spij , s

q′

il ) + ∆(sq
′

il , s
q
kl), (3.1)

where i ̸= k, j ̸= l and spij indicates the p-th monomial in the polynomial entry with

row and column indices i and j in HT (D), respectively.1 Similar explanation applies

to sq
′

il and sqkl. According to (3.1), a possible move from one monomial spij to any other

monomial sqkl is decomposed into a horizontal move spij → sq
′

il with zero delay, i.e.,

∆(spij , s
q′

il )
.
= 0 (3.2)

and a vertical move sq
′

il → sqkl with the delay

∆(sq
′

il , s
q
kl)

.
= sq

′

kl − sqil . (3.3)

Note that the delay ∆(sq
′

il , s
q
kl) for the vertical move has a sign, which identifies whether

the path moves “forward” or “backward” in time when progressing along a vertical

edge. When we form a path through the polynomial syndrome former matrix, we use

the delay noted on the branches when the path has the same direction as indicated by

the “arrow”, and we invert the sign when traverse along a branch in opposite direction.

A path P – which is a sequence of pairs of monomials from the polynomial-domain

syndrome former matrix HT (D) – forms a cycle of length 2L, when∑
∀{s,s′}∈P

∆(s, s′) = 0 (3.4)

1Note throughout the dissertation monomials involved in a polynomial entry are placed in descend-
ing order. For example, in the polynomial entry D3+1, D3 and 1 are the first and second monomials,
respectively.

29



with the path given by

P =
{
{
start︷︸︸︷
sp1j1k1 , s

q1
j1k2
}︸ ︷︷ ︸

horizontal move

, {sq1j1k2 , s
p2
j2k2
}︸ ︷︷ ︸

vertical

, {sp2j2k2 , s
q2
j2k3
}︸ ︷︷ ︸

horizontal

, ....

{spL−1

jL−1kL−1
, s

qL−1

jL−1kL
}︸ ︷︷ ︸

horizontal

{sqL−1

jL−1kL
= s

qL−1

jL−1k1
,

end︷ ︸︸ ︷
spLjLkL = sp1j1k1}︸ ︷︷ ︸

vertical

}
(3.5)

where jx ∈ {1, ..., j}, ky ∈ {1, ..., k}, px ∈ Z+, qy ∈ Z+, and x ∈ {1, ..., L} and

y ∈ {1, ..., L}. It is important to note that the first and the last element in the path

have to be the same in order for P to form a cycle. This condition is, however, only

necessary but not sufficient, as in addition the sum of the delay in (3.4) must also be

zero. Moreover, the elements on the path P need not to be distinct because the same

monomials (taken from HT (D)) on the path could represent different entries of “1”

in the time-domain syndrome former matrix HT (due to different total delays on the

path). In this chapter, Dspij and spij are alternatively used to denote a monomial.1

Note that a path in HT (D) of size c × (c − b) satisfying the conditions in (3.4)

and (3.5) forms a type of cycles of length 2L: it rather represents a set of cycles in

the time-domain syndrome former matrix HT that have the same structure and are

periodically shifted by c and c − b entry (symbol) positions in the row and column of

HT , respectively. We consider this set of cycles as one type and counted only once

when computing the number of cycles in LDPC-CCs. This is shown as an example in

Figs. 3.1 and 3.2.

To simplify the description of cycles in LDPC-CCs, we use the example code defined

by (2.14) to illustrate the formation of cycles in time-invariant LDPC-CCs. Given the

polynomial syndrome former matrix

HT (D) =

 1 D3

D D2

D3 1

 , (3.6)

we obtain the time-domain syndrome former matrix and a cycle of length 12 in Fig. 3.1.

The same cycle is also depicted in the corresponding polynomial matrix HT (D) in

Fig. 3.3, where we have removed the common factor D2 from the right column. Re-

1Note that, if the polynomial entry with row and column indices i and j in HT (D) is a monomial,
it is denoted by s1ij or simply sij .
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moving such common factor leads to smaller syndrome former memory and reduces

decoding complexity. In the polynomial syndrome former matrix we can reach from a

given monomial to any other monomial by one vertical and one horizontal move with

some delay (see Fig. 3.4 for an illustration). When we form a path in HT (D), we use

the delay noted on the branches when the path has the same direction as indicated by

the “arrow” in Fig. 3.4, and we invert the sign when traverse along a branch in the

opposite direction.

.
.
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Figure 3.1: A cycle of length 12 in the time-domain syndrome former matrix HT of
the time-invariant LDPC-CC in (3.6)

The cycle of length 12 in the time-domain syndrome former matrix HT in Fig. 3.1, it

is also described by a “closed path” in the polynomial-domain syndrome former matrix

HT (D) in Fig. 3.3. We apply the delays indicated in Fig. 3.4 to the path and calculate
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.
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Figure 3.2: The periodically shifted cycle of the one in Fig. 3.1

the sum of the delays which are accumulated along the path as:

∑
∀{s,s′}∈P

∆(s, s′) =



horizontal moves︷ ︸︸ ︷
∆(s111, s

1
12) +

vertical moves︷ ︸︸ ︷
∆(s112, s

1
22) +

∆(s122, s
1
21) + ∆(s121, s

1
11) +

∆(s111, s
1
12) + ∆(s112, s

1
22) +

∆(s122, s
1
21) + ∆(s121, s

1
31) +

∆(s131, s
1
32) + ∆(s132, s

1
22) +

∆(s122, s
1
21) + ∆(s121, s

1
11)

. (3.7)

The path consists of 6 horizontal and 6 vertical moves. With respect to (3.2) and (3.3),

we have “zero” delay for all horizontal moves and certain delay for the vertical moves.
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Figure 3.4: Delays for code example derived from syndrome former matrix

As a result, we obtain

∑
∀{s,s′}∈P

∆(s, s′) =



0 + (s122 − s112) +

0 + (s111 − s121) +

0 + (s122 − s112) +

0 + (s131 − s121) +

0 + (s122 − s132) +

0 + (s111 − s121)
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If we plug in all the delays from the example in Fig. 3.4 we have

∑
∀{s,s′}∈P

∆(s, s′) =



(2− 3) +

(0− 1) +

(2− 3) +

(3− 1) +

(2− 0) +

(0− 1)


= 0, (3.8)

which confirms the condition in (3.13). Hence this cycle of length 12 does indeed exist.

In Fig. 3.2, we show the periodically shifted version of the cycle in Fig. 3.1. These

two cycles have the same description in HT (D). As we move along the diagonal of

HT , there are infinite number of such cycles. Therefore, when computing the cycle

enumerators, they are considered as one type and are just counted once.

3.2 Cycles in time-varying LDPC-CCs

In this section, we analyze the cycle structures in time-varying LDPC-CCs which have

been discussed in Section 2.4. For the simplicity of edge connections in cycles, we use

an auxiliary polynomial matrix denoted by HT
A(D) derived from HT (D) in (2.6) as

HT
A(D) =



HT
1 (D)

HT
2 (D)
...

HT
i (D)
...

HT
T (D)


, (3.9)

where HT
i (D) is the i-th polynomial sub-matrix in HT (D) of a time-varying LDPC-CC

with period T . Similar to time-invariant LDPC-CCs, two monomials with powers spij(t)

and sqij′(t) from the same row of the polynomial sub-matrix in (3.9) of a time-varying

LDPC-CC connect to each other without delay, i.e.,

∆(spij(t), s
q
ij′(t))

.
= 0 (3.10)

where spij(t) refers to the power of the monomial in the polynomial entry, which is in the

i-th row and j-th column of the t-th polynomial sub-matrix HT
t (D), while p indicates
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the p-th monomial of this polynomial entry.
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Figure 3.5: A cycle of length 12 in the time-domain syndrome former matrix of the
time-varying LDPC-CC derived by unwrapping the QC LDPC-BC in (2.14)

In time-invariant LDPC-CCs, monomials in the same column are always connected.

However, for a time-varying LDPC-CC with period T , two monomials with powers spij(t)

and sqi′j(t
′) in the same column of HT

A(D) are connected if and only if

(t− t′ + spij(t)− sqi′j(t
′)) mod T = 0, (3.11)

and the delay is given by

∆(spij(t), s
q
i′j(t

′))
.
= sqi′j(t

′)− spij(t) . (3.12)

Note that t could be equal to t′ for time-varying LDPC-CCs. This condition is also

suitable for time-invariant LDPC-CCs because for arbitrary two monomials in time-

invariant LDPC-CCs, they have t = t′ and T = 1. Thus the condition in (3.11) is

always satisfied.

A path Pv in HT (D) of a time-varying LDPC-CC – which is a sequence of pairs

of monomials from the auxiliary polynomial syndrome former matrix HT
A(D)– forms a

35



*

H   (D)

T
H   (D)

1

D +D

D +D

D +1

D +1

D +1

D +D

D +D

*

D +D

4

4

5 3

6

3

5

5

3

4

3

D +16

(a) (b)

33

=

th

T
H   (D)

7

T
H   (D)2

starting point of a cycle

n     edge in a cycle

*

*

D D

D 1

D

D

D

D

D D

*

*

*

D 1

D D

D 1

*

*

*

*

D 1

*

*

3

46

6

6

4

2

4

D + 16

D +D

3

5

D +D

D +D

D +D

D +1

D +1

D +1

D +D

D +D

*

D +D

4

4

5 3

6

3

5

5

3

4

3

D +16*

*

D D

D 1

D

D

D

D

D D

*

*

*

D 1

D D

D 1

*

*

*

T

D 1

*

*

3

46

6

6

4

2

4

D + 16

D +D

3

5

D +D

1

2

3

5

8

9

n

10

11

12

4

6

7

A

Figure 3.6: (a) A cycle of length 12 in the auxiliary polynomial-domain syndrome
former matrix of the obtained time-varying LDPC-CC in Fig. 3.5; (b) An illustration
for the connectivity between monomials in the auxiliary polynomial-domain syndrome

former matrix.

cycle of length 2× L, when ∑
∀{s,s′}∈Pv

∆(s, s′) = 0 (3.13)
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with the path given by

Pv =
{
{

start︷ ︸︸ ︷
sp1i1j1(t1), s

q1
i1j2

(t1)}︸ ︷︷ ︸
horizontal

, {sq1i1j2(t1), s
p2
i2j2

(t2)}︸ ︷︷ ︸
vertical

, ...

{spL−1

iL−1jL−1
(tL−1), s

qL−1

iL−1jL
(tL−1)}︸ ︷︷ ︸

horizontal

{sqL−1

iL−1jL=j1
(tL−1),

end︷ ︸︸ ︷
spL=p1
i1j1

(tL = t1)}︸ ︷︷ ︸
vertical

}
(3.14)

with ix ∈ {1, ..., c}, jy ∈ {1, ..., c−b}, tx ∈ {1, ..., T}, px ∈ Z+, qy ∈ Z+ and x ∈ {1, ..., L}
and y ∈ {1, ..., L}. As for time-invariant LDPC-CCs, the first and the last elements in

the path have to be the same in order for Pv to form a cycle.

To illustrate the above concept, we use a time-varying LDPC-CC derived from a

QC LDPC-BC to show the cycle structure. Apply the unwrapping process to the QC

LDPC-BC in (2.14) with k being set to one, we have one period of the time-domain

one period syndrome former matrix of a time-varying LDPC-CC and a cycle of length

12 in Fig. 3.5. Applying formulas (2.6) and (2.7) to the matrix in Fig. 3.5, we obtain

the auxiliary polynomial syndrome former matrix HT
A(D) and the corresponding 12-

cycle mapping from Fig. 3.5 to Fig. 3.6(a). The auxiliary polynomial syndrome former

matrix contains seven polynomial sub-matrices, i.e., period T = 7, and each is of size

3× 2. According to (3.13) and (3.14), the accumulated delay of the path in Fig. 3.6(a)

is given as

∑
∀{s,s′}∈Pv

∆(s, s′) =



horizontal moves︷ ︸︸ ︷
∆(s222(1), s

1
22(1)) +

vertical moves︷ ︸︸ ︷
∆(s122(1), s

1
12(7)) +

∆(s112(7), s
1
11(7)) + ∆(s111(7), s

1
21(5)) +

∆(s121(5), s
2
21(5)) + ∆(s221(5), s

2
11(6)) +

∆(s211(6), s
1
11(6)) + ∆(s111(6), s

1
21(4)) +

∆(s121(4), s
1
22(4)) + ∆(s122(4), s

1
22(7)) +

∆(s122(7), s
2
22(7)) + ∆(s222(7), s

2
22(1))

With (3.10) we have “zero” delay for all horizontal moves and we use (3.12) for the
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vertical moves. We obtain

∑
∀{s,s′}∈Pv

∆(s, s′) =



0 + (0− 6) +

0 + (3− 1) +

0 + (0− 1) +

0 + (6− 4) +

0 + (4− 0) +

0 + (0− 1)


= 0

which confirms the condition in (3.13): this 12-cycle does indeed exist (see Fig. 3.5).

3.3 An algorithm for counting cycles

In Sections 3.1 and 3.2, we have discussed how cycles are formed for time-invariant and

time-varying LDPC-CCs both in the time- and polynomial-domains. In this section,

we introduce a cycle counter algorithm to track cycles in an LDPC-CC given its poly-

nomial syndrome former matrix. Given a “starting” monomial as shown in Fig. 3.3

and Fig. 3.6(a), this algorithm extends all the possible two consecutive edges (vertical

and horizontal) with delays defined in (3.10) and (3.12); we consider these two path

extensions as “one” iteration. The connectivity of monomials in the same column of

the auxiliary polynomial syndrome former matrix is given in (3.11) for time-varying

LDPC-CCs.

Before introducing the algorithm, the notation is defined as follows:

• spij(t): the power of the p-th monomial in the polynomial entry which is in the

i-th row and the j-th column of the polynomial sub-matrix HT
t (D). We refer to

spij(t) as “a monomial” or “the power of a monomial”, alternatively.

• Nv(s
p
ij(t)): all the “neighbors” vertically connected to the monomial spij(t) in

HT (D), a “neighbors” means they are connected according to (3.11).

• Nh(s
p
ij(t)): all the “neighbors” horizontally connected to the monomial spij(t) in

HT (D).

• Nt{i, j}{1, p}: current accumulated delays (accumulated powers’ sum (APS))

along all the paths temporarily intermittent at the monomial spij(t) [14].

• W(Nt{i, j}{1, q}): number of paths temporarily intermittent at the monomial

sqij(t).
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• S: the set of starting monomials; for each iteration, after extending all the possible

two consecutive paths (vertical and horizontal) from the starting monomials, the

set of starting monomials is redefined as those monomials that all the paths

temporarily end with in this iteration. In the following, we give an example to

show the updating of starting monomials.

The main challenge of this cycle counter algorithm lies in generating a register,

which informs a monomial of its connected neighboring monomials with respect to

(3.11). Each iteration consists of two-step updates. Firstly, update the set of starting

monomials by vertically extending the paths to all their connectible neighboring mono-

mials. Afterwards, update the monomials that currently all the paths are intermittent

at by extending paths horizontally. At the end of each iteration, the path extension

history is cleared for this iteration and then the set of starting monomials is redefined

as those monomials that all the horizontally extended paths currently end with. The

process runs iteratively until the maximum testing cycle length is achieved; full details

can be found in Algorithm 2.

As an example shown in Fig. 3.6(b), we select s131(4)=D as the starting monomial

in the first iteration, i.e., S=s131(4). By checking (3.11), s131(4) has two available neigh-

boring monomials. First of all, the cycle counter algorithm updates monomial s131(4)

by extending the two vertical available connections to s111(2) and s131(7), respectively.

Then it updates monomials s111(2) and s131(7) by extending paths to s112(2) and s231(7).

Before starting the next iteration, the set of starting monomials is renewed as the mono-

mials all the paths end with, i.e., S={s112(2), s231(7)}, and the previous search history

is cleared.

In the first iteration of Step 2 in Algorithm 2, we test every monomial in HT (D) as

a starting monomial, which results in repetitious tracking of a cycle. In addition, short

cycles with length i in LDPC-CCs usually have i distinct vertices in the time-domain

syndrome former matrix. Therefore, Ci/i in Step 3 gives the exact number of short

cycles. However, for larger i it is possible that a cycle of length i consists of less than

i distinct vertices when a cycle contains smaller inner cycles. This explains the ceil

manipulation ⌈⌉ in Step 3 of the algorithm.

We applied the cycle counter algorithm to some time-invariant LDPC-CCs derived

from the corresponding (J=3,K=5) QC LDPC-BCs and time-varying LDPC-CCs de-

rived from unwrapping (J=3,K=5) QC LDPC-BCs in [5] with unwrapping step size

(c− b)× c. The cycle enumerators of these time-invariant and time-varying LDPC-CCs

are shown in Table 3.1 with the number of cycles for time-varying LDPC-CCs normal-

ized by period T (details are given in [14, 33]), which makes sense to compare cycle
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Algorithm 2 Cycle counter algorithm for time-varying LDPC-CCs

• Step 1: Initialization

1. Define the maximum cycle length as 2×L for examining and the initial path
length as l = 0.

2. Generate a KT ×J empty cell N{} used to update the accumulative powers’
sum (APS) and create a cycle counter Ci recording number of cycles with
different lengths i, i = 4, 6, 8, ..., 2× L.

3. Generate a monomials’ “connectivity cell”, which is used as a reference for
Nv(s

p
ij(t)) to indicate the indices of neighbors of spij(t) in the polynomial

syndrome former.

• Step 2: Main function.

1: for each monomial sq
∗

i∗j∗(t
∗) in HT (D) do

2: S=sq
∗

i∗j∗(t
∗);Nt∗{i∗, j∗}{1, q∗}=0;

3: while l < L do
4: for each sqij(t) ∈ S do
5: %vertical path extensions
6: for each spi′j(t

′) ∈ Nv(s
q
ij(t)) do

7: if Nt{i, j}{1, q}=∅ then
8: Nt{i, j}{1, q}=0;
9: end if

10: k=W(Nt{i, j}{1, q});
11: T1=spi′j(t

′)-sqij(t)+Nt{i, j}{1, q}(1:k);
12: Nt′{i′, j}{1, p}=[Nt′{i′, j}{1, p}|T1];
13: %horizontal path extensions
14: for each sri′j′(t

′) ∈ Nh(s
p
i′j(t

′)) do
15: if i′ ̸= j′|r ̸= p then
16: T2=Nt′{i′, j}{1, p}(end-k+1:end);
17: Nt′{i′, j′}{1, r}=[Nt′{i′, j′}{1, r}|T2];
18: S=S ∪ sri′j′(t

′);
19: end if
20: end for
21: %clear history of horizontal path extensions
22: Nt′{i′, j}{1, p}(end-k+1:end)=[];
23: end for
24: S=S ∩ sqij(t); %renew starting monomials
25: %clear history of vertical path extensions
26: Nt{i, j}{1, q}(1:k)=[];
27: end for
28: S=unique(S); %remove repetitive monomials
29: Calculate zeros in Nt∗{i∗, j∗}{1, q∗};
30: l=l+2; Cl=Cl+n;
31: end while
32: end for

• Step 3: Process cycle counter Ci.
The number of cycles with length-i in this syndrome former is defined as ⌈Ci/i⌉.
Ci is the number of cycles for length-i.
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Table 3.1: Cycle enumerators of LDPC-CCs

time-invariant time-variant

m/ms 8-cycle 10-cycle 12-cycle

31/21 11 4.55 62 42.39 351 228.77

61/57 0 0 21 15.07 148 118.06

181/134 0 0 0 0 67 46.35

211/187 0 0 0 0 68 54.57

241/204 0 0 0 0 52 44.83

Note that, common factors have been removed from the polynomial-domain syndrome
former matrices for time-invariant LDPC-CCs. Ci is normalized for time-varying
LDPC-CCs, i.e., Ci/T , where T=m, due to unwrapping size k=1.

properties with those of time-invariant LDPC-CCs.

In Table 3.1, ms is the syndrome former memory of the code, m is the size of

circulant matrix indicating which QC LDPC-BC the corresponding LDPC-CC is de-

rived from (see [5]), and n-cycles represent cycles of length n. Columns in dark gray

and light gray correspond to the cycle enumerators of time-varying and time-invariant

LDPC-CCs, respectively.

Generally speaking (and as expected), time-varying LDPC-CCs are superior to

time-invariant ones with respect to the small number of short cycles.

3.4 Unavoidable cycles in time-invariant LDPC-CCs

Recalling the description in Section 3.1, it seems that cycles can be eliminated by

choosing suitable power index for each monomial entry in HT (D) that cannot enable

any path to satisfy the condition in (3.4). However, we find that there are some

unavoidable cycles, no matter what the “powers” of the monomials in the polynomial-

domain syndrome former matrix are. To better understand the existence of these cycles,

we illustrate the unavoidable cycles with lengths ranging from 6 to 20 from a geometric

perspective.

3.4.1 Unavoidable cycles of length 6, 8, 10, and 12

Time-invariant LDPC-CCs derived from corresponding QC LDPC-BCs in Chapter 2

only consist of monomial entries (i.e., their weight is one) in the polynomial syndrome

former matrix HT (D). In this section, cycle properties are discussed for LDPC-CCs

with entry weight larger than one in HT (D). In [15], two girth theorems have been
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arithmetically proved for the case that the weight of any polynomial entry is larger

than one. Rather than from arithmetical point of view, we analyze the geometrical

structure of short unavoidable cycles in the polynomial syndrome former matrix.

Property 1. If the weight of any polynomial entry in the polynomial-domain syndrome

former matrix is larger than two then the girth of the corresponding LDPC-CC has at

most girth 6.
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Figure 3.7: Unavoidable cycles of length 6 in HT (D) with an entry of weight three

An unavoidable cycle of length 6 is shown in Fig. 3.7: the small circles arranged

in the 3× 3 block represent the polynomial entry Ds111 +Ds211 +Ds311 . In other words,

the polynomial entry in the first row and the first column of HT (D) consists of three

monomials. Considering the property that monomials in the same row or column

connect to each other with delays (3.2) or (3.3), it can be applied to this weight-three

polynomial entry as well. For the convenience of the graphical representation of the

connections, Ds111 + Ds211 + Ds311 is arranged in the form of a “matrix” of size 3 × 3.

Filled circles are the vertices involved in a cycle. After summing up all the delays along

the path, delays involved in the path are cancelled by “themselves”, and according to

(3.4), we hence have a cycle. Fig. 3.7, therefore, shows that such cycles of length 6

always exist in the polynomial syndrome former matrix with any polynomial entry of

weight of three.

Property 2. If the weight of any two polynomial entries in the same column or row of

the polynomial-domain syndrome former matrix is of weight two, then the correspond-

ing LDPC-CC has at most girth 8.
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Figure 3.9: Unavoidable cycles of length 8 in HT (D) with two polynomial entries of
weight two in the same column

Similar as above, we show in Fig. 3.8 and Fig. 3.9 that, if we accumulate the delays

along the path, the result is zero and we obtain unavoidable cycles of length 8. Note

that this property is only valid when these two polynomial entries are placed in the

same row or column. Moreover, a unique weight-two polynomial entry in HT (D) causes

unavoidable cycles of length 10 as shown in Fig. 3.10; the formal statement is as follow.

Property 3. If there exists one submatrix of size 2 × 2 in HT (D) containing one

polynomial entry of weight two while others are of weight one, then the corresponding

LDPC-CC has at most girth 10.

Property 4. If there exists one submatrix of size 3× 2 or 2× 3 in HT (D) containing

only monomial entries and no empty entries in the submatrix, then the corresponding

LDPC-CC has at most girth 12.
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weight two

Similar to the cycle of length 12 in Fig. 3.3, in Figs. 3.11 and 3.12 we demonstrate by

simple graphical means that any LDPC-CC that can be described by a time-invariant

polynomial-domain syndrome former matrix has to have cycles of length 12, if the

underlying QC code has J ≥ 2 and K ≥ 3. We use 3× 2 (in Fig. 3.11) and 2× 3 (in

0

0

0

0

0

0

s31

s22

s32

s21

s11 s12

s21−s11

s22−s12

s31−s21

s32−s22

s11−s31

s12−s32

Figure 3.11: Unavoidable Cycles of length 12 in the polynomial-domain syndrome
former matrix (i)

Fig. 3.12) submatrices of HT (D) to demonstrate how cycles of length 12 are formed.

Those cycles appear, regardless of the “powers” of the monomials in the matrix: it is

a structural property, common to all time-invariant LDPC-CCs based on a QC block

code construction by circulant matrices.

In Fig. 3.11 we only need to form the sum of the delays along the path starting

at element s11: no matter which values the elements sij have, the path delay sum is
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Figure 3.12: Unavoidable Cycles of length 12 in the polynomial-domain syndrome
former matrix (ii)

always zero, i.e.,

∑
∀{s,s′}∈P′

∆(s, s′) =



0 + (s22 − s12) +

0 + (s31 − s21) +

0 + (s12 − s32) +

0 + (s21 − s11) +

0 + (s32 − s22) +

0 + (s11 − s31)


= 0, (3.15)

therefore, we have a cycle. The same applies to the second case depicted in Fig. 3.12.

The situation is even simpler than in the first case, as all vertical branches (which incur

a delay) are traversed twice and in opposite directions: therefore, the sum of the delays

is again zero.

In Fig. 3.13 we show a full list of all such submatrices for a (3, 5) LDPC-CC. From

Fig. 3.13 we conclude that a lower bound for the number of structurally different non-

repetitive cycles of length 12 of an (ms, J,K)-regular LDPC-CC with J ≥ 2, K ≥ 3,

and only monomial entries in HT (D) can be computed analytically according to

N12-Cycles ≥
(
J

2

)
·
(
K

3

)
+

(
J

3

)
·
(
K

2

)
, (3.16)

where Nn−Cycles is the number of non-repetitive cycles of length n. For a (3, 5) LDPC-

CC we obtain N12-Cycles ≥
(
3
2

)
·
(
5
3

)
+
(
3
3

)
·
(
5
2

)
= 40 which is confirmed by the full list in

Fig. 3.13. It should be noted, however, that depending on the choice of the monomials

in the polynomial syndrome former matrix the number of cycles of length 12 may be

much larger than the lower bound. In Table 3.2 [33], it shows the cycle calculations
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Figure 3.13: Filled circles correspond to submatrices in Figs. 3.11 and 3.12 forming
unavoidable cycles of length 12 in HT (D) of a (ms, 3, 5) time-invariant Tanner

LDPC-CC

of a couple of code examples. The (2005, 3, 5)-code with m/ms = 2311/2005 is a

particularly interesting example: this code fulfills the lower bound (3.16) and it does

not have any cycles of length 4, 6, 8, and 10. Therefore this time-invariant LDPC-CC is

“perfect” with respect to its cycle properties and cannot be improved. This, however,

does not make a statement about the minimum free distance or distance spectrum of

this code.

3.4.2 Unavoidable cycles of length larger than 12

Above we have discussed unavoidable cycles with length up to 12 for time-invariant

LDPC-CCs with nonempty entries in the polynomial syndrome former matrix. To

achieve a girth larger than 12, empty entries are required to break shorter cycles in the

polynomial syndrome former matrix. Similar to the unavoidable cycles of length 12 in

Fig. 3.11, we illustrate by Figs. A.1 – A.12 in Appendix A that some structures lead to

unavoidable cycles with lengths 14, 16, 18, and 20. A circle in these figures refers to a

nonempty monomial entry. We take Fig. A.3 as an example: it is a submatrix of size

3× 3 with two empty entries for the positions S12 and S33. We sum up all the delays

along the path in each figure: it satisfies the condition in (3.4) regardless of the values

of the monomials.

In terms of the structure of unavoidable cycles in the polynomial syndrome former

matrix, we conclude the following property for time-invariant LDPC-CCs (see also

[25,34–36]).
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Property 5. In the polynomial-domain syndrome former matrix HT (D) of a time-

invariant LDPC-CC, if there exists a polynomial submatrix whose weight matrixBi (see

2.5) belongs to one (including permuted or transposed versions) of following categories:

B6 =
[
3
]

B8 =
[
2 2

]
B10 =

[
2 1

1 1

]

B12 =

1 1

1 1

1 1

 ,

2 0

1 1

1 1

 ,

[
2 1

0 2

]

B14 =

1 0 1

1 1 1

1 1 0

 ,

2 1 0

1 0 1

0 1 1



B16 =


1 1 0

1 1 0

1 0 1

0 1 1

 ,


1 0 1

1 0 1

1 1 0

1 1 0



B18 =


1 0 0 1

1 1 0 1

1 0 1 0

0 1 1 0

 ,


1 1 1 0

1 0 0 1

0 1 0 1

0 0 1 1



B20 =


1 0 0 1

0 1 0 1

1 0 1 0

0 1 1 0

1 1 0 0

 ,


1 1 0 0

0 0 1 1

1 0 0 1

1 1 0 0

1 0 1 0

 ,


1 1 0 0

1 1 0 0

1 0 1 0

0 1 0 1

0 0 1 1

 ,


1 1 1 0

1 0 0 1

1 0 0 1

0 1 1 0



(3.17)

then the girth of the corresponding LDPC-CC is upper bounded by i, i.e., g ≤ i.

This property offers an overview of the girth bounds for time-invariant LDPC-

CCs. For the polynomial syndrome former matrix with low entry density we expect

the code, at least to some extent, to have large girth. However, low entry density in

HT (D) results in low column and row weights in the time-domain syndrome former

matrix, which reduces the minimum free distance of LDPC-CCs. Therefore, there is
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an tradeoff between girth and free distance. Minimum free distance is defined as the

minimum Hamming distance between any two codewords, and found by experiences

it is often related to the error floor of decoding performance while girth properties

dominate the waterfall region.

3.5 Design time-invariant LDPC-CCs with large girth

3.5.1 The design algorithm

Based on the structural properties of unavoidable cycles (see Section 3.4), we propose

an algorithm to design polynomial-domain syndrome former matrices of time-invariant

LDPC-CCs with a given (desired) girth. Given the desired girth g, before applying

the algorithm we need to find a weight matrix Bg resulting in no unavoidable cycles

of length smaller than g. Then choose suitable monomials in the corresponding matrix

HT (D) using the flow chart algorithm described in Fig. 3.14. It contains two steps:

• sequentially test each monomial entry in the polynomial syndrome former matrix

by means of the cycle counter algorithm in Algorithm 2 until the girth of this

code is larger than or equal to the given girth;

• keep the girth constant and try to reduce the value of the syndrome former

memory ms as well as the number of shortest cycles.

The main principle of the algorithm is based on the idea that if each monomial in

the polynomial syndrome former matrix HT (D) is not involved in a cycle of length l,

then the associated LDPC-CC is free of l-cycles. Given the desired girth g, syndrome

former memory ms, and considering the girth properties in the weight matrices of

Property 5, we generate a polynomial syndrome former matrix whose structure contains

no unavoidable cycles smaller than the selected girth g. Afterwards, we apply the above

two steps to place suitable entries in HT (D).

In the first step, each monomial is sequentially tested by assigning a power index

smaller than ms to it, until no cycles smaller than the girth g passing through this

monomial exist. If no power indices smaller than the syndrome former memory ms are

available, ms is increased until a suitable power index has been found.

In the second step, given the obtained matrix HT (D) from the first step, we se-

quentially test each monomial again to check whether there is a monomial power index

(smaller than the current ms) that results in a reduction of the number (indicated by

Ng in Fig. 3.14) of cycles with length g. This process is repeated until the maximum
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achieve the maximum number all monomials have
been tested in H (D)

Final H (D)

randomly assign a value that is 
sequentially test each monomial:

ms

syndrome former memory:
and maximum iterations: ite_max
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Figure 3.14: Algorithm for code design

number of iterations is reached. One iteration is defined as the procedure of testing all

the monomials in HT (D) once as shown in Step II in Fig. 3.14. After each iteration,

the syndrome former memory ms is updated according to the definition in Section 2.2

and the number of cycles of length g is calculated by using Algorithm 2.

3.5.2 Simulation results

In Section 3.4 we have shown that the maximum achievable girth of a (ms, 3, 5) time-

invariant Tanner LDPC-CC without empty entries in HT (D) is twelve and that the

minimum amount of 12-cycles is
(
3
2

)
·
(
5
3

)
+
(
3
3

)
·
(
5
2

)
= 40. In Table 3.2, the (2005, 3, 5)-

code with m/ms = 2311/2005 confirms these properties. However, large syndrome

former memory ms causes high decoding complexity. To save on that, we apply the

algorithm in Fig. 3.14 to produce a 5 × 3 polynomial matrix for the (ms, 3, 5) LDPC-

CC with only monomial entries and no empty entries. Since there are submatrices of

size 3 × 2 and 2 × 3, the maximum achievable girth of this codes is twelve. Rather

than ms = 2005, we obtain by applying our algorithm the polynomial syndrome former
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matrix

HT (D) =


D166 D12 D27

D181 D95 1

D19 1 D185

1 D154 D117

D58 D138 D170

 (3.18)

for a (185, 3, 5) LDPC-CC with much smaller syndrome former memory ms=185. Yet,

the code maintains good cycle properties, i.e., it has girth 12 and 40 (smallest possible

number) 12-cycles as shown in Table 3.2 in the bottom row.
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Figure 3.15: Decoding performance of some (ms, 3, 5) time-invariant LDPC-CCs of
rate R = 2/5 with the syndrome former memory ms and the size m of the circulant

matrix indicating which QC codes the LDPC-CC is derived from (see [5])

Fig. 3.15 presents the decoding performance of the set of (ms, 3, 5) time-invariant

LDPC-CCs: the dashed curves correspond to those LDPC-CCs derived from corre-

sponding QC LDPC-BCs [5] and the solid curve describes the performance of the

proposed code in (3.18). Each of the codes has a polynomial syndrome former matrix

of size 5×3 with no empty entries and each entry being of weight one. The polynomial

syndrome former matrices of these (ms, 3, 5) codes with syndrome former memories

21, 57, 126, 134 and 204 are defined by H
T
1 (D), H

T
2 (D), H

T
3 (D), H

T
4 (D) and H

T
5 (D),
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Table 3.2: Cycle enumerators of some (3,5) time-invariant LDPC-CCs of rate R = 2/5
with the syndrome former memory ms and the size m of the circulant matrix

indicating which QC codes the LDPC-CC is derived from (see [5])

m/ms girth 8-cycles 10-cycles 12-cycles

31/21 8 11 62 351
61/57 10 0 21 148
151/126 10 0 3 55
181/134 12 0 0 67
241/204 12 0 0 52

2311/2005 12 0 0 40

-/185 12 0 0 40

Note: common factors have been removed from HT (D).

respectively. They are given as

H
T
1 (D)=


1 1 D180

D100 D500 D120

D300 D150 1

D700 D400 D700

D150 D130 D210

,HT
2 (D)=


1 1 D350

D800 D430 D450

D190 D300 D130

D570 D900 D300

D330 D200 1

,

H
T
3 (D)=


1 D280 D116

D700 D101 D360

D630 D810 1

D580 D720 D140

D180 1 D126

,HT
4 (D)=


1 D230 D127

D410 1 D109

D134 D120 D770

D580 D920 1

D124 D200 D240


and

H
T
5 (D)=


1 1 D171

D860 D850 1

D970 D900 D650

D900 D145 D177

D204 D168 D400

.
Regarding the cycle enumerators in Table 3.2, the proposed code (gray-shaded in

the last row of Table 3.2) is superior to those derived from QC LDPC-BCs. This is also

verified by the improvement in the waterfall region as shown in Fig. 3.15. Because of

poor free distance, all codes suffer from error floors at the BER value of around 10−5.

The simulation was carried out over a binary phase-shift keying (BPSK) modulation

AWGN channel with a maximum of 50 decoding iterations of the on-demand variable

node activation [37] sum-product pipeline [15] decoding algorithm for LDPC-CCs.
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Figure 3.16: Decoding performance of two proposed time-invariant LDPC-CCs

Moreover, to break the structure of unavoidable cycles of length 12, we proposed

two weight matrices

B12 =



1 0 1 0 1 0

0 1 0 1 0 1

1 0 1 0 0 1

0 1 0 1 1 0

1 0 0 1 1 0

0 1 1 0 0 1

1 0 0 1 1 0

0 1 1 0 0 1


and B14 =



0 0 0 1 1 1

1 0 0 0 1 1

0 1 0 1 0 1

0 0 1 1 1 0

1 1 0 0 0 1

1 0 1 0 1 0

0 1 1 1 0 0

1 1 1 0 0 0


(3.19)

that contain no submatrices forming unavoidable cycles of length smaller than 12

and 14 (see (3.17)), respectively. Applying the algorithm in Fig. 3.14 to the above

two weight matrices, we obtain two regular (ms, 3, 4) time-invariant LDPC-CCs with

polynomial syndrome former matrices

H
T

6 (D) =



D32 D27 D60

D72 1 1

D42 D26 D21

D46 D81 1

1 D55 D79

D29 D39 D25

D25 D75 D80

1 1 D78


(3.20)
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and

H
T

7 (D) =



D57 D34 D195

1 D174 D148

D139 D71 1

D74 D162 1

D116 1 D160

D171 D33 D104

D42 D123 1

D122 D163 1


. (3.21)

which have girth of 12 and 14, respectively, and they have the same column and row

degree distribution in their weight matrices. Their decoding performances are shown

in Fig. 3.16. As we expected, H
T
7 (D) has better decoding performance in the waterfall

region than H
T
6 (D) since the girth of H

T
7 (D) is larger than that of H

T
6 (D).

3.6 Conclusion

In this chapter, we have analyzed the cycle structures for time-invariant and time-

varying LDPC-CCs derived from the corresponding QC LDPC-BCs. A cycle counting

algorithm is introduced to compute the number of short cycles. Moreover, unavoid-

able cycles due to destructive structures of polynomial syndrome former matrices are

presented from the graphical point-of-view. As a result of the unavoidable cycles, we

obtain upper bounds on the girth of time-invariant LDPC-CCs. Based on the for-

mations of unavoidable cycles, an algorithm is presented to generate time-invariant

LDPC-CCs achieving desired girth. In adition, the cycle properties were compared

between time-invariant and time-varying LDPC-CCs. As we expected, time-varying

LDPC-CCs contain less cycles than time-invariant LDPC-CCs.
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Chapter 4

Distance Spectrum Estimation of

LDPC Convolutional Codes

4.1 Introduction

Low-density parity-check convolutional codes (LDPC-CCs) were first proposed in [1].

Using pipeline decoding [2], it has been shown that they are suitable for practical im-

plementation with continuous transmission as well as, via encoder termination, block

transmission in frames of arbitrary size [3] without an increase in computational com-

plexity compared to their block code counterparts.

LDPC-CCs can be separated into two categories, time-invariant and time-varying

LDPC-CCs, with respect to the structure of their syndrome former matrices. In this

chapter, we focus on time-invariant LDPC-CCs, derived from corresponding QC LDPC-

BC [5]. This particular category of polynomial based LDPC-CCs can be considered as

conventional convolutional codes with high memory order that results in the sparsity

in the syndrome former matrix.

For any convolutional code C with minimum free distance df , the weight spectrum

is described by a set {Aw|w ≥ df , w ∈ Z+}, where Aw, the codeword weight enumera-

tor, is the number of codewords with Hamming weight w. Together with the minimum

free distance, the distance spectrum is an important property of convolutional codes for

estimating their performance under a variety of decoding algorithms. Bahl et al. [38]

presented an algorithm to compute the free distance based on a state-transition dia-

gram. In [39], Rouanne and Costello introduced a bidirectional tree search algorithm to

calculate the distance spectrum of convolutionally encoded trellis codes. Subsequently,

Bocharova et al. [13] presented a more efficient bidirectional tree search algorithm called
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BEAST. Sridharan et al. [40] showed that for sufficiently large constraint lengths vs,

the minmum distances dmin grows linearly with vs and the ratio of dmin/vs approaches

the ratio df/vs for large block length. In [41], existence type lower bounds on the

free distance of periodically time-varying LDPC-CCs and on the minimum distance of

tail-biting LDPC-CCs are derived. It is demonstrated that the bound on free distance

of periodically time-varying LDPC-CCs approaches the bound on free distance of gen-

eral (nonperiodic) time-varying LDPC-CCs as the period increases. Using asymptotic

methods, Mitchell et al. [9] obtained lower bounds on the free distance to constraint

length ratio, they showed that several ensembles of regular and irregular LDPC-CCs

derived from protograph-based LDPC block codes (LDPC-BCs) have the property that

the free distance grows linearly with respect to the constraint length, i.e., the ensembles

are asymptotically good. In this chapter, we present an algorithm to estimate the dis-

tance spectrum of time-invariant LDPC-CCs derived from corresponding quasi-cyclic

(QC) LDPC block codes. Time-invariant LDPC-CCs can be considered as conventional

convolutional codes with large memory order that are characterized by the sparsity of

the syndrome former matrix.

To estimate the distance spectrum of a time-invariant LDPC-CC, we first split the

columns of the polynomial syndrome former matrix into submatrices and compute the

distance spectrum for each of the “super codes” defined by the submatrices, where each

super code contains all the codewords of the original code. Following this, we apply

a so-called linear dependence evaluation method to investigate the linear dependence

between the low weight codewords of the different super codes. This technique provides

an estimate of the distance spectrum of the original LDPC-CC, and in particular we

obtain an upper bound on the minimum free distance and a lower bound on the num-

ber of codewords Aw with Hamming weight w. In order to reduce the complexity of

estimating the distance spectrum, the technique is applied to the finite, compact, poly-

nomial syndrome former matrix rather than the semi-infinite time-domain syndrome

former matrix. We also show that, for some example codes, the estimation technique

is highly accurate, resulting in an exact calculation of the free distance df .

The rest of the chapter is organized as follows: in Section 4.2, we present some

properties of the Hamming weights of codewords in LDPC-CCs defined with respect

to the (polynomial) syndrome former matrix. The algorithm to estimate the distance

spectrum of polynomial-based LDPC-CCs is presented in Section 4.3. This is followed

by some illustrative examples in Section 4.4.

The work of this chapter were published in [42].
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4.2 Hamming weights of codewords in LDPC-CCs

In this section we present some properties of the Hamming weights of codewords in

time-invariant LDPC-CCs defined with respect to the (polynomial) syndrome former

matrix, which form the basis for estimating the distance spectrum in Section 4.3.

4.2.1 Properties of the Hamming weight

In order to introduce some useful notation and terminology, we begin by stating a well-

known property of convolutional codes as Theorem 2 and giving a simple proof of this

result.

Property 1. Let C be a convolutional code with syndrome former matrix HT . For a

codeword v of Hamming weight l, there exist l corresponding rows in HT such that the

sum of these l rows is the zero vector. Conversely, if there exist l rows in HT whose

sum is the zero vector, there exists a codeword v of Hamming weight l.

Proof : The constraint imposed by the syndrome former matrix, i.e., v ·HT = 0,

can be written as

vtH
T
0 (t) + vt−1H

T
1 (t) + · · ·+ vt−msH

T
ms

(t) = 0, t ∈ Z. (4.1)

Each horizontal block submatrix of (2.2), which corresponds to the symbols of vt, is

given by [
HT

0 (t) HT
0 (t+ 1) · · · HT

ms
(t+ms)

]
, (4.2)

where t ∈ Z. Then, expanding (4.2) using (2.3) we obtain
h0,t
1,1 · · · h0,t

1,p · · · hms,t
1,1 · · · hms,t

1,p

...
. . .

...
. . .

...
. . .

...

h0,t
c,1 · · · h0,t

c,p · · · hms,t
c,1 · · · hms,t

c,p

 . (4.3)

Assuming that codeword v has l nonzero components, let v
(c1)
t1

= v
(c2)
t2

= · · · = v
(cl)
tl

= 1

be the l nonzero components, where ti∈Z, ci∈Z+, and ci≤c, 1≤i≤l. After expanding

each horizontal block submatrix (4.2) using (2.3), consider forming the submatrix HT
v

corresponding exactly to the l rows indexed by the codeword bits v
(c1)
t1

, v
(c2)
t2

,. . ., v
(cl)
tl

,

i.e.,

HT
v =


h0,t1c1,1

· · · h0,t1c1,p · · ·h
ms,t1
c1,1

· · · hms,t1
c1,p

. . .
. . .

. . .
. . .

. . .
. . .

. . .

h0,tlcl,1
· · · h0,tlcl,p · · · h

ms,tl
cl,1

· · · hms,tl
cl,p

 . (4.4)
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As a result of (4.1), it follows that the sum of the rows of (4.4) results in the zero

vector. The codeword v satisfies v ·HT = 0 and thus indicates that a codeword with

Hamming weight l corresponds exactly to l rows in HT that sum to the zero vector. A

similar argument can be used to prove the converse. ■
Property 1 also applies to time-invariant convolutional codes defined with respect

to the (polynomial) syndrome former matrix. Assuming that codeword v has l nonzero

components, let v
(c1)
t1

= v
(c2)
t2

= · · · = v
(cl)
tl

= 1 be the l nonzero components, where

ti∈Z, ci∈Z+, and ci≤c, 1≤i≤l. Then v can be described in the polynomial domain as

v(D) = D(c·t1+c1) +D(c·t2+c2) + · · ·+D(c·tl+cl), and to satisfy the constraint in (2.10),

we have ∑l
i=1 hci(D) ·Dti = 0(D), (4.5)

where hci(D) is the ci-th row of HT (D) in (2.4).Throughout the chapter, we refer to

hci(D) · Dti as an extended row of HT (D). Based on above description, we obtain

following property.

Property 2. Let C(D) be a polynomial-domain LDPC-CC with polynomial syndrome

former matrix HT (D). For a codeword v(D) of Hamming weight l, there exist corre-

sponding l extended rows of HT (D) such that the sum of these l extended rows is the

matrix of all-zero sequences 0(D). Conversely, if there exist l extended rows of HT (D)

whose sum is the matrix of all-zero sequences 0(D), then there exists a codeword v(D)

of Hamming weight l.

4.2.2 An example

Given the R = 1/3 QC LDPC-BC given by Tanner et al. in [5], we can form an as-

sociated R = 1/3 time-invariant LDPC-CC with polynomial-domain syndrome former

matrix

HT (D) =

h1(D)

h2(D)

h3(D)

 =

h1,1(D) h1,2(D)

h2,1(D) h2,2(D)

h3,1(D) h3,2(D)

 =

 1 D3

D D2

D3 1

, (4.6)
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and time-domain syndrome former matrix

HT =



1 0 0 0 0 0 0 1 }t1=00 0 1 0 0 1 0 0

0 1 0 0 0 0 1 0

1 0 0 0 0 0 0 1 }t2=10 0 1 0 0 1 0 0

0 1 0 0 0 0 1 0

1 0 0 0 0 0 0 1 }t3=t4=20 0 1 0 0 1 0 0

0 1 0 0 0 0 1 0

1 0 0 0 0 0 0 1 }t5=30 0 1 0 0 1 0 0

0 1 0 0 0 0 1 0

1 0 0 0 0 0 0 1 }t6=40 0 1 0 0 1 0 0

0 1 0 0 0 0 1 0
...

...
...

...
...

...
. . .

. . .



. (4.7)

Consider the six emboldened rows of (4.7) that correspond to the time indices t1 = 0,

t2 = 1, t3 = t4 = 2 , t5 = 3, and t6 = 4 and the row indices c1 = 2, c2 = 1, c3 = 2,

c4 = 3, c5 = 1, and c6 = 2, respectively. These six row vectors can be used to construct

the submatrix HT
v as

HT
v =



0 0 1 0 0 1 0 0

1 0 0 0 0 0 0 1

0 0 1 0 0 1 0 0

0 1 0 0 0 0 1 0

1 0 0 0 0 0 0 1

0 0 1 0 0 1 0 0


. (4.8)

Note that summing the rows of (4.8) modulo 2 results in the zero vector. The

corresponding polynomial form is∑6
i=1 hci(D)×Dti = h2(D) ·D0 + h1(D) ·D1 + h2(D) ·D2+

h3(D) ·D2 + h1(D) ·D3 + h2(D) ·D4

=
[
D1 D2

]1
+

[
D1 D4

]
+

[
D3 D4

]
+[

D5 D2
]1
+

[
D3 D6

]
+

[
D5 D6

]
=

[
0 0

]1
= 0(D).
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Therefore, the sequence v(D) = D2 +D4 +D8 +D9 +D10 +D14 is a codeword with

Hamming weight 6 in this LDPC-CC.

4.3 Estimating the distance spectrum of LDPC-CCs using

linear dependence evaluation

The distance spectrum is an important property of a convolutional code needed to

estimate its performance under a variety of decoding algorithms. However, compared

to conventional convolutional codes, it is much more complex to calculate the distance

spectrum of LDPC-CCs. This is because the low density requirement of the syndrome

former matrix of LDPC-CCs results in a comparatively large memory. In this section,

we will introduce a strategy to estimate the first several nonzero codeword enumerators

Aw in the distance spectrum of time-invariant LDPC-CCs.

Based on Property 2, a straightforward way to calculate the initial portion of the

distance spectrum of an LDPC-CC is to find the smallest sets of variable nodes that

satisfy the constraint that their corresponding rows in HT , or extended rows in HT (D),

sum up to the zero vector, or the vector of all-zero sequences, respectively. However,

searching for all possible combinations is very time consuming. To improve the effi-

ciency, we introduce a novel two-step solution.

First, if a row vector r1 is involved in a row vector set r of HT that sums to the zero

vector, then, for each ‘1’ in r1, there must exist a row vector r2 ∈ r that has a ‘1’ in the

same column in order to cancel the ‘1’ in r1 (as shown in the previous example). Recall

that a row vector in HT corresponds to a variable node, and consequently, instead of

searching the entire set of rows in HT , only neighboring variable nodes are considered

in the search to cancel ‘1’s, where two variable nodes are called neighbors if and only if

they have at least one constraint node in common. Due to the semi-infinite size of the

time-domain syndrome former matrix, it is inconvenient to analyze such connections

among variable nodes. However, as described in Section 2.1, we can convert HT to a

finite, compact, polynomial syndrome former matrix that facilitates analysis.

Second, rather than computing the distance spectrum in the original code (with

a relatively large free distance), we split the columns of the polynomial syndrome

former matrix into several submatrices and calculate the distance spectrum of each

of the resulting convolutional “super codes”. Given the distance spectra of the super

codes, we can then form an estimate of the distance spectrum for the original code by

evaluating the linear dependence between the codewords of the super codes. The linear

dependence evaluation method will be described later in this section.
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The splitting concept is explained as follows. Given a polynomial syndrome former

matrix HT (D), we partition it into a sequence of I polynomial syndrome former subma-

trices HT
pi(D) of size c×q,1 q≤p, q∈Z+, pi∈Z+, 1≤i≤I, i∈Z, where each HT

pi(D) defines

a super code and each column of HT (D) appears in at least one of the submatrices

HT
pi(D).2 If, among the super codes, there is a common codeword W(D), we obtain

W(D) ·HT
p1(D) = 0(D)
...

W(D) ·HT
pI
(D) = 0(D)

⇒W(D) ·HT (D) = 0(D), (4.9)

i.e., W(D) is also a codeword of the original LDPC-CC with syndrome former matrix

HT (D). Some examples of this splitting procedure are given in Section 4.4.

Finding common codewords in the super codes is still a time consuming task if we

try to search through all possible codewords, since the super codes are also LDPC-CCs,

and thus they contain codewords of infinite length. However, we conduct the search

for common codewords by evaluating the linear dependence between codewords of the

super codes in conjunction with information from their corresponding distance spectra.

Let vls
pj (D), 1≤j≤I, j∈Z, and ls∈Z+, be a codeword in the codeword set vpj (D)

that satisfies vls
pj (D)HT

pj (D) = 0(D). Now suppose that there exists a common code-

word v(D) among all the super codes that can be formed as the modulo 2 sum of

some number of periodically shifted codewords in each super code with polynomial

syndrome former matrix HT
pj (D), 1≤j≤I, i.e., there is a set of shift parameter vectors

{mp1 ,mp2 , . . . ,mpI}, where

mpj = (mj1,mj2, . . . ,mjLj ), (4.10)

mjs∈Z, 1≤s≤Lj , and a set of codewords

{(vl1
p1(D), . . . ,v

lL1
p1 (D)), . . . , (vl1

pI
(D), . . . ,v

lLI
pI (D))} (4.11)

that satisfy 
∑L1

s=1D
c·m1svls

p1(D) = v(D)
...∑LI

s=1D
c·mIsvls

pI
(D) = v(D)

. (4.12)

1In this chapter, HT
pi(D) refers to a super code, but not to the polynomial submatrix in the

syndrome former matrix of a time-varying LDPC-CC as defined in Chapter 2.
2Note that I × q may be greater than p, so some columns of HT (D) may appear in more than one

submatrix HT
pi(D).
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Then it follows that the common codeword v(D) is also a codeword in the original

LDPC-CC, and thus this codeword contributes to the codeword weight enumerator

Aw. In searching for these sets of shift parameter vectors, we set a maximum value

for mjlj to ensure termination of the search. We call this process of finding common

codewords a linear dependence evaluation of codewords in the distance spectra of the

super codes. Since linear dependence evaluation does not guarantee that the obtained

common codeword has minimum weight, the value that we obtain for the minimum

weight codeword is an upper bound on the free distance of the original LDPC-CC, and

the number of codewords obtained for any given Hamming weight is a lower bound on

the number of codewords of this weight. Note that the linear dependence evaluation

method is more likely to give an accurate estimate of the number of codewords with low

Hamming weight. This is because, as we increase the Hamming weight, the number

of codewords to consider also increases which, in turn, greatly increases the search

complexity.

In estimating the distance spectrum, only multiplexed codewords v(D) whose min-

imum degree1 is smaller than or equal to c are included. Thus periodically shifted

codewords are not included in the estimate of the distance spectrum. In addition, if

there are n + 1 codewords {v0(D),v1(D), . . . ,vn(D)|n > 1, n ∈ Z+} in the codeword

set v(D) that satisfy

v0(D) =
∑n

k=1 v
k(D) (4.13)

and

w(v0(D)) = w(
∑n−1

k=1 v
k(D)) + w(vn(D)), (4.14)

where w(vk(D)) indicates the Hamming weight of codeword vk(D), then the codeword

v0(D) is not counted in the codeword weight enumerator Aw(v0(D)), i.e., linear combi-

nations of codewords with nonoverlapping ones are not counted as separate codewords.

(Note: Notationally, v0(D),v1(D),. . .,vn(D) are multiplexed codewords, while v(i)(D)

in (2.8) is the ith element in the c-tuple of the codeword V(D), 0≤i≤c−1.)
Even though the linear dependence evaluation method only gives an estimate of

the distance spectrum, it is shown in Section 4.4 that this technique yields the exact

free distance for a well-known class of LDPC-CCs and, moreover, all codewords of low

Hamming weight are accounted for in the evaluation.

1The minimum degree of a polynomial is defined as the lowest exponent of a term with non-zero
coefficient. For example, the minimum degree of D +D3 +D6 is one.
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4.4 Application of linear dependence evaluation to some

example codes

4.4.1 The Tanner (21, 3, 5) LDPC convolutional code

To illustrate the application of the linear dependence evaluation method to finding

common codewords among super codes, the Tanner (21, 3, 5), R = (c − p)/c = 2/5

LDPC convolutional code [5] is chosen as an example. This time-invariant code has

polynomial syndrome former matrix

HT (D) =


1 1 D18

D00 D50 D12

D30 D15 1

D70 D40 D70

D15 D13 D21

. (4.15)

(Note that the common factors of D have been removed from the code in [5] for sim-

plicity). First, we split the polynomial syndrome former matrix of the original code

into two submatrices HT
1 (D) and HT

2 (D) as follows1:

HT
1 (D) =


1 1

D00 D50

D30 D15

D70 D40

D15 D13

 , (4.16)

HT
2 (D) =


1 D18

D50 D12

D15 1

D40 D70

D13 D21

 . (4.17)

Next, we compute the distance spectrum of each super code based on the concept

introduced in Section 4.3. The first three nonzero codeword weight enumerators are

given in Table I. We observe that each super code has minimum free distance 6 and that,

additionally, no codewords with odd Hamming weight exist in the spectrum. Given

these two distance spectra, if there is a common codeword that is a sum of periodically

1Note that, as described in Section 4.3, this is an example where there is a repeated column in
HT

1 (D) and HT
2 (D), since I × q = 2× 2 > p = 3.
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Table 4.1: Distance spectra of super codes

Super codes df
Codeword weight enumerator Aw

A6 A8 A10

HT
1 (D) 6 22 158000 1817

HT
2 (D) 6 12 68 924

Codewords with minimum free weight

HT
1 (D) : vl

1(D) ∈ v1(D) HT
2 (D) : vl

2(D) ∈ v2(D)

v1
1(D)→ v12

1 (D) v13
1 (D)→ v22

1 (D) v1
2(D)→ v12

2 (D)

[3, 12, 32, 36, 52, 56] [5, 15, 33, 42, 76, 82] [2, 26, 57, 63, 81, 112]

[3, 12, 19, 38, 59, 87] [5, 35, 53, 66, 72, 102] [2, 26, 29, 46, 77, 84]

[3, 12, 15, 19, 47, 54] [5, 29, 42, 44, 46, 61] [2, 9, 43, 63, 92, 119]

[3, 12, 23, 36, 72, 76] [5, 49, 64, 72, 81, 96] [2, 26, 63, 118, 136, 167]

[4, 17, 21, 24, 32, 56] [5, 49, 63, 77, 84, 112] [4, 21, 38, 111, 113, 169]

[4, 8, 21, 23, 64, 96] [5, 20, 49, 59, 76, 81] [5, 30, 55, 66, 74, 99]

[5, 33, 35, 42, 72, 106] [5, 25, 62, 66, 72, 96] [5, 25, 42, 67, 69, 74]

[5, 28, 37, 44, 49, 77] [5, 33, 42, 45, 63, 112] [5, 47, 60, 66, 71, 97]

[5, 10, 15, 49, 54, 76] [5, 53, 63, 65, 66, 136] [5, 66, 74, 80, 91, 124]

[5, 40, 49, 72, 77, 79] [5, 49, 63, 68, 80, 119] [5, 49, 83, 95, 108, 164]

[5, 15, 62, 66, 76, 86] − [5, 42, 103, 108, 115, 157]

[5, 44, 49, 57, 61, 81] − [5, 66, 108, 158, 170, 181]

shifted codewords in each super code, then this codeword is also a codeword in the

original code. In this example, only codewords with minimum free weight from each

super code are used to evaluate linear dependence. Nevertheless, we see that this

already gives a good estimate of the distance spectrum of the original code. Due to

space limitations, only the power indices are listed in Tables 4.1 and 4.2; for example,

if a codeword in the polynomial domain is D1 +D3 +D6, it is represented as [1, 3, 6].

By applying the linear dependence evaluation method to the codewords with free

weight 6 in the super codes, i.e., the 12 codewords from HT
2 (D) and the 22 codewords

fromHT
1 (D) as given in Table 4.1, we obtain an estimate of the distance spectrum of the

original code, which is given in Table 4.2.1 We estimate that the code with polynomial

syndrome former matrix given by (4.15) has free distance 24, which is consistent with

the free distance given in [5], and the estimated numbers of codewords with Hamming

weight 24, 26, 28, 30, and 32 are 6, 5, 8, 34, and 53, respectively. Moreover, we find all

1The distance spectrum of this code has also been computed recently in [43].

63



Table 4.2: Estimated distance spectrum of the original LDPC-CC

(ms, J,K) df
Codeword weight enumerator Aw

A24 A26 A28 A30 A32

(21, 3, 5) 24 6 5 8 34 53

Codewords with minimum free weight: vl(D) ∈ v(D)

v1(D) = [4, 17, 21, 24, 32, 38, 47, 56, 58, 71, 74, 78, 91, 93, 107,

111, 113, 122, 129, 134, 148, 166, 169, 197]

v2(D) = [5, 30, 49, 60, 65, 72, 74, 77, 83, 96, 101, 102, 104, 119,

127, 132, 134, 136, 147, 153, 167, 171, 174, 202]

v3(D) = [5, 20, 35, 49, 59, 76, 81, 83, 93, 95, 96, 104, 108, 110,

121, 123, 154, 164, 166, 168, 173, 185, 196, 224]

v4(D) = [5, 25, 45, 60, 62, 66, 72, 74, 80, 87, 89, 91, 94, 96, 99,

102, 115, 116, 121, 124, 126, 147, 152, 154]

v5(D) = [5, 40, 49, 55, 72, 75, 77, 79, 83, 92, 95, 108, 113, 117,

119, 124, 133, 138, 143, 150, 162, 164, 189, 192]

v6(D) = [5, 25, 62, 66, 72, 75, 96, 108, 117, 123, 128, 130, 133,

135, 136, 141, 158, 167, 170, 177, 181, 188, 206, 237]

six codewords with minimum weight. For example, the codeword v1(D) is a common

codeword of both super codes, since there is a set of shift parameter vectors{
m1 = (m11,m12,m13,m14)=(22, 7, 0, 14),

m2 = (m21,m22,m23,m24) = (9, 3, 6, 0)

}

and a set of codewords (for simplicity, the notation ’D’ is ignored){
(vl1

1 ,v
l2
1 ,v

l3
1 ,v

l4
1 ) = (v2

1,v
4
1,v

5
1,v

6
1),

(vl1
2 ,v

l2
2 ,v

l3
2 ,v

l4
2 ) = (v2

2,v
3
2,v

4
2,v

5
2)

}

in the super codes HT
1 (D) and HT

2 (D), respectively, that give{
D5·22v2

1(D)+D5·7v4
1(D)+D5·0v5

1(D)+D5·14v6
1(D)=v1(D)

D5·9v2
2(D)+D5·3v3

2(D)+D5·6v4
2(D)+D5·0v5

2(D)=v1(D)
,

i.e., condition (4.12) is satisfied. Similar linear dependence evaluations can be formu-

lated for codewords v2(D), . . ., v6(D).
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Table 4.3: Estimated distance spectra of some Tanner (ms,3,5) LDPC-CCs

(ms, J,K) (57, 3, 5) (126, 3, 5) (204, 3, 5)

HT (D)


00 0 35

08 43 45

019 3 13

057 9 30

033 020 000




0 28 116

7 101 36

63 81 0

58 72 14

18 0 126




0 0 171

86 85 0

97 9 106

90 145 177

204 168 40


df 24 24 24

A24 5 A24 5 A24 5

Codeword A36 21 A28 1 A36 17

weight A40 1 A34 2 A40 4

enumerator A42 37 A36 19 A44 187

Aw A44 171 A40 1 A46 390

A46 286 A42 9 A52 339

Note: ‘D’ is ignored for simplicity, and ‘0’ means the polynomial D0 or 1.

4.4.2 Other examples

The distance spectra of some other Tanner (ms,3,5) LDPC convolutional codes can

be obtained in the same way. Using the QC-LDPC block codes presented in [5], we

construct the polynomial domain syndrome former matrix for each of the corresponding

time-invariant LDPC-CCs and apply the linear dependence evaluation method to the

associated super codes to estimate the distance spectrum of the original LDPC-CC.

Results for three such codes are shown in Table 4.3. Interestingly, we find that all

of these (ms,3,5) LDPC-CCs have exactly five codewords with free distance 24. We

note that, together with the code discussed in Section 4.4.1, each of the (ms,3,5)-

regular LDPC-CCs without empty entries1 in the polynomial syndrome former matrix

HT (D) of size 5× 3 has minimum free distance upper bounded by 24 and has at least

five codewords with this weight. We also note that, using the bound of Mackay and

Davey [44], any corresponding (J,K)-regular QC-LDPC block code has its minimum

distance bounded above by (J + 1)! = (3 + 1)! = 24. As we find df = 24 for these

(ms,3,5) Tanner LDPC-CCs, it is an exact value.

Even though all of these (ms, 3, 5)-regular LDPC-CCs have the same estimated free

distance, the weight distributions turn out to be different. The first six nonzero code-

word weight enumerators of these codes are listed in Table 4.3. The distance spectra

of all three codes have codewords with even Hamming weights ranging from 24 to 52.

1An empty entry in HT (D) refers to a polynomial entry that is the all-zero sequence 0(D).
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Compared to the (57, 3, 5) code, the (126, 3, 5) code contains fewer codewords in this

range. However, compared to the (57, 3, 5) and (126, 3, 5) codes, and despite increasing

the syndrome former memory up to 204, the distance spectrum of the (204, 3, 5) code

does not show any improvement.

Finally, we present some examples that demonstrate the accuracy of the method for

codes with larger free distance. QC-LDPC-BCs based on pre-lifted protographs were

introduced in [45] to improve the girth and the minimum Hamming distance. A family

of regular (3,4) QC-LDPC-BCs pre-lifted from a 3× 4 base matrix is given by

H =



I 0 I 0 I 0 I 0

0 I 0 I 0 I 0 I

I 0 P1 0 0 Q1 0 R1

0 I 0 P2 Q2 0 R2 0

I 0 0 S1 T1 0 U1 0

0 I S2 0 0 T2 0 U2


, (4.18)

where Pi, Qi, Ri, Si, Ti, and Ui, i = 1, 2, are permutation matrices, I is the identity

matrix, 0 is the all-zero matrix, and each matrix is of size r × r. By choosing the

permutation matrices P1, P2, Q1, Q2, R1, R2, S1, S2, T1, T2, U1, and U2 as the

circulant matrices I1, I5, I2, I10, I4, I20, I7, I3, I14, I6, I28, and I9,
1 respectively, and

setting the circulant size to r = 41, we obtain a QC-LDPC-BC with minimum distance

bounded by 38 ≤ dmin ≤ 48 (found using MAGMA [46]). Similarly, choosing the

twelve permutation matrices as the circulant matrices I1, I5, I10, I10, I13, I13, I7, I7,

I11, I11, I2, and I4, respectively, and setting the circulant size to r = 49, results in a

QC-LDPC-BC with minimum distance bounded by 32 ≤ dmin ≤ 56.

Two time-invariant LDPC-CCs with polynomial syndrome former matrices HT
3 (D)

and HT
4 (D) can be obtained from H by replacing ‘I’ with ‘1’ and ‘In’ with the de-

lay operator ‘Dn−1’. Applying the linear dependence evaluation method to these two

LDPC-CCs, we find that the minimum free distances of the LDPC-CCs represented

by HT
3 (D) and HT

4 (D) are upper bounded by 48 and 56, respectively. This result is

consistent with the fact that minimum free distance of an LDPC-CC is an upper bound

on the minimum distance of the corresponding QC-LDPC-BC [5].

Even though the polynomial syndrome former matrices of all the example codes

in this chapter consist of only monomials, this technique can also be applied to more

general polynomial matrices, i.e., the entries of HT (D) can have weight greater than

1The notation Ia is used to denote the r× r identity matrix with each row cyclically shifted to the
left by a− 1 positions.
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one. This generalization does not increase the complexity of the algorithm.

4.5 Conclusion

In this chapter, a novel approach has been introduced to estimate the distance spec-

trum of time-invariant LDPC-CCs that are defined by polynomial syndrome former

matrices. The concept is to split the polynomial syndrome former matrix into subma-

trices, each of which defines a super code. By applying the linear dependence evaluation

method introduced in this chapter to the codewords of the super codes, we obtain an

estimate of the distance spectrum of the original code, i.e., we obtain an upper bound

on the minimum free distance and a lower bound on the number of codewords Aw with

Hamming weight w. The free distance bound was shown to be exact for the Tanner

(21,3,5)-regular time-invariant LDPC-CC.

In contrast to the BEAST algorithm [13], which can be used to obtain exact Aw

values for convolutional codes with relatively short memories, the complexity of the

proposed algorithm does not depend on the constraint length vs or the syndrome former

memory ms; instead, the complexity depends on the free distance and the density (row

and column weight J and K) of HT . As a result, unlike BEAST, the linear dependence

evaluation method is well suited for application to practical time-invariant LDPC-CCs

that have low-density syndrome former matrices and large memories.
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Chapter 5

Rate-compatible punctured

LDPC convolutional codes

5.1 Introduction

Rate-compatible (RC) channel codes, a form of variable rate coding, are of great prac-

tical interest since they can adapt to the changing conditions of time-varying channels

and allow transceivers to employ the same encoder/decoder pair. As competitors to RC

turbo codes, RC low-density parity-check block codes (LDPC-BCs) have recently been

investigated using code modifying techniques such as nulling or shortening, extending,

puncturing, and combining [47] - [48].

By nulling information bits and puncturing parity check bits, Tian et al. [47] ob-

tained RC LDPC-BCs with the same degree distribution as the original code. A combi-

nation of puncturing and extending was used in [49] and [50] to overcome the degrada-

tion in decoding performance caused when a large number of bits are punctured in order

to obtain high rate LDPC-BCs. Ha et al. [51,52] then proposed a puncturing scheme to

obtain RC LDPC-BCs based on puncturing nodes that require fewer decoding iterations

to be recovered, referred to as the recoverability of punctured variable nodes criterion

in this chapter. Based on Ha’s algorithm, Kim et al. [53] proposed a way to design

good LDPC-BCs as mother codes that are efficiently encodable and well-suited for RC

puncturing. Other methods of puncturing LDPC-BCs can be found in [54–56]. To

maintain a constant code blocklength, Casado et al. [57] presented a method to obtain

multiple rate LDPC-BCs by combining rows of the lowest-rate parity-check matrix. As

an alternative to applying puncturing techniques to parity-check matrices, RC linear

codes were constructed in [58] by concatenating low-density generator matrices. To im-
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prove the decoding performance of RC LDPC-BCs, a layered belief propagation (BP)

algorithm [18] was shown to accelerate decoding convergence by means of sequentially

updating check nodes, and so-called successive maximization (SM) was proposed in [48]

to design universally capacity approaching RC sequences of LDPC code ensembles over

the general class of binary-input output-symmetric memoryless (BIOSM) channels.

Costello et al. [2] have shown that LDPC convolutional codes (LDPC-CCs) [1]

can be implemented without an increase in computational complexity compared to

corresponding LDPC-BCs. In addition, it has recently been shown that terminated

LDPC-CC ensembles, also known as spatially coupled LDPC codes, have substantially

better belief propagation (BP) decoding thresholds compared to corresponding block,

or uncoupled, code ensembles [8, 59]. Therefore, extending the concept of conventional

RC convolutional codes to RC punctured LDPC-CCs is of practical interest. As coun-

terparts to RC block codes, RC convolutional codes were first introduced in [11] by

periodically puncturing encoded bits chosen with respect to a distance spectrum cri-

terion. The distance spectra of low memory of LDPC-CCs can be precisely computed

by the BEAST algorithm [13], or estimated using the techniques proposed presented

in Chapter 4; however, it is infeasible to precisely compute the distance spectra of

practically interesting LDPC-CCs with large syndrome former memories. Moreover,

distance spectrum is important for maximum likelihood (ML) decoding, whereas using

(sub-optimal) iterative decoding techniques, such as BP decoding, there are many other

graph-based properties that affect decoding performance, such as short cycles in the

Tanner graph and trapping sets [60].

Recently, by successively extending the graph of a high-rate mother code, Nguyen

et al. [61] presented a method to obtain RC protograph-based LDPC codes with low

encoding complexity and iterative decoding thresholds within 0.2 dB of capacity, and

Si et al. [62] constructed a family of RC LDPC-CCs for Type-II HARQ systems and a

family of RC LDPC-CCs that achieve the capacity of the BEC. Rather than extending

the graph of a code, in this chapter we propose a method of obtaining a family of RC

punctured LDPC-CCs by analyzing several properties of the mother LDPC-CC and

then periodically puncturing encoded bits with respect to the following criteria: (1)

ensuring the recoverability of punctured variable nodes, (2) minimizing the number of

completely punctured cycle trapping sets (CPCTSs), and (3) minimizing the number

of punctured variable nodes involved in short cycles. One of the advantages of this

method compared to designing a puncturing scheme based on the distance spectrum is

that these properties can be precisely and efficiently calculated. As proposed in [11],

compatible rates are realized by incrementally modifying the puncturing pattern of the
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previous lower rate punctured code, i.e., the higher rate codes are embedded in the

lower rate codes, which is efficient for the practical implementation.

The rest of the chapter is organized as follows: Section 5.2 defines cycle enumer-

ators and cycle trapping sets and explains the recoverability of punctured variable

nodes. Details about the puncturing criteria and the proposed puncturing algorithm

are presented in Section 5.3. As examples of the algorithm, in Section 5.4, two families

of RC punctured LDPC-CCs with rates 4/9, 4/8, . . . 4/5, and 8/20, 8/19, . . ., 8/9

are obtained from the (21, 3, 5) Tanner LDPC-CC [5] by choosing a puncturing period

of P = 2 and P = 4, respectively. In Section 5.5, we consider the (higher memory)

(57, 3, 5) Tanner LDPC-CC as a mother code, and in Section 5.6 we apply the algorithm

successfully to a practically interesting LDPC-CC with monomial and binomial entries

in the polynomial syndrome former matrix.

The work of this chapter were published in [63,64].

5.2 Cycle enumerators and cycle trapping sets

In Chapter 3, we have discussed the cycle properties of LDPC-CCs. In this section,

we introduce cycle enumerators and so-called cycle trapping sets for LDPC-CCs and

review the concept of recoverability of punctured variable nodes presented in [52] from

a convolutional code viewpoint. These three properties form the basis of the design

criteria used to obtain the RC punctured LDPC-CCs introduced in Section 5.3.

5.2.1 Cycle enumerators of LDPC-CCs

Definition 1. A cycle in the Tanner graph of an LDPC-CC is defined as a finite

alternating sequence of nodes (variable nodes or check nodes) connected by edges,

beginning and ending with the same node, such that no node appears more than once.

The length of the shortest cycle is called the girth of an LDPC-CC and is denoted by

g.

A cycle rw(t) of length w, where t = (t1, t2, . . . , tw), is denoted by

rw(t) = {v(j1)t1 , c
(k1)
t2 , . . . , v

(jw/2)
tw−1

, c
(kw/2)
tw }, (5.1)

where ji ∈ {1, 2, . . . , c}, ki ∈ {1, 2, . . . , q}, i = 1, 2 . . . , w/2, w ∈ {4, 6, 8, . . .}. The

cycle rw(t) contains w/2 variable nodes {v(j1)t1 , v
(j2)
t3 , . . . , v

(jw/2)
tw−1

} and w/2 check nodes

{c(k1)
t2 , c

(k2)
t4 , . . . , c

(kw/2)
tw }. Since the time-domain syndrome former matrix is semi-infinite,

an LDPC-CC has an infinite number of cycles. However, due to the periodically re-

peating identical structure of the Tanner graph, given a particular cycle rw(t), the set
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of periodically shifted cycles {rw(t1 + t, . . . , tw + t)|t ∈ Z∗, ti + t ⩾ 0, i = 1, 2, . . . , w}
can be considered as one type.

Definition 2. The cycle enumerator for an LDPC-CC is denoted as Rw, where Rw

indicates the number of types of cycles of length w, i.e., periodically shifted cycles are

only counted once.

To obtain the cycle enumerators of an LDPC-CC, we use the cycle counting method

introduced in Section 3.3. For example, applying this method to the (21, 3, 5) Tanner

LDPC-CC with polynomial syndrome former matrix1

HT (D) =


1 1 D18

D00 D50 D12

D30 D15 1

D70 D40 D70

D15 D13 D21

, (5.2)

the first three non-zero cycle enumerators are given by R8 = 11, R10 = 62, and R12 =

351, i.e., the number of types of cycles of length 8, 10, and 12 are 11, 62, and 351,

respectively. Consequently, the girth of this code is 8. All the 11 cycles of length

8 are shown in Table 5.1 (for simplicity, only variable nodes involved in short cycles

are presented). One of the 11 cycles in R8, whose variable nodes and check nodes

are connected by solid lines in bold in the Tanner graph representation, is shown in

Fig. 5.1. Given t = (t1 = 0, t2 = 1, t3 = 1, t4 = 19, t5 = 7, t6 = 8, t7 = 1, t8 = 5), the

cycle r8(t) = {v(2)0 , c
(1)
1 , v

(1)
1 , c

(3)
19 , v

(2)
7 , c

(1)
8 , v

(4)
1 , c

(2)
5 }, consists of the set of variable nodes

{v(2)0 , v
(4)
1 , v

(2)
7 , v

(1)
1 } and the set of check nodes {c(1)1 , c

(2)
5 , c

(1)
8 , c

(3)
19 }. In the remainder

of the chapter, we simply refer to Rw as the number of cycles of length w rather than

the number of types of cycles of length w.

5.2.2 Cycle trapping sets of LDPC-CCs

Definition 3. A (d, f) trapping set τd,f of a Tanner graph is a set of variable nodes of

size d that induces a subgraph with exactly f odd-degree check nodes (and an arbitrary

number of even-degree check nodes).2

1Note that the common factors of D have been removed from the code in [5] for simplicity.
2We define a trapping set as a topology of the bipartite graph, i.e., it does not depend on a particular

decoder (see [60]).
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Table 5.1: Cycles in the (21,3,5) Tanner LDPC-CC

Cycle enumerators
R8 000R1000 R12

11 62 351

Cycles in R8

{v(2)0 , v
(1)
1 , v

(2)
7 , v

(4)
1 } {v(2)0 , v

(1)
5 , v

(4)
5 , v

(2)
11 }

{v(3)0 , v
(5)
0 , v

(1)
3 , v

(1)
15 } {v(3)0 , v

(2)
2 , v

(5)
2 , v

(3)
14 }

{v(4)0 , v
(4)
3 , v

(1)
7 , v

(3)
7 } {v(4)0 , v

(1)
4 , v

(3)
4 , v

(4)
15 }

{v(4)0 , v
(1)
7 , v

(3)
7 , v

(4)
19 } {v(5)0 , v

(5)
1 , v

(2)
9 , v

(4)
9 }

{v(5)0 , v
(5)
5 , v

(2)
14 , v

(4)
14 } {v(5)0 , v

(5)
6 , v

(2)
14 , v

(4)
14 }

{v(2)0 , v
(2)
4 , v

(1)
5 , v

(4)
5 }

c(3)
19

v(1)
1v(2)

7v(4)
1v(2)

0

c(1)
8c(2)

5c(1)
1 c(2)

12 c(2)
1c(3)

8c(3)
12

Figure 5.1: The (4, 4) cycle trapping set derived from the cycle r8(t).

Definition 4. If the d variable nodes involved in a cycle of length w = 2d induce a

subgraph with f > 0 odd-degree check nodes, then the trapping set defined by the

subgraph is called a (w/2, f) cycle trapping set.

Trapping sets derived from short cycles, or a union of short cycles, have been shown

to be the most dominant ones in terms of decoding performance in the high signal-to-

noise ratio (SNR) region for the binary symmetric channel [65]. An illustration of the

failure of iterative Bit Flipping (BF) decoding in the trapping set is shown in [12].

Consider the cycle r8(t) highlighted in Fig. 5.1. By attaching the remaining neigh-

boring check nodes (connected by dashed lines) to each of the variable nodes in the

subgraph, we obtain an induced subgraph that defines a (4, 4) cycle trapping set. The

degree-one check node set {c(3)12 , c
(3)
8 , c

(2)
12 , c

(2)
1 } corresponds to the f = 4 odd-degree check

nodes in the trapping set and the set {c(1)1 , c
(2)
5 , c

(1)
8 , c

(3)
19 } are the w/2 = d = 4 even-

degree check nodes. Thus each cycle in the Tanner graph corresponds to a unique cycle

trapping set. Consequently, there are 11, 62, and 351 cycle trapping sets in the code

defined by (5.2), containing exactly 4, 5, and 6 variable nodes, respectively.
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5.2.3 m-step-recoverable (m-SR) punctured nodes

We define N(v
(j)
t ) as the neighboring check node set of the variable node v

(j)
t , and

N(v
(j)
t ) \ c(k)t′ as the neighboring check node set excluding check node c

(k)
t′ . Similar

definitions apply to N(c
(k)
t ) and N(c

(k)
t ) \ v(j)t′ .

In [52], the concept of a recovery tree was introduced to determine the number of

iterations required to ‘recover’ a punctured variable node v
(j)
t for LDPC-BCs. The

recovery tree is obtained using a two-step process: (1) connect the punctured variable

node v
(j)
t to all of the neighboring check nodes in N(v

(j)
t ); and (2) then connect each

check node c
(k)
t′ ∈ N(v

(j)
t ) to the variable nodes N(c

(k)
t′ ) \ v(j)t . Steps (1) and (2) form

one layer of the recovery tree. This two-step process is repeated until every branch in

the tree terminates with an unpunctured variable node. A check node c
(k)
t′ in N(v

(j)
t )

is called reliable with respect to v
(j)
t if all of the variable nodes in N(c

(k)
t′ ) \ v(j)t are

unpunctured nodes. Otherwise, it is called an unreliable check node. The minimum

number of layers in the recovery tree required to have at least one reliable check node

is the number of iterations needed to recover a punctured variable node v
(j)
t .

The unreliable check nodes can be explained by the min-sum decoding algorithm

though standard sum-product algorithm (SPA) [1] is used in the simulation in this

dissertation. According to the min-sum iterative decoding algorithm of LDPC codes

[66,67], the message passing from a check node c
(k)
t′ to a variable node v

(j)
t in the Tanner

graph is dominated by the minimum absolute LLR value among the messages passing

from the variable nodes in the set N(c
(k)
t′ ) \ v(j)t to the check node c

(k)
t′ , i.e.,

|m(c
(k)
t′ → v

(j)
t )| = min

v
(j′)
t̄

∈N(c
(k)

t′ )\v(j)t

|m(v
(j′)
t̄
→ c

(k)
t′ )|, (5.3)

where m(c
(k)
t′ → v

(j)
t ) indicates the message in LLR passing from the check node c

(k)
t′

to the variable node v
(j)
t , while m(v

(j′)
t̄
→ c

(k)
t′ ) is referred to the message in LLR

passing from the variable node v
(j′)
t̄

to the check node c
(k)
t′ . The reliability of a message

is determined by the absolute LLR value. The larger the LLR value is, the higher

reliability it has. In addition, the decoder sets the initial LLR value of a punctured

node to 0. Consequently, if a variable in N(c
(k)
t′ ) \ v(j)t is punctured, according to (5.3),

the message m(c
(k)
t′ → v

(j)
t ) is equal to the message of lowest reliability passing from

the punctured node. When applying SPA, the situation is even worse, i.e., the message

m(c
(k)
t′ → v

(j)
t ) is smaller than the lowest reliability passing from the punctured node.

Therefore, the check node c
(k)
t′ is unreliable with respect to v

(j)
t .

Definition 5. A punctured variable node v
(j)
t is recovered in the mth iteration, m ⩾ 1,

73



r

u u unreliable check node  unreliable check node

  reliable check node

2-SR node

      1-SR node

r   reliable check node

      1-SR node

Figure 5.2: The recovery tree of a 2-SR punctured variable node.

by the iterative decoding algorithm and is called an m-step-recoverable (m-SR) node

[52] if v
(j)
t has at least one neighboring check node c

(k)
t′ in N(v

(j)
t ) such that the set

N(c
(k)
t′ ) \ v(j)t contains at least one (m-1)-SR variable node and all of the other variable

nodes in the set are n-SR nodes, where 0 ≤ n ≤ m− 1.

An unpunctured variable node is described as a 0-SR node. If a punctured variable

node cannot be recovered in a finite number of steps, it is called unrecoverable and is

described as an ∞-SR node. In this case, the recovery tree of the punctured variable

node has no reliable check nodes. Fig. 5.2 illustrates an example of the recovery tree

of a 2-SR punctured variable node. It has two unreliable check nodes, and each of

them is connected to a 1-SR variable node. The squares filled with u and r denote

unreliable and reliable check nodes, respectively. Filled circles correspond to punctured

variable nodes, and unfilled circles are unpunctured variable nodes. Further details of

the recovery tree and m-SR nodes can be found in [52].

5.3 RC Punctured LDPC-CCs

In this section, we present a method to construct RC punctured LDPC-CCs by analyz-

ing several properties of the Tanner graphs of punctured LDPC-CCs. The advantages

of this method compared to a distance spectrum based technique are that each of the

properties can be precisely and efficiently calculated, even for codes with large syn-

drome former memories, and that these graph-based properties are directly related to

the performance of iterative decoding.

Note that all of the LDPC-CCs used in this chapter are non-systematic. In the

decoder, in order to correctly decode codewords back to the original message, apart

from decoding the unpunctured variable nodes, we also need to recover the punctured

variable nodes. As a result, when counting bits in error for BERs, both the punctured

and unpunctured bits in codewords are considered.
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5.3.1 Puncturing patterns of LDPC-CCs

Given a polynomial-domain syndrome former matrix of size c×q, a puncturing pattern

with period P is defined by the P × c matrix

a =


a0,0 a0,1 · · · a0,c−1

a1,0 a1,1 · · · a1,c−1

...
...

. . .
...

aP−1,0 aP−1,1 · · · aP−1,c−1

, (5.4)

where ax,y ∈ {0, 1}, x = 0, 1, . . . , P − 1, y = 0, 1, . . . , c− 1. Each row of the puncturing

pattern corresponds to the c encoded bits (variable nodes) at one time unit. The “1” and

“0” in (5.4) imply puncturing and transmission of the associated bits, respectively. If l

is the total number of ones in the puncturing pattern, l < Pq, the resulting punctured

code has rate R′ = (Pb)/(Pc− l), where b = c− q.

5.3.2 Criteria used to design RC punctured LDPC-CCs

We now introduce the design criteria used to obtain RC punctured LDPC-CCs from a

“mother code” (original unpunctured code). The compatible rates are obtained by a

set of nested puncturing patterns, i.e., a higher-rate punctured code is obtained from

the previous lower-rate code by including an extra punctured entry in the puncturing

pattern of the previous code. This results in a RC family of codes derived from the

same mother code [11].

Given a total number of punctured entries l in a and a puncturing period P , there

are
(
Pc
l

)
possible puncturing patterns that result in the same punctured code rate. How-

ever, their decoding performance varies. The best puncturing pattern will be chosen

based on the criteria described in the remainder of this section.

5.3.2.1 Ensuring the recoverability of punctured variable nodes

A puncturing pattern ai that generates unrecoverable punctured variable nodes, i.e.,

∞-SR nodes, results in poor decoding performance in both the low and high SNR

regions, since ∞-SR nodes are unable to offer reliable information to help recover

other punctured nodes or to help correct unpunctured nodes received in error. We will

demonstrate the dramatic degradation in decoding performance caused by∞-SR nodes

in Section 5.4.

In addition to the extreme case of an∞-SR node, we also wish to avoid m-SR nodes

with large m. The recoverability of an m-SR node is determined by the value of m.

The smaller the value of m, the easier it is to recover a punctured variable node.
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Definition 6. We define the element Cai
m in the vector Eai

c =
[
Cai
1 Cai

2 · · · Cai
Nc

]
,

where 1 ≤ m ≤ Nc and m,Nc ∈ Z+, as the enumerator of m-SR nodes in the punc-

tured code within one period of the puncturing pattern ai, and Cai∞ is defined as the

enumerator of unrecoverable punctured variable nodes.

Given a puncturing pattern ai and the number l of punctured entries, Nc (the

number of elements in the vector Eai
c ) is the smallest integer that satisfies

∑Nc
m=1C

ai
m +

Cai∞ = l, Nc ∈ Z+.

A puncturing pattern ai is said to be superior to puncturing pattern aj , i ̸= j, with

respect to the recoverability of punctured variable nodes if there exists an M ∈ Z+

such that {
Cai

m = C
aj
m , 1 ≤ m ≤M − 1

Cai
m > C

aj
m , m = M

. (5.5)

In other words, puncturing pattern ai is superior to pattern aj if the enumerator vector

of ai is more weighted toward smaller values of m than that of aj .

5.3.2.2 Minimize the number of Completely Punctured Cycle Trapping

Sets (CPCTSs)

If all of the variable nodes in a cycle trapping set are punctured, then, because of the

uncertainty of the nodes in the set and the limited connectivity available to obtain

helpful information from nodes outside the set, the probability that the associated

symbols are decoded correctly decreases, resulting in a high error floor.

Definition 7. Given a puncturing pattern ai, if a cycle rw(t) has all of its w/2 variable

nodes punctured, it corresponds to a CPCTS τw/2,f , f ∈ Z∗. We define the element

Tai

w/2 in the vector Eai
τ =

[
Tai

g/2 Tai

(g+2)/2 · · · Tai

Nτ/2

]
, where w = g, g+2, g+4, . . . , Nτ

and g/2, Nτ/2 ∈ Z+, as the enumerator of the total number of CPCTSs τw/2,f , ∀f ,
corresponding to the puncturing pattern ai.

The number of CPCTSs associated with a particular puncturing pattern is obtained

by checking each cycle rw(t) to see if it has all of its variable nodes punctured. In

Algorithm 3 (pp. 79), the sum of the elements of Eai
τ is used to compare different

puncturing patterns.

5.3.2.3 Minimize the number of punctured variable nodes involved in short

cycles

Short cycles existing in the Tanner graph of LDPCs are known to hinder the con-

vergence behavior of the suboptimal iterative sum-product decoding algorithm [68].
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Puncturing variable nodes in short cycles makes the situation even worse, since unre-

liable information is passed around a short loop. Consequently, we seek puncturing

patterns that have few punctured variable nodes involved in short cycles.

Definition 8. We define the element Bai
w in the vector Eai

b =
[
Bai

g Bai
g+2 · · · Bai

Nb

]
,

where w = g, g+2, g+4, . . . , Nb and g, Nb ∈ Z+, as the enumerator of the total number

of punctured variable nodes involved in all cycles of length w for the puncturing pattern

ai.

Given a cycle rw(t) and a puncturing pattern ai with period P , Bai
w is obtained

by calculating the number of punctured variable nodes in each of the cycles in the set

{rw(t), rw(t+ 1), . . . , rw(t+ 1 · (P − 1))}.1 For example, for the cycle r8(t) highlighted

in Fig. 5.1 (pp. 72), given the puncturing pattern a0 = [10000; 00010] with P = 2,2

the set of punctured variable nodes is {v(1)0+nP , v
(4)
1+nP |n = 0, 1}. Therefore, in the sets

of variable nodes {v(2)0 , v
(4)
1 , v

(2)
7 , v

(1)
1 } and {v

(2)
1 , v

(4)
2 , v

(2)
8 , v

(1)
2 } belonging to cycles r8(t)

and r8(t + 1), variable nodes v
(4)
1 and v

(1)
2 are punctured when n = 0 and n = 1,

respectively. Applying this concept to the 11 cycles of length 8 (shown in Table 5.1

(pp. 72)) for this code, there are a total of 8 and 12 punctured variable nodes as

shown in Table 5.2 in the cycles corresponding to n = 0 and n = 1, respectively.

Therefore, the total number of punctured variable nodes involved in cycles of length

8 is Ba0
8 = 8 + 12 = 20. When comparing puncturing patterns, we will compare the

cumulative number of punctured nodes involved in short cycles, i.e.,
∑

w Bai
w for small

w.

5.3.3 Designing RC punctured LDPC-CCs

Based on the three criteria introduced in Section 5.3.2, we search for puncturing pat-

terns ai with no∞-SR nodes and the smallest possible entries for the enumerators Eai
c ,

Eai
τ , and Eai

b . Given a mother LDPC-CC of rate R = b/c, a search procedure to obtain

a rate R′ = Pb/(Pc− l) punctured LDPC-CC based on these three criteria is described

in Algorithm 3.

The influence of Steps 1 and 3 on decoding performance is felt most strongly in the

waterfall region of the bit-error-rate (BER) curve, while Step 2 has a larger effect on the

error floor. Also, for low rate punctured codes, even though Step 1 (specifically Step

11 is the all-one vector of length w, where w is the number of variable or check nodes involved in
the corresponding cycle.

2In the remainder of the chapter, the puncturing pattern in (5.4) is presented as a vector with rows
separated by “;”.
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Table 5.2: Punctured variable nodes in r8(t) and r8(t+ 1) for the code with HT (D)
given in (5.2)

Puncturing pattern P l

[10000; 00010] 2 2

Punctured nodes in r8(t) Punctured nodes in r8(t+ 1)

{v(4)1 } {v(4)5 } {v(1)2 } {v(1)6 }
∅ ∅ {v(1)4 , v

(1)
16 } ∅

{v(4)3 } {v(1)4 , v
(4)
15 } {v(4)1 , v

(1)
8 } {v(4)1 }

{v(4)19 } {v(4)9 } {v(4)1 , v
(1)
8 } ∅

∅ ∅ {v(4)15 } {v(4)15 }
{v(4)5 } {v(1)6 }

1.2) is more critical, the selection of puncturing patterns is typically dominated by Step

3, since there is often no difference in Eai
c among the various puncturing patterns under

consideration. As the punctured code rate increases, the choice of the best puncturing

pattern relies more heavily on Step 1.2, since the enumerator vectors Eai
c show more

variation in this case.

The complexity of Algorithm 3 is dominated by the computation involved in deter-

mining the variable nodes that participate in each of the short cycles. This computation

only needs to be done once, however, for a given mother code, since the list of variable

nodes involved in each cycle is stored. Subsequently, for each puncturing pattern, the

enumerators Cai∞, Eai
c , Eai

τ , and Eai
b can be efficiently computed and compared, even for

large puncturing periods P . For example, it took approximately 30 seconds to obtain

the list of variable nodes involved in the cycles of length 8, 10, and 12 for the (21, 3, 5)

Tanner LDPC-CC using a computer with a 2 GHz Processor and 2 GB of memory.
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Algorithm 3 Search for RC punctured LDPC-CCs

1: Initialization: Given a mother LDPC-CC of rate R = b/c, set the value of the

puncturing period P and the number of punctured entries l to correspond to the

desired rate R′ = Pb/(Pc − l). If a puncturing pattern a with k < l non-zero

entries has been selected at a previous stage, form Al
P = {ai}, where Al

P is the

set of all non-equivalent puncturing patterns ai that can be obtained from a by

including l − k additional punctured entries.1 If no previous puncturing pattern

has been selected, set a = 0 and k = 0 and generate Al
P as described above. Given

are the girth g of the mother code and set the parameters for the maximum cycle

lengths Nτ and Nb that will be used to calculate the enumerator vectors Eai
τ and

Eai
b , respectively. For each puncturing pattern ai ∈ Al

P , calculate the enumerators

Cai∞, Eai
c , Eai

τ , and Eai
b and store them. Initialize Aj = ∅, where j = 1, 2, 3, 4.

2: Step 1: Ensure the recoverability of punctured variable nodes.

3: Step 1.1: Choose the puncturing patterns with the fewest ∞-SR nodes. Cal-

culate C̄∞ = min{Cai
∞|ai ∈ Al

P }. For each puncturing pattern ai ∈ Al
p, if

Cai∞ = C̄∞, A1 ← A1 ∪ ai.

4: Step 1.2: Choose puncturing patterns with the best recoverability of punctured

variable nodes. Based on Eai
c , if a pattern ai ∈ A1 is superior to (see (5.5))

or has the same recoverability as any other patterns in A1 \ai, A2 ← A2∪ai.
5: Step 2: Minimize the number of CPCTSs. Calculate τ̄ = min{

∑
w Tai

w/2|ai ∈ A1},
where w = g, g + 2, . . . , Nτ . For each puncturing pattern ai ∈ A2, if

∑
w Tai

w/2 > τ̄ ,

A1 ← A1 \ ai; else, A3 ← A3 ∪ ai. If A3 = ∅, go to Step 1.2; else, go to Step

3. (Note that the loop between Steps 1.2 and 2 is guaranteed to be terminated as

every loop reduces the size of set A1, finally there will be a pattern in A1 satisfying∑
w Tai

w/2 ≤ τ̄ .)

6: Step 3: Minimize the number of punctured variable nodes involved in short cycles.

Calculate B̄ = min{
∑

w Bai
w |ai ∈ A3}, where w = g, g + 2, . . . , Nb. For each punc-

turing pattern ai ∈ A3, if
∑

w Bai
w = B̄, A4 ← A4 ∪ ai. If |A4| = 1, select this

pattern; otherwise, if |A4| > 1, randomly choose a puncturing pattern in A4.

5.4 RC punctured LDPC-CCs derived from the (21, 3, 5)

Tanner LDPC-CC

In this section, the (21, 3, 5) Tanner LDPC-CC is chosen as the mother code to illustrate

the process of obtaining RC punctured LDPC-CCs. The polynomial syndrome former

matrix is given by (5.2) and the code has rate R = 2/5, or equivalently R = 4/10. We

1Row permutations of a puncturing pattern a are considered to be equivalent. For example, the
puncturing pattern [10000; 00000] is equivalent to [00000; 10000].
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A1
2 Cai∞ Eai

c
w = 8,10, and 12

i ai Eai
τ Eai

b

∑
w E

ai
b

1 [10000; 00000] 0
[
1
] [

0 0 0
] [

!8! 59 412
]

479

2 [01000; 00000] 0
[
1
] [

0 0 0
] [

10 72 447
]

529

3 ∗[00100; 00000] 0
[
1
] [

0 0 0
] [

!6! 48 367
]

421

4 [00010; 00000] 0
[
1
] [

0 0 0
] [

12 71 426
]

509

5 [00001; 00000] 0
[
1
] [

0 0 0
] [

!8! 60 454
]

522

Table 5.3: Enumerators for the puncturing patterns of the (21, 3, 5) Tanner LDPC-CC
with rate R′ = 4/9 obtained using cycles of length w = 8, 10, and 12: the enumerator
of ∞-SR nodes Cai∞ , the enumerator of m-SR nodes Eai

c , the enumerator of CPCTSs
Eai

τ , and the enumerator of punctured variable nodes involved in short cycles Eai
b .

set the puncturing period P = 2 for demonstration and denote the puncturing pattern

of the unpunctured code by a = 0 = [00000; 00000]. Then we can obtain a family of

RC LDPC-CCs with rates 4/9, 4/8, 4/7, 4/6, and 4/5 by incrementally including one

extra punctured entry in the puncturing pattern of the previous lower rate code, i.e.,

by changing one element in the previous puncturing pattern from “0” to “1”. For this

example, only the cycles of length 8, 10, and 12 were used to calculate elements in Eai
b

and Eai
τ , i.e., we set Nb = Nτ = 12 and g = 8 in Algorithm 3.

5.4.1 Rate R′ = 4/9 punctured codes

We begin by placing l = 1 punctured entry in the puncturing pattern [00000; 00000].

Consequently, there are
(
Pc
l

)
=

(
10
1

)
= 10 different possible puncturing patterns; but

only 5 are not equivalent, i.e., A1
2 = {a1,a2,a3,a4,a5}. The enumerators calculated for

A1
2 are shown in Table 5.3. Following Algorithm 3, we find that all of the puncturing

patterns contain zero ∞-SR nodes and one 1-SR node. Thus, all the patterns have

the same recoverability of punctured nodes and are equally good choices with respect

to Step 1. Moreover, none of the patterns contain any CPCTSs (Step 2). However,

according to Step 3, we find that puncturing pattern a3 (marked by an asterisk in Table

5.3) is superior to the others, since it has the smallest number of punctured variable

nodes involved in short cycles.

Simulation curves for the five puncturing patterns of the rate R′ = 4/9 punctured

(21, 3, 5) Tanner LDPC-CC are given in Fig. 5.3. All of the simulations in this disser-

tation were carried out assuming binary phase-shift keyed (BPSK) modulation on an
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Figure 5.3: BERs of the punctured LDPC-CCs of (5.2) with rate R′=4/9.

additive white Gaussian noise (AWGN) channel with 50 iterations of the on-demand

variable node activation [37] sum-product pipeline decoding algorithm [1] for LDPC-

CCs.

The simulation results confirm the superiority of puncturing pattern a3 compared

to the other patterns. In particular, we see that a3 has approximately 0.1 to 0.5dB SNR

gains over the other puncturing patterns for a BER of 10−4. In addition, we find that

patterns a1 and a2 perform as the second best and the worst patterns, respectively. This

is consistent with the fact that a1 and a2 have the second least and the largest numbers

of punctured variable nodes in short cycles, viz.,
∑

Ea1
b = 479 and

∑
Ea2

b = 529.

Pattern a5 has, in total, more punctured nodes involved in cycles than a4; however,

from the enumerator vector Eai
b , we see that a5 has fewer punctured nodes for cycles

of length 8 and 10. This trade-off results in a4 and a5 having almost the same BER

performance.

5.4.2 Rate R′ = 4/8 punctured codes

Based on the previous rate R′ = 4/9 code with puncturing pattern a3 = [00100; 00000],

a punctured code with rate R′ = 4/8 is obtained by replacing one “0” in a3 with a

“1”. Note that the rate 4/8 code is rate-compatible with the rate 4/9 code. There are

9 possibilities for A2
2, as shown in Table 5.4.

Of the puncturing patterns in A2
2, a7 results in two punctured variable nodes within
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A2
2 Cai∞ Eai

c
w = 8,10, and 12

i ai Eai
τ Eai

b

∑
w E

ai
b

6 [10100; 00000] 0
[
2
] [

0 0 0
] [

14 107 779
]

900

7 [01100; 00000] 2
[
0
] [

0 0 1
] [

16 120 814
]

950

8 [00110; 00000] 0
[
2
] [

0 0 0
] [

18 119 793
]

930

9 [00101; 00000] 0
[
2
] [

0 0 0
] [

14 108 821
]

943

10 [00100; 10000] 0
[
2
] [

0 0 0
] [

14 107 779
]

900

11 [00100; 01000] 0
[
2
] [

0 0 0
] [

16 120 814
]

950

12 ∗[00100; 00100] 0
[
2
] [

0 0 0
] [

12 !96! 734
]

842

13 [00100; 00010] 0
[
2
] [

0 0 0
] [

18 !19! 793
]

930

14 [00100; 00001] 0
[
2
] [

0 0 0
] [

14 108 821
]

943

Table 5.4: Enumerators for the puncturing patterns of the (21, 3, 5) Tanner LDPC-CC
with rate R′ = 4/8 obtained using cycles of length w = 8, 10, and 12: the enumerator
of ∞-SR nodes Cai∞ , the enumerator of m-SR nodes Eai

c , the enumerator of CPCTSs
Eai

τ , and the enumerator of punctured variable nodes involved in short cycles Eai
b .

one puncturing period. These two punctured variable nodes are denoted by v
(2)
t and

v
(3)
t . According to Algorithm 3, a7 is immediately eliminated at Step 1.1 as a result

of the two unrecoverable punctured variable nodes (additionally, is the only pattern

with a CPCTS). The punctured variable nodes v
(2)
t and v

(3)
t resulting from pattern

a7 are unrecoverable since each of their recovery trees has no reliable check nodes.

Figs. 5.4 and 5.5 show one iteration of the recovery tree for the punctured variable

nodes v
(2)
t and v

(3)
t , respectively. Observe that the neighboring check nodes of v

(2)
t ,

i.e., c
(1)
t+1, c

(2)
t+5, and c

(3)
t+12, are all unreliable because they are connected, in turn, to

punctured variable nodes v
(3)
t−2, v

(3)
t−10, and v

(3)
t+12, respectively. Similarly, N(v

(3)
t ), i.e.,

c
(1)
t+3, c

(2)
t+15, and c

(3)
t , are unreliable because they are connected to punctured variable

nodes v
(2)
t+2, v

(2)
t+10, and v

(2)
t−12, respectively. To obtain the complete recovery tree of

v
(2)
t , the punctured variable nodes v

(3)
t−2, v

(3)
t−10, and v

(3)
t+12 in Fig. 5.4 are replaced by

the tree for v
(3)
t (with the time indices changed accordingly). By extending the tree at

each level in this fashion, we obtain the complete recovery tree of v
(2)
t in Fig. 5.6. It

is observed that every check node in the recovery tree is unreliable, and consequently

punctured node v
(2)
t is unrecoverable. A similar explanation applies to the punctured

variable node v
(3)
t for a7.
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v(2)
t

c(1)
t+1 c(2)

t+5 c(3)
t+12

v(1)
t+1 v(3)

t-2 v(4)
t-6 v(5)

t-14 v(1)
t+5 v(3)

t-10 v(4)
t+1 v(5)

t-8 v(1)
t-6 v(3)

t+12v(4)
t+5 v(5)

t-9

Figure 5.4: One iteration of the recovery tree for punctured variable node v
(2)
t and

puncturing pattern a7.

v(3)
t

c(1)
t+3 c(2)

t+15 c(3)
t

v(1)
t+3 v(2)

t+2 v(4)
t-4 v(5)

t-12 v(1)
t+15v(2)

t+10v(4)
t+11v(5)

t+2 v(1)
t-18 v(2)

t-12 v(4)
t-7 v(5)

t-21

Figure 5.5: One iteration of the recovery tree for punctured variable node v
(3)
t and

puncturing pattern a7.

Fig. 5.7 presents the simulation results for the rate 4/8 punctured codes with punc-

turing patterns in A2
2. Due to the existence of two ∞-SR nodes, puncturing pattern a7

has the worst performance, with a visibly inferior BER curve compared to the others.

At Step 1, we find that all the puncturing patterns in A2
2\a7 have the same recover-

ability of punctured nodes, i.e., they all have zero ∞-SR nodes and two 1-SR nodes.

In addition, no CPCTSs exist for puncturing patterns in A2
2\a7. However, at Step 3,

we observe that pattern a12 has the smallest number of punctured nodes involved in

short cycles, and we see in Fig. 5.7 that this pattern also results in the lowest BER,

confirming our choice.

5.4.3 RC LDPC-CCs derived from the (21, 3, 5) Tanner LDPC-CC

with puncturing period P = 2

For each higher rate, we follow the design procedure of Algorithm 3 to choose the

best candidate puncturing pattern. As in the rate 4/9 and 4/8 cases, our choice was

confirmed to be the best via code simulations. Details of the properties of punctured

codes and corresponding simulations for each code rate are given in Appendix B. Finally,
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t-9
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t+13 c(3)
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t+4 v(3)

t+26 v(3)
t+20 v(3)

t+34

Figure 5.6: Recovery tree of the punctured node v
(2)
t for the puncturing pattern a7.

we obtain six RC LDPC-CCs with enumerators given in Table 5.5. As the number of

punctured entries increases, the recoverability of punctured variable nodes degrades and

the number of punctured variable nodes involved in short cycles increases. CPCTSs

only appear in the high rate (4/6 and 4/5) punctured codes. In other words, the

characteristics of punctured codes get worse as the punctured code rate increases.

Fig. 5.8 shows the simulated performance of the family of RC punctured codes

derived from the (21, 3, 5) Tanner LDPC-CC. The BER curves from left to right cor-

respond to the codes with rates 4/10, 4/9, 4/8, 4/7, 4/6, and 4/5, respectively. As

expected, we observe that the decoding performance gets worse as the punctured code

rate increases. We also see that, due to the large number of punctured entries in the

puncturing pattern for the code of rate R′ = 4/5, ∞-SR nodes are unavoidable (no

puncturing pattern with P = 2 and l = 5 exists that avoids creating ∞-SR nodes). As

a result, the BER curve of the associated code is significantly worse than the others.

In addition, the chosen R′ = 4/5 punctured code has many CPCTSs, in particular,

Ea18
τ = [10106]. Together with the ∞-SR nodes, this results in poor BER performance

and the existence of a high error floor.
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Figure 5.7: BERs of the punctured LDPC-CCs of (5.2) with rate R′ = 4/8.

R′ i ai Cai∞ Eai
c

w = 8,10, and 12

Eai
τ Eai

b

∑
w E

ai
b

4/10 18 [00000; 00000] 0 -
[
0 0 0

] [
0 0 0

]
0

4/9 3 [00100; 00000] 0
[
1
] [

0 0 0
] [

6 48 367
]

421

4/8 12 [00100; 00100] 0
[
2
] [

0 0 0
] [

12 96 734
]

842

4/7 15 [10100; 00100] 0
[
2 1

] [
0 0 0

] [
20 155 1146

]
1321

4/6 16 [10100; 00110] 0
[
2 2

] [
1 0 0

] [
32 226 1572

]
1830

4/5 17 [10100; 01110] 2
[
1 1 1

] [
1 1 6

] [
42 298 2019

]
2359

Table 5.5: Enumerators for the RC LDPC-CCs derived from the (21, 3, 5) Tanner
LDPC-CC with puncturing period P = 2 obtained using cycles of length w = 8, 10,
and 12: the enumerator of ∞-SR nodes Cai∞ , the enumerator of m-SR nodes Eai

c , the
enumerator of CPCTSs Eai

τ , and the enumerator of punctured variable nodes involved
in short cycles Eai

b .
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Figure 5.8: BERs of the RC LDPC-CCs derived from the (21, 3, 5) Tanner code with
puncturing period P = 2.

5.4.4 RC LDPC-CCs derived from the (21, 3, 5) Tanner LDPC-CC

with puncturing period P = 4

By increasing the puncturing period to four, i.e., P = 4, and applying Algorithm 3 to

the same (21, 3, 5) Tanner LDPC-CC, we obtain a family of punctured RC LDPC-CCs

with rates 8/20, 8/19, 8/18, 8/17, 8/16, 8/15, 8/14, 8/13, 8/12, 8/11, 8/10, and 8/9.

The corresponding puncturing patterns of these codes are given in Table 5.6. Compared

to the family of punctured codes with P = 2 in Section 5.4.3, increasing the puncturing

period to P = 4 extends the range of punctured code rates and has more intermediate

rates.

The enumerators for these RC LDPC-CCs are also listed in Table 5.6 and the sim-

ulated BER performance is shown in Fig. 5.9, where, as with the examples in Sections

5.4.1 and 5.4.2, each punctured code selected was confirmed to be the best by simula-

tion. Similar to the situation for the RC codes in Section 5.4.3, the properties of these

codes tend to be worse as the rate increases, i.e., as the number of punctured entries

increases. Consequently, we see in Fig. 5.9 that, just as in the case of P = 2, the

decoding performance becomes worse and the gap between neighboring BER curves

gets larger as we increase the punctured code rate. Among these punctured codes, only

the code with the highest rate R′ = 8/9 contains ∞-SR nodes. Together with its large

number of CPCTSs (Ea30
τ = [40709]), this results in a BER curve that remains constant
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R′ i ai Cai∞ Eai
c

w = 8,10, and 12

Eai
τ Eai

b

∑
w Eai

b

8/20 19 [00000; 00000; 00000; 00000] 0 -
[
000

] [
0 0 0

]
0

8/19 20 [00100; 00000; 00000; 00000] 0
[
1
] [

000
] [

6 48 367
]

421

8/18 21 [00100; 00100; 00000; 00000] 0
[
2
] [

000
] [

12 96 734
]

842

8/17 22 [00100; 00100; 00100; 00000] 0
[
3
] [

000
] [

18 144 1101
]

1263

8/16 23 [00100; 00100; 00100; 00100] 0
[
4
] [

000
] [

24 192 1468
]

1684

8/15 24 [10100; 00100; 00100; 00100] 0
[
4 1

] [
000

] [
32 251 1880

]
2163

8/14 25 [10100; 00100; 10100; 00100] 0
[
4 2

] [
000

] [
40 310 2292

]
2642

8/13 26 [10100; 00110; 10100; 00100] 0
[
4 3

] [
000

] [
52 381 2718

]
3151

8/12 27 [10100; 00110; 11100; 00100] 0
[
3 3 2

] [
000

] [
62 453 3165

]
3680

8/11 28 [10100; 00110; 11101; 00100] 0
[
1111221

] [
100

] [
70 513 3619

]
4202

8/10 29 [10100; 00110; 11101; 00110] 0
[
111111121

] [
334

] [
82 584 4045

]
4711

8/9 30 [10100; 10110; 11101; 00110] 8
[
1 1 1

] [
479

] [
90 643 4457

]
5190

Table 5.6: Enumerators for the RC LDPC-CCs derived from the (21, 3, 5) Tanner
LDPC-CC with puncturing period P = 4 using cycles of length w = 8, 10, and 12: the
enumerator of ∞-SR nodes Cai∞ , the enumerator of m-SR nodes Eai

c , the enumerator
of CPCTSs Eai

τ , and the enumerator of punctured variable nodes involved in short
cycles Eai

b .

at a BER of ≈ 10−1 with no evidence of a waterfall region even though the SNR is

increased to beyond 12 dB.

Importantly, we see here that extending the puncturing period allows us to avoid

∞-SR nodes over a wider range of code rates. Recall from Section 5.4.3 that there are

two unavoidable ∞-SR nodes in the code of rate 4/5 with P = 2; however, with P = 4

the code of rate 8/10 whose puncturing pattern is a29 = [10100; 00110; 11101; 00110] is

free of∞-SR nodes, resulting in about 2.1 dB gain at a BER of 10−3 and no discernible

error floor down to 10−6 compared to the rate 4/5 code (see Fig. 5.10).

5.4.5 Discussion of puncturing criteria ordering

To show the existence of error floors occurring in the high SNR region caused by

CPCTSs, the decoding performance of two codes of punctured code rate R′ = 8/10 with
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Figure 5.9: BERs of the RC LDPC-CCs derived from the (21, 3, 5) Tanner LDPC-CC
with puncturing period P = 4.

patterns a31 = [10100; 00111; 11100; 00110] and a32 = [10100; 01111; 10100; 00110],1

obtained by puncturing the (21, 3, 5) Tanner LDPC-CC with puncturing period P = 4,

are presented in Fig. 5.10. They have the same recoverability of punctured nodes

(Ca31
∞ = Ca32

∞ = 0 and Ea31
c = Ea32

c = [30201010201]) and the same number of punctured

variable nodes involved in short cycles (
∑

Ea31
b =

∑
Ea32

b = 4711). Consequently,

they have similar decoding performance in the waterfall region, as shown in Fig. 5.10.

Compared to the code with puncturing pattern a29, however, patterns a31 and a32 have

better recoverability of punctured nodes (Ea31
c = Ea32

c = [30201010201] is superior to

Ea29
c = [10101010101010201]), and it is confirmed by the BER curves in Fig. 5.10 that

they have better decoding performance in the waterfall region than a29. However, in

terms of CPCTSs, the codes with patterns a31 and a32 (Ea31
τ = [302012] and Ea32

τ =

[404018]) have many more CPCTSs than the code with pattern a29 (Ea29
τ = [30304]).

Consequently, the simulation curves in Fig. 5.10 show that the codes with patterns a31

and a32 suffer from error floors at BER values of 10−6 and 10−5, respectively, while

there is no observed error floor for the code with pattern a29 in this range.

Note that, even though the patterns a31 and a32 have better decoding performance

in the waterfall region for R′ = 8/10, following Algorithm 3, a31 and a32 cannot be

derived from the lower rate (R′ = 8/11) pattern a28, i.e., they are not rate compatible to

1Note that, unlike the puncturing pattern a29, the patterns a31 and a32 are not derived from the
same lower rate punctured code, i.e., they are not RC puncturing patterns.
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Figure 5.10: BERs of some punctured LDPC-CCs derived from the (21, 3, 5) Tanner
LDPC-CC with puncturing period P = 2 or P = 4.

pattern a28. Instead, we selected a29 as the best rate compatible candidate. This choice

was made because in Algorithm 3 we consider the criterion of minimizing the number

of CPCTSs to be more important than the criterion of ensuring the recoverability of

m-SR nodes, where m is a finite number. In this regard, we note that Algorithm 3 can

be adapted depending on the code designers’ preference of improved performance in

the waterfall region versus the location of the error floor. In our case, Algorithm 3 has

been designed with an emphasis on selecting the robust RC puncturing patterns that

yield low error floors over a wide range of code rates.

Finally, for comparison, we show in Fig. 5.10 the R′ = 4/5 punctured code obtained

in Section 5.4.3 with puncturing pattern a18 = [10100; 01110], puncturing period P = 2,

and CPCTS enumerator Ea18
τ = [10106]. This pattern is equivalent to a P = 4 pattern

with a33 = [a18;a18] = [10100; 01110; 10100; 01110] whose corresponding CPCTS and

∞-SR enumerators are Ea33
τ = [202012] and Ca33

∞ = 4, respectively. Compared to

the puncturing patterns a31 and a32, pattern a33 has fewer CPCTSs; however, the

corresponding R′ = 8/10 code (equivalent to the R′ = 4/5 code) displays a much

higher error floor, as shown in Fig. 5.10. This is because of the existence of the four

∞-SR nodes in a33, while a29, a31, and a32 have none. In other words, even though

minimizing the number of CPCTSs is crucial to avoid the early onset of an error floor,

the avoidance of ∞-SR nodes is of even greater importance (and hence the emphasis

on Step 1.1 in Algorithm 1).
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R′ i ai Cai∞ Eai
c

w = 10,12, and 14

Eai
τ Eai

b
∑

w E
ai
b

6/15 34 [00000; 00000; 00000] 0 -
[
000

] [
0 0 0

]
0

6/14 35 [00010; 00000; 00000] 0
[
1
] [

000
] [

18 161 1241
]

1420

6/13 36 [00010; 00010; 00000] 0
[
2
] [

000
] [

36 322 2482
]

2840

6/12 37 [00010; 00010; 00010] 0
[
3
] [

000
] [

54 483 3723
]

4260

6/11 38 [00110; 00010; 00010] 0
[
3 1

] [
000

] [
74 657 5021

]
5752

6/10 39 [00110; 01010; 00010] 0
[
3 2

] [
000

] [
97 834 6322

]
7253

6/9 40 [01110; 01010; 00010] 0
[
1 2 2 1

] [
000

] [
120 1011 7623

]
8754

6/8 41 [01111; 01010; 00010] 0
[
1 1 1 1 2 1

] [
002

] [
141 1199 9019

]
10359

6/7 42 [01111; 01010; 00110] 2
[
1 1 1 1 2

] [
2736

] [
161 1373 10317

]
11851

Table 5.7: Enumerators for the RC LDPC-CCs derived from the (57, 3, 5) Tanner
LDPC-CC with puncturing period P = 3 using cycles of length w = 10, 12, and 14:

the enumerator of ∞-SR nodes Cai∞ , the enumerator of m-SR nodes Eai
c , the

enumerator of CPCTSs Eai
τ , and the enumerator of punctured variable nodes involved

in short cycles Eai
b .

5.5 RC punctured LDPC-CCs derived from the (57, 3, 5)

Tanner LDPC-CC

The puncturing algorithm can also be applied to higher memory codes. In this section,

we use the (57, 3, 5) Tanner LDPC-CC with rate R = 2/5 as the mother code. This

code has a syndrome former memory almost three times as large as that of the (21, 3, 5)

Tanner LDPC-CC. The polynomial syndrome former matrix is given by

HT (D) =


1 1 D35

D80 D43 D45

D19 D30 D13

D57 D90 D30

D33 D20 1

. (5.6)

The graph has a girth of 10 and the first three nonzero cycle enumerators are

R10 = 21, R12 = 148, and R14 = 947. The puncturing period is set to P = 3, and

cycles of length 10, 12, and 14 were used to compute the enumerators, i.e., we set

Nb = Nτ = 14 and g = 10 in Algorithm 3. It took less than one minute to obtain the

list of variable nodes involved in the cycles of length 10, 12, and 14 and to compute

the enumerators used for code selection using a computer with a 2 GHz Processor and

2 GB of memory. The enumerators and the decoding performance of the obtained RC
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Figure 5.11: BERs of the RC LDPC-CCs derived from the (57, 3, 5) Tanner code with
puncturing period P = 3.

LDPC-CCs are presented in Table 5.7 and Fig. 5.11, respectively. The BER curves

from left to right in Fig. 5.11 correspond to codes of rates 6/15, 6/14, 6/13, 6/12, 6/11,

6/10, 6/9, 6/8, and 6/7, respectively. Details of the process of obtaining the family

of RC punctured LDPC-CCs from the (57, 3, 5) Tanner LDPC-CC are illustrated in

Appendix C.

After evaluating the enumerators and decoding performance of the RC codes de-

rived from the (57, 3, 5) Tanner LDPC-CCs, we arrive at conclusions similar to the

examples in Section 5.4, i.e., a family of robust RC LDPC-CCs with good performance

is obtained until the first occurrence of unavoidable ∞-SR nodes. Comparing the de-

coding performance in Fig. 5.11 to that in Fig. 5.8 or Fig. 5.9, the RC codes derived

from the (57, 3, 5) Tanner LDPC-CC generally have a steeper waterfall region than

those derived from the (21, 3, 5) Tanner LDPC-CC, due to the strength of the mother

code. If the mother code has better decoding performance, typically the corresponding

RC codes will also benefit.

5.6 Application of the puncturing algorithm to general

time-invariant LDPC-CCs

So far, the puncturing algorithm has been applied to some example codes whose polyno-

mial syndrome former matrices contain only monomial entries. As a final example, we
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R′ i ai Cai∞ Eai
c

w = 8,10, 12, and 14

Eai
τ Eai

b

∑
w E

ai
b

2/8 43 [0000; 0000] 0 -
[
0 0 0 0

] [
0 0 0 0

]
0

2/7 44 [0010; 0000] 0
[
1
] [

0 0 0 0
] [

0 3 18 45
]

66

2/6 45 [0010; 0010] 0
[
2
] [

0 0 0 0
] [

0 6 36 90
]

132

2/5 46 [0011; 0010] 0
[
2 1

] [
0 0 0 0

][
4 12 48 151

]
215

2/4 47 [0111; 0010] 0
[
2 2

] [
0 0 0 0

][
7 18 63 211

]
299

2/3 48 [0111; 0110] 0
[
1 1 1 1

][
1 0 0 3

][
10 24 78 271

]
383

Table 5.8: Enumerators for the RC LDPC-CCs derived from the LDPC-CC in (5.7)
with puncturing period P = 2 using cycles of length w = 8, 10, 12, and 14: the

enumerator of ∞-SR nodes Cai∞ , the enumerator of m-SR nodes Eai
c , the enumerator

of CPCTSs Eai
τ , and the enumerator of punctured variable nodes involved in short

cycles Eai
b .

demonstrate the compatibility of the puncturing algorithm with more general LDPC-

CCs. In particular, we apply it to an LDPC-CC whose polynomial syndrome former

matrix consists of both monomials and binomials, as well as some zero entries. This

code, found in [69], is defined by the polynomial syndrome former matrix

HT (D) =


D +D2 D5 0

0 D9 D19 +D25

D4 D10 +D20 0

D8 0 D7 +D14

. (5.7)

It has rate R = 1/4 and a girth of 8. The first four nonzero cycle enumerators are

R8 = 2, R10 = 4, R12 = 10, and R14 = 31. Given the puncturing period P = 2 and

setting Nb = Nτ = 14 and g = 8 in Algorithm 3, we obtain a family of RC punctured

LDPC-CCs with rates 2/8, 2/7, 2/6, 2/5, 2/4, and 2/3. The calculated enumerators

for the selection criteria are given in Table 5.8. Fig. 5.12 presents the BER curves of

the RC codes with ascending rates from left to right. We observe that all the codes are

free of∞-SR nodes. The highest rate R′ = 2/3 code contains four CPCTSs. Compared

to other codes, it has worse recoverability of punctured variable nodes. This causes a

large gap in performance between the codes of rates 2/4 and 2/3 and a high error floor

in the rate 2/3 case. In order to improve the performance of the highest rate code and

maintain rate compatibility, it would again be necessary to increase the puncturing
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Figure 5.12: BERs of the RC LDPC-CCs derived from the LDPC-CC in (5.7) with
puncturing period P = 2.

period to P > 2.

5.7 Conclusions

Given a mother time-invariant LDPC-CC and a puncturing period P , a novel method

has been presented to find robust RC punctured LDPC-CCs by periodically puncturing

encoded bits (variable nodes). The positions of the punctured entries in the punctur-

ing pattern are determined using several criteria: (1) ensure good recoverability of

punctured variable nodes, (2) minimize the number of CPCTSs, and (3) minimize the

number of punctured variable nodes involved in short cycles. Crucially, these criteria

can be efficiently and precisely computed, even for practically interesting time-invariant

LDPC-CCs with large syndrome former memories, and we do not require the computa-

tion of code distance spectra. The influence of criteria (1) and (3) on iterative decoding

performance is strongest in the waterfall region, while (2) has a larger effect on the po-

sition of the error floor. We observed that the most important criterion is to avoid

punctured unrecoverable variable nodes, i.e., ∞-SR nodes. As the punctured code rate

increases, the RC codes demonstrate robustly good decoding performance, and the ro-

bustness is maintained until a rate is reached where ∞-SR nodes cannot be avoided.

Moreover, we showed that increasing the puncturing period P has the effect of elimi-

nating ∞-SR nodes in high rate punctured codes, in addition to extending the range

93



of compatible rates and increasing the number of intermediate rates.

Finally, we demonstrated the versatility of the puncturing algorithm by applying it

to several example mother codes with different puncturing periods, syndrome former

memories, and syndrome former matrix structures.
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Chapter 6

Conclusions and further work

In the dissertation, we analyzed the cycle structure of LDPC-CCs, obtained girth

bounds as a result of unavoidable cycles, and we estimated the distance spectrum and

the minimum free distance of LDPC-CCs. By analyzing the characteristics of LDPC-

CCs, we proposed a puncturing algorithm to obtain rate compatible (RC) LDPC-CCs

by periodically puncturing encoded bits. Some remarkable conclusions are given as

follows.

Firstly, the relationship of cycle formations between time- and polynomial-domain

syndrome former matrices for both time-invariant and time-varying LDPC-CCs has

been analyzed. Time-invariant LDPC-CCs are defined by HT (D) that is obtained from

QC LDPC-BCs by replacing the circulant matrices ‘I’ in HT with ‘1’ and ‘In’ with the

delay operator ‘Dn−1’, while time-varying LDPC-CCs can be derived by unwrapping the

matrix HT . Based on the connectivities between monomials in the polynomial-domain

syndrome former matrix HT (D), we presented a cycle counter algorithm to examine

the cycle enumerators of time-invariant and time-varying LDPC-CCs. The maximum

achievable cycle length in the numerical search (limited by algorithmic complexity)

depends on the row and column weights of HT (D) as well as the period T . In addition,

even though the cycle counter algorithm is proposed for LDPC-CCs, it is universally

applicable to any convolutional code defined by a polynomial matrix.

Moreover, we investigated some unavoid able cycles with lengths ranging from 6

to 20 that are caused by destructive structures in the polynomial matrix HT (D), no

matter what powers of monomials are chosen. Based on the analysis we conjecture that,

to obtain a “good” LDPC-CC with respect to its (large) girth, rather than polynomial

entries with large weight, monomials and empty entries are preferred or required in

HT (D) since small cycles are avoidable, and larger girth is achieved.
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Secondly, rather than to compute the exact distance spectrum of LDPC-CCs, a

novel approach has been introduced to estimate the distance spectrum of time-invariant

LDPC-CCs that are defined by polynomial syndrome former matrices. The concept is to

split the polynomial syndrome former matrix into submatrices, each of which defines

a super code. By applying the linear dependence evaluation method introduced in

Chapter 4 to the codewords of the super codes, we obtain an estimate of the distance

spectrum of the original code, i.e., we obtain an upper bound on the minimum free

distance and a lower bound on the number of codewords Aw with Hamming weight

w. The free distance bound was shown to be exact for the Tanner (21, 3, 5)-regular

time-invariant LDPC-CC. In addition, after testing some Tanner (ms, 3, 5) LDPC-CCs

with only monomials and no empty entries in HT (D), we find that all of these codes

have free distance 24 and at least 5 minimum weight codewords.

In contrast to the BEAST algorithm [13], which can be used to obtain exact Aw

values for convolutional codes with relatively short memories, the complexity of the

proposed algorithm does not depend on the constraint length vs or the syndrome former

memory ms; instead, the complexity depends on the free distance and the density (row

and column weight J and K) of HT . As a result, unlike BEAST, the linear dependence

evaluation method is well suited for application to practical time-invariant LDPC-CCs

that have low-density syndrome former matrices and large memories.

Finally, given a mother time-invariant LDPC-CC and puncturing period P , a

method has been presented to find robust RC punctured LDPC-CCs by periodically

puncturing encoded bits (variable nodes). The RC higher rate punctured code is ob-

tained by placing an extra punctured entry in the puncturing pattern of the lower rate

punctured code. The positions of the punctured entries in the puncturing pattern are

determined considering the recoverability of punctured variable nodes, the number of

CPCTSs, and the number of punctured variable nodes involved in short cycles. We

observed that the most important criterion is to avoid unrecoverable punctured vari-

able nodes, i.e., ∞-SR nodes. As the punctured code rate increases, the RC codes

demonstrate robustly good decoding performance, and the robustness is maintained

until a rate is reached where ∞-SR nodes cannot be avoided. Moreover, we showed

that increasing the puncturing period P has the effect of eliminating ∞-SR nodes in

high rate punctured codes, in addition to extending the range of compatible rates and

increasing the number of intermediate rates.

For future work, we have several open questions to continue with:

• We would like to design good LDPC-CCs as mother codes based on the girth

bounds and the distance spectrum estimation investigated in Chapters 3 and 4,
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respectively. Also, we would like to apply the puncturing algorithm to these

mother codes and compare the decoding performance of the obtained RC LDPC-

CCs with the RC LDPC codes used in DVB-2 standard.

• The puncturing algorithm may be extended to QC LDPC-BCs, especially we are

interested in unrecoverable punctured nodes in punctured QC LDPC-BCs of finite

block length.

• Given a mother code and applying the puncturing algorithm, we wonder what the

maximum punctured code rate is that can be obtained without any unrecoverable

punctured variable nodes. We have an intuition that the maximum punctured

code rate is determined by the weight matrix B of the polynomial syndrome

former matrix HT (D).
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Appendix A

Graphical representations of

unavoidable cycles for

time-invariant LDPC-CCs

In Chapter 3, we have shown some unavoidable cycles of length up to 12 for time-

invariant LDPC-CCs. Together with the weight matrices, here we give the graphical

structures of some other unavoidable cycles of lengths 12, 14, 16, 18, and 20 in the

polynomial submatrix of a polynomial syndrome former matrix HT (D). In each figure,

the unavoidable cycle is illustrated on the left side and the corresponding weight matrix

is given on the right side. If any entry, let us say bij , in the weight matrix B is

larger than one, then the corresponding polynomial entry in HT (D) can be written as

Ds1ij +Ds2ij . . .+Ds
bij
ij . For the convenience of graphical representation, we arrange the

bij monomials in the form of a “matrix” of size bij × bij , i.e.,
Ds1ij Ds2ij · · · Ds

bij
ij

Ds2ij Ds3ij · · · Ds1ij

...
...

...

Ds
bij
ij Ds1ij · · · Ds

bij−1

ij

 , (A.1)

where starting from the second row, each row is the shifted version of the upper one to

the left by one monomial entry. For example, in Fig. A.1 the entry b11 in B12 is 2, as

a result the polynomial entry Ds111 +Ds211 in the graph is replaced by a 2× 2 “matrix”

formed by Ds111 and Ds211 . Note that, for simplicity the notation D is removed in the

98



graphical representation. Similar explanation applies to Figs. A.2 and A.4. By summing

all the delays along each path in Figs. A.1-A.12, they all satisfy the conditions in (3.4)

and (3.5). Thus all these cycles are unavoidable no matter what “powers” are chosen

for the monomials. Hence when designing LDPC-CCs to achieving the desired girth,

the corresponding weight matrix should be free of respective submatrices in (3.17).
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Figure A.7: Unavoidable cycles of length 18 in a 4× 4 polynomial submatrix (i)
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Figure A.9: Unavoidable cycles of length 20 in a 5× 4 polynomial submatrix (i)
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Figure A.10: Unavoidable cycles of length 20 in a 5× 4 polynomial submatrix (ii)
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Figure A.11: Unavoidable cycles of length 20 in a 5× 4 polynomial submatrix (iii)
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Figure A.12: Unavoidable cycles of length 20 in a 4× 4 polynomial submatrix (iv)
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Appendix B

RC LDPC-CCs derived from the

(21, 3, 5) Tanner LDPC-CC

Following the punctured code of rateR′ = 4/8 with puncturing pattern a12 = [00100; 00100]

(details can be found in Section 5.4.2), we give the rest of the family of RC LDPC-CCs

derived from the (21, 3, 5) Tanner LDPC-CC with puncturing period P = 2.

B.1 The rate R′ = 4/7 punctured code

Based on the puncturing pattern a12, four RC punctured codes of rate 4/7 are derived.

Their properties are presented in Table B.1. By running Algorithm 3, puncturing

pattern a50 is eliminated at Step 1.1 as it contains two∞-SR nodes. The only difference

among patterns a49,
1 a51, and a52 lies in the number of punctured variable nodes

involved in short cycles. Thus we chose a49 as the best one since it results in the

smallest number of punctured nodes in short cycles. Correspondingly, their decoding

performance are shown in Fig. B.1. a49 is the best one with the lowest BER curve,

while a50 is the worst one as a result of the two ∞-SR nodes. Even though a52 has

larger accumulated value in Eai
b than that of a51, a52 contains less punctured nodes

in short cycles of length 8 and 10, i.e., Ba52
8 = 20 and Ba52

10 = 156 which are smaller

than Ba51
8 = 24 and Ba51

10 = 167, respectively. Consequently, a52 has better decoding

performance than a51 in the high SNR region.

1Note that a49 is the same as the puncturing pattern a15 in Section 5.4.3.
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Puncturing pattern of previous lower rate code: [00100; 00100]

A3
2 Cai∞ Eai

c
w = 8,10, and 12

i ai Eai
τ Eai

b
∑

w E
ai
b

49 ∗[10100; 00100] 0
[
2 1

] [
0 0 0

] [
20 155 1146

]
1321

50 [01100; 00100] 2
[
1
] [

0 0 1
] [

22 168 1181
]

1371
51 [00110; 00100] 0

[
2 1

] [
0 0 0

] [
24 167 1160

]
1351

52 [00101; 00100] 0
[
2 1

] [
0 0 0

] [
20 156 1188

]
1364

Table B.1: Enumerators for the puncturing patterns of the (21, 3, 5) Tanner LDPC-CC
with rate R′ = 4/7 obtained using cycles of length w = 8, 10, and 12: the enumerator
of ∞-SR nodes Cai∞ , the enumerator of m-SR nodes Eai

c , the enumerator of CPCTSs
Eai

τ , and the enumerator of punctured variable nodes involved in short cycles Eai
b .

B.2 The rate R′ = 4/6 punctured code

Continue the process of obtaining RC punctured code with the puncturing pattern a49,

seven RC punctured LDPC-CCs of rate R′ = 4/6 are obtained by introducing an extra

puncture entry in a49. Details of these codes are shown in Table B.2. Regarding all the

puncturing patterns in A4
2, only a54 and a58 are free of∞-SR nodes,1 and moreover, a58

is superior to a54 as it has better recoverability of punctured variable nodes at Step 1.2

of Algorithm 3. As a result, we chose a58 as the best candidate puncturing pattern for

rate R′ = 4/6. However, comparing the enumerators between a54 and a58 in Table B.2,

they have very similar properties which is consistent with the observation in Fig. B.2

that they have nearly the same decoding performance.

In term of the puncturing patterns in A4
2\{a54,a58}, they all have unrecoverable

punctured variable nodes. It causes that their decoding performance suffer from very

high error floors. In addition, the error floor of a55 and a56 are higher than that of

a53, a57, and a59 since puncturing patterns a55, a56 contain twice the number of ∞-SR

nodes than those of a53, a57, and a59.

B.3 The rate R′ = 4/5 punctured code

Finally, we obtain the highest rate R′ = 4/5 punctured codes with puncturing patterns

in the set A5
2. There are six such codes with enumerators presented in Table B.3.

All these codes have ∞-SR nodes. Specifically, the codes with patterns in the set

{a61,a62,a63} and the set {a60,a64,a65} have five and two ∞-SR nodes, respectively.2

1Note that a58 is the same as the puncturing pattern a16 in Section 5.4.3.
2Note that a64 is the same as the puncturing pattern a17 in Section 5.4.3.
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Puncturing pattern of previous lower rate code: [10100; 00100]

A4
2 Cai∞

.
Eai

c
. w = 8,10, and 12

. i . ai . . . Eai
τ . Eai

b
∑

w E
ai
b

.53. [11100; 00100] . 2 .
[
1 1

]
.
[
0 0 1

]
.
[
30 227 1593

]
1850

.54. [10110; 00100] . 0 .
[
1 2 1

]
.
[
0 1 0

]
.
[
32 226 1572

]
1830

.55. [10101; 00100] . 4 .
[
0
]

.
[
0 0 0

]
.
[
28 215 1600

]
1843

.56. [10100; 10100] . 4 .
[
0
]

.
[
0 0 2

]
.
[
28 214 1558

]
1800

.57. [10100; 01100] . 2 .
[
1 1

]
.
[
0 0 3

]
.
[
30 227 1593

]
1850

.58.∗[10100; 00110] . 0 .
[
2 2

]
.
[
1 0 0

]
.
[
32 226 1572

]
1830

.59. [10100; 00101] . 2 .
[
2 0 0

]
.
[
1 1 2

]
.
[
28 215 1600

]
1843

Table B.2: Enumerators for the puncturing patterns of the (21, 3, 5) Tanner LDPC-CC
with rate R′ = 4/6 obtained using cycles of length w = 8, 10, and 12: the enumerator
of ∞-SR nodes Cai∞ , the enumerator of m-SR nodes Eai

c , the enumerator of CPCTSs
Eai

τ , and the enumerator of punctured variable nodes involved in short cycles Eai
b .

Puncturing pattern of previous lower rate code: [10100; 00110]

A5
2 Cai∞

.
Eai

c
. w = 8,10, and 12

. i . ai . . Eai
τ . Eai

b
∑

w E
ai
b

.60. [11100; 00110] 2 .
[
1 1 1

]
.
[
1 2 6

]
.
[
42 298 2019

]
2359

.61. [10110; 00110] 5 .
[
0
]

.
[
3 4 3

]
.
[
44 297 1998

]
2339

.62. [10101; 00110] 5 .
[
0
]

.
[
1 0 1

]
.
[
40 286 2026

]
2352

.63. [10100; 10110] 5 .
[
0
]

.
[
1 2 3

]
.
[
40 285 1984

]
2309

.64.∗[10100; 01110] 2 .
[
1 1 1

]
.
[
1 1 6

]
.
[
42 298 2019

]
2359

.65. [10100; 00111] 2 .
[
2 1

]
.
[
2 1 9

]
.
[
40 286 2026

]
2352

Table B.3: Enumerators for the puncturing patterns of the (21, 3, 5) Tanner LDPC-CC
with rate R′ = 4/5 obtained using cycles of length w = 8, 10, and 12: the enumerator
of ∞-SR nodes Cai∞ , the enumerator of m-SR nodes Eai

c , the enumerator of CPCTSs
Eai

τ , and the enumerator of punctured variable nodes involved in short cycles Eai
b .
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Figure B.1: BERs of the punctured LDPC-CCs of (5.2) with rate R′=4/7.

According the designing criteria, a64 is chosen as the best puncturing pattern for this

rate, however, it is not of practical interest due to the existence of error floor. Fig. B.3

presents the decoding performance of these codes. It is observed that a60 and a64

have lower error floors than other puncturing patterns, because they have fewer ∞-SR

nodes. a65 contains exactly the same number of ∞-SR nodes as a60 and a64, however,

it contains many more CPCTSs. As a result, its error floor is higher than that of a60

and a64 and merges with that of the puncturing patterns in the set {a61,a62,a63}.
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Figure B.2: BERs of the punctured LDPC-CCs of (5.2) with rate R′=4/6.
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Figure B.3: BERs of the punctured LDPC-CCs of (5.2) with rate R′=4/5.
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Appendix C

RC LDPC-CCs derived from the

(57, 3, 5) Tanner LDPC-CC

Here we give the process of obtaining the family of RC punctured LDPC-CCs derived

from the (57, 3, 5) Tanner LDPC-CC with puncturing period P = 3. The polynomial-

domain syndrome former matrix of the (57, 3, 5) Tanner LDPC-CC is given by (5.6).

It is of rate R = 2/5 or R = 6/15. The puncturing pattern of the unpunctured mother

code is [00000; 00000; 00000].

C.1 The rate R′ = 6/14 punctured code

We begin by placing l = 1 punctured entry in the puncturing pattern of the mother

code, there are fifteen options available. However, vertically cyclically shifted punctur-

ing patterns are considered as one type. Hence we obtain five non-equivalent puncturing

patterns in the set A1
3. The enumerators for these patterns are listed in Table C.1. They

are all free of ∞-SR nodes and CPCTSs and they have the same properties of recov-

ering punctured nodes. According to Algorithm 3, the pattern selection is determined

by the punctured variable nodes in short cycles. By comparing parameter Eai
b among

puncturing patterns in A1
3, a69 is selected as the best one for rate R′ = 6/14,1 because

it contains the smallest number of punctured nodes in shorts cycles though its decoding

performance is nearly the same as others as shown in Fig. C.1.

1Note that a69 is the same as the puncturing pattern a35 in Section 5.5.
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C.2 The rate R′ = 6/13 punctured code

In order to maintain compatible rates, further punctured codes are sequentially ob-

tained by placing an extra punctured entry in the puncturing pattern of the previous

lower rate punctured code. Thirteen punctured codes of rate 6/13 with puncturing pat-

terns in A2
3 are obtained from a69. Observing the data in Table C.2, punctured codes

in A2
3 have the same enumerators in Eai

τ , Eai
c and Cai∞. a78 has the smallest number of

punctured nodes in short cycles,1 i.e.,
∑

Ea78
b = 2840. It leads to the better decoding

performance over others in Fig. C.2. Consequently, the code with puncturing pattern

a78 is chosen as the optimal one for the punctured code rate R′ = 6/13.

C.3 The punctured codes with rates 6/12, 6/11, 6/10, 6/9,

6/8, and 6/7

Based on Algorithm 3, similar explanations apply to the following RC punctured codes.

Here we do not give repetitive comments on the comparisons for each rate. Readers

could form the idea by evaluating the properties of codes in Tables C.3-C.8 and simula-

tions in Figs. C.3-C.8, where the puncturing patterns a69, a78, a95, a99, a105, a112, a123,

and a136 are the same as the puncturing patterns a35, a36, a37, a38, a39, a40, a41, and

a42 in Section 5.5, respectively. We can see that, as the puncturing code rate increases,

the enumerators Eai
τ and Eai

c of different puncturing patterns of the same rate starts to

varying. In other words, for the low rate punctured codes, the selection of puncturing

patterns is dominated by enumerator Eai
b , while for the high rate punctured codes, the

enumerators Eai
τ , Eai

c have more influence on the puncturing algorithm. However, Cai∞

is the most important selection criterion and affect the selection entirely.

1Note that a78 is the same as the puncturing pattern a36 in Section 5.5.
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Puncturing pattern of previous lower rate code: [00000; 00000; 00000]

A1
3 Cai∞Eai

c
w = 10,12, and 14

i ai Eai
τ Eai

b
∑

w Eai
b

66 [10000; 00000; 00000] 0
[
1
] [
0 0 0

][
23 188 1393

]
1604

67 [01000; 00000; 00000] 0
[
1
] [
0 0 0

][
23 177 1301

]
1501

68 [00100; 00000; 00000] 0
[
1
] [
0 0 0

][
20 174 1298

]
1492

69∗[00010; 00000; 00000] 0
[
1
] [
0 0 0

][
18 161 1241

]
1420

70 [00001; 00000; 00000] 0
[
1
] [
0 0 0

][
21 188 1396

]
1605

Table C.1: Enumerators for the puncturing patterns of the (57, 3, 5) Tanner
LDPC-CC with rate R′ = 6/14 obtained using cycles of length w = 10, 12, and 14:

the enumerator of ∞-SR nodes Cai∞ , the enumerator of m-SR nodes Eai
c , the

enumerator of CPCTSs Eai
τ , and the enumerator of punctured variable nodes involved

in short cycles Eai
b .
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Figure C.1: BERs of the punctured LDPC-CCs of (5.6) with rate R′ = 6/14.
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Puncturing pattern of previous lower rate code: [00010; 00000; 00000]

A1
3 Cai∞Eai

c
w = 10,12, and 14

i ai Eai
τ Eai

b
∑

w E
ai
b

71 [10010; 00000; 00000] 0
[
2
] [
0 0 0

][
41 349 2634

]
3024

72 [01010; 00000; 00000] 0
[
2
] [
0 0 0

][
41 338 2542

]
2921

73 [00110; 00000; 00000] 0
[
2
] [
0 0 0

][
38 335 2539

]
2912

74 [00011; 00000; 00000] 0
[
2
] [
0 0 0

][
39 349 2637

]
3025

75 [00010; 10000; 00000] 0
[
2
] [
0 0 0

][
41 349 2634

]
3024

76 [00010; 01000; 00000] 0
[
2
] [
0 0 0

][
41 338 2542

]
2921

77 [00010; 00100; 00000] 0
[
2
] [
0 0 0

][
38 335 2539

]
2912

78∗[00010; 00010; 00000] 0
[
2
] [
0 0 0

][
36 322 2482

]
2840

79 [00010; 00001; 00000] 0
[
2
] [
0 0 0

][
39 349 2637

]
3025

80 [00010; 00000; 10000] 0
[
2
] [
0 0 0

][
41 349 2634

]
3024

81 [00010; 00000; 01000] 0
[
2
] [
0 0 0

][
41 338 2542

]
2921

82 [00010; 00000; 00100] 0
[
2
] [
0 0 0

][
38 335 2539

]
2912

83 [00010; 00000; 00001] 0
[
2
] [
0 0 0

][
39 349 2637

]
3025

Table C.2: Enumerators for the puncturing patterns of the (57, 3, 5) Tanner
LDPC-CC with rate R′ = 6/13 obtained using cycles of length w = 10, 12, and 14:

the enumerator of ∞-SR nodes Cai∞ , the enumerator of m-SR nodes Eai
c , the

enumerator of CPCTSs Eai
τ , and the enumerator of punctured variable nodes involved

in short cycles Eai
b .
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Figure C.2: BERs of the punctured LDPC-CCs of (5.6) with rate R′ = 6/13.
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Puncturing pattern of previous lower rate code: [00010; 00010; 00000]

A3
3 Cai∞ Eai

c
w = 10,12, and 14

i ai Eai
τ Eai

b
∑

w E
ai
b

84 [10010; 00010; 00000] 0
[
3
] [

0 0 0
][
59 510 3875

]
4444

85 [01010; 00010; 00000] 0
[
3
] [

0 0 0
][
59 499 3783

]
4341

86 [00110; 00010; 00000] 0
[
2 1

][
0 0 0

][
56 496 3780

]
4332

87 [00011; 00010; 00000] 0
[
3
] [

0 0 0
][
57 510 3878

]
4445

88 [00010; 10010; 00000] 0
[
2 1

][
0 0 0

][
59 510 3875

]
4444

89 [00010; 01010; 00000] 0
[
3
] [

0 0 0
][
59 499 3783

]
4341

90 [00010; 00110; 00000] 0
[
3
] [

0 0 0
][
56 496 3780

]
4332

91 [00010; 00011; 00000] 0
[
2 1

][
0 0 0

][
57 510 3878

]
4445

92 [00010; 00010; 10000] 0
[
3
] [

0 0 0
][
59 510 3875

]
4444

93 [00010; 00010; 01000] 0
[
3
] [

0 0 0
][
59 499 3783

]
4341

94 [00010; 00010; 00100] 0
[
3
] [

0 0 0
][
56 496 3780

]
4332

95∗[00010; 00010; 00010] 0
[
3
] [

0 0 0
][
54 483 3723

]
4260

96 [00010; 00010; 00001] 0
[
3
] [

0 0 0
][
57 510 3878

]
4445

Table C.3: Enumerators for the puncturing patterns of the (57, 3, 5) Tanner
LDPC-CC with rate R′ = 6/12 obtained using cycles of length w = 10, 12, and 14:

the enumerator of ∞-SR nodes Cai∞ , the enumerator of m-SR nodes Eai
c , the

enumerator of CPCTSs Eai
τ , and the enumerator of punctured variable nodes involved

in short cycles Eai
b .
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Figure C.3: BERs of the punctured LDPC-CCs of (5.6) with rate R′ = 6/12.
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Puncturing pattern of previous lower rate code: [00010; 00010; 00010]

A4
3 Cai∞ Eai

c
w = 10,12, and 14

i ai Eai
τ Eai

b
∑

w E
ai
b

97 [10010; 00010; 00010] 0
[
3 1

][
0 0 0

][
77 671 5116

]
5864

98 [01010; 00010; 00010] 0
[
3 1

][
0 0 0

][
77 660 5024

]
5761

99 ∗[00110; 00010; 00010] 0
[
3 1

][
0 0 0

][
74 657 5021

]
5752

100 [00011; 00010; 00010] 0
[
3 1

][
0 0 0

][
75 671 5119

]
5865

Table C.4: Enumerators for the puncturing patterns of the (57, 3, 5) Tanner
LDPC-CC with rate R′ = 6/11 obtained using cycles of length w = 10, 12, and 14:

the enumerator of ∞-SR nodes Cai∞ , the enumerator of m-SR nodes Eai
c , the

enumerator of CPCTSs Eai
τ , and the enumerator of punctured variable nodes involved

in short cycles Eai
b .
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Figure C.4: BERs of the punctured LDPC-CCs of (5.6) with rate R′ = 6/11.
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Puncturing pattern of previous lower rate code: [00110; 00010; 00010]

A5
3 Cai∞ Eai

c
w = 10,12, and 14

i ai Eai
τ Eai

b
∑

w E
ai
b

101 [10110; 00010; 00010] 0
[
3 2

] [
0 0 0

][
97 845 6414

]
7356

102 [01110; 00010; 00010] 0
[
2 2 1

][
0 0 0

][
97 834 6322

]
7253

103 [00111; 00010; 00010] 0
[
2 2 1

][
0 0 0

][
95 845 6417

]
7357

104 [00110; 10010; 00010] 0
[
2 2 1

][
0 0 1

][
97 845 6414

]
7356

105∗[00110; 01010; 00010] 0
[
3 2

] [
0 0 0

][
97 834 6322

]
7253

106 [00110; 00110; 00010] 0
[
2 2 1

][
0 1 0

][
94 831 6319

]
7244

107 [00110; 00011; 00010] 2
[
3
] [

1 3 6
][
95 845 6417

]
7357

108 [00110; 00010; 10010] 0
[
3 2

] [
0 0 0

][
97 845 6414

]
7356

109 [00110; 00010; 01010] 0
[
3 2

] [
0 0 1

][
97 834 6322

]
7253

110 [00110; 00010; 00011] 0
[
2 2 1

][
0 0 0

][
95 845 6417

]
7357

Table C.5: Enumerators for the puncturing patterns of the (57, 3, 5) Tanner
LDPC-CC with rate R′ = 6/10 obtained using cycles of length w = 10, 12, and 14:

the enumerator of ∞-SR nodes Cai∞ , the enumerator of m-SR nodes Eai
c , the

enumerator of CPCTSs Eai
τ , and the enumerator of punctured variable nodes involved

in short cycles Eai
b .
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Figure C.5: BERs of the punctured LDPC-CCs of (5.6) with rate R′ = 6/10.
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Puncturing pattern of previous lower rate code: [00110; 01010; 00010]

A6
3 Cai∞ Eai

c
w = 10,12, and 14

i ai Eai
τ Eai

b
∑

w E
ai
b

111 [10110; 01010; 00010] 0
[
3 3

] [
0 2 1

][
120 1022 7715

]
8857

112∗[01110; 01010; 00010] 0
[
1 2 2 1

] [
0 0 0

][
120 1011 7623

]
8754

113 [00111; 01010; 00010] 0
[
2 1 2 1

] [
0 0 1

][
118 1022 7718

]
8858

114 [00110; 11010; 00010] 0
[
1 1 1 2 1

][
0 0 2

][
120 1022 7715

]
8857

115 [00110; 01110; 00010] 0
[
1 2 2 1

] [
0 1 1

][
117 1008 7620

]
8745

116 [00110; 01011; 00010] 2
[
3 1

] [
1 3 6

][
118 1022 7718

]
8858

117 [00110;01010;10010] 0
[
3 3

] [
0 0 1

][
120 1022 7715

]
8857

118 [00110; 01010; 01010] 0
[
3 2 1

] [
0 0 2

][
120 1011 7623

]
8754

119 [00110; 01010; 00110] 0
[
2 1 2 1

] [
0 2 2

][
117 1008 7620

]
8745

120 [00110; 01010; 00011] 0
[
1 2 2 1

] [
0 0 0

][
118 1022 7718

]
8858

Table C.6: Enumerators for the puncturing patterns of the (57, 3, 5) Tanner
LDPC-CC with rate R′ = 6/9 obtained using cycles of length w = 10, 12, and 14: the
enumerator of ∞-SR nodes Cai∞ , the enumerator of m-SR nodes Eai

c , the enumerator
of CPCTSs Eai

τ , and the enumerator of punctured variable nodes involved in short
cycles Eai

b .
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Figure C.6: BERs of the punctured LDPC-CCs of (5.6) with rate R′ = 6/9.
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Puncturing pattern of previous lower rate code: [01110; 01010; 00010]

A7
3 Cai∞ Eai

c
w = 10,12, and 14

i ai Eai
τ Eai

b
∑

w E
ai
b

121 [11110; 01010; 00010] 7
[
0
] [

0 2 1
] [

143 1199 9016
]
10358

122∗[01111; 01010; 00010] 0
[
1 1 1 1 2 1

] [
0 0 2

] [
141 1199 9019

]
10359

123 [01110; 11010; 00010] 0
[
1 2 1 2 1

] [
0 0 5

] [
143 1199 9016

]
10358

124 [01110; 01110; 00010] 7
[
0
] [

1 3 6
] [

140 1185 8921
]
10246

125 [01110; 01011; 00010] 2
[
1 2 2

] [
1 3 7

] [
141 1199 9019

]
10359

126 [01110; 01010; 10010] 6
[
1
] [

1 0 1
] [

143 1199 9016
]
10358

127 [01110; 01010; 01010] 7
[
0
] [

0 4 2
] [

143 1188 8924
]
10255

128 [01110; 01010; 00110] 0
[
1 1 1 1 2 1

][
0 2 11

][
140 1185 8921

]
10246

129 [01110; 01010; 00011] 7
[
0
] [

0 0 1
] [

141 1199 9019
]
10359

Table C.7: Enumerators for the puncturing patterns of the (57, 3, 5) Tanner
LDPC-CC with rate R′ = 6/8 obtained using cycles of length w = 10, 12, and 14: the
enumerator of ∞-SR nodes Cai∞ , the enumerator of m-SR nodes Eai

c , the enumerator
of CPCTSs Eai

τ , and the enumerator of punctured variable nodes involved in short
cycles Eai

b .
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Figure C.7: BERs of the punctured LDPC-CCs of (5.6) with rate R′ = 6/8.
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Puncturing pattern of previous lower rate code: [01111; 01010; 00010]

A8
3 Cai∞ Eai

c
w = 10, 12, 14

i ai Eai
τ Eai

b

∑
E

ai
b

130 [11111; 01010; 00010] 8
[
0
] [

0 2 11
][
164 1387 10412

]
11963

131 [01111; 11010; 00010] 6
[
1 1

] [
0 1 13

][
164 1387 10412

]
11963

132 [01111; 01110; 00010] 8
[
0
] [

1 5 8
] [

161 1373 10317
]
11851

133 [01111; 01011; 00010] 5
[
1 1 1

] [
2 7 26

][
162 1387 10415

]
11964

134 [01111; 01010; 10010] 7
[
1
] [

3 1 10
][
164 1387 10412

]
11963

135 [01111; 01010; 01010] 8
[
0
] [

0 4 8
] [

164 1376 10320
]
11860

136 ∗[01111; 01010; 00110] 2
[
1 1 1 1 2

][
2 7 36

][
161 1373 10317

]
11851

137 [01111; 01010; 00011] 8
[
0
] [

0 4 11
][
162 1387 10415

]
11964

Table C.8: Enumerators for the puncturing patterns of the (57, 3, 5) Tanner
LDPC-CC with rate R′ = 6/7 obtained using cycles of length w = 10, 12, and 14: the
enumerator of ∞-SR nodes Cai∞ , the enumerator of m-SR nodes Eai

c , the enumerator
of CPCTSs Eai

τ , and the enumerator of punctured variable nodes involved in short
cycles Eai

b .
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Figure C.8: BERs of the punctured LDPC-CCs of (5.6) with rate R′ = 6/7.
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